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FOREWORD

Commercial grid computing is inevitable. As certain as the sunrise or sunset, grid

computing, or the ability to abstract the business logic (application) layer from

the infrastructure layer, will be a reality. As firms’ technology architecture continues

to become more complex and technology budgets continue to come under increasing

scrutiny, firms need to rethink the way they manage and utilize technology.

The current ways of tying applications to very specific hardware just will not

scale. Firms are buying new technology when other servers are sitting underutilized.

Firms are acquiring more hardware when they have thousands of desktops (after

work hours) and even whole data centers (across the globe) sitting dormant. And

even if we continue to throw hardware at our computational challenges, sooner or

later the overhead of managing this infrastructure will become overwhelming.

Besides not being able to function without grid technology to help manage our

increasingly complicated technology infrastructures, our 30 years of modern

computing history all point toward a need for a better way to manage a widely

distributed computing architecture. Whether it is called grid computing or utility

computing, the shift toward hardware and software componentization cries out for

a better technology management model.

Over the entire history of computing we have consistently experienced a pro-

nounced increase in computational power and a continual decrease in both CPU

size and cost (Moore’s law). In the mid-1980s, there was the mainframe; in 1990

it was the Unix server, and today there is the virtually disposable Linux or

Windows-based rack-mounted cluster. Concurrently we have witnessed a continual

decomposition of traditional software applications from mainline COBOL

programs, with embedded program calls, to client/server, the Web, and today

service-oriented architecture (SOA)–based applications. While the COBOL and
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client/server-based applications ran on dedicated hardware, today’s SOA-based

applications can be run virtually anywhere.

But what happens when firms begin to roll out these new hardware and software

architectures? How will firms be able to manage every single blade server running

all of these Web services? Will they know what is running on the second partition of

the third blade of the twenty-fifth cluster? Will corporate data centers be able to track

the utilization rate of the eighteenth blade of the fourth cluster? Will they know

when the blade was underutilized, and what could have been provisioned on that

platform? What if the blade is down? How will they know, who will fix it, and

what will happen to its workload?

None of these issues will be resolved without a more efficient, more fully auto-

mated technology management infrastructure. This is the challenge that grid com-

puting is tackling.

Grid computing was initially targeted at decomposing computationally challen-

ging problems into many pieces and parceling them out to a wide array of compu-

tational resources. Today grid computing is much more than high-performance

computing; it is about virtualizing and abstracting the complete technology footprint

from both users and software developers. It is about having technology manage

technology.

This is not an easy problem to solve. It is more than lashing together a dozen com-

puters. It is more than breaking a large problem into smaller pieces. It is more than

provisioning on the fly. Grid computing is a comprehensive technology management

infrastructure that decomposes, monitors, provisions, distributes, manages, and

meters virtually all technologies within the organization and sometimes outside

the organization.

That is why you are reading this book. Michael’s book will help you get a much

better understanding of grid computing—how it works, the theory, practice, and the

challenges of pulling it all together. While I firmly believe that this technology is

inevitable, the real question is “When will it be practical?” With this book, and

Michael’s help, the answer to that question will certainly be sooner rather than later.

LARRY TABB

Founder & CEO

TABB Group
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PREFACE

Grid computing technology is breaking out of its birthplace in universities and

research facilities and is quickly gaining acceptance in the commercial industry.

In fact, the financial industry is where my company and I were first introduced

to grid computing technology. I am very active in financial firms on Wall

Street as they explore the potential use of grid technology for various business

applications, restructuring data centers, and operations of data centers. With

more years than I care to count or even mention, I have been an integral part

of architecting and building distributed computing environments (client/server
topology) for the financial industry and in the past few years (at the time of writ-

ing) have been working in the grid computing topology as it extends to financial

institutions. This is not to say that this is the only industry to which this tech-

nology applies. As a result, it quickly became apparent that running business

applications and services in the grid computing topology was not the same as

the traditional client/server and new data management techniques were needed

to leverage this new topology.

The first step is the buildout of the hardware infrastructure for grid computing

(compute nodes, networks, etc.). Once in place, “Bob’s your Uncle”; the rest

should be as simple as migrating applications over to, or better yet, converting

business line applications into, “services” for their “customers” to “purchase.” How-

ever, the reality is that the hardware and the operating system of a grid at the end of

the day is just another computer consisting of CPUs, memory, disks, and a com-

munication bus. Granted, the internal components appear radically different from

those of the big servers that we are accustomed to seeing in data centers. The com-

pute grid is a logical computer that physically consists of many networked compu-

ters (or compute nodes) that spans one data center, multiple data centers, floors of a
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building, and even cities. When moving even the simplest of applications onto the

new computer, there is at least one critical tool that the developers must have, a data-

base, specifically, a data grid. The initial reaction is: “Our applications already have

a database, we will use those” or “Why don’t we use the relational databases that we

have already paid licenses for?” However, given the difference in physical topology

between the client/server and grid computing, the architects and developers will

immediately realize that managing data in a grid computing environment is very

different. Without the proper data management tools, developers are back to writing

down to the bare metal of the grid to get data in and out of the grid, distributing the

data among all the nodes where work needs to be performed, and must manage some

sort of data synchronization (e.g., distribution of data across the nodes of the grid,

and with external data sources that include not only databases but also all the various

middleware tools, file systems, etc.). The information technology staff in many

organizations have already received the green light to start to deliver applications

on the compute grid without the required tools for providing data management.

As a result, these projects will require more time and thus cannot achieve fast

time to market, low costs, and so on since large amounts of time must be spent

on creating pure infrastructure code customized for each application. The reus-

ability of such code is small or nonexistent, resulting in additional resources and

time to deal with the nuts and bolts of the grid. Without the proper data management

tools, the migration will be slow and expensive at the cost of total acceptance of the

technology into the commercial industry. This would jeopardize the whole “grid

thing” altogether.

Working with our clients and the grid computing technology vendors, it became

apparent that the management of data was not sufficiently addressed through the use

of traditional data management techniques. The physical topology of the grid is as

different from the client/server as the client/server was from the mainframe. Data

management systems that were architected for the client/server are optimized and

perform best in that topology, but not necessarily perform as needed by the grid top-

ology. To gain optimal performance from of the grid topology, various levels of

analysis are required, including the analysis of data types and their behaviors. The

analysis drives different data management techniques that are required as part of

the core for the data management system or the “engine” that needs to be redefined.

The engine’s (as an integral part of data management system) responsibility is to

manage the mechanics required by the data storage devices and the movement of

data into and out of the physical realm of the grid.

The first set of applications to run within the grid has operated over static data

sets, and large files whose contents rarely, if ever, change. Naturally, the data man-

agement techniques for these types of data and the applications associated with them

within the grid are geared toward the management and distribution of large static

data sets across the nodes of the grid. Examples are GridFTP (Grid File Transfer

Protocol) for distributed filing systems and various research projects such as Ocean-

Store. However, these techniques do not translate to the management of dynamic

data used by many applications within the financial services sectors (as well as

other vertical sectors).
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Throughout the evolution of the computer from mainframe/minicomputer to

client/server to middleware to distributed computing, the early adopters piloted

the transitions of each, followed by books and reference materials made readily

available to the armies of architects and developers involved in the mass adoption

of these respective technologies. As we are now working with the early adopters

of grid computing in the financial community, most, if not all, of the reference

materials on grid computing are white papers and research reports. There is an

obvious vacuum of printed material specifically as it relates to how to manage

data in the highly distributed topology of the grid. We, at Integrasoft, began to fill

this void by creating user groups where the early adopters of grid technology regu-

larly meet to discuss their activities and present some of the latest developments in

grid computing and data management within this technology: a forum of open idea

exchange and discussion. This is a small attempt since there are not enough user

groups globally to reach the masses needed to acquire the technology knowledge

required for this next evolutionary step in computing. I started this project of author-

ing a book on distributed data management in grid computing to assist in the adop-

tion of grid computing within the commercial industry, to provide an introduction to

grid computing for people who are just starting to hear about it for the first time; for

those who have been studying or considering and started to use grid computing, by

introducing the concepts for the management of data within grid computing; and for

the early adopters of this technology who are familiar with the complexities of data

management in grid computing, to hopefully spark research and development of

practical product in these areas in order to establish this technology as a standard.

The audience for this book is not limited to the technical purist; the topic of grid

computing is presented with the main drivers for its adoption, the economic and

sociological impacts on an organization. Thus, this is an introduction for people

who are along the managerial paths, who are aware of and familiar with the general

terms of data management, as with relational databases, and is intended to introduce

grid computing in business terms so that these individuals can see the benefits of

using grid technology and become advocates for the use of this technology in

their projects. It is hoped that they will be armed with the tools necessary to discuss

grid computing with their technical staff with a sufficient level of understanding of

this technology and to explain to the upper management and corporate leaders the

benefits of using grid technology. Finally, to complete the lifecycle, project man-

agers must be able to present their rationale for using grid computing in their pro-

jects to their corporate leaders such as the CIO and CFO (chief investment and

financial officers). They, too, should, having read this book, possess an understand-

ing of the business drivers behind grid computing and the benefits it brings to an

organization as a whole.

To draw in such a wide range of audience, I leverage three techniques: drawing

on a common baseline of knowledge, visitation through analogy, and finally practi-

cal applications of grid computing. For the first technique, a common baseline of

knowledge, the relational database and relational data management systems are

used to explain and introduce data management within the grid. Readers should

be able to walk away with the tools to help them promote grid technology into
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their respective organizations and into the community as a whole. My intention is

not to provide a deep level of detail on the relational data management concepts

since technical people are typically familiar with them. Project managers should

already have the level of understanding of relational data management technology

on a par with what is discussed within, and drilling down into the bowels of the

underlying technology would not be of practical use.

The second technique, visitation through analogy, coupled with the common

baseline of relational data management, completes the conceptual bridge between

what is familiar to what is not. Finally, by presenting the practical business and tech-

nical use cases that people and corporations are looking for the grid technology to

solve, we will see the immediate benefits and widespread impact that the grid will

have on our everyday business and information technology lives.

The field of data management in the grid is a broad one; individually the topics

introduced warrant more in-depth discussion than the pages of this book can pro-

vide. In fact, each aspect or topic of distributed data management merits its own

book or series of books. So, for the technical readers who are intimately familiar

with the details of grid computing, this book should spark further thought and

work within the topics presented and contribute in the advancement of distributed

data management. The technical person becoming acquainted to grid computing

will acquire a firm understand of the field and the concepts of distributed data man-

agement in grid computing. I encourage them to read the white papers and reference

materials listed at the end of this book. The technologist will be able to take distri-

buted data management products (such as the one that we have developed, from the

ground up for data management within grid computing), and quickly get projects up

and running by assessing the various strengths and weaknesses of each product and

correlating that to their project needs.

A handful of people have been generous enough to read the manuscript of this

book, some being the early adapters and some are the newcomers to the field.

One person described my goals for this book as being the “rosetta stone” for grid

computing. As generous as he was in that description, I tend to look at is as

“beauty is in the eye of the beholder,” as individuals can look at a piece of work

and draw from it value particular to their respective backgrounds, experience, and

job responsibilities with the ultimate goal of helping them perform their jobs

better and contributing to the adoption of grid computing. Achievement of this

objective will also mean that I have achieved my goal.
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PART I
AN OVERVIEW OF GRID
COMPUTING





1
WHAT IS GRID COMPUTING?

Grid computing has emerged as a framework for supporting complex compilations

over large data sets. In general, grids enable the efficient sharing and management of

computing resources for the purpose of performing large complex tasks. In particu-

lar, grids have been defined as anything from batch schedulers to peer-to-peer (P2P)

platforms.

Grid computing has evolved in the scientific and defense communities since the

early 1990s. As with most maturing technologies, there is debate as to exactly what

grid computing is. Some make a very clear distinction between cluster computing

and grid computing. Compute clusters are defined as a dedicated group of machines

(whether they are individual machines or racks of blades) that are dedicated for a

specific purpose. Grid computing uses a process known as “cycle stealing”: grabbing

spare compute cycles on machines across a network, when available, to get a task

done.

Since both compute clusters and grids coordinate their respective resources to

perform tasks, when does a compute cluster start to become a grid? Specifically,

does a compute cluster become a grid when it is leveraged to perform operations

other than those for which it was originally intended?

THE BASICS OF GRID COMPUTING

Grid computing is an overloaded term. Depending on whom you talk to, it takes

on different meanings. Some terms may better fit your practical usage of the

3

Distributed Data Management for Grid Computing, by Michael Di Stefano
Copyright # 2005 John Wiley & Sons, Inc.



technology, such as clusters. For the purposes of this discussion, however, we shall

define grid computing as follows:

Grid computing is any distributed cluster of compute resources that provides an

environment for the sharing and managing of the resource for the distribution of

tasks based on configurable service-level policies.

A grid fundamentally consists of two distinct parts, compute and data:

. Compute grid—provides the core resource and task management services for

grid computing: sharing, management, and distribution of tasks based on con-

figurable service-level policies

. Data grid—provides the data management features to enable data access, syn-

chronization, and distribution of a grid

If the proliferation of jargon is a measure of a technology’s viability and its prom-

ise to answer key issues that businesses are facing, then transformation of jargon to

standards is a measure of the longevity of the technology in its ability to answer con-

cretely those key business issues. The evolution of grid computing from jargon to

standard can be measured by a number of converging influences: history, business

dynamics, technology evolution, and external environmental pressures.

The drivers behind grid technology are remarkably similar to those that corpor-

ations are facing today: a starving business need for powerful, inexpensive, and flex-

ible compute power, and limited funds to supply it. In the early 1990s, research

facilities and universities used increasingly complex computational programs

requiring the processing power of a supercomputer without the budget to supply

it. Their answer was to create a compute environment that could leverage any

spare compute cycles on campus to perform the required calculations.

Today, grid technology has evolved to the point where it is no longer a theory but

a proven practice. It represents a viable direction for corporations to explore grid

computing as an answer to their business needs within tight financial constraints.

There are additional forces in play that will present a fundamental paradigm shift

in how computing is done. As it migrates from the hands of artistry to the realm of

engineering—via the application of tried-and-true engineering principles—comput-

ing becomes a fundamental utility in the same way that gas and electricity gener-

ation and delivery is a utility. The quality of the service will be measured by its

ability to meet the supply-and-demand curves of the producers and consumers.

Leveling the Playing Field of Buzzword Mania

There are many analogies in the development and adoption of grid computing to

those of client/server technology. Both are fundamental paradigm shifts in the

way computing is performed. As client/server technology ushered in the broad

acceptance of relational database technology, grid technology will usher in new
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data management paradigms to address the specific topology of the physical com-

pute grid.

To see how this is happening, it is best to untangle the concepts of data manage-

ment in grid form by drawing on a fundamental baseline that we are all familiar with.

The people who are going to use grid technology—developers, architects, and lines

of businesses—are accustomed to thinking in terms of client/server technology and
the relational data management features within a client/server paradigm. Irrespec-

tive of the compute topology—client/server, computer clusters, or a computer

grid—from the user perspective, these data management service levels need to be

consistently maintained.

In the early days of client/server technology one would attend a seminar spon-

sored by a relational database vendor, promoting relational technology in general,

and the supplier’s product in particular. The message was that the new compute para-

digm of the client/server topology required new, more flexible data management

techniques than do those currently in use. As a result, relational databases became

synonymous with client/server technology and the standard for data management.

People attending those seminars were used to writing their own disk controllers

for data storage, so popular questions centered on disk management. How fast does

your product write to and/or read from disk? How efficient are your indices? How

well does your product manage physical data positioning on the disk? The bulk of

the seminar was spent on addressing these questions, and the only discussion of

data management centered on the use of a new language called Structured Query

Language (SQL) for storage and querying of the data. If you were interested,

there were SQL training classes to attend, where only the basics of how to form a

query were taught.

Figure 1.1 illustrates the parallels of the vocabulary and fundamentals between

data management within relational databases and that within grid computing. This

comparison is useful in two aspects: (1) it relates to terms that most are already

very familiar with and (2) more importantly, it suggests that any data management

system in grid computing must provide the same levels of service quality as within

relational databases.

Figure 1.1 links a baseline of data grid vocabulary to well-known relational data-

base terms. Relational database implementations have two fundamental com-

ponents: (1) the underlying engine that manages physical resources, in this case a

disk and (2) a layer on top of that to provide all the data management features

and functionality that architects and developers would rely on for data management,

querying, arrangement of data in highly ordered structures such as tables, the ability

to transact on data, leveraging stored procedures, event triggerings, and transacting

in and out of the database with external systems. These are the management features

and functions that today are where our true interest lies. How do I manage tables/
row locking? How do I structure indices for maximum performance? Very little

attention today is given to the underlying engine.

In the same way that relational database is a generic term, so is data grid. Com-

panies will offer implementations, products of their vision of what a data grid is.

To analyze the differences between the products offered, it is possible to apply a
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baseline consisting of generic term, implementation, data management, and engine.

Each implementation of a data grid will have an engine. That engine may be a meta-

data dictionary or a distributed cache. It will also handle the data management

aspects of this data grid, defining how to structure data in tables, arrays, or matrices;

how to query data; and how to transact on the data.

Depending on the exact implementation of this engine—whether it is a metadata

dictionary that routes requests to the true long-term persistent stores, or a distributed

cache that spans all computers in the grid to form one virtual space—there are

General terms

Architecture

Implementations

Relational
database

Data
grid

Oracle
Sybase

DB2
MySQL
Others

Integrasoft
Avaki

Others

Tables,

Query Language

Procedures

Locking

Indexing

Relations

Triggers

Others…

Tables, arrays, and
matrices

Query API/language
procedures

Grid-specific policies
Data region
Data affinity
Data sync
Notification

Transactional
Others….

Disk management

Bit/byte
organization

Distributed cache
or metadata

Data Management Data Management

Engines Engines

Figure 1.1. Baseline of terms and function.
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specific data management issues for this new topology. How to synchronize, how to

transact on the data, how to address data affinity? These are all data management

issues; issues that, no matter who the architect or application developer is, will

need to be addressed within their applications. These are the quality-of-service

(QoS) levels that are required of the data grid. If a data grid does not provide

such service, then developers will have to write down to the lowest, most fundamen-

tal level of bit and byte management.

Data grid support for true data management extends to facilitation of the adoption

and widescale acceptance of grid technology. Developers can easily transit from

client/server-based applications to a grid topology by leveraging a product that

provides the same levels of service quality that have become the standard with

relational databases.

PARADIGM SHIFT

The technology concepts behind grids had their origins in distributed computing net-

works based on Distributed Computing Environment (DCE) and Common Object

Reguest Broker Architecture (CORBA). The approach and value proposition,

however, are radically different.

DCE- and CORBA-based distributed computing applications sought to separate

client and server, and to move processing off to a server or set of servers, thereby

reducing the requirement for large clients. Grids seek to harness large blocks of

processors into a virtual pool. Once virtualized, these pools are managed by the

grid, which provides a standard set of services that address

. Security

. Data management

. Discovery

. Reliability

Heterogeneity is key, and these pools range from desktop PCs for the purpose of

AIDS and cancer research, to large servers for problems in computational physics

and biology.

Beyond the Client/Server

Traditional client/server applications are typically configured as a client process

connecting to a utility server such as a database. The client/server architecture

can be further refined as to what a server is and what a client is. Clients that process

the business logic (“fat” clients) can become “thin” clients by moving business logic

processing to a separate server process, sometimes called an application server. The

application servers would then in turn connect to the utility server (i.e., a database),

thus forming a chain: clients connecting to an application server connecting to

databases (see Figure 1.2).
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Thus, client/server topology fundamentally is a piping of clients and appli-

cations. Operationally, for each line of business application, this implies a strict dis-

cipline of dedicated machines running the respective application and database

servers. When planning the capacity of a data center, the rule of thumb is that the

server capacity is twice that required at peak load. However, the peak load may

occur only a few times a day for short intervals. Thus, for most of the time the

machines are running far below their capacity (typically less than 30%). This

leaves vast amounts of wasted compute capacity.

The use of distributed middleware products—such as a messaging—transforms

the client/server piping topology into a “message bus” topology. Servers can now

handle “requests” via the middleware messaging bus. Clients issue requests to the

middleware, which routes the message to the appropriate the service. This is the

beginning of a distributed processing environment, the decoupling of the physical

resource to logical service. However, the capacity planning of the data centers fol-

lows the same rules as does the client/server topology, thus doing little to harness

the vast, untapped compute capacity of the servers.

Grid computing is a further evolution of distributed computing that attempts to

better utilize unused compute capacity. It enables the freedom to choose the

hardware that is best suited to run the service at a specific point in time. This

offers a better utilization of the physical resource. For example, machine A in a

client/server topology was dedicated to one service. That same machine in a grid

 Traditional
client /server topology

 Fat client with a
fundamental utility server

such as a database

Traditional
client/server topology

client with a one or multiple-
business application server

(possibly multithreaded)
connected to a fundamental utility

server such as a database

Data
server

Client

Business
application

server

Server

Client

Essentially a pipe
architecture

1 to 1 or 1 to many  

Figure 1.2. Traditional client/server topology.
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topology can now support any service, with the limitation matching the machine’s

hardware/software provisioning to what is necessary to run a specific service.

Within a client/server environment, threading of servers allows for similar

request processing—one thread for one request—thus allowing a single-server pro-

cess to handle multiple clients at the same time. However, there is an upper limit to

the practical number of threads that can efficiently run in that single process. Within

grid technology, there is a similar concept. What would run in a thread can now be

run on the best available machine in the grid. The end result is the elimination of any

upper bound that exists in a single-machine, multithreaded process.

In a grid, a service can be further subdivided into tasks or worklets. The tasks can

now be “sprayed” across the entire grid, thus transforming a sequential process into

an n-way parallelizable event. What was a long-running process can now be com-

pleted in a fraction of the time.

As more capacity is needed to support the business, more hardware can be added to

the grid. Once a service is grid-enabled, there are no programming changes necessary

to take advantage of the additional capacity. This sets up the scenario of an infinitely

wide grid, with “worklets” simultaneously accessing resources such as a database.

What was a piping of client to server now resembles a funnel of clients trying to

reach a single resource: orders of magnitude more “clients” trying to access data

from a resource not designed for this wide-mouth funnel of requests (see Figure 1.3).

In attempting to handle large numbers of client requests efficiently, software

companies have split up the servers by sharing or “striping” the workload across

Funnel of potentially
unlimited number of

“application worklets” trying
to access a single resource

such as a database

Compute grid of machines
coordinating to complete a

task or set of tasks

Server

Figure 1.3. The grid funnel to data sources.
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multiple server peers. This does increase the processing capacity of the servers

behind the server wall but does not address the client request/response bottleneck.
Attempting to use faster client/server technology in this way simply creates a pro-

cessing hourglass (see Figure 1.4): wide client grid, and wide server process fanout

with a bottleneck at client access to the server.

Data management in grid computing addresses the widening of the throat of the

hourglass to the width of the grid to eliminate data access bottlenecks (see Figure 1.5).

NEW TOPOLOGY

Grid computing builds on established concepts of distributed computing to create a

physical topology that is very different from that of the client/server. A computer

becomes a network of smaller machines coordinating with one another to complete

Compute grid of machines
coordinating to complete a 

task or set of tasks

Server
access
point

Server
fanout

Server
fanout

Server
fanout

Some server architectures
allow for server fanout,
such as striping data

across multiple servers;
however, there is typically

a single point of access that
handles client request/

response

Figure 1.4. Grid and server hourglass.
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a variety of tasks—a collection of reconfigurable nodes for performing a variety of

different tasks without human intervention, in contrast to the siloed/specialized data
centers of today:

. Elasticity—Information technology (IT) spending is being tied directly to

business volume, forcing greater transparency and other benefits.

. Pervasiveness—There are a proliferation of uses of IT resources for basic needs

much like a utility (electricity, telephone, etc.).

. Defense spending—IT spending is closely controlled by the upper management

and corporate CIO/CFO.

. Moore’s law—The cost of hardware is decreased.

Each of these forces has rippling effects throughout a grid architecture, thus forcing

grid acceptance:

. Elasticity—increased emphasis on metering usage, and the utility concept

within IT. For example, one utility must support multiple functions such as

high-performance computing and Web Services.

Compute grid of machines
coordinating to complete a

task or set of tasks

Relational
database

Data grid / “Distributed
Data Management System”TM

eliminates data access
bottlenecks inherent in a
grid topology and creates
a unified view to disparate

data sources

Relational
database

Figure 1.5. Distributed data management in grid eliminates data access bottlenecks.
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. Pervasiveness—increased commoditization of basic functions [DNS (Domain

Name System), Mail, Web, etc.].

. Defense spending—increased R&D in data integration, prediction, reliable

infrastructures (à la ARPANET).

. Moore’s law—increased emphasis on encoding more functions on chips them-

selves [i.e., Flash, PROM (programmable read-only memory), and RAM

(random access memory) in everything, and nothing else].

. Data management—how to maintain the same “user experience” in data

management and not hinder the realization of the full potential of the grid

environment.
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2
WHY ARE BUSINESSES LOOKING
AT GRID COMPUTING?

Corporations today are looking at and investing in grid computing not because it is a

“cool” technology but rather because it answers core business needs and stringent

financial requirements. It also offers a high-performance compute infrastructure at

low cost. The technology combines commodity, throwaway hardware with ever-

increasing network bandwidths, and self-administration software, to promote

. Significantly lower operational costs compared to those of today’s data centers

. Significant return on investment and return on asset

Grid computing is no accident, and its future is very predictable. History provides

a clear view of its adoption today and its path in the future. It offers a practical sol-

ution to fundamental requirements ranging from operations to business develop-

ment, to corporate fiscal pressures.

HISTORY REPEATS ITSELF

History repeats itself twice. Corporations are looking at grid computing today for the

same reasons that originally prompted the evolution of this technology in the first

place. The future of grid computing is predictable; the same engineering principle

that has driven the evolution of the telecommunications industry will evolve com-

puting into a utility service.
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Early Needs

The 1990s were an exciting time to be in the business of the computer technology

and information technology fields. The excitement surrounding the Internet and

the possibilities that opened up beyond it seemed endless. Some business ideas

were well founded, some not; but the number of technologies that quickly sprang

up to support the new business models was staggering. The euphoria within the

investment community to fund the exploration of both business and technology

seemed as endless as the ideas that it financed.

During that same time period, universities, typically strapped for cash, needed to

support their own business of research, which relied on computers to perform

increasingly complicated, highly computational tasks, but lacked the budget or

the unlimited venture capital (VC) funding that was afforded to the private

sector. Universities had to figure out a way to support their research business with

modest budgets. Their solution was to leverage the brain trusts of professors and stu-

dents alike to create a method of networking inexpensive machines, so they acted as

one large supercomputer: grid computing.

With few exceptions, commercial industry—fueled by limitless money and hard-

ware—paid little attention to the developments in grid technology. This is not the

situation today; the burst of the Internet bubble brought an abrupt halt to the days

of free spending and the universities; grid computing projects are today laying the

foundation for the next round of technology spending in corporate America. Perhaps

the people in business today once attended those universities and participated in the

creation of a powerful computer platform from inexpensive machines. Perhaps they

recognized the parallels of the business need and financial drivers of universities in

the 1990s, with those IT organizations in corporate America’s face today. The

business/financial environment of the university in the 1990s was very similar to

that of today’s corporate America. One reason why corporate America is looking

at grid computing today is that the students who were involved in grid research in

universities in the 1990s are now in the workforce, seeing the similarities and

thus serving as an influential voice in pushing grid technology into corporations.

The converging forces of business drivers, downward financial pressures, world

events, and a mature technology are ushering in a disruptive force that will change

the fundamental way computing is done and create new business opportunities that

otherwise would not exist (see Figure 2.1). Had it not been for the burst of the tech-

nology bubble in 2000, it would be safe to say that the wide adoption of grid com-

puting that we are experiencing today would not be occurring.

We are now going to look at the business drivers from the prospective of the

financial controller, the business manager, and the IT department, and examine

how grid computing is uniquely positioned to address their disparate needs.

Artists and Engineers

Grid computing is the beginning of the shift of computing control out of the hands of

the artist and into the hands of the engineer. Today, compute environments and
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solutions are designed, integrated, developed, and operated by highly skilled indi-

viduals, the “artists.” Grid computing opens a path to leverage the tried-and-true

engineering and economic principles of utility services, meeting supply and

demand curves of the customer. Thus, into the hands of the engineer.

Service-oriented network architecture (SONA) will be mentioned more than once

in our discussions. SONA applies a combination of virtualization and orchestration

to planetary-scale, distributed middleware. It describes the fundamental paradigm

shift away from the client/server computing that the grid provides.

The same laws and principles that have enabled the information age will apply to

the paradigm shift of grid computing, the proliferation of the network (see

Figure 2.2). We will stand on the shoulders of Claude Shannon, Norbert Weiner,

John Holland, and others and apply the all-too-familiar laws of Moore, Metcalf,

and Amdahl to usher in the age of customer-centric information, content, and trans-

action standards of SONA.

It is the application of proven engineering techniques and methods that success-

fully moved a direct-wired telephone system of the early 1900s to the communi-

cation network utility that it is today. The same approach will change computing

from a siloed data center to a grid utility that meets the economic principles of a

free-market economy of supply and demand, and the reduction service of volatility.

The goal is to create a computer utility service that can be run and managed like a

factory, with controlled costs, and the ability to increase output and change the

Figure 2.1. External forces, grid provisions, and new opportunities.
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production line as demand requires. This allows for better utilization of physical

resources, which will drive down the operating costs.

The building blocks to achieve this start with the management of the physical

resource for distribution of task—the compute grid—and must encompass:

. Data management techniques for the efficient movement of data

. Collection and use of metered data

. Application of feedback control logic, with metered data in, commands out

. The ability to provision your hardware quickly and efficiently

. Efficient administration without the need of an army of administrators.
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The good news is that all these technologies are converging. They are not

bleeding-edge; they demonstrate immediate return on investment (ROI) and,

within a reasonably short amount of time (3–5 years), will yield significant cost

savings for the organization.

THE WHYS AND WHEREFORES OF GRID COMPUTING

Recent events provide a logical path culminating in the emergence of grid comput-

ing. Starting at the burst of the technology bubble, there are financial pressures to

control costs and unanswered business demands to cope with the changing economy,

causing stress on IT personnel to manage both. At the same time, various technol-

ogies have been quietly maturing, each springing from different needs; for example,

grid technology for low-cost, high-performance computing, self-provisioning soft-

ware for operational management, and infiniband and other high-performance

networking technology. These forces are converging, like the “perfect storm,” to

create a fundamental change in how computing and compute services are developed,

managed, delivered, and paid for.

Financial Factors

Corporate CFOs have, in the years since the technology bubble burst, endured the

burden of keeping their companies financially viable in the most difficult of business

environments. Like the blade of a double-edged sword, changing business models

demand new support from information technology; the other side of the blade is rep-

resented by changes in revenue streams that continue to squeeze profit margins, thus

requiring tight cost controls and reductions.

This has led to a fundamental shift in how IT projects are developed and main-

tained. The use of IT outsourcing for project development and operations—barely

existent prior to the burst of the technology bubble—has become the rule of the

day. Companies that survived have done well, restructuring their respective organ-

izations in both IT and long-term operational cost reduction. Unfortunately, there is

continued pressure to further reduce costs.

How does grid technology assist the CFO? Let us look at how projects are

developed and maintained within organizations. There is development, QA (quality

assurance), production, and sometimes a step between QA and production for

preproduction staging. Each of the steps requires dedicated hardware and support

personnel to keep the centers running. (True, the developers can maintain their

own machines.) However, environments outside the development environment

(QA, preproduction, production; see Figure 2.3) will each reside in a proper data

center, requiring trained staff to administer the hardware, network, core services

(databases, middleware, etc.) as well as the business applications that run on

them. Each environment is not a shared facility but rather separate, siloed copies

of each other, each forming a closed and controlled environment to ensure that

the production systems behave in a well-known manner resulting from the rigorous
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testing done in both the QA and preproduction environments before being released

to final production. This QA process and redundant physical setup is an expensive

proposition in both physical resources (i.e. space, machines, and network) as well

as in human resources.

The CFO looks to grid computing to reduce the long-term operational costs in a

number of ways. First, each of these dedicated machines is not completely utilized.

The rule of thumb is that the capacity for a machine should be twice what is required

to handle the peak load, which may occur only at predictable, brief intervals

throughout the day. In financial markets, these peaks occur at the market open

and market close. Therefore, for most of the day, the dedicated and often expensive

hardware is not completely utilized. When new projects come along, the purchase of

additional machinery is necessary.

Grid technology allows us to run hardware closer to its full potential, typically at

70%, 80%, or even 90% utilization. This offers an organization a compute hardware

environment that can support multiple business units according to their respective

utilization requirements. No longer do their requirements need dedicated hardware

for development, QA, and production. With grid technology there can exist a com-

puter platform that is flexible and fungible to support the entire product develop-

ment–production spectrum (see Figure 2.4).

Grid technology allows CFOs to buy inexpensive machines, and establishes a

path to long-term operational cost reductions of an order of magnitude of today’s

data centers. The goal is to establish a compute utility service that obeys free-

market economics, meets supply-and-demand (supply/demand) curves, and auto-

mates resource provisioning and commoditized hardware to the point where the

value of a machine powered up and running in a data center is equivalent to its

replacement sitting on a shelf in storage.

Figure 2.3. Dedicated and replicated environments.
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Business Drivers

Business models have changed drastically since the technology bubble burst. The

business units have had to be flexible and adaptive to quickly respond to external

changes to continue to bring revenue into the organization. However, there is a

lack of financial resources to spend on the technology needed to adapt to the new

business models. As a result, the business’s technology staff and the corporate IT

organization supporting these business units have had to do more with less.

How does grid technology help? For the business manager, grid computing is a

win–win scenario.

. First Win. As with their university counterparts, there are two opposing forces:

business need and limited funds. Grid computing is a technology that offers

computer power, flexibility, and high utilization at a low cost. A technological

and financial model that supports the business and allows it to live within their

respective budgets is available to the organization.

. Second Win. The use of grid technology creates new business opportunities.

Grid technology enables new approaches to solving problems. This forces

business heads, managers, and developers to start looking at things differently,

thus creating new applications that would not exist without this technology. In

Part III we will discuss practical business cases of grid technology and see how

it ushers in a birth of new business and applications that otherwise would not be

possible.

Technology’s Role

We have discussed the business and financial pressures on the CFOs office to contain

and reduce the ongoing operational costs, and the business’s need to adapt quickly to

changing business landscapes with limited technological resources. Now we will

look at the people in the middle: the corporate IT organization.

Figure 2.4. Grid: flexible and fungible compute environment.
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IT finds itself caught between the pressures of demand from the business and

supply in terms of limited resources from the CFO. IT is also under pressure to

provide new services because simply maintaining existing services to the business

is not an option. Grid technology is ideal for meeting both of these requirements

and provides an inexpensive platform for the development and deployment of

new applications, reduces operational costs, and offers higher resource utilization.

Grid computing represents a fundamental shift in how IT can support the business

users when compared with a client/server environment. In a client/server data

center, the business unit is financially responsible for the purchase of servers that

are completely dedicated to that unit. The business is secure in its ability to support

itself in peak environments but must live with additional hardware costs if demand

increases and overpaying for resources should peak demand diminish. From the

larger corporate perspective, the budget is used to purchase and operationally main-

tain hardware with low utilization levels.

The grid topology is a flexible infrastructure in which hardware can be used or

shared by multiple groups depending on their usage demands. This implies cost

structures different from that of a client/server data center. Grid technology is a

decentralized flexible service that is owned and operated by IT, where business

units’ costs are shifted from a purchase/own/maintain-dedicated model to a “pay

per use” model similar to that of a gas/electric utility service provider. Compute

cycle usage must be metered and billed accordingly. The IT department must

ensure that the resource is available when needed on a cost-effective basis, just

like a gas/electric utility service provider.

20 WHY ARE BUSINESSES LOOKING AT GRID COMPUTING?



3
SERVICE-ORIENTED ARCHITECTURE

In this chapter, we will discuss Service-Oriented Architecture (SOA) at a high level.

Referenced within are various papers and articles that can go much deeper into the

subject for interested readers. The objective is to explain what SOA is and how—

along with business drivers and readily available technologies—it will lead to a

paradigm shift in computing and compute service delivery. The technical reader

can expect to be reacquainted with SOA and the technology behind it, while the

business reader will learn about the economic forces driving SOA and how business

(in terms of both current and future opportunities) will generate revenue streams

sooner rather than later.

The importance to this shift of grid technologies and data grid in particular will be

in supporting and enabling SOA. Data grid’s role is less in how to implement SOA,

but more in enabling SOA to deliver services to the customer when and where they

are needed in a timely and cost-effective manner.

WHAT IS SERVICE-ORIENTED ARCHITECTURE (SOA)?

Service-Oriented Architecture is not a new concept in engineering and computer

science; it touches our everyday lives in ways that we do not realize. Examples

include television sets, DVD and CD players, the telephone, and electricity. In

each case, the devices are interchangeable by make, model, and manufacturer,

taking advantage of advancements in technology, but still offering the same respect-

ive service. In the software industry, SOA delivery paths have evolved. Examples of
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early attempts to deliver SOA are based on the evolution of middleware architec-

tures such as Common Object Request Broker (CORBA) and Distributed Com-

ponent Object Model (DCOM). Those of us who have delivered systems based on

CORBA are all too used to such terms such as “CORBA Services,” “locating the

service,” and “registering the service” and having the services available to anyone

who needs them. Any “CORBA client” can “connect to” a “CORBA service” if

it “knows” the service’s Interface Definition Language (IDL).

Listen to the vocabulary, and you will quickly see why these early attempts at

delivering SOA failed. The clients and services must be CORBA-based. Therefore

systems built using any other middleware paradigm (of which there are many) could

not leverage the services simply because of the tight coupling of connectivity,

definition, and message (data). We will see that SOA must have “loose couplings”

in order to be of value to a broad customer base.2

The concepts of loose coupling of services and the customer are very import-

ant in SOA. Systems built by leveraging the services of other systems in an enter-

prise have a “real dependency” on those services. However, to access the

services, a number of human-made obstacles must be overcome. These are “arti-

ficial dependencies.”3 The CORBA example above is an example of an artificial

dependency. While real dependencies cannot be eliminated, artificial ones can be

reduced to a minimum. “Loose coupling” refers to the minimizing of artificial

dependencies. Basic criteria are applied to achieve loose coupling of services

and customers:

. Simple interfaces must be widely accepted by the community.

. Messaging (consisting of a schema) is self-describing in structure, both limiting

vocabulary and enabling change for service versioning.

. Messaging does not have system behavior.

. Services need to be dynamically located by the customer.

. Services must be self-contained.

These criteria are purely technical in nature. To deliver a SOA, there are some non-

technical aspects of defining the service that need to be addressed Services must be

“coarse on boundary.” This implies that interfaces or boundaries of the service to the

users of the service must describe the service from a business prospective, enough to

describe what the service offers so that the consumer can make an educated decision.

A service must provide a business function; it must make something happen.

Services that simply move data are too fine-grained.4

Clients must be able to locate the service that best fits their requirements. There

may be three billing services available, but the client must be able to reach all three

and select the one that provides the best service to meet its needs. The latter is done

via interface and messaging per the criteria listed above. Figure 3.1 shows how

dynamic discovery can be achieved.5

There is a lot of buzz aroundWeb Services and the tight correlation betweenWeb

Services and SOA. It is important to realize that Web Services is one way to
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implement a SOA. Other technologies and methods can be used to implement SOA,

provided they meet the criteria listed above. Web Services addresses many of the

SOA criteria today. It is a technology that not only provides for loose coupling

but also is in wide use by the industry. The correlation of the ability of Web Services

to deliver SOA is

. Interface—HTTP, FTP, SMTP (Simple Mail Transfer Protocol)

. Message—XML (eXtensible Markup Language)

These enablers are in place and proven and give rebirth to SOA. It is the

convergence of available technology in production and widespread acceptance

that will quickly enable the delivery of services to a wide variety of customers.

DRIVING FORCES BEHIND SOA

As in the movie Perfect Storm, there are forces converging at the right time and

place under the right conditions that are resulting in a fundamental paradigm shift

in computing. As shown in Figure 3.2, these forces are market dynamics, maturing

technology, and world events. Within each is its own miniature “perfect storm.” It is

interesting to see how these seemingly unrelated events and advances in technology

are converging, opening the window for new opportunities for business and

information technology.

Client

Dynamic
directory

Service
physical

resources

Service

Find

Publish

Bind

Figure 3.1. Dynamic location of services.
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The opportunities emerging range from new business to improvements in

information technology operations.

. New business

Real-time risk management

Large-scale data analysis

Utility services

. Operational improvements

Dramatic lower operational costs

Increase in compute utilization

Geographic independence

In-depth examples of these new opportunities are discussed in Part III of this book.

Maturing Technology

The advances in technology leading up to this point do not represent a single,

revolutionary breakthrough. Rather, it is an evolution that is taking place in four

areas of the IT world: Web Services, networking, distributed (grid) computing,

and operational resource provisioning. Each has made advances in their respective

areas that, on the surface, have no correlation to the others. However, advances in

networking are the primary enabler for the rest.

Networking. Starting with the Ethernet, networking speeds have steadily increased

since the late 1980s, 10 megabits per second (Mbits/s), giving way to 100 Mbits,

giving way to 1 gigabit (Gbits). Enter Fiber Channel at 2Gbits. Infiniband

technology—first appearing as device interconnects for use in things such as storage

New
opportunities

M
arket

d
yn

am
ics

W
o

rl
d

ev
en

ts

Maturing
technology

Service-
oriented

architecture

Figure 3.2. The SOA “perfect storm.”
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area network (SAN) solutions—is now making its way into data center local-area

networking with network speeds of 510 Gbits/s.

Distributed Computing (Grid). Grid technology takes two forms: computational or

compute grid, and data grids. Each has its origins in academia and research, where

complex analytical methods operating over large data sets were becoming the norm.

However, the norm was also the limited budget to purchase supercomputers to do the

work. The result was utilization of existing idle compute resources on a network,

either private or public (the Internet), and distributing and coordinating work,

thus yielding a seemingly limitless compute backbone for little to no financial cost.

As grid computing gains favor in commercial industry, further advances are

being made to continue to evolve both the compute and data grids. Early problems

involved large static data sets. As commercial applications have come online (via

SOA), the data sets are becoming more dynamic in nature, thus requiring an evol-

ution in data grid and distributed data management in grid.

Resource Provisioning. Resource provisioning, or data center automation,

addresses issues for lowering the cost of administration of data centers by auto-

mating the mundane, manual-labor tasks found in most data centers. Tasks such

as software installation and machine configuration can be automated, thus reducing

cost of administration, improving the consistency of server profiles, and increasing

data center uptime or reliability. Spinoff benefits include further cost savings from

leveraging idle systems by reprovisioning them on the basis of usage demand.

Web Services. The evolution of SOA and Web Services has been discussed. The

benefits of SOA via Web Services are

. Improved return on investment (ROI) via

Lower infrastructure and operations costs

Development focused on business problems, not service delivery

. Reliability due to

Better quality assurance testing

Improved service maintainability

Improved service uptime

. Opening up business to a new and broader customer base

Business

Things always happen for a reason. But sometimes it can be difficult to see what

those reasons are. For those who have lived through the technology and Internet

boom of the late 1990s and seen the bubble burst, it was hard to understand the

difficulties in the economic climate that occurred in the years that followed. Now

that we have gotten past this, we can see that without the boom and bust of that

bubble, the economic and business climate would not have existed to promote the

elevated interest in grid computing and SOA that we are experiencing today.
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If grid computing and SOA only provided a better and faster way to run appli-

cations, no one would be interested. The interest in grid computing and SOA is due

to their collective financial benefits and their ability to address the climate that

exists in business today, of tight fiscal spending and continued pursuit of ways to

control costs and operational expenses. The added bonus of grid computing and

SOA is that they both offer an improved way of running current business applications

while offering an avenue for creating new business opportunities using a technology

that is not bleeding-edge. None of these technologies is new.They have been explored

and tested, and have been running in a production environment for many years. As

such, the business—the CIOs, CTOs, and CFOs—do not view them as experimental.

Rather, they see this as an application of an existing technology that can be quickly

leveraged to put together IT infrastructures that not only support current business

and promote new business but also reduce long-term operational costs.

It also becomes apparent to the business that widespread adoption of a SOA,

implemented using Web Services and grid technology, fundamentally changes the

way in which data centers are operated, moving them away from the dedicated

silo-based structures that they are today to assume the appearance of a factory. As

services are used by a growing number of customers—both internal or external—

the price that can be charged for those services and the costs to the manufacturer

begin to follow basic economic principles of supply and demand. It would not be

economically feasible to deliver services given the current silo-based structure of

the data center; it is not economically feasible to run a factory when your equipment

is only 30% utilized. Grid technology addresses issues of delivery of service and

economic costs by allowing data centers to run at efficiency/capacity rates of

50%, 60%, 70%, and higher using commoditized hardware components. Provision-

ing software allows the shift of physical resource to meet a service need when

the demand now dictates. Below, we will discuss the business fundamentals of

this paradigm shift in computing and tie them to the basic economic principles of

supply and demand—in other words, market dynamics. In addition, we will see

how this shift can leverage the same tried-and-true economic and engineering

principles that govern utilities such as telephone companies to transform the silo-

based data center into a compute utility service.

World Events

The third element in the “perfect storm” we described above is represented by the

world events occurring during this same post-bubble-burst time period. We have

seen a new war on terror, which is forcing an unprecedented level of communication

and information sharing between the various law enforcement and intelligence

agencies, and the judicial communities. It becoming apparent that the most import-

ant weapons we have in this war are information collected from a wide range of

sources and the ability to analyze and correlate the data as quickly as possible. It

is also part of the as-yet uneffected offense. How to foster this level of information

sharing has become a driving factor in the advancement of grid computing, data grid,

and SOA among the various government agencies fighting this war.
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This same thirst for information sharing is being driven elsewhere by investi-

gations relating to the seemingly endless series of corporate scandals afflicting

American business. In this case, rather than tracking terrorists’ movements or the

diversion of illicit funds through money laundering schemes, law enforcement

officials, and regulators are joining forces to share information on the timing of

stockmarket trades, emails, and telephone calls.

In both cases, grid computing, data grid, and SOA have a role to play in achieving

the level of interagency communications required to deal with the threat at hand.

ENTER BASIC SUPPLY–DEMAND ECONOMICS

In the movie Trading Places, an elaborate plot by Randolph and Mortimer Duke to

corner the frozen orange juice market was foiled by Billy Ray Valentine and Louis

Winthorpe III once they “acquired” the farm reports from Clarence Beeks. How did

this happen?

1. The true farm reports stated a “good” or abundant supply of oranges.

2. Valentine and Winthorpe gave the Dukes a false report stating the opposite: a

bad orange crop, thus a shortage of oranges.

3. The Dukes having the farm report in advance of the government announcing it

to the public ( just a few SEC rules were broken here alone), went on a buying

spree to purchase as much of the available orange crop at a low price, knowing

that once the shortage was announced, their orange crop holdings would be

worth more that what they paid for them.

4. This caused a feeding frenzy that caused others to “follow” the Dukes’ lead of

buying the orange crop. The result of all this buying caused the price to rise.

5. Valentine and Winthorpe, knowing the content of the true farm report, sold

orange crops at what was becoming an artificially high price due to all the

Dukes (and others’) buying. Technically, they were “selling short,” selling

something that they did not own, knowing that at some point in the future

they would have to deliver the oranges they sold. They were not worried,

for they knew that soon they would have all the orange crops they would

need to meet these commitments.

6. Once the government announced an abundance of oranges, the value of the

orange crops decreased; therefore the price started to go down as well.

7. As the price went down, Valentine and Winthorpe started buying back the

same orange crops they had just sold but now at a much lower price. Buy

low and sell high, and you make a profit.

8. The Dukes bought high and sold low, so they lost a lot of money (not to

mention all the legal trouble they were in for insider trading).

Service-oriented economies follow the basic economic principles of supply and

demand. Service-oriented architectures produce “business services” or product for
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anyone who desires them (consumers). The ability to supply a quality service to the

customer will determine customer demand for the service.

In the example presented above, a supply of a product or service that falls short of

demand forces the price up. This is what the Dukes were led to believe by the false

report. So, no matter what price they bought the orange crops at, once the public

knew of a supply shortage, the prices would rise even further, thus allowing them

to sell at the higher price. But Valentine and Winthorpe knew that the opposite

was true: an excess supply of oranges. In this case, oranges in excess of demand

will force the fair market or equilibrium price down. The end result was that the

Dukes lost money by buying high and selling low, while Valentine and Winthorpe

made a profit by buying low and selling high.

Supply–Demand 101: Vocabulary

. Desire refers to people’s willingness to own a good.

. Demand is the amount of a good that consumers are willing and able to buy at a

given price.

. Utility is the satisfaction people get from consuming (using) a good or a service.

. Supply is the amount of a good that producers are willing and able to sell at a

given price.

Figure 3.3 shows that “excess supply” forces the equilibrium price (P�) down
while “excess demand” forces the equilibrium price up. In a market economy,

whether the product is oranges or billing systems, the ability of the producer to

meet the market demand will determine the value of the product.

Price

Quantity

Excess supply

Excess demand

S Demand

D

Q*

P*

Supply

Figure 3.3. Basic supply–demand economics.
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Service-oriented architectures, when successful, will package a product in such

a fashion that renders it palatable or of a sufficiently high “utility” to encourage

consumers to purchase the product rather that produce it themselves. As service

offerings to customers increase, a true market economy will emerge that will be

driven by the basic economic principles that guide a free-market economy.

As evidenced by Randolph and Mortimer Duke, the price of a product or service

is determined in part by the ability to supply the product to the market. If the cost is

too high, the size of the market is limited only to those who can afford to pay the

higher price. There is little difference between a late winter frost destroying the

orange crops, causing a supply shortage and a silo-based data center incapable of

producing a quality service at a sufficient quantity and reasonable cost. Data centers

need to run more efficiently to produce a quality product/service at a market cost

indicated by the convergence of the supply/demand curves.

Distributed computing technology (compute grid, data grid, networking, provi-

sioning, etc.) is an enabler that offers service-oriented architectures and shifts the

operations of a data center from a custom “silo per product” offering to a factory

producing quality product at affordable prices. The methods to do this are not

new, for the telephone and electricity companies produce their respective products

and distribute them across vast networks of devices to a broad consumer base. The

quality of service is judged on ease of access, availability on demand, cost, and

responsiveness to correct supply outages. Information technology can, via the evol-

utionary state of distributed computing, apply the tried and true principles of Shannon,

Weiner, and others to transform the data center into a “compute utility service.”

FUNDAMENTAL SHIFT IN COMPUTING

Technical communications in the latter half of the twentieth century were a function

of computing innovation. Historically, communications relied on improvements in

switching and resource allocation technologies. Switching technologies, in turn,

have depended on the evolution of computing capabilities. This symbiotic equation,

linking communications and computing, has become particularly important in the

present environment of service-oriented architectures.

Today, a significant increase in computing power is driving a fundamental para-

digm shift in technical communication.6 The evolution of technical communication

and its present-day drivers all point to a convergence point, a paradigm shift. This

shift stands on the shoulders of history but also satisfies the elasticity, fungibility,

granularity, and dependability needs of SOA. The shift is toward Service-Oriented

Network Architecture (SONA). SONA is characterized as an overlay network, of

Internet scale. It is architected to take advantage of virtualized hardware and

policy-based dynamic resource allocation. It is multipurpose, and can be thought

of as a learning system through its use of a continuous feedback loop for service

improvements. The implementation of SONA is a nexus of grid computing and

Web Services. We will discuss SONA and its relationship to grid computing and

Web Services in Chapter 20 of this book.
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4
PARALLEL GRID PLANES

USING ART TO DESCRIBE LIFE: GRID IS THE BORG

For anyone who has seen Star Trek—the Next Generation, grid computing can be

described using a very simple analogy: Grid is the Borg. For anyone who has not,

the Borg is an evil race of half-men, half-machines who terrorize the stars of the

television/movie series, and are now an attraction at a Las Vegas casino.

The Borg displays all the characteristics of grid computing: the roles of its two

most fundamental components, and how these components must exist in harmony

in order for any grid environment to succeed.

I do not want to give the impression that grid computing is going to evolve into a

consciousness that will take over and dominate humankind. System administrators

are not going to be assimilated into the grid “Collective” and become part

human/part machine drones that recharge while standing up in “regeneration

chambers.” Grid computing is a positive development for information technology

and the businesses that will embrace to create flexible compute backbones and even-

tually utility services.

The Borg is a race of humanoids that are enhanced with machine (cybernetic)

implants that are melded together so that flesh and machine form a single being.

This melding did not stop at the physical but also extended to the consciousness.

The person’s uniqueness was blended into a collective mind—“the Collective” or

“hive”—so that the Collective’s consciousness comprised all the experiences and

knowledge of the entire species that was assimilated.
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The Borg’s social environment is very similar to a bee’s or an ant’s, where there

are many drones, these biomechanical organisms. In the Borg society, the drones are

. Large in number.

. Replicable; when a drone is wounded or killed, there is always another right

behind it to take its place.

. Capable of performing any task given to them by the Collective.

The Collective, meanwhile, knows implicitly:

. Where all the drones are.

. What the drones are doing.

. What tasks the drones are capable of performing.

. What tasks need to be performed (something to fix, defense against an

intruder, etc.).

The Collective, given this information, would assign the best available drone to per-

form the required task. The most obvious example of this is when one Borg drone is

recharging in a regeneration chamber when it would suddenly wake up and go do

something. In this analogy, the Collective’s role is played by the compute grid

plane: management of resources and the distribution of tasks to the best possible

resource to do the work.

The Borg, as a race, assimilates other races to proliferate itself. Borg assimilation

is the absorption of the experiences and knowledge of the individual and the race.

When a human was captured by Borgs, probes were plunged into the neck of the

victim, who would be transformed into a Borg drone, and the victim’s knowledge

and experiences would be transferred into the Collective. Once the victim’s knowl-

edge is assimilated, then every Borg drone, nomatter where theywere in the universe,

would immediately become aware of the new data now held by the Collective. This

process of taking data and sharing and distributing them across all the nodes, no

matter where they were, is paralleled by the data grid plane.

Any environment where many machines coordinate and synchronize tasks needs

to organize the computer and the data resources. The Borg example offers an insight-

ful way to visualize these two halves of the grid equation and how they must interact

to become an effective, unified unit. If the Borg were merely the compute grid plane,

it would simply be a mindless machine that fell far short of its potential. And so, any

grid environment without the inclusion of smart and efficient data management will

not be effective and will never reach its full potential.

GRID PLANES

Physically, grid computing involves using large numbers of computers, arranged

as clusters and connected via a network, that are controlled using efficient task
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management techniques. Typically, this results in an infrastructure capable of tasks

ranging from the small to computational problems too large for a single server or

even supercomputer to handle. But it is also important to broaden our view of

grid computing beyond the physical compute resource, compute cycles and network,

and the coordination of tasks, as represented by the compute grid. The compute grid

is merely half of any grid environment. To view grid in its entirety, it is essential to

consider data management within the grid: the so-called data grid.

In any grid computing environment (see Figure 4.1), how to address data man-

agement is essential to realizing the grid’s full potential. Grid topology is a funda-

mentally different from the topology of the current standard computing model,

client/server. It is this difference that will force new thinking on how best to

manage data within the grid. Traditional data management techniques were not

designed for the highly distributed physical grid topology and therefore are not

best suited to realizing its full potential.

Grid represents a paradigm shift in how we view computing, leading to the birth

of new compute utility services and applications that are possible only within a

complete grid computing paradigm consisting of both compute and data grids.

Compute Grids

Compute grids form a high-performance computer in a topology very different

from that of today’s typical compute backbone, with communities of hundreds or

thousands of computers that

. Tap underutilized computers in an enterprise

. Create “compute farms”

. Share enterprise resources

. Perform tasks orchestrated across the grid as if it were one virtual machine

Grid computing environment

Compute grid plane

Data grid plane

Figure 4.1. The complete grid computing environment.
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The standards body Globus has evolved as the center of the grid computing

community and the driver of a “reference platform.” The Globus toolkit provides

a reference platform for the implementation of Grid networks. It includes standard

protocols, as well as libraries for resource discovery, management, and distribution.

Most grid implantations have their own toolkit and protocol, which follow the

Globus standard, and enhance it to support, in most cases proprietary resource

allocation, data distribution, and quality-of-service (QoS) models.

Currently, the Globus community is developing a standard Open Grid Services

Architecture (OGSA), based on Web Services, allowing for the introduction of a

variety of vertical services for the support of financial, commercial, and life science

grid applications. Grid is now in its third generation:

. First-generation implementations of grids were highly oriented around jobs and

job scheduling across clusters of distributed Unix platforms.

. Second-generation implementations tended to be based on the P2P computing

model for managing jobs across both Unix and Intel platforms. P2P models

were driven into the limelight by Internet-based efforts to solve complex life

sciences as well as extraterrestrial signal processing problems.

. Third-generation implementations, in their infancy now, have evolved beyond

the P2P platform to enable true, guaranteed distributed computing, are more

similar to distributed computing environments, and as such include basic

services such as directory, reliability, and security.

Globus is establishing specifications for third-generation grid. This organiz-

ation’s members include universities and major grid vendors.

For a more in-depth discussion of computational grids, please see the white paper

by Foster et al.7

Data Grids

Grids evolved to address highly parallelizable problems in the scientific community.

These problems typically involved computational processing of large data sets

(static in nature, stored as files) to derive result sets. The data sets are made available

to the grid nodes via an FTP-like process. The current Globus reference architecture

includes a service called GridFTP that addresses the distribution of static data

throughout a grid.

As grid computing is adopted in the commercial community, the problem sets

that it must support broaden beyond the traditional-use case. Most commercial

applications rely on a combination of static, derived, and real-time data to perform

their business functions. For example, a typical portfolio pricing applications are

state machines tying together dynamic and static data sets that originate from

various sources, each with its own access and performance characteristics.

Current grid technology provides the capability to create a compute grid plane

for the distribution of tasks. It does not, however, address data distribution and
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management. Rudimentary implantations of data grids attempt to address the issues

of real-time distribution and caching of nonstatic data. However, they do not take

into consideration data management. Examples such as data passing through a

variety of ad hoc mechanisms, including arguments, databases, and flat files, limit

grid implementations in two ways:

. Data available only centrally to a grid become a performance bottleneck.

. Grid nodes cannot efficiently cooperate and thus can address only problems that

do not require coordination.

To address the requirements of the new grid topology, more sophisticated

methods of data distribution—and, more importantly, data management—are

needed for a reliable, transactional, and real-time data grid plane. This need is

evident when taking a closer look into what is meant by a data grid and its require-

ment to easily manage disparate, large, and complex data sets.

COMPUTE AND DATA GRIDS—PARALLEL PLANES

The compute grid can be viewed as a two-dimensional plane—like the surface of a

table—that encompasses the physical machines that can reside within a data center,

or across a local network or a WAN (wide-area network) that spans multiple data

centers. This two-dimensional plane is called the “compute grid plane,” with an

individual machine in the compute grid termed a “compute node” or simply a

“node.” The logical grouping of the physical compute nodes in the compute

grid plane is flexible, according to the architect’s preference. Possible logical group-

ings are by data center (e.g., New York, London, and Tokyo), by physical provision-

ing of machines, independent of location, or by any other view that best meets

the needs of the architect, developer, or operations manager. The compute grid

plane manages its compute nodes and the coordination of tasks to the best available

compute node.

The data grid is also viewed as a two-dimensional plane called the data grid

plane. Physically, the data grid plane spans all the nodes within the compute grid

plane. The data grid plane provides a completely separate function for the compute

grid plane by addressing the distribution and management of data between the

nodes. A piece of data can physically reside on any one or on multiple nodes in

the data grid plane.

Individually, the compute grid plane the data grid plane respectively provide

unique service and function. Only when these two planes work together does the

whole equal more than the sum of the two parts. One way to visualize these

planes and how they functioned together is to view them as parallel to each other.

Placing the compute and data grid planes in parallel, as if to stack one on top of

the other, reinforces the view of one physical world split into two functionally separ-

ate and parallel planes. The interconnections between the two parallel planes are like
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electrons flowing between the two plates of the capacitor. The compute grid plane

draws on the information in the data grid plane, while the data grid plane draws on

the physical resources of the machines that constitute the compute grid plane.

Figure 4.2 depicts these two planes and the interconnections conducting the flow

of information and resources between them.

TRUE GRID MUST INCLUDE DATA MANAGEMENT

At the most fundamental level, the data grid plane is a set of functionality that has

become expected in today’s client/server environments. It also addresses the new

data management issues in a grid topology so as to facilitate transparent access of

shared data across a grid. The plane provides both a localized and a distributed cach-

ing function to support intranode and internode collaboration. The compute grid

plane utilizes the APIs provided by the data grid plane to enable this collaboration.

Basic Data Management Requirements

Coordinating the Compute and Data Grid Planes. The grid, as a whole, functions

well with the simplest flow of application data from the data grid plane to the com-

pute grid plane. However, there are additional areas of coordination between these

two planes that can greatly enhance the performance as well as function of the grid.

This is accomplished by allowing the task and resource management functions of the

Compute grid plane

Data grid plane

Data node

Compute node

Interaction and flow of
information between the

two planes

Figure 4.2. Parallel compute and data grid planes.
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compute grid plane to have access to some of the underlying and most fundamental

workings of the data grid plane.

Sharing data distribution and location information of the data grid plane with

the resource and task management logic of the compute grid plane enables the

grid environment as a whole to function at a much higher level than it would

otherwise. This leveraging of sharing data locality with the task and distribution

functions is a concept known as data affinity, which will be discussed later in

this book.

Data Surfaces in a Data Grid Plane. The data grid plane is viewed as a two-

dimensional plane with the individual data elements as nodes that can logically

reside at any point in the plane. If the location of the data is defined using X and

Y coordinates, you can quickly view the data contained within the data plane. A

third coordinate, Z, gives us a three-dimensional surface, where the X and Y axes

indicate the location of the data node and the Z axis indicates the data point residing

on each node. Figure 4.3 shows the data grid plane in the X–Y axis as a two-

dimensional surface R and the data contained in the nodes of the data grid plane

as a surface that extends into the third dimension or Z axis. This three-dimensional

view of a data surfaces is very helpful because for the first time we can see data

transition through its processing lifecycle. You can see these data surfaces build

as the compute processes create, access, and change the data points.

Once a three-dimensional view is established, it is easy to extend it to an

N-dimensional data space. The three-dimensional space is created as a single

point by each data point within this data grid plane. To go beyond a three-

dimensional view, each data point can vector off into another set of data points or

collection of data points.

X

Y

Z

R

Figure 4.3. Data surface in a data grid plane.
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Evolving the Data Grid

The rudimentary implantations of a data grid plane attempt to address data distri-

bution. But they fall short of some the grid-specific data management requirements.

Examples of this are

. Data Passing with Task. This is similar to a programmatic function call, where

data are passed in as arguments and data are returned as the function return

argument. This implies such mechanics as marshaling and unmarshaling for

both in and return data passing.

. Localized Caching of Parameters. This is the next step beyond data passing with

task, aimed at reducing data transport/marshaling overhead. Once a piece of data

is moved with the task, a copy of it is kept locally on the node that performs the

task. Thus, for future tasks requiring the same data sets, it is already there. This

method does nothing for data consistency across nodes and the data source.

. Data Pulling by a Task. When a task is distributed to a node and the data are not

locally cached, then the data sets are requested by some central data manager.

This method does nothing for data consistency across nodes and the data source.

. Traditional Data Management Techniques. These are not designed for grid

environments and thus have inherent data access bottlenecks as the physical

size and complexity of task increase on the grid.

Therefore, new architectures for the data grid plane are required to support data

management with a perspective on a fully distributed compute environment that is

the grid. Some features and functions to be supported by data grid plane architecture are

. Support traditional data management features

Queries

Transactionality

Support high-ordered data structures, such as tables, arrays, and matrices

. Support grid-related data management issues

Data regionalization

Data synchronization both within and between data regions

Data distribution with data regions

Data transactionality for within a data region and with external data grid data

sources

Fault tolerance and high availability

Others

. Match a compute grid’s functionality

Dependability on a massive scale

Consistency across heterogeneous data sources

Pervasiveness on a massive scale
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Security on a massive scale

Inexpensive

Offer varying levels of service

. Enhance a compute grid’s functionality

Influence scheduling based on data locality

Enable task/grid migration

Enable legacy integration

Enable vertical extensions for common industry problems

Enable interactivity
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5
SCALING IN THE GRID TOPOLOGY

In this chapter we will discuss the various levels of data management within the grid

and its enabling role in allowing the grid topology to scale to its full potential. We

will start with the evolution of data management within the grid and investigate the

various implementations of the data grids that are in place today as well as those cur-

rently emerging.

EVOLUTION IN DATA MANAGEMENT

It is important to acknowledge the long and rich history of data management and

give credit to those who have applied the science of mathematics to computers,

catapulting their use into our everyday lives. I have a personal appreciation of

APL and its application of mathematic expressions applied to data. APL’s math-

ematic programming language reveals its beauty to the mathematicians and its

complexity to the nonmathematicians.

The evolution of computer science can be charted by the growth of data manage-

ment techniques and products. Initially, the mainframe and mini-computers utilized

APL, network databases and hierarchical architecture. Today, client/servers are

heavily in use and rely on both relational and object databases. The emerging

technology for distributed computing relies on in-memory as well as relational

databases.

For our discussions, I am choosing the client/server architecture as a baseline for
establishing an understanding to distributed computing because of its widespread
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use in industry. This allows us to draw on the common knowledge among managers,

architects, and developers, and to leverage that knowledge so as to describe the data

management needs within the grid topology.

Data management in a grid topology must provide the same QoS levels that are

provided within a relational database. Only by maintaining the same QoS levels that

are commonplace in today’s environment can the widespread adoption of the grid

succeed.

Client/Server Evolution

In the late 1980s and early 1990s, client/server technology began to gain wide

acceptance. This change in compute topology, a change from mainframes and mini-

computers to a more distributed environment—where the separation of a program

functions was made between “service” as a separate execution program, a “server,”

and the business “client”—started to usher in the need for relational data management

systems. Relational database technology matured during the 1970s and 1980s, with

the emergence of such companies as Oracle, Sybase, and IBM introducing the

concept of relational database technology with it’s DB2 product. These companies

positioned themselves to take advantage of the paradigm shift toward client/server
topology. They offered training and educational seminars, at which attendees

explored client/server computing as a possible architecture for new projects. The

seminars would introduce relational database and data management systems.

Some of the most common questions centered by the attendees’ frame of reference

were efficient file and disk management, with substantially less focus on accessing

data via something well known today as Structured Query Language (SQL).

Typically, the follow-up to a seminar consisted of training classes in relational

database technology and SQL, perhaps 2, 3, or 5 days in length, with “hands on”

labs that emphasized the database structures that included tables, rows, indices,

and the like, as well as how to structure a query and how to utilize a stored

procedure.

As more projects began to migrate to client/server topology, the importance of

data management rose to the surface, which was well deserved. Issues such as

how to structure the database both to support the business data and gain maximum

performance began to receive more attention, while file and disk management lost

focus. Specialists in relational data management quickly focused on system

performance optimization, and how to provide the proper tools and methods to

operate the system. Today, when we talk to the same groups of people who are

now developing in the client/server architecture, their main focus and/or concerns
are less on the engine of the relational database and more on the data manage-

ment features as well as levels of service that these data management systems

provide.

Grid Evolution

Data management within grid computing has evolved with the applications of grid

technology. The earliest applications were complex analysis, often traversing large
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data sets. Examples of this include protein folding, semiconductor manufacturing,

energy exploration research, seismic data analysis, and analysis of DNA sequences

(which is covered in more detail in a later chapter). The data sets for these appli-

cations are normally static in nature; DNA sequences and seismic data, once

recorded, seldom change.

Data management of the static data sets is adequately handled via common data

storage techniques such as file systems. The problem to resolve is how to take the

data stored in files, typically large in size, and move that data to the nodes in the

grid that require the data in order to perform their designated tasks. Most common

methods used today are File Transfer Protocol (FTP) and distributed file systems.

Since these are the first generation of data management tools for the grid—and as

such address the movement of a subset of data type, primarily data sets that are static

in nature—they are considered a level 0 data grid. As the use of grid computing

expands to support increasing fields of work and businesses, dynamic data sets

become a more common problem that needs to be solved. Therefore, the level 0

data grids, which work well for static data, will not work and scale for data sets

that exhibit dynamic behavioral properties.

New data management techniques and infrastructures are required to address the

dynamic data sets within the grid environment. These level 1 data grids, unlike

the level 0 data grid, take into account both static and dynamic data sets and address

the unique data management issues posed when data are to be managed in the highly

distributed compute environments of the grid.

DIFFERENT IMPLEMENTATIONS OF A DATA GRID

Level 0 Data Grids

Level 0 data grids were the earliest to address data requirements in a grid topology.

Their main function is the distribution of large, static data sets to the nodes in the grid.

They do not address data management issues such as updates, transactions, or inte-

gration with external systems, as illustrated by the following academic examples.

The first example is found in the white paper by Chervenak et al.8 as quoted below:

In an increasing number of scientic disciplines, large data collections are emerging as

important community resources. In this paper, we introduce design principles for a data

management architecture called the Data Grid. We describe two basic services that we

believe are fundamental to the design of a data grid, namely, storage systems and

metadata management. Next, we explain how these services can be used to develop

higher-level services for replica management and replica selection. We conclude by

describing our initial implementation of data grid functionality.

Another similar argument is presented in the white paper called by Moore et al.:9

Data grids link distributed, heterogeneous storage resources into a coherent data

management system. From a user perspective, the data grid provides a uniform
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name space across the underlying storage systems, while supporting retrieval and

storage of files. In the high energy physics community, at least six data grids have

been implemented for the storage and distribution of experimental data. Data grids

are also being used to support projects as diverse as digital libraries (National Library

of Medicine Visible Embryo project), federation of multiple astronomy sky surveys

(NSF National Virtual Observatory project), and integration of distributed data sets

(Long Term Ecological Reserve). Data grids also form the core interoperability

mechanisms for creating persistent archives, in which data collections are migrated

to new technologies over time. The ability to provide a uniform name space across

multiple administration domains is becoming a critical component of national-scale,

collaborative projects.

FTP in Grid. The File Transfer Protocol (FTP) is one of the most widely used

protocols for the movement of files across a network. It is amazing that it remains

in heavy use even in today’s technology advanced society. Therefore, it is an

obvious choice for data movement within a grid environment. The standards body

Globus is investigating the use of FTP as the data transfer protocol for a data grid

implementation, termed GridFTP.

In Chapter 1, in the section entitled “Leveling the Playing Field of Buzzword

Mania,” an allusion was made between the relational database and the data grids

to establish a common vocabulary. Each contains an engine that establishes a data

transfer protocol to manage the process of how the bits and bytes of data are

moved at the physical level. A close look at GridFTP shows it as a data transfer

protocol; therefore, applying our definition, GridFTP is an engine in the larger pic-

ture of data management within the grid. It does not address the data management

techniques of transactions, distribution, synchronization, or querying of data.

GridFTP, as a protocol engine, is a good choice for static data sets. It allows data

to be transferred between nodes but does not address data management beyond data

movement. Since it is based on the common used FTP, it is a common protocol that

is well proven and works well. There is no need to reinvent something for managing

the distribution of files across many machines in the network. The Globus effort

describes how to take FTP as the file transfer protocol and extend it to support

issues such as security, stripping of data in parallel with data transfers, and automatic

negotiation of TCP/IP (Transmission Control Protocol/Internet Protocol) buffers
and window sizes. These are all part of the protocol for moving the data reliably

across the grid. For additional reading on GridFTP, please refer to the papers by

Allcock et al.10 and the Globus Project.11

The physical architecture of the FTP protocol requires a central server to manage

the FTP requests and the movement of data. Therefore, if a machine is to make

public its files through the FTP protocol, that machine must be running a FTP

server; thus, any machine requesting data must be a FTP client. The respective

FTP libraries and processes must be running on both the client and server machines

in order for the FTP process to work properly. This is a client/server paradigm with

both FTP servers and clients. One key feature of FTP is that each source of data is

its own server, and the client must know where that data reside on the network in

order to access them.
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Distributed Filing Systems. Similar to GridFTP, a distributed file system is a way

to manage the distribution of files across a network. From the user’s perspective, a

distributed file system is a common filing system with a directory tree structure.

However, although the branches of the trees appear to be sourced from one filing

system, in reality, the files can physically reside on different machines on the net-

work making it virtually one file system to the end user. For example, the files in

branch A may physically reside in one machine while files in branch B physically

reside on another machine, and so on. The user who is changing directories from

branch A to branch B will not realize that the data are actually been served from

different machines on the network.

The architecture of a distributed file system is server-based; a server manages

the mapping of the disparate physical file systems into a logical, unified file

system. As the user of the distributed file system, the client in this case, traverses

the tree structure, client requests are made to the server, which in turn negotiates

with the true sources of data and pulls the data back to the client in the common

directory tree view.

Similar to the GridFTP, a distributed file system has the following characteristics:

. An effective method to distribute data across the grid for data sets that are static

. A protocol for data movement

. An engine for the mechanics of distributing bits and bytes across many

machines

. Inability to resolve the data management issues of transactions, synchroniza-

tion, integration, and querying of data

Distributed filing systems differ from GridFTP in that the server in distributed

filing systems provides a common and logical view of the data. Therefore, a

client requesting data does not need to know where the data physically reside. A

distributed file system is not like the GridFTP, where the FTP client must know

the physical location of data across the network.

An example of a distributed filing system is CODA, “a file system for a large-

scale distributed computing environment composed of Unix workstations. It

provides resiliency to server and network failures through the use of two distinct

but complementary mechanisms. One mechanism, server replication, involves

storing copies of a file at multiple servers. The other mechanism, disconnected oper-

ation, is a mode of execution in which a caching site temporarily assumes the role of

a replication site.”12

Faster Servers. One of the fastest paths to maintaining quality of service for true

data management within the grid is to leverage the traditional data management

techniques of client/server by leveraging existing relational databases and interfa-

cing them into the grid. This works well for smaller grid implementations, where

the numbers of CPUs are relatively low. However, scaling becomes an issue as

the size of the grid increases, thus increasing in the number of CPUs. It is important
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to note that the grid nodes are required to know that they must connect to the data-

base in order to query and transact on the data.

The traditional relational database companies, in an effort to support larger

grid environments, will take steps to increase the performance of their engines.

However, as described in an earlier chapter, the physical differences between

client/server and grid topologies will not allow the efficient application of data

management architecture for one topology to be applied to another topology.

Technology that was designed, implemented, and tuned for client/server appli-

cations will not scale well within the highly distributed computing environment

of the grid.

Metadata Hubs and Distributed Data Integration. Metadata hubs facilitate the

integration of data from various sources and formats the data into a structure that

is consistent with the format of the receiving application that is requesting or query-

ing the data. This is a layer of abstraction required between the business application

and the data source so as to encapsulate the complexities of the mechanical process

of connecting, retrieving, and transforming data, making it possible to access and

correlate data that otherwise would not be available.

Efforts to bring this concept to the data grid are described in a white paper by

Foster et al.13 The paper discusses the mechanisms for delivering such a distributed

data integration platform and introduces an example of such a prototype system,

known as Chimera, in which some of the virtual data grid concepts are

implemented.13 Commercial implementations of a metadata hub are available

from Avaki. Their version 5.0 product claims to deliver data from multiple data

sources through a single service.14

Level 1 Data Grids

Level 1 data grids support data sets that are dynamic in nature: data sets that change

daily, hourly, minute-to-minute, second-to-second, or at any other intervals. Level 1

data grids address the distribution of and the ready access to data across the many

nodes of the compute grid. They supply, among other things

. Access methods

. Management methods

. Transactional methods

. Synchronization methods

In this book, I will discuss the various data management policies that are compa-

tible with level 1 data grids. The engines that support level 1 data grids are readily

available today. These engines and the data management products built with them

supply some of the data management features required for grid computing. Some

examples include JavaSpaces and projects such as OpenStore and OpenMP.

OpenMP has existed in the industry for a number of years. However, it is not
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directed toward solving data management in the grid computing space. Rather,

OpenMP addresses multithreaded applications across clusters and how to manage

interactive data across the clusters. There is a similarity between OpenMP’s

distributed memory model of data access and that of a level 1 data grid. Finally, I

will close with a use case of a level 1 data grid product from Integrasoft,

called the Integrasoft Grid Fabric (IGF), designed from its inception as a level 1

data grid.

Foundations. I will look at three basic technologies for providing level 1 data grids:

JavaSpaces, global replication of data across the grid, and distributed memory. I am

not implying that these are the only ways of a providing a level 1 data grid. However,

these are the technologies currently leveraged to supply level 1 data grids. I will

asses each of the three solutions to determine how they meet the requirements

imposed by a level 1 data grid.

JavaSpaces. JavaSpaces has its roots in the Linda project developed by Dr. David

Gelernter,15 in which persistent stores (tuples), combined with simple operations,

can easily and effectively address distributed problems that, if using conventional

middleware techniques (messaging and invoking methods over networks), would

be significantly more complex. Where middleware techniques involve message or

transactional passing of data and remote method/object invocation across networks,
JavaSpaces creates a shared memory environment that not only exchanges

information between distributed processes but is also a vehicle for distributed

processes to coordinate operations and tasks with each other. I will illustrate that

JavaSpaces exhibits some distributed data management features as well as attempt

to address some of the requirements of a compute grid.

A process can “write” to and “read” from a JavaSpace, but it cannot modify an

object while it is in a JavaSpace. For an object to be modified, it must first be

removed from the space, changed, and then put back into the space. The read oper-

ation makes a “local copy” of the object to the reading process. This implies that not

only can data be read from the space, but since the reading process has its own “local

copy” of the object, the object’s methods can be invoked by the process. This is

where JavaSpaces begins to blend compute and data grid features. In addition to

shared memory and computational invocation of objects, additional properties of

JavaSpaces include

. Persistence. An object read into a JavaSpace is persistent in the space until it is

removed. There are several ways to remove an object, either explicitly or

through a “leasing” process.

. Transactions. Operations into and out of the space, as well as those where

spaces interact with each other are transactional.

. Query. JavaSpaces supports a filtering or associative lookup mechanism where

queries can be made to the space on the basis of a filter or template; the space

will return objects that meet that filtered criteria.
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JavaSpaces as a Data Grid. JavaSpaces exhibits some of the properties of a

distributed data management system:

. Shared access of data across a network of machines

. Persistence

. Transactions

However, since JavaSpaces shares “objects,” it shares the data attributes of the

object and its executable methods, thus exhibiting the other properties of a compute

grid as well. Finally, JavaSpaces is just that: Java. Distributed applications that do

not support Java cannot participate without gyrations of interfaces and bridges

into the space.

Global Replication. Global replication is a process of providing distributed and dur-

able storage of data across a large grid of computers. One such system is the Ocean-

Store project.16 Data objects are distributed and stored locally on the nodes of the

grid. OceanStore’s storage and replication algorithms are such that they ensure

strong consistency among the object replicas. However, realizing that not all appli-

cations will have the same requirement for strong consistency and fault tolerance,

global replication also allows applications to move to a weaker consistency policy

that will boost performance.

One of OceanStore’s more interesting aspects is its ability to manage data affi-

nity, the ability to move data to the nodes that most frequently use these data, keep-

ing them cached locally to that node and thus reducing network traffic and increasing

overall performance. OceanStore analyzes usage patterns of data and migrates the

data to areas or nodes where they are frequently used. Data affinity of objects also

reduces the time needed to find objects, caching objects either at or near—as defined

by the number of local network hops—the local node that much more quickly, thus

reducing the latency time of locating an object.

However, like JavaSpaces, the global replication method is currently being proto-

typed only in Java, thus introducing the issues of integrating non-Java applications.

Distributed Memory. Distributed and shared memory is an effective mechanism for

building a data grid. OpenMP, although not designed for grid computing, is designed

for the splitting of large processing loops into smaller bits of work in a multi-

threaded, multiprocessor environment.17 It also creates a distributed memory

space to eliminate the use of traditional network communication methods and mid-

dleware to allow the threads to share data. Sounds a lot like grid computing, or does

it? I will examine some of the properties of OpenMP and its parallels to grid com-

puting, to determine the benefits of a distributed memory data grid engine.

Some of the features of OpenMP are as follows:

. It is compiler-based. Any program using the OpenMP API (Application

Program Interface) set must compiled with these APIs in order to take
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advantage of the benefits it provides. Current OpenMP APIs supports only for

C/Cþþ and FORTRAN programming languages.

. It is thread-based. A master thread forks (or splits) into “child” threads, each

with its own environment that include process and memory space in the

“shared multiprocessor” (SMP) environment.

. It creates a shared memory space among the threads so that data among threads

can be shared at either a coarse or fine granular level, where fine granularity is

defined as one set of instructions (thread) operating on multiple pieces of data

and coarse granularity, where multiple code segments run concurrently across

multiple processors.

. Its distributed memory for data sharing eliminates the overhead of traditional

message passing (which, designed for client/server topologies, does not trans-
late well to applications running on scalable systems with a globally addressa-

ble distributed memory space) between threads, thus yielding

Dynamic threading, adding and removing threads dynamically as required

Dynamic load balancing, where load distribution is performed during run-

time automatically

Application parallelization options and incremental levels of parallelization

. ANSI, which is an industry standard yielding single source portability for

shared memory parallelism. Members of the OpenMP Architecture Review

Board (ARB) include

ASCI program of the U.S. Department of Energy

Compaq

Fujitsu

HP

IBM

Intel

KAI

SGI

Sun

Performance of thread execution, time spent processing within a thread, increases

as the number of compute nodes or processors increases. Depending on the charac-

teristics of the code parallelized, improvements of up to two times can be

expected.18

Reading the OpenMP description on processing and distributed shared

memory, it will sound very similar to descriptions of compute and data grid engines.

In fact, replace terms such as “threads” with “worklets,” which are almost

indistinguishable.

Case Study: Integrasoft Grid Fabric (IGF). The Integrasoft Grid Fabric (IGF) by

the company called Integrasoft (www. integrasoftware.com) has been designed from
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the ground up as a data management system for highly distributed computing

environments such as clusters and the grids. The objective of IGF is to provide an

effective way to manage data, from the user’s perspective, in the grid environ-

ments—the management of fast-moving, transient data and the provision of the

same levels of service that we have become used to with relational database

management systems.

IGF’s engine establishes a distributed memory space that spans the physical

nodes of the grid. Within this space, various levels of data management are applied,

including the ability to create the regions, to transact on the data, to query the data, to

integrate the data from legacy systems, and to provide data affinity. All of these

terms, and more, will be addressed subsequently in this book. IGF brings the data

within its distributed memory space to coexist with the applications that have

been enabled to run within the grid, offering immediate access to the data and

transacting on the data as if the application were working in a client/server environ-
ment, dealing directly with the data sources themselves.

IGF, as a product, is differentiated from JavaSpaces in that

. IGF is not a Java-only solution.

. The long-term persistence of data is defined through policies that the appli-

cation can set with the data grid.

. IGF provides additional distributed data management features not supported in

JavaSpaces.

Like OceanStore, IGF supports data affinity. However, the data affinity support

in IGF extends beyond what the data grid can achieve by itself, by integrating

with the computer grid and feeding the compute grid’s task scheduler with data-

locality-type information.

Integrasoft has a track record for designing systems using distributed compute

architectures and thus is very familiar with the data management requirements of

applications to work effectively in the topology of grid. By working with the user

community in the financial sector, many of the practical issues, such as ease of

use, migration, reuse of existing code, and integration of legacy systems and data,

are integrated into IGF, lowering the barrier of entry to the grid computing and

thus yielding higher acceptance of this new technology.

IGF is one of the first commercially available distributed data management

systems incorporating the data management issues demanded by the grid architec-

ture, providing levels of service similar to that of its relational counterparts. User

community research and feedback is incorporated into the product and presented

in this book in the form of

. Introduction of data management within the grid

. Practical, user-driven interest for its application (see Part III of this book, on

practical applications of grid computing)

. Code examples (see Part IV, “Reference Materials”)

52 SCALING IN THE GRID TOPOLOGY



APPLICATION CHARACTERISTICS FOR GRID

The data grid plane, which originated as a mechanism for distributing files to

compute servers, is undergoing a substantial evolution. The evolution is centered

on the needs of next-generation grid applications, which include integrity and

quality of service for both static and real-time or nonstatic data. Figure 5.1 shows

the current evolution of the data grid plane in relation to the demands of an

application.

One topic frequently discussed throughout this book is the policies for the

management of data in the highly distributed compute environment of the grid.

The various policies, their implementations and effects on data, and the resulting

combinations of the interactions of the policies, will determine the data grid’s effec-

tiveness in supporting the business requirements. There are numerous factors

describing how the interdependencies of application data requirements, data integ-

rity, quality of service (QoS), data dynamics, and application events interact with

D
at

a 
gr

id
 Q

oS

Application complexity
Work
Time
Data

Transactional

Le
ve

l 0
Le

ve
l 1

Batch 
Synchronous
Static data
Nontransactional

Atomic
Synchronous
Static data
Nontransactional

Atomic
Asynchronous
Dynamic data
Nontransactional

Atomic 
Asynchronous
Static data
Nontransactional

Batch 
Synchronous
Static data
Transactional

Atomic
Synchronous
Static data
Transactional

Atomic
Asynchronous
Dynamic data
Transactional

Atomic
Asynchronous
Static data
Transactional

Figure 5.1. Data grid quality of service versus application demand and requirements.
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each other at various levels depending on the complexity of the application.19 I will

define some of the characteristics of an application with respect to the selection of

the various data management policies so as to best meet the application

requirements.

The issue to resolve is how best to represent the parameters describing an

application’s properties and correlate them to the policies for data management in

grid computing. The use of tables, matrices, and graphs is not sufficient to visualize

the various interdependencies, due to the multidimensional relationships that

quickly form between the various parameters of work, data, time, geographic bound-

aries, and complexity of data analysis. The expression of an application’s properties

in mathematical notation is presented below. This method provides a way for us to

clearly and accurately define functional areas of an application and the param-

eterized arguments composing each part of the application. The definition for an

application in a distributed environment can be defined as a function driven by of

other functions as indicated below:

Application(Work( ),Data( ), Time( ),Geography( ),Query( ))

where the following are the driven parameters of the functions:

Work(batch=atomic, synchronous=nonsynchronous)

Data(overallsize, atomicsize, transactional, transient, queryable)

Time(Real-Time,NotReal-Time,NearReal-Time)

Geography(Topology,NetworkBandwidth)

Query(basic, complex)

The functions of this equation are described as follows:

. Work(batch/atomic, synchronous/nonsynchronous). The Work( ) is the appli-

cation processing mode addressing the type of work being performed from a

communication perspective. This indicates whether the application is a single

process (where threading is not relevant) or can be subdivided into atomic

worklets. If it can be subdivided into worklets, is there any coordination

between them? For example, is the execution of one worklet dependent on

the output of other worklets? Is there any synchronization between the

worklets?

. Data(overallsize, atomicsize, transactional, transient, queryable). The Data( )

defines the application data requirements and characters addressing many

questions that require answers from a data perspective. What is the

overall size of the data set over which the application operates? If the appli-

cation consists of atomic worklets, what is the data size over which each work-

let operates? Are the data either within a data region or other systems external

to the data region, or both? Are the data generated and then discarded during

the operation of the application or worklet? Are there any transient data sets?
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Are the data to be queried either for internal purposes or for generating user

reports?

. Time(Real-Time,NotReal-Time,NearReal-Time). The Time( ) defines the

application data requirements from a time perspective, addressing some

questions regarding data availability. What are the timing interactions of the

application with other external systems and events? Does the application con-

sume or produce data in “real time,” or is it purely event-driven? Does the

application require all input data sets to be static before it can run and its

output produced at the completion of its execution—is it “non-real-time”?

Does the application operate on “snapshots” of data that are produced by exter-

nal systems—is the application “near-real-time”?

. Geography(Topology,NetworkBandwidth). The Geography( ) defines the

application in relationship to the network capacity and design. What is the

physical topology of the application’s execution? Is this application targeted

to support a local business unit, or is the business unit geographically distribu-

ted across the enterprise? This will imply how the application and data region

are to be structured within the grid. Geography as it relates to the grid has less to

do with physical distance than with network bandwidth as WANs imply lower

bandwidth than do LAN (local-area networks). However, bandwidth can vary

greatly within a LAN from 10baseT all the way up to infiniband. This, too,

must be taken into consideration.

. Query(basic, complex). The Query( ) defines the application need for data and

the complexity of the type of query that will be associated with the request. If

the data are to be queried, what is the level of complexity of the queries?

Complex queries can be optimized by various data management policies of

the data grid.

I will refer to these definitions associated with application characteristics, par-

ticularly when discussing policies for synchronization and distribution. If the appli-

cation characteristics are taken into account when defining the policies for data

management in the grid, the performance of the overall system will be maximized;

not only for the applications in question but for the overall utilization of the grid in

the larger scope of a compute utility service.

Some examples of how the grid can optimize performance as a compute utility

service are

Monte Carlo Application. A Monte Carlo simulation within a data grid plane

yields many interesting processing efficiencies that are otherwise not realizable.

For example, there are a number of “interim” result surfaces that can be built

atomically on an individual basis. However, some the building of interim results

may be dependent on other interim surfaces being partially or completely built.

Therefore, there is also an element of synchronization of “batch” processing

with regard to when to start building interim surface b only when “X%” of sur-

face a is complete, where the internal processing of both a and b are completely
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atomic and nonsynchronous. The following is a representation of the Monte Carlo

simulation function:

MonteCarloSimulation

Work(W_T1(),W_group1(W_T2(),W_T3()) . . . ,W_Tn( )),

Data_input( ),Data_output( ),Data_S1(), . . .Data_Sk( ),

Time( ),

Geography( )

Query( )

0
BBBBBB@

1
CCCCCCA

where

For the work function, we obtain

W_T1(atomic, nonsynchronous)

W_T2(atomic, nonsynchronous)

W_T3(atomic, nonsynchronous)

W_Tn(atomic, nonsynchronous)

W_group1(batch, synchronous)

For the data functions, we have

Data_input(1 kbit,100 bit, nontransactional, transient, nonqueryable)

Data_output(1 kbit,100 bits, transactional, transient, nonqueryable)

Data_S1(3Gbits,100 bits, nontransactional, transient, queryable)

Data_Sn(3Gbits,100 bits, nontransactional, nontransient, queryable)

For Time( ), Geography( ), and Query( ), we obtain

Time(NearReal-Time)

Geography(DataCenter, 1GbitEthernet)

Query(basic)

The QoS–Monte Carlo application demand graph is shown in Figure 5.2.

An OLAP Application. An online analytical processing (OLAP) application per-

forms the functions of collecting, managing, processing, and presenting multidimen-

sional data for analysis and management purposes. The data grid plane acts as an

information integration plane for OLAP processing of data from a datamart or inte-

gration from various sources. In general, a data grid plane will increase the
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performance of any OLAP process. Depending on the supported QoS levels, the

OLAP process can also increase sophistication of the analysis and provide results

in real time or near real time.

The example below assumes a simple OLAP process that can be broken into

atomic worklets. However, as OLAP processing increases in sophistication, the

Work( ) interactions can increase in degree and dependency as with the Monte

Carlo analysis example.

OLAPProcess

Work_T ,

Data_output( ),Data_S1( ), . . .Data_Sk( ),
Time( ),

Geography( ),

Query( )

0
BBBB@

1
CCCCA

where, for the work function:

Work_T(atomic, nonsynchronous)

D
at

a 
gr

id
 Q

oS

Application complexity
Work
Time
Data

Transactional

Le
ve

l 0
Le

ve
l 1 OLAP

Real-time datamart 

Monte Carlo simulation

Figure 5.2. QoS versus application requirement.
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and for data:

Data_output(“x” kbits,“y” bits, transactional, nontransient, queryable)

Data_S1(“z”Tbits,“k”Mbits, nontransactional, transient, queryable)

Data_Sn(“z”Tbits,“k”Mbits, nontransactional, transient, queryable)

Time(Near-Real-Time)

Geography(DataCenter, 1GbitEthernet)

Query(complex)

The QoS–OLAP application demand graph is shown in Figure 5.2.
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6
TRADITIONAL DATA MANAGEMENT

DATA MANAGEMENT

Electronic data management has a long and rich history dating back to the 1950s.

Many data management systems have tried to make their way into the mainstream

of information technology, some more successfully than others; hierarchical,

network, object, and in-memory are only a few examples. The most successful

data management system has been the relational data management technology.

For our purposes, I will start at this point to look at its development and what has

made it succeed. This is the “yardstick” used to measure how far forward it has

moved in comparison to any other data management system.

History

Dr. E. F. Codd, a researcher at IBM, defined the relational model in a 1970 paper

entitled “A Relational Model of Data for Large Shared Data Banks,”20 which

initiated a chain reaction of research into the concepts, both internally at IBM and

everywhere else. The research timeline included

. 1974—the System/R project gave birth to the Structured English Query

Language (SEQUEL).

. 1976–1977—SEQUEL is extended to support multiple users, tables, and so on

and later eventually renamed Structured Query Language (SQL).
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. 1979—Oracle is launched.

. 1983—IBM introduces DB2.

. Other products are introduced to the marketplace during this same period,

including Sybase.

Dr. Codd was also responsible for the mathematical foundation on which SQL is

built, namely, relational algebra. SQL is the interface that allows most users to

simply access and modify relational data. Through a series of publications in the

1970s and 1980s, Dr. Codd introduced such concepts as the separation of the

physical and logical aspects of data management, a model that is understood by a

wide user community. The ability to process multiple records simultaneously via

an access method that enables ad hoc queries into the data management system

has fostered the widespread adoption of the relational model more widely than

perhaps any other data management system today.

Features

I will highlight some of the features of a data management system that are essential

from the user perspective. I will not go into great detail as to how relational data man-

agement systems implement these features as these are complex topics in their own

right. Rather, I will discuss these features at a high level includingwhat they are, what

they are designed to address, and in some cases, by way of example, highlight how a

relational data management system addresses specific features. These topics include

. The mechanics or engine of the data management system

. How data are structured within the data management system

. Data integrity

. Transactional support

. Support for external events and event handling within the data management

system

. Backup, recovery, and availability of the data management system

. Security

Each of these features is important, and in some instances one feature plays a sup-

porting role for another feature, as is the case of data integrity. For a more in-depth

analysis of these and other topics, the reader can refer to Richard T. Watson, Data

Management, Databases and Organizations, 4th edition, Wiley, 2004.

Mechanics. The data engine is the part of the data management system that ties the

logical representation of data to the physical media that stores the data. It is this

engine that binds the data management system to the physical topology of the

compute environment that supports it. A generic diagram of an engine consists of

the media manager (i.e., the disk manager) and the data container manager (i.e.,

the file manager) as illustrated in Figure 6.1.
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The characteristics of the engine determine the data management system’s ability

to support the user community for issues such as speed of access, storage of data,

scalability, and data replication speed as well as efficiency. The separation of the

physical and the logical representations of the data have allowed relational database

technology to evolve in terms of increased speed performance and the ability to

query and access data without adversely affecting the user community or forcing

it to reprogram its data access logic.

I will illustrate that in a distributed compute topology the architecture and the

implementation of the engine will have direct consequences for the data manage-

ment system’s ability to support the features and quality-of-service (QoS) levels

expected by the users of the system.

Data Structure. In the relational model, the basic data structure is a table that is a

two-dimensional structure of rows and columns. Physically, a table is mapped to a

file on disk via the engine, which is an integral part of the relational data manage-

ment system. The relational data management system provides the tools to organize

tables so as to describe more complex data relationships. A breakdown of the data

structure in the relational model, its extensibility to model complex relationships,

and its ability to maintain ease of use is presented in the following text. This

combination has lead it to its widespread acceptance as the de facto standard in

data management and as a long-term data persistence store.

The relational model starts with a collection of one-dimensional structures made

up of rows and columns that form the table. Columns are the fields (attributes) that

define the structure of an entity (record) of the table. The fields of the table support

basic data types such as numeric, string, date/time, graphic, and Boolean. Records

are the rows of the table. Entity uniqueness can be established by creating and main-

taining a primary key in the table. The primary key establishes uniqueness of entity

identity within the table. Primary keys must not be an empty or have a null value.

The primary keys must be unique for each record of the table, and cannot change

during the life of the record.

Relationships are established between multiple tables on the basis of common

data types or columns of the tables to be joined. The columns establishing the

join are called “secondary” or “foreign keys.” Matching foreign keys in two

tables establishes the relationship and enforces “referential integrity” between the

tables. Both primary and foreign keys are discussed in maintaining data integrity

Figure 6.1. Data management system and its engine.
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later in this chapter. Figure 6.2 illustrates the database made up of collections of

tables and the composition of a table.

The logical structure of the relational model is quite simple, starting with the

two-dimensional structure of the table (rows and columns) combined with the ability

to be joined with other tables so as to extend the complexity of the data management

system and enable it to model the more complex data structures as they actually exist

in the real world. The basis of the relational model is simple to comprehend and is

capable of modeling complex systems, thus enabling a wide range of users to build

real-world systems very quickly.

Access. Access to the data in the data management system is primarily through the

Structured Query Language (SQL). SQL is a powerful query language that is simple

to understand. The learning curve for SQL is very reasonable for a programming-

proficient individual to quickly access to the relational data model of tables

within the data management system. SQL allows the users to process multiple

rows of a table and related tables without requiring an intimate knowledge of the

low-level mechanics required to do so.

SQL is a perfect example of the separation between the logical data model and

the physical representation that enables developers, programmers, and architects

to model data closer to the business without requiring an intimate knowledge of

both the physical disk representation and access of the physical disk layer. Through

the use of SQL it is simple for the user to

. Create a data scheme is through commands such as “create table”

. Query the data via the simple syntax of a selected statement

. Create relations between tables

. Query tables with multiple relations with simple extensions to the select state-

ment such as the “where” clause

. Modify existing tables via the update and delete statements

Through the simple interface of SQL, the relational model can be accessed and

manipulated by a vast number of users. The foundation of SQL is based on an in

Figure 6.2. Data structure.
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sound mathematical principle that allows for the extensibility of the system to

represent complex structures.

Integrity. The data going (updated or inserted) into the database has to ensure that

the data are correct and accurate; this cannot be done through the data management

system—it must be done through the business applications. The applications need to

ensure that the data they are inserting into the database are accurate. Once in the data

management system, it is the responsibility of that to maintain the integrity of the

data. Data integrity is essential for a data management system, since the users

must be confident in the quality of the data on which their business is depending

in making key business decisions. Otherwise, the data management system would

be of little value. In the relational model, data integrity has two levels: entry-level

integrity rules and referential integrity rules. The entry-level integrity rule is for

primary keys that must be assigned to a valid value. The referential integrity rule,

on the other hand, guarantees that the relationships between the tables are valid.

So, integrity within the table as well as integrity between tables must be maintained

by the data management system.

The end result of data integrity is data availability, data quality, and confidenti-

ality. Each of these outcomes is required and achieved through other key features

of the data management system, for example, events, transactions, and backup/
recovery/availability of the system.

Additional levels of data integrity begin to enter into the realm of the architects

and developers alike. The data management system must support event-driven

mechanisms so that when data are inserted, changed, or deleted, these events will

enforce the data integrity rules for entity and reference. External to the database,

data integrity has to be maintained and manage by the user community, here the

adage of “garbage in, garbage out” has special meaning.

Transaction. The data management system must be able to support data trans-

actions internally within the database, with external systems to the database, and

with “user programs.” Support of transactions integrity is also important to many

business applications, to ensure that any of the changes, updates, and deletes are

guaranteed and delivered from start to finish (end to end). Typically, transactions

are implemented via a technique called a “two-phase commit.”

Transactions are used to support and ensure data integrity, which in turn guaran-

tee the user that the data represented in the application are secured all the way down

to the long-term physical storage, which in this case would be the database or disk.

The transaction is processed so that there exists a recoverable state typically through

the use and maintenance of transaction logs, managed by the data management

system. A transaction log is a detailed record of all changes that have been applied

to the data within a database including information on who made the change,

when the change was made, and what the exact change was for audit trail purposes.

With this information also being logged, the recovery of the database is both

possible and simple. The recovery is merely the reenactment of the steps recorded

in the transaction log starting from the “last known good state” of the system.
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Events. The data management system must be able to support and manage events,

both internal and external to the system. Events are real-time mechanisms, typically

user-based, starting as an external event to the data management system that can also

trigger subsequent events within the data management system. Events are a tool used

to support data integrity as well. For example, referential integrity can be supported

through event mechanisms; should a user (with the proper entitlements) delete a

record in a table, this deletion will need to be reflected in other tables to maintain

referential integrity between two joined tables.

Backup/Recovery/Availability. The data management system must be a reliable

resource of information technology. It contains the knowledge required by the

business units in order to perform their functions. The quality of the data and avail-

ability of the data must be ensured. If this were not the case, then the community

would have little confidence in the data management system and would be little

value to the business. Therefore, the goal is how to ensure that the data are protected

from loss and are available when needed.

First, ability to back up the images of the database makes this possible. The data

management system must support methods of backing up the data and the state of

the data management system at regular intervals. The database must be recoverable;

some methods used to achieve this are “backward recovery.” Backward recovery

unwinds the state of the database to a previous well-known, high-confidence-

state level of the complete data management system. Another method is “forward

recovery,” which starts from the last well-known state and reapplies the changes

and updates to bring in the more current states that existed after the last of the full

backup of the system. Both methods require the ability to reprocess transactions.

The availability that the database must meet is driven by the demands of the

business for the information contained within to be available and in a well-known

reliable state. The system must support the ability for disaster recovery in a quick

and efficient manner. Some of the more traditional implementations for data

availability are the mirroring of data across multiple instances of the database.

One instance is the primary database; the second instance is the fallback/recovery
system. The primary and failover/recovery systems are maintained in transac-

tional lock with each other through a mechanism that is implemented by the data

management system provider. This technique is called “mirroring” databases. In

conjunction with the database mirroring is the ability to determine when the primary

system is no longer available to the user community and to take action to reestablish

the “service” of the database to the users. Techniques such as high availability

(HA) detect full or partial system failures and switching to the redundant systems

automatically in a relatively short time so that the user community does not

notice the system failure and recovery taking place.

Security. System security is an important aspect for assuring the user community

that the system is protecting the data from unwanted eyes. Securing data starts

with user entitlements, defining each user with the authority to read, change,
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insert, or delete specific data sets within the system. Security models must include

the following capabilities at a minimum:

. Identify users and check their authorization levels through the use of user

profiles.

. Ensure the security of the data stored on the physical medium. Implementations

may include some level of encryption of the data to prevent unwanted inter-

ception or “listening” to the data. It may even carry the encryption all the

way to the storage medium or disk in an effort to secure the data from programs

other than the data management system itself and bypassing the security and

access channels of the system by directly accessing the data that reside on

the disk.

KEY FOR USABILITY

The usability of any system or product is driven by two factors; simplicity and con-

sistency. The saying “keep it simple” are words to live by and is never more evident

than when designing a system intended for a broad consumer audience and to last

beyond the moment. Ergonomics needs to be applied to system design so that a

broad range of people can understand and effectively use the product. Simple

examples of this are in the automotive industry; examples can be found in companies

such as General Motors, Ford, Toyota, Mercedes, Ferrari, BMW, and Kia. Yet, just

about anyone in the world can get behind the wheel of these products; of complex,

intertwined mechanical, hydraulic, and electronic systems; and be able to drive them

with very little or no car-manufacturer-specific training. The interface to the auto-

mobile is simple and standardized; each automobile must provide the same basic

features and functions for it to be usable. The steering wheel, brake and gas

pedals, the braking system, the headlights and turn signals, the engine and trans-

mission (automatic or manual, which will then include a clutch pedal and stick

shift), seatbelts and airbags, and the position of lease instruments are all in the

usual place and function in the usual way.

Other industries are starting to follow the example that has been set by the

automotive industry. One such example is in air travel, namely, the small-aircraft

industry.21 In an effort to make the small-aircraft industry safer, cheaper, ubiquitous,

and routine, aircraft vendors (and their supporting industry groups) are starting to

standardize on instrumentation and controls of the aircraft. So, when moving

from one make of aircraft to another, a pilot will not require special training for

each of these individual machines. Aircraft companies, taking the lead of the auto

industry, can standardize on interfaces. The end result is a consistent operation of

the plane from one vendor to another. It also instills a sense of comfort and security

for passengers.

Just as with these industries, distributed data management systems must follow

the same usability and levels of interface previously established as the de facto stan-

dard by the relational data management systems. The majority of data management
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systems in use today are relational, and generally have the same basic interface and

support the same feature sets. Yet, each vendor may deviate slightly from the other

as a way to “differentiate themselves” from the pack. Oracle differs from Sybase,

which may differ from DB2; however, they are pretty much the same. The learning

curve to go from one to the other is not steep, especially with regard to the basic data

management and access features.

Any new data management system such as in the area of distributed computing

that is specifically designed to fit a distributed compute topology such as the grid

must maintain the same level of ease of user interface and must support, at a

minimum, the same feature sets described in this chapter and throughout this

book. The basic data structures that the majority of the developers, application archi-

tects, and managers understand revolve around the ability to support transactions,

data integrity, and security, and most of the system as a whole must be equally

usable by the development team and other types of staff currently in place within

corporations. Failure to meet this de facto standard that has been set will

hinder the adoption of not only the data management system itself but the spread

of distributed computing, and grid computing, as a whole.
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7
RELATIONAL DATA
MANAGEMENT AS A BASELINE
FOR UNDERSTANDING THE
DATA GRID

This book uses analogies that are completely unrelated to computer science in order

to drive home a concept. In this chapter, we will use relational data management as a

baseline for introducing distributed data management. We will see that this analogy

is more than just a visualization tool; it is a practical necessity.

Relational data management systems are the prevalent data management systems

in use throughout information technology. They provide levels of service that not

only have we become accustomed to but also have become a necessity for support-

ing the needs and requirements of the business. Therefore, a comparison at both the

physical and functional levels of the two is not only helpful but also required.

We will break down the main components of the comparisons with the objective

of using the parallels between the two data management systems to better under-

stand the data management issues that are particular to the data grid and necessary

in order to maintain the quality of service levels for the business applications

dependent on the data grid.

EVOLUTION OF THE RELATIONAL MODEL

The late 1980s and early 1990s saw a shift away from a centralized compute top-

ology of mainframes and minicomputers and toward a more distributed topology

of client/server technology. As a result, the need for a data management system

to meet the requirements of that topology emerged. This shift could not have

taken place if it were not for the relational data management systems that matured
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during the 1970s and 1980s as the data management technology evolved to meet the

new computer client/server topology.
As client/server technology was being adopted by the industry, relational database

companies were educating the general population of managers, architects, and devel-

opers on the characteristics client/server and relational database technologies, how

they are used, and how the business as a whole can benefit from this new and better

way of building systems. At these educational seminars (typically a full-day event

followed by a 3–5-day training course), the most common questions asked would

have less to dowith data management for relational databases than with how these rela-

tional databasesmanaged the physical resource available to them. These questionswere

to be expected; with relational databases, the physical resources are files, disks, and

spindles, and prior to this point, this is how developers kept data viable; they wrote

the file and disk management systems. They understood the lower-function input/
output (I/O) of file and disk management, the importance and difficulty of achieving

efficient disk and spindle management. Less attention was given to the relational data

management and even how to access the data through something called SQL. As

time progressed, relational database technology became mainstream, and attention

shifted away from the engine and how fast it wrote to and read fromdisk andmaintained

indices. More concern was directed toward the relational model, with management,

access, and administration of these systems as the key to performance and reliability.

Issues such as table-level locking, row-level locking, event-driven triggers, and the abil-

ity for complex indexing and relating tables, were the domain of the specialist.

Today, with the emergence of a highly distributed compute environments such as

the grid, most developers are focusing on the engine. What is the engine, and how

does it manage the fiscal resource, whether that resource is routing queries to a het-

erogeneous variety of data sources (databases, file systems, queuing systems, etc.) or

is a distributed cache. Absent are the questions related to data management or the

effort required simply to manage and maintain the same levels of service quality

offered by traditional relational data systems.

We will highlight the two main components of a distributed data management

system: the engine and the data management functions.

PARALLELS TO DATA MANAGEMENT IN

GRID ENVIRONMENTS

Relational models provide a good foundation for understanding the development

and evolution of data management in grid environments. However, the grid requires

a fundamentally new paradigm, and so the foundation becomes to some extent less

interesting as one scales the problem out.

Anatomy of the comparison is as follows. There are three functional tiers:

language interface, data management engine, and resource management engine.

. Language Interface. This consists of a set of tools that enable application

developers to control, transact, and manage data organized and managed by
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the technology. This typically includes language-specific APIs as well as entire

language sets that address the domain (ANSI-SQL).

. Data Management Engine. This provides an organizational methodology for

handling data within the store. Each type of data management engine can

have unique traits, concepts, or objects (relational, time-series, hybrid, etc.).

. Resource Management Engine. This engine manages the mapping between

logical organization and data sets, and the physical location (storage) onto

which those data sets map. Resource management engines can include raw

partition managers, shared memory managers, and flat file managers.

Analysis of the Functional Tiers

Language Interface. As with relational technologies, data management in grid

computing requires a language interface component. The language interface can

be specific to a type of language or can be a generic input spec similar to XML.

Application developers use the language interface to specify particular objects as

data-grid-aware, and also manipulate them within the data grid context. The data

grid needs to know particular aspects of the object structure in order to properly

distribute objects within a data grid. This knowledge is a key difference between

relational and grid-based language interfaces.

Data Management Engines. Data management engines within a grid provide a set

of functionalities similar to those provided by relational management engines in

relational data management systems. Key functionality of engines includes

. Data regionalization

. Data synchronization policy

. Data transactional policy

. Coordination of task scheduling to data locality

. Event notification policy

. Data load policy

Resource Management Engines. Resource management engines—within data grid

environments—provide the core transport and caching facilities. As such, each type

of engine provides a specifically different set of functionalities, which directly

reflects on the overall functionality of a data grid. There are two distinct types of

resource management engines: distributed and replicated. Within these categories,

certain engines also support shared memory, memory-mapped files, and rela-

tional-database-based backing storage.

. Distributed Resource Managers. Distributed resource managers enable the

spanning of multiple memory domains via either a peer-to-peer or a

replicate-as-needed mechanism. These managers scale better toward problems
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of large memory requirements with reasonable latency and/or access time

requirements. These managers also enable segments of the data grid to be

completely autonomous of one another, thereby facilitating greater robustness.

. Replicated Resource Managers. Replicated resource managers support a

“replicate everywhere” policy for all data. These managers maintain a “virtual

synchrony” of sorts among all the nodes and guarantee that every update is

provided to every peer. This mechanism typically uses a multicast transport,

and as such has some limitation in scaling. Additionally, the smallest memory

machine participating in the grid typically limits total data grid storage.

Engines Determine the Type of Data Grid

The engine of a relational database manages the physical resource: how the files are

organized, how they are managed, how they are stored or organized on the physical

disk, how disk fragmentation is minimized, and what is the optimal data placement

on the physical disk to minimize a spindle movement. These are all important

features, and as the technologies at the physical level have advanced, relational

databases have been able to take advantage of improvements due to the separation

of the engine and the higher-level data management.

With data grid, there is a similar separation of engine and data management.

Within data grids, however, the engine is not a single form as with relational data-

bases. Data grids can take any number of forms, each requiring a different engine to

support it. For example, in today’s enterprise, data exist in various heterogeneous

systems, and as a matter of practicality, disrupting those systems is not an option.

If the customer transaction database resides in a relational engine and the customer

information databases reside in a mainframe, it is reasonable to expect that the data

will remain in those respective permanent data stores. Some view data grids as a

virtualization of data to where they actually reside in the physical data stores.

The engine for this type of a data grid would be a metadictionary that formulates

and parses out specific query syntax to each target system and conversely receives

data from the data sources and unifies them back into a cohesive form.

Other types of data grids bring the physical data as close to the compute nodes of

the compute grid as possible for speed of access. This type of a data grid engine can

take the form of a distributed cache.

Data Management Features

With the introduction of relational database and client/server technologies, the main

focus was on how the engine works and less on data management. Today, it is the

reverse. The focus now is on data management and the data management supported

by relational database technology that we have become accustomed to and expect in

a data management system. Moving toward a new topology, these levels of data

management must be maintained. We need to look at some of the data manage-

ment features that are supported within relational databases, such as support for
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transactions, the ability to organize data in logical groupings like databases and

tables, the ability to bring data into the database from external sources and extract

data out to those sources, and to query data in an effective and efficient manner.

Data management in data grids must support much the same features of transact,

load, and query with the same level of confidence, from the user perspective, as

with a relational database. We will see that there are additional data management

issues particular to data grid in addition to these baseline features.
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8
FOUNDATION FOR COMPARING
DATA GRIDS

In this chapter we will itemize the key points of comparison of various data grid

implementations so as to provide the reader with a methodology for selecting the

best “tool for the job.” Recalling Figure 1.1, the two major areas of comparison

are in the “engine” of the data grid itself and the support for the necessary data man-

agement features required by the business application. The latter includes support

for traditional data management techniques, data management features specific to

the data grid, as well as accessibility to the data grid. It is expected that the

reader understands the traditional data management features such as those supported

by a relational database. The chapters subsequent to this will focus on data manage-

ment features that are unique to a data grid.

CORE ENGINE DETERMINES PERFORMANCE

AND FLEXIBILITY

Data grid architecture and the associated characteristics can vary widely. With many

different options in architecting the data grid, there are two that are most prevalent:

(1) “data replication” versus “data distribution” and (2) “centralized” versus “peer-

to-peer”-based synchronization management. Each of these architectures provides

support for a global or common feature sets as well as unique feature sets. We

will also see that there are “policy”-based data management features for the data

grid’s data distribution/replication and for data synchronization. The policy-based
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data management features can be supported only if the underlying engines support

the mechanics of those features. For example, if the underlying engine only supports

data replication, then data management policies involving a distributed data scheme

cannot be implemented with that engine. Similarly, the engine must also support the

mechanics for all the data grid management policies, for example, “event notifica-

tion” and not just the management policies for data synchronization and distribution.

The sections that follow highlight the most common data grid architecture and

the associated feature sets.

Replicated versus Distributed

Replication-based architectures rely on a duplicating cache across engines that

guarantees that any data modified in one cache are shared across all members.

This allows for total cache synchronization regardless of where the data modifi-

cations occurred. The common features of replication-based architecture are a

high degree of reliability and data integrity since the data resides on many nodes

but at the cost of scaling and performance due to data concurrency across the

nodes of the data grid. The replication schema is typically achieved through

levels of reliability built on top of the multicast or broadcast protocols.

The distribution-based architecture of the data grid, on the other hand, tends to

share data on a peer-to-peer (P2P)-oriented nature. The advantage of such archi-

tecture over the replicated architecture is greater scalability since all the data

are not replicated across all nodes of the data grid. One way to visualize this is

to compare data distribution to how a RAID (redundant array of inexpensive

disks) device “stripes” data across the disk array. Data distribution involves strip-

ing a piece of data across a number of the physical nodes of the data grid. These

nodes are a subset of the total nodes in the data grid and will be considered as

peers to each other for data update, distribution, and access. As does a RAID

device, this method of data distribution yields an upper bound of available data

grid storage capacity solely as a limit of the number of physical nodes to the

data grid. (Conversely, in a replicated engine, the upper bound of data grid storage

capacity is limited to the physical node in the data grid with the least physical

capacity.)

The disadvantage of such architecture is data reliability and data integrity. Even

though the distribution-based architectures does not replicate the data completely,

some degree of replication is achieved, thus yielding a level of resilience to failure.

If a piece of data is distributed or “stripped” across 10 of the 100 nodes of the data

grid, for example, then that data are resilient if at least one of those nodes remains

operational. Should all 10 of those nodes fail while the other 90 remain operational,

then that piece of data is lost. The ratio of nodes to stripe a piece of data across is

managed by the data management policies described below. Adjusting this ratio

of nodes to stripe or “replicate” a piece of data across to the total number of

nodes in the data grid will determine the level of resilience of the data grid for

that piece of data.
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Centralized versus Peer-to-Peer Synchronization

The implementation of an engine of a data grid will follow one of two general archi-

tectures (distributed or replicated) as it relates to how it physically manages data

integrity across the nodes. There is a centralized manager for data integrity

among the nodes of a data grid as well as for synchronizing data in and out of the

data grid with external data sources. The second method employs a decentralized

manager for data integrity. In this approach, only those nodes of a data grid that

have a piece of data stored locally in it will be involved in managing the integrity

of that data among themselves. Drawing from the example in distribution engines,

if a distributed data engine also supports a P2P synchronization implementation,

then only those 10 nodes on which a piece of data resides will be involved in any

transactional operation for that piece of data. The other 90 nodes are free to go

about supporting other usage requests made on the data grid.

ACCESS TO THE DATA GRID

Access to the data grid must support methods similar to those found in traditional

data management tools. There needs to be a programmatic API set as well as

some method to query the data grid through a string-based query, and finally

there needs to be a management interface for the data grid as a system. These

topics are addressed in more detail in Chapter 20. However, when comparing

which data grid is best suited for your purposes, you must consider the following:

. The support of a programmatic API in the languages (Java, Cþþ, C#, etc.) in

which the business applications are implemented. The quality and flexibility of

those APIs are important points of comparison.

. For a string-based access method, one must consider how the data grid will be

integrated into the environment and which class of applications are required to

leverage it. For example, if the business application is Web-oriented, then sup-

port for an XML-based query is more useful than a standard SQL-type access

method.

User-Level APIs

The data grids offer a variety of application-level APIs depending on the vendor

and the type of architecture. All vendors and architectures support a concept of

a data-grid-aware structure; for example, if the data grid engine supports an

“object-oriented” API set, then it will have the concept of a collectable object and

a collection object such as a bag or list. In addition, the APIs support rudimentary

querying, updating, and retrieval of data in and out of the collections of the data

grid. For operational functions, the APIs support a set of both traditional (startup,

shutdown, user and user entitlements, etc.) and data-grid-specific data management

features such as synchronization, distribution, replication, and event notification.
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String-Based Interfaces

As straightforward as a programmatic API interfaces are, string-based queries of a

data grid are less clearly defined. In Chapter 20, an argument is posed regarding

which is the best method to use for string-based queries as there currently is no

standard similar to SQL in the relational data models. Is a SQL or SQL-like inter-

face best since the majority of developers are familiar with it as a tool, as well as

its properties and syntax? Or is a more Web Services–like interfaces best, such

as an XML-based interface? The answers to these questions have yet to find a

consensus among technology specialists and the marketplace in general.

SUPPORT FOR TRADITIONAL DATA MANAGEMENT FEATURES

In order for the APIs to support the traditional data management features, they need

to provide capabilities that include querying, indexing, administration, and replica-

tion. These features typically need to be “loosely” available within data grid

products.

The querying feature is typically supported through a proprietary XML interface

that has some of the features available in ANSI-SQL. Since a data query is typically

unstructured or hierarchical data in nature, traditional ANSI-SQL specifications are

not commonly used.

Indexing and reorganization is typically loosely supported in data grids through

both garbage collection and graph transformations. The garbage collection and

graphic transformation allow unstructured data to be formatted, reorganized, and

structured to the requirements of the receiving application.

Data grid administration is currently supported through command-line inter-

faces. Most administration is achieved via modifications to configuration files.

Replication is supported through processes that allow data replication across

engines, database servers, and nodes.

SUPPORT FOR DATA MANAGEMENT FEATURES SPECIFIC

TO GRID COMPUTING

With new technology come new features that are required and the associated data

management specific to that technology. This, too, is also true for the many

unique aspects of data management in a grid environment. Services specific to

data management in grid environments include data regionalization, data synchroni-

zation policy, transactional data policy, coordination of task scheduling to data

locality, event notification policy, and data load policy, which are discussed in the

sections that follow.

. Data Regionalization. Regionalization of data within a grid is a key

performance and management feature that is seldom available within other
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infrastructures. A data region within a grid is an organization of data that spans

machines and potentially geographies and caters to the needs of the users of that

region. “Region” is the highest level of constructing the data in the data grid.

Region drives the aggregation of the data and the policy instructions regarding

the data. For example, a data region is analogous to the “database” in the rela-

tional model. It contains other structures of data or data schema specific to a line

of business. The management policies of the region will describe the behavior

of the region in order for it to best meet the requirements of the line of business

or “business services” that it supports. The data-grid-specific management

policies are listed below.

. Data Synchronization. Dynamic data synchronization is performed per the

defined management policy. The “data region” definition encompasses the

data synchronization features and enables the control of different types of con-

sistency policies across the data grid. Data synchronization typically falls into

two spectra: strong synchronization and weak synchronization. Strong synchro-

nization policies enforce a tight replication of “like” patterns of data among the

nodes of the data region as well as strictly enforcing the replication policies

among the nodes of the data region. The strong synchronization mechanism

is used when low latency and high consistency are required from the data

grid at the cost of scalability and flexibility. Weak synchronization policies,

on the other hand, enable data to be synchronized on an “as needed” basis

and sometimes not at all. The weak synchronization mechanism allows for

less data consistency but for higher scalability and flexibility.

. Transactional Data Synchronization. Transactional data synchronization is

very important even in the data grid since the ability to recover, commit, roll

back, and the like are important to data integrity. Transactional data policies

fall into basic categories within a data grid: optimistic and pessimistic. One

of the main drivers of the transactionality with external data sources is the trans-

actional features and semantics supported by that external source. The data grid

must support a level of transactionality equivalent to that external source in

order to maintain a quality of service as required by the line of business that

the data region (data grid) supports. Optimistic transactions are typically

implemented with little or no locking and coordination; they are transactions

only in the sense that in a possible conflict situation, an exception is thrown

and the user is notified. Pessimistic transactions are typically multiphase with

the proper locking, unlocking, commit, and rollback that are typical for trans-

actional integrity. The mechanism used is that of XA, which is associated with

the destination, and all transactional management (e.g., all locking) is done

through that destination.

. Data Locality (Data Distribution). The ability to locate and group data depend-

ing on data usage is essential to the data grid from a performance perspective.

Data locality thus can be defined as the clustering of data depending on usage.

This feature, which is specific to the data grid, enables the architectures to

scale significantly better than did previous technologies architectures. The data
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grid implements data locality through two sets of synergistic architectures: (1)

data within a data grid are associated with a locality that pinpoints the exact

resource that owns a primary copy of the data and its neighboring topology

(this information is provided through the APIs to the architecture using the

data grid in order to propagate and distribute work to the particular resource)

and (2) metrics of data usage improve the availability of the data in the data

grid. Data are monitored through a set of metrics, and individual data blocks

can migrate from resource to resource depending on the usage patterns and

history of use.

. Event Notification. The data grid supports a variety of push-based and pull-

based event notification policies, depending on the product and its associated

architecture. In general, event notification is supported around a particular

data type, which can be by region, collection, or individual data object, as

well as a particular transaction type. APIs for event notification involve

either callback handlers or queues, and typically require the handler to be in

the same data region as the event source.

. Data Load/Save. Data loading and data saving is an essential part of the data

grid. Without capability of loading and saving data, any import and export of

data would be haphazard and require custom code development. The data

grid supports the “load and save” feature through a variety of mechanisms,

some coupled with pessimistic transactional support and some without. Trans-

actional load/save mechanisms work by allowing users to specify a block of

code (or in the vocabulary of enterprise information integration, a data adapter)

that would map inbound data to the transaction source and query (load) or

commit (save) within the context of a data transaction. Transactional mechan-

isms are activated at demand time and will complete before any access or

update to data within the grid is allowed. Nontransactional load/save allows

users to specify individual procedures (adapters) to map data into and out of

the data grid. These procedures are executed on data demand but are not

required to complete successfully before any access or updates are permitted.
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9
DATA REGIONALIZATION

A scene as serene and innocuous as clouds rolling across a clear, crisp blue sky

offers a useful analogy for regarding the concept of data regionalization. Like

the clouds crossing the sky, data regions float across the data grid plane (DGP).

Like the droplets of water held within the clouds, the data within a data region

can be gathered from a variety of sources and are now united to form this region

of ever-changing size and shape as it traverses across the data grid plane. And, as

with the effect of atmospheric conditions on our vision of a clear blue sky, the

data region continually adjusts to changing external factors, such as business

need, usage demand, overall data size, and performance requirements, so as not to

allow its data to fall to Earth.

Data region management policies for distribution, synchronization, and other

functions affect the region’s size, shape, and traversal in the data grid plane (see

Figure 9.1).

Other external forces play a hand. They include hardware, mean time between

failures, scheduling and routing of tasks (in the compute grid plane), time of day,

and cycling of available resources in the data region’s size, shape, and traversal

across the data grid plane. This complex interaction of forces is counterbalanced

by the data management policies of the data region, continually adjusting its charac-

teristics to keep itself in an optimal state to meet the supply–demand curves

imposed on it.

Leveraging this concept of the data region as condensation and the data grid

plane as the sky allows us to bridge to the physical implementation with the right

tools of analysis and mathematical modeling. All these affect data distribution
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and data synchronization policies, as well as other concrete data management pol-

icies involved in the proper access and management of a data region in the highly

distributed environment of grid computing.

WHAT ARE DATA REGIONS?

Traditional client/server data architectures defined a concept of multiply siloed

databases, or a data warehouse that contained the entire set of information required

to run a particular business. Applications built around this concept promulgated

this notion and themselves became associated with a set of information and a

particular business. As businesses grew, many different, and sometimes competing

silos were created to deal with different aspects of the business. In finance, the back

office and the front office tended to have similar information, but could rarely share.

Data grid architectures are designed to specifically decouple the location of particu-

lar data from the resources that use them. In order to accomplish this, the concept of

a data region needs to be defined. Once defined, the data region can be managed

through data management policies.

Data regions are defined as a logical organization of virtual resources that pro-

vide the storage necessary to house data. That storage and the virtual resource

that provides it are typically unspecified in terms of service level and locale. In

addition to virtual resources, regions have a set of management policies associated

with them. The data contained within a data region represent a logical grouping

independent of source.

DATA REGIONS IN TRADITIONAL TERMS

Data regions are similar to databases in traditional terms. Figure 9.2 illustrates this

relationship.

It is always best to establish a baseline that is grounded in concepts that most of us

are familiar with, a common knowledge that we can use to visualize and build on

when learning new concepts. In introducing data regions within a data grid, we

Data grid plane

Data region
at time t Data region

at time t + 2∆

Data region
at time t + ∆

Figure 9.1. Data regions in the data grid plane.
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will use relational data management as the baseline. This analogy is as functional as

it is visual; the traditional elements of data management need to be maintained and

expanded on when entering into a data grid environment:

. Logical Data Groupings. Data are logically grouped, typically aligned with a

business vertical. In the relational data management realm, this grouping is

by a database. In the case of the data grid, this grouping is a data region.

. Schema. The schema relates to the way data are organized within the database:

a definite structure organized in a logical grouping and aligned with the

business and data applications where data storage, retrieval, and updates are

applied to the database. In a relational database, the fundamental organization

for the schema is a table, a two-dimensional matrix of rows and columns.

Typically, databases contain many tables. [Note: Within a data region the

choice of data structure goes beyond the two-dimensional rows and columns

that constitute a table.] The fundamental structural elements for data schema

within a data region are dependent on the implementation of the data grid. It

is important to make clear that the data grid implementation is independent

of the underlying engine (i.e., file system or distributed cache; see

Figure 1.1). The engine defines the data grid’s ability to fulfill other QoS

levels, but imposes no limit on the kinds of data schema structures that can

be defined. Again referring back to Figure 1.1, this is purely a function of

Ordered structures
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Distributed procedures

Cross-structure

Data atom level

Data atom

Programmatic
string base

Tables

Triggers

Stored procedures

Intratable fields

Table/row level

Table joins

SQL

Schema

Events

Optimizations

Indexing

Locking

Relation

Query

Relational database Data grid region

Figure 9.2. Data regions in traditional terms.
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the data management layer and its implementation. Structures are dependent

only on the implementation of the data management layer and its support for

N-dimensional structures, including arrays, tables, matrices, and trees.

. Events. An event is an occurrence or happening at a single point in time and

space. In computer science, events trigger a change of state for an object or

system. Typically, a system’s state is defined by its data attributes. Program-

matic paradigms are based on the concept of events and form the basis for

event-based processing that drive straight-through processing (STP). In relation

to data management, an event triggers a change in state of an array, table, data-

base, or data region. Programmatic “event handlers” or “triggers” are registered

for a specific event and are invoked when that event occurs. A common use of

triggers in a relational database is to maintain referential data integrity

among the tables of the database. Triggers tie together or are set to a specific

event, such as the insertion or deletion of data to a table. When these events

occur, the triggers are programmed to make the required changes, such as inser-

tions, deletes, or updates to the other structures in the database or data region to

ensure data integrity. Events caused by triggers can in turn set other triggers

into motion; thus a chaining effect can take place. Data regions can extend

event handling by allowing systems external to the region to “register” interest

in data region events. The external systems can either be notified directly by

the data region or invoke an event handler registered by the external system

when an event, with its associated triggers, occurs.

. Optimizations. Data management systems support various optimization tools

for data access and update. One of the more common methods is the

precompiling of queries. In the case of the relational databases, SQL statements

are precompiled into procedures that are given well-known handles so that user

programs can invoke them directly. For example, when an application queries

the database, a certain amount of processing must be done by the database to

transform the SQL into executable code. If the query is frequently used by

one or more applications, it can be optimized within the database to eliminate

many of the preprocessing steps. This optimization improves the performance

of the database queries. In some implementations of relational databases, these

are called “stored procedures.” Similarly, procedures can be maintained within

the data grids and their associated data regions. However, given the nature of

the implementation of a data grid, the exact meaning of a stored procedure

can vary. For example, a data grid that is based on a distributed cache can dis-

tribute the precompiled procedures across all the nodes of the data region.

When invoked, the data grid can execute the “distributed stored procedure”

in parallel, each node processing it against its own set of data within that region.

. Indexing. Indexing is a way to gain faster access to atoms of data within the

database or data region. In the relational model, a column, or groups of

columns, within a table can be indexed in ascending or descending order.

The cost of creating and maintaining indexes is extra overhead for the data

management system. The amount of overhead is dependent on the design
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and implementation of the data management system. In the case of a relational

database, an index is an extra data structure that needs to be maintained each

time an indexed table is updated or changed. Indexing within a data region is

conceptually the same as that within the relational model; however, data

grids can support additional data structures, including arrays, tables, matrices,

and trees. Therefore, the exact implementation and benefit of indexing within

the data grids can vary greatly depending on specific data grid designs and

implementations.

. Locking. For a multiuser system, maintaining data integrity is essential, and

therefore locking is required. Locking data atoms assists in maintaining data

integrity when multiple users have permission to update and change data

within a database or data region. When updates, inserts, or deletions are per-

formed on a data set, it may be necessary to block others from accessing that

data until the data modifications are complete and committed. This process

of blocking access to data from other users when they are being changed is

called “locking.” Typically, the updating application “acquires” the lock

from the database before starting and then “releases” it when the operation is

completed. In a relational database, the level of data atom locking can be at

table level within the database or at a much finer level of granularity: the

row within a table. When row-level locking is employed, other users can

acquire locks on different rows of the same table without being blocked.

Thus users are not interfering with each other. On the other hand, locking

within a data region will take place at the data atom level. Therefore, the

finest atom of locking of a data structure is dependent on the type of data

structures supported by the data grid. When structures in a relational database

are mirrored in a data grid, the data grid must support the same locking features

and same level of granularity as those in a relational database. However, for

more complex structures, the granularity of data atom locking is dependent

on the data grid implementation.

. Relation. How are the various data structures and data atoms related to each

other? In the world of relational databases, where the fundamental schema is

a table—a two-dimensional structure of rows and columns—additional dimen-

sions can be created by joining tables based on common fields, allowing

relationships to be established between two or more tables. Within the data

region, relations between data structures can be as fine as the most basic data

atom joining a heterogeneous set of data structures offering more granular

flexibility. For example, trees can be joined to arrays that can be joined to

matrices. Depending on the implementations of the data grid, a single data

atom may be a member of multiple structures, thus providing the relation

between the structures.

. Query. Relational databases have standardized on structured query language

(SQL), a text-based query language. Within the data grids and data

regions there are fundamentally two ways to query data: (1) a string-based

query language similar to SQL and (2) a programmatic querying or filtering.
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Programmatic querying is a higher-level language such as Cþþ or Java, where

the query is done via a set of programmatic APIs. Early implementations of data

grids will support the programmatic query interface first. String-based query

languages for data grids are an area that today requires industry standardization

on exactly what the language syntax needs to be. This is primarily because

data grids can support a wide range of data structures and the most optimal

query language may not be SQL. Rather, it may be more of an XML-like

language, or a hybrid of SQL, Object SQL, and based on other theories.

Such standards are necessary, especially if the data grid is to succeed in the

commercial arena.

Data grid queries must support two types of functions: queries into user-defined data

structures and queries into the operational structures resulting from data

management. For data grids, the operational data include most of the same admin-

istrative data sets for users, entitlements, and logging. However, additional infor-

mation is needed for data-grid-specific data management features. The most

obvious is the support for data affinity, which is discussed later in this book. Statis-

tical information on each data atom is required to support data affinity, including

. The physical data location of each data atom and all its replicas

. Access patterns

. Movement patterns

Therefore, just as with relational database engines, administrative query support

is an integral part of the data grid system.

DATA MANAGEMENT IN A DATA GRID

As with many other solutions, data management is very important in the data grid;

the ability to define data management policies specific to each data grid region is

very powerful at implementation:

. Data Grid Resources. Many components or resources are required for the data

grid. A data grid resource includes the processors and storage associated with a

data grid (the nodes constituting the grid), and the data grid “daemon” that

monitors and manages the physical nodes of the data grid. The data grid

daemon tracks and records “metered information” describing the state of

each node of the data grid. Metered information includes details about the

memory layout, processor, and size of the CPUs of the grid’s nodes, local

node transaction/storage, and load sources. Together this information provides

the data grid normalized information that it uses to determine the proper

amount of resources required to efficiently and effectively service usage

demand.
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. Management Policies. Flexible data management policies are required.

The management policies are applied at region level, enabling a region to

behave similarly to a relational database instance. Management policies

for the regions include data distribution/data replication, synchronization,

and load/store. Each of these policies addresses a particular behavior of

the region. Data management policies include (1) data distribution, (2) data

replication, (3) synchronization, (4) data load and store, and (5) event notifi-

cation. The interrelationships between these policies are discussed in the

sections that follow.

For each of the data management policies listed above, we will express the key

parameters that define them. These expressions are not intended as a complete

expression of the respective policies, but simply as a basis on which to build insight

into their roles and interactions with each other and affect on the system as a whole.

As in Chapter 5, section entitled “Application Characteristics for Grid,” the

expression for an application is in equation form. For similar reasons—namely,

for the purpose of quickly developing multidimensional relationships among the

parameters and policies themselves—we will follow that notation here.

Data Distribution Policy

Regions contain collections of resources that manage data. Data associated with a

particular region can be distributed or replicated through a number of methods.

Distribution of data takes individual data “atoms,” associating them with a particular

resource and resource ownership of that data atom. Distributions of data “atoms”

include simple techniques such as round-robin, mathematical models (e.g., Gaussian

and Poisson distribution), and dynamic schemes based on real-time system beha-

viors. Each of these distributions results in a specific data topology:

. Round-Robin Distribution. Round-robin distribution is a simplistic distribution

scheme that distributes data “atoms” in a sequential mechanism. It does not

guarantee a particular distribution except if all the resources have exactly the

same capacity.

. Gaussian Distribution. Gaussian or normal distribution takes as its parameters

a central machine or machines, a standard deviation, and a set of distances,

and attempts to distribute most of the data in close proximity to the central

machine.

. Random (White Noise) Distribution. Data atoms are randomly distributed

across the data region.

. Poisson Distribution. Poisson or jump distribution uses parameters similar to

those of Gaussian distribution and in addition takes into account the probability

of jumps. It attempts to distribute the data within the proximity of a central

machine, but also adds the possibility of data “jumping” away from the central

machine on the basis of some probability algorithm.

DATA MANAGEMENT IN A DATA GRID 85



1. Dynamic-Data Movement Pattern Analysis. For efficiency reasons, a large

part of data distribution policy is aimed at minimizing data movement within a

data grid. Replication of a data atom across a data region to the physical nodes

where the data are accessed most often minimizes network traffic. There are numer-

ous methods for achieving this goal, one of which is to monitor data movement

within a data region and continually evaluate and redistribute the data according

to data access and usage patterns. This implies a continual feedback control loop

that evaluates the following:

. Input—data location, data request points, data movement, distance that data

travel on the network, frequency of data requests, and other parameters

. Logic—an algorithm that best estimates the placement of physical data locality

to minimize or eliminate future data movement within the data region

. Control Commands—the ability to manage data movement in the data grid to

manually tune system performance

The “control commands” can be manual, involving people analyzing “macroscale”

data patterns and manually redistributing data over long periods of time. Alterna-

tively, the process can be automated via a programmatic analytical process causing

“microscale” data distributions and redistributions over short periods of time.

Finally, a combination of both automated (microscale) and manual (macroscale)

data distributions may be used.

2. Implied Properties of Data Distribution. A number of implied properties of

data distribution are important to system behavior, including the distribution policy

and its interactions with other policies, data management features, and the external

systems. The implied properties that affect the abovementioned system behaviors are

. Locality—the position of the data atom.

. Manipulation of the data atom position.

. Query of the data atom position.

. Distribution policy that includes all data atoms and their replicas.

3. Locality. The data distribution policy implies an intimate knowledge of the

exact location of each data atom (including its replicas) in the data region. This is

key to the successful implementation of any data distribution policy. The data dis-

tribution policy determines where each of the data atoms is to be physically located

in the data region. Knowledge of exactly where a data atom resides will result in an

efficient use of the network resource, since data atom movement will be minimized

during the operation of or access to data in the region by the applications or services

it supports. This concept is known as data affinity, which will be addressed in the

chapters that follow.

4. Inclusion of Replicas. The distribution of data in a data region must also

include all the data atoms and the replicas as determined by the data replication
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policy. Only in this way can maximum data affinity and data grid resilience (data

grid high availability) be achieved.

5. Location Manipulation. Data distribution policy inherently implies that

implementation will provide the ability to manipulate the exact physical location

of each data atom in the data region.

6. Query of Locality. To implement the data management policies of a data grid

and support a full range of data management features, data affinity, for example, all

the administrative attributes of a data atom must be known and can be managed.

These attributes include physical location in the data region as well as history of

data movement (location and time of access).

Data Distribution Policy Expression. The data distribution expression defines the

key parameters for the distribution of data atoms within a data region identified in

the formula

DataDistributionPolicy ¼ DDP

PolicyName,

Region,

Scope( ),

Pattern( )

2
664

3
775

where

. PolicyName ¼ logical name for this policy. This is the logical name for this

instance of a data distribution policy. Since there may be many distribution

policies, this name provides a unique identification. Depending on the

implementation of the data grid, this name may or may not be unique.

. Region ¼ primary region name. This is the primary data region to which this

data distribution is applied. A data distribution of identical characteristics

[as determined by the Scope( ) and Pattern( ) attributes] can be applied to

other regions in the data grid.

. Scope( ) ¼ F(All, List(DataAtoms) ¼ NULL). The scope of the data distri-

bution can span the entire data region as indicated by the “all” attribute or

apply only to a specific range of data atoms identified in the supplied list.

Note that these parameters are mutually exclusive.

. Pattern( ) ¼ Function(Automatic/Specified, DP( )), where

DistributionPolicy ¼ F

PatternName,

DeployPattern( ),

DataAtom;
Currentlocation,

NewLocation,

Move=Add=Delete

2
6666664

3
7777775

This distribution pattern is used to apply to the data atoms identified in the Policy’s

Scope( ). The pattern can be automatic in nature, one that follows a predetermined
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mathematical principle such as randomness or Gaussian distribution. In this case,

the pattern expression is the DeployPattern( ) parameter and the parameters of data

atom, including its current and new locations, and operation (Move/Add/Delete)
are not required. The second option is to manipulate the exact physical location of

a specific data atom manually. In this case, the DeployPattern( ) parameter is not

required. However, the parameters of the data atom, including its location (current

and new), and operation (Move/Add/Delete) are essential.

Data Replication Policy

Within a data region, data atoms are distributed on the basis of policies. The distri-

bution policies can be grounded in mathematical formula or heuristic usage patterns

of data movements within the data region through time. The distribution policy

determines the physical location where each data atom will be cached within the

data region. The data replication policy goes hand in hand with the data distribution

policy. Data replication addresses the number of “copies” of a data atom that exist

within a data region.

Both the data distribution and the replication policies should be statistically tied

to the physical size of the data grid; or, more specifically, to the physical size of the

data region within the data grid. The physical size of the data region—for example,

in a peer-to-peer topology—is the number of compute nodes assigned to a data

region. The number of nodes that can execute the tasks of a service or services

supported by the data region determines the physical size of a data region.

(Note: More sophisticated data regions can be constructed and maintained to span

nodes where there is no intersection of task execution capability. However, for

this discussion we will consider only the simple case of the intersection of nodes

to execute tasks for a single or multiple services.) Therefore, the maximum size

of a data region is the entire grid of T nodes. Typically, as the grid grows to support

more services, the data region size will be R number of nodes less than or equal to

those of T. As R increases in number, a sophisticated model (e.g., statistical, heur-

istic) for data distribution policy becomes possible and preferable. Also, the data

replication policy can not only reflect the size R of the region but also take into

account the geographic/network topology that the data region spans. As the data

region size R shrinks to a minimum of one or two nodes, the data distribution

policy begins to look like the data replication policy.

The combination of data distribution and replication policies characterizes the

data region’s ability to support a task or service with minimal data movement and

thus minimum network traffic with a region; adding in the data synchronization

policy, the robustness of the data region to any failures is then defined.

Figure 9.3 shows an example of a modified data atom synchronized with its

peers and replicas. This is not to suggest that all data synchronization relation-

ships represent a single master/replica orientation. Various data atom synchro-

nization relationships can be supported as part of the data synchronization

policy.
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Data Replication Policy Expression. The data replication policy expression defines

the key parameters for the replication of data atoms within a data region. The

expression can be expressed as

DataReplicationPolicy ¼ DRP

PolicyName,

Region,

Quantity,

Scope( )

2
664

3
775

where DRP is the data replication policy. The following parameters influence the

policy:

. PolicyName ¼ logical name for this policy. This is the logical name for this

instance of a data replication policy. Depending on the implementation of the

data grid, this name may or may not be unique.

Data atom

Data replication policy
mandates 4 replicas of the

data atom

Data synchronization  policy
is pessimistictransactional
between the data atom and its
replicas that are distributed

across the data region

Data region

Data distribution  policy
The data atom replicas are

distributed throughout the data
region following a Gaussian

distribution formula

Figure 9.3. Relationship between data replication, distribution, and synchronization policies.
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. Region ¼ primary region name. This is the primary data region to which this

data replication policy is applied. A data replication policy of identical charac-

teristics [as determined by the Scope( ) and Quantity( ) attributes] can be

applied to other regions in the data grid.

. Quantity ¼ number of replicas. This is the number of replicas that a data atom

will have in the data region.

. Scope( ) ¼ F(All, List(DataAtoms) ¼ NULL). Another function, Scope( ) of

the data replication policy, can apply to all the data atoms of the entire data

region as indicated by the All attribute or apply only to a specific range of

data atoms identified in the supplied list. Note that these parameters are

mutually exclusive.

Synchronization Policy

Synchronized regions ensure that all data “atoms” associated with a particular region

are available everywhere. Replication of data “atoms” falls into replicating all or

replicating a subset of categories. Total replication assumes that all the data for

the region is available and copied everywhere. Partial replication combines a distri-

bution policy, such as a round-robin distribution, with total replication of some data

“atoms.” Synchronization policy is discussed in more detail in a later chapter.

Load-and-Store Policy

A load-and-store (load/store) policy is needed when data are integrated from data

sources external to the application data region. These external sources can include

other data regions, legacy systems, databases, middleware (i.e., messaging), and

files. The data load policies will define how and when data are to be obtained for

the data region, for example, whether the data are to be “preloaded” or “loaded

on demand.” The data store policies will determine when and how data are to be

pushed out of the data region to the appropriate external data destinations, for

example, persisting to an external database. Data store policies can be transactional

as well as nontransactional. Both load and store policies can also follow a data

distribution policy.

One way to think of the data load/store policies is as an interregion synchroni-

zation policy. Virtualization of the external data sources and the interaction proper-

ties of those data sources allows the application that is running in synchronization to

behave similarly to the synchronization policies of the data region. One must take

into account whether the external data sources support such policies. A load/store
policy is needed when data are integrated from data sources external to the appli-

cation and its associated data regions. Those external sources that require load

and/or store could include

. Other data regions

. Legacy systems
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. Databases

. Middleware (i.e., messaging)

. Files

. Custom APIs

The data load policies will define how and when data are to be brought into the

data region. Examples of data load policies are:

. Preloaded—load the data region with the external data before the application

needs it.

. Load on demand—data from the external source are to be loaded to the data

region on request from the application.

The data store policies will determine how and when data are to be pushed out of

the data region to the appropriate external data source or sources. For example

. Store all—all or portions of the data in the data region is predefined for storage

to the external systems with the data remaining in the data region after the store

operation is executed.

. Store on demand—specific data atoms in the data region are stored or copied to

the external systems as the application requires. The data remain in the data region

after the operation completes. In this situation, the application controls the storage.

. Purge—data atoms are removed from the data region.

There are a number of implied properties to data load/store policies, including

. Granularity

. Grouping/frequency

. Invocation

Granularity. One property of the data load/store policies is granularity. Note

that there are policy attributes that define just how many atoms are to be

loaded into and stored out of the data region. The “xxx on demand” policy

attribute implies a varying level of granularity from the smallest data atom

to a grouping of any size as defined by the application. The “xxx-all” policy

attribute implies that the data pertaining to a specific external system are to

be loaded into or out of the data region in a complete block.

Grouping/Frequency. The mechanics of data load and store into and out of the

data region involve, either as directed by the application or transparent to the

application, when the operation physically is to take place. Each invocation of

a load or store (typically for the “on demand” operations) can be done one at a

time, or the policy can define a store-and-execute strategy that will group loads
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and updates for execution at a later time. This strategy is particularly useful for

performance optimizations when

Data atoms are fine-grained

The frequency of the load/store operations are greater than the time period of

the external system’s ability to transact the operation

Invocation. A third implied property of the data load and store policies is the

invocation of the required enterprise information integration (EII) or enter-

prise application integration (EAI) adapters. The policies must tie the data

atom grouping and manage the invocation of the physical data movement

into and out of the region via the respective adapters.

Just as there is a relationship between data distribution and replication policies,

there is a relationship between data synchronization and data load/store policies.

Figure 9.4 illustrates this relationship.

The data management policies of the data grid are interconnected. The data

synchronization policy determines the transactional level of the system, and the data

Data
synchronization

policy

Data
load/store

policies

Transactional levels

* Pessimistic

Granularity of data movement
 * Fine (data atom level)

group updates)

Mechanical method / implementations
of load and store

(EII adapters)

Relationship

In
vo

ke
s

Supports

* Optimistic
* Coarse (store and

Figure 9.4. Data synchronization and load/store policy relationship.
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load/store policies define the granularity and frequency of the process. There is, how-
ever, a third part of the equation: the EAI/EII adapter. The adaptor must be able to sup-

port the synchronization policy set in the region. For example, if the synchronization

policy is optimistic but the EII adapter is a XA transactional, then there is a policy/
implementation impedance mismatch. The end result is a system behavior that will

not meet the application requirements for data management, performance, and

throughput. The physical implementations must support the data management

policy set in order for the data grid to operate properly in accordance with the set

policies.

Data load/store policies are integral parts of enterprise information integration

and are discussed in more depth in a later chapter.

Data Load Policy Expression. The data load policy expression defines the key

parameters for loading data into a data region from external sources:

DataLoadPolicy ¼ DLP

PolicyName,

Region,

Granularity( ),

Adapter( )

2
664

3
775

where

. DPL is the data load policy function.

. PolicyName ¼ logical name of this policy. This is the logical name for this

instance of a data load policy. Depending on the implementation of the data

grid, this name may or may not be unique.

. Region ¼ primary region name. This identifies the primary data region to

which this data load policy is applied. A data load policy of identical charac-

teristics—as determined by the Granularity( ), Scope( ), and Operation( )

attributes—can be applied to other regions in the data grid.

. Granularity ¼ F(Grouping( ), Frequency( )). The granularity of a data load is

defined by the parameters of grouping and frequency. The Grouping( )

parameter defines the number of updates that are to be grouped in the data

region as a result of queries before the queued updates are applied to the

data region. The Frequency( ) parameter indicates the minimum frequency

or time interval for data load into the data region. Both the grouping and

frequency parameters can be static numbers and user-defined functions

based on application/service requirements for data load. A Frequency( ) of

zero identifies a one-time data load into the data region, thereby preloading

the data region. Frequency of any other value (negative values do not

apply) indicates a load on demand operation (e.g., a frequency of 2 means

updating every 2 s).

. Adapter( ) ¼ EIIAdapter(. . .). The Adapter refers to the physical enterprise

integration information (EII) or enterprise application integration (EAI)
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adapters that will physically perform the loading of data into the data region.

Included in these adapters can be the data atom schema and translation logic

from the external source into the data atom of the region being loaded. The

parameters of the EIIAdapter( ) attribute can vary from adapter to adapter

implementation as required to perform the required function.

Data Store Policy Expression. The data store policy expression defines the key

parameters for loading data into an external data store:

DataStorePolicy ¼ DSP

PolicyName,

Region,

Granularity( ),

Operation( ),

Adapter( )

0
BBBB@

1
CCCCA

where

. DSP is the data store policy function.

. PolicyName ¼ logical name of this policy. This is the logical name for this

instance of a data load policy. Depending on the implementation of the data

grid, this name may or may not be unique.

. Region ¼ primary region name. This is the primary data region to which this

data store policy is applied. A data store policy of identical characteristics

[as determined by the Granularity( ), Scope( ), and Operation( ) attributes]

can be applied to other regions in the data grid.

. Granularity ¼ F(Grouping( ), Frequency( )). The granularity of a data store is

defined by the parameters of grouping and frequency. The Grouping( ) para-

meter defines the number of updates to be exported out of the data region

that are to be queued before the queued exports are applied. The Frequency( )

parameter indicates the minimum frequency or time (maximum time interval)

with or during which any data export out of the data region must occur.

Both the Grouping( ) and Frequency( ) parameters can be static numbers and

user-defined functions based on application/service requirements for data

store. A Frequency( ) of zero identifies a one-time data export out of the data

region. A frequency of any other value (negative values do not apply) indicates

a store on demand at a defined interval.

. Operation ¼ F(Store/Purge). This defines the resulting state of the data region
after a data atom has been exported. Store( ) leaves the data region populated

with the data atom in the last known state at the time of the store. The

Purge( ) attribute deletes the data atom from the region after it has been stored.

. Adapter( ) ¼ EIIAdapter(. . .). The Adapter( ) refers to the physical EII, or EAI

adapters that will physically perform the export of data out of the data region.

Included in the adapter can be the data atom schema and translation logic

from the data atom to the external source to which the data are being exported.
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The parameters of the EIIAdapter( ) attribute can vary among implementations

as required, thus meeting the required functions.

Event Notification Policy

Event notification policy is a common paradigm—a tool common to real-time event

processing or straight-through processing (STP). Most databases and middleware

products support event notification in someway. Databases support event notification

through “triggers.” The triggeringmechanismmonitors the state of a database at vary-

ing degrees of granularity: a table within a database, a row within a table, or a field

within a row. When a monitored entity changes state (due to an event that modifies

its state, via an insert, update, or delete action), the database will toggle all “registered

triggers” for this event, which will execute the respective registered triggered

operations. These operations are typically user-defined. The trigger passes into the

user-defined operation (or function) that describes, in detail, what event invoked the

trigger. Typical examples of triggers and corresponding user-defined functions are:

. Internal database operations when a row in table A is deleted. The first thing

that happens is to find the rows in related tables for which this action effects

and then take the appropriate action to other tables maintain referential.

. External operations to database: user-defined programs that will cause a

cascade of events or state changes to systems external to the database.

In straight-through processing, or more specifically with message-based middle-

ware, which is a concept of publish and subscribe, an external program will

“subscribe” to a published event in the middleware. Any single published event

can have many subscribing programs. The published event may trigger cascading

events by the invocation of all subscribed programs.

Similarly, within the data grid, event notification plays an integral role. When a

data region’s state has changed, the following could occur:

. A data atom is added to or deleted from a data region.

. A data management policy is changed.

. A data atom is changed.

Other data regions within the data grid, applications/services, or legacy systems,

can register interest in order to be notified should an event take place. The event

notification policy is a standard interface that describes how events are to be handled

within the data region. Some of the key parameters described via the event

notification policy are the events themselves. Programs can register interest in

events, and exactly how the invocations are to be managed.

As with the data load and data store policies, event notification policy is an

integral part of information integration into and out of the data grid. This will be

discussed in more detail in a later chapter.
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Event Notification Policy Expression. The event notification policy expression

defines the key parameters for the management of events within a data region:

EventNotificationPolicy ¼ ENP

PolicyName,

Region( ),

Scope( ),

Operation( )

0
BB@

1
CCA

where

. ENP is the event notification policy.

. PolicyName ¼ logical name for this policy. The PolicyName is the logical

name for this instance of an event notification policy. Depending on the

implementation of the data grid, this name may or may not be unique.

. Region ¼ primary region name. This is the primary data region to which this

policy is applied. An event notification policy of identical characteristics

[as determined by the Scope( ) and Operation( ) attributes] can be applied to

other regions in the data grid.

. Scope( ) ¼ F(All, List(DataAtoms) ¼ NULL). The Scope( ) of the event notifi-

cation policy can be applied to the data atoms of the entire data region as indi-

cated by the All attribute or apply only to a specific range of data atoms

identified in the supplied list. Note that these parameters are mutually exclu-

sive.

. Operation ¼ F( ). This is the user-defined function to be invoked on the

occurrence of an event.

QUALITY-OF-SERVICE (QoS) LEVELS

Throughout the our discussions on data grid—and its management policies of

synchronization, distribution, replication, and load and store—we will be using

the terms quality of service (QoS) and QoS levels. The objective of a distributed

data management system, through its data management policies, is to provide a

level of end-user support found with traditional data management systems. It is

necessary to identify QoS levels on the basis of application requirements when

both the business applications and services are running in a distributed grid comput-

ing environment. Various categories of QoS levels must be accounted for, including

. Service availability

. Service performance

. Geographic boundary (desktop, data center, cross data center, etc.)

. Data management

. Others
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Our discussions will focus on the QoS levels for data management. Some of the

QoS features for data management in grid are computing

. Traditional data management service levels, such as support for transactions,

query, and embedded logic (i.e., stored procedures).

. Data grid management service levels—for example, regionalization and

synchronization.

There are numerous ways to implement the data grid, depending on the user

application’s requirements as well as the level of service that it demands from a

data management system in order for it function properly; this will determine the

type of data grid and the QoS level that the data grid must provide.

In Chapter 5 we discussed ways in which to express an application in an equation

format via the definition of its parameters and to quantify its data management needs

(QoS levels) for the data grid.

The definition for an application in a distributed environment is

Application(Work( ), Data( ), Time( ), Geography( ), Query( ))

where the various functions can have the following parameters:

Work(batch=atomic, synchronous=nonsynchronous)

Data(overallsize, atomicsize, transactional, transient, queryable)

Time(Real-Time, NotReal-Time, NearReal-Time)

Geography(Topology, NetworkBandwidth)

Query(basic, complex)

This equation is broken up into functions: Work( ), Data( ), Time( ), Geography( ),

and Query( ). Each of these parameters quantifies a level of service that a data

grid must provide to support the service or application. The QoS level that a data

grid provides is determined by its management policies within the data region.

These policies are mentioned in this chapter, but will be discussed in more detail

in the chapters to follow.

As with most service-oriented architectures, the service is judged by the custo-

mer’s satisfaction level as a result of using the service. The most fundamental

aspect to customer satisfaction is the service’s ability to meet the business need.

However, there are additional key factors necessary to measure customer

satisfaction, such as

. Availability when needed during peak as well as off-peak times

. Cost of the service

. Performance time to run the service

Therefore, the responsibility of the data grid is to meet the QoS demands on all

levels in order to accommodate and manage the overall customer experience.
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10
DATA SYNCHRONIZATION

The vocabulary of data synchronization is similar to that of a motivational speaker.

Is the application optimistic or pessimistic? Or is it somewhere in between these two

extremes? Does the application trust the data grid to deliver data? Does it even care

whether the data are delivered at all?

Optimistic synchronization policies relate to instances where the application has

a great deal of trust in the data grid to deliver data of its own accord. This synchro-

nization policy lends itself to high performance. The opposite end of the spectrum is

a pessimistic synchronization policy. Here, the application needs to ensure the deliv-

ery of data before continuing to process. These applications need to “see it for them-

selves” in order to “believe” that the data reach their intended destination. These

applications tend to be transactional in nature.

One of the data management policies within the data grid is synchronization, as

discussed in earlier chapters. There are two types of synchronization: intraregion

and interregion. These respective synchronization types identify data synchroniza-

tion within a data region with other data sources either external or internal to the

region. These are distinctly separate synchronizations, each with its own definition,

scope, impact, and effect on the application and others around it.

The data synchronization policy, like other data management policies of the data

grid, is heavily dependent on the requirements of the applications. Intraregion syn-

chronization supports the application’s behavior and its characteristics for inbound

and outbound data, the generation of interim data sets, and other applications inter-

acting within that region. For example, are the data characteristics of the application

transient or transactional in nature?
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Interregion synchronization manages the dependencies of the data region’s inter-

actions with external data sources, whether those sources are external systems, such

as legacy systems, or other data regions in the data grid. Typical behavioral charac-

teristics are read-only, and read and update where transactional constraints apply.

A proper analysis of the application will determine the synchronization policies

required to best meet the application’s goals. The data grid must support a wide

range of synchronization policies in order for the data grid to be of maximum

use, efficiency, and scalability for application within the data region.

INTRAREGION SYNCHRONIZATION

Intraregion synchronization (see Figure 10.1) policies support the transient and

transactional behavioral data requirements of applications whose scope is internal

to the data region itself and involve other applications and systems that participate

in the contribution or consumption of data managed by that data region.

The data management requirements of contributors (or producers) and consumers

of data within the data region have a direct impact on the selection of data grid

implementation and its ability to fully or partially support those requirements.

One choice, for example, could be GridFTP, where the data producers and consu-

mers are the FTP clients and the data stores are FTP servers. Synchronization

between FTP clients and servers implies a transaction manager that resides within

the data region managing updates between the FTP clients and servers involved

in the transaction. The transaction manager is responsible for implementing the syn-

chronization policy for the data region. This implies that GridFTP is best suited for

pessimistic (transactional) synchronization policies and not well suited for optimis-

tic synchronization policies where speed of processing is paramount.

The FTP transaction manager itself can have a centralized architecture so that all

transactions are managed via this one manager. Alternatives include having trans-

action managers logically reside in each data region producer and consumer process.

The transaction managers are peers to each other and coordinate between them-

selves on the transaction. Each approach has its own pros and cons for giving the

Data grid plane

Data region
Transactional

Nontransactional

Figure 10.1. Intraregion synchronization.
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synchronization policy support for the data region and its own unique intraregion

synchronization QoS level.

The two architectures of centralized and peer-to-peer synchronization are

common, and will be an important consideration when choosing the data grid

implementation in terms of its ability to deliver the best intraregion data synchroni-

zation QoS levels for the application requirements.

Another example of data grid implementation is a metadata dictionary, which

gives an abstraction layer between data producers, consumers, and the physical

data sources. Intraregion synchronization policies are managed by the metadata dic-

tionary, thus assuming the characteristics of a centralized synchronization architec-

ture. The metadata dictionary provides the abstraction layer and is the transaction

manager for synchronization between the various sources.

Data grids that are based on distributed caching; thus intraregion synchronization

is internode synchronization per atom of data. The applications themselves become

the producers and consumers of data.

Intraregion data synchronization policies govern transient and transactional data

behaviors in support of the specific requirements of the application using the data

within the data region. However, the intraregion synchronization QoS levels avail-

able to support those policies depend greatly on implementation of the underlying

data grid.

INTERREGION SYNCHRONIZATION

Interregion synchronization (see Figure 10.2) policies—synchronization between a

data region and data sources that are external to that region—follow the same

general guidelines as do intraregion synchronization policies. With interregion

Data grid plane

Data region A

Database File
systems

NontransactionalTransactional

Transactional

Data queue

Data region B

Figure 10.2. Interregion synchronization.
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synchronization, the participants involved could be other data regions as well as

external systems, applications, databases, or middleware. The external partners

can be other data regions within the data grid or a legacy system. The legacy

system is any other data source outside the data region. Examples include a

relational database; a middleware bus, such as a queuing system; a publish-

and-subscribe bus; a filing system; a mail server; and even other data grids. The

synchronization policy defines the interaction with another system that is external

to the data region.

Even more in evidence here than with intraregion synchronization is the depen-

dency on the implementation of a data partner. These partners can be a wide range of

systems each with their own characteristics and ability to support purely transient or

transactional behavior. Some standards do exist to define a transaction such as XA;

however, not all transactional systems support an XA interface. For nontransactional

behavior, too, there is a dearth of standard interfaces, if indeed any exists. Therefore,

extra attention must be paid to the available levels of QoS needed to be considered

when architecting an application in a distributed environment.

SYNCHRONIZATION ARCHITECTURES

There are various ways to implement synchronization between n numbers of part-

ners. We will look at two methods: (1) a centralized controller and (2) a decentra-

lized, peer-to-peer mechanism. It is important to realize that these architectures

are implementation-based and not policy-based.

Synchronization architectures control the interaction between two or more part-

ners interested in maintaining a constant view of the data. This interaction can be

regarded as a transaction between these partners. In a centralized architecture, the

controller or “synchronization manager” coordinates the transactional update

between the partners. In a peer-to-peer architecture, that has to be a quorum

established between the partners as to which partner “owns” the master version of

the data. The synchronization of the data among the transaction partners of the

quorum involves only those partners, thus allowing the other nodes in the data

grid free to asynchronously process their data requests, updates, and transactions.

Centralized Synchronization Manager

The centralized synchronization manager architecture implies one central process,

the synchronization manager, with which all the nodes coordinate when receiving

updates. It is the responsibility of the synchronization manager to know the identities

of the other partners interested in maintaining the latest view of the data atom. The

synchronization manager will, in a coordinated fashion, update all the interested

partners with the latest data. From the user’s perspective, all the requests or notifica-

tions go to the synchronization manager, at which point the synchronization

manager operates on the data. The synchronization manager can operate in several

modes, one of which is the transactional mode. In this mode the user will wait for a
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successful acknowledgment before processing with the other tasks. This ensures that

all parties have received and acknowledged the receipt of the information. Another

mode of operation is nontransactional. Here the synchronization manager returns to

the user a successful receipt of the data even though further synchronization with

other parties needs to be performed. Therefore the user can continue with its tasks

while the synchronization manager processes to update all required endpoints

(data regions, systems, databases, etc.). The synchronization manager will then

continue to update the rest of the parties involved in the synchronization. However,

these users will not be waiting for all parties to be synchronized; the user trusts the

synchronization manager to perform this function. The user in this case also has the

understanding that should something catastrophic happen—either with this synchro-

nization manager or if one of the transaction partners is not available to receive the

update—data will be lost and updates to all interested parties cannot be guaranteed.

This mode of behavior for the synchronization manager is policy-driven.

The advantage of the centralized synchronization manager is that there is one

manager to administer, monitor, and ensure that all parties involved receive the

update. However, this simplicity of design cuts both ways. The disadvantage is

that it is one manager yielding scaling limits to performance. Various engineering

methods can be used to circumvent this, including an architecture hybrid between

the centralized and peer-to-peer architectures, a federation of synchronization man-

agers, where each manager is responsible for its own group of transaction partners.

When a group becomes too large for one manager to service, new managers are

added to the federation and the grouping will be subdivided among them. However,

now the federation of managers must coordinate among themselves. This yields a

tiered approach, a quorum of synchronization managers, each responsible for a

grouping of nodes interested in receiving data updates. The federation begins to

resemble a peer-to-peer architecture. However, on the upside, few synchronization

managers are needed relative to the total number of nodes to be administered. The

downside is that should a synchronization manager fail, then an entire group of

nodes will stop receiving updates.

Peer-to-Peer Synchronization

In the peer-to-peer (P2P) architecture, each data source is responsible for identifying

all the potential partners interested in being updated when a piece of data is changed

and for coordinating directly with those partners without the middleperson, a centra-

lized manager. For an update and only for the duration of that update, will the nodes

coordinate with each other. This implies that there is a primary owner for a piece of

information, and it is the responsibility of the owner to notify all interested parties

and coordinate the propagation of the update among them.

Administration of a P2P architecture is different from that of a centralized archi-

tecture. There is no central administration manager to monitor in order to view the

transaction process, performance statistics, and the various status logs maintained.

Thus, a different administration approach must be taken in P2P architectures.

One possibility is to view the chain of events across the data grid from the data’s
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perspective. Performance and transaction statistics can be identified and monitored

by the owners of a data atom.

The advantage of the P2P architecture is scalability. Without having to worry

about the number of nodes in the data grid, the amount of data under management

or synchronization scaling and latency, the system will intuitively scale without

having to add layers of managers for the increased load.

SYNCHRONIZATION PATTERNS

There are various synchronization patterns from which one can choose when defin-

ing and selecting policies for synchronization. These patterns can be transactional or

nontransactional; they can define frequency and granularity of synchronization.

There is also an intertwining between synchronization policy and distribution

policy when it comes to a replicated distribution policy. For example, the replicated

distribution policy employs the transactional mode of synchronization. A distributed

distribution policy makes no such vocation.

The synchronization must take into account the distribution policy, the granular-

ity of the data sets involved, and the geography of the region: specifically, the

geography of the transaction partners involved in the synchronization. If it is inter-

region, the bandwidth and geography constraints need to be considered, as do the

constraints of the other system characteristics—their ability to support a transac-

tional and nontransactional synchronization. For intraregion synchronization, the

external transaction partners’ characteristics and behavior are not a primary concern.

However, the geography and network bandwidth characteristics of the region need

to be considered.

In the case of the replicated distribution policy, issues such as data granularity in

frequency and network bandwidth are less of an issue because the distribution policy

itself dictates that for every update, whenever a piece of information is changed, all

parties involved must receive an update in transactional mode. Therefore, the speed

of the system is not of primary concern; rather, it is the security of the data. However,

for other distribution policies, data granularity and frequency of synchronization

become important. For example, if the data set is very fine (i.e., the data atoms are

small in size) and is typically updated frequently, then the load on the synchroniza-

tion manager in keeping up with all the updates can be high. If the physical surround-

ings, such as geography and network constraints, can support high-speed

interconnections (e.g., high network bandwidth), then fine granularity and high fre-

quency of update become less of a gating factor to performance. Otherwise, low net-

work bandwidth, either local-area network (LAN) or wide-area network (WAN), and

synchronization patterns of frequency and per atom update rates need to be adjusted.

In these cases, it will be efficient or scalable to synchronize small pieces of infor-

mation frequently across a network. The synchronization pattern may have a group

of updates and synchronize groups of updates with less frequency. This works well

for nontransactional policies; in a transactional policy, all updates must be synchro-

nized regardless of the data atom size, network bandwidth, or geography.
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Synchronization Granularity

We have yet to address the granularity of a synchronization policy. For intraregion

synchronization, it has been assumed that the synchronization policy within the

region is broad in scope in that the policy addresses all the data atoms and their repli-

cas within that region. Basically, this is a homogeneous synchronization policy (see

Figure 10.3). However, in terms of interregion synchronization, this assumption is

not valid. Data within a data region can be generated by either the application or

the services that are in the region supports, or it can be imported or loaded into

the region from any number of external data sources.

Therefore, the synchronization policy for interregion synchronization, at mini-

mum, must have the flexibility to be individualized to each of the external data

sources that the data region exchanges data with. So we have moved from a homo-

geneous synchronization policy to the requirement of a heterogeneous synchroniza-

tion policy (see Figure 10.4) for external or interregion synchronization.

Certainly, a homogeneous synchronization policy for intraregion synchronization

is valid. However, it will not support more sophisticated applications and the

requirements for data management. Therefore, extension of the data region to

support heterogeneous synchronization for external or interregion synchronization

should also be brought into the intraregion synchronization policies as well (see

Figure 10.5).

A wiser definition of synchronization policy granularity will extend beyond the

individual data atoms from an external data source to any logical grouping of

Data atom

Homogeneous data
synchronization policy

Data region

Figure 10.3. Homogeneous synchronization policy.
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data atoms. Therefore, a data atom can be tied to one or more synchronization

policies for both for intra- and interregion synchronization. For example, a data

atom may be required to be a transactional synchronization to “external source

A,” such as a relational database, but not be required to have a transactional synchro-

nization to “external source B,” a queuing system.

Fine-grained data synchronization allows for sophisticated data behavior both

within and outside the data regions providing maximum flexibility to the services

and applications that the data region supports.

Synchronization Policy Expression

The following is the expression for the data synchronization policy:

SynchronizationPolicy ¼ SP

PolicyName,

Region,

Scopeð Þ,
Transactionalityð Þ,
LoadStoreð Þ,
Eventsð Þ

0
BBBBBB@

1
CCCCCCA

Heterogeneous data
synchronization policy  

Data region

Database

Data queue

Policy DS-1

Policy DS-2

Policy DS-3

Figure 10.4. Heterogeneous synchronization policy.
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where SP is the synchronization policy function with the following parameters:

. PolicyName ¼ logical name for this policy. This is the logical name for this

instance of a data synchronization policy. Depending on the implementation

of the data grid, this name may or may not be unique.

. Region ¼ primary region name. This is the primary data region to which this

data synchronization policy is applied.

. Scope( ) ¼ F(Boundary(Intra, Inter), List(DataAtoms) ¼ NULL). The scope of

the data synchronization policy is defined by its boundaries. Is the synchronization

Database

Data queue

Policy DS-3

Policy DS-4

Policy DS-5

Data region B

Policy DS-B-1

Data region A

Policy DS-A-1

Policy DS-A-2

Figure 10.5. Heterogeneous synchronization for both inter- and intraregion synchronization.
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local to a data region (intraregion), or does it expand beyond the data region (inter-

region)? The second parameter defines the data atoms within a data region whose

synchronization is to be managed by this policy. If no list is provided, then this

policy encompasses all the data atoms of a region.

. Transactionality ¼ F(Transactional, Nontransactional). This function defines

the synchronization policy as being either optimistic (nontransactional) or

pessimistic (transactional) in nature. This parameter puts constraints on the

QoS level that the load/store adapters must provide. If a synchronization

policy is transactional, then the physical adapters used in the load/store policies
must also support a transactional protocol.

LoadStoreð Þ ¼ F
List DLPð Þ,DataSource,List DataAtomsð Þð Þ,
List DSPð Þ,DataSource, List DataAtomsð Þð Þ

� �

This is a complete list of the data load/store policies required for this synchroniza-
tion policy. The constraints are that (1) this parameter is valid only valid for inter-

region synchronization and (2) the list of data atoms must be inclusive to the scope

of this synchronization policy. TheDataSource identifies the type name of the data

source to which the respective DLP( ) and DSP( ) are to be applied.

. Event( ) ¼ F(List(EventNotificationPolicy( ))).

This is the list of event notification policies to which this synchronization has

subscribed. With an event defined in an event notification policy trigger, then

this synchronization will trigger a synchronization action. The scope of the

resulting synchronization can encompass the entire scope of this synchroniza-

tion or specific data atoms within its scope.

Synchronization Pattern Simulations

There is active research in the area of data locality and access in distributed shared

memory (DSM) architecture. There are various techniques of optimization patterns

or overlays of data across nodes.22 The assumptions are that there are synchronized

“copies” of a data atom active in multiple nodes in the data grid. The objective is to

find the fastest route to a data atom in the data grid, and thus figure out how to opti-

mize the data query speed. There is no presumption to how data are organized across

the data grid. The data are just there, randomly dispersed with no forethought as to

how they are being used.

We will base a set of hypotheses on the fact that we do know how the data can be

distributed and synchronized efficiently to reflect the needs of an application. The

deterministic policies of synchronization and distribution allow for optimal query

access. Business applications are inherently deterministic. Earlier, we offered an

equation set that describes the characteristics of applications with regard to how

those characteristics affect the data management policies of a distributed data man-

agement system such as the data grid. These characteristics can be presented in
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mathematical form, although most likely not in simple representations since the sys-

tems can be complex. However, they are deterministic systems. The data grid, in rea-

lity, is not infinitely wide and dispersed. It has a boundary. The application traverses

or operates over subsets of the data grid boundary. Some of the conditions defining

this boundary are the characteristics of the application and application operations

(operating systems, linked libraries, etc.) and so on. All these conditions set forth

a deterministic pattern to data locality and data frequency. Therefore, if the determi-

nistic nature of the application can be expressed in a mathematical form, then the

data synchronization and data distribution policies required to support the appli-

cation can be similarly expressed.

SYNCHRONIZATION POLICY AS A STANDARD INTERFACE

When the scope of the data requirements for an application is contained within the

single data region—for example, when there are no interactions with other external

sources, whether they are legacy systems or other data regions within the data grid—

then the policies that we have discussed (synchronization, replication, distribution,

load/store, and event policies) fully describe the data behavior within that region of

the data grid. However, as scope of the application demands the integration of data

from other sources external to the data region, the interaction and movement of data

between those regions and other sources need to be defined. These interactions need

to be defined in such a way as to maintain the QoS level, thus keeping it at an accep-

table level for a constant and reliable business and system behavior. Of the data

management policies, the synchronization policy can extend beyond the boundaries

of the data region and define how the data region interacts with external data sources

and other data regions. The other data management policies of distribution, replica-

tion, load/store, and event notification are all self-contained and describe data

management within the region. They have no public interface defining the inter-

action with that region and the external sources. It is only the synchronization

policy that defines this external or public interface.

Use of the synchronization policy as a standard public interface to a data region

addresses the maintenance of or elimination of the fluctuation of QoS level between

a data region and other external sources. This can include other data regions within

the data grid, but also eliminates variances in QoS levels between different

implementations and data grid versions. Defining a clean and concise interface of

data movement and how the data are to be exchanged isolates mechanics (including

the implementation) of any of the data regions involved in the sharing of data. We

will delve into this topic further in a later chapter.
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11
DATA INTEGRATION

ENTERPRISE APPLICATION/INFORMATION INTEGRATION

(EAI/EII) IN GRID

In the chapter on Web Services, we will discuss an evolution to Web Services,

starting from the point-to-point integration of standalone systems, to the client/
server topology, to distributed computing [straight-through processing (STP)] and

finally to the grid topology and the compute utility. This is a long progression of

new and very different compute topologies that ushered in their own distinct oper-

ational environments, creating an intertwining that exists today. To better under-

stand information integration within the grid, let us take a brief look at the

evolution of enterprise information integration, better known as EII.

Straight-through Processing (STP), EAI, and EII

As client/server evolved into distributed computing, new buzzwords emerged. In

the early days, enterprise application integration (EAI) was very common, and as

time went on, achieving straight-through processing (STP) by leveraging EAI

became the trend. Today, the more commonly phrase enterprise information inte-

gration (EII) has come to the fore. We would like to provide a level of understanding

associated with each of these three commonly used acronyms:

. Enterprise Application Integration (EAI). The enabling of data sources and

applications to communicate with each other via a network without custom
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process and point-to-point connectivity software, often referred to as a “spa-

ghetti mess.” The resulting infrastructure replaced the spaghetti mess with

“middleware pipes.” Through middleware, information flows among the appli-

cations throughout the business units of an enterprise.

. Straight-through Processing (STP). Like EAI, STP is designed to provide end-

to-end business processing automatically and with little or no manual interven-

tion. Each application sends the information to an infrastructure that allows for

data processing, including data extraction, data parsing, data manipulation, and

data reformating. In addition, this infrastructure is required to provide intelli-

gent data routing and business processing to whatever end system or application

requires the data. This infrastructure, or hub, as it is commonly termed, will

provide the downstream applications with the data that they require in an auto-

mated fashion.

. Enterprise Information Integration (EII). The purpose of EII is to provide

access to data from multiple sources, making the request transparent to the

application. Thus, the data are automatically aggregated from the various

sources and the requesting application does not have to deal with determining

which source will provide which data, and with connecting to each source

directly. EII allows all back-end information to be seen as if it came from

one comprehensive, global database.

STP and EAI tend to go hand in hand; application integration is required to

achieve a near-real-time enterprise or STP. The progression to STP is a direct

response to various business drivers:

. In the financial industry, STP was driven by the initiative of moving trading to

clear in one day, a process commonly referred to as Tþ 1.

. Too many manual processes, which increased costs, errors, and processing time.

. The high cost of implementing computer systems.

. The high cost of maintaining computer systems.

. The business shifting focus to a customer service model.

Prior to the emergence of EAI and STP, the predominant system architectures

were “stovepiped” (see Figure 11.1), designed to run independently with no inter-

action. Examples are inventory control, human resources, and sales automation.

Over time, more and more lines of business required these systems to share infor-

mation, to get systems to share tasks and data and to eliminate the need for

custom code that is normally written. Typically, these were one-off efforts quite

often duplicated by different development groups supporting their respective

business units. This normally resulted in many versions of code performing the

same or very similar tasks and functions. Maintaining such point-to-point communi-

cation was very costly and yielded very few functional benefits. Companies started

looking at product solutions that would solve these problems and eliminate the

custom development that was in place.
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What began to emerge was a common process of separating how the applications

communicated, for involving data transformation and data representation. Connec-

tivity encompassed the physical hurdles of how the two processes or systems con-

nected to each other, which was typically via a network socket or through file

sharing, a more common process than one would expect. The second layer to connec-

tivity was the protocol. The protocol defines the logical interaction between the sys-

tems, things such as how to establish a connection, how to terminate a connection,

message headers and footers, message counting, how to identify missed messages,

and how to request a retransmission of missed messages. In regard to file sharing,

the functions included the FTP function, file checksums, and file ready for processing

flag. This process employed specialists for each system, network programming

specialists, and reams of specifications documenting every aspect of the process.

In conjunction with the system protocol were each system’s data formats. This

included message bodies, message headers and footers (separate from the communi-

cation protocol headers and footers), and field definitions. The message formats

ranged from some delimited format (the delimiters could be anything that the

developer of the system desired, typically a comma or any other character that

was not part of the information being sent), or an offset of field bit position and
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Figure 11.1. “Stovepiped” interprocess and intersystem connection architecture.
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size (analogous to a pilot’s method of dead-reckoning navigation of an aircraft). The

developer knew the starting point of each field since specific sizes were sizes associ-

ated with the fields. By counting fields and field sizes, the developer had a good idea

of where the next field started and ended.

This process needed to be repeated for each system pair that wanted to commu-

nicate and share information and process. The end result was a rat’s nest of inter-

twining systems that cost more to operate and maintain than did the respective

systems themselves. As you can imagine, system maintenance and regression testing

were a nightmare; the smallest change in one system impacted other systems and

caused a cascading regression test and QA (quality assurance) cycle for all other

connected systems.

The business driver of shifting to a customer-focused view requires the ability to

deliver business processes to the consumer quickly and efficiently. Stovepiped data

centers and applications integrated via point-to-point custom code do not lend them-

selves to this level of business delivery, thus leading to new techniques of system

and application integration. This began the evolution to enterprise application inte-

gration (EAI).

The architecture for EAI and STP (see Figure 11.2) deals with the abstraction of

system conductivity. Systems that interact via the sharing of events and information

should be able to publish events leading to the sharing of information associated

with the respective events without having to worry about direct point-to-point com-

munication of any type, such as sockets. This concept describes one of the core func-

tions of what was termed “middleware.”

The EAI and STP architectures simplified matters, eliminating the complexity of

connectivity by ushering in a new technology (and family of jargon) of middleware.

The generic definition of middleware is software that connects two separate appli-

cations. It is sometimes referred to as “plumbing” or the “glue” that holds or con-

nects applications together and passes data between them. In practice, middleware

performs some wondrous feats. It provides a standard method and protocol for all

applications to communicate; it completely disconnects any one system from all

others that need its information to perform its own tasks; conversely, it can get to

any other systems’ data that it may need. This disconnect of systems allows for

system maintenance without adversely affecting every other system in the infor-

mation sharing chain simply by requiring a QA test with the middleware product.

Note that the data side of the system integration equation is still not addressed.

This is where we start to get into the wide variety of and differences in middleware

products. At the highest level, there are basically two types, messaging-oriented

middleware (MOM), and Common Object Request Broker Architecture

(CORBA). The former has an entire family tree of brothers, sisters, and distant cou-

sins, while the latter is attempting to fill the broader scope of service-oriented archi-

tecture (SOA), which has seen better days.

Messaging middleware has three basic flavors: simple queuing, where appli-

cations have “well known” inbound and outbound queues that anyone can access;

message routing features that will automatically deliver “published” messages to

all “subscribers” to that message; and data translation tools that will translate data
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from the originator’s format to the recipient’s format while it transports the data

between the two systems.

CORBA, on the other hand, encapsulates systems as a “service” and publishes its

services for other systems to access. The services include both data and function.

Data representation in a CORBA environment is common to all applications to

understand independent of hardware platform, implementation, and operating

environment. CORBA’s data representation is accomplished by using the Interface

Definition Language (IDL). A service “publishes” its interface by defining it in IDL

and then compiling it for source-level inclusion into the implementation of the ser-

vice code. Any CORBA service can be “located” simply by making a request to

the CORBA service broker. The requesting application has to know something

about the service it needs and through a series of inquiries can find out all the details

of the service in order to use it. As you can see, it can get quite complicated, and we

are only skimming the surface.

CORBA’s complexity and closed nature ultimately have led to its filling niche

markets only. However, the base technology and lessons learned have led to
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Figure 11.2. EAI and STP architectures.
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today’s current generation of service-oriented architecture, namely, Web Services

(see Figure 11.3 for a comparison of the two architectures).

As you can see, all the different versions and flavors of MOM and CORBA still

result in a complex network of stovepipes of middleware integration (see Figure

11.4) since each vendor’s software did not communicate to the other vendor soft-

ware. Without industry standards, connecting these stovepipes together still required

tremendous effort. That and consulting costs were the main reasons for middleware

vendor failure. Consulting costs were very high, and custom development was not

eliminated even though the applications did not have to worry about such tasks.

One of benefits of EAI is the ability to achieve zero latency, the real-time enter-

prise via a methodology called straight-through processing (STP).

Figure 11.5 shows the evolution from point-to-point to EAI/STP, the service-

oriented grid infrastructure.

It quickly became apparent that in order to achieve STP, a second front had to

be opened up on information integration: the evolution of enterprise information

integration (EII). Without the ability to represent the data independent of their

source, the full benefit of STP and EAI architectures cannot be realized. This leads to

fulfillment of the second of the two main components to system integration data. The

fundamental concept of abstraction of connectivity and data is evident in the service-

oriented architecture. SOA is flexible to adapt to and manage process-level and data-

level integration, or, as we have been discussing in this book, the compute grid plane

and the data grid plane. Grid technology is the evolution of middleware; it is the evol-

ution to the distributed computing environments given birth to by EAI, STP, and EII.

EII IN GRID

Data integration with grid computing builds on the concepts of EAI and EII,

which we have touched on in an earlier section. The data grid plane provides the

CORBA-only API

Tight bindings

TCP/IP sockets

IDL (complex process)

CORBA vendors interoperate 

Complex

Open standard

Loosely bound

Internet standards

XML (open standard)

Internet standards

Simple to moderate

Service location

Service binding

Connectivity

Data representation

Vendor support

Ease of use

Web Services CORBA

Figure 11.3. Web Services versus CORBA.
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focal point for data integration at the business service level. The core principles

for data integration in the data grid leverage the same “adapter” techniques from

STP; systems join the data grid in methods similar to those which they would

attach to an STP bus.
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One of the primary hurdles that had to be overcome in the EAI and EII evolution

was the integration of legacy systems, numerous systems that were built across a

long timeline. The people responsible for creating these systems—managers, archi-

tects, and programmers—have most likely migrated on to different groups or organi-

zations. The technology on which these legacy systems were built can be different

from the ones we are using today, technology that may not even be supported by the

vendor in the form in which it is used. How many systems have we come across that

are compiled against a third-party package, operating system, or an in-house library

that is no longer supported because upgrading one vendor’s version release will

cause integration failure or conflicts with other packages also linked into the

system? The inherent knowledge that is still part of the original project team may

have migrated with them in their advancing careers. Any system documentations

most likely do not capture all the nuances of the system, or the documentation

itself may be lost. The investment in time, resources, and cost in the adoption of

EAI, STP, and EII cannot be pushed aside, but rather leveraged in order to foster

quick adoption of the grid technology and movement to service-oriented offerings.

The adapter methodology, technology that is tested and working in production at

data centers, must be reused. The methodology for bringing the systems into the

STP-EII environment applies to grid computing and data grid integration.

We will see that the evolution of EII into the data grid goes beyond the mechanics

of EAI, STP, and EII simply for data integration. In order to provide services in a

quick and flexible manner, data management policies must be in place to describe

and manage data load and data store: data load policies for the import of data into

the data grid plane as well as the data store policies for the data export out of the

data grid plane. These data load/store policies must orchestrate with the other poli-

cies such as data synchronization policy. We will build on this relationship, which

has been introduced in earlier chapters.

EII within the data grid plane adds a layer of abstraction so that data movement

decisions are policy-driven rather than being programmed into the business appli-

cations and adapters that attached them to the data grid. We will look at the archi-

tectures of data load and data store as well as the interaction between these policies

and the other data management policies of distributed data management.

Natural Separation of Process and Data

Grid computing offers a natural separation of the process and the data. The compute

grid plane manages the execution of the business logic of a process, service, or appli-

cation. The data grid plane manages the data access, distribution, quality of service,

and availability of the business data used by the business logic executing in the com-

pute grid plane.

Let us start from the perspective of a developer—specifically, a developer using

object-oriented methodologies to implement a system. This is simply a tool enabling

us to visualize the separation of process and data management. Applications written

in non-object-oriented paradigm follow the same separation of process and data

separation in the grid. The point is more easily visualized in the following example.
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This is a fair assumption as most applications written since the mid-1990s use this

paradigm. Java, Cþþ, C#, and SmallTalk are object-oriented programming

languages, so the assumption is that if your application is written in one of these

languages, it uses object-oriented design principles. This statement may make

some people’s hair stand on end, as Cþþ does not enforce object-oriented prin-

ciples. This is a topic of discussion for another time. Please allow this indulgence

for the scope of this discussion.

The structure of business objects takes the form of methods and attributes.Methods

are the program or the business logic implementation of the object. The attributes are

the data with which the business logic operates in order to perform its function. The

following pseudocode shows a typical declaration of a business object:

1 public class FooBar
2 {
3 //NOTE TO THE READER
4 //A little Object Ease, Anything that is Public anyone can

access. Anything that
5 //is Private ONLY this business object can access.
6 //
7
8 //===== Declare the Business Data Attributes of the

Business Object =====
9 //declare the object’s Private Attributes
10 //
11 private String thisProcessName;
12 private Integer thisProcessState;
13
14
15 //===== Declare the Business Processes (Methods) of the

Business Object =====
16 //declare the object’s Public Methods
17 //
18
19 //===== Public Method – Constructs the Object =====
20 public FooBar()//Object Constrictor – used to put the

object in a well
21 //known state at its inception
22 {
23 thisProcessName="FooBar";
24 thisProcessState=0;
25 }
26
27 //===== Public Method – Change State =====
28 public void ChangeState()//Simple add one to the counter
29 {
30 thisProcessState=thisProcessState+1;
31 }
32
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33 //===== Public Method – Show the Business Process’s State
=====

34 public void HelloWorld()//prints out the object’s name and
state

35 {
36 print(‘‘Process Name is:’’+thisProcessName);
37 print(‘‘Process State is:’’+thisProcessState);
38 }
39
40 }//End Object Decloration

As is seen in this example, the data attributes are declared separately from the

business logic methods; however, the data are used, read, and modified in the

business methods. In a traditional compute environment, where FooBar executes

on a single machine, we do not think of this as two separate compute and data mana-

gement environments. The operating system creates a separate processing and

memory space for the executing program and manages both for us. In a grid environ-

ment, it is the compute grid plane that acts as the grid operating system for resource

and process execution and the data grid plane serves as the data management system

for the grid operating environment.

The compute grid plane keeps track of the compute nodes capable of executing

our business process FooBar. It also knows which of FooBar’s methods need to be

executed. It will make the best possible match of task and resource; therefore, it can

execute the “HelloWorld” method on compute node 1001 and the “ChangeState”

method on node 1275.

It is the data grid plane’s job to ensure that the data attributes of FooBar are avail-

able and in a consistent and correct state, accessible on both nodes 1001 and 1275

when needed.

Figure 11.6 shows the natural separation of compute and data management within

a grid.

Note that we will reference the FooBar code example throughout the remainder

of this chapter.

Data Load Policy

In Chapter 9, we discussed the basic principles of both data load and data store poli-

cies. Here, we will tackle the mechanical and operational aspects in data integration

and EII of the data grid through the data load and store policies.

From the application’s perspective, there are two ways to load data into the data

grid. First is the do-it-yourself approach. In the FooBar example, FooBar’s construc-

tor initializes the state of the business object by setting the name to FooBar and stage

to zero. In the ChangeState( ) operation, it modifies the state by adding one to the data

attribute. Basically FooBar loads and changes its data attributes itself. Specifically, it

loads in static values into the attributes. However, it could have just as easily have con-

nected to a database, queuing system, or file system to load in the value on construc-

tion or leveraged some other external data source to change its state.
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The data load policy comes into play when FooBar relies on the data grid for

loading some or all of its data attributes for it. For example, we can establish a

data load policy for FooBar as follows

DataLoadPolicy ¼ DLP

FooBar_DLP,

ExampleRegion,

Granularity Grouping 1ð Þ,Frequency 500ð Þð Þ,
FooBarFileAdapterð Þ

0
BB@

1
CCA

with a data synchronization policy of

SynchronizationPolicy¼ SP

FootBar_SP,

ExampleRegion,

Scope(Boundary(‘‘inter”),List(‘‘foobar_ProcessStage”)),
Transactionality(‘‘transactional ”),
LoadStore(List(‘‘Foobar_DLP”),List(‘‘FooBar_DSP”)),
Events(NULL)

0
BBBBBB@

1
CCCCCCA

Given the policies set above, FooBar can be modified as follows. Obviously

this omits details such as establishing a connection to the data grid and using

cumbersome get and set methods. The code snippet is for showing the concept

only. Working code examples are provided in a later chapter.

1 //===== Public Method – Constructs the Object =====
2 public FooBar()//Object Constrictor – used to put the object

in a well

Grid environment

Compute grid plane

Data grid plane 

Natural separation of
process and data

management

Logic

Business process
(object)

Data

Figure 11.6. Natural separation of process and data.
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3 //known state at its inception
4 {
5 thisProcessName="FooBar";
6 thisProcessState=dataGrid.get("ExampleRegion",

"foobar_ProcessState");
7 }

Here, we are creating a “local copy” of the “FooBar” process state contained in the

data grid. This local copy can be used elsewhere in the “FooBar” business process

and saved to the data grid when necessary.

Let us step through what happens when line 6 of the sample code above is executed.

First, we are assuming that we have a connection to the data grid, done earlier in the pro-

gram, which is represented by the “dataGrid” object. The “dataGrid.get( )” call has two

parameters; one is the data region, which in this example is “ExampleRegion.” The data

region is where the data atom “foobar_ProcessState” and the name of the data atom is re

sident, the second parameter to the “dataGrid.get( )” call. Since we have already defined

policies for synchronization and data load, the data grid will do the following:

if (‘‘foobar_ProcessState’’ Data Atom is resident in the Data
Grid)
then check to see if another process has a lock on it

if (‘‘foobar_ProcessState’’ Data Atom is locked)
then wait till lock is released
endif
Read and return value of ‘‘foobar_ProcessState’’ to the
business process

else
//The Data Atom ‘‘foobar_ProcessState’’ is NOT resident in the
//Data Grid
//As defined by the Data Load Policy use the Adapter
//‘‘FooBarFileAdapter()’’
//that knows where the file resides, external to the Data
//Region, access the file
//and get the value for ‘‘foobar_ProcessState’’, translate it
//to the proper data
//representation and populate the Data Atom
//‘‘foobar_ProcessState’’
Create and Lock the Data Atom ‘‘foobar_ProcessState’’
rawDataFormat=FooBarFileAdapter().load
//(‘‘foobar_ProcessState’’)
foobar_ProcessState=FooBarFileAdapter().translate
//(‘‘foobar_ProcessState’’)
Return the value of ‘‘foobar_ProcessState’’ to the business
//process
Release the lock on ‘‘foobar_ProcessState’’

end if

The end result of the business process FooBar is that the data it needs to perform

the function “foobar_ProcessState” are physically retrieved from another data
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source, stored in a foreign format in a transactional manner without any working

knowledge or code to do so. The entire process is defined by the data management

policies and managed by the data grid on behalf of FooBar.

Simple changes in the synchronization policy can have a major impact on the

behavior of the data grid and FooBar. For example, the data load policy can use a

different adapter, which will get the data from a completely different source and

data representation. Or the data synchronization policy can be switched to nontran-

sactional, which will eliminate the need to lock data atoms, thus speeding up the

entire process.

Figure 11.7 shows the separation of process and data management, the interaction

of policy and adapters to achieve true enterprise information integration in the grid

through the data grid’s distributed data management policies and function.
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Figure 11.7. EII through data load, data store, and synchronization.
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Figure 11.7 shows an application process “joining a data region” that has syn-

chronization policies with a database and a second data region that in turn has a syn-

chronization policy with an STP message queuing bus. Also, there is an application

worklet that has joined both data regions. Both the application process and the work-

let can share and interact with data sets in the first region without requiring any

knowledge of where the data originate from, how the data are represented, or any

other mechanical aspect of data region integration.

Data Store Policy

The discussions on data store policy are very similar to those of the data load policy.

The differences are evident in the interaction with data sources and the effects of

data synchronization policy on the system behavior.

Note, as with the data load process—which has two choices for loading data into

the data grid—that an application can only save or store data out of the data grid

through its data management policies and procedures. In the ChangeState( ) oper-

ation, it modifies the state by adding to the data attribute. The result is then saved

to the data grid through the dataGrid.set( ) operation.

FooBar relies on the data grid to save some or all of its data attributes. For

example, we can establish a data store policy for FooBar as follows

DataStorePolicy ¼ DSP

FooBar_DSP,

ExampleRegion,

Granularity Grouping 1ð Þ,Frequency 500ð Þð Þ,
Operation ‘‘store ”ð Þ,
FooBarFileAdapterð Þ

0
BBBB@

1
CCCCA

with a data synchronization policy of

SynchronizationPolicy¼ SP

FooBar_SP,

ExampleRegion,

Scope(Boundary(‘‘inter”),List(‘‘foobar_ProcessStage”)),
Transactionality(‘‘transactional”),
LoadStore(List(‘‘FooBar_DLP”),List(‘‘FooBar_DSP”)),
Events(NULL)

0
BBBBBB@

1
CCCCCCA

The data store policy as defined above defines the data region as ExampleRegion with

a granularity of one grouping and 500 frequency. The operation to be performed is a

“store” function and the adapter being utilized is the FooBarFileAdapter( ).

The synchronization policy again is for the same data region ExampleRegion and

the Scope( ).

Given the policies defined above, the code for FooBar can be modified as

follows. Note that the code snippet is for showing the concept only. Working

code examples are provided in a later chapter.
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1 //===== Public Method – Change State =====
2 public void ChangeState()//Simple add one to the counter
3 {
4 dataGrid.set(‘‘ExampleRegion’’, ‘‘foobar_ProcessState’’,

(thisProcessState+1));
5 }

The “local copy” of the FooBar process state is being changed by incrementing

the state by one or adding one to it and then being stored into the data grid’s data

region, ExampleRegion’s data atom “foobar_ProcessState.”

Let us step through what happens when line 38 is executed. Please note the following:

. First, we are assuming that we have a connection to the data grid, established

earlier in the program, which is represented by the “dataGrid” object.

. The “dataGrid.set( )” call has three parameters.

. The data region ExampleRegion is where the data atom is found.

. “foobar_ProcessState” is the name of the data atom to set and the value to

which it is set.

Since we have defined policies for synchronization and data load, the data grid will

do the following:

if (‘‘foobar_ProcessState’’ Data Atom is NOT resident in the
Data Grid)

then create the Data Atom ‘‘foobar_ProcessState’’

if (‘‘foobar_ProcessState’’ Data Atom is locked)
then wait till lock is released
endif
//Place a lock on the Data Atom ‘‘foobar_ProcessState’’ so no one
//else can access
//it while the update is being performed.
//As defined by the Data Store Policy use the Adapter
//‘‘FooBarFileAdapter()’’
//that knows where the file resides, external to the Data
//Region, access the file
//and save the value for ‘‘foobar_ProcessState’’, translate it to
//the proper data
//representation

Lock the Data Atom ‘‘foobar_ProcessState’’
source_FormattedValue = FooBarFileAdapter().translate
(‘‘foobar_ProcessState’’)
FooBarFileAdapter().save(source_FormattedValue)
Release the lock on ‘‘foobar_ProcessState.’’

The end result to the business process FooBar is that the data it needs to perform

the function ‘‘foobar_ProcessState’’ are physically stored to the data grid and the
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transition required to update an external system is performed without any working

knowledge or code in the business process. The entire process is defined by the data

management policies and managed by the data grid on behalf of FooBar. This

allows for configurable changes to the policies without affecting any code in the

business processes.

Simple changes in the synchronization policy can have a major impact on the

behavior of the data grid and FooBar. For example, the data load policy can use a

different adapter that will save the data to a completely different source and data rep-

resentation. Or the data synchronization policy can be switched to nontransactional,

which will eliminate the need to lock data atoms, thus speeding up the entire process.

These kinds of policy changes are external to the business process, thus allowing

system changes to occur through the change of policy definitions.

Load, Store, and Synchronization

Interaction of the data load/store policies with data synchronization policies defines
the behavior of the data region and the exact QoS level required by the business ser-

vice that it supports. These policies in combination determine the transactional beha-

vior or transactional depth levels of a data region, which in turn determines the

performance of the region.

What are the “depth levels” of a transaction? The data grid, its data regions, and

its interactions with other data regions and external data sources have inherent levels

of depth. Are the data synchronized in a data region limited in scope to the bound-

aries of that region (i.e., intraregion synchronization)? This is the first level of depth,

internal to the data region. The next level, for example, applies if the data region

interacts with external data sources and is transactional; is it transactional to the

delivery of the data from the data region to the external source? The next-depth

level applies if the transaction has completed accessing the external data source

and reported the status back to the data region. Is the data atom/data region inter-

acting with more than one data source for a transaction, and are these transactions

processed independently of each other or grouped as a single unit?

Figure 11.8 highlights different depth levels, as an example.

This cascading effect—of pinpointing where the data delivery process occurs

within the chain of data sources, and whether the business service is satisfied that

the data are delivered—is referred to as the “depth levels” of a transaction.

Obviously, the data management policies of a data region can extend only so far

down into the behavior of an external source’s management of a transaction.

However, they can define the upper or closest levels to the business application as

it interacts with the data grid.

The data load, data store, and synchronization policies in combination all define

whether the data are to be managed in a best-faith delivery, data region transaction

delivery, or fully fault-tolerant delivery. Let us look at what each of these data deliv-

ery modes are, what types of applications they support, and exactly which para-

meters in the respective policies affect these desired behavior.
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Data management policies for load, store, and synchronization from the earlier

chapters where expressed as

DataLoadPolicy ¼ DLP

PolicyName;
Region;
Granularityð Þ;
Adapterð Þ

0
BB@

1
CCA

DataStorePolicy ¼ DSP

PolicyName;
Region;
Granularityð Þ;
Operationð Þ;
Adapterð Þ

0
BBBB@

1
CCCCA
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Figure 11.8. Level of depth of a transaction.
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SynchronizationPolicy ¼ SP

PolicyName;
Region;
Scopeð Þ;
Transactionalityð Þ;
LoadStoreð Þ;
Eventsð Þ

0
BBBBBB@

1
CCCCCCA

With the policies defined above, we will discuss the different delivery modes and

what they mean:

1. Best-Faith Delivery. This is the most “optimistic” of all delivery modes.

Here, the business service “trusts” the data grid to deliver the data in its own

good time. It is optimistic with respect to the data grid’s ability to deliver the

data. This mode of delivery is best used by applications that are dealing with data

that are time-critical and transient in nature. Examples of the types of applications

that require such a delivery mode include Monte Carlo simulations, and the delivery

of both news and quote data to trading applications. The data management policies

for the synchronization policy for this delivery mode of operation can be set

as follows:

SynchronizationPolicy ¼ SP

BestFaith_SP;
ExampleRegion;
Scope Boundary ‘‘inter”ð Þ; List ‘‘ foobar_ ProcessStage”ð Þð Þ;
Transactionality ‘‘nontransactional”ð Þ;
LoadStore NULL;NULLð Þ;
Events NULLð Þ

0
BBBBBB@

1
CCCCCCA

2. Data Region Transactional. This is where the data atoms within a data region

are transactional with their replicas distributed within the data region. This is

important for instances when a level of resilience to hard failures (e.g., failure of

compute nodes, or partial network outages) is required but 100% fault tolerance

is not essential. In this instance, parts of the data grid can fail but there will be no

data loss as part of this mode of delivery. This is best for applications where the

volume of data in a region is large and the cost of reload in the case of a failure

is too great, especially from an operational window perspective. In addition, appli-

cations that are mostly read-only or query-intensive are ideal for this type of mode

delivery. Examples are datamart, data warehouse, and OLAP applications. The data

management policies for both the load and the synchronization policies in this mode

of operation can be set as follows:

DataLoadPolicy ¼ DLP

DRTransLoad

ExampleRegion;

Granularity Grouping 1ð Þ;Frequency 500ð Þð Þ;
DRTransAdapter( )

0
BBB@

1
CCCA
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SynchronizationPolicy ¼ SP

DRTrans_SP;
ExampleRegion;
Scope Boundary ‘‘inra”ð Þ,NULLð Þ;
Transactionality ‘‘transactional”ð Þ;
LoadStore List ‘‘DRTransLoad”ð Þ;NULLð Þ;
Events NULLð Þ

0
BBBBBB@

1
CCCCCCA

3. Fault-Tolerant Transactional. This is the most pessimistic mode of operation

of all the delivery modes. In this mode, the business service has no faith in the data

grid’s ability to deliver data on its own and must confirm receipt of data delivery for

all transactions all the way from the final destination. The data atoms within a data

region are completely transactional down to and through the external data source,

where the external source confirms that the transaction is complete. The type of

applications for which this mode of delivery is best suited is where data delivery

is paramount and system performance is not. Examples of applications requiring

such a delivery mode are ATMs (automatic teller machines) and accounting and

banking systems. The data management policies in this mode of operation for the

load, store, and synchronization policies are highlighted below:

DataLoadPolicy ¼ DLP

FTTransLoad

ExampleRegion;

Granularity Grouping 1ð Þ;Frequency 500ð Þð Þ;
FTTransAdapterð Þ

0
BB@

1
CCA

DataStorePolicy ¼ DSP

FTTransStore

ExampleRegion;

Granularity Grouping 1ð Þ;Frequency 500ð Þð Þ;
Operation ‘‘store”ð Þ;
FTTransAdapterð Þ

0
BBBB@

1
CCCCA

SynchronizationPolicy ¼ SP

FTTrans_ SP;

ExampleRegion;

Scope Boundary ‘‘inter”ð Þ;NULLð Þ;
Transactionality ‘‘transactional”ð Þ;
LoadStore List ‘‘FTTransLoad”ð Þ; List ‘‘FTTransStore”ð Þð Þ;
Events NULLð Þ

0
BBBBBB@

1
CCCCCCA

Enterprise Data Grid Integration

The buzzwords of enterprise application integration (EAI) and enterprise infor-

mation integration (EII) describe how applications and information from various

sources can be integrated into a larger, more purposeful, broad, and deep view of

an organization’s information at a business level. In these types of integration, we

are discussing how to manage data within a distributed computing environment,

which is just one system within an enterprise. As we have seen in the past with
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various database and middleware products, each of these products has its own

advantages and disadvantages. On the basis of these advantages and disadvantages,

an enterprise will have products from more than one vendor, thus creating the need

for EAI and EII. There may be queuing system products from IBM or Tibco, for

example. In addition, there may be database products from Sybase or Oracle; there-

fore, it is reasonable to expect that there will be various data grid products through-

out an enterprise. The combinations and permutations of data grids can be as great as

we have seen with database/middleware products. The same thing holds true for the

compute grid. Some grid vendors may have a metadictionary, while others may be

distributed-memory-based. There can be products from more than one grid vendor at

any one enterprise implementation. For example, a distributed-memory-based data

grid product from company A is used in one area of the organization while a differ-

ent area can use a data grid from company B. The reason for choosing a respective

product within the various areas within the organization is dependent on the business

and how the products support the business.

It is reasonable to expect that multiple data grid products will be employed

throughout an organization. Therefore, if we do not clearly define an interface for

how data grids, specifically data regions within data grids, can interact with each

other, then all we will have done is create larger data silos and a chasm that must

be crossed in order for those organizations to share data with each other. So let’s

create a new buzzword; if enterprise information integration deals with the inte-

gration of information across an entire enterprise, and if data grid is a single product

or single methodology for data integration within a grid, then enterprise data grid

integration (EDGI) refers to the interoperation of data grids across an enterprise.

EDGI is a subset or subcategory of EII. Armed with our new buzzword, let’s

review some of the data management policies for the data grid:

. Data distribution policy describes the distribution of data within the data grid or

the distribution of data atoms within a data grid.

. Data replication policy describes exactly how the data atoms are to be repli-

cated within a data region.

. Data load and data store define the mechanics, the adapters for moving data in

and out within a data region and the granularity of the data movement process.

. Event notification policies notify the registered synchronization policies (and

any other registered process for that event) that something—for example,

a data atom—has changed state and an action needs to be taken.

The synchronization policy, on the other hand, depends on these policies to perform

the mechanics of data movement within and between the data region and external

sources. Therefore, the data synchronization policy must deal with the public inter-

face for integration of data regions.

This raises an interesting question as to the definition of a data atom when the

boundaries of the data region are crossed. For the situation where the data atom is

identical between the two regions, synchronization is straightforward and any
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update of the data atom within a single region is replicated to the other region.

Therefore, part of this public interface is the definition of the data atom that

needs to be synchronized. There are two approaches to exactly where the data

atom definition resides. In the traditional STP/adapter approach, the data represen-
tation inherently was addressed through the data load and data store policies. These

policies leverage mechanics of the adapters, which know not only how to get data in

and out of a region but also the external data interface for the data atom.

An alternative approach would be to define a public interface or method for data

atom definition and have it either rolled into the synchronization policy or consumed

not by a policy of data management but rather by a query or data access method for

the data grid. The latter suggests that the definition of a data atom (for interregion

synchronization) is defined externally to the data management policies of the data

grid. It is defined as part of the “Service” the grid or data grid supports. In the

case of Web Services, XML is the standard method for defining a data atom.

Thus, if the data load and data store policies bind the physical adapter to the data

movement process, it is that adapter that “understands” the Web Service definition

of the data that are being moved. Therefore, data atom definition for interregion syn-

chronization is the responsibility of not the data region but rather the “Service” that

the data grid supports and the responsibility of the adapter to manage the mechanics

of data translation as part of the data movement process.
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12
DATA AFFINITY

Up to this point, our discussion has centered on data regionalization, data

synchronization, and data distribution. All are important and necessary data man-

agement features within the data grid. Combined, they provide the tools that

enable the data grid, in particular and grid computing in general, to expand

beyond simple computational problems to the broader category of the data-intensive

applications typically found in private industry and government agencies.

But there is another important feature of a data grid that must be addressed: data

affinity. This, in short, addresses the maximum usage of the most precious and costly

resource within the grid—the network. Minimizing the movement of data across a

network increases the efficiency and pliability of the grid on both processing and

cost bases. Data regionalization, data distribution, and data synchronization each

provides a necessary component that, when managed in synchronization, achieves

the broader objective of data affinity.

There are breakeven points, points where it simply becomes too expensive to

move data within a grid in comparison to the cost of performing the operation locally

without using a grid. Efficient data management within a grid, or data affinity, can

lower the breakeven point for a broader and more complex application set. The

more applications the grid can support, the broader the acceptance and the more rel-

evant the technology becomes—a spiraling cycle that feeds on itself, expanding the

technology beyond critical mass; in essence, a paradigm shift in computing.
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A MEASURABLE QUANTITY

The cost-basis components of grid computing are processing power/capacity (e.g.,

CPU), disk storage, and network bandwidth. The first two are orders of magnitude

more economical than the latter, the network. Network bandwidth is by far the most

costly resource. It costs more to move data across a network than it does to store

them on disk. For example, it costs more to move data across a network than to

spend additional CPU cycles to regenerate the data over and over again.

A paper written by Jim Gray, on distributed computing economics,23 categorizes

some of these costs. Included in the costs of distributed computing are database

access and disk storage; our discussions will not take these parameters into consider-

ation. Long-term data storage is a constant, independent of the compute topology

used in grid computing or client/server computing. In the situation where the

data grid is file-based (e.g., GridFTP, distributed file system, or some other variant),

the local node storage is disk, which is inexpensive in comparison to other resources.

In the case where the data grid’s memory is used for data storage (e.g., RAM), this,

too, is fairly inexpensive. Therefore, the result is a drop in the ocean compared with

the overall cost of operating an efficient grid architecture. The two variables we will

examine are the costs of computation—that is, the associated cost of different grid

nodes (e.g., tens, or hundreds, or thousands of computational nodes)—and the cost/
efficiency ratio of the nodes in performing calculation-type tasks. The second

resource that will drive the cost analysis is network bandwidth, the cost of

moving data between the nodes of the grid to perform a task.

A useful metric is the ratio of computational cost versus the cost of data move-

ment on the network. This parameter defines the point where it becomes too costly to

perform an operation over a grid because of the required movement of data. A paper

written by Hewlett-Packard24 discusses the dynamics of distributed computing (see

equation below). An important part of this is minimizing the overall network traffic

by locating the tasks or services closest to each other. A quantitative analysis metric

is proposed in the paper is the “partial objective function (POF).” POF is a way to

measure the cost of moving data between nodes alongside the computational cost or

processing capacity of the nodes

fPOF ¼ b

bþ (aCT þ (1� a)uT)

where CT ¼ sum of traffic costs between the services on a pair of servers weighted

by the distance between these servers, uT ¼ variance of the processing capacity

usage among the servers, a ¼ balancing factor between 0 and 1, and b ¼ chosen

according to the maximum possible values of CT and uT in order to ensure a rela-

tively uniform distributions of the POF values.

Therefore, in order for a data grid to be effective, it must be able to provide

metered data, metrics (i.e., POF or something similar), and data management
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policy controls (both manual and dynamic), and externalize data locality infor-

mation to

. Allow the scheduling of a task or service to take into account data locality so as

to move the execution of tasks to where the data reside in an effort to reduce

network traffic.

. Enable the data grid to migrate or redistribute data to nodes where the task is

most often performed, based on data movement patterns due to task execution.

What to Expect from Data Affinity

What improvement in performance can be expected by smartly routing task to data

locality or by routing data to most probable task locality? Ian Foster conducted a

study on just this topic,25 where the task performance was measured both with

and without an efficient data grid that takes into account data locality with task sche-

duling. The results with every aspect indicate that the performance of the grid

increased. Metrics included the average response time per job, the average data

transferred per job, the average idle time of processors, and the average response

time. In each case, when data locality was factored in, the performance for each

metric improved anywhere from one to two orders of magnitude.

HOW TO ACHIEVE DATA AFFINITY

In general there are two ways to achieve data affinity. The first uses the compute

grid, where information is provided to it by the data grid so that tasks are routed

to the data. The second uses the data grid, by observing data movement patterns,

migrating (caching) data to those nodes where the tasks seem to be the most fre-

quently computed. Individually, each technique will increase the data affinity

levels. Optimally, combining the compute grid’s routing task to data and the data

grid’s data migration techniques will yield higher data affinity levels, thus minimiz-

ing network traffic and increasing the performance of the grid.

Regionalization, Synchronization, Distribution, and Data Affinity

The objective of data affinity is to have the data and task collocated as closely as poss-

ible to eliminate network traffic and to increase performance by reducing latency. This

can be achieved in two ways. The first method is proactive, whereby tasks are routed

to the data by giving the compute grid’s task scheduler the required information on

data locality so that it can make smarter task routing decisions with regard to data

location on the physical nodes of the compute grid. Keep in mind that this method

may not always be 100% successful. This does not always mean that the node selected

to perform the task is the best choice, since it may not have the data needed for the

task already cached, thus forcing the data grid to move the data to that node.
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The data grid manages the second method of data affinity. The following analogy

highlights the role of the data grid as both predictive and reactive in nature and con-

trasts it to the task scheduling function of the compute grid. As the compute grid’s task

routing function is to the offensive unit of a football team, the data grid’s data

migration efforts are to the defensive unit of the opposing team. The defense, given

all it knows about current situation of the game and history of the opposing team’s

offensive capability, will predict what the next play will be, and set up the appropriate

defensive strategy. However, even before the ball is put into play, the defense has to

react to the play as it unfolds. The same philosophy holds true for the data migration

efforts of the data grid. The data grid is predictive; thus it anticipates the compute

grid’s task routing patterns and migrates data to the physical nodes ahead of it. The

data grid is also reactive by making real-time adjustments to data migration as the

“play unfolds.” As the tasks are routed to the physical nodes, the data grid must

react by routing the data to nodes where the data do not yet exist. The data grid

can accomplish its predictive data migration objectives through the combinations of

its data regionalization, data distribution, and data replication policies.

One interesting side note is the effect of the physical size of the data grid on the

data migration efforts of the data grid. In the case where the grids are of small phys-

ical size, the data grid becomes less effective in its role of achieving data affinity,

leaving the compute grid’s task routing via data locality as the primary method.

As the physical size of the grid increases, the effectiveness of data migration by

the data grid increases its contribution to data affinity.

The following functions describe data affinity with regards to physical size of the

grid. For grids of small physical size

DataAffinity ¼ ComputeGrid(Task-to-Data)

As the physical size of the grid increases, the data grid’s data migration efforts

play an ever-increasing roll towards data affinity:

DataAffinity ¼ ComputeGrid(Task-to-Data)þ DataGrid(Data-Migration)

The data grid’s management policies work together to achieve data affinity. The

outermost container for data affinity is the data region, which is a logical partition of

data within the data grid. The data region has a physical boundary within the grid, as

discussed earlier. This boundary consists of the specific nodes that are allocated to a

data region and contribute their physical resources to that data region. It is possible

for any one physical node to be an active part of multiple data regions. If the com-

pute grid is to route tasks to where the data are resident, it must be one of the nodes

that physically support the data region and that contains the data necessary for the

task to perform its operation. Within a data region’s physical boundary, the individ-

ual data atoms are replicated. The data replication policy determines the exact repli-

cation pattern or the number of required copies. Each data atom, including all

replicas, is distributed throughout the data region, based on the data distribution

policy of the data region. The data synchronization policy determines how all the

data atoms and all the replicas coordinate with each other within the data region.
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Synchronization can be tightly bound, where a change in state of one data atom is

transitionally reflected in all replicas, or loosely bound, where a change in state of

one data atom is reflected in the replicas, but in a nontransactional manner. The

data synchronization policy has increasing importance as the data region starts to

span the following:

. Areas of varying network bandwidth; should the data region span across a

wide-area network (WAN), then the coordination of the replicated data

atoms distributed across the data region becomes necessary for data accuracy

and performance of the system. These two aspects must be weighed against

each other when setting the policies of synchronization and distribution

within the data region.

. Nodes of the compute grid support applications or services of different, nonco-

existent hardware and/or software configurations (applications that require

different operating systems, libraries, or other software configurations that

cannot be shared on a single machine). This forces the creation of subregions

within a single data region of the data grid. Within each subregion, data affinity

must be maintained. This is done through data synchronization between the sub-

regions, and within each subregion separate data replication and distribution pol-

icies are also required. An alternative approach is to have separate data regions,

each spanning a configuration set and leveraging interregion synchronization to

keep the group of data regions cohesive and in a well-known steady state.

Through the combination of data regionalization, data replication policy, data

distribution policy, and data synchronization policy, the data grid performs both

proactive and reactive data migration methods to contribute to data affinity within

the data grid.

Other considerations include macro events. From the macro level, the size and

shape of a data region can contribute to a slow-moving data grid, and the distribution

of data within the region can be equally slow to change. Macro events cause changes

in the data region’s size, shape, and data distribution. The macro events are usually

peak and off-peak service loads that occur at various intervals, including daily,

weekly, monthly, and yearly. However, there are external forces to the grid that

affect data regions at the micro level that cause smaller changes to the region.

Such events are hardware failures, the addition of new hardware to the grid/data
region, and variations in service demand. Macro changes are predictable and can

be planned for, while micro changes are not predictable and are harder to plan

for. Thus, continual adjustments to data regionalization, distribution, replication,

and synchronization policies must be made to maintain peak data affinity levels

within the data region.

Data Distribution is Key to Data Affinity

Earlier, we discussed what the data grid could do to assist in achieving data

affinity. Among the data management policies of synchronization, replication,
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and distribution, the latter has the most impact. The data distribution policy deter-

mines on which nodes the data atoms will physically reside. Should the data grid

via its data distribution policy estimate correctly the nodes of the grid where tasks

are most often performed, the movement of data across the data grid will be mini-

mized. This area of data management in the data grid is one that will receive a great

deal of attention by computer scientists, mathematicians, and engineers alike going

forward. Similarities can be drawn to the exotic derivatives sectors of the financial

markets. Mathematical models are under constant flux to predict market conditions

and volatility in the markets, and ultimately determine instrument pricing and risk

exposure. In each area, certain assumptions are made. For example, to price an

option, one has the choice of using the Black–Scholes, binomial (Cox–Ross),

Adesi–Whaley, or a host of other models. The Black–Scholes model assumes

that the price of the underlying instrument follows a lognormal distribution. The

binomial model is based on the probability that the price of the underlying

instrument has an equal probability of going up or down. The Adesi–Whaley

model establishes a differential equation between the estimated and actual prices

of the modeled instrument. Today, the area receiving the most attention is the

prediction of market volatility, a key input parameter to all the pricing models

mentioned.

Prediction of how to best distribute data in a data grid has the same characteristics

as pricing an investment in the derivatives market. Assumptions will be made on

many of the variable parameters of data distribution, and quantitative models will

be derived on the basis of these assumptions. For example, one can assume complete

randomness. Any task has an equal probability of being executed on any given node

of the grid at any given time; therefore the data can be randomly distributed across

the data grid. Or one may make the assumption that tasks will center around the

physical “hot spots” in the grid but will dissipate or radiate outward like a bell

curve, and therefore a data distribution bell curve with two, three, or four standard

deviations will be required. An engineer—your author is one—will establish a feed-

back loop and dynamically adjust the physical location of each data atom, based on

past data movement patterns that have been collected and analyzed. As you can see,

the possibilities are bound only by our minds.

In Part IV of this book, we propose a hypothesis that data distribution patterns

occur at two levels: namely, data atom distribution within a “data body,” and a

second distribution pattern of the “data bodies” themselves. A data body is a group-

ing of a single data type, such as market pricing data or a customer portfolio. Look-

ing at the larger system of a business service or application, data bodies will exhibit

natural forces of attraction toward each other within the space of the data grid. The

data grid will in turn exert a resistive force on the two data bodies. When the resis-

tive force equals the attractive force of the data bodies, an equilibrium distance is

established. The point of equilibrium distance represents the point of minimal

data movement within the data system (all the data bodies of the business service

or application) of the data grid. This suggests a system model where data distribution

describes data bodies in a fashion similar to those found for the most fundamental

laws of nature and physics.
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Regardless of the assumptions one makes and the resulting data distribution

model, the objectives are the same. How best to predict data usage patterns

within a data grid in order to minimize the data movement during the normal oper-

ation of a system within a grid? The better the prediction model, the faster an “equi-

librium” or “steady state” can be reached for data distribution, thus resulting in the

most efficient use of the precious resource of the grid, the network.

Data Affinity and Task Routing

The compute grid’s task scheduling function for data is one tool for achieving data

affinity. This is done by making the compute grid aware of the data locality so that it

can be used as part of its formula for routing a task to a grid node. Armed with the

knowledge of what data are required for what task and physically where in the grid

those data are localized, the task scheduler can make a smarter decision on where to

send the task for execution. The first choice is to eliminate network traffic by routing

the task to where the data are already cached. If this is not possible, then a node

with the network proximity closest to those where the data reside is selected,

which again will minimize network traffic. The number of “hops” that the data

must take from the node A where the data reside, to node B where the task is

routed, will affect network traffic.

What is the task scheduler of a compute grid? The task scheduler is the logical

unit of work in the overall work flow of the compute grid that maintains an active

inventory of

. Task—work to be done by the compute grid

. Dependencies required to complete the task; some examples are

Operating system

Compiled libraries

Task/service type dependencies (e.g., Web server, queuing systems)

. Resources capable of executing the task

. Determining which capable resources are available at the point in time when

the task is to be executed

According to this inventory, the scheduler matches the best available resource to

execute each task and distributes the task to the compute node.

INTEGRATION OF COMPUTE AND DATA GRIDS

The data grid can monitor usage and data movement patterns within regions and

adjust the data distribution policy in such a way as to minimize the movement of

data within the region. For example, if the compute grid routinely routes tasks to

a node where the data are not local, the data grid needs to move the required data

to that node. If the data grid notices this pattern occurring often enough, the data
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distribution policy should be adjusted so that the data reside locally on the node in

question in order to limit movement of data. Thus, readjustment of the data distri-

bution policy will increase performance by estimating future data locality needs.

However, this becomes more of a reactive approach to solving the problem of

data affinity. One way of being proactive is to give the compute grid’s scheduling

algorithms the additional information about data locality. Armed with this additional

information, should the scheduling algorithm have a choice between two nodes to

route a task—one node where the data are local and a second node where the data

are not local—the smarter decision would be to route the data to the node where

data are local. In this way, the compute grid, through its task scheduler with the

knowledge of data locality, can increase the level of data affinity by scheduling

tasks to data locality.

Recalling the diagrams of a compute grid environment consisting of parallel

compute and data grid planes, interaction between the planes is nonexistent and

they can run and operate independently of each other (see Figure 12.1).

However, we have just made a case for improved performance and broader appli-

cation sets that a grid environment can support through data affinity. This will force

sharing of information or an interaction between the data grid and the compute grid

(see Figure 12.2). The type of information that needs to be shared is data locality

from the data grid to the compute grid, which identifies the physical nodes where

the data atoms are located.

Even though data affinity is not necessary for operating a grid environment, the

overall benefits outweigh the extra effort required to establish a link between the

compute and data grids. Currently, there is no standard interface between the com-

pute and data grids, so in the absence of a standard, some of the minimum require-

ments of such an interface—all of which will require the cooperation of both the data

grid and compute grid providers—are listed below:

. The compute grid will require an open interface to the task scheduler to which

the data grid can publish.

Compute grid plane

Data grid plane

Figure 12.1. Parallel grid planes.

140 DATA AFFINITY



. The data grid must provide a pull-based public interface, or a query capability

so that the compute grid’s task scheduler can query the location of data types, as

well as and specific data atoms.

. (Note: This is an advanced method at the programmatic level.) At the appli-

cation/task level integration (a programmatic API used to grid-enable an appli-

cation), the data grid API can feed the specific data information required by the

task via the compute grid public API, where the information is supplied into the

compute grid, thus prepopulating the data locality requirements to the task

scheduler.

EXAMPLES

Earlier, we discussed the separation of data management from the underlying engine

of the data management system. Some implementations of the data grids can be

metadata-dictionary-based, distributed-file-based, or distributed-cache-based. Each

type of data grid is supported by its own unique engine. The separation of data man-

agement from the engine allows for the data management principles of regionaliza-

tion, synchronization, distribution, and data affinity. The following are some

examples of data grids that support data affinity:

. OceanStore: a project run at Berkeley, CA; distributes data (as files) across any

number of servers in such a way as to promote data locality, robustness, and

Compute grid plane

Data grid plane

Data node

Compute node

Interaction between the
two planes in data locality

from the data grid to the
task scheduler to the

compute grid

Figure 12.2. Interaction between compute and data grid planes.
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fault tolerance. It analyzes usage patterns, network activity, and resource avail-

ability to proactively migrate data toward areas of use.

. A common query interface for individual data sources through the use of a

shared metadata dictionary.

. Integrasoft’s Grid Fabric, a data grid that establishes a federated cache space

that spans the entire grid. Supports the distributed data management principles

discussed in this book.

142 DATA AFFINITY



Part III
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GRID COMPUTING





13
WHICH APPLICATIONS ARE GOOD
CANDIDATES FOR THE GRID

During my research for a book, presentations to clients, and discussions with

colleagues, I discovered that each introduced a new and impressive use case for

the practical application of grid computing. The common thread was the increasing

importance of robust data management systems tailored for the grid topology. It is

my own optimistic opinion that as more people are exposed to the lower cost and

high performance of grid computing with a robust data grid, a new class of appli-

cations will emerge that will be bound only by our indignation.

What I have discovered is a realistically achievable set of use cases given the

current state of grid computing and its supporting technologies. The early appli-

cations address longstanding business problems, which are not solvable with the

current commercially available technology in some sort of reasonable manner.

I have categorized these use cases in the following sections.

GRID ENABLING APPLICATION CHARACTERISTICS

Let us focus on the characteristics of an application and distinguish which of these

characteristics make the application a good candidate for a grid environment.

Atomic Tasks

One of the most basic characteristics of applications is atomic task. Is the appli-

cation’s task a repeatable task that can be executed independently of any type of
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interaction, whether direct or indirect, between other operations or tasks within the

same applications. Such atomic tasks can be run independently of each other in a

parallel environment of the grid. Applications of this nature were among the first

to be moved into a grid environment.

Complex Data Sets

An application whose function is to perform complex analysis over large data sets is

a candidate for a grid environment. The analysis process does not need to be atomic,

but it does need to operate over large data sets with the goal of identifying patterns of

behavior. Some data manipulations functions can include

. Pivoting of the data

. Creating new data views

. Creating various derivative data sets

. Cross sections analysis

. Identifying data intersections points

Data Collection

Many applications are designed for data collection because of the large data require-

ments by business. There are many flavors of data collection. The most basic

examples are in the collection of information from a wide variety of disparate

systems within the data center or across data centers. In addition, there is another

class of data collections where the data producers are sensors monitoring external

conditions (i.e., seismic data). These types of applications are good candidates for

the data grid, thus requiring the collection of analysis of large volumes of data in

real time.

Operations

From an operational perspective, there is the need to increase the performance, scal-

ability, and reliability of data centers as well as how to manage data centers more

efficiently. To operate a data center efficiently is synonymous to knowing the

state of the data center at all times. Therefore, there is a requirement to collect

metered data in order to get an accurate view of what is happening in the data

center as it is happening. To operate systems more reliably, the data must be avail-

able to a system’s redundant backup in real time so that one can achieve “hot

standby” versus “warm” or “cold standby.” The collection of metered data, small

bits and pieces of data from large numbers of dispersed devices across a network,

form a large body of information that must be analyzed in its entirety in order to

determine the state of the data center. Such data requirements make data centers

good candidates for a data grid. The data grid offers efficient mechanisms for the
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collection of metered data as well as for the real-time analysis of the larger body of

data that it forms.

GRIDABLE APPLICATIONS

Highlighted above are a handful of generic applications for a wide range of areas

that lend themselves well to a grid infrastructure. The most common class of appli-

cation now found running on a grid are calculation-intensive types of applications.

However, both the economics and businesses force the use of grid computing in

commercial industry to go well beyond these classes of applications. They extend

into data mining, system administration, and command-and-control types of appli-

cations, all leading to a compute utility for the purpose of providing Web Services.

I foresee a steady progression of applications, each moving closer to Web Services

architecture and demanding higher levels and qualities of service from the data grid.

Figure 13.1 highlights the various functional applications and the movement to the

compute utility services.

The examples presented throughout this book are far from a complete list of all

the applications that will and can use the data grid; in fact, they are just the tip of the

iceberg. As more people look at and apply data grid technology and the technology

proves its purpose, more and more new use cases will emerge.

Compute-Intensive Applications

Computation-intensive applications are naturally “gridable,” for lack of a better

term. The calculations in this class of applications are pretty much the same, iter-

ations through a looping procedures where each iterations through the loop varies

in its input and output data sets while the work within each loop is a constant.

Thus, this inherently allows an application to be split up and run in parallel

across a grid. It also allows the building and distribution of the input and output

data sets for each iteration through the calculation loop to live across the data

grid so that they can be managed without the overhead of data transport or some

crude version of localized cache. We find that in most cases, the data inputs and

In-process system 
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 High fault tolerance 

 Geographic
data center independence 
for failover and business 
applications

Data center compute clusters

Corporate compute utility 
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Figure 13.1. Applications of grid computing.
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outputs to this applications class are fairly small in size. However, there is also a

characteristic of a ballooning of interim data or “data surfaces” during the calcu-

lation state en route to achieving the end result(s). This combination of input and

output data sets to atomic units of work generating a ballooning of interim data

required to achieve a final result renders these applications good candidates for

grid computing.

When analytical applications of this nature are integrated into the data grid, other

applications can leverage or reuse both the intra– and inter–data sets. These interim

services offer the potential of being reused, such as in the case of a Monte Carlo

simulation. The ability to offer the reuse of these interim data surfaces from one

simulation to another or from one application to another improves the performance

of these computation-intensive calculations, thus resulting in more efficient compute

resources. Having these interim data surfaces persist in a data grid can eliminate the

need to continually rebuild them, which in itself is a timesaver and a performance to

a boost of the simulation for the business users. Now, applications that normally run

overnight and where the outcome is not known until the end of the process is com-

pleted can be viewed as the data are being processed to determine whether the model

is performing as expected.

OLAP Data Analysis

The OLAP data analytical processing of large and complex data sets is a major

category for the data grids. The ability to look and pivot large data sets that have

intersections in various dimensions is an application that lends itself well to the

data grid. However, not all implementations of a data grid fit this class of appli-

cation. The closer one brings data to the in-memory computational resource of a

grid node, the more efficient the OLAP process becomes. Thus, in-memory-based

data grid implementations will yield higher efficiencies than will disk-based data

grids. The ability to bring in large amounts of data and distribute the data across

the data grid in order to perform the analysis directly against the data grid (as

opposed to the manipulation of data on physical disks) will yield faster performance

and permit more complex data analysis. This type of architecture offers new classes

of datamarts, where the marriage or intersection of a traditional data warehousing

with data grids allows for faster and more complex data analysis.

Data Center Operations

Adding additional capabilities for data center operation is a category in which data

grids can improve issues normally faced by an operational staff and the required sup-

port of running these applications. Offering the use of the data grid in the operational

environment will increase the level of system availability offered by a data center

from today’s “high availability” (HA) and bring it closer to a fault tolerance level

of reliability. In this example, the data grid technology will directly maintain the

application’s state, thus enabling nearly instantaneous failover to the backup sys-

tems. There is a second operation area in which data grids can offer improvement
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for the migration of applications and testing of new versions of software across

environments. For example, opening a read-only window to production data for

the QA environment allows for real production testing. This enables QA tests to

run not in a simulation environment but against the real production environment

data set. This enhances the quality of QA testing, thus reducing production risk.

Static data testing and simulation requirements will be reduced or eliminated

depending on the environment. The result is a production release thoroughly

tested against production data, thus eliminating the usual production issues that

arise with any new release. The outcome is a greatly enhanced product quality

released out of QA into production.

Compute Utility Service

The ultimate outcome of this new technology is the compute utility. The evolution to

the compute utility where data grids are an integral component will begin in one of

two ways: (1) an intentional outcome in the form of companies exploring enterprise-

wide adoption of grid computing or (2) unintentionally as more and more business

units begin to migrate their applications over to a grid environment. Companies will

begin to see that data centers composed of inexpensive networked machines are

capable of supporting multiple business applications and effectively scale as the

business need demands more compute power. The type of data center operation

that would be required to support the compute utility services does not exist

today; one key missing component is the area of command and control. In the situ-

ation where the management and operations of large grids are required, it will

become necessary to generate, record, and make decisions on information that we

do not require in the data center today. This information is metered data at the

various levels. The required metered data for the compute utility infrastructure

starts from the physical systems, to the policy layer, to the service layer, and ends

at the application layer of the utility. All the layers of the utility must interact and

coordinate within and between each other, forming what is similar to a foodchain,

a command-and-control or feedback control loop. These foodchains are the small

bits of data from large numbers of machines creating large data sets to be traversed

and analyzed in real time, thus requiring the high performance of the data grid.

USE CASE PRESENTATIONS

The use cases presented in this section will tie in the data management concepts

addressed in earlier sections. Each will address a practical application of grid com-

puting with specific focus on data management as the overall theme for the solution.

The “data grid analysis” will consist of the following:

. Application definition equation for a distributed environment:

Application(Work( ), Data( ), Time( ), Geography( ), Query( ))
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where the following are the driven parameters of the functions:

Work batch=atomic, synchronous=nonsynchronousð Þ
Data overallsize, atomicsize, transactional, transient, queryableð Þ
Time Real-Time, Not Real-Time, Near Real-Timeð Þ
Geography Topology, NetworkBandwidthð Þ
Query basic, complexð Þ

This application is a function ofWork( ), Data( ), Time( ), Geography( ) as well

as Query( ).

. The various data management policies can be defined as illustrated in the

following equations:

DataDistributionPolicy ¼ DDP

PolicyName,

Region,

Scope( ),

Pattern( )

0
BBB@

1
CCCA

DataReplicationPolicy ¼ DRP

PolicyName,

Region,

Quantity,

Scope( )

0
BBB@

1
CCCA

SynchronizationPolicy ¼ SP

PolicyName,

Region,

Scope( ),

Transactionality( ),

LoadStore( ),

Events( )

0
BBBBBBBB@

1
CCCCCCCCA

DataLoadPolicy ¼ DLP

PolicyName,

Region,

Granularity( ),

Adapter( )

0
BBB@

1
CCCA

DataStorePolicy ¼ DSP

PolicyName,

Region,

Granularity( ),

Operation( ),

Adapter( )

0
BBBBBB@

1
CCCCCCA
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EventNotificationPolicy ¼ ENP

PolicyName,

Region( ),

Scope( ),

Operation( )

0
BB@

1
CCA

. The graph in Figure 13.2 shows how the quality of service (QoS) changes in

association with the application requirements.

Note that level 0 QoS in Figure 13.2 is associated with batch type of static data

for both transactional as well as nontransactional applications. Level 1 QoS deals

with most of the other types of applications.
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Synchronous
Static data
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Atomic
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Static data
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Dynamic data
Transactional

Atomic
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Static data
Transactional

Figure 13.2. QoS–application requirement quadrant graph.
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14
CALCULATION-INTENSIVE
APPLICATIONS

DESCRIPTION

As I identified in an earlier chapter, many applications naturally lend themselves to

the grid architecture. These applications are classified as being very computation-

intensive and where the computational paths are data-dependent, they therefore

can be run in parallel across many of the compute grid’s nodes. The ability to run

pieces of the computational process in parallel is where the first class of use case

for grid computing comes into play. The use cases are responsible for defining

the compute grid and the early stages of the data grid.

Today, many areas of research that use the grid technology, including

. Various engineering disciplines using computer-aided design26

. Genome research27

. Physics research: high-energy physics28 and fusion research29

. Earthquake research30

The data sets for these applications are, for the most part, static in nature. For

example, DNA sequences, seismic data, and collision patterns of high-energy

beams in a particle beam accelerator, do not change once the data are recorded.

In the commercial industry, an area of interest is risk management. There is one dis-

tinct difference between the risk management analysis and the abovementioned

applications, which is that the data are far from static and tend to be dynamic.
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The data continually change on a real-time basis (at varying time intervals: seconds,

minutes) to more batch-type updates, which can be daily, monthly, quarterly, and

so on.

Regardless of whether the application processes static and/or dynamic data, there

is one commonality in all these applications: that all these application produce

interim state data sets, during the analysis process where large temporary data

sets are generated, used, and ultimately deleted. We can see that performance optim-

izations can be gained by smart data management of these interim data sets, indepen-

dent of and in addition to any programmatic and procedural optimizations.

USE CASES

Calculation-intensive applications tend to naturally process the same algorithm

repeatedly at varying iterations where only the input data set differs between

all the iterations used to perform calculations. A large set of financial service

applications fit this paradigm, including Monte Carlo simulations, binomial approxi-

mations, and Black–Scholes models, for example. Thus, parallel processing

(parallelizable) can be easily achieved for these types of applications.

What does it mean for an application to be parallelizable? An example would be

an identical unit of work that is typically run inside a processing loop and given a

different data set to operate over for each iteration of the loop wherein each pass

through the loop is independent of the ones that came before it; such a unit of

work can be parallelized. Figure 14.1 illustrates how such applications can be par-

allelized through worklets running at the same time independently of each other in a

grid compute environment.

We will start out be identifying each unit of work as a “worklet.” Worklets can be

assigned to execute on different machines in the compute grid depending on capacity

levels. Applications that consist of these worklets are parallelized applications.

Worklets executed in parallel in the compute grid take advantage of the inherent

nature of the compute grid, where a large numbers of machines are available to exe-

cute computational tasks. Worklets, via the compute grid, are assigned to the numer-

ous compute nodes of the grid to be run in parallel, transforming a serial process into

a parallel one and therefore reducing the overall time of execution and leveraging

ideal resources. This feature is becoming increasingly essential in today’s business.

The window of operations continues to decrease, therefore mandating more and

more near-real-time results as soon as the data are available and with the lowest

latency possible.

In the early 1990s, universities and other areas of research found themselves with

large complex computational analysis problems to solve without a supercomputer

on which to run these computations. Necessity is the mother of invention; then

came grid compute, since the objective was to make the most of what was available.

All systems, including networked computers in labs, student unions, libraries, and

classrooms, were utilized to perform such tasks. The hardware resources that

were used in such research environments can be classified as represented in the
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following formula:

TotalComputationalResource

ffi
Xcomputers�on�campus

1

NetworkedComputerComputationalResource

The total hardware resources were a function of all the available resources in the

whole facility. With this, they were able to divide the overall problem into atomic

for (int i = 0; i < m_timeStep-1; i++)
{

  IGFDataPoint aPointInPath = dCart.makeDataPoint();
          double stdNormal = Math.random();

   aPointInPath.point().put(0, stdNormal);
    points.add(aPointInPath);

}

Compute grid

Data grid

Worklets

Parallel
processing of

worklets in grid

Figure 14.1. Parallelizable processes.
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work units or worklets and parallelize the workload across all the available and

capable machines on the network. Glue together the results into a cohesive data

set, and the effect is a high-powered computer or the compute grid.

The need to perform more and more complicated, data-intensive tasks and lim-

ited resources has been the driving force behind the evolution of grid technology.

Very similar forces are also found in the commercial enterprise and are causing

widespread interest in further developing grid computing. The first commercial

grid applications are similar in nature to those that gave birth to grid computing,

where intensive analytical applications needed to perform with greater speed and

the number of data sets that they required continued to increase. The applications

spanned many industries, as indicated below:

. Energy exploration—where and how to best drill for oil and gas through the

analysis of seismic data

. Biopharmaceutical

Protein folding

Clinical trials—drug interactions with the human body through simulation

. Government—various types of government applications for the analysis of

large data sets and pattern detection

. Financial services—quantitative analysis to accelerate risk reporting

. Computer-aided design—aerospace, chip design, and other applications

The common thread connecting these diverse industries is that the business appli-

cations require complex data analysis over increasingly larger data sets. The analyti-

cal process that traverses and mines these data sets can require execution times

spanning days. Time is our most precious and irreplaceable commodity, so any

reasonable effort to maximize its utilization is well spent. Shortening the analysis

times yields more available time and resources to perform increasingly complex

analysis. Grid technology offers a reasonable solution to not only maximum utiliz-

ation of time but also to provide a powerful, flexible, fungible, and cost-effective

computing environment.

GENERAL ARCHITECTURE

The general architecture for this class of applications in the compute grid has

focused on the management of computer resources and task distribution, which is

the compute grid, and less on data management or the data grid. Historically, grid

vendors have been perfecting and commercializing the core of the compute grid

technology. The compute grid is used to manage compute resources—which

machines are currently available and of these, which are capable of executing the

worklet; the management of task assignment, data assignment, and retrieval for

each worklet; and finally the assembly of the individual worklet’s result data set

into the larger application result data set format. The final job of the compute grid
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is to perform data packaging from each worklet since each has been assignment to a

different compute node. Figure 14.2 illustrates this data assembling processes and

final storage of the data to some data store, such as a database or a file on disk.

In the workflow shown in Figure 14.2, the compute grid manages data retrieval

and distribution along with the worklets across the compute grid. This is a six-

step process starting with data retrieval required by each compute node; this main

process retrieves the necessary data from the various external data sources either

before or during the worklet creation/assignment process of the compute grid.

The compute grid management process then packages the input data necessary for

the worklet to perform its task and ships it along with the worklet to the respective

compute node to perform the task. However, before shipping the data–worklet com-

bination, the data must be packaged. Part of this packaging is data marshaling. Once

the compute node receives the worklet, it must unpackage the input data before it

can start to process the tasks as defined in the worklet. The unpackaging process

involves reversing the data marshaling process to enable the compute node to

read the data in a format that it understands and can operate on. Once the task is com-

plete, the resulting data sets must be packaged (and marshaled) before being sent

    Compute grid

(1) Get data from source

(2) For each worklet 
package and marshal data

and ship them with the worklet 
to the compute node 

(4) When each worklet
completes, package and

marshal the results and ship
them back to compute grid

engine

(3) Unmarshal and unpack
the data, execute worklet

(5) Unmarshal and unpack
worklet result and

accumulate until all worklets 
return

(6) Reassemble final result,
marshal and return to target

store

Figure 14.2. Workflow without a data grid.
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back to the compute grid management process. The compute grid management pro-

cess receives the resulting data sets from all the worklets that it dispatched,

unpackages each one (again, part of the unpacking process consists in unmarshaling

the data), and assembles them back together to form one cohesive data result set for

final storage in some sort of persistence.

As can be seen, this process of packing, marshaling, sending, receiving, unmar-

shaling, and the unpackaging of data must happen twice, once for the input data to

the worklets and once for the resulting data set of the worklets. This process must

occur for each worklet followed by a data assembly process so that the worklet

results can be understood at the application level. The more worklets that the com-

pute grid dispatches, the better the parallelization of the overall process will be, but

this, too, has a price. The efficiency gained by parallelizing the work is counter-

balanced, either in part or in whole, by the overly complex data packaging/
marshaling work.

Some level 0 data grids mitigate this performance consequence by creating a dis-

tributed file system across the compute nodes of the compute grid or via GridFTP.

Each transfers the responsibility of data packaging and transport from the compute

grid to the level 0 data grid; however, there may still be data marshaling involved by

either the data grid or the worklets–application combination. However, these sol-

utions do not address performance enhancement techniques such as data affinity.

The current commercially available grid solutions are tailored to these calcu-

lation-intensive applications with the static data sets. However, as corporate America

adopts grid technology and begins to leverage it throughout the organization to

encompass tasks beyond those of static data sets, compute grid solutions will need

to be augmented with a data grid that also manages dynamic data, a level 1 data grid.

Unless running overnight batch processes, the majority of business applications is

dynamic in nature and requires level 1 data grids. Some of the examples listed earlier

for risk management, in either financial services or government security, are charac-

teristically real-time and dynamic data sets. Figure 14.3 illustrates the integration of

the data grid into the compute grid architecture, where many worklets perform their

defined tasks in parallel.

Level 1 data grids inherently lend themselves to the transient data sets produced

by calculation-intensive processes such as a Monte Carlo simulation. These pro-

cesses generate and leverage vast amounts of interim data that are used throughout

the running simulation to produce an end result but are not part of the end result

itself. A comparison of the quantity of data input and output from a Monte Carlo

simulation to that of the interim data generated by the running simulation is analo-

gous to an iceberg, with the input and output data representing the tip of the iceberg

and the interim data as the majority of the iceberg that you do not see.

In the specific case of a Monte Carlo simulation used in the financial markets, the

interim data sets can be, but not limited to, random-number surfaces and yield

curves. Worklets produce and consume these interim data on a regular basis.

Some produce the random-number surfaces; others produce the yield curves,

while others will use parts of each to produce other interim data surfaces, all leading

to the final resulting data surface. In a later chapter an example of the code for part of
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a Monte Carlo simulation is provided using a level 1 data grid. One of the main

objectives in creating and maintaining a Monte Carlo simulation is performance

tuning. There are various methods of increasing the performance of a simulation.

Here I will introduce performance enhancement techniques that a level 1 data

grid offers above and beyond that gained by traditional computational performance

enhancement techniques.

Data enhancement techniques take two forms: data reuse and data affinity. For

some simulations, many of the interim data surfaces can be reused from one simu-

lation to another. Keeping these surfaces active in a data grid eliminates the need to

continually regenerate them from one simulation run to another. While a level 0 data

grid can address data reuse, it may not yield any performance benefits as it may be

faster to regenerate on a local node than to query, locate, transport, package, and

marshal the data out of the data grid and to the compute node where they are

needed. A level 1 data grid inherently addresses many of the data accessibility

issues inherent into a level 0 data grid, thus minimizing much of the work and per-

formance bottlenecks to such an extent that it would be cheaper to reuse interim data

surfaces than to regenerate them from one simulation to another.

Compute grid

Data grid

Figure 14.3. Workflow with the data grid: level 1 data grid.
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Data affinity is addressed by level 1 data grids. Data affinity is the ability to group

interim data sets to the compute nodes that most often generates and uses them, thus

further reducing data movement. With this strategy, data are locally resident on the

compute node, eliminating the entire data packaging–movement process overhead.

Between data reuse and data affinity in the data grid, the overall processing time of a

Monte Carlo simulation can be dramatically reduced by as much as half.

DATA GRID ANALYSIS

In order to analyze calculation-intensive application with the data grid, I will

leverage the Monte Carlo simulation as a model. The first step is to start with the

application definition expressions as presented in an earlier chapter.

The application definition equation for a distributed environment is

Application Workð Þ, Datað Þ, Timeð Þ, Geographyð Þ, Queryð Þð Þ

where

Work batch=atomic, synchronous=nonsynchronousð Þ
Data overallsize, atomicsize, transactional, transient, queryableð Þ
Time Real-Time, NotReal-Time, NearReal-Timeð Þ
Geography Topology, NetworkBandwidthð Þ
Query basic, complexð Þ

The “interim” data surfaces of a Monte Carlo simulation can be prebuilt and sub-

sequently used to produce the final result surface (the output result set of the simu-

lation). However, some of the interim result surfaces may be dependent on other

interim surfaces being partially or completely built. For the purposes of this discus-

sion, we will consider the building of an interim data surface as a “batch” process

even though in reality it is a completely parallelized grid process. There exists an

interdependency of interim result surfaces that prevents all interim result surfaces

from being simultaneously generated independently of each other. Figure 14.4 rep-

resents an example of such interim dependency.

Therefore, when there is an interdependency of two surfaces as illustrated in

Figure 14.4 for A and B, where B is contingent on A being in place before the build-

ing of B can start, then coordination of the two processes is necessary. Further com-

plexities will exist when only parts of a surface are dependent on parts of another

surface. For instance, to continue with our example illustrated in Figure 14.4, not

all of surface A must be completely built before construction of surface B can

start. Therefore, this will result in creation of a partial dependency between the

two surfaces. In both instances there exists an element of synchronization of proces-

sing with regard to start building interim surface B only when “X%” of surface A is

complete, where the internal processing of both A and B are completely atomic and
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nonsynchronous. In this case X% represents some variable of completeness. From

the Monte Carlo expressions in the earlier chapter, the Monte Carlo simulation

was represented as

MonteCarloSimulation

Work W_T1ð Þ,W_group1 W_T2ð Þ,W_T3ð Þð Þ . . . ,W_Tnð Þð Þ,
Data_inputð Þ,Data_outputð Þ,Data_S1ð Þ, . . .Data_Skð Þ,
Timeð Þ,
Geographyð Þ,
Queryð Þ

0
BBBB@

1
CCCCA

60% of data surface A
must be complete before
data surface B can start

construction

Data surface B

X

Y

Z

R

Data surface A

X

Y

Z

R

Figure 14.4. Inter data surface dependencies.
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where

‘‘W_Tx” represents a task that has no dependencies on another task;

‘‘W_group” represents a grouping or tasks where interdependency exists,

thus an element of synchronicity:

W_T1 atomic, nonsynchronousð Þ
W_T2 atomic, nonsynchronousð Þ
W_T3 atomic, nonsynchronousð Þ
W_Tn atomic, nonsynchronousð Þ
W_group1 batch, synchronousð Þ

The input and output data surfaces are small in comparison to the interim data sur-

faces that will be necessary to derive the final output data surface.

Data_input 1kbits, 100bits, nontransactional, transient, nonqueryableð Þ
Data_output 1kbits, 100bits, transactional, transient, nonqueryableð Þ
Data_S1 3Gbits, 100bits, nontransactional, transient, queryableð Þ
Data_Sn 3Gbits, 100bits, nontransactional, nontransient, queryableð Þ

The ability to run simulations in near real time enables business decisions to be made

with accurate and timely data. This simulation is to run in the confines of a single

data center and the applications requirement to analyze (complex queries) any of

the data sets is not essential to the business.

Time Near-Real-Timeð Þ
Geography DataCenter, 1GbitEthernetð Þ
Query basicð Þ

The data management policies that need to be imposed are represented as

DataDistributionPolicy ¼ DDP

MonteCarlo DDP,

MCRegion,

Scope ALLð Þ,

Pattern Automatic, Random

MCDDPPattern,

WhiteNoiseð Þ,
NULL,

NULL,

NULL,

NULL

0
BBBBBBBB@

1
CCCCCCCCA

0
BBBBBBBB@

1
CCCCCCCCA

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA
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DataReplicationPolicy ¼ DRP

MonteCarlo_DRP,

MCRegion,

7,

Scope ALLð Þ

0
BB@

1
CCA

SynchronizationPolicy ¼ SP

MonteCarlo_SP,

MCRegion,

Scope Boundary ‘‘intra”ð Þ, NULLð Þ,
Transactionality ‘‘nontransactional”ð Þ,
LoadStore List ‘‘MarketFeed_DLP”ð Þ, NULLð Þ,
Events NULLð Þ

0
BBBBBB@

1
CCCCCCA

Use if Events to coordinate interdependencies between data surfaces

EventNotificationPolicy ¼ ENP

W_Group_SurfaceCoordination,

MCRegion,

Scope List W_Group_Atomsð Þð Þ,
StartDependentSurfaceBuildsð Þ

0
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1
CCCA
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Figure 14.5. QoS–application requirement quadrant graph.
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DataLoadPolicy ¼ DLP

MarketFeed_DLP,

MCRegion,

Granularity Grouping 1ð Þ, Frequency 50ð Þð Þ,
MarketDataAdapterð Þ

0
BBB@

1
CCCA

DataStorePolicy ¼ N=A

The graph in Figure 14.5 shows nontransactional application characteristics;

however, some, but not all, of the application’s data surfaces are dependent on

each other, thus creating a dual characteristic of nontransactional for data surfaces

with no dependencies and transactional where the data surfaces are interdependent.
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15
DATA MINING AND DATA
WAREHOUSES

DESCRIPTION

Analysis of large data sets comes at a cost. The cost:benefit ratio is the level of

complexity of the analysis versus the compute infrastructure (hardware, software,

network, etc.) required to support the analysis. As the complexity of the analysis

increases, more extensive infrastructure is required. I will present data warehousing

as a use case study to emphasize that the business is not realizing the full potential of

the data in the data warehouse. This is due to many reasons, including the physical

limitations imposed on the warehouse’s ability to perform queries and/or analysis.
Examples are in the areas of fraud detection and customer pattern analysis.

There are many ways to construct a data warehouse and methods in which to per-

form analysis. One method is to query and extract data out of the warehouse and

perform the analysis on a system external to the data warehouse. Traditional

methods for increasing performance may require the thin distribution of data

across increasing numbers of disks or require custom hardware and software

combinations that are proprietary to the data warehouse vendor. These alternatives

contribute to the increase in both the cost and risk.

The data grid architecture offers an alternative to traditional data mining and

warehousing infrastructures. Not all data grid implementations lend themselves to

this use case, only those that meet specific criteria, the details of which will be dis-

cussed in the following sections.
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USE CASES

The topic of data warehousing is rich in research, products, tools, and methodologies.

The purpose of this section is not to include all aspects of the topic but to foster a new

perspective on the subject that will evolve into new data warehousing techniques so as

to increase value with both lower cost of ownership and risk reduction.

At the highest level of the block diagram, a data warehouse is a collection of ser-

vers and disks. Data are distributed across multiple disks for storage capacity and

can be arranged in specific patterns to increase speed of access. Via the data ware-

housing servers, a client application can query, perform some level of analysis, and

receive the results. Figure 15.1 highlights this high-level process.

The following discussions will focus on business applications querying the data

warehouse and performing further analysis on the data. The purpose of data grids in

a data warehousing solution is not to replace the data warehouse but to augment it in

such a way that will increase the query and analytical performance of the overall

process. Therefore, I will not address EAI- and EII-related issues of how the data

warehouse is initially populated and updated from the raw datastreams throughout

an enterprise.

For this discussion, the workflow model is simple. We will have two branches of

processing for this example, with one branch making some level of analysis per-

formed within the data warehouse and the other branch with minimal to no analysis

performed in the data warehouse. This processing difference defines the following

two use cases:

Use Case 1. Business logic/analytics are performed in the data warehouse.

Use Case 2. Business logic/analytics are performed outside the data warehouse.

These two cases are illustrated in the flow diagram in Figure 15.2.

Data warehouse

Disk 1 Disk nDisk 3Disk 2

Business
analytic

application

Data access point

Figure 15.1. Data warehouse high-level block diagram.
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The type of implementation of the data grid will determine its viability to aug-

ment a data warehouse. Data grids that support the following features are candidates,

for example

. Bringing the data close, in a networked proximity, to the compute nodes where

the business application is running

. Offer full data grid management support

. Data query capability

Start

Business
application issues

query

Data warehouse
executes query

Analysis

Analysis
performed in data 

warehouse

Analysis
performed in

business
application

Further analysis
performed in

business
application

Results prepared 
for presentation

End

Business logic in 
data warehouse

Business logic in 
business application  

Figure 15.2. Process workflow defines use case definitions.
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Certainly level 0 data grids do not meet these criteria and thus will not apply. Some

types of level 1 data grids will not apply, either.

An example of a level 1 data grid that will dovetail with a data warehouse is one

whose implementation is an “in-memory model” that spans a compute cluster or the

compute grid. The benefits of such data grids are performance since the data are kept

close to the processing and must offer a distributed memory space that increases

capacity as the number of machines in the grid increases.

The economic and logistical concern of staging large volumes of data in a data

grid are not daunting hurdles to jump. Both concerns center on the number of

machines or nodes required in the data grid to hold large volumes of data. The phys-

ical size of the data grid or the number of nodes in the compute grid is dependent on

the memory capacity of a single machine of a node and the total data size extracted

and analyzed from the data warehouse. Since one of the economic driving forces

behind grid computing is to reuse the large numbers of inexpensive machines, the

cost of large grid infrastructure is comparatively low in comparison to the large

servers that they will be replacing.

The logistical concerns are addressed via new generations of provisioning and

management software that automates much of the system administration processes.

Therefore a data grid infrastructure is an economical means to dramatically increase

the performance and analytical complexity of large data sets.

GENERAL ARCHITECTURE

In both use cases the general architecture is the same. The data grid sits in between

the business application and the data warehouse. The business logic operates

directly against the data grid. Independent of the use case, the architecture and

business application’s workflow is the same; the only change is to the capacity

(therefore the size) of the data grid. As data capacity requirements increase, the

size of the data grid must also increase. The new architecture with the data grid is

illustrated in Figure 15.3.

The data grid spans the compute space of the business application, thus bringing

the entire scope of the data warehouse (depending on the use case) directly into one

continually addressable and ready-to-access data space. The advantages for time to

process are realized in the ability to pivot data in complex structures and hierarchies

in near-in-memory speed, without having to swap data in and out of a local memory

space and files system/database, and independent loading of data from any one or

multiple data sources.

In this context, the term “data warehouse” refers to the traditional data warehous-

ing infrastructure in place in most organizations today.

First Use Case

In this use case, the data need to be loaded into the data grid. Most if not all of the

data of the data warehouse are reflected in the data grid. Thus, any query and
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subsequent analysis of the data are run directly against the data grid, not the data

warehouse. This implies a one-time data load with periodic data synchronization

between the data warehouse and the data grid. Any data integration from external

sources into the data warehouse can remain as is (into the data warehouse) or

loaded in parallel to both the data warehouse and the data grid. For our discussion,

we will assume the former. The EII data load into the data warehouse and sub-

sequent synchronization process into the data grid is independent of and transparent

to the business applications. The result is two copies of the data warehouse, one in

the data grid for analytics operation and the other in the data warehouse for long-

term persistent storage.

As discussed earlier, the class and implementation of the data grid for this use

case yield benefits to the business from a cost perspective, reduced processing

time, and increased OLAP complexity. Specific potential areas of benefit are

increased query speed, savings on analysis processing time, increase the number

of business analytics that can be run, and increase the next level of complexity of

the analytics that could otherwise not be achieved. However, as with all things,

Data grid

Data warehouse

Disk 1 Disk nDisk 3Disk 2

Data access point

Business
analytic

application

Distributed query across the nodes of the data grid 

Initial load
Delta

updates

Figure 15.3. Data warehousing with a data grid.
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there are tradeoffs. This architecture will expose the risk of large data loss within the

data grid. Should enough of the data grid “go down,” full or partial data loads could

occur, therefore requiring the need to perform data upload from the data warehouse.

On such a failure, the required time to reload and recover the system is dependent on

the amount of data to be reloaded, the network bandwidth between the data ware-

house and the data grid, as well as the network bandwidth within the data grid itself.

The architecture of the data warehouse and data grid transfers the responsibility

for direct data access and querying from the data warehouse to the data grid.

Therefore, this minimizes the requirements for the expensive data warehousing

infrastructure and augments it with a lower cost, faster, and more powerful data

grid infrastructure. The cost–benefit difference lies in the data grid’s ability to sup-

port large quantities of data with an infrastructure that is inexpensive to grow and

maintain.

Second Use Case

Whereas the first use case is a dual data repository of data warehouse and data grid,

this use case is more of a hybrid approach. The initial queries are run against the data

warehouse, returning a small subset of data (as compared to the total size of the data

warehouse), which is then loaded into the data grid. Once these data are loaded in the

data grid, the same benefits of the data grid are realized in the first use case. These

benefits include savings on processing time, increase in the number of business ana-

lytics that can be run, and increase in the complexity of analytics. On the other hand,

the disadvantages of this approach are the increase in the overall time to perform the

business application since the data warehouse is involved in the initial query and

load of the data into the data grid as business requests occur. However, the down-

sides are minimized; a catastrophic failure of the data grid will not require a

costly reload of the entire data warehouse. Also implied is the size of the data

grid infrastructure required to support the OLAP process since an increase in data

capacity implies an increase in the number of nodes of the data grid. In summary,

the first use case implies a large data grid infrastructure just to support the data ware-

house as compared to the second use case, where only a subset of the data warehouse

must be stored in the data grid.

The data load process of this use case can be managed in a number of ways: (1) by

the business application/data warehouse, (2) by the data grid/data warehouse, and
(3) using a method similar to that used in the first use case. If multiple business appli-

cations require similar data sets, then keeping those data continually loaded and syn-

chronized with the data warehouse makes sense. If data loss occurs in the data grid,

the data load and recovery time is not as catastrophic since it is a subset of data that

is required from the data warehouse.

The shifting of fast data access and querying for the data warehouse to the data

grid are not as dramatic as in the first use case, but are present nonetheless. In

addition, other architectural, processing, and financial benefits are realized from

the business application perspective. If the analytic process runs outside the data

warehouse and in the memory/processing space of the business analytic, then the
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data extracted from the data warehouse must be stored somewhere else. When using

traditional methods (non-data-grid), there are only a few alternatives; try to fit the

data set into the RAM (random access memory) of the user’s machine or put the

data into a file on the user’s machine. Depending on the size of the data, they

may not fit in the available RAM, thus eliminating this option in many cases.

File sizes also have their limitations. Data may have to be split across multiple

files and be swapped in and out of RAM as the business analytics requires.

This adds an upper bound to the amount of data that can be extracted. In addition,

engineering will need to be involved for managing and splitting the data across

multiple files.

The use of a data grid eliminates the need for engineering efforts around large

data sets. The data that are extracted out of the data warehouse would easily fit

within the data grid, circumventing the need for the application to perform the

extra file loading, splitting, and swapping. As a result, the analytics in turn would

simply run faster and be available for other nodes and applications if required.

Compute grid

Data grid

Data warehouse

Disk 1 Disk nDisk 3Disk 2

Data access point

Distributed query across the nodes of the data grid

Initial load
Delta

updates

Figure 15.4. Data warehouse enhanced by commute and data grids.
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Enter the Compute Grid

Up to this point we have discussed how the data grid can benefit an analytic appli-

cation. The performance of the business application can be enhanced even further by

running the OLAP process in a compute grid. The benefits gained will depend on

how well the OLAP process of the business application can be parallelized across

a compute grid (recall the discussions in Chapter 14, on calculation-intensive appli-

cations). In these instances the benefits are manyfolds: (1) the benefits of the data

grid–data warehouse combination as described above, (2) the ability to split a

serial process into worklets running in parallel across the compute grid, and (3)

the turboboost (if you will) of adding data affinity to the mixture. Figure 15.4

illustrates the new architecture that evolves with the compute grid and the data

grid for the data warehousing solution.

DATA GRID ANALYSIS

For the data grid analysis of data mining and data warehouses, I will use the application

definition expressions as introduced in Chapter 5. For both use cases discussed above,

the general architecture is very similar; thus the general equations will also be similar.

However, within each use case there are numerous variations on implementation that

are dependent on the specific environment in which the use case is to be deployed.

These differences in environment and implementation will appear in subareas of the

application definition expressions and in the data management policies. Therefore,

the expressions shown below are a template; it is left to the reader as an exercise to

architect in each case given the variations in definition and policy expressions:

. The application definition equation for a distributed environment is

OLAPProcess

Work( ),

Data_output( ),Data_S1( ), . . .Data_Sn( ),
Time( ),

Geography( ),

Query( )

0
BBBB@

1
CCCCA

where

Work(atomic, nonsynchronous)

The output data surfaces are small in comparison to the data surfaces that will

be analyzed from the data warehouse.

Data_output(‘‘x” kbits,‘‘y” bits, transactional, nontransient, queryable)

Data_S1(‘‘z” Tbits,‘‘k”Mbits, nontransactional, transient, queryable)

Data_Sn(‘‘z” Tbits,‘‘k”Mbits, nontransactional, transient, queryable)
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The ability to run complex analysis over large data sets in short periods of time

provides the business with a better view into the prevailing economic forces and

consumer demands of the current environment. Armed with better and in-depth

quality views of the “bigger picture,” the business can target specific consumer

groups and manage manufacturing and supply chain in finer detail otherwise

not possible. This OLAP process is to run in the confines of a single data

center and the applications requirement to analyze (complex queries) of any

of the data sets is not essential to the business.

Time(NearReal-Time)

Geography(DataCenter, 1GbitEthernet)

Query(complex)

. Data management policies are expressed as

DataDistributionPolicy¼DDP

DataWarehouse_DDP,

DWRegion,

Scope(ALL),

Pattern Automatic,Random

DWDDPPattern,

WhiteNoise( ),

NULL,

NULL,

NULL,

NULL

0
BBBBBBBB@

1
CCCCCCCCA

0
BBBBBBBB@

1
CCCCCCCCA

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

The data replication policy shows a lower number of replicas per data atom

since the overall size of the data in the data grid is quite large. Each replica

increases the overall storage capacity requirements of the data grid by the

size of the data loaded from the data warehouse. The downside to a lower

replication size per data atom is resilience of the data in case of failure.

These tradeoffs must be considered in each use case and architecture variation.

DataReplicationPolicy¼DRP

DataWarehouse_DRP,

DWRegion,

3,

Scope(ALL)

0
BB@

1
CCA

SynchronizationPolicy¼ SP

DataWarehouse_SP,

DWRegion,

Scope(Boundary(‘‘intra”),NULL),
Transactionality(‘‘nontransactional”),
LoadStore(List(‘‘DataWarehouse_DLP”),NULL),

Events(NULL)

0
BBBBBB@

1
CCCCCCA
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Below are three scenarios for data integration (EII) and data consistency

between the data warehouse and the data grid. Starting with the data

source it can update both the data warehouse and the data grid simultaneously.

Assuming that there is already an integration of data source to the data ware-

house, this would imply a second integration path into the data grid. If EII is

achieved via a middleware bus, such as a queuing system, this may be the

preferable path. Alternatively, the EII into the data warehouse remains

unchanged, leaving the data warehouse to manage synchronization with the

data grid, possibly via event/trigger mechanisms. The third alternative is to

have all data sources input directly into the data grid, and leverage the data

grid’s event processing to manage synchronization with the data warehouse.

The example presented here assumes that the EII functions of the data ware-

house remain within the data warehouse. Should one choose to transfer the

EII responsibility from the data warehouse to the data grid, then the data

grid event notification policies will need to be established to maintain data con-

sistency to the data warehouse.

EventNotificationPolicy¼N=A

The data load policy is required only in the second use case, and if the

implementation offers the business application the data grid as the medium

to instantiate queries to the data warehouse. Then the data load policy will

manage the data warehouse interface for data query and loading result sets

into the data grid as defined in the equation below:

DataLoadPolicy¼DLP

DataWarehouse_DLP,

MCRegion,

Granularity(Grouping(1),N=A),
DataWarehouseAdapter( )

0
BB@

1
CCA

DataStorePolicy¼N=A

The QoS–application requirement quadrant graph in Figure 15.5 shows

application characteristics of nontransactional complex data analysis that are large

in size.

BENEFITS AND DATA GRID SPECIFICS

The benefits of applying data grid technology to a data mining/data warehouse

application are twofold: the speed of processing and the complexity of the process.

The use of the data grids and the compute grids enable complex analysis to be per-

formed in a comparatively shorter timeframe. Therefore, this opens the door for the

feasibility of creating increasingly sophisticated analysis programs and running

more of them. These advances in business possibilities and sophistication are not
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possible without a data grid infrastructure. Using an implementation without the

data grid architecture would expand to your traditional data warehouse with more

disks and CPUs to perform queries and/or analytics but would still be unable to

achieve the levels of complexity that you would desire and need with the ever-

increasing business requirements.
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Figure 15.5. OLAP processing with a data warehouse and data grid.

BENEFITS AND DATA GRID SPECIFICS 175





16
SPANNING GEOGRAPHIC
BOUNDARY

DESCRIPTION

There are a wide range of applications that the data grid addresses where geography

poses chasms to be crossed. In this chapter, I will touch on some examples and their

respective technical issues.

Grid computing, a network of machines collaborating together to perform tasks,

are bound by network bandwidth and not geography. Geography does not factor in

the performance of the grid irrespective of physical locality and proximity of the

machines:

. Local within a data center

. Distributed within a building

. Across many buildings on a campus or diversely separated by geography

Are there other attributes that impose physical boundary limits in the larger

equation for the grid? The other attributes to the equation include application beha-

vior; overall data size, atomic data size (data required for atomic units of work),

application transactional behavior, and finally the available network bandwidth of

the grid region.
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BUSINESS USE CASES

There are many practical examples of geographic boundary problems in today’s sys-

tems. Here, I will focus only on the current problems faced in the financial services

industry, data center operations, and customer service.

Financial Services

Following the September 11, 2001 attacks, the Securities and Exchange Commis-

sion (SEC) released the following guidelines:

Interagency Paper on Sound Practices to Strengthen the Resilience of the U.S. Finan-

cial System Federal Reserve System [Docket No. R-1128]; Department of the Treasury

Office of the Comptroller of the Currency [Docket No. 03-05]; Securities and Exchange

Commission [Release No. 34-47638; File No. S7-32-02]

(http://www.sec.gov/news/studies/34-47638.htm)

One of the recommendations in the paper establishes a minimum distance

requirements between sites for operations and data centers that do not depend on

a common infrastructure; thus this targets the reduced risk in situations of tragic

measures. Earlier drafts of this paper suggested a physical minimum distance of

200–300 mi. Figure 16.1 illustrates how this separation can be achieved.

In response to the SEC’s requirements, the industry cited that there are logis-

tical issues that include high costs prohibiting this from happening even if it is tech-

nically feasible. In addition to the added cost of maintaining separate physical

facilities, there are the nontrivial human workflow difficulties of coordinating a

physically separated staff that must work as well as if they were sitting together

on the same floor.

Operational work
group

Data grid architecture enables the physical separation of operational work groups

Figure 16.1. Physically separated work groups that operationally act as one.
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The technology question that needs to be addressed is how you get people who

are geographically separated to work, coordinate, and share data in such a fashion

that is seamless to the customers that the group services.

Continuity in human workflow across geography is dependent on continuity of

communications, data, and business applications across the same geography. Look-

ing at the micromodel of fault-tolerant data servers will offer a platform to see how a

proper compute and data grid environment can address workflow continuity across

geographic boundaries. Sophisticated data servers (the physical server machines)

have multiple CPUs running in synchronization; should one fail, the operation

runs uninterrupted as the workload is continuously running on the other CPUs

[This is also referred to as “high availability” (HA)]. Within the server, the CPUs

are connected via an internal “bus” architecture that enables them to commutate

and coordinate tasks with each other. The same concept is extended to the distributed

computing systems. In the distributed compute architecture there are multiple com-

pute nodes (CPUs) that are interconnected via a network. The compute grid is similar

to the operating system that controls the processes running on the server; it coordi-

nates task among the compute nodes. The data grid manages the data sharing oper-

ations between the CPUs. Similar to the fault-tolerant server, a grid architecture

enables levels of fault tolerance to applications that run on the grid; operations can

be split, running in parallel across the grid. Should any operation fail, the grid will

restart it on another compute node until the overall operation successfully completes.

Thus, the grid can provide the required fault tolerance or HA to the applications that

the business units require. The difference between a fault-tolerant server and the grid

is the physical separation of the CPUs. In a server, the CPUs are in very close proxi-

mity, literally inches apart. On the other hand, the grid architecture is bound by the

network, and the physical separation between CPUs can be 10 ft of cable, for

example, or across a building via a local-area network or across the country via a

wide-area network. The efficiency of the grid is less dependent on the compute

power of each individual compute node and more dependent on the bandwidth

and latency of the network connecting the nodes. Therefore the amount, quality,

and efficiency of the work that can be performed on the grid are in direct correlation

to the network and the management of data movement in the grid.

With sufficient network bandwidth and proper data management in the data grid,

the grid architectures can deliver varying levels of fault tolerance to the applications

running on the grid independent of physical geography, thus adding the required

fault tolerance to the applications. Extending this concept to the human workflow

and interaction, the data grid allows the data to be shared in real time with the

workers irrespective of geography. Geographic independence of the data grid effec-

tively bridges the physical distance of the employee work groups. They can be sit-

ting next to each other, one on the north side of the floor and the other on the south

side, or with one in New York City and the other in Chicago. The grid architecture

with a data grid enables work groups to be distributed across the grid in much the

same way as the grid delivers fault tolerance to their business applications that

are running on it. The grid delivers fault tolerance across geography for the business

applications, including the people that use them and their workflow. A power outage
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in New York will yield no interruption of service to the customer as the workload is

distributed across from the New York site to the Chicago site and San Francisco site

in real time, for example.

Operations

The data center operational procedures are different when the compute center is dis-

tributed across disperse geographic areas. Tactically, there are tools to monitor net-

works and the status of the individual compute nodes that compose the grid. There

are provisioning tools that will, with little to no human intervention, bring a machine

from the “out of the box” bare metal to a database server, application server, or

whatever it needs to be in order to run the specific business application. The compute

grid offers tools to give an in-depth view into the compute nodes, including their

status and availability to perform tasks, and provide status on tasks that are running

and those that are queued to be run. In addition, the data grid must provide infor-

mation on data statistics such as data movement, frequency of access and update,

and size. I will not look into the nuts and bolts of the operational management of

a grid architecture. Instead, I will be addressing areas of improvement that the pre-

sence of a data grid enables from an operations perspective.

Described below are two areas of operation that can be improved with the use of a

data grid. These are provided as example; they are not the only operational areas

that a data grid can enhance. It is left to the reader to build on the concepts presented

here and foster thought in the area of application of the data grid to data center

operations.

Areas of operation improvement can include the following:

1. Application Migration from Older Systems to Newer Systems. Compute sys-

tems in a data center, both hardware and software, are in continual flux. Servers can

be upgraded, networks expanded, application software changed, software appli-

cations supported, and the current systems completely replaced with a new hard-

ware–software environment. Each type of change requires regression testing to

ensure that there is no change in the QoS to the business. The scope of regression

testing is not limited to the system in question but all the other systems it touches

and that touch it. Often this means working “after hours” (late nights and long week-

ends) by all involved, including the developers, operations staff, and managers.

Deadlines need to be set, as does a point of no return, where, if the rollout of the

new system is not completely up, running, and tested, the changes need to be

rolled back and the old system put back in place. Let us look at the simplest

event that can trigger such chaos. One common cause of a business application

moving from one version to another is a third-party software vendor discontinuing

support for an older release of its product, thus forcing its customers to “move” off

an earlier release to the latest and greatest version. Let us assume that there are no

business logic changes to the application, so this should be a simple port and/or
recompile of the code. However, from a QA operations standpoint, there is no differ-

ence between this simple change or a major application rework. Both instances
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require regression testing on this system and all other systems that it touches. The

data grid in this instance provides a platform where quality assurance (QA) and

regression testing can occur in parallel to production during normal business

hours, thus minimizing or even eliminating the after-hours work involved in a roll-

out. The QA data region can be synchronized with the production data region such

that as data become available to the production data region, those same data updates

are reflected in the QA region. As the production systems change state, the QA

system should mirror the same state changes. Once this occurs, the QA system is

ready to be cut over to production. The compute and data grid planes make the

switchover from QA to production, and, if need be, the fallback procedures are

equally transparent as system rollout and rollback are both a matter of provisioning

the machines to the respective configurations. The ability to use the data grid to pro-

vide the same information state as available in production minimizes the risk since

the QA environment is similar to if not completely the same as the production

environment for regression testing. This kind of architecture is represented in

Figure 16.2, where the production environment is feeding the QA environment.

2. High Availability (HA) and Fault Tolerance. The objective is to move an HA

environment from a loss of service spanning minutes to a loss of service that spends

Data grid plane

QA data region
Production data 

region

Compute grid plane

Intraregion synchronization of production data
region to the test data region for inline testing and

system state comparison with the production environment

QA grid nodes Production grid nodes

Figure 16.2. Parallel QA and production environments.
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seconds, regardless of whether these services and servers are physically next to each

other in a data center or are diversely separated by geography.

In the early 1990s Risk/Unix platforms were gaining popularity in the commercial

industry, playing the role of both servers and clients in the client/server evolution. The
drawback to this platform in the early days was that Unix was emerging out of

universities and research facilities such as AT&T (where the operating system was

invented); thus few people were experienced in the operating environment and even

fewer tools for development and administration/operations existed. One of the largest
hurdles that the platform had to overcome in order to cross into a mainstream techno-

logy for mission-critical systems was automatic monitoring so as to ensure reliability

and availability of the systems and the software running them. The expected reliability

at that time was not up to par with today’s demands on fault-tolerant systems

(fault-tolerant systems had 99.999% reliability). A new term emerged to describe a

reliable but not fault tolerant environment; “high availability” (HA).

HA software monitors the hardware and the software services running on it in

order to detect a failure; it monitors the health or the state of the system. Should

a service fail, the HA system would take the appropriate action to resolve the pro-

blem. The time that elapses between failure detection and problem resolution can

range from seconds to minutes depending on the software solution and the configur-

ation. From the customer/user prospective, the system was simply slow to respond

when in reality a hardware failure, for example, caused the software that was run-

ning on the failed box to be restarted somewhere else on the network (typically a

spare or “warm” backup machine). This process is called “service failover.” In

order for the service failover to work, the “state” of the service has to be carried

over to the backup machine. In the case of a database service, the physical disks

of the database had to be connected to both the primary and backup servers. This

way, when the backup server started the database engine, it was accessing the

same physical disks that the primary server was using.

How can the data grids improve the reliability of HA, moving it even closer to hot-

standby fault tolerance? There are two methods for achieving this; the first is to use

the data grid as the primary user access plane. Note that I did not use the term “access

point.” Unlike client/server applications, grid computing is by nature a multiple

access plane for the business users. Node failures will not bring the grid “down.”

(Only large or catastrophic failures can bring the grid to a total failed state.) The

second method involves one of the key necessities of HA: service state maintenance.

The data grid can maintain the state of a service so that any node on the grid can act

as the backup to the primary node. With the combination of the data grid acting as

the primary user access plane and maintaining the state of the services, the user

should experience no “sluggishness” of the system during a failover process. In

addition, data loss will be eliminated, ensuring high data integrity. Figure 16.3 high-

lights the architecture of how this would work between the two environments.

One instance where the data grid not only improves system reliability but also

improves performance and increases over all server utilization rates is with the
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use of Internet application servers. The state of the incoming requests from the Inter-

net are maintained in the data grid; therefore the responses to a specific request no

longer need to be routed to the same server that processed the incoming request.

Rather, any available server can process the response since the complete state of

the request/response is maintained in the data grid where all the application servers

have access to it.

Following the Sun

“Following the sun” refers to the ability to shift the business responsibilities from

one region to another as the resources of the next region become available. As a

business wants to maintain a 24 � 7 � 365 infrastructure, grid computing enables

business units to “follow the sun across the globe” with a smooth transition of ser-

vice, from a customer perspective, as responsibilities shifts from the U.S. East Coast

to the U.S. West Coast to Asia, to Europe and back to the U.S. East Coast, for

example. In addition, where there are overlaps on time zones between geographic

regions (e.g., New York and Chicago), day processing or load processing during

heavy usage periods in New York could leverage Chicago’s, which could leverage

Denver’s compute environments, and so on (see Figure 16.4, on grid infrastructure

spanning geographic regions).

Primary
service node

Redundant
service nodes

Application
data region

Data grid plane

HA service state
data region

Compute grid
plane

Figure 16.3. Data grid and high availability.
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GENERAL ARCHITECTURE

Applying traditional technology and methodology to solve the use cases described

above would yield custom solutions that would vary greatly from one use case to

another. Also, within each use case, one implementation can be vastly different

from the others. I will illustrate what the data grid offers as a common architecture

that addresses each use case with specific customizations to match the specificities

of each business requirement.

I will start by assuming that the base architecture of a data grid is consistent

across all use cases. For geographic boundary problems, the variances factor to con-

sider is in the network bandwidth both within and between data regions. This will

directly affect the various data management policies for synchronization and trans-

action as well as some design chrematistics with respect to data granularity.

Like a close-up camera shot panning back so to see the panorama, we start with a

close-up of the general architecture and expand the view back to a higher level, redu-

cing what was once detail to larger functional boxes. Panning back even further, the

boxes represent geographic regions until the entire global grid infrastructure is

revealed. Whether it is a geographic region such as a city or simply a group of build-

ings within a city, each have their own grid infrastructure. As the scope expands to

include multiple regions, larger data grid infrastructure forms, connecting regions

Figure 16.4. Grid infrastructure spanning geographic regions.
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with each other across the wide-area network. The global grid infrastructure now

encompasses each of those regions as seamlessly as encompasses the infrastructure

within a single region. Figure 16.4 illustrates this concept.

When it comes to data management within a grid environment that spans differ-

ent geographic regions, you have to factor in the following parameters:

. Available network bandwidth

. Application chrematistics

. Application data requirements

The data grid must supply the proper data management tools to allow effective

and efficient sharing and movement of data between the regions, across a pipe

such as a WAN that may not have the bandwidth you have at your local backplane

and in the blade center.

Proper analysis of the application and its data requirements is essential to defining

and configuring the data regions and how to best bundle and synchronize the data

between the data regions. This data synchronization needs to be performed in

such a way that is efficient and workable to enable the application to span the

data regions. This will involve the definition of data granularity within the appli-

cation. Data granularity is the packaging of data to its most fundamental element.

For example, within a high-bandwidth backplane it’s very reasonable to have a

very fine granular view of the application data, down to the most basic data elements

of an integer, float, or byte. However, if your application does not have a high-speed

backplane, it will not be worthwhile to try to move and synchronize data in such

small grains. Therefore, it becomes necessary to have a more coarse data granularity

for movement and synchronization across a slower bandwidth to ensure that the

application will meet the business requirements. Figure 16.5 illustrates the data

view as associated with the regions and various applications.

In addition, Figure 16.5 also illustrates the data regions from the logical and phys-

ical prospectives. The data regions are logical groupings of data, which is visualized

as a cloud in the diagram. As time passes, these clouds move across the sky or the

data grid and assume new shapes. Similarly, data regions will change shape as the

business requires and the usage dictates. These clouds may physically span multiple

data centers, and the shape of the data region may expand and contract throughout

the day depending on data needs spanning across one or more data centers. The data

management facility must provide the proper tools to permit data region shaping and

manage data availability to match the physical demands imposed by the business.

DATA GRID ANALYSIS

Even though the general architecture for the geographic boundary use cases is simi-

lar, most of the application definition expressions and data management policies

are very application-specific and thus cannot be expressed as one set of general

expressions. The most general settings to span the data regions across the WANs
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are presented below. Therefore, it is left to the reader as an exercise to architect in

each use case the variations in definition and policy expressions.

There are many ways to express the applications and data management policies for

the geographic boundary use cases. Some possible scenarios are one business data

region spanning the geographic space that addresses data affinity. Data affinity is

addressed through data distribution and replication policies to ensure that data

atoms are sufficiently represented across the entire region. Additional scenarios include

. Moving data atoms across the geography only on being requested to do so

without any considerations for data affinity

. Combination of data affinity for data atoms that are often used across geography

leveraging data distribution and replication policies with an as-requested data
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distribution and replication policy for data atoms that rarely span the geography

of the region.

A separate option is to establish “local” data regions for each geography with a

series of “bridging regions” that span or connect the local regions to form one large

region that spans the global geography space. This bridging region simply holds the

data atoms that need to be synchronized across the geography, thus allowing each

local region to have specific data management policies to maximize performance

and data affinity specific to its local usage patterns.

As can be seen, the possibilities are numerous and need to take into account the

physical limitations of the network, business requirements, data set analysis, and

the resulting data atom granularity, among many other factors. The performance

requirement for both local and global usage also needs to be considered. Since

the parameters are too great and the scope is too broad, and without specific appli-

cation requirements, the expressions for the various data policies are too difficult to

represent in general terms. Specifically, the Data( ) expression is so dependent on all

the parameters mentioned above that it cannot be defined at this stage. The following

expressions and policies assume a single data region supporting a business unit that

spans the geographic boundary expressed as an example:

. The Application Definition Equation for a Distributed Environment. This

equation can be expressed as follows:

GeoBoundaryProcess

Work(atomic,nonsynchronous),

Data( ),

Time(near-Real-Time),

Geography(WAN),

Query(Basic)

0
BBBB@

1
CCCCA

. The Data Management Policies. The data distribution and replication policies

ensure that the data atoms are sufficiently robust across the entire region to

maximize data affinity within a geographic space of a data region and are

expressed as follows:

DataDistributionPolicy¼DDP

GeoBoundary_DDP,

GBRegion,

Scope(ALL),

Pattern Automatic,Random

DWDDPPattern,

WhiteNoise( ),

NULL,

NULL,

NULL,

NULL

0
BBBBBB@

1
CCCCCCA

0
BBBBBB@

1
CCCCCCA

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
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The Data Replication Policy shows a slightly high number of replicas per data

atom since the data must span geographic boundaries.

DataReplicationPolicy¼DRP

GeoBoundary_DRP,

GBRegion,

12,

Scope(ALL)

0
BBB@

1
CCCA

SynchronizationPolicy¼ SP

GeoBoundary_SP,

GBRegion,

Scope(Boundary(“inter”),NULL),

Transactionality(“nontransactional”),

LoadStore(NULL,NULL),

Events(NULL)

0
BBBBBBBB@

1
CCCCCCCCA

EventNotificationPolicy¼N=A

DataLoadPolicy¼N=A

DataStorePolicy¼N=A

The QoS–application requirement quadrant graph in Figure 16.6 shows appli-

cation characteristics that are nontransactional but large in size and complex in

data analysis.

BENEFITS AND DATA GRID SPECIFICS

The application of the grid to resolve geographic boundary problems is manyfold.

Here I touched on some simple and powerful examples of geographic boundary pro-

blems that the grid directly addresses and resolves efficiently. In the following para-

graphs I will discuss both the business and technical benefits of the geographic

independence of data access in a reasonable near-real-time paradigm.

The business benefits of geographically dispersed business units are many. Evalu-

ation at each use case yields its own unique benefits. Examples are the ability to take

a single business unit and disperse the people across geographic boundaries and to

have people in one city seamlessly coordinate and interact with their colleagues in

another city or even other countries. A scenario in which geographically disperse

or “distributed” individuals work on the same data allows for an efficient use of

skill sets, providing workforce redundancy and business resilience; it allows the

best available resources working and coordinating to achieve a common task. The

result yields a high utilization of resources best fit for the task, time efficiency,

and a high-quality product or service based on a very cost-effective basis.

The use case of “following the sun” includes the ability to provide a wider range

of service for your clients by expanding the time window of service without having
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to maintain the second or even third shift of people working through the night. The

data grid enables seamless accesses to data independent of geography, thus yielding

the ability to smoothly and effectively pass the baton from one group of people

located in one place to another group of people in another time zone in an efficient

and cost-effective manner.

The use case for “application migration” or the migration from one version of the

application to another is also a good example. Typically these rollout operations have

to occur during system downtime, such as overnight or on weekends. This results in

. Time constraints to when rollouts can be done

. Limited frequency of new features into a production environment

. Additional pressure on the staff (from users, to developers, to administrators)

. Overhead to the rollout process

. Higher risk in production since the QA environment might be limited in

capability
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Figure 16.6. Geographic boundary.
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Tasks have to be scheduled and cutoff periods have to be monitored and coordi-

nated among many groups within an organization, sometimes on a local basis and

other times on a global one. Should a rollout not occur successfully by a certain

time, then everything needs to be rolled back to the original systems and software,

which also is not easy, depending on the rollback plans.

The use of a data grid allows for application and system rollouts to occur in par-

allel. The migration from one version of release to another can be done during

business hours, allowing for the ability to test against production data and to be

able to release into production flawlessly, eliminating the need to wait for downtime

before such rollout events can occur. This allows organizations to better leverage

their staff and eliminates the long hours and overtime costs associated with

having the staff working extended hours during the rollout period.

In the “high availability” (HA) use case, the more bulletproof a service needs to

be, the greater the need for the level of fault tolerance within systems to be directly

related to the financial cost in service, hardware, and network. For example, in a

Unix environment, levels of fault tolerance are achieved through HA software.

HA is a means to switch from a failed service to its replacement in a relatively

short time, typically minutes. Problems arise when a failover takes longer than

the “reasonable” time window expected for the service or if the failure does not suc-

cessfully recover. In the latter case, there is no quick or immediate solution. In typi-

cal situations the recovery time is several minutes, but in the few rare occasions the

recovery time for the service could take hours.

The use of a data grid to span primary and redundant systems and having user

groups access its business data through the data grid brings high availability

closer to the higher levels of fault tolerance that can be achieved only through an

extensive hardware–software approach. High availability with the data grid

allows for more resiliencies in your systems and operations, and better support for

your business at a very reasonable cost structure.
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17
COMMAND AND CONTROL

PROBLEM DESCRIPTION

Command and control is the classic feedback control loop that is seen in most engin-

eering applications. A feedback control loop is a continuous process of state

measurements, analysis, decisions, and commands in an effort to change the state

of the system. Typically the goal of the analysis and commands is to keep the

system in a stable, well-known state commonly referred to as a “steady state.”

I will discuss two basic applications that share one common characteristic; the

systems consist of many devices (e.g., computers, sensors) with the requirement

to collect information from the dispersed devices and perform an analysis on the col-

lected information. Command-and-control loops continue the process of immedi-

ately processing and analyzing the data, with the resulting adjustment of the

system state as the final outcome. Figure 17.1 illustrates this state management

process for the command-and-control loop function.

We can consider a subset of command-and-control loops to exist when the

control commands of the feedback loop are not needed. Monitoring weather, for

example, utilizes a vast network of sensors, weather stations, and other facilities.

The information from the sensors is recording weather conditions for analysis.

The speed with which the data are collected and analyzed has a direct impact on

the required actions that need to be taken depending on the final results. However,

in some cases the resulting actions may not necessarily be to issue a command back

to the sensors but rather to issue a storm warning to the public.
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In the following discussions, the terms sensor, device, and computer are used

interchangeably.

SOLUTION ARCHITECTURE

There are two possible architecture implementations for the command-and-control

(command/control) loops that will be discussed and compared. In the first case,

I will analyze the process where there is no data grid and then expand to the use

of the data grid in the second case. The procedural steps in command/control
loops are independent of the implementation, therefore enabling a direct comparison

to the efficiency gained by using a data grid. The procedural steps normally outlined

for the command/control loops are as follows:

1. Collection of data from the remote devices

2. Preparing the data for analysis, formatting, and inserting the data into storage

3. Analysis of the data

4. Decision process with input from the analysis process

5. Formulation of commands supporting the decisions of step 4
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Figure 17.1. Command-and-control loop flow.
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6. Issuing of commands

7. Delivery of commands out to the respective remote sensors

8. Repetition of the process, thus looping back to step 1

Command and Control Without a Data Grid

In step 1 as identified above, the collection of data from the sensors is always a good

place to start. In a homogeneous sensor environment, the sensors are supplied by the

same manufacturer or have a standard interface on which all manufacturers agreed.

Therefore the data collection processes are uniform. However, in the more realistic

scenario the sensor environment is heterogeneous and for each sensor type, manu-

facturer, and interface there are multiple sensor interfaces and data collection

processes. The sensor collects data that need to be shared with other parts of the

system for processing. To extract the data, one must know how to physically connect

to the sensor, understand its communication protocol, and understand its data

format. With this information and the knowledge of the larger systems networking

characteristics, “adapters” must be created to collect the data from the sensor and

deliver them to a common storage for analysis. Conversely, this same process

must be done in reverse in order to send commands (if necessary) back to the sen-

sors. Most likely, the input data process to the sensor will be different from its output

process. For the purposes of simplifying this discussion, the physical connectivity

for input data is the same for output sensor data. However, there could be a separate

protocol and data format for the input process and data stream. Keep in mind that

. Data are moved from one system to another; the message that is transported

over the network must be marshaled before transmission and then unmarshaled

on receipt.

. In a heterogeneous environment, the input/output data process must be dupli-

cated for each different sensor type, manufacturer, and interface.

Once the sensor connectivity is established, the collected data must be stored

somewhere on their receipt. For example, the storage facility can be a file system,

database, or even the memory space of the analysis process itself. Odds are that

the data format from the sensor will not be the same as the input data format required

by the analysis process. Therefore a level of data translation must take place. If the

data are to first be placed in a file system or database for later retrieval by the analy-

sis process, then it is safe to assume that the data representation of the storage

medium is different from that of the analysis process. Therefore the sensor data

must go through two data translation processes: sensor to file and file to analysis.

As the process continues, one can see the large number of required data transform-

ations that take place. Figure 17.2 shows this process without the use of the data grid.

In Figure 17.2, the triangles represent the sensors that interface to the data collec-

tion process and command distribution process. Once the data are collected and

stored, the analysis process begins, followed by the decision and finally the
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formulation of the command. The command is than sent out to the external sensor

environment. Physically, the command/control loop system may be a single

system that we are representing as three logical components. Analysis is performed

directly against stored data. The analysis process extracts the input data from the

data store and performs its operations with the resulting output feeding the decision

process. Commands are then issued through a communication mechanism specific to

the topology of the underlying communications network of the command center and

the sensors. The process of issuing the commands to each individual sensor is similar

to the one described for the data collection, which involves connectivity, protocol,

marshaling and unmarshaling, and data format translations.

Command and Control with a Data Grid

Applying the same system as described above, the data grid architecture simplifies the

process, eliminating the number of “moving parts.” The data grid encompasses the

sensors and the command center where the analysis/decision/command process

occurs. The sensors place or put their data directly into the data grid, therefore

making them immediately available to the analysis process, completely bypassing

the storage step and many of the data translation steps required without the data

grid as described in the other scenario. In addition, the data grid can also serve as

the storage medium, unless the raw sensor data need to be persisted in a database

for long-term or future reanalysis. Should long-term persistence be required, the

data grid can assume the responsibility of persisting the data to the proper storage

device (e.g., file, database), a process independent of the analysis and command paths.

The result is the elimination of the multistep process of collection, local store,

packaging, download, unpackaging, storing, and finally reading into the analysis

programs with a single step of “writing to a data grid.” The issuing of commands
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(feedback control loop)

Storage Analysis Decision Commands

Data collection
Command
distribution
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Figure 17.2. Command-and-control loop without a data grid.
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can also be done via the data grid. Commands can be put into an area of the data

grid from which the remote sensors can read. Again, taking the diagram of the

command/control loops as represented in Figure 17.2 and architecting with the

data grid results in the scheme shown in Figure 17.3.

Observations and Comparisons

The key points of differentiation between the data grid and non-data-grid implemen-

tations are data collection, translation, availability, and finally connectivity for trans-

port of information to and from the sensors. Now the workflow process is simplified

to the schematic representation in Figure 17.4, with the data grid as an integral part

of the system.
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Figure 17.3. Command and control with a data grid.
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Without a data grid, the solution is highly customized and an artistic process. The

variable parameters of the process are sensor type, location, data collection and

storage at the sensor, and connectivity to the rest of the network. For example, if

the sensor is a Unix computer and you are interested in its operational state, then

the information in the “syslog file” is of value. Data collection for these data can

be via a customized protocol or a well-known one such as a FTP. This is a non-

real-time batch process where data are accumulated and periodically downloaded

to a central repository.

Issuing of commands back to the sensors is a separate process but can leverage

similar methods used in data collection. For example, the command files are

FTPed so as to be read by the sensor; or command messages may be passed via a

networked messaging or queuing protocol. The point is that these are all customized

methods of collecting and issuing commands between sensors and the control center

and are usually nonstandardized.

A side-by-side comparison of data grid versus non-data-grid implementations of

command/control loops shows that there is an elimination of the complex moving

parts once the data grid is architected in the solution. Thus, there is an increased effi-

ciency since the time is drastically reduced from the point that data are available

from the sensors for analysis. Table 17.1 identifies the various components that

are needed in the two scenarios:

DATA GRID ANALYSIS

I will make some assumptions regarding the topology of the command/control
system that we will analyze as part of this exercise. The complete sensor community

is large in number and distributed across large geographic areas. At each location

there is only one or a small number of collection sensors. The sensors are hetero-

geneous in nature as outlined in the earlier discussion in this chapter. The data

atom size for sensor input and output is small in size, let us say on the order of

TABLE 17.1. Points of Comparison Between Data Grid and Non-Data-Grid

Implementations

Point of

comparison Procedure steps

Non-data grid

implementation

Data grid

implementation

Collection Collect data Yes Yes

Translate data Yes Yes

Transport data to central store Yes N/A
Translate data for database Yes N/A
Store in database Yes N/A

Analysis Analyze Yes Yes

Decision Yes Yes

Command Store Yes Yes

Forward Yes N/A
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100 bits, and the data transfer intervals are on the order of minutes. However, this is

just one part of the system processing requirements. The second part revolves

around the data analysis and the command process. Even though each sensor pro-

duces a small amount of data per update, the sensors are large in number and the

total sum of the data that needs to be analyzed, in sum, is quite large. The analysis

process can be quite complex, thus making it very similar to the data mining and data

warehouse use case as highlighted in earlier chapters. In this situation, the data col-

lection aspects of the system are very similar to those of the geographic boundary

use case of Chapter 16. Both are presented below with some customization for

the particular case at hand, command/control loops.
The previous example for the data warehouse and OLAP analysis is as follows:

. Application Definition Equation for the Distributed Environment

OLAPProcess

Work( ),

Data_ output( ), Data_ S1( ), . . .Data_ Sn( ),
Time( ),

Geography( ),

Query( )

0
BBBB@

1
CCCCA

where

Work(atomic, nonsynchronous)

The output data surfaces are smaller for the command/control loops in com-

parison to the data surfaces that will be analyzed from the data warehouse.

Data_ output(‘‘x” kbits,‘‘y” bits, transactional, nontransient, queryable)

Data_ S1(‘‘z” Tbits,‘‘k”Mbits, nontransactional, transient, queryable)

Data_ Sn(‘‘z” Tbits,‘‘k”Mbits, nontransactional, transient, queryable)

The ability to run complex analysis over large data sets in short periods of time

provides the command/control process with a better view into the system state,

demands on the system, including its current state, and its ability to meet the

demands. Armed with better and in-depth quality views, the command/control
process can target specific “in-time” adjustments to the system to meet

the demands placed on it. This command/control OLAP process is to run in

the confines of a single data center, and the applications requirement to analyze

(complex queries) any of the data sets is not essential to the business.

Time(Near-Real-Time)

Geography(DataCenter, 1GbitEthernet)

Query(complex)
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. Data Management Policies

DataDistributionPolicy ¼ DDP

DataWarehouse_DDP,

DWRegion,

Scope(ALL),

Pattern Automatic, Random

DWDDPPattern,

WhiteNoise( ),

NULL,

NULL,

NULL,

NULL

0
BBBBBB@

1
CCCCCCA

0
BBBBBB@

1
CCCCCCA

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

The data replication policy shows a lower number of replicas per data atom

as the overall size of the data in the data grid is quite large. Each replica

increases the overall storage capacity of the data grid by the size of the data

loaded from the data warehouse. The downside to a lower replication size

per data atom is resilience of the data in case of a failure. These tradeoffs

must be considered in each use case and architecture variation.

DataReplicationPolicy ¼ DRP

DataWarehouse_DRP,

DWRegion,

3,

Scope(ALL)

0
BB@

1
CCA

SynchronizationPolicy ¼ SP

DataWarehouse_ SP,

DWRegion,

Scope(Boundary(‘‘intra” ), NULL),

Transactionality(‘‘nontransactional” ),

LoadStore(List(‘‘DataWarehouse_DLP” ), NULL),

Events(NULL)

0
BBBBBB@

1
CCCCCCA

Use of events to coordinate data consistency between the command/control
loops and the data grid are managed via events or triggers from within the

data grid to or from the sensors. This assumes that the EII functions of the

system remain as part of the command/control loops. Should one choose to

transfer the EII responsibility from the command/control loops to the data

grid, then the data grid event notification policies will need to be established

to maintain data consistency.

EventNotificationPolicy ¼ N=A

The data load policy is required in this use case, and if the implementation

offers the business application, the data grid as the medium to data loads and

data pushes to the sensors. Then the data load policy will manage the sensors’
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interface of extract and load result sets into the data grid.

DataLoadPolicy ¼ DLP

DataWarehouse_DLP,

MCRegion,

Granularity(Grouping(1), N=A),

DataWarehouseAdapter( )

0
BB@

1
CCA

DataStorePolicy ¼ N=A

Geographic boundary analysis may be applied to the command-and-control loops:

. Application Definition Equation for a Distributed Environment

GeoBoundaryProcess

Work(atomic, nonsynchronus),

Data(MultiGbits,100bits, nontransactional,

transient, queryable),

Time(near-Real-Time),

Geography(WAN),

Query(Basic)

0
BBBBBB@

1
CCCCCCA

. Data Management Policies. The data distribution and replication policies for

this scenario may need to be a manual pattern as opposed to an automatic

one. While each sensor is a node in the data grid, it is safe to assume that it

will not be available to contribute storage capacity to the data grid, thus elim-

inating it as a possible data replication and distribution node for other sensor

data. However, for this analysis, we will use the same white noise distribution

policy as before. It is left to the reader as an exercise to determine the physical

and behavioral characteristics of the overall system and to create a distribution

pattern to meet the specific requirements:

DataDistributionPolicy ¼ DDP

GeoBoundary_DDP,

GBRegion,

Scope(ALL),

Pattern Automatic, Random

DWDDPPattern,

WhiteNoise( ),

NULL,

NULL,

NULL,

NULL

0
BBBBBBBB@

1
CCCCCCCCA

0
BBBBBBBB@

1
CCCCCCCCA

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

The data replication policy for the commandcontrol loops as illustrated above

shows a low number of replicas per data atom in order to meet the assumptions
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made in the data distribution policy expression:

DataReplicationPolicy¼DRP

GeoBoundary_DRP,

GBRegion,

3,

Scope(ALL)

0
BBBBB@

1
CCCCCA

SynchronizationPolicy¼ SP

GeoBoundary_SP,

GBRegion,

Scope(Boundary(‘‘inter”),NULL),

Transactionality(‘‘nontransactional”),

LoadStore
List(‘‘DLP_SensorTypeA” , . . . ),

List(‘‘DSP_SensorTypeA” , . . . )

 !
,

Events(List(‘‘ENP_SensorTypeA”, . . . ))

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

Event notification may not be necessary in this application for data gathering;

however, it will prove valuable to notify nodes that there are commands waiting

for them to be read in and acted on:

EventNotificationPolicy¼ ENP

ENP_SensorTypeA,

GBRegion,

Scope(‘‘All”),

SensorCommandFunction( )

0
BBB@

1
CCCA

Similar load policies are needed for each sensor type. Only one example is illus-

trated below for all the possible types of sensors:

DataLoadPolicy¼DLP

DLP_SensorTypeA,

GBRegion,

Granularity(Grouping(1),10000),

Adapter(‘‘SensorA-OutputAdapter”)

0
BBB@

1
CCCA
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Similar store policies are needed for each sensor type. Only one is illustrated

below for the possible types of sensors:

DataStorePolicy¼DSP

DSP_SensorTypeA,

GBRegion,

Granularity(Grouping(1),10000),

Operation(‘‘store”),
Adapter(‘‘SensorA-InputAdapter”)

0
BBBB@

1
CCCCA

. Qos–Application Requirement Quadrant Graph. As can be seen from

Figure 17.5, the command-and-control loop falls into a level 1 zone and is

atomic in nature.
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Figure 17.5. Command and control.
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APPLICATION SPINOFFS

Command and control plays a key role in a compute utility service. In order for a

computer utility service to be effective, the state of the service must meet the

supply-and-demand curves of the user community. As the need for the computer ser-

vices increases, the utility has to be able to adjust to the demand requests by chan-

ging its profile; thus, reallocation of the physical resources is necessary. This implies

that information describing the state of the utility service including user demands is

monitored on a real-time or near-real-time basis. Analysis must be done on this

information and commands must be issued back to the utility service for it to

change its state in a timely fashion in order to meet the demand on the system at

that point in time.

Should the change in state of the utility service lag behind the demand, the utility

service will be put into a state that does not meet the demand of the user community.

If this happens repeatedly, the utility service will move out of a steady-state

condition to one that adversely affects its quality of service to the customer.

A second example is the collection of information from remote devices, where

the analysis needs to be performed in real time. However, no commands are

issued back to the system to change its state; instead the results that have been

analyzed are used elsewhere, for example, by another external system. Weather

monitoring entails the ability to collect data from remote weather stations, analyze

the raw data in near real time, and have the results available to people or other com-

puter systems to generate weather alerts such as tornado and hurricane warnings.
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18
WEB SERVICE’S ROLE IN THE
SOA/SONA EVOLUTION

DEFINITION OF WEB SERVICES

Web Services is changing how businesses and customers interact. Through the use

of common protocols and standards developed as a direct result of the Internet boom

of the late 1990s, businesses can package internally used siloed business appli-

cations as a service available over the network (Web Services), making them avail-

able to their customers. A common conception is that “Web Services” is an

“Internet”-only-based delivery. One must keep in mind that the Internet is a net-

work; fundamentally the same base networking technology used in the public “Inter-

net” is also used for private and internal networks. Many of the standards that define

Web Services, such as XML, are not “Internet”-exclusive technologies. They are

generic methods, XML specifically, that describe data (messages and state) of a ser-

vice that can be used by any other system. The same “Internet Web Services” deliv-

ery protocols apply equally to private and internal networks. The changing force

potential of Web Services determines how businesses interact with all customers,

internal and external alike without any distinction.

The impact of Web Service technology on how information technology (IT)

organizations operate is vast. For Web Services, allowing disparate systems to

interact with each other by leveling the playing fields of protocol and data

sharing therefore minimizes if not totally eliminates the human interaction that is

required for many traditional (non–Web Services) system integration efforts. The

“business–customer interaction radial effect of Web Services” (see Figure 18.1)

encompasses intra- and interorganization business service offering for consumer
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service consumption. This is a “geographically independent” boundary of

producer–consumer service relationship.

More and more buzzwords are seeping into our discussions, and it is time to step

back and level the field of regarding we mean by producers and consumers when

talking about service-oriented architectures (SOA) and Web Services. The produ-

cers of a service are those who manufacture the service and offer it for consumption

or sale to others. It is the “who,” the consumer of a service, that has a broad impact.

If you are like me, the term “consumer” brings the image of someone purchasing a

good such as groceries, clothing, telecommunications, or electricity. However, in the

scope of Web Services, the consumer extends beyond the public market to encom-

pass any person or group of people interacting within a business or businesses or

Business–customer interaction
radial effect of Web Services

is both
geographically and consumer group–

independent

Figure 18.1. Business–customer interaction radial effect of Web Services.
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with other businesses. This creates a new business interaction leading to new

business opportunities and efficiencies not achievable otherwise.

I have provided two definitions for “Web Services” from leading organizations

that are helping to shape the Web Services landscape:

1. The first is fromW3C, The World Wide Web Consortium (www.w3.org). The

W3C charter promotes evolution of the World Wide Web by developing common

protocols (there are over 450 members of the W3C). The following excerpt is

from W3C Working Draft 8, August 2003 (http://www.w3.org/TR/2003/
WD-ws-arch-20030808/), Web Services Architecture, Section 1.5—“What is a

Web Service”:

A Web service is a software system designed to support interoperable machine-to-

machine interaction over a network. It has an interface described in a machine-

processable format (specifically WSDL). Other systems interact with the Web service

in a manner prescribed by its description using SOAP-messages, typically conveyed

using HTTP with an XML serialization in conjunction with other Web-related

standards.

2. The second definition for Web Services is from: Dr. Bob Sutor, Director of

Web Services Strategy, IBM, The Definition of Web Services, (source: Search-

WebServices.com; available online at http://searchwebservices.techtarget.com/
originalContent/0,289142,sid26_gci874060,00.html).

Web services provides standards for an electronic envelop, a language for describing

how you talk to a service and what it says back, plus techniques for publishing and

discovering these descriptions.

Now with our new understanding of what Web Services means to different people

and how organizations and standards influence our thoughts, it will become evident

that SOA consists of Web Services, the compute utility, as well as the command and

control scenarios presented here.

DESCRIPTION

Real-life businesses are a connection of processes, from manufacturing, sales, deliv-

ery, and payment as examples. An event in any one part of this chain has major

repercussion on the other events. Corporate business units in partnership with IT

organizations are leveraging technology and its associated methodologies of dis-

tributed computing to create information systems that meet the business demand.

Distributed computing is the transformation of manual, or silo-based processing

of information into cohesive real-time information sharing of event-driven enterpri-

sewide systems.

Methods to address information sharing between disparate systems start with file

sharing or pipe (or sockets) communication protocols to establish connections
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between systems (in much the same way as we use telephones). The communication

can leverage message queues, through the advent of “middleware” technology such

as CORBA or messaging for the encapsulation of enterprisewide components and

services. Figure 18.2 is a timeline showing the evolution of client/server communi-

cation to today’s grid and Web Services.

The evolution of distributed computing continues as the encapsulation of services

extends to the corporate infrastructure that delivers “business” services. For each

new application a family of new hardware, software packages (i.e., databases),

administrative policy and procedure, and human resources must accompany it.

The next generation of distributed computing products and methodologies extract

the physical process and the administrative layers of the applications into an enter-

prise service. This new area of distributed computing creates grid services (which

consists of compute and data grids) in support of Web Services for the delivery

of business services.

In other sections of this book we discuss the practical application of the data grid,

for example, the feedback control loops and the compute utility service. These kinds

of processes collectively constitute some of the key components that make up Web

Services and the SONA architectures. For such services, flexible, fungible, and scal-

able infrastructures are essential.

DATA MANAGEMENT: THE KEYSTONE TO WEB SERVICES

Web Services brings together various software components, each individually built

to deliver some level of service to the business, in such a way as to extend those ser-

vices for a broader purpose and to a broader audience. This implies an infrasturcute

that allows these components to interact and share information and provide process

management, and requires a flexible underlying physical layer capable of provision-

ing its resources to meet the service demands. Key to most, if not all, aspects of deli-

vering Web Services is the data. Some points regarding Web Services and its data

are as follows:

. Web Services is close to the business, where business process implies business

state; thus state means data.

Distributed computing evolution 

File sharing CORBA Data translation

Data queues Publish/Subscribe Smart routing

Middleware

Pipes/sockets Clusters Data grids Utility service 

Grid computingClient/server

Figure 18.2. Distributed computing evolution.
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. Since Web Service components interact with each other, they require data

sharing.

. Components interacting with each other require a broader level of process

management, which means the management of state, which again implies data.

. To deliver Web Services to broader audiences, flexible and fungible infra-

structures are required. The goal of a compute utility is to become such an

infrastructure through the collection of metered (state) data from all the

nodes that make up the utility, therefore describing the complete state of the

utility.

The common theme is that the closer one gets to the business, the more

important data become, not just to the business application itself but also to the

means of delivering the data to the application. Here we talk about data require-

ments as state management. Therefore state management is associated with two

aspects: (1) the internal state of the business application being delivered as a

Web service to the user community and (2) the state of the mechanisms

needed to successfully deliver the Web Service. Figure 18.3 highlights the inter-

action of Web Services with business processes, state management, and the data

management or data grid.

The compute utility service enables business compontents to be delivered any-

where on the network. With the data grid as an integral part of the utility, it also pro-

vides the means to deliver state management for the Web Services components as

well as the process and infrastructure management. Figure 18.4 illustrates the

relationship between the grid utility service and Web Services.

Web Services Business
processes s1 s3

s2

State

Delivers Requires

Re
qu

ire
s

Data management
Data grid plane 

Figure 18.3. Business service, state management, and the data grid.
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WEB SERVICES, GRID INFRASTRUCTURES, AND SONA

It is always beneficial to understand our own history so that we can see clearly where

we need to head. Web Services, the grid, and service-oriented network architecture

(SONA) are instances of importance of the past that lead us into the future. We will

see that the direction of information technology closely parallels the evolution of

other point-to-point services that have transformed the services into commodities

such as telecommunications and electricity.

The Undiscovered Past

We all know about Moore’s law and the fact that the Internet was created by

Dr. Metcalfe but not how the Internet evolved from the works of the brilliant scien-

tists and mathematicians of the twentieth century. It was not until authoring

this book that I, too, came to appreciate the facts about the commoditization of

information services into the consumer marketplace. All of us currently building

our careers in information technology, like the seasoned veterans and students,

should spend some time studying our rich history so that when we go to apply the

Weiner process we can appreciate the beauty of our IT mosaic and the woven

foundation on which it was built.

We will also see that the same fundamental laws and principles that has evolved

the computing technology since the mid-1940s is just as relevant in moving us into

the mid-2060s, including. Shannon’s communication theory, the operational

research and control processes of Weiner, Amdahl’s law of locality of reference,

Moore’s law driving the cost of the CPU to zero, and Metcalfe’s law of increased

value of the total number of users. John Narghton’s book, A Brief History of the

Future,6 does an excellent job in reminding us of just how we have arrived here.

Below is just a brief look into the building blocks of the technological and communi-

cations evolution that we have experienced since the mid-1940s or so.

From the 1930s to today we have seen a series of progressive transition in the

digitalization of data. The increasing power of the computer (i.e., Moore’s law)

has led to an even larger increase in the pervasiveness of information technology

in our everyday lives. Access to information that was once limited is now almost

transparent, creating a cycle of information creation and consumption and in

Web ServicesGrid utility service

Data grid plane 

Compute grid plane

Required to support

Figure 18.4. Grid utility service as a requirement for Web Services.
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some cases information overload, causing the value of the system to increase at

exponential rates (Metcalfe’s law). In the 1920s and 1930s computation power

was limited as well as expensive; for example, telecommunication service was a

manual point-to-point connection with a human switchboard establishing the phys-

ical circuit connection between two parties. During the 1950s and 1960s, as compu-

tation power increased and became more readily available, coupled with new areas

of research such as operations research (a branch of applied math developed by

scientists such as Norbert Weiner) and agents (an entity that has been empowered

to make decisions on behalf of another entity), circuit switching emerged. After

that, circuit switching, packet switching, and the Internet emerged in the 1970s.

In the discussions later in this chapter it is important to understand the mechanics

of the Internet. Thus the following points need to be highlighted:

. Switching. Switching is a signal that triggers the policy decisions that are

required to commit resources to the connection. In this context, the term

“agent” refers to the transmitting/receiving device—these, along with the

switching infrastructure that is delegated decision making authority in terms

of resource scheduling and prioritization. In computer-based communication,

these transmitting/receiving devices are software-based; producing or consum-

ing messages. These software agents may be realized as either a process or a

component running on a thread in that process.

. The Layers of the Internet. The Internet is a layered architecture that inherited

characteristics of Selfridge’s “daemon” and OSI’s reference model. The Inter-

net protocol suite consists of four layers: application, transport, Internet, and

data link. In the Internet architecture, these functions were purposely deferred

to the application. This boundary is enforced via the “Berkeley socket API.”

Applications specify the configuration of port, host, transport, and so on via

this API. The session layer (OSI’s fifth layer) resides above the transport

layer and is subsumed either by the application or the Internet’s other three

layers.

. Destination Addressing. Destination addressing is described by an IP address

by either the destination’s daemon process or the application service. The

address also includes the use of a specific port number. Together, the IP address

and the port number are analogous to a telephone number (another vast utility

network).

In the 1980s and 1990s we saw an emergence of ad hoc “middleware” that started

to form the initial concept of delivering a “service,” but only to those producers and

consumers who subscribed to the specific middleware’s internal infrastructure.

(Note: this progression of information technology also saw a progression of pro-

fessional titles from applied mathematician, to system analyst, to system model

architect.)

In the late 1990s the Internet craze left in its wake HTTP and XML as represented

by DTDs and the likes of “Web Services.” Web Services can be defined as the
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externalization of the service independent of its internal representation. At the same

time, we saw the emergence of “grid computing,” which is an evolution in distrib-

uted computing that virtualizes the physical computer and how it manages its

resource and task processing. Together, grid computing, forming the “compute

utility,” andWeb Services, externalizing the production and consumption of services,

form the bridge necessary for us to cross the chasm from siloed business applications

and data centers to a market-driven economy of supply and demand of IT services.

The SONA Model

The general problem of connecting consumers and suppliers of a product or service

is one of logistics. The observation is that the logical connection between a consu-

mer and supplier is point to point. In practice, a point-to-point connection does not

scale, as the number of conusmers increases the complexity of managing and the

associated costs to deliver the service increases. This does not allow for an efficient

market for supply and demand. Considering how any commidity that is delivered

over a logistical transport, (roads, telephone communication, energy, etc.), the

supply of the product or service goes from multiple sources to some consumption

field. This proven method of product/service delivery, connecting customer to sup-

plier, increases the availability to better meet the demand, lowering the price and

thus improving the efficiency of the market. See my discussion of supply and

demand economics in Chapter 3.

In the world of computing, looking back to the 1950s and 1960s, the application

was pointed toward distributed computing; the network layer was constrained

primarily by the CPU. The cost of the CPU was high; therefore a limited amount

of computation was available for data switching. This has been the case until rela-

tively recently. The application of Moore’s law has brought the cost of CPU mips

(millions of instructions per second) to near zero in relation to the costs of the soft-

ware and data movement across a network. Therefore, with the cost of computation

near zero and the cost of data high, why not migrate the computation to data rather

than data to computation. In effect, this would entail a shift back toward a centra-

lized data center. The problem is that a point-to-point connection as implied by a

physical centralized data center will not scale in today’s Internet. Enter the data

grid. The data grid, in essence, provides the virtual data center. The data grid

today is about locational services and replication, how to move data effectively

and efficiently, and how to find the best place to run a computation. This is similar

to packet switching of the 1960s and 1970s. With packet switching, the intent is to

move packets of data (scheduling of packets to an IP address) rather than today’s

data grid, which moves large amounts of data.

The key to any switching layer is source and destination, creating any number of

paths and optimizing on the shortest path. Creating a virtual circuit of source and

destination allows for choices and flexibility as to where data are serviced, thus

requiring a service to locate data as well as a service to replicate data so as to put

data proactively out near the consumption. The same is true for the data grid in creat-

ing a virtual data center; the data grid allows for data location independence and
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replication of data making them readily accessible when needed, with centralized

management and control, yet enabling people to interact independently on ad hoc

communications.

This bears repeating. The same fundamental laws and principles that have driven

computing technology since the mid-1940s are just as relevant in moving us into the

future to the mid-2060s.

Connecting the Dots of the Past into the Continuum of the Present. The history of
technical communications is closely linked with the evolution of computing. The

history of computing can be divided into two branches, one originating in the main-

frame labs of IBM and the other in the network labs of AT&T. To understand the

accelerated innovation of the present, one needs to look to the past. Specifically,

the points in history in which we are interested which originated from the application

of stochastics to networking and culminated with the present-day Internet. Each

step of this evolution laid the foundation for a paradigm shift in our thinking.

Claude Shannon originated the notion of stochastics applied to networking.

Weaver, Bush, Weiner, and Dijkstra, building on Shannon’s work; therefore the

application of computing progressed to the command and control of technical com-

munications. Selfridge and Licklieder (the founders of ARPANET, the original

Internet backbone) followed with the publication of the application of daemons

and agents and dynamic programming to technical communications. The influence

of Licklieder and his predecessors can be seen in the architecture and implemen-

tation of the Internet as we know it today.

The Internet is based on a layered architecture that inherited characteristics

of Selfridge’s “daemon” and OSI’s “reference model.” Although OSI’s layered

model provides a well-defined mechanism for communications, it leaves one

layer, the session layer, undefined. The session layer enables communication and

session semantics between applications. It is this application-specific layer, called

middleware, that received significant attention in the early to late 1990s and has

led to a proliferation of nonstandard solutions (the progression of queues,

CORBA, and the various flavors of MOM are illustrated in Figure 18.2). It is this

layer that will be the focus of the paradigm shift of the 2000 decade. For it has

already begun, the implementation of SONA is a nexus of grid computing and

Web Services and can be seen in Figure 18.5, as well as at its early stages in Planet-

Lab. PlanetLab31 is a consortium of universities and research facilities establishing a

worldwide network of hundreds of computers (connected via the Internet) forming a

grid that can be “sliced” to run applications. (For more information on the Planet-

Lab, refer to http://www.planet-lab.org/php/overview.php.)
Figure 18.5 shows the parallels between SONA and the OSI model. Included

in the diagram are the policy-based control loops of SONA. The principles of the

command-and-control loops were discussed earlier in this book and are a key part

of SONA. There are three control loops: the uppermost loop, in the Presentation/
Communication Protocol layer, is for “macroscheduling” of the grid. The lower

two control loops in the data link/plant scheduling and transport/service delivery

layers are for microscheduling of the grid facility. In brief, macroscheduling is
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the long-term planning of plant resources and capacity looking forward for one or

more years. Microscheduling involves shorter-term resource allocation, looking for-

ward in periods of quarters, months, and weeks. Macro and microscheduling are dis-

cussed in Chapter 19. In fact, we will see that the SONA model is the foundation for

the compute utility, forming the lower layers of the physical infrastructure, plant

scheduling, service, and service directory.

Service-Oriented Network Architecture (SONA). SONA is an attempt to learn

from our past and build on it. The basic principles that have built the infrastructures

that we depend on so much today can and should be leveraged to evolve compute

services into a consumer-based economic model supported by a utility infrastructure

delivering quality product at an affordable cost. We will look at the drivers and the

building blocks behind the SONA evolution. Please refer to earlier chapters for a

description of SONA layered architecture.

The Drivers. The history and present-day state of technical communications are

driven largely by three kinds of forces: macroeconomic, sociogovernmental, and

SONA model parallels OSI layers
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Figure 18.5. SONA layers parallel the OSI seven-layer model.
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technological. Furthermore, each of these forces is itself influenced by the emer-

gence of new mediums and/or modes of communications. Figure 18.6 illustrates

the interactions between such forces.

Economics has always played a major role in technical evolution. Markets drive

innovation and are themselves affected by new technologies. Market economies,

however, are unpredictable in nature and as such do not apply the same uni-

directional force to innovations from decade to decade. At the time of this writing,

in the early–mid-2000s, the macroeconomic picture is shaped largely by recession.

In particular, uncertainty, dwindling profit margins, rapidly restructured business

models, and increased reliance on (and thereby cost of) automation are all indepen-

dent forces driving the economy.

The current economics impacts technology in several distinct ways. For instance,

they place new demands on information technology (IT), including the requirement

to satisfy variable demands in service levels, inventory, and people. They also

require a greater transparency from IT for resource utilization and cost. The conti-

nuing economic uncertainty has generated pressures to rationalize technology

investment. Elasticity of IT planning and fungibility of IT resources are two mani-

festations of economic pressures on information technology.

Societal and governmental pressures have played a major role in driving changes

in technology. Computing devices have pervaded the very fabric of society, and as a

Driving forces
are

interconnected

Economics
Uncertainty Pressures IT investment

Society and
government
Tec hnology pervades
our daily lives

Electric

Radio

Telephone

Technology
Communications, products,

and directions

Figure 18.6. Interconnection of driving forces.
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result their interconnections have increasingly driven society forward. What would

happen if electricity were removed from our lives, for example? We have had very

brief glimpses into this possibility with each power blackout. In the early 2000s the

entire eastern U.S. seaboard went dark for hours and in some places even as long

as days. Without electricity, we are without light, communication (computers, tele-

phones, radio, television, cable, satellite, etc.), and transportation (cars, trains,

motorcycles, trucks, airplanes, shipping, traffic signals, etc.), the foodchain is

broken (refrigeration is gone, meat and produce cannot get from the farm to the

stores, etc.), modern medicine, is disrupted, and the list goes on and on. All of

these things are fundamentally dependent, or have become dependent on electricity.

We humans have lived only since the late 1890s dependent on electricity, so in its

absence we would continue on; however, we would be thrown into a minidark ages

as most of the knowledge of simply how to survive without electricity has been lost

to the masses.

Defense spending has significantly increased since September 11, 2001 and will

as a result produce technology that would simply not be available because of market

economics. Society as a whole plays a pivotal role in the evolution of technology. In

addition to social forces that drive innovation, government involvement, particularly

in research, contributes significantly to the evolution of technology. In the twentieth

century, society focused and continues to focus on communications, particularly

through the rapid adoption of pervasive interconnected devices. The U.S. govern-

ment has focused significantly on research to enhance the nation’s infrastructure

and to more tightly integrate existing institutions. The resulting impact has led to

an increased pace of innovation in the academic community. It has also led to an

increased reliance on communications as a basic element of the social fabric.

Technological evolution has itself played a role in driving convergence and bene-

fiting from it. Most notably, developers have taken advantage of the predictive

power posited by Moore’s, Metcalfe’s, and Amdahl’s laws. This has enabled the

construction of more complex applications as well as the interconnections and com-

munication paradigms between them. Communications has not experienced major

fundamental shifts since the 1960s. All current systems have simply evolved as

strata above the IP substrate. This stratum (middleware) has become heavily bloated

with a variety of products, approaches, and directions without any clear winners.

This in turn has led to an exponential increase in information, middleware bloat,

and overprovisioning. Some of the main technological driving forces are described

below.

Network Computing Power Explosion. Technical communications have been

gated by the ability of the switch or router to process and route packets. Since the

mid-1990s these routers and switches have become increasingly complex and

have embedded more features. This network computing power explosion is enabling

a higher degree of intelligence in the network layer. This will lead to a more com-

plex routing/networking model, particularly as the previous models, which were

built to take advantage of a significantly less powerful network switch fabric,

reach the end of life.
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Consequences of Moore’s and Metcalfe’s Laws. Moore’s law states that the

number of transistors on a chip (which implying an increase in compute power)

doubles every 18 months and has brought us to the point of compute cycles since

the most precious resource of the computer is now more of a commodity.Metcalfe’s

law observes an exponential increase in value of the network as the number of users

on the network increase (specifically, the usefulness is the square of the number of

users). This has led to the current computing resources that have been producing

information above and beyond the ability of humans to process it, a trend that is

not about to change. Thus more system power needs to be in place to address the

overflow of this information.

Isomorphism to Evolution of Previous Systems. The isomorphism evolution is

similar to the evolution of the telephone switch, as traced from Shannon, Weiner,

and Dijkstra.

Grid and Web Services as Manifestation of State Transition. The grid addresses

some of the key points dealing with this manifestation. Through the network

power explosion that enables more intelligent resource management at the switch

level, including not only network but other resources as well, the grid is the next sol-

ution. Combined with Moore and Metcalfe’s laws, this will continue for some time;

thus grid capabilities and network computing capabilities will be closely correlated.

Web Services provides the ideal organizational mechanism for network services

such as discovery, connection, and management.

Conclusion. The convergence of macroeconomic, Sociogovernmental, and techno-

logical forces is the fundamental driver behind the paradigm shift in communi-

cations. Macroeconomic forces are driving a demand for elasticity, fungibility,

and granularity of service levels, resources, and IT planning. Societal forces are

driving the emergence of novel communication mechanisms as well as the rapid

adoption of such mechanisms within the basic social fabric. Coupled with the

steady increase in CPU clock rates, these forces together have pushed modern com-

munication to a breaking point, leading to a proliferation of point solutions, custom

middleware, and overprovisioning.

Communication is a fundamental element of our social fabric. Technical com-

munications is slowly beginning to attain the same status and as such is evolving

through a set of paradigms. These paradigms are driven by the needs of society as

well as the capabilities of technology and will eventually settle on a set of mechan-

isms that will become the lingua franca of our time. SONA and Web Services have

the potential to become this lingua franca.
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19
THE COMPUTE UTILITY

The evolution in distributed computing is leading us toward a business focus where

we have to consider how systems are designed and delivered. This line of thinking is

a shift toward service-oriented architecture (SOA). The philosophy of software

packaging is taught in every Computer Science 101 class starting with a compart-

mentalization of logical units of work with a well-defined interface. Just about

every programming language supports some form of macros, subroutines, functions,

objects, and services. Each is a progression in granularity of function starting with

fine grains of work in macros to a more coarse grain definition of objects with a

service as the coarsest or broadest in scope. An example of a service is a payment

system. The payment system can be composed of 10s or 100s of individual objects,

each specific in scope and function to deliver a piece of the larger payment system

service. Only the service made up of the user interface to the payment system is

visible to the user or consumer, not the finer-grained objects of which the complete

payment system is composed.

As businesses offer more and more services to the user community, a change in

the way the services are delivered and packaged results. It is important to note, as

mentioned earlier, that siloed data centers do not lend themselves to service delivery.

What was once an application for a specific user group that maintained its own hard-

ware within a data center (a silo) now becomes a corporationwide service to be

leveraged across the business units on an on-demand basis as well as a client service

available externally. The shift in offering services immediately implies a different

business model for information technology. The technology is required to transform

to a consumer–producer model. The user groups are the consumers purchasing the
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services that are offered by information technology. Therefore, the consumer satis-

faction rating of the service is measured by the functions provided by the service and

the availability/performance of the service as the service is utilized. This implies

that the infrastructure required to deliver the service to the customer now becomes

an integral part in defining the quality of the service. This requires a change in the

way the services are delivered. With this model, in order to meet the supply/demand

curves that the consumer will levy on the infrastructure and its ability to deliver the

service, the data centers need to be

. Flexible—responsive to change

. Fungible—interchangeable, substitutable

. Scalable—growing with business demands

There has been an emergence of standards from various corporations and

research groups for the definitions of how to deliver the business services. Some

examples are IBM’s On Demand Business,32 Sun’s N1-Grid, Stanford’s Compute

Utility Architecture, The Global Grid Forum,33 “cluster on demand,”34 and the

HP Adaptive Enterprise.35 All the standards describe the architecture required to

deliver services and use buzzwords such as “the compute utility” and “the virtual

data center.” We will examine the basic architecture for a compute utility, including

its components and objectives, the architecture, and the interaction of the com-

ponents so that the compute utility can be as efficient as a manufacturing plant or

factory. On the broad scale, the user demands on the manufacture of a product or

to supply the services are known to the plant manager; however, like many things

in life, the factory production line will undergo daily changes based on user

demand that they need to be addressed.

The architecture that will be discussed in this chapter originates primarily from

two sources: a white paper that was released by Hewlett-Packard in March 2001

on virtual data centers and their operating environments, and an extension of this

architecture that was a derived by the partnership work of Integrasoft, Platform

Computing, and Corosoft.36 Each component or layer of the compute utility is

vital to the compute utility as a whole and equally complex in function, deserving

of more attention than can be provided in the forum of distributed data management.

Our discussions will concentrate on the role of data management within the compute

utility.

OVERVIEW

The compute utility has many objectives, which are reflected in its design. To

summarize some of these objectives, one must consider the purpose of the compute

utility, which includes

. Reduce risk exposure.

. Lower operational costs.
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. Achieve controlled and predictable costs for new implementations and services.

. Improve responsiveness of information technology to the business units that

they support.

These goals can be achieved without cannibalizing the current data centers, which

will not be an option in any real scenario. Many companies cannot justify reinvest-

ing and doing away with their current data center investments in order to build and

offer utility services. Therefore, the new architecture needs to reuse as much of the

existing infrastructure as possible by at least leveraging the computer servers to

increase utilization rates and build on the intra/inter–data center networking infra-

structure. The key milestones must be the reduced complexity in the data center

from an operational and maintenance perspective through more and better auto-

mation, providing an elastic infrastructure support and cost transparency to the

business units.

In order to meet these objectives, one needs to determine what is required in data

centers. Well, the data grid is the answer. The role of the data grid within the

compute utility is to provide visibility into the system. Visibility into the compute

utility extends the current thinking of what visibility is in a siloed IT infrastructure.

“Visibility” into the utility refers to the information infrastructure needed to deliver

a service that has been perfected in industries other than computer software.

Examples or models that IT can use when architecting the compute utility and

considering visibility into the utility are the telephone line, power (electricity),

and energy (natural gas). These respective industries have vast infrastructure for

delivering service to the consumer on a supply and demand basis. A key ingredient

in delivering the service is the timely availability of accurate metered data. So the

key to a utility service is accurate metered data in order for that service to meet the

demands. The system as a whole records and tracks information about itself, includ-

ing its state, and feeds the data back to a control center. The metered data must

include usage information. This information will allow the utility to change state

in such a way as to accommodate the increase of demand as usage peaks occur.

Similarly, as the usage decreases, the system can change its state to adjust to the

lower service demand. The system will always be in the state to best offer the service

to the customer on an as-needed basis.

Today in IT, data centers and the applications, that they support do not monitor or

track any required metered data. The data grid implemented as part of the existing

data centers architecture that can be used as the focal point to collect metered data

and make them available to all users in a timely fashion, thus enabling broad and

deep visibility into the state of the compute utility. For example, user demand is

placed on the system by the consumer. With timely, accurate, and visible metered

information describing the state of the compute utility, smart decisions can be

made and appropriate actions taken to keep the compute utility in a predictable

steady state. The steady state of a compute utility is just like the steady state of a

factory, which I touched on above. It needs to be to efficient, in a time- and cost-

effective manner, and to deliver service to the consumer when the consumer
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demands the service. The quality of the service is equally evaluated as to how well

the service functions when the demand is imposed on it. The data grid is not only the

collection focal point of metered data; it is also the event channel to deliver control

commands issued by the command mechanism. The data grid will deliver the

instructions to the various components within the compute utility to complete the

command/control management loop.

ARCHITECTURE

The architecture for the compute utility consists of five basic components: the

physical resource, the operational environment, the service environment, the data

grid, and the measurement and management (command and control). Figure 19.1

shows the compute utility architecture in an arch rather than the traditional block
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diagram format. The arch is one of the oldest and strongest infrastructures known.

Its beauty is in its simplicity.

The architecture for the compute utility mirrors the simplicity and strength of

the arch. At the foundation, the physical resource layer, is the physical resource,

which includes the network, the storage, and the servers. The next layer up is the

operating layer or environment. The operational environment is a logical view of

the physical resource layer. It is a management layer that is policy-driven to keep

track of, allocate, and provision the physical resources. The next layer of the arch

is the service layer or environment. These are the typical services that we have

become dependent on in distributed computing such as message-oriented middle-

ware (MOM), J2EE, microsoft.Net, and HTTP. As with any arch, the strength of

the arch comes from the keystone; the keystone to the compute utility arch is the

data grid. The data grid’s primary function is to provide the mechanism for collect-

ing the metered information from within each of these layers and deliver this infor-

mation or data to the measurement-and-management component of the compute

utility. It is the interaction between all the layers of the compute utility through

their metered data that allows this utility to deliver services on a supply/demand

basis. With the absence of the data grid, the collection of metered information

becomes cumbersome and the responsiveness of the utility to the users diminishes,

thus lowering the quality of service that is delivered to the customer.

We have already addressed the major aspects and components of data manage-

ment of the compute utility in our discussions on geographic boundary problems

and command and control.

Geographic Boundary

The beauty of the data grid to manage and meter data is such that the physical

resources do not need to be contained within a single data center. The operational

environment abstracts physical locality of the servers and data centers to the

layers above it (the service environment and ultimately the consumer). Recall

from previous discussions that the limitations of geographic boundaries are not

distance but are rather the network bandwidth. The data grid and the compute

grid are the tools in the operational environment that provide the geographic inde-

pendence and establish a policy-driven view of the physical resource.

Command-and-Control Systems

In our use case for command and control, we discussed how the data grid is essential

for the collection of vast amounts of data from numerous dispersed sources. Each

layer of the compute utility (the physical, operational, and service environments)

must generate metered information. Each subsystem, software program, server,

router, hub, and other component is generating new bits and pieces of information

that individually tend to be smaller in size but taken as a whole end up as vast

amount of data moving very quickly in time. In the command/control analysis it
is the data grid that provides the mechanism for the quick and easy collection as
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well as access to these data. The data grid can also provide the distribution backbone

for the commands issued by the command and control. Figure 19.2 expands on the

use of compute utility architecture for command and control.

In the architecture shown in Figure 19.2, the role of the data grid in the compute

utility is twofold. The first part is getting the application to run in the environment.

For example, some delivered services include credit risk and anti–money launder-

ing. The services themselves rely on the data grid to distribute the data across the

compute utility to the physical locations (the physical compute nodes of the compute

grid) where the service is located. Please refer to the section on compute-intensive

applications in Chapter 13 and Figure 15.3, on data warehousing with the data grid,

for more in-depth discussion on how the data grid functions in these business level-

ing services.

The second area where the data grid plays a key role in the compute utility is in

the management of the utility itself and in the command-and-control aspects of

maintaining the compute utility. Figure 19.3 shows the interactions between the
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various layers of the compute utility from the metered information that is generated

by each layer and the command/control information that flows back to each layer.

Each layer has its own data region within the data grid: the physical resource, the

operating environment, and the service environment, as well as the consumer

services. The fifth data region is the command/control region. Each layer will gen-

erate metered information that flows into the command/control system via the data

grid. At the physical resource layer, metered information can be CPU usage,

memory utilization, temperature, and various networking statistics. The operating

environments can tell us whether the physical resources are accessible or available.

The service environment can give us information about entitlements. And, of course,

the consumer services provide information usage such as workload, service, and

user requests of the consumer community.

Macro/Microscheduling

Managers of an electric utility infrastructure or the power grid that delivers electrical

power to the customer know that certain areas of the country have high usage during

the summer months to deal with the hot temperatures. Similarly, natural-gas com-

panies know that their peak usage periods are in the cold winter months. The man-

agers can plan and adjust their utility infrastructures to handle the seasonal peaks and

valleys of consumer supply and demand. However, even though electrical power

demand in July and August is expected to be high in New York City, of brownouts

and even blackouts still occur. Just the other evening, more than just the typical hot,

hazy, and humid mid-August evening, by 10 P.M. it had managed to cool down to

908F; I was at Yankee Stadium watching the Anaheim Angels shut out my beloved
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Yankees (but that is another story) in the sixth inning, when parts of the Bronx

experienced a blackout. The stadium scoreboard went dark, but for some reason,

the stadium lights stayed on, allowing the game to continue. The point to note

here is that even though the utility infrastructure is geared to deliver more power

to places such as New York City in the summer, there are microscale peaks and

valleys that augment tie macroscale peaks and valleys. Should the microscale

peaks amplify or occur in such a way that exceeds even the best of expectations,

the utility must respond. If it cannot respond quickly enough, or most likely if the

demand peaks are above the ability of the infrastructure to deliver, circuitbreakers

trip, causing brownouts or blackouts. The tripping of a circuitbreaker protects

against wide-scale damage to the system. Remember that the entire northeast

coast of the United States as well as parts of southeastern Canada lost power because

the power grid tripped breakers to protect itself from a bigger potential danger.

The only way this can occur is through measurement and analysis of metered

data that describe the state of the utility. The metered data describe not only the

state of the system but also the microscale peaks and valleys of user demand.

The command/control system of the compute utility performs a quick analysis of

the metered information. The purpose of the analysis is not for macroscheduling but

rather for microscheduling since the manager of the utility has a good idea of the

larger cycles of consumer usage patterns on the utility. It is understood that there

will be peaks and valleys for certain services throughout the day, the week, the

month, and the year. However, as the user community’s demand varies up or

down (as a result of any number of reasons, e.g., variations in community size,

external unpredicted events, local or global), you will see minipeaks and minival-

leys, thus creating a microscheduling pattern that augments the macroscheduling

of services. Think of macroscheduling as the carrier frequency of a radio signal

and microscheduling as modulation of the carrier frequency. Figure 19.4 highlights

micro- and macroscheduling and how to maintain a steady state for the compute

utility.

Figure 19.4 shows three curves: the macroscheduling curve that the manager

of the utility uses for long-term planning, the microscheduling curve describing

unexpected peaks and valleys in usage demand, and a third curve that describes

how the commute utility has to adjust to accommodate both the macro- and micro-

scheduling demands. Both types of scheduling are needed to deliver the service.
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Figure 19.4. Macroscheduling, microscheduling, and the compute utility steady state.
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The command/control system will issue commands back to the physical resource

level to increase certain hardware components or reprovision servers with various

software components. A top-down analysis starting from the customer service

usage will show a chain of interdependence of metered information at each layer

affecting commands to the next. The service environment will be issued commands

to reconfigure or redistribute a service or services that will force commands down

into the operating environments to load software or reallocate servers to supply

the needed services, which will in turn cause commands to the physical resource

layer to increase hardware or reprovision of servers.

We see two areas of information flow for the compute utility command and

control. The two flows are metered information flowing up within each layer

and the interdependency of information flow between each of the layers and

command information flowing down.
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20
LANGUAGE INTERFACE

An interesting topic of discussion is the language interface supported by the data

grid. The access of data is not apparent and not as simple as in Structured Query

Language (SQL) since the structure of the data in the data grid is not restricted to

tables and relationships that normally exist in a relational database. Structural

type can vary from simpler to more complex than that of the two-dimensional

table of the relational model. However, there are some standards emerging such

as SQL99 (SQL3) that address data access into object–relational data structures.

In this chapter we will examine three language interfaces from the distributed

data management: (1) programmatic, which is a program language interface such

as Cþþ; (2) Java; and (3) C# language binding. The second language interface

that we will examine will be a query based on an interface similar to that of SQL.

Finally, a XML-based descriptive data language interface will also be examined.

In this chapter we will look at the three approaches for language interface into

the data grid, including their scope and the pros and cons of each. In summary,

all three language interfaces are required for the data grid for the same reasons

that all three are needed for the relational technologies. The relational database

technology does have a programmatic interface [Application Programmatic Inter-

face (API)], a string-based query interface (SQL), and XML bindings as highlighted

below:

. The advantage of the Programmatic Language Interface is speed and perform-

ance. The developers can access the database natively without having to go

through the layers of SQL.
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. SQL is the simplest and most effective way of accessing data in a structured

data store or database. Currently, it is not clear which is the best and most effi-

cient method to perform a stringlike query interface into the data grid. There-

fore, we will discuss the current available methods, and as the industry moves

forward, a clearer path will be chosen through the user community. Note that

precompiled SQL queries do provide levels of performance boost over straight

SQL even though they are considered as part of the SQL interface.

. Web content is mostly XML-based. Web pages and applications need data

access to and from a database. In addition to XML, data structural descriptions

and representation typically used for Internet access that are being “bunched”

into this category are

Document type definition (DTD)

Standard Generalized Markup Language (SGML)

eXtensible Style Language (XSL)

PROGRAMMATIC

Programmatic interfaces are limited to the audience of developers who can program

in a 3GL (third-generation language) type of language such as Cþþ, Java, and C#.

Developers as a community are accustomed to programmatic interfaces since just

about every data management system has one that includes relational databases.

These interfaces are supplied by the data management vendors (e.g., Sybase Open

Client API) or through third-party toolkits (e.g., JDBC). A good rule of thumb is

that the native language bindings supplied by the database vendor yield the best

performance. Performance decreases the farther away you go from a native binding.

The language bindings for the data grid are quite different from the one that you

would use with relational databases. Let us take a moment to review the typical flow

of work when building an application:

. Through the programmatic interface, the business objects issues a query.

. Result sets are returned.

. The result sets are then parsed and the business objects are populated.

The results sets that are returned by the database’s Application Programmatic

Interface (API) are iterative, first through the table looking for appropriate

rows, then through each row looking for the appropriate individual data elements

or fields. In this situation, it is the responsibility of the developer to map the

binding between the result set traversals and the data attributes of the business

object. Note that there are some developer tools that can make this process less

manual.

One objective of a data grid is to eliminate the data access bottlenecks by widen-

ing the throat of the data access funnel; this funnel can be as wide as the data grid

itself. This process is achieved by bringing the data as close to the grid compute node
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as possible. The term that we have associated with the process of data locality is

data affinity, which I have addressed throughout the book. However, data locality

is not the complete solution. The solution for the data grid can extend beyond

data affinity into providing a unified view of the business data independent of the

data source. Without the data grid functionality, it would be the responsibility pri-

marily of the business object to connect to the data source and translate the data

from the external format of the data source into the data attributes of the business

object. The data grid can assume the data translation responsibility from the business

object through its data load and store policies. Note that data representations in

business objects can range from simple single data points and lists, to more complex

lists of lists forming N-dimensional space. Therefore, the data grid must have the

flexibility to represent multidimensional data structures. With this requirement, it

is important to note that the language interfaces of the data grid must support

accesses, queries, and the navigation of N-dimensional data structures.

The requirement for the data management systems to support multidimensional

data structures is not new; for example, there are object databases. However,

these data management systems are not in wide use. In addition, anyone who has

programmed with an object database can attest that they are not the easiest systems

to use, architect, manage, maximize performance with, and maintain.

I would like to focus on examples that are currently in use and are understood by

majority of the developers in the technology field. The two that come to mind are the

Standard Template Library (STL) and the SourcePro product (formally known as

RWTools), which is a commercially available toolkit, offered by Rogue Wave

Software (www.roguewave.com). Most developers are fairly familiar with these

concepts; therefore a data grid programmatic interface should be these straight-

forward APIs. This would reduce the barrier to entry, minimizing the learning

curve, and increasing the likelihood of acceptance by the community. The example

provided in this book is based on a data grid product offered by Integrasoft called

the Integrasoft Grid Fabric (IGF). This product, whose API is a Standard Template

Library (STL), can be considered RWTool-like. The example illustrated below

shows, through the use of a factory object, the connection to the data grid, querying

the data grid via the GET( ) command, and the simple iteration through an array to

access and print the data atoms stored in the data grid. The code represented by this

interface is illustrated below:

1 public static void main (String argv[])
2 {
3 java.util.Properties props=new java.util.Properties();
4 IGFCartridge cart=IGFBasicCartridgeFactory.instance().

create(‘‘Default’’,
5 props);
6 IGFBasicDataCartridge dCart=(IGFBasicDataCartridge)

cart.data();
7
8 IGFBasicList testList=(IGFBasicList) dCart.getRoot

(‘‘YieldCurve1’’);
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9 for (int i=1; i < 10; i++)
10 {
11 IGFCustomObject o=(IGFCustomObject)testList.get(i);
12 System.out.println(‘‘Index:’’+i+‘‘yield:’’+o.m_yield.

getValue()+‘‘mat:’’+
13 o.m_maturity);
14 }//for ()
15
16 }

Most developers understand the use of factories, which are the things that can be

collected and the things that can contain them. So, when reviewing this example,

most developers will intuitively understand how to “data-grid-enable” systems

with little or no learning curve. Complex issues such as data atom granularity are

simply handled through inheritance (coarse in grain) or via attribute declaration

(fine in grain). Once a data atom is defined, it lives in the data grid and not in the

local memory of the process itself. It can be inserted into any data grid collection,

thus automatically making it available to all on the data grid.

The data grid supporting similar programmatic constructs is commonly used by

application developers, enabling the reuse of existing code in the current production

applications as well as other legacy systems. Thus, the data integration that is required

in the data grid can leverage the existing straight-through processing (STP) adapters,

which are used today to “load” the data into the data grid and “store” the data out of

the data grid. The use of middleware, whether provided through a third-party vendor

or internally developed, is prevalent throughout most information technology organi-

zations to achieve STP. Normal implementations of middleware solutions leverage

the concept/technique of data loaders (typically referred to as “adapters”). These

adapters possess the logic of translating data to and from systems, including legacy

systems into business objects. Therefore, to transform from STP to enterprise infor-

mation integration (EII) into the data grid, the use of the well-known programmatic

API style discussed above can easily enable the conversion of the existing STP

adapters into the data grid adapters for both data load and store.

QUERY-BASED

The most commonly used query-based interface is Structured Query Language (SQL).

The relational model is steeped in mathematical principles, thus enabling complex

data relationships ranging from simple two-dimensional table structures to an opti-

mized method of querying the resulting structures. However, SQL is not inherently

suited as a query interface into a data management system of the data grid since its

needs to support varying types of data atoms and multidimensional structures.

There are other data management systems with similar data structural chrematis-

tics of a data grid, specifically object databases and object–relational databases.

Building on the existing work to determine how similar problems have been
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addressed with these systems is an excellent place to start moving forward and stan-

dardizing on what is the best query-based interface required by the data grid. The

story starts in the early days of extending SQL for querying object databases.

What has evolved from those efforts is the object–relational standard, SQL99.

SQL99, formally known as SQL3, extends SQL to include concepts of object–

relational bindings. SQL99’s object–relational bindings do support object-oriented

concepts such as inheritance and instances, but they do not support object-oriented

standards fully. However, this is the most reasonable starting point for adopting a

query-based interface as required for the data grid. Even though the object-relational

mapping is not fully object-oriented, it does support many of the concepts and has

industry standards bodies supporting it. The alternative of starting from scratch and

creating an entirely new standards body and organizations to revisit some of the pro-

blems already addressed by SQL99 should be considered if one does determine that

SQL99 cannot support the requirements of a data grid. The following references

provide additional information on SQL99:

. ANSII Standards Body

. “Practical PostgreSQL” by John Worsley and Joshua Drake, O’Reilly, January

2002

Why focus on SQL99 alone, one may ask. SQL99 is something that is architected

to support object relational bindings and mappings as opposed to something that’s

more native and optimized for the data grid. The object–relational standard,

SQL99, has a well-established community behind it, including myself, since I am

a firm believer of building on what is a successful versus starting from scratch.

SQL has been proved to work well, and as such a majority of the user community

understands and knows how to use it. Therefore, it makes sense to build on a tech-

nology that enjoys a broad knowledge base that is widely accepted, thus lowering

the barrier of entry of any new technology, including grid technology. Granted

this approach is not the best technical answer, but it is a practical one. Any future

extensions to SQL99 to support the “data grid” can be organized through the existing

standards bodies. Therefore, it is the opinion of this author that this is the most

logical and practical place to start binding a query-based language suited to the

data grid. The following is the syntax example for the select statement in Post-

greSQL, a forerunner to SQL99, from which many features can be found:

1 SELECT [ALL | DISTINCT [ON (expression [, . . .])]]
2 target [AS name] [, . . .]
3 [FROM source [, . . .]]
4 [[NATURAL] join_type source
5 [ON condition | USING (column_list)]]
6 [, . . .]
7 [WHERE condition]
8 [GROUP BY expression [, . . .]]
9 [HAVING condition [, . . .]]
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10 [{ UNION | INTERSECT | EXCEPT } [ALL] sub-query]
11 [ORDER BY expression
12 [ASC | DESC | USING operator]
13 [, . . .]]
14 [FOR UPDATE [OF table [, . . .]]]
15 [LIMIT { count | ALL } [{ OFFSET |, } start]]

With all of this said, individual vendors should not work in a vacuum, creating

their own query-based language or adding their own extensions to SQL/SQL99
in support of their own data grid product. This may generate fractures in the com-

munity, thus hindering the adoption of grid technology. Hence, this will result in

every vendor having their own flavor of a query-based interface, for example,

their own personalized version of SQL99. Should individual vendors venture

down this path, I would encourage them to contribute their work into the community

with the possible inclusion and adoption of a uniform standard moving forward.

XML-BASED

XML is quickly becoming a common way to exchange data between applications

primarily because its markup language supports metadata or information that

describes the data that are contained within a message. XML also supports some

of the complex relationships of data and data attributes found within most of

programming languages such as object-oriented programming.

Database companies have an XML interface built into their respective products,

Oracle has an XML SQL utility, and DB2 has DB2 XML, for example. These

examples are of how an emergent technology has been leveraging complex data

relationships (such as those supported in XML). Other databases such as object–

relational databases take the object representations of data as described in XML

and more readily map them into a relational database model. Some object databases

are also utilizing XML to store data. Therefore, the use of XML as an interface into

data grid is something that should be explored further and definitely supported.

Initially, an XML-based query language would be a cross between SQL, a

language that is easy to understand and learn and the more complex programmatic

interfaces, which are tightly bound to the 3GL programming languages. The XML

query interface sits in between the two extremes; one needs to have some program-

ming experience to understand XML and XML structures and formats, and even to

read the XML syntax. Tools that simplify the XML process are available; however,

they do not completely reduce the complexity level of a SQL query. So, while going

beyond the object–relational limits of SQL99, XML does not completely reduce the

barrier of entry to the mass development resources.

Today, most of theWeb page contents are XML-based. As with relational, object,

and object–relational databases, XML interfaces are essential to the data grid.
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21
BASIC PROGRAMMING EXAMPLES

I am a partner and co-founder of Integrasoft. We have dedicated the company to

highly distributed computing environments in the financial sector since its inception

in 1997. In 2001, we focused our collective experience on bridging the chasm of data

management in relation to the grid compute environments. Many of the principles

discussed in this book are a direct result of our work and are addressed in our product

known as the Integrasoft Grid Fabric (IGF), a distributed data management system

for the compute grid.

IGF is a purely data management system that is designed to sit on top of any ven-

dor’s “data distribution engine.” Currently, IGF’s data distribution engine is a dis-

tributed cache that spans the entire grid space.

IGF supports data regions and the various data management policies discussed

below. Three working code examples developed using the IGF product are described

below. The first two are simple “HelloWorld” examples that show fine and coarse

granularity of data atoms in a data grid. The latter is more involved, covering a

random-number surface used in a Monte Carlo simulation. I hope that these

examples will be found useful in further expansion of the theories or application

that we have covered.
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HELLOWORLD EXAMPLE

Coarse Granularity

This example shows a coarse-grained object whose entire data attributes will be

stored in the IGF data grid as a single IGF data atom. Note that the business logic

of “IGFCustomObject” does not need any modifications to be able to support the

data grid. Through its inheritance from IGFCacheable, the IGFCustomObject

becomes an entity that can be stored in any IGF data grid collection. When

placed in an IGF collection, it will be assigned a “logical” name that can be used

by the collection’s “get( )” command for later retrieval. Since IGFCustomObject

is an IGFCacheable entity, it through any IGF Collection’s “put( )” command can

be placed into the collection. The collection and all its entities are live data atoms

in the data grid. By default, the collection and its entities are now under the data

grid’s management policies, which include the regionalization, synchronization,

replication, and distribution policies. Any application connected to the data grid

can open the collection and via the collection’s “get( )” command can “query the

data grid” for any individual entity in the collection by name, for example. Because

of the coarse granularity of the data grid atom, IGFCustomObject is “queryable”

as a single data point (data atom); applications cannot see into the IGFCustomObject

and thus query the data grid for it by any of its data attributes of “m_yield,”

“m_maturity,” and “m_pointName.” The object is opaque to the outside world;

this is what is meant by “coarse granularity.” However, once retrieved from the

data grid through the get( ) command, the application can operate on the object

and its attributes as any other normal object. Any resulting changes of state of the

object are reflected in the data grid once it is “put” back (updated) into the collection.

The following is an example of the code required to define (“coarse data atom”),

store (“writer program”), and access (“reader program”) a coarse data atom:

Coarse Data Atom

1 import com.integrasoftware.GridFabric.Cartridges.
Framework.model.*;

2 import com.integrasoftware.GridFabric.Cartridges.Basic.
DataCartridge.model.*;

3 import com.integrasoftware.GridFabric.Cartridges.Basic.
DataCartridge.*;

4 import com.integrasoftware.GridFabric.Integration.Data.
Framework.model.*;

5 /**
6 *Title: IGFCustomObject<
7 *Description: This custom object demonstrates the ability

to store leaf nodes with both IGF
8 *and generic Java values. Leaf nodes can be inserted in a

variety of IGF collections
9 *Copyright: Copyright (c) 2003
10 *Company: Integrasoft LLC
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11 *@version 1.0
12 */
13
14 public class IGFCustomObject implements IGFCacheable
15 //Leaf nodes MUST implement IGFCacheable
16 {
17 public IGFBasicFloat m_yield;
18 public java.util.Date m_maturity;
19 public String m_pointName;
20
21 public IGFCustomObject() //These are empty for now
22 {
23 }
24
25 public IGFCachePolicy cachePolicy() //These are empty for now
26 {
27 return null;
28 }
29
30 public void cachePolicy(IGFCachePolicy policy)//These are

empty for now
31 {
32 }
33 }

Writer Program

1 import com.integrasoftware.GridFabric.Cartridges.Basic.
DataCartridge.model.*;

2 import com.integrasoftware.GridFabric.Cartridges.Basic.*;
3 import com.integrasoftware.GridFabric.Cartridges.Basic.

DataCartridge.*;
4 import com.integrasoftware.GridFabric.Cartridges.Frame-

work.control.*;
5 import java.util.*;
6
7 import java.io.*;
8
9 /**
10 *Title: IGFObjectGraph3Writer
11 *Description: This example demonstrates the creation of a

custom leaf object, a leaf can
12 *contain any number and type of attributes as long as it

implements IGFCacheable
13 *Copyright: Copyright (c) 2003
14 *Company: Integrasoft LLC
15 *@version 1.0
16 */
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17
18 public class IGFObjectGraph3Writer {
19 public IGFObjectGraph3Writer()
20 {
21 }
22
23 public static void main (String argv[])
24 {
25 java.util.Properties props = new java.util.Properties();
26
27
28 //Create a cartridge on region called "Default", pass in

properties in event more configuration parameters are needed
29 //
30 IGFCartridge cart = IGFBasicCartridgeFactory.instance().

create("Default",
31 props);
32
33 //Obtain a handle to the Data Cartridge associated w/Region

"Default"
34 IGFBasicDataCartridge dCart = (IGFBasicDataCartridge)

cart.data();
35
36 //Construct a new List associated w/Region "Default"
37 IGFBasicList testList=(IGFBasicList) dCart.

obtainCacheableEntityNamed(
38 "IGFBasicList");
39
40 //Iterate through list and populate a custom leaf object
41 for (int i = 1;i < 10; i++) {
42
43 //Create a leaf object
44 IGFCustomObject o = new IGFCustomObject();
45
46 //Create an IGF Float associated w/Region "Default"
47 IGFBasicFloat mYield=(IGFBasicFloat)dCart.

obtainCacheableEntityNamed("IGFBasicFloat");
48
49 //Populate IGFFloat
50 mYield.setValue((float)Math.random()*100);
51
52 o.m_yield = mYield;
53 o.m_maturity = new Date();
54 o.m_pointName = "3YR";
55
56 //Add custom leaf object to list
57 testList.add(o);
58
59 System.out.println("Index:"+i+"yield:"+o.m_yield+"mat:"+
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60 o.m_maturity);
61 }
62
63 //Insert list into region "default"
64 dCart.putRoot("YieldCurve1", testList);
65 }
66
67 }

Reader Program

1 import com.integrasoftware.GridFabric.Cartridges.Basic.
DataCartridge.model.*;

2 import com.integrasoftware.GridFabric.Cartridges.Basic.*;
3 import com.integrasoftware.GridFabric.Cartridges.Basic.

DataCartridge.*;
4 import com.integrasoftware.GridFabric.Cartridges.Frame-

work.control.*;
5 import java.util.*;
6
7 import java.io.*;
8
9 /**
10 *Title: IGFObjectGraph3Writer
11 *Description: This example reads IGFCacheable objects from

the Data Grid
12 *Copyright: Copyright (c) 2003
13 *Company: Integrasoft LLC
14 *@version 1.0
15 */
16
17 public class IGFObjectGraph3Reader {
18
19 public IGFObjectGraph3Reader() {
20 }
21
22 public static void main (String argv[])
23 {
24 java.util.Properties props = new java.util.Properties();
25 IGFCartridge cart = IGFBasicCartridgeFactory.instance().

create("Default",
26 props);
27 IGFBasicDataCartridge dCart=(IGFBasicDataCartridge)

cart.data();
28
29 IGFBasicList testList = (IGFBasicList) dCart.getRoot

("YieldCurve1");
30 for (int i = 1; i < 10; i++)
31 {
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32 IGFCustomObject o = (IGFCustomObject)testList.get(i);
33 System.out.println("Index:"+i+"yield:"+o.m_yield.

getValue()+"mat:"+
34 o.m_maturity);
35 }//for ()
36
37 }
38 }

Fine Granularity

Now let us investigate an example of a fine-grained data atom. The first thing to

notice is that there is no IGFCustomObject that inherits from the IGFCacheable.

In this situation the object to be data-grid-enabled is IGFObjectGraph1Writer,

where some of its data attributes are natively data-grid-enabled. It is important to

note that not all of an object’s data attributes need to be data-grid-enabled. Those

attributes that are data-grid-enabled “live” in the IGF data grid and are managed

by its distributed data management policies. Those that are not data-grid-enabled

will reside in the local heap of the process space of the IGFObjectGraph1Writer

instance.

The IGFObjectGraph1Writer instance is “put” into the IGF data grid with the

logical name of ROOTOBJECT, the name that will be used for later queries and

retrieval. Some of the data attributes of the IGFObjectGraph1Writer are collection

classes, maps, lists, and arrays. The other data attributes are basic, such as

IGFInteger and IGFFloat. Any program that accesses the IGF data grid can get

the IGFObjectGraph1Writer from the data grid and directly access any of the

“data-grid-enabled attributes.” Those programs can change or update the values

of these attributes via their respective “put( )” operations, which will immediately

take effect in the IGF data grid and can be accessed by any other program viewing

or accessing the IGFObjectGraph1Writer “ROOTOBJECT” instance in the IGF data

grid. The fact that the internal data attributes of the IGFObjectGraph1Writer are

directly IGF data-grid-enabled means that access to these data attributes is direct

and transparent to all on the IGF data grid. Therefore, the IGFObjectGraph1Writer

is said to be a fine-grained data atom. A sample code for loading of the data

atom into the data grid (“writer program”) and retrieval of data atom (“reader

program”) is

Writer Program

1 import com.integrasoftware.GridFabric.Cartridges.Basic.
DataCartridge.model.*;

2 import com.integrasoftware.GridFabric.Cartridges.Basic.*;
3 import com.integrasoftware.GridFabric.Cartridges.Basic.

DataCartridge.*;
4 import com.integrasoftware.GridFabric.Cartridges.

Framework.control.*;
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5 import com.integrasoftware.GridFabric.Integration.Data.
Framework.model.*;

6 import java.util.*;
7
8 import java.io.*;
9
10 /**
11 *Title: IGFObjectGraph1Writer
12 *Description: This object demonstrates the creation and

population of a custom Root Object.
13 *Root Objects MUST inherit from IGFBasicObject, and can

contain both native as well as IGF types
14 *Copyright: Copyright (c) 2003
15 *Company: Integrasoft LLC
16 *@version 1.0
17 */
18
19 //Must inherit from IGFBasicObject
20 public class IGFObjectGraph1Writer extends IGFBasicObject

{
21 public IGFBasicMap m_map1, m_map2;
22 public IGFBasicList m_list1, m_list2;
23 public IGFBasicInt m_int1;
24 public IGFBasicFloat m_float1;
25 public IGFBasicNativeDoubleArray m_dArray;
26 public int foo;
27
28 public IGFObjectGraph1Writer() {
29 super();
30 }
31
32 public static void main(String[] args) {
33 try {
34 IGFObjectGraph1Writer graph1 = new

IGFObjectGraph1Writer();
35 java.util.Properties props = new java.util.Properties();
36
37
38 //Create a cartridge on region called "Default", pass in

properties in event more configuration paramemeters are
needed

39 IGFCartridge cart = IGFBasicCartridgeFactory.instance().
create("Default",

40 props);
41
42 //Obtain a handle to the Data Cartridge associated

w/Region "Default"
43 IGFBasicDataCartridge dCart = (IGFBasicDataCartridge)

cart.data();
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44
45 //Start populating graph1 attributes
46 graph1.foo=290;
47
48 //Construct new objects for attributes of graph1
49 graph1.m_map1 =
50 (IGFBasicMap) dCart.obtainCacheableEntityNamed

("IGFBasicMap");
51
52 graph1.m_map2 =
53 (IGFBasicMap) dCart.obtainCacheableEntityNamed

("IGFBasicMap");
54
55 graph1.m_list1 =
56 (IGFBasicList) dCart.obtainCacheableEntityNamed

("IGFBasicList");
57
58 graph1.m_list2 =
59 (IGFBasicList) dCart.obtainCacheableEntityNamed

("IGFBasicList");
60
61 graph1.m_int1 =
62 (IGFBasicInt) dCart.obtainCacheableEntityNamed

("IGFBasicInt");
63
64 graph1.m_float1 =
65 (IGFBasicFloat) dCart.obtainCacheableEntityNamed

("IGFBasicFloat");
66
67 IGFBasicDouble dbl2 =
68 (IGFBasicDouble) dCart.obtainCacheableEntityNamed

("IGFBasicDouble");
69
70 graph1.m_dArray = (IGFBasicNativeDoubleArray)
71 dCart.obtainCacheableEntityNamed

("IGFBasicNativeDoubleArray");
72
73 //populate ints/floats/doubles
74 graph1.m_int1.setValue(94);
75 graph1.m_float1.setValue((float) 95.443);
76 dbl2.setValue(97.998);
77
78 //add int/float into list1
79 graph1.m_list1.add(graph1.m_int1);
80 graph1.m_list1.add(graph1.m_float1);
81
82 //add int/double into list2
83 graph1.m_list2.add(graph1.m_int1);
84 graph1.m_list2.add(dbl2);
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85
86 //add double/int into map1
87 graph1.m_map1.put("TESTDOUBLE", graph1.m_float1);
88 graph1.m_map1.put("TESTINT", graph1.m_int1);
89
90 //add double into map2
91 graph1.m_map2.put("TESTDOUBLE", dbl2);
92
93 //populate native double array
94 for (int i = 1; i < 100; i++)
95 graph1.m_dArray.putAt(i, Math.log(10.332*i));
96
97 //insert object as root node into region "default"
98 dCart.putRoot("ROOTOBJECT", graph1);
99 } catch (Exception ex)
100 {
101 ex.printStackTrace();
102 }
103 }
104
105 public IGFCachePolicy cachePolicy()
106 {
107 return null;
108 }
109
110 public void cachePolicy(IGFCachePolicy policy)
111 {
112 }
113
114 }

Reader Program

1 import
com.integrasoftware.GridFabric.Cartridges.Basic.DataCar-
tridge.model.IGFBasicObject;

2
3 /**
4 *Title: IGFObjectGraph1Reader
5 *Description: This object demonstrates how to read a Custom

Root Node and traverse it
6 *Copyright: Copyright (c) 2003
7 *Company: Integrasoft, LLC
8 *@version 1.0
9 */
10
11 import com.integrasoftware.GridFabric.Cartridges.Basic.

DataCartridge.model.*;
12 import com.integrasoftware.GridFabric.Cartridges.Basic.*;
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13 import com.integrasoftware.GridFabric.Cartridges.Basic.
DataCartridge.*;

14 import com.integrasoftware.GridFabric.Cartridges.Frame-
work.control.*;

15 import java.util.*;
16
17
18 import

com.integrasoftware.GridFabric.Cartridges.Basic.DataCar-
tridge.model.IGFBasicObject;

19
20
21 public class IGFObjectGraph1Reader extends IGFBasicObject {
22 public IGFObjectGraph1Reader() {
23 }
24 public static void main(String[] args) {
25 IGFObjectGraph1Writer graph1;
26 java.util.Properties props=new java.util.Properties();
27
28 //Create a cartridge on region called "Default", pass

in properties in event more configuration parameters are
needed

29 IGFCartridge cart=IGFBasicCartridgeFactory.instance().
create("Default", props);

30
31 //Obtain a handle to the Data Cartridge associated

w/Region "Default"
32 IGFBasicDataCartridge dCart=(IGFBasicDataCartridge)-

cart.data();
33
34 //get root custom object from region "Default"
35 graph1=(IGFObjectGraph1Writer)dCart.getRoot

("ROOTOBJECT");
36
37 //get a previously inserted int from m_map1
38 IGFBasicInt mapInt=(IGFBasicInt)graph1.m_map1.get

("TESTINT");
39
40 //get a previously inserted double from m_map1
41 IGFBasicFloat mapDouble=(IGFBasicFloat)graph1.m_map1.

get("TESTDOUBLE");
42
43 //get a previously inserted double from m_map2
44 IGFBasicDouble mapDouble2=(IGFBasicDouble)graph1.m_map2.

get("TESTDOUBLE");
45
46 //get a previously inserted int from m_list1
47 IGFBasicInt listInt=(IGFBasicInt)graph1.m_list1.get(1);
48
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49 //test for quality to ensure that the objects are actu-
ally identical

50 boolean cmpAre=(mapInt.equals(graph1.m_int1) && mapDou-
ble.equals(graph1.m_float1));

51
52 double [] dblArr = new double[100];
53 for (int i = 1; i < dblArr.length; i++)
54 {
55 dblArr[i] = graph1.m_dArray.getAt(i);
56 System.out.println("dblArr[+"+i+"]: "+dblArr[i]);
57 }
58
59
60 for (int i = 1; i < graph1.m_list1.size()+1;i++)
61 {
62 System.out.println("List1:"+graph1.m_list1.get(i).

toString());
63 }
64
65 for (int k = 1; k < graph1.m_list2.size()+1; k++)
66 {
67 System.out.println("List2:"+graph1.m_list2.get(k).

toString());
68 }
69
70 }
71
72 }

RANDOM-NUMBER SURFACE EXAMPLE

This example is a random-number surface used in a Monte Carlo simulation. Tra-

ditionally, Monte Carlo simulations are run from start to finish before any results

are visible. In grid-enabled environment, the Monte Carlo simulation can be opti-

mized by slicing the simulation across the compute grid as worklets with small

input data sets generating large amounts of interim data to ultimately return a

simple result(s). One of the interim data sets is a random-number surface. Providing

a “schema” for such interim surfaces and data-grid-enabling them yields two optim-

izations: further parallelization through finer-grained compute worklets to build the

interim surfaces and the reuse of previously built surfaces. The first optimization

allowswhatwas oneworklet, “build random-number surface,” to becomemanywork-

lets, each contributing to a single entry of data point of the random-number surface.

The second optimization enables data reuse from one Monte Carlo simulation to

the next. For example, a random-number surface “FooBar” built in one simulation

can be reused in subsequent simulations, thus eliminating the need for additional

computation cycles, which would be required to rebuild the data surfaces. In
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order for other applications to reuse the data surface, the IGF data grid must allow

the application to “query” the data surface that it needs.

If a data surface can be queried, then not only can subsequent Monte Carlo simu-

lations benefit from the preexisting data surfaces, which are stored in the IGF data

grid, but also any “observer” program can read and monitor data surfaces as they are

being built in real time. Thus, this creates a new class of applications instead of batch

applications, which used to run overnight. For example, a running Monte Carlo

simulation can be monitored, if diverging it can be terminated in the middle of its

processing. Conversely, if convergence is satisfied prior to completion, it can be ter-

minated early. This is yet another form of optimization offered through the smart

utilization of compute resource.

All the optimizations highlighted above and the possibility of new business

observer programs are possible only through data-grid-enabling a Monte Carlo

simulation. The example random-number surface illustrated below is a common

part of any Monte Carlo simulation:

1 /**
2 *Title: IGFObjectGraph1Reader
3 *Description: This object demonstrates how to read a

Custom Root Node and traverse it
4 *Copyright: Copyright (c) 2003
5 *Company: Integrasoft, LLC
6 *@version 1.0
7 */
8 \\RandomField\\Harness\\SurfaceDemo\\IGFEuropeanCallOp-

tionPopulator.java
9 package com.integrasoftware.GridFabric.Cartridges.Random-

Field.Harness.SurfaceDemo;
10
11 import com.integrasoftware.GridFabric.Cartridges.Frame-

work.control.IGFPopulator;
12 import com.integrasoftware.GridFabric.Cartridges.Frame-

work.control.IGFDataCartridge;
13 import com.integrasoftware.GridFabric.Cartridges.Random-

Field.DataCartridge.IGFRandomFieldDataCartridge;
14 import com.integrasoftware.GridFabric.Integration.Data.

Framework.model.IGFCacheable;
15 import com.integrasoftware.GridFabric.Cartridges.Frame-

work.model.IGFScenario;
16 import com.integrasoftware.GridFabric.Cartridges.Frame-

work.model.IGFPathList;
17 import com.integrasoftware.GridFabric.Cartridges.Frame-

work.model.IGFDataPoint;
18 import com.integrasoftware.GridFabric.Cartridges.Frame-

work.model.IGFPath;
19 import com.integrasoftware.GridFabric.Cartridges.Random-

Field.IGFRandomFieldFactory;
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20 import com.integrasoftware.GridFabric.Cartridges.Frame-
work.model.IGFDataPointList;

21 import com.integrasoftware.GridFabric.Cartridges.Frame-
work.control.IGFCartridge;

22 import javax.swing.JFrame;
23 import java.awt.GridLayout;
24 import java.awt.Dimension;
25 import java.awt.Color;
26 import javax.swing.JPanel;
27 import com.klg.jclass.chart3d.*;
28 import com.klg.jclass.chart3d.j2d.*;
29 import com.klg.jclass.chart3d.data.*;
30
31 public class IGFEuropeanCallOptionPopulator implements

IGFPopulator, Service
32 {
33 private IGFCartridge m_cartridge;
34 private String m_scenarioName;
35 private int m_dimensionality;
36 private double m_strikePrice;
37 private double m_timeInterval;
38 private double m_assetPrice;
39 private double m_sigma;
40 private double m_contIR;
41 private double m_divYield;
42 private double m_timeStep;
43 private double m_dT;
44 private double m_nudt;
45 private double m_sigsdt;
46 private double m_lnAssetPrice;
47 private JobContext m_context;
48
49 public IGFEuropeanCallOptionPopulator()
50 {
51 m_strikePrice = 100;
52 m_timeInterval = 1;
53 m_assetPrice = 100;
54 m_sigma = 0.2;
55 m_contIR = 0.06;
56 m_divYield = 0.03;
57 m_timeStep = 100;
58 m_dT=m_timeInterval/m_timeStep;
59 m_nudt = (m_contIR-m_divYield-1/2*m_sigma*m_sigma)*m_dT;
60 m_sigsdt = m_sigma*Math.sqrt(m_dT);
61 m_lnAssetPrice = Math.log(m_assetPrice);
62 }
63
64 public static final void main(String argv[])
65 {
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66 IGFEuropeanCallOptionPopulator pop = new IGFEuropeanCall
OptionPopulator();

67 pop.connectToRandomFieldWith(10,"MonteCarlo","Random-
FieldCartridge");

68 pop.cartridge().compute().populator(pop);
69 for (int i = 0; i < 10; i++)
70 pop.populate();
71 }
72
73 public void populate()
74 {
75
76 IGFRandomFieldDataCartridge dCart = (IGFRandomFieldData-

Cartridge)cartridge().data();
77 IGFScenario scene = dCart.scenarios().findScenario

(scenarioName());
78 IGFPathList paths=scene.paths();
79 IGFPath path=dCart.makePath();
80 paths.add((IGFCacheable)path);
81 IGFDataPointList points = path.points();
82 for (int i=0; i < m_timeStep-1; i++)
83 {
84 IGFDataPoint aPointInPath = dCart.makeDataPoint();
85 double stdNormal = Math.random();
86 aPointInPath.point().put(0, stdNormal);
87 points.add(aPointInPath);
88 }
89
90 int lastPath = paths.size();
91 java.util.Vector vector=new java.util.Vector();
92 vector.addElement(new Integer(lastPath));
93 dCart.generateEventForNameSpace("STR", vector);
94
95 }
96
97 public IGFCartridge cartridge()
98 {
99 return m_cartridge;
100 }
101
102 public void cartridge(IGFCartridge cartridge)
103 {
104 m_cartridge = cartridge;
105 }
106
107 public void connectToRandomFieldWith(int dimensionality,

String scenarioName, String cartridgeName)
108 {
109 java.util.Properties props = new java.util.Properties();
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110 props.setProperty(IGFDataPoint.DIMENSION, String.
valueOf(dimensionality));

111 scenarioName(scenarioName);
112 dimensionality(dimensionality);
113 cartridge(IGFRandomFieldFactory.instance().create

(cartridgeName, props));
114 }
115
116 public String scenarioName()
117 {
118 return m_scenarioName;
119 }
120
121
122 public void scenarioName(String sceneName)
123 {
124 m_scenarioName=sceneName;
125 }
126
127 public int dimensionality()
128 {
129 return m_dimensionality;
130 }
131
132 public void dimensionality(int dim)
133 {
134 m_dimensionality = dim;
135 }
136
137
138 public void invoke(JobContext arg0, InputMessage arg1,

OutputMessage arg2) throws Exception, SystemException
139 {
140 connectToRandomFieldWith(10,"MonteCarlo","RandomField-

Cartridge");
141 m_context = arg0;
142 cartridge().compute().populator(this);
143 for (int i=0; i < 10; i++)
144 populate();
145 StringBuffer sb_test = new StringBuffer();
146 String a = ((TextInputMessage)arg1).get();
147 //perform a simple transformation (to upper case) and

append its task ID
148 sb_test = sb_test.append(a.toUpperCase()+". . . Task

ID:"+arg1.getTaskID().getValue());
149 ((TextOutputMessage)arg2).set(sb_test.toString());
150 }
151
152 }
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22
ADDITIONAL READING

In this chapter I list useful reference material on grid computing in general, includ-

ing data management in the grid, and what has brought us to this point in grid

computing and the direction(s) in which it is headed. The research material is

broken down by category ranging from research and standards bodies that are

rich in information (some of which is specifically referenced here) and technology

topics. I encourage the reader to regularly track the activities of the standards bodies

such as The Global Grid Forum, IEEE, and W3C and follow the publications of the

“father of grid computing,” Ian Foster.

One of the key objectives of a data grid is to unite the locality of where work is

done and where the data naturally reside. Terms used throughout this book include

the minimization of data movement and data affinity. It is imperative for anyone

involved in data management for grid computing to understand data affinity, includ-

ing its benefits, and how to best achieve it. The papers referenced here describe in

detail the fundamentals of data affinity, and others describe advanced methods of

data distribution policy and data synchronization policy that will be helpful in

achieving data affinity.

Happy reading!

USEFUL INFORMATION SOURCES

. IEEE Distributed Systems Online (http://dsonline.computer.org)

. John Narghton, A Brief History of the Future, Overlook Press, May 2000
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INTRODUCTION

This paper puts forth the premise that a practical and optimal data distribution

pattern of data bodies within a data grid can be described through forces of attraction

between data bodies and the force of friction as exerted on them by the physical

properties of the data grid.

As bodies in space, the planets, stars, satellites, and other celestial bodies follow

natural laws of attraction and movement within the fabric of space; single data
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bodies will follow their own set of natural laws of attraction within the physical

fabric of the data grid. Similar to the views expressed in Newtonian, Einsteinian,

and quantum physics, I will apply both the micro and macro views of data

distribution within a data grid. Similar to how quantum physics describes orbits

of electrons around the nucleus guided by discrete quantum energy levels, the

micro view for the data distribution concerns the manner in which data distribution

is present within a single data body.

On the other hand, the macro view of data distribution is concerned with the

physical data distribution patterns of multiple data bodies in relation to each other

within the space of the data grid fabric. Newtonian laws accurately describe a phys-

ical body in terms of mass and force, such as apples falling to Earth in contrast to

quantum physics, which describes the internal atomic structure of the apple. I will

follow the same approach, being less concerned with the internal data atoms and

the distribution pattern that form a single data body and more interested in the

fact that the single data body exists, having definite and measurable quantities.

These single data bodies exhibit forces of attraction to one another that will result

in an optimal distribution pattern that best meets the requirements of the larger

system, thus resulting in minimal data movement of the overall system.

Einstein’s theory of relativity describes the bending or warping of the fabric of

space and time by mass. Separately, Newton’s laws and the theory of relativity do

not describe the complete picture; a unified view that has been advanced but not

yet proven states that the curvature of space and time causes mass. The forces of

attraction of single data bodies cannot be fully described by the forces of attraction

that they exert on each other. Similarly, the unified view in physics, the physical

characteristics of the data grid fabric (DGF) will have some influence on a single

data body and the distribution patterns among the single data bodies in the data

grid space (DGS).

OBSERVATION

Most systems are composed of many different data types. For example, a portfolio

management system requires market data, a holdings portfolio, and risk exposure

data in order to determine the best course of action for when and what to buy or

sell. When this system resides in a grid topology, the data types of market data,

portfolio, and risk form their own respective single data bodies in the data grid.

Initially, the system running in the grid may not be optimized since the optimal

data distribution patterns have not been discovered yet. One may assume some

mathematical model of data distribution for initial deployment followed by contin-

ued analysis of natural data movement patterns over time. The resulting data move-

ment patterns will suggest manual adjustments of the optimal data distribution

pattern of the single data bodies in the data grid in order to minimize data movement

within the DGF during normal operation. This process will ultimately result in the

formation of single data bodies of definite size and shape in relation to each other to

minimize systemwide data movement.

258 NATURAL ATTRACTION FORCES OF DATA BODIES



While this process will ultimately result in a steady state of single data body size,

shape, and correlation to other single data bodies of the system; it is one of trial and

error that can span long periods of time. During this discovery phase, the data grid

will not be operating at optimal performance levels. This is an unacceptable beha-

vior, as grid computing is starting to gain wide acceptance in both the public and

private sectors, with new systems migrating in mass from client/server onto the

compute grid.

Therefore, a data distribution model that accurately describes a systemwide

distribution pattern is mandatory in order to start the system closer to the optimal

distribution pattern, which will minimize the settlement time required to achieve

a steady state. This initial optimal behavior can be achieved by defining the

single data bodies in quantifiable terms: the laws of attraction between the data

bodies and the effect that the “warping” of the DGF has on them.

Hypothesis

There are fundamental principles that govern the optimal distribution patterns of

single data bodies in a DGS, just as there are natural laws that govern the distribution

and motion of planetary bodies in space.

Laws of Attraction. Newton’s laws predict the motion of objects based on basic

principles of mass, force (gravity), and acceleration. All bodies have mass and

shape. The shape of a body can be either symmetric or asymmetric. Symmetric

bodies (see Figure 23.1) have a center of gravity that is centered within the

body’s shape regardless of the mass distribution. The mass distribution can be con-

centrated close to the surface, close to the center, or evenly throughout. Asymmetric

Figure 23.1. Mass, gravity, and sideways motion of symmetric objects.
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bodies, on the other hand, have a center of gravity that is uniquely placed based on

the irregular shape of the object and the mass distribution within.

The force of attraction between two bodies is directly related to each body’s

respective mass and the distance between them. The closer two bodies get, the

greater the force of gravity becomes by the inverse of the square of the distance

separating them. The formula is reflected as follows:

F ¼ G
M1M2

r2

As the force of gravity increases, the distance between the two masses decreases

until the objects collide. However, when an external force is applied to give a body a

sideways (lateral) motion, the object may end up on an orbit, just as the (Earth’s)

moon orbits Earth. Alternatively, if the sideways motion is great enough, the

object will escape the gravitational pull of the other body.

Where Newton’s laws fail, Einstein’s theory of relativity picks up. The mass of an

object affects the fabric of space. Einstein showed that space–time continuum is

warped around a body, with amount of the warping related to the mass of the

body. The warping of space is immediately evident by its effect of the bending of

light around an object. However, Einstein’s theory does not explain planetary

motion as accurately as do Newton’s laws. So an alternative theory has been put

forth in an attempt to create a unified view in which the mass of an object does

not warp space but rather the mass of an object is an expression of the curvature

of space.

How Does This Fit in with Data Distribution Patterns of Single Data Bodies
Within a Data Grid Fabric? Let’s begin by defining some of the terms used so

liberally thus far. A single data body is a homogenous data type such as market

data, security master, stock inventory, portfolio, or risk, that is used in or shared

with a larger system (application, business service, Web service, etc.) or systems

of applications. Table 23.1 gives definitions for both objects and single data bodies.

As a body in the physical space, each single data body has its own unique bound-

ary, shape, and internal data distribution pattern. The force of attraction (or the

force of gravity) between two bodies in the physical space is described by one of

the most famous formulas known, Newton’s second law, where “force” is equal

to “mass” times “acceleration”: F ¼ ma. The key component in determining the

force of gravity is mass. Mass is defined as the force required to change the

velocity of a body in space.

Applying this theory to single data bodies, the concept of mass is essential in

describing the properties of the body. Mass is key to determining the force of attrac-

tion between two single data bodies, as well as other forces in the system. Is the mass

of a single data body represented as a single expression or a collection of

expressions? This answer requires closer analysis of what constitutes a single data

body, which this chapter (white paper) will not address in detail. However, one
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such component is the coefficient of attraction between two single data bodies,

which cannot be included in the expression of mass of a single data body.

The coefficient of attraction between two single data bodies is analogous to

acceleration in the equation for force. The combination of this coefficient with the

expression for mass will define the force of attraction between two single data bodies.

Collision of Single Data Bodies. The center of gravity is the point through which

the line of action of the force passes. The force passing through the points of

center of gravity of the two objects indicates the direction or the line of impact

on the respective bodies should they actually collide.

Extending this analogy, single data bodies have size, shape, and mass, as well as a

center of gravity. Therefore, the force of attraction between two single data bodies

passes through the centers of gravity of the respective bodies (see Figure 23.2).

Differences in these analogies appear in the following areas: traverse motion

(angular momentum), collision, and the introduction of equilibrium distance. With-

out traverse motion, bodies will collide. We see this often, for example, in “shooting

stars,” which are meteorites that collide with Earth. If the body is too big to burn up

in Earth’s atmosphere, a violent collision will take place on Earth. With no sideway

(lateral) motion or angular momentum, our moon would collide into Earth!

TABLE 23.1. Terminology

Shape Symmetric or asymmetric Symmetric or asymmetric

Mass Internal/gravitational
force per unit of

acceleration

Property or collection of

properties paramount in

defining the force of

attraction between two

bodies

Internal atom distribution Mineral, water, air, etc.

atoms are distributed

within the confines

of the body

Data atoms distributed within

the confines of the body

Center of gravity Point where line of action

of the force of gravity

passes through

Point where line of action of

the force of attraction

passes through
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However, within a DGS, there is no traverse motion, so the single data bodies will

collide (see Figure 23.3). Or will they? In the physical world, two particles cannot

occupy the same space at the same time, without a violent collision. This is the first

area where the fabric of the data grid will affect the movement behavior of single

data bodies distributed within it. The physical nodes of the data grid are the com-

puters with storage space. Provided the physical storage capacity at any one node

is sufficient, that node will be capable of “holding” multiple data atoms at any

one instant in time. Therefore, collisions of single data bodies will not occur; in

fact, they will overlap with each other.

The degree to which data bodies overlap will vary from no overlap to complete

overlap. In an attempt to achieve minimal data movement throughout the system, the

forces of attraction will bring two or more single data bodies in physical proximity to

each other. However, there will come a point where the force of attraction may cause

single data bodies to “overshoot” their equilibrium distance (see Figure 23.4), the

point at which minimal data movement is reached. Therefore, a counterbalancing

force is needed to move the bodies back to equilibrium distance.

Figure 23.3. Collision of single data bodies.

Figure 23.2. Center of gravity of single data bodies.
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The equilibrium distance between two single data bodies is reached when the

force of attraction between the bodies is counterbalanced by an equal and opposite

force, thus resulting in the optimal distance with minimal data movement within a

DGS. To stay within the realm of Newtonian law, this force is similar to that of

the force of friction

Ff ¼ mN

where the force of friction (Ff) is equal to the coefficient of friction (m) times the

“weight” (N) of the single data body on the fabric of the data grid. The expression

for the weight of the single data body must include the mass of the single data body;

therefore the expression for the force of friction becomes

Ff ¼ mm

In the physical world the coefficient of friction is a single number mainly

because it is usually applied at the point of contact between two objects of uniform

Figure 23.4. Equilibrium distance between single data bodies.
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consistency. However, the physical fabric of a data grid may not be of uniform

consistency. The physical data grid is composed of machines of varying capacity

connected by a network of varying bandwidth. Therefore, the coefficient of friction

of the data grid will not be a constant but will vary across the entire data grid as a

reflection of the physical properties of the data grid itself. Figure 23.5 schematically

represents the coefficient of friction as a variable surface that can be described

by some function m(x); some of the input parameters affecting the function are as

follows:

m

NetworkBandwidth,

Network, Latency,

ComputeNodeStorageCapacity,

ComputeNodeServiceExecutionCapability,

. . . . . .

0
BBBB@

1
CCCCA

The data grid’s functions for its surface coefficient of friction, the force of fric-

tion, and the equilibrium distance have an interesting connection to the properties

of the networks connecting the nodes within the DGS. One of the key parameters

in determining the function for the coefficient of friction of a data grid is the cost

of moving data between the source node (the node where the data physically

reside) and the destination node (the node where the data are needed to perform

an operation). This cost of moving data within the data grid is inversely proportional

to network bandwidth. Therefore, the greater the network bandwidth, the greater the

coefficient of friction, and thus the greater the equilibrium distance between the two

single data bodies will be.

In summary, by defining the “mass” of a single data body, and an expression of

the force of attraction [e.g., Force of Gravity] between single data bodies, and a force

of friction exerted by the data grid on the single data bodies, models can be formed

to determine the optimal single data body distribution pattern within a data grid for

minimal data movement for a system. This minimized data movement increases

system performance and efficiency.

Figure 23.5. Coefficient of friction for the surface of a data grid.
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Effects of the Data Grid on a Single Data Body. The model cannot be complete

until expressions for determining the center of gravity of a single data body, the

force of friction, and equilibrium distance are defined. These are not simple

questions to answer; however, great insight is gained from the effects of the data

grid fabric on the single data bodies.

Einstein’s theory of relativity predicts that with mass warping of the fabric of

space and time, the mass of a single data body will have no effect on the fabric of

the data grid. In fact, it is quite the opposite. The data grid is a tangible physical

entity consisting of many machines of finite compute power and data storage

capacity. The maximum speed at which matter can travel in the data grid is not a

constant, unlike the speed of light in our physical universe. The speed with which

data move in the data grid is determined by the bandwidth, throughput, and latency

parameters of the physical network connecting the nodes of the data grid.

Where the fabric of space and time is assumed to be homogeneous, the fabric of

the data grid is not. The nodes of the data grid can vary in power and capacity,

and the networks connecting the nodes can vary from infiniband, to 100baseT, to

something less than is typically found on a WAN. Therefore the fabric of the data

grid is not homogeneous, and it is not a constant. Over time the fabric of the data

grid will change as old machines are cycled out by new ones, as networks are

upgraded, and as hardware outages restrict the data grid itself.

The relation of the data grid fabric to the data bodies contained within it is closer

to the “unified view” in physics, which states that mass does not warp space and

time; rather, it is the warping of space and time that defines mass. Compute tasks

are sent to the machines best capable of performing the task (grid computing),

and part of that determination should be data locality. If the data are not already

local on that machine, the data grid must move them there; the exact phenomenon

must be minimized. Therefore, the capacity of each individual grid node and the

characteristics of the network connecting the nodes will determine

. Where on the data grid the data must be and the quantity of data that can be held

at a node. These conditions will determine the shape and density of the single

data body, which has a direct impact on the single data body’s center of gravity.

. The shape of the coefficient of friction surface of the data grid, which will

influence the force of friction between two single data bodies and in turn the

equilibrium distance between the two single data bodies.

Conclusions

There exists a family of expressions that represent the physical fabric of the data

grid, the macro properties that describe single data bodies, and the forces that

they exert on each other, resulting in a steady-state data distribution pattern so

that systemwide data movement is minimized.

These expressions include, most importantly, the mass of a single data body.

Mass is used in the expressions for the force of attraction between two single data

bodies and the force of friction that counterbalances the force of attraction to achieve
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the equilibrium distance between the two single data bodies. The expression for the

mass of a single data body should describe external and measurable properties of the

single data body that describe the composition of the body.

Unique to any two pairs of single data bodes is the coefficient of attraction. This is

the measure of the interdependencies between two single data bodies in the larger

system. For example, in a risk management system, risk exposure is dependent on

the holding’s portfolio and market data. Thus, there will be a coefficient of attraction

between the risk exposure single data body and the market data single data body and

the portfolio single data body.

The expressions of the forces for data distribution are as follows:

. The force of attraction (F) is equal to the mass of the single data body (m) times

the coefficient of attraction between two single data bodies (a):

F ¼ ma

. The force of friction (Ff) is the product of the mass of a single data body (m)

times the coefficient of friction (m), which describes the physical properties

of the fabric of the data grid:

Ff ¼ mm

The physical properties of the data grid have a direct effect on the size, shape,

density, and therefore the center of gravity of a single data body. They are collec-

tively expressed in a coefficient, called the coefficient of friction of the fabric of

the data grid. It is more realistic that the coefficient of friction is not a single

number, but rather a mathematical function that will exhibit different results in

different areas of the data grid.

m

NetworkBandwidth,

Network, Latency,

ComputeNodeStorageCapacity,

ComputeNodeServiceExecutionCapability,

� � � � � �

0
BBBB@

1
CCCCA

Thus, the force of attraction between two single data bodies, countered by the

force of friction between the same two single data bodies, will result in an

equilibrium distance that represents the steady state of the two single data bodies

where the data movement within the data grid space is at a minimum.
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24
GLOSSARY OF TERMS

For the reader, the following glossary is provided for terms used throughout this

book. The vocabulary words range from business-specific, financial/accounting
terms, information technology in origin, grid computing jargon, and other terms

introduced in this book that may or may not make their way into the grid technology

jargon mainstream.

API See definition for Application Programmatic Interface.

Application Programmatic Interface Application Programmatic Interface (API)

is a standard programming language (e.g., Cþþ, Java) that allows access to the

information from the system with which it is communicating. “Standard” in this

context refers only to the product or system.

C# This is an object-oriented language used in a Microsoft.Net environment for

building applications and systems.

compute grid This is a grid that enables sharing, management, and distribution of

tasks based on configurable service-level policies. It provides the core resource

and task management services for grid computing.

compute utility This provides for customer resource consolidation and location

independence, extending their capability to optimize the center for their business

needs and for a particular pattern of workload, thus making the data center

actually platform-architecture-transparent and providing a much more simple

and convenient “high-level” virtual architecture (see Ref. 35, p. 2).
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data affinity This is a key data management feature or objective of any data grid

that describes data locality or “physical closeness” of data in the grid to compute

nodes where a running task is accessing that data.

data atom As described in this book, the data atom is the smallest element of data

for which a data set can be broken down. The data grid will apply the manage-

ment policies of synchronization, distribution, and replication to the data atoms

of a data region.

data grid This provides the data management functions that are required for data

access, synchronization, and distribution of a grid.

data marshaling A process of packaging the data in formats that other appli-

cations understand. Often, the format of the marshaled data is common and

machine-independent.

data region See the definition of regionalization.

distributed file system In a client/server environment, this is a collection of files,

physically distributed across any number of machines on a network that are

logically structured into a hierarchical organization by one or more coordinating

servers. Clients of the logical file system access it via the distributed file system

servers.

distribution policy The data distribution policy describes the distribution pattern

of data within a data grid. The scope of the data distribution policy can range

from a subset of data atoms within a data region to the distribution of data regions

within the entire data grid space. The finest data granularity point on which a data

distribution policy can operate is a data atom.

document type definition Document type definition (DTD) is a schema speci-

fication method for SGML and XML documents where the definition for the

data is represented.

DTD See definition for document type definition.

EAI See definition for enterprise application integration.

EII See definition for enterprise information integration.

enterprise application integration Enterprise application integration (EAI) is a

best-practices method of architecture and implementation using technology

tools (typically termed middleware) enabling the integration of applications

across an enterprise (data integration). It integrates information at the application

level.

enterprise information integration Enterprise information integration (EII) is a

best-practices method of architecture and implementation using technology tools

enabling the integration of information at the business level across an enterprise.

event notification policy The event notification policy describes events and how

they are to be managed with the data grid. Subscribers of events can range from

other data grid management policies (e.g., synchronization policies) to external

user programs. The event itself indicates that a data atom has changed state

and an action must be taken.
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eXtensible Markup Language eXtensible Markup Language (XML) consists of

self-describing data with customized user tags for data definition, data proces-

sing, and data parsing among applications, systems, and any organizations.

The programs written to process XML data structures normally obtain the data

structure from the document type definition (DTD).

eXtensible Style Language eXtensible Style Language (XSL) is a language used

to create a style sheet for specifying the style of an XML document.

Globus Project This is an organization that conducts research to create funda-

mental technologies for grid computing and offers a toolkit called the Globus

Toolkit (more information can be found on the Web site www.globus.org).

grid computing Grid computing is any distributed cluster of compute resources

that provide an environment for the sharing and managing of the resource for

the distribution of tasks based on configurable service-level policies.

GridFTP This is an attempt by the Globus Project to establish a universal data

transfer protocol for grid computing through the use of a common File Transfer

Protocol (FTP).

high availability High availability (HA) is the ability of a resource or service to

withstand failure, typically through resource duplication in a hot-standby, moni-

toring, failure detection, and finally automated failover to the hot-standby

resource in such a fashion that the user of the resource detects only a reduction

in resource response time during the failover process.

Java Database Connection Java Database Connection (JDBC) is a set of Java

APIs that allow access to any database that supports SQL. The API executes

the appropriate SQL command to perform the respective operation.

JDBC See the definition for Java Database Connection.

LAN See the definition for local-area network.

level 0 data grid These data grids are optimal for data sets that are static in nature.

level 1 data grid These data grids are optimal for data sets that are dynamic in

nature.

local-area network A local-area network (LAN) consists of local computers

networked together and confined to a limited geographic space such as a floor

or a building.

Monte Carlo simulation This is a mathematical method that uses statistical tech-

niques (e.g., randomness) to model complex systems in a variety of disciplines

such as physics, biopharmaceuticals, and finance.

object–relational database management system Object–relational database

management (ORDBMS) is a data management system that enhances the rela-

tional data model by supporting arrays, inheritance, and functions that represent

some of the basic concepts of object-oriented programming.

OLAP Online analytical processing (OLAP) is the collection, management,

process, and reporting of multidimensional data.

ORDBMS See definition of object–relational database management system.
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Parallelize This is a unit of work that can be subdivided into smaller atomic sub-

units of work called “worklets” in such a way that each subunit of work can be

run in parallel across physically dispersed computers (compute grid).

PostgreSQL PostgreSQL is an object–relational database management system

(ORDBMS).

QoS See definition of quality of service.

quality of service Quality of service (QoS) is the level of service as defined by the

business unit that the grid architecture needs to meet.

regionalization Also referred to as a data region, this is the logical grouping

of data atoms within the data grid space. A simple analogy would be a data

region in a distributed data management system or a database in a relational

data management system.

replication policy Data replication policy describes exactly how the data atoms

are to be replicated within a data grid.

SGML See definition for Standard Generalized Markup Language.

SQL See definition for Structured Query Language.

SQL3 See the definition for SQL99.

SQL99 Also referred to as SQL3, this is an ANSI/ISO standard that replaces

SQL92 addressing advanced topics such as object–relational database concepts,

call level interfaces, and integrity management not found in SQL92.

Standard Generalized Markup Language Standard Generalized Markup

Language (SGML) is a standard metalanguage, a description of how to specify

a document markup language or tag set; for example, XML is a SGML-based

language.

Standard Template Library The Standard Template Library (STL) is a Cþþ
library of container classes, algorithms, and iterates.

STL See definition for Standard Template Library.

STP See definition for straight-through processing.

straight-through processing Straight-through processing (STP) is a best-

practices method of architecture and implementation using technology tools

(typically termed middleware) that automates end-to-end processing of trans-

actions from a business perspective.

Structured Query Language Structured Query Language (SQL) is a data man-

agement and query language for databases. There is no standard SQL today,

but there are many extensions to the ANSI-SQL.

synchronization policy The data synchronization policy describes how the data

atoms within a data region are to synchronize with each other. Types of

synchronization are optimistic (showing complete trust in the data grid to syn-

chronize the data atoms in a best-faith method), pessimistic (complete end-to-

end transactional behavior), or somewhere in between these two extremes.

WAN See description for wide-area network.
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wide-area network A wide-area network (WAN) is a collection of LANs

typically spanning vast geographic distances.

worklet This is a unit of work that has counterparts, all of which are atomic with

respect to each other and contribute to a larger work unit.

XML See the definition for eXtensible Markup Language.

XSL See definition for eXtensible Style Language.
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