Concurrent

and

Distributed
Computing

Java

Q0

Q0

VIJAY K. GARG

Concurrent and Distributed
Computing 1n Java

This Page Intentionally Left Blank

Concurrent and Distributed
Computing in Java

This Page Intentionally Left Blank

Concurrent and Distributed
Computing 1n Java

Vijay K. Garg

University of Texas at Austin

<IEEE

IEEE PRESS

WILEY-
INTERSCIENCE

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2004 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representation or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shali be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Garg, Vijay Kumar, 1938-
Concurrent and distributed computing in Java / Vijay K. Garg.
p. cm.
Includes bibliographical references and index.
ISBN 0-471-43230-X (cloth)
1. Parallel processing (Electronic computers). 2. Electronic data processing—Distributed
processing. 3. Java (Computer program language). 1. Title.

QA76.58G35 2004
005.2'75—dc22 2003065883

Printed in the United States of America.

10987654321

To
my teachers and
my students

This Page Intentionally Left Blank

Contents

List of Figures
Preface

1 Introduction

1.1 Imtroduction. e
1.2 Distributed Systems versus Parallel Systems
1.3 Overviewofthe Book
1.4 Characteristics of Parallel and Distributed Systems
1.5 Design Goals oo
1.6 Specification of Processes and Tasks

1.6.1 Runnable Interface

1.6.2 Join Constructin Java

1.6.3 Thread Scheduling
1.7 Problems e e
1.8 Bibliographic Remarks o000

2 Mutual Exclusion Problem

2.1 Introduction. e
2.2 Peterson’s Algorithm 0000
2.3 Lamport’s Bakery Algorithm
2.4 Hardware Solutions oo

2.4.1 Disabling Interrupts o0

2.4.2 Instructions with Higher Atomicity
2.5 Problems e e
2.6 Bibliographic Remarks o0

3 Synchronization Primitives

3.1 Introduction. e
3.2 Semaphoreso

vii

xiii

xix

I I N O

o9

11
13
13
15

17
17
20
24
27
27
27
28
30

viii CONTENTS
3.2.1 The Producer-Consumer Problem 33

3.2.2 The Reader-Writer Problem 36

3.2.3 The Dining Philosopher Problem 36

33 Monitors. 42
34 Other Examples 46
3.5 Dangersof Deadlocks oL 49
3.6 Problems 50
3.7 Bibliographic Remarks L. 51

4 Consistency Conditions 53
4.1 Introduction. 53
42 SystemModelo 94
4.3 Sequential Consistency 55
4.4 Linearizability oo 57
4.5 Other Consistency Conditions 60
46 Problems 62
4.7 Bibliographic Remarks L. 63

5 Wait-Free Synchronization 65
5.1 Introduction. 65
5.2 Safe, Regular, and Atomic Registers 66
5.3 Regular SRSW Register, 70
5.4 SRSW Multivalued Register 71
5.5 MRSW Register 73
5.6 MRMW Register T4
5.7 Atomic Snapshots 76
5.8 Comsensus 78
5.9 Universal Constructions 84
510 Problems 87
5.11 Bibliographic Remarks, 87

6 Distributed Programming 89
6.1 Introduction. 89
6.2 InetAddressClass., .. 89
6.3 Socketsbasedon UDP L 90
6.3.1 Datagram Sockets, 90

6.3.2 DatagramPacket Class 91

6.3.3 [Example Using Datagrams 92

6.4 Sockets Basedon TCP 94

6.41 Server Sockets 96

CONTENTS

6.4.2 Example 1: A Name Server
6.4.3 Example 2: A Linker oo
6.5 Remote Method Invocations
6.5.1 Remote Objects
6.5.2 Parameter Passing o o000
6.5.3 Dealing with Failures
6.5.4 Client Program
6.6 Other Useful Classes
6.7 Problems e
6.8 Bibliographic Remarks oo 0L .
7 Models and Clocks
7.1 Introduction e
7.2 Model of a Distributed System,
7.3 Model of a Distributed Computation
7.3.1 Interleaving Model oL
7.3.2 Happened-Before Model
74 Logical Clocks
75 Vector Clocks oo o o e
7.6 Direct-Dependency Clocks
7.7 Matrix Clocks e
7.8 Problems e e e
7.9 Bibliographic Remarks e e
8 Resource Allocation
8.1 Introduction. e
8.2 Specification of the Mutual Exclusion Problem
8.3 Centralized Algorithm
8.4 Lamport’s Algorithm 0oL
8.5 Ricart and Agrawala’s Algorithm
8.6 Dining Philosopher Algorithm
8.7 Token-Based Algorithms,
8.8 Quorum-Based Algorithms
89 Problems e
8.10 Bibliographic Remarks
9 Global Snapshot
9.1 Introduction e
9.2 Chandy and Lamport’s Global Snapshot Algorithm

9.3 Global Snapshots for non-FIFO Channels

ix

96
100
101
105
107
108
108
109
109
110

111
111
112
114
114
114
115
117
122
125
126
127

129
129
130
132
135
136
138
142
144
146
147

9.4 Channel Recording by the Sender
9.5 Application: Checkpointing a Distributed Application . .
9.6 Problems
9.7 Bibliographic Remarks

10 Global Properties
10.1 Introductiono
10.2 Unstable Predicate Detection
10.3 Application: Distributed Debugging
10.4 A Token-Based Algorithm for Detecting Predicates
10.5 Problems
10.6 Bibliographic Remarks

11 Detecting Termination and Deadlocks

11.1 Introductiono
11.2 Diffusing Computation
11.3 Dijkstra and Scholten’s Algorithm

11.3.1 An Optimization
11.4 Termination Detection without Acknowledgment Messages
11.5 Locally Stable Predicates
11.6 Application: Deadlock Detection
11.7 Problems e
11.8 Bibliographic Remarks

12 Message Ordering
12.1 Introductiono L Lo
12.2 Causal Ordering
12.2.1 Application: Causal Chat
12.3 Synchronous Ordering
12.4 Total Order for Multicast Messages
12.4.1 Centralized Algorithm
12.4.2 Lamport’s Algorithm for Total Order
12.4.3 Skeen’s Algorithm
12.4.4 Application: Replicated State Machines
12.5 Problems e
12.6 Bibliographic Remarks

13 Leader Election
13.1 Introduction L
13.2 Ring-Based Algorithms

CONTENTS

CONTENTS

13.2.1 Chang-Roberts Algorithm
13.2.2 Hirschberg-Sinclair Algorithm
13.3 Election on General Graphs,
13.3.1 Spanning Tree Construction
13.4 Application: Computing Global Functions
13.5 Problems o e
13.6 Bibliographic Remarks

14 Synchronizers

141 Introduction « .« .« o Lo
14.2 A Simple Synchronizero

14.2.1 Application: BFS Tree Construction
14.3 Synchronizer oo
14.4 Synchronizer B
14.5 Synchronizer v e
14.6 Problems
14.7 Bibliographic Remarks oo

15 Agreement

15.1 Introductiono e
15.2 Consensus in Asynchronous Systems (Impossibility)
15.3 Application: Terminating Reliable Broadcast
15.4 Consensus in Synchronous Systems

15.4.1 Consensus under Crash Failures.

15.4.2 Consensus under Byzantine Faults
15.5 Knowledge and Common Knowledge
15.6 Application: Two-General Problem
15.7 Problems L
15.8 Bibliographic Remarks

16 Transactions
16.1 Introduction e
16.2 ACID Propertieso v i i it i e
16.3 Concurrency Control
16.4 Dealing with Failures
16.5 Distributed Commit L o Lo
16.6 Problems
16.7 Bibliographic Remarks

xi

210
212
213
213
215
217
219

221
221
223
225
226
228
230
232
232

233
233
234
238
239
240
243
244
248
249
250

xii CONTENTS

17 Recovery 263

17.1 Introduction C oL 263

17.2 Zigzag Relation oo 265

17.3 Communication-Induced Checkpointing 267

17.4 Optimistic Message Logging: Main Ideas 268

1741 Model oo 269

17.4.2 Fault-Tolerant Vector Clock 270

17.4.3 Version End Table 272

17.5 An Asynchronous Recovery Protocol 272

17.5.1 Message Receive 274

17.5.2 On Restart after a Failure 274

17.5.3 On Receiving a Token 274

1754 OnRollback o 276

17.6 Problems e 277

17.7 Bibliographic Remarks L oo 278

18 Self-Stabilization 279

18.1 Introduction 279

18.2 Mutual Exclusion with K-State Machines 280

18.3 Self-Stabilizing Spanning Tree Construction 285

18.4 Problems 286

18.5 Bibliographic Remarks 000000 289

A. Various Utility Classes 291

Bibliography 297
Index

305

List of Figures

1.1
1.2
1.3
14
1.5
1.6

2.1
22
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11

A parallel system o 2
A distributed system oL oL oo 2
A process with four threads 9
HelloWorldThread.java, 11
FooBarjava e 12
Fibonaccijava Lo oo 14
Interface for accessing the critical section 18
A program to test mutual exclusion L. 19
An attempt that violates mutual exclusion 20
An attempt that can deadlocko o000 21
An attempt with strict alternation 21
Peterson’s algorithm for mutual exclusion 22
Lamport’s bakery algorithm 25
TestAndSet hardware instruction 27
Mutual exclusion using TestAndSet 23
Semantics of swap operation 28
Dekkerjava L e e 29
Binary semaphore L L oo 32
Counting semaphore oo 33
A shared buffer implemented with a circular array 34
Bounded buffer using semaphores 35
Producer-consumer algorithm using semaphores 37
Reader-writer algorithm using semaphores 38
The dining philosopher problem 39
Dining Philosopher oo 40
Resource Interface L L. 41
Dining philosopher using semaphores 41
A pictorial view of a Java monitor 44

xiii

Xiv

3.12
3.13
3.14

4.1
4.2
4.3

5.1
5.2
5.3

6.9

6.10
6.11
6.12

7.1
7.2

LIST OF FIGURES

Bounded buffer monitor 45
Dining philosopher using monitors 47
Linked list o 48
Concurrent, histories illustrating sequential consistency 56
Sequential consistency does not satisfy locality 58
Summary of consistency conditions oL 62
Safe and unsafe read-write registers 67
Concurrent histories illustrating regularity 68
Atomic and nonatomic registers L 69
Construction of a regular boolean register 71
Construction of a multivalued register 72
Construction of a multireader register 75
Construction of a multiwriter register 76
Lock-free atomic snapshot algorithm 7
Consensus Interface 0 oL 78
Impossibility of wait-free consensus with atomic read—-write registers 80
TestAndSet class 81
Consensus using TestAndSet object, 82
CompSwap object L 82
Consensus using CompSwap object 83
Load-Linked and Store-Conditional object 84
Sequential queue 85
Concurrent quUeueo e e 86
A datagram server L e 93
A datagram client 95
Simple name table o L 0 oL o 97
Name Servero i e e e e 98
A client for name server 99
Topology class 100
Connector class 102
Message class e 103
Linker class 104
Remote interface oL o o 105
A name service implementation L. 106
A RMI client program 109
An example of topology of a distributed system 113

A simple distributed program with two processes 113

LIST OF FIGURES XV

7.3
74
7.5
7.6
7.7
7.8
7.9
7.10

8.1
8.2
8.3
8.4
8.5
8.6
8.7

8.8
8.9

9.1
9.2
9.3
9.4
9.5
9.6

10.1

10.2
10.3
10.4
10.5

111
11.2
11.3
11.4
11.5

12.1

A run in the happened-before model 115
A logical clock algorithmo 117
A vector clock algorithm 119
The VCLinker class that extends the Linker class 120
A sample execution of the vector clock algorithm 121
A direct-dependency clock algorithmo 122
A sample execution of the direct-dependency clock algorithm. 123
The matrix clock algorithm, 124
Testing a lock implementation 131
ListenerThread 132
Process.javao e e e e 133
A centralized mutual exclusion algorithm 134
Lamport’s mutual exclusion algorithm 137
Ricart and Agrawala’s algorithm 139
(a) Conflict graph; (b) an acyclic orientation with P, and Py as

sources; (c) orientation after Py and Py finish eating 141
An algorithm for dining philosopher problem 143
A token ring algorithm for the mutual exclusion problem 145
Consistent and inconsistent cuts00, 151
Classification of messages 153
Chandy and Lamport’s snapshot algorithm 155
Linker extended for use with SenderCamera 158
A global snapshot algorithm based on sender recording 159
Invocation of the global snapshot algorithm 160

WCP (weak conjunctive predicate) detection algorithm-—checker pro-

CESS. « v v e e e e e e e e e e e e e e e 167
Circulating token with vector clock 170
An application that runs circulating token with a sensor 171
Monitor process algorithm at P;. 172
Token-based WCP detection algorithm. 174
A diffusing computation for the shortest path 179
Interface for a termination detection algorithm 179
Termination detection algorithm 183
A diffusing computation for the shortest path with termination . . . 184
Termination detection by token traversal. 186

A FIFO computation that is not causally ordered 191

Xvi

12.2
12.3
124
12.5
12.6
12.7
12.8
12.9

13.1
13.2
13.3
13.4
13.5
13.6
13.7

14.1
14.2
14.3
14.4
14.5

15.1
15.2
15.3
15.4
15.5
15.6

16.1
16.2

17.1
17.2
17.3
17.4
17.5
17.6

18.1

LIST OF FIGURES

An algorithm for causal ordering of messagesat P, 193
Structure of a causal message 194
CausalLinker for causal ordering of messages 195
Achat program e 197
A computation that is synchronously ordered 198
A computation that is not synchronously ordered 198
The algorithm at P; for synchronous ordering of messages 201
The algorithm for synchronous ordering of messages 202
The leader election algorithm, 211
Configurations for the worst case (a) and the best case (b) 212
A spanning tree construction algorithm 214
A convergecast algorithm o oL 216
A broadcast algorithmo o 216
Algorithm for computing a global function 218
Computing the global sum 219
Algorithm for the simple synchronizerat £; 223
Tmplementation of the simple synchronizer 224
An algorithm that generates a tree on an asynchronous network . . 226
BFS tree algorithm using a synchronizer 227
Alpha synchronizer L oo Lo 229
(a) Commutativity of disjoint events; (b) asynchrony of messages . . 234
(a) Case 1: proc(e) # proc(f); (b) case 2: proc(e) = proc(f) 237
Algorithm at P; for consensus under crash failures 241
Consensus in a synchronous environment 242
Consensus tester Lo e 243
An algorithm for Byzantine General Agreement 245
Algorithm for the coordinator of the two-phase commit protocol . . 259
Algorithm for the participants in the two-phase commit protocol . . 260
An example of the dominoeffect 264
Examples of zigzag pathso Lo 266
A distributed computation oL oo, 271
Formal description of the fault-tolerant vector clock 273
Formal description of the version end-table mechanism 273
An optimistic protocol for asynchronous recovery 275

K-state self-stabilizing algorithm 280

LIST OF FIGURES xvii

18.2
18.3
18.4

18.5

18.6
18.7
18.8
18.9

Al
A2
A3
A4
Ab
A6

A move by the bottom machine in the K-state algorithm 280
A move by a normal machine in the K-state algorithm 281
Self-stabilizing algorithm for mutual exclusion in a ring for the bottom

machine e 283
Self-stabilizing algorithm for mutual exclusion in a ring for a normal

machine e 284
Self-stabilizing algorithm for (BFS) spanning tree 285
Self-stabilizing spanning tree algorithm for the root 286
Self-stabilizing spanning tree algorithm for nonroot nodes 287
A Java program for spanning tree oo 288
Utiljava o o e 292
Symbolsjava 293
Matrix.javao o oo e e e 293
MsgListjava. 294
IntLinkedList.java o 294
PortAddrjavao 295

This Page Intentionally Left Blank

Preface

This book is designed for a senior undergraduate-level course or an introductory
graduate-level course on concurrent and distributed computing. This book grew
out of my dissatisfaction with books on distributed systems (including books au-
thored by me) that included pseudocode for distributed algorithms. There were two
problems with pseudocode. First, pseudocode had many assumptions hidden in it
making it more succinct but only at the expense of precision. Second, translating
pseudocode into actual code requires effort and time, resulting in students never ac-
tually running the algorithm. Seeing the code run lends an extra level of confidence
in one’s understanding of the algorithms.

It must be emphasized that all of the Java code provided in this book is for
educational purposes only. I have deliberately avoided error checking and other
software engineering principles to keep the size of the code small. In the majority
of cases, this led to Java code, that kept the concepts of the algorithm transparent.

Several examples and exercise problems are included in each chapter to facilitate
classroom teaching. I have made an effort to include some programming exercises
with each chapter.

I would like to thank the following people for working with me on various projects
discussed in this book: Craig Chase (weak predicates), Om Damani (message log-
ging), Eddy Fromentin (predicate detection), Joydeep Ghosh (global computation),
Richard Kilgore (channel predicates), Roger Mitchell (channel predicates), Neeraj
Mittal (predicate detection and control, slicing, self-stabilization, distributed shared
memory), Venkat Murty (synchronous ordering), Michel Raynal (control fiow prop-
erties, distributed shared memory), Alper Sen (slicing), Chakarat Skawratonand
(vector clocks), Ashis Tarafdar (message logging, predicate control), Alexander Tom-
linson (global time, mutual exclusion, relational predicates, control flow properties)
and Brian Waldecker (weak and strong predicates). Anurag Agarwal, Arindam
Chakraborty, Selma Ikiz, Neeraj Mittal, Sujatha Kashyap, Vinit Ogale, and Alper
Sen reviewed parts of the book. I owe special thanks to Vinit Ogale for also helping
me with figures.

I thank the Department of Electrical and Computer Engineering at The Uni-

xix

XX

versity of Texas at Austin, where I was given the opportunity to develop and teach
courses on concurrent and distributed systems. Students in these courses gave me
very useful feedback.

I was supported in part by many grants from the National Science Foundation
over the last 14 years. Many of the results reported in this book would not have
been discovered by me and my research group without that support. I also thank
John Wiley & Sons, Inc. for supporting the project.

Finally, I thank my parents, wife and children. Without their love and support,
this book would not have been even conceived.

There are many concurrent and distributed programs in this book. Although I
have tried to ensure that there are no “bugs” in these programs, some are, no doubt,
still lurking in the code. I would be grateful if any bug that is discovered is reported
to me. The list of known errors and the supplementary material for the book will
be maintained on my homepage:

http://wuw.ece.utexas.edu/ garg

Included in the Website is a program that allows animation of most of the algorithms
in the book. It also includes all the source code given in the book. The reader can
access the source code with the user name as guest and the password as utexas.

Vijay K. Garg
Austin, Texas

Chapter 1

Introduction

1.1 Introduction

Parallel and distributed computing systems are now widely availablt . A parallel sys-
tem consists of multiple processors that communicate with each otl er using shared
memory. As the number of transistors on a chip increases, multipro essor chips will
become fairly common. With enough parallelism available in applice ‘ions, such sys-
tems will easily beat sequential systems in performance. Figure 1.1 s 10ws a parallel
system with multiple processors. These processors communicate with each other
using the shared memory. Each processor may also have local mem ry that is not
shared with other processors.

We define distributed systems as those computer systems that co tain multiple
processors connected by a communication network. In these syste ns processors
communicate with each other using messages that are sent over the 1 stwork. Such
systems are increasingly available because of decrease in prices of cormr. >uter proces-
sors and the high-bandwidth links to connect them. Figure 1.2 shows 1 distributed
system. The communication network in the figure could be a local rea network
such as an Ethernet, or a wide area network such as the Internet.

Programming parallel and distributed systems requires a different set of tools
and techniques than that required by the traditional sequential software. The focus
of this book is on these techniques.

[Shared memory]

A

CHAPTER 1. INTRODUCTION

Yy

(

Y

¥

CPU CPU CcrPU CPU CPU
Local Local Local Local Local
memory memory memory memory memory

Figure 1.1: A parallel system

Communication network

Figure 1.2: A distributed system

1.2. DISTRIBUTED SYSTEMS VERSUS PARALLEL SYSTEMS 3

1.2 Distributed Systems versus Parallel Systems

In this book, we make a distinction between distributed systems and parallel sys-
tems. This distinction is only at a logical level. Given a physical system in which
processors have shared memory, it is easy to simulate messages. Conversely, given
a physical system in which processors are connected by a network, it is possible
to simulate shared memory. Thus a parallel hardware system may run distributed
software and vice versa.

This distinction raises two important questions. Should we build parallel hard-
ware or distributed hardware? Should we write applications assuming shared mem-
ory or message passing? At the hardware level, we would expect the prevalent model
to be multiprocessor workstations connected by a network. Thus the system is both
parallel and distributed. Why would the system not be completely parallel? There
are many reasons.

e Scalability: Distributed systems are inherently more scalable than parallel
systems. In parallel systems shared memory becomes a bottleneck when the
number of processors is increased.

e Modularity and heterogeneity: A distributed system is more flexible because a
single processor can be added or deleted easily. Furthermore, this processor
can be of a type completely different from that of the existing processors.

e Data sharing: Distributed systems provide data sharing as in distributed
databases. Thus multiple organizations can share their data with each other.

e Resource sharing: Distributed systems provide resource sharing. For example,
an expensive special-purpose processor can be shared by multiple organiza-
tions.

e Geographic structure: The geographic structure of an application may be in-
herently distributed. The low communication bandwidth may force local pro-
cessing. This is especially true for wireless networks.

e Reliability: Distributed systems are more reliable than parallel systems be-
cause the failure of a single computer does not affect the availability of others.

o Low cost: Availability of high-bandwidth networks and inexpensive worksta-
tions also favors distributed computing for economic reasons.

Why would the system not be a purely distributed one? The reasons for keeping
a parallel system at each node of a network are mainly technological in nature. With
the current technology it is generally faster to update a shared memory location than

4 CHAPTER 1. INTRODUCTION

to send a message to another processor. This is especially true when the new value of
the variable must be communicated to multiple processors. Consequently, it is more
efficient to get fine-grain parallelism from a parallel system than from a distributed
system.

So far our discussion has been at the hardware level. As mentioned earlier, the
interface provided to the programmer can actually be independent of the underlying
hardware. So which model would then be used by the programmer? At the program-
ming level, we expect that programs will be written using multithreaded distributed
objects. In this model, an application consists of multiple heavyweight processes
that communicate using messages (or remote method invocations). Each heavy-
weight process consists of multiple lightweight processes called threads. Threads
communicate through the shared memory. This software model mirrors the hard-
ware that is (expected to be) widely available. By assuming that there is at most one
thread per process (or by ignoring the parallelism within one process), we get the
usual model of a distributed system. By restricting our attention to a single heavy-
weight process, we get the usual model of a parallel system. We expect the system to
have aspects of distributed objects. The main reason is the logical simplicity of the
distributed object model. A distributed program is more object-oriented because
data in a remote object can be accessed only through an explicit message (or a re-
mote procedure call). The object orientation promotes reusability as well as design
simplicity. Furthermore, these object would be multithreaded because threads are
useful for implementing efficient objects. For many applications such as servers, it
is useful to have a large shared data structure. It is a programming burden and
inefficient to split the data structure across multiple heavyweight processes.

1.3 Overview of the Book

This book is intended for a one-semester advanced undergraduate or introductory
graduate course on concurrent and distributed systems. It can also be used as
a supplementary book in a course on operating systems or distributed operating
systems. For an undergraduate course, the instructor may skip the chapters on
consistency conditions, wait-free synchronization, synchronizers, recovery, and self-
stabilization without any loss of continuity.

Chapter 1 provides the motivation for parallel and distributed systems. It com-
pares advantages of distributed systems with those of parallel systems. It gives the
defining characteristics of parallel and distributed systems and the fundamental dif-
ficulties in designing algorithms for such systems. It also introduces basic constructs
of starting threads in Java.

Chapters 2-5 deal with multithreaded programming. Chapter 2 discusses the

1.3. OVERVIEW OF THE BOOK 5

mutual exclusion problem in shared memory systems. This provides motivation to
students for various synchronization primitives discussed in Chapter 3. Chapter 3
exposes students to multithreaded programming. For a graduate course, Chapters
2 and 3 can be assigned for self-study. Chapter 4 describes various consistency
conditions on concurrent executions that a system can provide to the programmers.
Chapter 5 discusses a method of synchronization which does not use locks. Chapters
4 and 5 may be skipped in an undergraduate course.

Chapter 6 discusses distributed programming based on sockets as well as remote
method invocations. It also provides a layer for distributed programming used by
the programs in later chapters. This chapter is a prerequisite to understanding
programs described in later chapters.

Chapter 7 provides the fundamental issues in distributed programming. It dis-
cusses models of a distributed system and a distributed computation. It describes
the interleaving model that totally orders all the events in the system, and the hap-
pened before model that totally orders all the events on a single process. It also
discusses mechanisms called clocks used to timestamp events in a distributed com-
putation such that order information between events can be determined with these
clocks. This chapter is fundamental to distributed systems and should be read before
all later chapters.

Chapter 8 discusses one of the most studied problems in distributed systems-—
mutual exclusion. This chapter provides the interface Lock and discusses various
algorithms to implement this interface. Lock is used for coordinating resources in
distributed systems.

Chapter 9 discusses the abstraction called Camera that can be used to compute
a consistent snapshot of a distributed system. We describe Chandy and Lamport’s
algorithm in which the receiver is responsible for recording the state of a channel
as well as a variant of that algorithm in which the sender records the state of the
channel. These algorithms can also be used for detecting stable global properties—
properties that remain true once they become true.

Chapters 10 and 11 discuss the abstraction called Sensor that can be used to
evaluate global properties in a distributed system. Chapter 10 describes algorithms
for detecting conjunctive predicates in which the global predicate is simply a con-
junction of local predicates. Chapter 11 describe algorithms for termination and
deadlock detection. Although termination and deadlock can be detected using tech-
niques described in Chapters 9 and 10, we devote a separate chapter for termination
and deadlock detection because these algorithms are more efficient than those used
to detect general global properties. They also illustrate techniques in designing
distributed algorithms.

Chapter 12 describe methods to provide messaging layer with stronger properties
than provided by the Transmission Control Protocol (TCP). We discuss the causal

6 CHAPTER 1. INTRODUCTION

ordering of messages, the synchronous and the total ordering of messages.

Chapter 13 discusses two abstractions in a distributed system-—Election and
GlobalFunction. We discuss election in ring-based systems as well as in general
graphs. Once a leader is elected, we show that a global function can be computed
easily via a convergecast and a broadcast.

Chapter 14 discusses synchronizers, a method to abstract out asynchrony in the
system. A synchronizer allows a synchronous algorithm to be simulated on top of an
asynchronous system. We apply synchronizers to compute the breadth-first search
(BFS) tree in an asynchronous network.

Chapters 1-14 assume that there are no faults in the system. The rest of the
book deals with techniques for handling various kinds of faults.

Chapter 15 analyze the possibility (or impossibility) of solving problems in the
presence of various types of faults. It includes the fundamental impossibility result of
Fischer, Lynch, and Paterson that shows that consensus is impossible to solve in the
presence of even one unannounced failure in an asynchronous system. It also shows
that the consensus problem can be solved in a synchronous environment under crash
and Byzantine faults. It also discusses the ability to solve problems in the absence
of reliable communication. The two-generals problem shows that agreement on a
bit (gaining common knowledge) is impossible in a distributed system.

Chapter 16 describes the notion of a transaction and various algorithms used in
implementing transactions.

Chapter 17 discusses methods of recovering from failures. It includes both check-
pointing and message-logging techniques.

Finally, Chapter 18 discusses self-stabilizing systems. We discuss solutions of
the mutual exclusion problem when the state of any of the processors may change
arbitrarily because of a fault. We show that it is possible to design algorithms that
guarantec that the system converges to a legal state in a finite number of moves
irrespective of the system execution. We also discuss self-stabilizing algorithms for
maintaining a spanning tree in a network.

There are numerous starred and unstarred problems at the end of each chapter.
A student is expected to solve unstarred problems with little effort. The starred
problems may require the student to spend more effort and are appropriate only for
graduate courses.

1.4 Characteristics of Parallel and Distributed Systems

Recall that we distinguish between parallel and distributed systems on the basis of
shared memory. A distributed system is characterized by absence of shared memory.
Therefore, in a distributed system it is impossible for any one processor to know

1.5. DESIGN GOALS 7

the global state of the system. As a result, it is difficult to observe any global
property of the system. We will later see how efficient algorithms can be developed
for evaluating a suitably restricted set of global properties.

A parallel or a distributed system may be tightly coupled or loosely coupled de-
pending on whether multiple processors work in a lock step manner. The absence of
a shared clock results in a loosely coupled system. In a geographically distributed
system, it is impossible to synchronize the clocks of different processors precisely
because of uncertainty in communication delays between them. As a result, it is
rare to use physical clocks for synchronization in distributed systems. In this book
we will see how the concept of causality is used instead of time to tackle this prob-
lem. In a parallel system, although a shared clock can be simulated, designing a
system based on a tightly coupled architecture is rarely a good idea, due to loss of
performance because of synchronization. In this book, we will assume that systems
are loosely coupled.

Distributed systems can further be classified into synchronous and asynchronous
systems. A distributed system is asynchronous if there is no upper bound on the
message communication time. Assuming asynchrony leads to most general solu-
tions to various problems. We will see many examples in this book. However,
things get difficult in asynchronous systems when processors or links can fail. In
an asynchronous distributed system it is impossible to distinguish between a slow
processor and a failed processor. This leads to difficulties in developing algorithms
for consensus, election, and other important problems in distributed computing. We
will describe these difficulties and also show algorithms that work under faults in
synchronous systems.

1.5 Design Goals

The experience in large parallel and distributed software systems has shown that
their design should take the following concepts into consideration [TvS02]:

o Fuult tolerance: The software system should mask the failure of one or more
components in the system, including processors, memory, and network links.
This generally requires redundancy, which may be expensive depending on
the degree of fault tolerance. Therefore, cost—benefit analysis is required to
determine an appropriate level of fault tolerance.

o Transparency: The system should be as user-friendly as possible. This requires
that the user not have to deal with unnecessary details. For example, in a
heterogeneous distributed system the differences in the internal representation
of data (such as the little endian format versus the big endian format for

8 CHAPTER 1. INTRODUCTION

integers) should be hidden from the user, a concept called access transparency.
Similarly, the use of a resource by a user should not require the user to know
where it is located (location transparency), whether it is replicated (replication
transparency), whether it is shared (concurrency transparency), or whether it
is in volatile memory or hard disk (persistenice transparency).

e Flexibility: The system should be able to interact with a large number of other
systems and services. This requires that the system adhere to a fixed set of
rules for syntax and semantics, preferably a standard, for interaction. This is
often facilitated by specification of services provided by the system through
an interface definition language. Another form of flexibility can be given to
the user by a separation between policy and mechanism. For example, in
the context of Web caching, the mechanism refers to the implementation for
storing the Web pages locally. The policy refers to the high-level decisions
such as size of the cache, which pages are to be cached, and how long those
pages should remain in the cache. Such questions may be answered better by
the user and therefore it is better for users to build their own caching policy
on top of the caching mechanism provided. By designing the system as one
monolithic component, we lose the flexibility of using different policies with
different users.

o Scalability: If the system is not designed to be scalable, then it may have un-
satisfactory performance when the number of users or the resources increase.
For example, a distributed system with a single server may become overloaded
when the number of clients requesting the service from the server increases.
Generally, the system is either completely decentralized using distributed al-
gorithms or partially decentralized using a hierarchy of servers.

1.6 Specification of Processes and Tasks

In this book we cover the programming concepts for shared memory-based languages
and distributed languages. It should be noted that the issues of concurrency arise
even on a single CPU computer where a system may be organized as a collection
of cooperating processes. In fact, the issues of synchronization and deadlock have
roots in the development of early operating systems. For this reason, we will refer
to constructs described in this section as concurrent programming.

Before we embark on concurrent programming constructs, it is necessary to
understand the distinction between a program and a process. A computer program
is simply a set of instructions in a high-level or a machine-level language. It is only
when we execute a program that we get one or more processes. When the program is

1.6. SPECIFICATION OF PROCESSES AND TASKS 9

sequential, it results in a single process, and when concurrent—multiple processes.
A process can be viewed as consisting of three segments in the memory: code, data
and execution stack. The code is the machine instructions in the memory which the
process executes. The data consists of memory used by static global variables and
runtime allocated memory (heap) used by the program. The stack consists of local
variables and the activation records of function calls. Every process has its own
stack. When processes share the address space, namely, code and data, then they
are called lightweight processes or threads. Figure 1.3 shows four threads. All threads
share the address space but have their own local stack. When process has its own
code and data, it is called a heavyweight process, or simply a process. Heavyweight
processes may share data through files or by sending explicit messages to each other.

Stack Stack Stack Stack

Thread Thread Thread Thread

L Memory

Figure 1.3: A process with four threads

Any programming language that supports concurrent programming must have
a way to specify the process structure, and how various processes communicate
and synchronize with each other. There are many ways a program may specify
the process structure or creation of new processes. We look at the most popular
ones. In UNIX, processes are organized as a tree of processes with each process
identified using a unique process id (pid). UNIX provides system calls fork and wait
for creation and synchronization of processes. When a process executes a fork call,

10 CHAPTER 1. INTRODUCTION

a child process is created with a copy of the address space of the parent process.
The only difference between the parent process and the child process is the value of
the return code for the fork. The parent process gets the pid of the child process
as the return code, and the child process gets the value 0 as shown in the following
example.

pid = fork(Q);
if (pid == 0) {
// child process
cout << "child process";

}
else {

// parent process

cout << "parent process";
}

The wait call is used for the parent process to wait for termination of the child
process. A process terminates when it executes the last instruction in the code or
makes an explicit call to the system call exit. When a child process terminates, the
parent process, if waiting, is awakened and the pid of the child process is returned
for the wait call. In this way, the parent process can determine which of its child
processes terminated.

Frequently, the child process makes a call to the ezecve system call, which loads
a binary file into memory and starts execution of that file.

Another programming construct for launching parallel tasks is cobegin-coend
(also called parbegin-parend). Its syntax is given below:

cobegin Sy || Sa coend

This construct says that S; and Sp must be executed in parallel. Further, if one
of them finishes earlier than the other, it should wait for the other one to finish.
Combining the cobegin-coend with the sequencing, or the series operator, semicolon
(;), we can create any series-parallel task structure. For example,

So; cobegin Sy || Sa coend; Si

starts off with one process that executes Sg. When Sy is finished, we have two
processes (or threads) that execute Sy and Sy in parallel. When both the statements
are done, only then S3 is started.

Yet another method for specification of concurrency is to explicitly create thread
objects. For example, in Java there is a predefined class called Thread. One can

1.6. SPECIFICATION OF PROCESSES AND TASKS 11

extend the class Thread, override the method run and then call start () to launch
the thread. For example, a thread for printing “Hello World” can be launched as
shown in Figure 1.4.

public class HelloWorldThread extends Thread {
public void run () {
System.out. println (" Hello World”);

public static void main(String|] args) {
HelloWorldThread t = new HelloWorldThread ();
t.start ();

Figure 1.4: HelloWorldThread.java

1.6.1 Runnable Interface

In the HelloWorld example, the class HelloWorldThread needed to inherit methods
only from the class Thread. What if we wanted to extend a class, say, Foo, but also
make the objects of the new class run as separate thread? Since Java does not have
multiple inheritance, we could not simply extend both Foo and the Thread class.
To solve this problem, Java provides an interface called Runnable with the following
single method:

public void run()

To design a runnable class FooBar that extends Foo, we proceed as shown in
Figure 1.5. The class FooBar implements the Runnable interface. The main function
creates a runnable object £1 of type FooBar. Now we can create a thread t1 by
passing the runnable object £1 as an argument to the constructor for Thread. This
thread can then be started by invoking the start method. The program creates
two threads in this manner. Each of the threads prints out the string getName()
inherited from the class Foo.

1.6.2 Join Construct in Java

We have seen that we can use start() to start a thread. Lhe following example
shows how a thread can wait for other thread to finish execution via the join
mechanism. We write a program in Java to compute the nth Fibonacci number F,

12 CHAPTER 1. INTRODUCTION

class Foo {
String name;
public Foo(String s) {
name = §;

public void setName(String s) {
name = §;

public String getName () {
return name;
}

class FooBar extends Foo implements Runnable {
public FooBar(String s) {
super(s);
public void run () {
for (int i = 0; i < 10; i++4)
System.out. println (getName(} + ”: Hello World”);

public static void main(String [] args) {

FooBar fl = new FooBar(”Romeo” };
Thread t1 = new Thread(fl);
t1.start ();

bl
FooBar f2 = new FooBar(” Juliet ”);
Thread t2 = new Thread (f2);

t2 . start ();

Figure 1.5: FooBar.java

1.7. PROBLEMS 13

using the recurrence relation
F, = n—1 +Fn~2

for n > 2. The base cases are
=1

and
F] =1

To compute F,, the run method forks two threads that compute F,,_; and F,,_»
recursively. The main thread waits for these two threads to finish their computation
using join. The complete program is shown in Figure 1.6.

1.6.3 Thread Scheduling

In the FooBar example, we had two threads. The same Java program will work
for a single-CPU machine as well as for a multiprocessor machine. In a single-CPU
machine, if both threads are runnable, which one would be picked by the system to
run? The answer to this question depends on the priority and the scheduling policy
of the system.

The programmer may change the priority of threads using setPriority and
determine the current priority by getPriority. MIN_PRIORITY and MAX _PRIORITY
are integer constants defined in the Thread class. The method setPriority can
use a value only between these two constants. By default, a thread has the priority
NORM_PRIORITY.

A Java thread that is running may block by calling sleep, wait, or any system
function that is blocking (these calls will be described later). When this happens, a
highest-priority runnable thread is picked for execution. When the highest-priority
thread is running, it may still be suspended when its time slice is over. Another
thread at the same priority level may then be allowed to run.

1.7 Problems

1.1. Give advantages and disadvantages of a parallel programming model over a
distributed system (message-based) model.

1.2. Write a Java class that allows parallel search in an array of integer. It provides
the following static method:

public static int parallelSearch(int x, int{] A, int numThreads)

14 CHAPTER 1. INTRODUCTION

public class Fibonacci extends Thread {
int n;
int result ;
public Fibonacci(int n) {
this.n = n;

public void run() {

if ((n == 0)||[(n == 1)) result = 1;
else {

Fibonacci fl = new Fibonacci(n-1);
Fibonacci f2 = new Fibonacci(n—2);
f1.start ();

f2 . start ();
try {
f1.join ();
f2 . join ();

} catch (InterruptedException e){};
result = f1.getResult () + 2. getResult ();

}

}
public int getResult (){
return result ;

public static void main(String [| args) {
Fibonacci fl = new Fibonacci(Integer.parselnt (args[0]));
fl . start ();
try {
f1.join ();
} catch (InterruptedException e){};
System.out.println (" Answer is ” + f1.getResult (});

Figure 1.6: Fibonacci.java

1.8. BIBLIOGRAPHIC REMARKS 15

This method creates as many threads as specified by numThreads, divides the
array A into that many parts, and gives each thread a part of the array to
search for x sequentially. If any thread finds x, then it returns an index i such
that A[i] = x. Otherwise, the method returns —1.

1.3. Consider the class shown below.

class Schedule {
static int x = 0O;
static int y 0;
public static int opl(){x 1; return y;}
public static int op2(){y = 2; return 3*x;}

i

il

}

If one thread calls opl and the other thread calls op2, then what values may
be returned by opl and op2?

1.4. Write a multithreaded program in Java that sorts an array using recursive
merge sort. The main thread forks two threads to sort the two halves of
arrays, which are then merged.

1.5. Write a program in Java that uses two threads to search for a given element
in a doubly linked list. One thread traverses the list in the forward direction
and the other, in the backward direction.

1.8 Bibliographic Remarks

There are many books available on distributed systems. The reader is referred to
books by Attiya and Welch [AW98], Barbosa [Bar96], Chandy and Misra [CM89),
Garg [Gar96, Gar02], Lynch [Lyn96], Raynal [Ray88], and Tel [Tel94] for the range
of topics in distributed algorithms. Couloris, Dollimore and Kindberg [CDK94], and
Chow and Johnson [CJ97)] cover some other practical aspects of distributed systems
such as distributed file systems, which are not covered in this book. Goscinski
[Gos91] and Singhal and Shivaratri [SS94] cover concepts in distributed operating
systems. The book edited by Yang and Marsland [YM94] includes many papers
that deal with global time and state in distributed systems. The book edited by
Mullender [SM94] covers many other topics such as protection, fault tolerance, and
real-time communications.

There are many books available for concurrent computing in Java as well. The
reader is referred to the books by Farley [Far98], Hartley [Har98] and Lea [Lea99]
as examples. These books do not discuss distributed algorithms.

This Page Intentionally Left Blank

Chapter 2

Mutual Exclusion Problem

2.1 Introduction

When processes share data, it is important to synchronize their access to the data
so that updates are not lost as a result of concurrent accesses and the data are not
corrupted. This can be seen from the following example. Assume that the initial
value of a shared variable z is 0 and that there are two processes, Fy and P, such
that each one of them increments x by the following statement in some high-level
programming langunage:

r=z+1
It is natural for the programmer to assume that the final value of z is 2 after both
the processes have executed. However, this may not happen if the programmer does

not ensure that x = x + 1 is executed atomically. The statement x = x + 1 may
compile into the machine-level code of the form

LD R, z ; load register R from z
INCR ; increment register R
ST R, x ; store register R to x

Now the execution of Py and P; may get interleaved as follows:

17

18 CHAPTER 2. MUTUAL EXCLUSION PROBLEM

Py: LD R, x ; load register R from x

Py: INCR ; increment register R
P: LD R,z ; load register R from x
P: INCR ; increment register R

Py: ST Rz ; store register R to x
P: ST Rz ; store register R to x

Thus both processes load the value 0 into their registers and finally store 1 into x
resulting in the “lost update” problem.

To avoid this problem, the statement = z + 1 should be executed atomically.
A section of the code that needs to be executed atomically is also called a critical
region or a critical section. The problem of ensuring that a critical section is ex-
ecuted atomically is called the mutual exclusion problem. This is one of the most
fundamental problems in concurrent computing and we will study it in detail.

The mutual exclusion problem can be abstracted as follows. We are required
to implement the interface shown in Figure 2.1. A process that wants to enter
the critical section (CS) makes a call to requestCS with its own identifier as the
argument. The process or the thread that makes this call returns from this method
only when it has the exclusive access to the critical section. When the process has
finished accessing the critical section, it makes a call to the method releaseCS.

public interface Lock {
public void requestCS (int pid); //may block
public void releaseCS (int pid);

Figure 2.1: Interface for accessing the critical section

The entry protocol given by the method requestCS and the exit protocol given
by the method releaseCS should be such that the mutual exclusion is not violated.

To test the Lock, we use the program shown in Figure 2.2. This program tests
the Bakery algorithm that will be presented later. The user of the program may test
a different algorithm for a lock implementation by invoking the constructor of that
lock implementation. The program launches N threads as specified by arg(0]. Each
thread is an object of the class MyThread. Let us now look at the class MyThread.
This class has two methods, nonCriticalSection and CriticalSection, and it
overrides the run method of the Thread class as follows. Each thread repeatedly
enters the critical section. After exiting from the critical section it spends an unde-
termined amount of time in the noncritical section of the code. In our example, we
simply use a random number to sleep in the critical and the noncritical sections.

2.1. INTRODUCTION 19

import java . util . Random;
public class MyThread extends Thread {
int myld;
Lock lock;
Random r = new Random();
public MyThread(int id, Lock lock) {
myld = id;
this.lock = lock;

void nonCriticalSection () {
System.out. println (myld + ” is not in CS”);
Util . mySleep (r.nextInt (1000));

void CriticalSection () {
System.out. println (myld + 7 is in CS xx%%%x”);
// critical section code
Util . mySleep(r. nextInt (1000));

public void run () {
while (true) {
lock . requestCS (myld);
CriticalSection ();
lock . releaseCS (myld);
nonCriticalSection (};

}

public static void main(String [] args) throws Exception {
MyThread t[];
int N = Integer . parselnt (args[0]);
t = new MyThread [N];
Lock lock = new Bakery(N); //or any other mutezx algorithm
for (int i = 0; i < N; i++) {
t[i] = new MyThread(i, lock);
t[i]. start (};

Figure 2.2: A program to test mutual exclusion

20 CHAPTER 2. MUTUAL EXCLUSION PROBLEM

Let us now look at some possible protocols, one may attempt, to solve the mutual
exclusion problem. For simplicity we first assume that there are only two processes,
po and P, 1-

2.2 Peterson’s Algorithm

Our first attempt would be to use a shared boolean variable openDoor initialized to
true. The entry protocol would be to wait for openDoor to be true. If it is true,
then a process can enter the critical section after setting it to false. On exit, the
process resets it to true. This algorithm is shown in Figure 2.3.

class Attemptl implements Lock {
boolean openDoor = true;
public void requestCS(int i) {
while (!openDoor) ; // busy wait
openDoor = false;

public void releaseCS (int i) {
openDoor = true;
}

Figure 2.3: An attempt that violates mutual exclusion

This attempt does not work because the testing of openDoor and setting it to
false is not done atomically. Conceivably, one process might check for the openDoor
and go past the while statement in Figure 2.3. However, before that process could
set openDoor to false, the other process starts executing. The other process now
checks for the value of openDoor and also gets out of busy wait. Both the processes
now can set openDoor to false and enter the critical section. Thus, mutual exclusion
is violated.

In the attempt described above, the shared variable did not record who set the
openDoor to false. One may try to fix this problem by keeping two shared variables,
wantCS[0] and wantCS[1], as shown in Figure 2.4. Every process P; first sets its
own wantCS bit to true at line 4 and then waits until the wantCS for the other
process is false at line 5. We have used 1 — 7 to get the process identifier of the
other process when there are only two processes - Py and P;. To release the critical
section, P; simply resets its wantCS bit to false. Unfortunately, this attempt also
does not work. Both processes could set their wantCS to true and then indefinitely
loop, waiting for the other process to set its wantCs false.

2.2. PETERSON’S ALGORITHM 21

1 class Attempt2 implements Lock {

2 boolean wantCS[] = { false, false };

3 public void requestCS (int i) { // entry protocol
4 wantCS|i| = true; //declare intent

5 while (wantCS[l — i]) ; // busy wait

6

7 public void releaseCS (int i) {

8 wantCS[i] = false;

9

10 }

Figure 2.4: An attempt that can deadlock

Yet another attempt to fix the problem is shown in Figure 2.5. This attempt
is based on evaluating the value of a variable turn. A process waits for its turn to
enter the critical section. On exiting the critical section, it sets turn to 1-1i.

class Attempt3 implements Lock {

int turn = 0;
public void requestCS (int i) {
while (turn ==1 - 1) ;

public void releaseCS (int i) {
turn =1 — i;
}

Figure 2.5: An attempt with strict alternation

This protocol does guarantee mutual exclusion. It also guarantees that if both
processes are trying to enter the critical section, then one of them will succeed.
However, it suffers from another problem. In this protocol, both processes have to
alternate with each other for getting the critical section. Thus, after process Fy exits
from the critical section it cannot enter the critical section again until process P,
has entered the critical section. If process P is not interested in the critical section,
then process Py is simply stuck waiting for process Py. This is not desirable.

By combining the previous two approaches, however, we get Peterson’s algorithm
for the mutual exclusion problem in a two-process system. In this protocol, shown
in Figure 2.6, we maintain two flags, wantCS[0] and wantCS[1], as in Attempt2,
and the turn variable as in Attempt3. To request the critical section, process F;
sets its wantCS flag to true at line 6 and then sets the turn to the other process P;

22 CHAPTER 2. MUTUAL EXCLUSION PROBLEM

at line 7. After that, it waits at line 8 so long as the following condition is true:
(wantCS([j] && (turn == j))

Thus a process enters the critical section only if either it is its turn to do so or if
the other process is not interested in the critical section.

To release the critical section, P; simply resets the flag wantCS[i] at line 11.
This allows P; to enter the critical section by making the condition for its while
loop false.

1 class PetersonAlgorithm implements Lock {
2 boolean wantCS[] = { false, false };

3 int turn = 1;

4 public void requestCS(int 1) {

5 int j =1- 1i;

6 wantCS[i] = true;

7 turn = j;

8 while (wantCS|j] && (turn ==j)) ;
9

10 public void releaseCS (int i) {

11 wantCS[i] = false;

12

13 }

Figure 2.6: Peterson’s algorithm for mutual exclusion
We show that Peterson’s algorithm satisfies the following desirable properties:

1. Mutual exclusion: Two processes cannot be in the critical section at the same
time.

2. Progress: If one or more processes are trying to enter the critical section and
there is no process inside the critical section, then at least one of the processes
succeeds in entering the critical section.

3. Starvation-freedom: If a process is trying to enter the critical section, then it
eventually succeeds in doing so.

We first show that mutual exclusion is satisfied by Peterson’s algorithm. Assume
without loss of generality that Py was the first one to enter the critical section. To
enter the critical section, Py must have either read wantCS[1] as false, or turn as
0. We now perform a case analysis:

2.2. PETERSON’S ALGORITHM 23

Case I: P read wantCS[1] as false. If wantCS[1] is false, then for P; to enter
the critical section, it would have to set wantCS[1] to true. From this case, we get
the following order of events: Py reads wantCS[1] as false before Py sets the value
of wantCS[1] as true. This order of events implies that P, would set turn = 0
before checking the entry condition and after the event of P, reading wantCS|[1].
On the other hand, P, set turn = 1 before reading wantCS[1]. Therefore, we have
the following order of events in time:

o Py sets turn to 1.

e Py reads wantCS|[1] as false.
o P sets wantCS[1] as true.
o P sets turn to 0.

e P reads turn.

Clearly, turn can be only 0 when P reads it. Now let us look at the set of values
of wantCS[0] that P can possibly read. From the program, we know that Py sets
wantCS[0] as true before reading wantCS[1]. Similarly, P, sets wantCS[1] before
reading wantCS[0]. We know that Py read wantCS|1] as false. Therefore, P; sets
wantC S[1] as true after Py reads wantCS[1]. This implies that we have the following
order of events:

o Py sets wantCS|0] as true.
e P reads wantCS|1] as false.
o Py sets wantCS[1] as true.
o P reads wantCS|0].

Therefore, P; can only read wantCS[0] as true. Because Py reads turn as 0 and
wantC S[0] as true, it cannot enter the critical section.

Case 2: Py read turn as 0. This implies the following order of events: P; sets
turn = 0 between Py setting turn = 1 and Fy reading the value of turn. Since
P, reads the value of turn only after setting turn = 0, we know that it can read
turn only as 0. Also, wantCS[0] is set before Py sets turn = 1. Therefore, P
sets wantCS[0] before Py sets turn = 0. This implies that P, reads the value of
wantCS[0] as true. Thus, even in this case, P| reads turn as 0 and wantCS[0] as
true. It follows that P; cannot enter the critical section.

24 CHAPTER 2. MUTUAL EXCLUSION PROBLEM

It is easy to see that the algorithm satisfies the progress property. If both the
processes are forever checking the entry protocol in the while loop, then we get

wantCS[2) A (turn = 2) A wantsCS[1] A (turn = 1)

which is clearly false because (furn = 2) A (turn = 1) is false.

The proof of freedom from starvation is left as an exercise. The reader can also
verify that Peterson’s algorithm does not require strict alternation of the critical
sections—a process can repeatedly use the critical section if the other process is not
interested in it.

2.3 Lamport’s Bakery Algorithm

Although Peterson’s algorithm satisfies all the properties that we initially required
from the protocol, it works only for two processes. Although the algorithm can be
extended to N processes by repeated invocation of the entry protocol, the resulting
algorithm is more complex.

We now describe Lamport’s bakery algorithm, which overcomes this disadvan-
tage. The algorithm is similar to that used by bakeries in serving customers. Each
customer who arrives at the bakery receives a number. The server serves the cus-
tomer with the smallest number. In a concurrent system, it is difficult to ensure
that every process gets a unique number. So in case of a tie, we use process ids to
choose the smaller process.

The algorithm shown in Figure 2.7 requires a process P; to go through two main
steps before it can enter the critical section. In the first step (lines 15-21), it is
required to choose a number. To do that, it reads the numbers of all other processes
and chooses its number as one bigger than the maximum number it read. We will
call this step the doorway. In the second step the process P; checks if it can enter
the critical section as follows. For every other process Pj, process P; first checks
whether P; is currently in the doorway at line 25. If P; is in the doorway, then P;
waits for Pj to get out of the doorway. At lines 26-29, P; waits for the number[j]
to be 0 or (numberli],i) < (number[j],j). When F; is successful in verifying this
condition for all other processes, it can enter the critical section.

We first prove the assertion:

(A1) If a process P, is in critical section and some other process P has already
chosen its pumber, then (number(i],i) < (number(k], k).

If the process F; is in critical section, then it managed to get out of the kth iter-
ation of the for loop in the second step. This implies that either (number[k] = 0)

2.3. LAMPORT’S BAKERY ALGORITHM

25

1 class Bakery implements Lock {

2 int N;

3 boolean [] choosing; // inside doorway

4 int [] number;

5 public Bakery(int numProc) {

6 N = numProc;

7 choosing = new boolean[N];

8 number = new int [N];

9 for (int j = 0; j < N; j++){

10 choosing [j] = false;

11 number[j]| = 0;

12

13

14 public void requestCS (int i)} {

15 // step 1: doorway: choose a number

16 choosing [i] = true;

17 for (int j = 0; j < N; j++)

18 if (number[j] > number[D

19 number|i]| = number|[j |;

20 number [i]++;

21 choosing [1] = false;

22

23 // step 2: check if my number is the smallest
24 for {int j = 0; j < N; j++){

25 while (choosing[]]) // process j in doorway
26 while ((number[J] = &

27 ((number[]] < number[i]) |

28 ((number|j| == number[i]) && i< 1))
29 5 // busy wait

30

31

32 public void releaseCS (int i) { // ezit protocol
33 number{i] = 0;

34

35 }

Figure 2.7: Lamport’s bakery algorithm

26 CHAPTER 2. MUTUAL EXCLUSION PROBLEM

or ((numberli],i) < (number[k],k)) at that iteration. First assume that process
P, read number[k] as 0. This means that process £, must not have finished
choosing the number yet. There are two cases. Either Py has not entered the
doorway or it has entered the doorway but not exited yet. If Py has not entered
the doorway, it will read the latest value of number(i] and is guaranteed to have
number|k] > number[{]. If it had entered the doorway, then this entry must be
after P; had checked choosinglk] because P; waits for Py to finish choosing before
checking the condition (numberlk] = 0) V ((number[i],i} < (number{k),k)). This
again means that that P, will read the latest value of number[i] and therefore
(number[i] < numberlk]). If ((number[i],i) < (numberlk],k)) at the kth iteration,
this will continue to hold because number|i] does not change and number{k] can
only increase.

We now claim the assertion:

(A2) If a process P; is in critical section, then (number|i] > 0).

(A2) is true because it is clear from the program text that the value of any number
is at least 0 and a process executes increment operation on its number at line 20
before entering the critical section.

Showing that the bakery algorithm satisfies mutual exclusion is now trivial. If
two processes P; and Py are in critical section, then from (A2) we know that both of
their numbers are nonzero. From (A1) it follows that (numberli],7) < (number|k], k)
and vice versa, which is a contradiction.

The bakery algorithm also satisfies starvation freedom because any process that
is waiting to enter the critical section will eventually have the smallest nonzero
number. This process will then succeed in entering the critical section.

It can be shown that the bakery algorithm does not make any assumptions on
atomicity of any read or write operation. Note that the bakery algorithm does not
use any variable that can be written by more than one process. Process P; writes
only on variables number[i] and chooselt].

There are two main disadvantages of the bakery algorithm: (1) it requires O(N)
work by each process to obtain the lock even if there is no contention, and (2) it
requires each process to use timestamps that are unbounded in size.

2.4. HARDWARE SOLUTIONS 27

2.4 Hardware Solutions

As we have seen, pure software solutions to mutual exclusion can be quite complex
and expensive. However, mutual exclusion can be provided quite easily with the
help of hardware. We discuss some techniques below.

2.4.1 Disabling Interrupts

In a single-CPU system, a process may disable all the interrupts before entering the
critical section. This means that the process cannot be context-switched (because
context switching occurs when the currently running thread receives a clock inter-
rupt when its current timeslice is over). On exiting the critical section, the process
enables interrupts. Although this method can work for a single-CPU machine, it has
many undesirable features. First, it is infeasible for a multiple-CPU system in which
even if interrupts are disabled in one CPU, another CPU may execute. Disabling
interrupts of all CPUs is very expensive. Also, many system facilities such as clock
registers are maintained using hardware interrupts. If interrupts are disabled, then
these registers may not show correct values. Disabling interrupts can also lead to
problems if the user process has a bug such as an infinite loop inside the critical
section.

2.4.2 Instructions with Higher Atomicity

Most machines provide instructions with a higher level of atomicity than read or
write. The testAndSet instruction provided by some machines does both read and
write in one atomic instruction. This instruction reads and returns the old value
of a memory location while replacing it with a new value. We can abstract the
instruction as a testAndSet method on an object of the class TestAndSet as shown
in Figure 2.8.

public class TestAndSet {
int myValue = —1;
public synchronized int testAndSet (int newValue) {
int oldValue = myValue;
myValue = newValue;
return oldValue;

Figure 2.8: TestAndSet hardware instruction

28 CHAPTER 2. MUTUAL EXCLUSION PROBLEM

If the testAndSet instruction is available, then one can develop a very simple
protocol for mutual exclusion as shown in Figure 2.9.

class HWMutex implements Lock {
TestAndSet lockFlag ;
public void requestCS(int i) { // entry protocol
while (lockFlag .testAndSet (1) == 1) ;

}

public void releaseCS(int i) { // ezit protocol
lockFlag . testAndSet (0);

}

Figure 2.9: Mutual exclusion using TestAndSet

This algorithm satisfies the mutual exclusion and progress property. However, it
does not satisfy starvation freedom. Developing such a protocol is left as an exercise.

Sometimes machines provide the instruction swap, which can swap two memory
locations in one atomic step. Its semantics is shown in Figure 2.10. The reader is
invited to design a mutual exclusion protocol using swap.

public class Synch{
public static synchronized void swap(boolean ml, boolean m2){
boolean temp = ml;
ml = m2;
m2 = temp;

}

Figure 2.10: Semantics of swap operation

2.5 Problems

2.1. Show that any of the following modifications to Peterson’s algorithm makes it
incorrect:

(a) A process in Peterson’s algorithm sets the turn variable to itself instead
of setting it to the other process.

{b) A process sets the turn variable before setting the wantCS variable.

2.5. PROBLEMS 29

rclass Dekker implements Lock {

boolean wautCS[] = { false, false};
int turn = 1;
public void requestCS(int i)} { // entry protocol
int j =1~ i;
wantCS[1]) = true;
while (wantCS[j]) {
if (turn == j) {
wantCS[i] = false;
while (turn == j) ; // busy wait

wantCS{i] = true;
}
public void releaseCS (int i) { // ezit protocol
turn =1 — 1;
wantCS[i] = false;

2.2.

2.3.

2.4.

2.5.

2.6.

2.7.

*2.8.

Figure 2.11: Dekker.java

Show that Peterson’s algorithm also guarantees freedom from starvation.
Show that the bakery algorithm does not work in absence of choosing variables.

Consider the software protocol shown in Figure 2.11 for mutual exclusion
between two processes. Does this protocol satisfy (a) mutual exclusion, and
(b) livelock freedom (both processes trying to enter the critical section and
none of them succeeding)? Does it satisfy starvation freedom?

Modify the bakery algorithm to solve k-mutual exclusion problem, in which
at most k processes can be in the critical section concurrently.

Give a mutual exclusion algorithm that uses atomic swap instruction.

Give a mutual exclusion algorithm that uses TestAndSet instruction and is
free from starvation.

Give a mutual exclusion algorithm on N processes that requires O(1) time in
absence of contention.

30 CHAPTER 2. MUTUAL EXCLUSION PROBLEM

2.6 Bibliographic Remarks

The mutual exclusion problem was first introduced by Dijkstra [Dij65a). Dekker
developed the algorithm for mutual exclusion for two processes. Dijkstra [Dij6é5b]
gave the first solution to the problem for N processes. The bakery algorithm is due
to Lamport [Lam74], and Peterson’s algorithm is taken from a paper by Peterson
[Pet81].

Chapter 3

Synchronization Primitives

3.1 Introduction

All of our previous sclutions to the mutual exclusion problem were wasteful in one
regard. If a process is unable to enter the critical section, it repeatedly checks for
the entry condition to be true. While a process is doing this, no useful work is
accomplished. This way of waiting is called busy wait. Instead of checking the entry
condition repeatedly, if the process checked the condition only when it could have
become true, it would not waste CPU cycles. Accomplishing this requires support
from the operating system.

In this chapter we introduce synchronization primitives that avoid busy wait.
Synchronization primitives are used for mutual exclusion as well as to provide order
between various operations by different threads. Although there are many types of
synchronization constructs in various programming languages, two of them are most
prevalent: semaphores and monitors. We discuss these constructs in this chapter.

3.2 Semaphores

Dijkstra proposed the concept of semaphore that solves the problem of busy wait.
A semaphore has two fields, its value and a queue of blocked processes, and two
operations associated with it — P() and V(). The semantics of a binary semaphore
is shown in Figure 3.1. The value of a semaphore (or a binary semaphore) can be
only false or true. The queue of blocked processes is initially empty and a process
may add itself to the queue when it makes a call to P(). When a process calls P()
and value is true, then the value of the semaphore becomes false. However, if

31

32 CHAPTER 3. SYNCHRONIZATION PRIMITIVES

the value of the semaphore is false, then the process gets blocked at line 7 until it
becomes true. The invocation of Util.myWait () at line 8 achieves this. The class
Util is shown in the appendix, but for now simply assume that this call inserts the
caller process into the queue of blocked processes.

When the value becomes true, the process can make it false at line 9 and return
from P{). The call to V() makes the value true and also notifies a process if the
queue of processes sleeping on that semaphore is nonempty.

1 public class BinarySemaphore {

2 boolean value;

3 BinarySemaphore {boolean initValue) {
4 value = initValue;

5

6 public synchronized void P()} {

7 while (value == false)

8 Util . myWait(this); // in queue of blocked processes
9 value = false;

10

11 public synchronized void V() {

12 value = true;

13 notify ();

14

15}

Figure 3.1: Binary semaphore

Now, mutual exclusion is almost trivial to implement:

BinarySemaphore mutex = new BinarySemaphore(true);
mutex.P();

criticalSection();

mutex.V();

Another variant of semaphore allows it to take arbitrary integer as its value.
These semaphores are called counting semaphores. Their semantics is shown in
Figure 3.2.

Semaphores can be used to solve a wide variety of synchronization problems.
Note that Java does not provide semaphores as basic language construct, but they
can easily be implemented in Java using the idea of monitors, which we will cover
later. For now we simply assume that semaphores are available to us and solve
synchronization problems using them.

3.2. SEMAPHORES 33

public class CountingSemaphore {
int value;
public CountingSemaphore (int initValue) {
value = initValue;

public synchronized void P() {
value ——;
if (value < 0) Util.myWait(this);

public synchronized void V() {
value ++;
if (value <= 0) notify ();

Figure 3.2: Counting semaphore

3.2.1 The Producer-Consumer Problem

We first consider the producer-consumer problem. In this problem, there is a shared
buffer between two processes called the producer and the consumer. The producer
produces items that are deposited in the buffer and the consumer fetches items from
the buffer and consumes them. For simplicity, we assume that our items are of type
double. Since the buffer is shared, each process must access the buffer in a mutually
exclusive fashion. We use an array of double of size size as our buffer. The buffer
has two pointers, inBuf and outBuf, which point to the indices in the array for
depositing an item and fetching an item, respectively. The variable count keeps
track of the number of items currently in the buffer. Figure 3.3 shows the buffer as
a circular array in which inBuf and outBuf are incremented modulo size to keep
track of the slots for depositing and fetching items.

In this problem, we see that besides mutual exclusion, there are two additional
synchronization constraints that need to be satisfied:

1. The consumer should not fetch any item from an empty buffer.

2. The producer should not deposit any item in the buffer if it is full. The buffer
can become full if the producer is producing items at a greater rate than the
rate at which the items are consumed by the consumer.

Such form of synchronization is called conditional synchronization. It requires a
process to wait for some condition to become true (such as the buffer to become
nonempty) before continuing its operations. The class BoundedBuffer is shown in
Figure 3.4. It uses mutex semaphore to ensure that all shared variables are accessed

34

CHAPTER 3. SYNCHRONIZATION PRIMITIVES

inBuf

~-——— outBuf

Size of buffer -1

Figure 3.3: A shared buffer implemented with a circular array

3.2. SEMAPHORES 35

in mutually exclusive fashion. The counting semaphore isFull is used for making a
producer wait in case the buffer is full, and the semaphore isEmpty is used to make
a consumer wait when the buffer is empty.

In the method deposit, line 10 checks whether the buffer is full. If it is, the
process making call waits using the semaphore isFull. Note that this semaphore
has been initialized to the value size, and therefore in absence of a consumer, first
size calls to isFull.P() do not block. At this point, the buffer would be full and
any call to isFull.P() will block. If the call to isFull.P() does not block, then
we enter the critical section to access the shared buffer. The call mutex.P() at line
11 serves as entry to the critical section, and mutex.V() serves as the exit from the
critical section. Once inside the critical section, we deposit the value in buffer using
the pointer inBuf at line 12 (see Figure 3.4). Line 15 makes a call to isEmpty.V()
to wake up any consumer that may be waiting because the buffer was empty. The
method fetch is dual of the method deposit.

1 class BoundedBuffer {

2 final int size = 10;

3 double|] buffer = new double[size];

4 int inBuf = 0, outBuf = 0;

5 BinarySemaphore mutex = new BinarySemaphore (true);
6 CountingSemaphore isEmpty = new CountingSemaphore (0);
7 CountingSemaphore isFull = new CountingSemaphore (size);
3

9 public void deposit (double value) {

10 isFull .\P(); // wait if buffer is full

11 mutex.P(); // ensures mutual ezxclusion

12 buffer [inBuf| = value; // update the buffer
13 inBuf = (inBuf + 1) % size;

4 mutex. V();

15 isEmpty.V(); // notify any waiting consumer
16 }

17 public double fetch () {

18 double value;

19 isEmpty .P(); // wait if buffer is empty

20 mutex.P(); // ensures mutual exclusion

21 value = buffer [outBuf)]; //read from buffer

22 outBuf = (outBuf + 1) % size;

23 mutex.V();

24 isFull .V(); // notify any waiting producer

25 return value;

26 }

27 }

Figure 3.4: Bounded buffer using semaphores

36 CHAPTER 3. SYNCHRONIZATION PRIMITIVES

The class BoundedBuffer can be exercised through the producer-consumer pro-
gram shown in Figure 3.5. This program starts a Producer thread and a Consumer
thread, repeatedly making calls to deposit and fetch, respectively.

3.2.2 The Reader-Writer Problem

Next we show the solution to the reader-writer problem. This problem requires us
to design a protocol to coordinate access to a shared database. The requirements
are as follows:

1. No read-write conflict: The protocol should ensure that a reader and a writer
do not access the database concurrently.

2. No write-write conflict: The protocol should ensure that two writers do not
access the database concurrently.

Further, we would like multiple readers to be able to access the database con-
currently. A solution using semaphores is shown in Figure 3.6. We assume that the
readers follow the protocol that they call startRead before reading the database
and call endRead after finishing the read. Writers follow a similar protocol. We
use the wlock semaphore to ensure that either there is a single writer accessing the
database or only readers are accessing it. To count the number of readers accessing
the database, we use the variable numReaders.

The methods startWrite and endWrite are quite simple. Any writer that wants
to use the database locks it using wlock.P(). If the database is not locked, this
writer gets the access. Now no other reader or writer can access the database until
this writer releases the lock using endWrite().

Now let us look at the startRead and the endRead methods. In startRead,
a reader first increments numReaders. If it is the first reader (numReaders equals
1), then it needs to lock the database; otherwise, there are already other readers
accessing the database and this reader can also start using it. In endRead, the
variable numReaders is decremented and the last reader to leave the database unlocks
it using the call wlock.V().

This protocol has the disadvantage that a writer may starve in the presence
of continuously arriving readers. A starvation-free solution to the reader-writer
problem is left as an exercise.

3.2.3 The Dining Philosopher Problem

This problem, first posed and solved by Dijkstra, is useful in bringing out issues
associated with concurrent programming and symmetry. The dining problem con-
sists of multiple philosophers who spend their time thinking and eating spaghetti.

3.2. SEMAPHORES

import java.util . Random;
class Producer implements Runnable {
BoundedBuffer b = null;
public Producer (BoundedBuffer initb) {
b = initb;
new Thread(this). start ();

public void run () {

double item;

Random r = new Random(};

while (true) {
item = r.nextDouble ();
System. out. println (" produced item ” + item };
b. deposit (item);
Util . mySleep (200);

}

class Consumer implements Runnable {
BoundedBuffer b = null;
public Consumer(BoundedBuffer initb) {
b = initb;
new Thread (this). start ();

public void run() {
double item;
while (true) {
item = b.fetch ();
System.out. println (" fetched item ” + item);
Util . mySleep (50);

}

class ProducerConsumer {
public static void main(String [] args) {
BoundedBuffer buffer = new BoundedBuffer ();
Producer producer = new Producer (buffer);
Consumer consumer = new Consumer (buffer);

37

Figure 3.5: Producer-consumer algorithm using semaphores

38

CHAPTER 3. SYNCHRONIZATION PRIMITIVES

class ReaderWriter {

int numReaders = 0;

BinarySemaphore mutex =

BinarySemaphore wlock =

public void startRead ()
mutex.P();
numReaders++;
if (numReaders
mutex . V();

public void endRead () {
mutex.P();
numReaders ——;

if (numReaders == 0) wlock.V();

mutex . V();

public void startWrite (
wlock .P();

public veid endWrite () {

wlock . V();
b

new BinarySemaphore (true);
new BinarySemaphore (true);

{

) wlock . P();

) A

Figure 3.6: Reader-writer algorithm using semaphores

3.2. SEMAPHORES

\,% \& : Dining philosophers Q
\-‘-/ : Shared fork

Figure 3.7: The dining philosopher problem

39

40 CHAPTER 3. SYNCHRONIZATION PRIMITIVES

However, a philosopher requires shared resources, such as forks, to eat spaghetti
(see Figure 3.7). We are required to devise a protocol to coordinate access to the
shared resources. A computer-minded reader may substitute processes for philoso-
phers and files for forks. The task of eating would then correspond to an operation
that requires access to shared files.

class Philosopher implements Runnable {
int id = 0;
Resource r = null;
public Philosopher (int initId, Resource initr) {
id = initld;
r = initr;
new Thread (this). start ();

public void run() {
while (true) {
try {
System . out. println (*Phil ” + id + 7 thinking”);
Thread. sleep (30);
System.out. println ("Phil 7 + id + 7 hungry”);
r.acquire (id);
System. out. println (” Phil ” + id + 7 eating”);
Thread . sleep (40);
r.release (id);
} catch (InterruptedException e) {
return;
}

Figure 3.8: Dining Philosopher

Let us first model the process of a philosopher. The class Philosopher is shown
in Figure 3.8. Each philosopher P; repeatedly cycles through the following states
— thinking, hungry, and eating. To eat, a philosopher requires resources (forks)
for which it makes call to acquire(i). Thus, the protocol to acquire resources is
abstracted as an interface Resource shown in Figure 3.9.

The first attempt to solve this problem is shown in Figure 3.10. It uses a binary
semaphore for each of the forks. To acquire the resources for eating, a philosopher ¢
grabs the fork on its left by using fork{i].P() at line 12, and the fork on the right
by using fork[(i+1) % nl.P() at line 13. To release the resources, the philosopher
invokes V() on both the forks at lines 16 and 17.

This attempt illustrates the dangers of symmetry in a distributed system. This

3.2. SEMAPHORES

interface Resource {
public void acquire (int i);
public void release (int i);

Figure 3.9: Resource Interface

41

1 class DiningPhilosopher implements Resource {
2 int n = 0;

3 BinarySemaphore [| fork = null;

4 public DiningPhilosopher (int initN}) {

5 n = initN;

6 fork = new BinarySemaphore[n];

7 for (int i = 0; i < n; i++){

8 fork [i] = new BinarySemaphore (true);
9 }

10

11 public void acquire (int i) {

12 fork[i].P();

13 fork [(1 + 1) % n].P{);

14

15 public void release (int i) {

16 fork [1].V(});

17 fork [(1 + 1) % n].V();

18

19 public static void main(String [] args) {
20 DiningPhilosopher dp = new DiningPhilosopher (5);
21 for (int i = 0; i < 5; i++)

22 new Philosopher (i, dp);

23

24}

Figure 3.10: Dining philosopher using semaphores

42 CHAPTER 3. SYNCHRONIZATION PRIMITIVES

protocol can result in deadlock when each philosopher is able to grab its left fork
and then waits for its right neighbor to release its fork.

There are many ways that one can extend the solution to ensure freedom from
deadlock. For example:

1. We can introduce asymmetry by requiring one of the philosophers to grab
forks in a different order (i.e., the right fork followed by the left fork instead
of vice versa).

2. We can require philosophers to grab both the forks at the same time.

3. Assume that a philosopher has to stand before grabbing any fork. Allow at
most four philosophers to be standing at any given time.

It is left as an exercise for the reader to design a protocol that is free from deadlocks.

The dining philosopher problem also illustrates the distinction between deadlock
freedom and starvation freedom. Assume that we require a philosopher to grab both
the forks at the same time. Although this eliminates deadlock, we still have the
problem of a philosopher being starved because its neighbors continuously alternate
in eating. The reader is invited to come up with a solution that is free from deadlock
as well as starvation.

3.3 Monitors

The Monitor is a high-level object-oriented construct for synchronization in con-
current programming. A monitor can be viewed as a class that can be used in
concurrent programs. As any class, a monitor has data variables and methods
to manipulate that data. Because multiple threads can access the shared data at
the same time, monitors support the notion of entry methods to guarantee mutual
exclusion. It is guaranteed that at most one thrcad can be executing in any entry
method at any time. Sometimes the phrase “thread t is inside the monitor” is used
to denote that thread t is executing an entry method. It is clear that at most one
thread can be in the monitor at any time. Thus associated with every monitor
object is a queue of threads that are waiting to enter the monitor.

As we have seen before, concurrent programs also require conditional synchro-
nization when a thread must wait for a certain condition to become true. To address
conditional synchronization, the monitor construct supports the notion of condition
variables. A condition variable has two operations defined on it: wait and notify
(also called a signal). For any condition variable z, any thread, say, ¢;, that makes
a call to z.wait() is blocked and put into a queue associated with z. When an-
other thread, say, tg, makes a call to z.notify(), if the queue associated with x

3.3. MONITORS 43

is nonempty, a thread is removed from the queue and inserted into the queue of
threads that are eligible to run. Since at most one thread can be in the monitor,
this immediately poses a problem: which thread should continue after the notify
operation—the one that called the notify method or the thread that was waiting.
There are two possible answers:

1. One of the threads that was waiting on the condition variable continues exe-
cution. Monitors that follow this rule are called Hoare monitors.

2. The thread that made the notify call continues its execution. When this thread
goes out of the monitor, then other threads can enter the monitor. This is the
semantics followed in Java.

One advantage of Hoare’s monitor is that the thread that was notified on the
condition starts its execution without intervention of any other thread. Therefore,
the state in which this thread starts executing is the same as when the noti fy was
issued. On waking up, it can assume that the condition is true. Therefore, using
Hoare’s mointor, a thread’s code may be

if (1B) x.wait();

Assuming that t notifies only when B is true, we know that ¢; can assume B on
waking up. In Java-style monitor, even though t; issues the notify, it continues its
execution. Therefore, when ¢; gets its turn to execute, the condition B may not be
true any more. Hence, when using Java, the threads usually wait for the condition
as

while (!B) x.wait();

The thread ¢; can take a notify() only as a hint that B may be true. Therefore,
it explicitly needs to check for truthness of B when it wakes up. If B is actually
false, it issues the wait() call again.

In Java, we specify an object to be a monitor by using the keyword synchronized
with its methods. To get conditional synchronization, Java provides

1. wait(): which inserts the thread in the wait queue. For simplicity, we use
Util.myWait () instead of wait () in Java. The only difference is that myWait
catches the InterruptedException.

2. notify(): which wakes up a thread in the wait queue.

3. notifyAl1(): which wakes up all the threads in the wait queue.

44 CHAPTER 3. SYNCHRONIZATION PRIMITIVES

Java does not have condition variables. Thus, associated with each object there
is a single wait queue for conditions. This is sufficient for most programming needs.
If one needs, it is also easy to simulate condition variables in Java. A pictorial
representation of a Java monitor is shown in Figure 3.11. There are two queues
associated with an object—-a queue of threads waiting for the lock associated with
the monitor and another queue of threads waiting for some condition to become

/ N

DATA 'Q}Jeue of processes
waiting for monitor lock

Synchronized method I:: Queue of processes
waiting to be notified

Synchronized method
Nonsynchronized method

Nonsynchronized method

(TT0

Figure 3.11: A pictorial view of a Java monitor

Let us solve some synchronization problems with Java monitors. We first look
at the producer-consumer problem. The BoundedBufferMonitor shown in Figure
3.12 has two entry methods: deposit and fetch. This means that if a thread is
executing the method deposit or fetch, then no other thread can execute deposit
or fetch. The synchronized keyword at lines 5 and 14 allows mutual exclusion
in access of shared variables and corresponds to acquiring the monitor lock. Let us
now look at the method deposit. At line 6, if the buffer is full, (i.e., count is equal
to sizeBuf), then the thread that called deposit must wait for a slot in the buffer
to be consumed. Therefore, it invokes the method myWait (). When a thread waits
for the condition, it goes in a queue waiting to be notified by some other thread.
It also has to release the monitor lock so that other threads can enter the monitor
and make the condition on which this thread is waiting true. When this thread is

3.3. MONITORS 45

notified, it has to acquire the monitor lock again before continuing its execution.

Now assume that the condition in the while statement at line 6 is false. Then
the value can be deposited in the buffer. The variable inBuf points to the tail
of the circular buffer. It is advanced after the insertion at line 9 and the count
of the number of items in the buffer is incremented at line 10. We are not really
done yet. While designing a monitor, one also needs to ensure that if some thread
may be waiting for a condition that may have become true, then that thread must
be notified. In this case, a consumer thread may be waiting in the method fetch
for some item to become available. Therefore, if count is 1, we notify any waiting
thread at line 12.

The method fetch is very similar to deposit.

1 class BoundedBufferMonitor {

2 final int sizeBuf = 10;

3 double[] buffer = new double[sizcBuf |;

4 int inBuf = 0, outBuf = 0, count = 0;

5 public synchronized void deposit (double value) {
6 while (count == sizeBuf) // buffer full

7 Util . myWait(this);
8 buffer [inBuf] = value;

9 inBuf = (inBuf + 1) % sizeBuf;

10 count ++;

11 if (count == 1) // items available for fetch
12 notify ();

13

14 public synchronized double fetch () {

15 double value;

16 while (count == 0) // buffer empty

17 Util . myWait(this);

18 value = buffer [outBuf];

19 outBuf = (outBuf + 1) % sizeBuf;

20 count ——;

21 if (count == sizeBuf — 1) // empty slots available
22 notify ();

23 return value;

24

2 }

Figure 3.12: Bounded buffer monitor

Now let us revisit the dining philosophers problem. In the solution shown in
Figure 3.13, a philoscpher ¢ uses the method test at line 18 to determine if any of
neighboring philosophers is eating. If not, then this philosopher can start eating.
Otherwise the philosopher must wait for the condition (state[i} == eating) at

46 CHAPTER 3. SYNCHRONIZATION PRIMITIVES

line 19 to begin eating. This condition can become true when one of the neighbor-
ing philosophers finishes eating. After eating, the philosopher invokes the method
release to check at lines 24 and 25, whether the left neighbor or the right neighbor
can now eat. If any of them can eat, this philosopher wakes up all the waiting
philosophers by invoking notifyAl1l() at line 32. This solution guarantees mutual
exclusion of neighboring philosophers and is also free from deadlock. However, it
does not guarantee freedom from starvation. The reader should devise a protocol
for starvation freedom.

3.4 Other Examples

In this section we give another example of concurrent programming in Java. Figure
3.14 shows a thread-safe implementation of a queue that is based on a linked list.
The class Node declared at line 2 contains a String as data and the reference to the
next node in the linked list. To enqueue data, we first create a temp node at line 8.
This node is inserted at the tail. If the linked list is empty, this is the only node
in the linked list and both head and tail are made to point to this node at lines
11-13. To dequeue a node, a thread must wait at line 22 if head is null (the linked
list is empty). Otherwise, the data in the head node is returned and head is moved
to the next node.

As mentioned earlier, whenever a thread needs to execute a synchronized method,
it needs to get the monitor lock. The keyword synchronized can also be used with
any statement as synchronized (expr) statement. The expression expr must re-
sult in a reference to an object on evaluation. The semantics of the above construct
is that the statement can be executed only when the thread has the lock for the
object given by the expr. Thus a synchronized method

public synchronized void method() {
body () ;
}

can simply be viewed as a short form for

public void method() {
synchronized (this) {
body () ;
}
}

Just as nonstatic methods can be synchronized, so can the static methods. A
synchronized static method results in a classwide lock.

3.4. OTHER EXAMPLES

47

1 class DiningMonitor implements Resource {

2 int n = 0;

3 int state [] = null;

4 static final int thinking = 0, hungry = 1, eating =
5 public DiningMonitor (int initN) {

6 n = initN;

7 state = new int [n];

8 for (int i = 0; i < n; i+4) state[i] = thinking;
9 }

10 int left (int i) {

11 return (n + i — 1) % n;

12 }

13 int right (int 1) {

14 return (i + 1) % n;

15

16 public synchronized void acquire (int 1) {
17 state [i] = hungry;

18 test (1);

19 while (state[i] != eating)

20 Util . myWait(this);

21

22 public synchronized void release (int 1) {
23 state [1] = thinking;

24 test (left (1));

25 test (right (i));

26

27 void test (int i) {

28 if ((state[left (i)] !'= eating) &&

29 (state [i] == hungry) &&

30 (state [right (i)] != eating)) {

31 state [1] = eating;

32 notify All ();

33 }

34

35 public static void main(String [|] args) {
36 DiningMonitor dm = new DiningMonitor (5);
37 for (int i = 0; i < 5; i++)

38 new Philosopher (i, dm);

39

40 }

25

Figure 3.13: Dining philosopher using monitors

48

CHAPTER 3. SYNCHRONIZATION PRIMITIVES

public class ListQueue {

class Node {
public String data;
public Node next;

Node head = null, tail = null;
public synchronized void enqueue(String data) {
Node temp = new Node();

temp. data = data;
temp. next = null;
if (tail == null) {
tail = temp;
head = tail;
} else {
tail . next = temp;
tail = temp;
notify ();
public synchronized String dequeue () {
while (head == null)
Util . myWait(this);
String returnval = head. data;
head = head. next;

return returnval;

Figure 3.14: Linked list

3.5. DANGERS OF DEADLOCKS 49

One also needs to be careful with inheritance. When an extended class over-
rides a synchronized method with an unsynchronized method, the method of the
original class stays synchronized. Thus, any call to super .method () will result in
synchronization.

3.5 Dangers of Deadlocks

Since every synchronized call requires a lock, a programmer who is not careful can
introduce deadlocks. For example, consider the following class that allows a cell to
be swapped with the other cell. An object of class BCell provides three methods:
getValue, setValue and swap. Although the implementation appears correct at
first glance, it suffers from deadlock. Assume that we have two objects, p and ¢,
as instances of class BCell. What happens if a thread ¢; invokes p.swap(q) and
another thread, say, o, invokes q.swap(p) concurrently? Thread ¢; acquires the
lock for the monitor object p and t3 acquires the lock for the monitor object ¢. Now,
thread t; invokes q.getValue() as part of the swap method. This invocation has
to wait because object ¢ is locked by to. Similarly, to has to wait for the lock for p,
and we have a deadlock!

class BCell { // can result in deadlocks
int value;
public synchronized int getValue () {
return value;

public synchronized void setValue (int i) {
value = i;

public synchronized void swap(BCell x) {
int temp = getValue ();
setValue (x. getValue ());
x.setValue (temp);

The program that avoids the deadlock is given below. It employs a frequently
used strategy of totally ordering all the objects in a system and then acquiring locks
only in increasing order. In this program, both p.swap{(q) and q.swap(p) result in
either p.doSwap(q) or q.doSwap(p), depending on the identityHashCode value of
the objects p and q.

50

CHAPTER 3. SYNCHRONIZATION PRIMITIVES

class Cell {

int value;
public synchronized int gectValue () {
return value;

public synchronized void setValue (int i) {
value = i;

protected synchronized void doSwap(Cell x) {
int temp = getValue ();
setValue (x. getValue ());
x.setValue (temp);

public void swap(Cell x) {

if (this == x)
return;

else if (System.identityHashCode (this)

< System. identityHashCode (x))

doSwap(x);

else
x.doSwap (this);

Some other useful methods in Java Thread class are as follows:

1.

3.2.

The interrupt () method allows a thread to be interrupted. If thread ¢; calls
to.interrupt(), then ty gets an InterruptedException.

. The yield() method allows a thread to yield the CPU to other threads tem-

porarily. It does not require any interaction with other threads, and a program
without yield() would be functionally equivalent to yield() call. A thread
may choose to yield() if it is waiting for some data to become available from
say InputStream.

The method holdsLock(x) returns true if the current thread holds the monitor
lock of the object .

Problems

. Show that if the P() and V() operations of a binary semaphore are not exe-

cuted atomically, then mutual exclusion may be violated.

Show that a counting semaphore can be implemented using binary semaphores.
(Hent: Use a shared variable of type integer and two binary semaphores)

3.7. BIBLIOGRAPHIC REMARKS 51

3.3. Give a starvation-free solution to the reader-writer problem using semaphores.

3.4. The following problem is known as the sleeping barber problem. There is one
thread called darber. The barber cuts the hair of any waiting customer. If there
is no customer, the barber goes to sleep. There are multiple customer threads.
A customer waits for the barber if there is any chair left in the barber room.
Otherwise, the customer leaves immediately. If there is a chair available, then
the customer occupies it. If the barber is sleeping, then the customer wakes
the barber. Assume that there are n chairs in the barber shop. Write a Java
class for SleepingBarber using semaphores that allows the following methods:

runBarber() // called by the barber thread; runs forever
hairCut() // called by the customer thread

How will you extend your algorithm to work for the barber shop with multiple
barbers.

3.5. Give a deadlock-free solution to the dining philosophers problem using semaphores.
Assume that one of the philosophers picks forks in a different order.

3.6. Assume that there are three threads—P, @, and R—that repeatedly print
“P”, “Q”, and “R” respectively. Use semaphores to coordinate the printing

such that the number of “R” printed is always less than or equal to the sum
of “P” and “Q” printed.

3.7. Write a monitor for the sleeping barber problem.
3.8. Show how condition variables of a monitor can be implemented in Java.

3.9. Write a monitor class counter that allows a process to sleep until the counter
reaches a certain value. The counter class allows two operations: increment ()
and sleepUntil(int x).

3.10. Write a Java class for BoundedCounter with a minimum and a maximum value.
This class provides two methods: increment () and decrement (). Decrement
at the minimum value and increment at the maximum value result in the
calling thread waiting until the operation can be performed without violating
the bounds on the counter.

3.7 Bibliographic Remarks

The semaphores were introduced by Dijkstra [Dij65a]. The monitor concept was in-
troduced by Brinch Hansen [Han72] and the Hoare-style monitor, by Hoare [Hoa74].

52 CHAPTER 3. SYNCHRONIZATION PRIMITIVES

Solutions to classical synchronization problems in Java are also discussed in the book
by Hartley [Har98]. The example of deadlock and its resolution based on resource
ordering is discussed in the book by Lea {Lea99)].

Chapter 4

Consistency Conditions

4.1 Introduction

In the presence of concurrency, one needs to revisit the correctness conditions of
executions, specifically, which behaviors are correct when multiple processes invoke
methods concurrently on a shared object. Let us define a concurrent object as one
that allows multiple processes to execute its operations concurrently. For example,
a concurrent queue in a shared memory system may allow multiple processes to
invoke engueue and dequeue operations. The natural question, then, is to define
which behavior of the object under concurrent operations is consistent (or correct).
Consider the case when a process P enqueues z in an empty queue. Then it calls the
method dequeue, while process ¢ concurrently enqueues y. Is the queue’s behavior
acceptable if process P gets y as the result of dequeue? The objective of this chapter
is to clarify such questions.

The notion of consistency is also required when objects are replicated in a parallel
or a distributed system. There are two reasons for replicating objects: fault tolerance
and efficiency. If an object has multiple copies and a processor that contains one of
the copies of the object goes down, the system may stiil be able to function correctly
by using other copies. Further, accessing a remote object may incur a large overhead
because of communication delays. Suppose that we knew that most accesses of the
object are for read only. In this case, it may be better to replicate that object. A
process can read the value from the replica that is closest to it in the system. Of
course, when we perform a write on this object, we have to worry about consistency
of data. This again requires us to define data consistency. Observe that any system
that uses caches, such as a multiprocessor system, also has to grapple with similar

53

54 CHAPTER 4. CONSISTENCY CONDITIONS

issues.

4.2 System Model

A concurrent system consists of a set of sequential processes that communicate
through concurrent objects. Each object has a name and a type. The type defines
the set of possible values for objects of this type and the set of primitive operations
that provide the only means to manipulate objects of this type. Execution of an op-
eration takes some time; this is modeled by two events, namely, an invocation event
and a response event. Let op(arg) be an operation on object z issued at P; arg and
res denote op’s input and output parameters, respectively. Invocation and response
events inv(op{arg)) on = at P and resp(op(res)) from z at P will be abbreviated
as inv(op) and resp(op) when parameters, object name, and process identity are not
necessary. For any operation e, we use proc(e) to denote the process and object(e) to
denote the set of objects associated with the operation. In this chapter, we assume
that all operations are applied by a single process on a single object. In the problem
set, we explore generalizations to operations that span multiple objects.

A history is an execution of a concurrent system modeled by a directed acyclic
graph (H, <y), where H is the set of operations and <p is an irreflexive transitive
relation that captures the occurred before relation between operations. Sometimes
we simply use H to denote the history when <y is clear from the context. Formally,
for any two operations e and f:

e<g f if resp(e) occurred before inv(f) in real time.
Observe that this relation includes the following relations:
Process order: (proc(e) = proc(f)) A (resp(e) occurred before inv(f)).
Object order: (object(e) Nobject(f) # B) A (resp(e) occurred before inv(f)).

A process subhistory H|P (H at P) of a history H is a sequence of all those
events e in H such that proc(e) = P. An object subhistory is defined in a similar
way for an object z, denoted by H|x (H at z). Two histories are equivalent if they
are composed of exactly the same set of invocation and response events.

A history (H,<y) is a sequential history if <y is a total order. Such a history
would happen if there was only one sequential process in the system. A sequential
history is legal if it meets the sequential specification of all the objects. For example,
if we are considering a read-write register = as a shared object, then a sequential
history is legal if for every read operation that returns its value as v, there exists a
write on that object with value v, and there does not exist another write operation

4.3. SEQUENTIAL CONSISTENCY 55

on that object with a different value between the write and the read operations.
For a sequential queue, if the queue is nonempty then a dequeue operation should
return the item that was enqueued earliest and has not been already dequeued. If
the queue is empty, then the dequeue operation should return null.

Our goal is to determine whether a given concurrent history is correct.

4.3 Sequential Consistency

Definition 4.1 (Sequentially Consistent) A history (H,<p) is sequentially con-
sistent if there exists a sequential history S equivalent to H such that S is legal and
it satisfies process order.

Thus a history is sequentially consistent if its execution is equivalent to a legal
sequential execution and each process behavior is identical in the concurrent and
sequential execution. In the following histories, P, @, and R are processes operating
on shared registers x, y, and z. We assume that all registers have 0 initially. The
response of a read operation is denoted by ok(v), where v is the value returned,
and the response of a write operation is denoted by ok(). The histories are shown
graphically in Figure 4.1.

1. H; = P write(x,1), Q read(x), @ ok(0), P ok().

Note that Hy is a concurrent history. @ invokes the read(z) operation be-
fore the write(x,1) operation is finished. Thus write(z,1) and read(z) are
concurrent operations in Hy. H; is sequentially consistent because it is equiv-
alent to the following legal sequential history.

S = Q read(z), Q ok(0), P write(z,1), P ok().

To see the equivalence, note that

H|P = S|P = P write(z, 1), P ok().

H|Q = 5|Q = @ read(z), Q ok(0).

2. Hy = P write(z,1), P ok(), Q read(z), Q ok(0).

Somewhat surprisingly, Hs is also sequentially consistent. Even though P
got the response of its write before @, it is okay for @ to have read an old
value. Note that Hj is a sequential history but not legal. However, it is equiv-
alent to the following legal sequential history:

Q read(z), Q ok(0), P write(x,1), P ok().
3. Hy = P write(z,1), Q read(x), P ok(), Q ok(0), P read(z), P ok(0).

56

CHAPTER 4. CONSISTENCY CONDITIONS

4))
write (x,1) ok()
P —3
read(x) ok (0)
Q
(2)
write (x,1) ok()
P E— 3
read(x) ok (0)
)]
write (x,1) ok() read(x) ok (0)
P 3
read(x) ok (0)
@)
write (x,1) ok()
P E- =)
read(x) ok (2)
Q E 3

Figure 4.1: Concurrent histories illustrating sequential consistency

4.4. LINEARIZABILITY 57

Hj is not sequentially consistent. Any sequential history equivalent to Hj
must preserve process order. Thus the read operation by P must come after
the write operation. This implies that the read cannot return 0.

4. Hy = P write(z,1), Q read(z), P ok(), @ ok(2).

Hy is also not sequentially consistent. There is no legal sequential history
equivalent to Hy because the read by) returns 2, which was never written on
the register (and was not the initial value).

4.4 Linearizability

Linearizability is a stronger consistency condition than sequential consistency. In-
tuitively, an execution of a concurrent system is linearizable if it could appear to
an external observer as a sequence composed of the operations invoked by processes
that respect object specifications and real-time precedence ordering on operations.
So, linearizability provides the illusion that each operation on shared objects is-
sued by concurrent processes takes effect instantaneously at some point between the
beginning and the end of its execution. Formally, this is stated as follows.

Definition 4.2 (Linearizable) A history (H,<p) is linearizable if there exists a
sequential history (S, <) equivalent to H such that S is legal and it preserves <.

Since <py includes process order, it follows that a linearizable history is always
sequentially cousistent. Let us reexamine some histories that we saw earlier.

1. Hy = P write(z,1), Q read(z), Q ok(0), P ok().

Hj is linearizable because the following legal sequential history,
Q read(z), Q ok(0), P write(x,1), P ok()
preserves <p.

2. Ho = P write(z, 1), P ok(), Q read(z), Q ok(0).

H; is sequentially consistent but not linearizable. The legal sequential his-
tory used for showing sequential consistency does not preserve <p.

A key advantage of linearizability is that it is a local property, that is, if for all
objects x, H|z is linearizable, then H is linearizable. Sequential consistency does
not have this property. For example, consider two concurrent queues, s and t.
Process P enqueues z in s and ¢. Process () enqueues y in ¢ and then in s. Now P
gets y from deq on s and Q get x when it does deq on t.

CHAPTER 4. CONSISTENCY CONDITIONS

(a) H
seng(x) s.ok() tenq(x) t.ok() s.deq() s.ok(y)
3 E——-73 B——3
teng(y) t.ok() seng(y) s.ok() tdeq() tok(x)
E———-3 -3 E——3
(b) His
s.eng(x) s.ok() s.deq() s.ok(y)
P ———073 | —
s.eng(y) s.ok()
Q &=/—3
(c) Hit
teng(x) tok()
EB——-3
teng(y) tok() tdeq() tok(x)
4 BE——3

Figure 4.2: Sequential consistency does not satisfy locality

4.4. LINEARIZABILITY 59

Consider the following histories shown in Figure 4.2:

H=
P s.eng(z), P s.0k(),
Q teng(y), Q t.ok(),
P teng(z), P t.ok(),
Q s.enq(y), Q s.0k(),
P s.deq(), P s.ok(y),
Q t.deq(), Q t.ok(x)

Hi|s=
P s.eng(z), P s.0k(),

Q s.enq(y), Q s.0k(),
P s.deq(), P s.ok(y).

Hit =
Q teng(y), Q t.ok(),
P t.eng(z), P t.ok(),
Q t.deq(), Q t.ok(x)

Both H|s and H|t are sequentially consistent but H is not.

To see that the linearizability is a local property, assume that (S, <.) is a
linearization of Hlz, that is, (S;, <;) is a sequential history that is equivalent to
Hl|x. We construct an acyclic graph that orders all operations on any object and
also preserves occurred before order <. Any sort of this graph will then serve as
a linearization of H. The graph is constructed as follows. The vertices are all the
operations. The edges are all the edges given by union of all <, and <y. This
graph totally orders all operations on any object. Moreover, it preserves <py. The
only thing that remains to be shown is that it is acyclic. Since <, are acyclic, it
follows that any cycle, if it exists, must involve at least two objects.

We will show that cycle in this graph implies a cycle in <g. If any two consecu-
tive edges in the cycle are due to just <, or just <pg, then they can be combined due
to transitivity. Note that e <; f <y g for distinct objects x and y is not possible
because all operations are unary (e <, f <, g implies that f operates on both x
and y). Now consider any sequence of edges such that e <g f <, g <g h.

e <p f implies res(e) precedes inv(f) { definition of <y }
f < g implies inv(f) precedes res(g) { <, is a total order }
g <m h implies res(g) precedes inv(h) { definition of <z }.

60 CHAPTER 4. CONSISTENCY CONDITIONS

These relations can be combined to give that res(e) precedes tnv(h). Therefore,
e <y h. Thus any cycle in the graph can be reduced to a cycle in <y, a contradiction
because <y is irreflexive.

So far we have only looked at consistency conditions for complete histories,
that is, histories in which every invocation operation has a corresponding response
operation. We can generalize the consistency conditions for partial histories as
follows. A partial history H is linearizable if there exists a way of completing the
history by appending response events such that the complete history is linearizable.
For example, consider the following history:

Hs = P write(z,1), Q read(x), Q ok(0)
Hj is linearizable because

P write(z,1), Q read(z), Q ok(0), P ok()
is linearizable. This generalization allows us to deal with systems in which some
processes may fail and consequently some response operations may be missing.

4.5 Other Consistency Conditions

Although we have focused on sequential consistency and linearizability, there are
many consistency conditions that are weaker than sequential consistency. A weaker
consistency condition allows more efficient implementation at the expense of in-
creased work by the programmer, who has to ensure that the application works
correctly despite weaker consistency conditions.

Consider a program consisting of two processes, P and (), with two shared
variables z and y. Assume that the initial values of x and y are both 0. P writes
1 in z and then reads the value of y; Q) writes 1 in y and then reads the value of
z. Strong consistency conditions such as sequential consistency or linearizability
prohibit the results of both reads from being 0. However, if we assume that the
minimum possible time to read plus the minimum possible time to write is less
than the communication latency, then both reads must return 0. The latency is the
information delivery time, and each processor cannot possibly know of the events
that have transpired at the other processor. So, no matter what the protocol is, if
it implements sequential consistency, it must be slow.

Causal consistency is weaker than sequential consistency. Causal consistency
allows for implementation of read and write operations in a distributed environment
that do not always incur communication delay; that is, causal consistency allows for
cheap read and write operations.

With sequential consistency, all processes agree on the same legal sequential
history S. The agreement defined by causal consistency is weaker. Given a history
H, it is not required that two processes P and () agree on the same ordering for

4.5. OTHER CONSISTENCY CONDITIONS 61

the write operations, which are not ordered in H. The reads are, however, required
to be legal. Each process considers only those operations that can affect it, that is,
its own operations and only write operations from other processes. Formally, for
read—write objects causal consistency can be defined as follows.

Definition 4.3 (Causally Consistent) A history (H,<p) is causally consistent
if for each process P;, there is a legal sequential history (S;, <s,) where S; is the set
of all operations of P; and all write operations in H, and <g, respects the following
order:

Process order: If P, performs operation e before f, then e is ordered before f
n S;.

Object order: If any process P performs a write on an object x with value v
and another process Q) reads that value v, then the write by P is ordered before
read by @ in S;.

Intuitively, causal consistency requires that causally related writes be seen by all
processes in the same order. The concurrent writes may be seen in different order
by different processes.

It can be proved that sequential consistency implies causal consistency but the
converse does not hold. As an example, consider history H; in which P; does
wi(z,1), r(z,2) and Py does we(x,2), rofz,1).

The history is causally consistent because the following serializations exist:

S1 = wi(z, 1), we(z,2),r1(x,2)
Sy = wa(z,2),w (z,1), 2, 1)

Thus we require only that there is a legal sequential history for every process and
not one for the entire system. P, orders wy before ws in S; and P, orders wq before
w; but that is considered causally consistent because w;, and ws are concurrent
writes. It can be easily proved that history H; is not sequentially consistent.

The following history is not even causally consistent. Assume that the initial
value of x is 0. The history at process P is

H|P = P r(x,4), P w(x, 3).
The history at process Q) is
H|Q=Q r(z,3),Q w(x,4).

Since @ reads the value 3 and then writes the value of z, the write by @ should
be ordered after the write by P. P’s read is ordered before its write; therefore, it
cannot return 4 in a causally consistent history.

The table in Figure 4.3 summarizes the requirements of all consistency conditions
considered in this chapter. The second column tells us whether the equivalent legal

62

CHAPTER 4. CONSISTENCY CONDITIONS

Consistency Legal History | Order Preserved
Linearizability Global Occurred before order
Sequential Global Process order

Causal Per process Process, object order
FIFO (Problem 4.4) | Per process Process order

Figure 4.3: Summary of consistency conditions

history required for the consistency condition is global. The third column tells us
the requirement on the legal history in terms of the order preserved. For example,
linearizability requires that there be a single equivalent legal history that preserves
the occurred before order.

4.6 Problems

4.1.

4.2.

4.3.

4.4.

4.6.

Consider a concurrent stack. Which of the following histories are linearizable?
Which of the them are sequentially consistent? Justify your answer.

(a) P push(z), P ok(),Q push(y), Q@ ok(), P pop(), P ok(z)

(b) P push(z),Q push(y), P ok(), Q ok(),Q pop(), Q ok(x)

Assume that all processors in the system maintain a cache of a subset of objects
accessed by that processor. Give an algorithm that guarantees sequential
consistency of reads and writes of the objects.

Assume that you have an implementation of a concurrent system that guaran-
tees causal consistency. Show that if you ensure that the system does not have
any concurrent writes, then the system also ensures sequential consistency.

FIFO consistency requires that the writes done by the same process be seen
in the same order. Writes done by different processes may be seen in different
order. Show a history that is FIFO-consistent but not causally consistent.

. Given a poset (H,<py) denoting a system execution, we define a relation

—p as the transitive closure of union of process and object order. We call
(H, <g) normal if there exists an equivalent sequential history that preserves
—p. Show that when all operations are unary, a history is linearizable iff it
is normal.

Consider the following history of six events in which operations span multiple
objects, assuming that A and B are initialized to O:

4.7. BIBLIOGRAPHIC REMARKS

evy = inv{write(l))
evy = inv(sum())

evs = resp(urite())
evy = inv(write(2))
evs = resp(write())
eveg = resp(sum(2))

Show that this history is not linearizable but normal.

on
on
from
on
from
from

S TN

5y

&

at
at
at
at
at
at

63

*4.7. Assume that every message delay is in the range [d —u, d] for 0 < u < d. Show
that in any system that ensures sequential consistency of read-write objects,

the sum of delays for a read operation and a write operation is at least d.

*4.8. (due to Taylor [Tay83]) Show that the problem of determining whether (H, < g

) is sequentially consistent for read-write registers is NP-complete.

*4.9. (due to Mittal and Garg [MG98]) Generalize the definition of sequential con-
sistency and linearizability for the model in which operations span multiple
objects. Give distributed algorithms to ensure sequential consistency and lin-

earizability in this model.

4.7 Bibliographic Remarks

Sequential consistency was first proposed by Lamport [Lam79]. The notion of lin-
earizability for read/write registers was also introduced by Lamport [Lam86] under
the name of atomicity. The concept was generalized to arbitrary data types and
termed as linearizability by Herlihy and Wing [HW90]. Causal consistency was

introduced by Hutto and Ahamad [HA90].

This Page Intentionally Left Blank

Chapter 5

Wait-Free Synchronization

5.1 Introduction

The synchronization mechanisms that we have discussed so far are based on locking
data structures during concurrent accesses. The lock-based synchronization mech-
anisms are inappropriate in fault tolerance and real-time applications. When we
use lock-based synchronization, if a process fails inside the critical section, then all
other processes cannot perform their own operations. Even if no process ever fails,
lock-based synchronization is bad for real-time systems. Consider a thread serving
a request with a short deadline. If another thread is inside the critical section and
is slow, then this thread may have to wait and therefore miss its deadline. Using
locks also require the programmer to worry about deadlocks. In this chapter, we
introduce synchronization mechanisms that do not use locks and are therefore called
lock-free. 1f lock-free synchronization also guarantees that each operation finishes in
a bounded number of steps, then it is called wait-free.

To illustrate lock-free synchronization, we will implement various concurrent ob-
jects. The implementation of a concurrent object may use other simpler concurrent
objects. One dimension of simplicity of an object is based on whether it allows
multiple readers or writers. We use SR, MR, SW, and MW to denote single reader,
multiple reader, single writer, and multiple writer, respectively. The other dimen-
sion is the consistency condition satisfied by the register. For a single-writer register,
Lamport has defined the notions of safe, regular, and atomic registers.

In this chapter, we discuss these notions and show various lock-free and wait-free
constructions of concurrent objects.

65

66 CHAPTER 5. WAIT-FREE SYNCHRONIZATION

5.2 Safe, Regular, and Atomic Registers

A register is safe if a read that does not overlap with the write returns the most
recent value. If the read overlaps with the write, then it can return any value.

For an example of safe and unsafe register histories, consider the histories shown
in Figure 5.1. History (a) is unsafe because the read returns the value 4 but the
most recent value written to the register is 3, which had completed before the read
started. History (b) is also unsafe. Even though read returns a value that had been
written before, it is not the most recent value. History (c) is safe because Wz, 3)
and W(x,4) are concurrent and therefore W(x,4) could have taken effect before
W (x,3). Histories (d) and (e) are safe because the read operation overlaps a write
operation and therefore can return any value.

A register is regular if it is safe and when the read overlaps with one or more
writes, it returns either the value of the most recent write that preceded the read
or the value of one of the overlapping writes. Consider histories shown in Figure
5.2. History (a) is regular because the read operation returns the value 3, which is
the most recent write that preceded the read operation. History (b) is also regular
because the read operation returns the value 4, which is the value written by a
concurrent write operation. History (c) is not regular (although it is safe) because
the value it returns does not match either the most recent completed write or a
concurrent write. History (d) is also regular. It illustrates that there may be more
than one concurrent writes with the read operation.

A register is atomic if its histories are linearizable. Clearly, atomicity implies
regularity, which in turn implies safety. Consider the histories shown in Figure 5.3.
History (a) is regular but not atomic. It is regular because both the reads are
valid. It is not atomic because the second read returns a value older than the one
returned by the first read. History (b) is atormic. It corresponds to the linearization
in which the W(z,3) operation took effect after the first R(xz) operation. History
(¢) is atomic. It corresponds to the linearization in which the W(z,3) operation
took effect after the W (z,4) operation, and the read operation by the third process
occurred after W(x,4) and before W(z,3). History (d) is not atomic. Since the
first read returned 3, W(z,3) happens before W{z,4) in any linearization. Since
the second read is after both of the writes have finished, it can return only 4.

Surprisingly, it is possible to build a multiple-reader multiple-writer (MRMW)
atomic multivalued register from single-reader single-writer (SRSW) safe boolean
registers. This can be achieved by the following chain of constructions:

1. SRSW safe boolean register to SRSW regular boolean register

2. SRSW regular boolean register to SRSW regular multivalued register

5.2.

SAFE, REGULAR, AND ATOMIC REGISTERS

67

W(x,3) ok()
(a) E—7yn 3
R(x) ok(4)
E———3
W(x,3) ok()
(b) e q
W(x,4) ok() R(x) ok(3)
E 3 E =
(C) W(x,3) ok()
4
W(x,4) ok() R} ok(3)
E = E 3
W(x,3) ok()
(d) AR
R(x) ok(0)
4
W(x,1) ok() W, 1) ok()
(e) [— l' |
|- pu | | = pu |
R(x) ok(0)
———7

Figure 5.1: Safe and unsafe read-write registers

CHAPTER 5. WAIT-FREE SYNCHRONIZATION

W(x,3) ok() Wx4) ok()
(@ I E 3
R(x) ok(3)
-
W(x,3) ok() W(x,4) ok()
(b) | - C |
L - L -
R(x) ok(4)
E——4
W(x,3) ok() W4 ok()
(C) E b | C b |
C 1 L =
R(x) ok(0)
E—
W(x,3) ok() W4 ok()
d S -
(m . | —
W(x,5) ok()
E—3
R(x) ok(4)
E—4

Figure 5.2: Concurrent histories illustrating regularity

5.2. SAFE, REGULAR, AND ATOMIC REGISTERS

69

W(x,3) ok() W(x4) ok()
@ 1 E 3
R(x) ok(4) R(x) ok(3)
3 E—3
W(x,3) ok()
(b) e -
R(x) ok(0) R(x) ok(3)
| o | |
= | -
W(x,3) ok() RXx) ok(3)
© T 3
L - L |
W(x,4) ok()
3
R(x) ok(4)
3
(d) W(x.,3) ok() R(x) ok(3)
3 f 3
W(x,4) ok()
Erm——3
R(x) ok(3)
f———3

Figure 5.3: Atomic and nonatomic registers

70 CHAPTER 5. WAIT-FREE SYNCHRONIZATION

3. SRSW regular register to SRSW atomic register
4. SRSW atomic register to MRSW atomic register

5. MRSW atomic register to MRMW atomic register

We show some of these constructions next.

5.3 Regular SRSW Register

We abstract a register as an object of a class with two methods, getValue and
setValue, used for reading and writing, respectively. Assume that we have a safe
single-reader single-writer boolean register. Since we have a single reader and a
single writer, we need to worry about the semantics of getValue and setValue
only when they overlap. In the presence of concurrency, we require that the value
that is written not become corrupted. The value that is read can be arbitrary. If
another getValue is performed after the write has finished, and there is no other
setValue in progress, then the value returned should be the value written by the
last setValue. We will use the following Java code as an abstraction for a SRSW
safe boolean register.

class SafeBoolean {
boolean value;
public boolean getValue () {
return value;

public void setValue (boolean b) {
value = b;
h

Note that this register is not regular exactly for one scenario—if setValue and
getValue are invoked concurrently, the value being written is the same as the pre-
vious value and getValue returns a different value. This scenario is shown in Figure
5.1(e).

To make our register regular, we avoid accessing the shared register when the
previous value of the register is the same as the new value that is being written.
The construction of a regular SRSW register from a safe SRSW register in given in
Figure 5.4.

Line 8 ensures that the writer does not access value if the previous value prev
is the same as the value being written, b. Thus an overlapping read will return
the correct value. If the new value is different, then the read can return arbitrary

5.4. SRSW MULTIVALUED REGISTER 71

1 class RegularBoolean {

2 boolean prev; // not shared
3 SafeBoolean value;

4 public boolean getValue () {
5 return value. getValue ();
6

7 public void setValue (boolean b) {
8 if (prev != b) {

9 value . setValue (b);
10 prev = b;

11 }

12

13 }

Figure 5.4: Construction of a regular boolean register

value from {true, false}, but that is still acceptable because one of them is the
previous value and the other is the new value. This construction exploits the fact
that the value is binary and will not work for multivalued registers.

5.4 SRSW Multivalued Register

We skip the construction from a SRSW regular boolean register to a SRSW atomic
(linearizable) boolean register. Now assume that we have a SRSW atomic boolean
register. This register maintains a single bit and guarantees that in spite of concur-
rent accesses by a single reader and a single writer, it will result only in linearizable
concurrent histories. We now show that, using such registers, we can implement a
multivalued SRSW register. The implementation shown in Figure 5.5 is useful only
when maxVal is small because it uses an array of maxVal SRSW boolean registers
to allow values in the range 0. . .maxVal-1.

The idea is that the reader should return the index of the first true bit. The
straightforward solution of the writer updating the array in the forward direction
until it reaches the required index and the reader also scanning in the forward
direction for the first true bit does not work. It can happen that the reader does
not find any true bit. Come up with an execution to show this! So the first idea we
will use is that the writer will first set the required bit to true and then traverse the
array in the backward direction, setting all previous bits to false. We now describe
the setValue method in Figure 5.5. To write the value x, the writer makes the zth
bit true at line 19 and then makes all the previous values false at lines 20-21. The
reader scans for the true bit in the forward direction at line 12. With this strategy,

72

CHAPTER 5. WAIT-FREE SYNCHRONIZATION

class MultiValued {

int n = 0;
boolean A[] = null;
public MultiValued (int maxVal, int initVal) {
n = maxVal;
A = new boolean[n];
for (int i = 0; i < n; i++)A[i] = false;
AlinitVal] = true;

public int getValue () {
int j = 0;

int v = j;

for (int i = j — 1; 1 >=0; i——) // backward scan
if (Ali]) v =1;

return v,

i)ublic void setValue (int x) {

A[x] = true;

for (int i = x — 1; i >=0; i——)
Ali] = false;

Figure 5.5: Construction of a multivalued register

5.5. MRSW REGISTER 73

the reader is guaranteed to find at least one bit to be true. Further, this bit would
correspond to the most recent write before the read or one of the concurrent writes.
Therefore, this will result in at least a regular register.

However, a single scan by the reader does not result in a linearizable implemen-
tation. To see this, assume that the initial value of the register is 5 and the writer
first writes the value 1 and then the value 4. These steps will result in

1. Writer sets A[1] to true.
2. Writer sets A[4] to true.
3. Writer sets A[1] to false.

Now assume that concurrent with these two writes, a reader performs two read
operations. Since the initial value of A[1] is false, the first read may read A[4] as
the first bit to be true. This can happen as follows. The reader reads A[l], A[2],
and A[3] as false. Before the reader reads A[4], the writer sets A[1] to true and
subsequently A[4] to true. The reader now reads A[4] as true. The second read
may happen between steps 2 and 3, resulting in the second read returning 1. The
resulting concurrent history is not linearizable because there is an inversion of old
and new values. If the first read returned the value 4 then the second read cannot
return an older value 1.

In our implementation, the reader first does a forward scan and then does a
backward scan at line 14 to find the first bit that is true. Two scans are sufficient
to guarantee linearizability.

5.5 MRSW Register

We now build a MRSW register from SRSW registers. Assume that there are n
readers and one writer. The simplest strategy would be to have an array of n
SRSW registers, V[n], one for each of the readers. The writer would write to all n
registers, and the reader r can read from its own register V{r]. This does not result
in a linearizable implementation. Assume that initially all registers are 5, the initial
value of the MRSW register, and that the writer is writing the value 3. Concurrent
to this write, two reads occur one after another. Assume that the first read is by
the reader i and the second read is by the reader j, where i is less than j. It is then
possible for the first read to get the new value 3 because the writer had updated
V[¢] and the second read to get the old value 5 because the writer had not updated
V[j] by then. This contradicts linearizability.

To solve this problem, we require a reader to read not only the value written
by the writer but also all the values read by other readers so far to ensure that

74 CHAPTER 5. WAIT-FREE SYNCHRONIZATION

a reader returns the most recent value. How does the reader determine the most
recent value? We use a sequence number associated with each value. The writer
maintains the sequence number and writes this sequence number with any value
that it writes. Thus we view our SRSW register as consisting of two fields: the
value and ts (for timestamp).

Now that our values are timestamped, we can build a MRSW register from
SRSW registers using the algorithm shown in Figure 5.6.

Since we can only use SRSW objects, we are forced to keep O(n?) Comm registers
for informing readers what other readers have read. Comm({i][j] is used by the
reader ¢ to inform the value it read to the reader j.

The reader simply reads its own register and also what other readers have read
and returns the latest value. It reads its own register at line 18 in the local variable
tsv (timestamped value). It compares the timestamp of this value with the times-
tamps of values read by other readers at line 22. After line 23, the reader has the
latest value that is read by any reader. It informs other readers of this value at lines
26-28.

The writer simply increments the sequence number at line 33 and writes the
value in all n registers at lines 34-35.

5.6 MRMW Register

The construction of an MRMW register from MRSW registers is simpler than the
previous construction. We use n MRSW registers for n writers. Each writer writes
in its own register. The only problem for the reader to solve is which of the write it
should choose for reading. We use the idea of sequence numbers as in the previous
implementation. The reader chooses the value with the highest sequence number.
There is only one problem with this approach. Previously, there was a single writer
and therefore we could guarantee that all writes had different sequence numbers.
Now we have multiple writers choosing their numbers possibly concurrently. How
do we assign unique sequence number to each write? We use the approach of the
Bakery algorithm. The algorithm is shown in Figure 5.7. In the method setValue,
we require a writer to read all the sequence numbers and then choose its sequence
number to be larger than the maximum sequence number it read. Then, to avoid
the problem of two concurrent writers coming up with the same sequence number,
we attach the process identifier w with the sequence number. Now two writes with
the same sequence number can be ordered on the basis of process ids. Furthermore,
we have the following guarantee: If one write completely precedes another write,
then the sequence number associated with the first write will be smaller than that
with the second write. The reader reads all the values written by various writers

5.6. MRMW REGISTER

75

SRSW VI[] = null; // value written for reader i
SRSW Comm[][] = mnull; // communication between readers
int seqNo = 0;
public MRSWint readers, int initVal) {
n = readers;
V = new SRSW[n};
for (int i = 0; i < n; i+4)
V[i]. setValue (initVal, 0);
Comm = new SRSW[n][n];
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
Comm(i][j]. setValue (initVal, 0);

public int getValue(int r) {//reader r reads
//read your own register
SRSW tsv = V[r]; // tsv is local

// find the value with the largest timestamp
for (int i = 0; i < n; i+4)
if (Comm|[i][r].getTS() > tsv.getTS())
tsv = Comm[i][r];

// inform other readers
for (int i = 0; i < n; i+4){
Cornm[1 |{ 1]. setValue (tsv);

return tsv.getValue ();

public void setValue (int x) { // accessed by the wriler
// write the value with o larger timestamp
seqNo++;
for (int i = 0; 1 < n; i++)
V[i]. setValue(x, segNo);

Figure 5.6: Construction of a multireader register

76 CHAPTER 5. WAIT-FREE SYNCHRONIZATION

and chooses the one with the largest timestamp.

class MultiWriter {
int n = 0;

MRSW V[] = null; // value written by the writer i
public MultiWriter (int writers, int initVal) {
n = writers;
V = new MRSWn];

for (int i = 0; i < n; i++)
V[i]. setValue (initVal, 0, i);

public int getValue () {
MRSW tsv = V[0];, // tsv is local
for (int i = 1; 1 < n; i++)
if ((tsv.ts < V[i].ts) ||
((tsv.ts == V[i].ts) && (tsv.pid < V[i].pid)))
tsv = V[i];
return tsv.val;

public void setValue (int w, int x) { // writer w
int maxseq = V[0]. ts;
for (int i = 1; i < n; i++)
if (maxseq < V][i].ts) maxseq = V[i]. ts;
V[w]. setValue (x, maxseq + 1, w);

Figure 5.7: Construction of a multiwriter register

5.7 Atomic Snapshots

All our algorithms so far handled single values. Consider an array of values that we
want to read in an atomic fashion using an operation readArray. We will assume
that there is a single reader and a single writer but while the array is being read, the
writes to individual locations may be going on concurrently. Intuitively, we would
like our readArray operation to behave as if it took place instantaneously.

A simple scan of the array does not work. Assume that the array has three
locations initially all with value O and that a readArray operation and concurrently
two writes take place one after the other. The first write updates the first location to
1 and the second write updates the second location to 1. A simple scan may return
the value of array as [0,1,0]. However, the array went through the transitions
[0,0,0] to [1,0,0], and then to [1,1,0]. Thus, the value returned by readArray

5.7. ATOMIC SNAPSHOTS 77

is not consistent with linearizability. A construction that provides a readArray
operation with consistent values in spite of concurrent writes with it is called an
atomic snapshot operation. Such an operation can be used in getting a checkpoint
for fault-tolerance applications.

We first present a lock-free construction of atomic snapshots shown in Figure
5.8. This construction is extremely simple. First, to determine whether a location
in the array has changed, we append each value with the sequence number. Now,
the readArray operation reads the array twice. If none of the sequence numbers
changed, then we know that there exists a time interval in which the array did
not change. Hence the copy read is consistent. This construction is not wait-free
because if a conflict is detected, the readArray operation has to start all over again.
There is no upper bound on the number of times this may have to be done.

public class LockFreeSnapshot {
int n = 0;

SRSW[] V;
public void LockFreeSnapshot (int initN) {
n = initN;

V = new SRSW[n];

public void writeLoc (int k, int x) {
int seq = V[k]. ts;
Vik]. setValue (x, seq + 1);

}
public SRSW|[] readArray () {
SRSW[] W= new SRSW[n]|; // W is local
boolean done = false;
while (! done) {
for (int i = 0; i < n; i++) // copy V to W
Wi]. setValue (V[i]. value, V[i]. ts);
done = true;
// eheck if V has changed
for (int i = 0; i < n; i++)
if (Wli].ts 1= V[i]. ts) {
done = false;
break;

}

return W,

Figure 5.8: Lock-free atomic snapshot algorithm

This construction is not wait-free because a readArray operation may be “starved”

78 CHAPTER 5. WAIT-FREE SYNCHRONIZATION

by the update operation. We do not go into detail here, but this and many other
lock-free constructions can be turned into wait-free constructions by using the notion
of “helping” moves. The main idea is that a thread tries to help pending opera-
tions. For example, if the thread wanting to perform an update operation helps
another concurrent thread that is trying to do a readArray operation, then we call
it a “helping” move. Thus one of the ingredients in constructing a wait-free atomic
snapshot would require the update operation to also scan the array.

5.8 Consensus

So far we have given many wait-free (or lock-free) constructions of a concurrent
object using other simpler concurrent objects. The question that naturally arises is
whether it is always possible to build a concurrent object from simpler concurrent
objects. We mentioned that it is possible to construct a wait-free algorithm for an
atomicSnapshot object that allows atomic reads of multiple locations in an array
and atomic write to a single location. What if we wanted to build an object that
allowed both reads and writes to multiple locations in an atomic manner? Such
a construction is not possible using atomic read-write registers. Another question
that arises concerns the existence of universal objects, that is, whether there are
concurrent objects powerful enough to implement all other concurrent objects.

It turns out that consensus is a fundamental problem useful for analyzing such
problems. The consensus problem requires a given set of processes to agree on an
input value. For example, in a concurrent linked list if multiple threads attempt to
insert a node, then all the processes have to agree on which node is inserted first.

The consensus problem is abstracted as follows. Each process has a value input
to it that it can propose. For simplicity, we will restrict the range of input values to
a single bit. The processes are required to run a protocol so that they decide on a
common value. Thus, any object that implements consensus supports the interface
shown in Figure 5.9.

public interface Consensus {
public void propose (int pid, int value);
public int decide (int pid);

Figure 5.9: Consensus Interface

The requircments on any object implementing consensus are as follows:

o Agreement: Two correct processes cannot decide different values.

5.8. CONSENSUS 79

e Validity: The value decided by a correct process must be one of the proposed
values.

e Wait-free: Each correct process decides the value after a finite number of steps.
This should be true without any assumption on relative speeds of processes.

A concurrent object O is defined to have a consensus number equal to the largest
number of processes that can use O to solve the consensus problem. If O can be
used to solve consensus for any number of processes, then its consensus number is
oo and the object O is called the universal object.

Now if we could show that some concurrent object O has consensus number m
and another concurrent object has consensus number m' > m, then it is clear that
there can be no wait-free implementation of O’ using O. Surprisingly, the converse
is true as well: If O’ has consensus number m' < m, then O’ can be implemented
using O.

We begin by showing that linearizable (or atomic) registers have consensus num-
ber 1. Clearly, an atomic register can be used to solve the consensus problem for a
single process. The process simply decides its own value. Therefore, the consensus
number is at least 1. Now we show that there does not exist any protocol to solve
the consensus using atomic registers.

The argument for nonexistence of a consensus protocol hinges on the concepts of
a bivalent state and a critical state. A protocol is in a bivalent state if both the values
are possible as decision values starting from that global state. A bivalent state is a
critical state if all possible moves from that state result in nonbivalent states. Any
initial state in which processes have different proposed values is bivalent because
there exist at least two runs from that state that result in different decision values.
In the first run, the process with input 0 gets to execute and all other processes are
very slow. Because of wait freedom, this process must decide, and it can decide only
on 0 to ensure validity. A similar run exists for a process with its input as 1.

Starting from a bivalent initial state, and letting any process move that keeps
the state as bivalent, we must hit a critical state; otherwise, the protocol can run
forever. We show that even in a two-process system, atomic registers cannot be
used to go to nonbivalent states in a consistent manner. We perform a case analysis
of events that can be done by two processes, say, P and @ in a critical state S.

Let e be the event at P and event f be at @ be such that e(S) has a decision
value different from that of f(S). We now do a case analysis (shown in Figure 5.10):

e Case I: e and f are on different registers. In this case, both ef and fe are
possible in the critical state S. Further, the state ef(S) is identical to fe(S)
and therefore cannot have different decision values. But we assumed that

80 CHAPTER 5. WAIT-FREE SYNCHRONIZATION

case 1: ¢ and f are operations on different registers

critical state

case 2: eisaread case 3: e andf are writes on the same register

e= read(x)

e =write(x,¢) f=write(x.d)

Figure 5.10: Impossibility of wait-free consensus with atomic read--write registers

5.8. CONSENSUS 81

f(S) and e(S) have different decision values, which implies that e(f(S)) and
f(e(S)) have different decision values because decision values cannot change.

e Case 2: Either e or f is a read. Assume that e is a read. Then the state of
(2 does not change when P does e. Therefore, the decision value for ¢ from
(S} and e(S), if it ran alone, would be the same; a contradiction.

o Case 3: Both e and f are writes on the same register. Again the states f(S)
and f(e(S)) are identical for () and should result in the same decision value.

This implies that there is no consensus protocol for two processes that uses just
atomic registers. Therefore, the consensus number for atomic registers is 1.

Now let us look at a concurrent object that can do both read and write in one
operation. Let us define a TestAndSet object as one that provides the test and set

instruction discussed in Chapter 2. The semantics of the object is shown in Figure
5.11.

public class TestAndSet {
int myValue = —1;
public synchronized int testAndSet({int newValue) {
int oldValue = myValue;
myValue = newValue;
return oldValue;

Figure 5.11: TestAndSet class

We now show that two threads can indeed use this object to achieve consensus.
The algorithm is given in Figure 5.12.

By analyzing the testAndSet operations on the critical state, one can show that
the TestAndSet registers cannot be used to solve the consensus problem on three
processes (see Problem 5.1).

Finally, we show universal objects. One such universal object is CompSwap (Com-
pare and Swap). The semantics of this object is shown in Figure 5.13. Note that
such objects are generally provided by the hardware and we have shown the Java
code only to specify how the ohject behaves. Their actual implementation does no
use any locks. Therefore, CompSwap can be used for wait-free synchronization. An
object of type CompSwap can hold a value myValue. It supports a single operation
compSwapOp that takes two arguments: prevValue and newValue. It replaces the
value of the object only if the old value of the object matches the preValue.

82 CHAPTER 5. WAIT-FREE SYNCHRONIZATION

class TestSetConsensus implements Consensus {
TestAndSet x;
int proposed [] = {0, 0};
// assumes pid is 0 or 1
public void propose (int pid, int v) {
proposed [pid] = v;

public int decide (int pid) {
if (x.testAndSet(pid) == -1}
return proposed [pid |;
else
return proposed [1 — pid};

Figure 5.12: Consensus using TestAndSet object

public class CompSwap {
int myValue = 0;
public CompSwap(int initValue) {
myValue = initValue;

public synchronized int compSwapOp{int prevValue, int newValue)} {
int oldValue = myValue;
if {(myValue == prevValue)
myValue = newValue;
return oldValue;

Figure 5.13: CompSwap object

5.8. CONSENSUS 83

Processes use a CompSwap object z for consensus as follows. It is assumed to
have the initial value of —1. Each process tries to update x with its own pid. They
use the initial value —1 as prevValue. It is clear that only the first process will
have the right prevValue. All other processes will get the pid of the first process
when they perform this operation. The program to implement consensus is shown
in Figure 5.14.

public class CompSwapConsensus implements Consensus {
CompSwap x = new CompSwap(—1);
int proposed [];
public CompSwapConsensus(int n) {
proposed = new int[n];

public void propose (int pid, int v) {
proposed [pid] = v;

public int decide (int pid) {
int j = x.compSwapOp(-1,
it () == -1)
return proposed | pid];
else
return proposed|[j];

pid);

Figure 5.14: Consensus using CompSwap object

We now describe another universal object called the load-linked and store-
conditional (LLSC) register. An LLSC object contains an object pointer p of the
following type.

public class ObjPointer {
public Object obj;
public int version;

It provides two atomic operations. The load-1linked operation allows a thread
to load the value of a pointer to an object. The store-conditional operation
allows the pointer to an object to be updated if the pointer has not changed since
the last load-linked operation. Thus the semantics of LLSC are shown in Figure 5.15.
With each object, we also keep its version number. The method load 1inked reads
the value of the pointer p in the variable local. The method store conditional

84 CHAPTER 5. WAIT-FREE SYNCHRONIZATION

takes an object newObj and a pointer local as its parameters. It updates LLSC
object only if the pointer local is identical to p.
The program for implementing consensus using LLSC is left as an exercise.

public class LLSC {
ObjPointer p;
public LLSC{Object x) {
p.obj = x;
p- version = 0;

public synchronized void load_linked (ObjPointer local) {
local . obj = p.obj;
local . version = p. version ;

public synchronized boolean
store_conditional (ObjPointer local, Object newObj) {
if ((p.obj == local.obj) && (p. version == local.version)) {
p.obj = newObj;
p. version ++;
return true;

return false ;

Figure 5.15: Load-Linked and Store-Conditional object

5.9 Universal Constructions

Now that we have seen universal objects, let us show that they can indeed be used
to build all other concurrent objects. We first show a construction for a concurrent
queue that allows multiple processes to enqueue and dequeue concurrently. Our
construction will almost be mechanical. We first begin with a sequential implemen-
tation of a queue shown in Figure 5.16.

Now we use LLSC to implement a concurrent queue using a pointer-swinging
technique. In the object pointer swinging technique any thread that wishes to
perform an operation on an object goes through the following steps:

1. The thread makes a copy of that object.

2. It performs its operation on the copy of the object instead of the original
object.

5.9. UNIVERSAL CONSTRUCTIONS

public class SeqQueue {
class Element {
public String data;
public Element next;
public Element (String s, Element e) {
data = s;
next = e;

}

public Element head, tail;
public SeqQueue () {

head = null;

tail = null;

}
public SeqQueue (SeqQueue copy) {
Element node;
head = copy. head;
tail = copy. tail;
for (Element i = head; i != null; i = i.next)
node = new Element (i.data, i.next});

public void Enqueue{String data) {
Element temp = new Element(data, mnull);

if (tail == null) {
tail = temp;
head = tail ;

} else {
tail . next = temp;
tail = temp;

}

public String Dequeue() {
if (head == null) return null;
String returnval = head. data;
head = head. next;
return returnval;

Figure 5.16: Sequential queue

85

86 CHAPTER 5. WAIT-FREE SYNCHRONIZATION

3. It swings the pointer of the object to the copy if the original pointer has not
changed. This is done atomically.

4. If the original pointer has changed, then some other thread has succeeded in
performing its operation. This thread starts all over again.

Using these ideas, we can now implement a concurrent queue class as shown in Figure
5.17. To Enqueue an item (of type string), we first save the pointer to the queue x in
the variable 1ocal at line 10. Line 11 makes a local copy new_queue of the queue x
accessed using local pointer. It then inserts data in new_queue at line 12. Line 13
returns true if no other thread has changed x. If store_conditional returns false,
then this thread tries again by going to the line 9. The method Dequeue is similar.

1 public class CQueue {

2 private LLSC x;

3 public CQueue() {

4 x = new LLSC(new SeqQueue ());

5

6 public void Enqueue(String data) {

7 SeqQueue new_queue;

8 ObjPointer local = new ObjPointer ();

9 while (true) {

10 x.load_linked (local };

11 new_queue = new SeqQueue ((SeqQueue) local.obj);
12 new_queue . Enqueue (data);

13 if (x.store_conditional (local, new_queue))
14 return;

15 }

16 }

17 public String Dequeue () {

18 SeqQueune new_queue;

19 ObjPointer local = new ObjPointer ();

20 String returnval;

21 while (true) {

22 x.load_linked (local };

23 new.queue = new SeqQueue ((SeqQueue) local.obj);
24 returnval = new_queue. Dequeue ();

25 if (x.store.conditional (local, new_queue))
26 return returnval;

27 }

28

29 }

Figure 5.17: Concurrent queue

While the above mentioned technique can be applied for lock-free construction of

5.10. PROBLEMS 87

any concurrent object, it may be inefficient in practice for large objects because every
operation requires a copy. There are more efficient algorithms for large concurrent
objects. However, these algorithms are different for different data structures and
will not be covered in this book.

5.10 Problems

5.1. Show that TestAndSet cannot be used to solve the consensus problem for
three processes. (Hint: Show that TestAndSet by two processes in any order
results in the same state and the third process cannot distinguish between the
two cases.)

5.2. Consider a concurrent FIFO queue class that allows two threads to concur-
rently dequeue. Show that the consensus number of such an object is 2. (Hint:
Assume that queue is initialized with two values 0 and 1. Whichever process
dequeues 0 wins.)

5.3. Consider a concurrent object of type Swap that holds an integer. It supports a
single method swapOp(int v) that sets the value with v and returns the old
value. Show that Swap has consensus number 2.

5.4. Show that LLSC is a universal object.

*5.5. Give a lock-free construction of queue that does not make a copy of the entire
queue for enqueue and dequeue.

5.11 Bibliographic Remarks

The notion of safe, regular, and atomic registers was first proposed by Lamport
[Lam86] who also gave many of the constructions provided here. The notions of
consensus number and universal objects are due to Herlihy [Her88]. The reader
should also consult [AW9S8] (chapters 10 and 15).

This Page Intentionally Left Blank

Chapter 6

Distributed Programming

6.1 Introduction

In this chapter, we will learn primitives provided in the Java programming language
for building distributed applications. We will see primarily two programming styles:
sockets and remote method invocations. Sockets provide a lower-level interface for
building distributed programs but are more efficient and flexible. Remote method
invocations (RMI) are easier to use.

In this chapter we first describe the class InetAddress, which is useful for net-
work programming no matter which style of primitives are used. Then we discuss
primitives for programming using sockets. These sockets may use either the Uni-
versal Datagram Protocol (UDP), or the Transmission Control Protocol (TCP). We
give an example of an echo server using sockets based on the UDP protocol and a
simple name server using sockets based on the TCP protocol. Finally, we discuss
programming using remote method invocations.

6.2 InetAddress Class

For any kind of distributed application, we need the notion of an Internet address.
Any computer connected to the Internet (called a host) can be uniquely identified
by an address called an IP address. Since addresses are difficult to remember,
each host also has a hostname. It is the task of a domain name system (DNS)
server to provide the mapping from a hostname to its address. Java provides a
class Java.net.Inetaddress, which can be used for this translation. The relevant
methods for the class InetAddress are given below:

89

90 CHAPTER 6. DISTRIBUTED PROGRAMMING

public bytel[] getAddress()

Returns the raw IP address of this InetAddress object.
public static InetAddress getByName(String)

Determines the IP address of a host, given the host’s name.
public String getHostAddress()

Returns the IP address string "%d.%d.%d.%d"
public String getHostName ()

Returns the fully qualified host name for this address.
public static InetAddress getLocalHost()

Returns the local host.

6.3 Sockets based on UDP

Sockets are useful in writing programs based on communication using messages. A
Socket is an object that can be used to send and receive messages. There are pri-
marily two protocols used for sending and receiving messages: Universal Datagram
Protocol (UDP) and Transmission Control Protocol (TCP). The UDP provides a
low-level connectionless protocol. This means that packets sent using UDP are not
guaranteed to be received in the order sent. In fact, the UDP protocol does not
even guarantee reliability, that is, packets may get lost. The protocol does not use
any handshaking mechanisms (such as acknowledgments) to detect loss of packets.
Why is UDP useful, then? Because, even though UDP may lose packets, in practice,
this is rarely the case. Since there are no overheads associated with error checking,
UDP is an extremely efficient protocol.

The TCP protocol is a reliable connection-oriented protocol. It also guarantees
ordered delivery of packets. Needless to say, TCP is not as efficient as UDP.

6.3.1 Datagram Sockets

The first class that we use is DatagramSocket which is based on the UDP protocol.
This class represents a socket for sending and receiving datagram packets. A data-
gram socket is the sending or receiving point for a connectionless packet delivery
service. Each packet sent or received on a datagram socket is individually addressed
and routed. Multiple packets sent from a machine to another may be routed differ-
ently, and may arrive in any order. This class provides a very low level interface for
sending and receiving messages. There are few guarantees associated with datagram
sockets. An advantage of datagram sockets is that it allows fast data transmission.

The details for the methods in this class are given below. To construct a Data-
gramSocket, we can use one of the following constructors:

6.3. SOCKETS BASED ON UDP 91

public DatagramSocket ()
public DatagramSocket(int port)
public DatagramSocket(int port, InetAddress laddr)

The first constructor constructs a datagram socket and binds it to any available
port on the local host machine. Optionally, a port may be specified as in the second
constructor. The last constructor creates a datagram socket, bound to the specified
local address. These constructors throw SocketException if the socket could not
be opened, or if the socket could not bind the specified local port.

The other important methods of this class are as follows:

1. public void close(): This method closes a datagram socket.

2. public int getLocalPort(): To get the information about the socket, one
can use this method, which returns the port number on the local host to which
this socket is bound.

3. public InetAddress getLocalAddress(): This method gets the local ad-
dress to which the socket is bound.

4. public void receive(DatagramPacket p): This method receive receives
a datagram packet from this socket. When this method returns, the Data-
gramPacket’s buffer is filled with the data received. The datagram packet also
contains the sender’s IP address and the port number on the sender’s machine.
Note that this method blocks until a datagram is received. The length field of
the datagram packet object contains the length of the received message. If the
message is longer than the buffer length, the message is truncated. It throws
IOException if an I/O error occurs. The blocking can be avoided by setting
the timeout.

5. public void send(DatagramPacket p): This method sends a datagram packet
from this socket. The DatagramPacket includes information indicating the
data to be sent, its length, the IP address of the remote host, and the port
number on the remote host.

6.3.2 DatagramPacket Class

The DatagramSocket class required data to be sent as datagram packets. The class
java.net.DatagramPacket is used for that. Its definition is given below.

public final c¢lass java.net.DatagramPacket
extends java.lang.Object {
public DatagramPacket(byte ibuf[], int ilength);

92 CHAPTER 6. DISTRIBUTED PROGRAMMING

public DatagramPacket(byte ibuf[], int ilength,
InetAddress iaddr, int iport);

public InetAddress getAddress();

public byte[]l getData();

public int getLength();

public int getPort();

public void setAddress(InetAddress)

public void setData(bytel[])

public void setLength(int}

public void setPort(int)

The first constructor
public DatagramPacket(byte ibuf[], int ilength)

constructs a DatagramPacket for receiving packets of length ilength. The pa-
rameter ibuf is the buffer for holding the incoming datagram, and ilength is the
number of bytes to read.

The constructor for creating a packet to be sent is

public DatagramPacket(byte ibuf[], int ilength, InetAddress iaddr, int
iport)

It constructs a DatagramPacket for sending packets of length ilength to the speci-
fied port number on the specified host. The parameters iaddr and iport are used for
the destination address and the destination port number, respectively. The method
getAddress returns the IP address of the machine to which this datagram is being
sent, or from which the datagram was received. The method getData returns the
data received, or the data to be sent. The method getLength returns the length
of the data to be sent, or the length of the data received. Similarly, the method
getPort returns the port number on the remote host to which this datagram is
being sent, or from which the datagram was received. The set methods are used to
set the IP address, port number, and other elements appropriately.

6.3.3 Example Using Datagrams

We give a simple example of a program that uses datagrams. This example consists
of two processes-—a server and a client. The client reads input from the user and
sends it to the server. The server receives the datagram packet and then echoes
back the same data. The program for the server is given in Figure 6.1.

6.3. SOCKETS BASED ON UDP 93

import java.net.x;
import java.io.x;
public class DatagramServer {
public static void main(String [] args) {
DatagramPacket datapacket, returnpacket;
int port = 2018;
int len = 1024;
try {
DatagramSocket datasocket = new DatagramSocket{port);
byte[] buf = new byte[len];

while (true) {

try {
datapacket = new DatagramPacket(buf, buf.length);
datasocket . receive (datapacket);
returnpacket = new DatagramPacket (
datapacket . getData (),
datapacket . getLength (),
datapacket . getAddress (),
datapacket . getPort ());
datasocket . send (returnpacket };

} catch (IOException e) {
System . err. println (e);

}

} catch (SocketException se) {
System. err . println (se);

}

Figure 6.1: A datagram server

94 CHAPTER 6. DISTRIBUTED PROGRAMMING

The client process reads a line of input from System.in. It then creates a
datagram packet and sends it to the server. On receiving a response from the server
it displays the message received. The program for the client is given in Figure 6.2.

6.4 Sockets Based on TCP

The second style of interprocess communication is based on the notion of streams.
In this style, a connection is set up between the sender and the receiver. This style
allows better error recovery and guarantees on the delivery of packets. Thus, in a
stream the packets are received in the order they are sent.

The socket class in Java extends the Object class. We will give only a subset
of constructors and methods available for Socket.

The constructor public Socket(String host, int port) creates a stream
socket and conneccts it to the specified port number on the named host. It throws
UnknownHostException, and I0Exception.

Here we have used the name of the host. Alternatively, [P address can be used
in the form of the class InetAddress as below:

public Socket(InetAddress address, int port)
The methods for the socket are

e public InetAddress getInetAddress(), which returns the remote IP ad-
dress to which this socket is connected.

¢ public InetAddress getLocalAddress(), which returns the local address
to which the socket is bound.

e public int getPort(), which returns the remote port to which this socket
is connected.

e public InputStream getInputStream(), which returns an input stream for
reading bytes from this socket.

e public QutputStream getOutputStream(), which returns an output stream
for writing bytes to this socket.

e public synchronized void close(), which closes this socket.

Note that many of these methods throw I0Exception if an I/O error occurs when
applying the method to the socket.

6.4. SOCKETS BASED ON TCP

95

import java.net .x;

import java.io .x;

public class DatagramClient {

public static void main(String [] args) {

String hostname;
int port = 2018;
int len = 1024;
DatagramPacket sPacket, rPacket;
if (args.length > 0)

hostname = args [0];
else

hostname = ”localhost”;
try {

BufferedReader stdinp = new BufferedReader (
new InputStreamReader (System.in));
while (true) {

try {

if (echoline.equals ("done”)) break;

buffer = echoline . getBytes ();

datasocket . send (sPacket);
byte[] rbuffer = new byte[len];

datasocket . receive (rPacket);

rPacket . getLength ());

System.out. println (retstring);
} catch (IOException e) {

System . err. printin (e);

} //} while

} catch (UnknownHostException e) {
System. err . printin (e);

} catch (SocketException se) {
System. err . println (se);

} .
Y // end main

String echoline = stdinp.readLine ();

sPacket = new DatagramPacket (buffer,
buffer .length, ia, port);

rPacket = new DatagramPacket (rbuffer ,

InetAddress ia = InetAddress.getByName(hostname);
DatagramSocket datasocket = new DatagramSocket ();

byte[] buffer = new byte[echoline.length ()};

rbuffer . length);

String retstring = new String (rPacket.getData (), 0,

Figure 6.2: A datagram client

96 CHAPTER 6. DISTRIBUTED PROGRAMMING

6.4.1 Server Sockets

On the server side the class that is used is called ServerSocket. A way to create a
server socket is public ServerSocket(int port)

This call creates a server socket on a specified port. Various methods on a server
socket are as follows:

e public InetAddress getInetAddress(), which returns the address to which
this socket is connected, or null if the socket is not yet connected.

e public int getLocalPort(), which returns the port on which this socket is
listening.

e public Socket accept(), which listens for a connection to be made to this
socket and accepts it. The method blocks until a connection is made.

e public void close(), which closes this socket.

6.4.2 Example 1: A Name Server

We now give a simple name server implemented using server sockets. The name
server maintains a table of (name, hostName, portNumber) to give a mapping
from a process name to the host and the port number. For simplicity, we assume
that the maximum size of the table is 100 and that there are only two operations on
the table: insert and search. This table is kept by the object NameTable shown
in Figure 6.3.

Now let us look at the name server. The name server creates a server socket
with the specified port. It then listens to any incoming connections by the method
accept. The accept method returns the socket whenever a connection is made. It
then handles the request that arrives on that socket by the method handleclient.
We call getInputStream and getOutputStream to get input and output streams
associated with the socket. Now we can simply use all methods associated for reading
and writing input streams to read and write data from the socket.

In our implementation of the name server shown in Figure 6.4, at most one client
is handled at a time. Once a request is handled, the main loop of the name server
accepts another connection. For many applications this may be unacceptable if the
procedure to handle a request takes a long time. For these applications, it is quite
common for the server to be multithreaded. The server accepts a connection and
then spawns a thread to handle the request. However, it must be observed that since
the data for the server is shared among multiple threads, it is the responsibility of
the programmer to ensure that the data is accessed in a safe manner (for example,
by using synchronized methods).

The client program in Figure 6.5 can be used to test this name server.

6.4. SOCKETS BASED ON TCP

import java. util .x;
public class NameTable {

final int maxSize = 100;

private String [] names = new String | maxSize;
private String (| hosts = new String [maxSize|;
private int[] ports = new int{maxSizel;
private int dirsize = 0;

int search (String s) {
for (int i = 0; i < dirsize; i++)
if (names[i]. equals(s)) return i;
return —1;

int insert (String s, String hostName, int portNumber) {
int oldIndex = search(s); // is it already there
if ((oldIndex == —1) && (dirsize < maxSize)) {

names | dirsize | = s;
hosts | dirsize | = hostName;
ports [dirsize | = portNumber;
dirsize ++;
return 1;

} else // already there, or table full
return 0;

}

int getPort (int index) {
return ports [index |;

}

String getHostName(int index) {
return hosts [index |;
}

Figure 6.3: Simple name table

98 CHAPTER 6. DISTRIBUTED PROGRAMMING

import java.net .x;
import java.io .*;
import java.util .x;
public class NameServer {
NameTable table
public NameServer () {
table = new NameTable();

}
void handleclient (Socket theClient) {
try {

BufferedReader din = new BufferedReader
(new InputStreamReader (theClient . getInputStream ()));
PrintWriter pout = new PrintWriter (theClient . getOutputStream ()
String getline = din.readLine ();
StringTokenizer st = new StringTokenizer (getline);
String tag = st.nextToken ();
if (tag.equals(”search”)) {

int index = table.search (st.nextToken ());
if (index == —1) // not found

pout.println (-1 + 7 7 + "nullhost”);
else

pout. println (table . getPort (index) + 77
+ table . getHostName (index));
} else if (tag.equals(”insert”)) {
String name = st .nextToken ();
String hostName = st.nextToken ();
int port = Integer.parselnt (st.nextToken ());
int retValue = table. insert (name, hostName, port);
pout. println (retValue);

}
pout . flush ();
} catch (IOException e) {
System. err . printin (e);
}

public static void main(String [| args) {
NameServer ns = new NameServer ();
System.out. println (” NameServer started:”);
try {
ServerSocket listener = new ServerSocket (Symbols. ServerPort);
while (true) {
Socket aClient = listener .accept ();
ns. handleclient (aClient);
aClient . close ();

}
} catch (IOException e) {
System . err. println (S

erver aborted:” + e);

Figure 6.4: Name server

6.4. SOCKETS BASED ON TCP 99

import java.lang .x; import java.util .x;
import java.net.*; import java.io .x;
public class Name {
BufferedReader din;
PrintStream pout;
public void getSocket () throws IOException {
Socket server = new Socket {Symbols. nameServer,
Symbols. ServerPort);
din = new BufferedReader (
new InputStreamReader (server . getInputStream ()));
pout = new PrintStream (server.getOutputStream ());

public int insertName(String name, String hname, int portnum)
throws IOException {
getSocket ();
pout. println ("insert
pout . flush ();
return Integer.parselnt (din.readLine ());

»

+ name + 7 ” + hname + 7 ” + portnum);

}
public PortAddr searchName(String name) throws IOException {
getSocket ();
pout . println (”search ” + name);
pout . flush ();
String result = din.readLine ();
StringTokenizer st = new StringTokenizer (result };
int portnum = Integer . parselnt (st.nextToken ());
String hname = st .nextToken ();
return new PortAddr(hname, portnum);

public static void main{String [] args) {

Name myClient = new Name();

try {
myClient . insertName (" hellol”, "oak.ece.utexas.edu”, 1000);
PortAddr pa = myClient.searchName (” hellol”);
System . out. println (pa.getHostName() + ”:” + pa.getPort ());

} catch (Exception e) {
System . err.println (" Server aborted:” + e);
} :

Figure 6.5: A client for name server

100 CHAPTER 6. DISTRIBUTED PROGRAMMING

6.4.3 Example 2: A Linker

We now show a java class Linker that allows us to link a given set of processes with
each other. Assume that we want to start n processes Py, P», ..., P, in a distributed
system and establish connections between them such that any of the process can
send and receive messages with any other process. We would like to support direct
naming to send and receive messages; that is, processes are unaware of the host
addresses and port numbers. They simply use process identifiers {1...n} to send
and receive messages.

We first read the topology of the underlying network. This is done by the method
readNeighbors in the class Topology shown in Figure 6.6. The list of neighbors of
P; are assumed to be enumerated in the file “topologyi.” If such a file is not found,
then it is assumed that all other processes are neighbors.

import java.io .x;
import java.util .x;
public class Topology {
public static void readNeighbors (int myld, int N,
IntLinkedList neighbors) {
Util. println (" Reading topology”);
try {
BufferedReader dIn = new BufferedReader (
new FileReader (”topology” + myld)
StringTokenizer st = new StringTokenizer (dIn.readLine
while (st .hasMoreTokens ()) {
int neighbor = Integer. parselnt (st.nextToken ()};
neighbors . add({ neighbor);

)s
0):

}
} catch (FileNotFoundException e) {
for (int j = 0; j < N; j++)
if (j !'= myld) neighbors.add(j);
} catch (IOException e) {
System . err . println (e);

Util. println (neighbors . toString ());

Figure 6.6: Topology class

Now we discuss the Connecter class, which establishes connections between
processes. Since processes may start at different times and at different locations,
we use the NameServer to help processes locate each other. Any process F; that
starts up first creates a ServerSocket for itself. It uses the ServerSocket to listen

6.5. REMOTE METHOD INVOCATIONS 101

for incoming requests for communication with all small numbered processes. It
then contacts the NameServer and inserts its entry in that table. All the smaller
numbered processes wait for the entry of P; to appear in the NameServer. When
they get the port number from the NameServer, they use it to connect it to P;.
Once P, has established a TCP connection with all smaller number processes, it
tries to connect with higher-number processes. This class is shown in Figure 6.7.
For simplicity, it is assumed that the underlying topology is completely connected.

Once all the connections are established, the Linker provides methods to send
and receive messages from process P; to P;. We will require each message to contain
at least four fields: source identifier, destination identifier, message type (or the
message tag), and actual message. We implement this in the Java class shown in
Figure 6.8.

The Linker class is shown in Figure 6.9. It provides methods to send and receive
messages based on process identifiers. Different send methods have been provided
to facilitate sending messages of different types. Every message is assumed to have
a field tag that corresponds to the message tag (or the message type).

6.5 Remote Method Invocations

A popular way of developing distributed applications is based on the concept of
remote procedure calls (RPCs) or remote method invocations (RMIs). Here the
main idea is that a process can make calls to methods of a remote object as if it
were on the same machine. The process making the call is called a client and the
process that serves the request is called the server. In RMI, the client may not even
know the location of the remote object. This provides location transparency to the
client. In Java, for example, the remote object may be located using rmiregistry.
Alternatively, references to remote objects may be passed around by the application
as references to local objects.

A call to a method may have some arguments, and the execution of the method
may return some value. The arguments to the method when the object is remote
are sent via a message. Similarly, the return value is transmitted to the caller via
a message. All this message passing is hidden from the programmer, and there-
fore RMI can be viewed as a higher-level programming construct than sending or
receiving of messages.

Although the idea behind RMI is quite simple, certain issues need to be tackled
in implementing and using RMI. Since we are passing arguments to the method, we
have to understand the semantics of the parameter passing. Another issue is that
of a failure. What happens when the messages get lost? We will look at such issues
in this section.

102 CHAPTER 6. DISTRIBUTED PROGRAMMING

import java.util .*;import java.net .*;import java.io .x;
public class Connector {
ServerSocket listemer ; Socket [] link;
public void Connect(String basename, int myld, int numProc,
BufferedReader [] dataln, PrintWriter [} dataOut) throws Exception {
Name myNameclient = new Name();
link = new Socket [numProc];
int localport = getLocalPort (myld);
listener = new ServerSocket (localport);

/* register in the name server %/
myNameclient . insertName (basename + myld,
(InetAddress. getLocalHost ()). getHostName (), localport);

/% accept connections from all the smaller processes x/
for (int i = 0; i < myld; i++){
Socket s = listener .accept ();
BufferedReader dIn = new BufferedReader (
new InputStreamReader (s. getInputStream ()));
String getline = dIn.readLine ();

StringTokenizer st = new StringTokenizer (getline);
int hisld = Integer.parselnt (st.nextToken ());
int destIld = Integer.parselnt (st.nextToken ());
String tag = st.nextToken ();
if (tag.equals(”hello”)) {
link [hisId] = s;
dataln [hisId] = dIn;
dataOut [hisId | = new PrintWriter (s. getOutputStream ());
/* contact all the bigger processes */
for (int i = myld + 1; i < numProc; i++) {
PortAddr addr;
do {
addr = myNameclient . searchName (basename + 1i);
Thread . sleep (100);
} while (addr getPort(== —1);

link [i] = new Socket (addr. getHostName (), addr.getPort ());
dataOut [i] = new PrintWriter (link [i]. getOutputStream ());
dataln[i] = new BufferedReader (new
InputStreamReader (link [i]. getInputStream ()));
/* send a hello message to P_i x
dataOut[i]. println (myld +” "+ 1 +” 7+ "hello” + 7 ” + "null”);
dataOut[i]. flush ();

}

int getLocalPort (int id) { return Symbols. ServerPort + 10 + id; }
public void closeSockets (){
try {
listener . close ();
for (int 1=0;i<link.length; i++) link [i]. close ();
} catch (Exception e} {System.err.println(e);}

Figure 6.7: Connector class

6.5. REMOTE METHOD INVOCATIONS 103

import java. util .x;
public class Msg {
int srcld, destld;
String tag;
String msgBuf;
public Msg(int s, int t, String msgType, String buf) {
this.srcld = s;
destld = t;
tag = msgType;
msgBuf = buf;

public int getSrcld () {
return srcld;

}
public int getDestld () {
return destld;

}
public String getTag () {
return tag;

}
public String getMessage () {
return msgBuf;

public int getMessagelnt () {
StringTokenizer st = new StringTokenizer (msgBuf);
return Integer.parselnt (st.nextToken ());

public static Msg parseMsg(StringTokenizer st){
int srcld = Integer.parselnt (st.nextToken ()
int destld Integer . parselnt (st . nextToken (
String tag st . nextToken ();
String buf st . nextToken ("#”);
return new Msg(srcld, destld, tag, buf);

);
))s

(I

}
public String toString (){
String s = String.valueOf(srcld)+” ” +
String . valueOf (destId)+ 7 " +
tag + »o» + mSgBuf + 77#”;
return s;

Figure 6.8: Message class

104 CHAPTER 6. DISTRIBUTED PROGRAMMING

import java . util .x;
import java.io .x;
public class Linker {
PrintWriter [] dataOut;
BufferedReader [| dataln;
BufferedReader dIn;
int myld, N;
Connector connector;
public IntLinkedList neighbors = nmew IntLinkedList ();
public Linker (String basename, int id, int numProc) throws Exception {
myld = id;
N = numProc;
dataln = new BufferedReader [numProc];

dataOut = new PrintWriter [numProc];
Topology . readNeighbors (myld, N, neighbors);
connector = new Connector ();

connector . Connect { basename , myld, numProc, dataln, dataOut);

public void sendMsg(int destId, String tag, String msg) {
dataOut [destId |. println (myld + 7 7 + destld + "7 +
tag + ”» N + msg + 77#77);
dataOut [destId |. flush (});

public void sendMsg(int destld, String tag) {
sendMsg (destId, tag, 7 07);

public void multicast (IntLinkedList destlds, String tag, String msg){
for (int i=0; i<destlds.size (); i++){
sendMsg (destlds . getEntry (1), tag, msg);

public Msg receiveMsg (int fromld) throws IOException {
String getline = dataln|fromld]. readLine ();
Util. printin (” received message ” + getline);
StringTokenizer st = new StringTokenizer (getline);
int srcld = Integer . parselnt (st.nextToken ());
int destId Integer . parselnt (st .nextToken ());
String tag st . nextToken ();
String msg st . nextToken ("#”7);
return new Msg(srcld, destld, tag, msg);

(I

public int getMyld () { return myld; }
public int getNumProc() { return N; }
public void close () { connector. closeSockets ();}

Figure 6.9: Linker class

6.5. REMOTE METHOD INVOCATIONS 105

An RMI is implemented as follows. With each remote object there is an as-
sociated object at the client side and an object at the server side. An invocation
to a method to a remote object is managed by using a local surrogate object at
the client called the stub object. An invocation of a method results in packing the
method name and the arguments in a message and shipping it to the server side.
This is called parameter marshaling. This message is received on the server side
by the server skeleton object. The skeleton object is responsible for receiving the
message, reconstructing the arguments, and then finally calling the method. Note
that a RMI class requires compilation by a RMI compiler to generate the stub and
the skeleton routines.

6.5.1 Remote Objects

An object is called remote object if its methods can be invoked from another Java
virtual machine running on the same host or a different host. Such an object is de-
scribed using a remote interface. An interface is remote if it extends java.rmi.Remote.
The remote interface serves to identify all remote objects. Any object that is a re-
mote object must directly or indirectly implement this interface. Only those meth-
ods specified in a remote interface are available remotely. Figure 6.10 gives a remote
interface for a name service.

import java.rmi.sx;
public interface NameService extends Remote {
public int search (String s) throws RemoteException;
public int insert (String s, String hostName, int portNumber)
throws RemoteException;
public int getPort (int index) throws RemoteException;
public String getHostName(int index)} throws RemoteException;

Figure 6.10: Remote interface

Any object that implements a remote interface and extends UnicastRemoteObject
is a remote object. Remote method invocation corresponds to invocation of one of
the methods on a remote object. We can now provide a class that implements the
NameService as shown in Figure 6.11.

To install our server, we first compile the file NameServiceImpl. java. Then, we
need to invoke the RMI compiler to generate the stub and skeleton associated with
the server. On a UNIX machine, one may use the following commands to carry out
these steps:

106 CHAPTER 6. DISTRIBUTED PROGRAMMING

import java.rmi.x*;

import java.rmi.server. UnicastRemoteObject;

public class NameServicelmpl extends UnicastRemoteObject

implements NameService {

final int maxSize = 100;
private String [] names = new String | maxSize];
private String [| hosts = new String|maxSize};
private int[] ports = new int[maxSize];
private int dirsize = 0;
public NameServiceImpl () throws RemoteException {

public int search (String s) throws RemoteException {
for (int i = 0; i < dirsize; i++)
if (names[i]. equals(s)) return i;
return —1;

public int insert (String s, String hostName, int portNumber)
throws RemoteException {
int oldindex = search(s); // is it already there

if ((oldindex == —1) && (dirsize < maxSize}) {
names| dirsize | = s;
hosts [dirsize | = hostName;
ports [dirsize | = portNumber;
dirsize +4;
return 1;
} else
return 0;

public int getPort(int index) throws RemoteException {
return ports |[index |;

public String getHostName(int index) throws RemoteException {
return hosts [index |;

public static void main(String args(]) {
// create security manager
System . setSecurityManager (new RMISecurityManager ());
try {
NameServiceImpl obj = new NameServiceImpl ();
Naming. rebind (” MyNameServer”, obj);
System . out. println ("MyNameServer bound in registry”);
} catch (Exception e) {
System.out. println (? NameServicelmpl err: 7 + e.getMessage ());
}

Figure 6.11: A name service implementation

6.5. REMOTE METHOD INVOCATIONS 107

> javac NameServicelmpl.java
> rmic NameServicelmpl
> rmiregistry &

Now assuming that the rmiregistry service is running on the machine, we can
start our server. There is just one last thing that we need to take care of: security.
We need to specify who can connect to the server. This specification is done by a
security policy file. For example, consider a file called policy as follows:

grant {

permission java.net.SocketPermission "*:1024-65535",
"connect ,accept";

permission java.net.SocketPermission "*:80", "comnnect";

};

This policy allows downloaded code, from any code base, to do two things: (1)
connect to or accept connections on unprivileged ports (ports greater than 1024)
on any host, or (2) connect to port 80 {the port for HTTP(Hypertext Transfer
Protocol)].

Now we can start the NameServicelmpl server as follows:

> java -Djava.security.policy=policy NameServicelmpl

6.5.2 Parameter Passing

If a local object is passed as an argument to a local method on a local object, then
in Java we simply pass the reference to the object. However, if the method is to a
remote object, then reference to a local object is useless at the other side. Therefore,
arguments to remote methods are handled differently.

There are three ways of passing arguments (and returning results) in remote
method invocations. The primitive types in Java (e.g., int and boolean) are passed
by values.

Objects that are not remote are passed by value using object serialization, which
refers to the process of converting the object state into a stream of bytes. Any
object that implements the interface Serializable can be communicated over the
Internet using serialization. The object is written into a stream of bytes at one
end (“serialized”) and at the other end it is reconstructed from the stream of bytes
received (“deserialized”). An interesting question is what happens if the object has
references to other objects. In this case, those objects also need to be serialized;
otherwise references will be meaningless at the other side. Thus, all objects that
are reachable from that object get serialized. The same mechanism works when

108 CHAPTER 6. DISTRIBUTED PROGRAMMING

a nonremote object is returned from a remote method invocation. Java supports
referential integrity, that is, if multiple references to the same object are passed from
one Java Virtual Machine (JVM) to the other, then those references will refer to a
single copy of the object in the receiving JVM.

Finally, references to objects that implement remote interface are passed as
remote references. In this case, the stub for the remote object is passed.

6.5.3 Dealing with Failures

One difference between invoking a local method and a remote method is that more
things can go wrong when a remote method is invoked. The machine that contains
the remote object may be down, the connection to that machine be down, or the
message sent may get corrupted or lost. In spite of all these possible problems,
Java system guarantees at-most-once semantics for a remote method invocation:
any invocation will result in execution of the remote method at most once.

6.5.4 Client Program

The client program first needs to obtain a reference for the remote object. The
java.rmi.Naming class provides methods to do so. It is a mechanism for obtaining
references to remote objects based on Uniform Resource Locator (URL) syntax. The
URL for a remote object is specified using the usual host, port, and name:

rmi://host:port/name

where host is the host name of registry (defaults to current host), port is the port
number of registry (defaults to the registry port number), and name is the name for
the remote object.

The key methods in this class are

bind(String, Remote)

Binds the name to the specified remote object.
list(String)

Returns an array of strings of the URLs in the registry.
lookup(String)

Returns the remote object for the URL.
rebind(String, Remote)

Rebind the name to a new object; replaces any existing binding.
unbind (String}

Unbind the name.

We now show how a client can use lookup to get a reference of the remote object
and then invoke methods on it (see the program in Figure 6.12).

6.6. OTHER USEFUL CLASSES 109

import java.rmi.*;
public class NameRmiClient {
public static void main(String args{]) {

try {
NameService r = (NameService)
Naming. lookup ("rmi://linux02 /MyNameServer”);
int 1 = r.insert ("pl”, "tick .ece”, 2058);
int j = r.search(”pl”);
if (j!'=-1)

System.out. println (r.getHostName(j) +”:” + r.getPort(j));
} catch (Exception e) {
System . out. println (e);

Figure 6.12: A RMI client program

6.6 Other Useful Classes

In this chapter, we have focused on classes that allow you to write distributed
programs. For cases when a process simply needs data from a remote location, Java
provides the Uniform Resource Locator (URL) class. A URL consists of six parts:
protocol, hostname, port; path, filename, and document section. An example of a
URL is

http://www.ece.utexas.edu:80/classes.html#distributed

The java.net.URL class allows the programmer to read data from a URL by
methods such as

public final InputStream openStream()

This method returns a InputStream from which one can read the data. For different
types of data such as images and audio clips there are methods such as
public Image getImage(URL u, String filename)
and
public void play(URL w).
We will not concern ourselves with these classes and methods.

6.7 Problems

6.1. Make the NameServer class fault-tolerant by keeping two copies of the server
process at all times. Assume that the client chooses a server at random.

110

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.
0.8.
6.9.

CHAPTER 6. DISTRIBUTED PROGRAMMING

If that server is down (i.e., after the timeout), the client contacts the other
server. You may assume that at most one server goes down. When the server
comes up again, it would need to synchronize with the other server to ensure
consistency.

Message passing can also be employed for communication and synchronization
among threads. Implement a Java monitor library that provides message
passing primitives for threads in a single Java Virtual Machine (JVM).

Develop a Linker class that provides synchronous messages. A message is
synchronous if the sender of the message blocks until the message is received
by the receiver.

Give advantages and disadvantages of using synchronous messages (see Prob-
lem 6.3) over asynchronous messages for developing distributed applications.

Write a Java program to maintain a large linked list on multiple computers
connected by a message passing system. Each computer maintains a part of
the linked list.

List all the differences between a local method invocation and a remote method
invocation.

How will you provide semaphores in a distributed environment?
Solve the producer consumer problem discussed in Chapter 3 using messages.

Give advantages and disadvantages of using RMI over TCP sockets for devel-
oping distributed applications.

6.8 Bibliographic Remarks

Details on the Transmission Control Protocol can be found in the book by Comer
[Com00]. Remote procedure calls were first implemented by Birrell and Nelson
|BN&4].

Chapter 7

Models and Clocks

7.1 Introduction

Distributed software requires a set of tools and techniques different from that re-
quired by the traditional sequential software. One of the most important issues in
reasoning about a distributed program is the model used for a distributed computa-
tion. It is clear that when a distributed program is executed, at the most abstract
level, a set of events is generated. Some examples of events are the beginning and
the end of the execution of a function, and the sending and receiving of a message.
This set alone does not characterize the behavior. We also impose an ordering rela-
tion on this set. The first relation is based on the physical time model. Assuming
that all events are instantaneous, that no two events are simultaneous, and that a
shared physical clock is available, we can totally order all the events in the system.
This is called the interleaving model of computation. If there is no shared physical
clock, then we can observe a total order among events on a single processor but
only a partial order between events on different processors. The order for events on
different processors is determined on the basis of the information flow from one pro-
cessor to another. This is the happened-before model of a distributed computation.
We describe these two models in this chapter.

In this chapter we also discuss mechanisms called clocks that can be used for
tracking the order relation on the set of events. The first relation we discussed
on events imposes a total order on all events. Because this total order cannot
be observed, we describe a mechanism to generate a total order that could have
happened in the system (rather than the one that actually happened in the system).
This mechanism is called a logical clock. The second relation, happened-before,

111

112 CHAPTER 7. MODELS AND CLOCKS

can be accurately tracked by a wvector clock. A vector clock assigns timestamps to
states (and events) such that the happened-before relationship between states can
be determined by using the timestamps.

7.2 Model of a Distributed System

We take the following characteristics as the defining ones for distributed systems:

o Absence of a shared clock: In a distributed system, it is impossible to synchro-
nize the clocks of different processors precisely due to uncertainty in commu-
nication delays between them. As a result, it is rare to use physical clocks
for synchronization in distributed systems. In this book we will see how the
concept of causality is used instead of time to tackle this problem.

o Absence of shared memory: In a distributed system, it is impossible for any
one processor to know the global state of the system. As a result, it is difficult
to observe any global property of the system. In this book we will see how
efficient algorithms can be developed for evaluating a suitably restricted set of
global properties.

o Absence of accurate failure detection: In an asynchronous distributed system
(a distributed system is asynchronous if there is no upper bound on message
delays), it is impossible to distinguish between a slow processor and a failed
processor. This leads to many difficulties in developing algorithms for consen-
sus, election, and so on. In this book we will see these problems, and their
solutions when synchrony is assumed.

Our model for a distributed system is based on message passing, and all of our
algorithms are based around that concept. Our algorithms do not assume any upper
bound on the message delays. Thus we assume asynchronous systems. An advantage
is that all the algorithms developed in this model are also applicable to synchronous
systems.

We model a distributed system as an asynchronous message-passing system with-
out any shared memory or a global clock. A distributed program consists of a set
of N processes denoted by {P, P, ..., Pv} and a set of unidirectional channels. A
channel connects two processes. Thus the topology of a distributed system can be
viewed as a directed graph in which vertices represent the processes and the edges
represent the channels. Figure 7.1 shows the topology of a distributed system with
three processes and four channels. Observe that a bidirectional channel can simply
be modeled as two unidirectional channels.

7.2. MODEL OF A DISTRIBUTED SYSTEM 113

Figure 7.1: An example of topology of a distributed system

A channel is assumed to have infinite buffer and to be error-free. We do not make
any assumptions on the ordering of messages. Any message sent on the channel may
experience arbitrary but finite delay. The state of the channel at any point is defined
to be the sequence of messages sent along that channel but not received.

A process is defined as a set of states, an initial condition (i.e., a subset of states),
and a set of events. Each event may change the state of the process and the state of
at most one channel incident on that process. The behavior of a process with finite
states can be described visually with state transition diagrams. Figure 7.2 shows
the state transition diagram for two processes. The first process P sends a token
to P and then receives a token from P,. Process P, first receives a token from P;
and then sends it back to P;. The state s; is the initial state for Py, and the state
t1 is the initial state for P;.

send token to P, receive token from P,

\ \

receive token from P, send tokento P,

Figure 7.2: A simple distributed program with two processes

114 CHAPTER 7. MODELS AND CLOCKS

7.3 Model of a Distributed Computation

In this section, we describe the interleaving and the happened-before models for
capturing behavior of a distributed system.

7.3.1 Interleaving Model

In this model, a distributed computation or a run is simply a global sequence of
events. Thus all events in a run are interleaved. For example, consider a system
with two processes: a bank server and a bank customer. The program of the bank
customer process sends two request messages to the bank server querying the savings
and the checking accounts. On receiving the response, it adds up the total balance.
In the interleaving model, a run may be given as follows:

Py sends “what is my checking balance” to P,

P sends “what is my savings balance” to Py

P, receives “what is my checking balance” from P;
Py sets total to 0

Ps receives “what is my savings balance” from Pj
P, sends “checking balance = 40” to P}

Py receives “checking balance = 40” from P,

Py sets total to 40 (total + checking balance)

P, sends “savings balance = 70” to P,

Py receives “savings balance = 70” from Py

Py sets total to 110 (total + savings balance)

_

7.3.2 Happened-Before Model

In the interleaving model, there is a total order defined on the set of events. Lamport
has argued that in a true distributed system only a partial order, called a happened-
before relation, can be determined between events. In this section we define this
relation formally.

As before, we will be concerned with a single computation of a distributed pro-
gram. Each process P; in that computation generates a sequence of events. It is
clear how to order events within a single process. If event e occurred before f in
the process, then e is ordered before f. How do we order events across processes?
If e is the send event of a message and f is the receive event of the same message,
then we can order e before f. Combining these two ideas, we obtain the following
definition.

Definition 7.1 (Happened Before Relation) The happened-before relation (—)
is the smallest relation that satisfies

7.4. LOGICAL CLOCKS 115

1. If e occurred before f in the same process, then e — f.

2. If e is the send event of a message and f is the receive event of the same
message, then e — f.

3. If there exists an event g such that (e — g) and (g — f), then (e — f).

In Figure 7.3, e9 — €4, €3 — f3, and e; — g4.

) €
st —@

oo

e

Figure 7.3: A run in the happened-before model

A run or a computation in the happened-before model is defined as a tuple (E, —)
where E is the set of all events and — is a partial order on events in E such that all
events within a single process are totally ordered. Figure 7.3 illustrates a run. Such
figures are usually called space-time diagrams, process-time diagrams, or happened-
before diagrams. In a process-time diagram, e — f iff it contains a directed path
from the event e to event f. Intuitively, this relation captures the order that can be
determined between events. The important thing here is that the happened-before
relation is only a partial order on the set of events. Thus two events e and f may
not be related by the happened-before relation. We say that e and f are concurrent
(denoted by el|f) if ~(e — f) A —(f — e). In Figure 7.3, ea|| f2, and e;||gs.

Instead of focusing on the set of events, one can also define a computation
based on the the set of states of processes that occur in a computation, say S.
The happened-before relation on S can be defined in the manner similar to the
happened-before relation on F.

7.4 Logical Clocks

We have defined two relations between events based on the global total order of
events, and the happened-before order. We now discuss mechanisms called clocks
that can be used for tracking these relations.

When the behavior of a distributed computation is viewed as a total order, it
is impossible to determine the actual order of events in the absence of accurately

116 CHAPTER 7. MODELS AND CLOCKS

synchronized physical clocks. If the system has a shared clock (or equivalently,
precisely synchronized clocks), then timestamping the event with the clock would
be sufficient to determine the order. Because in the absence of a shared clock the
total order between events cannot be determined, we will develop a mechanism that
gives a total order that could have happened instead of the total order that did
happen.

The purpose of our clock is only to give us an order between events and not any
other property associated with clocks. For example, on the basis of our clocks one
could not determine the time elapsed between two events. In fact, the number we
associate with each event will have no relationship with the time we have on our
watches.

As we have seen before, only two kinds of order information can be determined in
a distributed system—the order of events on a single process and the order between
the send and the receive events of a message. On the basis of these considerations,
we get the following definition.

A logical clock C is a map from the set of events E to N (the set of natural
numbers) with the following constraint:

Ve,f € E:e— = Cle) < C(f)

Sometimes it is more convenient to timestamp states on processes rather than
events. The logical clock C also satisfies

Vs,it€S:s—t=C(s) <C(t)

The constraint for logical clocks models the sequential nature of execution at
each process and the physical requirement that any message transmission requires
a nonzero amount of time.

Availability of a logical clock during distributed computation makes it easier
to solve many distributed problems. An accurate physical clock clearly satisfies
the above mentioned condition and therefore is also a logical clock. However, by
definition of a distributed system there is no shared clock in the system. Figure 7.4
shows an implementation of a logical clock that does not use any shared physical
clock or shared memory.

It is not required that message communication be ordered or reliable. The
algorithm is described by the initial conditions and the actions taken for each event
type. The algorithm uses the variable ¢ to assign the logical clock. The notation
s.c denotes the value of ¢ in the state s. Let s.p denote the process to which state
s belongs.

For any send event, the value of the clock is sent with the message and then
incremented at line 14. On receiving a message, a process takes the maximum of its

7.5. VECTOR CLOCKS

117

own clock value and the value received with the message at line 17. After taking the
maximum, the process increments the clock value. On an internal event, a process

simply increments its clock at line 10.

1 public class LamportClock {

2 int c¢;

3 public LamportClock () {

4 c = 1;

5

6 public int getValue () {

7 return c;

8

9 public void tick () { // on internal events
10 c=c¢ + 1

11 }

12 public void sendAction () {

13 // include ¢ in message

14 ¢c=c¢ + 1;

15

16 public void receiveAction (int src, int sentValue) {
17 ¢ = Util .max(c, sentValue) + 1;

18

19 }

Figure 7.4: A logical clock algorithm
The following claim is easy to verify.

Vs,t€S:s—t=>sc<tc

In some applications it is required that all events in the system be ordered totally.
If we extend the logical clock with the process number, then we get a total ordering
on events. Recall that for any state s, s.p indicates the identity of the process to
which it belongs. Thus the timestamp of any event is a tuple (s.c, s.p) and the total

order < is obtained as

et

(s.c,s.p) < (t.c,t.p) s.c<te)V((s.c=t.c) A (s.p < t.p)).

7.5 Vector Clocks

We saw that logical clocks satisfy the following property:

s —t=sc<t.c

118 CHAPTER 7. MODELS AND CLOCKS

However, the converse is not true; s.c < t.c does not imply that s — ¢. The
computation (S, —) is a partial order, but the domain of logical clock values (the
set of natural numbers) is a total order with respect to <. Thus logical clocks
do not provide complete information about the happened-before relation. In this
section, we describe a mechanism called a vector clock that allows us to infer the
happened-before relation completely.

Definition 7.2 (Vector Clock) A vector clock v is a map from S to N* (vectors
of natural numbers) with the following constraint

Vs, t:8 >t sv < to.
where s.v is the vector assigned to the state s.

Because — is a partial order, it is clear that the timestamping mechanism should
also result in a partial order. Thus the range of the timestamping function cannot
be a total order like the set of natural numbers used for logical clocks. Instead,
we use vectors of natural numbers. Given two vectors « and y of dimension N, we
compare them as follows:

r<y = (Vk:1<k<N:zglk] <ylk]) A
(Fj:1<j<N:zfjl <ylil)
<y = (z<y)V(z=y)

It is clear that this order is only partial for N > 2. For example, the vectors (2,3, 0)
and (0,4, 1) are incomparable. A vector clock timestamps each event with a vector
of natural numbers.

Our implementation of vector clocks uses vectors of size N, the number of pro-
cesses in the system. The algorithm presented in Figure 7.5 is described by the
initial conditions and the actions taken for each event type. A process increments
its own component of the vector clock after each event. Furthermore, it includes
a copy of its vector clock in every outgoing message. On receiving a message, it
updates its vector clock by taking a componentwise maximum with the vector clock
included in the message. This is shown in the method receiveAction. It is not
required that message communication be ordered or reliable. A sample execution of
the algorithm is given in Figure 7.7.

Figure 7.6 extends the Linker class (defined in Chapter 6) to automatically
include the vector clock in all outgoing messages and to take the receiveAction
when a message is received. The method sendMsg prefixes the message with the
tag “vector” and the vector clock. The method simpleSendMsg is useful for appli-
cation messages that do not use vector clocks. The method receiveMsg determines

7.5. VECTOR CLOCKS

119

public class VectorClock {

public int[] v;

int myld;

int N;

public VectorClock (int numProc, int id) {
myld = id;

N = numProc;

v = new int[numProc];

for (int i = 0; i < N; i+4)v[i] = 0;
v[imyld] = 1;

}
public veid tick () {
v[myld]++;

public void sendAction () {
//include the vector in the message
v[myld]++;

public void receiveAction (int{] sentValue) {
for (int i = 0; i < N; i++)
vii) = Util .max(v{i), sentValue[il]);
v myId]++;

public int getValue(int i) {
return v[i];

public String toString (){
return Util . writeArray (v);

Figure 7.5: A vector clock algorithm

120 CHAPTER 7. MODELS AND CLOCKS

public class VCLinker extends Linker {
public VectorClock ve;
int receiveTag[] = null;
public VCLinker{String basename, int id, int N) throws Exception {
super (basename , id, N);
ve = new VectorClock (N, id);
receiveTag = new int[N];

public void sendMsg(int destId, String tag, String msg) {
super . sendMsg(destId , ”vector”, vc.toString ());
super.sendMsg(destld , tag, msg);
ve. sendAction ();

public void simpleSendMsg (int destld, String tag, String msg) {
super . sendMsg (destId , tag, msg);

public Msg receiveMsg (int fromld) throws java.io.lOException {
Msg ml = super.receiveMsg (fromld);
if (ml.getTag(). equals (" vector”)) {
Util . readArray (ml. getMessage (), receiveTag);
ve.receiveAction (receiveTag);
Msg m = super.receiveMsg (fromld }; //app message
return m;

else return mi;

Figure 7.6: The VCLinker class that extends the Linker class

7.5. VECTOR CLOCKS 121

(1,0,0.0) (2,1,0,0) (3,1,0,0)
i & S &
) & O
(0,1,0,0) 0,2,0,0) (23.3,1)
P3 o o 0)
7 o A\ A
0,0,1,0) 0,0,2,1) 2,13,1) 2,141
Fy S <
(0,0,0,1) (0,0,0,2)

Figure 7.7: A sample execution of the vector clock algorithm

whether the message has a vector clock in it. If it does, the method removes the
vector clock, invokes receiveAction, and then returns the application message.
We now show that s — ¢ iff s.v < t.v. We first claim that if s # ¢, then

s At = tufsp] < svs.p] (7.1)

If t.p = s.p, then it follows that ¢ occurs before s. Because the local component
of the vector clock is increased after each event, t.v[s.p] < s.v[s.p]. So, we assume
that s.p # t.p. Since s.v(s.p] is the local clock of P, and P, could not have seen
this value as s /4 t, it follows that t.v[s.p] < s.v[s.p]. Therefore, we have that (s / £)
implies =(s.v < t.v).

Now we show that (s — t) implies (s.v < t.v). If s — ¢, then there is a message
path from s to t. Since every process updates its vector on receipt of a message
and this update is done by taking the componentwise maximum, we know that the
following holds:

vk : s.vlk] < tulk].
Furthermore, since t /4 s, from Equation (7.1), we know that s.v[t.p] is strictly less
than t.v[t.p]. Hence, (s — t) = (s.v < tw).

It is left as an exercise to show that if we know the processes the vectors came
from, the comparison between two states can be made in constant time:

s =t < (swfs.pl < tofs.p]) A (svlt.p] < toft.p)

122 CHAPTER 7. MODELS AND CLOCKS

7.6 Direct-Dependency Clocks

One drawback with the vector clock algorithm is that it requires O(N) integers to
be sent with every message. For many applications, a weaker version of the clock
suffices. We now describe a clock algorithm that is used by many algorithms in
distributed systems. These clocks require only one integer to be appended to each
message. We call these clocks direct-dependency clocks.

The algorithm shown in Figure 7.8 is described by the initial conditions and the
actions taken for each event type. On a send event, the process sends only its local
component in the message. It also increments its component as in vector clocks.
The action for internal events is the same as that for vector clocks. When a process
receives a message, it updates two components-—one for itself, and the other for
the process from which it received the message. It updates its own component in a
manner identical to that for logical clocks. It also updates the component for the
sender by taking the maximum with the previous value.

public class DirectClock {
public int [] clock;

int myld;

public DirectClock {int numProc, int id) {
myld = id;
clock = new int [numProc];

for (int i = 0; i < numProc; i++) clock[i] = 0;
clock [myld} = 1;

public int getValue(int i) {
return clock[i];

1
public void tick () {
clock [myld]++;

public void sendAction () {
// sentValue = clock [myld];

tick ();

public void receiveAction (int sender, int sentValue) {
clock [sender] = Util . max(clock [sender], sentValue);
clock [myld] = Util.max(clock [myld], sentValue) + 1;

Figure 7.8: A direct-dependency clock algorithm

An example of a distributed computation and its associated direct-dependency

7.7. MATRIX CLOCKS 123

(1,0,00) (2,1,0,0) (3,1,0,0)
1 o—706 S
B = S O
0,1,0,0) 0,2,0,0) (0,4,3,0)
i S & oL
(0,0,1,0) (0,0,2,1) (2,03,1) (2,04,1)
Fy & 5
(0,0,0,1) (0,0,0,2)

Figure 7.9: A sample execution of the direct-dependency clock algorithm.

clock is given in Figure 7.9.

We first observe that if we retain only the ith component for the ith process, then
the algorithm above is identical to the logical clock algorithm. However, our interest
in a direct-dependency clock is not due to its logical clock property (Lamport’s
logical clock is sufficient for that), but to its ability to capture the notion of direct
dependency. We first define a relation, directly precedes (—g), a subset of —, as
follows: s —4 t iff there is a path from s to ¢t that uses at most one message in
the happened-before diagram of the computation. The following property makes
direct-dependency clocks useful for many applications:

Vs,t:spF#Lp: (s —qt) & (swsp] < twfs.p])

The proof of this property is left as an exercise. The reader will see an application
of direct-dependency clock in Lamport’s mutual exclusion algorithm discussed in
Chapter &.

124

CHAPTER 7. MODELS AND CLOCKS

public class MatrixClock {

int (1] M
int myld;
int N;
public MatrixClock (int numProc, int id) {
myld = id;
N = numProc;
M = new int [N][N];
for (int i = 0;
for (int j =
M (5]
M myld][myId] =

public void tick () {
M myId][myId]++;

public void sendAction {) {
//include the matriz in the message

M| myld][myId]++;
W, int srcld) {

)

public void receiveAction (int []]]
// component—wise marimum of matrices

for (int i = 0; i < N; i++)
if (i !'= myld) {
0; j < N; j++)

for (int j
M[i][] Util -max(M[3][], W][j]);

]:

}

// update the wector for this process
for (int j = 0; j < N; j++)
Mmyldj[j] = Util . max(M{myId][]j], W srcId][j]);

M| myld }[myld]++;

}
public int getValue (int i, int j) {
return M[i][j];

Figure 7.10: The matrix clock algorithm

7.7. MATRIX CLOCKS 125

7.7 Matrix Clocks

It is natural to ask whether using higher-dimensional clocks can give processes addi-
tional knowledge. The answer is “yes.” A vector clock can be viewed as a knowledge
vector. In this interpretation, s.v[i] denotes what process s.p knows about process i
in the local state s. In some applications it may be important for the process to have
a still higher level of knowledge. The value s.v[i, j] could represent what process s.p
knows about what process 7 knows about process j. For example, if s.v[i,s.p] > &k
for all 7, then process s.p can conclude that everybody knows that its state is strictly
greater than k.

Next, we discuss the matrix clock that encodes a higher level of knowledge than a
vector clock. The matrix clock algorithm is presented in Figure 7.10. The following
description applies to an N x N matrix clock in a system with N processes. The
algorithm is easier to understand by noticing the vector clock algorithm embedded
within it. If we focus only on row myld for process Pryrq, the algorithm presented
above reduces to the vector clock algorithm. Consider the update of the matrix
in the algorithm in Figure 7.10 when a message is received. The first step affects
only rows different from myld and can be ignored. When a matrix is received from
process srcld, then we use only the row given by the index srcld of the matrix W for
updating row myld of Py, rq. Thus, from our discussion of vector clock algorithms,
it is clear that

Vs,t:sp#tp:s—t=sMlsp, | <tMtp,|

The other rows of the matrix A keep the vector clocks of other processes. Note
that initially M contains O vector for other processes. When it receives a matrix
in W, it updates its information about the vector clock by taking componentwise
maximum.

We now show an application of matrix clocks in garbage collection. Assume
that a process P; generated some information when its matrix clock value for M|i][i]
equals k. P; sends this information directly (or indirectly) to all processes and wants
to delete this information when it is known to all processes. We claim that P; can
delete the information when the following condition is true for the matrix M:

v Ml = k

This condition implies that the vector clock of all other processes j have ith compo-
nent at least k. Thus, if the information is propagated through messages, P; knows
that all other processes have received the information that P; had when M[é][i] was
k.

We will later see another application of a variant of matrix clock in enforcing
causal ordering of messages discussed in Chapter 12.

126

CHAPTER 7. MODELS AND CLOCKS

7.8 Problems

7.1.

7.2.
7.3.

7.4.

7.6.

7.7.

7.8.

7.9.

7.10.

Give advantages and disadvantages of a parallel programming model over a
distributed system (message based) model.

Show that “concurrent with” is not a transitive relation.

Write a program that takes as input a distributed computation in the happened-
before model and outputs all interleavings of events that are compatible with
the happened-before model.

We discussed a method by which we can totally order all events within a sys-
tem. If two events have the same logical time, we broke the tie using process
identifiers. This scheme always favors processes with smaller identifiers. Sug-
gest a scheme that does not have this disadvantage. (Hint: Use the value of
the logical clock in determining the priority.)

. Prove the following for vector clocks: s — ¢ iff

(s.v]s.p] < tvfs.p]) A (swwlt.p] < tvft.p]).

Suppose that the underlying communication system guarantees FIFO ordering
of messages. How will you exploit this feature to reduce the communication
complexity of the vector clock algorithm? Give an expression for overhead
savings if your scheme is used instead of the traditional vector clock algorithm.
Assume that any process can send at most m messages.

Assume that you have implemented the vector clock algorithm. However, some
application needs Lamport’s logical clock. Write a function convert that takes
as input a vector timestamp and outputs a logical clock timestamp.

Give a distributed algorithm to maintain clocks for a distributed program
that has a dynamic number of processes. Assume that there are the following
events in the life of any process: start-process, internal, send, receive, fork,
join processid, terminate. It should be possible to infer the happened-before
relation using your clocks.

Prove the following for direct-dependency clocks:

Vs, t:spF#tp: (s —qt) < (swlsp] < tofs.p])

Show that for matrix clocks, the row corresponding to the index s.p is bigger
than any other row in the matrix s.M for any state s.

7.9. BIBLIOGRAPHIC REMARKS 127

7.9 Bibliographic Remarks

The idea of logical clocks is from Lamport [Lam78]. The idea of vector clocks in pure
form first appeared in papers by Fidge and Mattern [Fid89, Mat89]. However, vec-
tors had been used before in some earlier papers (e.g., [SY85]). Direct-dependency
clocks have been used in mutual exclusion algorithms (e.g., [Lam78)), global prop-
erty detection (e.g., [Gar96]), and recovery in distributed systems. Matrix clocks
have been used for discarding obsolete information [SL87] and for detecting rela-
tional global predicates [TG93].

This Page Intentionally Left Blank

Chapter 8

Resource Allocation

8.1 Introduction

In a distributed system mutual exclusion is often necessary for accessing shared
resources such as data. For example, consider a table that is replicated on multiple
sites. Assume that operations on the table can be issued concurrently. For their
correctness, we require that all operations appear atomic in the sense that the effect
of the operations must appear indivisible to the user. For example, if an update
operation requires changes to two fields, z and y, then another operation should
not read the old value of z and the new value of y. Observe that in a distributed
system, there is no shared memory and therefore one could not use shared objects
such as semaphores to implement the mutual exclusion.

Mutual exclusion is one of the most studied topics in distributed systems. It
reveals many important issues in distributed algorithms such as safety and liveness
properties. We will study three classes of algorithms-—timestamp-based algorithms,
token-based algorithms and quorum-based algorithms. The timestamp-based algo-
rithms resolve conflict in use of resources based on timestamps assigned to requests
of resources. The token-based algorithms use auxiliary resources such as tokens to
resolve the conflicts. The quorum-based algorithms use a subset of processes to
get permission for accessing the shared resource. All algorithms in this chapter as-
sume that there are no faults in the distributed system, that is, that processors and
communication links are reliable.

129

130 CHAPTER 8. RESOURCE ALLOCATION

8.2 Specification of the Mutual Exclusion Problem

Let a system consist of a fixed number of processes and a shared resource called
the critical section. An example of a critical section is the operation performed on
the replicated table introduced earlier. The algorithm to coordinate access to the
critical section must satisfy the following properties:

Safety: Two processes should not have permission to use the critical section simul-
taneously.

Liveness: Every request for the critical section is eventually granted.

Fairness: Different requests must be granted in the order they are made.

We can abstract this problem as implementation of a lock in a distributed envi-
ronment. The interface Lock is as follows:

public interface Lock extends MsgHandler {
public void requestCS (); //may block
public void releaseCS ();

Any lock implementation in a distributed environment will also have to handle
messages that are used by the algorithm for locking. For this we use the interface
MsgHandler shown below.

import java.io .x;

public interface MsgHandler {
public void handleMsg(Msg m, int srcld, String tag);
public Msg receiveMsg (int fromld) throws IOException;

Any implementation of the lock can be exercised by the program shown in Figure
8.1. Line 8 creates a Linker that links all the processes in the system. After instan-
tiating a lock implementation at lines 10-17, we start separate threads to listen for
messages from all the other processes at lines 18-20. The class ListenerThread is
shown in Figure 8.2. A ListenerThread is passed a MsgHandler on its construction.
It makes a blocking receiveMsg call at line 12, and on receiving a message gives it
to the MsgHandler at line 13.

Most of our distributed programs in this book will extend the class Process
shown in Figure 8.3. This will allow processes to have access to its identifier myId,
the total number of processes N, and simple send and receive routines. The method
handleMsg is empty, and any class that extends Process is expected to override
this method.

8.2. SPECIFICATION OF THE MUTUAL EXCLUSION PROBLEM 131

OO0 =T W

public class LockTester {
public static void main(String [] args) throws Exception {

Linker comm = null;
try {
String baseName = args [0];
int myld = Integer. parselnt (args [1]);
int numProc = Integer . parselnt (args[2]);
comm = new Linker (baseName, myld, numProc);
Lock lock = null;
if (args[3]. equals (”Lamport”))
lock = new LamportMutex{comm);
if (args[3]. equals (" RicartAgrawala”))
lock = new RAMutex{comm);
if (args[3]. equals (" DiningPhil”))
lock = new DinMutex (comm};
if {args[3]. equals (" CircToken”))
lock = new CircToken (comm,0);
for (int i = 0; i < numProc; i++)
if (i '= myld)
(new ListenerThread (i, (MsgHandler)lock)). start ();
while (true) {
System . out . println {(myld + ” is not in CS”);
Util . mySleep (2000);
lock . requestCS ();
Util . mySleep (2000);
System.out. println (myld + 7 is in CS s«*xxx” });
lock . releaseCS ();

}
catch (InterruptedException e) {
if (comm !'= null) comm. close ();

}

catch (Exception e) {
System .out. println (e);

e.printStackTrace ();

Figure 8.1: Testing a lock implementation

132 CHAPTER 8. RESOURCE ALLOCATION

1 import java.io .*;
2 public class ListenerThread extends Thread {
3 int channel;

4 MsgHandler process;

5 public ListenerThread (int channel, MsgHandler process) {
6 this.channel = channel;

7 this . process = process;

8 }

9 public void run() {

10 while (true) {

11 try {

12 Msg m = process.receiveMsg (channel);

13 process . handleMsg (m, m. getSrcld (), m getTag());
14 } catch (IOException e) {

15 System . err . printin (e);

16 }

17 }

18

19 }

Figure 8.2: ListenerThread

8.3 Centralized Algorithm

There are many algorithms for mutual exclusion in a distributed system. How-
ever, the least expensive algorithm for the mutual exclusion is the centralized algo-
rithm shown in Figure 8.4. If we are required to satisfy just the safety and liveness
properties, then this simple queue-based algorithm works. One of the processes is
designated as the leader (or the coordinator) for the critical section. The variable
haveToken is true for the process that has access to the critical section. Any process
that wants to enter the critical section sends a request message to the leader. The
leader simply puts these requests in the pendingQ in the order it receives them. It
also grants permission to the process that is at the head of the queue by sending an
okay message. When a process has finished executing its critical section, it sends
the release message to the leader. On receiving a release message, the leader sends
the okay message to the next process in its pendingQ if the queue is nonempty.
Otherwise, the leader sets haveToken to true.

The centralized algorithm does not satisfy the notion of fairness, which says that
requests should be granted in the order they are made and not in the order they are
received. Assume that the process P; makes a request for the shared resource to the
leader process Pj. After making the request, P; sends a message to the process P;.
Now, P; sends a request to Py that reaches Py earlier than the request made by the

8.3. CENTRALIZED ALGORITHM 133

import java.io .*; import java.lang.x;
public class Process implements MsgHandler {
int N, myld;
Linker comm;
public Process (Linker initComm) {
comm = initComm;
myld = comm. getMyId ();
N = comm. getNumProc ();

public synchronized void handleMsg(Msg m, int src, String tag) {

public void sendMsg(int destld, String tag, String msg) {
Util. println (”Sending msg to ” + destld 4+ ”:” +tag + 7 7 + msg);
comm. sendMsg (destld , tag, msg);

}
public void sendMsg(int destld, String tag, int msg) {
sendMsg (destId, tag, String.valueOf(msg)+” ”);

public void sendMsg(int destld, String tag, int msgl, int msg2) {
sendMsg (destld , tag, String . valueOf (msgl)
+” ” 4String . valueOf (msg2)+” 7);

public void sendMsg(int destld, String tag) {
sendMsg (destId, tag, ” 07");

public void broadcastMsg(String tag, int msg) {
for (int 1 = 0; i < N; i++4)
if (i !'= myld) sendMsg(i, tag, msg);

public void sendToNeighbors (String tag, int msg) {
for (int 1 = 0; i < N; i4++)
if (isNeighbor(i)) sendMsg(i, tag, msg);

public boolean isNeighbor (int i) {
if (comm. neighbors.contains (i)) return true;
else return false;

public Msg receiveMsg (int fromld) {
try {
return comm. receiveMsg (fromld);
} catch (IOException e){
System . out. println (e);
comm. close ();
return null;

}
public synchronized void myWait() {
try {

wait ();
} catch (InterruptedException e) {System.err.println (e);

Figure 8.3: Process.java

134 CHAPTER 8. RESOURCE ALLOCATION

public class CentMutex extends Process implements Lock {
// assumes that P_0 coordinates and does not request locks.
boolean haveToken;
final int leader = 0;
IntLinkedList pendingQ = new IntLinkedList ();
public CentMutex(Linker initComm) {
super (initComm);
haveToken = (myld == leader };

public synchronized veoid requestCS () {
sendMsg (leader , "request”);
while (! haveToken) myWait();

public synchronized void releaseCS () {
sendMsg (leader , "release”);
haveToken = false;

public synchronized void handleMsg(Msg m, int src, String tag) {
if (tag.equals ("request”)) {
if (‘haveToken){
sendMsg (src, "okay”);
haveToken = false;
}
else
pendingQ . add (src);
} else if (tag.equals(”release”)) {
if (!pendingQ.isEmpty()) {
int pid = pendingQ.removeHead ();
sendMsg (pid, ”okay”);
} else
haveToken = true;
} else if (tag.equals(”okay”)) {
haveToken = true;
notify ();

Figure 8.4: A centralized mutual exclusion algorithm

8.4. LAMPORT’S ALGORITHM 135

process P;. This example shows that it is possible for the order in which requests
are received by the leader process to be different from the order in which they are
made. The modification of the algorithm to ensure fairness is left as an exercise (see
Problem 8.1).

8.4 Lamport’s Algorithm

In Lamport’s algorithm each process maintains a logical clock (used for timestamps)
and a queue (used for storing requests for the critical section). The algorithm ensures
that processes enter the critical section in the order of timestamps of their requests.
It assumes FIFO ordering of messages. The rules of the algorithm are as follows:

e To request the critical section, a process sends a timestamped message to all
other processes and adds a timestamped request to the queue.

e On receiving a request message, the request and its timestamp are stored in
the queue and a timestamped acknowledgment is sent back.

e To release the critical section, a process sends a release message to all other
processes.

e On receiving a release message, the corresponding request is deleted from the
queue.

¢ A process determines that it can access the critical section if and only if (1) it
has a request in the queue with timestamp ¢, (2) ¢ is less than all other requests
in the queue, and (3) it has received a message from every other process with
timestamp greater than ¢ (the request acknowledgments ensure this).

Figure 8.5 gives an implementation of this algorithm in Java. In this version,
every process maintains two vectors. These two vectors simulate the queue used in
the informal description given earlier. These vectors are interpreted at process P;
as follows:

glj] - the timestamp of the request by process P;. The value Symbols.infinity
signifies that P; does not have any record of outstanding request by process
P;.

v[j] : the timestamp of the last message seen from P; if j # ¢. The component s.v{i]
represents the value of the logical clock in state s. Thus the vector v is simply
the direct-dependency clock.

136 CHAPTER 8. RESOURCE ALLOCATION

To request the critical section (method requestCs), P; simply records its clock in
g[i]. Because all other processes also maintain this information, “request” messages
are sent to all processes indicating the new value of g[z]. It then simply waits for
the condition okayCS to become true.

To release the critical section (method releaseCS), P; simply resets ¢[i] to oo
and sends “release” messages to all processes. Finally, we also require processes
to acknowledge any request message as shown in the method handleMsg. Note
that every message is timestamped and when it is received, the vector v is updated
according to the direct-dependency clock rules as discussed in Chapter 7.

Process P; has permission to access the critical section when there is a request
from P; with its timestamp less than all other requests and F; has received a message
from every other process with a timestamp greater than the timestamp of its own
request. Since two requests may have identical timestamps, we extend the set of
timestamps to a total order using process identifiers as discussed in Chapter 7. Thus,
if two requests have the same timestamp, then the request by the process with the
smaller process number is considered smaller. Formally, P; can enter the critical
section if

Vi:g# i (glili) < (gl g) A (alild) < (gl 5)

This condition is checked in the method okayCs.

Lamport’s algorithm requires 3(N — 1) messages per invocation of the critical
section: N — 1 request messages, N — 1 acknowledgment messages, and N — 1
release messages. There is a time delay of two serial messages to get permission for
the critical section— a request message followed by an acknowledgment. The space
overhead per process is the vectors ¢ and v which is O(N logm), where m is the
maximum number of times any process enters the critical section.

8.5 Ricart and Agrawala’s Algorithm

Ricart and Agrawala’s algorithm uses only 2(N — 1) messages per invocation of
the critical section. It does so by combining the functionality of acknowledgment
and release messages. In this algorithm, a process does not always send back an
acknowledgment on receiving a request. It may defer the reply for a later time.
Another advantage of Ricart and Agrawala’s algorithm is that it does not require
FIFO ordering of messages.

The algorithm is stated by the following rules:

e To request a resource, the process sends a timestamped message to all pro-
CeS8ses.

8.5. RICART AND AGRAWALA’S ALGORITHM 137

public class LamportMutex extends Process implements Lock {
DirectClock v;
int [| q; // request queue
public LamportMutex(Linker initComm} {
super (initComm);
v = new DirectClock (N, myld);
q = new int [N};
for (int j = 0; j < N; j++)
qlj] = Symbols. Infinity ;

public synchronized void requestCS () {
v. tick ();
g{myld] = v.getValue (myld);
broadcastMsg (" request”, q[myld]);
while (! okayCS())
myWait () ;

public synchronized void releaseCS () {
q[myld] = Symbols. Infinity ;
broadcastMsg (" release”, v.getValue(myld));

}
boolean okayCS () {
for (int j = 0; j < N; j++}
if (isGreater (g{myld], myld, q[j], j))
return false;
if (isGreater (q[myld], myld, v.getValue(j), j))
return false;

return true;

boolean isGreater (int entryl, int pidl, int entry2, int pid2) {
if (entry2 == Symbols. Infinity) return false;
return ((entryl > entry2)
|| ((entryl == entry2) && (pidl > pid2}));

public synchronized void handleMsg(Msg m, int src, String tag) {
int timeStamp = m. getMessagelnt ();
v.receiveAction (src, timeStamp);
if (tag.equals("request”)) {
g[src] = timeStamp;
sendMsg (src, "ack”, v.getValue(myld));
} else if (tag.equals(”release”))
glsrc] = Symbols. Infinity ;
notify (); // okeyCS() may be true now

Figure 8.5: Lamport’s mutual exclusion algorithm

138 CHAPTER 8. RESOURCE ALLOCATION

e On receiving a request from any other process, the process sends an okay
message if either the process is not interested in the critical section or its own
request has a higher timestamp value. Otherwise, that process is kept in a
pending queue.

e To release a resource, the process sends okay to all the processes in the pending
queue.

¢ The process is granted the resource when it has requested the resource and
it has received the okay message from every other process in response to its
request message.

The algorithm is presented formally in Figure 8.6. There are two kinds of mes-
sages in the system—request messages and okay messages. Each process maintains
the logical time of its request in the variable myts. In the method requestCS, a pro-
cess simply broadcasts a request message with its timestamp. The variable numOkay
counts the number of okay messages received since the request was made. On re-
ceiving any request with a timestamp lower than its own, it replies immediately
with okay. Otherwise, it adds that process to pending@.

The algorithm presented above satisfies safety, liveness, and fairness properties
of mutual exclusion. To see the safety property, assume that P; and P; are in the
critical section concurrently and P; has the smaller value of the timestamp for its
request. P; can enter the critical section only if it received okay for its request.
The request made by P; can reach P; only after P; has made its request; otherwise,
the timestamp of P;’s request would have been greater because of the rules of the
logical clock. From the algorithm, P; cannot send okay unless it has exited from the
critical section contradicting our earlier assumption that P; received okay from F;.
Thus the safety property is not violated. The process with the least timestamp for
its request can never be deferred by any other process, and therefore the algorithm
also satisfies liveness. Because processes enter the critical section in the order of the
timestamps of the requests, the fairness is also true.

It is easy to see that every critical section execution requires N — 1 request
messages and N — 1 okay messages.

8.6 Dining Philosopher Algorithm

In the previous algorithm, every critical section invocation requires 2(IN — 1) mes-
sages. We now show an algorithm in which 2(IN — 1) messages are required only
in the worst case. Consider a large distributed system in which even though N is
large, the number of processes that request the critical section, say, n, is small. In

8.6. DINING PHILOSOPHER ALGORITHM 139

import java.util .x;
public class RAMutex extends Process implements Lock {
int myts;
LamportClock ¢ = new LamportClock ();
IntLinkedList pendingQ = new IntLinkedList ();
int numOkay = 0;
public RAMutex(Linker initComm}) {
super (initComm);
myts = Symbols. Infinity ;

public synchronized void requestCS () {
c.tick ();
myts = c. getValue ();
broadcastMsg (" request”, myts);
numOkay = 0;
while (numOkay < N-1)
myWait (};

public synchronized void releaseCS () {
myts = Symbols. Infinity ;
while (! pendingQ.isEmpty()) {
int pid = pendingQ .removeHead ();
sendMsg (pid, "okay”, c.getValue ());

public synchronized void handleMsg(Msg m, int src, String tag) {
int timeStamp = m. getMessagelnt ();
c.receiveAction (src, timeStamp);
if (tag.equals(”request”))
if ({ myts == Symbols. Infinity) // net interested in CS
|| (timeStamp < myts)
|| ((timeStamp == myts) && (src < myld)))
sendMsg(src, ”okay”, c.getValue ());
else
pendingQ . add{ src);
} else if (tag.equals{("okay”)) {
numOkay++;
if (numOkay == N — 1)
notify (); // okayCS() may be true now

Figure 8.6: Ricart and Agrawala’s algorithm

140 CHAPTER 8. RESOURCE ALLOCATION

our next algorithm, processes that are not interested in the critical section will not
be required to send messages eventually.

The next algorithm will also solve a more general problem, the dining philosopher
problem, where a resource may not be shared by all the processes. The dining
philosopher problem, as discussed in Chapter 3, consists of multiple philosophers
who spend their time thinking and eating spaghetti. However, a philosopher requires
shared resources, such as forks, to eat spaghetti. We are required to devise a protocol
to coordinate access to the shared resources.

There are two requirements on the solution of the dining philosopher problem:
(1) we require mutually exclusive use of shared resources, that is, a shared resource
should not be used by more than one process at a time; and (2) we want freedom
from starvation. Every philosopher (process) should be able to eat (perform its
operation) infinitely often.

The crucial problem in resource allocation is that of resolving conflicts. If a set
of processes require a resource and only one of them can use it at a time, then there
is a conflict that must be resolved in favor of one of these processes. We have already
studied one conflict resolution method via logical clocks in Lamport’s and Ricart
and Agrawala’s mutual exclusion algorithms. The processes used logical clocks to
resolve access to mutual exclusion. If two requests had the same logical clock value,
then process identity was used to break ties. Now we study another mechanism that
resolves conflicts based on location of auxiliary resources. The auxiliary resources
are used only for conflict resolution and are not actual resources.

We model the problem as an undirected graph called a conflict graph, in which
each node represents a process and an edge between process P; and P; denotes
that one or more resources are shared between P and P;. Figure 8.7(a) shows the
conflict graph for five philosophers. If a process needs all the shared resources for
performing its operation, then only one of any two adjacent nodes can perform its
operation in any step. The conflict graph for a simple mutual exclusion algorithm
is a complete graph.

Now consider the problem of five dining philosophers sitting around a table such
that two adjacent philosophers share a fork. The conflict graph of this problem is a
ring on five nodes.

An orientation of an undirected graph consists of providing direction to all edges.
The edge between P; and P; points from F; to P; if F; has precedence over P;. We say
that an orientation is acyclic if the directed graph that results from the orientation
is acyclic. Figure 8.7(b) shows an acyclic orientation of the conflict graph. In a
directed graph, we call a node source if it does not have any incoming edge. Any
finite-directed acyclic graph must have at least one source (see Problem 8.5). In
Figure 8.7, processes P» and Py are sources.

To maintain orientation of an edge, we use the notion of an auxiliary resource, a

8.6. DINING PHILOSOPHER ALGORITHM 141
. A A

YRV
/\/ /\/ /\/

(a) (b) (c)

Figure 8.7: (a) Conflict graph; (b) an acyclic orientation with P» and P; as sources;
(c) orientation after P, and P, finish eating

fork, associated with each edge. Process P; is considered to have the fork associated
with the edge (7,7), if it has precedence over P; in any conflict resolution.
The algorithm for dining philosophers obeys the following two rules:

e Fating rule: A process can eat only if it has all the forks for the edges incident
to it, that is, a process can eat only when it is a source.

e FEdge reversal: On finishing the eating session, a process reverses orientations
of all the outgoing edges to incoming edges.

Now let us look at the rules for transmitting forks. We do not require that once
a philosopher has finished eating it sends all the forks to its neighbors. This is
because its neighbors may be thinking and therefore not interested in eating. Thus
we require that if a philosopher is hungry (interested in eating) and does not have
the fork, then it should explicitly request the fork. To request the fork, we use a
request token associated with each fork. Although a fork is not transmitted after
eating, we still need to capture the fact that the other philosopher has priority over
this fork to satisfy the edge reversal rule. Thus we need to distinguish the case when
a philosopher has a fork but has not used it from the case when the philosopher
has the fork and has used it for eating. This is done conveniently by associating a
boolean variable dirty with each fork. Once a philosopher has eaten from a fork, it
becomes dirty. Before a fork is sent to the neighbor, it is cleaned.

Our solution is based on keeping an acyclic conflict resolution graph as mentioned
earlier. Philosopher u has priority over philosopher v if the edge between u and v
points to v. The direction of the edge is from u to v if (1) u holds the fork and it is
clean, (2) v holds the fork and it is dirty, or (3) the fork is in transit from v to u.

142 CHAPTER 8. RESOURCE ALLOCATION

The forks are initially placed so that the conflict resolution graph is initially
acyclic. The algorithm ensures that the graph stays acyclic. Observe that when a
fork is cleaned before it is sent, the conflict graph does not change. The change in
the conflict graph occurs only when a philosopher eats, thereby reversing all edges
incident to it. The algorithm for the dining philosophers problem is given in Figure
8.8. In this algorithm, we have assumed that the conflict graph is a complete graph
for simplicity.

We use the following boolean variables for each process P;:

e fork[j]: Process P; holds the fork that is shared with P;.

o request|j]: Process P; holds the request token for the fork that is shared with
Py

o dirty(j]: The fork that is shared with P; is dirty.

It is easy to see that the conflict resolution graph is always acyclic. It is acyclic
initially by our initialization. The only action that changes direction of any edge in
the graph is eating (which dirties the fork). A philosopher can eat only when she
has all the forks corresponding to the edges that she shares with other philosophers.
By the act of eating, all those forks are dirtied and therefore all those edges point
toward the philosopher after eating. This transformation cannot create a cycle.

Observe that when a fork is transmitted, it is cleaned before transmission and
thus does not result in any change in the conflict resolution graph.

The conflict graph for the mutual exclusion on N processes is a complete graph
on N nodes. For any philosopher to eat, she will need to request only those forks
that she is missing. This can be at most N — 1. This results in 2(N — 1) messages in
the worst case. Note that if a process never requests critical section after some time,
it will eventually relinquish all its forks and will not be disturbed after that. Thus,
the number of messages in the average case is proportional only to the number of
processes who are active in accessing the resource.

8.7 Token-Based Algorithms

Token-based algorithms use the auxiliary resource token to resolve conflicts in a
resource coordination problem. The issue in these algorithms is how the requests for
the token are made, maintained, and served. A centralized algorithm is an instance
of a token-based algorithm in which the coordinator is responsible for keeping the
token. All the requests for the token go to the coordinator.

In a token ring approach, all processes are organized in a ring. The token
circulates around the ring. Any process that wants to enter the critical section

8.7. TOKEN-BASED ALGORITHMS 143

public class DinMutex extends Process implements Lock {
private static final int thinking = 0, hungry = 1, eating = 2;
boolean fork [] = null, dirty[] = null, request[] = null;
int myState = thinking;
public DinMutex{Linker initComm}) {
super (initComm);
fork = new boolean[N]; dirty = new boolean|[N];
request = new boolean|N];
for (int i = 0; 1 < N; i1+4){
if ((myld > i) && (isNeighbor(i))} {

fork [i] = false; request[i] = true;
} else { fork[i] = true; request[i] = false; }
dirty [i] = true;

public synchronized void requestCS () {
myState = hungry;
if (haveForks ()) myState = eating;
else
for (int i = 0; 1 < N; i+4+4)
if (request[i] && !fork[i]) {
sendMsg (i, ”"Request”); request[i] = false;

¥
while (myState != eating) myWait();

public synchronized void releaseCS () {
myState = thinking;
for (int i = 0; i < N; i++4) {
dirty [i] = true;
if (request[i]) { sendMsg(i, ”"Fork”); fork[i] = false; }
}

}
boolean haveForks () {
for (int i = 0; i < N; i++4)
if (!fork[i]) return false;
return true;

public synchronized void handleMsg(Msg m, int src, String tag) {
if (tag.equals(”Request”)) {

request [src] = true;
if ((myState != eating) && fork [src| && dirty [src]) {
sendMsg (src, "Fork”); fork[src| = false;
if (myState == hungry }{
sendMsg (src, "Request”}; request [src] = false;

} else if (tag.equals("Fork”)) {
fork [src] = true; dirty [src] = false;
if (haveForks ()) {
myState = eating; notify ();
}

Figure 8.8: An algorithm for dining philosopher problem

144 CHAPTER 8. RESOURCE ALLOCATION

waits for the token to arrive at that process. It then grabs the token and enters the
critical section. This algorithm is shown in Figure 8.9. The algorithm is initiated
by the coordinator who sends the token to the next process in the ring. The local
state of a process is simply the boolean variable haveToken which records whether
the process has the token. By ensuring that a process enters the critical section only
when it has the token, the algorithm guarantees the safety property trivially.

In this algorithm, the token is sent to the next process in the ring after a fixed
period of time. The reader is invited to design an algorithm in which the token
moves only on receiving a request.

8.8 Quorum-Based Algorithms

Token-based algorithms are vulnerable to failures of processes holding the token. We
now present quorum-based algorithms, which do not suffer from such single point of
failures. The main idea behind a quorum-based algorithm is that instead of asking
permission to enter the critical section from either just one process as in token-based
algorithms, or from all processes, as in timestamp-based algorithms in Chapter 2,
the permission is sought from a subset of processes called the request set. If any two
request sets have nonempty intersection, then we are guaranteed that at most one
process can have permission to enter the critical section. A simple example of this
strategy is that of requiring permission from a majority of processes. In this case, a
request set is any subset of processes with at least f—NQLI] processes.

Voting systems and crumbling walls are some examples of quorum systems. In
voting systems, each process is assigned a number of votes. Let the total number of
votes in the system be V. A quorum is defined to be any subset of processes with a
combined number of votes exceeding V/2. If each process is assigned a single vote,
then such a quorum system is also called a majority voting system.

When applications require read or write accesses to the critical section, then
the voting systems can be generalized to two kinds of quorums—read quorums and
write quorums. These quorums are defined by two parameters R and W such that
R+ W >V and W > V/2. For a subset of processes if the combined number of
votes exceeds R, then it is a read quorum and if it exceeds W, then it is a write
quorum.

To obtain quorums for erumbling walls, processes are logically arranged in rows
of possibly different widths. A quorum in a crumbling wall is the union of one full
row and a representative from every row below the full rows. For example, consider
a system with 9 processes such that Py to P3 are in row 1, Py to Py are in row 2
and P to Py are in row 3. In this system, { Py, Ps, Ps, Po} is a quorum because if
contains the entire second row and a representative, Py, from the third row. Let

8.8. QUORUM-BASED ALGORITHMS 145

import java. util . Timer;
public class CircToken extends Process implements Lock {
boolean haveToken;
boolean wantCS = false ;
public CircToken (Linker initComm, int coordinator) {
super (initComm);
haveToken = (myld == coordinator);

public synchronized void initiate () {
if (haveToken) sendToken (});

public synchronized void requestCS () {
wantCS = true;
while (!haveToken) myWait();

public synchronized void releaseCS (} {
wantCS = false;
sendToken ();

}
void sendToken () {
if (haveToken && !wantCS) {
int next = (myld + 1) % N;
Util . println (" Process 7 + myld + "has sent the token”);
sendMsg (next, ”token”);
haveToken = false;

}

public synchronized void handleMsg(Msg m, int src, String tag) {
if (tag.equals (”token”)) {

haveToken = true;

if (wantCS)
notify ();

else {
Util . mySleep (1000);
sendToken ();

Figure 8.9: A token ring algorithm for the mutual exclusion problem

146 CHAPTER 8. RESOURCE ALLOCATION

CW(ny,ng,...,ng) be a wall with d rows of width ny, ng, ..., ng, respectively. We
assume that processes in the wall are numbered sequentially from left to right and
top to bottom. Our earlier example of the crumbling wall can be concisely written as
CW(3,3,3). CW(1) denotes a wall with a single row of width 1. This corresponds
to a centralized algorithm. The crumbling wall CW(1, N — 1) is called the wheel
coterie because it has N — 1 “spoke” quorums of the form {1,i} fori =2,...,N
and one “rim” quorum {2,...,N}. In a triangular quorum system, processes are
arranged in a triangle such that the ith row has ¢ processes. If there are d rows, then
each quorum has exactly d processes. In a grid quorum system, N(= d?) processes
are arranged in a grid such that there are d rows each with d processes. A quorum
consists of the union of one full row and a representative from every row below the
full rows.

It is important to recognize that the simple strategy of getting permission to
enter the critical section from one of the quorums can result in a deadlock. In
the majority voting system, if two requests gather N/2 votes each (for an even
value of N), then neither of the requests will be granted. Quorum-based systems
require additional messages to ensure that the system is deadlock-free. The details
of ensuring deadlock freedom are left to the reader (see Problem 8.9).

8.9 Problems

8.1. How will you modify the centralized mutual exclusion algorithm to ensure
fairness. (Hint: Usec vector clocks modified appropriately.)

8.2. The mutual exclusion algorithm by Lamport requires that any request message
be acknowledged. Under what conditions does a process not need to send an
acknowledgment message for a request message?

8.3. Some applications require two types of access to the critical section—read ac-
cess and write access. For these applications, it is reasonable for two read
accesses to happen concurrently. However, a write access cannot happen con-
currently with either a read access or a write access. Modify algorithms pre-
sented in this chapter for such applications.

8.4. Build a multiuser Chat application in Java that ensures that a user can type
its message only in its critical section. Ensure that your system handles a
dynamic number of users, that is, allows users to join and leave a chat session.

8.5. Show that any finite directed acyclic graph has at least one source.

8.6. When can you combine the request token message with a fork message? With
this optimization, show that a philosopher with d neighbors needs to send or

8.10.

8.7.

8.8.

8.9.

8.10.

8.11.

8.12.

8.13.

BIBLIOGRAPHIC REMARKS 147

receive at most 2d messages before making transition from hungry state to
eating state.

Show that the solution to the dining problem does not deny the possibility of
simultaneous eating from different forks by different philosophers (when there
is no conflict in requirements of forks).

(due to Raymond [Ray89]) In the decentralized algorithm, a process is required
to send the message to everybody to request the token. Design an algorithm
in which all processes are organized in the form of a logical binary tree. The
edges in the tree are directed as follows. Each node except the one with the
token has exactly one outgoing edge such that if that edge is followed, it will
lead to the node with the token. Give the actions required for requesting
and releasing the critical section. What is the message complexity of your
algorithm?

(due to Maekawa [Mae85]) Let all processes be organized in a rectangular
grid. We allow a process to enter the critical section only if it has permission
from all the processes in its row and its column. A process grants permission
to another process only if it has not given permission to some other process.
What properties does this algorithm satisfy? What is the message complexity
of the algorithm? How will you ensure deadlock freedom?

Compare all the algorithms for mutual exclusion discussed in this chapter
using the following metrics: the response time and the number of messages.

Discuss how you will extend each of the mutual exclusion algorithms to tolerate
failure of a process. Assume perfect failure detection of a process.

Extend all algorithms discussed in this chapter to solve k-mutual exclusion
problem, in which at most k processes can be in the critical section concur-
rently.

(due to Agrawal and El-Abbadi [AEA91]) In the tree-based quorum system,
processes are organized in a rooted binary tree. A quorum in the system is
defined recursively to be either the union of the root and a quorum in one of
the two subtrees, or the union of quorums of subtrees. Analyze this coterie
for availability and load.

8.10 Bibliographic Remarks

Lamport’s algorithm for mutual exclusion [Lam78] was initially presented as an
application of logical clocks. The number of messages per invocation of the critical

148 CHAPTER 8. RESOURCE ALLOCATION

section in Lamport’s algorithm can be reduced as shown by Ricart and Agrawala
[RAS81]. The token-based algorithm can be decentralized as shown by Suzuki and
Kasami [SK85]). The tree-based algorithm in the problem set is due to Raymond
[Ray89]. The use of majority voting systems for distributed control is due to Thomas
[Tho79}, and the use of weighted voting systems with R and W parameters is due
to Gifford [Gif79]. Maekawa [Mae85] introduced grid-based quorums and quorums
based on finite projective planes. The tree-based quorum in the problem set is due
to Agrawal and El-Abbadi [AEA91]. The triangular quorum systems are due to
Lovasz [Lov73]. The notion of crumbling walls is due to Peleg and Wool [PW95].

Chapter 9

Global Snapshot

9.1 Introduction

One of the difficulties in a distributed system is that no process has access to the
global state of the system, that is, it is impossible for a process to know the current
global state of the system (unless the computation is frozen}. For many applica-
tions, it is sufficient to capture a global state that happened in the past instead of
the current global state. For example, in case of a failure the system can restart
from such a global state. As another example, suppose that we were interested in
monitoring the system for the property that the token in the system has been lost.
This property is stable, that is, once it is true it stays true forever; therefore, we can
check this property on an old global state. If the token is found to be missing in the
old global state, then we can conclude that the token is also missing in the current
global state. An algorithm that captures a global state is called a global snapshot
algorithm.

A global snapshot algorithm is a useful tool in building distributed systems.
Computing a global snapshot is beautifully exemplified by Chandy and Lamport as
the problem of taking a picture of a big scene such as a sky filled with birds. The
scene is so big that it cannot be captured by a single photograph, and therefore
multiple photographs must be taken and composed together to form the global
picture. The multiple photographs cannot be taken at the same time instant because
there is no shared physical clock in a distributed system. Furthermore, the act of
taking a picture cannot change the behavior of the underlying process. Thus birds
may fly from one part of the sky to the other while the local pictures are being taken.
Despite these problems, we require that the composite picture be meaningful. For

149

150 CHAPTER 9. GLOBAL SNAPSHOT

example, it should give us an accurate count of the number of birds. We next define
what is meant by “meaningful” global state.

Consider the following definition of a global state: A global state is a set of local
states that occur simultaneously. This definition is based on physical time. We use
the phrase “time-based model” to refer to such a definition. A different definition of
a global state based on the “happened-before model” is possible. In the happened-
before model, a global state is a set of local states that are all concurrent with
each other. By concurrent, we mean that no two states have a happened-before
relationship with each other. A global state in the time-based model is also a global
state in the happened-before model; if two states occur simultaneously, then they
cannot have any happened-before relationship. However, the converse is not true;
two concurrent states may or may not occur simultaneously in a given execution.

We choose to use the definition for the global state from the happened-before
model for two reasons.

1. It is impossible to determine whether a given global state occurs in the time-
based model without access to perfectly synchronized local clocks. For exam-
ple, the statement “there exists a global state in which more than two processes
have access to the critical section” cannot be verified in the time-based model.
In the happened-before model, however, it is possible to determine whether a
given global state occurs.

2. Program properties that are of interest are often more simply stated in the
happened-before model than in the time-based model, which makes them eas-
ier to understand and manipulate. This simplicity and elegance is gained be-
cause the happened-before model inherently accounts for different execution
schedules. For example, an execution that does not violate mutual exclusion
in the time-based model may do so with a different execution schedule. This
problem is avoided in the happened-before model.

It is instructive to observe that a consistent global state is not simply a product
of local states. To appreciate this, consider a distributed database for a banking ap-
plication. Assume for simplicity that there are only two sites that keep the accounts
for a customer. Also assume that the customer has $500 at the first site and $300
at the second site. In the absence of any communication between these sites, the
total money of the customer can be easily computed to be $800. However, if there
is a transfer of $200 from site A to site B, and a simple procedure is used to add up
the accounts, we may falsely report that the customer has a total of $1000 in his or
her accounts (to the chagrin of the bank). This happens when the value at the first
site is used before the transfer and the value at the second site after the transfer. It

9.2. CHANDY AND LAMPORT’S GLOBAL SNAPSHOT ALGORITHM 151

is easily seen that these two states are not concurrent. Note that $1000 cannot be
justified even by the messages in transit (or, that “the check is in the mail”).

Gy

\
\

!
\ I
1]
O |
M\ : N :
1
Py ; .
!
1
1
!
!

Figure 9.1: Consistent and inconsistent cuts

Figure 9.1 depicts a distributed computation. The dashed lines labeled G; and
G4 represent global states that consist of local states at P;, Pa, and Pj, where Gy
and G intersect the processes. Because a global state can be visualized in such a
figure as a cut across the computation, the term, “cut” is used interchangeably with
“olobal state.” The cut G1 in this computation is not consistent because it records
the message my as having been received but not sent. This is clearly impossible.
The cut Gg is consistent. The message m3 in this cut has been sent but not yet
received. Thus it is a part of the channel from process P; to Ps.

Formally, in an event-based model of a computation (E, —), with total order <
on events in a single process, we define a cut as any subset F' C F such that

feFrhne<f=ecF
We define a consistent cut, or a global snapshot, as any subset F' C E such that

feFANe— f=ecPF.

9.2 Chandy and Lamport’s Global Snapshot Algorithm

In this section, we describe an algorithm to take a global snapshot (or a consistent
cut) of a distributed system. Our example of the distributed database in the pre-
vious section illustrates the importance of recording only the consistent cuts. The
computation of the snapshot is initiated by one or more processes. We assume that
all channels are unidirectional and satisfy the FIFO property. Assuming that chan-
nels are unidirectional is not restrictive because a bidirectional channel can simply

152 CHAPTER 9. GLOBAL SNAPSHOT

be modeled by using two unidirectional channels. The assumption that channels are
FIFO is essential to the correctness of the algorithm as explained later.

The interface that we study in this chapter is called Camera. It allows any
application that uses a camera to invoke the method globalState, which records a
consistent global state of the system.

public interface Camera extends MsgHandler {
void globalState ();
t

The class Camera can be used by any application that implements the interface
CamUser. Thus, the application is required to implement the method localState,
which records the local state of the application whenever invoked.

public interface CamUser extends MsgHandler {
void localState ();
}

The algorithm is shown in Figure 9.3. We associate with each process a variable
called color that is either white or red. Intuitively, the computed global snapshot
corresponds to the state of the system just before the processes turn red. All pro-
cesses are initially white. After recording the local state, a process turns red. Thus
the state of a local process is simply the state just before it turned red.

There are two difficulties in the design of rules for changing the color for the
global snapshot algorithm: (1) we need to ensure that the recorded local states are
mutually concurrent, and (2) we also need a mechanism to capture the state of the
channels. To address these difficulties, the algorithm relies on a special message
called a marker. Once a process turns red, it is required to send a marker along all
its outgoing channels before it sends out any message. A process is required to turn
red on receiving a marker if it has not already done so. Since channels are FIFO, the
above mentioned rule guarantees that no white process ever receives a message sent
by a red process. This in turn guarantees that local states are mutually concurrent.

Now let us turn our attention to the problem of computing states of the channels.
Figure 9.2 shows that messages in the presence of colors can be of four types:

1. ww messages: These are the messages sent by a white process to a white
process. These messages correspond to the messages sent and received before
the global snapshot.

2. rr messages: These are the messages sent by a red process to a red process.
These messages correspond to the messages sent and received after the global
snapshot.

9.2. CHANDY AND LAMPORT’S GLOBAL SNAPSHOT ALGORITHM 153

rr
wwW

Figure 9.2: Classification of messages

3. rw messages: These are the messages sent by a red process received by a white
process. In the figure, they cross the global snapshot in the backward direction.
The presence of any such message makes the global snapshot inconsistent. The
reader should verify that such messages are not possible if a marker is used.

4. wr messages: These are the messages sent by a white process received by a
red process. These messages cross the global snapshot in the forward direction
and form the state of the channel in the global snapshot because they are in
transit when the snapshot is taken.

To record the state of the channel, P; starts recording all messages it receives from
F; after turning red. Since P; sends a marker to P; on turning red, the arrival of the
marker at P; from P; indicates that there will not be any further white messages
from P; sent to P;. It can, therefore, stop recording messages once it has received
the marker.

The program shown in Figure 9.3 uses chan[k] to record the state of the kth
incoming channel and closed [k] to stop recording messages along that channel. In
the program, we say that P; is a neighbor of P; if there is a channel from P; to P;.
In our implementation, we have assumed that channels are bidirectional.

Lines 10-17 initialize the variables of the algorithm. All channels are initialized
to empty. For each neighboring process Py, closed[k] is initjalized to false. The
method globalState turns the process red, records the local state, and sends the
marker message on all outgoing channels. Lines 25-34 give the rule for receiving
a marker message. If the process is white, it turns red by invoking globalState.
Line 27 sets closed [src] to true because there cannot be any message of type wrin
that channel after the marker is received. The method isDone determines whether

154 CHAPTER 9. GLOBAL SNAPSHOT

the process has recorded its local state and all incoming channels. Lines 29-33 print
all the messages recorded as part of the channels. Lines 36-38 handle application
messages. The condition on line 36 is true if the application message is of type wr.

In the algorithm, any change in the value of color must be reported to all
neighbors. On receiving any such notification, a process is required to update its own
color. This may result in additional messages because of the method globalState.
The net result is that if one process turns red, all processes that can be reached
directly or indirectly from that process also turn red.

The Chandy-Lamport algorithm requires that a marker be sent along all chan-
nels. Thus it has an overhead of e messages, where e is the number of unidirectional
channels in the system. We have not discussed the overhead required to combine
local snapshots into a global snapshot. A simple method would be for all processes
to send their local snapshots to a predetermined process, say, Pp.

9.3 Global Snapshots for non-FIFO Channels

We now describe an algorithm due to Mattern that works even if channels are not
FIFO. We cannot rely on the marker any more to distinguish between white and
red messages. Therefore, we include the color in all the outgoing messages for any
process besides sending the marker. Further, even after P; gets a red message from
P; or the marker, it cannot be sure that it will not receive a white message on that
channel. A white message may arrive later than a red message due to the overtaking
of messages. To solve this problem we include in the marker the total number of
white messages sent by that process along that channel. The receiver keeps track
of the total number of white messages received and knows that all white messages
have been received when this count equals the count included in the marker. We
leave the details of the algorithm to the reader as an exercise.

9.4 Channel Recording by the Sender

Chandy and Lamport’s algorithm requires the receiver to record the state of the
channel. Since messages in real channels may get lost, it may be advantageous for
senders to record the state of the channel. We will assume that control messages
can be sent over unidirectional channels even in the reverse direction.

The mechanism to ensure that we do not record inconsistent global state is
based on the coloring mechanism discussed earlier. A process sends white messages
before it has recorded its local state and red messages after it has recorded the local
state. By ensuring that a white process turns red before accepting a red message,

9.4. CHANNEL RECORDING BY THE SENDER 155

1 import java.util .*;
2 public class RecvCamera extends Process implements Camera {

static final int white = 0, red = 1;
int myColor = white;
boolean closed [];
CamUser app;
LinkedList chan[] = null;
public RecvCamera(Linker initComm, CamUser app) {
super (initComm);
closed = new boolean [N];
chan = new LinkedList [N];
for (int i = 0; i < N; i+4)
if (isNeighbor (i)) {

closed [i] = false;
chan[i] = new LinkedList ();
} else closed{i] = true;

this.app = app;

public synchronized void globalState () {
myColor = red;
app. localState (); // record local State;
sendToNeighbors (" marker”, myld); // send Markers

public synchronized void handleMsg(Msg m, int src, String tag) {
if (tag.equals ("marker”)) {
if (myColor == white) globalState ();
closed [src] = true;
if (isDone ()){
System.out . println (? Channel State: Transit Messages ”)
for (int i = 0; i < N; i++)
if (isNeighbor (i))
while (!chan[i]. isEmpty ())
System . out . println (
({Msg) chan[i]. removeFirst ()). toString ());

}
} else { // application message
if ((myColor == red) && (!closed [src]))
chan{src|. add(m);
app. handleMsg (m, src, tag); // give it to app

boolean isDone () {
if (myColor == white) return false;
for (int i = 0; i < N; i++)
if (!closed[i]) return false;
return true;

Figure 9.3: Chandy and Lamport’s snapshot algorithm

156 CHAPTER 9. GLOBAL SNAPSHOT

we are guaranteed that there are no rw messages and therefore we will record only
a consistent global snapshot.

Now let us turn our attention to recording the state of channels. We assume
that the sender records all the messages that it sends out on any outgoing channel
before it turned red. Whenever a process turns red, it sends a marker message
on all its incoming channels (in the reverse direction) indicating the messages it
has received on that channel so far. The sender can now compute the state of the
channel by removing from its buffer all messages that have been received according
to the marker.

In this scheme, the sender may end up storing a large number of messages
before the marker arrives. Assuming that all control messages (marker and ac-
knowledgment messages) follow FIFO ordering, we can reduce the storage burden
at the sender by requiring the receiver to send acknowledgments. When the sender
receives an acknowledgment and has not received the marker, it can delete the mes-
sage from the storage. To identify each message uniquely, we use sequence numbers
with messages as encapsulated by the class SeqMessage given below.

public class SegMessage {
Msg m;
int seqNo;
public SeqMessage (Msg m, int seqNo) {
this . m = m;
this . seqNo = seqNo;

}
public int getSeqNo () {
return seqNo;

}

public Msg getMessage () {
return m;

}

Thus, the algorithm can be summarized by the following rules.

1. Every process is white before recording its state and red after recording its
state. A white process sends white messages and a red process sends a red
message.

2. A white process turns red before accepting a red message or a marker.

3. On turning red, a process sends markers on all incoming channels in the reverse
direction.

9.5. APPLICATION: CHECKPOINTING A DISTRIBUTED APPLICATION 157

4. A white process acknowledges a white message.

5. A white process records any message sent. On receiving an acknowledgment,
the corresponding message is removed from the record.

Since this algorithm requires every application message to include the color and
the sequence number, we extend the Linker class as shown in Figure 9.4. The method
sendMsg works as follows. If the message is either a marker or an acknowledgment
message, then no special action is required, and super.sendMsg is invoked. If it
is a white application message, then it is recorded as part of the channel history.
The method sendMsg also appends the tag “white” or “red” with the message and
includes a sequence number.

The algorithm for recording a global snapshot with channel states recorded by
the sender is shown in Figure 9.5. For simplicity we have assumed a completely
connected topology.

'The method globalState is identical to Chandy and Lamport’s algorithm ex-
cept that the markers are sent on the incoming channels in the reverse direc-
tion. When a marker message is received, a white process invokes the method
globalState at line 26. Also, that incoming channel is closed at line 27. When an
acknowledgement message is received then the corresponding message is removed
from the channel history at line 31. This is accomplished by the method removeM.
When an application message is received, a white process sends an acknowledgment
for a white message at line 37. If the message is red, then the process also turns red
by invoking globalState at line 39.

Note that this algorithm also does not require channels for application messages
to be FIFO. If channels are known to be FIFO then the receiver only needs to
record the sequence number of the last message it received before turning red. The
algorithm does require the ability to send control messages in the reverse direction for
any application channel. Furthermore, it requires control messages to follow FIFO
order. (Why?) If the underlying network does not support FIFO, then sequence
numbers can be used to ensure FIFO ordering of messages.

9.5 Application: Checkpointing a Distributed Applica-
tion

As a simple example, let us try our snapshot algorithm on the circulating token
algorithm discussed in the Chapter 2. Figure 9.6 gives a program that constructs a
circulating token and a camera. The computation of the global snapshot is initiated
by the method globalState.

158 CHAPTER 9. GLOBAL SNAPSHOT

import java.util .*; import java.net.x; import java.io .#;
public class CameraLinker extends Linker {
static final int white = 0, red = 1;
int seqNo[] = null;
SenderCamera cam;
public CameraLinker(String basename, int myld, int numProc)
throws Exception {
super (basename, myld, numProc);

seqNo = new int [numProc];
for (int i = 0; i < numProc; i++)
seqNo[i] = 0;

public void initCam (SenderCamera cam){
this.cam = cam;

public void sendMsg(int destId, String tag, String msg) {
if ((tag.equals("marker”)) || (tag.equals(”ack”)))
super . sendMsg (destId, tag, msg);
else {// send seq numbers with app msgs
seqNo [destId |+ +;
Msg m = new Msg(myld, destld, tag, msg);
if (cam.myColor == white) {
cam. recordMsg (destId , new SeqMessage (m, seqNo[destId]));
super . sendMsg (destId , " white”,
String . valueOf (seqNo[destId]) +” 7+ m. toString ()+” 7);
1 else
super.sendMsg{destId, "red”,
String . valueOf (seqNo[destId]) +” 7+ m. toString ()+” 7);

Figure 9.4: Linker extended for use with SenderCamera,

9.5. APPLICATION: CHECKPOINTING A DISTRIBUTED APPLICATION 159

1 import java. util .x;
2 public class SenderCamera extends Process implements Camera {

static final int white = 0, red = 1;
public int myColor = white;
CamUser app;
boolean closed [];
MsgList outChan[] = null;
public SenderCamera(CameraLinker initComm, CamUser app) {
super (initComm);
this.app = app;
closed = new boolean|N]; outChan = new MsgList [N];
for (int i = 0; i < N; i++)
if (isNeighbor (i)) {

closed [i] = false;
outChan|[i] = new MsgList ();
} else closed|[i] = true;

initComm. initCam (this);

public synchronized void globalState () {
myColor = red;
app. localState (}; // record local State;
sendToNeighbors (" marker”, myld); // send Markers

public synchronized void handleMsg(Msg m, int src, String tag){
if (tag.equals ("marker”)) {
if (myColor == white) globalState ();
closed [src] = true;
if (isDone()) System.out.println ("Done recording”);
} else if (tag.equals(”ack”)} {
int seqNo = m. getMessagelnt ();
outChan|src |. removeM (seqNo);
} else { // application message
StringTokenizer st=mew StringTokenizer (m. getMessage ()4+"#")]
int seqNo = Integer . parselnt (st.nextToken ());
Msg appMsg = Msg. parseMsg (st);
if ((myColor == white) && (tag.equals (” white”)))
sendMsg (sre, "ack”, seqNo);
if ((myColor == white) && (tag.equals("red”)))
globalState ();
app . handleMsg (appMsg, src, appMsg. getTag());

boolean isDone () {
if (myColor == white) return false;
for (int i = 0; i < N; i+4)
if (!closed[i]) return false;
return true;

public synchronized void recordMsg(int destld, SeqMessage sm){
outChan [destId |. add(sm};
}

Figure 9.5: A global snapshot algorithm based on sender recording

ftps

ftps

160 CHAPTER 9. GLOBAL SNAPSHOT

import java.util . Random;
public class CameraTester {
public static void main{String [] args) throws Exception {
String baseName = args [0];
int myld = Integer . parselnt (args[1]);
int numProc = Integer. parselnt (args [2]);
Camera camera = null;
CamCircToken sp = null;
if (args [3]. equals ("RecvCamera”)) {
Linker comm = new Linker (baseName, myld, numProc);
sp = new CamCircToken{comm, 0);
camera = new RecvCamera(comm, sp);

}
if (args[3]. equals (”SenderCamera”)) {

Cameralinker comm = new CameraLinker (args [0], myld, numProc};
sp = new CamCircToken(comm, 0);
camera = new SenderCamera(comm, sp);

}

sp.initiate ();

for (int i 0; i < numProc; i++)
if (i !'= myld) (new ListenerThread (i, camera)). start ();
if (myld == 0) camera. globalState ();

Figure 9.6: Invocation of the global snapshot algorithm

9.6. PROBLEMS 161

The global snapshot algorithm can be used for providing fault tolerance in dis-
tributed systems. On failure, the system can be restarted from the last snapshot.
Global snapshots can also be used for distributed debugging. Inspection of interme-
diate snapshots may sometimes reveal the source of an error.

9.6 Problems

9.1.

9.2.

9.3.

9.4.

9.6.

9.7.

9.8.

9.9.

Show that if G and H are consistent cuts of a distributed computation (E, —),
then so are GUH and G N H.

The global snapshot algorithms discussed in this chapter do not freeze the un-
derlying computation. In some applications it may be okay for the underlying
application to be frozen while the snapshot algorithm is in progress. How can
the snapshot algorithm be simplified if this is the case? Give an algorithm for
global snapshot computation and its Java implementation.

Extend the Java implementation of Chandy and Lamport’s algorithm to allow
repeated computation of global snapshots.

The original algorithm proposed by Chandy and Lamport does not require
FIFO but a condition weaker than that. Specify the condition formally.

. How can you use Lamport’s logical clock to compute a consistent global snap-

shot?

Give Java implementation of global snapshot algorithm when channels are not
FIFO.

Extend Chandy and Lamport’s algorithm to compute a transitless global state.
A consistent global state is transitless if there are no messages in any channel
in that global state. Note that a process may have to record its local state
multiple times until the recorded local state can be part of a transitless global
state. Give Java implementation of your algorithm.

Give an example of a distributed computation in the interleaving model (with
the events of the superimposed global snapshot algorithm) in which the recorded
global snapshot does not occur in the computation.

How will you use snapshot algorithms to detect that the application has
reached a deadlock state?

162 CHAPTER 9. GLOBAL SNAPSHOT

9.7 Bibliographic Remarks

Chandy and Lamport [CL85] were the first to give an algorithm for computation
of a meaningful global snapshot (a colorful description of this algorithm is given by
Dijkstra [Dij85]). Spezialetti and Kearns have given efficient algorithms to dissem-
inate a global snapshot to processes initiating the snapshot computation [SK8&6].
Bouge [Bou87] has given an efficient algorithm for repeated computation of snap-
shots for synchronous computations. In the absence of the FIFO assumption, as
shown by Taylor [Tay89], any algorithm for a snapshot is either inhibitory (that is,
it may delay actions of the underlying application) or requires piggybacking of con-
trol information on basic messages. Lai and Yang [LY87] and Mattern [Mat93] have
given snapshot algorithms that require only the piggybacking of control information.
Helary [Hel89] has proposed an inhibitory snapshot algorithm.

Chapter 10

Global Properties

10.1 Introduction

In this chapter, we introduce another useful tool for monitoring distributed compu-
tations. A distributed computation is generally monitored to detect if the system
has reached a global state satisfying a certain property. For example, a token ring
system may be monitored for the loss of the token. A distributed database sys-
tem may be monitored for deadlocks. The global snapshot algorithm discussed in
Chapter 9 can be used to detect a stable predicate in a distributed computation.
To define stable predicates, we use the notion of the reachability of one global state
from another. For two consistent global states G and H, we say that G < H if H is
reachable from G. A predicate B is stable iff

VG,H :G < H: B(G) = B(H)

In other words, a property B is stable if once it becomes true, it stays true. Some
examples of stable properties are deadlock, termination, and loss of a token. Once a
system has deadlocked or terminated, it remains in that state. A simple algorithm
to detect a stable property is as follows. Compute a consistent global state. If the
property B is true in that global state, then we are done. Otherwise, we repeat the
process after some period of time. It is easily seen that if the stable property ever
becomes true, the algorithm will detect it. Conversely, if the algorithm detects that
some stable property B is true, then the property must have become true in the
past (and is therefore also true currently).

Formally, if the global snapshot computation was started in the global state G,
the algorithm finished by the global state Gy, and the recorded state is G, then

163

164 CHAPTER 10. GLOBAL PROPERTIES

the following is true:
1. B(G.) = B(Gy)
2. ﬂB(G*) = —'B(GZ)

Note that the converses of statements 1 and 2 may not hold.
At this point it is important to observe some limitations of the snapshot algo-
rithm for detection of global properties:

e The algorithm is not useful for unstable predicates. An unstable predicate
may turn true only between two snapshots.

e In many applications (such as debugging), it is desirable to compute the least
global state that satisfies some given predicate. The snapshot algorithm cannot
be used for this purpose.

e The algorithm may result in an excessive overhead depending on the frequency
of snapshots. A process in Chandy and Lamport’s algorithm is forced to take a
local snapshot on receiving a marker even if it knows that the global snapshot
that includes its local snapshot cannot satisfy the predicate being detected. For
example, suppose that the property being detected is termination. Clearly, if
a process is not terminated, then the entire system could not have terminated.
In this case, computation of the global snapshot is a wasted effort.

10.2 Unstable Predicate Detection

In this section, we discuss an algorithm to detect unstable predicates. We will
assume that the given global predicate, say, B, is constructed from local predicates
using boolean connectives. We first show that B can be detected using an algorithm
that can detect g, where ¢ is a pure conjunction of local predicates. The predicate
B can be rewritten in its disjunctive normal form. Thus

B=qgVv...Vag k>1

where each ¢; is a pure conjunction of local predicates. Next, observe that a global
cut satisfies B if and only if it satisfies at least one of the ¢;’s. Thus the problem
of detecting B is reduced to solving & problems of detecting g, where ¢ is a pure
conjunction of local predicates.

As an example, consider a distributed program in which x, ¥, and z are in three
different processes. Then,

even(z) A ((y < 0) V (z > 6))

10.2. UNSTABLE PREDICATE DETECTION 165

can be rewritten as
(even(z) A (y < 0)) V (even(z) A (z > 6))

where each disjunct is a conjunctive predicate.

Note that even if the global predicate is not a boolean expression of local pred-
icates, but is satisfied by a finite number of possible global states, it can also be
rewritten as a disjunction of conjunctive predicates. For example, consider the
predicate (z = y), where z and y are in different processes. (z = y) is not a local
predicate because it depends on both processes. However, if we know that z and y
can take values {0, 1} only, we can rewrite the preceding expression as follows:

(@=0A(y=0)V(z=1)Ay=1).

Each of the disjuncts in this expression is a conjunctive predicate.

In this chapter we study methods to detect global predicates that are conjunc-
tions of local predicates. We will implement the interface Sensor, which abstracts
the functionality of a global predicate evaluation algorithm. This interface is shown
below:

public interface Sensor extends MsgHandler {
void localPredicateTrue (VectorClock vc);
}

Any application that uses Sensor is required to call localPredicateTrue when-
ever its local predicate becomes true and provide its VectorClock. It also needs to
implement the following interface:

public interface SensorUser extends MsgHandler {
void globalPredicateTrue (int G[]);
void globalPredicateFalse (int pid);

The class that implements Sensor calls these methods when the value of the
global predicate becomes known. If the global predicate is true in a consistent
global state G, then the vector clock for the global state is passed as a parameter to
the method. If the global predicate is false, then the process id of the process that
terminated is passed as a parameter.

We have emphasized conjunctive predicates and not disjunctive predicates. The
reason is that disjunctive predicates are quite simple to detect. To detect a disjunc-
tive predicate I} VIs V...V Iy, where [; denotes a local predicate in the process P;,

166 CHAPTER 10. GLOBAL PROPERTIES

it is sufficient for the process P; to monitor [;. If any of the processes finds its local
predicate true, then the disjunctive predicate is true.

Formally, we define a weak conjunctive predicate (WCP) to be true for a given
computation if and only if there exists a consistent global cut in that run in which all
conjuncts are true. Intuitively, detecting a weak conjunctive predicate is generally
useful when one is interested in detecting a combination of states that is unsafe. For
example, violation of mutual exclusion for a two-process system can be written as
“P| is in the critical section and P» is in the critical section.” It is necessary and
sufficient to find a set of incomparable states, one on each process in which local
predicates are true, to detect a weak conjunctive predicate. We now present an
algorithm to do so. This algorithm finds the least consistent cut for which a WCP
is true.

In this algorithm, one process serves as a checker. All other processes involved
in detecting the WCP are referred to as application processes. Each application
process checks for local predicates. It also maintains the vector clock algorithm.
Whenever the local predicate of a process becomes true for the first time since the
most recently sent message (or the beginning of the trace), it generates a debug
message containing its local timestamp vector and sends it to the checker process.

Note that a process is not required to send its vector clock every time the local
predicate is detected. If two local states, say, s and ¢, on the same process are
separated only by internal events, then they are indistinguishable to other processes
so far as consistency is concerned, that is, if u is a local state on some other process,
then s||u if and only if ¢|lu. Thus it is sufficient to consider at most one local state
between two external events and the vector clock need not be sent if there has been
no message activity since the last time the vector clock was sent.

The checker process is responsible for searching for a consistent cut that satisfies
the WCP by considering a sequence of candidate cuts. If the candidate cut either
is not a consistent cut or does not satisfy some term of the WCP, the checker can
efficiently eliminate one of the states along the cut. The eliminated state can never
be part of a consistent cut that satisfies the WCP. The checker can then advance
the cut by considering the successor to one of the eliminated states on the cut. If
the checker finds a cut for which no state can be eliminated, then that cut satisfies
the WCP and the detection algorithm halts. The algorithm for the checker process
is shown in Figure 10.1.

The checker receives local snapshots from the other processes in the system.
These messages are used by the checker to create and maintain data structures that
describe the global state of the system for the current cut. The data structures are
divided into two categories: queues of incoming messages and those data structures
that describe the state of the processes.

The queue of incoming messages is used to hold incoming local snapshots from

10.2. UNSTABLE PREDICATE DETECTION 167

import java. util .x;
public class CentSensor extends Process implements Runnable, Sensor {
final static int red = 0, green = 1;
LinkedList q[]; // q/i] stores wvector timestamps from process i
int cut [][], color|[], gstate [];
boolean finished []; // process i finished
SensorUser app; final int checker = Symbols. coordinator ;
public CentSensor (VCLinker initComm, SensorUser app) {
super (initComm);
cut = new int [N][N]; q = new LinkedList [N};

color = new int[N]; gstate = new int[N]; finished = new boolean[N];
for (int 1 = 0; i < N; i++4+){
q[i] = new LinkedList (); color[i] = red; finished [i] = false;

this.app = app;
if (myld == checker) new Thread(this). start ();

public synchronized void localPredicateTrue (VectorClock ve){
if (myld == checker)
handleMsg (new Msg (0,0, ”trueVC”, vc.toString ()),0, "trueVC”);
else
({ VCLinker)comm). simpleSendMsg (checker ,” trueVC” , ve. toString ());

public synchronized void run{) {
int i = Util.searchArray (color, red);
while (i != -1)
while (q[i]. isEmpty () && !finished [i]) myWait();
if (finished [i]) {
app. globalPredicateFalse (i);
return;

cut{i] = (int[]) qli]. removeFirst ();
paintState (i);
i = Util.searchArray (color, red);

for (int j = 0; j < N; j++) gstate [j] = cut{jl[j];
app. globalPredicateTrue (gstate);

public synchronized void handleMsg(Msg m, int src, String tag){
if (tag.equals ("truevC”)) {
int [] receiveTag = new int [N];
Util.readArray (m. getMessage (), receiveTag);
q[src]. add(receiveTag); notify ();
} else if (tag.equals(”finished”)) {
finished [src] = true; notify ();
}

void paintState (int i) {

color[i] = green;
for (int j = 0; j < N; j++)
if (color[j] == green)
if (Util.lessThan(cut{i], cut[j]})) color[i] = red;
else if (Util.lessThan{cut[j], cut[i])) color[j]| = red;

Figure 10.1: WCP (weak conjunctive predicate) detection algorithm—checker pro-
cess.

168 CHAPTER 10. GLOBAL PROPERTIES

application processes. We require that messages from an individual process be
received in FIFO order. We abstract the message-passing system as a set of N
FIFO queues, one for each process. We use the notation ¢[l1...N] to label these
queues in the algorithm.

The checker also maintains information describing one state from each process
P,. cut[i] represents the state from P; using the vector clock. Thus, cut[i][j]
denotes the j** component of the vector clock of cut[i]. The color{il of a state
cut [1] is either red or green and indicates whether the state has been eliminated in
the current cut. A state is green only if it is concurrent with all other green states.
A state is red only if it cannot be part of a consistent cut that satisfies the WCP.

The aim of advancing the cut is to find a new candidate cut. However, we can
advance the cut only if we have eliminated at least one state along the current
cut and if a message can be received from the corresponding process. The data
structures for the processes are updated to reflect the new cut. This is done by the
procedure paintState. The parameter i is the index of the process from which a
local snapshot was most recently received. The color of cut[i] is temporarily set
to green. It may be necessary to change some green states to red to preserve the
property that all green states are mutually concurrent. Hence, we must compare
the vector clock of cut[1] to each of the other green states. Whenever the states
are comparable, the smaller of the two is painted red.

Let N denote the number of processes involved in the WCP and m denote the
maximum number of messages sent or received by any process.

The main time complexity is involved in detecting the local predicates and time
required to maintain vector clocks. In the worst case, one debug message is generated
for each program message sent or received, so the worst-case message complexity is
O(m). In addition, program messages have to include vector clocks.

The main space requirement of the checker process is the buffer for the local
snapshots. Each local snapshot consists of a vector clock that requires O(N) space.
Since there are at most O(mN) local snapshots, O(N%m) total space is required to
hold the component of local snapshots devoted to vector clocks. Therefore, the total
amount of space required by the checker process is O(N%m).

We now discuss the time complexity of the checker process. Note that it takes
only two comparisons to check whether two vectors are concurrent. Hence, each
invocation of paintState requires at most N comparisons. This function is called
at most once for each state, and there are at most mN states. Therefore, at most
N?%m comparisons are required by the algorithm.

10.3. APPLICATION: DISTRIBUTED DEBUGGING 169

10.3 Application: Distributed Debugging

Assume that a programmer is interested in developing an application in which there
is a leader or a coordinator at all times. Since the leader has to perform more work
than other nodes, the programmer came up with the idea of circulating a token in
the network and requiring that whichever node has the token acts as the leader.
We will assume that this is accomplished using the class CircToken discussed in
Chapter 8. Now, the programmer wants to ensure that his program is correct.
He constructs the bad condition as “there is no coordinator in the system.” This
condition can be equivalently written as “P; does not have the token, and Py does
not have the token,” and so on for all processes. To see if this condition becomes
true, the programmer must modify his program to send a vector clock to the sensor
whenever the local condition “does not have the token” becomes true. Figure 10.2
shows the circulating token application modified to work with the class Sensor.
Figure 10.3 shows the main application that runs the application with the sensor.
This program has an additional command-line argument that specifies which sensor
algorithm needs to be invoked as sensor—the centralized algorithm discussed in this
section, or the distributed algorithm discussed in the next section.

When the programmer runs the program, he may discover that the global con-
dition actually becomes true, that is, there is a global state in which there is no
coordinator in the system. This simple test exposed the fallacy in the programmer’s
thinking. The token may be in transit and at that time there is no coordinator in
the system.

We leave it for the reader to modify the circulating token application in which
a process continues to act as the leader until it receives an acknowledgment for the
token. This solution assumes that the application work correctly even if there are
two processes acting as the leader temporarily.

10.4 A Token-Based Algorithm for Detecting Predicates

Up to this point we have described detection of WCP on the basis of a checker
process. The checker process in the vector-clock-based centralized algorithm requires
O(N?m) time and space, where m is the number of messages sent or received by any
process and N is the number of processes over which the predicate is defined. We
now introduce token-based algorithms that distribute the computation and space
requirements of the detection procedure. The distributed algorithm has O(N?m)
time, space, and message complexity, distributed such that each process performs

O(Nm) work.

We introduce a new set of N monitor processes. One monitor process is mated

170

CHAPTER 10. GLOBAL PROPERTIES

public class SensorCircToken extends CircToken
implements MsgHandler, SensorUser {

VCLinker comm;
Sensor checker;
int coordinator;
int algoCode;
public SensorCircToken (VCLinker comm, int coordinator, int algoCode){
super (comm, coordinator);
this .comm = comm;
this . coordinator = coordinator ;
this. algoCode = algoCode;

public void initiate () {
if (algoCode == 0)
checker = new CentSensor (comm, this);
else
checker = new DistSensor (comm, this);
if (! haveToken) checker.localPredicateTrue (comm. ve);
super. initiate ();

public synchronized void sendToken () {
super . sendToken ();
if (! haveToken) checker.localPredicateTrue (comm. vc);

public synchronized void handleMsg(Msg m, int src, String tag){
checker . handleMsg (m, src, tag);
super . handleMsg (m, src, tag);

public void globalPredicateTrue (int v[]){
System . out . print i (7 sk & sk kokok ook ok sk ook ook sokok s ko sk sokok ok ook xokk)
System.out. println (" Predicate true at:” + Util.writeArray(v));

}

public void globalPredicateFalse (int pid){
System . out . Prinmtln (7 sk sk sk sororok otk ok ko sk okokok o kok R SOk kKRR kR K);
System.out. println (" Predicate false. Proc ” + pid + " finished”});

Figure 10.2: Circulating token with vector clock

10.4. A TOKEN-BASED ALGORITHM FOR DETECTING PREDICATES 171

public class SensorTester {
public static void main(String {] args) throws Exception {
String baseName = args [0];
int myld = Integer . parselnt (args[1]);
int numProc = Integer . parselnt (args [2]);
VCLinker comm = new VCLinker(baseName, myld, numProc);
int algoCode = Integer.parselnt (args {3]);
SensorCircToken sp = new SensorCircToken (
comm, Symbols. coordinator, algoCode);

sp.initiate ();
for (int i = 0; i < numProc; i++)

if (i !'= myld) (new ListenerThread (i, sp)). start ();

Figure 10.3: An application that runs circulating token with a sensor

to each application process. The application processes interact according to the
distributed application. In addition, the application processes send local snapshots
to monitor processes. The monitor processes interact with each other but do not
send any information to the application processes.

The distributed WCP detection algorithm shown in Figure 10.4 uses a unique
token. The token contains two vectors. The first vector is labeled G. This vector
defines the current candidate cut. If G[i] has the value k, then state k from process
P; is part of the current candidate cut. Note that all states on the candidate cut
satisfy local predicates. However, the states may not be mutually concurrent, that
is, the candidate cut may not be a consistent cut. The token is initialized with
Vi Gli] = 0.

The second vector is labeled color, where color|i] indicates the color for the
candidate state from application process F;. The color of a state can be either red
or green. If color[i] equals red, then the state (i, G[¢]) and all its predecessors have
been eliminated and can never satisfy the WCP. If color[i] = green, then there is
no state in G such that (7, G[7]) happened before that state. The token is initialized
with Vi : color]i] = red.

The token is sent to monitor process M; only when color[i] = red. When it
receives the token, M; waits to receive a new candidate state from P; and then
checks for violations of consistency conditions with this new candidate. This activity
is repeated until the candidate state does not causally precede any other state on
the candidate cut, that is, the candidate can be labeled green. Next, M; examines
the token to see if any other states violate concurrency. If it finds any j such that
(4, Gl7]) happened before (i, Gli]), then it makes color[j] red. Finally, if all states

172 CHAPTER 10. GLOBAL PROPERTIES

var
// vector clock from the candidate state
candidate: array{l..n] of integer initially 0;

Upon receiving the token (G, color)
while (color[i] = red) do
receive candidate from application process Pj;
if (candidateli] > G[i]) then
Gi] := candidateli];
colorli] := green;
endif;
endwhile;
for j:=1to n, (j #1i)do
if (candidate[j] > G[j]) then
Glj] = candidatelj);
color([j] := red;
endif
endfor
if (37 : color[j] = red) then send token to Mj;
else detect := true;

Figure 10.4: Monitor process algorithm at P;

10.5. PROBLEMS 173

in G are green, that is, G is consistent, then M; has detected the WCP. Otherwise,
M; sends the token to a process whose color is red.

The implementation for the algorithm is given in Figure 10.5. It uses three
types of messages. The trueVC message is sent by the application process to the
monitor process whenever the local predicate becomes true in a message interval.
This message includes the value of the vector clock when the local predicate became
true. This vector is stored in the queue q. The Token message denotes the token
used in the description of the algorithm. Whenever a monitor process receives
the token, it invokes the method handleToken described later. For simplicity of
implementation, we send the G vector and the color vector separately. The finished
message from the application process indicates that it has ended and that there will
not be any more messages from it.

Let us now look at the handleToken method. The goal of the process is to make
the entry color[i] green. If there is no pending vector in the queue q, then the
monitor process simply waits for either a trueVC or a finished message to arrive. If
there is no pending vector and the finished message has been received, then we know
that the global predicate can never be true and thus it is declared to be false for this
computation. If a vector, candidate, is found such that candidate[i] > G[i], then
the global cut is advanced to include candidate[i]. This advancement may result
in color [j] becoming red if candidate[j] > G[j]. The method getRed determines
the first process that has red color. If the array color is completely green, getRed
returns —1, and the global predicate is detected to be true. Otherwise, the token is
sent to the process returned by getRed.

Let us analyze the time complexity of the algorithm. It is easy to see that
whenever a process receives the token, it deletes at least one local state, that is, it
receives at least one message from the application process. Every time a state is
eliminated, O(N) work is performed by the process with the token. There are at
most mN states; therefore, the total computation time for all processes is O(N?m).
The work for any process in the distributed algorithm is at most O(Nm). The
analysis of message and space complexity is left as an exercise (see Problem 10.4).

10.5 Problems

10.1. Show that it is sufficient to send the vector clock once after each message is
sent irrespective of the number of messages received.

10.2. Assume that the given global predicate is a simple conjunction of local pred-
icates. Further assume that the global predicate is stable. In this scenario,
both Chandy and Lamport’s algorithm and the weak conjunctive algorithm

174 CHAPTER 10. GLOBAL PROPERTIES

import java.util .x;
public class DistSensor extends Process implements Runnable, Sensor {

final static int red = 0, green = 1;
int candidate [], color [], G[];
boolean finished = false, haveToken = false;

LinkedList q = new LinkedList ();
SensorUser app;
public DistSensor (VCLinker initComm, SensorUser app) {
super (initComm }; this.app = app;
candidate = new int|[N]; color = new int[N]; G = new int [N];

for (int j=0; j < N; j++) { color[j] = red; G[j] = 0;}
if (myld == Symbols. coordinator) haveToken=true;

new Thread (this). start ();

public synchronized void run(){
while (! finished) {
while (! haveToken) myWait();
handleToken ();
}

public synchronized veoid handleToken () {
while (color [myld] == red) {
while (q.isEmpty () && ! finished) myWait();
if (q.isEmpty() && finished) {
app. globalPredicateFalse (myld); return;

candidate = (int[]) q.removeFirst ();
if (candidate [myld] > G[myld]) {
G[myld] = candidate [myld]; color [myld] = green;
1
for (int j = 0; j < N; j++)
if ((j !'= myld) && (candidate[j] >= G[j])) {
G[j] = candidate[j]; color[j] = red;
}
int j = Util.searchArray (color, red);
if (j !'= —1) sendToken(j);

else { app.globalPredicateTrue(G); finished = true; }

public synchronized void handleMsg(Msg m, int src, String tag) {
if (tag.equals (”TokenG”)) Util.readArray (m. getMessage (), G);
else if (tag.equals(”Tokencolor”)) {
Util . readArray (m. getMessage (), color);
haveToken = true;
} else if (tag.equals(”finished”)) finished = true;
notify All ();

void sendToken (int j) {
((VCLinker) comm). simpleSendMsg (j, ”TokenG”, Util.writeArray (G));
({ VCLinker) comm}. simpleSendMsg(j,” Tokencolor”, Util. writeArray (color
haveToken = false;

public synchronized void localPredicateTrue { VectorClock ve) {
q.add{ve.v); notifyAll ();

Figure 10.5: Token-based WCP detection algorithm.

10.5.

10.3.

10.4.

10.5.

10.6.

10.7.

10.8.

*10.9.

PROBLEMS 175

can be used to detect the global predicate. What are the advantages and
disadvantages of using each of them?

Show that if the given weak conjunctive predicate has a conjunct from each
of the processes, then direct dependency clocks can be used instead of the
vector clocks in the implementation of sensors. Give an example showing that
if there is a process that does not have any conjunct in the global predicate,
then direct dependency clocks cannot be used.

Show that the message complexity of the vector-clock-based distributed al-
gorithm is O(mN), the bit complexity (number of bits communicated) is
O(N?m), and the space complexity is O(mN) entries per process.

The main drawback of the single-token WCP detection algorithm is that it has
no concurrency—a monitor process is active only if it has the token. Design an
algorithm that uses multiple tokens in the system. [Hint: Partition the set of
monitor processes into g groups and use one token-algorithm for each group.
Once there are no longer any red states from processes within the group, the
token is returned to a predetermined process (say, Pp). When Py has received
all the tokens, it merges the information in the g tokens to identify a new
global cut. Some processes may not satisfy the consistency condition for this
new cut. If so, a token is sent into each group containing such a process.]

Design a hierarchical algorithm to detect WCP based on ideas in the previous
excrcise.

Show the following properties of the vector-clock-based algorithm for WCP
detection: for any i,

1. Gli) # 0 Acolorfi] = red = 35 : j #1: (3,Gli]) — (4, Gl7));

2. color[i] = green = Vk : (i,G[i]) # (k,G[k]);

3. (color|i] = green) A (color[j} = green) = (i, GED|(J, Gl5})-

4. If (color[i] = red), then there is no global cut satisfying the WCP which
includes (¢, G{i)).

Show the following claim for the vector-clock-based distributed WCP detection
algorithm: The flag detect is true with G if and only if G is the smallest global
state that satisfies the WCP.

(due to Hurfin et al. [HMRS95]) Assume that every process communicates with
every other process directly or indirectly infinitely often. Design a distributed
algorithm in which information is piggybacked on existing program messages
to detect a conjunctive predicate under this assumption, that is, the algorithm
does not use any additional messages for detection purposes.

176 CHAPTER 10. GLOBAL PROPERTIES

10.6 Bibliographic Remarks

Detection of conjunctive properties was first discussed by Garg and Waldecker[GW92].
Distributed online algorithms for detecting conjunctive predicates were first pre-

sented by Garg and Chase [GC95]. Hurfin et al.[HMRS95] were the first to give a

distributed algorithm that does not use any additional messages for predicate de-

tection. Their algorithm piggybacks additional information on program messages

to detect conjunctive predicates. Distributed algorithms for offline evaluation of
global predicates are also discussed in Venkatesan and Dathan [VD92]. Stoller and

Schneider [SS95] have shown how Cooper and Marzullo’s algorithm can be inte-

grated with that of Garg and Waldecker to detect conjunction of global predicates.

Lower bounds on these algorithms were discussed by Garg [Gar92].

Chapter 11

Detecting Termination and
Deadlocks

11.1 Introduction

Termination and deadlocks are crucial predicates in a distributed system. Gen-
erally, computations are expected to terminate and be free from deadlocks. It is
an important problem in distributed computing to develop efficient algorithms for
termination and deadlock detection. Note that both termination and deadlock are
stable properties and therefore can be detected using any global snapshot algorithm.
However, these predicates can be detected even more efficiently than general stable
predicates. The reason for this efficiency is that these predicates are not only stable
but also locally stable—the state of each process involved in the predicate does not
change when the predicate becomes true. We will later define and exploit the locally
stable property of the predicates to design efficient distributed algorithms.

To motivate termination detection, we consider a class of distributed computa-
tions called diffusing computations. We give a diffusing computation for the problem
of determining the shortest path from a fixed process. The diffusing computation
algorithm works except that one does not know when the computation has termi-
nated.

11.2 Diffusing Computation

Consider a computation on a distributed system that is started by a special process
called environment. This process starts up the computation by sending messages to

177

178 CHAPTER 11. DETECTING TERMINATION AND DEADLOCKS

some of the processes. Each process in the system is either passive or active. It is
assumed that a passive process can become active only on receiving a message (an
active process can become passive at any time). Furthermore, a message can be sent
by a process only if it is in the active state. Such a computation is called a diffusing
computation. Algorithms for many problems such as computing the breadth-first
search-spanning tree in an asynchronous network or determining the shortest paths
from a processor in a network can be structured as diffusing computations.

We use a distributed shortest-path algorithm to illustrate the concepts of a
diffusing computation. Assume that we are interested in finding the shortest path
from a fixed process called a coordinator (say, Pp) to all other processes. Each
process initially knows only the average delay of all its incoming links in the array
edgeWeight. A diffusing computation to compute the shortest path is quite simple.
Every process P; maintains the following variables:

1. cost: represents the cost of the shortest path from the coordinator to P; as
known to F; currently

2. parent: represents the predecessor of P; in the shortest path from the coor-
dinator to P; as known to P; currently

The coordinator acts as the environment and starts up the diffusing computation
by sending the cost of the shortest path to be 0 using a message type path. Any
process F; that receives a message from P; of type path with cost ¢ determines
whether its current cost is greater than the cost of reaching P; plus the cost of
reaching from P; to F;. If that is indeed the case, then P; has discovered a path
of shorter cost and it updates the cost and parent variables. Further, any such
update results in messages to its neighbors about its new cost. The algorithmn is
shown in Figure 11.1. Each process calls the method initiate to start the program.
This call results in the coordinator sending out messages with cost 0. The method
handleMsg simply handles messages of type path.

The algorithm works fine with one catch. No process ever knows when it is done,
that is, the cost variable will not decrease further. In this chapter, we study how we
can extend the computation to detect termination. Figure 11.2 shows the interface
implemented by the termination detection algorithm. Any application which uses a
TermDetector must invoke initiate at the beginning of the program, sendAction
on sending a message, and turnPassive on turning passive.

From properties of a diffusing computation, it follows that if all processes are
passive in the system and there are no messages in transit, then the computation has
terminated. Our problem is to design a protocol by which the environment process
can determine whether the computation has terminated. Our solution is based on
an algorithm by Dijkstra and Scholten.

11.2. DIFFUSING COMPUTATION 179

public class ShortestPath extends Process {
int parent = —1;
int cost = —1;
int edgeWeight[] = null;
public ShortestPath (Linker initComm, int initCost []) {
super (initComm);
edgeWeight = initCost ;

public synchronized void initiate () {
if (myld == Symbols. coordinator) {
parent = myld;
cost = 0;
sendToNeighbors (”path”, cost);

}

public synchronized void handleMsg (Msg m, int src, String tag){
if (tag.equals ("path”)) {

int dist = m. getMessagelnt ();

if ((parent == —1) || (dist + edgeWeight[src] < cost)) {
parent = Ssrc;
cost = dist + edgeWeight [src|;
System.out. println ("New cost is 7 + cost);
sendToNeighbors (" path”, cost);

Figure 11.1: A diffusing computation for the shortest path

public interface TermDetector {
public void initiate (); .
public void sendAction ();
public void turnPassive ();
public void handleMsg(Msg m, int srcsld, String tag);

Figure 11.2: Interface for a termination detection algorithm

180 CHAPTER 11. DETECTING TERMINATION AND DEADLOCKS

11.3 Dijkstra and Scholten’s Algorithm

We say that a process is in a green state if it is passive and all of its outgoing channels
are empty; otherwise, it is in a red state. How can a process determine whether its
outgoing channel is empty? This can be done if the receiver of the channel signals
the sender of the channel the number of messages received along that channel. If
the sender keeps a variable D[i] (for deficit) for each outgoing channel ¢, which
records the number of messages sent minus the number of messages that have been
acknowledged via signals, it can determine that the channel 7 is empty by checking
whether D[i] = 0. Observe that D[i] > 0 is always true. Therefore, if O is the set
of all outgoing channels, it follows that

Vie O:D[i]=0

is equivalent to

> Dli] = 0.

€0
Thus it is sufficient for a process to maintain just one variable D that represents the
total deficit for the process.

It is clear that if all processes are in the green state, then the computation has

terminated. To check this condition, we will maintain a set T" with the following
invariant (10):

(10) All red processes are part of the set 1.

Observe that green processes may also be part of T—the invariant is that there
is no red process outside T. When the set T becomes empty, termination is true.

When the diffusing computation starts; the environment is the only red process
initially (with nonempty outgoing channels); the invariant is made true by keeping
environment in the set 7. To maintain the invariant that all red processes are in T,
we use the following rule. If P; turns Py red (by sending a message), and Py is not
in T, then we add Py to T.

We now induce a directed graph (T, E) on the set T by defining the set of edges
E as follows. We add an edge from P; to P, if P; was responsible for addition of
P, to the set 7. We say that P; is the parent of P;. From now on we use the terms
node and process interchangeably. Because every node (other than the environment)
has exactly one parent and an edge is drawn from P; to P only when Fj is not
part of T, the edges F form a spanning tree on 7" rooted at the environment. Our
algorithm will maintain this as invariant:

11.3. DIJKSTRA AND SCHOLTEN’S ALGORITHM 181

(11) The edges E form a spanning tree of nodes in T rooted at the environment.

Up to now, our algorithm only increases the size of 7. Because detection of termi-
nation requires the set to be empty, we clearly need a mechanism to remove nodes
from T. Our rule for removal is simple—a node is removed from T only if it is a
green-leaf node. When a node is removed from T, the incoming edge to that node is
also removed from E. Thus the invariants (I0) and (I1) are maintained by this rule.
To implement this rule, a node needs to keep track of the number of its children in
T. This can be implemented by keeping a variable at each node numchild initial-
ized to O that denotes the number of children it has in 7. Whenever a new edge is
formed, the child reports this to the parent by a special acknowledgment that also
indicates that a new edge has been formed. When a leaf leaves T, it reports this
to the parent, who decrements the count. If the node has no parent (it must be
the environment) and it leaves the set T, then termination is detected. By assum-
ing that a green-leaf node eventually reports to its parent, we conclude that once
the computation terminates, it is eventually detected. Conversely, if termination is
detected, then the computation has indeed terminated on account of invariant (10).

Observe that the property that a node is green is not stable and hence a node, say,
Py, that is green may become active once again on receiving a message. However,
because a message can be sent only by an active process, we know that some active
process (which is already a part of the spanning tree) will be now responsible for
the node P;. Thus the tree T changes with time but maintains the invariant that
all active nodes are part of the tree.

11.3.1 An Optimization

The algorithm given above can be optimized for the number of messages by com-
bining messages from the reporting process and the messages for detecting whether
a node is green. To detect whether an outgoing channel is empty, we assumed a
mechanism by which the receiver tells the sender the number of messages it has
received. One implementation could be based on control messages called signal. For
every message received, a node is eventually required to send a signal message to
the sender. To avoid the use of report messages, we require that a node not send
the signal message for the message that made it active until it is ready to report to
leave T'. When it is ready to report, the signal message for the message that made
it active is sent. With this constraint we get an additional property that a node will
not turn green unless all its children in the tree have reported. Thus we have also
eliminated the need for maintaining numchild: only a leaf node in the tree can be
green. A node is ready to report when it has turned green, that is, it is passive and
D = 0. The algorithm obtained after the optimization is shown in Figure 11.3.

182 CHAPTER 11. DETECTING TERMINATION AND DEADLOCKS

The algorithm uses state to record the state of the process, D to record the
deficit, and parent to record the parent of the process. There is no action required
on initiate. The method handleMsg reduces deficit on receiving a signal message
at line 15. If D becomes 0 for the environment process, then termination is detected
at line 18. On receiving an application message, a node without parent sets the
source of the message as the parent. In this case, no signal is sent back. This signal
is sent at line 20 or line 38 when this node is passive and its D is 0. If the receiving
node had a parent, then it simply sends a signal message back at line 29. The
method sendAction increments the deficit and the method turnPassive changes
state to passive and sends a signal to the parent if D is 0.

Now we can solve the original problem of computing the shortest path as shown
in Figure 11.4.

11.4 Termination Detection without Acknowledgment
Messages

Dijkstra and Scholten’s algorithm required overhead of one acknowledgment message
per application message. We now present an algorithm due to Safra as described by
Dijkstra which does not use acknowledgment messages. This algorithm is based on
a token going around the ring. The token collects the information from all processes
and determines whether the computation has terminated. The algorithm shown in
Figure 11.5 requires each process to maintain the following variables:

1. state: The state of a process is either active or passive as defined earlier.

2. color: The color of a process is either white or black. If the process is white,
then it has not received any message since the last visit of the token. This
variable is initialized to white.

3. c: This is an integer variable maintained by each process. It records the value
of the number of messages sent by the process minus the number of messages
received by that process. This variable is initialized to 0.

Process Py begins the detection probe by sending token to the next process when
it is passive. The token consists of two fields: color and count. The color simply
records if the token has seen any black process. The count records sum of all ¢
variables seen in this round.

When a process receives the token, it keeps the token until it becomes passive.
It then forwards the token to the next process, maintaining the invariants on the
color of the token and the count of the token. Thus, if a black process forwards
the token, the token turns black; otherwise the token keeps its color. The count

11.4. TERMINATION DETECTION WITHOUT ACKNOWLEDGMENT MESSAGES 183

1 public class DSTerm extends Process implements TermDetector {
2 final static int passive = 0, active = 1;
3 int state = passive;

4 int D = 0;

5 int parent = —1;

6 boolean envtFlag;

7 public DSTerm(Linker initComm}) {

8 super (initComm);

9 envtFlag = (myld == Symbols. coordinator);
10

11 public synchronized void initiate () {

12

13 public synchronized void handleMsg(Msg m, int src, String tag) {
14 if (tag.equals(”signal”)) {

15 D=D - 1;

16 if (D ==0) {

17 if (envtFlag)

18 System.out. println (" Termination Detected”);
19 else if (state == passive) {
20 sendMsg (parent , "signal”);
21 parent = —1;

22 }

23

24 } else { // application message

25 state = active;

26 if ((parent == —1) && lenvtFlag) {
27 parent = src;

28 } else

29 sendMsg (sre, ”signal”);

30 }

31

32 public synchronized void sendAction () {

33 D=D + 1;

34

35 public synchronized void turnPassive () {
36 state = passive;

37 if ((D==0) && (parent != —1)) {

38 sendMsg (parent , "signal”);

39 parent = -—1;

40 }

41 }

42 }

Figure 11.3: Termination detection algorithm

184 CHAPTER 11. DETECTING TERMINATION AND DEADLOCKS

public class TermShortestPath extends ShortestPath {
TermDetector td = null;
public TermShortestPath(Linker initComm, int initCost [],
TermDetector td) {
super (initComm, initCost);
this.td = td;

public synchronized void initiate () {
super. initiate ();
td.initiate ();

public synchronized void sendMsg(int dest, String tag, int msg) {
super.sendMsg (dest , tag, msg);
td . sendAction ();

public synchronized void handleMsg(Msg m, int src, String tag) {
td. handleMsg (m, srec, tag);
super . handleMsg (m, src, tag);
td. turnPassive ();

Figure 11.4: A diffusing computation for the shortest path with termination

11.5. LOCALLY STABLE PREDICATES 185

variable in the token is increased by c¢. The process resets its own color to white
after sending the token.

Process Py is responsible for detecting termination. On receiving the token, Py
detects termination, if its own color is white, it is passive, the token is white and
the sum of token count and ¢ is 0. If termination is not detected, then Py can start
a new round of token passing. The correctness of this algorithm will be apparent
after the discussion of locally stable predicates.

11.5 Locally Stable Predicates

We now show a technique that can be used for efficient detection of not only ter-
mination but many other locally stable predicates as well. A stable predicate B
is locally stable if no process involved in the predicate can change its state relative
to B once B holds. In other words, the values of all the variables involved in the
predicate do not change once the predicate becomes true. The predicate B, “the
distributed computation has terminated,” is locally stable. It is clear that if B is
true, the states of processes will not change. Similarly, once there is a deadlock in
the system the processes involved in the deadlock do not change their state.

Now consider the predicate B, “there is at most one token in the system.” This
predicate is stable in a system which cannot create tokens. It is not locally stable
because the state of a process can change by sending or receiving a token even when
the predicate is true.

Since a locally stable predicate is also stable, one can use any global snapshot
algorithm to detect it. However, computing a single global snapshot requires O(e)
messages, where e is the number of unidirectional channels. We will show that for
locally stable predicates, one need not compute a consistent global state.

We first generalize the notion of a consistent cut to a consistent interval. An
interval is a pair of cuts (possibly inconsistent) X and Y such that X C Y. We
denote an interval by [X,Y].

An interval of cuts [X,Y] is consistent if there exists a consistent cut G such
that X C G C Y. Note that [G,G] is a consistent interval iff G is consistent. We
now show that an interval [X,Y] is consistent iff

Ve,f: (feX)AN(e—f)=ecY (11.1)

First assume that [X,Y] is a consistent interval. This implies that there exists
a consistent cut G such that X C G C Y. We need to show that Equation (11.1)
is true. Pick any e, f such that f € X and e — f. Since f € X and X C G, we
get that f € G. From the fact that G is consistent, we get that e € G. But e € G
implies that e € Y because G C Y. Therefore Equation (11.1) is true.

186 CHAPTER 11. DETECTING TERMINATION AND DEADLOCKS

import java. util .*
public class TermToken extends Process implements TermDetector {

final static int passive = 0, active = 1, white = 0, black = 1;
int state = passive, color = white;

int ¢ = 0;

int next;

boolean haveToken = false;

int tokenCount = 0, tokenColor = white;

public TermToken(Linker initComm) {
super (initComm);
next = (myld + 1) % N;

public synchronized void initiate () {
if (myld == Symbols. coordinator) {
if (state == passive) sendToken ();
else haveToken = true;

}

public synchronized void handleMsg(Msg m, int src, String tag) {
if (tag.equals("termToken”)) {
haveToken = true;
StringTokenizer st = new StringTokenizer (m. getMessage ());
tokenColor = Integer . parselnt (st .nextToken ());
tokenCount = Integer . parselnt (st.nextToken ());
if (myld == Symbols. coordinator) {
if ((c¢ + tokenCount == 0) && (color == white) &&
(state == passive) && (tokenColor == white)) {
System.out. printin (” Termination Detected”};
haveToken = false;

}

if ((state == passive) && haveToken) sendToken ();
} else { // application message
state = active;
color = black;
c=c¢ — 1;
}
public synchronized void sendAction () {
¢c=c + 1;

public synchronized void turnPassive () {
state = passive;
if (haveToken) sendToken ();

}
void sendToken () {
if (myld == Symbols coordinator)
bendMsg(next, "termToken”, white, 0);
else if ((color == black) || (tokenColor == black))
sendMsg(next ”termToken”, black, ¢ + tokenCount);
else
sendMsg (next, "termToken”, white, ¢ + tokenCount);
haveToken = false;
color = white;

Figure 11.5: Termination detection by token traversal.

11.5. LOCALLY STABLE PREDICATES 187

Conversely, assume that Equation (11.1) is true. We define the cut G as follows:
G={ecE|3feX:(e—=f)Vvie= 1)}

Clearly, X C G from the definition of G and G C Y because of Equation (11.1).
We only need to show that G is consistent. Pick any c,d such that c = dand d € G.
From the definition of G, there exists f € X such that d = f or d — f. In either
case, ¢ — d implies that ¢ — f and therefore ¢ € G. Hence, G is consistent.

Our algorithm will exploit the observation presented above as follows. It repeat-
edly computes consistent intervals [X, Y] and checks if B is true in ¥ and the values
of variables have not changed in the interval. If both these conditions are true, then
we know that there exists a consistent cut G in the interval with the same values
of (relevant) variables as Y and therefore has B true. Conversely, if a predicate
is locally stable and it turns true at a global state G, then all consistent intervals
[X,Y] such that G C X will satisfy both the conditions checked by the algorithm.

Note that computing a consistent interval is easier than computing a consistent
cut. To compute a consistent interval, we need to compute any two cuts X and
Y, such that X C Y and Equation (11.1) holds. To ensure that Equation (11.1)
holds, we will use the notion of barrier synchronization. Let X and Y be any cuts
such that X C Y (ie, [X,Y] is an interval) and Y has at least one event on every
process. We say that an interval [X, Y] is barrier-synchronized if

Ve XAheE-Y:g—h

Intuitively, this means that every event in X happened before every event that is
not in Y. If [X,Y] are barrier synchronized, then they form a consistent interval.
Assume, if possible, that [X,Y] is not a consistent interval. Then there exist e, f
suchthat f€ X, e — f,bute ¢ Y. But e € Y implies that f — e which contradicts
e— f.

Barrier synchronization can be achieved in a distributed system in many ways.
For example

1. Py sends a token to Py which sends it to the higher-numbered process until
it reaches Py_;. Once it reaches Pn_j, the token travels in the opposite
direction. Alternatively, the token could simply go around the ring twice.
These methods require every process to handle only O(1) messages with total
O(N) messages for all processes but have a high latency.

2. All processes send a message to Py. After receiving a message from all other
processes, Py sends a message to everybody. This method requires total O(N)
messages and has a low latency but requires the coordinator to handle O(N)
messages.

188 CHAPTER 11. DETECTING TERMINATION AND DEADLOCKS

3. All processes send messages to everybody else. This method is symmetric and
has low latency but requires O(N?) messages.

Clearly, in each of these methods a happened-before path is formed from every event
before the barrier synchronization to every process after the synchronization.

Now detecting a locally stable predicate B is simple. The algorithm repeatedly
collects two barrier synchronized cuts [X, Y. If the predicate B is true in cut Y and
the values of the variables in the predicate B have not changed during the interval,
then B is announced to be true in spite of the fact that B is evaluated only on
possibly inconsistent cuts X and Y.

11.6 Application: Deadlock Detection

We illustrate the technique for detecting locally stable predicates for deadlocks.
A deadlock in a distributed system can be characterized using the wait-for graph
(WFG): a graph with nodes as processes and an edge from P; to Py if B is waiting
for P; for a resource to finish its job or transaction. Thus, an edge from P; to P,
means that there exist one or more resources held by P; without which P; cannot
proceed. We have assumed that a process needs all the resources for which it is
waiting to finish its job. Clearly, if there is a cycle in the WFG, then processes
involved in the cycle will wait forever. This is called a deadlock.

A simple approach to detecting deadlocks based on the idea of locally stable
predicates is as follows. We use a coordinator to collect information from processes
in the system. Each process P; maintains its local WFG, that is, all the edges in the
WEFG that are outgoing from P;. It also maintains a bit changed;, which records
if its WFG has changed since its last report to the coordinator. The coordinator
periodically sends a request message to all processes requesting their local WFGs.
On receiving this request, a process sends its local WFG if the changed; bit is true
and “notChanged” message if changed; is false. On receiving all local WFGs, the
coordinator can combine them to form the global WFG. If this graph has a cycle,
the coordinator sends a message to all processes to send their reports again. If
changed; is false for all processes involved in the cycle, then the coordinator reports
deadlock.

In this algorithm, even though WFGs are constructed possibly on inconsistent
global states, we know, thanks to barrier synchronization, that there exists a con-
sistent global state with the same WFG. Therefore, any deadlock reported actually
happened in a consistent global state.

We leave the Java implementation of this algorithm as an exercise.

11.7. PROBLEMS 189

11.7 Problems

11.1. What is the message complexity of Dijkstra and Scholten’s algorithm?

11.2. Give an algorithm based on diffusing computation to determine the breadth-
first search tree from a given processor.

11.3. Extend Dijkstra and Scholten’s algorithm for the case when there can be
multiple initiators of the diffusing computation.

11.4. Prove the correctness of the token-based algorithm for termination detection.

11.5. Give a Java implementation of the two-phase deadlock detection algorithm.

11.8 Bibliographic Remarks

The spanning-tree-based algorithm discussed in this chapter is a slight variant of the
algorithm proposed by Dijkstra and Scholten [DS80]. The token-based termination
algorithm is due to Safra as described by Dijkstra [Dij87]. The notion of locally
stable predicates is due to Marzullo and Sabel {MS94]. The notion of consistent
interval and the algorithm of detecting locally stable predicates by using two cuts
is due to Atreya, Mittal and Garg [AMGO03]. The two-phase deadlock detection
algorithm is due to Ho and Ramamoorthy [HR82].

This Page Intentionally Left Blank

Chapter 12

Message Ordering

12.1 Introduction

Distributed programs are difficult to design and test because of their nondetermin-
istic nature, that is, a distributed program may exhibit multiple behaviors on the
same external input. This nondeterminism is caused by reordering of messages in
different executions. It is sometimes desirable to control this nondeterminism by
restricting the possible message ordering in a system.

P3 -
Py —
P, 1 —-

Figure 12.1: A FIFO computation that is not causally ordered

A fully asynchronous computation does not have any restriction on the message
ordering. It permits maximum concurrency, but algorithms based on fully asyn-
chronous communication can be difficult to design because they are required to
work for all ordering of the messages. Therefore, many systems restrict message

191

192 CHAPTER 12. MESSAGE ORDERING

delivery to a FIFO order. This results in simplicity in design of distributed algo-
rithms based on the FIFO assumption. For example, we used the FIFO assumption
in Lamport’s algorithm for mutual exclusion and Chandy and Lamport’s algorithm
for a global snapshot.

A FIFO-ordered computation is implemented generally by using sequence num-
bers for messages. However, observe that by using FIFQ ordering, a program loses
some of its concurrency. When a message is received out of order, its processing
must be delayed.

A stronger requirement than FIFO is that of causal ordering. Intuitively, causal
ordering requires that a single message not be overtaken by a sequence of messages.
For example, the computation in Figure 12.1 satisfies FIFO ordering of messages
but does not satisfy causal ordering. A sequence of messages from P; to Py and
from P, to P3 overtakes a message from P; to P; in this example. Causal ordering
of messages is useful in many contexts. In Chapter & we considered the problem
of mutual exclusion. Assume that we use a centralized coordinator for granting
requests to the access of the critical section. The fairness property requires that
the requests be honored in the order they are made (and not in the order they
are received). It is easy to see that if the underlying system guaranteed a causal
ordering of messages, then the order in which requests are received cannot violate
the happened-before order in which they are made. For another example of the
usefulness of causal ordering, see Problem 12.1.

The relationship among various message orderings can be formally specified on
the basis of the happened-before relation. For convenience, we denote the receive
event corresponding to the send event s; by r; and vice versa. The message is
represented as (s;,r;). We also use s; ~ r; to denote that r; is the receive event
corresponding to the send event s;. Finally, we use ¢ < f to denote that e occurred
before f in the same process.

Now, FIFO and causally ordered computations can be defined as follows:

FIFO: Any two messages from a process P; to P; are received in the same order as
they were sent. Formally, let s1 and s2 be any two send events and) and ro
be the corresponding receive events. Then

51 =8 = —(re<m) (FIFO)

Causally Ordered: Let any two send events s; and ss in a distributed computation
be related such that the first send happened before the second send. Then,
the second message cannot be received before the first message by any process.
Formally, this can be expressed as

51— 8y = rg=<71) (CO)

12.2. CAUSAIL ORDERING 193

12.2 Causal Ordering

P
var
M:array[1..N, 1..N] of integer initially Vj, k : M[j, k] =0,

To send a message to I’;:
Mli,j) == M[i,j]+ 1;
piggyback M as part of the message;

To receive a message with matrix W from P;
enabled if (W1j,] = M[j,i] + 1) A (vk # j : Mlk,i] = W[k, i)
M = maz(M, W),

Figure 12.2: An algorithm for causal ordering of messages at F;

We now describe an algorithm to ensure causal ordering of messages. We assume
that a process never sends any message to itself. Fach process maintains a matrix
M of integers. The entry M[j, k] at P; records the number of messages sent by
process P; to process Pj, as known by process P;. The algorithm for process P; is
given in Figure 12.2. Whenever a message is sent from P; to P;, first the entry
M]i, j] is incremented to reflect the fact that one more message is known to be
sent from P; to P;. The matrix M is piggybacked with the message. Whenever
messages are received by the communication system at P;, they are first checked
for eligibility before delivery to P;. If a message is not eligible, it is simply buffered
until it becomes eligible. A message m from P; is eligible to be received when

1. The entry W{j,4] is one more than the entry M|[j,i] that records the number
of messages received by P; from F;.

2. The number of messages sent from any other process Py(k # j) to P, as
indicated by the matrix W in the message, is less than or equal to the number
recorded in the matrix M. Formally, this condition is

Vk #j: M[k,i] > W[k, i]

If for some k, Wk,i] > M|k, 1], then there is a message that was sent in the
causal history of the message and has not arrived yet. Therefore, P; must wait
for that message to be delivered before it can accept the message m.

194 CHAPTER 12. MESSAGE ORDERING

Whenever a message is accepted for delivery, the information at matrix M is
updated with the matrix W received in the message.

The structure of a causal message is shown in Figure 12.3, and the Java im-
plementation of the causal ordering algorithm is shown in Figure 12.4. The causal
ordering algorithm extends the class Linker to include the matrix in outgoing mes-
sages. The method sendMsg increments the entry M[myld][destId] to account
for this message and attaches the matrix M with it. The method multicast is
used for sending a message to multiple sites. In this method, we first increment
Mmyld]|destId] for all destld in the list of destinations. It is this matrix that is
sent with every message.

The method okayToReceive determines whether a message can be delivered to
the process. The method receiveMsg uses two LinkedList for storing messages.
The deliverQ stores all messages that are deliverable to the application layer. The
pendingQ stores all messages that are received but are not deliverable. When the
application layer asks for a message, the pendingQ is traversed first to check whether
some messages are deliverable. Deliverable messages are moved from the pendingQ
to the deliveryQ by the method checkPendingQ. If deliveryQ is empty, then we
wait for a message to arrive by calling the blocking method super.receiveMsg. On
receiving this message, it is put in the pendingQ and the method checkPendingQ
is invoked again. If deliveryQ is nonempty, the first message from that queue is
delivered and the matrix M updated to record the delivery of this message.

public class CausalMessage {

Msg m;

int N;

int W{][];

public CausalMessage (Msg m, int N, int matrix [|[]) {
this. m = m;
this.N = N;
W = matrix;

}
public int [][] getMatrix () {
return W,

}

public Msg getMessage () {
return my

}

Figure 12.3: Structure of a causal message

12.2. CAUSAL ORDERING 195

import java.util .*; import java.net.x; import java.io .*;
public class CausalLinker extends Linker {
int M[][};
LinkedList deliveryQ = new LinkedList (); // deliverable messages
LinkedList pendingQ = new LinkedList (); // messages with matriz
public CausalLinker (String basename, int id, int numProc)
throws Exception {
super (basename, id, numProc};
M = new int [N][N]; Matrix.setZero (M);

public synchronized void sendMsg(int destId, String tag, String msg){
M{myld]{ destId]++;
super . sendMsg (destld , "matrix”, Matrix. write (M));
super . sendMsg (destId , tag, msg);

public synchronized void multicast (IntLinkedList destIds,
String tag, String msg) {
for (int i{=0; i<destlds.size (); i++)
M myld][destIds . getEntry (1)]++;
for (int i=0; i<destlds.size (); i++) {
int destld = destlds.getEntry (i);
super.sendMsg(destId , "matrix”, Matrix. write (M));
super . sendMsg{ destId , tag, msg);

boolean okayToRecv(int W[][], int srcld) {
if (W sreld |[myld] > M[srcld][myld]+1) return false;
for (int k = 0; k < N; k++4)
if ((kl=srcld) && (Wk][myld] > Mk][myld])) return false;

return true;

synchronized void checkPendingQ () {
Listlterator iter = pendingQ.listIterator (0);
while (iter.hasNext ()) {
CausalMessage cm = (CausalMessage} iter .next ();
if (okayToRecv{cm. getMatrix (), cm.getMessage (). getSrcld ())){
iter .remove {); deliveryQ .add(cm);
}

}

}
// polls the channel given by fromld to add to the pending@
public Msg receiveMsg (int fromId) throws IOException {
checkPendingQ ();
while (deliveryQ .isEmpty ()) {
Msg matrix = super. receiveMsg (fromld); // matriz
int [][] W= new int[N][N];
Matrix . read (matrix . getMessage (), W);
Msg ml = super. recelveMsg(fromId) //app message
pendingQ . add (new CausalMessage (ml, N, W));
checkPendingQ ();

CausalMessage cm = (CausalMessage) deliveryQ.removeFirst ();
Matrix . setMax (M, cm. getMatrix ());
return cm. getMessage ();

Figure 12.4: CausalLinker for causal ordering of messages

196 CHAPTER 12. MESSAGE ORDERING

12.2.1 Application: Causal Chat

To illustrate an application of causal ordering, we consider a chat application in
which a user can send messages to multiple other users. This simple program, shown
in Figure 12.5, takes as input from the user a message and the list of destination
process identifiers. This message is then multicast to all the process identifiers in
the list.

The application takes as an argument the message ordering to be used. The
user can verify that if the plain Linker class were used in this application, then the
following scenario would be possible. If Py sends a query to both P, and P, and
P sends a reply to the query to both Fy and P, then P, may receive the reply
before the query. On the other hand, if the class CausalLinker is used, then such
a scenario is not possible.

12.3 Synchronous Ordering

Synchronous ordering is a stronger requirement than causal ordering. A computa-
tion satisfies synchronous ordering of messages if it is equivalent to a computation
in which all messages are logically instantaneous. Figure 12.6 gives an example of a
synchronously ordered computation and Figure 12.7, an example of a computation
that does not satisfy synchronous ordering.

Algorithms for synchronous systems are easier to design than those for causally
ordered systems. The model of synchronous message passing lets us reason about
a distributed program under the assumption that messages are instantaneous or
“points” rather then “intervals” (i.e., we can always draw the time diagrams for
the distributed programs with the message arrows being vertical). If we assume
messages as points instead of intervals, we can order the messages as a partial order
and therefore, we can have vector clocks with respect to messages. One application
for synchronous ordering of messages is that it enables us to reason about distributed
objects as if they were centralized. Assume that a process invokes an operation on a
remote object by sending a message. If synchronous ordering of messages is assumed,
then all operations on the objects can be ordered according to when the messages
are sent because messages can be considered instantaneous.

A computation is synchronous if its time diagram can be drawn such that all
message arrows are vertical, that is, all external events can be assigned a timestamp
such that time increases within a single process, and for any message its send and
receive are assigned the same timestamp. Formally, let £ be the set of all external
events. Then, a computation is synchronous iff there exists a mapping T from £ to

12.3. SYNCHRONOUS ORDERING 197

import java.io .*; import java.util .x;
public class Chat extends Process {
public Chat(Linker initComm) {
super (initComm);

public synchronized void handleMsg(Msg m, int src, String tag){
if (tag.equals(”chat”)) {
System . out . println (” Message from 7 + src +7:”);
System.out. println (m. getMessage ());

1

}

public String getUserlnput (BufferedReader din) throws Exception {
System. out. printin (" Type your message in a single line:");
String chatMsg = din.readLine ();
return chatMsg;

}
public IntLinkedList getDest (BufferedReader din) throws Exception {
System.out. println ("Type in destination pids with —1 at end:” };
System.out. println ("Only one pid for synch order:”);
IntLinkedList destlds = new IntLinkedList (); //dest for msg
StringTokenizer st = mew StringTokenizer (din.readLine ());
while (st.hasMoreTokens ()) {
int pid = Integer. parselnt (st.nextToken ());
if (pid == —1) break;
else destlds .add(pid);

return destlds;

public static void main(String [] args) throws Exception {

String baseName = args [0];
int myld = Integer.parselnt (args[1]);
int numProc = Integer. parselnt (args [2]);
Linker comm = null;
if (args[3]. equals (”simple”))

comm = new Linker (baseName, myld, numProc);
else if (args|[3]. equals (" causal”))

comm = new CausalLinker (baseName, myld, numProc);
else if (args[3]. equals ("synch™))

comm = new SynchLinker (baseName, myld, numProc);
Chat ¢ = new Chat (comm);
for (int i = 0; 1 < numProc; i++)

if (i != myld) (new ListenerThread (i, c}). start ();
BufferedReader din = new BufferedReader (
new InputStreamReader (System.in));
while (true) {

String chatMsg = c¢.getUserlnput (din);

if (chatMsg.equals (" quit”)) break;

IntLinkedList destIds = c.getDest(din);

if (args[3]. equals (”"synch”))

comm. sendMsg (destIds . getEntry (0), ”chat”, chatMsg);
else
comm. multicast (destIds, "chat”, chatMsg);

Figure 12.5: A chat program

198 CHAPTER 12. MESSAGE ORDERING

1 3
P] [——
2 Y
Pz) 3 »-
Py -
1 2

Figure 12.6: A computation that is synchronously ordered

Py —
Py
P —

Figure 12.7: A computation that is not synchronously ordered

12.3. SYNCHRONOUS ORDERING 199

the set of natural numbers such that for all s,r,e, f € £
s~ 1= T(s) ="T(r)

and
e =< f="T(e) <T(f)

We call this condition SYNC. It is easy to see that, for any two external events
eand f

(e — f) A ﬂ(e ~f) = Tle< T(f) (12.1)
We show that the hierarchy associated with the various message orderings is
Synchronous C causally ordered C FIFO C asynchronous.

FIFO C asynchronous is obvious. A causally ordered computation satisfies FIFO
because
81 <8 = 81 — 89.

We only need to show that if a computation is synchronous then it is also causally
ordered. Because the communication is synchronous, there exists a function T
satisfying SYNC.

For any set of send events s1,s9 and receive events rq,79 such that s; ~ rq,
89 ~+ ro and 857 — $9:

T(S]) = T(T]), T(SQ) = T(’r‘g), and T(Sl) < T(SQ).
It follows that T(r;) < T(r2). Therefore, (12.1) implies
—{re — r1).

The algorithm for synchronous ordering uses control messages. Note that control
messages do not have to be synchronously ordered. Thus £ includes the send and
receive events only of application messages. It does not include send and receive of
control messages sent by the algorithm to ensure synchronous ordering.

The algorithm shown in Figure 12.8 is for the process P;. All processes have the
same algorithm. Observe that the protocol to implement synchronous message or-
dering cannot be completely symmetric. If two processes desire to send messages to
each other, then there is no symmetric synchronous computation that allows this—
one of them must succeed before the other. To introduce asymmetry, we use process
numbers to totally order all processes. We classify messages into big messages and
small messages. A message sent from a (bigger) process to a smaller process is a

200 CHAPTER 12. MESSAGE ORDERING

big message and a message from a (smaller) process to a bigger process is called a
small message. We assume that processes do not send messages to themselves.

In our algorithm, a process can be in two states—active or passive. Every process
is initially active. We first consider the algorithm for a big message. A process is
allowed to send a message to a smaller process only when it is active. After sending
the message, it turns passive until it receives an ack message from the receiver of
the message. While passive, it cannot send any other message, nor can it accept any
other message. Note that the protocol for a message from a bigger process requires
only one control message (ack).

To send a message to a bigger process, say, Pj, process F; first needs permission
from Pj. P; can request the permission at any time. P; can grant permission only
when it is active. Furthermore, after granting the permission, P; turns passive
until it receives the message for which it has granted the permission. Thus the
protocol for a message from a smaller process requires two control messages (request
and permission). The implementation of synchronous ordering in Java is shown in
Figure 12.9.

To prove correctness of the algorithm, we show that one can assign timestamps
to all messages such that the timestamps of messages are in increasing order for any
process. Each process maintains a local variable ¢ that serves as the timestamping
function for messages. The rules used by the algorithm are:

1. Timestamp proposal: When a process sends a big message, it increments ¢ and
sends ¢ as the proposed timestamp with the message. For a small message, the
timestamp is proposed in the permission message sent from the bigger process.
Again, to make the proposal ¢ is incremented and sent as a proposal. Thus
the proposal of the timestamp is made by the bigger process for both types of
messages. Note that as soon as a proposal is made, the process turns passive
and cannot make any further proposals. A process can propose a timestamp
only if it is active.

2. Timestamp finalization: When a process receives a proposal for a timestamp
t, it can finalize the timestamp only if it is active. The timestamp assigned
to this message is max{c+ 1,1t). This timestamp is sent with the ack message
or the app message, depending on whether the message is big or small. The
new value of ¢ is set to the finalized timestamp. When the proposer receives
the final timestamp of the message, it assigns that timestamp to the message
and sets its own clock to the maximum of the timestamp received and its own
timestamp.

It is easy to verify that

12.3. SYNCHRONOUS ORDERING 201

var
state : {active, passive} initially active;

To send m to Pj, (j < i)
enabled if (state = active):
send m to P
state := passive;

Upon receive m from P;, (§ > i)
enabled if (state = active):
send ack to Pj;

Upon receive ack:
state := active;

To send a message (message-id, m) to Pj, (j > 1)
send request(message_id) to Pj;

Upon receive request(message_id) from P, (j < %)
enabled if (state = active):
send permission(message_id) to P;
state := passive;

Upon receive permission(message_id) from P;, (j > ¢)
enabled if (state = active):
send m to Fj;

Upon receive m from P;, (j < 1)
state := active;

Figure 12.8: The algorithm at P; for synchronous ordering of messages

202 CHAPTER 12. MESSAGE ORDERING

import java.io .x;
public class SynchLinker extends Linker {
final static int passive = 0, active = 1;
int state = active;
private boolean granted;
public SynchLinker (String basename, int id, int numProc)
throws Exception {
super (basename , id, numProc);

public synchronized void sendMsg(int destId, String tag, String msg)
if (destld < myld) { // big message
waitForActive ();

super.sendMsg(destId , "app”, ” ”);
super. sendMsg(destId , tag, msg);
state = passive;

} else { // small message
granted = false;

n o»

super . sendMsg (destId , "request”, ;
while (! granted) Util.myWait(this); // wait for permission
super.sendMsg(destId, “app”, ” 7);
super . sendMsg (destId , tag, msg);
}
}
synchronized void turnActive (){
state = active; notifyAll ();

synchronized void waitForActive (){
while (state != active) Util.myWait(this);

synchronized void grant (){
granted = true; notifyAll ();

h
public Msg receiveMsg (int fromld) throws IOException {
boolean done = false;
Msg m = null;
while (!done) { // app msg received
m = super.receiveMsg (fromld);
String tag = m. getTag();
if (tag.equals("app”)) {
if (m. getSrcld () > myld) { // big message
waltForActive ();
m = super.receiveMsg (fromld };
super . sendMsg (fromld, "ack”, ” 7);
} else { // small message
m = super. receiveMsg (fromid);
turnActive ();

done = true,;
} else if (tag.equals(”ack”)) turnActive ();
else if (tag.equals(”request”)) {

waitForActive ();

super.sendMsg (fromld, ”permission”™, ” 7 };
} else if (tag.equals(”permission”)) grant ();

return m;

Figure 12.9: The algorithm for synchronous ordering of messages

12.4. TOTAL ORDER FOR MULTICAST MESSAGES 203

1. No process decreases its clock, and each process increases its clock by at least
one for successive messages.

2. The send and receive points of a message have the same timestamp.

12.4 Total Order for Multicast Messages

For synchronous ordering, we had assumed that messages were point-to-point. In
applications where a message may be sent to multiple processes, it is often desirable
that all messages be delivered in the same order at all processes. For example,
consider a server that is replicated at multiple sites for fault tolerance. If a client
makes a request to the server, then all copies of the server should handle requests in
the same order. The total ordering of messages can be formally specified as follows:

For all messages x and y and all processes P and @, if z is received at P before
y, then y is not received before z at Q. (Total Order)

We require that y not be received before x, rather than that be received before
y, to address the case where z is not sent to Q. Observe that we do not require that
a message be broadcast to all processes.

In this section we discuss algorithms for the total ordering of messages. Observe
that the property of total order of messages does not imply causal or even FIFO
property of messages. Consider the case when P sends messages m; followed by mo.
If all processes receive mq before my, then the total order is satisfied even though
FIFO is not. If messages satisfy causal order in addition to the total order, then we
will call this ordering of messages causal total order.

The algorithms for ensuring total order are very similar to mutual exclusion algo-
rithms. After all, mutual exclusion algorithms ensure that all accesses to the critical
section form a total order. If we ensure that messages are received in the “critical
section” order, then we are done. We now discuss centralized and distributed algo-
rithms for causal total ordering of messages.

12.4.1 Centralized Algorithm

We first modify the centralized algorithm for mutual exclusion to guarantee causal
total ordering of messages. We assume that channels between the coordinator pro-
cess and other processes satisfy the FIFO property. A process that wants to multi-
cast a message simply sends it to the coordinator. This step corresponds to request-
ing the lock in the mutual exclusion algorithm. Furthermore, in that algorithm, the
coordinator maintains a request queue, and whenever a request by a process be-
comes eligible, it sends the lock to that process. In the algorithm for total ordering
of messages, the coordinator will simply multicast the message corresponding to the

204 CHAPTER 12. MESSAGE ORDERING

request instead of sending the lock. Since all multicast messages originate from the
coordinator, and the channels are FIFO, the total-order property holds.

In this centralized algorithm, the coordinator has to perform more work than the
other nodes. One way to perform load balancing over time is by suitably rotating
the responsibility of the coordinator among processes. This can be achieved through
the use of a token. The token assigns sequence numbers to broadcasts, and messages
are delivered only in this sequence order.

12.4.2 Lamport’s Algorithm for Total Order

We modify Lamport’s algorithm for mutual exclusion to derive an algorithm for
total ordering of messages. As in that algorithm, we assume FIFO ordering of
messages. We also assume that a message is broadcast to all processes. To simulate
multicast, a process can simply ignore a message that is not meant for it. Each
process maintains a logical clock (used for timestamps) and a queue (used for storing
undelivered messages). The algorithm is given by the following rules:

e To send a broadcast message, a process sends a timestamped message to all
processes including itself. This step corresponds to requesting the critical
section in the mutual exclusion algorithm.

e On receiving a broadcast message, the message and its timestamp are stored
in the queue, and a timestamped acknowledgment is returned.

e A process can deliver the message with the smallest timestamp, t, in the
request queue if it has received a message with timestamp greater than ¢ from
every other process. This step corresponds to executing the critical section for
the mutual exclusion algorithm.

In this algorithm, the total order of messages delivered is given by the logical clock
of send events of the broadcast messages.

12.4.3 Skeen’s Algorithm

Lamport’s algorithm is wasteful when most messages are multicast and not broad-
cast. Skeen’s algorithm requires messages proportional to the number of recipients
of a message and not the total number of processes in the system.

The distributed algorithm of Skeen also assurnes that processes have access to
Lamport's logical clock. The algorithm is given by the following rules:

e To send a multicast message, a process sends a timestamped message to all
the destination processes.

12.5. PROBLEMS 205

e On receiving a message, a process marks it as undeliverable and sends the
value of the logical clock as the proposed timestamp to the initiator.

e When the initiator has received all the proposed timestamps, it takes the
maximum of all proposals and assigns that timestamp as the final timestamp
to that message. This value is sent to all the destinations.

e On receiving the final timestamp of a message, it is marked as deliverable.

o A deliverable message is delivered to the site if it has the smallest timestamp
in the message queue.

In this algorithm, the total order of message delivery is given by the final timestamps
of the messages.

12.4.4 Application: Replicated State Machines

Assume that we are interested in providing a fault-tolerant service in a distributed
system. The service is expected to process requests and provide outputs. We would
also like the service to tolerate up to ¢ faults where each fault corresponds to a crash
of a processor. We can build such a service using ¢ + 1 processors in a distributed
system as follows. We structure our service as a deterministic state machine. This
means that if each nonfaulty processor starts in the same initial state and executes
the requests in the same order, then each will produce the same output. Thus, by
combining outputs of the collection, we can get a t fault-tolerant service. The key
requirement for implementation is that all state machines process all requests in the
same order. The total ordering of messages satisfies this property.

12.5 Problems

12.1. Assume that you have replicated data for fault tolerance. Any file (or a record)
may be replicated at more than one site. To avoid updating two copies of the
data, assume that a token-based scheme is used. Any site possessing the token
can update the file and broadcast the update to all sites that have that file.
Show that if the communication is guaranteed to be causally ordered, then
the scheme described above will ensure that all updates at all sites happen in
the same order.

12.2. Let M be the set of messages in a distributed computation. Given a message
z, we use x.s to denote the send event and z.r to denote the receive event.
We say that a computation is causally ordered if

Vr,y € M : (2.8 — y.5) = ~(y.r — z.1).

206

12.3.

12.4.

12.5.

12.6.

12.7.

CHAPTER 12. MESSAGE ORDERING

We say that a computation is mysteriously ordered if
Vr,y € M :{x.s = yr) = ~(y.s > z.r).

(a) Prove or disprove that every causally ordered computation is also myste-
riously ordered.

(b) Prove or disprove that every mysteriously ordered computation is also
causally ordered.

Show the relationship between conditions (C1), (C2), and (C3) on message
delivery of a system.

81 — 89 = “1(7'2 — ’rl) (Cl)
81 < 83 = (g — 1) (C2)
81— 89 = =(rg < ry) (C3)

where s7 and sy are sends of any two messages and r, and 79 are the corre-
sponding receives. Note that a computation satisfies a delivery condition if
and only if the condition is true for all pairs of messages.

Assume that all messages are broadcast messages. How can you simplify the
algorithm for guaranteeing causal ordering of messages under this condition?

Cousider a system of N + 1 processes { Py, P, ..., Py} in which processes P
through Py can only send messages to Py or receive messages from Py. Show
that if all channels in the system are FIFO, then any computation on this
system is causally ordered.

In this chapter, we have used the happened-before model for modeling the
dependency of one message to the other. Thus all messages within a process
are totally ordered. For some applications, messages sent from a process may
be independent. Give an algorithm to ensure causal ordering of messages when
the send events from a single process do not form a total order.

Suppose that a system is composed of nonoverlapping groups such that any
communication outside the group is always through the group leader, that is,
only a group leader is permitted to send or receive messages outside the group.
How will you exploit this structure to reduce the overhead in causal ordering
of messages?

12.6. BIBLIOGRAPHIC REMARKS 207

12.8.

12.9.

12.10.

12.11.

Design an algorithm for synchronous ordering for point-to-point messages that
does not use a static priority scheme. (Hint: Impose an acyclic directed graph
on processes. The edge from F; to P; means that P is bigger than P; for the
purpose of sending messages. Give a rule by which the direction of edges is
reversed, such that acyclicity of the graph is maintained.)

Prove the correctness of Lamport’s algorithm for providing causal total order-
ing of messages.

Prove the correctness of Skeen’s algorithm for providing total ordering of mes-
sages.

Build a multiuser Chat application in Java that guarantees that all users see
all messages in the same order.

12.6 Bibliographic Remarks

Causal ordering was first proposed by Birman and Joseph [BJ87]. The algorithm for
causal ordering described in this chapter is essentially the same as that described by
Raynal, Schiper, and Toueg [RST91]. The algorithm for implementing synchronous
ordering is taken from a paper by Murty and Garg [MG95]. For a discussion on total
ordering of messages, see the article by Birman and Joseph [BJ87]. The distributed
algorithm for causal total ordering of messages is implicit in the replicated state
machine construction described by Lamport [Lam78]. Skeen’s algorithm is taken
from the reference [Ske82].

This Page Intentionally Left Blank

Chapter 13

Leader Election

13.1 Introduction

Many distributed systems superimpose a logical ring topology on the underlying
network to execute control functions. An important control function is that of
electing a leader process. The leader can serve as a coordinator for centralized
algorithms for problems such as mutual exclusion. Electing a leader in a ring can
also be viewed as the problem of breaking symmetry in a system. For example, once
a deadlock is detected in the form of a cycle, we may wish to remove one of the
nodes in the cycle to remove the deadlock. This can be achieved by electing the
leader.

We abstract the leader election problem using the interface Election shown
below.

public interface Election extends MsgHandler {
void startElection ();
int getLeader (); //blocks till the leader is known

Any implementation of Electiecn should provide the method startElection,
which is invoked by one or more processes in the system. The method getLeader
returns the identity of the leader. If the identity of the leader is not known, then
this method blocks until the leader is elected.

The leader election problem is similar to the mutual exclusion problem discussed
in Chapter 8. In both problems, we are interested in choosing one of the processes

209

210 CHAPTER 13. LEADER ELECTION

as a privileged process. Coordinator-based or token-based solutions for mutual ex-
clusion are not applicable for the leader election problem, because deciding which
process can serve as the coordinator or has the token is precisely the leader election
problem. If processes have unique identifiers and the underlying communication
network is completely connected, then we can apply Lamport’s mutual exclusion
algorithm to determine the leader—the first process to enter the critical section is
deemed as the leader. However, this algorithm requires every process to commu-
nicate with every other process in the worst case. We will explore more efficient
algorithms for the ring topology.

13.2 Ring-Based Algorithms

A ring is considered anonymous if processes in the ring do not have unique identifiers.
Furthermore, every process has an identical state machine with the same initial state.

It is not difficult to see that there is no deterministic algorithm for leader election
in an anonymous ring. The reason is that we have complete symmetry initially—no
process is distinguishable from other processes. Because there is a unique leader,
we know that the system can never terminate in a symmetric state. Thus the
algorithm has not terminated in the initial state. We now show an execution that
moves the system from one symmetric state to the other. Assume that any process
in the ring takes a step. By symmetry, this step is possible at all processes. Thus
in the adversarial execution all processes take the same step. Since the algorithm
is deterministic, the systemn must again reach a symmetric state. Therefore, the
system could not have terminated (i.e., the leader could not have been elected yet).
We can repeat this procedure forever.

Observe that our argument uses the fact that the algorithm is deterministic. A
randomized algorithm can solve the leader election problem in expected finite time
(see Problem 13.1).

13.2.1 Chang—Roberts Algorithm

Now assume that each process has a unique identifier. In such a system, a leader
can be elected in a ring by a very simple algorithm due to Chang and Roberts. The
algorithm ensures that the process with the maximum identifier gets elected as the
leader. In the algorithm shown in Figure 13.1, every process sends messages only
to its left neighbor and receives messages from its right neighbor. A process can
send an election message along with its identifier to its left, if it has not seen any
message with a higher identifier than its own identifier. It also forwards any message
that has an identifier greater than its own; otherwise, it swallows that message. If
a process receives its own message, then it declares itself as the leader by sending

13.2. RING-BASED ALGORITHMS 211

a leader message. When a process receives its own leader message, it knows that
everybody knows the leader.

In the algorithm, one or more processes may spontaneously wake up and initiate
the election using the method startElection. When a process wakes up on receiv-
ing a message from a process with a smaller identifier, it circulates its own election
message.

Note that the algorithm does not require any process to know the total number
of processes in the system.

public class RingLeader extends Process implements Election {
int number;

int leaderld = —-1;
int next;
boolean awake = false ;

public RingLeader (Linker initComm, int number) {
super (initComm };
this . number = number;
next = (myld + 1) % N;

public synchronized int getLeader (){
while (leaderld == —1) myWait();
return leaderld ;

public synchronized void handleMsg(Msg m, int src, String tag) {
int j = m. getMessagelnt (); // get the number
if (tag.equals(”election”)) {
if (j > number)
sendMsg (next, "election”, j); // forward the message
else if (j == number) // I won/
sendMsg (next, ”leader”, myld);
else if ((j < number) && lawake) startElection ();
} else if (tag.equals(”leader”)) {
leaderld = j;
notify ();
if (j !'= myld) sendMsg(next, ”leader”, j);

public synchronized void startElection () {
awake = true;
sendMsg (next, "election”, number);

Figure 13.1: The leader election algorithm

212 CHAPTER 13. LEADER ELECTION

3
() ®

Figure 13.2: Configurations for the worst case (a) and the best case (b)

The worst case of this algorithm is when N processes with identifiers 1 ... N are
arranged clockwise in decreasing order (see Figure 13.2(a)). The message initiated
by process j will travel j processes before it is swallowed by a larger process. Thus
the total number of election messages in the worst case is

J=N

D i=0(N?).
j=1

In addition, there are N leader messages. The best case is when the same identifiers
are arranged clockwise in the increasing order. In that case, only O(N) election
messages are required. On an average, the algorithm requires O(N log N) messages
(see Problem 13.2).

13.2.2 Hirschberg—Sinclair Algorithm

In this section we assume that the ring is bidirectional so that messages can be sent
to the left or the right neighbor. The main idea of the algorithm is to carry out
elections on increasingly larger sets. The algorithm works in asynchronous rounds
such that a process P; tries to elect itself in round r. Only processes that win
their election in round r can proceed to round r + 1. The invariant satisfied by the
algorithm is that process P; is a leader in round r iff P, has the largest identifier
of all nodes that are at distance 2" or less from F;. It follows that any two leaders
after round » must be at least 2" distance apart. In other words, after round r,
there are at most N/(2"7! + 1) leaders. With each round, the number of leaders

13.3. ELECTION ON GENERAL GRAPHS 213

decreases, and in O(log N) rounds there is exactly one leader. It can be shown by
using induction that there are at most O(NN) messages per round, which gives us a
bound of O(N log N). The details of the algorithm and its proof of correctness are
left as exercises.

13.3 Election on General Graphs

First assume that the graph is completely connected, that is, every process can
talk to every other process directly. In this case, we can modify Lamport’s mutual
exclusion algorithm for leader election. One or more processes start the election.
Any process that enters the critical section first is considered the leader.

Note that a process need not acknowledge another process’s request if it knows
that there is a request with a lower timestamp. Moreover, there is no need for release
messages for the leader election problem. As soon as a process enters the critical
section, it can inform all other processes that it has won the election. If ¢ processes
start the election concurrently, then this algorithm takes at most 2¢/N messages for
“request” and “acknowledgment,” and N messages for the final broadcast of who
the leader is.

Now consider the case when the graph is not completely connected. We assume
that every process initially knows only the identities of its neighbors. In this case,
we can simulate the broadcast from a node v by constructing a spanning tree rooted
at v.

13.3.1 Spanning Tree Construction

We assume that there is a distinguished process root. Later we will remove this
assumption. The algorithm shown in Figure 13.3 is initiated by the root process by
sending an invite message to all its neighbors. Whenever a process P; receives an
invite message (from Pj) for the first time, it sends that message to all its neighbors
except Pj. To P; it sends an accept message, indicating that P; is the parent of P;.
If P; receives an tnvite message from some other process thereafter, it simply replies
with a reject message. Every node keeps a count of the number of nodes from which
it has received messages in the variable numreports. When this value reaches the
total number of neighbors, P; knows that it has heard from all processes that it had
sent the invite message (all neighbors except the parent). At this point, P; can be
sure that it knows all its children and can halt.

This algorithm is also called the flooding algorithm because it can be used to
broadcast a message m, when there is no predefined spanning tree. The algorithm
for flooding a message is simple. Whenever a process P; receives a message m (from
F;) for the first time, it sends that message to all its neighbors except P;.

214 CHAPTER 13. LEADER ELECTION

public class SpanTree extends Process {

public int parent = —1; // no parent yet

public IntLinkedList children = new IntLinkedList ();
int numReports = 0;

boolean done = false;

public SpanTree(Linker initComm, boolean isRoot) {
super (initComm);
if (isRoot}) {
parent = myld;
if (initComm. neighbors.size () == 0)
done = true;
else
sendToNeighbors ("invite”, myld);
}

public synchronized void waitForDone () { // block till children knouwn
while (!done) myWait ();

public synchronized void handleMsg(Msg m, int src, String tag) {
if (tag.equals(”invite”)) {

if (parent == -1} {
numReports++;
parent = src;

sendMsg (src, ”accept™);
for (int i = 0; i < N; i++4)
if ((1!'= myld) && (i !'= src) && isNeighbor (i))
sendMsg (i, "invite”);
} else
sendMsg (src, "reject”);

} else if ((tag.equals(”accept”)) || (tag.equals("reject”))) {
if (tag.equals ("accept”)) children .add(src);
numReports++;
if (numReports == comm. neighbors .size ()) {

done = true;
notify ();

Figure 13.3: A spanning tree construction algorithm

13.4. APPLICATION: COMPUTING GLOBAL FUNCTIONS 215

What if there is no distinguished process? We assume that each process has
a unique ¢d, but initially every process knows only its own id. In this case, each
node can start the spanning tree construction assuming that it is the distinguished
process. Thus many instances of spanning tree construction may be active concur-
rently. To distinguish these instances, all messages in the spanning tree started by
P; contain the id for P;,. By ensuring that only the instance started by the process
with the largest id succeeds, we can build a spanning tree even when there is no
distinguished process. The details of the algorithm are left as an exercise.

13.4 Application: Computing Global Functions

One of the fundamental difficulties of distributed computing is that no process has
access to the global state. This difficulty can be alleviated by developing mechanisms
to compute functions of the global state. We call such functions global functions.
More concretely, assume that we have z; located at process P;. Our aim is to
compute a function f(xy,zs,...,zxn) that depends on states of all processes.

First, we present an algorithm for convergecast and broadcast on a network,
assuming that there is a predefined spanning tree. The convergecast requires infor-
mation from all nodes of the tree to be collected at the root of the tree. Once all
the information is present at the root node, it can compute the global function and
then broadcast the value to all nodes in the tree. Both the convergecast and the
broadcast require a spanning tree on the network.

The algorithms for convergecast and broadcast are very simple if we assume a
rooted spanning tree. For convergecast, the algorithm is shown in Figure 13.4. Each
node in the spanning tree is responsible to report to its parent the information of
its subtree. The variable parent, for a node x, is the identity of the neighbor of x,
which is the parent in the rooted spanning tree. For the root, this value is null. The
variable numchildren keeps track of the total number of its children, and numreports
keeps track of the number of its children who have reported. When the root node
hears from all its children, it has all the information needed to compute the global
function.

The broadcast algorithm shown in Figure 13.5 is dual of the convergecast al-
gorithm. The algorithm is initiated by the root process by sending the broadcast
message to all its children. In this algorithm, messages traverse down the tree.

We now combine the convergecast and the broadcast algorithms to provide a
service that can compute a global function. For simplicity, we assume that the global
function is commutative and associative, such as min, maz, sum, and product. This
allows internal nodes to send intermediate results to the parent node during the
convergecast process. The GlobalService interface is shown below.

216 CHAPTER 13. LEADER ELECTION

var
parent: process id;// initialized based on the spanning tree
numchildren: integer; // initialized based on the spanning tree
numreports: integer initially 0;

on receiving a report from F;
numreports := numreports + 1;
if (numreports = numchildren) then
if (parent = null) then // root node
compute global function;
else send report to parent;
endif;

Figure 13.4: A convergecast algorithm

Proot &
send m to all children;

P i i # root
on receiving a message m from parent
send m to all children;

Figure 13.5: A broadcast algorithm

public interface GlobalService extends MsgHandler {
public void initialize (int x, FuncUser prog);
public int computeGlobal ();

Any program that wants to compute a global function can invoke computeGlobal
with its value and the global function to be computed as arguments. The FuncUser
is required to have a binary function called func as shown below.

13.5. PROBLEMS 217

public interface FuncUser {
public int func(int x, int y);
}

Now we can give an implementation for GlobalService based on the ideas of
convergecast and broadcast. The Java implementation is shown in Figure 13.6.

The program uses two types of messages, subTreeVal and globalFunc, for con-
vergecast and broadcast respectively. The list pending keeps track of all the children
that have not reported using the subTreeVal message. Whenever a subTreeVal mes-
sage is received, it is combined with myValue using prog.func(). Whenever the
pending list becomes empty, that node has the value of the global function for its
subtree. If the node is a root, it can initiate the broadcast; otherwise it sends its
myValue to its parent and waits for the globalFunc message to arrive. The final
answer is given by the value that comes with this message.

The class GlobalFunc can be used to compute a global function as illustrated
by the class GlobalFuncTest in Figure 13.7.

13.5 Problems

13.1. An algorithm on a ring is considered nonuniform if every process knows the
total number of processes in the ring. Show that there exists a randomized
nonuniform algorithm to elect a leader on an anonymous ring that terminates
with probability 1. [Hint: Consider an algorithm with rounds in which initially
all processes are eligible. In each round, an eligible process draws at random
from 0...m (where m > 0). The subset of processes that draw the maximum
element from the set selected is eligible for the next round. If there is exactly
one eligible process, then the algorithm terminates. Analyze the expected
number of rounds as a function of N and m.]

13.2. Show that the Chang-Roberts algorithm requires O(N log N) messages on
average.

13.3. Modify the Chang--Roberts algorithm such that a process keeps track of mazid,
the largest identifier it has seen so far. It swallows any message with any
identifier that is smaller than mazid. What are the worst and the expected
number of messages for this variant of the algorithm?

13.4. Give an O(N log N) algorithm for leader election on a bidirectional ring.

218 CHAPTER 13. LEADER ELECTION

import java.util .x;
public class GlobalFunc extends Process implements GlobalService {
FuncUser prog;
SpanTree tree = null;
IntLinkedList pending = new IntLinkedList ();
int myValue;
int answer;
boolean answerRecvd;
boolean pendingSet = false;
public GlobalFunc (Linker initComm, boolean isRoot) {
super (initComm);
tree = new SpanTree(comm, isRoot);

public void initialize (int myValue, FuncUser prog) {
this . myValue = myValue;
this . prog = prog;
tree . waitForDone ();
Util . println (myld + 7:” + tree.children.toString ());

public synchronized int computeGlobal () {

pending . addAll (tree . children);

pendingSet = true;

notifyAll (});

while (! pending.isEmpty ()}) myWait();

if (trce.parent == myld) { // root node
answer = myValue;

} else { //non—root node
sendMsg (tree . parent, "subTreeVal”, myValue);
answerRecvd = false ;
while (! answerRecvd) myWait ();

sendChildren (answer);
return answer;

void sendChildren {int value) {
ListIterator t = tree.children.listIterator (0);
while (t.hasNext (}) {
Integer child = (Integer) t.next ();
sendMsg (child . intValue (), ”globalFunc”, value);

}

public synchronized void handleMsg(Msg m, int src, String tag) {
tree . handleMsg (m, src, tag);
if (tag.equals ("subTreeVal”)) {
while (! pendingSet) myWait ();
pending . remove (new Integer (src));
myValue = prog. func (myValue, m getMessagelnt ());
if (pending.isEmpty ()) notifyAll ();
} else if (tag.equals(”globalFunc”)) {
answer = m. getMessagelnt ();
answerRecvd = true;
notify All ();

Figure 13.6: Algorithm for computing a global function

13.6. BIBLIOGRAPHIC REMARKS 219

public class GlobalFuncTester implements FuncUser {
public int func(int x, int y) {
return x + y;

public static void main(String [] args) throws Exception {
int myld = Integer . parselnt (args [1]);
int numProc = Integer.parselnt (args[2]);
Linker comm = new Linker (args [0], myld, numProc);
GlobalFunc g = new GlobalFunc(comm, (myld == 0));
for (int i = 0; i < numProc; i++)
if (i != myld)
(new ListenerThread (i, g))}. start ();
int myValue = Integer.parselnt (args [3]);

GlobalFuncTester h = new GlobalFuncTester ();
g.initialize (myValue, h);

int globalSum = g.computeGlobal ();

System.out. println (" The global sum is ” + globalSum);

Figure 13.7: Computing the global sum

13.6 Bibliographic Remarks

The impossibility result on anonymous rings is due to Angluin [Ang80]. The O(N?)
algorithm is due to Chang and Roberts [CR79]. The O(N log N) algorithm dis-
cussed in the chapter is due to Hirschberg and Sinclair [HS80]. Dolev, Klawe and
Rodeh [DKR82] and Peterson [Pet82] have presented an O(N log N) algorithm for
unidirectional rings. For lower bounds of Q(N log N), see papers by Burns [Bur80]
and Pachl, Korach, and Rotem [PKR&82].

This Page Intentionally Left Blank

Chapter 14

Synchronizers

14.1 Introduction

The design of distributed algorithms is easier if we assume that the underlying
network is synchronous rather than asynchronous. A prime example is that of
computing a breadth-first search (BFS) tree in a network. In this chapter, we
assume that the network has N nodes, E edges, and its diameter is D. Assume that
we are given a distinguished node v and our job is to build a breadth-first search
tree rooted at v. A synchronous algorithm for this task is quite simple. We build
the tree level by level. The node v is initially at level 0. A node at level i is required
to send messages to its neighbors at pulse i. A process that receives one or more of
these messages, and does not have a level number assigned yet, chooses the source
of one of these messages as its parent and assigns itself level number ¢+ 1. It is clear
that if the graph is connected, then every node will have its level number assigned
in at most D pulses assuming that any message sent at pulse i is received at pulse
i1+ 1.

What if the underlying network is not synchronous? The corresponding problem
on an asynchronous network is more difficult. This motivates methods by which
a synchronous network can be simulated by an asynchronous network. We show
that, in the absence of failures, this is indeed possible using a mechanism called a
synchronizer. To simulate the synchronous algorithm on an asynchronous network,
all we need is to use one of the synchronizers discussed in this chapter.

A synchronous network can be abstracted with the notion of a pulse, which is
a counter at each process with the property that any message sent in pulse i is
received at pulse ¢ + 1. A synchronizer is simply a mechanism that indicates to a

221

222 CHAPTER 14. SYNCHRONIZERS

process when it can generate a pulse. In this chapter we will study synchronizers
and their complexity.

To define properties of synchronizers formally, we associate a pulse number with
each state s on a process. It is initialized to 0 for all processes. A process can
go from pulse i to ¢ + 1 only if it knows that it has received and acted on all the
messages sent during pulse ¢ — 1.

Given the notion of a pulse, the execution of a synchronous algorithm can be
modeled as a sequence of pulses. In each pulse, a process first receives messages
from neighbors that were sent in previous round. It then performs internal compu-
tation based on the received messages. It also sends messages to its neighbors as
required by the application. It can execute the next pulse only when indicated by
the synchronizer. Thus a synchronizer can be abstracted by the following interface:

public interface Synchronizer extends MsgHandler {
public void initialize (MsgHandler initProg);
public void sendMessage(int destId, String tag, int msg);
public void nextPulse (); // block for the next pulse

There are two aspects of the complexity of a synchronizer—the message com-
plexity and the time complexity. The message complexity indicates the additional
number of messages required by the synchronizer to simulate a synchronous algo-
rithm on top of an asynchronous network. The time complezity is the number of
time units required to simulate one pulse, where a time unit is defined as the time
required for an asynchronous message.

Some synchronizers have a nontrivial initialization cost. Let M;p;; be the num-
ber of messages and Ty be the time required for initialization of the synchronizer.
Let Mpyse and Tpyse respectively be the number of messages and the time required
to simulate one pulse of a synchronous algorithm. If a synchronous algorithm re-
quires Tgynen rounds and My ,c, messages, then the complexity of the asynchronous
protocol based on the synchronizer is given by

Masynch = Minit + Msynch + Mpulse * Tsynch

Tasynch = Tinit + Tpulse * Tsynch

We model the topology of the underlying network as an undirected, connected
graph. We assume that processes never fail. It is not possible to simulate a syn-
chronous algorithm on an asynchronous network when processes can fail. In Chapter

14.2. A SIMPLE SYNCHRONIZER 223

15, we show algorithms that can achieve consensus despite process failures in syn-
chronous systems and that consensus is impossible in asynchronous systems when
even a single process may fail. This implies that process failures cannot be toler-
ated in simulating synchrony. We also assume that all channels are reliable. Again,
Chapter 15 shows that the consensus problem is impossible to solve when channels
are unreliable.

14.2 A Simple Synchronizer

A simple synchronizer can be built using a rule stipulating that every process send
exactly one message to all neighbors in each pulse. With this rule, a process can
simply wait for exactly one message from each of its neighbors. To implement this
rule, even if the synchronous algorithm did not require P; to send any message to
its neighbor P; in a particular round, it must still send a “null” message to P;.
Furthermore, if the synchronous algorithm required P; to send multiple messages,
then these messages must be packed as a single message and sent to P;.

The simple synchronizer generates the next pulse for process p at pulse ¢ when
it has received exactly one message sent during pulse i from each of its neighbors.
The algorithm is shown in Figure 14.1 and its Java implementation, in Figure 14.2.

P
var
pulse: integer initially 0;

round 7 :
pulse := pulse + 1,
wait for exactly one message with (pulse = i) from each neighbors;
simulate the round i of the synchronous algorithm;
send messages to all neighbors with pulse;

Figure 14.1: Algorithm for the simple synchronizer at P;

The algorithm in Figure 14.2 ensures that a process in pulse i receives only the
messages sent in pulse ¢ — 1.
The implementation in Java assumes FIFO and uses the following variables:

e pendingS: list of neighbors who have not been sent any message in this pulse

224 CHAPTER 14. SYNCHRONIZERS

import java.util.LinkedList;
public class SimpleSynch extends Process implements Synchronizer {
int pulse = 0;
MsgHandler prog;
boolean rcvEnabled [];
IntLinkedList pendingS = new IntLinkedList ();
IntLinkedList pendingR = new IntLinkedList ();
public SimpleSynch (Linker initComm}) {
super (initComm);
revEnabled = new boolean[N];
for (int i = 0; 1 < N; i++)
revEnabled [i] = false;

public synchronized void initialize (MsgHandler initProg) {
prog = initProg;
pendingS . addAll (comm. neighbors);
notify All ();

public synchronized void handleMsg (Msg m, int src, String tag) {
while (! rcvEnabled [src]) myWait();
pendingR . removeObject (src);
if (pendingR.isEmpty ()) notifyAll ();
if (!tag.equals(”synchNull”))
prog. handleMsg (m, src, tag);
rcvEnabled {sre] = false;

public synchronized void sendMessage (int destld, String tag, int msg) {
if (pendingS.contains (destld)) {
pendingS . removeObject (dest1d };
sendMsg (destld, tag, msg);
1 else
System . err . println (" Error: sending two messages/pulse”);

public synchronized void nextPulse () {
while (! pendingS.isEmpty ()) { // finish last pulse by sending null
int dest = pendingS.removeHead ();
sendMsg (dest , "synchNull”, 0);

pulse ++4;
Util. println (7 ++%* new pulse xx%%:” + pulse);
pendingS . addAll (comm. neighbors };
pendingR . addAll {(comm. neighbors);
for (int i = 0; 1 < N; i++4)
rcvEnabled [1] = true;
notify All ();
while (! pendingR.isEmpty ()) myWait();

Figure 14.2: Implementation of the simple synchronizer

14.2. A SIMPLE SYNCHRONIZER 225

e pendingR: list of neighbors from which no message has been received in this
pulse

e rcvEnabled[j]: whether the process can receive a message from P; in this
round.

The method initialize sets pendingS and pendingR for all neighbors and the
variable pulse to 0. We have assumed that the communication topology is given
by an undirected graph and that comm.neighbors has the list of all neighbors.

The method handleMsg is implemented as follows. When a message is received
at the application, it is determined whether any message has already been received
from the source in the current pulse. If there is such a message, then this message
belongs to the next pulse and the process waits for rcvEnabled[src] to become
true. Otherwise, this message is meant for this pulse and source is removed from
the list pendingR. At this point, the tag of the message is checked to see if it is a null
message (of type synchNull) used only for the synchronizer. If it is not, the message
is passed on to the application. If a message has been received in this pulse from
each of the neighbors, that is, pendingR is empty, then the application can continue
to the next pulse and the thread that may be blocked in nextPulse is signaled. To
send a message, we simply remove the destination from the list pendings.

Whenever the application layer calls nextPulse, the synchronizer first ensures
that every neighbor is sent exactly one message in the last pulse. After incrementing
the pulse number, it waits to receive exactly one message from every neighbor. This
is achieved bu waiting for the list pendingR to be empty. When this condition
becomes true, it is ready for the next pulse.

Note that there is no special requirement for initialization of this synchronizer.
When any process starts pulse 1, within D time units all other processes will also
start pulse 1. Therefore, the complexity of initializing the simple synchronizer is

Mini = 0; Tt = D.

Because each pulse requires a message along every link in both directions, we
get the complexity of simulating a pulse as

Mpulse = 2FE; ’pulse =L

14.2.1 Application: BFS Tree Construction

Let us use the simple synchronizer for computing the BFS tree in a network. Figure
14.3 gives an algorithm that will compute the BFS tree on a synchronous network,
but not necessarily the BFS tree on an asynchronous network. The algorithm has

226 CHAPTER 14. SYNCHRONIZERS

two methods: initiate and handleMsg. The method initiate is invoked by the
root from which we would like to compute the tree. In this method, the root sends
an invite message to all its neighbors. Any node that receives an invite message
for the first time becomes part of the tree with its parent as the node that sent
the invitation. This node in turn sends invitations to all its neighbors. In an
asynchronous network, this algorithm may not produce a BFS tree. Figure 14.4
gives an algorithm that runs with the simple synchronizer to ensure that the tree
computed is the BFS tree even on asynchronous networks.

public class Tree extends Process {
int parent = —1,
int level;
public Tree(Linker initComm, boolean isRoot) {
super (initComm);
if (isRoot) initiate ();

public void initiate () {
parent = myld;
level = 0;
for (int i = 0; i < N; 1+4)
if (isNeighbor (i)})
sendMsg (i, "invite”, level + 1);

public synchronized void handleMsg(Msg m, int src, String tag) {
if (tag.equals(Tinvite”)) {
if (parent == —-1) {

parent = src;

level = m. getMessagelnt ();

for (int i = 0; i < N; i++4)

if (isNeighbor (i) && (i != src))
sendMsg (i, "invite”, level + 1);

Figure 14.3: An algorithm that generates a tree on an asynchronous network

14.3 Synchronizer «

The synchronizer « is very similar to the simple synchronizer. We cover this syn-
chronizer because it is a special case of a more general synchronizer v that will be
covered later. All the synchronizers discussed from now on are based around the

14.3. SYNCHRONIZER o 227

public class SynchBfsTree extends Process {
int parent = —1;
int level;
Synchronizer s;
boolean isRoot;
public SynchBfsTree (Linker initComm,
Synchronizer initS, boolean isRoot) {
super (initComm);
s = initS;
this . isRoot = isRoot;

public void initiate () {
if (isRoot) {
parent = myld;
level = 0;

s.initialize (this});
for (int pulse = 0; pulse < N; pulse++) {
if ((pulse == 0) && isRoot) {
for (int i = 0; i < N; i++)
if (isNeighbor (1})
s.sendMessage (i, "invite”, level + 1);

s. nextPulse ();

}

}
public void handleMsg(Msg m, int src, String tag) {
if (tag.equals ("invite”)) {
if (parent == —1) {
parent = src;
level = m. getMessagelnt ();
Util. println (myld + 7 is at level 7 + level);
for (int i = 0; i < N; i++)
if (isNeighbor (i) && (i !'= src))
s.sendMessage (i, ”invite”, level + 1);

Figure 14.4: BFS tree algorithm using a synchronizer

228 CHAPTER 14. SYNCHRONIZERS

concept of safety of a process. Process P is safe for pulse i if it knows that all
messages sent from P in pulse i have been received.

The o synchronizer generates the next pulse at process P if all its neighbors are
safe. This is because if all neighbors of P are safe, then all messages sent to process
P have been received.

To implement the « synchronizer, it is sufficient for every process to inform all
its neighbors whenever it is safe for a pulse. How can a process determine whether
it is safe? This is a simple matter if all messages are required to be acknowledged.

The algorithm for « synchronizer is given in Figure 14.5. We have assumed FIFO
ordering of messages. The algorithm maintains a variable acksNeeded that records
the number of unacknowledged messages for the current pulse. It also maintains
unsafe, the list of neighbors that are unsafe for this node for the current pulse. At
the beginning of each pulse, acksNeeded is initialized to 0 and unsafe to the list of
all neighbors.

The synchronizer handles two types of messages: synchAck and safe. The
synchAck message acknowledges an application message and acksNeeded is decre-
mented whenever the synchAck message is received. The safe message is handled
by removing the source of the message from the unsafe list. When an application
message is received, it is checked whether a safe message has been received from that
neighbor. Since a process sends safe messages only at the end of the pulse, if a safe
message has already been received, then this message is meant for the next pulse and
is recorded in nextPulseMsgs as in SimpleSynch. Otherwise, an acknowledgment
is sent and the message is delivered to the application layer.

The method nextPulse is implemented as follows. First, the node waits for all
pending acknowledgments. Once all acknowledgments are received, it knows that it
is safe and sends the safe message to all neighbors. It then waits for all its neighbors
to be safe. When that condition becomes true, the node is ready for the next pulse.
At the beginning of the pulse all the messages in nextPulseMsgs are delivered.

The complexity of synchronizer « is given below:

Tingt = D; My = D

Tpulse = 0(1)7 Mpulse = O(E)

14.4 Synchronizer

Although the synchronizers discussed so far appear to be efficient, they have high
message complexity when the topology of the underlying network is dense. For
large networks, where every node may be connected to a large number of nodes, it
may be impractical to send a message to all neighbors in every pulse. The message

14.4. SYNCHRONIZER 3 229

import java.util.LinkedList;
public class AlphaSynch extends Process implements Synchronizer {
int pulse = —1;
int acksNeeded = 0;
IntLinkedList unsafe = new IntLinkedList ()
LinkedList nextPulseMsgs = new LinkedList (
boolean meSafe;
MsgHandler prog;
public AlphaSynch(Linker initComm) {
super (initComm });

); //msgs for mext pulse

public synchronized void initialize (MsgHandler initProg) {
prog = initProg;
startPulse ();
notifyAll ();

void startPulse (){
unsafe . addAll (comm. neighbors);
meSafe = false;
pulse ++;

Util. println ("***+ new pulse #xxx:”

+ pulse);

public synchronized void handleMsg(Msg m, int src, String tag) {
while (pulse < 0) myWait();
if (tag.equals("synchAck”)) {
acksNeeded ——;
if (acksNeeded == 0) notifyAll ();
} else if (tag.equals(”safe”)) {
while (! unsafe.contains (src)) myWait();
unsafe . removeObject (src);
if (unsafe.isEmpty ()) notifyAll ();
} else { // application message
sendMsg (src, "synchAck”, 0);
while (! unsafe.contains (src)) myWait();
if (meSafe) nextPulseMsgs.add(m);
else prog.handleMsg(m, src, tag);

}

public synchronized void sendMessage (int destId, String tag, int msg) {
acksNeeded ++;
sendMsg(destId, tag, msg);

public synchronized void nextPulse () {

while (acksNeeded !'= 0) myWait();

meSafe = true;

sendToNeighbors ("safe”, 0);

while (! unsafe.isEmpty ()) myWait();

startPulse ();

while (! nextPulseMsgs.isEmpty ()) { //act on msgs received earlier
Msg m = (Msg) nextPulseMsgs.removeFirst (};
prog. handleMsg (m, m. getSrcId (), m. getTag());

notifyAll (};

Figure 14.5: Alpha synchronizer

230 CHAPTER 14. SYNCHRONIZERS

complexity can be reduced at the expense of time complexity as illustrated by the
(3 synchronizer.

The 3 synchronizer assumes the existence of a rooted spanning tree in the net-
work. A node in the tree sends a message subtree safe when all nodes in its subtree
are safe. When the root of the tree is safe and all its children are safe, then we can
conclude that all nodes in the tree are safe. Now a simple broadcast of this fact via
a pulse message can start the next pulse at all nodes. The broadcast can be done
using the rooted spanning tree.

The initialization phase of this synchronizer requires a spanning tree to be built.
This can be done using O(N log N + E) messages and O(N) time. For each pulse,
we require messages only along the spanning tree. Thus the message complexity for
each pulse is O(N). Each pulse also takes time proportional to the height of the
spanning tree, which in the worst case is O(N). In summary, the complexity of the
[synchronizer is

Tinit = O(N), Minit = O(N log N + E)

Tpulse = O(N), Mpulse = O(N)

14.5 Synchronizer vy

We have seen that the o synchronizer takes O(1) time but has high message com-
plexity O(F), and the § synchronizer has low message complexity O(N) but requires
O(N) time per pulse. We now describe the v synchronizer which is a generalization
of both a and 3 synchronizers. It takes a parameter k such that when kis N — 1,
it reduces to the a synchronizer and when k is 2, it reduces to the § synchronizer.

The v synchronizer is based on clustering. In the initialization phase, the net-
work is divided into clusters. Within each cluster the algorithm is similar to the
3 synchronizer and between clusters it is similar to the a synchronizer. Thus each
cluster has a cluster spanning tree. The root of the cluster spanning tree is called
the cluster leader. We say that two clusters are neighboring if there is an edge con-
necting them. For any two neighboring clusters, we designate one of the edges as
the preferred edge.

The algorithm works as follows. There are two phases in each pulse. In both
phases, the messages first travel upward in the cluster tree and then travel downward.
The goal of the first phase is to determine when the cluster is safe and inform all
cluster nodes when it is so. In this phase, subtree safe messages first propagate up
the cluster tree. When the root of the cluster gets messages from all its children and
it is safe itself, it propagates the cluster safe message down the cluster tree. This
phase corresponds to the 3 synchronizer running on the cluster. We also require

14.5. SYNCHRONIZER v 231

that the nodes that are incident on preferred edges also send out our cluster safe
(ocs) messages over preferred edges.

The goal of the second phase is to determine whether all neighboring clusters are
safe. In this sense, it is like an « synchronizer. It uses two additional message types:
neighboring cluster safe (ncs) and pulse. When a leaf in the cluster tree receives
the our cluster safe message from all preferred edges incident on it, it sends ncs to
its parent. Now consider an internal node in the cluster tree that has received ncs
messages from all its children and has received ocs on all preferred edges incident
on it. If it is not the cluster leader, then it propagates the ncs message upward;
otherwise, it broadcasts the pulse message in its group.

For any clustering scheme ¢, let E, denote the number of tree edges and preferred
edges and H. denote the maximum height of a tree in ¢. The complexity of the
synchronizer is given by

Aipulse = O(Ec)

Tpulse = O(Hc)

We now show that any graph can be decomposed into clusters so that there
is an appropriate tradeoff between the cluster height and the number of tree and
preferred edges. In particular, we claim that for each %k in the range 2 < k < N,
there exists a clustering ¢ such that E, < kN and H, < log N/logk.

We give an explicit construction of the clustering. In this scheme, we add clusters
one at a time. Assume that we have already constructed r clusters and there are
still some nodes left that are not part of any cluster. We add the next cluster as
follows.

Each cluster C consists of multiple layers. For the first layer, any node that is
not part of any cluster so far is chosen. Assume that ¢ layers (¢ > 1) of the cluster
C have already been formed. Let S be the set of neighbors of the node in layer ¢
that are not part of any cluster yet. If the size of S is at least (k — 1) times the size
of C, then S is added as the next layer of the cluster C; otherwise, C’s construction
is finished.

Let us compute H, and E. for this clustering scheme. Since each cluster with
level ¢ has at least k™! nodes, it follows that H, is at most log N/logk. E. has two
components—tree edges and preferred edges. The tree edges are clearly at most N.
To count the preferred edges, we charge a preferred edge between two clusters to
the first cluster that is created in our construction process. Note that for a cluster
C, its construction is finished only when there are at most (k — 1)|C| neighboring
nodes. Thus, for the cluster C, there can be at most (k — 1)|C| preferred edges
charged to it. Adding up the contribution from all clusters, we get that the total
number of preferred edges is at most (k — 1)N.

232

CHAPTER 14. SYNCHRONIZERS

14.6 Problems

14.1.
14.2.

14.3.

14.4.

*14.5.

*14.6.

Give the Java code for the synchronizer.
Give the Java code for the v synchronizer.

What is the message complexity of the asynchronous algorithm for construct-
ing a breadth-first search tree when it is obtained by combining the syn-
chronous algorithm with (a) the « synchronizer, (b) the 3 synchronizer, and
(c) the (k) synchronizer?

Show how synchronizers can be used in a distributed algorithm to solve a set
of simultaneous equations by an iterative method.

(due to Awerbuch[Awe85]) Give a distributed algorithin to carry out the clus-
tering used by the v synchronizer.

(due to Luby[Lub85}} Let G = (V, F) be an undirected graph corresponding to
the topology of a network. A set V' C V is said to be independent if there is no
edge between any two vertices in V’. An independent set is mazimal if there is
no independent set that strictly contains V’. Give a distributed synchronous
randomized algorithm that terminates in O(log|V]) rounds. Also, give an
algorithm that works on asynchronous networks.

14.7 Bibliographic Remarks

The concept of synchronizers, and the synchronizers «, 3, and v were introduced
by Awerbuch [Awe85]. The reader is referred to the books by Raynal and Helary
[RH90] and Tel [Tel94] for more details on synchronizers.

Chapter 15

Agreement

15.1 Introduction

Consensus is a fundamental problem in distributed computing. Consider a dis-
tributed database in which a transaction spans multiple sites. In this application it
is important that either all sites agree to commit or all sites agree to abort the trans-
action. In absence of failures, this is a simple task. We can use either a centralized
scheme or a quorum-based scheme. What if processes can fail? It may appear that
if links are reliable, the system should be able to tolerate at least failure of a single
process. In this chapter, we show the surprising result that even in the presence of
one unannounced process death, the consensus problem is impossible to solve. This
result (FLP) is named after Fischer, Lynch and Paterson who first discovered it.

The FLP result for consensus shows a fundamental limitation of asynchronous
computing. The problem itself is very basic—processes need to agree on a single
bit. Most problems we have discussed such as leader election, mutual exclusion,
and computation of global functions are harder than the consensus problem because
any solution to these problems can be used to solve the consensus problem. The
impossibility of consensus implies that all these problems are also impossible to solve
in the presence of process failures.

The FLP result is remarkable in another sense. It assumes only a mild form of
failures in the environment. First, it assumes only process failures and not link fail-
ures. Any message sent takes a finite but unbounded amount of time. Furthermore,
it assumes that a process fails only by crashing and thus ceasing all its activities.
Thus it does not consider failures in which the process omits certain steps of the
protocol or colludes with other processes to foil the protocol. Since the impossibility

233

234 CHAPTER 15. AGREEMENT

result holds under weak models of failure, it is also true for stronger failure models.

15.2 Consensus in Asynchronous Systems (Impossibil-
ity)

The consensus problem is as follows. We assume that there are N, (N > 2) processes
in the system and that the value of NV is known to all processes. Each process starts
with an initial value of {0,1}. This is modeled as a one bit input register . A
nonfaulty process decides by entering a decision state. We require that some process
eventually make a decision. Making a decision is modeled by output registers. Each
process also has an output register y that indicates the value decided or committed
on by the process. The value of 0 in y indicates that the process has decided on the
value 0. The same holds for the value 1. The value 1 indicates that the process has
not agreed on any value. Initially, we require all processes to have L in their register
y. We require that once a process has decided, it does not change its value, that is,
output registers are write-once. We also assume that each process has unbounded
storage.

€ —receiv
e f event s
f e
(O e
(a) (b)

Figure 15.1: (a) Commutativity of disjoint events; (b) asynchrony of messages

Before we list formal requircments of the consensus problem, we discuss our
assumptions on the environment.

e Initial independence: We allow processes to choose their input in an indepen-
dent manner. Thus, all input vectors are possible.

15.2. CONSENSUS IN ASYNCHRONOQUS SYSTEMS (IMPOSSIBILITY) 235

e Commute property of disjoint events: Let G be any global state such that two
events e and f are enabled in it. If e and f are on different processes, then
they commute. This is shown in Figure 15.1(a). We use the notation ¢(G) for
the global state reached after executing event e at G. Similarly, we use s(G)
to denote the global state reached after executing a sequence of events s at the
global state G. The global state reached after executing ef at G is identical
to the one reached after executing fe at G.

o Asynchrony of events: The asynchronous message system is modeled as a
buffer with two operations. The operation send(p,m) by process p places
(p,m) in the buffer. The operation receive(} from p by any process q deletes
(p,m) and returns m or returns null. The system may return null to model the
fact that the asynchronous messages may take an unbounded amount of time.
The condition we impose on the message system is that if the receive() event
is performed an unbounded number of times, then every message is eventually
delivered. The asynchrony assumption states that any receive event may be
arbitrarily delayed. In Figure 15.1(b), the event e is an enabled event after
executing a sequence of events s at state G because e ¢ s. Note that this
assumption does not state that se(G) = es(G). The event e commutes with
s only when the process on which e is executed is completely disjoint from
processes that have events in s.

Our model of a faulty process is as follows. We only consider infinite runs. A
faulty process is one that takes only a finite number of steps in that run. A run is
admissible if at most one process is faulty. Since the message system is reliable, all
messages sent to nonfaulty processes are eventually delivered. A run is deciding if
some process reaches a decision state in that run.

The requirements of the protocol can be summarized as:

o Agreement: Two nonfaulty processes cannot commit on different values.

o Nontriviality: Both values 0 and 1 should be possible outcomes. This require-
ment eliminates protocols that return a fixed value 0 or 1 independent of the
initial input.

o Termination: A nonfaulty process decides in finite time.

We now show the FLP result——there is no protocol that satisfies agreement,
nontriviality, and termination in an asynchronous system in presence of one fault.
The main idea behind the proof consists of showing that there exists an admissible
run that remains forever indecisive. Specifically, we show that (1) there is an initial

236 CHAPTER 15. AGREEMENT

global state in which the system is indecisive, and (2) there exists a method to keep
the system indecisive.

To formalize the notion of indecision, we use the notion of valences of a global
state. Let G.V be the set of decision values of global state reachable from G. Since
the protocol is correct, G.V is nonempty. We say that G is bivalent if |G.V]| = 2
and univalent if |G.V] = 1. In the latter case, we call G 0-valent if G.V = {0} and
I-valent if G.V = {1}. The bivalent state captures the notion of indecision.

We first show that every consensus protocol has a bivalent initial global state.
Assume, if possible, that the protocol does not have any bivalent initial global state.
By the nontriviality requirement, the protocol must have both 0-valent and 1-valent
global states. Let us call two global states adjacent if they differ in the local state of
exactly one process. Since any two initial global states can be connected by a chain
of initial global states each adjacent to the next, there exist adjacent O-valent and
1-valent global states. Assume that they differ in the state of p. We now apply to
both of these global states a sequence in which p takes no steps. Since they differ
only in the state of p, the system must reach the same decision value, which is a
contradiction.

Our next step is to show that we can keep the system in an indecisive state. Let
G be a bivalent global state of a protocol. Let event e on process p be applicable
to G, and G be the set of global states reachable from G without applying e. Let
H = e(G). We claim that H contains a bivalent global state. Assume, if possible,
that H contains no bivalent global states. We show a contradiction.

We first claim that M contains both 0-valent and 1-valent states. Let E; (i €
{0..1}) be an i-valent global state reachable from G. If E; € G, then define F; =
e(E;). Otherwise, e was applied in reaching E;. In this case, there exists F; € 'H
from which F; is reachable. Thus H contains both O-valent and 1-valent states.

We call two global states neighbors if one results from the other in a single step.

We now claim that there exist neighbors Gy, G1 such that Hg = e(Gp) is O-valent,
and Hy = e(G}) is 1-valent. Let t be the smallest sequence of events applied to G
without applying e such that et(G) has different valency from e(G). To see that
such a sequence exists, assume that e(G) is O-valent. From our earlier claim about
'H, there exists a global state in H which is l-valent. Let ¢ be a minimal sequence
that leads to a 1-valent state. The case when e(G) is 1-valent is similar. The last
two global states reached in this sequence give us the required neighbors.

Without loss of generality let G} = f(Go), where f is an event on process g. We
now do a case analysis:

Case 1: p is different from q [see Figure 15.2(a)]

This implies that f is applicable to Hg, resulting in H;. This is a contradiction
because Hy is 0-valent, and H; is 1-valent.

Case 2: p = q [see Figure 15.2(b)]

15.2. CONSENSUS IN ASYNCHRONOUS SYSTEMS (IMPOSSIBILITY) 237

Consider any finite deciding run from Gq in which p takes no steps. Let s be the
corresponding sequence. Let K = s(Gp). From the commute property, s is also
applicable to H; and leads to i-valent global states E; = s(H;). Again, by the
commute property, e(K) = Fg and e(f(K)) = E;. Hence K is bivalent, which is a
contradiction.

(a) (b)

Figure 15.2: {a) Case 1: proc(e) # proc(f); (b) case 2: proc(e) = proc(f)

The intuition behind the case analysis above is as follows. Any protocol that goes
from a bivalent global state to a univalent state must have a critical step in which
the decision is taken. This critical step cannot be based on the order of events done
by different processes because execution of events at different processes commutes.
This observation corresponds to case 1. This implies that the critical step must be
taken by one process. But this method also does not work because other processes
cannot distinguish between the situation when this process is slow and the situation
when the process has crashed. This observation corresponds to case 2.

We are now ready for the main result that no consensus protocol satisfies agree-
ment, nontriviality, and termination despite one fault. To show this result, we
construct an admissible nondeciding run as follows. The run is started from any
bivalent initial global state Gy and consists of a sequence of stages. We ensure that

238 CHAPTER 15. AGREEMENT

every stage begins from a bivalent global state G. We maintain a queue of processes
and maintain the message buffer as a FIFO queue. In each stage the process p at
the head of the queue receives the earliest message m (if any). Let e be the event
corresponding to p receiving the message m. From our earlier claims, we know that
there is a bivalent global state H reachable from G by a sequence in which e is
the last event applied. We then move the process to the back of the queue and
repeat this set of steps forever. This method guarantees that every process executes
infinitely often and every message sent is eventually received. Thus, the protocol
stays in bivalent global states forever.

15.3 Application: Terminating Reliable Broadcast

Impossibility of consensus in the presence of a failure implies that many other inter-
esting problems are impossible to solve in asynchronous systems as well. Consider,
for example, the problem of the terminating reliable broadcast specified as follows.
Assume that there are N processes in the system Py, ..., Py_1 and that Py wishes
to broadcast a single message to all processes (including itself). The terminating
reliable broadcast requires that a correct process always deliver a message even if
the sender is faulty and crashes during the protocol. The message in that case may
be “sender faulty.” The requirements of the problem are

e Termination: Every correct process eventually delivers some message.

e Validity: If the sender is correct and broadcasts a message m, then all correct
processes eventually deliver m.

o Agreement: If a correct process delivers a message m, then all correct processes
deliver m.

e Integrity: Every correct process delivers at most one message, and if it delivers
m different from “sender faulty,” then the sender must have broadcast m.

We now show that the terminating reliable broadcast (TRB) is impossible to
solve in an asynchronous system. We show this by providing an algorithm for con-
sensus given an algorithm for TRB. The algorithm for consensus is simple. Process
Py is required to broadcast its input bit using the TRB protocol. If a correct process
receives a message different from “sender faulty” it decides on the bit received; other-
wise, it decides on 0. It is easy to verify that this algorithm satisfies the termination,
agreement, and nontriviality requirements of the consensus problem.

15.4. CONSENSUS IN SYNCHRONOUS SYSTEMS 239

15.4 Consensus in Synchronous Systems

We have seen that consensus is impossible to solve in asynchronous systems even in
the presence of a single crash. We show that the main difficulty in solving consensus
lies in the asynchrony assumption. Thus there exist protocols to solve consensus
when the system is synchronous. A system is synchronous if there is an upper
bound on the message delay and on the duration of actions performed by processes.
We show that under suitable conditions not only crash failures but also malevolent
faults in which faulty processes can send arbitrary messages can be tolerated by
consensus algorithms.

In general, we can classify the faults in a distributed system as follows:

o Crash: In the crash model, a fault corresponds to a processor halting. When
the processor halts, it does not perform any other action and stays halted
forever. The processor does not perform any wrong operation such as sending
a corrupted message. As we have seen earlier, crashes may not be detectable
by other processors in asynchronous systems, but they are detectable in syn-
chronous systems.

o Crash+link: In this model, either a processor can crash or a link may go down.
If a link goes down, then it stays down. When we consider link failures, it
is sometimes important to distinguish between two cases—one in which the
network is partitioned and the second in which the underlying communication
graph stays connected. When the network gets partitioned, some pairs of
nodes can never communicate with each other.

e Omission: In this model, a processor fails either by sending only a proper
subset of messages that it is required to send by the algorithm or by receiving
only a proper subset of messages that have been sent to it. The fault of the
first kind is called a send omission, and that of the second kind is called a
Teceive OMISSION.

e Byzantine failure: In this model, a processor fails by exhibiting arbitrary be-
havior. This is an extreme form of a failure. A system that can tolerate a
Byzantine fault can tolerate any other fault.

In this chapter, we will consider only the crash and Byzantine failures. We
assume that links are reliable for crash failures. A processor that is not faulty is
called a correct processor.

240 CHAPTER 15. AGREEMENT

15.4.1 Consensus under Crash Failures

In this section, we will be concerned mainly with algorithms for synchronous systems.
It is generally advantageous to prove impossibility results with as weak a specifi-
cation of the problem as possible because the same proof will hold for a stronger
specification. However, when designing algorithms it is better for the algorithm to
satisfy a strong specification because the same algorithm will work for all weaker
specifications.

We first generalize the set of values on which consensus is required. Instead of
a single bit, the set of values can be any totally ordered set. We will assume that
each process P; has as its input a value v; from this set. The goal of the protocol is
to set the value y at each process such that the following constraints are met. The
value y can be set at most once and is called the value decided by the process. Thus
the requirements of the protocol are:

e Agreement. Two nonfaulty processes cannot decide on different values.

e Validity: If all processes propose the same value, then the decided value should
be that proposed value. It is easy to verify that this condition implies the
nontriviality condition discussed in Section 15.2.

e Termination: A nonfaulty process decides in finite time.

An algorithm for achieving consensus in the presence of crash failures is quite
simple. In the algorithm we use the parameter f to denote the maximum number of
processors that can fail. The algorithm shown in Figure 15.3 works based on rounds.
Each process maintains V', which contains the set of values that it knows have been
proposed by processors in the system. Initially, a process P; knows only the value
it proposed. The algorithm takes f + 1 rounds for completion; thus the algorithm
assumes that the value of f is known. In each round, a process sends to all other
processes, values from V that it has not sent before. So, initially the process sends
its own value and in later rounds it sends only those values that it learns for the
first time in the previous round. In each round, the processor P; also receives the
values sent by P;. In this step, we have used the synchrony assumption. P; waits for
a message from P; for some fixed predetermined time after which it assumes that
P; has crashed. After f 4 1 rounds, each process decides on the minimum value in
its set V.

The algorithm presented above satisfies termination because each correct process
terminates in exactly f + 1 rounds. It satisfies validity because the decided value
is chosen from the set V', which contains only the proposed values. We show the
agreement, property: All correct processors decide on the same value.

15.4. CONSENSUS IN SYNCHRONOUS SYSTEMS 241

P
var
V: set of values initially {v;};

fork:=1to f+1do
send {v € V| P; has not already sent v} to all;
receive S; from all processes P, j # ¢

V=VuU Sj;
endfor;
y = min(V);

Figure 15.3: Algorithm at P; for consensus under crash failures

Let V; denote the set of values at P; after the round f 4+ 1. We show that if any
value z is in the set V; for some correct processor F;, then it is also in the set V; for
any other correct processor P;.

First assume that the value x was added to V; in a round k < f+1. Since F; and
P; are correct processes, P; will receive that value in round & + 1 and will therefore
be present in V; after round f + 1.

Now assume that the value x was added to V; in the last round (round number
f +1). This implies that there exists a chain of f + 1 distinct processors that
transferred the value from one of the processors that had z as its input value to F;.
If all the processors in the chain are faulty, then we contradict the assumption that
there are at most f faulty processors. If any processor in the chain is nonfaulty,
then it would have succeeded in sending z to all the processors in that round. Hence
z was also added to V; by at most f + 1 rounds.

The preceding algorithm requires O((f + 1)N?) messages because each round
requires every process to send a message to all other processes. If each value requires
b bits, then the total number of communication bits is O(bN3) bits because each
processor may relay up to N values to all other processors.

The implementation of the above algorithm in Java is given in Figure 15.4. In
this implementation we require every process to simply maintain the smallest value
that it knows in the variable myValue. The variable changed records whether the
minimum value it knows changed in the last round. The process broadcasts its value
only if changed is true.

A simple program that calls the Consensus object is shown in Figure 15.5.

242 CHAPTER 15. AGREEMENT

import java.util .x;
public class Consensus extends Process {
int myValue;
int f; // mazimum number of faults
boolean changed = true;
boolean hasProposed = false;
public Consensus(Linker initComm, int f) {
super (initComm);

this. f = [;

public synchronized void propose (int value) {
myValue = value;
hasProposed = true;
notify ();

public int decide () {
for (int k = 0; k<= f; k++) { // f+1 rounds
synchronized (this) {
if (changed) broadcastMsg(” proposal”, myValue);

// sleep enough to receive messages for this round
Util . mySleep (Symbols. roundTime);

synchronized (this) {
return myValue;
}

public synchronized void handleMsg (Msg m, int src, String tag) {
while (! hasProposed) myWait();
if (tag.equals (" proposal”)) {
int value = m. getMessagelnt ();
if (value < myValue) {

myValue = value;
changed = true;
} else

changed = false

Figure 15.4: Consensus in a synchronous environment

15.4. CONSENSUS IN SYNCHRONOUS SYSTEMS 243

public class ConsensusTester {
public static void main(String [] args) throws Exception {
String baseName = args [0};
int myld = Integer. parselnt (args [1]);
int numProc = Integer . parselnt (args [2]);
Linker comm = new Linker (baseName, myld, numProc);
Consensus sp = new Consensus (comm, 3);
for (int i = 0; i < numProc; i++)
if (i !'= myld) (new ListenerThread (i, sp)). start ();
sp . propose {myld};
System.out. println ("The value decided:” + sp.decide ());

Figure 15.5: Consensus tester

15.4.2 Consensus under Byzantine Faults

Byzantine faults allow for malicious behavior by the processes. The consensus prob-
lem in this model can be understood in the context of the Byzantine General Agree-
ment problem, which is defined as follows. There were N Byzantine generals who
were called out to repel the attack by a Turkish Sultan. These generals camped near
the Turkish army. Each of the N Byzantine generals had a preference for whether
to attack the Turkish army or to refreat. The Byzantine armies were strong enough
that the loyal generals of the armies knew that if their actions were coordinated
(either attack or retreat), then they would be able to resist the Sultan’s army. The
problem was that some of the generals were treacherous and would try to foil any
protocol that loyal generals might devise for the coordination of the attack. They
might, for example, send conflicting messages to different generals, and might even
collude to mislead loyal generals. The Byzantine General Agreement (BGA) prob-
lem requires us to design a protocol by which the loyal generals can coordinate their
actions. It is assumed that generals can communicate with each other using reliable
messengers.

The BGA problem can easily be seen as the consensus problem in a distributed
system under Byzantine faults. We call a protocol f-resilient if it can tolerate f
Byzantine faulty processors. It has been shown that there is no f-resilient protocol
for BGA if N < 3f.

In this section we give an algorithm that takes f + 1 rounds, each round of two
phases, to solve the BGA problem. This algorithm uses constant-size messages but
requires that N > 4f. Each processor has a preference for each round, which is
initially its input value.

244 CHAPTER 15. AGREEMENT

The algorithm is shown in Figure 15.6. The algorithm is based on the idea of
a rotating coordinator (or king). Processor P; is assumed to be the coordinator or
the king for round k. In the first phase of a round, each processor exchanges its
value with all other processors. Based on its V vector, it determines its estimate in
the variable myvalue. In the second phase, the processor receives the value from
the coordinator. If it receives no value (because the coordinator has failed), then it
assumes v, (a default value) for the king value. Now, it decides whether to use its
own value or the kingvalue. This decision is based on the multiplicity of myvalue
in the vector V. If V has more than N/2 + f copies of myvalue, then myvalue is
chosen for V[i]; otherwise, kingvalue is used.

We first show that agreement persists, that is, if all correct processors prefer a
value v at the beginning of a round, then they continue to do so at the end of a
round. This property holds because

N > 4f

=N-N/2>2f

=N-f>N/2+f
Since the number of correct processors is at least N — f, each correct processor will
receive more than N/2 + f copies of v and hence choose that at the end of second
phase.

We now show that the algorithm in Figure 15.6 solves the agreement problem.
The validity property follows from the persistence of agreement. If all processors
start with the same value v, then v is the value decided. Termination is obvious
because the algorithm takes exactly f 4+ 1 rounds. We now show the agreement
property. Since there are f + 1 rounds and at most f faulty processors, at least one
of the rounds has a correct king. Each correct processor decides on either the value
sent by the king in that round or its own value. It chooses its own value w only
if its multiplicity in V is at least N/2 + f 4+ 1. Therefore, the king of that round
must have at least NV/2 + 1 multiplicity of w in its vector. Thus the value chosen by
the king is also w. Hence, each processor decides on the same value at the end of a
round in which the king is nonfaulty. From persistence of agreement, the agreement
property at the end of the algorithm follows.

15.5 Knowledge and Common Knowledge

Many problems in a distributed system arise from the lack of global knowledge.
By sending and receiving messages, processes increase the knowledge they have
about the system. However, there is a limit to the level of knowledge that can be
attained. We use the notion of knowledge to prove some fundamental results about
distributed systems. In particular, we show that agreement is impossible to achieve

15.5. KNOWLEDGE AND COMMON KNOWLEDGE 245

import java.util .x;
public class KingBGA extends Process {
final static int defaultValue = 0,
int f; // mazimum number of faults
int V[]; // set of wvalues known
int kingValue, myValue;
public KingBGA(Linker initComm, int f) {
super (initComm);
this. f = f;
V = new int [N];

public synchronized void propose (int val) {
for (int i = 0; i < N; i++)V[i] = defaultValue;
Vimyld] = val;

public int decide () {
for (int k = 0; k<= f; k++) { // f+1 rounds

broadcastMsg (” phasel”, V[myld]);
Util . mySleep (Symbols. roundTime);
synchronized (this) {

myValue = getMajority (V);

if (k == myld)

broadcastMsg (” king” , myValue);

}
Util . mySleep (Symbols . roundTime);
synchronized (this) {
if (numCopies(V, myValue) > N / 2 4+ f)
V[myld] = myValue;
else
V[myld] = kingValue;
t

}
return V[myld];

public synchronized void handleMsg(Msg m, int src, String tag) {
if (tag.cquals(”phasel”)) {
Visre] = m getMessagelnt ();
} else if (tag.equals (" king”)) {
kingValue = m. getMessagelnt (});

int getMajority (int V][]) {
if (numCopies(V, 0) > N / 2)

return 0;
else if (numCopies(V, 1) > N / 2)
return 1;
else
return defaultValue;
}
int numCopies(int V][], int v} {

int count = 0;

for (int i = 0; i < V.length; i++4)
if (V{i] == v) count++;

return count

3

Figure 15.6: An algorithm for Byzantine General Agreement

246 CHAPTER 15. AGREEMENT

in an asynchronous systemn in the absence of reliable communication.

The notion of knowledge is also useful in proving lower bounds on the mes-
sage complexity of distributed algorithms. In particular, knowledge about remote
processes can be gained in an asynchronous distributed system only by message
transfers. For example, consider the mutual exclusion problem. It is clear that if
process P; enters the critical section and later process P; enters the critical section,
then there must be some knowledge gained by process P; before it can begin eating.
This gain of knowledge can happen only through a message transfer. Observe that
our assumption of asynchrony is crucial in requiring the message transfer. In a syn-
chronous system with a global clock, the knowledge can indeed be gained simply by
passage of time. Thus for a mutual exclusion algorithm, one may have time-division
multiplexing in which processes enter the critical section on their preassigned slots.
Thus mutual exclusion can be achieved without any message transfers.

Let G be a group of processes in a system. We use K;(b) to denote that the
process 1 in the group G knows the predicate b. We will assume that a process can
know only true predicates:

Ki(b)=1»b

The converse may not be true. A predicate b may be true, but it may not be
known to process i. For example, let b be that there is a deadlock in the system. It
is quite possible that b is true but process i does not know about it.

Now, it is easy to define the meaning of “someone in the group knows b,” denoted
by S(b), as follows:

S() € \/ Ki(b)
ieG
Similarly, we define “everyone in the group knows b,” denoted by E(b), as
E(b) € N\ Kibh)
€G

It is important to realize that S(b) and E(b) are also predicates—in any system
state they evaluate to true or false. Thus it makes perfect sense to use E(b) or S(b)
for a predicate. In particular, E(E(b)) means that everyone in the group knows that
everyone in the group knows b.

This observation allows us to define E¥(b), for k > 0, inductively as follows:

E%b)y =10
E**!(b) = E(E*(b))
It is important to realize that although

Vk : EFt1(b) = E*(b)

15.5. KNOWLEDGE AND COMMON KNOWLEDGE 247

the converse does not hold in general. To appreciate this fact, consider the following
scenario. Assume that there are n > 1 children who have gone out to play. These
children were told before they went for play, that they should not get dirty. However,
children being children, k¥ > 1 of the children have dirty foreheads. Now assume
that the children stand in a circle such that every child can see everyone else but
cannot see his or her own forehead. Now consider the following predicate b:

b9 there is at least one child with a dirty forehead

In this case E*~1(b) is true but E*(b) is not. For concreteness, let n be 10 and
k be 2. 1t is clear that since k is 2, b is true. Furthermore, since every child can
see at least one other child with a dirty forehead, E(b) is also true. Is E2(b) true?
Consider a child, say, child 7 with a dirty forehead. That child can see exactly one
other child, say, child j, with a dirty forehead. So from child i’s perspective, there
may be just one child, namely, child j, who has a dirty forehead. However, in that
case child 7 would not know that b is true. Thus K;(E(b)) does not hold; therefore,
E?(b) is also false.

The next higher level of knowledge, called common knowledge and denoted by
C(b), is defined as

C(b) L vk : E¥(b).

It is clear that for any k,
C(b) = E*(b).

In the example of the children with a dirty forehead, assume that one of the
parents walks to the children and announces “At least one of you has a dirty fore-
head.” Every child hears the announcement. Not only that; they also know that
everybody else heard the announcement. Furthermore, every child knows that every
other child also knows this. We could go on like that. In short, by announcing b,
the level of knowledge has become C(b).

Now, assume that the parent repeatedly asks the question: “Can anyone prove
that his or her own forehead is dirty?” Assuming that all children can make all
logical conclusions and they reply simultaneously, it can be easily shown using in-
duction that all children reply “No” to the first k — 1 questions and all the children
with a dirty forehead reply “Yes” to the kth question (see Problem 15.11).

To understand the role of common knowledge, consider the scenario when k > 2.
At first, it may seem that the statement made by the parent “At least one of you
has a dirty forehead.” does not add any knowledge because every child can see at
least one other child with a dirty forehead and thus already knew b. But this is
not true. To appreciate this the reader should also consider a variant in which the
parent repeatedly asks: “Can anyone prove that his or her own forehead is dirty?”

248 CHAPTER 15. AGREEMENT

without first announcing b. In this case, the children will never answer “Yes.” By
announcing b, the parent gives common knowledge of b and therefore E*(b). E*(b)
is required for the children to answer “Yes” in the kth round.

15.6 Application: Two-General Problem

We now prove a fundamental result about common knowledge—it cannot be gained
in a distributed system with unreliable messages. We explain the significance of the
result in the context of the coordinating general problem under unreliable commu-
nication. Assume that there are two generals who need to coordinate an attack on
the enemy army. The armies of the generals are camped on the hills surrounding
a valley, which has the enemy army. Both the generals would like to attack the
enemy army simultaneously because each general’s army is outnumbered by the en-
emy army. They had no agreed-on plan beforehand, and on some night they would
like to coordinate with each other so that both attack the enemy the next day. The
generals are assumed to behave correctly, but the communication between them is
unreliable. Any messenger sent from one general to the other may be caught by the
enemy. The question is whether there exists a protocol that allows the generals to
agree on a single bit denoting attack or retreat.

It is clear that in the presence of unreliable messages no protocol can guarantee
agreement for all runs. None of the messages sent by any general may reach the
other side. The real question is whether there is some protocol that can guarantee
agreement for some run (for example, when some messages reach their destination).
Unfortunately, even in a simple distributed system with just two processors, P and
Q, that communicate with unreliable messages, there is no protocol that allows
common knowledge to be gained in any of its run.

If not, let » be a run with the smallest number of messages that achieves common
knowledge. Let m be the last message in the run. Assume without loss of generality
that the last message was sent from the processor P to processor Q. Since messages
are unreliable, processor P does not know whether @) received the message. Thus,
if P can assert C'(b) after n messages, then it can also do so after m — 1 messages.
But C(b) at P also implies C(b) at Q. Thus C(b) is true after m — 1 messages,
violating minimality of the run 7.

In contrast, the lower levels of knowledge are attainable. Indeed, to go from S(b)
to E(b), it is sufficient for the processor with the knowledge of b to send messages to
all other processors indicating the truthness of 6. In the run in which all messages
reach their destination, E(b) will hold. The reader should also verify that E2(b) will
not hold for any run after the protocol. The reader is asked to design a protocol
that guarantees E%(b) from S(b) in one of its runs in Problem 15.12.

15.7. PROBLEMS 249

15.7 Problems

15.1.

15.2.

15.3.

*15.4.

*15.5.

15.6.

Why does the following algorithm not work for consensus under FLP assump-
tions? Give a scenario under which the algorithm fails. It is common knowl-
edge that there are six processes in the system numbered Py to Ps. The algo-
rithm is as follows: Every process sends its input bit to all processes {including
itself) and waits for five messages. Every process decides on the majority of
the five bits received.

Show that all the following problems are impossible to solve in an asynchronous
system in the presence of a single failure.

(a) Leader Election: Show that the special case when the leader can be only
from the set {Fy, I’} is equivalent to consensus.

(b) Computation of a global function: Show that a deterministic nontrivial

global function such as min, mar, and addition can be used to solve
consensus.

Atomic broadcast requires the following properties.

e Validity: If the sender is correct and broadcasts a message m, then all
correct processes eventually deliver m.

e Agreement: If a correct process delivers a message m, then all correct
processes deliver m.

o Integrity: For any message m, ¢ receives m from p at most once and only
if p sent m to q.

e Order: All correct processes receive all broadcast messages in the same
order.

Show that atomic broadcast is impossible to solve in asynchronous systems.

(due to Fischer, Lynch and Paterson[FLP85]) Show that if it is known that
processes will not die during the protocol, then consensus can be reached
(despite some initially dead processes).

Give a randomized algorithm that achieves consensus in an asynchronous dis-
tributed system in the presence of f crash failures under the assumption that
N>2f+1.

Show by an example that if the consensus algorithm decided the final value
after f rounds instead of f + 1 rounds, then it might violate the agreement
property.

CHAPTER 15. AGREEMENT

. Give an example of an execution of a system with six processes, two of which

are faulty in which the Byzantine general agreement algorithm does not work
correctly.

. Give an algorithm that solves BGA problem whenever N > 3f + 1.

. |due to Dolev and Strong[DS83]] In the Byzantine failure model a faulty pro-

cess could forward incorrect information about messages received from other
processes. A less malevolent model is called Byzantine failure with mutual
authentication. In this model, we assume that a message can be signed digi-
tally for authentication. There exist many cryptographic algorithms for digital
signatures. Give an algorithmn for Byzantine General Agreement assuming au-
thentication that is f-resilient for f < N, requires only f + 1 rounds, and uses
a polynomial number of messages.

. Show that the number of rounds required to solve consensus under the crash

model is at least f + 1 in the worst case when f < N — 2.

. Show using induction on k that when the parent repeatedly asks the question

all children reply “No” to the first k& — 1 questions and all the children with a
dirty forehead reply “Yes” to the kth question.

. Design a protocol that guarantees E2(b) from S(b) in one of its runs.

. Consider a game in which two people are asked to guess each other’s number.

They are told that they have consecutive natural numbers. For example, the
person with number 50 can deduce that the other person has either 51 or
49. Now they are repeatedly asked in turn “Can you tell the other person’s
number?” Will any of them ever be able to answer in the affirmative? If yes,
how? If no, why not?

15.8 Bibliographic Remarks

The theory of the consensus problem and its generalizations is quite well developed.
We have covered only the very basic ideas from the literature. The reader will
find many results in the book by Lynch [Lyn96]. The impossibility of achieving
consensus in asynchronous system is due to Fischer, Lynch, and Paterson [FLP85].
The consensus problem with Byzantine faults was first introduced and solved by
Lamport, Shostak and Pease (LSP82, PSL80]. The lower bound on the number of
bounds needed for solving the problem under Byzantine faults was given by Fischer
and Lynch [FL82] and under crash failures by Dolev and Strong [DS83].

15.8. BIBLIOGRAPHIC REMARKS 251

The discussion of knowledge and common knowledge is taken from a paper by
Halpern and Moses|HM84]. The “two-generals problem” was first described by
[Gra78].

This Page Intentionally Left Blank

Chapter 16

Transactions

16.1 Introduction

The concept of a transaction has been very useful in allowing concurrent processing
of data with consistent results. A transaction is a sequence of operations such that
that entire sequence appears as one indivisible operation. For any observer, it ap-
pears as if the entire sequence has been executed or none of the operations in the
sequence have been executed. This property of indivisibility is preserved by a trans-
action despite the presence of concurrency and failures. By concurrency, we mean
that multiple transactions may be going on at the same time. We are guaranteed
that the transactions do not interfere with each other. The concurrent execution
of multiple transactions is equivalent to a serial execution of those transactions.
Further, if the transaction has not committed and there is failure, then everything
should be restored to appear as if none of the operations of the transaction hap-
pened. If the transaction has committed, then the results of the transaction must
become permanent even when there are failures.

As an example of a transaction, consider transfer of money from account A to
account B. The transaction, say 77 can be written as

begin_transaction
withdraw z from account A;
deposit z to account B;
end_transaction

Once the two operations of withdrawing and depositing have been grouped as

253

254 CHAPTER 16. TRANSACTIONS

a transaction, they become atomic to the rest of the world. Assume, for example,
that another transaction T3 is executed concurrently with this transaction. Ty simply
adds the balances in accounts A and B. The semantics of the transaction guarantees
that To will not add the balance of account A after the withdrawal and the balance of
account B before the deposit. The all-or-nothing property is also guaranteed when
there is a failure. If the second operation cannot be performed for some reason
(such as account B does not exist), then the effects of the first operation are also
not visible, i.e., the balance is restored in account A.
A transaction can be viewed as implementing the following primitives:

1. begin_transaction: This denotes the beginning of a transaction.

2. end_transaction: This denotes the end of a transaction. All the statements
between the beginning and the end of the transaction constitute the transac-
tion. Execution of this primitive results in committing the transaction, and
its effects must persist.

3. abort_transaction: The user has the ability to call abort _transaction in
the middle of a transaction. This requires that all values prior to the transac-
tion are restored.

4. read: Within a transaction, the program can read objects.

5. write: Within a transaction, the program can also write objects.

16.2 ACID Properties

Sometimes the guarantees provided by a transaction are called ACID properties,
where ACID stands for atomicity, consistency, isolation, and durability. These terms
are explained next.

e Atomicity. This property refers to all-or-nothing property explained earlier.

e Consistency. A transaction should not violate integrity constraints of the sys-
tem. A typical example is that of a financial system where the transaction of
money transfer from one account to the other should keep the total amount
of money in the system constant. It is the responsibility of the programmer
writing the transaction to ensure that such constraints are not violated after
the transaction has taken place.

e Isolation: This means that transactions are isolated from effects of concurrent
transactions. Thus, in spite of concurrency, the net effect is that it appears
that all transactions executed sequentially in some order.

16.3. CONCURRENCY CONTROL 255

o Durability: This property refers to the aspect of committing a transaction.
It says that once a transaction has been committed its effects must become
permanent even if there are failures.

16.3 Concurrency Control

The isolation property of transaction is also called the serializability condition. A
concurrent history H of transactions T1,Tb,..., T, is serializable if it is equivalent
to a serial history. As an example, suppose that there are two transactions: T
and Ty. T3 transfers $100 from account A to account B and T, transfers $200 from
account B to account C. Assuming that each account has $1000 initially, the final
balances for A, B, and C should be $900, $900 and $1200, respectively. T} could be
implemented as follows:

begin_transaction;

x = read(A);
x = x-100;
write x to A;
x = read(B);
x = x+100;

write x to B;
end_transaction;

T, could be implemented as follows:

begin_transaction;

y = read(B);
¥y = y-200;
write y to B;
y = read(C);
y = y+200;

write y to C;
end_transaction;

It is clear that all concurrent histories are not serializable. In the example above,
assume that the following history happened:

read(A);
x-100;
write x to A;
x = read(B);

X
X

256 CHAPTER 16. TRANSACTIONS

y = read(B);

y = y-200;

write y to B;

y = read(C);

y = y+200;

write y to C;
x = x+100;

write x to B;

In this case, the final values would be 900, 1100, and 1200, which is clearly wrong.
One way to ensure serializability would be by locking the entire database when a
transaction is in progress. However, this will allow only serial histories.

A more practical technique frequently employed is called two-phase locking. In
this technique, a transaction is viewed as consisting of two phases: the locking
phase and the unlocking phase. In the locking phase (sometimes called a “growing”
phase), a transaction can only lock data items and in the unlocking phase (sometimes
called a “shrinking” phase) it can only unlock them. With this technique, the
implementation of 71 would be

begin_transaction;

lock(A);

x = read(A);
x = x-100;
write x to A;
lock(B);

x = read(B);
x = x+100;

write x to B;

unlock(A);

unlock(B);
end_transaction;

16.4 Dealing with Failures

There are primarily two techniques used for dealing with failures called private
workspece and logging. In the private workspace approach, a transaction does not
change the original primary copy. Any object that is affected by the transaction is
kept in a separate copy called a shadow copy. If the transaction aborts, then private
or shadow copies are discarded and nothing is lost. If the transaction commits,
then all the shadow copies become the primary copies. Note that this technique is

16.5. DISTRIBUTED COMMIT 257

different from the technique for nonblocking synchronization, which we studied in
Chapter 5. In the private workspace approach, we do not make copy of the entire
database before a transaction is started. Instead, a copy of only those objects (or
pages) are made that have been updated by the transaction. This technique can be
implemented as follows. Assume that objects can be accessed only through pointers
in the index table. Let S be primary index table of objects. At the beginning of a
transaction, a copy of this table, S/, is made and all read and write operations go
through S’. Since reads do not change the object, both S and S’ point to the same
copy, and thus all the read operations still go to the primary copy. For a write,
a new copy of that object is made and the pointer in the table S’ is changed to
the updated version. If the transaction aborts, then the table S’ can be discarded;
otherwise, S’ becomes the primary table. Observe that this scheme requires locking
of the objects for transactions to be serializable.

In the logging scheme, all the updates are performed on a single copy. However,
a trail of all the writes are kept so that in case of a failure, one can go to the log and
undo all the operations. For example, if an operation changed the value of object x
from 5 to 3, then in the log it is maintained that z is changed from 5 to 3. If the
transaction has to abort, then it is easy to undo this operation.

16.5 Distributed Commit

When a transaction spans multiple sites, we require that either all sites commit the
transaction or all abort it. This problem is called the distributed commit problem.
The problem is, of course, quite simple when there are no failures. In this section,
we address how to solve the problem when processes may fail. We assume that links
are reliable.

The requirements of the problem are as follows:

o Agreement: No two processes (failed or unfailed) decide on different outcome
of the transaction.

o Validity: If any process starts with abort, then abort is the only possible final
outcome. If all processes start with commit and there are no failures, then
commit is the only possible outcome.

e Weak termination: If there are no failures, then all processes eventually decide.
e Non-blocking: All nonfaulty processes eventually decide.

We now give a two-phase commit protocol that satisfies the first three conditions.
The steps in the protocol are:

258 CHAPTER 16. TRANSACTIONS

e The coordinator sends a request message to all participants.

¢ On receiving a request message, each participant replies with either a “yes” or
a “no” message. A “yes” message signifies that the participant can commit all
the actions performed at its site. This finishes the first phase of the algorithm.

e The coordinator waits to receive messages from all participants. If all of them
are “yes,” then the coordinator sends the finalCommit message. Otherwise, it
sends a finalAbort message.

e The participant carries out the action associated with the message received
from the coordinator.

Thus there are two phases: the voting phase and the decision phase. In the
voting phase, the coordinator collects all the votes and in the decision phase it
communicates the final decision to all the participants.

The algorithm for the coordinator is shown in Figure 16.1. The coordinator
invokes the method doCoordinator() to carry out the protocol. In the first phase,
the coordinator waits until the flag donePhasel becomes true. This flag becomes
true if all participants have replied with “yes” messages or when one of the partici-
pant has replied with a “no” message. These messages are handled in the method
handleMsg which make call to notify() appropriately.

The algorithm for a participant is shown in Figure 16.2. A participant imple-
ments the consensus interface with the methods propose and decide. When a
participant invokes decide, it is blocked until it gets a finalCommit or a finalAbort
message from the coordinator. We have not shown the actions that the coordinator
and participants need to take when they timeout waiting for messages. We have
also not shown the actions that processes need to take on recovering from a crash.
This part is left as an exercise for the reader (see Problem 16.6).

Let us now analyze the protocol from the perspective of the coordinator. If it
does not hear from any of the participants in the first phase, then it can abort the
entire transaction. Therefore, if a participant fails before it sends out its vote in
the first phase, the failure is easily handled. What if the participant fails after it
has sent out its vote as commit? Since the transaction may have committed, when
the process recovers, it must find out the state of the transaction and commit all
the changes. This observation implies that a participant can send a “yes” message
only if it can make all the changes for committing a transaction despite a fault. In
other words, the participant must have logged onto its stable storage the necessary
information required to commit the transaction.

Let us now analyze the protocol from the perspective of a participant. Initially
it is expecting a request message that may not arrive for the predetermined timeout

16.5. DISTRIBUTED COMMIT 259

public class TwoPhaseCoord extends Process {

boolean globalCommit = false;
boolean donePhasel = false;
boolean noReceived = false;
int numParticipants;

int numReplies = 0;

public TwoPhaseCoord (Linker initComm) {
super (initComm);
numParticipants = N — 1;

public synchronized void doCoordinator () {
// Phase 1
broadcastMsg (” request”, myld);
while (! donePhasel)
myWait () ;

// Phase 2
if (noReceived)
broadcastMsg (” finalAbort”, myld);
else {
globalCommit = true;
broadcastMsg (" finalCommit”, myld);

}

public synchronized void handleMsg(Msg m, int src, String tag) {
if (tag.equals ("yes”)) {
numReplies ++;
if (numReplies == numParticipants) {
donePhasel = true;
notify ();

} else if (tag.equals("no”)) {
noReceived = true;
donePhasel = true;
notify ();

Figure 16.1: Algorithm for the coordinator of the two-phase commit protocol

260 CHAPTER 16. TRANSACTIONS

public class TwoPhaseParticipant extends Process {
boolean localCommit ;
boolean globalCommit;
boolean done = false
boolean hasProposed = false
public TwoPhaseParticipant (Linker initComm) {
super (initComm);

public synchronized void propose (boolean vote) {
localCommit = vote;
hasProposed true;
notify ();

public synchronized boolean decide () {
while (!done) myWait();
return globalCommit ;

public synchronized void handleMsg(Msg m, int src, String tag) {
while (! hasProposed) myWait();
if (tag.equals(”request”)) {
if (localCommit)
sendMsg (src, "yes”);
else
sendMsg (src, "no”);
} else if (tag.equals ("finalCommit”}) {
globalCommit = true;
done = true;
notify (});
} else if (tag.equals(”finalAbort”)) {
globalCommit = false:
done = true;
notify ();

Figure 16.2: Algorithm for the participants in the two-phase commit protocol

16.6. PROBLEMS 261

interval. In this case, the participant can simply send a “no” message to the coor-
dinator and can assume that the global transaction had aborted. The coordinator
can also crash in the second phase. What if the participant has replied with a “yes”
message in the first phase and does not hear from the coordinator in the second
phase? In this case, it does not know whether the coordinator had committed the
global transaction. In this case, the participant should inquire other participants
about the final decision. If the coordinator crashed after sending finalCommit or
finalAbort message to any participant who does not crash, then all participants will
learn about the final decision. However, this still leaves out the case when the
coordinator crashed before informing any participant {or the participants that it
informed also crashed). In this case, all the participants have no choice but to wait
for the coordinator to recover. This is the reason why two-phase commit protocol
is called blocking.

16.6 Problems

16.1. A contracted two-phase locking scheme is one in which the second phase is
contracted, that is, all locks are unlocked at the same time. What are the
advantages and disadvantages of this scheme compared with the ordinary two-
phase locking scheme 7

16.2. Write a class that provides the following services:(a) lock(String varname;
int pid); returns 1 if allowed by two-phase locking scheme, returns O other-
wise, and (b) unlock(String varname, int pid); returns 1 if locked by the
process, returns 0 otherwise. Assume that the processor never crashes.

16.3. Which of the following schedules are serializable ?
(a) r1(a,b); w1 (b); ra(a); wi(a); wa(a).
(b) 71(a,b);wi(a); ra(a); wala);ri(b).
(c) ra(a);r1(a, b); wa(c);wi(a); wi(e).
(d) ri(a), r2(b), wi(a), wa(b), m1(b), w1(b), ra(c), wa(c)

For each of the serializable schedules, show a possible two-phase locking his-
tory.

16.4. Assume that you have two floats representing checking balance and savings
balance stored on disk. Write a program that transfers $100 from the check-
ing account to the savings account. Assume that the processor can crash at
anytime but disks are error-free. This means that you will also have to write
a crash recovery procedure. You are given the following primitives:

262 CHAPTER 16. TRANSACTIONS

class Stable {

float val;

// to copy disk object val to memory object x, use
synchronized void get(float x)

// to copy memory object x to disk object val, use
synchronized void set(float x)

b

16.5. Explain why the two-phase commit protocol does not violate the FLP impos-
sibility result.

16.6. Complete the code for the participants (Figure 16.2) and the coordinator (Fig-

ure 16.1) by specifying actions on timeout and crash recovery.

16.7 Bibliographic Remarks

The reader is referred to the book by Gray and Reuter [GR93] for a comprehensive
treatment of transactions.

Chapter 17

Recovery

17.1 Introduction

In this chapter, we study methods for fault tolerance using checkpointing. A check-
point can be local to a process or global in the system. A global checkpoint is simply
a global state that is stored on the stable storage so that in the event of a failure the
entire system can be rolled back to the global checkpoint and restarted. To record
a global state, one could employ methods presented in Chapter 9. These methods,
called coordinated checkpointing, can be efficiently implemented. However, there
are two major disadvantages of using coordinated checkpoints:

1. There is the overhead of computing a global snapshot. When a coordinated
checkpoint is taken, processes are forced to take their local checkpoints when-
ever the algorithm for coordinated checkpoint requires it. It is better for this
decision to be local because then a process is free to take its local checkpoint
whenever it is idle or the size of its state is small.

2. In case of a failure, the entire system is required to roll back. In particular,
even those processes that never communicated with the process that failed
are also required to roll back. This results in wasted computation and slow
recovery.

An alternative method is to let processes take their local checkpoints at their
will. During a failure-free mode of computation, this will result in an overhead on
computation lower than that for coordinated checkpointing. In case of a failure,
a suitable set of local checkpoints is chosen to form a global checkpoint. Observe

263

264 CHAPTER 17. RECOVERY

that processes that have not failed have their current states available, and those
states can also serve as checkpoints. There are some disadvantages of uncoordi-
nated checkpointing compared with coordinated checkpointing schemes. First, for
coordinated checkpointing it is sufficient to keep just the most recent global snap-
shot in the stable storage. For uncoordinated checkpoints a more complex garbage
collection scheme is required. Moreover, in the case of a failure the recovery method
for coordinated checkpointing is simpler. There is no need to compute a consistent
global checkpoint. Finally, but most importantly, simple uncoordinated checkpoint-
ing does not guarantee any progress. If local checkpoints are taken at inopportune
times, the only consistent global state may be the initial one. This problem is called
the domino effect, and an example is shown in Figure 17.1. Assume that process P
crashes and therefore must roll back to ¢y 1, its last checkpoint. Because a message
was sent between ¢; 1 and ¢ 2 that is received before ¢y 2, process P, is in an incon-
sistent state at co9 with respect to ¢;11. Therefore, P, rolls back to ¢oy. But this
forces P53 to roll back. Continuing in this manner, we find that the only consistent
global checkpoint is the initial one. Rolling back to the initial global checkpoint
results in wasting the entire computation.

€10 €1

N

1,2

failure

.0 ¥ %)

> B [|

30 €31

2y m | -V

Figure 17.1: An example of the domino effect

A hybrid of the completely coordinated and the completely uncoordinated schenies
is called communication-induced checkpointing. In this method, processes are free to
take their local checkpoints whenever desired, but on the basis of the communication
pattern, they may be forced to take additional local checkpoints. These methods
guarantee that recovery will not suffer from the domino effect.

The characteristics of the application, the probability of failures, and technolog-
ical factors may dictate which of the above mentioned choices of checkpointing is
best for a given situation. In this chapter, we will study issues in uncoordinated
checkpointing and communication-induced checkpointing.

17.2. ZIGZAG RELATION 265

17.2 Zigzag Relation

Consider any distributed computation with N processes Py, ..., Py. Each process
P; checkpoints its local state at some intermittent interval, giving rise to a sequence
of local checkpoints denoted by S5;. We will assume that the initial state and the final
state in any process are checkpointed. For any checkpoint ¢ we denote by pred.c,
the predecessor of the checkpoint ¢ in the sequence S; whenever it exists, that is,
when c is not the initial checkpoint. Similarly, we use succ.c for the successor of the
checkpoint c.

Given a set of local checkpoints, X, we say that X is consistent iff Ve,d € X : ¢||d.
A set of local checkpoints is called global if it contains N checkpoints, one from each
process.

Let the set of all local checkpoints be S:

S:USi.

We first tackle the problem of finding a global checkpoint that contains a given set
of checkpoints X C S. A relation called zigzag precedes, which is weaker (bigger)
than —, is useful in analysis of such problems.

Definition 17.1 The relation zigzag precedes, denoted by 2, is the smallest relation
that satisfies

(Z1) ¢ — d implies ¢ 5 d.

(Z2) Jee §:(c—e)A(prede > d) implies ¢ = d.

The following property of the zigzag relation is easy to show:

(Z3) (c 2 e) A (pred.e 5 d) implies (¢ = d).

On the basis of this relation, we say that a set of local checkpoints X is z-consistent
iff Ve,d € X : ¢ £ d.
Observe that all initial local checkpoints ¢ satisfy

VseS:s/hec
Similarly, if ¢ is a final local checkpoint, then
VseS:chs.

Alternatively, a zigzag path between two checkpoints ¢ and d is defined as follows.
There is a zigzag path from c¢ to d iff

1. Both ¢ and d are in the same process and ¢ < d; or,

266 CHAPTER 17. RECOVERY

2. there is a sequence of messages mq,...,m; such that

(a) m, is sent after the checkpoint c.

b} If my is received by process 7, then myy | is sent by process r in the same
Y P +
or a later checkpoint interval. Note that the message mgy; may be sent
before my,.

(¢) my is received before the checkpoint d.

In Figure 17.2, there is a zigzag path from ¢; 1 to c31 even though there is no
happened-before path. This path corresponds to the messages msz and my in the
diagram. The message my is sent in the same checkpoint interval in which ms3 is
received. Also note that there is a zigzag path from cg 9 to itself because of messages
mg and mg3. Such a path is called a zigzag cycle.

€10 €12
il | V—
M3 ms
&, €2 €3

2,0
7% |

C, C}J

3,0
N | vV

Figure 17.2: Examples of zigzag paths

We leave it as an exercise for the reader to show that ¢ = d ifl there is a zigzag
path from ¢ to d.

We now show that given a set of local checkpoints X, there exists a consistent
global checkpoint G containing X iff X is z-consistent.

We prove the contrapositive. Given ¢ and d in X (possibly ¢ = d), we show
that ¢ = d implies that there is no consistent global state G containing ¢ and d.
We prove a slightly stronger claim. We show that ¢ 2 d implies that there is no
consistent global state G containing ¢ or any checkpoint preceding it and d.

The proof is based on induction on k, the minimum number of applications
of rule (Z2) to derive that ¢ > d. When k = 0, we have ¢ — d. Thus ¢ or any
checkpoint preceding ¢ and d cannot be part of a consistent state by the definition of
consistency. Now consider the case when ¢ 5 d because Je : (¢ — ¢) A (pred.e = d).
We show that any consistent set of states Y containing ¢ and d cannot have any

17.3. COMMUNICATION-INDUCED CHECKPOINTING 267

checkpoint from the process containing the checkpoint e. Y cannot contain e or
any state following e because ¢ — e would imply that ¢ happened before that state.
Furthermore, Y cannot contain any checkpoint previous to e because pred.e Ad
and the induction hypothesis would imply that Y is inconsistent. The induction
hypothesis is applicable because pred.e = d must have fewer applications of (Z2)
rule. Since any consistent set of checkpoints cannot contain any checkpoint from
the process e.p, we conclude that there is no global checkpoint containing ¢ and d.

Conversely, it is sufficient to show that if X is not global, then there exists Y
strictly containing X that is z-consistent. By repeating the process, the set can
be made global. Furthermore, the set is always consistent because z 7 y implies
z 4 y. For any process P;, which does not have a checkpoint in X, we define

e=min{f € P|Vz € X: f bz}

where min is taken over the relation <. Note that the set over which min is taken
is nonempty because the final checkpoint on process P; cannot zigzag precede any
other checkpoint. We show that Y = X U{e} is z-consistent. It is sufficient to show
that e £ e and ¢ 5 e for any ¢ in X. If e is an initial local checkpoint, then e 7 e
and ¢ £ e for any ¢ in X clearly hold. Otherwise, pred.e exists. Since e is the
minimum event for which Vz € X : e /4 = we see that there exists an event, say,
d € X, such that pred.e = d. Since e = e and pred.e > d imply that e 2 d, we
know that e 5 e is not possible. Similarly, ¢ = e and pred.e = d imply ¢ 5 d,
which is false because X is z-consistent.

This result implies that if a checkpoint is part of a zigzag cycle, then it cannot
be part of any global checkpoint. Such checkpoints are called useless checkpoints.

17.3 Communication-Induced Checkpointing

If a computation satisfies a condition called rollback-dependency trackability (RDT),
then for every zigzag path there is also a causal path. In other words, rollback
dependency is then trackable by tracking causality. Formally,

Definition 17.2 (RDT) A computation with checkpoints satisfies rollback-dependency
trackability if for all checkpoints ¢,d: c = d=c¢ 5 d.

Because there are no cycles in the happened-before relation, it follows that if a
computation satisfies RDT, then it does not have any zigzag cycles. This implies
that no checkpoint is useless in a computation that satisfies RDT. We now develop
an algorithm for checkpointing to ensure RDT.

The algorithm takes additional checkpoints before receiving some of the messages
to ensure that the overall computation is RDT. The intuition behind the algorithm

268 CHAPTER 17. RECOVERY

is that for every zigzag path there should be a causal path. The difficulty arises
when in a checkpoint interval a message is sent before another message is received.
For example, in Figure 17.2 m4 is sent before mg is received. When mg is received,
a zigrag path is formed from ¢; 1 to ¢31. The message m3 had dependency on ¢,
which was not sent as part of mg4. To avoid this situation, we use the following rule:

Fized dependency after send (FDAS): A process takes additional checkpoints to
guarantee that the transitive dependency vector remains unchanged after any send
cvent (until the next checkpoint).

Thus a process takes a checkpoint before a receive of a message if it has sent a
message in that checkpoint interval and the vector clock changes when the message
is received.

A computation that uses FDAS is guaranteed to satisfy RDT because any zigzag,
path from checkpoints ¢ to d implies the existence of a causal path from ¢ to d.
There are two main advantages for a computation to be RDT: (1) it allows us to
calculate efficiently the maximum recoverable global state containing a given set of
checkpoints (see Problem 17.2), and (2) every zigzag path implies the existence of
a happened-before path. Since there are no cycles in the happened-before relation,
it follows that the RDT graph does not have any zigzag cycles. Hence, using FDAS
we can guarantee that there are no useless checkpoints in the computation.

17.4 Optimistic Message Logging: Main Ideas

In checkpointing-based methods for recovery, after a process fails, some or all of the
processes roll back to their last checkpoints such that the resulting system state
is consistent. For large systems, the cost of this synchronization is prohibitive.
Furthermore, these protocols may not restore the maximum recoverable state.

If along with checkpoints, messages are logged to the stable storage, then the
maximum recoverable state can always be restored. Theoretically, message logging
alone is sufficient (assuming deterministic processes), but checkpointing speeds up
the recovery. Messages can be logged by either the sender or the receiver. In
pessimistic logging, messages are logged either as soon as they are received or before
the receiver sends a new message. When a process fails, its last checkpoint is restored
and the logged messages that were received after the checkpointed state are replayed
in the order they were received. Pessimism in logging ensures that no other process
needs to be rolled back. Although this recovery mechanism is simple, it reduces the
speed of the computation. Therefore, it is not a desirable scheme in an environment
where failures are rare and message activity is high.

17.4. OPTIMISTIC MESSAGE LOGGING: MAIN IDEAS 269

In optimistic logging, it is assumed that failures are rare. A process stores the
received messages in volatile memory and logs them to stable storage at infrequent
intervals. Since volatile memory is lost in a failure, some of the messages cannot be
replayed after the failure. Thus some of the process states are lost in the failure.
States in other processes that depend on these lost states become orphans. A recov-
ery protocol must roll back these orphan states to nonorphan states. The following
properties are desirable for an optimistic recovery protocol:

o Asynchronous recovery: A process should be able to restart immediately after
a failure. It should not have to wait for messages from other processes.

e Minimal amount of rollback: In some algorithms, processes that causally de-
pend on the lost computation might roll back more than once. In the worst
case, they may roll back an exponential number of times. A process should
roll back at most once in response to each failure.

e No assumptions about the ordering of messages: If assumptions are made
about the ordering of messages such as FIFO, then we lose the asynchronous
character of the computation. A recovery protocol should make as weak as-
sumptions as possible about the ordering of messages.

e Handle concurrent failures: 1t is possible that two or more processes fail con-
currently in a distributed computation. A recovery protocol should handle
this situation correctly and efliciently.

o Recover mazimum recoverable state: No computation should be needlessly
rolled back.

We present an optimistic recovery protocol that has all these features. Our protocol
is based on two mechanisms—a fault-tolerant vector clock and a version end-table
mechanism. The fault-tolerant vector clock is used to maintain causality informa-
tion despite failures. The version end-table mechanism is used to detect orphan
states and obsolete messages. In this chapter, we present necessary and sufficient
conditions for a message to be obsolete and for a state to be orphan in terms of the
version end-table data structure.

17.4.1 Model

In our model, processes are assumed to be piecewise deterministic. This means
that when a process receives a message, it performs some internal computation,
sends some messages, and then blocks itself to receive a message. All these actions
are completely deterministic, that is, actions performed after a message receive

270 CHAPTER 17. RECOVERY

and before blocking for another message receive are determined completely by the
contents of the message received and the state of the process at the time of message
receive. A nondeterministic action can be modeled by treating it as a message
receive.

The receiver of a message depends on the content of the message and therefore
on the sender of the message. This dependency relation is transitive. The receiver
becomes dependent only after the received message is delivered. From now on,
unless otherwise stated, receive of a message will imply its delivery.

A process periodically takes its checkpoint. It also asynchronously logs to the
stable storage all messages received in the order they are received. At the time of
checkpointing, all unlogged messages are also logged.

A failed process restarts by creating a new version of itself. It restores its last
checkpoint and replays the logged messages that were received after the restored
state. Because some of the messages might not have been logged at the time of
the failure, some of the old states, called lost states, cannot be recreated. Now,
consider the states in other processes that depend on the lost states. These states,
called orphan states, must be rolled back. Other processes have not failed, so before
rolling back, they can log all the unlogged messages and save their states. Thus no
information is lost in rollback. Note the distinction between restart and rollback. A
failed process restarts, whereas an orphan process rolls back. Some information is
lost in restart but not in rollback. A process creates a new version of itself on restart
but not on rollback. A message sent by a lost or an orphan state is called an obsolete
message. A process receiving an obsolete message must discard it. Otherwise, the
receiver becomes an orphan.

In Figure 17.3, a distributed computation is shown. Process P, fails at state
f10, restores state si11, takes some actions needed for recovery, and restarts from
state rig. States s;2 and fip are lost. Being dependent on s;2, state sgo of Py is
an orphan. P; rolls back, restores state sa;, takes actions needed for recovery, and
restarts from state rgg. Dashed lines show the lost computation. Solid lines show
the useful computation at the current point.

17.4.2 Fault-Tolerant Vector Clock

Recall that a vector clock is a vector whose number of components equals the number
of processes. Each entry is the timestamp of the corresponding process. To maintain
causality despite failures, we extend each entry by a version number. The extended
vector clock is referred to as the fault-tolerant vector clock (FTVC). We use the
term “clock” and the acronym FTVC interchangeably. Let us consider the FTVC
of a process P;. The version number in the ith entry of its FTVC (its own version
number) is equal to the number of times it has rolled back. The version number

17.4. OPTIMISTIC MESSAGE LOGGING: MAIN IDEAS 271

Py

Py

P

Figure 17.3: A distributed computation

272 CHAPTER 17. RECOVERY

in the jth entry is equal to the highest version number of P; on which F; depends.
Let entry e correspond to a tuple(version v, timestamp ts). Then, e; < e = (v] <
vg) V [(v1 = v2) A (ts1 < ts2)].

A process P, sends its FTVC along with every outgoing message. After sending a
message, P; increments its timestamp. On receiving a message, it updates its FTVC
with the message’s FTVC by taking the componentwise maximum of entries and
incrementing its own timestamp. To take the maximum, the entry with the higher
version number is chosen. If both entries have the same version number, then the
entry with the higher timestamp value is chosen.

When a process restarts after a failure or rolls back because of failure of some
other process, it increments its version number and sets its timestamp to zero. Note
that this operation does not require access to previous timestamps that may be lost
on a failure. It requires only its previous version number. As explained in Section
17.5.2, the version number is not lost in a failure. A formal description of the FTVC
algorithm is given in Figure 17.4.

An example of FTVC is shown in Figure 17.3. The FTVC of each state is shown
in a rectangular box near it.

17.4.3 Version End Table

Orphan states and resulting obsolete messages are detected with the version end-
table mechanism. This method requires that, after recovering from a failure, a
process notify other processes by broadcasting a token. The token contains the ver-
sion number that failed and the timestamp of that version at the point of restoration.
We do not make any assumption about the ordering of tokens among themselves or
with respect to the messages. We assume that tokens are delivered reliably.

Every process maintains some information, called vtable, about other processes
in its stable storage. In wtable of P, there is a record for every known version of
processes that ended in a failure. If P; has received a token about kth version of
P, then it keeps that token’s timestamp in the corresponding record in vtable. The
routine insert(vtable[j], token) inserts the token in that part of the vtable of P; that
keeps track of P;.

A formal description of the version end-table manipulation algorithm is given in
Figure 17.5.

17.5 An Asynchronous Recovery Protocol

Our protocol for asynchronous recovery is shown in Figure 17.6. We describe the
actions taken by a process, say, P;, on the occurrence of different events. We assume
that each action taken by a process is atomic. This means that any failure during

17.5. AN ASYNCHRONOUS RECOVERY PROTOCOL

P;::
type eniry = (integer ver, integer ts); // version, timestamp
var clock : array [1..N] of entry initially

Y7 : clock|jl.ver =0 ;

Vi :j #1:clock[jl.ts = 0;clockli].ts = 1;

To send message :
send (data, clock) ;
clock[i).ts := clockli].ts + 1;

Upon receive of a message (data, mclock) -
// P receives vector clock ‘mclock’ in incoming message
Vj : clock[j] = maz(clock[j], mclock[j]);
clockli].ts := clock{i].ts + 1,

Upon Restart (state s restored) :
clock = s.clock;
clock[i].ver := clock[d].ver + 1;
clock[i}.ts = 0;

Upon Rollback(state s restored) :
clock = s.clock;

Figure 17.4;: Formal description of the fault-tolerant vector clock

P
var
vtable : array[l..N] of set of entry initially empty;
token : entry;
Receive_token (v1,t1) from P; :
insert(vtable[j], (vi,t1)) ;
Upon Restart
insert(vtableli], (v, clock[i].ts)) ;

Figure 17.5: Formal description of the version end-table mechanism

273

274 CHAPTER 17. RECOVERY

the execution of any action may be viewed as a failure before or after the execution
of the entire action.

17.5.1 Message Receive

On receiving a message, P; first checks whether the message is obsolete. This is done
as follows. Let e; refer to the jth entry in the message’s FTVC. Recall that each
entry is of the form (v,t), where v is the version number and ¢ is the timestamp. If
there exists an entry e;, such that e; is (v,t) and (v,t') belongs to vtable[j] of P
and t > t', then the message is obsolete. This is proved later.

If the message is obsolete, then it is discarded. Otherwise, P; checks whether
the message is deliverable. The message is not deliverable if its FTVC contains a
version number & for any process Pj, such that P; has not received all the tokens
from P; with the version number [less than k. In this case, delivery of the message
is postponed. Since we assume failures to be rare, this should not affect the speed
of the computation.

If the message is delivered, then the vector clock and the version end-table are up-
dated. P; updates its FTVC with the message’s FTVC as explained in Section 17.4.2.
The message and its FTVC are logged in the volatile storage. Asynchronously, the
volatile log is flushed to the stable storage. The version end-table is updated as
explained in Section 17.4.3.

17.5.2 On Restart after a Failure

After a failure, P; restores its last checkpoint from the stable storage (including
the version end-table). Then it replays all the logged messages received after the
restored state, in the receipt order. To inform other processes about its failure, it
broadcasts a token containing its current version number and timestamp. After that,
it increments its own version number and resets its own timestamp to zero. Finally,
it updates its version end-table, takes a new checkpoint, and starts computing in
a normal fashion. The new checkpoint is needed to avoid the loss of the current
version number in another failure. Note that the recovery is unaffected by a failure
during this checkpointing. The entire event must appear atomic despite a failure. If
the failure occurs before the new checkpoint is finished, then it should appear that
the restart never happened and the restart event can be executed again.

17.5.3 On Receiving a Token

We require all tokens to be logged synchronously, that is, the process is not allowed
to compute further until the information about the token is in stable storage. This
prevents the process from losing the information about the token if it fails after

17.5. AN ASYNCHRONOUS RECOVERY PROTOCOL 275

P
Receive_message (data, mclock) :
// Check whether message is obsolete
Vj:if ((mclock[j).ver,t) € vtable[j]) and (t < mclock|j].ts) then
discard message ;
if 35,1 s.t. | < mclock[j).ver A P; has no token about Ith version of P; then
postpone the delivery of the message until that token arrives;

Restart (after failure) :
restore last checkpoint;
replay all the logged messages that follow the restored state;
insert(vtableli], (v, clock[i].ts));
broadcast_token(clockli]);

Receive_token (v,t) from P; :
synchronously log the token to the stable storage;
if FTVC depends on version v of P; with timestamp t/
and (¢ < ¢') then Rollback;
// Regardless of roilback, following actions are taken
update viable;
deliver messages that were held for this token;

Rollback (due to token (v,t) from P;) :
log all the unlogged messages to the stable storage;
restore the maximum checkpoint such that
it does not depend upon any timestamp t' > t of version v for P;..(1)
discard the checkpoints that follow;
replay the messages logged after this checkpoint
until condition (1) holds;
discard the logged messages that follow;

Figure 17.6: An optimistic protocol for asynchronous recovery

276 CHAPTER 17. RECOVERY

acting on it. Since we expect the number of failures to be small, this would incur
only a small overhead.

The token enables a process to discover whether it has become an orphan. To
check whether it has become an orphan, it proceeds as follows. Assume that it
received the token (v,t) from Pj. It checks whether its vector clock indicates that it
depends on a state (v,t’) such that ¢ < ¢'. If so, then P; is an orphan and it needs
to roll back.

Regardless of the rollback, P; enters the record (v,t) in version end-table [7].
Finally, messages that were held for this token are delivered.

17.5.4 On Rollback

On a rollback due to token (v,t) from Pj, F; first logs all the unlogged messages
to the stable storage. Then it restores the maximum checkpoint s such that s does
not depend on any state on P; with version number v and timestamp greater than
t. Then logged messages that were received after s are replayed as long as messages
are not obsolete. It discards the checkpoints and logged messages that follow this
state. Now the FTVC is updated by incrementing its timestamp. Note that it does
not increment its version number. After this step, P; restarts computing as normal.
This protocol has the following properties:

e Asynchronous recovery. After a failure, a process restores itself and starts
computing. It broadcasts a token about its failure, but it does not require any
response.

e Minimal rollback: In response to the failure of a given version of a given pro-
cess, other processes roll back at most once. This rollback occurs on receiving
the corresponding token.

e Handling concurrent failures: In response to multiple failures, a process rolls
back in the order in which it receives information about different failures.
Concurrent failures have the same effect as that of multiple nonconcurrent
failures.

e Recovering maximum recoverable state: Only orphan states are rolled back.

We now do the overhead analysis of the protocol. Except for application mes-
sages, the protocol causes no cxtra messages to be sent during failure-free run. It
tags a FTVC to every application message. Let the maximum number of failures
of any process be f. The protocol adds log f bits to each timestamp in the vector
clock. Since we expect the number of failures to be small, log f should be small.

17.6. PROBLEMS 277

Thus the total overhead is O(N log f) bits per message in addition to the vector
clock.

A token is broadcast only when a process fails. The size of a token is equal to
just one entry of the vector clock.

Let the number of processes in the system be n. There are at most f versions
of a process, and there is one entry for each version of a process in the version
end-table.

17.6 Problems

17.1. Show that the following rules are special cases of FDAS.

(a) A process takes a checkpoint before every receive of a message.
(b) A process takes a checkpoint after every send of a message.

(¢) A process takes a checkpoint before any receive after any send of a mes-
sage.

17.2. Assume that a computation satisfies RDT. Given a set of checkpoints X from
this computation, show how you will determine whether there exists a global
checkpoint containing X. If there exists one, then give an efficient algorithm
to determine the least and the greatest global checkpoints containing X.

17.3. (due to Helary et al. [HMNRY7]) Assume that all processes maintain a variant
of logical clocks defined as follows: The logical clock is incremented on any
checkpointing event. The clock value is piggybacked on every message. On
receiving a message, the logical clock is computed as the maximum of the local
clock and the value received with the message. Processes are free to take their
local checkpoints whenever desired. In addition, a process is forced to take a
local checkpoint on receiving a message if (a) it has sent out a message since its
last checkpoint, and (b) the value of its logical clock will change on receiving
the message. Show that this algorithm guarantees that there are no useless
checkpoints. Will this protocol force more checkpoints or fewer checkpoints
than the FDAS protocol?

17.4. In many applications, the distributed program may output to the external
environment such that the output message cannot be revoked (or the environ-
ment cannot be rolled back). This is called the output commit problem. What
changes will you make to the algorithm to take care of such messages?

17.5. Give a scheme for garbage collection of obsolete local checkpoints and message
logs.

278 CHAPTER 17. RECOVERY

17.7 Bibliographic Remarks

The zigzag relation was first defined by Netzer and Xu [NX95]. The definition we
have used in this chapter is different from but equivalent to their definition. The
notion of the R-graph, RDT computation, and the fixed-dependency-after-send rule
was introduced by Wang [Wan97].

Strom and Yemini [SY85] initiated the area of optimistic message logging. Their
scheme, however, suffers from the exponential rollback problem, where a single failure
of a process can roll back another process an exponential number of times. The
algorithm discussed in this chapter is taken from a paper by Damani and Garg
[DGY6).

Chapter 18

Self-Stabilization

18.1 Introduction

In this chapter we discuss a class of algorithms, called self-stabilizing algorithms, that
can tolerate many kinds of “data” faults. A “data” fault corresponds to change in
value of one or more variable of a program because of some unforeseen error. For
example, a spanning tree is usually implemented using parent variables. Every node
in the computer network maintains the parent pointer that points to the parent in
the spanning tree. What if one or more of the parent pointers get corrupted? Now,
the parent pointers may not form a valid spanning tree. Such errors will be called
“data” faults. We will assume that the code of the program does not get corrupted.
Because the code of the program does not change with time, it can be periodically
checked for correctness using a copy stored in the secondary storage.

We assume that the system states can be divided into legal and illegal states.
The definition of the legal state is dependent on the application. Usually, system
and algorithm designers are very careful about transitions from the legal states, but
illegal states of the system are ignored. When a fault occurs, the system moves to
an illegal state and if the system is not designed properly, it may continue to execute
in illegal states. A system is called self-stabilizing if regardless of the initial state,
the system is guaranteed to reach a legal state after a finite number of moves.

We will illustrate the concept of self-stabilizing algorithms for two problems:
mutual exclusion and spanning tree construction.

279

280 CHAPTER 18. SELF-STABILIZATION

18.2 Mutual Exclusion with K-State Machines

We will model the mutual exclusion problem as follows. A machine can enter the
critical section only if it has a privilege. Therefore, in the case of mutual exclusion,
legal states are those global states in which exactly one machine has a privilege.
The goal of the self-stabilizing mutual exclusion algorithm is to determine who has
the privilege and how the privileges move in the network.

Bottom:
if (L=25)then S5:=5+4+1mod K ;

For other machines:
if (L # S) then S:=1L;

Figure 18.1: K-state self-stabilizing algorithm

Figure 18.2: A move by the bottom machine in the K-state algorithm

We assume that there are N machines numbered 0... N — 1. The state of any
machine is determined by its label from the set {0...K —1}. We use L, S, and
R to denote the labels of the left neighbor, itself, and the right neighbor for any
machine. Machine 0, also called the bottom machine, is treated differently from all
other machines. The program is given in Figure 18.1, and a sample execution of the
algorithm is shown in Figure 18.2. The bottom machine has a privilege if its label
has the same value as its left neighbor, (i.e., L = S). In Figure 18.2, the bottom
machine and its left neighbor have labels 2, and therefore the bottom machine has
a privilege. Omnce a machine possessing a privilege executes its critical section, it
should execute the transition given by the program. In Figure 18.2, on exiting from

18.2. MUTUAL EXCLUSION WITH K-STATE MACHINES 281

the critical section, the bottom machine executes the statement S := S+ 1 mod K
and acquires the label 3.

A normal machine has a privilege only when L # S. On exiting the critical
section, it executes S := L and thus loses its privilege. In Figure 18.3, P5 moves
and makes it label as 4.

4 4

Figure 18.3: A move by a normal machine in the K-state algorithm

In this algorithm, the system is in a legal state if exactly one machine has the
privilege. It is easy to verify that (zg,z1,...,Zy—1) is legal if and only if either all
x; values are equal or there exists m < N — 1 such that all z; values with i < m are
equal to some value and all other z; values are equal to some other value. In the
first case, the bottom machine has the privilege. In the second case the machine
P41 has the privilege. It is easy to verify that if the system is in a legal state, then
it will stay legal.

It is also easy to verify that in any configuration, at least one move is possible.
Now we consider any unbounded sequence of moves. We claim that a sequence
of moves in which the bottom machine does not move is at most O(N?%). This is
because machine 1 can move at most once if the bottom machine does not move.
This implies that the machine 2 can move at most twice and so on. Thus, the total
number of moves is bounded by O(N?).

We now show that given any configuration of the ring, either (1) no other machine
has the same label as the bottom, or (2) there exists a label that is different from all
machines. We show that if condition (1) does not hold, then condition (2) is true.
If there exists a machine that has the same label as that of bottom, then there are
now K — 1 labels left to be distributed among N — 2 machines. Since K > N, we
see that there is some label which is not used.

Furthermore, within a finite number of moves, condition (1) will be true. Note
that if some label is missing from the network, it can be generated only by the bottom

282 CHAPTER 18. SELF-STABILIZATION

machine. Moreover, the bottom machine simply cycles among all labels. Since the
bottom machine moves after some finite number of moves by normal machines, the
bottom machine will eventually get the missing label.

We now show that if the system is in an illegal state, then within O(N?) moves,
it reaches a legal state. It is easy to see that once the bottom machine gets the
unique label, the system stabilizes in O(N?) moves. The bottom machine can move
at most. NV times before it acquires the missing label. Machine 1 therefore can move
at most N + 1 times before the bottom acquires the label. Similarly, machine ¢ can
move at most N + ¢ times before the bottom gets the label. By adding up all the
moves, we get N+ (N +1)+...+ (N + N —1) = O(N?) moves.

In this algorithm, the processes could read the state of their left neighbors. How
do we implement this in a distributed system? One possibility is for a machine to
periodically query its left neighbor. However, this may generate a lot of messages
in the network. A more message-efficient solution is for a token to go around the
system. The token carries with it the state of the last machine that it visited. But
now we have to worry about the token getting lost and the presence of multiple
tokens in the system. To guard against the token getting lost, we will require the
bottom machine to generate a new token if it does not see a token in a certain
timeout interval. To accomplish this, we use the following Java object as a periodic
task. On invocation, this task sends a restart message to the bottom machine. To
handle this message, the bottom machine calls the sendToken method.

import java.util . TimerTask;
public class RestartTask extends TimerTask {
MsgHandler app;
public RestartTask (MsgHandler app) {
this.app = app;

public void run() {
app. handleMsg (null, 0, "restart”);

We use a boolean tokenSent to record if the token has been sent by the bottom
machine in the last timeout interval. If not, a token is sent out.

Multiple tokens do not pose any problem in this scheme because that only means
that multiple processes will read the state of their left neighbors. The algorithm
is shown in Figure 18.4 for the bottom machine and in Figure 18.5 for the normal
machine.

18.2. MUTUAL EXCLUSION WITH K-STATE MACHINES 283

import java.util . Timer;

public class StableBottom extends Process implements Lock {
int myState = 0;
int leftState = 0;

int next;
Timer t = new Timer ();
boolean tokenSent = false;

public StableBottom (Linker initComm) {
super { initComm);
next = (myld + 1) % N;

public synchronized void initiate () {
t.schedule (new RestartTask (this), 1000, 1000);

public synchronized void requestCS () {
while (leftState != myState) myWait();

public synchronized void releaseCS () {
myState = (leftState + 1) % N;

public synchronized void sendToken () {
if (! tokenSent) {
sendMsg (next , "token”, myState);
tokenSent = true;
} else tokenSent = false;

public synchronized void handleMsg(Msg m, int src, String tag) {
if (tag.equals ("token”))

leftState = m. getMessagelnt ();
notify ();
Util . mySleep (1000);
sendMsg (next, ”"token”, myState);
tokenSent = true;

} else if (tag.equals(”restart”))
sendToken ();

Figure 18.4: Self-stabilizing algorithm for mutual exclusion in a ring for the bottom
machine

284 CHAPTER 18. SELF-STABILIZATION

import java.util.Timer;
public class StableNormal extends Process implements Lock {
int myState = 0;
int leftState = 0;
public StableNormal (Linker initComm) {
super (initComm);

public synchronized void requestCS () {
while (leftState == myState) myWait();

public synchronized void releaseCS () {
myState = leftState ;
sendToken ();

public synchronized void sendToken () {
int next = (myld + 1) % N;
sendMsg (next, ”token”, myState);

public synchronized void handieMsg(Msg m, int src, String tag) {
if (tag.equals(”token™)) {
leftState = m. getMessagelnt ();
notify ();
Util . mySleep (1000);
sendToken ();

Figure 18.5: Self-stabilizing algorithm for mutual exclusion in a ring for a normal

machine

18.3. SELF-STABILIZING SPANNING TREE CONSTRUCTION 285

18.3 Self-Stabilizing Spanning Tree Construction

Assume that the underlying topology of a communication network is a connected
undirected graph. Furthermore, one of the node is a distinguished node called root.
Our task is to design a self-stabilizing algorithm to maintain a spanning tree rooted
at the given node. Note that determining parent pointers of the spanning tree
once is not enough. Any data fault can corrupt these pointers. We would need to
recalculate parent pointers periodically. To calculate the parent pointers, we also
use a variable dist that indicates the distance of that node from the root.

Root: (execute periodically)
dist := Q;
parent := —1;

For other node: (execute periodically)
read dist of all neighbors;
Let j be the neighbor with a minimum distance dist;;
parent := j;
dist == dist; + 1,

Figure 18.6: Self-stabilizing algorithm for (BFS) spanning tree

The algorithm shown in Figure 18.6 is quite simple. In this version, we assume
that a node can read the value of variables of its neighbors. Later, we will translate
this program into a distributed program. Each node maintains only two variables—
parent and dist. The root node periodically sets parent to —1 and dist to 0. If
any of these values get corrupted, the root node will reset it to the correct value
by this mechanism. A nonroot node periodically reads the variable dist of all its
neighbors. It chooses the neighbor with the least distance and makes that neighbor
its parent. It also scts its own distance to one more than the distance of that
neighbor.

It is easy to verify that no matter what the values of parent and dist initially
are, the program eventually converges to valid values of parent and dist.

Let us now translate this program into a distributed program. The program for
the root node shown in Figure 18.7 is identical to that in Figure 18.6. For periodic
recalculation we use a timer that schedules RestartTask after a fixed time interval.

The algorithm for a nonroot node is shown in Figure 18.8. A nonroot node reads
the values of the neighboring nodes by sending them a query message of type Q.dist.
Whenever a node receives a message of type .dist it responds with a message of

286 CHAPTER 18. SELF-STABILIZATION

type A.dist with the value of its dist variable. The variable numReports indicate the
number of A.dist messages that node is expecting. Whenever numReports become
0, it knows that it has heard from all its neighbors and therefore it knows the
neighbor with the least distance. The variable neuwDist is used for recalculation of
the distance.

The main program that invokes StableSpanRoot and StableSpanNonroot is
shown in Figure 18.9.

import java.util.Timer;
public class StableSpanRoot extends Process {

int parent = —1;
int dist = 0;
Timer t = new Timer ();

public StabIeSpanRoot’(Linker initComm) {
super (initComm);
t.schedule (new RestartTask (this), 1000, 1000);

public synchronized void recalculate (){
parent = —1;
dist = 0;
System.out . printin (" parent of " + myld + ” is + parent);
System.out.println ("dist of ” + myld + ” is 7 + dist);

»

public synchronized void handleMsg{Msg m, int src, String tag) {
if (tag.equals(”Q.dist”)) {
sendMsg(src, "A.dist”, 0);
} else if (tag.equals("restart”)) {
recalculate ();

Figure 18.7: Self-stabilizing spanning tree algorithm for the root

18.4 Problems

18.1. Show that a system with four machines may not stabilize if it uses the K-state
machine algorithm with K = 2.

18.2. Show that the K-state machine algorithm converges to a legal state in at most
O(N?) moves by providing a norm function on the configuration of the ring
that is at most O(N?), decreases by at least 1 for each move, and is always
nonnegative.

18.4. PROBLEMS 287

import java. util . Timer;
public class StableSpanNonroot extends Process {

int parent = —1;

int dist = 0;

int newDist = 0;//distance after recalculation
Timer t = new Timer ();

int numReports;
public StableSpanNonroot (Linker initComm) {
super (initComm);
t.schedule (new RestartTask (this), 1000, 1000);

public synchronized void recalculate (){
newDist = N; //init newDist to maz possible
sendToNeighbors ("Q. dist” ,0); //query mneighbors for their dist
numReports = comm. neighbors . size ();
while (numReports > 0) myWait(); //wait for all responses
dist = newDist;
System.out. println (" parent of " 4+ myld + is + parent);
System.out. println ("dist of ” + myld + ” is 7 4 dist);

» »

public synchronized void handleMsg(Msg m, int src, String tag) {
if (tag.equals ("Q. dist™)) {
sendMsg (src, "A.dist”, dist); //reply with my dist
} else if (tag.equals(”A.dist”)) {
int hisDist = m. getMessagelnt ();
if ((hisDist >= 0) && (newDist > hisDist)) {
newDist = hisDist +1;
parent = src;
}
numReports ——;
notifyAll ();
} else if (tag.equals("restart”)) {
recalculate ();
}

Figure 18.8: Self-stabilizing spanning tree algorithm for nonroot nodes

288 CHAPTER 18. SELF-STABILIZATION

public class StableTreeTester {
public static void main(String [] args) throws Exception {
String baseName = args [0];
int myld = Integer.parselnt (args[1]);
int numProc = Integer . parselnt (args [2]);
Linker comm = new Linker (baseName, myld, numProc);
if (myld==0) {
StableSpanRoot bot = new StableSpanRoot (comm);
for (int i = 0; i < numProc; i++)
if (i !'= myld)
(new ListenerThread (i, bot)). start ();
} else {
StableSpanNonroot normal = new StableSpanNonroot (comm};
for (int i = 0; 1 < numProc; i++)
if (i != myld)

(new ListenerThread (i, normal)). start ();

Figure 18.9: A Java program for spanning tree

18.3. In our K-state machine algorithm we have assumed that a machine can read
the value of the state of its left machine and write its own state in one atomic
action. Give a self-stabilizing algorithm in which a processor can only read a
remote value or write a local value in one step, but not both.

*18.4. (due to Dijkstra [Dij74]) Show that the following four-state machine algorithm
is self-stabilizing. The state of each machine is represented by two booleans
xS and upS. For the bottom machine upS = true and for the top machine
upS = false always hold.

Bottom:
if (zS = zR) and —upR then zS := —xS;

Normal:
if ©S # «L then 2§ := ~aS;upS := true;
if £S5 = xR and upS and —upR then upS = false;

Top:
if (S # zL) then 25 := —z5;

18.5. BIBLIOGRAPHIC REMARKS 289

*18.5. Assume that each process P; has a pointer that is either null or points to one
of its neighbors. Give a self-stabilizing, distributed algorithm on a network of
processes that guarantees that the system reaches a configuration where (a)
if P; points to P;, then P; points to F;, and (b) there are no two neighboring
processes such that both have null pointers.

18.5 Bibliographic Remarks

The idea of self-stabilizing algorithms first appeared in a paper by Dijkstra [Dij74],
where three self-stabilizing algorithms were presented for mutual exclusion in a ring.

This Page Intentionally Left Blank

Appendix A

Various Utility Classes

Algorithms for several utility classes are shown in Figures A.1-A.6.

291

292 APPENDIX A. VARIOUS UTILITY CLASSES

import java.util .=
public class Util {
public static int max(int a, int b) {
if (a > b) return a;
return b;

public static void mySleep(int time) {
try {
Thread . sleep (time);
} catch (InterruptedException e) {

public static void myWait(Object obj) {
println (" waiting”);
try {
obj . wait ();
} catch (InterruptedException e) {

public static boolean lessThan{int A[], int B{[]) {
for (int j = 0; j < A.length; j++4)
if (A[]] > B[j]) return false;
for (lnt j = 0; j < A.length; j++)
if (A[j] < B[j]) return true;
return false;

public static int maxArray(int A[]) {
int v = A[0];
for (int i=0; i<A.length; i++)
if (A[i] > v) v = Afi];

return v;

public static String writeArray (int A[]){
StringBuffer s = new StringBuffer (};
for (int j = 0; j < A.length; j++)
s.append(String . valueOf (A[j]) + 7 ");
return new String (s.toString ());

public static void readArray (String s, int A[]) {
StringTokenizer st = new StringTokenizer (s);

for (int j = 0; j < A.length; j++)
Alj] = Integer.parselnt (st.nextToken ());

public static int searchArray (int A[], int x) {
for (int i = 0; i < A.length; i++)
if (A[1] == x) return i;
return —1;

public static void println (String s){
if (Symbols. debugFlag) {
System . out. println (s);
System. out . flush ();

Figure A.1l: Util.java

APPENDIX A. VARIOUS UTILITY CLASSES

293

public class Symbols {
public static final int Infinity = —1;
// internet related
public static final String nameServer =
”linux02 . ece . utexas .edu”;
public statie final int ServerPort = 7033;
public static final int coordinator = 0;
// time bounds on messages for synchronous algorithms
public static final int roundTime = 500; // ms
public static final boolean debugFlag = true;

Figure A.2: Symbols.java

import java.util .x;
public class Matrix {
public static String write (int A[}[]){
StringBuffer s = new StringBuffer ();
for (int j = 0; j < A.length; j++)
s.append (Util . writeArray (A[j]) + 7 7);
return new String (s. toString ());

}

public static void read(String s, int A[][]) {
StringTokenizer st = new StringTokenizer (s);
for (int i = 0; i < A.length; i++)

public static void setMax(int A[]{}, int B[][]) {
for (int i = 0; i < A.length; i++)
for (int j 0; j < Ali]. length; j++)
Ali][j] = Util.max(A[i][]], B[il[]]);

for (int] = 0; j < A(i]. length; j++)
Ali][j] = Integer.parselnt (st.nextToken ());
public static void setZero (int A[]]]) {
for (int i = 0; i < A.length; i++)
for (int j = (), j < A[i].length; j++)
Al I[1] = 0

Figure A.3: Matrix.java

294

APPENDIX A. VARIOUS UTILITY CLASSES

import java . util .x;

public class MsgList extends LinkedList {
public Msg removeM(int seqNo) {
SeqMessage sm;
ListIterator iter = super.listlterator (0);
while (iter .hasNext()) {
sm = (SeqMessage) iter .next ();
if (sm.getSeqNo () == seqNo) {
iter .remove ();
return sm. getMessage ();
}
}

return null;

Figure A.4: MsgList.java

import java.util.LinkedList
public class IntLinkedList extends LinkedList {
public void add(int i) {
super . add (new Integer (i));

public boolean contains (int i) {
return super.contains (new Integer (i});

public int removeHead () {
Integer j = (Integer) super.removeFirst ();
return j.intValue ();

public boolean removeObject (int i) {
return super.remove{new Integer (i));

public int getEntry (int index) {
Integer j = (Integer) super.get (index);
return j.intValue ();

Figure A.5: IntLinkedList.java

APPENDIX A. VARIOUS UTILITY CLASSES 295

public class PortAddr {
String hostname;
int porthum;
public PortAddr(String s, int 1) {
hostname = new String (s);
portnum = 1i;

}
public String getHostName () {
return hostname;

public int getPort () {
return portnum;

Figure A.6: PortAddr.java

This Page Intentionally Left Blank

Bibliography

[AEAO1]

[AMGO03]

[Ang80]

[AW9R)

[Awe85)

|Bar96]

[BIRT]

[BN84]

[Bou8?7]

D. Agrawal and A. El-Abbadi. An efficient and fault-tolerant solution
for distributed mutual exclusion. ACM Trans. Comput. Syst., 9(1):1-20,
February 1991.

R. Atreya, N. Mittal, and V. K. Garg. Detecting locally stable predicates
without modifying application messages. In Proc. Intnatl. Conf. on

Principles of Distributed Systems, La Martinique, France, December
2003.

D. Angluin. Local and global properties in networks of processors. In
Proc. of the 12th ACM Symp. on Theory of Computing, pages 82 - 93,
1980.

H. Attiya and J. Welch. Distributed Computing - Fundamentals, Simula-
tions and Advanced Topics. McGraw Hill, Berkshire, SL6 2QL, England,
1998.

B. Awerbuch. Complexity of network synchronization. Journal of the
ACM, 32(4):804-823, October 1985.

V. Barbosa. An Introduction to Distributed Algorithms. The MIT Press,
Cambridge, MA, 1996.

K. P. Birman and T. A. Joseph. Reliable communication in the presence
of failures. ACM Trans. Comput. Syst., 5(1):47-76, 1987.

A. D. Birrell and B. J. Nelson. Implementing remote procedure calls.
ACM Trans. Comput. Syst., 2(1):39-59, February 1984.

L. Bouge. Repeated snapshots in distributed systems with synchronous
communication and their implementation in CSP. Theoretical Computer
Science, 49:145-169, 1987.

297

298

[Bur80]

[CDK94]

(CJ97]

(CL85)

[CM&9)

[Com00)]

[CR79]

[DGYG]

[Dij65a]

[Dij65b]

[Dij74]

[Dij85]

[Dij87]

BIBLIOGRAPHY

J. Burns. A formal model for message passing systems. Technical Report
TR-91, Indiana University, 1980. Department of Computer Science.

G. Couloris, J. Dollimore, and T. Kindberg. Distributed Systems: Con-
cepts and Design. Addison-Wesley, Reading, MA, 1994.

R. Chow and T. Johnson. Distributed Operating Systems and Algo-
rithms. Addison-Wesley Longman, Reading, MA, 1997.

K. M. Chandy and L. Lamport. Distributed snapshots: Determin-
ing global states of distributed systems. ACM Trans. Comput. Syst.,
3(1):63-75, February 1985.

K. M. Chandy and J. Misra. Parallel Program Design: A Foundatton.
Addison-Wesley, Reading, MA, 1989.

D. E. Comer. Internetworking with TCP/IP: Volume 1. Principles,
Protocols, and Architectures. Prentice-Hall, Upper Saddle River, NJ
07458, USA, fourth edition, 2000.

E. J. H. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes. Commaun. of the
ACM, 22(5):281-283, 1979.

O. P. Damani and V. K. Garg. How to recover efficiently and asyn-
chronously when optimism fails. In ICDCS °96; Proc. of the 16th Intnatl.
Conf. on Distributed Computing Systems; Hong Kong, pages 108-115.
IEEE, May 1996.

E. W. Dijkstra. Co-operating Sequential Processes. In F. Genuys, editor,
Programming Languages. Academic Press, London, 1965.

E. W. Dijkstra. Solution of a problem in concurrent programming con-
trol. Commun. of the ACM, 8(9):569, September 1965.

E. W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Commun. of the ACM, 17:643-644, 1974.

E. W. Dijkstra. The distributed snapshot of K.M. Chandy and L. Lam-
port. In M. Broy, editor, Control Flow and Data Flow: Concepts of Dis-
tributed Programming, volume F14. NATO ASI Series, Springer-Verlag,
New York, NY, 1985.

E. W. Dijkstra. Shmuel Safra’s version of termination detection. Report
EWD998-0, University of Texas at Austin, January 1987.

BIBLIOGRAPHY 299

[DKR&2]

[DS80]

[DS83)

[Far98]

[Fid89]

[FL82]

[FLP8S5)

[Gar92)

[Gar96]

[|Gar02]

[GC95]

[Gif79]

[Gos91]

[GR93]

D. Dolev, M. Klawe, and M. Rodeh. An O(nlogn) unidirectional dis-
tributed algorithm for extrema finding in a circle. Journal of Algorithms,
8:245-260, 1982.

E. W. Dijkstra and C. S Scholten. Termination detection for diffusing
computations. Information Processing Letters, 11(4):1-4, August 1980.

D. Dolev and H. R. Strong. Authenticated algorithms for Byzantine
agreement. SIAM Journal on Computing, 12(4):656-666, 1983.

J. Farley. Java Distributed Computing. O’Reilly, Sebastopol, CA, 1998.

C. J. Fidge. Partial orders for parallel debugging. Proc. of the ACM
SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging,
(ACM SIGPLAN Notices), 24(1):183-194, January 1989.

M. J. Fischer and N. A. Lynch. A lower bound on the time to assure
interactive consistency. Information Processing Letters, 14(4):183-186,
1982.

M. J. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374-382,
April 1985.

V. K. Garg. Some optimal algorithms for decomposed partially ordered
sets. Information Processing Letters, 44:39-43, November 1992.

V. K. Garg. Principles of Distributed Systems. Kluwer Academic Pub-
lishers, Boston, MA, 1996.

V. K. Garg. Elements of Distributed Computing. Wiley, New York, NY,
2002.

V. K. Garg and C. Chase. Distributed algorithms for detecting con-
junctive predicates. In Proc. of the IEEE Intnatl. Conf. on Distributed
Computing Systems, pages 423-430, Vancouver, Canada, June 1995.

D. K. Gifford. Weighted voting for replicated data. Proc. 7th Symp. on
Operating Syst. Principles,, 13(5):150-162, December, 1979.

A. Goscinski. Distributed Operating Systems, The Logical Design.
Addison-Wesley, Reading, MA, 1991.

J. Gray and A. Reuter. Transaction Processing. Morgan Kaufmann
Publishers, San Mateo, CA, 1993.

300

[Gra78]

(GW92]

[HA90]

[Han72]

[Har98§]

[Hel89)

[Her88)

[HM84)

[HMNR97]

[HMRS95]

[Hoa74]

BIBLIOGRAPHY

J. N. Gray. Notes on database operating systems. In G. Goos and
J. Hartmanis, editors, Operating Systems: An Advance Course, vol-
ume 60 of Lecture Notes in Computer Science, pages 393-481. Springer-
Verlag, 1978.

V. K. Garg and B. Waldecker. Detection of unstable predicates in
distributed programs. In Proc. of 12th Conf. on the Foundations of
Software Technology € Theoretical Computer Science, pages 253-264.
Springer Verlag, December 1992. Lecture Notes in Computer Science
652.

P. Hutto and M. Ahamad. Slow memory : Weakening consistency to
enhance concurreny in distributed shared memories. Proc. of Tenth
Intnatl. Conf. on Distributed Computing Systems, May 1990.

P. Brinch Hansen. Structured multi-programming. CACM, 15(7):574-
578, July 1972.

S. J. Hartley. Concurent Programming: The Java Programming Lan-
guage. Oxford, New York, NY, 1998.

J. Helary. Observing global states of asynchronous distributed applica-
tions. In Workshop on Distributed Algorithms, pages 124-135. Springer
Verlag, LNCS 392, 1989.

M. Herlihy. Impossibility and universality results for wait-free synchro-
nization. Technical Report TR-CS-8, Carnegie-Mellon University (Pitts-
burg PA),, May 1988.

J.Y. Halpern and Y. Moses. Knowledge and common knowledge in a
distributed environment. In Proc. of the ACM Symp. on Principles of
Distributed Computing, pages 50 - 61, Vancouver, B.C., Canada, 1984.

J. Helary, A. Mostefaoui, R. H. B. Netzer, and M. Raynal. Preventing
useless checkpoints in distributed computations. In Symp. on Reliable
Distributed Systems, pages 183-190, Durham, NC, 1997.

M. Hurfin, M. Mizuno, M. Raynal, and M. Singhal. Efficient distributed
detection of conjunction of local predicates. Technical Report 2731,
IRISA, Rennes, France, November 1995.

C. A. R. Hoare. Monitors: An operating system structuring concept.
Commun. of the ACM, 17(10):549-557, October 1974. Erratum in Com-
mun. of the ACM, Vol. 18, No. 2 (February), p. 95, 1975.

BIBLIOGRAPHY 301

[HR82]

[HS80]

[HW90]

[Lam?74|

[Lam78]

[Lam79]

[Lam8é]

[Lea99]

[Lov73]

[LSP82

[Lub85]

[LY87)

G. S. Ho and C. V. Ramamoorthy. Protocols for deadlock detection in
distributed database systems. IEEE Trans. on Software Engineering,
8(6):554-557, November 1982.

D. S. Hirschberg and J. B. Sinclair. Decentralized extrema-finding in
circular configurations of processors. Commun. of the ACM, 23(11):627—
628, 1980.

M. P. Herlihy and J. M. Wing. Linerizability: A correctness condition
for atomic objects. ACM Trans. Prog. Lang. Syst., 12(3):463-492, July
1990.

L. Lamport. A new solution of dijkstra’s concurrent programming pro-
gram. Commun. of the ACM, 17(8), August 1974.

L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. of the ACM, 21(7):558-565, July 1978.

L. Lamport. How to make a correct multiprocess program execute cor-
rectly on a multiprocessor. IEEE Trans. on Computers, 28(9):690-691,
1979.

L. Lamport. On interprocess communication, part II: Algorithms. Dis-
tributed Computing, 1:86-101, 1986.

D. Lea. Concurrent Programming in Java: Design principles and Pat-
terns. The Java Series. Addison Wesley, Reading, MA, 2nd edition,
1999.

L. Lovasz. Coverings and colorings of hypergraphs. In 4th Southeastern
Conf. on Combinatorics, Graph Theory, and Computing, pages 3-12,
1973.

L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.
ACM Trans. on Programming Languages and Systems, 4(3):382-401,
July 1982.

M. Luby. A simple parallel algorithm for the maximal independent set
problem. In ACM, editor, Proc. of the 17th annual ACM Symp. on
Theory of Computing, Providence, RI, pages 1-10, May 1985.

T. H. Lai and T. H. Yang. On distributed snapshots. Information
Processing Letters, pages 153-158, May 1987.

302

[Lyn96]

[Mae85]

[Mat89)

[Mat93]

[MG95]

[MGY8]

[MS94]

[NX95)

[Pet81]

[Pet82]

[PKR82]

BIBLIOGRAPHY

N. A. Lynch. Distributed Algorithms. Morgan Kaufmann series in data
management systems. Morgan Kaufmann Publishers, Los Altos, CA
94022, USA, 1996.

M. Maekawa. A square root N algorithm for mutual exclusion in de-
centralized systems. ACM Trans. Comput. Syst., 3(2):145-159, May
1985.

F. Mattern. Virtual time and global states of distributed systems. In
Parallel and Distributed Algorithms: Proc. of the Intnatl. Workshop on
Parallel and Distributed Algorithms, pages 215-226. Elsevier Science
Publishers B.V. (North-Holland), 1989.

F. Mattern. Efficient algorithms for distributed snapshots and global
virtual time approximation. Journal of Parallel and Distributed Com-
puting, pages 423-434, August 1993.

V. V. Murty and V. K. Garg. An algorithm to guarantee synchronous
ordering of messages. In Proc. of Second Intnatl. Symp. on Autonomous
Decentralized Systems, pages 208-214. IEEE Computer Society Press,
1995.

N. Mittal and V. K. Garg. Consistency conditions for multi-object dis-
tributed operations. In Proc. of the 18th Int’l Conf. on Distributed
Computing Systems (ICDCS-18), pages 582-589, May 1998.

K. Marzullo and L. S. Sabel. Efficient detection of a class of stable
properties. Distributed Computing, 8(2):81-91, 1994.

R. H. B. Netzer and J. Xu. Necessary and sufficent conditions for consis-
tent global snapshots. IEEE Trans. on Parallel and Distributed Systems,
6(2):165-169, February 1995.

G. L. Peterson. Myths about the mutual exclusion problem. Information
Processing Letters, 12(3):115-116, June 1981.

G. Peterson. unidirectional algorithm for the circular extrema problem.
ACM Trans. on Programming Languages and Systems, 4:758-762, 1982.

J. K. Pachl, E. Korach, and D. Rotem. A technique for proving lower
bounds for distributed maximum-finding algorithms. In ACM Symp. on
Theory of Computing, pages 378-382, 1982.

BIBLIOGRAPHY 303

[PSL80]

[PW95]

[RA81]

[Ray88]

[Ray89]

[RH90]

[RST91]

[SK85]

[SK86)

[SkeR2]

[SL87]

[SM94)

[5594]

M. Pease, R. Shostak, and L. Lamport. Reaching agreements in the
presence of faults. Journal of the ACM, 27(2):228 -234, April 1980.

D. Peleg and A. Wool. Crumbling walls: a class of practical and efficient
quorum systems. In Proc. of the 14th Annual ACM Symp. on Princi-
ples of Distributed Computing (PODC 95), pages 120-129, New York,
August 1995. ACM.

G. Ricart and A. K. Agrawala. An optimal algorithm for mutual exclu-
sion in computer networks. Commun. of the ACM, 24(1):9 - 17, 1981.

M. Raynal. Distributed Algorithms and Protocols. John Wiley & Sons,
1988.

K. Raymond. A tree-based algorithm for distributed mutual exclusion.
ACM Trans. Comput. Syst., 7(1):61-77, February 1989.

M. Raynal and J. M. Helary. Synchronization and Control of Distributed
Systems and Programs. Wiley, Chichester, UK, 1990.

M. Raynal, A. Schiper, and S. Toueg. The causal ordering abstrac-
tion and a simple way to implement it. Information Processing Letters,
39(6):343-350, July 1991.

1. Suzuki and T. Kasami. A distributed mutual exclusion algorithm.
ACM Trans. Comput. Syst., 3(4):344-349, November 1985.

M. Spezialetti and P. Kearns. Efficient distributed snapshots. In Proc.
of the 6** Intnatl. Conf. on Distributed Computing Systems, pages 382-
388, 1986.

D. Skeen. Crash Recovery in Distributed Database System. PhD Disser-
tation, EECS Department, University of California at Berkeley, 1982.

S. Sarin and N. A. Lynch. Discarding obsolete information in a replicated
database system. IEEE Trans. on Software Engineering, SE-13(1):39-
47, January 1987.

ed. S. Mullender. Distributed Systems. Addison-Wesley, Reading, MA,
1994.

M. Singhal and N. G. Shivaratri. Advanced Concepts in Operating Sys-
tems. McGraw Hill, New York, NY, 1994.

304

[SS95]

[SY85]

[Tay83]

[Tay89]

[Tel94)

[TG93]

[Tho79]

[TvS02]

(VD92

[Wan97]

[YM94]

BIBLIOGRAPHY

S. D. Stoller and F. B. Schneider. Faster possibility detection by combin-
ing two approaches. In Proc. of the 9th Intnatl. Workshop on Distributed
Algorithms, pages 318-332, France, September 1995. Springer-Verlag.

R. E. Strom and S. Yemeni. Optimistic recovery in distributed systems.
ACM Trans. Comput. Syst., 3(3):204-226, 1985.

R. N. Taylor. Complexity of analyzing the synchronization structure of
concurrent programs. Acta Informatica, 19(1):57-84, April 1983.

K. Taylor. The role of inhibition in asynchronous consistent-cut proto-
cols. In Workshop on Distributed Algorithms, pages 280-291. Springer
Verlag, LNCS 392, 1989.

G. Tel. Introduction to Distributed Algorithms. Cambridge University
Press, Cambridge, England, 1994.

A. I. Tomlinson and V. K. Garg. Detecting relational global predicates
in distributed systems. In Proc. of the Workshop on Parallel and Dis-
tributed Debugging, pages 21--31, San Diego, CA, May 1993.

R. H. Thomas. A majority consensus approach to concurrency con-
trol for multiple copy databases. ACM Trans. on Database Systems,
4(2):180-209, June 1979.

A. S. Tanenbaum and M. van Steen. Distributed systems: principles and
paradigms. Prentice Hall, 2002.

S. Venkatesan and B. Dathan. Testing and debugging distributed pro-
grams using global predicates. In 30th Annual Allerton Conf. on Com-
mun., Control and Computing, pages 137-146, Allerton, Illinois, Octo-
ber 1992.

Y. M. Wang. Consistent global checkpoints that contain a given set of
local checkpoints. IEEE Transactions on Computers, 46(4), April 1997.

Z. Yang and T. A. Marsland. Introduction. In Z. Yang and T. A,
Marsland, editors, Global State and Time in Distributed Systems. IEEE
Computer Society Press, 1994.

Index

o synchronizer, 226
[synchronizer, 230
v synchronizer, 230

abort, 233

ACID properties, 254
agreement, 240, 248
AlphaSynch.java, 229
anonymous ring, 210
asynchronous recovery, 272
asynchrony of events, 235
atomic, 66

atomic snapshots, 76
atomicity, 254
Attemptl.java, 20
Attempt2.java, 21
Attempt3.java, 21

bakery algorithm, 24
Bakery.java, 25

barrier synchronization, 187
BCell java, 49

binary semaphore, 31
BinarySemaphore.java, 32
bivalent, 236

bivalent state, 79
BoundedBuffer.java, 35
BoundedBufferMonitor.java, 45
broadcast, 213, 215

busy wait, 31

Byzantine failure, 239
Byzantine General Agreement, 243

305

Camera.java, 152
CameralLinker java, 158
CameraTester.java, 160
CamUser.java, 152
causal consistency, 60
causal ordering, 192, 193
causal total order, 203
CausalLinker.java, 195
CausalMessage.java, 194
Cell.java, 50
CentMutex.java, 134
centralized algorithm, 203
CentSensor.java, 167
Chang-Roberts algorithm, 210
Chat .java, 197
checker process, 166
checkpoint, 263
checkpointing, 268
CircToken.java, 145
clocks, 111, 115
clustering, 230
commmit, 233
common knowledge, 247
communication-induced checkpointing,
264, 267
commute property, 235
CompSwap.java, 82
CompSwapConsensus.java, 83
concurrent, 115
concurrent object, 53
concurrent queue, 86
concurrent system, 54

306

condition variables, 42
conditional synchronization, 33
conflict graph, 140
Connector.java, 102
consensus, 78, 233, 239
consensus number, 79
Consensus.java, 78, 242
ConsensusTester.java, 243
consistency, 254

consistent cut, 166
consistent interval, 185
convergecast, 215
coordinated checkpoints, 263
coordinating general problem, 248
counting semaphores, 32
CountingSemaphore.java, 33
CQueue.java, 86

crash, 239

critical region, 18

critical section, 18, 130
critical state, 79

crumbling wall, 144

DatagramClient.java, 95
datagrams, 92
DatagramServer.java, 93
DatagramSocket, 90
deadlock, 49, 209

deadlocks, 188

debugging, 164

Dekker.java, 29

diffusing computation, 180
Dijkstra and Scholten’s algorithm, 180
dining philosopher, 39
DiningMonitor.java, 47
DiningPhilosopher.java, 41
DinMutex.java, 143
direct-dependency clocks, 122
DirectClock.java, 122
directly precedes, 123

INDEX

disjunctive normal form, 164
disjunctive predicate, 165
distributed commit, 257
distributed computation, 111, 114
distributed database, 233
distributed objects, 196
distributed systems, 1
DistSensor.java, 174

domain name system, 89
domino effect, 264
DSTerm.java, 183
durability, 255

Election.java, 209
events, 114

failure detection, 112

fairness, 130

fault-tolerant vector clock, 270
Fibonacci.java, 14

FIFO consistency, 62

Fixed dependency after send, 268
flooding algorithm, 213

FooBar .java, 12

fork, 9

FuncUser.java, 217

global checkpoint, 263

global functions, 215

global properties, 164

global snapshot, 151

global snapshot algorithm, 149
global state, 150
GlobalFunc.java, 218
GlobalFuncTester.java, 219
GlobalService.java, 216

grid quorum system, 146

happened-before diagrams, 115
happened-before model, 150
happened-before relation, 114

INDEX

HelloWorldThread.java, 11
history, 54
HWDMutex.java, 28

InetAddress, 89

initial independence, 234
interface definition language, 8
interleaving model, 114
invocation, 54

isolation, 254

KingBGA .java, 245
knowledge, 244

Lamport’s Algorithm for Total Order,
204

LamportClock.java, 117

LamportMutex.java, 137

leader election, 209

legal, 54

lightweight processes, 9

linearizable, 57

Linker, 100

Linker.java, 104

ListenerThread.java, 132

ListQueue.java, 48

liveness, 130

LLSC.java, 84

locally stable, 185

location transparency, 101

lock-free, 65

Lock.java, 18, 130

LockFreeSnapshot.java, 77

LockTester.java, 131

logging, 256

logical clock, 116

majority voting system, 144
marker, 152

matrix clock, 125
MatrixClock.java, 124

307

maximum recoverable state, 276
message ordering, 191

minimal rollback, 276

monitor, 42

MRMW Register, 74

MRSW Register, 73, 74

MRSW java, 75

Msg.java, 103

MsgHandler.java, 130

multicast messages, 203
MultiValued.java, 72
MultiWriter.j, 76

mutual exclusion, 18, 129, 203, 280
MyThread. java, 19

name server, 96
Name.java, 99
NameRmiClient.java, 109
NameServer.java, 98
NameService.java, 105
NameServicelmpl.java, 106
NameTable.java, 97
nondeterminism, 191
normal, 62

object serialization, 107
ObjPointer.java, 83
occurred before, 54
omission model, 239
optimistic logging, 269
orphan, 270

parallel system, 1
pessimistic logging, 268
Peterson’s algorithm, 21
PetersonAlgorithm.java, 22
Philosopher.java, 40
pointer-swinging, 84
private workspace, 256
process, 8

process-time diagrams, 115

308

Process.java, 133
producer-consumer problem, 33
ProducerConsumer.java, 37
progress, 22

pulse, 221

quoruimn, 144

RAMutex.java, 139
reader-writer problem, 36
Reader Writer.java, 38

receive omission, 239
RecvCamera.java, 155

regular, 66

Regular SRSW Register, 70
RegularBoolean java, 71
reliable communication, 246
remote method invocations, 101
remote procedure calls, 101
replicated state machines, 205
Resource.java, 41

response, 54

restarts, 270

RestartTask.java, 282

Ricart and Agrawala’s algorithm, 136
ring, 209

RingLeader.java, 211
rmiregistry, 107

rollback, 270
rollback-dependency trackability, 267
run, 115

safe, 66

Safe SRSW Register, 70
SafeBoolean.java, 70
safety, 130
self-stabilizing, 279
semaphore, 31

send omission, 239
SenderCamera.java, 159
Sensor.java, 165

INDEX

SensorCircToken java, 170
SensorTester.java, 171
SensorUser.java, 165
SeqMessage.java, 156
SeqQueue.java, 85
sequential consistency, 55
sequential history, 54
serializability, 255

shared clock, 112

shared memory, 112
ShortestPath.java, 179
simple synchronizer, 223
SimpleSynch.java, 224
Skeen’s algorithm, 204
space-time diagrams, 115
spanning tree, 181, 216, 285
SpanTree.java, 214

SRSW Boolean Register, 71
SRSW Multivalued Register, 71
SRSW Register, 73

stable predicate, 163
StableBottom.java, 283
StableNormal.java, 284
StableSpanNonroot.java, 287
StableSpanRoot.java, 286
StableTreeTester.java, 288
starvation-freedom, 22
symmetry, 210

Synch.java, 28
SynchBfsTree.java, 227
SynchLinker.java, 202
synchronizer, 221
Synchronizer.java, 222
synchronous ordering, 196

TermDetector.java, 179
terminating reliable broadcast, 238
termination, 181, 240
TermShortestPath.java, 184
TermToken.java, 186

INDEX 309

Test AndSet.java, 27, &1
TestSetConsensus.java, 82
threads, 9

time-based model, 150
Topology.java, 100

total order, 203

transaction, 233, 253
Transmission Control Protocol, 90
tree-based quorum system, 147
Tree.java, 226

triangular quorum system, 146
two-phase commit, 257
two-phase locking, 256
TwoPhaseCoord.java, 259
TwoPhaseParticipant.java, 260

universal, 78

universal construction, 84
Universal Datagram Protocol, 90
universal object, 79

validity, 240
VClLinker.java, 120
vector clock, 118
VectorClock.java, 119
version end-table, 272

wait, 9

wait-for graph, 188

wait-free, 65

weak conjunctive predicate, 166
wheel coterie, 146

z-consistent, 265
zigzag relation, 265

	Cover
	Contents
	Preface
	1. Introduction
	2. Mutual Exclusion Problem
	3. Synchronization Primitives
	4. Consistency Conditions
	5. Wait-Free Synchronization
	6. Distributed Programming
	7. Models and Clocks
	8. Resource Allocation
	9. Global Snapshot
	10. Global Properties
	11. Detecting Termination and Deadlocks
	12. Message Ordering
	13. Leader Election
	14. Synchronizers
	15. Agreement
	16. Transactions
	17. Recovery
	18. Self- Stabilization
	A. Various Utility Classes
	Bibliography
	Index

