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Preface

When reviewing, or contemplating writing, a textbook on engineering thermodynamics, it
is necessary to ask: what does this book offer that is not already available? The author has
taught thermodynamics to mechanical engineering students, at both undergraduate and
post-graduate level, for 25 years and has found that the existing texts cover very
adequately the basic theories of the subject. However, by the final years of a course, and at
post-graduate level, the material which is presented is very much influenced by the
lecturer, and here it is less easy to find one book that covers all the syllabus in the required
manner. This book attempts to answer that need, for the author at least.

The engineer is essentially concerned with manufacturing devices to enable tasks to be
preformed cost effectively and efficiently. Engineering has produced a new generation of
automatic ‘slaves’ which enable those in the developed countries to maintain their lifestyle
by the consumption of fuels rather than by manual labour. The developing countries still
rely to a large extent on ‘manpower’, but the pace of development is such that the whole
world wishes to have the machines and quality of life which we, in the developed
countries, take for granted: this is a major challenge to the engineer, and particularly the
thermodynamicist. The reason why the thermodynamicist plays a key role in this scenario
is because the methods of converting any form of energy into power is the domain of
thermodynamics: all of these processes obey the four laws of thermodynamics, and their
efficiency is controlled by the Second Law. The emphasis of the early years of an
undergraduate course is on the First Law of thermodynamics, which is simply the
conservation of energy; the First Law does not give any information on the quality of the
energy. It is the hope of the author that this text will introduce the concept of the quality of
energy and help future engineers use our resources more efficiently. Ironically, some of
the largest demands for energy may come from cooling (e.g. refrigeration and air-
conditioning) as the developing countries in the tropical regions become wealthier — this
might require a more basic way of considering energy utilisation than that emphasised in
current thermodynamic texts. This book attempts to introduce basic concepts which should
apply over the whole range of new technologies covered by engineering thermodynamics.
It considers new approaches to cycles, which enable their irreversibility to be taken into
account; a detailed study of combustion to show how the chemical energy in a fuel is
converted into thermal energy and emissions; an analysis of fuel cells to give an
understanding of the direct conversion of chemical energy to electrical power; a detailed
study of property relationships to enable more sophisticated analyses to be made of both
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high and low temperature plant; and irreversible thermodynamics, whose principles might
hold a key to new ways of efficiently converting energy to power (e.g. solar energy, fuel
cells).

The great advances in the understanding and teaching of thermodynamics came rapidly
towards the end of the 19th century, and it was not until the 1940s that these were
embodied in thermodynamics textbooks for mechanical engineers. Some of the approaches
used in teaching thermodynamics still contain the assumptions embodied in the theories of
heat engines without explicitly recognising the limitations they impose. It was the desire to
remove some of these shortcomings, together with an increasing interest in what limits the
efficiency of thermodynamic devices, that led the author down the path that has
culminated in this text.

I am still a strong believer in the pedagogical necessity of introducing thermodynamics
through the traditional route of the Zeroth, First, Second and Third Laws, rather than
attempting to use the Single-Axiom Theorem of Hatsopoulos and Keenan, or The Law of
Stable Equilibrium of Haywood. While both these approaches enable thermodynamics to
be developed in a logical manner, and limit the reliance on cyclic processes, their
understanding benefits from years of experience — the one thing students are lacking. 1
have structured this book on the conventional method of developing the subject. The other
dilemma in developing an advanced level text is whether to introduce a significant amount
of statistical thermodynamics; since this subject is related to the particulate nature of
matter, and most engineers deal with systems far from regions where molecular motion
dominates the processes, the majority of the book is based on equilibrium ther-
modynamics; which concentrates on the macroscopic nature of systems. A few examples
of statistical thermodynamics are introduced to demonstrate certain forms of behaviour,
but a full understanding of the subject is not a requirement of the text.

The book contains 17 chapters and, while this might seem an excessive number, these
are of a size where they can be readily incorporated into a degree course with a modular
structure. Many such courses will be based on two hours lecturing per week, and this
means that most of the chapters can be presented in a single week. Worked examples are
included in most of the chapters to illustrate the concepts being propounded, and the
chapters are followed by exercises. Some of these have been developed from texts which
are now not available (e.g. Benson, Haywood) and others are based on examination
questions. Solutions are provided for all the questions. The properties of gases have been
derived from polynomial coefficients published by Benson: all the parameters quoted have
been evaluated by the author using these coefficients and equations published in the text —
this means that all the values are self-consistent, which is not the case in all texts. Some of
the combustion questions have been solved using computer programs developed at
UMIST, and these are all based on these gas property polynomials. If the reader uses other
data, e.g. JANAF tables, the solutions obtained might differ slightly from those quoted.

Engineering thermodynamics is basically equilibrium thermodynamics, although for the
first two years of the conventional undergraduate course these words are used but not often
defined. Much of the thermodynamics done in the early years of a course also relies
heavily on reversibility, without explicit consideration of the effects of irreversibility. Yet,
if the performance of thermodynamic devices is to be improved, it is the irreversibility that
must be tackled. This book introduces the effects of irreversibility through considerations
of availability (exergy), and the concept of the endoreversible engine. The thermal
efficiency is related to that of an ideal cycle by the rational efficiency — to demonstrate
how closely the performance of an engine approaches that of a reversible one. It is also
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shown that the Camnot efficiency is a very artificial yardstick against which to compare real
engines: the internal and external reversibilities imposed by the cycle mean that it produces
zero power at the maximum achievable efficiency. The approach by Curzon and Ahlborn
to define the efficiency of an endoreversible engine producing maximum power output is
introduced: this shows the effect of external irreversibility. This analysis also introduces
the concept of entropy generation in a manner readily understandable by the engineer; this
concept is the cornerstone of the theories of irreversible thermodynamics which are at the
end of the text.

Whilst the laws of thermodynamics can be developed in isolation from consideration
of the property relationships of the system under consideration, it is these relationships
that enable the equations to be closed. Most undergraduate texts are based on the
evaluation of the fluid properties from the simple perfect gas law, or from tables and
charts. While this approach enables typical engineering problems to be solved, it does not
give much insight into some of the phenomena which can happen under certain
circumstances. For example, is the specific heat at constant volume a function of
temperature alone for gases in certain regions of the state diagram? Also, why is the
assumption of constant stagnation, or even static, temperature valid for flow of a perfect
gas through a throttle, but never for steam? An understanding of these effects can be
obtained by examination of the more complex equations of state. This immediately
enables methods of gas liquefaction to be introduced.

An important area of engineering thermodynamics is the combustion of hydrocarbon
fuels. These fuels have formed the driving force for the improvement of living standards
which has been seen over the last century, but they are presumably finite, and are
producing levels of pollution that are a constant challenge to engineers. At present, there is
the threat of global warming due to the build-up of carbon dioxide in the atmosphere: this
requires more efficient engines to be produced, or for the carbon--hydrogen ratio in fuels
to be reduced. Both of these are major challenges, and while California can legislate for
the Zero Emissions Vehicle (ZEV) this might not be a worldwide solution. It is said that
the ZEV is an electric car running in Los Angeles on power produced in Arizona! —
obviously a case of exporting pollution rather than reducing it. The real challenge is not
what is happening in the West, although the energy consumption of the USA is prodigious,
but how can the aspirations of the East be met. The combustion technologies developed
today will be necessary to enable the Newly Industrialised Countries (NICs) to approach
the level of energy consumption we enjoy. The section on combustion goes further than
many general textbooks in an attempt to show the underlying general principles that affect
combustion, and it introduces the interaction between thermodynamics and fluid
mechanics which is so important to achieving clean and efficient combustion. The final
chapter introduces the thermodynamic principles of fuel cells, which enable the direct
conversion of the Gibbs energy in the fuel to electrical power. Obviously the fuel cell
could be a major contributor to the production of ‘clean’ energy and is a goal for which it
is worth aiming,.

Finally, a section is included on irreversible thermodynamics. This is there partly as an
intellectual challenge to the reader, but also because it introduces concepts that might gain
more importance in assessing the performance of advanced forms of energy conversion.
For example, although the fuel cell is basically a device for converting the Gibbs energy of
the reactants into electrical energy, is its efficiency compromised by the thermodynamics
of the steady state that are taking place in the cell? Also, will photo-voltaic devices be
limited by phenomena considered by irreversible thermodynamics?
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I have taken the generous advice of Dr Joe Lee, a colleague in the Department of
Chemistry, UMIST, and modified some of the wording of the original text to bring it in
line with more modem chemical phraseology. I have replaced the titles Gibbs free energy
and Helmholtz free energy by Gibbs and Helmholtz energy respectively: this should not
cause any problems and is more logical than including the word ‘free’. I have bowed, with
some reservations, to using the internationally agreed spelling sulfur, which again should
not cause problems. Perhaps the most difficult concept for engineers will be the
replacement of the terms ‘mol’ and ‘kmol’ by the term ‘amount of substance’. This has
been common practice in chemistry for many years, and separates the general concept of a
quantity of matter from the units of that quantity. For example, it is common to talk of a
mass of substance without defining whether it is in grams, kilograms, pounds, or whatever
system of units is appropriate. The use of the phrase ‘amount of substance’ has the same
generalising effect when dealing with quantities based on molecular equivalences. The
term mol will still be retained as the adjective and hence molar enthalpy is the enthalpy per
unit amount of substance in the appropriate units (e.g. kJ/mol, kJ/kmol, Btu/lb-mol, etc).

I would like to acknowledge all those who have helped and encouraged the writing of
this text. First, I would like to acknowledge the influence of all those who attempted to
teach me thermodynamics; and then those who encouraged me to teach the subject, in
particular Jim Picken, Frank Wallace and Rowland Benson. In addition, I would like to
acknowledge the encouragement to develop the material on combustion which I received
from Roger Green during an Erskine Fellowship at the University of Canterbury, New
Zealand. Secondly, I would like to thank those who have helped in the production of this
book by reading the text or preparing some of the material. Amongst these are Ed Moses,
Marcus Davies, Poh Sung Loh, Joe Lee, Richard Pearson and John Horlock; whilst they
have read parts of the text and provided their comments, the responsibility for the accuracy
of the book lies entirely in my hands. I would also like to acknowledge my secretary, Mrs
P Shepherd, who did some of the typing of the original notes. Finally, I must thank my
wife, Veronica, for putting up with lack of maintenance in the house and garden, and
many evenings spent alone while I concentrated on this work.

D E Winterbone
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Symbols

activity coefficient

specific non-flow availability

coefficient in van der Waals’ equation

specific flow availability

enthalpy coefficient for gas properties

non-flow availability

area

specific exergy

coefficient in van der Waals’ equation

exergy

specific heat capacity at constant pressure (sometimes abbreviated to specific
heat at constant pressure)

mean value of specific heat capacity at constant pressure over a range of
temperatures

molar specific heat capacity at constant pressure (i.e. specific heat capacity at
constant pressure based on mols)

specific heat capacity at constant volume (sometimes abbreviated to specific
heat at constant volume)

molar specific heat capacity at constant volume (i.e. specific heat capacity at
constant volume based on mols)

conductivity for heat flow into engines

increment in — usually used for definite integral, e.g. property, etc

mass diffusivity

specific internal energy

internal energy

activation energy

electromotive force of a cell (emf)

standard emf of a cell

open circuit voltage

specific Helmholtz energy (specific Helmholtz function)

Helmbholtz energy (Helmholtz function)

force
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ny

Faraday constant (charge carried by kmol of unit positive valency
[96 487 kC/kmol])

specific Gibbs energy (specific Gibbs function)

specific Gibbs energy at datum temperature (or absolute zero)
acceleration due to gravity

Gibbs energy (Gibbs function)

specific enthalpy

specific enthalpy at datum temperature (or absolute zero)
height

enthalpy

irreversibility

electrical current

thermodynamic velocity, or flow

electrical flow rate

heat flow rate

entropy flow rate

isothermal compressibility, isothermal bulk modulus
thermal conductivity

Boltzmann constant [1.38062 x 102 J/K]

adiabatic, or isentropic, compressibility

rate of reaction

Karlovitz number [(«'/11)(6,/ )]

equilibrium constant

length

Taylor microscale

coefficient relating thermodynamic force and velocity

Lewis number [A/pc,D]

mass

molecular weight

polytropic index

amount of substance, chemical amount (sometimes referred to as number of
mols)

reaction order

Avogadro constant (6.023 x 10% kmol ')

pressure

partial pressure of component i

datum pressure (often 1 bar or 1 atmosphere)

Prandtl number [c,u/k]

specific heat (energy) transfer

electrical charge

heat (energy) transfer

heat of transport

enthalpy of reaction (energy of reaction at constant pressure)
calorific value (at constant pressure) = —Q,

internal energy of reaction (energy of reaction at constant volume)
calorific value (at constant volume) = —Q,

specific gas constant

rate of formation, rate of reaction
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Symbols

radical

electrical resistance

universal gas constant

Reynolds number [pvl/u]

specific entropy

specific entropy at datum temperature (or absolute zero)
entropy

entropy of transport

temperature on discontinuous scale

time

temperature on absolute scale (thermodynamic temperature)
specific intrinsic internal energy

specific intrinsic internal energy at datum temperature (or absolute zero)
turbulence intensity

laminar burning velocity

turbulent burning velocity

intrinsic internal energy

overall heat transfer coefficient

specific volume

volume

velocity

voltage

mean piston speed (for reciprocating engines)
specific work

maximum specific work

work

dryness fraction (quality)

molar fraction

distance

thermodynamic force

mass fraction

valency

Greek characters
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AH( )

degree of dissociation

[A)/[A)

branching multiplication coefficient

molecular thermal diffusivity

crank angle (in internal combustion engines)

coefficient of thermal expansion

[B1/B].

increment in — usually used for indefinite integral, e.g. work (W), heat (Q)
(D]/ID].

increment in — usually used for indefinite integral, e.g. work (W), heat (Q)
atomisation energy

enthalpy of formation

dissociation energy
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fraction of reaction

potential difference, voltage
Seebeck coefficient for material pair A, B
eddy diffusivity

ratio of specific heats (c,/c,)
electrical conductivity

dynamic viscosity

Joule—Thomson coefficient
chemical potential

electrochemical potential
kinematic viscosity

Peltier coefficient for material pair A, B
entropy generation per unit volume
Thomson coefficient
stoichiometric coefficient
[C/IC].

efficiency

equivalence ratio

density

specific exergy

inner electric potential of a phase
temperature ratio

exergy
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dead state conditions

value from actual cycle, as opposed to ideal cycle

available (as in energy)

backward (reaction)

burned (products of combustion)

boiler

at critical point, e.g. pressure, temperature, specific volume
cold (as in temperature of reservoir)

COMpressor

equilibrium molar density

forward (reaction)

value for saturated liquid, e.g. A; = enthalpy of saturated liquid
difference between properties on saturated vapour and saturated liquid lines, i.e.
heg=h,— h

value f:)r saturated gas, e.g. h, = enthalpy of saturated gas
gaseous state (as in reactants or products)

constant enthalpy

hot (as in temperature of reservoir)

inversion

ith constituent

into system

isentropic (as in a process)
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use

latent energy required for evaporation (equals hg, or uy,)
liquid state (as in reactants or products)
laminar

maximum value, or maximum useful work
specific property based on mols

net (as in work output from system)
overall

open circuit

out of system

at constant pressure

products

pump

not used by cycle (usually energy)

energy contained in molecules by resonance
rational (as in efficiency)

reactants

reduced properties (in Law of Corresponding States)
reversible

shaft (as in work)

at constant entropy

surroundings

system

turbine

at constant temperature

thermal

useful (as in work)

unburned (as of reactants)

unavailable (as in energy)

universe (i.e. system + surroundings)
useful (as in work)

at constant specific volume

Symbols

Xix



Contents

Preface ix
Structure xiii
Symbols XV
State of Equilibrium 1
1.1 Equilibrium of a thermodynamic system 2
1.2  Helmholtz energy (Helmholtz function) 5
1.3  Gibbs energy (Gibbs function) 6
1.4  The use and significance of the Helmholtz and Gibbs energies 6
1.5  Concluding remarks 9
Problems 10
Availability and Exergy 13
2.1  Displacement work 13
2.2 Availability 14
23  Examples 15
2.4  Available and non-available energy 21
2.5  Irreversibility 21
2.6  Graphical representation of available energy and irreversibility 25
2.7  Availability balance for a closed system 27
2.8  Availability balance for an open system 34
29  Exergy 36
2.10 The variation of flow exergy for a perfect gas 42
2.11 Concluding remarks 43
Problems 43
Pinch Technology 47
3.1 A heat transfer network without a pinch problem 49
3.2 A heat transfer network with a pinch point 56
3.3  Concluding remarks 60

Problems 61



vi Contents

4 Rational Efficiency of a Powerplant

4.1 The influence of fuel properties on thermal efficiency
4.2 Rational efficiency
43  Rankine cycle

44  Examples
4.5 Concluding remarks
Problems

5 Efficiency of Heat Engines at Maximum Power

5.1  Efficiency of an internally reversible heat engine when producing maximum
power output

5.2  Efficiency of combined cycle internally reversible heat engines when
producing maximum power output

5.3 Concluding remarks

Problems

6 General Thermodynamic Relationships (single component
systems, or systems of constant composition)

6.1  The Maxwell relationships

6.2  Uses of the thermodynamic relationships

6.3  Tds relationships

6.4 Relationships between specific heat capacities
6.5  The Clausius—Clapeyron equation

6.6 Concluding remarks

Problems

7 Equations of State

7.1  Ideal gas law

7.2  Van der Waals’ equation of state

7.3  Law of corresponding states

7.4  Isotherms or isobars in the two-phase region
7.5  Concluding remarks

Problems

8 Liquefaction of Gases

8.1 Liquefaction by cooling — method (i)

8.2 Liquefaction by expansion — method (ii)
8.3  The Joule—Thomson effect

8.4  Linde liquefaction plant

8.5 Inversion point on p—v—T surface for water
8.6 Concluding remarks

Problems

9 Thermodynamic Properties of Ideal Gases and ldeal Gas
Mixtures of Constant Composition

9.1  Molecular weights

64

65
69
n
82
82

85

85

92
96
96

100

100
104
108
111
115
118
118

121

121
123
125
129
131
132

135

135
140
141
148
150
155
155

158
158



10

1

12

13

Contents vii

9.2  State equation for ideal gases

9.3  Tables of u(T) and h(T) against T
9.4  Mixtures of ideal gases

9.5  Entropy of mixtures

9.6 Concluding remarks

Problems

Thermodynamics of Combustion

10.1 Simple chemistry

10.2 Combustion of simple hydrocarbon fuels

10.3 Heats of formation and heats of reaction

10.4 Application of the energy equation to the combustion process —
a macroscopic approach

10.5 Combustion processes

10.6 Examples

10.7 Concluding remarks

Problems

Chemistry of Combustion

11.1 Bond energies and heats of formation
11.2 Energy of formation
11.3 Enthalpy of reaction
114 Concluding remarks

Chemical Equilibrium and Dissociation

12.1 Gibbs energy

12.2 Chemical potential, u

12.3 Stoichiometry

12.4 Dissociation

12.5 Calculation of chemical equilibrium and the law of mass action
12.6 Variation of Gibbs energy with composition

12.7 Examples of the significance of K|,

12.8 The Van't Hoff relationship between equilibrium constant and heat of reaction
12.9 The effect of pressure and temperature on degree of dissociation
12.10 Dissociation calculations for the evaluation of nitric oxide

12.11 Dissociation problems with two, or more, degrees of dissociation
12.12 Concluding remarks

Problems

The Effect of Dissociation on Combustion Parameters

13.1 Calculation of combustion both with and without dissociation
13.2 The basic reactions

13.3 The effect of dissociation on peak pressure

13.4 The effect of dissociation on peak temperature

13.5 The effect of dissociation on the composition of the products
13.6 The effect of fuel on composition of the products

13.7 The formation of oxides of nitrogen

159
164
172
175
178
178

182

184
185
187

188
192
195
205
205

208

208
210
216
216

218

218
220
221
222
225
229
231
238
239
242
245
259
259

265

267
267
268
268
269
272
273



viii Contents

14 Chemical Kinetics

14.1
14.2
14.3
144
14.5
14.6
14.7

Introduction

Reaction rates

Rate constant for reaction, k

Chemical kinetics of NO

The effect of pollutants formed through chemical kinetics
Other methods of producing power from hydrocarbon fuels
Concluding remarks

Problems

15 Combustion and Flames

15.1
15.2
15.3
154
15.5
15.6
15.7
15.8
159

Introduction

Thermodynamics of combustion
Explosion limits

Flames

Flammability limits

Ignition

Diffusion flames

Engine combustion systems
Concluding remarks

Problems

16 lrreversible Thermodynamics

16.1
16.2
16.3
164
16.5
16.6
16.7

16.8
16.9

Introduction

Definition of irreversible or steady state thermodynamics
Entropy flow and entropy production

Thermodynamic forces and thermodynamic velocities
Onsager’s reciprocal relation

The calculation of entropy production or entropy flow

Thermoelectricity — the application of irreversible thermodynamics to a

thermocouple
Diffusion and heat transfer
Concluding remarks

Problems

17 Fuel Cells

171
17.2
173
17.4
17.5

Electric cells

Fuel cells

Efficiency of a fuel cell

Thermodynamics of cells working in steady state
Concluding remarks

Problems

Bibliography

Index (including Index of tables of properties)

276

276
276
279
280
286
288
289
289

291

291
292
294
296
303
304
305
307
314
314

316

316
317
317
318
319
321

322
332
342
342

345

346
351
358
359
361
361

363

369



1

State of Equilibrium

Most texts on thermodynamics restrict themselves to dealing exclusively with equilibrium
thermodynamics. This book will also focus on equilibrium thermodynamics but the effects
of making this assumption will be explicitly borne in mind. The majority of processes met
by engineers are in thermodynamic equilibrium, but some important processes have to be
considered by non-equilibrium thermodynamics. Most of the combustion processes that
generate atmospheric pollution include non-equilibrium effects, and carbon monoxide
(CO) and oxides of nitrogen (NO,) are both the result of the inability of the system to
reach thermodynamic equilibrium in the time available.

There are four kinds of equilibrium, and these are most easily understood by reference
to simple mechanical systems (see Fig 1.1).

(i) Stable equilibrium Marble in bowl.

For stable equilibrium AS),* <0 and AE)>0.
(AS is the sum of Taylor’s series terms).

Any deflection causes motion back towards
equilibrium position.

* Discussed later.

(ii) Neutral equilibrium

Marble in trough.

AS); =0 and AE), =0 along trough axis. Marble
in equilibrium at any position in

x-direction.

(iii) Unstable equilibrium

Marble sitting on maximum point of surface.
AS)y>0and AE);<0.

Any movement causes further motion from
‘equilibrium’ position.

Fig. 1.1 States of equilibrium
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(iv) Metastable equilibrium

Marble in higher of two troughs. Infinitesimal
variations of position cause return to equilibrium
— larger variations cause movement to lower
level.

Fig. 1.1 Continued
* The difference between AS and dS

Consider Taylor’s theorem

AS = — Ax+ — —— Ax’ Ax®
dx® 6 dx°
1 ds
=dS+— —A
2

Thus dS is the first term of the Taylor’s series only. Consider a circular bowl at the position where the tangent is
horizontal. Then

ds
- =0
dx
(x=0)
T ¥
However AS = dS + — — Ax” + --- # 0, because — etc are not zero.
2 dx? dx?

Hence the following statements can be derived for certain classes of problem

stable equilibrium dS)=0
(AS)<0
neutral equilibrium @dS) =0
(AS) =0
unstable equilibrium (dS)=0
(AS) >0

(see Hatsopoulos and Keenan, 1972).

1.1 Equilibrium of a thermodynamic system

The type of equilibrium in a mechanical system can be judged by considering the variation
in energy due to an infinitesimal disturbance. If the energy (potential energy) increases



Equilibrium of a thermodynamic system 3

8Q
T1 '_* Tz

Fig. 1.2 Heat transfer between two blocks

then the system will return to its previous state, if it decreases it will not return to that
state.

A similar method for examining the equilibrium of thermodynamic systems is required.
This will be developed from the Second Law of Thermodynamics and the definition of
entropy. Consider a system comprising two identical blocks of metal at different
temperatures (see Fig 1.2), but connected by a conducting medium. From experience the
block at the higher temperature will transfer ‘heat’ to that at the lower temperature. If the
two blocks together constitute an isolated system the energy transfers will not affect the
total energy in the system. If the high temperature block is at an temperature 7, and the
other at T, and if the quantity of energy transferred is dQ then the change in entropy of the
high temperature block is

6
as, = -2 (1.1)
T
and that of the lower temperature block is
0
as, = +22 1.2)
I;

Both eqns (1.1) and (1.2) contain the assumption that the heat transfers from block 1, and
into block 2 are reversible. If the transfers were irreversible then eqn (1.1) would become

)
as, > -2 (1.12)
T,
and eqn (1.2) would be
p)
ds, > L (1.2a)

2

Since the system is isolated the energy transfer to the surroundings is zero, and hence the
change of entropy of the surroundings is zero. Hence the change in entropy of the system
is equal to the change in entropy of the universe and is, using eqns (1.1) and (1.2),
0 0 1 1
ds=ds, +ds, = -2 %2 _sof L1 (13)
T L L 1

Since T7,>7,, then the change of entropy of both the system and the universe is
dS =(6Q/T,T,)(T, — T,) >0. The same solution, namely dS>0, is obtained from eqns
(1.1a) and (1.2a).

The previous way of considering the equilibrium condition shows how systems will tend
to go towards such a state. A slightly different approach, which is more analogous to the
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one used to investigate the equilibrium of mechanical systems, is to consider these two
blocks of metal to be in equilibrium and for heat transfer to occur spontaneously (and
reversibly) between one and the other. Assume the temperature change in each block is
8T, with one temperature increasing and the other decreasing, and the heat transfer is 6Q.
Then the change of entropy, dS, is given by

= o0 _ %0 = o0 (T-0T-T-96T)
T+0T T-8T (T+T)(T-6T)

= _%Q (—28T) = —260 ar (1.4)
T + 8T T?

This means that the entropy of the system would have decreased. Hence maximum entropy
is obtained when the two blocks are in equilibrium and are at the same temperature. The
general criterion of equilibrium according to Keenan (1963) is as follows.

For stability of any system it is necessary and sufficient that, in all possible
variations of the state of the system which do not alter its energy, the variation of
entropy shall be negative.

This can be stated mathematically as
AS)<0 1.5)

It can be seen that the statements of equilibrium based on energy and entropy, namely
AE)¢>0 and AS); <0, are equivalent by applying the following simple analysis. Consider
the marble at the base of the bowl, as shown in Fig 1.1(1): if it is lifted up the bowl, its
potential energy will be increased. When it is released it will oscillate in the base of the
bowl until it comes to rest as a result of ‘friction’, and if that ‘friction’ is used solely to
raise the temperature of the marble then its temperature will be higher after the process
than at the beginning. A way to ensure the end conditions, i.e. the initial and final
conditions, are identical would be to cool the marble by an amount equivalent to the
increase in potential energy before releasing it. This cooling is equivalent to lowering the
entropy of the marble by an amount AS, and since the cooling has been undertaken to
bring the energy level back to the original value this proves that AE);>0 and AS);<0.
Equilibrium can be defined by the following statements:

1) if the properties of an isolated system change spontaneously there is an increase
in the entropy of the system;

(ii)  when the entropy of an isolated system is at a maximum the system is in
equilibrium;

(i)  if, for all the possible variations in state of the isolated system, there is a
negative change in entropy then the system is in stable equilibrium.

These conditions may be written mathematically as:

(i) dS),>0 spontaneous change (unstable equilibrium)
(i) dS),=0 equilibrium (neutral equilibrium)
(i11)) AS) <0 criterion of stability (stable equilibrium)




Helmholtz energy (Helmholtz function) 5

1.2 Helmbholtz energy (Helmholtz function)

There are a number of ways of obtaining an expression for Helmholtz energy, but the one
based on the Clausius derivation of entropy gives the most insight.

In the previous section, the criteria for equilibrium were discussed and these were
derived in terms of AS),. The variation of entropy is not always easy to visualise, and it
would be more useful if the criteria could be derived in a more tangible form related to
other properties of the system under consideration. Consider the arrangements in Figs
1.3(a) and (b). Figure 1.3(a) shows a System A, which is a general system of constant
composition in which the work output, 8W, can be either shaft or displacement work, or a
combination of both. Figure 1.3(b) is a more specific example in which the work output is
displacement work, p 8V the system in Fig 1.3(b) is easier to understand.

System B System B
) System A
WL e = Wy
r =l = >

et — Ps

8Q 3Q
Wy Wy
Er pm—>r—m Ex b———

\ 8Q, 3Q,

@ (®)

Fig. 1.3 Maximum work achievable from a system

In both arrangements, System A is a closed system (i.e. there are no mass transfers),
which delivers an infinitesimal quantity of heat 0Q in a reversible manner to the heat
engine Ep. The heat engine then rejects a quantity of heat 6Q, to a reservoir, e.g. the
atmosphere, at temperature 7.

Let dE, dV and dS denote the changes in internal energy, volume and entropy of the
system, which is of constant, invariant composition. For a specified change of state these
quantities, which are changes in properties, would be independent of the process or work
done. Applying the First Law of Thermodynamics to System A gives

OW = —dE + 30 (1.6)

If the heat engine (E;) and System A are considered to constitute another system, System
B, then, applying the First Law of Thermodynamics to System B gives

OW, .= OW+ oW, = —dE + 60, (1.7)

net
where 6W + Wy = net work done by the heat engine and System A. Since the heat engine
is internally reversible, and the entropy flow on either side is equal, then

90, _ 00 (1.8)

Ty T
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and the change in entropy of System A during this process, because it is reversible, is
dS = 6Q,/T. Hence

W = ~dE + T, dS
because T, = constant 1.9
= —d(E - T,S)
The expression E -T,S is called the Helmholtz energy or Helmholtz function. In the
absence of motion and gravitational effects the energy, E, may be replaced by the intrinsic
internal energy, U, giving

W= —-d(U-T,5) (1.10)

The significance of W, will now be examined. The changes executed were considered to
be reversible and 0W,,, was the net work obtained from System B (i.e. System A + heat
engine E). Thus, W, must be the maximum quantity of work that can be obtained from
the combined system. The expression for OW is called the change in the Helmholtz energy,
where the Helmholtz energy is defined as

F=U-TS (1.11)

Helmbholtz energy is a property which has the units of energy, and indicates the maximum
work that can be obtained from a system. It can be seen that this is less than the internal
energy, U, and it will be shown that the product 7§ is a measure of the unavailable energy.

1.3 Gibbs energy (Gibbs function)

In the previous section the maximum work that can be obtained from System B,
comprising System A and heat engine Ey, was derived. It was also stipulated that System
A could change its volume by 6V, and while it is doing this it must perform work on the
atmosphere equivalent to p, 0V, where p, is the pressure of the atmosphere. This work
detracts from the work previously calculated and gives the maximum useful work, 6W,, as

oW, =0W,, — p,dV (1.12)
if the system is in pressure equilibrium with surroundings.
oW,=-d(E-T,S)-p,dV
= —d(E +p,V-T,S)
because p, = constant. Hence
oW,=-d(H-TS) (1.13)
The quantity H — TS is called the Gibbs energy, Gibbs potential, or the Gibbs function, G.
Hence
G=H-TS 1.14)
Gibbs energy is a property which has the units of energy, and indicates the maximum
useful work that can be obtained from a system. It can be seen that this is less than the

enthalpy, H, and it will be shown that the product 7S is a measure of the unavailable
energy.

1.4 The use and significance of the Helmholtz and Gibbs energies

It should be noted that the definitions of Helmholtz and Gibbs energies, eqns (1.11) and
(1.14), have been obtained for systems of invariant composition. The more general form of
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these basic thermodynamic relationships, in differential form, is

dU=TdS-pdV+X u,dn,

dH=TdS+Vdp+X m,dn,

dF=-SdT-pdV+X u,dn;

dG=-SdT+Vdp+ X u,dn, (1.15)

The additional term, X, u; dn,, is the product of the chemical potential of component i and
the change of the amount of substance (measured in moles) of component i. Obviously, if
the amount of substance of the constituents does not change then this term is zero.
However, if there is a reaction between the components of a mixture then this term will be
non-zero and must be taken into account. Chemical potential is introduced in Chapter 12
when dissociation is discussed; it is used extensively in the later chapters where it can be
seen to be the driving force of chemical reactions.

14.1 HEILMHOLTZ ENERGY

(i) The change in Helmholtz energy is the maximum work that can be obtained
from a closed system undergoing a reversible process whilst remaining in
temperature equilibrium with its surroundings.

(ii) A decrease in Helmholtz energy corresponds to an increase in entropy, hence
the minimum value of the function signifies the equilibrium condition.

(iii) A decrease in entropy corresponds to an increase in F; hence the criterion
dF);>0 is that for stability. This criterion corresponds to work being done on
the system.

(iv) For a constant volume system in which W=0, dF =0.

(v) For reversible processes, F| = F,; for all other processes there is a decrease in
Helmbholtz energy.

(vi) The minimum value of Helmholtz energy corresponds to the equilibrium
condition.

14.2 GIBBS ENERGY

(i) The change in Gibbs energy is the maximum useful work that can be obtained
from a system undergoing a reversible process whilst remaining in pressure
and temperature equilibrium with its surroundings.

(ii) The equilibrium condition for the constraints of constant pressure and
temperature can be defined as:

(1) dG),:<0 spontaneous change
(2) dG),=0 equilibrium
(3) AG),:>0 criterion of stability.

(iii) The minimum value of Gibbs energy corresponds to the equilibrium condition.
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1.4.3 EXAMPLES OF DIFFERENT FORMS OF EQUILIBRIUM MET IN
THERMODYNAMICS

Stable equilibrium is the most frequently met state in thermodynamics, and most
systems exist in this state. Most of the theories of thermodynamics are based on stable
equilibrium, which might be more correctly named thermostatics. The measurement of
thermodynamic properties relies on the measuring device being in equilibrium with the
system. For example, a thermometer must be in thermal equilibrium with a system if it is
to measure its temperature, which explains why it is not possible to assess the
temperature of something by touch because there is heat transfer either to or from the
fingers — the body ‘measures’ the heat transfer rate. A system is in a stable state if it
will permanently stay in this state without a tendency to change. Examples of this are a
mixture of water and water vapour at constant pressure and temperature; the mixture of
gases from an internal combustion engine when they exit the exhaust pipe; and many
forms of crystalline structures in metals. Basically, stable equilibrium states are defined
by state diagrams, e.g. the p—v-T diagram for water, where points of stable equilibrium
are defined by points on the surface; any other points in the p—v—T space are either in
unstable or metastable equilibrium. The equilibrium of mixtures of elements and
compounds is defined by the state of maximum entropy or minimum Gibbs or
Helmholtz energy; this is discussed in Chapter 12. The concepts of stable equilibrium
can also be used to analyse the operation of fuel cells and these are considered in
Chapter 17.

Another form of equilibrium met in thermodynamics is metastable equilibrium. This
is where a system exists in a ‘stable’ state without any tendency to change until it is
perturbed by an external influence. A good example of this is met in combustion in
spark-ignition engines, where the reactants (air and fuel) are induced into the engine in
a pre-mixed form. They are ignited by a small spark and convert rapidly into products,
releasing many thousands of times the energy of the spark used to initiate the
combustion process. Another example of metastable equilibrium is encountered in the
Wilson ‘cloud chamber’ used to show the tracks of a particles in atomic physics. The
Wilson cloud chamber consists of super-saturated water vapour which has been cooled
down below the dew-point without condensation — it is in a metastable state. If an «
particle is introduced into the chamber it provides sufficient perturbation to bring about
condensation along its path. Other examples include explosive boiling, which can
occur if there are not sufficient nucleation sites to induce sufficient bubbles at boiling
point to induce normal boiling, and some of the crystalline states encountered in
metallic structures.

Unstable states cannot be sustained in thermodynamics because the molecular
movement will tend to perturb the systems and cause them to move towards a stable state.
Hence, unstable states are only transitory states met in systems which are moving towards
equilibrium. The gases in a combustion chamber are often in unstable equilibrium because
they cannot react quickly enough to maintain the equilibrium state, which is defined by
minimum Gibbs or Helmholtz energy. The ‘distance’ of the unstable state from the state of
stable equilibrium defines the rate at which the reaction occurs; this is referred to as rate
kinetics, and will be discussed in Chapter 14. Another example of unstable ‘equilibrium’
occurs when a partition is removed between two gases which are initially separated. These
gases then mix due to diffusion, and this mixing is driven by the difference in chemical
potential between the gases; chemical potential is introduced in Chapter 12 and the process
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of mixing is discussed in Chapter 16. Some thermodynamic situations never achieve stable
equilibrium, they exist in a steady state with energy passing between systems in stable
equilibrium, and such a situation can be analysed using the techniques of irreversible
thermodynamics developed in Chapter 16.

1.4.4 SIGNIFICANCE OF THE MINIMUM GIBBS ENERGY AT CONSTANT
PRESSURE AND TEMPERATURE

It is difficult for many engineers readily to see the significance of Gibbs and Helmholtz
energies. If systems are judged to undergo change while remaining in temperature and
pressure equilibrium with their surroundings then most mechanical engineers would feel
that no change could have taken place in the system. However, consideration of eqns
(1.15) shows that, if the system were a multi-component mixture, it would be possible for
changes in Gibbs (or Helmholtz) energies to take place if there were changes in
composition. For example, an equilibrium mixture of carbon dioxide, carbon monoxide
and oxygen could change its composition by the carbon dioxide breaking down into carbon
monoxide and oxygen, in their stoichiometric proportions; this breakdown would change
the composition of the mixture. If the process happened at constant temperature and
pressure, in equilibrium with the surroundings, then an increase in the Gibbs energy, G,
would have occurred; such a process would be depicted by Fig 1.4. This is directly
analogous to the marble in the dish, which was discussed in the introductory remarks to
this section.

Gibbs energy

Equilibrium
composition

% Carbon dioxide in mixture

Fig. 1.4 Variation of Gibbs energy with chemical composition, for a system in temperature and
pressure equilibrium with the environment

1.5 Concluding remarks

This chapter has considered the state of equilibrium for thermodynamic systems. Most
systems are in equilibrium, although non-equilibrium situations will be introduced in
Chapters 14, 16 and 17.
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It has been shown that the change of entropy can be used to assess whether a system is

in a stable state. Two new properties, Gibbs and Helmholtz energies, have been introduced
and these can be used to define equilibrium states. These energies also define the
maximum amount of work that can be obtained from a system.

PROBLEMS

1

Determine the criteria for equilibrium for a thermally isolated system at (a) constant
volume; (b) constant pressure. Assume that the system is:

(i) constant, and invariant, in composition;

(ii) variable in composition.

Determine the criteria for isothermal equilibrium of a system at (a) constant volume,
and (b) constant pressure. Assume that the system is:

(i) constant, and invariant, in composition;

(ii) variable in composition.

A system at constant pressure consists of 10 kg of air at a temperature of 1000 K. This
is connected to a large reservoir which is maintained at a temperature of 300 K by a
reversible heat engine. Calculate the maximum amount of work that can be obtained
from the system. Take the specific heat at constant pressure of air, c,, as 0.98 kJ/kgK.
[3320.3 kJ]

A thermally isolated system at constant pressure consists of 10 kg of air at a
temperature of 1000 K and 10 kg of water at 300 K, connected together by a heat
engine. What would be the equilibrium temperature of the system if

(a) the heat engine has a thermal efficiency of zero;

(b) the heat engine is reversible?

{Hint: consider the definition of equilibrium defined by the entropy change of the
system. }

Assume
for water: c,=42kl/kgK
k=c,/c,=1.0
for air: c,=0.7 kJ/kgK
k=c,/c,=14

[432.4 K; 376.7 K]

A thermally isolated system at constant pressure consists of 10 kg of air at a
temperature of 1000 K and 10 kg of water at 300 K, connected together by a heat
engine. What would be the equilibrium temperature of the system if the maximum
thermal efficiency of the engine is only 50%?

Assume
for water: c,=4.2kJ [kgK
x=c,/c,=1.0
for air: c,=0.7 kJ/kgK
xk=c,/c,=14

[385.1 K]



Problems 11

6 Show that if a liquid is in equilibrium with its own vapour and an inert gas in a closed
vessel, then

dp, p

dp pm

where p, is the partial pressure of the vapour, p is the total pressure, p, is the density
of the vapour and p, is the density of the liquid.

7 An incompressible liquid of specific volume v, is in equilibrium with its own vapour
and an inert gas in a closed vessel. The vapour obeys the law
p(v-b)=RT
Show that

Py 1
In{=)=— {(p- —(p, — po)b
( ) pren {(p — pov — (P, — Po)b}

where p, is the vapour pressure when no inert gas is present, and p is the total
pressure.

8 (a) Describe the meaning of the term thermodynamic equilibrium. Explain how
entropy can be used as a measure of equilibrium and also how other properties can be
developed that can be used to assess the equilibrium of a system.

If two phases of a component coexist in equilibrium (e.g. liquid and vapour phase
H,O) show that

d {
r9_ L
dT Vig

where

T = temperature,
p = pressure,
| = latent heat,
and v, = difference between liquid and vapour phases.

Show the significance of this on a phase diagram.

(b) The melting point of tin at a pressure of 1 bar is 505 K, but increases to 508.4 K
at 1000 bar. Evaluvate
(i) the change of density between these pressures, and
(ii) the change in entropy during melting.
The latent heat of fusion of tin is 58.6 kJ/kg.
[254 100 kg/m?; 0.1157 kJ/kgK]

9 Show that when different phases are in equilibrium the specific Gibbs energy of each
phase is equal.
Using the following data, show the pressure at which graphite and diamond are in
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equilibrium at a temperature of 25°C. The data for these two phases of carbon at 25°C
and 1 bar are given in the following table:

Graphite Diamond
Specific Gibbs energy, g/(kJ/kg) 0 269
Specific volume, v/(m*/kg) 0.446 x 1073 0.285x107?
Isothermal compressibility, &/(bar ') 2.96x 107¢ 0.158 x 1076

It may be assumed that the variation of kv with pressure is negligible, and the lower
value of the solution may be used.
[17990 bar]

Van der Waals’ equation for water is given by

0.004619T 0.017034
v —0.0016891 V2

where p = pressure (bar), v = specific volume (m?/kmol), T = temperature (K).

Draw a p-v diagram for the following isotherms: 250°C, 270°C, 300°C, 330°C,
374°C, 390°C.

Compare the computed specific volumes with Steam Table values and explain the
differences in terms of the value of p v /RT..



2

Availability and Exergy

Many of the analyses performed by engineers are based on the First Law of Thermo-
dynamics, which is a law of energy conservation. Most mechanical engineers use the
Second Law of Thermodynamics simply through its derived property — entropy (S).
However, it is possible to introduce other ‘Second Law’ properties to define the maximum
amounts of work achievable from certain systems. Previously, the properties Helmholtz
energy (F) and Gibbs energy (G) were derived as a means of assessing the equilibrium of
various systems. This section considers how the maximum amount of work available from
a system, when interacting with surroundings, can be estimated. This shows, as expected,
that all the energy in a system cannot be converted to work: the Second Law stated that it
is impossible to construct a heat engine that does not reject energy to the surroundings.

2.1 Displacement work

The work done by a system can be considered to be made up of two parts: that done
against a resisting force and that done against the environment. This can be seen in Fig 2.1.
The pressure inside the system, p, is resisted by a force, F, and the pressure of the
environment. Hence, for System A, which is in equilibrium with the surroundings

PA=F +poA (2.1)
where A is the area of cross-section of the piston.

Fig. 2.1 Forces acting on a piston

If the piston moves a distance dx, then the work done by the various components shown
inFig2.1is

pAdx=F dx+ p,A dx 2.2)

where pA dx=p dV = 8W,, = work done by the fluid in the system, F dx = 6W,, = work

done against the resisting force, and py,A dx=p,dV =0W, = work done against the
surroundings.
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Hence the work done by the system is not all converted into useful work, but some of it is
used to do displacement work against the surroundings, i.e.

OW = OW, + OW,, 2.3)
which can be rearranged to give

OWe = OW,, — OW (2.4)

ys

2.2 Availability

It was shown above that not all the displacement work done by a system is available to do
useful work. This concept will now be generalised to consider all the possible work
outputs from a system that is not in thermodynamic and mechanical equilibrium with its
surroundings (i.e. not at the ambient, or dead state, conditions).

Consider the system introduced earlier to define Helmholtz and Gibbs energy: this is
basically the method that was used to prove the Clausius inequality.

Figure 2.2 (a) shows the general case where the work can be either displacement or shaft
work, while Fig 2.2(b) shows a specific case where the work output of System A is
displacement work. It is easier to follow the derivation using the specific case, but a more
general result is obtained from the arrangement shown in Fig 2.2(a).

System B System B
; ; System A i
W Lo , = = W
: —

S I e

3Q
Wy Wy
Ex b Ex f———>

J 3Q, . 5Q,

@ (b)

Fig. 2.2 System transferring heat to a reservoir through a reversible heat engine

First consider that System A is a constant volume system which transfers heat with the
surroundings via a small reversible heat engine. Applying the First Law to the System A

dU = 6Q - OW = 6Q — OW, 2.5)

where dWj indicates the shaft work done (e.g. System A could contain a turbine).
Let System B be System A plus the heat engine E,. Then applying the First Law to
system B gives

dU=% (6Q - W) = 38Q,— (0W;s + oWy) (2.6)
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As System A transfers energy with the surroundings it under goes a change of entropy
defined by

dS=—= 2.7
T To

because the heat engine transferring the heat to the surroundings is reversible, and there is
no change of entropy across it. Hence

(OW; + 0Wg) = — AU - T, dS) 2.8)

As stated previously, (0Ws+ dWy) is the maximum work that can be obtained from a
constant volume, closed system when interacting with the surroundings. If the volume of
the system was allowed to change, as would have to happen in the case depicted in Fig
2.2(b), then the work done against the surroundings would be p, dV, where p, is the
pressure of the surroundings. This work, done against the surroundings, reduces the
maximum useful work from the system in which a change of volume takes place to
OW + OWy — p, dV, where OW is the sum of the shaft work and the displacement work.

Hence, the maximum useful work which can be achieved from a closed system is

oW+ oWy =-dU +p,dV-T,dS) 2.9
This work is given the symbol dA. Since the surroundings are at fixed pressure and
temperature (i.e. p, and T, are constant) dA can be integrated to give

A=U+p,V-T,§ (2.10)
A is called the non-flow availability function. Although it is a combination of properties, A
is not itself a property because it is defined in relation to the arbitrary datum values of p,
and T,. Hence it is not possible to tabulate values of A without defining both these datum

levels. The datum levels are what differentiates A from Gibbs energy G. Hence the
maximum useful work achievable from a system changing state from 1 to 2 is given by

Won=~AA=—-(A,—A))=A,- A4, (2.11)
The specific availability, a, i.e. the availability per unit mass is

a=u+pyv—T,s (2.12a)
If the value of a were based on unit amount of substance (i.e. kmol) it would be referred to
as the molar availability.

The change of specific (or molar) availability is
Aa=a,—a,= (uy+ pov, — Tp$,) — (uy + pov, — Tpsy)
= (hy+ v,(po— P2)) — (By+ vi(po—p1)) — To (s, — $1) (2.12b)

2.3 Examples

Example 1: reversible work from a piston cylinder arrangement (this example is based on
Haywood (1980))

System A, in Fig 2.1, contains air at a pressure and temperature of 2 bar and 550 K
respectively. The pressure is maintained by a force, F, acting on the piston. The system is
taken from state 1 to state 2 by the reversible processes depicted in Fig 2.3, and state 2 is
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equal to the dead state conditions with a pressure, p,, and temperature, 7;, of 1 bar and
300 K respectively. Evaluate the following work terms assuming that the air is a perfect
gas and that ¢, = 1.005 kJ/kg K and the ratio of specific heats x = 1.4.

(a) The air follows the process 1-a-2 in Fig 2.3, and transfers heat reversibly with the
environment during an isobaric process from 1-a. Calculate the following specific work
outputs for processes 1-a and a-2:

@) the work done by the system, 6W,;

(ii)  the work done against the surroundings, oW, ;

(iii)  the useful work done against the resisting force F, 0W,.;

(iv) the work done by a reversible heat engine operating between the system and
the surroundings, dW;.

Then evaluate for the total process, 1-2, the following parameters:

(v)  the gross work done by the system, X (0W,, + 6Wy);

(vi)  the net useful work output against the environment, (W, + 0Wy);
(vii) the total displacement work against the environment, Y (3W,,.);
(viii) the work term py(v, —v)).

P, pz
y
g /b
<
g
&
5
| 2=

Environment at Ty and p,
Entropy, S

Fig. 2.3 Processes undergone by the system

Solution
It is necessary to evaluate the specific volume at the initial condition, state 1.

pv,=RT,, hence v,=RT,/p,
The gas constant, R, is given by R = ((x — 1)/x)c,=0.4 x 1.005/1.4 = 0.287 kJ/kgK, and
hence
_0.287 x10” x 550

V.= =0.7896 m’/k
' 2 x 10° ke
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The intermediate temperature, 7,, should now be evaluated. Since the process a-2 is
isentropic then 7, must be isentropically related to the final temperature, 7,. Hence

p (x-1D/fx o) 0.4/1.4
T,= Tz(—i) = 300(—) =365.7K

P2 1
piT, 365.7
Thus v, = v, = v, = 0.6649v,
paT) 550

Consider process 1-a:

w.

La p dv =p,(v, — v,), for an isobaric process

2% 10°

10°

sysll—a

(0.6649 — 1.0) x 0.7896 = —52.96 k) /kg

a 1x10°
Warh—a = " Podv= = (0.6649 - 1.0) x 0.7896
! 10

~26.46 kJ/kg

The useful work done by the system against the resisting force, F, is the difference
between the two work terms given above, and is

Wase ll—a = Weys Il—a_ wsurrll-a= -26.46 kJ/kg

The work terms derived above relate to the mechanical work that can be obtained from
the system as it goes from state 1 to state a. However, in addition to this mechanical work
the system could also do thermodynamic work by transferring energy to the surroundings
through a reversible heat engine. This work can be evaluated in the following way. In
going from state 1 to state a the system has had to transfer energy to the surroundings
because the temperature of the fluid has decreased from 550 K to 365.7 K. This heat
transfer could have been simply to a reservoir at a temperature below 7,, in which case no
useful work output would have been achieved. It could also have been to the environment
through a reversible heat engine, as shown in Fig 2.2(b). In the latter case, useful work
would have been obtained, and this would be equal to

Owg = —1r00,

where 7y is the thermal efficiency of a reversible heat engine operating between T and T, and
00 is the heat transfer to the system. Thus

T-T, 50

Hence, the work output obtainable from this reversible heat engine as the system changes
state from 1 to a is

T-T, 2 T-T,
we =, - 80 =-] 2 cpdT

owg = —

T,
=~c{(T,~T)-Toln —

1

365.7
-1.005 x {(365.7 - 550) - 300 In —E] = 62.18 kJ/kg
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Now consider process a-2. First, evaluate the specific volume at 2, v,:

piT, 2 x 300
v =
pTy | 1x550

v, = 1.0909v,

Vy =

The expansion from a to 2 is isentropic and hence obeys the law pv* = constant. Thus the
system work is
(1x 1.0909 - 2 x 0.6649)  0.7896 x 10°
wsys la—2 = X 3
1-14 10

2 1x10°
o j podv = = = (10909 - 0.6649) x 0.7896 = 33.63 KJ/kg

=47.16 kJ/kg

Wse Ia—2 = wsys ia—2 ~ Waurr |a—2 =13.52 kJ/kg

The energy available to drive a reversible heat engine is zero for this process because it is
adiabatic; hence

Wr |a——2 = O

The work terms for the total process from 1 to 2 can be calculated by adding the terms
for the two sub-processes. This enables the solutions to questions (v) to (viii) to be
obtained.

The gross work done by the system is

Wiross = 2 (Weys + W) = —52.96 + 47.16 + 62.18 + 0 = 56.38 kJ /kg
The net useful work done by the system is

Wynet = 2 (Wyee + W) = ~26.46 + 13.52 + 62.18 = 49.24 kJ kg
The total displacement work done against the surroundings is

Woy = ~26.46 +33.63 =7.17 kl /kg
The displacement work of the surroundings evaluated from

Po(vs— v;) =1x 10° x (1.0909 —~ 1) x 0.7896,/10% = 7.17 kJ/kg

Example 2: change of availability in reversible piston cylinder arrangement

Calculate the change of availability for the process described in Example 1. Compare the
value obtained with the work terms evaluated in Example 1.

Solution

The appropriate definition of availability for System A is the non-flow availability
function, defined in eqn (2.12a), and the maximum useful work is given by eqns (2.11)
and (2.12b). Hence, w,, is given by

Wie = ~Aa=—(ay-a,)=a,—a,

= U — Uy + po(v, = v,) = To(s, — 5,)
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The change of entropy, s, — 5,, can be evaluated from

which for a perfect gas becomes

T
cpln—l—-Rln&

$1 -8
T, ) 2]

550 2
1.005 x In 3#00 -0.287 x1In —1— = 0.41024 kJ/kgK

Substituting gives

Wuse = C(Ty = T3) + po(vy = v3) — To(s, = 5,)
x 10°

10°

1
= (1.005 —- 0.287)(550 - 300) +

(1 - 1.0909) x 0.7896

- 300 x 0.41024
= 179.5 - 7.17 — 123.07 = 49.25 kJ kg
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This answer is identical to the net useful work done by the system evaluated in part (vi)
above; this is to be expected because the change of availability was described and defined
as the maximum useful work that could be obtained from the system. Hence, the change
of availability can be evaluated directly to give the maximum useful work output from a
number of processes without having to evaluate the components of work output separately.

Example 3: availability of water vapour

Evaluate the specific availability of water vapour at 30 bar, 450°C if the surroundings are
at py =1 bar; t,=35°C. Evaluate the maximum useful work that can be obtained from this

vapour if it is expanded to (i) 20 bar, 250°C; (ii) the dead state.

Solution
From Rogers and Mayhew tables:
at p = 30 bar; ¢t =450°C
u=3020 kJ/kg; h=3343 kJ/kg; v=0.1078 m?/kg; s = 7.082 kJ/kgK
Hence the specific availability at these conditions is
a=u+pyv—T,s
=3020+1 x 10° x 0.1078/10% — 308 x 7.082
=849.5 kJ /kg

(i) Change of availability if expanded to 20 bar, 250°C.
From Rogers and Mayhew tables:
at p = 20 bar; t=250°C
u=2681 kJ/kg; h=2904 kJ/kg; v=0.1115m’/kg; 5 = 6.547 kI /kg K
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(i1)

The specific availability at these conditions is
a=u+pyv—Tys
=2681+1x10°x0.1115/10% - 308 x 6.547
=675.7 kJ/kg

Thus the maximum work that can be obtained by expanding the gas to these

conditions is
Waax = 1 — G, = 849.5 — 675.7 = 173.8 kJ /kg

This could also be evaluated using eqn (2.12b), giving
Wiax = —Aa =hy + vi(po— p1) — (ha + vo(po— P2)) — To(s; = 83)

=13343 - 2904 + 0.1078 x (1 — 30) x 10>~ 0.1115 x (1 - 20) x 10?
- 308 x (7.082 - 6.547)
=439-312.6+211.9-164.78 =173.5 kJ /kg

The values obtained by the different approaches are the same to the accuracy of the

figures in the tables.

Change of availability if expanded to datum level at p, =1 bar; £, =35°C
u=146.6 kI/kg; h=146.6 kJ/kg; v=0.1006 x 102 m*/kg;
5s=0.5045kJ/kgK

The specific availability at the dead state is
a=u+pywv—-Tys

=146.6 + 1 x 10° x 0.001006/10° — 308 x 0.5045
=-8.7 kJ/kg

and the maximum work that can be obtained by expanding to the dead state is

=a,—a,=849.5- (-8.7)=858.2 kJ/kg

w

Again, this could have been evaluated using eqn (2.12b) to give
Waae = ~Aa=hy +v,(po = P1) = (hy + v po— P2)) — To(s, = 53)
=13343 - 146.6 + 0.1078 x (1 - 30) x 10* - 0.001006 x (1 — 1) x 10?
— 308 x (7.082 — 0.5045)
=3196.4 - 312.6 + 0 — 2025.9 = 857.9 kI /kg
This shows that although the energy available in the system was 3020 kJ/kg (the
internal energy) it is not possible to convert all this energy to work. It should be
noted that this ‘energy’ is itself based on a datum of the triple point of water, but the
dead state is above this value. However, even if the datum levels were reduced to the
triple point the maximum useful work would still only be
Woae = —Aa = (3343 - 0) + 0.1078 x (0.00612 — 30) x 10> —-273(7.082 - 0)
=1086.3 kJ/kg

It is also possible to evaluate the availability of a steady-flow system and this is defined
in a similar manner to that used above, but in this case the reversible heat engine extracts
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energy from the flowing stream. If the kinetic and potential energies of the flowing stream
are negligible compared with the thermal energy then the steady flow availability is

af= h_ Tos (2.133)
The change in steady flow availability is
Aa;=ay—ag=hy— Tys, — (hy - Tisy) (2.13b)

Thus, the maximum work that could be obtained from a steady-flow system is the change
in flow availability, which for the previous example is
Woae = —Aa; = —(ap — an) = hy = Tys, — (hy— Tys,)
= (3343 - 146.6) — 308 x (7.082 — 0.5045)
=1170.4 kJ/kg

2.4 Available and non-available energy

If a certain portion of energy is available then obviously another part is unavailable — the
unavailable part is that which must be thrown away. Consider Fig 2.4; this diagram
indicates an internally reversible process from a to b. This can be considered to be made
up of an infinite number of strips 1-m-n-4-1 where the temperature of energy transfer is
essentially constant, i.e. T, = T, = T. The energy transfer obeys

00 _ 80,
T To

where 8Q =heat transferred to system and 8Q, = heat rejected from system, as in an
engine (Ey) undergoing an infinitesimal Carnot cycle.

In reality 8Q, is the minimum amount of heat that can be rejected because processes 1 to
2 and 3 to 4 are both isentropic, i.e. adiabatic and reversible.

Hence the amount of energy that must be rejected is

Evnn =] 4Q0=T, [ % = T,AS (2.14)

R

Note that the quantity of energy, 60, can be written as a definite integral because the
process is an isentropic (reversible) one. Then E,, is the energy that is unavailable and is
given by cdefc. The available energy on this diagram is given by abcda and is given by

E,.=Q-E,.,=0-TAS (2.15)
where Q is defined by the area abfea.

2.5 Irreversibility

The concept of reversible engines has been introduced and these have operated on
reversible cycles, e.g. isentropic and isothermal reversible processes. However, all real
processes are irreversible and it is possible to obtain a measure of this irreversibility using
the previous analysis. This will be illustrated by two examples: a turbine, which produces a
work output; and a compressor, which absorbs a work input.
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Fig. 2.4 Available and unavailable energy shown on a T—s diagram

Example 4: a turbine

An aircraft gas turbine with an isentropic efficiency of 85% receives hot gas from the
combustion chamber at 10 bar and 1000°C. It expands this to the atmospheric pressure of
1 bar. If the temperature of the atmosphere is 20°C, determine (a) the change of
availability of the working fluid, and the work done by the turbine if the expansion were
isentropic. Then, for the actual turbine, determine (b) the change of availability and the
work done, (c) the change of availability of the surroundings, and (d) the net loss of
availability of the universe (i.e. the irreversibility).

Assume that the specific heat at constant pressure, ¢, = 1.100 kJ/kg K, and that the ratio
of specific heats, x = 1.35.

Solution
The processes involved are shown in Fig 2.5.

(a) Isentropic expansion

From the steady flow energy equation the specific work done in the isentropic
expansion is

W1 Jigen = (T - T3)
For the isentropic expansion, T, = T,(p,/p,)* V/*=1273(1/10)°%/'3 =700.8 K,
giving

W lisen = 1.100 x (1273 ~ 700.8) = 629.5 kJ /kg
The change in availability of the working fluid is given by eqn (2.13b), Aa = a;, - ay,,
where

ag = hy — Tysy

ag=h,—Tps,

For an isentropic change, s, = s, and hence Aa = hy ~ h; = —Wr |in = —629.5 kJ /kg.
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The change of availability of the surroundings is 629.5 kJ/kg, and hence the
change of availability of the universe is zero for this isentropic process. This means
that the energy can be transferred between the system and the environment without
any degradation, and the processes are reversible — this would be expected in the
case of an isentropic process.

10 bar

Temperature, T

1273 K

1273K 1
/\ 1 bar

A

293K

Entropy, S

Fig. 2.5 Turbine expansion on a T—s diagram
(b) Non-isentropic expansion

If the isentropic efficiency of the turbine is 85%, i.e. ;= 0.85, then the turbine work
is

W= W ien = 0.85 X 629.5 = 535.0 kJ /kg
The temperature at the end of the expansion is
T,=T,— wy/c,=1273 - 535.0/1.100 = 786 K.
The change of availability is given by eqn (2.13b) as
Aa=an—ag
=hy— T8, - (hy— Tysy)
=hy—h = Ty(s,— 5)) = —wr— Ty(s,— 57)

The change of entropy for a perfect gas is given by

As12=s2—s1=cPInE—Rln&
T, P
where, from the perfect gas law,
_ (xk=1Dc, (1.35-1)x1.100
K 1.35

R

=0.285 kJ/kgK
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Thus the change of entropy during the expansion process is
786 1
s-—8,=11In —— - 0.2851n — = -0.5304 + 0.6562 = 0.1258 kJ/kg K
1273 10

Thus Aa = —535 - Ty(s, — ;) = =535 -293 x 0.1258 = -571.9 kJ /kg

(c) The change of availability of the surroundings is equal to the work done, hence
Aasm‘roundi.ngs = 535 kj/kg

(d) The irreversibility is the change of availability of the universe, which is the sum of
the changes of availability of the system and its surroundings, i.e.

Al yiverse = Dlgyiem + Algyroundings = —571.9 +535.0 = -36.9 kI /kg
This can also be calculated directly from an expression for irreversibility
I=T, AS
=293 x 0.1258 = 36.86 kJ/kg

Note that the irreversibility is positive because it is defined as the loss of availability.

Example 5: an air compressor

A steady flow compressor for a gas turbine receives air at 1 bar and 15°C, which it
compresses to 7 bar with an efficiency of 83%. Based on surroundings at 5°C, determine
(a) the change of availability and the work for isentropic compression. For the actual
process evaluate (b) the change of availability and work done, (c) the change of
availability of the surroundings and (d) the irreversibility.

Treat the gas as an ideal one, with the specific heat at constant pressure, ¢, = 1.004 kJ/
kg K, and the ratio of specific heats, x = 1.4.

Solution

The processes are shown in Fig 2.6.

p,=7bar
[
v
2
]
j=>
g
=
p,= 1lbar

T=15°C|__ 1]

Ty=5°C b

m|

Entropy, S

Fig. 2.6 Compression process on a 7'—s diagram



Graphical representation of available energy

(a) Isentropic compression:

p (x-1/x

T, = Tl(—l) =288 x 7" = 5024 K
D

The work done can be calculated from the steady flow energy equation, giving
We lien= —Ah = -215.3 kJ /kg

The change of availability is given by eqn (2.13b) as
Aaf= afzv - af] = hzv - hl - To(S2' - sl) = Ah - T()AS

If the process is isentropic, AS = 0, and then

Aag=c(Ty — T,) = 1.004 x (502.4 - 288) = 215.3 kJ /kg

(b) The actual work done, W¢=Wc|ien/fc=—215.3/0.83 =-259.4 kJ/kg. Hence

25

h,=h, — we=1.004 x 288 — (-259.4) = 548.6 kJ/kg, and the temperature at 2, T, is

given by T, = h,/c, = 546.4 K.

T
Asiy =c,In ?2 ~R1In 22 = 06411 - 0.5565 = 0.08639 KJ/kg K
1 D1

Hence Aa; = ay, — a; = Ah — ToAs
=1259.4 - 278 x 0.08639 = 235.4 k) /kg

There has been a greater increase in availability than in the case of reversible

compression. This reflects the higher temperature achieved during irreversible

compression.

(c) The change of availability of the surroundings is equal to the enthalpy change of the

system, i.e. Aa,, = —259.4 kJ/kg.

(d) The process an adiabatic one, i.e. there is no heat loss or addition. Hence the

irreversibility of the process is given by

I=T, As =278 x 0.08639 = 24.02 kJ /kg

This is the negative of the change of availability of the universe

(system + surroundings) which is given by

Ay = AGyyem + A gumouncings = 2354 — 259.4 = ~24.0 kI /kg

Hence, while the available energy in the fluid has been increased by the work done
on it, the change is less than the work done. This means that, even if the energy in
the gas after compression is passed through a reversible heat engine, it will not be
possible to produce as much work as was required to compress the gas. Hence, the

quality of the energy in the universe has been reduced, even though the quantity of

energy has remained constant.

2.6 Graphical representation of available energy, and irreversibility

Consider the energy transfer from a high temperature reservoir at Ty through a heat engine

(not necessarily reversible), as shown in Fig 2.7.
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Fig. 2.7 Representation of available energy, and irreversibility

The available energy flow from the hot reservoir is
Ey=04—-T,ASy (2.16)

The work done by the engine is

W=04- 0o
The total change of entropy of the universe is
ZAS=ASH+AS0=2}1—99 2.17)
Tu To

Hence the energy which is unavailable due to irreversibility is defined by

Epey=Ey—-W=0y-T ASy-W
= QH =T ASH(QH - Qo) = Qo - To ASH
= T,(ASy— ASy) (2.18)

In the case of a reversible engine X AS = 0 because entropy flow is conserved, i.e.

Qu_ D

(2.19)
Iy T
Hence the unavailable energy for a reversible engine is T, AS}, while the irreversibility
is zero. However, for all other engines it is non-zero. The available energy is depicted in
Fig 2.7 by the area marked ‘A’, while the energy ‘lost’ due to irreversibility is denoted ‘I’
and is defined

Eir. = To(ASy — ASy) (2.20)
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2.7 Availability balance for a closed system

The approaches derived previously work very well when it is possible to define the
changes occurring inside the system. However, it is not always possible to do this and it is
useful to derive a method for evaluating the change of availability from ‘external’
parameters. This can be done in the following way for a closed system.

If a closed system goes from state 1 to state 2 by executing a process then the changes in
that system are:

2
from the First Law: Uy~ U= (60 - oW)= Lz 50 - W 2.21)
2 6Q
from the Second Law: S,—-8; = L —T~ +0 (2.22)

where o is the internal irreversibility of the system, and 7 is the temperature at which the
heat transfer interactions with the system occur (see Fig 2.2(a)). Equations (2.21) and
(2.22) can be written in terms of availability (see eqn (2.10)), for a system which can
change its volume during the process, as

A=A =U,-U,-Ty(5,-8,) +po(V, - V)

2 2 60
- L 00 — W+ po(V, - V) — TOL —F-Tw (2.23)
Equation (2.23) can be rearranged to give
2 T,
A, A= L (1 - —TT)(SQ —W+pg(V,-V)-Tyo (2.24)
The change in specific availability is given by
a,—a; = uy — Uy — To(s, = 81) + po(va — V)
2 T,
= L (1 - 7)661 =W+ po(v = vy) - Toon (2.25)

where g, w and o, are the values of Q, W and o per unit mass.
The significance of eqn (2.24) can be examined by means of a couple of simple
examples.

Example 6: change in availability for a closed system

A steel casting weighing 20 kg is removed from a furnace at a temperature of 800°C and
heat treated by quenching in a bath containing 500 kg water at 20°C. Calculate the change
in availability of the universe due to this operation. The specific heat of the water is
4.18 kJ/kgK, and that of steel is 0.42 kJ/kg K. Assume that the bath of water is rigid and
perfectly insulated from the surroundings after the casting has been dropped in, and take
the datum temperature and pressure as 20°C and 1 bar respectively.
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Solution

The process can be considered to be a closed system if it is analysed after the casting has
been introduced to the bath of water. Hence eqn (2.24) can be applied:

T
AZ_A1=U2_UI_TZ)(SZ_SI)+pO(‘/é—‘/I)=J:(1_?0)6Q—W+PO(‘/2_‘/I)_TBO

In this case, if the combined system is considered, Q@ =0, W=0 and p,(V,-V,)=0
because the system is adiabatic and constant volume. Thus

A,-A=-Tyo
The irreversibility can be calculated in the following manner:

1. final temperature of system
me T +myc,T,  20x0.42x 1073 +500 x 4.18 x 293

T =
L MeCe+ MyC 0.42 x 20 + 500 x 4.18
=296.12 K
2. change of entropy of casting
) 7. mec, dT T, 296.12
6sc=jT Or = P o mc,ln = =20 %042 x In
LT T T T. 1073
= -10.815 kJ/K
3. change of entropy of water
;O T, myc, dT T 296.12
S5, =jT Or =j Mo & myc, In — = 500 x 4.18 x In
™ T Tw T T. 293

=22.154 kJ/K

4. change of entropy of system (and universe)
08 = 0§, + S, = —10.815+22.154 =11.339 kJ/K

5. change of availability
A,— A= -Tyo=-293x11.34=-3323 kJ

This solution indicates that the universe is less able to do work after the quenching of
the casting than it was before the casting was quenched. The loss of availability was
analysed above by considering the irreversibility associated with the transfer of energy
between the casting and the water. It could have been analysed in a different manner by
taking explicit note of the work which could be achieved from each part of the composite
system before and after the heat transfer had taken place. This will now be done.

1. Work available by transferring energy from the casting to the environment
through a reversible heat engine before the process

T, TO Ty TO To
We= [ |1-FJae=[ |t - 7 e aT = medT = Ton T

293
=20x042x [(293 - 1073) - 293 x ln( 1073)] =33573KJ
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2. Work available by transferring energy from the water bath to the environment
through a reversible heat engine after the process

T, T() Ty TO T,
Ww = L'r (1 - 7) dQ = J.T, (1 - —;)mwcw dT = mwcw[T — T0 In T]T;

293
= 500 x 4.18 x | (293 —296.12) - 293 x In =-3447K
296.12

3. Change of availability of universe is
A — A =-W=-(33573-3447)=-3323 kJ

This is the same solution as obtained by considering the irreversibility.
Equation (2.24) can be considered to be made up of a number of terms, as shown below:

2 T,
0
A=A = | (1——)6Q —Wap(V,-V) - Ty
1 T N ———————— Nt
availability transfer availability destruction
av ailability‘ transfer accompanying work due to irreversibilities
accompanying heat transfer
2 T,
= 1= 2eQ - Wapy(Vs -V - L (2.26)
—_——
T availability transfer availability destruction
*-———v————‘availabmty p——— accompanying work due to irreversibilities

accompanying heat transfer

It is also possible to write eqn (2.26) in the form of a rate equation, in which case the rate
of change of availability is

da T,\ . . av _
—= [1-22)0 - W+p,— - T,0
dt T d et
- availability destruction
availability transfer availability transfer due to irreversibilities
accompanying heat transfer accompanying work
T,\ . . av .
= |-=)¢ - Wipo— - ! (2.27)
T dt availability destruction
RO P due to irreversibilities
availability transfer availability transfer
accompanying heat transfer accompanying work

Equations (2.26) and (2.27) can be written in terms of specific availability to give
2 T,
a—a, = .[1 (1 - ?)651 —w+po(vy—vy) - Tooq
2 T, .
=L 1- —F 0g—w+po(vy—vy) —1i (2.28)

amd LB e Y s - Blwe T 209
—=|1-=Jg-w — T =|1-—lg-w — =i .
dt ) Porgy T ) Py
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Example 7: change of availability for a closed system in which the volume changes

An internal combustion engine operates on the Otto cycle (with combustion at constant
volume) and has the parameters defined in Table 2.1. The data in this example is based on
Heywood (1988).

Table 2.1 Operating parameters for Otto cycle

Compression ratio, r, 12
Calorific value of fuel, Q./(kJ/kg) 44 000
Ratio, x, = AAy/ Q. 1.0286
Pressure at start of compression, p,/(bar) 1.0
Temperature at start of compression, T,/(°C) 60
Air/fuel ratio, & 15.39
Specific heat of air at constant volume, ¢,/ (kJ/kgK) 0.946
Ratio of specific heats, x 1.30
Temperature of surroundings, 7o/ (K) 300
Pressure of surroundings, p,/ (bar) 1.0

Calculate the variation in availability of the gases in the cylinder throughout the cycle
from the start of compression to the end of expansion. Assume the compression and
expansion processes are adiabatic.

Solution
This example introduces two new concepts:

o the effect of change of volume on the availability of the system;
e the effect of ‘combustion’ on the availability of the system.

Equation (2.24) contains a term which takes into account the change of volume
(po(V,—V))), but it does not contain a term for the change in availability which occurs
due to ‘combustion’.

Equation (2.24) gives the change of availability of a system of constant composition as
an extensive property. This can be modified to allow for combustion by the addition of a
term for the availability of reaction. This is defined as

AAg = AFg = Up(T,) — Ur(T) — To(Sr(T) = $p(T)) (2.30)
where T, is the temperature at which the energies of reaction are evaluated. Hence
AAg = AFg = AUg = To(Sw(T) — Su(T))

= (Q.)s ~ To(Sr(T,) - Sp(T)) (2.31)
This term can be added into eqn (2.24) to give
Ay = A =AAg+ (U, - U)) = To(S, = S + po (V- V) (2.32)

Equation (2.32) can be generalised to give the value at state i relative to that at state 0,

resulting in
A —Ay=A0Ag+ (U; = Up) — To(S; = So) + po(Vi — Vo)
=m; AAg + m[(u; — ug) — To(s; ~ $9) + po(vi — V)] (2.33)
where m; = mass of fuel )

and m = total mass of mixture = m; + m,;
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The specific availability, based on the total mass of mixture, is

A-A m
a,—ay = O = L Adg + [(u; — ) = To(s; = So) + Po(v; = Vo)l
m m
AA
= ‘; + [(u; = 1g) — To(s; = 86) + Po(V; = Vo)) (2.34)
£+

where &=overall air—fuel ratio. Examples of the availability of reaction are given in
section 2.9.2. The availability of reaction can be related to the internal energy of reaction
by

To(Se(Ty) - Sp(T))) _

AAR = (Qv)s 1 - = xa(Qv)s (235)
(Qv)s
which gives
a;—ay= xa(f\«l)s + [(u; ~ ug) = To(s; — 50) + Po(Vi — vo)] (2.36)
€

If the energy of reaction per unit mass of mixture is written ¢* = (Q,),/(¢ + 1) then

a;—a 1
— = — [(u;— o) + x,0" — To(s; = $0) + Po(V: — vo)] (2.37)
q q

Considering the individual terms in eqn (2.37)

T
uj—ty=c,(T;~To)=c,To|— -1 (2.38)
Ty
V; \ Vi
Po(vi — vp) =p0v0(— -~ 1) = RTO(——— - 1) =(x -~ l)chO(— - 1) (2.39)
Vo Vo Vo
T; Pi T, Pi
To(si—so) =Tpjc,In — —Rln —p=c,Tojx In — ~ (¥ — Dln — (2.40)
To Do Ty Do

+(x - 1)(ﬁ - 1)] (2.41)
Vo

Equation (2.41) can be applied around the cycle to evaluate the availability relative to
that at the datum state. The values at the state points of the Otto cycle are shown in Tables
2.2 and 2.3, and the variation of availability as a function of crankangle and volume during
the cycle (calculated by applying eqn (2.41) in a step-by-step manner) is shown in Figs 2.8
and 2.9 respectively.
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Table 2.2 State points around Otto cycle

State v/, p(bar) T(X) alq* da/q*

0 1 1 300 1.0286

1 1.11 1 333 1.029375 0.000775
2 0.0925 25.28923 701.7762  1.127041 0.097666
3 0.0925 127.5691 3540.043 0.955991 -0.17105
4 1.11 5.044404 1679.787 0.332836 -0.62316

Table 2.3 Terms in eqn (2.41) evaluated around cycle

*

State (5 - 1) 2 - 1)(1 - 1) {x = - G- 2} % %

T o v T ol @ q
o o0 9731469 0 0 1.0286
I 01l 9731469 0.033 0.135668 1029375 0.000775
2 1330254 0731469 027225 0.135668 1127041 0.097666
3 1080014 0731469  -0.27225 1.753948 0.955091 -0.17105
4 4509280 9.731469 0.033 1.753948 0.332836 -0.62316

The value of availability of the charge at state O is based on the ratio of the availability
of combustion of octane to the heat of reaction of octane, and this is calculated in section
2.9.2. The calculation of most of the other points on the cycle is straightforward, but it is
worthwhile considering what happens during the combustion process. In the Otto cycle
combustion takes place instantaneously at top dead centre (tdc), and the volume remains
constant. This means that when eqn (2.41) is used to consider the effect of adiabatic,
constant volume combustion occurring between points 2 and 3, this gives

a;—day, 4a,—4q

* *
q q
eTo (T T xq" T
=2 (—3~1)—{(-2—1)+ cl }-—{Kln—3—(7c—1)ln£3] (2.42)
q TO T() C VT() Tz D>
change of availabilityvdue to combustion as change of availal;ility of gases due
fuel changes from reactants to products, =0 to change of entropy of gases
Hence, the availability at point 3 is
- - T T
Dot Bt Do Hx In =2 - (x - Dln f’iH (2.43)
q q q T, P2

Equation (2.43) is the change in entropy of the working fluid which is brought about by
combustion, and since the entropy of the gases increases due to combustion this term
reduces the availability of the gas.

Figures 2.8 and 2.9 show how the non-dimensional availability of the charge varies
around the cycle. This example is based on a cycle with a premixed charge, i.e. the fuel and
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Fig. 2.8 Variation of the non-dimensional availability with crank angle for an Otto cycle
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air are induced into the engine through the inlet valve, and the availability of the charge is
greater at the beginning of the cycle than the end because the fuel contains availability
which is released during the chemical reaction. This is similar to the energy contained in the
reactants in a simple combustion process and released as the internal energy (or enthalpy) of
reaction of the fuel. Considering Fig 2.8, it can be seen that the availability of the charge
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increases during the compression stroke (—180° crankangle to 0° crankangle) because of the
work done by the piston (which is isentropic in this ideal cycle case). The ‘combustion’
process takes place instantaneously at 0° crankangle and the availability contained in the
fuel in the form of the chemical bonds (see Chapter 11) is released and converted, at
constant volume, to thermal energy. The effect of this is to introduce an irreversibility
defined by the change of entropy of the gas (eqn (2.42)), and this causes a loss of
availability. The expansion process (which is again isentropic for this ideal cycle) causes a
reduction of availability in the charge as it is converted into expansion work.

The availability of the working fluid at the end of the cycle, 4, is a measure of the work
that could be obtained from the charge after the cycle in the cylinder has been completed.
This availability can be obtained if the working fluid is taken down to the dead state by
reversible processes. Turbochargers are used to convert part of this availability into work
but cannot convert it all because they can only take the state of the fluid down to the
pressure of the dead state, p,. If the full availability is to be converted it is necessary to use
a turbine (e.g. a turbocharger) and then a ‘bottoming’ cycle (e.g. a Rankine cycle based on
a suitable working fluid) to take the exhaust gas down to the dead state temperature, 7T,.

The non-dimensional availability, a/ q , is a measure of the work that can be obtained
from the cycle. Hence, the total ‘non-dimensional work’ that can be achieved is

O0ar 0as  0an _ 1r0375 _ 0332836 — 0.17105 = 0.5255

* * *
q q q
[ S ——" S [ -
net work from availability
availability generated

This is the ratio of the net work output to the energy supplied ("), and is equal to the
thermal efficiency of the engine cycle. The thermal efficiency of this Otto cycle, with a
compression ratio of 12, is

1
Nowo = 1 — ——05255
oS
Thus, the availability approach has given the same result as the basic equation. Where the
availability approach shows its strength is in analysing the effects of finite combustion rates
and heat transfer in real cycles; this has been discussed by Patterson and Van Wylen (1964).

2.8 Availability balance for an open system

The availability balance of a closed system was derived in section 2.7. A similar approach
can be used to evaluate the change of availability in an open system. The unsteady flow
energy equation is

L dE
20-Ww= (d—) + ) i V2 +gz) = D i+ Vif2+gz)  (244)

j t cv e i
where ¥, Q is the sum of heat transfers to the control volume over the total number of heat
transfer processes, j, and the summations of the inflows and outflows take into account all
the inflows and outflows. If the changes in kinetic and potential energies are small then
this equation can be reduced to

ZQ w( ) th—th (2.45)
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It is also possible to relate the rate of change of entropy to the heat transfers from the
system, and the irreversibilities in the system as

ds

S'=——°V-=Z—+a —st +st (2.46)

dt

If the kinetic and potential energies of the control volume do not change then the internal
energy in the control volume, (E),,, can be replaced by the intrinsic internal energy of the
control volume, (U),,. The availability of the control volume is defined by eqn (2.10), and
hence

dA,, du,, av,, ds.,
= + Do -T, (2.47)
dr dr dt dt

Substituting eqns (2.46) and (2.47) into eqn (2.45) gives
dA., Y. |[. av
o ST 1= 22O - (W-po—]+ > (ki - Tosy)
7 ( T) ( P ) Z ’
= > te(he = Tose) = Tob oy (2.48)

The terms h — T,s are the flow availability, a¢, and hence eqn (2.48) becomes

dA,, ). [. av _ _ ,
—_= 1-—10 - \W-p,—1+ ) myas— ) m.a; —Ty0,
ar ,-( T)Q( %)Z 0= 2, To
T, .
= (1—7)Q—(W Do ) Zmaf Zmaf (2.49)
i

where I, is the irreversibility in the control volume.

Equation (2.49) is the unsteady flow availability equation, which is the availability
equivalent of the unsteady flow energy equation. Many of the processes considered in
engineering are steady state ones, which means that the conditions in the control volume
do not change with time. This means that dA_,/dt=0 and dV/ds =0, and then eqn (2.49)
can be simplified to

0= Z(l - %)Q ~W+ Y ag - ) mag —~Tooe
i i e

T\~ .
= (1 - ?O)Q ~W+ > ag - ) mag -1, (2.50)
: :

Example 8: steady flow availability

Superheated steam at 30 bar and 250°C flows through a throttle with a downstream
pressure of 5 bar. Calculate the change in flow availability across the throttle, neglecting
the kinetic and potential terms, if the dead state condition is T, = 25°C and p, =1 bar.
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Solution

A throttle does not produce any work, and it can be assumed that the process is adiabatic,

ie. Q=0, W=0. Hence, eqn (2.50) becomes, taking into account the fact that there is

only one inlet and outlet,
0=rma; — ma;, -1

(v

The conditions at inlet, i, are 4, =2858 kJ/kg, s,=6.289 kJ/kgK; and the conditions at
exhaust, e, are i, = 2858 kJ /kg, s. = 7.0650 kJ/kg K.
Hence the irreversibility per unit mass flow is

. 1
icv === (hl - TOSi) - (he - TOSe)
m

= (2858 - 298 x 6.289) — (2858 — 298 x 7.0650) = 231.28 kJ/kg

The significance of this result is that although energy is conserved in the flow through the
throttle the ability of the fluid to do work is reduced by the irreversibility. In this case,
because the enthalpy does not change across the throttle, the irreversibility could have
been evaluated by

To(s, — 5,) =298 x (7.065 — 6.289) = 231.28 kJ /kg

29 Exergy

Exergy is basically the available energy based on datum conditions at a dead state; it was
introduced in Example 3. An obvious datum to be used in most calculations is the ambient
condition, say p,, T,. This datum condition can be referred to as the dead state and the
system reaches this when it is in thermal and mechanical equilibrium with it. A state of
thermal and mechanical equilibrium is reached when both the temperature and pressure of
the system are equal to those of the dead state. The term exergy was proposed by Rant in
1956, and similar functions had previously been defined by Gibbs and Keenan.

Exergy will be given the symbol B (sometimes it is given the symbol Z) and specific
exergy will be denoted b (or &). The exergy of a system at state 1 is defined by

B =A,-A, (2.51)

where A, is the available energy at state 1, and A, is the available energy at the dead
state.

If a system undergoes a process between states 1 and 2 the maximum useful work, or
available energy, that may be obtained from it is given by

W=A1_A2=(A1—Ao)‘(AZ_A0)=Bl—Bz (2~52)

Hence the maximum work, or heat transfer, that can be obtained as a system changes
between two states is defined as the difference in exergy of those two states.

Exergy is very similar to available energy and is a quasi- or pseudo-property. This is
because it is not defined solely by the state of the system but also by the datum, or dead,
state that is used.

A number of examples of the use of exergy will be given.
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2.9.1 HEAT TRANSFER

It is possible for energy to be transferred from one body to another without any loss of
available energy. This occurs when the heat or energy transfer is ideal or reversible. No
real heat transfer process will exhibit such perfection and exergy can be used to show the
best way of optimising the effectiveness of such an energy transfer. All actual heat transfer
processes are irreversible and the irreversibility results in a loss of exergy.

It should be noted in this section that even though the heat transfer processes for each of
the systems are internally reversible, they might also be externally irreversible.

Ideal, reversible heat transfer

Ideal reversible heat transfer can be approached in a counterflow heat exchanger. In this
type of device the temperature difference between the two streams is kept to a minimum,
because the hot ‘source’ fluid on entering the heat exchanger is in closest contact to the
‘sink’ fluid which is leaving the device, and vice versa. The processes involved are
depicted by two almost coincident lines from 1 to 2 in Fig 2.10.

In this ideal process it will be assumed that, at all times, the fluid receiving the heat is at
temperature 7, while the temperature of the source of heat is at all times at temperature
T+ 0T, ie. T,. is OT less than T5, etc. From the First Law of Thermodynamics it is
obvious that, if the boundaries of the control volume are insulated from the surroundings,
the energy transferred from the hot stream must be equal to the energy received by the cold
stream. This means that the areas under the curves in Fig 2.10 must be equal: in this case
they are identical. The exergy change of the hot stream is then given by

ABh= B2h_Blh= (AZh_AO) - (Ap- Ao)
=Ap—Ap=(U+pV-TS8)y— (U+peV—-TS)i

=Un=Un) = To(S3n = Sin) + Po(Van — Vin) (2.53)
If it is assumed that V|, = V,, then
ABy= (Uy, - Uin) = To(Sm— S1) (2.54)

In eqn (2.54), U,,—- U,,=heat transferred from the hot stream, and §, — §,,=the
change of entropy of the hot stream. In Fig 2.10, U, — U, =area 1h-2h-6-5-1h and
To(S, — S1) = area 3-4-6-5-3. In the case of the hot stream the change of energy and the
change of entropy will both be negative, and because (U,,— U,;,)>To(Sy~ Si) the
change of exergy will also be negative.

A similar analysis can be done for the cold stream, and this gives

ABC=B2.C_BIC= (AZC_AO)_ (A]C_AO)
= Uy = Uyo) = To(Soc — S10) (2.55)

In this case U, — U, = heat transferred to the cold stream (area 1c-2c¢c-5-6-1c), and this
will be positive. The term T;,(S,. — S,.) = unavailable energy of the cold stream (area 4-3-
5-6-4), and this will also be positive because of the increase of entropy of the cold stream.
Figure 2.10 shows that the heating and cooling processes are effectively identical on the
T—s diagram and only differ in their direction. Hence, the changes of energy of the hot and
cold streams are equal (and opposite), and also the the unavailable energies are equal (and
opposite) for both streams. This means that for an ideal counterflow heat exchanger, in
which the heat transfer takes place across an infinitesimal temperature difference (i.e.
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reversible heat transfer), the loss of exergy of the hot stream is equal to the gain of exergy
of the cold stream. The change of exergy of the universe is zero, and the process is
reversible.

]
o
g
&
Control surface E
5
/ ]
Tlh :I - ___]: Tlh
[ . A
To | T
Y 3
| J
T, 4 3
6 S
Entropy, S

Fig. 2.10 Reversible heat transfer in a counterflow heat exchanger: (a) schematic diagram of heat
exchanger; (b) processes shown on a T—s diagram

If the heat exchanger in Fig 2.10 were not reversible, i.e. there is a significant
temperature difference between the hot and cold stream, then the T—s diagram would be
like that shown in Fig 2.11. Figure 2.11(a) shows the processes for both the hot and cold
streams on the same T-s diagram, while Figs 2.11(b) and 2.11(c) show individual T—s
diagrams for the hot and cold stream respectively. The first point to recognise is that the
energies transferred between two streams (areas 1h-2h-5h-6h-1h and 1c-2¢-5¢-6¢-1c) are
equal (and opposite). The change of exergy for the hot stream is denoted by the area 1h-
2h-3h-4h-1h, while the unavailable energy is given by 3h-5h-6h-4h-3h. Similar quantities
for the cold streams are 1c-2c-3c-4¢-1c and 3c-5¢-6¢-4¢-3c. It is obvious from Fig 2.11(a)
that the unavailable energy of the cold stream is greater than that for the hot stream
because Ty(S,. — S.c) > Tp(S;, — S,u). This means that the exergy gained by the cold stream
is less than that lost by the hot stream. For the hot stream

AB = (Uy,—Uyp) = To(Son— S1n) (2.56)
while for the cold stream
AB = (U, — U, ) —To(S,c = S10) (2.57)
The change of exergy of the universe is given by
AB ;. =AB,+AB = (U, — Uyp) — To(Son— Sin) + (Upe — Uy ) = Tp(Sp. = S1c)
= —To(Son— S+ Sz — Si0) (2.58)

The value of AB,,;, < 0 because the entropy change of the cold stream is greater than that of
the hot stream. Hence, in this irreversible heat transfer device there has been a loss of
exergy in the universe, and energy has been degraded. This means that the maximum
useful work available from the cold stream is less than that available from the hot stream,
even though the energy contents of the two streams are the same.



Exergy 39

T 1h
Hot strea%
2h
=
g 1h
£
g
5
= 2h 2¢ TO —————-—3L e e - 4h
5h 6h
/ §
1 ®)
¢ T
Cold stream 2
T, 4¢ 3h 3¢ 4h
i
6c 5h 5¢ | 6h ¢
Entropy, S
(@) To del o f3
6¢ 5¢
© S

Fig. 2.11 T-s diagrams for a counterflow heat exchanger with finite temperature difference
between the streams

This result has a further significance, which is that, to obtain the maximum transference
of exergy, it is important to reduce the value of T;, (S, — S,). If the total amount of energy
being transferred is kept constant then the loss of exergy can be minimised by increasing
the temperature at which the heat is transferred. This is effectively shown in Fig 2.11,
where the high temperature stream can be equivalent to a high temperature source of heat,
while the low temperature stream is equivalent to a lower temperature source of heat. The

quality of the heat (energy) in the high temperature source is better than that in the low
temperature one.

Irreversible heat transfer

The processes depicted in Fig 2.12 are those of an infinite heat source transferring energy
to a finite sink. The temperature of the source remains constant at 7, but that of the sink
changes from T; to T;. The energy received by the sink will be equal to that lost by the
source if the two systems are isolated from the surroundings. The process undergone by
the source is one of decreasing entropy while that for the sink is one of increasing entropy.
Hence, in Fig 2.12, the areas 1-2-8-9-1 and 5-6-10-8-5 are equal. This means that areas

(a+b+c)=(+c+d+e)
By definition the exergy change of the source is given by

AByue = B; = By = (U, - U)) = Ty(S, - §)) (2.59)
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Fig. 2.12 Irreversible heat transfer from an infinite reservoir to a finite sink

This equation assumes that the heat transfer takes place at constant volume. In a similar
way the exergy change of the sink is given by

ABsink‘_'Bﬁ"Bs:(Uﬁ'"Us)_To(Ss_Ss) (2.60)

Since the source and sink are isolated from the surroundings (the remainder of the
universe), then the entropy change of the universe is

AB iy = AB e + AB ik
=U,-UD-Ty(S; - )+ [(Usg— Us) = T((Ss— S5) ]
=To(S, = Se) (2.61)

The term 7,(S, — S¢) is depicted by the area marked ‘e’ in Fig 2.12. Since S¢ is greater
than §, then the exergy of the universe (that is, its ability to do work) has decreased by this
amount. Thus, whilst the energy of the universe has remained constant, the quality of that
energy has declined. This is true of all processes which take place irreversibly; that is, all
real processes.

2.9.2 EXERGY APPLIED TO COMBUSTION PROCESS

Combustion processes are a good example of irreversible change. In a combustion process
the fuel, usually a hydrocarbon, is oxidised using an oxidant, usually air. The structure of
the hydrocarbon is broken down as the bonds between the carbon and hydrogen atoms are
broken and new bonds are formed to create carbon dioxide, carbon monoxide and water
vapour. These processes are basically irreversible because they cannot be made to go in the
opposite direction by the addition of a very small amount of energy. This seems to suggest
that exergy of the universe is decreased by the combustion of hydrocarbon fuels. The
following section describes how combustion can be considered using an exergy approach.

Consider a constant pressure combustion process. When the system is in equilibrium
with its surroundings the exergy of component i is:

b= (h;— hy) = Ty(s, - 50) (2.62)
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Exergy of reaction of water

Applying eqn (2.62) to the simple reaction

2H,(g) + 0,(g) —2H,0(g) (2.63)
AB:BZ_BI=BP_BR=z(bi)P_2(bi)R (2.64)
where suffix R indicates reactants and suffix P indicates products.
Thus
AB = ()0 — To(S,0 — Sy, — 0.550,) (2.65)

Substituting values, for T, =25°C, which is also the standard temperature for evaluating
the enthalpy of reaction, gives

AB = -241820 - 298 x (188.71 — 130.57 - 0.5 x 205.04)
= —228594.76 kJ/kmol K (2.66)

This means that the ability of the fuel to do work is 5.5% less than the original enthalpy of
formation of the ‘fuel’, and hence 94.5% of the energy defined by the enthalpy of
formation is the maximum energy that can be obtained from it.

Exergy of reaction of methane (CH,)
The equation for combustion of methane is
CH, +20,—CO, + 2H,0 (2.67)
Hence
AB =%(b)p - Z(br
= (AHR)cn, — To(Sco, + 2810 — Scu, — 250,)
= —804.6 x 10° — 298 x (214.07 + 2 x 188.16 — 182.73 - 2 x 204.65)
= —804.1 x 10° kJ /kmol

In this case the exergy of reaction is almost equal to the enthalpy of reaction; this occurs
because the entropies of the reactants and products are almost equal.

Exergy of reaction of octane (CgH,s)
The equation for combustion of octane is
CH,s + 12.50,— 8CO, + 9H,0O (2.68)

Assume that the enthalpy of reaction of octane is —5074.6 x 10° kJ/kmol, and that the
entropy of octane at 298 K is 360 kJ/kmol K. Then the exergy of reaction is

AB = Z(bi)P - Z(bi)k
= (AHR)cgn,s — To(85co, + 9510 — Scany, — 12.550,)
= -5074.6 x 10* =298 x (8 x 214.07 + 9 x 188.16 — 360 — 12.5 x 204.65)
= -5219.9 x 10? kJ/kmol

In this case the exergy of reaction is greater than the enthalpy of reaction by 2.86%.
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2.10 The variation of flow exergy for a perfect gas

This derivation is based on Haywood (1980).
The definition of exergy is, from eqn (2.51),

B, =A -4, (2.51)

while that for the exergy of a flowing gas is, by comparison with eqn (2.13b) for the
availability of a flowing gas,

Bey=Apn—Ap=(H,-T,S,) - (Hy - 1TyS,) (2.69)
Equation (2.69) can be expanded to give the specific flow exergy as

bey=ag — ag= (hy— Typs1) = (ho — TyS,) (2.70)
Now, for a perfect gas,

h=c,T 2.71)
and the change of entropy

$1-s0=c,ln — —RIn 2 @.72)

T, Po

Hence, the flow exergy for a perfect gas can be written

T P T p
by =(hy— hy) — T cpln———Rln— =cp(T—T0)—T0 cpln——Rln—
Ty Po T, Do

(2.73)

The flow exergy can be non-dimensionalised by dividing by the enthalpy at the dead state
temperature, T, to give

by T T x-1 p
Y I I Ly Y 2 (2.74)
¢l T, T, K Po

Equation (2.74) has been evaluated for a range of temperature ratios and pressure ratios,
and the variation of exergy is shown in Fig 2.13.
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Fig. 2.13 Variation of exergy with temperature and pressure for a perfect gas
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Also shown in Fig 2.13, as a straight line, is the variation of enthalpy for the
parameters shown. It can be seen that the exergy is sometimes bigger than the enthalpy,
and vice versa. This is because the enthalpy is purely a measure of the thermodynamic
energy of the gas relative to the datum temperature. When the dimensionless temperature
T/T,<1.0 the enthalpy is negative, and when T/T,>1.0 the enthalpy is positive. This
simply means that the thermodynamic energy can be greater than or less than the datum
value. While the enthalpy varies montonically with the non-dimensional temperature, the
exergy does not. The reason for this is that the exergy term, say at p /po=1, is given by

b T T
f1 =|— —1)-1n — (2.75)
CpTO To TO
For
T T
— > 1, ——=1}-In— >1
T[) T() T()
and also for
T T T
— <1, ——-1}-lIn—>1
To To To

The physical significance of this is that the system can produce work output as long as
there is a temperature difference between the system and the dead state: the sign of the
temperature difference does not matter.

211 Concluding remarks

This chapter has introduced the concept of the quality of energy through the quasi-
properties availability and exergy. It has been shown that energy available at a high
temperature has better quality than that at low temperature. The effect of irreversibilities
on the quality of energy has been considered, and while the energy of the universe might
be considered to remain constant, the quality of that energy will tend to decrease.

It was also shown that the irreversibility of processes can be calculated, and it is this
area that should be tackled by engineers to improve the efficiency of energy utilisation in
the world.

PROBLEMS

1 A piston-cylinder assembly contains 3 kg of air at 15 bar and 620 K. The environment
is at a pressure of 1 bar and 300 K. The air is expanded in a fully reversible adiabatic
process to a pressure of 5.5 bar. Calculate the useful work which can be obtained
from this process. Also calculate the maximum useful work which can be obtained
from the gas in (a) the initial state, and (b) the final state.

Assume that the specific heats for the gas are c,=1.005kJ/kgK, and
c,=0.718 kJ/kg K.
[295.5 kJ; 509.6 kJ; 214.1 kJ]

2 Air passes slowly through a rigid control volume C, as shown in Fig P2.2(a), in a
hypothetical, fully reversible, steady-flow process between specified stable end states



44 Availability and exergy

1 and 2 in the presence of an environment at temperature 7, and pressure p,. States 1
and 2, and also the values of 7, and p,, are defined below:

T,=550K and p, =2 bar
T,=T,=300K and D, = pg=1 bar
The air may be treated as a perfect gas, with ¢, =1.005 kJ/kgK and ¢, =0.718 kJ/
kg K.
(a) The air follows path 1-a-2 see Fig P2.2(b); calculate the following work output
quantities in each of the sub-processes 1-a and a-2:

(i)  The direct shaft work, W,, coming from the control volume as the air
passes through the given sub-process.

(ii) The external work, W,, produced by any auxiliary cyclic devices
required to ensure external reversibility in that exchange with the
environment during the given sub-process.
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(iii) The gross work W,.
(iv) The total useful shaft work W,..
[66.03; 62.2; 128.23; 128.23 (kJ/kg)]

(b) Calculate the above work output quantities for each of the sub-processes 1-b and
b-2 when the air follows the alternative path 1-b-2.
[109.41; 18.77; 128.18; 128.18 (kJ/kg)]

Confirm that item (iv) in Q.2. is equal to (b, — b,), where b=h—Ts, the specific
steady-flow availability function. (Note that, since T, =T, and p, = p,, state 2 is the
dead state, so that item (iv) is in this case equal to the steady-flow exergy of unit mass
of air in state 1 for an environment at 7, = 300 K and p,=1 bar.)

[128.2 kJ/kg]

A mass of 0.008 kg of helium is contained in a piston-cylinder unit at 4 bar and
235°C. The piston is pushed in by a force, F, until the cylinder volume is halved, and
a cooling coil is used to maintain the pressure constant. If the dead state conditions are
1.013 bar and 22°C, determine:

(i) the work done on the gas by the force, F;
(ii) the change in availability;

(iii) the heat transfer from the gas;

(iv) the irreversibility.

Show the heat transfer process defined in part (iii) and the unavailable energy on a
T—s diagram, and the work terms on a p—V diagram.

The following data may be used for helium, which can be assumed to behave as a
perfect gas:

ratio of specific heats, x = c,/c, = 1.667
molecular weight, m, =4
universal gas constant, t = 8.3143 kJ/ kmol K
[-3.154 kJ; 1.0967 kJ; —10.556 kJ; 2.0573 kJ ]

A system at constant pressure consists of 10 kg of air at a temperature of 1000 K.
Calculate the maximum amount of work that can be obtained from the system if the
dead state temperature is 300 K, and the dead state pressure is equal to the pressure in
the system. Take the specific heat at constant pressure of air, c,, as 0.98 kJ/kgK. (See
Q.3, Chapter 1.)

[3320.3 kJ]

A thermally isolated system at constant pressure consists of 10 kg of air at a
temperature of 1000 K and 10 kg of water at 300 K, connected together by a
reversible heat engine. What is the maximum work that can be obtained from the
system as the temperatures equalise? (See Q.4, Chapter 1.)

Assume
for water: ¢, =4.2 kl/kgK
x=c,/c,=1.0
forair: c,=0.7 kJ/kgK
xk=c,/c,=14

[2884.2 kJ]
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10

Availability and exergy

An amount of pure substance equal to 1 kmol undergoes an irreversible cycle.
Neglecting the effects of electricity, magnetism and gravity state whether each of the
following relationships is true or false, giving reasons for your assertion:

@ §00=f [@uy+pdv,)

du,+pdv,
T

(iif) §6W<§pdm

(i) § >0

where the suffix m indicates that the quantities are in molar terms.
[False; false; true]

A gas turbine operates between an inlet pressure of 15 bar and an exhaust pressure of
1.2 bar. The inlet temperature to the turbine is 1500 K and the turbine has an
isentropic efficiency of 90%. The surroundings are at a pressure of 1 bar and a
temperature of 300 K. Calculate, for the turbine alone:

(i) the specific power output;

(ii) the exhaust gas temperature;

(iii) the exergy change in the gas passing through the turbine;
(iv) the irreversibility or lost work.

Assume the working substance is an ideal gas with a specific heat at constant pressure
of ¢, =1.005 kJ/kg K and the specific gas constant R = 0.287 kJ/kgK.
[697.5 kI /kg; 806K; 727.7 kl/kg; 343.6 kJ/kg]

It is proposed to improve the energy utilisation of a steelworks by transferring the heat
from the gases leaving the blast furnace at 600°C to those entering the furnace at
50°C (before the heat exchanger is fitted). The minimum temperature of the flue
gases is limited to 150°C to avoid condensation of sulfurous acid in the pipework at
exit pressure of 1 bar.

Draw a simple schematic diagram of the heat exchanger you would design,
showing the hot and cold gas streams. Explain, with the aid of T—s diagrams, why a
counterflow heat exchanger is the more efficient. If the minimum temperature differ-
ence between the hot and cold streams is 10°C, calculate the minimum loss of exergy
for both types of heat exchanger, based on dead state conditions of 1 bar and 20°C.

[-72.33 kJ/kg; —45.09 kJ/kg]

Find the maximum, and maximum useful, specific work (kJ/kg) that could be
derived from combustion products that are (a) stationary, and (b) flowing, in an
environment under the following conditions.

pbar) T(K)  v(m’/kg) u(ki/kg) s(kI/kgK)

Products (1) 7 1000 0.41 760.0 7.4
Environment (0) 1 298.15 0.83 289.0 6.7

[262.3; 220.3; 466.3; 424.3]
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Pinch Technology

In recent years a new technology for minimising the energy requirements of process plants
has been developed: this has been named Pinch Technology or Process Integration by its
major proponent, Linnhoff (Linnhoff and Senior, 1983; Linnhoff and Turner 1981).
Process plants, such as oil refineries or major chemical manufacturing plants, require that
heating and cooling of the feed stock take place as the processes occur. Obviously it would
be beneficial to use the energy from a stream which requires cooling to heat another which
requires heating; in this way the energy that has to be supplied from a high temperature
source (or utility) is reduced, and the energy that has to be rejected to a low temperature
sink (or utility) is also minimised. Both of these external transfers incur a cost in running
the plant. Pinch technology is an approach which provides a mechanism for automating the
design process, and minimising the external heat transfers.

Pinch situations also occur in power generation plant; for example, in a combined cycle
gas turbine (CCGT) plant (see Fig 3.1) energy has to be transferred from the gas turbine
exhaust to the working fluid in the steam turbine. A T—s diagram of a CCGT plant is

GAS TURBINE PLANT

STEAM Wlhlﬂ! PLANT

Fig. 3.1 Schematic of CCGT
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shown in Fig 3.2, where the heat transfer region is shown: the pinch is the closest approach
in temperature between the two lines. It is defined as the minimum temperature difference
between the two streams for effective heat transfer, and is due to the difference in the
properties of the working fluids during the heat transfer process (namely, the exhaust gas
from the gas turbine cools down as a single phase but the water changes phase when it is
heated) — this limits the amount of energy that can be taken from the hot fluid. The heat

transfer processes are shown on a temperature—enthalpy transfer diagram in Fig 3.3,
where the pinch is obvious.

=
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5
= < Joule cycle
q. Y\°'°\“
Pinch'point . A
Rankine cycle
Entropy, S
Fig. 3.2 T-s diagram of CCGT
g gr
g
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5]
=%
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b=

Enthalpy

Fig. 3.3 H-T diagram of CCGT

Perhaps the easiest way of gaining an understanding of pinch techniques is to consider
some simple examples.
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3.1 A heat transfer network without a pinch problem

This example has a total of seven streams, three hot and four cold, and it is required to use
the heating and cooling potential of the streams to minimise the heat transfer from high
temperature utilities, and the heat transfer to low temperature utilities. The parameters for
the streams involved in the processes are given in Table 3.1. The supply temperature, T,
is the initial temperature of the stream, and the target temperature, 77, is the target final
temperature that must be achieved by heat transfer. The heat flow capacity, mC, is the
product of the mass flow and the specific heat of the particular stream, and the heat load is
the amount of energy that is transferred to or from the streams.

Table 3.1 Specification of hot and cold streams

Supply Target

temperature temperature  Heat flow capacity Heat load
Streamno  Stream type T5/(°C) T./(°C) mC/(MJ/hK) 0/Mi/h)
1 Cold 95 205 2.88 316.8
2 Cold 40 220 2.88 5184
3 Hot 310 205 4.28 -449.4
4 Cold 150 205 7.43 408.7
5 Hot 245 95 2.84 -426.0
6 Cold 65 140 4.72 354.0
7 Hot 280 65 2.38 ~511.7

In this case there are three streams of fluid which require cooling (the hot streams) and
four streams of fluid which require heating (the cold streams). The simplest way of
achieving this is to cool the hot streams by transferring heat directly to a cold water
supply, and to heat the cold streams by means of a steam supply; this approach is shown in
Fig 3.4. This means that the hot utility (the steam supply) has to supply 1597.9 MJ of
energy, while the cold utility (a cold water supply) has to remove 1387.1 MJ of energy.
Both of these utilities are a cost on the process plant. The steam has to be produced by
burning a fuel, and use of the cold water will be charged by the water authority. In reality
a minimum net heat supply of 1597.9-1387.1 = 210.8 MJ /h could achieve the same result,
if it were possible to transfer all the energy available in the hot streams to the cold streams.
This problem will now be analysed.

If heat is going to be transferred between the hot and cold streams there must be a
temperature difference between the streams: assume in this case that the minimum
temperature difference (67,,,) is 10°C,

The method of tackling this problem proposed by Linnhoff and Turner (1981) is as follows.

Step 1: Temperature intervals

Evaluate the temperature intervals defined by the ‘interval boundary temperatures’. These
can be defined in the following way: the unadjusted temperatures of the cold streams can
be used, and the hot stream temperatures can be adjusted by subtracting 67T,,, from the
actual values. In this way the effect of the minimum temperature difference has been
included in the calculation. This results in Table 3.2.



50  Pinch technology
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Fig. 3.4 Direct heat transfer between the fluid streams and the hot and cold utilities

Table 3.2 Ordering of hot and cold streams

Supply Target
temperature  temperature
Streamno Stream type T5/(°C) T/ (°C) Adjusted temperatures  Order
1 Cold 95 95 Ty
205 205 T,
2 Cold 40 40 T,
220 220 T,
3 Hot 310 300 T,
205 195 T,
4 Cold 150 150 T,
205 205 Duplicate
5 Hot 245 235 T,
95 85 Ty
6 Cold 65 65 T,
140 140 T,
7 Hot 280 270 T,
65 55 To

The parameters defining the streams can also be shown on a diagram of temperature
against heat load (enthalpy transfer; see Fig 3.5). This diagram has been evaluated using
the data in Table 3.2, and is based on the unadjusted temperatures. The hot stream line is
based on the composite temperature —heat load data for the hot streams, and is evaluated
using eqn (3.2); the cold stream line is evaluated by applying the same equation to the cold
streams. It can readily be seen that the two lines are closest at the temperature axis, when
they are still 25°C apart: this means that there is no ‘pinch’ in this example because the
temperature difference at the pinch point is greater than the minimum value allowable.
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Hence, the problem reduces to transferring energy from the hot streams to the cold
streams, and finally adding 210.8 MJ/h from a hot utility. The mechanism for allocating
the energy transfers will now be introduced.

Having defined the temperature intervals it is possible to consider the problem as shown
in Fig 3.6. The energies flowing into and out of the combined systems, Q, and Q. are
those which have to be supplied by and lost to the external reservoirs respectively. It is
also apparent that the difference between thcse values is the difference between the
enthalpies of the hot and cold streams, i.e.

Q.- Q= 0H (3.1)
Consideration will show that dH is constant, because the difference between the enthalpies
of the hot and cold streams is constant, and this means that any additional energy added from
the high temperature supplies must be compensated by an equal amount of energy being
rejected to the low temperature sinks: hence energy will have just flowed wastefully through
the overall system. The heat transfer network can be shown schematically as in Fig 3.7. The
heat flows through each of the temperature intervals can be evaluated as shown in the next step.

Step 2: Interval heat balances

Table 3.2 includes the effect of the minimum temperature difference between the streams,
oT,;., and hence the intervals have been established so that full heat transfer is possible

between the hot and cold streams. It is now necessary to apply the First Law to examine
the enthalpy balance between the streams, when

OH,=[ > (mC)y— > (mC)\(T,-T,.1)
'HO[I ‘C‘oldl

where [ = initial temperature of the interval (3.2)
i + 1 = final temperature of the interval )

Applying this equation to this example results in the heat flows shown by the 6H = mC3T
values in Fig 3.8.

It can be seen from Fig 3.8 that the individual heat transfers are positive (i.e. from the
hot streams to the cold streams) in the first four intervals. In the fifth interval the amount
of energy required by the cold streams exceeds that available from the hot streams in that
temperature interval, but the energy can be supplied from that available in the higher
temperature intervals. However, by the eighth interval the demands of the cold streams
exceed the total energy available from the hot streams, and it is at this point that the
energy should be added from the hot utility, because this will limit the temperature
required in the hot utility. In reality, the 210.8 MJ could be provided from the hot utility at
any temperature above 140°C, but the higher the temperature of the energy the more will
be the irreversibility of the heat transfer process. It is now useful to look at the way in
which the heat can be transferred between the hot and cold streams.

The streams available for the heat transfer processes are shown in Fig 3.9. First, it
should be recognised that there is no heat transfer to the cold utility, and thus all the heat
transfers from the hot streams must be to cold streams This constrains the problem to
ensure that there is always a stream cold enough to receive heat from the hot sources. This
means that the temperature of Stream 7 must be cooled to its target temperature of 65°C by
transferring heat to a colder stream: the only one available is Stream 2. Hence, the total
heat transfer from Stream 7 is passed to Stream 2: an energy balance shows that the
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Fig. 3.8 Heat flows

temperature of Stream 2 is raised tc 218°C, and there is a residual heat capacity of 6.7 MJ/h
before the stream reaches its target temperature In a similar manner it is necessary for
Stream 5 to be matched to Stream 6 because this is the only stream cold enough to bring its
temperature down to 95°C. In this way it is possible to remove Streams 6 and 7 from
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further consideration because they have achieved their target temperatures; Streams 2 and
5 must be left in the network because they still have residual energy before they achieve
their targets. Figure 3.9 can be modified to Fig 3.10.
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Fig. 3.9 Initial heat transfer: heat transfer from Streams 5 to 6, and 7 to 2
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Fig. 3.10 Removing the residuals from Streams 2 and 5

Streams 2 and 5 are represented in this diagram by their residual energies, and by the
temperatures that were achieved in the previous processes. It is possible to cool Streams 3
and 5 by transferring energy with either of cold Streams 1 or 4. The decision in this case is
arbitrary, and for this case Stream 3 will be matched with Stream 4, and Stream 5 will be
matched with Stream 1. This results in the heat transfers shown in Fig 3.10, and by this
stage Streams 5 and 4 can be removed from further consideration. This results in another

modified diagram, Fig 3.11.
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Fig. 3.11 Completing the heat transfer network
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By this stage it is necessary to consider adding the heat from the hot utility. In this case,
the temperature at which this energy is added is relatively arbitrary, and the heat should be
transferred at as low a temperature as possible. This is indicated by the 210.8 MJ/h heat
transfer in Fig 3.11.

The previous analysis has considered the problem in discrete parts, but it is now
possible to combine all these sub-sections into a composite diagram, and this is shown in
Fig 3.12.
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Fig. 3.12 Composite diagram for heat exchanger network

The diagram given in Fig 3.12 suggests that seven heat exchangers are required, but the
diagram is not the most succinct representation of the network problem, which is better
illustrated as shown in Fig 3.13, which grows directly out of the original arrangement
shown in Fig 3.4.
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Fig. 3.13 Diagram showing the minimum number of heat exchangers to achieve heat transfer
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This case was a relatively straightforward example of a heat exchanger network in
which it was always relatively easy to match the streams, because there was always a
sufficient temperature difference to drive the heat transfer processes. The next example

shows what happens when there is not sufficient temperature difference to drive the heat
transfer processes.

3.2 A heat transfer network with a pinch point

Consider there are four streams of fluid with the characteristics given in Table 3.3.
Assume that the minimum temperature difference between any streams to obtain
acceptable heat transfer is 5°C, i.e. 07T, =5°C. This value of 87, is referred to as the
pinch point because it is the closest that the temperatures of the streams are allowed to
come. The temperatures of the streams can be ordered in a manner similar to the first case
and the results of this are shown in Table 3.4.

Table 3.3 Characteristics of streams

Process stream Supply Target Heat capacity  Heat load
———————— temperature temperature flowrate, mC  mC(Ts— Ty)
Number Type Ts/(°C) T:/(°C) /(MJ/hK) /(M /h)

1 Cold 50 110 2.0 120

2 Hot 130 70 3.0 180

3 Cold 80 115 40 140

4 Hot 120 55 1.5 97.5

Table 3.4 Definition of temperature intervals

Streamno  Stream type  T/(°C) T;/(°C) Adjusted temperatures  Order

1 Cold 50 50 T,
110 110 T,
2 Hot 130 125 T,
70 65 Ts
3 Cold 80 80 T,
115 115 T,
4 Hot 120 115 Duplicate
55 50 Duplicate

These temperature intervals can be depicted graphically as shown in Fig 3.14. It can be
seen that there are five intervals in this case, as opposed to the 12 in the first case.

It is now possible to draw the temperature —heat load diagram for this problem, and this
is shown in Fig 3.15. It can be seen that the basic cold stream is too close to the hot stream
and there will not be a sufficient temperature difference to drive the heat transfer
processes. The modified cold stream line has been drawn after undertaking the following
analysis, and does produce sufficient temperature difference at the pinch.
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Fig. 3.15 Temperature—heat load diagram, indicating pinch point

Step 3: Heat cascading

This step is an additional one to those introduced previously, and consideration will show
why it comes about. Figure 3.16 indicates the heat flows in the various intervals and, in the
left-hand column of figures, shows that if the heat flow from the hot utility (or heat
source) is zero then there will be a negative heat flow of —12.5 units in temperature
interval 3 between 110°C and 80°C. Consideration will show that this is impossible
because it means that the heat will have been transferred against the temperature gradient.
Such a situation can be avoided if sufficient energy is added to the system to make the
largest negative heat flow zero in this interval. The result of this is shown in the right-hand
column of figures in Fig 3.16, which has been achieved by adding 12.5 units of energy to
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the system. It can be seen that in both cases the difference between @, and Q. is 17.5 units
of energy. If an energy balance is applied to the streams defined in Table 3.3 then

¥ 8H;=3 x (130 - 70) + 1.5 x (120 = 55)~2 x (110 — 50)—4 x (115 — 80)
=175 (3.3)

Hence, as stated previously, the energies obey the steady-flow energy equation for the
system shown in Fig 3.16.

mC3T ImC8T

8H =30

Q, 113 30 42.5
SH=25
A 325 45
8H = -45
80 -1255 0 —
3H=375
& 25 375
SH=-75
50 17.5 30

Fig. 3.16 Temperature intervals and heat loading

There is now a point in the temperature range where the heat flow is zero: this point is
called the pinch. In this example it is at 80°C, which means that the pinch occurs at a cold
stream temperature of 80°C and a hot stream temperature of 85°C. There are three
important constraints regarding the pinch:

1. Do not transfer heat across the pinch. Any heat flow across the pinch results in
the same amount of heat being added to every heat flow throughout the system,
and hence increases O, and Q..

2. Do not use the cold sink above the pinch. If the system has been designed for
minimised heat flow it does not reject any heat above the pinch (see Fig 3.16,
where the heat rejection has been made zero at the pinch).

3. Do not use the hot source below the pinch. If the system has been designed for
minimised heat flow it does not absorb any heat below the pinch.

It is hence possible to reduce the problem into two parts: above the pinch and below the
pinch, as shown in Fig 3.17, which is a modification of Fig 3.7.

It is now necessary to break the problem at the pinch, and this results in Fig 3.18, which
is the equivalent of Fig 3.9 for the first example.

Now the problem can be analysed, bearing in mind the restrictions imposed by the pinch
point. This means that cooling to the utility stream is not allowable above the pinch, and
hence the only transfer can be with the hot utility above the pinch. It is now necessary, as
far as possible, to match the hot and cold streams above the pinch.

1. Consider Stream 2 is matched with Stream 1, and Stream 4 is matched with Stream 3.
Then Stream 2 can transfer 70 MJ/h to Stream 1, and enable Stream 1 to achieve its
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target temperature, while reducing its own temperature to 106.7°C. Also Stream 4 can
transfer its energy to Stream 3 and this will raise the temperature of Stream 3 to
93.1°C. This shows that there is not sufficient energy available in these streams to
achieve the target temperatures. The reason for this being an unsuitable approach is
because the heat capacity flowrate for Stream 1 above the pinch is greater than that of
the cold stream above the pinch. Since both streams have the same temperature at the
pinch point, then the higher temperature of the cold stream would have to be higher
than that of the hot stream to achieve an energy balance: this would result in an
impossible heat transfer situation. Hence, for a satisfactory result to be possible

mC s = mCy,, 34

above the pinch point.
If the alternative match is used, namely, Stream 2 matched to Stream 3, and
Stream 4 matched to Stream 1, then the answer shown in Fig 3.19 is obtained.
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The heat transfers are shown on the diagram. It can be seen that it is not possible
to match the hot and cold streams either above or below the pinch. This means
that utility heat transfers are required from the hot utility above the pinch, and
heat transfers to the cold utility are required below the pinch. This proposal does
obey inequality (3.4), and is hence acceptable.

3. It can be seen that, above the pinch point, energy has to be added to the system
from the hot utility. This obeys the rules proposed above, and the total energy
added is 12.5 MJ/h, which is in agreement with the value calculated in
Fig 3.16.

4. Considering the heat transfers below the pinch, it can be seen that Stream 1 can
be heated by energy interchange with Streams 2 and 4: neither Stream has
sufficient capacity alone to bring Stream 1 to its target temperature. However, it
is feasible to bring about the heating because

mCio = mC g4 (3.5)

which is the equivalent of inequality (3.4) for the transfers below the pinch. In
this case it was chosen to transfer all the energy in Stream 4 because this results
in a lower temperature for heat transfer to the cold utility. The 30 MJ/h
transferred to the cold utility is in line with that calculated in Fig 3.16.

These diagrams can now be joined together to give the composite diagram in Fig 3.19.
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Fig. 3.19 Composite diagram for heat transfer network in Example 2

The heat load against temperature diagram for this problem, before heat transfer from the
utilities has been supplied, is shown in Fig 3.15, and was discussed previously. It is now
possible to consider the modified diagram, when it can be seen that the energy transfers have
produced a sufficient temperature difference to satisfy the constraints of the problem.

3.3 Concluding remarks

A method has been introduced for improving the efficiency of energy transfers in complex
plant. It has been shown that in some plants there is a pinch point which restricts the
freedom to transfer energy between process streams. To ensure that the plant attains its
maximum efficiency of energy utilisation, energy should be added to the system only
above the pinch, and extracted from it only below the pinch.
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PROBLEMS

1

3

A process plant has two streams of hot fluid and two streams of cold fluid, as defined
in Table P3.1. It is required to minimise the energy which must be transferred to hot
and cold utilities by transferring energy between the streams. If the minimum
temperature difference for effective heat transfer is 20°C, design a network which
achieves the requirement, and minimises the transfers to the utilities. Is there a pinch
point in this problem, and at what temperature does it occur? Calculate the minimum
heat transfers to and from the cold and hot utilities.

Table P3.1 Data related to Q.1

Supply Target
temperature temperature  Heat flow capacity
Streamno  Stream type Ts/(°C) T;/(°C) mC/(MJ/hK)
1 Hot 205 65 2.0
2 Hot 175 75 4.0
3 Cold 45 180 3.0
4 Cold 105 155 4.5

[105°C (cold stream); Qy . =90 MJ/h; QOc,,, =140 MIJ/h]

Some stream data have been collected from a process plant, and these are listed in

Table P3.2. Assuming the minimum temperature difference between streams,

AT, =10°C,

(a) calculate the data missing from Table P3.2;

(b) analyse this data to determine the minimum heat supplied from the hot utility, the
minimum heat transferred to the cold utility, and the pinch temperatures;

(c) draw a schematic diagram of the heat transfer network.

Table P3.2 Data related to Q.2

Supply Target
temperature temperature  Enthalpy change Heat flow capacity
Streamno  Stream type  T5/(°C) T./(°C) AH/(kW) mC/{(kW/K)
1 Cold 60 180 ? 3
2 Hot 180 40 ? 2
3 Cold 30 130 220 ?
4 Hot 150 40 400 ?
5 Cold 60 80 40 ?

[360 kW; 280 kW; 2.2 kW/K; 4.0 kW/K; 2.0 kW/K; Qy =60 kW; Q. =160 kW;
T, = 140°C]

Figure P3.3 shows a network design using steam, cooling water and some heat recovery.
(a) Does this design achieve the minimum energy target for AT, ,, = 20°C?
(b) If the current network does not achieve the targets, show a network design that
does.
[@) Tc,,, = 150°C; Ty, = 170°C; Q=480 kW; Qy = 380 kW; (b) Qc,,, = 360 kW;
Oy, =260 kW]
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230° 150°
Steam duty
380 kW Cold water
duty: 480 kW
260° 60°
M AN é &| Process
Duty: Duty:
420 kW 300 kW
50° 150°

Fig. P3.3 Network for Q.3

4 Figure P3.4 shows two hot streams and two cold streams for heat integration (subject
to AT, =20°C).

(i) What are the energy targets?
(ii) Show a network design achieving these targets.
[Qﬂmm = 0; Qcmi,, = 0]

mC =20 mC =10
4 155°C 4 180°C

|IIL250C 100C= mC =10

Hot streams

EISOC 140C= mC =50

130"C 30'C
B 4]

Cold streams
Fig. P3.4 Network for Q.4

5 Figure P3.5 shows an existing design of a process plant, containing two exothermic
processes. These require streams of reactants as shown in the diagram, and produce
products at the temperatures shown. The plant achieves the necessary conditions by
providing 480 kW of heat from a steam source, and rejects a total of 560 kW of energy
to cold water utilities; only 460 kW is transferred between the streams.

(a) Show that there is a pinch point, and evaluate the temperature.

(b) Show that the existing plant is inefficient in its use of the energy available.

(c) Calculate the energy targets for AT, = 20°C and show a design that achieves these
targets.

[(a) Te,,,, = 110°C; Ty, = 130°C; (b) Oc = 560 kW; Qy; =480 kW,
(©) Oc,,=210kW; Qy =130 kW]
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110° ¢ AH = 480 kW

165°

L 170°
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Heat exchanger
AH = 460 kW

\ 4

Process

é&)oling water

AH =200 kW

Fig. P3.5 Network for Q.5
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Cooling water
AH =360 kW

6 Recalculate the problem in Q.5 using a AT, =10°C. Comment on the effect of
reducing the minimum temperature difference.

[@) T, = 110°C; Tyy,,., = 120°C; (b) Qc = 560 kW; Oy =480 kW;
(©) Qc,. = 120 kW; Q=40 kW]

7 A network for a process plant is shown in Fig P3.7.

(a) Calculate the energy targets for AT,

targets.

= 10°C and show a design that achieves these

(b) Explain why the existing network does not achieve the energy targets.

(@) Oc,,. =190 kW; Qy  T=90 kW, (b) there is transfer across the pinch]

30°

Process

180° 70°

Heat exchanger
420 kW

Cooling water
660 kW

Process

3

110° 160°
Steam

500 kW

Fig. P3.7 Network for Q.7

190°

50°



4

Rational Efficiency of a Powerplant

4.1 The influence of fuel properties on thermal efficiency

The thermal efficiency of a cycle has been defined previously, in terms of specific
quantities, as

w
Mo =—— 4.1

where w,, = net work output from the cycle per unit mass of fluid,
and q,, = energy addition to the cycle per unit mass of fluid.

In this case g, is the energy transfer to the working fluid, and does not take into account
any losses in the boiler or heat transfer device. Equation (4.1) can be rewritten for the
whole powerplant, including the boiler or heat transfer mechanism, as

w

= 4.2)

h=MeNn =
B —Ah,

where 7, = overall efficiency of powerplant,
ng = efficiency of boiler,
74 = thermal efficiency of cycle,
W, = niet work output from the cycle per unit mass of fuel,
and Ah, = specific enthalpy of reaction of fuel.

This might be considered to be an unfair, and possibly misleading, method of defining
the efficiency because the energy addition cannot all be turned into work, as was shown
when considering exergy and availability. Another definition of efficiency can be derived
based on the Second Law, and this relates the work output from the cycle to the maximum
work output obtainable.

The efficiency of the powerplant has been related, in eqn (4.2), to the amount of energy
that has been added to the cycle by the combustion of the fuel. In the past this has been
based on the enthalpy of reaction of the fuel, or usually its calorific value, Q,. It was
shown previously (Chapter 2) that this is not the energy available for the production of
work, and that the maximum available work that can be obtained from the fuel is based on
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the change of its exergy at the dead state conditions. Hence, the maximum available work
from unit mass of fuel is

—Ago = 8gr,— 8p, (4.3)
This is related to the enthalpy of formation by the equation
Agy= Ahg — Ty(sp,~ Sp,) (4.4)

It was shown in Chapter 2 that | Ag, | could be greater than or less than | Ak, |, and the
difference was dependent on the structure of the fuel and the composition of the exhaust
products. The efficiency of the powerplant can then be redefined as

= _MWoet 4.5)
- Ago

where w,, = actual net work output from the cycle per unit mass of fuel,
and Ag, = change of Gibbs function caused by combustion,

= maximum net work obtainable from unit mass of fuel.

Equation (4.5) is often referred to as the Second Law Efficiency, because the work
output is related to the available energy in the fuel, rather than its enthalpy change. The
actual effect on thermal efficiency of using the change of Gibbs function instead of the
enthalpy of reaction is usually small (a few per cent).

4.2 Rational efficiency

When the efficiencies defined in eqns (4.2) and (4.5) are evaluated they contain terms
which relate to the ‘efficiency’ of the energy transfer device (boiler) in transferring energy
from the combustion gases to the working fluid. These effects are usually neglected when
considering cycles, and the energy added is related to the change in enthalpy of the
working fluid as it passes through the boiler, superheater, etc. Actual engine cycles will be
considered later. First, a general neat engine will be considered (see Fig 4.1). For
convenience the values will all be taken as specific values per unit mass flow of working
fluid.

The engine shown in Fig 4.1 could be either a wholly reversible (i.e. internally and
externally) one or an irreversible one. If it were internally reversible then it would follow
the Camot cycle 1-2-3s—4—1. If it were trreversible then it would follow the cycle
1-2-3-4-1. Consider first the reversible cycle. The efficiency of this cycle is

Woee (T1=T3)(s,—5y) Ti—T) (s~ 5y)
Mo = — = - (4.6)
din T(s2—$1) Th(s2—51)

which is the efficiency of an internally reversible engine operating between the
temperature limits 7y and 7' . This efficiency will always be less than unity unless 7 =0.
However, the Second Law states that it is never possible to convert the full energy content
of the energy supplied into work, and the maximum net work that can be achieved is
Woe=b,— b =hy,— h - Ty(s,—5,) 4.7)

where 7, is the temperature of the dead state.
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Fig. 4.1 A heat engine operating between two reservoirs: (a) schematic diagram of the engine;
(b) T—s diagram for the engine which receives and rejects energy isothermally; (c) T—s diagram for
the engine which receives and rejects energy non-isothermally

Hence, the Second Law efficiency of the heat engine is

Mhet (T, =T5)(s, - 51) _ T\(53—51) —T55(s2—51)
Woer  ha—h1—To(s2—-$1) hy—hi—To(s2— 1)
hy~—hy=Ts(s,=8,)  hy—h=To(s3=8,) = (T3, —Tp) (5, - 5,)

hy—hy=To(s2-51) hy—h = To(s2— 51)

Mo =

_ (T3,—Tp) (52— 51) 4.8)
hz— h] - T()(SQ—S])

where 7, ,, is called the Second Law efficiency, or the rational efficiency, ng. This result
can be interpreted in Fig 4.1(b) in the following way. Examination of eqn (4.8) shows
that if the Ty, = T, then i = 1.0. This because when T, = T, then area C is zero (i.e. the
line at T| =T, is coincident with that at T;,). Then the difference in the enthalpies,
h, — h,, is depicted by areas A + B, and the unavailable energy Tj (s,, s,) by area B, and
hence the energy available to produce work is area A. This shows that the cycle is as
efficient as an internally reversible cycle operating between the same two temperature
limits (75, and T;). If 7}, is not equal to T3, but is equal to a lower temperature T, then the
rational efficiency will be less than unity because energy which has the capacity to do
work is being rejected. This is depicted by area C in Fig 4.1(b), and the rational
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efficiency becomes

_ Arcas(A+B+C)-Areas(B+C) | AreaA @9
TR T areas(A+ B +C) - Areas(B)  Arcas(A + ) '

Consideration of eqn (4.8) shows that it is made up of a number of different components
which can be categorised as available energy and unavailable energy. This is similar to
exergy, as shown below:

[N [ s ~
Tabl ilab available unavailable
energy energy energy energy

Thus eqn (4.7) may be rewritten
Woee=by— by =hy— hy = To(s,~ 5,) = 0E, — 0@, 4.11)

giving eqn (4.8) as
Woer  hy—hy—T5,(5,—5y) _ OE;, — 0Dy, — (T3, — Ty) (s, — 5)

NR=Mpp=—= 4.12)
e e Ra=hy = To(s2—$1) OE;, — 0@y,
which can be written as
Ty, —To)(s,— 8
MR=Tae=1- (Tas = To)(s2 = 51) (4.13)

OE;; — 09,

If T, = T, then the rational efficiency, ny = 1.0. If T; < T, as would be the case if there
were external irreversibilities, then 5y < 1.0 because the working fluid leaving the engine
still contains the capacity to do work.

If the engine is not internally reversible then the T—-s diagram becomes 1-2-3-4-1, as
depicted in Fig 4.1(b). The effect of the internal irreversibility is to cause the entropy at 3
to be bigger than that at 3s and hence the entropy difference 65,,> 85,,. The effect of this
is that the net work becomes

Woe = (= hy) = (h3 = h) =T\ (5, = 8,) — T5(s3— 54)
=Ti(sy— 8;) — T5(55 — 84) — T5(55 — 53)
=hy— hy = To(s,— 51) = (T35 - Tp) (52— 8,) — T5(53 — 55,)
= 0E}, - 0@, — (T35 — To) (s, ~ 81) — T5(55— 53) (4.14)
Hence, from eqn (4.14)

(T3 ~To) (87— 51) + T3(s3— 53,)
= =1- 4.15
MR = N2,m 0E;,— 0@y, ( )
In the case of the irreversible engine, even if T, = T, the rational efficiency is still less
than unity because of the increase in entropy caused by the irreversible expansion from 2
to 3. The loss of available energy, in this case the irreversibility, is depicted by area D in
Fig 4.1(b). In the case of T, = T3,

_ T3(s5— 534)
0E;, -0y,

MR = (4.16)

If the dead state temperature is less than T; then the rational efficiency is even lower
because of the loss of available energy shown as area C in Fig 4.1(b).
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Up until now it has been assumed that the cycle is similar to a Camot cycle, with
isothermal heat supply and rejection. Such a cycle is typical of one in which the working
fluid is a vapour which can change phase. However, many cycles use air as a working fluid
(e.g. Otto, Diesel, Joule cycles, etc), and in this case it is not possible to supply and reject
heat at constant temperature. A general cycle of this type is shown in Fig 4.1(c), and it can
be seen that the heat is supplied over a range of temperatures from 7, to 7,, and rejected
over a range of temperatures from 7; to 7,. If only the heat engine is considered then it is
possible to neglect the temperature difference of the heat supply: this is an external
irreversibility. Furthermore, to simplify the analysis it will be assumed that 7] =7, = T7,.

However, it is not possible to neglect the varying temperature of heat rejection, because
the engine is rejecting available energy to the surroundings. If the cycle is reversible, i.e.
1-2-3s—4-1, then the rational efficiency of the cycle is

wne(
4.17)
b,—b,

i

R

If the cycle shown is a Joule (gas turbine) cycle then
W= hy = hy = (B3 = hy) = by — by + To(82 — §1) = { b3, — by + To(s3,— 84) }
= by = b = (bs;~ by) (4.18)
Hence, the net work is made up of the maximum net work supplied and the maximum net
work rejected, i.e.
Whet = { Wncl]supplied - [Wnet]njectcd (4 19)
These terms are defined by areas 1-2-3s-5-4-1 and 4-3s-5-4 respectively in

Fig 4.1(c). Thus the rational efficiency of an engine operating on a Joule cycle is

bi=by=(byy=b) _ | bs.=b, @20
b2-b] bZ_bl

Il

R

Equation (4.20) shows that it is never possible for an engine operating on a cycle in
which the temperature of energy rejection varies to achieve a rational efficiency of 100%.
This is simply because there will always be energy available to produce work in the
rejected heat.

If the cycle is not reversible, e.g. if the expansion is irreversible, then the cycle is
defined by 1-2-3-4-1, and there is an increase in entropy from 2 to 3. Equation (4.18)
then becomes

Woee = By — By = (hy~hy) =by = by + To(s, — 5,) — {b3 — by + To(s3 — 54)}

= by—b; — (by—by) — To(sy — $3) 4.21)
R v
1235541 4564 56785

Equation (4.21) shows that the irreversibility of the expansion process reduces the net
work significantly by (i) increasing the amount of exergy rejected, and (ii) increasing the
irreversibility of the cycle. The rational efficiency of this cycle is

Vg = (b3 - b4) - TO(S3 B s3s) (422)

b,— b,
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The irreversible cycle can be seen to be less efficient than the reversible one by
comparing eqns (4.20) and (4.22). In the case shown b, — b, is the same for both cycles,
but b5 — b,> b,, - b,, and in addition the irreversibility T;(s; — 5,,) has been introduced.

4.3 Rankine cycle

It was stated above that the efficiency of a cycle is often evaluated neglecting the
irreversibility of the heat transfer to the system. Such a situation can be seen on the steam
plant shown in Fig 4.2(a), which can be represented by the simplified diagram shown in
Fig 4.2(b), which shows the heat engine contained in system B of Fig 4.2(a).

Now, consider the passage of the working fluid through system A. It enters system A
with a state defined by 3 on the Rankine cycle (see Fig 4.3), and leaves system A with a
state defined by 2. The usual definition of thermal efficiency given in eqn (4.1) results in

wnct

hy—hy

N = (4.23)

where w,, = specific net work output from the cycle.
However, from the definition of exergy, the maximum work (per unit mass of steam)
that is obtainable from the fluid is

Woee = by — by = (hy— hy) = Tp (83— 5,) @.7)

Examination of eqn (4.7) shows that it consists of two terms: a difference of the
enthalpies between states 3 and 2, and the product of the dead state iemperature, T;, and
the difference of the entropies between states 3 and 2. The first term is obviously equal to
the energy added between states 2 and 3, and is g,,. Considering the other term, the energy
rejected to the cold reservoir is

Gouw=ha— Ry =T (54~ 51) 4.24)

If the condenser were of infinite size then the temperature at 1 could be equal to the
environmental temperature, 7;,. Also, if the feed pump and the turbine were both reversible
then processes 3—-4 and 1-2 would be isentropic and eqn (4.24) could be reduced to

Gow = ha= h =Ty(s3-5,) (4.25)

Hence, for an internally reversible engine the maximum net work output is the sum of the
heat supplied and the heat rejected, as shown previously simply from considerations of
energy. If the cycle was not reversible due to inefficiencies in the turbine and feed pump,
then the difference between the entropies at states 4 and 1 would be greater than the
differences at states 2 and 3, and gq,,, would be greater than in the ideal case. Hence, the
cycle would be less efficient.

The thermal efficiency of an ideal Rankine cycle (i.e. one in which the turbine and feed
pump are both isentropic) is given by

Woet _ b3—b2

hs—hy, hi—h,

(4.26)

N Rankine =
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Fig. 4.3 Rankine cycle for steam turbine plant

If the turbine and feed pump of the cycle are not isentropic then the work output will be
less than that of the ideal Rankine cycle and it is possible to define the efficiency ratio as

Efficiency ratio = egelo 4.27)
17 rankine

Substituting from eqns (4.23) and (4.26) gives

Wiet % hl - hz _ Wie
hs—hy bs—by by—b, (4.28)
= rational efficiency, 7y

Efficiency ratio =
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This means that a steam turbine which operates on a reversible Rankine cycle will have a
rational efficiency of 100%. If there are any irreversibilities then the rational efficiency
will be less than 100%. Rational efficiency shows the scope for improving the device
within the constraints of, say, peak pressure and temperature. If the rational efficiency is
low then the efficiency can be improved significantly, whereas if it is high then not much
improvement is possible.

It has to be remembered that these definitions of rational efficiency for a steam plant
cycle are based on the dead state temperature being made equal to the condenser
temperature. If another temperature is chosen then the rational efficiency will be reduced
as shown in eqn (4.22). It will be shown that this results in a rational efficiency of unity
for an ideal (internally reversible) Rankine cycle, and such an approach can be used to
indicate how far an actual (irreversible) steam plant cycle falls short of the yardstick set
by the reversible one. However, this approach also masks the ‘cost’ of external
irreversibilities between the working fluid in the condenser and the true dead state of
environmental conditions. These effects are discussed in the examples.

When the term rational efficiency is applied to an air-standard cycle it is never possible
to achieve a value of unity because the temperature at which energy is rejected is not
constant. This will also be considered in the examples by reference to the Joule cycle for a
gas turbine.

4.4 Examples

Q.1 Steam turbine cycles

A steam turbine operates on a basic Rankine cycle with a maximum pressure of 20 bar and
a condenser pressure of 0.5 bar. Evaluate the thermal efficiency of the plant. Calculate the
maximum net work available from the cycle, and evaluate the rational efficiency of the
cycle.

Solution

The T-s diagram for the Rankine cycle is shown in Fig 4.4. The parameters for the state
points on cycle 1-2-3-4-6-1 will now be evaluated.

Conditions at 4
p,=20bar; x=1
t,=212.4°C; h,=2799 kl/kg; s,=6.340kJ/kg K

Conditions at 6
pe=0.5bar; s,=6.340 kJ/kg K
t, =81.3°C; h,=2645kJ/kg; h;=340kJ/kg
5, =7.593kJ/kg K; s,=1.091kJ/kg K

Thus

6.340 - 1.091
Xg= ——————————
7.593 - 1.091

he=xhg + (1 — x)h; =0.8073 x 2645 + (1 — 0.8073) x 340 = 2200.8 kJ/kg

=0.8073
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Fig. 4.4 Temperature—entropy diagram for a basic Rankine cycle

Conditions at 1
p;=0.5bar; s, =1.091 kJ/kg K; 7, =340 kI /kg
v, = vy=0.001029 m*/kg
Conditions at 2
p, =20 bar; s,=1.091 kJ/kg K
v, =0.001157 + 0.2 x (—0.0009 x 10~?) = 0.001155 m*/kg
Hence feed pump work,
wp=w,=-vdp=-dh;,
= —(0.001029 + 0.001155)/2 x 19.5 x 100 = —2.11 kJ kg
h,=h +dh,,=340+2.11=342.1 kJ kg
Work done by turbine,
wr = h, — hg=2799 — 2200.8 = 598.2 kJ /kg K

Thermal efficiency of the cycle is

, + 598.2 - 2.11
fo = e L W T e =0.243
Gin h4 - hz 2799 —342.1

The maximum net work available can be evaluated from the change of exergy between
state points 4 and 2. Hence

Woet = b4 - b2

It is necessary to define a dead state condition. This is arbitrary, and in this case will be
taken as the condition at 1. Hence, p,=0.5 bar, 7,=81.3 +273 =354.3 K. Thus

by=hy—Tys,— (hy - Tyso) = 2799 — 354.3 x 6.340 — a, = 552.7 — a, kI /kg
by=hy— Tys, — (hg— Tyso) = 342.1 — 354.3 x 1.091 — a, = —44.4 — a, kJ /kg
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Hence
W = 552.7 - (—44.4)=597.1 KJ /kg
Thus, the rational efficiency is
Woet _ Wret _ 598.2-2.11 100
b4 - b2 wnct 5971

In this case the rational efficiency is equal to unity because the turbine and feed pump
have isentropic efficiencies of 100%, and it was assumed that the temperature of the
working fluid in the condenser was equal to the dead state (ambient) temperature. Hence,
although the cycle is not very efficient, at 24.3%, there is no scope for improving it unless
the operating conditions are changed.

It is possible to evaluate the rational efficiency of a steam plant operating on a Rankine
cycle in which the condenser temperature is above the ambient temperature. If the dead
state temperature in the previous example was taken as 20°C, rather than 81.3°C, then the
following values would be obtained:

by=h,— Tysys— ay=2799 — 293 x 6.340 — a,=941.4 — a, kI /kg
by=h,— Tys, — ay=342.1 -293 x 1.091 — g, =22.4 — a, kl kg
Hence
W =941.4 - 22.4=919.0 kJ /kg
Thus, the rational efficiency is
Wiet Woee 998.2-2.11
Mg = =—= =
b4— b2 Whet 9191
This result shows that irreversibilities in the condenser producing a temperature drop of
81.3°C to 20°C would reduce the potential efficiency of the powerplant significantly.
Basically this irreversibility is equivalent to a loss of potential work equal to the area of the
T —s diagram bounded by the initial dead state temperature of 81.3°C and the final one of

20°C and the entropy difference, as shown in Fig 4.4, i.e. (T, - T,)(s, — 5,), which is
equal to (354.3—293) x (6.340 - 1.09) = 321.8 kJ /kg.

MR =

0.649

Q.2 Steam turbine cycles

Re-evaluate the parameters for the steam plant in Q.1 based on 7,=81.3°C if (a) the
isentropic efficiency of the turbine is 80%; (b) the isentropic efficiency of the feed pump is
70%; (c) the efficiency of the components is the combination of those given in (a) and (b).

Solution

(a) Turbine efficiency, 7y =80%. If the turbine efficiency is 80% then the work output
of the turbine becomes

Wi = r(Wy)ien = 0.80 x 598.2 = 478.6 kJ kg
Hence, the thermal efficiency of the cycle is
Woee Wr+wp 478.6-2.11

N = —" = = =0.194
" g ha—hy 2799 -342.1
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The rational efficiency is

e = (W net) acrual _ [W et Jactual _ 478.6-2.11 — 0.80
bs—b, et 597.1

The rational efficiency has been significantly reduced by the inefficiency of the
turbine, and the rational efficiency is approximately equal to the isentropic
efficiency of the turbine.
(b) Feed pump efficiency, 7, = 70%. The feed pump work becomes
= (WP)isen - 2.11 =-301 kJ/kg
e 7

hy = h; +dh,, =340+ 3.01 =343 kJ /kg
The thermal efficiency of the cycle becomes
Wp, Wr+wp 598.2-3.01

_ Vet _ _ - 0242
T T ha—hy | 2799-343

The exergy at 2’ may be evaluated approximately by assuming that the entropy does
not change significantly over the pumping process, i.e. s, = §,. Hence

by = hy — Tysy — ap=343 3543 x 1.091 — a,= —43.5 — a, kI /kg
The rational efficiency is

598.2 -3.01
Mg = [wnct]actual = [Wm:,t]acmal = =0.998

b,—- by Whet 596.2

The reduction in thermal efficiency is small, and the rational efficiency is almost 1.
Hence, the Rankine cycle is not much affected by inefficiencies in the feed pump.
(c) Turbine efficiency 7, = 80%, feed pump efficiency 7, = 70%. The thermal efficiency
is
Wpee Wr+wp 478.6-3.01

T T he—hy | 2799-343

The rational efficiency is

478.6 - 3.01
g = [wnet]actual — [wnet]acmal - =0797

by — by Whet 596.2

Q.3 Steam turbine cycles

The steam plant in Q.2 is modified so that the steam is superheated before entering the
turbine so that the exit conditions from the turbine of the ideal cycle are dry saturated.
Evaluate the parameters for the steam plant if (a) the isentropic efficiency of the turbine is
80%; (b) the isentropic efficiency of the feed pump is 70%; (c) the efficiency of the
components is the combination of those given in (a) and (b). Assume that £, =81.3°C.
This cycle is shown in Fig 4.5.
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Fig. 4.5 Temperature—entropy diagram for a Rankine cycle with superheat

Conditions at 6
De=0.5 bar
t, =81.3°C; h,=2645kJ/ kg; h;=340 kJ/kg
5,=7.593kJ/kg K; s,=1.091kJ/kg K
he=2645kI/kg; s¢=7.593 kKJ/kg K
Conditions at 5
ps=20bar; s5=15=7.593 kI/kg K
Hence
. 7.593 - 7.431
7.701 -7.431
hs= 3467 + 0.6 x (3690 - 3467) = 3601 kJ/kg
Work done by turbine,
wr = hs— hg=3601 — 2645 = 956 kJ /kg K
Thermal efficiency of the cycle is

t, =500 x 100 = 560°C

Woer _ WrtWp _ 956 —2.11 0292

Qin hs - h2 3601 — 342.1

bs=hy— Tys5— ay = 3601 — 354.3 x 7.593 - a,=910.8 — a, kJ/kg
b,=h, — Tys, — a,=342.1 - 354.3 x 1.091 — a,= ~44.4 - a, kJ kg

The rational efficiency is

Il

N

[Wnet]acmal [wnct]actual 956 - 211
Mk = = = o

1.00
by b, Waer 955.2

75
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(a) Turbine efficiency, 7 =80%.
WT = ”T(WT)isen = 0.80 X 956 = 764.8 kJ/kg
Hence, the thermal efficiency of the cycle is

Whee Wrt+wp T7648-211
Np=— = = =

Gn  ha—ha  3601-3421
The rational efficiency is

764.8-2.11
e = [Wnct]actual — [Wnct]actual = =0.799

bs— by Phet 955.2

Hence, again, the effect of the turbine efficiency is to reduce the rational efficiency
by an amount almost equal to its isentropic efficiency.

(b) Feed pump efficiency, 1, =70%. The effect on the feed pump work is the same as
above, and the thermal efficiency of the cycle becomes

Woee Wr+wp 956-3.01
]7 = = =
" g ha—hy  3601-343

The rational efficiency is

0.234

=0.295

_ [wnet]actual [wnct]actua] _ 956 - 301

Nk = =

= =0.998
bs— by Pt 910.8 — (—44.4)

Again, the reduction in thermal efficiency is small, and the rational efficiency is
almost 1.
(c) Turbine efficiency, n=80%; feed pump efficiency, #p=70%. The thermal
efficiency is
Woe Wr+wp T764.8-3.01

" gm hs—hy 3601343

The rational efficiency is

77 - [wnct]acrua! - [Wnet]actual = 764.8 —3.01
T be—by P 955.2
It can be seen that both the basic and superheated Rankine cycles are equally
affected by inefficiencies in the individual components. The rational efficiency is an
estimate of how close the cycle comes to the internally reversible cycle.

=0.798

Q.4 Gas turbine cycle

A gas turbine operating on an ideal Joule cycle has a pressure ratio of 20:1 and a peak
temperature of 1200 K. Calculate the net work output, the maximum work output, the
thermal efficiency, and the rational efficiency of the cycle. Assume that the working fluid
is air with a value of x=1.4 and a specific gas constant R =0.287 kJ/kg K. The inlet
conditions at 1 are 1 bar and 300 K, and these should be taken as the dead state conditions
also.
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Fig. 4.6 (a) Temperature—entropy diagram for Joule cycle. (b) Temperature—entropy diagram for
Joule cycle with irreversible compression and expansion

Solution

The ideal Joule cycle is depicted by 1-2s—3-4s—1 in Fig 4.6(a). The relationship
between entropy and the primitive properties for an ideal gas is

T
s—s0=cpln——R1n£
To Po

From the parameters given,

xR _ 1.4 x0.287

2 = 1.0045kJ/kgK.

x-1 0.4
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The compression process from 1 to 2s is isentropic, and hence

p (x-1)/x
Ty =T, (——2) =300 x 20°¥'* = 706.1 K
D
The isentropic work done in the compressor is
We,, = —Qh = cp(Ty — Tp,) = 1.0045 x (706.1 - 300) = 407.9 kI /kg
The energy added to the cycle is
Gz = €,(T5 — T);) = 1.0045 x (1200 - 706.1) = 496.1 kg

For an isentropic expansion from 3 to 4s

p (x-1)/x 1 0.4/14
Ty = Ty| = =1200 x [— =509.9K
D3 20

Hence the isentropic turbine work is
Wr,.. = ¢, (T3 — Ty;) = 1.0045 x (1200 — 509.9) = 693.2 kI /kg

The net work from the cycle is w,, = wy+ we =693.2 + (—407.9) = 285.3 kI /kg, and the
thermal efficiency is

2853
= = —— =0.575.

G 496.1

This value is equal to the standard expression for the efficiency of a Joule cycle,

w

N =

B = 1- -
rgc fx

The maximum net work output is defined by
Wy =bs— b,

Now, the values of exergy are defined, for a perfect gas, as
b=(h—-Tys) - (hg— Tos0) = (h — hg) = To(s — o)

T x-1
— e T =T ~To|n— - == m £
Ty K Do

Thus, along an isobar

T
b= cp[(T ~Ty) = Tpln—
T,
Since both 2s and 3 are at the same pressure
T T T.
by~ by, = Cp{(Ts = To) = Toln —> —[(Tz—To)—Toln—z = (T3 = Ty) = Toln >
To TO TZ

Thus

N 1200
e = 1.0045 x 4(1200 — 706.1) — 3001n m =336.3kJ/kg
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The rational efficiency of the cycle based on these dead state conditions is

This means that the ideal Joule cycle is only capable of extracting 84.8% of the maximum
net work from the working fluid, whereas under similar conditions (with the dead state
temperature defined as the minimum cycle temperature) the Rankine cycle had a rational
efficiency of 100%. The reason for this is that the energy rejected by the Joule cycle, from
4s to 1, still has the potential to do work. The maximum net work obtainable from the
rejected energy is b, — b,. This is equal to

Ty
[wnet]rejecwd = b4s - bl = Cp{(TAts - Tl) - Toln ‘i}

T,

09.9
5 ] =50.99kJ/kg

5
= 1.0045 x {(509.9 —300) - 300In

This term is shown in Fig 4.6(a), and is energy which is unavailable for the production of
work.

If the efficiencies of the turbine and compressor are not 100% then the diagram is
shown in Fig 4.6(b). It can be seen that the rejected energy is larger in this case.

Q.5 Gas turbine cycle

For the gas turbine cycle defined in Q.4, calculate the effect of (a) a turbine isentropic
efficiency of 80%; (b) a compressor isentropic efficiency of 80%; and (c) the combined
effect of both inefficiencies.

Solution

(a) Turbine isentropic efficiency, n;=80%. This will affect the work output of the
turbine in the following way:

wr=nywr =0.8x693.2=7554.6 kl/kg
Hence
Woee = Wr + We = 554.6 + (—407.9) = 146.7 kJ /kg

and
Ny = —— = —— =0.296

The temperature after the turbine is 7,=T; - nAT,,=1200-0.8 x 690.1 =
647.9 K, and the entropy at 4, related to 1, is

T 647.9
se—s1=c,In—2 — RIn2* = 1.0045n o0 " 0.7734kJ/kg K

T, D1
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(b)

Hence, the maximum net work rejected is

. T,
Wit rejected — b4 - bl =Cp (T4 - Tl) - Toln —_

T,

647.9
=1.0045 x {(647.9 —300) — 3001n W} =117.4kJ/kg

This is a significant increase over the rejected potential work for the ideal Joule
cycle. However, in addition to the inefficiency of the turbine increasing the
maximum net work rejected, it also increases the unavailable energy by the
irreversibility, 7,(s, — $,,), as shown in Fig 4.6(b). This is equal to

Ty (84 — 54.) = 300 x (0.7734 — 0.5328) = 72.2 kJ/kG

Since the maximum net work is the same for this case as the ideal one then the net
work is given by

Woer = Waer = [Wne dejoced = To(S4 = 545) = 336.3 — 117.4 — 72.2 = 146.7 kJ /kg

This is the same value as found from the more basic calculation.
The rational efficiency of this cycle is

net
nr=——=——=0436
¥ e 3363
Compressor isentropic efficiency, 7. = 80%. The work done in the compressor is
we.
we=——=509.9kJ/kg
7c
Temperature after compressor, at 2, is
509.9
T,=T,+ 2S =300+ ~807.6K
Cp 5

The energy added to the cycle is
g3 = c(T5 — T,) = 1.0045 x (1200 — 807.6) = 394.2 kJ /kg

The net work from the cycle is w,,, = wr + we =693.2 + (-509.9) = 183.3 kJ/kg, and
the thermal efficiency is

183.3
Mo = 2t = 272 (.465.

g 3942
The maximum net work output is defined by
Wee= b3 = b,
Since both 2 and 3 are at the same pressure

T,
b3—b2=Cp (T3—T2)—T0h1—7—:-

2
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Thus

1200
W = 1.0045 % (1200 ~ 807.6) - 3001n
807.6

=273.6k)/kg

The rational efficiency of the cycle based on these dead state conditions is
183.3

P 222 0,670

Whe 273.6

The net work output of the device is made up of

MR =

Waer = Woet = [WoeeIrjeeses = To (82 = $25) = 273.6 — 50.9 - 40.2 = 182.5 kI /kg

In this case, the inefficiency of the compressor has introduced a quantity of
unavailable energy 7, (s, — s,,), which is depicted in Fig 4.7.

Temperature, T

Entropy, S

Fig. 4.7 The effect of inefficiency in the compressor

(c) Compressor isentropic efficiency 7. = 80%, and turbine isentropic efficiency 7, = 80%.

This cycle combines the two inefficiencies considered above. Hence, the net work
output of the cycle is

Woee = W1 + W =554.6 + (-509.9) = 44.7 kJ /kg
Net heat addition g,; = 394.2 kJ/kg. Hence, thermal efficiency is
Wi 447

N = =——=0.113
g2 394.2

The net work output of this cycle is made up in the following way:

Whet = Wnc( - [Wnct]mjcctcd - TO(S4 - S4s) - TO(SZ - SZS)
=273.6-117.4-72.2-40.2=43.8 kl/kg

This equation shows how the inefficiencies reduce the net work obtainable from the
cycle. However, an additional quantity of net work has been lost which is not evident
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from the equation, and that is the reduction in maximum net work caused by the
inefficiency of the compressor. The latter causes the temperature after compression to be
higher than the isentropic value, and hence less fuel is necessary to reach the maximum
cycle temperature.

45 Concluding remarks

The concept of a Second Law, or rational, efficiency has been introduced. This provides a
better measure of how closely a particular power-producing plant approaches its maximum
achievable efficiency than does the conventional ‘First Law’ thermal efficiency.

It has been shown that devices in which the working fluid changes phase (e.g. steam
plant) can achieve rational efficiencies of 100 per cent, whereas those which rely on a
single phase fluid (e.g. gas turbines) can never approach such a high value. The effect of
irreversibility on rational efficiency has also been shown.

PROBLEMS

1 In a test of a steam powerplant (Fig P4.1), the measured rate of steam supply was
7.1 kg/s when the net rate of work output was 5000 kW. The condensate left the
condenser as saturated liquid at 38°C and the superheated steam leaving the boiler was
at 10 bar and 300°C. Neglecting the change in state of the feed water in passing
through the feed pump, and taking the environment temperature as being equal to the
saturation temperature of the condensate in the condenser, calculate the rational
efficiency of the work-producing steam circuit (system A). Also calculate the thermal
efficiency of the cycli¢ plant.

= .
Boiler

..............................................

Fig. P4.1 Steam turbine powerplant
[83.3%; 24.3%]

2 Again neglecting the change in state of the feed water in passing through the feed
pump, calculate the thermal efficiency of an ideal Rankine cycle in which the
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conditions of the fluid at inlet to and exit from the boiler are the same as those of the
plant in Q.1. Hence confirm that the efficiency ratio of that plant is equal to the
rational efficiency of the work-producing steam circuit calculated in Q.1.

[29.2%; 83.3%]

Neglecting the temperature rise of the feed water in passing through the feed pump,
calculate the mean temperature of heat reception in the ideal Rankine cycle of Q.1.
Hence make a second, alternative calculation of the thermal efficiency of this ideal
Rankine cycle.

(440 K; 29.2%]

Air enters the compressor of a simple gas turbine at a pressure of 1 bar and a
temperature of 25°C. The compressor has a pressure ratio of 15 and an isentropic
efficiency of 85%, and delivers air to a combustion chamber which is supplied with
methane (CH,) at 25°C. The products of combustion leave the chamber at 1450 K and
suffer a pressure loss of 5% in passing through it. They are then expanded in a turbine
with an isentropic efficiency of 90% to a pressure of 1.05 bar. Calculate (a) the
air—fuel ratio of the engine; (b) the power output per unit mass flow of air, and (c) the
rational efficiency of the engine. What is the maximum work per unit mass of exhaust
gas that could be obtained if the ambient conditions are 1 bar and 25°C?

The enthalpy of reaction based on 25°C is —50 000 kJ/kg, and the Gibbs energy of
reaction is —51 000 kJ/kg. The products of combustion can be treated as a perfect gas
with ¢, =1.2 kJ/kg, and x = 1.35.

[0.02; 372.9 kJ/kg; 36.6%; 260.4 kJ/kg]

A steam turbine operates on a superheated Rankine cycle. The pressure and
temperature of the steam leaving the boiler are 10 bar and 350°C respectively. The
specific steam consumption of the plant is 4.55 kg/kWh. The pressure in the condenser
is 0.05 bar.

If the feed pump work may be neglected, calculate the thermal efficiency of the
plant, the turbine isentropic efficiency, and evaluate the rational efficiency. Also
calculate the mean temperature of reception of heat in the boiler and use this in
conjunction with the condenser temperature to evaluate the thermal efficiency.
Explain why the value calculated by this method is higher than that obtained
previously.

[26.5%; 86%; 84.84%; 30.85%]

Figure P4.6 depicts a closed cycle gas turbine operating on the Joule cycle (ie.
constant pressure heat addition and rejection, and isentropic compression and
expansion). Energy is added to the working fluid (air) by a heat exchanger maintained
at 1250 K, and rejected to another heat exchanger maintained at 300 K. The maximum
temperature of the working fluid is 1150 K and its minimum temperature is 400 K. The
pressure ratio of the compressoris 5: 1.

Evaluate the irreversibilities introduced by the heat transfer processes and calculate

work ouput
(a) the First Law efficiency m= P

energy addition
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k t
(b) the Second Law efficiency Ny = work outpu

availability of energy addition

Assume ¢, = 1.005 kJ/kg K, x = 1.4 and the specific gas constant, R = 0.287 kJ/kg K.

Heat addition
reservoir

1250 K D
2
3 Electric
‘/ generator
1 4 i
300K

Heat rejection
reservoir

Fig. P4.6 Closed cycle gas turbine

Calculate the maximum efficiency that could be achieved from this system by
modification of the heat exchangers.

[36.9%; 48.5%]
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Efficiency of Heat Engines at Maximum
Power

5.1 Efficiency of an internally reversible heat engine when producing
maximum power output

The thermal efficiency of a Carnot cycle operating between high temperature (T};) and low
temperature (T) reservoirs is given by

Tc
Nm=1- T—H 5.

This cycle is extremely idealised. It requires an ideal, reversible heat engine (internally
reversible) but, in addition, the heat transfer from the reservoirs is also reversible
(externally reversible). To achieve external reversibility it is necessary that the tempera-
ture difference between the reservoirs and the engine is infinitesimal, which means that the
heat exchanger surface area must be very large or the time to transfer heat must be long.
The former is limited by size and cost factors whilst the latter will limit the actual power
output achieved for the engine. It is possible to evaluate the maximum power output
achievable from an internally reversible (endoreversible) heat engine receiving heat
irreversibly from two reservoirs at 7y and 7. This will now be done, based on Bejan
(1988).

Assume that the engine is a steady-flow one (e.g. like a steam turbine or closed cycle
gas turbine): a similar analysis is possible for an intermittent device (e.g. like a Stirling
engine). A schematic of such an engine is shown in Fig 5.1.

The reservoir at Ty transfers heat to the engine across a resistance and it is received by
the engine at temperature 7,. In a similar manner, the engine rejects energy at T, but the
cold reservoir is at Tc. It can be assumed that the engine itself is reversible and acts as a
Carnot cycle device with

Mw=1-— (5.2)

This thermal efficiency is less than the maximum achievable value given by eqn (5.1)
because T,/T,> T./T,;. The value can only approach that of eqn (5.1) if the temperature
drops between the reservoirs and the engine approach zero.
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Fig. 5.1 Internally reversible heat engine operating between reservoirs at Ty and T

The heat transfer from the hot reservoir can be defined as
QH = UHAH(TH - Tl) (5-3)

where U, = heat transfer coefficient of hot reservoir (e.g. kW/m? K)
Ay = area of heat transfer surface of hot reservoir (e.g. m?)
and @y =rate of heat transfer (e.g. kW),

The heat transfer to the cold reservoir is similarly

Oc=UcAJT, - Tc) 549
By the first law
W=0y-0c (5.5)

Now, the heat engine is internally reversible and hence the entropy entering and leaving it
must be equal i.e.

9u _LQc (5.6)
T, T,
This means that
o QC) . ( Tz)
W=0ull-—]=0Qu4ll-— 6.7
H( On T,

It is possible to manipulate these equations to give W in terms of Ty, T, UyAy, and the
ratio T,/ T, = . From eqn (5.4)

T,= -2 1, (5.8)
UC C
and, from eqn (5.6),
7o Qnp _Oul Oc +Tc}
Qc Qc | UcAc

5.9
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Hence
, Uy A g Uy Ay C UyAyT,
QH=UHAHTH_ H{*H QC +TC=UHAHTH_ H HQH_ H‘*H4L C
T UcAc cAc T
Rearranging gives
| Tel ( E)
’ T
Q“T - Tu? {_ 2 (5.10)
UHAH H 1+ UHAH T 1+ UHAH
UCAC UCAC
and hence
'z' — ——
1'% Ty
= (1-1) (5.11)

Thus the rate of work output is a function of the ratio of temperatures of the hot and
cold reservoirs, the ratio of temperatures across the engine and the thermal resistances. The
optimum temperature ratio across the engine (7) to give maximum power output is
obtained when

oW
ot
Differentiating eqn (5.11) with respect to 7 gives
oW 1 {(1 ~1) (@-TdTw) (@T-TJTy)(1-1)
dr {4 Uy Ay T T 7’
UcAc
1 1 1 T¢
=14+ - — (5.12)
T 1+ UH AH T TH
UcAC

Hence oW /97 =0 when t = or 2= T/ Ty.
Considering only the non-trivial case, for maximum work output

Tz ~ TC 1/2
T, Ty
This result has the effect of maximising the energy flow through the engine while
maintaining the thermal efficiency (77, =1— T,/T}) at a reasonable level. It compromises
between the high efficiency (#,=1- Tc/Ty) of the Carnot cycle (which produces zero

energy flow rate) and the zero efficiency engine in which 7, =T, (which produces high
energy flow rates but no power).
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Hence the efficiency of an internally reversible, ideal heat engine operating at maximum
power output is

An example will be used to show the significance of this result.

Example

Consider a heat engine is connected to a hot reservoir at 1600 K and a cold one at 400 K.
The heat transfer conductances (UA) are the same on both the hot and cold sides. Evaluate
the high and low temperatures of the working fluid of the internally reversible heat engine
for maximum power output; also calculate the maximum power.

Solution

Equation (5.11) gives the work rate (power) as

. T -
w Ty

= -1
UHAHTH ( UHAH)

{1l +
UcAc
For maximum power output 7 = (T¢/Ty)"/? = (400/1600)'/2. Then

w 2 4 1. 1600

=1600 —— (1 - —) = T = 200 units

and, from eqn (5.10)

1'%
On _ = 400 units
UnAn UyAu(l-1)
Then
; ) 1 , .
Oc = Qc = (Qy ~ W) =200 units
UHAH UcAc UHAH
Thus

e
T,=— Qc +Tct =2 x (200 + 400) = 1200K
T UcAc

and

1200
T,= —2— =600K

This results in the temperature values shown in Fig 5.2 for the engine and reservotrs.
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T,= 1600 K

w( QH = 400 units

T,= 1200K ___

W = 200 units
E b

T,= 600 K—

Y Q. =200 units

T, =400 K

Fig. 5.2 Example of internally reversible heat engine operating between reservoirs at Ty = 1600 K
and T, =400 K with UyA,/UcAc=1

The efficiency of the Camot cycle operating between the reservoirs would have been
N = 1 —400/1600 = 0.75 but the efficiency of this engine is 7, =1 - 600/1200 = 0.50. Thus
an engine which delivers maximum power is significantly less efficient than the Camot engine.

It is possible to derive relationships for the intermediate temperatures. Equation (5.9) gives

) \
T =— —QE— +Tc
T Uc Ac
and eqn. (5.8) defines T, as
T,=—2< .1, (5.8)
Uc Ac
Also Q¢ = Oy — W, and then
Oc o W

UiAuTn UxAnTx  UsAxTw
Substituting from eqns (5.10) and (5.11) gives
Qc _ (r- TC/TH)
UnAuTH 14+ Un Ay
UcAc

(5.13)

Substituting in eqn (5.8) gives
UyAuTy(z - TC/T}E)
UyAy
UcAc
UpAuTuG-7")
UcAc+ UyAy
_ TI/Z{ Un Ay T}x{/z +UcAc Tcl/z}
- £C
UHAH + UcAC

+ T

2=

UcAc (1 +

Tc

(5.14)
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Similarly

r g [ UnAnTil" + UcAcTe"”
=
UHAH + UcAC

(5.15)

To be able to compare the effect of varying the resistances it is necessary to maintain the
total resistance to heat transfer at the same value. For example, let

UpAy + UcAc=2

Then, if UyAy/UcAc =1 (as in the previous example), UyAy = 1.
Consider the effect of having a high resistance to the high temperature reservoir, e.g.
UyAyu/UcAc=1/2. This gives

2 2
UHAH = m——— =,
1, Uchc 3
Uy Ay
Then
W 1/2-1/4 .
= 1600 l—~/—) (1 — 1/2) = 267 units, giving W = 177.8 units
Un Ax a+1/2)/2
g w .
On _ = 534 units and Qy, = 355.6 units
UyAy UgAg(1-1)
Then
g g 1 1 , , ,
Qo _ & 1_ (Qu — W) = 133.5 units, giving O = 177.8 units
UcAc UyAn 2 2UyAn
Hence

1
T,=— (133.5 + 400) = 2 x 533.5 = 1067K, and T, = 533.5K.
T

If the resistance to the low temperature reservoir is high, i.e. UyAu/UcAc = 2, the situation
changes, as shown below. First,

2 2 4
UHAH = = —— = ——
1+1/2 3/2 3
giving
i -1/4)(1-1/2
W = 1600 (1/2 / ) ( /2) = 133 units
UuAy 1+2)/2
which results in W=177.8 kW and
Q

—=H"_ — 267 units, or Q = 355.6kW
UuAn
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Then
; 2¢ 2 . :
Oc _ 20c _ (Qy — W) = 267 units, giving O = 200 units
UcAc UHAH UHAH
Hence
) .
T, =— Oc Tob=2(267 + 400) = 1334K, and T, = 667K
T UcAC
These results are shown graphically in Fig 5.3.
UA, _ UsA, UA, _
m_1 U.A. 12 UcAcvz
T,= 1600 K ,
1334K
T, 1200K
1067 K

E. B
R

T,
600 K
533K ] |
T.= 400K

667 K
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Fig. 5.3 The effect of heat transfer parameters on engine temperatures for a heat engine operating

between reservoirs at T, = 1600 K and 7. =400 K

Comparing the power outputs based on the same total resistance, i.e. UyAy+ UcAc=2,

gives the following table.

UpAu/UcAc Qu W Oc

1 400 200 200
1/2 355.6 177.7 177.7
2 3556 1777 1717

It can be seen that the optimum system is one in which the high and low temperature
resistances are equal. In this case the entropy generation (per unit of work) of the universe

is minimised, as shown in the table below.

UnAu/UcAc Qu/Tu Qu/T.  ASy/W Qc/T,  Qc/Tc ASc/W ZAS/W

-0.25 +0.333 +4.17x10™* -0333 +05 +4.17x 107"  +834x107*

1/2 -0225 +0.333 +6.23x107* -0333 04443 +624x10"* +0.00125
2 ~-0.225 +0.266 +2.48x107* -0266 04443 +10.00x10°* +0.00125
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5.2 Efficiency of combined cycle internally reversible heat engines
when producing maximum power output

One way of improving the overall efficiency of power production between two
reservoirs is to use two engines. For example, a gas turbine and steam turbine can be
used in series to make the most effective use of the available temperature drop. Such a
power plant is referred to as a combined cycle gas turbine, and this type of generating
system was introduced in Chapter 3 in connection with pinch technology. These plants
can be examined in the following way, based on the two heat engines in series shown
in Fig 5.4.

A QH
T, — W
E, |—"
T,
YQ
T, W
E. b—F°
T,

Fig. 5.4 Two internally reversible engines in series forming a combined cycle device operating
between two reservoirs at 7; and T

In this case the product UA will be replaced by a ‘conductivity’ C to simplify the
notation. Then

On=Cu(Ty-T) (5.16)
0,=CyT,~T) (5.17)
Qc=CcT,-T¢) (5.18)
Also, for Ey
—Q—H = L (5.19)
T, T,
and for E
T T,
Let 7, = T,/T, and 7, = T,/T,; then rearranging eqns (5.16), (5.17) and (5.18) gives
T,=Ty~ Qu/Cy (5.21)

T,=0,/C,+ Ty (5.22)
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and
T,= QC/CC +Tc
Also
1
Tf&n:&(& TC}_*’&”C]
Qc c c T2 c
and
1 (¢
r,-2 {& TC]
C, T2 c
Similarly
1 1|
r=Lnp 110 _[& TC]
2 11| C; 72 C

Rearranging eqn (5.27) gives
On =(1_ On O 1 TC)

CuTnu C,Ty CcTy 7172 Th

which can be written as

QH _ (t17,— TC/TH)
CuTxu ( Cu CH)
T1T9 1+ —+—

C, Cc

The power output of engine E can be obtained from eqn (5.29) as

Wy _ o _ (1,7, - Tc/Th)

= d-79)= (-1
CuTu CuTy Cy Cy
T17T2 1+—+—‘
C, Ce¢
In a similar manner W/ C, T} can also be evaluated as
Wc QH (ty7,— TC/TH) -1t
CaTw Catn T Cu C
H{4H H4iH T1T2(1+_H+_H
C, Cc
WH (1-1y)

1
CuTy (1-7y)

(5.23)

(5.24)

(5.2%5)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)
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It can be seen from eqns (5.30) and (5.32) that it is possible to split the power output of
the two engines in an arbitrary manner, dependent on the temperature drops across each
engine. The ratio of work output of the two engines is

ﬂ = i —(1 —T) (5.33)
Wc 71 (1-13) .

This shows that if the temperature ratios across the high temperature and the low temperature
engines are equal (i.e. 7, = 7,), the work output of the low temperature engine will be

Wc = TlWH (5.34)

Hence the work output of the low temperature engine will be lower than that of the high
temperature engine for the same temperature ratio. The reason comes directly from eqns
(5.30) and (5.31), which show that the work output of an engine is directly proportional to
the temperature of the ‘heat’ at entry.
The power output of a combined cycle power plant is the sum of the power of the
individual engines, hence
Wee 1

CuTuy CuTu
(TITZ_TC/TH)

T, l+&+£}1)
C2 Cc

This may be reduced to
ch - (1,7, = Tc/Ty)
CuT
noH T172 1+ E—L{ + &
C. Cc
The efficiency of the combined cycle is defined by

(WH + WC)

[A-7)+A-15)7]

(1-77,] (5.35)

cC
On

Equation (5.36) shows that the expression for the efficiency of the combined cycle
engine at maximum power output is similar to that for the efficiency of a single heat
engine, except that in this case the temperature ratio of the single engine is replaced by the
product of the two temperature ratios. If the combined cycle device is considered to be two
endoreversible heat engines connected by a perfect conductor (i.e. the resistance between
the engines is zero; C, = <o) then T; = T, and eqn (5.36) becomes

7]!}\ = = 1 - TITZ (5.36)

fp=———=1-1TT)=1-— —=1-— (5.37)
QH 1 T2 T4 T4
The efficiency given in eqn (5.37) is the same efficiency as would be achieved by a
single endoreversible heat engine operating between the same two temperature limits, and
what would be expected if there was no resistance between the two engines in the
combined cycle plant.
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To determine the efficiency of the combined cycle plant, composed of endoreversible
heat engines, producing maximum power output requires the evaluation of the maxima of
the surface W plotted against the independent variables 7, and 7,. It is difficult to obtain
a mathematical expression for this and so the maximum work will be evaluated for some
arbitrary conditions to demonstrate the necessary conditions. This will be done based on
the following assumptions:

temperatures: T, = 1600 K; T.=400K
conductivities: Cyy=C,=C=1

Non-dimensional power
3

0.45 ; .
% 0.6 06 o
°f%%hm 0.75 0-"W
big " 0.
ing 9

ny, 09
s 0 R

Fig. 5.5 Variation of maximum work output with temperature ratio across the two engines

T T ——

Y Q.
T, — W A Q,
E, >
T,— T, — W,
v (:‘]: - _. i1 p—»
T, W, z
E. >
T, A Q,C
Y Q

~ —

Fig. 5.6 Combined cycle heat engine driving a reversed heat engine
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While these assumptions are arbitrary, it can be shown that the results obtained are
logical and general. The variation of maximum power output with temperature ratios
across the high and low temperature engines is shown in Fig 5.5. It can be seen that the
maximum power occurs along a ridge which goes across the base plane. Examination
shows that, in this case, this obeys the equation 7,7, = 0.5 =VT,/Ty. Hence, the efficiency
of a combined cycle heat engine operating at maximum power output is the same as the
efficiency obtainable from a single heat engine operating between the same two reservoirs.
This solution is quite logical, otherwise it would be possible to arrange heat engines as in
Fig 5.6, and produce net work output while transferring energy with a single reservoir.

Thus the variation of 7, with 7, to produce maximum power output is shown in Fig 5.7:
all of these combinations result in the product being 0.5.

0.85
09
085
08
075
a7
0.65
06

0.55

05

Temperature ratio of low temperature engine

05 0.55 06 085 07 075 08 0.85 08 085 1

Temperature ratio of high temperature engine

Fig. 5.7 Variations in tempe