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Preface

I am grateful to the readers of the first edition who have made suggestions
for improvement. Apart from some minor corrections, the principal changes
are as follows.

The equation connecting the curvatures of four mutually tangent circles,
now known as the Descartes Circle Theorem (p. 12), is proved along the lines
suggested by Mr. Beecroft on pp. 91-96 of “The Lady’s and Gentleman’s
Diary for the year of our Lord 1842, being the second after Bissextile, de-
signed principally for the amusement and instruction of Students in Mathe-
matics: comprising many useful and entertaining particulars, interesting to
all persons engaged in that delightful pursuit.”

For similarity in the plane, a new treatment (pp. 73-76) was suggested by
A. L. Steger when he was a sophomore at the University of Toronto. For
similarity in space, a different treatment (p. 103) was suggested by Professor
Maria Wonenburger. A new exercise on p. 90 introduces the useful concept
of jnversive distarice. Another has been inserted on p. 127 to exhibit R.
Krasnodgbski’s drawings of symmetrical loxodromes.

Pages 203-208 have been revised so as to clarify the treatment of affinities
(which preserve collinearity) and equiaffinities (which preserve area). The
new material includes some challenging exercises. For the discovery of finite
geometries (p. 237), credit has been given to von Staudt, who anticipated
Fango by 36 vears

Fano by 36 years.
Page 395 records the completion, in 1968, by G. Ringel and J. W. T.
Youngs, of a project begun by Heawood in 1890. The result is that we now
know, for every kind of surface except the sphere (or plane), the minimal
number of colors that will suffice for coloring every map on the surface.
Answers are now given for practically all the exercises; a separate booklet
'IS 1no lonnf\< mnandad Mo A thn cmnaddiacd aaoczrang fin AR wroa Lindl Q115
501 necucu. vie Ui uIc PICI,I.ICDI, AIDWLIDS \}J. H'.)J) was Riluly Supr

plied by Professor P. Sz4sz of Budapest.

H.S.M. Coxeter

Toronto, Canada
January, 1969



Preface to the
first edition

For the last thirty or forty years, most Americans have somehow lost in-
terest in geometry. The present book constitutes an attempt to revitalize
this sadly neglected subject.

The four parts correspond roughly to the four years of college work.
However, most of Part II can be read before Part I, and most of Part IV
before Part III. The first eleven chapters (that is, Parts I and II) will pro-
vide a course for students who have some knowledge of Euclid and ele-
mentary analytic geometry but have not yet made up their minds to spe-
cialize in mathematics, or for enterprising high school teachers who wish to
see what is happening just beyond their usual curriculum. Part III deals
with the foundations of geometry, including projective geometry and hyper-
bolic non-Euclidean geometry. Part IV introduces differential geometry,
combinatorial topology, and four-dimensional Euclidean geometry.

In spite of the large number of cross references, each of the twenty-two
chapters is reasonably self-contained; many of them can be omitted on first
reading without spoiling one’s enjoyment of the rest. For instance, Chapters
1,3, 6, 8, 13, and 17 would make a good short course. There are relevant
exercises at the end of almost every section; the hardest of them are pro-
vided with hints for their solution. (Answers to some of the exercises are
given at the end of the book. Answers to many of the remaining exercises
are provided in a separate booklet, available from the publisher upon re-
quest.) The unifying thread that runs through the whole work is the idea
of a group of transformations or, in a single word, symmetry.

The customary emphasis on analytic geometry is likely to give students
the impression that geometry is merely a part of algebra or of analysis. It

is refreshing to observe that there are some important instances (such as

the Argand diagram described in Chapter 9) in which geometrical ideas are

needed as essential tools in the development of these other branches of

mathematics. The scope of geometry was spectacularly broadened by Klein

in his Erlanger Programm (Erlangen program) of 1872, which stressed the

fact that, besides plane and solid Euclidean geometry, there are many other
R wrorthy of attantion

L T . H i
geometries equally worthy of attention. For instance, many of Euclid’s own

propositions belong to the wider field of affine geometry, which is valid not
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only in ordinary space .but also in Minkowski’s space-time, so successfully
exploited by Einstein in his special theory of relativity.

Geometry is useful not only in algebra, analysis, and cosmology, but also
in kinematics and crystallography (where it is associated with the theory of
groups), in statistics (where finite geometries help in the design of experi-
ments), and even in botany. The subject of topology (Chapter 21) has been
developed so widely that it now stands on its own feet instead of being re-
garded as part of geometry; but it fits into the Erlangen program, and its
early stages have the added appeal of a famous unsolved problem: that of
deciding whether every possible map can be colored with four colors.

The material grew out of courses of lectures delivered at summer insti-
tutes for school teachers and others at Stillwater, Oklahoma; Lunenburg,
Nova Scotia; Ann Arbor, Michigan; Stanford, California; and Fredericton,
New Brunswick, along with several public lectures given to the Friends of
Scripta Mathematica in New York City by invitation of the late Professor
Jekuthiel Ginsburg. The most popular of these separate lectures was the
one on the golden section and phyllotaxis, which is embodied in Chapter 11.

Apart from the general emphasis on the idea of transformation and on
the desirability of spending some time in such unusual environments as af-
fine space and absolute space, the chief novelties are as follows: a simple
treatment of the orthocenter (§ 1.6); the use of dominoes to illustrate six of
the seventeen space groups of two-dimensional crystallography (§ 4.4); a
construction for the invariant point of a dilative reflection (§ 5.6); a descrip-
tion of the general circle-preserving transformation (§ 6.7) and of the spiral
similarity (§ 7.6); an “explanation” of phyllotaxis (§ 11.5); an “ordered”

traatment of Svlvester’s nroblem (§ 12.3); an economical svstem of axioms

treatment of Sylvester’s problem (§ 12.3); an economical system o
for affine geometry (§ 13.1); an “absolute” treatment of rotation groups
(§ 15.4); an elementary treatment of the horosphere (§ 16.8) and of the ex-
treme ternary quadratic form (§ 18.4); the correction of a prevalent error
concerning the shape of the monkey saddle (§ 19.8); an application of geo-
desic polar coordinates to the foundations of hyperbolic trigonometry
(§ 20.6); the classification of rcgular maps on the sphere, projective plane,
torus, and Klein bottle (§ 21.3); and the suggestion of a statistical honey-
comb (§ 22.5).

I offer sincere thanks to M. W. Al-Dhahir, J. J. Burckhardt, Werner Fen-
chel, L. M. Kelly, Peter Scherk, and F. A. Sherk for critically reading various
chapters; also to H G. Forder, Martin Gardner, and C. J. Scriba for their
help in proofreading, to S. H. Gould, J. E. Littlewood, and J. L. Synge for
permission to quote certain passages from their published works, and to
M. C. Escher, I. Kitrosser, and the Royal Society of Canada for permission
to reproduce the plates.

H.S.M. Coxeter

Toronto, Canada
March, 1961
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Mathematics possesses not only truth, but supreme beauty
—a beauty cold and austere, like that of sculpture,
without appeal to any part of our weaker nature . . .
sublimely pure, and capable of a stern perfection

such as only the greatest art can show.

BERTRAND RUSSELL (1872-1970)
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1

Triangles

In this chapter we review some of the well-known propositions of ele-
mentary geometry, stressing the role of symmetry. We refer to Euclid’s
propositions by his own numbers, which have been used throughout the
world for more than two thousand years. Since the time of F. Commandino
(1509-1575), who translated the works of Archimedes, Apollonius, and
Pappus, many other theorems in the same spirit have been discovered.
Such results were studied in great detail during the nineteenth century. As
the present tendency is to abandon them in favor of other branches of
mathematics, we shall be content to mention a few that seem particularly
interesting.

1.1  EUCLID
Euclid's work will live long ofter all the text-books of the present day
are superseded and forgotten. It is one of the noblest monuments of
antiquity.

Sir Thomas L. Heath (1861 -1940)*

About 300 B.c., Euclid of Alexandria wrote a treatise in thirteen books
called the Elements. Of the author (sometimes regrettably confused with the
earlier philosopher, Euclid of Megara) we know very little. Proclus (410-
485 A.D.) said that he “put together the Elements, collecting many of Eu-
doxus’s theorems, perfecting many of Theaetetus’s, and also bringing to ir-
refragable demonstration the things which were only somewhat loosely
proved by his predecessors. This man lived in the time of the first Ptolemy,
[who] once asked him if there was in geometry any shorter way than that
of the Elements, and he answered that there was no royal road to geometry.”
Heath quotes a story by Stobaeus, to the effect that someone who had be-
gun to read geometry with Euclid asked him “What shall I get by learning
these things?” Euclid called his slave and said “Give him a dime, since he
must make gain out of what he learns.”

* Heath 1, p. vi. (Such references are collected at the end of the book, pp. 415-417.)
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i ix may be very briefly described as deal-
ingo rfe;}:;ctt}ilifreti;e&i}:}(l)(z‘(is-‘{r:'}gllzsf}rrsgci;;glcs}: c_ircles,y polyggns, proportion, atr)lld
similarity. The next four, on the thcpry of numbers, include two r[liotgtelc
achievements: 1X.2 and X.9, where 1§ 1s'proycd that there are 1n31211 35
many prime numbers, and that v 2 is irrational [Hardy 2, Pp- —ids.
Book XI is an introduction to solid hge%metry, i(llsdﬁ(a}llss with pyramids,

inders, and XIII is on the five regular solids.
corxsé(?ﬁncgy 111(§1Procius, Euclid “set before himself, as the en::i of thc wl:olz
Elements, the construction of the so-called Platpmc figures. Th1§ n{) io !
of Euclid’s purpose is supported py the Platonic theory of a mystical cor
respondence between the four solids

cube, \ J earth,
tetrahedron, and the four “elements” ﬁ.re,
octahedron, air,
icosahedron j water

i i lied by the arith-

£ Coxeter 1, p. 18]. Evidence to the contrary is SUpplicC 5y & <5 -

[rietical books VII-X, which were obviously included for their intrinsic in
terest rather than for any application to solid geometry.

1.2 PRIMITIVE CONCEPTS AND AXIOMS

“When | use a word,”" Humpty-Dumpty said, “it means just what |
choose it to mean—neither more nor less.”

Lewis Carroll (1832-1898)

[Dodgson 2, Chap. 6]

In the logical development 1of any Ilfranch of I?Sa;}rlledmra;;;ctsi:;a;ch %;12;1;&(?;
tion involves other concep .

?}feaocrlt)lx;cxiz; 2:) Tjﬁid a vicious circle is to a}low_certain primitive co,r;cepts
and relations (usually as few as possible) to remain undefined [Syngc‘ + PP-
32-34). Similarly, the proof of each prqposmon uses other proposm'ons,
and therefore certain primitive propositlonsz call_ed Ros{qlates or zmoms(,1
must remain unproved. Euclid did not spemf.y his primitive concepts alid
relations, but was content to give definitions in terms of ideas that wou

e Fallawra:

be familiar to everybody. His five Postulates are as follows:
1.21 A straight line may be drawn from any point fo any other point.
1.22 A finite straight line may be exiended continuously in a straight line.
1.23 A circle may be described with any center and any radius.

1.2a Al right angles are equal to one another.

1.25 If a straight line meets iwo other straight lines so as to make the t}»lvo
interior angles on one side of it together less than two right angles, the other

CONGRUENCE 5

straight lines, if extended indefinitely, will meet on that side on which the an-
gles are less than two right angles.*

It is quite natural that, after a lapse of about 2250 years, some details are
now seen to be capable of improvement. (For instance, Euclid I.1 con-
structs an equilateral triangle by drawing two circles; but how do we know
that these two circles will intersect?) The marvel is that so much of Euclid’s
work remains perfectly valid. In the modern treatment of his geometry
{see, for instance, Coxeter 3, pp. 161-187], it is usuai to recognize the primi-
tive concept point and the two primitive relations of intermediacy (the
idea that one point may be between two others) and congruence (the idea
that the distance between two points may be equal to the distance between
two other points, or that two line segments may have the same length).
There are also various versions of the axiom of continuity, one of which says
that every convergent sequence of points has a limit.

Euclid’s “principle of superposition,” used in proving 1.4, raises the ques-
tion whether a figure can be moved without changing its internal structure.
This principle is nowadays replaced by a further explicit assumption such
as the axiom of “the rigidity of a triangle with a tail” (Figure 1.24a):

1.26 If ABC is a triangle with D on the side BC extended, while D' is

analogously related to another triangle A'B’'C’, and if BC = B'C’, CA = C'4’,
AB = A’'B’, BD = B'D’, then AD = A'D'.

Figure 1.2a

This axiom can be used to extend the notion of congruence from line seg-

ments to more complicated figures such as angles, so that we can say pre-
cisely what we mean by the relation

L ABC = £/ A'B'C.
Then we no longer need the questionable principle of superposition in or-
der to prove Euclid 1.4:
If two triangles have two sides equal to two sides respectively, and have the

angles contained by the equal sides equal, they will also have their third sides

equal, and their remaining angles equal respectively; in fact, they will be con-
gruent triangles.

* In Chapter 15 we shall see how far we can go without using this unpleasantly complicated
Fifth Postulate.



6 TRIANGLES
1.3 PONS ASINORUM

Minos: It is proposed to prove |.5 by taking up the isosceles Triangle,
turning it over, and then laying it down again upon itself.
Euclid: Surely that has too much of the Irish Bull about it, and re-
minds one a little too vividly of the man who walked down his own
throat, to deserve a place in a strictly philosophical treatise?
Minos: | suppose ifs defenders would say that itis conceived to leave
a trace of itself behind, and that the reversed Triangle is laid down
upon the trace so left.

C. L. Dodgson (1832-1898)

[Dodgson 3, p. 48]

L5. The angles at the base of an isosceles iriangle are equal.

The name pons asinorum for this famous theorem probably. arose from
the bridgelike appearance of Euclid’s figure (with the cqnstructlon lines re-
quired in his rather complicated proof) and from the notion tha.t anyone un-
able to cross this bridge must be an ass. Fortunately, a.far simpler proof
was supplied by Pappus of Alexandria about 340 a.p. (Figure 1.3a):

b S

A

s

B C B

Figure 1.3a

Let ABC be an isosceles triangle with 4B equal to AC. Let us conceive this tri-
angle as two triangles and argue in this way. Since 4B = AC and AC = AB, the two
sides AB, AC are equal to the two sides AC, AB. Also the angle BAC is equali to the
angle CAB, for it is the same. Therefore all the corresponding parts (of the triangles
ABC, ACB) are equal. In particular,

/ ABC = L ACB.

The pedagogical difficulty of comparing the isosceles trianglc 4BC with
itself is sometimes avoided by joining the apex 4 to D, the mldpolnt' of the
base BC. The median 4D may be regarded as a mirror reflecting B into C.
Accordingly, we say that an isosceles triangle is symmetrical py reﬂectzop,
or that it has bilateral symmetry. (Of course, the idealized mirror used in

geometry has no thickness and is silvered on both sides, so that it not only
reflects B into C but also reflects C into B.)

REFLECTION 7

Any figure, however irregular its shape may be, yields a symmetrical fig-
ure when we place it next to a mirror and waive the distinction between
object and image. Such bilateral symmetry is characteristic of the external
shape of most animals.

Given any point P on either side of a geometrical mirror, we can con-
struct its reflected image P’ by drawing the perpendicular from P to the
mirror and extending this perpendicular line to an equal distance on the
other side, so that the mirror perpendicularly bisects the line segment PP’
Working in the plane (Figure 1.3b) with a line 4B for mirror, we draw two
circles with centers 4, B and radii AP, BP. The two points of intersection
of these circles are P and its image P,

O

|

B
Figure 1.3b

We shall find that many geometrical proofs are shortened and made more
vivid by the use of reflections. But we must remember that this procedure
is merely a short cut: every such argument could have been avoided by
means of a circumlocution involving congruent triangles. For instance, the
above construction is valid because the triangles ABP, ABP’ are congruent.

Pons asinorum has many useful consequences, such as the following five:

iii.3.  If'a diameter of a circie bisects a chord which does not pass through the center,
it is perpendicular to it; or, if perpendicular to it, it bisects it.

II1.20.  In a circle the angle at the center is double the angle at the circumference, when
the rays forming the angles meet the circumference in the same two points.

.21, In a circle, a chord subtends equal angles at any two points on the same one
of the two arcs determined by the chord (e.g., in Figure 1.3¢, ZPQQ" = / PP'Q").

H1.22.  The opposite angles of any quadrangle inscribed in a circle are together equal
to two right angles.

111.32. If a chord of a circle be drawn from the point of contact of a tangent, the angle
made by the chord with the tangent is equal o the angle subtended by the chord at a point

on that part of the circumference which lies on the far side of the chord (e.g., in Figure
13¢, LOTP' = LTPP).

‘We shall also have occasion to use two familiar theorems on similar tri-
angles:
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V1.2. Ifa straight line be drawn parallel to one side of a triangle, it will cut t(le o'th‘er
sides proportionately: and, if two sides of the triangle be cut proportionately, the line join-
;‘ngr tI;e p‘oints of section will be parallel to the remaining side.

VL4.  If corresponding angles of two triangles are equal, then corresponding sides are
proportional.

Combining this last result with I11.21 and 32, we deduce two significant
properties of secants of a circle (Figure 1.3¢):

11135, If in a circle two straight lines cut each other, the rectangle contained by the
segments of the one is equal to the rectangle contained by the segments of the other (i.c.,
OP x OP' = 0Q X 0Q).

111.36.  If from a point outside a circie a secant and a tangeni be drawn, the rectangle
contained by the whole secant and the part outside the circle will be equal to the square
on the tangent (i.e., OP X OP' = OT?).

Book VI also contains an important property of area:

VL19. Similar triangles are to one another in the squared ratio of their corresponding
imi n their areas in the ratio AR*:

[ e smd A'DIY ara aimilar tria
a , their are,

siaes \i‘e., if ABC and A'B'C’ are similar i
A'B),

This result yields the following easy proof for the theorem of Pythagoras
[see Heath 1, p. 353; 2, pp. 210, 232, 269]:

1g:

1.47. In a right-angled triangle, the square on the hypotenuse is equal to the sum of
the squares on the two catheti.

In the triangle ABC, right-angled at C, draw CF perpendicular to the
hypotenuse 4B, as in Figure 1.34. Then we have three similar right-angled
triangles A BC, ACF, CBF, with hypotenuses A8, AC, CB. By VIL.19, the
areas satisfy

ABC _ ACF _ CBF
AB? ~ AC?~ CB*

PYTHAGORAS 14
Evidently, ABC = ACF + CBF. Therefore AB2 — AC? 4+ CB2.

A

]
>}

Figure 1.3d

EXERCISES

1. Using rectangular Cartesian coordinates, show that the reflection in the y-axis
(x = 0) reverses the sign of x. What happens when we reflect in the line x = »?

2. Deduce 1.47 from II1.36 (applied to the circle with center A and radins AC).

3. Inside a square 4 BDE, take a point C so that CDE is an isosceles triangle with
angles 15° at D and E. What kind of triangle is ABC ?

4. Prove the Erdss-Mordell theorem: If O is any point inside a triangle ABC and
P, O, R are the feet of the perpendiculars from O upon the respective sides BC, CA,
AB, then

0A + OB + OC > 20P + 0Q + OR).

(Hint:*  Let Py and P; be the feet of the perpendiculars from R and Q upon BC. De-
fine analogous points Q1 and Qs, Ry and R; on the other sides. Using the similarity
of the triangles PRP, and OBR, express P1P in terms of RP, OR, and OB. After sub-
stituting such expressions into

oA AeD D NIRO 4 ORO.O 4
CA A(O1C + PP2)/RY + OB(U10

\V4
S

+ 08 + 0C CQ2)/PR
+ RRy)/QP,
collect the terms involving OP, OQ, OR, respectively.)
5. Under what circumstances can the sign > in Ex. 4 be replaced by =?
6. In the notation of Ex. 4,
04 x OB x OC > (0Q + ORYOR 1+ OPYOP + 0Q).

(A. Oppenheim, American Mathematical Monthly, 68 (1961), p. 230. See also L. J.
Mordell, Mathematical Gazette, 46 (1962), pp. 213-215.)

7. Prove the Steiner-Lehmus theorem: Any triangle having two equal internal angle
bisectors (each measured from a vertex to the opposite side) is isosceles. (Hint:t If a
triangle has two different angles, the smaller angle has the longer internal bisector.)

* Leon Bankoff, American Mathematical Monthly, 65 (1958), p. 521. For other proofs see G. R.
Veldkamp and H. Brabant, Nieuw Tijdschrift voor Wiskunde, 45 (1958), pp. 193-196; 46 (1959),
p. 87.

FCourt 2, p. 72. For Lehmus’s proof of 1848, see Coxeter and Greitzer 1, p. 15.
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1.4 THE MEDIANS AND THE CENTROID

Oriental mathematics may be an interesting curiosity, but Greek mathe-
matics is the real thing. . .. The Greeks, as Littlewood said to me once,
are not clever schoolboys or “'scholarship candidates, " but “'Fellows of
another college.” So Greek mathematics is “permanent,” more per-
manent even than Greek literature. Archimedes will be remembered
when Aeschylus is forgotten, because languages die and mathematical
ideas do not.

G. H. Hardy (1877 -1947)
[Hardy 2, p. 21]

Figure 1.4a

The line joining a vertex of a triangle to the midpoint of the opposite side
is called a median.

Let two of the three medians, say BB’ and CC’, meet in G (Figure 1.4a).
Let L and M be the midpoints of GB and GC. By Euclid V1.2 and 4 (which
were quoted on page 8), both C'B’ and LM arc parallel to BC and half as
long. Therefore B'C’LM is a parallelogram. Since the diagonals of a paral-
lelogram bisect each other, we have

B'G = GL =LB, CG=GM = MC.

Thus the two medians BB’, CC’ trisect each other at G. In other words,
this point G, which couid have been defined as a point of trisection of one
median, is also a point of trisection of another. and similarly of the third.
We have thus proved [by the method of Court 1, p. 58] the following
theorem:

1.41 The three medians of any triangle all pass through one point.

This commen point G of the three medians is called the centroid of the
triangle. Archimedes (c. 287-212B.C.) obtained it as the center of gravity of
a triangular plate of uniform density.

TRITANGENT CIRCLES 11

EXERCISES
1. Any triangle having two equal medians is isosceles.*

2. The sum of the medians of a triangle lies between 4 p and p, where p is the sum
of the sides. [Court 1, pp. 60-61.]

1.5 THE INCIRCLE AND THE CIRCUMCIRCLE

Alone at nights,
I read my Bible more and Euclid less.

Robert Buchanan (1841-1901)
(An Old Dominie's Story)

I
Figure 1.5a

a

Euclid I11.3 tells us that a circle is symmetrical by reflection in any diame-
ter (whf;reas an ellipse is merely symmetrical about two special diameters:
the major and minor axes). It follows that the angle between two inter-
secting tangents is bisected by the diameter through their common point.

*Tt i . Lo
) It is ta be understoad that any exercise appearing in the form of a theorem is intended to be
proved. It saves space to amit the words “Prave that” or “Show that.”
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By considering the loci of points equidistant from pairs of sides of a tri-
angle ABC, we see that the internal and external bisectors of the three
angles of the triangle meet by threes in four points I, I, Iy, I., as in Figure
1.5a. These points are the centers of the four circles that can be drawn to
touch the three lines BC, CA, AB. One of them, the incenter I, being inside
the triangle, is the center of the inscribed circle or incircle (Euclid 1V.4).
The other three are the excenters I, I, I.: the centers of the three escribed
circles or excircles [Court 2, pp. 72-88]. The radii of the incircle and excir-
cles are the inradius r and the exradii ro, rv, .
In describing a triangle ABC, it is customary to call the sides

a=BC, b = CA, c=AB,
the semiperimeter
s=4a+b+o0),

the angles 4, B, C, and the area A.
Since 4 + B + C = 180°, we have

1.51 £ BIC = 90° + 4,

a resuit which we shail find useful in § 1.9.
Since IBC is a triangle with base a and height r, its area is }ar. Adding
three such triangles we deduce

A=4%a+ b+ o)y=sr
Similarly A = ¥ + ¢ — @)ra = (s — a@)re. Thus
1.52 A=sr=GE—ay,=(s—bn =06~—ore
From the well-known formula cos 4 = (b2 + ¢2 — a?)/2bc, we find also
sind = [—at — bt — c* + 2b%c? + 2c%a? + 2a?b?)/2bc,
whence
A=4bcsind
1.53 = 4[= at — bt — ¢t + 2b2%c? + 2c%a® + 2a%B%}
:}[(a+b+c)(—a+b+c)(a—b+c)(a+b—c)]*
= [s(s — a)(s — b)(s — oIl
This remarkable expression, which we shall use in § 18.4, is attributed to
Heron of Alexandria (about 60 A.D.), but it was really discovered by Archi-
medes. (See B. L. van der Waerden, Science Awakening, Oxford University
Press, New York, 1961, pp. 228, 277.) Combining Heron’s formula with
1.52, we obtain

15312 =(%\2 —s-as—bs =09 ,» =/_A_)2 _Ss—Ns—b)
\s/

K \s —a s —a

Another consequence of the symmetry of a circle is that the perpendicular
bisectors of the three sides of a triangle all pass through the circumcenter O,

THE CIRCUMCIRCLE 13

A

PN

3

(o]
B
\ /D
\\KM
Figure 1.5b Figure 1.5¢

which is the center of the circumscribed circle or circumcircle (Euclid IV.5),
This is the only circle that can be drawn through the three vertices 4, B, C.
Its radius R is called the circumradius of the triangle. Since the “angle at the
center,” Z BOC (Figure 1.5b), is double the angle 4, the congruent right-
angled triangles OBA’, OCA’ each have an angle 4 at O, whence

Rsind = BA’' = -%-(l,

1.54 W=-2 b __c¢
sind~ sinB~ sinC’

Draw AD perpendicular to BC, and let 4K be the diameter through 4
of the circumcircle, as in Figure 1.5¢. By Euclid 11121, the right-angled tri-

amolac ADN A d AP v oiena:l oL e e .
angles ABD and AKC are similar; therefore

AD _ AC _ be
AB T 4K’ AD_2R'
Since A = {BC X AD, it follows that
1.55 4AR = abc
=s(s — b)(s — ) + s(s — ) s — a) + s(s — a)(s — b)
—(—a)s—bs—0)
_ Az A2 Az A2
= + —a
s—a s—b s—c s
=A@a+rn+r.—0n.

Hence the five radii are connected by the formula

1.56 AR=ro+rm+re—r

) Le.t us now consider four circles Eq, Eg, Es, E4, tangent to one another at
six dlst.mct ?oints. Each circle E; has a bend ;, defined as the reciprocal of
its radius with a suitable sign attached, namely, if all the contacts are ex-
terr}a} fas in the case of the light circles in Figure 1.54), the bends are all
positive, but if one circle surrounds the other three (as in the case of the
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RN

A

Figure 1.5d

o suas and 1
ve; and aline

heavy circies) the bend of ihis Jargest circle is take
counts as a circle of bend 0. In any case, the sum of all four bends is positive.

In a letter of November 1643 to Princess Elisabeth of Bohemia, René
Descartes developed a formula relating the radii of four mutually tangent

circles. In the “bend” notation it is

B N
1 10 00 NCgdi

1.87 2e1? + e2? + 3% + €42) = (g1 + & + €3 + €)%

Figure 1.5f

Figure 1.5¢

This Descartes circle theorem was rediscovered in 1842 by an English ama-
teur, Philip Beecroft, who observed that the four circles E; determine another

et o L iaalae LT, amudnally tan i i .
set of four circles H,, mutually tangent at the same six points: H; through

the three points of contact of Eg, Es, E4, and so on. Let ; denote the bend
of H;. If the centers of Ey, Es, E; form a triangle ABC, Hy is either the

lmairala aw an aveircla  In tha farme cace (Fioure 1 50\

THE KISS PRECISE 15

1.58 _ 1 __1 _ 1 — 1
El_s—a’82_s—b’-83_s—c’n4 *r

In the latter (Figure 1.5f),

n4:i—-1—

1
g = ——, &g = ———, €3 =
s s—c s—b ra

In either case, we see from 1.531 that

eog3 + €381 + €182 = (L + 1 + i) £1€083 = M4
o1 " & e
Similarly n2ms + m3m + mn2 = &4, and of course we can permute the sub-
scripts 1,2,3,4. Hence

2 1

Ce)@2=e?+...  2e483 4 + 2
(=ti)

+ &4 + 2eie2 + ...
Since this expression involves & and n; symmetrically, it is also equal to
(Zn4)?; thus

g1+ e+ e +ea=m+ M2+ 10 +1>0
Also, since

(61 + €2+ 63 — ea)e1 + &2 + €3 + &2) = (1 + &2 + €3)2 — €42
= &1 + &2 + &2 — €42 + 2n4°
= (2M3 + a4 + Mana) + (MM + o) + (2 + ) — (M2 + - ) + 204
= AT + N2Ms + Mana) + 2042 = 204(m1 + M2 + N3 + M4,

1.59 £1 + £2 + €3 — €4 = 2Ma.

Adding four such equations after squaring each side, we deduce Z&:2 = 272,
whence

228,;2 = X2 + 271,2 = (28,;)2.
Thus 1.57 has been proved.

In 1936, this theorem was rediscovered again by Sir Frederick Soddy, who
had received a Nobel prize in 1921 for his discovery of isotopes. He ex-
pressed the theorem in the form of a poem, The Kiss Precise*, of which the
middle verse runs as follows:

T o i lan 4 a 1
Four circles to the ki

The smaller are the benter.

The bend is just the inverse of

The distance from the centre.

Though their intrigue left Euclid dumb

o o Ao

* Nature, 137 (1936), p. 102i; 139 (1937), p. 62. In the next verse, Soddy annaunced his dis-
covery of the analagous formula for 5 spheres in 3 dimensions. A final verse, added by Thorold
Gosset (1869-1962) deals with n+2 spheres in n dimensions; see Coxeter, Aequationes Mathe-
maticae, 1 1968), pp. 104-121.
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There’s now no need for rule of thumb.
Since zero bend’s a dead straight line
And concave bends have minus sign,
The sum of the squares of all four bends
Is half the square of their sum.

EXERCISES
1. Find the locus of the image of a fixed point P by reflection in a variable line
through another fixed point C.
2. For the general triangle A BC, establish the identities
1 11
PRRED

3. The lengths of the tangents from the vertex A to the incircle and to the three
excircles are respectively

5

1
=, rreryre = A2
r

s—a, S5 S$—¢ s—0b

4. The circumcenter of an obtuse-angled triangle lies outside the triangle.

5. Where is the circumcenter of a right-angled triangle?

6. Let U, V, W be three points on the respective sides BC, CA, AB of a triangle
ABC. The perpendiculars to the sides at these points are concurrent if and only if

AW? 4 BU? + CV2 = WB? + UC? + VA2

7. A triangle is right-angled if and only if r + 2R = s.
8. The bends of Beecroft’s eight circles satisfy

g+ M =&+ =&+ N3 =€+ Mg, 2em; =0,

9. For any four numbers satisfying k + / + m + n = 0, there is a “Beecroft con-
figuration” having bends

er=ktk + I),ea = (k + D, es=n2 —kl, & =m?—Kkl,
=12 —mn,mz = k% — mn,n3 = m(m + n),na = (M + n)n.

(Hint: Express €3, €4, 71, N2 as rational functions of &4, €2, 3, 74.)

10. If three circles, externally tangent to one another, have centers forming a tri-
angle ABC, they are all tangent to two other circles (or possibly a circle and a line)
whose bends are

r 4 4R £ 2s
A

11.  Given a point P on the circumcircle of a triangle, the feet of the perpendiculars
from P to the three sides all lie on a straight line. (This line is commonly called the Sim-
son line of P with respect to the triangle, although it was first mentioned by W. Wallace,

thirty years after Simson’s death [Johnson 1, p. 138].)

12. Given a triangle ABC and a point P in its plane (but not on a side nor on the cir-
cumcircle), let 41B1Cy be the derived triangle formed by the feet of the perpendiculars
from P to the sides BC, CA, AB. Let A3B;C; be derived analogously from 4, B,Cy
(using the same P), and 43B3C; from A2B2Cs. Then A3B3C; is directly similar to 4 BC.
[Casey 1,p.253.) (Hint: LPBA = LPA1Cy = /PCoB; = £ PB3A;.) Thisresult has
been extended by B. M. Stewart from the third derived triangle of a triangle to the nth
derived n-gon of an n-gon. (American Mathematical Monthly 47 (1940), pp. 462-466).

THE CONCURRENCE OF ALTITUDES 17

1.6 THE EULER LINE AND THE ORTHOCENTER

Although the Greeks worked fruitfully, not only in geometry but also in
the most varied fields of mathematics, nevertheless we today have gone
beyond them everywhere and certainly also in geometry.

F. Klein (1849 -1925)
[Klein 2, p. 189]

From now on, we shall have various occasions to mention the name of L.
Euler (1707-1783), a Swiss who spent most of his life in Russia, making im-
portant contributions to all branches of mathematics. Some of his simplest
discoveries are of such a nature that one can well imagine the ghost of Euclid
saying, “Why on earth didn’t I think of that?”

/ ° VG
B
A’ D
Figure 1.6a

\,

If the circumcenter O and centroid G of a triangle coincide, each median
is perpendicular to the side that it bisects, and the triangle is “isosceles three
ways,” that is, equilateral. Hence, if a triangle A BC is not equilateral, its
circumcenter and centroid lie on a unique line OG. On this so-called Euler
line, consider a point H such that OH = 30G, thatis, GH = 20G (Figure
1.6a). Since also GA = 24’G, the latter half of Euclid V1.2 tells us that AH
is parallel to A’ O, which is the perpendicular bisector of BC. Thus A H is
perpendicular to BC. Similarly BH is perpendicular to CA4, and CH to AB.

The line through a vertex perpendicular to the opposite side is called an
altitude. The above remarks [cf. Court 2, p. 101] show that

The three altitudes of any triangle all pass through one point on the Euler line.
This common point H of the three altitudes is called the orthocenter of the
triangle.
EXERCISES

1. Through each vertex of a given triangle A BC draw a line parallel to the opposite
side. The perpendicular bisectors of the sides of the triangle so formed suggest an alter-
native proof that the three altitudes of ABC are concurrent.

2. The orthocenter of an obtuse-angled triangle lies outside the triangle.
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3. Where is the orthocenter of a right-angled triangle?

4. Any triangle having two equal altitudes is isosceles.

5. Construct an isosceles triangle A BC (with base BC), given the median BB’ and
the altitude BE. (Hint: The centroid is two-thirds of the way from B to B.)(H. Freu-
denthal.)

6. The altitude 4D of any triangle ABC s of length

2R sin B sin C.

7. Find the perpendicular distance from the centroid G to the side BC.

8. If the Fuler line passes through a vertex, the triangle is either right-angled or
isosceles (or both).

9. If the Euler line is parallel to the side BC, the angles B and C satisfy

tan B tan C = 3.

1.7 THE NINE-POINT CIRCLE

This circle is the first really exciting one to appear in any course on
elementary geometry.

Daniel Pedoe (1910 - )

[Pedoe 1, p. 1]

Figure 1.7a

ke D
L& L/

The feei of the altitudes (that is, three 1 Figure
the orthic triangle (or “pedal triangle”) of ABC. The circumcxrcl,e of the
orthic triangle is called the nine-point circle (or “Feuerbach circle”) gf the
original triangle, because it contains not only the feet of the three altitudes
but also six other significant points. In fact, :

1.71 The midpoints of the three sides, the midpoints of t'he lir’zes jo,z;n,i.ng the
orthocenter to the three vertices, and the feet of the three altitudes, ail lie on a

circle.

o in Figure 1.64) form

to
nis

<&,

COMPLETE QUADRANGLES 19

Proof [Coxeter 2,9.29]. LetA’, B', C; A”, B”, C” be the midpoints of BC,
CA, AB, HA, HB, HC, andlet D, E, F be the feet of the altitudes, as in Fig-
ure 1.7a. By Euclid V1.2 and 4 again, both C'B’ and B”C” are parallel to
BC while both B’C” and C"B” are parallel to AH. Since AH is perpendicular
to BC, it follows that B'C'B”C” is a rectangle. Similarly C'4’C”4" is a
rectangle. Hence A’A”, B'B”, C'C” are three diameters of a circle. Since
these diameters subtend right angles at D, E, F, respectively, the same circle
passes through these points too.

If four points in a plane are joined in pairs by six distinct lines, they are
called the vertices of a complete quadrangle, and the lines are its six sides.
Two sides are said to be opposite if they have no common vertex. Any point
of intersection of two opposite sides is called a diagonal point. There may be
as many as three such points (see Figure 1.7b).

A
F E
H
w B + c
Figure 1.7b

If a triangle 4 BC is not right-angled, its vertices and orthocenter form a
special kind of quadrangie whose opposite sides are perpendicular. In this
terminology, the concurrence of the three altitudes can be expressed as fol-
lows:

1.72  Iftwo pairs of opposite sides of a complete quadrangle are pairs of
perpendicular lines, the remaining sides are likewise perpendicular.

Suiich o guadrancle AR ic nallad cwe sl oo opoitn oo o don s T
ouln a quadarangiC Ao i Cauea an orinoceniric guaarangie.

BC, CA, AB, HA, HB, HC
are the sides and altitudes of the triangle 4 BC, and its diagonal points D, E,

F are the feet of the altitudes. Among the four vertices of the quadrangle,
our notation seems to give a special role to the vertex H. Clearly, however,

Tio o aidoc
ALS 51X 51UCS

1,72 Earh vortox of an arthacentrie
feiw LlGlnVeriex of an orinocentric

triangle formed by the remaining three vertices.

The four triangles (just one of which is acute-angled) all have the same
orthic triangle and consequently the same nine-point circle.

It is proved in books on affine geometry [such as Coxeter 2, 8.71] that the
midpoints of the six sides of any complete quadrangle and the three diagonal
points all lie on a conic. The above remarks show that, when the quadrangle
is‘orthocentric, this “nine-point conic” reduces to a circle.
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EXERCISES

1 OF tLke nine soints described in
1. Of tnc ninc points Gescrioed in

(a) isosceles, (b) equilateral?

2. The feet of the altitudes decompose the nine-point circle into three arcs. If the
triangle is scalene, the remaining six of the nine points are distributed among the three
arcs as follows: One arc contains just one of the six points, another contains two, and
the third contains three.

Y O+ the are A'D of the nin
3. Un inc aic A'+/ Of ini

from A’ to D. Take points ¥,
lateral triangle.

4. The incenter and the excenters of any triangle form an orthocentric quadrangle.
[Casey 1, p. 274.]

5. In the notation of § 1.5, the Euler line of 1,131, is 10.

6. The four triangies that occur in an orthoceniric quadrangle have equal circum-

radii.

1.71, how many coincide when the triangle

N g
2.
g
|
& 8.
=R
=
[=]
=

1.8 TWO EXTREMUM PROBLEMS

Most people have some appreciation of mathematics, just as most
people can enjoy a pleasant tune; and there are probably more people
really interested in mathematics than in music.

G. H. Hardy [2, p. 26]

Their interest will be stimulated if only we can eliminate the aversion

toward mathematics that so many have acquired from childhood ex-
periences.

Hans Rademacher (1892 - )

[Rademacher and Toeplitz 1, p. 5]

We shall describe the problems of Fagnano and Fermat in considerable
detail because of the interesting methods used in solving them. The first was
proposed in 1775 by J. F. Toschi di Fagnano, who solved it by means of
differential calculus. The method given here was discovered by L. Fejér
while he was a student [Rademacher and Toeplitz 1, pp. 30-32].

AFMAIANIAIC DRARIEAL

FAGNANO'S PROBLEM. Inag
triangle UV W whose perimeter is as small as possible.

Consider first an arbitrary triangle UVW with U on BC, Von CA, Won
AB. Let U, U” be the images of U by reflection in C4, AB, respectively.
Then

s aevte-ancled tyian
7

1 acute-angied triangee A 0L, INSCr

Uv + VW + WU = UV + VW + WU,
which is a path from U’to U”, usually a broken line with angles at Vand W.
Such a path from U’ to U” is minimal when it is straight, as in Figure 1.8a.

FAGNANO'S PROBLEM 21

Hence, among all inscribed triangles with a given vertex U on BC, the one
with smallest perimeter occurs when ¥ and W lie on the straight line U’ U”.
In this way we obtain a definite triangle UV W for each choice of U on BC.
The problem will be solved when we have chosen U so as to minimize U’'U”,
which is equal to the perimeter.

Figure 1.8a

Since A U’ and AU” are images of AU by reflection in AC and 4 B, they

are congruent and
LUAU” = 24.

Thus AU’U” is an isosceles triangle whose angle at A4 is independent of the
choice of U. The base U’U” is minimal when the equal sides are mini-
mal, that is, when AU is minimal. In other words, AU is the shortest dis-
tance from the given point 4 to the given line BC. Since the hypotenuse of
a right-angled triangle is longer than either cathetus, the desired location of
U is such that AU is perpendicular to BC. Thus AU is the altitude from A.

This choice of I7vields a unigue triancle UV W whose perimeter is smaller

18 ¢hoilce o yields a unique irnangle UV W whose pernmeter 1s smalle

than that of any other inscribed triangle. Since we could equally well have
begun with B or C instead of 4, we see that BV and CW are the altitudes
from B and C. Hence

The triangle of minimal perimeter inscribed in an acute-angled triangle ABC
is the orthic triangle of ABC.

The game moethad can he need t6 nrove tha analaon
1100 54afiil micuidh Cail o USCU WO PIove Uil diid1iGgo

triangles [Steiner 2, p. 45, No. 7].

The other problem, proposed by Pierre Fermat (1601-1665), likewise seeks
to minimize the sum of three distances. The solution given here is due to J.
E. Hofmann.*

FERMAT'S PROBLEM. In a given acute-angled triangle ABC, locate a point

P whose distances from A, B, C have the smallest possible sum.

Consider first an arbitrary point P inside the triangle. Joinitto 4, B, C
and rotate the inner triangle A PB through 60° about B to obtain C'P’'B, so
that ABC’ and PBP’ are equilateral triangles, as in Figure 1.85. Then

AP + BP + CP =C'P" + PP + PC,

_* Elementare Losung einer Minimumsaufgabe, Zeitschrift fiir mathematischen und naturwis-
senschaftlichen Unterricht, 60 (1929), pp. 22-23.
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Come~—————
\&P g ]i\
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\\ P~
A
B C
Figure 1.8b

which is a path from C"to C, usually a broken line with angles at P aqd P.
Such a path (joining C’ to C by a sequence of three segments) is minimal
when it is straight, in which case

/ BPC = 180° — /BPP’ = 120°
and /APB = /C'P'B=180° — /PPB = 120°.

Thus the desired point P, for which 4P + BP + CP is minimal, is the
point from which each of the sides BC, CA, AB subtends an angle 0f1120°.
This “Fermat point” is most simply constructed as the second intersection of
the line CC’ and the circle 4 BC’ (that is, the circumcircle of the equilateral
triangle ABC"). ‘

1t has been pointed out [for example by Pedoe 1, pp. 11-12] that the tri-
angle 4 BC need not be assumed to be acute-angled. The above solution is
valid whenever there is no angle greater than 120°.

Instead of the equilateral triangle A BC" on 4B, we could just as well have
drawn an equilateral triangle BCA’ on BC, or CAB on CA, asin Figure 1.83c.
Thus the three lines A4’, BB’, CC’all pass through the Fermat point P, and
any two of them provide an alternative construction for it. Moreover. the

line segments AA’, BB/, CC’ are allequal to AP + BP + CP. Hence

If equilateral triangles BCA', CA B', ABC'are drawn ourwards on the sides
of any triangle ABC, the line segments AA’, BB, CC' are equal, concurrent,
and inclined at 60° to one another.

A

Figure 1.8¢

FERMAT'S PROBLEM 23
EXERCISES

1. InFigure 1.8a, UV and VW make equal angles with CA. Deduce that the ortho-
center of any triangle is the incenter of its orthic triangle. (In other words, if 4BCis a
triangular billiard table, a ball at U, hit in the direction UV, will go round the triangle
UVW indefinitely, that is, until it is stopped by friction.)

2. How does Fagnano’s problem collapse when we try to apply it to a triangle 4 BC
in which the angle 4 is obtuse?

3. The circumcircles of the three equilateral triangles in Figure 1.8¢ all pass through
P, and their centers form a fourth equilateral triangle.*

4. Three holes, at the vertices of an arbitrary triangle, are drilled through the top of
atable. Through each hole a thread is passed with a weight hanging from it below the
table. Above, the three threads are all tied together and then released. If the three
weights are all equal, where will the knot come to rest?

5. Four villages are situated at the vertices of a square of side one mile. The in-
habitants wish to connect the villages with a system of roads, but they have only enough
material to make v/3 + 1 miles of road. How do they proceed? [Courant and Rob-
bins 1, p. 392.]

6. Solve Fermat’s problem for a triangle ABC with 4 > 120°, and for a convex
quadrangle ABCD.

7. If two points P, P', inside a triangle ABC, are so situated that Z CBP = / PBP’
= /P'BA, /ACP' = LPCP = LPCB, then LBP'P = /PPC.

8. If four squares are placed externally (or internally) on the four sides of any
parallelogram, their centers are the vertices of another square. [Yaglom 1, pp. 96-97.]

9. LetX, Y, Z be the centers of squares placed externally on the sides BC, CA, 4B
of a triangle ABC. Then the segment AX is congruent and perpendicular to YZ (also
BY to ZX and CZ to XY). (W. A.J. Luxemburg.)

10. Let Z X, U, V be the centers of squares placed externally on the sides 4B, BC,
CD, DA of any simple quadrangle (or “quadrilateral”) ABCD. Then the segment zu
(joining the centers of two “opposite” squares) is congruent and perpendicular to XV.
[Forder 2, p. 40.]

1.9 MORLEY’S THEOREM

Many of the proofs in mathematics are very long and infricate. Others,
though not long, are very ingeniously constructed.

E. C. Titchmarsh {1899 -1963)
[Titchmarsh 1, p. 23]

One of the most surprising theorems in elementary geometry was discov-
ered about 1899 by F. Morley (whose son Christopher wrote novels such as
Thunder on the Left). He mentioned it to his friends, who spread it over

* Court [1, pp. 105-107]. See also Mathesis 1938, p. 293 (footnote, where this theorem is attrib-
uted to Napoleon); and Forder {2, p. 40} for some interesting generalizations.
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the world in the form of mathematical gossip. At last, after ten years, a
trigonometrical proof by M. Satyanarayana and an elementary proof by
M. T. Naraniengar were published.*

= TN\

Figure 1.9a

P PRI . e Sy
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MORLEY'S THEOREM. The three points of intersection of the adjacent tri-
sectors of the angles of any triangle form an equilateral triangle.

In other words, any triangle 4 BC yields an equilateral triangle POR if
the angles 4, B, C are trisected by AQ and AR, BR and BP, CP and CQ,
as in Figure 1.9a. (Much trouble is experienced if we try a direct approach,
but the difficulties disappear if we work backwards, beginning with an equi-
lateral triangle and building up a general triangle which is afterwards iden-
tified with the given triangle ABC.)

On the respective sides QR, RP, PQ of a given equilateral triangle PQR,
erect isosceles triangles P’QR, Q' RP, R'PQ whose base angles a, B, v satisfy
the equation and inequalities

«+ B+y=120° a<60°, B<60°, y<60°.

* Mathematical Questions and their Solutions from the Educational Times (New Series), 15
(1909), pp. 23-24,47. Seealso C. H. Chepmell and R. F. Davis, Mathematical Gazette, 11 (1923),
pp. 85-86; F. Morley, American Journal of Mathematics, 51 (1929), pp. 465-472, H. D Gross-
man, American Mathematical Monthly, 50 (1943), p. 552, and L. Bankoff, Mathematics Maga-
zine, 38 (1962), pp. 223-224. The treatment given here is due to Raoul Bricard, 'Nouvelles An-
nales de Mathématigues (5), 1 (1922), pp. 254-258. A similar proof was devised independently

naves de Mat ques (3), 22)

by Bottema |1, p. 34].
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Extend the sides of the isosceles triangles below their bases until they meet
again in points 4, B, C. Since a + 8 + v + 60° = 180°, we can imme-
diately infer the measurement of some other angles, as marked in Figure
1.9a. For instance, the triangle 4 QR must have an angle 60° — a at its
vertex A, since its angles at Q and Rarea 4+ Bandy + a.

Referring to 1.51, we see that one way to characterize the incenter I of a
triangle ABC is to describe it as lying on the bisector of the angle 4 at such
a distance that

£BIC = 90° 4 34.

Applying this principle to the point P in the triangle P’BC, we observe that
the line PP’ (which is a median of both the equilateral triangle PQR and
the isosceles triangle P’QR) bisects the angle at P’. Also the half angle at
P’ is 90° — a, and

/BPC = 180° — a = 90° + (90° — a).

Hence P is the incenter of the triangle P’BC. Likewise Q is the incenter of
Q'CA, and R of R°"AB. Therefore all the three small angles at C are equal;
likewise at 4 and at B. In other words, the angles of the triangle 4BC are
trisected.

The three small angles at A are each 4 = 60° — a; similarly at B and
C. Thus

a=60°—144, B=60°—1B y=60°—31C

4
By choosing these values for the base angles of our isosceles triangles, we
i le ARC that is similar

can ensure that the above nrocedure vields a trian

can ensure that the above pro
to any given triangle.
This completes the proof.

EXERCISES

1. The three lines PP, QQ’, RR’ (Figure 1.9a) are concurrent. In other words,
the trisectors of 4. B. C meet again to form another triangle P’Q’R’ which is perspec-
tive with the equilateral triangle PQR. (In general P’Q'R’ is not equilateral.)

2. What values of @, B, y will make the triangle ABC (i) equilateral, (ii) right-
angled isosceles? Sketch the figure in each case.

3. Let P and P; (on CA and A4B) be the images of P by reflection in CP’ and BP'.
Then the four points Py, Q, R, P; are evenly spaced along a circle through 4. In the
special case when the triangle A BC is equilateral, these four points occur among the
vertices of a regular enneagon (9-gon) in which 4 is the vertex opposite to the side QR.
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Regular Polygons

We begin this chapter by discussing (without proofs) the possibility of
constructing certain regular polygons with the instruments allowed by
Euclid. We then consider all these polygons, regardless of the question of
constructibility, from the standpoint of symmetry. Finally, we extend the
concept of a regular polygon so as to include star polygons.

2.1 CYCLOTOMY

One, twol One, twol And through ond through
The vorpol blade went snicker-snack!

Lewis Corroll

[Dodgson 2, Chap. 1]

Euclid’s postulates imply a restriction on the instruments that he allowed
for making constructions, namely the restriction to ruler (or straightedge)
and compasses. He constructed an equilateral triangle (1.1), a square (IV.6),
a regular pentagon (IV.11), a regular hexagon (IV.15), and a {egular 15-gon
(IV.16). The number of sides may be doubled again and again by repeated
angle bisections. It is natural to ask which other regular polygons can be
constructed with Euclid’s instruments. This question was completely an-
swered by Gauss (1777-1855) at the age of nineteen [see Smith 2, pp. 301.—
302]. Gauss found that a regular n-gon, say {n}, can be so constructed if

2V2p. Causs Iound thal a regliial

the odd prime factors of n are distinct “Fermat primes”
Fo =22+ 1.
The only known primes of this kind are
Fo=21+1=3 F=24+1=5 F=2+1=1]
F3 =28 + 1 =257, Fy=21% 4+ 1=65537.

26
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To inscribe a regular pentagon in a given circle, simpler constructions
than Euclid’s were given by Ptolemy and Richmond.* The former has been
repeated in many textbooks. The latter is as follows (Figure 2.1a).

To inscribe a regular pentagon PPy P, P3P, in a circle with center O: draw
the radius OB perpendicular to OPy; join Py to D, the midpoint of OB;
bisect the angle OD Py to obtain Ny on OPo; and draw NyP; perpendicular
to OPy to obtain P; on the circle. Then PoP; is a side of the desired pen-
tagon.

0 N, ° N, F OE N, P
Figure 2.1a Figure 2.1b
Richmond also gave a simple construction for the {17} PoPy ... Py

(Figure 2.16). Join P, to J, one quarter of the way from O to B. On the
diameter through P, take E, F, so that Z OJE is one quarter of OJP, and
L FJE is 45°. Let the circle on FPy as diameter cut OB in K, and let the
circle with center E and radius EXK cut OP, in Nj (between O and P,) and
Ns. Draw perpendiculars to OP, at these two points, to cut the original
circle in P3 and Ps. Then the arc P3Ps (and likewise PyP3) is & of the cir-
cumference. (The proof involves repeated application of the principle that
the roots of the equation x2 4 2x cot 2C — | = 0 are tan C and —cot C.)

Richelot and Schwendenwein constructed the regular 257-gon in 1832.
J. Hermes spent ten years on the regular 65537-gon and deposited the manu-
script in a large box in the University of Goéttingen, where it may still be
found.

The next number of the form F, = 22% + 1is F5 = 4294967297. Fer-
mat incorrectly assumed it to be prime. G. T. Bennett gave the following
neat proof  that it is composite [Hardy and Wright 1, p. 14]: the number

641 = 54 4 24 =5-27 4 1,
dividing both 54 - 228 4 232 and 54 - 228 _ | divides their difference,which is Fs.

* H. W. Richmond, Quarterly Journal of Mathematics, 26 (1893), pp. 296-297; see also H. E.
Dudeney, Amusements in Mathematics (London 1917), p. 38.
"t Rediscovered by P. K bapathy, Math ical Gazette, 42 (1958), p. 310.
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The question naturally arises whether Fy may be prime for some greater
value of k. It is now known that this can happen only if F; divides 37x—1/2
+ 1. Using this criterion, electronic computing machines have shown that
F is composite for 5 < k < 16. Thercfore Hermes’s construction is the last
of its kind that will ever be undertaken'

EXERCISES

1. Verify the correctness of Richmond’s construction for {5} (Figure 2.1a).
2. Assuming Richmond’s construction for {17}, how would you inscribe {51} in
the same circle?

2.2 ANGLE TRISECTION

To trisect a given angle, we may proceed to find the sine of the ongle—

say a—then, if x is the sine of an angle equal to one-third of the given
angle, we have 4x3 = 3x — a.

W. W. Rouse Ball (1850 -1925)

[Bail 1, p. 327]

Gauss was almost certainly aware of the fact that his cyclotomic condition
is necessary as well as sufficient, but he does not seem to have said so ex-
plicitly. The missing step was supplied by Wantzel®, who proved that, if
the odd prime factors of n are not distinct Fermat primes, {n} cannot be
constructed with ruler and compasses. For instance, since 7 is not a Fermat
prime, Euclid’s instruments will not suffice for the regular heptagon {7}: and
since the factors of 9 are not distinct, the same is true for the enneagon {9}.

The problem of trisecting an arbitrary angle with ruler and compasses
exercised the ingenuity of professional and amateur mathematicians for two
thousand years [Ball 1, pp. 333-335]. It is, of course, easy to trisect cer-
tain particular angles, such as a right angle. But any construction for tri-
secting an arbitrary angle could be applied to an angle of 60°, and then we
could draw a regular enneagon. In view of Wantzel’s theorem, we may say
that it has been known since 1837 that the classical trisection problem can
never be solved.

This is probably the reason why Morley’s Theorem (§1.9) was not dis-
covered till the twentieth century: people felt uneasy about mentioning the
trisectors of an angle. However, although the trisectors cannot be con-
structed by means of the ruler and compasses, they can be found in other
ways [Cundy and Rollett 1, pp. 208-211]. Even if these more Versatilq in-
struments had never been discovered, the theorem would still be meaning-
ful. Most mathematicians are willing to accept the existence of things that
they have not been able to construct. For instance, it was proved in 1909
that the Fermat numbers F; and Fg are composite, but their smallest prime
factors still remain to be computed.

EXERCISE
The number 2" + 1 is composite whenever n is not a power of 2.
* P, L. Wantzel, Journal de Math iques pures et appliquées, 2 (1837), pp. 366-372.
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2.3 ISOMETRY

One way of describing the structure of space, preferred by both New-
ton and Helmholtz, is through the notion of congruence. Congruent
parts of space V, V' are such as can be occupied by the same rigid
body in two of its positions. If you move the body from one into the
other position the particle of the body covering a point P of ¥ will after-
wards cover a certain point P’ of V', and thus the result of the mo-
tion is @ mopping P —» P’ of V upon V', We can extend the rigid body
either octually or in imagination so as to cover on arbitrarily given
point P of space, and hence the congruent mopping P — P’ can be
extended to the entire space.

Hermann Weyl (1885 -1955)
[Weyl 1, p, 43]

We shall find it convenient to use the word transformation in the special
sense of a one-to-one correspondence P — P’ among all the points in
the plane (or in space), that is, a rule for associating pairs of points,
with the understanding that each pair has a first member P and a second
member P’ and that every point occurs as the first member of just one pair
and aiso as the second member of just one pair. it may happen that the
members of a pair coincide, that is, that P’ coincides with P, in this case P
is called an invariant point (or “double point”) of the transformation.

In particular, an isometry (or “congruent transformation,” or “congru-
ence”) is a transformation which preserves length, so that, if (P, P’) and
(Q, Q') are two pairs of corresponding points, we have PQ = P'Q’: PQ
and P’Q’ are congruent segments. For instance, a rotation of the plane about
P (or about a line through P perpendicular to the plane) is an isometry hav-
ing P as an invariant point, but a translation (or “parallel displacement”)
has no invariant point: every point is moved.

A reflection is the special kind of isometry in which the invariant points
consist of all the points on a line (or plane) called the mirror.

A still simpler kind of transformation (so simple that it may at first seem
too trivial to be worth mentioning) is the identity, which leaves every point
unchanged. The result of applying several transformations successively is
called their product. If the product of two transformations is the identity,
each is called the inverse of the other, and their product in the reverse order
is again the identity.

2.31 Ifanisometry has more than one invariant point, it must be either the
identity or a reflection.

To prove this, let 4 and B be two invariant points, and P any point not on
the line 4B (Figure 1.3b). The corresponding point P, satisfying

AP = AP, BP’ = BP,

must lie on the circle with center 4 and radius AP, and on the circle with cen-



30 REGULAR POLYGONS

ter B and radius BP. Since P is not on AB, these circles do not touch each
other but intersect in two points, one of which is P. Hence P’ is either P

celf ol

itself or the u‘udgc: of P Dy reflection in 4B.

2.4 SYMMETRY

Tyger! Tyger! burning bright

In the forests of the night,

What immortal hand or eye

Dare frame thy fearful symmetry?

William 8lake (1757 -1827)

When we say that a figure is “symmetrical” we mean that we can apply
certain isometries, called symmetry operations, which leave the whole figure
unchanged while permuting its parts. For examplc, the capital letters E and
A (Figure 2.4a) have bilateral symmetry, the mirror being horizontal for the
former, vertical for the latter. The letter N (Figure 2.4b) is symmetrical by a
half-turn, or rotation through 180° (or “reflection in a point,” or “central in-
version”), which may be regarded as the result of reflecting horizontally and
then vertically, or vice versa. The swastika (Figure 2.4c) is symmetrical by
rotation through any number of right angles.

Figure 2.4a Figure 2.4b

In counting the symmetry operations of a figure, it is usual to include the
identity; any figure has this trivial symmetry. Thus the swastika admits four
distinct symmetry operations: rotations through 1, 2, 3, or 4 right angles.

The last is the identity. The first and third are inverses of each other, since
their product is the identity

the ocuct 18 1hc 1aenity.

ThlS use of the word “product” suggests an algebraic symbolism in which
the transformations are denoted by capital letters while 1 denotes the iden-
tity. (Instead of 1, some authors write E.) Thus if S is the counterclockwise
quarter-turn, the four symmetry operations of the swastika are

S, Sz, S8 = §-1 and S$¢ = 1.

Since the smallest power of S that is equal to the identity is the fourth power,
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we say that S is of period 4. Similarly S2, being a half—turnf is of perioq 2 [see
Coxeter 1, p. 39]. The only transformation of period lA is the 1d§nt1§y. A
trans’ation is aperiodic (that is, it has no period), but it is conveniently said
to be of infinite period. '

Some figures admit both reflections and rotations as symmetry operatlc:ms‘
The letter H (Figure 2.4d) has a horizontal mirror (like E) and a vertical
mirror (like A), as well as a center of rotational symmetry (like N)Awher'e the
two mirrors intersect. Thus it has four symmetry operations: the identity 1,
the horizontal reflection R;, the vertical reflection Ry, and the half-turn
RiR: = RzR;.

L

EXERCISES

1. Every isometry of period 2 is either a reflection or a half-turn [Bachmann 1, pp.

2. Express (a) a half-turn, () a quarter-turn, as transformations of (i) Cartesian co-
ordinates, (i) polar coordinates. (Take the origin to be the center of rotation.)

2.5 GROUPS

Symmetry, as wide or as narrow as you may deflne its meaning, is one
idea by which man through the oges has tried to comprehend and
create order, beauty, and perfection.

Hermann Weyl [1, p. 5]

AAAAA 115_11Q1 cnid

A set of transformations [D1uu1uu and Maclane 1, Pp. 110—1 IUJ is saiG
to form a group if it contains the inverse of each and the product of any two
(including the product of one with itself or with its inverse). The numbf:r of
distinct transformations is called the order of the group. (This may be either
finite or infinite.) Clearly the symmetry operations of any figure form a
group This is called the symmetry group of the figure. In the extreme case
when the figure is completely irregular (like the numeral 6) its symmetry

group is of order one, consisting of the identity alone.



32 REGULAR POLYGONS

The symmetry group of the letter E or A (Figure 2.4a) is the so-called di-
hedral group of order 2, generated by a single reflection and denoted by D;.
(The name is easily remembered, as the Greek origin of the word “dihedral”
is almost equivalent to the Latin origin of “bilateral.”’) The symmetry group
of the letter N (Figure 2.4b) is likewise of order 2, but in this case the genera-
tor is a half-turn and we speak of the cyclic group, C2. The two groups Dy
and C. are abstractly identical or isomorphic, they are different geometrical
representations of the single abstract group of order 2, defined by the re-
lation

2.51 Rz2=1

or R = R [Coxeter and Moser 1, p. 1].

The symmetry group of the swastika is Cy, the cyclic group of order 4,
generated by the quarter-turn S and abstractly defined by the relation S* = 1.
That of the letter H (Figure 2.4d ) is Dy, the dihedral group of order 4, gener-
ated by the two reflections Ry, R, and abstractly defined by the relations

2.52 Ri2=1, Rx2=1, RiR; =R:R;.
Although C4 and D; both have order 4, they are not isomorphic: they have

a different structure, different “multiplication tables.” To see this, it suffices
to observe that C4 contains two operations of period 4, whereas all the opera-
tions in D3 (except the identity) are of period 2: the generators obviously,

and their product also, since
(RiR2)? = RiRsR(Rz = RiRsR3R; = RiR2*Ry = RyRy = R;2 =1

This last remark illustrates what we mean by saying that 2.52 is an ab-
stract definition for Ds, namely that every true relation concerning the genera-
tors Ry, Rois an algebraic consequence of these simple relations. An alter-
native abstract definition for the same group is

2.53 R2=1 Rp2=1, (RiRp2=1,

from which we can easily deduce RiRa = RzR1.
The general cyclic group Cy, of order n, has the abstract definition

2.54 S =1

Its single generator S, of period n, is conveniently represented by a rotation
through 360°/n. Then S* is a rotation through & times this angle, and the n
operations in C, are given by the values of k from 1to n, or from O0ton — 1.
In particular, C5 occurs in nature as the symmetry group of the periwinkle
flower.

EXERCISE

Express a rotation through angle « about the origin as a transformation of (i) polar
coordinates, (i) Cartesian coordinates. If f{r, §) = 0 is the equation for a curve in polar
coordinates, what is the equation for the transformed curve?
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2.6 THE PRODUCT OF TWO REFLECTIONS

Thou in thy lake dost see
Thyself.

J. M. Legoré (1823 -1859)
(To a Lily)
In any group of transformations, the associative law
(RS)T = R(ST)

is automatically satisfied, but the commutative law

(RS) = SR,

not R-1S-1, (This becomes clear when we think of R and S as the operations
of putting on our socks and shoes, respectively.)

C B
Ro Ry
D WA
(o]
Figure 2.6a

The product of reflections in two intersecting lines (or planes) is a rota-
tion through twice the angle between them. In fact,if 4, B, C, D, .. . are
evenly spaced on a circle with center O, let Ry and Rz be the reflections in
OB and OC (Figure 2.6a). Then R, reflects the triangle OA4B into OCB,
which is reflected by Rz to OCD; thus R1Rj is the rotation through £ 40C
or / BOD, which is twice Z/ BOC. Since a rotation is completely determined
by its center and its angle, R1Ro is equal to the product of reflections in any
two lines through O making the same angle as OB and OC. (The reflections
in OA4 and OB are actually R1R2R; and R;, whose product is RiRoR;2 =
RiR».) In particular, the half-turn about O is the product of reflections in
any two perpendicular lines through O.

Since RjR, is a counterclockwise rotation, ReR; is the corresponding
clockwise rotation; in fact,

RzR; = Re=1R;-1 = (RiRy)-1.
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This is the same as R Ry if the two mirrors are at right angles, in which case
R;R;is a half-turn and (R;R)? =1

EXERCISES

1. The product of quarter-turns (in the same sense) about C and B is the half-turn
about the center of a square having BC for a side.

2. Let ACPQ and BARS be squares on the sides AC and BA of a triangle ABC. If B
and C remain fixed while 4 varies freely, PS passes through a fixed point.

2.7 THE KALEIDOSCOPE

D, is a special case of the general dihedral group D,, whichis, forn > 2,
the symmetry group of the regular n-gon, {n}. (See Figure 2.7a for the cases
n = 3,4,5.) Thisis evidently a group of order 2n, consisting of n rotations
(through the n effectively distinct multiples of 360°/n) and n reflections.
When 7 is odd, each of the n mirrors joins a vertex to the midpoint of the op-
posite side; when n is even, 4 n mirrors join pairs of opposite vertices and { n
bisect pairs of opposite sides [see Birkhoff and MacLane 1, pp. 117-118, 135].

C | ¢

B

|
PR S

Figure 2.7a

N

The n rotations are just the operations of the cyclic group C,. Thus the
operations of D, include all the operations of Cy: in technical 1anguage, Cy
is a subgroup of D,. The rotation through 360°/n, which generates the sub-
group, may be described as the product S = RyR; of reflections in two adja-
cent mirrors (such as OB and OC in Figure 2.7a) which are inclined at
180°/n. _

Let Ry, Ry, . . ., R, denote the n reflections in their natural order of ar-
rangement. Then R1Ry,1, being the product of refiections in two mirrors
inclined at k times 180°/n, is a rotation through k times 360°/n:

RIRk+1 = Sk,
Thus Ry,; = R;S¥, and the » reflections may be expressed as
Ry, R3S, Ry82, .. RySe—1

In other words, D, is generated by R; and S. By substituting Ri1R; for S, we
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see that the same group is equally well generated by R; and Ry, which satisfy
the relations

2.71 Ri2=1 R =1 (RR) =1

(The first two relations come from 2.51 and the third from 2.54.) These re-
lations can be shown to suffice for an abstract definition [see Coxeter and
Moser 1, pp. 6, 36].

A practical way to make a model of D,, is to join two ordinary mirrors by a
hinge and stand them on the lines OB, OC of Figure 2.7a so that they are in-
clined at 180°/n. Any object placed between the mirrors yields 2n visible
images (including the object itself). If the object is your right hand, n of the
images will look like a left hand, illustrating the principle that, since a reflec-
tion reverses sense, the product of any even number of reflections preserves
sense, and the nrndum of any odd number of reflections reverses sense.

The first publlshed account of this instrument seems to have been by
Athanasius Kircher in 1646. The name kaleidoscope (from kalos, beautiful;
etdos, a form; and oxomew, to see) was coined by Sir David Brewster, who
wrote a treatise on its theory and history. He complained [Brewster 1, p.
147] that Kircher allowed the angle between the two mirrors to be any sub-
multinle of 360° instead of restricting it to submultinles of 180°,

multiple of 360° instead of restricting it to submultiples of
The case when n = 2 is, of course, familiar. Standing between two per-
pendicular mirrors (as at a corner of a room), you see your image in each
and also the image of the image, which is the way other people see you.
Having decided to use the symbol D, for the dihedral group generated
by reflections in two planes making a ‘“dihedral” angle of 180°/n, we
naturally siretch the notation so as to allow the extreme valuen = 1. Thus
D, is the group of order 2 generated by a single reflection, that is, the sym-
metry group of the letter E or A, whereas the isomorphic group Cs, generated
by a half-turn, is the symmetry group of the letter N.
According to Weyl [1, pp. 66,99], it was Leonardo da Vinci who discovered that the only finite
groups of isometries in the plane are
C1, Gy, Gy, ..
Dy, Do, Dy, . . ..
His interest in them was from the standpoint of architectural plans. Of course, the prevalent
groups in architecture have always been D, and D,. But the pyramids of Egypt exhibit the group
Dy, and Leonardo’s suggestion has been followed to some extent in modern times: the Pentagon
Building in Washington has the symmetry group Ds, and the Bahai Temple near Chicago has D.

In nature, many flowers have dihedral

mmetry eroups such as D-. The symmetry eroup of 2
mmelry groups sucn as g,  1he symmelry groupofa

snowflake is usually D¢ but occasionally only D;. {Kepler 1, pp. 259-280.]

If you cut an apple the way most people cut an orange, the core is seen to have the symmetry
group D;. Extending the five-pointed star by straight cuts in each half, you divide the whole
apple into ten pieces from each of which the core can be removed in the form of two thin flakes.

EXERCISES

1. Describe the symmetry groups of

(a) a scalene triangle, (b) an isosceles triangle,
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(c) aparabola, (d) a parallelogram,
(e) arhombus, (f) a rectangle,
(g) an ellipse.

2. Useinverses and the associative law to prove algebraically the “cancellation rule”
which says that the relation

RT = ST
implies R = S.

3. Show how the usual defining relations for D3, namely 2.71 with » = 3, may be de-
duced by algebraic manipulation from the simpler rclations

Ri2 =1, R;jRzR; = R2R;Rs.

4. The cyclic group Cy, is a subgroup of C, if and only if the number m is a divisor of
n. Inparticular, if 7 is prime, the only subgroups of C, are C, itself and Cy.

2.8 STAR POLYGONS

Instead of deriving the dihedral group D, from the regular polygon {n},
we could have derived the polygon from the group: the vertices of the poly-
gon are just the n images of a point Py (the C of Figure 2.7a) on one of the
two mirrors of the kaleidoscope. In fact, there is no need to use the whole
group D,: its subgroup C, will suffice. The vertex Py of the polygon
PoP;. .. P,_1can be derived from the initial vertex P by a rotation through
k times 360° /n.

More generaily, rotations about a fixed point O through angles &, 26, 38,
... transform any point P, (distinct from O) into other points Py, Pa, P3,
... on the circle with center O and radius OPy. In general, these points
become increasingly dense on the circle; but if the angle 6 is commensura-
ble with a right angle, only a finite number of them will be distinct. In par-
ticular, if § = 360°/n, where n is a positive integer greater than 2, then there
will be n points Py whose successive joins

PoPy, PyPs, ..., Py 1Py

are the sides of an ordinary regular n-gon.

Let us now extend this notion by allowing n to be any rational number
greater than 2, say the fraction p/d (where p and d are coprime). Accord-
ingly, we define a (generalized) regular polygon {n}, where n = p/d. lts p
vertices are derived from Po by repeated rotations through 360°/n, and its
p sides (enclosing the center d times) are

PoPy, P1Py, ..., Pp_1Po.

Since a ray coming out from the center without passing through a vertex
will cross d of the p sides, this denominator 4 is called the density of the
polygon [Coxeter 1, pp. 93-94]. When d = 1, so that n = p, we have the
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ordinary regular p-gon, { p}. When d > 1, the sides cross one another, but
the crossing points are not counted as vertices. Since d may be any posi-
tive integer relatively prime to p and less than 4 p, there is a regular poly-
gon {n} for each rational number n > 2. In fact, it is occasionally desir-
able to include also the digon {2}, although its two sides coincide.

When p = 5, we have the pentagon {5} of density 1 and the pentagram
{3} of density 2, which was used as a special symbol by the Babylonians and
by the Pythagoreans. Similarly, the octagram {§} and the decagram {%{}
have density 3, while the dodecagram {¢} has density 5 (Figure 2.84). These
particular polygons have names as well as symbols because they occur as
faces of interesting polyhedra and tessellations.*
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Polygons for which d > 1 are known as star polygons. They are fre-
quently used in decoration. The earliest mathematical discussion of them
was by Thomas Bradwardine (1290-1349), who became archbishop of Can-
terbury for the last month of his life. They were also studied by the great
German scientist Kepler (1571-1630) [see Coxeter 1, p. 114]. It was the
Swiss mathematician L. Schlafli (1814-1895) who first used a numerical
symbol such as { p/d}. This notation is justified by the occurrence of for-
mulas that hold for {n} equally well whether n be an integer or a fraction.

For instance, any side of {n} forms with the center O an isosceles triangle

OP,P, (Figure 2.8b) whose angle at O is 2n/n. (As we are introducing
trigonometrical ideas, it is natural to use radian measure and write 27 in-
stead of 360°.) The base of this isosceles triangle, being a side of the poly-
gon, is conveniently denoted by 2/. The other sides of the triangle are equal
to the circumradius R of the polygon. The altitude or median from O is
ihe inradius r of the polygon. Hence

2.81 R=1Icsc®, r=1Icot?.
n n

If n = p/d, the area of the polygon is naturally defined to be the sum of
the areas of the p isosceles triangles, namely

* H. S. M. Coxeter, M. S. Longuet-Higgins, and J. C. P. Miller, Uniform polyhedra, Philosoph-
ical Transactions of the Royal Society, A, 246 (1954), pp. 401-450.
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P,
2

Figure 2.8b

2.82 plr = pl2 cot 1’: .

ur definition of area

When d = 1, this is simply p/2 cot #/p; in other cases o1
has the effect that every part of the interior is counted a number of times
equal to the “local density” of that part; for example, the pentagonal re-
gion in the middle of the pentagram {3} is counted twice.

The angle PoP1P; between two adjacent sides of {n}, being the sum of
the base angles of the isosceles triangle, is the supplement of 2#/n, namely

2.83 ( ~ 3.

The line segment joining the midpoints of two adjacent sides is called the
vertex figure of {n}. Its length is clearly

2] cos
< COS

X1y

n oa
4£.0%

[Coxeter 1, pp. 16, 94].
EXERCISES

1. If the sides of a polygon inscribed in a circle are all equal, the polygon is regular.
2. Ifa polygon inscribed in a circle has an odd number of vertices, and all its an-

gles are equal, the polygon is regular. (Marcel Riesz.)
3. Find the angles of the polygons

(5% 3, (9 3
4. Find the radii and vertex figures of the polygons
8y (). (2, (8
5. Give polar coordinates for the kth vertex Py of a polygon {n} of circumradius
1 with its center at the pole, taking Po to be (1, 0).
6. Can a square cake be cut into nine slices so that everyone gets the same amount of
cake and the same amount of icing?

Isometry in the Euclidean plane

Having made some use of reflections, rotations, and transiations, we nat-
urally ask why a rotation or a translation can be achieved as a continuous
displacement (or “motion”) while a reflection cannot. It is also reasonable
to ask whether there is any other kind of isometry that resembles a reflec-
tion in this respect. After answering these questions in terms of “sense,”
we shall use the information to prove a remarkable theorem (§ 3.6) and to
describe the seven possible ways to repeat a pattern on an endiess strip

(§3.7).

3.1 DIRECT AND OPPOSITE ISOMETRIES

“Take care of the sense, and the sounds will take core of themselves.”’

Lewis Carroll
[Dodgson 1, Chap. 9]

By several applications of Axiom 1.26, it can be proved that any point P
in the plane of two congruent triangles ABC, A’B’C’ determines a corre-
sponding point P’ such that AP = A'P’, BP = B'P’, CP = C'P. Likewise
another point Q yields ¢’, and PQ = P'Q’. Hence

3.11  Any two congruent triangles are related by a unique isometry.

In § 1.3, we saw that Pappus’s proof of Pons asinorum involved the com-
parison of two coincident triangles ABC, ACB. We see intuitively that this
is a distinction of sense: if one is counterclockwise the other is clockwise.
It is a “topological” property of the Euclidean planc that this distinction
can be extended from coincident triangles to distinct triangles: any two
“directed” triangles, ABC and A’B'C’, either agree or disagree in sense.
(For a deeper investigation of this intuitive idea, see Veblen and Young[2,
pp. 61-62] or Denk and Hofmann [1, p. 56].)

If ABC and 4’B’C’ are congruent, the isometry that relates them is said
to be direct or opposite.according as it preserves or reverses sense, that is,

39
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according as ABC and A’B'C’ agree or disagree. It is easily seen that this
property of the isometry is independent of the chosen triangle ABC: if the
same isometry relates DEF to D’E'F’, where DEF agrees with 4BC, then
also D’'E'F’ agrees with A’B'C’. Clearly, direct and opposite isometries
combine like positive and negative numbers (e.g., the product of two oppo-
site isometries is direct). Since a reflection is opposite, a rotation (which is
the product of two reflections) is direct. In particular, the identity is direct.
Some authors call direct and opposite isometries “displacements and re-
versals” or “proper and improper congruences.”
Theorem 2.31 can be extended as follows:

c c

Figure 3.1a

3.12 Two given congruent line segments (or point pairs) AB, A'B’ are re-
lated by just two isometries: one direct and one opposite.

To prove this, take any point C outside the line 4B, and construct C’ so
that the triangle 4’B’C’ is congruent to ABC. The two possible positions
of C’ (marked €', C” in Figure 3.1a) provide the two isometries. Since either
can be derived from the other by reflecting in 4’B’, one of the isometries is
direct and the other opposite.

For a compiete discussion we need the following theorem [Bachmann 1,
p.- 3l
|m
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Figure 3.1b
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3.13  Every isometry of the plane is the product of at most three reflections.
If there is an invariant point, “three” can be replaced by “two.”

We prove this in four stages, using 3.11. Trivially, if the triangles ABC,
A’B’C’ coincide, the isometry is the identity (which is the product of a re-
flection with itself). If A4 coincides with 4’, and B with B’, while C and C’
are distinct, the triangles are related by the reflection in AB. The case when
only A coincides with A’ can be reduced to one of the previous cases by re-
flecting ABC in m, the perpendicular bisector of BB (see Figure 3.15). Fi-
nally, the general case can be reduced to one of the first three cases by re-
flecting ABC in the perpendicular bisector of A4’ [Coxeter 1, p. 35].

Since a reflection reverses sense, an isometry is direct or opposite accord-
ing as it is the product of an even or odd number of reflections.

Since the identity is the product of two reflections (namely of any reflec-
tion with itself), we may say simply that any isometry is the product of two
or three reflections, according as it is direct or opposite. In particular,

3.14 Any isometry with an invariant point is a rotation or a reflection ac-
cording as it is direct or opposite.

EXERCISES
1. Name two direct isometries.
2. Name one opposite isometry. Is there any other kind?
3. If AB and A’B’ are related by a rotation, how can the center of rotation be con-
structed? (Hint: The perpendicular bisectors of 44" and BB’ are not necessarily dis-
tinct.)

A Liaas thraso i iq
¢ lincs through a point is

4 The ceodiat of reflections in th
4. 10¢ proauct o1 reflections in thr
other line through the same point [Bachmann 1, p. 5].

3.2 TRANSLATION

Enoch waiked with God; and he was noi, for God took him.

Genesis V, 24

The particular isometries so far considered, namely reflections (which are
opposite) and rotations (which are direct), have each at least one invariant
point. A familiar isometry that leaves no point invariant is a translation
[Bachmann 1, p. 7}, which may be described as the product of half-turns
about two distinct points O, O’ (Figure 3.2a). The first half-turn trans-
forms an arbitrary point P into P¥, and the second transforms this into P7,
with the final result that PP is parallel to OO’ and twice as long. Thus the
length and direction of PP" are constant: independent of the position of P.
Since a translation is completely determined by its length and direction,
the product of half-turns about O and O is the same as the product of haif-
turns about Q and @', provided QQ’ is equal and parallel to O0". (This
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means that 00’ Q’'Q is a parallelogram, possibly collapsing to form four
collinear points, as in Figure 3.2a.) Thus, for a given translation, the cen-
ter of one of the two half-turns may be arbitrarily assigned.

3.21 The product of two translations is a translation.

For, we may arrange the centers so that the first translation is the prod-
uct of half-turns about O; and O, while the second is the product of half-
turns about O, and Os. When they are combined, the two half-turns about
0, cancel, and we are left with the product of half-turns about Oy and Oj3.

Figure 3.2b

Figure 3.2a

Similarly, if m and m’ (Figure 3.2b) are the lines through O and O’ per-
pendicular to 00, the half-turns about O and O’ are the products of re-
flections in m and 00’, OO0’ and m’. When they are combined, the two
reflections in OO’ cancel, and we are left with the product of reflections in
m and m’. Hence

3.22 The product of reflections in two parallel mirrors is a translation
through twice the distance between the mirrors.

If a translation T takes P to P" and Q to Q7, the segment QQ” is equal
and parallel to PP”; therefore PQQ"P" is a parallelogram. Similarly, if an-
other translation U takes P to Q, it also takes P to Q"; therefore

TU = UT.
PTU Therefo

(In detail, if ¢ is P¥, Q7 is PV*. But U takes P to P*¥. There!
and PT coincide, for all positions of P.) In other words,

TU

n D
Ic r

3.23 Translations are commutative.

The product of a half-turn H and a translation T is another half-turn; for
we can express the translation as the product of two half-turns, one of which

P amd tlham wrn lava
is rl, say T = HH , and ncn we nave

HT = H2H' = H"
3.24 The product of a half-turn and a translation is a half-turn.

EXERCISES

1. If T is the product of half-turns about O and O’, what is the product of half-
turns about O’ and 0?

2. When a translation is expressed as the product of two reflections, to what ex-
tent can one of the two mirrors be arbitrarily assigned?

£
&
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3. What is the product of rotations through opposite angles (¢ and —a) about two
distinct points?

4. The product of reflections in three parallel lines is the reflection in another line
belonging to the same pencil of parallels.

5. Every product of three half-turns is a half-turn [Bachmann 1, p. 7].

6. If Hy, Ho, Hs are half-turns, H{H,H; = H;H.H;.

7. Express the translation through distance a along the x-axis as a transformation
of Cartesian coordinates. If f{x, y) = 0 is the equation for a curve, what is the equa-
tion for the transformed curve? Consider, for instance, the circle x2 4+ y2 — 1 = 0.

3.3 GLIDE REFLECTION

We are now familiar with three kinds of isometry: reflection, rotation,
and translation. Another kind is the glide reflection (or simply “glide”),
which is the product of the reflection in a line a and a translation along the
same line. Picture this line as a straight path through snow; then, consecu-
tive footprints are related by a glide. Such an isometry is determined by its
axis a and the extent of the component translation. Since a reflection is op-
posite whereas a translation is direct, their product is opposite. Thus a
glide reflection is an opposite isometry having no invariant point [Coxeter 1,
p- 36].

If a glide reflection G transforms an arbitrary point P into P¢ (Figure 3.3a),
P and P¢ are equidistant from the axis a on opposite sides. Hence

The midpoint of the line segment PP¢ lies on the axis for all positions of P.

11es postions

Figure 3.3a

Let R; and T denote the com

evidently commute, so that
G = RyT = TR;.

We have seen (Figure 3.2b) that the translation T may be expressed as the
product of two half-turns or of two parallel reflections. Identifying the line
a in Figure 3.3 with the line 00’ in Figure 3.3b, let R, R’ denote the re-

ﬁectxons in m, m’. Then the product of the two half turns
H = RR; = R;R, H’' = R'R;y = R4R’
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is T = HH’ = RR;R;R’ = RR,,

G = RyT = RyRR’ = HR’
= TRy = RR'R; = RH".

Thus a glide reflection may be expressed as the product of three reflections
(two perpendicular to the third), or of a half-turn and a reflection, or of a
reflection and a half-turn. Conversely, the product of any half-turn and
any reflection (or vice versa) is a glide reflection, provided the center of the
half-turn does not lie on the mirror. [Bachmann 1, p. 6.]

We saw in 3.13 that any direct isometry in the plane is the product of two
reflections, that is, a translation or a rotation according as the two mirrors
are parallel or intersecting; also that any opposite isometry with an invari-
ant pomt is a reflection. To complete ‘the catalog of isometries, the only
remaining possibility is an opposite isometry with no invariant point. If
such an isometry S transforms an arbitrary point 4 into 4’, consider the
half-turn H that interchanges these two points. The product HS, being an
opposite isometry which leaves the point 4’ invariant, can only be a reflec-
tion R. Hence the given opposite isometry is the glide reflection

nence the given oppoesiie 1somelry 18 1he glae Iellc

S = H'R = HR:

Every opposite isometry with no invariant point is a glide reflection.

In other words,

3.31  Every product of three reflections is either a single reflection or a
glide reflection.

In particular, the product RT of any reflection and any translation is a
glide reflection, degenerating to a pure reflection when the mirror for R is
perpendicular to the direction of the translation T (in which case the reflec-
tions R and RT may be used as the two parallel reflections whose product
is T). But since a given glide reflection G has a definite axis (the locus of
midpoints of segments PPC), its decomposition into a reflection and a trans-
lation along the mirror is unique (unlike its decomposition into a reflection
and a half-turn, where we may either take the mirror to be any line per-
pendicular to the axis or equivalently take the center of the half-turn to be
any point on the axis).

EXERCISES

1. If B is the midpoint of 4C, what kinds of isometry will transform
(i) ABinto CB, (i) 4B into BC?

2. Every direct isometry is the product of two reflections. Every opposite isometry
is the product of a reflection and a half-turn.

3. Describe the product of the reflection in OO’ and the half-turn about O.

4. Describe the product of two glide reflections whose axes are perpendicular.

i
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5. Every product of three glide reflections is a reflection or a glide reflection.

6. The product of three reflections is a reflection if and only if the three mirrors
are either concurrent or parallel.

7. If Ry, Ry, Rj are three reflections, (R1R2R3)? is a translation [Rademacher and
Toeplitz 1, p. 29].

8. Describe the transformation

xy)— & +a -y
Justify the statement that this transforms the curve f(x, y) = O into f(x — a, —y) = 0.

3.4 REFLECTIONS AND HALF-TURNS

Thomsen* has developed a very beautiful theory in which geometrical
properties of points O, O1, Ox, . . and lines m, my, my, . . . (understood to be
all distinct) are expressed as relatlons among the correspondmg half-turns
H, H;, Ha, . .. and reflections R, Ry, R,, . The reader can soon convince
himself that the following pairs of statements are logically equivalent:

RR;, =R;R <« mand m, are perpendicular.

HR = RH «—— Oliesonm.

RiRoR3 = R3R2R; <« my, my, m3 are either concurrent or parallel.
H,H = HH; «—  Qisthe midpoint of 010,.

H;R =RH; «—> mis the perpendicular bisector of 0;0;.

EXERCISE

Interpret the relations (a) HiH.HsHy = 1; (b) R4yR = RR,.

3.5 SUMMARY OF RESULTS ON ISOMETRIES

And thick and fast they came at lost,
And more, and more, and more.
Lewis Carroil

[Dodgson 2, Chap. 4}

Some readers may have become confused with the abundance of techni-
cal terms, many of which are familiar words to which unusually precise
meanings have been attached. Accordingly, let us repeat some of the defi-
nitions, stressing both their analogies and their differences.

* G. Thomsen, The treatment of elementary geometry by a group-calculus, Mathematical Ga-
zette, 17 (1933), p. 232. Bachmann [1] devotes a whole book to the development of this idea.
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In all the contexts that concern us here, a transformation is a one-to-one
correspondence of the whele plane (or space) with itself. An isometry isa
special kind of transformation, namely, the kind that preserves length. A
symmetry operation belongs to a given figure rather than to the whole plane:
it is an isometry that transforms the figure into itself.

In the plane, a direct (sense-preserving) isometry, being the product of
two reflections, is a rotation or a translation according as it does or does
not have an invariant point, that is, according as the two mirrors are inter-
secting or parallel. In the latter case the length of the translation is twice
the distance between the mirrors; in the former, the angle of the rotation
is twice the angle between the mirrors. In particular, the product of reflec-
tions in two perpendicular mirrors is a half-turn, that is, a rotation through
two right angles. Moreover, the product of two half-turns is a translation.

An opposite (sense-reversing) isometry, being the product of three reflec-
tions, is, in general, a glide reflection: the product of a reflection and a transla-
tion. In the special case when the translation is the identity (i.e., a translation
through zero distance), the glide reflection reduces to a single reflection,
which has a whole line of invariant points, namely, all the points on the
mirror.

To sum up:

3.51 Any direct isometry is either a translation or a rotation. Any oppo-
site isometry is either a reflection or a glide reflection.

EXERCISES

1. If S is an opposite isometry, S% is a translation.

2. If Ry, Ry, Rjare three reflections, (R2R3R;R2R3)2is a translation along the first
mirror. (Hint: Since R1R2R3 and R,R3R; are glide reflections, their squares are com-
mutative, by 3.23; thus

(RyR2R3)%(R2R3Ry)? = (R2R3R1)2(R1R2R3)?,
that is, Ry and (R2R3R1R2R3)? are commutative [cf. Bachmann 1, p. 13])

3.6 HJELMSLEV’'S THEOREM

... avery high degree of unexpectedness, combined with inevitability

and economy.

G. H. Hardy (2, p. 53]

We saw, in 3.12, that two congruent line segments A B, A’B’, are related by
just two isometries: one direct and one opposite. Both isometries have the
same effect on every point collinear with 4 and B, that is, every point on
the infinite straight line 4 B (for instance, the midpoint of 4B is transformed
into the midpoint of 4’B"). The opposite isometry is a reflection or glide
reflection whose mirror or axis contains all the midpoints of segments join-
imer maive of correspond'ne b ints. If two of these midpoints coincide, the

HJELMSLEV'S THEOREM 47

glirect isometry is a half-turn, and they all coincide [Coxeter 3, p. 267].
ence

HJELMSLEV'S THEOREM. When all the points P on one line are related by

an isqm.etry to all the points P’ on another, the midpoints of the segments PP’
are distinct and collinear or else they all coincide.

5
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Figure 3.6a

In particular, if 4, B, C are on one line and A’, B’, C’ on another, with
3.61 AB = A'F, BC = B'C’

(Figure 3.6a), then the midpoints of A4’, BB’, CC’ are ei i
inci ’ » BB, ither coll
coincident (J. T. Hjelmslev, 1873-1950). ollinear or
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Figure 3.7a

Any kind of isometry may be used to relate two equal circles. For in-
stance, the point P on the first circle of Figure 3.7a is transformed into P*
on the second ‘circle by a translation, into P® by a reflection, into P¥ by a
!lalt."-turn, and into P° by a glide reflection. (Arrows have be’en inserted to
indicate what happens to the positive sense of rotation round the first cir-
::le.) ”_l"hese. four 'isometries have one important property in common: they
leave invariant (as a whole) one infinite straight line, namely, thé line
{/(:rni;l:ﬁ tl?;ef:)enters of the two circles. (In the fourth case this is the only in-
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We have seen (Figure 3.2b) that the product of reflections in two parallel
mirrors m, m' is a translation. This may be regarded as the limiting case
of a rotation whose center is very far away; for the two parallel mirrors are
the limiting case of two mirrors intersecting at a very small angle. Accord-
ingly, the infinite group generated by a single translation is denoted by C.,
and the infinite group generated by two parallel reflections is denoted by
D.. Abstractly, C.. is the “free group with one generator.” If T is the gen-

erating translation, the group consists of the translations

Lo, T2, T 1 T, T3

Figure 3.7b

Similarly, D, generated by the reflections R, R’ in parallel mirrors m, m’
(Figure 3.7b), consists of the reflections and translations

...,RR'R, RR, R, I, R/, RR’, R'RR/,...
[Coxeter 1, p. 76]; its abstract definition is simply
Rz =R2=1

This group can be observed when we sit in a barber’s chair between two
parallel mirrors (cf. the New Yorker, Feb. 23, 1957, p. 39, where somehow
the reflection RR’RR'R yields a demon).

A different geometrical representation for the same abstract group D,
is obtained by interpreting the generators R and R’ as half-turns. There is
also an intermediate representation in which one of them is a reflection and
the other a half-turn; but in this case their product is no longer a transla-
tion but a glide reflection.

Continuing in this manner, we could soon obtain the complete list of the
seven infinite “one-dimensional” symmetry groups: the seven essentially
distinct ways to repeat a pattern on a strip or ribbon [Speiser 1, pp. 81-82]:

Typical pattern Generators Abstract Group
@..L LLL.. 1 translation B c
G)..L T L TI. .. 1 glide reﬂection} *
Gi)...VV V V 2 reflections
(iv)...N N NN 2 half-turns D,
...V AVA 1 reflection
and 1 half-turn
(vi)..DDDD 1 translation
and 1 reflection C, %X D1
wi)... HHHH 3 reflections D, X Dy
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) Ir} (.iii), the two mirrors are both vertical, one in the middle of a V, reflect-
ing it into itself, while the other reflects this V into one of its nei ghbérs- thus
one haif of thg .V, placed between the iwo mirrors, yieids the whole pa’tlern
In (vi) gnd (vii) there is a horizontal mirror, and the symbols in the lasi
column indicate “direct products” [Coxeter 1, p. 42]. For all these groups
except (i) e.n?d (ii) ,there is some freedom in choosing the generators; for ex:
?mple, in (iii) or (iv) one of the two generators could be replaced By a,transla-
ion.

) Stncthly speaking, these seven groups are not “l-dimensional” but “11-
dlmenS{ona};” that is, they are 2-dimensional symmetry groups involvirfg
translatlop in one direction. In a purely one-dimensional world there are
only two infinite symmetry groups: C,, generated by one translation, and
D,, generated by two reflections (in point mirrors). '

1. Identify the symmetry groups of the follo

.bdpgqbdpaq... .
2. Which are the symmetry groups of (a) a cycloid, (b) a sine curve?



Mathematical crystallography provides one of the most important appli-
cations of elementary geometry to physics. The three-dimensional theory is
complicated, but its analog in two dimensions is easy to visualize without
being trivial. Patterns covering the plane arise naturally as an extension
of the strip patterns considered in § 3.7. However, in spite of the restric-
tion to two dimensions, a complete account of the enumeration of infinite
symmetry groups is beyond the scope of this book.

4.1 LATTICES AND THEIR DIRICHLET REGIONS

For some minutes Alice stood without speaking, looking out in all direc-

tions over the country . . . "'l declare it's marked out just like a large
chessboard . . . oll over the world—if this is the world ot oll.”
Lewis Carroll

[Dodgson 2, Chap. 2]

Infinite two-dimensional groups (the symmetry groups of repeating pat-
terns such as those commonly used on wallpaper or on tiled floors) are dis-
tinguished from infinite “one-dimensional” groups by the presence of
independent translations, that is, translations whose directions are neither
parallel nor opposite. The crystallographer E. S. Fedorov showed that there
are just seventeen such two-dimensional groups of isometries. They were re-
discovered in our own century by Polya and Niggli.* The symbols by which
we denote them are taken from the International Tables for X-ray Crystal-
lography.

The simplest instance is the group p1, generated by two independent

*E. S. Fedorov, Zapiski Imperatorskogo S. Peterburgskogo Mineralogicheskogo Obshchestva
(2), 28 (1891), pp. 345-390; G. Pélya and P. Niggli, Zeitschrift fiir Kristallographie und Mineralo-
gie, 60 (1924), pp. 278-298. [See also Fricke and Klein 1, pp. 227-233.] Fedorov’s table shows
that 16 of the 17 groups had been described by C. Jordan in 1869. The remaining one was rec-

ama e missed three others

ognized by L. Sohncke in 1874; bui he missed three others.
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Figure 4.1a
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translations X, Y. Since the inverse of a translation is a translation, and the

product of two translations is a translation (3.21), this group consists entirely
of translations. Since XY = YX, these translations are simply X*Y? for all
integers x, y. Abstractly, this is the “direct product” C., X C., which has
the single defining relation

XY = YX

[Coxeter and Moser 1, p. 40]. Any object, such as the numeral 6 in Figure
4.1a, is transformed by the group p1 into an infinite array of such objects,
forming a pattern. Conversely, p1 is the complete symmetry group of the
pattern, provided the object has no intrinsic symmetry. If the object is a sin-
gle point, the pattern is an array of points called a two-dimensional lattice,
which may be pictured as the pian of an infinite orchard. Each lattice point
is naturally associated with the symbol for the translation by which it is
derived from the original point 1 (Figure 4.15).

o [} o o o o
x~ly? ¥2 xy? x*y?
Q Q o] Q o o
X~y Y XY X2y
o o o o o] o o
X1 1 X x?
o [e] o o] o o
y-! xy~1
o o o o o o
Y-A
Figure 4.1b

Anyone standing in an orchard observes the alignment of trees in rows in
many directions. This exhibits a characteristic property of a lattice: the line
joining any two of the points contains infinitely many of them, evenly spaced,
that is, a “one-dimensional lattice.” In fact, the line joining the points 1
and X*Y¥ contains also the points

Xm‘/dYny/d — (Xz‘/dYu/d)n

where d is the greatest common divisor of x and y, and # runs over all the
integers. In particular, the powers of X all lie on one line, the powers of
Y on another, and lines parallel to these through the remaining lattice points
form a tessellation of congruent parallelograms filling the plane without in-
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terstices (Figure 4.1¢). (We use the term sessellation for any arrangement
of polygons fitting together so as to cover the whole plane without over-

lapping.)

Y1 XYT

Figure 4.1¢

A typical parallelogram is formed by the four points 1, X, XY, Y. The
translation T = X#Y¥ transforms this parallelogram into another one hav-
ing the point T (instead of 1) at its “first” corner. There is thus a one-to-
one correspondence between the cells or tiles of the tessellation and the
transformations in the group, with the property that each transformation
takes any point inside the original cell to a point similarly situated in the new
cell. For this reason, the typical parallelogram is called a fundamental region.

The shape of the fundamental region is far from unique. Any paratlelo-
gram will serve, provided it has four lattice points for its vertices but no
others on its boundary or inside [Hardy and Wright 1, p. 28]. This is the
geometrical counterpart of the algebraic statement that the group generated
by X, Y is equally well generated by XY?, X¢Y4, provided

ad — bec = *=1.
To express the old generators in terms of the new, we observe that
(XaYb)d(Xch)—b = Xad—bc’ (XaYb)vc(Xch)a — Yad—bc,

But there is no need for the fundamental region to be a parallelogram at all;
for example, we may replace each pair of opposite sides by a pair of con-

oruent curves, as in Fioure 4,14,

grucni curves, as in rigurc

] [e] o}

L ° ~ °

Figure 4.1d
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Every possible fundamental region, whether we choose a parallelogram
or any other shape, has the same area as the typical parallelogram of Figure
4.1c. For, inside a sufficiently large circle, the number of lattice points is
equal to the number of replicas of any fundamental region (with an insignifi-
cant error due to mutilated regions at the circumference); thus every possible
shape has for its area the same fraction of the area of the large circle.* Itis
an interesting fact that any convex fundamental region for the translation
group is a centrally symmetrical polygon (namely, a parallelogram or a cen-
traily symmetrical hexagon).}

Among the various possible parallelograms, we can select a standard or
reduced parallelogram by taking the generator Y to be the shortest trans-
lation (or one of the shortest) in the group, and X to be an equal or next
shortest translation in another direction. If the angle between X and Y then
happens to be obtuse, we reverse the direction of Y. Thus, among all the
parallelograms that can serve as a fundamental region, the reduced paral-
lelogram has the shortest possible sides. The translations along these sides
are naturally called reduced generators.

X'y Y X"ty Y
x~! X x~! X
W l
~ L, )
v Xyt -1 Xy
Figure 4.1e

By joining the vertices X, Y of the reduced parallelogram, and the cor-
responding pair of vertices of each replica, we obtain a tessellation of con-
gruent triangles whose vertices are lattice points and whose angles are
nonobtuse. Each lattice point belongs to six of the triangles; for example,
the triangles surrounding the point 1 join it to pairs of adjacent points in

the cvela
i€ CyGie

X, Y, X1y, X1, Y1 XY+

(Figure 4.1¢). By joining the circumcenters of these six triangles, we obtain
the Dirichlet region (or “Voronoi polygon”) of the lattice: a polygon whose
interior consists of all the points in the plane which are nearer to a particu-
* Gauss used this idea as a means of estimating « {Hilbert and Cohn-Vossen 1, pp. 33-34].

T A. M. Macbeath. Canadian Journal of Mathematics, 13 (1961), p. 177.
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lar lattice point (such as the point 1) than to any other lattice point.* Such
regions, each surrounding a lattice point, evidently fit together to fill the
whoie piane; in fact, the Dirichiet region is a particular kind of fundamental
region.

The lattice is symmetrical by the half-turn about the point 1 (or any other
lattice point). For this half-turn interchanges the pairs of lattice points
XY, X-*Y-*. (Intechnical language, the group p1 has an automorphism of
period 2 which replaces X and Y by their inverses.) Hence the Dirichlet
region is symmetrical by a half-turn. Its precise shape depends on the relative
lengths of the generating translations X, Y and the angle between them. If
this angle is a right angle, the Dirichlet region is a rectangle (or a square),
since the circumcenter of a right-angled triangle is the midpoint of the
hypotenuse. In all other cases it is a hexagon (not necessarily a regular hexa-
gon; but since it is centrally symmetrical, its pairs of opposite sides are equal
and parallel).

Varying the lattice by letting the angle between the translations X and Y
increase gradually to 90°, we see that two opposite sides of the hexagon
shrink till they become single vertices, and then the remaining four sides
form a rectangle (or square).

Reflections in the four or six sides of the Dirichlet region transform the
central lattice point 1 into four or six other lattice points which we naturally
call the neighbors of the point 1.

EXERCISES

1. Any two opposite sides of a Dirichlet region are perpendicular to the line joining
their midpoints.

2. Sketch the various types of lattice that can arise if X and Y are subject to the fol-
lowing restrictions: they may have the same length, and the angle between them may be
90° or 60°. Indicate the Dirichlet region in each case, and state whether the symmetry
group of this region is Ca, D2, D4, or Ds.

4.2 THE SYMMETRY GROUP OF THE GENERAL LATTICE

The investigation of the symmetries of a given mathematical structure
has always yielded the most powerful results.

E. Artin (1898 -1962)

{Artin ¥, p. 54]

Any given lattice is easily seen to be symmetrical by the half-turn about the
midpoint of the segment joining any two lattice points [Hilbert and Cohn-
Vossen 1, p. 73]. Such midpoints form a lattice of finer mesh, whose gen-
erating translations are half as long as X and Y (see the “open” points in
Figure 4.2a).

* G. L. Dirichlet, Journal fiir die reine und angewandte Mathematik, 40 (1850), pp. 216-219.
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o o o o o
Y ] s XY o e X%y
o [ o
E oX [} ox?
Figure 4.2a

The “general” lattice occurs when the reduced generators differ in length
and the angle between them is neither 90° nor 60°. In such a case, the trans-
lations X*Y* and the above-mentioned half-turns are its only symmetry
operations. In other words, the symmetry group of the general lattice is
derived from p1 by adding an extra transformation H, which is the half-turn
about the point 1. This group is denoted by p2 [Coxeter and Moser 1, pp.
41-42). Itis generated by the half-turn H and the translations X, Y, in terms
of which the half-turn that interchanges the points 1 and T = X*Yvis HT.
(Note that T itself is the product of Hand HT.) The group is equally well
generated by the three half-turns HX, H, HY, or (redundantly) by these three
and their product

HX - H - HY = HXY,

which are half-turns about the four vertices of the parallelogram shown in
Figure 4.2a.

It is remarkable that any triangle or any simple quadrangle (not neces-
sarily convex) will serve as a fundamental region for p2. Half-turns about
the midpoints of the three or four sides may be identified with HX, H, HY
(Figure 4.2b), or HX, H, HY, HXY (Figure 4.2c).

Figure 4.2b
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EXERCISES

tices?

2. Draw the tessellation of Dirichlet regions for a given lattice. Divide each region
into two halves by means of a diagonal. The resulting tessellation is a special case of the
tessellation of scalene triangles (Figure 4.2b) or of irregular quadrangles (Figure 4.2c)
according as the Dirichlet region is rectangular or hexagonal.

Figure 4.2¢
——.

Piate i

4.3 THE ART OF M. C. ESCHER

The groups p1 and p2 are two of the simplest of the seventeen discrete
groups of isometries involving two independent translations. Several others
will be mentioned in this section and the next. Convenient generators for all
of them are listed in Table I on p. 413.
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The art of filling a plane with a repeating pattern reached its highest de-
velopment in thirteenth-century Spain, where the Moors used all the seven-
teen groups in their intricate decoration of the Alhambra [Jones 1]. Their
preference for abstract patterns was due to their strict observance of the
Second Commandment. The Dutch artist M. C. Escher, free from such
scruples, makes an ingenious application of these groups by using animal
shapes for their fundamental regions. For instance, the symmetry group of
his pattern of knights on horseback (Plate I) seems at first sight to be p1,
generated by a horizontal translation and a vertical translation. But by
ignoring the distinction between the dark and light specimens we obtain the
more interesting group pg, which is generated by two parallel glide reflec-
tions, say G and G’. We observe that the vertical translation can be ex-
pressed equally well as G2 or G’2. It is remarkable that the single relation

G? = G

provides a complete abstract definition for this group [Coxeter and Moser
1,p. 43}, Clearly, the knight and his steed (of either color) constitute a fun-
damental region for pg. But we must combine two such regions, one dark
and one light, in order to obtain a fundamental region for p1.

Similarly, the symmetry group of Escher’s pattern of beetles (Plate IT)
seems at first sight to be pm, generated by two vertical reflections and a ver-
tical translation. But on looking more closely we see that there are both
dark and light beetles, and that the colors are again interchanged by glide
reflections. The complete symmetry group em, whose fundamental region
is the right or left half of a beetle of either color, is generated by any such
vertical glide reflection along with a vertical reflection. To obtain 2 funda-
mental region for the “smaller” group pm, we combine the right half of a
beetle of either color with the left half of an adjacent beetle of the other
color.

A whole beetle (of either color) provides a fundamental region for the
group p1 (with one of its generating translations oblique) or equally well for

Pg.
EXERCISES

1. Locate the axes of two glide reflections which generate pg in Plates I and II.

2. Any two parallelograms whose sides are in the same two directions can together
be repeated by translations to fill the plane.

4.4 SIX PATTERNS OF BRICKS

Figure 4.4a shows how six of the seventeen two-dimensional space groups
arise as the symmetry groups of familiar patterns of rectangles, which we
may think of as bricks or tiles. The generators are indicated as follows: a

BRICKS OR DOMINOES 59

broken line denotes a mirror, a “lens” denotes a half-turn, a small square
denotes a quarter-turn (i.e., rotation through 90°), and a “half arrow” de-
notes a glide reflection.

In each case, a convenient fundamental region is indicated by shading.
This region is to some extent arbitrary except in the case of pmm, where it
is entirely bounded by mirrors.

The procedure for analysing such a pattern is as follows. We observe that
the symmetry group of a single brick is D» (of order 4), which has subgroups
C» and D;. If all the symmetry operations of the brick are also symmetry
operations of the whole pattern, as in cmm and pmm, the fundamental
region is a quarter of the brick, two of the generators are the reflections that
generate Dy, and any other generator transforms the original brick into a
neighboring brick. If only the subgroup Cs or D, belongs to the whole pat-

Piate li
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pmg pgg pdg

Figure 4.4a

USRS I ~ alnccc b M e nn A T 4 smmemcn ar ) tha finda_
tern (in€ way (o OEIO1ES 10 Pz Of Py, and o1 10 pimig Of pFg), uid iunia
mental region is half a brick, and the generators are not quite so obvious.

EXERCISE

In all these patterns it is understood that a “brick” is a rectangle in which one side is
twice as long as another. In each case, any brick is related to the whole patternin the

on the
e on tn¢

.

same way as any other. (In techimicailan,

g nmetry grot
bricks.) Are these six the only transitive patterns of bricks?

¢, the s

4.5 THE CRYSTALLOGRAPHIC RESTRICTION

A mathematicion, like a painter or a poet, is a maker of patterns. If his
patterns are more permanent than theirs, it is because they are made
with ideas.
G. H. Hardy [2, p. 24]
A complete account of the enumeration of the seventeen two-dimensional
space-groups would occupy too much space. But it seems worthwhile to give
Barlow’s elegant proof * that the only possible cyclic subgroups are Cq, Cs,
Cy4, and Ce. In other words:
The only possible periods for a rotational symmetry operation of a lattice are
2,3,4,6.
Let P be any center of rotation of period .

* W. Barlow, Philosophical Magazine (6), 1 (1901), p. 17.
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operations of the lattice transform P into infinitely many other centers of
rotation of the same period. Let Q be one of these other centers (Figure
4.5a) at the least possible distance from P. A third center, P’, is derived
from P by rotation through 27/n about Q, and a fourth, @, is derived from
Q by rotation through 2#/n about P’. Of course, the segments PQ, QP
P’Q’, are all equal. It may happen that P and Q’ coincide; then n = 6. In
all other cases, since Q was chosen at the least possible distance from P, we
must have PQ’ > PQ; thereforen < 4. (Ifn = 4, POP'Q’ is asquare. Ifn
= 5, PQ’ is obviously shorter than PQ. Ifn > 6, PQ crosses P'(’, but it is
no longer nccessary to use Q': we already have PP’ < PQ, which is suffi-
ciently absurd.)

Figure 4.5a

EXERCISES
1. If S and T are rotations through 27/n about P and Q, what is T-1ST?
2. If a discrete group of isometries includes two rotations about distinct

O

enters,

ncludes two such rotations havine the came nariod and therafore ales a tran
IMCIUGEs two such rolalions naving tne same pericd, ana {nereiore aisd a tran:

it
If this period is greater than 2, it includes two independent translations.

4.6 REGULAR TESSELLATIONS

The mathematician’s patterns, like the painter's or the poet's, must be
beautiful; the ideas, like the colours or the words, must fit together in
a harmonious way. Beauty is the first test: there is no permanent place
in the world for ugly mathematics.

G. H. Hardy (2, p. 25]

It was probably Kepler (1571-1630) who first investigated the possible
ways of filling the plane with equal regular polygons. We shall find it con-
venient to use the Schlifli symbol {p, ¢} for the tessellation of regular p-gons,
g surrounding each vertex [Schlafli 1, p. 213]. The cases

(6,3}, (4,4}

2 61
LV <y (S [§

s <y Oy

are illustrated in Figure 4.6a, where in each case the polygon drawn in heavy
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lines is the vertex figure: the g-gon whose vertices are the midpoints of the ¢
edges at a vertex. (Since tessellations are somewhat analogous to polyhedra,
it is natural to use the word edges for the common sides of adjacent polygons,

and faces for the polygons themselves.)

16, 3 44, 4 13, 6}
Figure 4.6a

For a formal definition, we may say that a tessellation is regular if it has
regular faces and a regular vertex figure at each vertex.

The tessellation {6, 3} is often used for tiled floors in bathrooms. It can
also be seen in any beehive. {4, 4} is familiar in the form of squared paper;
in terms of Cartesian coordinates, its vertices are just the points for which
both x and y are integers. {3, 6} is the dual of {6, 3} in the following sense.
The dual of { p, q} is the tessellation whose edges are the perpendicular bi-
sectors of the edges of {p, ¢} (see Figure 4.65). Thus the dual of {p, g} is
{g p}, and vice versa; the vertices of either are the centers of the faces of
the other. In particular, the dual of {4, 4} is an equal {4, 4}.

Figure 4.6b

The possible values of p and g are easily obtained by equating the angle
of a p-gon, namely (1 — 2/p)m, to the value it must have if q such polygons

Z/p)ym, 1© g valug 1L must hav such pol

come together at a vertex:
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yield the three tessellations already described. However, before declaring
that these are the only regular tessellations, we should, investigate the frac-
tional solutions of our equation; for there might conceivably be a regular
“star” tessellation {p, g} whose face {p} and vertex figure {q} are regular
polygons of the kind considered in §2.8. For instance, Figure 4.6¢c shows
ten pentagons placed together at a common vertex. Although they over-
lap, we might expect to be able to add further pentagons so as to form a tes-
sellation {5, %} (whose vertex figure is a decagram), covering the plane a
number of times. Butin fact this number is infinite, as we shall see.

Consider the general regular tessellation {p, ¢}, where p = n/d. Ifit cov-
ers the plane only a finite number of times, there must be a minimum dis-
tance between the centers of pairs of faces. Let P, Q be two such centers
at this minimum distance apart. Since they are centers of rotation of period
n, the argument used in §4.5 proves that the only possible values of n are 3, 4,
6. Thus d = 1, and these are also the only possible values of p. Hence there
are no regular star tessellations [Coxeter 1, p. 112].

It is actually possible to cover a sphere three times by using twelve “penta-
gons” whose sides are arcs of great circles [Coxeter 1, p. 111].

Figure 4.6¢

To find the symmetry group of a regular tessellation, we treat its face the
way we treated one of the bricks in §4.4. Clearly, the symmetry group of
{p, q} is derived from the symmetry group D, of one face by adding the re-
flection in a side of that face. Thus it is generated by reflections in the sides
of a triangle whose angles are #/p (at the center of the face), #/2 (at the mid-
point of an edge), and 7/q (at a veriex). This triangle is a fundamental
region, since it is transformed into neighboring triangles by the three gen-
erating reflections. Since each generator leaves invariant all the points on
one side, the fundamental region is unique: it cannot be modified by addi-
tion and subtraction the way Escher modified the fundamental regions of
some other groups.

The network of such triangles, filling the piane, is cut out by aii ihe lines
of symmetry of the regular tessellation. The lines of symmetry include the
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lines of the edges of both { p, ¢} and its dual {g, p}. In the case of {6, 3}
and {3, 6} (Figure 4.6b), these edge lines suffice; in the case of the two dual
{4,4}’s we need also the diagonals of the squares. In Figure 4.64, alternate
regions have been shaded so as to exhibit both the complete symmetry
groups pém, p4m and the “direct” subgroups p6é, p4 (consisting of rota-
tions and translations) which preserve the colors and the direction of the
shading [Brewster 1, p. 94; Burnside 1, pp. 416, 417].

Instead of deriving the network of triangles from the regular tessellation,
we may conversely derive the tessellation from the network. For this pur-
pose, we pick out a point in the network where the angles are #/p, that is,
where p shaded and p white triangles come together. These 2p triangles com-
bine to form a face of {p, q}.

p6 and p6m p4 and p4m

Figure 4.6d

EXERCISES

1. Justify the formal definition of “regular” on page 62. (Itimplies that the faces
are all alike an h i all surrounded alike)

a d that th 10es ar
ar G tnat ICESs are au surrcunded aiixe.)

2. Give a general argument to prove that the midpoints of the edges of a regular
tessellation belong to a lattice. (Hint: Consider the group p2 generated by half-turns
about three such midpoints.)

3. Pick out the midpoints of the edges of {6, 3}. Verify that they belong to a lat-
tice. Do they constitute the whole lattice?

4. Draw portions of lattices whose symmeiry groups are p2, pmm, ¢mim, p4m,
pém.
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4.7 SYLVESTER’S PROBLEM OF COLLINEAR POINTS

Reductio ad absurdum, which Euclid loved so much, is one of a mathe-
matician's finest weapons. It is a far finer gambit than any chess gam-
bit: a chess player may offer the sacrifice of a pawn or even a piece,
but a mathematician offers the game.

G. H. Hardy [2, p. 34]

As we saw in § 4.1, a lattice is a discrete set of points having the property
that the line joining any two of them contains not only these two but infi-
nitely many. Figure 4.7a shows a finite “orchard” in which nine points are
arranged in ten rows of three [Ball 1, p. 105]. It was probably the investi-

gation of such configurations that led Sylvester* to propose his problem of
1893:

Prove that it is not possible to arrange any finite number of real points so that a right
line through every two of them shall pass through a third, unless they all lie in the same
right line.

Figure 4.7a Figure 4.7b

Neither Sylvester nor any of his contemporaries were able to think of a
satisfactory proof. The question was forgotten till 1933, when Karamata
and Erdos revived it, and T. Gallai (alias Griinwald) finally succeeded,

using a rather complicated argument. Sylvester’s “negative” statement was
rephrased “positively” by Motzkin:

If n points in the real plane are not on one straight line, then there exists a straight line
containing exactly two of the points.

The following proof, which somewhat resembles Barlow’s proof of the
crystallographic restriction (§ 4.5), is due to L. M. Kelly.

* J. J. Sylvester, Mathematical Questions and Solutions from the Educational Times, 59 (1893),
p- 98 (Question 11851). See also R. Steinberg, American Mathematical Monthly, 51 (1944), p.
170- T N Wallyy L:J EE (1QAQY — AQ. " AA . 1 - o . s . . Iy o) . 'l
10V e WL ORCUY, ioid., 33 (1746), p. 28; T. Moizkin, Transaciions of the American Mathematical
Society, 70 (1951), p. 452; L. M. Kelly and W. O. J. Moser, Canadian Journal of Mathematics,
10 (1958), p. 213.
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The n points Py, . . ., P, are joined by at most 4 n(n — 1) lines PPz, P1P3,
etc. Consider the pairs P;, P;Py, consisting of a point and a joining line
which are not incident. Since there are at most $n(n — 1)(n — 2) such
pairs, there must be at least one, say Py, P2Ps, for which the distance P1Q
from the point to the line is the smallest such distance that occurs.

Then the line PoP5 contains no other point of the set. For if it contained
P,, at least two of the points Py, P3, P4 would lie on one side of the per-
pendicular P1Q (or possibly one of the P’s would coincide with ). Let the
points be so named that these two are P, P3, with P; nearer to Q (or coin-
cident with Q). Then P,, P3Py (Figure 4.7b) is another pair having a

smaller distance than P;Q, which is absurd.

This completes the proof that there is always a line containing exactly
two of the points.  Of course, there may be more than one such line; in fact,

(WO Ol 1€ points. U course, therc

Kelly and Moser proved that the number of such lines is at least 3n/7.

EXERCISES
1. The above proof yields a line P»P3 containing only these two of the P’s. The
point Q actually lies between P, and Ps.
2. If n points are not all on one line, they have at least n distinct joins [Coxeter 2,
p. 31}
3. Draw a configuration of n points for which the lower limit of 3n/7 “ordinary”
joins is attained. (Hint: n = 7.)

In later chapters we shall see that Euclidean geometry is by no means the
only possible geometry: other kinds are just as logical, almost as useful, and
in some respects simpler. According to the famous Erlangen program
(Klein’s inaugural address at the University of Erlangen in 1872), the cri-
terion that distinguishes one geometry from another is the group of trans-
formations under which the propositions remain true. In the case of Eu-
clidean geometry, we might at first expect this to be the continuous group
of all isometries. But since the propositions remain valid when the scale
of measurement is altered, as in a photographic enlargement, the “principal
group” for Euclidean geometry [Klein 2, p. 133] includes also “similarities”
(which may change distances although of course they preserve angles). In
the present chapter we classify such transformations of the Euclidean plane.
In particular, “dilatations” will be seen to play a useful role in the theory
of the nine-point center of a triangle. These and other “direct” similarities
are treated in the standard textbooks, but “opposite” similarities (§ 5.6) seem
to have been sadly neglected.

5.1 DILATATION

“If | eat one of these cakes,” she thought, “it's sure to make some
change in my size.” . .. So she swallowed one . . . and was delighted
to find that she began shrinking directly.

Lewis Carroll
[Dodgson 1, Chap. 4]

It is convenient to extend the usual definition of parallel by declaring that
two (infinite straight) lines are parallel if they have either no common point
or two common points. (In the latter case they coincide.) This conven-
tion enables us to assert that, without any exception,

67
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5.11 For each point A and line r, there is just one line through A parallel
tor.

Two figures are said to be homothetic if they are similar and similarly
placed, that is, if they are related by a dilatation (or “homothecy”), which
may be defined as follows [Artin 1, p. 54]:

A dilatation is a transformation which preserves (or reverses) direction:
that is, it transforms each line into a parallel line.

For, any point P not on AB is transformed into the point 7’ in which the
line through A’ parallel to 4P meets the line through B’ parallel to BP (Fig-
ure 5.1a); and any point Q on AB is transformed into the point Q”in which
A’B’ meets the line through P’ parallel to PQ.

In other words, a dilatation is completely determined by its effect on any
two given points [Coxeter 2, 8.51].

Clearly, the inverse of the dilatation 4B — A’B’ is the dilatation
A'B' — AB. Also AB — ABis the identity, 4B — BA is a half-turn (about
the midpoint of AB), and if ABB’A’ is a parallelogram, AB — A’B’ is a trans-
lation.

Figure 5.1b

For any dilatation which is not the identity, the two points 4 and B may
be so chosen that A4 is not an invariant point and 4B is not an invariant
line. Such a dilatation AR — A’B’ (Figure 5.1b) transforms any point P
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on AA’ into a point P’ on the parallel line through 4’, which is 44" itself.
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Similarly, it transforms any point Q on BB'into a point Q" on BB’. If AA’
and BB’ are not parallel, these two invariant lines intersect in an invariant
point O. Hence

5.13 Any dilatation that is not a translation has an invar.ant point.

This invariant point O is unique. For, a dilatation that has two invariant
points Oy and O3 can only be the identity, which may reasonably be re-
garded as a translation, namely a translation through distance zero [Weyl
1, p. 69].

Clearly, any point P is transformed into a point #” on OP. Let us write

OP' = A\OP,

with the convention that the number A is positive or negative according as
P and P’ are on the same side of O or on opposite sides. With the help of
some homothetic triangles (as in Figure 5.1b), we see that A is a constant,
that is, independent of the position of P. Moreover, any segment PQ is
transformed into a segment | A | times as Jong, and oppositely directed if
A < 0. We shall use the symbol O(X) for the dilatation with center O and
ratio A. (Court [2, p. 40] prefers “(0O, A)”.)

In particular, O(1) is the identity and O(—1) is a half-turn. Clearly, the
only dilatations which are also isometries are half-turns and translations.
In the case of a translation, such a symbol as O(\) is no longer available.

Figure 5.1¢

EXERCISES

1. What is the inverse of the dilatation O\Y?
2. If the product Oy(A;) and Oz(\z) is O(AsAs), where is 07

3. Express the dilatation O(\) in terms of (a) polar coordinates, (b) Cartesian co-
ordinates.

4.~ Explain the action of the pantograph (Figure 5.1¢), an instrument invented by
Christoph Scheiner about 1630 for the purpose of making a copy, reduced or enlarged,
of any given figure. It is formed by four rods, hinged at the corners of a parallelo-
gram AA4’BC whose angles are allowed to vary. The three collinear points O, P, P,
on the respective rods A4’, AC, 4’B, remain collinear when the shape of the pa}allelo-
gram is changed. The instrument is pivoted at O. When a pencil point is inserted at
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P’ and a tracing point at P (or vice versa), and the latter is traced over the lines of a
given figure, the pencil point draws a homothetic copy. The positions of O and P are
adjustable on their respective rods so as to allow various choices of the ratio O4 : 04",
(Care must, of course, be taken to keep O and P collinear with P.)

5. How could the pantograph be modified so as to yield a dilatation O(A) with A
negative?

5.2 CENTERS OF SIMILITUDE

| have often wondered why '"‘similitude’* ever got into elementary
geometry. . .. I'm sure youngsters would be much more af ease with
a pair of circles if they just had centers of “'similarity” instead of being
made to imagine that some new idea was insinuating itself.

E. H. Neville {1889 -1961)

c

Figure 5.2a

A dilatation O(\), transforming C into C', transforms a circle with center
C and radius 7 into a circle with center C’ and radius |A|r. Conversely,
as we see in Figure 5.2a, if two circles have distinct centers C, C’ and un-
equal radii a, @, they are related by two dilatations, O(a'/a) and Oy(—d'/a),
whose centers O and Oy divide the segment CC’ externally and internally
in the ratio a:a’ [Court 2, p. 184]. These points O and O; are called the
centers of similitude of the two circles. To construct them, we draw an
arbitrary diameter PCP; of the first circle and a parallel radius C'P" of the
second (with P’ on the same side of CC' as P); then O lies on PP’, and Oy
on PP )

If two circles are concentric or equal, they are still related by two dllatz?.-
tions, but there is only one center of similitude. In the case of concentric
circles this is because the two dilatations have the same center. In the case
of equal circles it is because one of the dilatations is a translation, whi.ch
has no center. (The other is the half-turn about Oy, which is now the mid-
point of CC’.)
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A. Vandeghen and G. R. Veldkamp (dmerican Mathematical Monthly, 71 (1964), p,
178) found that, for the triangle considered in Exercise 10 of § 1.5 (page 16), the centers
of gimilitude of tha twe “Qoaddey ciralac® mrm tha foe 4 b e
[ 'o‘lnllutuuv O n€ two uut;uvy \'dl‘\-l.Cb arc ne icenier ana ine Gergonne poinf. the
point of concurrence of the lines joining the vertices to the points of contact of the re-

spectively opposite sides with the incircle.

EXERCISES

1. If two equal circles have no common point, they have two parallel common tan-
gents and two other common tangents through Oy (midway between the centers), If
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they touch they have only three common tangents. If they intersect they have only
the two parallel common tangents.

2. Any common tangent of two unequal circles passes through a center of simili-
tude. Sketch the positions of the centers of similitude, and record the number of com-
mon 