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Preface

As data analysts at a large information-intensive business, we often have been
asked to analyze new (to us) data sets. This experience was the original moti-
vation for our interest in the topics of exploratory data mining and data
quality. Most data mining and analysis techniques assume that the data have
been joined into a single table and cleaned, and that the analyst already knows
what she or he is looking for. Unfortunately, the data set is usually dirty,
composed of many tables, and has unknown properties. Before any results
can be produced, the data must be cleaned and explored—often a long and
difficult task.

Current books on data mining and analysis usually focus on the last stage
of the analysis process (getting the results) and spend little time on how data
exploration and cleaning is done. Usually, their primary aim is to discuss the
efficient implementation of the data mining algorithms and the interpretation
of the results. However, the true challenges in the task of data mining are:

+ Creating a data set that contains the relevant and accurate information,
and

+ Determining the appropriate analysis techniques.

In our experience, the tasks of exploratory data mining and data cleaning con-
stitute 80% of the effort that determines 80% of the value of the ultimate data
mining results. Data mining books (a good one is [56]) provide a great amount
of detail about the analytical process and advanced data mining techniques.
However they assume that the data has already been gathered, cleaned,
explored, and understood.

As we gained experience with exploratory data mining and data quality
issues, we became involved in projects in which data quality improvement was
the goal of the project (i.e., for operational databases) rather than a pre-
requisite. Several books recently have been published on the topic of ensur-
ing data quality (e.g., the books by Loshin [84], by Redman [107]), and by
English [41]). However, these books are written for managers and take a

ix
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managerial viewpoint. While the problem of ensuring data quality requires a
significant managerial support, there is also a need for technical and analytic
tools. At the time of this writing, we have not seen any organized exposition
of the technical aspects of data quality management. The most closely related
book is Pyle [102], which discusses data preparation for data mining. However,
this text has little discussion of data quality issues or of exploratory data
mining—pre-requisites even to preparing data for data mining.

Our focus in this book is to develop a systematic process of data explo-
ration and data quality management. We have found these seemingly unre-
lated topics to be inseparable. The exploratory phase of any data analysis
project inevitably involves sorting out data quality problems, and any data
quality improvement project inevitably involves data exploration. As a further
benefit, data exploration sheds light on appropriate analytic strategies.

Data quality is a notoriously messy problem that refuses to be put into a
neat container, and therefore is often viewed as technically intractable. We
have found that data quality problems can be addressed, but doing so requires
that we draw on methods from many disciplines: statistics, exploratory data
mining (EDM), databases, management, and metadata. Our focus in this book
is to present an integrated approach to EDM and data quality. Because of the
very broad nature of the subject, the exposition tends to be a summarization
of material discussed in great detail elsewhere (for which we provide refer-
ences), with an emphasis on how the techniques relate to each other and to
EDM and data quality. Some topics (such as data quality metrics and certain
aspects of EDM) have no other good source, so we discuss them in greater
detail.

EXPLORATORY DATA MINING (EDM)

Data sets of the twenty-first century are different from the ones that moti-
vated analytical techniques of statistics, machine learning and others. Earlier
data sets were reasonably small and relatively homogeneous so that the struc-
ture in them could be captured with compact models that had large but a man-
ageable number of parameters. Many researchers have focused on scaling the
methods to run efficiently and quickly on the much larger data sets collected
by automated devices. In addition, methods have been developed specifically
for massive data (i.e., data mining techniques). However, there are two
fundamental issues that need to be addressed before these methods can be
applied.

- A “data set” is often a patchwork of data collected from many sources,
which might not have been designed for integration. One example of this
problem is when two corporate entities providing different services to a
common customer base merge to become a single entity. Another is when
different divisions of a “federation enterprise” need to merge their data
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stores. In such situations, approximate matching heuristics are used to
combine the data. The resulting patchwork data set will have many data
quality issues that need to be addressed. The data are likely to contain
many other data glitches, and these need to be treated as well.

+ Data mining methods often do not focus on the “appropriateness of the
model for the data,” namely, goodness-of-fit. While finding the best model
in a given class of models is desirable, it is equally important to determine
the class of models that best fits the data.

There is no simple or single method for analyzing a complex, unfamiliar
data set. The task typically requires the sequential application of disparate
techniques, leveraging the additional information acquired at each stage to
converge to a powerful, accurate and fast method. The end-product is often a
“piecewise technique” where at each stage we might have had to adapt or
extend, to improvise on an existing method. The importance of such an
approach has been emphasized by statisticians such as John Tukey [123] and
more recently in the machine learning community, for instance, in the Auto-
Class project [19].

DATA QUALITY

A major confounding factor in EDM is the presence of data quality issues.
These are often unearthed as “interesting patterns” but on closer examination
prove to be artifacts. We emphasize this aspect in our case study, since typi-
cally data analysts spend a significant portion of their time weeding-out data
quality problems. No matter how sophisticated the data mining techniques,
bad data will lead to misleading findings.

While most practitioners of data analysis are aware of the pitfalls of data
quality issues, it is only recently that there has been an emphasis on the sys-
tematic detection and removal of data problems. There have been efforts
directed at managing processes that generate the data, at cleaning up data-
bases (e.g. merging/purging of duplicates), and at finding tools and algorithms
for the automatic detection of data glitches. Statistical methods for process
control (predominantly univariate) that date back to quality control charts
developed for detecting batches of poorly produced lots in industrial manu-
facturing are often adapted to monitor fluctuations in variables that populate
databases.

For operations databases, data quality is an end in itself. Most business (and
governmental, etc.) processes involve complex interactions between many
databases. Data quality problems can have very expensive manifestations (e.g.,
“losing” a cross-country cable, forgetting to bill customers). In this electronic
age, many businesses (and governmental organizations, etc.) would like to “e-
enable” their customers—that is, let them examine the relevant parts of the
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operational databases to manage their own accounts. Depending on the state
of the underlying databases, this can be embarrassing or even impossible.

SUMMARY
In this book, we intend to:

+ Focus on developing a modeling strategy through an iterative data explo-
ration loop and incorporation of domain knowledge;

+ Address methods for dealing with data quality issues that can have a
significant impact on findings and decisions, using commercially available
tools as well as new algorithmic approaches;

- Emphasize application in real-life scenarios throughout the narrative with
examples;

- Highlight new approaches and methodologies, such as the DataSphere
space partitioning and summary-based analysis techniques, and ap-
proaches to developing data quality metrics.

The book is intended for serious data analysts everywhere that need to
analyze large amounts of unfamiliar, potentially noisy data, and for managers
of operations databases. It can also serve as a text on data quality to supple-
ment an advanced undergraduate or graduate level course in large-scale data
analysis and data mining. The book is especially appropriate for a cross-
disciplinary course in statistics and computer science.
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CHAPTER1

Exploratory Data Mining and
Data Cleaning: An Overview

1.1 INTRODUCTION

Every data analysis task starts by gathering, characterizing, and cleaning a new,
unfamiliar data set. After this process, the data can be analyzed and the results
delivered. In our experience, the first step is far more difficult and time
consuming than the second. To start with, data gathering is a challenging task
complicated by problems both sociological (such as turf sensitivity) and
technological (different software and hardware platforms make transferring
and sharing data very difficult). Once the data are in place, acquiring the meta-
data (data descriptions, business rules) is another challenge. Very often the
metadata are poorly documented. When we finally are ready to analyze the
data, its quality is suspect. Furthermore, the data set is usually too large and
complex for manual inspection.

Sometimes, improved data quality is itself the goal of the analysis, usually
to improve processes in a production database (e.g., see the case study in
Section 5.5.1). Although the goal seems different than that of making an analy-
sis, the methods and procedures are quite similar—in both cases we need to
understand the data, then take steps to improve data quality.

Fortunately, automated techniques can be applied to help understand the
data (Exploratory Data Mining, or EDM), and to help ensure data quality (by
data cleaning and applying data quality metrics). In this book we present these
techniques and show how they can be applied to prepare a data set for analy-
sis. This chapter will briefly outline the challenges posed to the analysis of
massive data, the strategies for taming the data, and an overview of data explo-
ration and cleaning methods, including developing meaningful data quality
definitions and metrics.

Exploratory Data Mining and Data Cleaning, by Tamraparni Dasu and Theodore Johnson
ISBN: 0-471-26851-8 Copyright © 2003 by John Wiley & Sons, Inc.
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1.2

EXPLORATORY DATA MINING AND DATA CLEANING

CAUTIONARY TALES

A first question to ask is, why are data exploration and data preparation
needed? Why not just go ahead and analyze the data? The answer is that the
results are almost guaranteed to be flawed. More specifically, some of the prob-
lems that occur are:

Spurious results: Data sets usually contain artifacts generated by external
sources that are of no interest to us but get mixed up with genuine
patterns of interest. For example, a study of traffic on a large telecom-
munications company’s data network revealed interesting behavior
over time. We were able to detect glitches caused by delays in gathering
and transmitting traffic characteristics (e.g., number of packets) and
remove such delays from inherent bursty patterns in the traffic. If we had
not cleaned the data, we would have included the glitches caused by
delays in the “signature usage pattern” of the customer, and would have
detected misleading deviations from the glitched signatures in future time
series.

Misplaced faith in black boxes: Data mining is sometimes perceived as a
black box, where you feed the data in and interesting results and patterns
emerge. Such an approach is particularly misleading when no prior
knowledge or experience is used to validate the results of the mining exer-
cise. Consider the case of clustering, a method often used to find hidden
groupings in the data for tasks such as target marketing. It is very hard
to find good clusters without a reasonable estimate of the number of
groups, the relative sizes of these groups (e.g., cluster 1 is 10 times larger
than cluster 2) and the logic used by the clustering algorithm. For
example, if we use a k-means algorithm that initializes cluster centers at
random from the data, we need to choose at least 10 starting clusters to
detect two clusters that constitute 10% and 90% of the total data set.
Starting with fewer clusters would result in the algorithm finding one big
cluster containing most of the points, with a few outliers constituting the
other clusters.

Log-linear models (e.g., logistic regression) are another common
example of misplaced faith. The models are successful when the appro-
priate number of parameters and the correct explanatory variables are
included. The model will not fit well if too few parameters and irrelevant
variables are included in it, even if in reality the logistic regression model
is the correct choice. It is important to explore the data to arrive at an
appropriate analytical model.

Limitations of Popular Models: Very often, a model is chosen because it
is well understood or because the software is available, irrespective of the
nature of the data. Analysts rely on the robustness of the models, even
when underlying assumptions about the distribution (often the Normal
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density) do not hold. However, it is important to recognize that, although
classical parametric methods based on distributional and model assump-
tions are compact, powerful and accurate when used in the right condi-
tions, they have limited applicability. They are not suitable for scenarios
where not enough is known about the data or its distribution, to validate
the assumptions of the classical methods. A good example is linear regres-
sion, which is often used inappropriately, because it is easy to use and
interpret. The underlying assumptions of linear effect of variables and the
form of error distributions are rarely verified. A random data set might
yield a linear regression model with a “reasonable” R-square goodness-
of-fit measure, leading to a false confidence in the model.

Even if a model is applicable, it may be difficult to implement because
of the scale of the data. Many nonparametric methods, such as clustering,
machine learning, neural networks and others, are iterative and require
multiple passes over all the data. On very large data sets, they may be too
slow.

* Buyer Beware—No Guarantees: Many data mining techniques do not
provide any goodness-of-fit guarantees. For example, a clustering mecha-
nism might find the “best” clusters as defined by some distance metric,
but does not answer the question of how well the clusters replicate the
structure in the data. Testing the goodness-of-fit of clustering results with
respect to the data can be time consuming, involving simulation tech-
niques. As a result, validation of clustering in the context of appropriate-
ness to the data is often not implemented. The best or optimal model
could still be very poor at representing the underlying data. For example,
many financial firms (such as Long Term Capital Management) have
mined data sets to find similarities or differences in the prices of various
securities. In the case of LTCM, the analysts searched for securities whose
price tended to move in opposite directions and placed hedges by pur-
chasing both. Unfortunately, these models proved to be inaccurate, and
LTCM lost billions of dollars when the price of the securities suddenly
moved in the same direction.

Another frequently encountered pitfall of casual data mining is spuri-
ous correlations. It is possible to find random time series that move
together over a period of time (e.g., the NASDAQ index and rainfall in
Bangladesh) but have no identifiable association, let alone causal rela-
tionship. An accompanying hazard is the tendency to tailor hypotheses
to the findings of a data mining exercise. A classical example is the
beer—diaper co-occurrence revealed by mining supermarket purchase
data. However, its not likely that one can increase beer sales by stocking
shelves with diapers.

We hope that the cautionary tales show that it is essential that the analyst must
clean and understand the data before analyzing it.
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1.3 TAMING THE DATA

There are many books that address data analysis and model fitting in which a
single approach (logistic regression, neural networks) stands out as the method
of choice. In our experience, however, getting to the point where the model-
ing strategy is clear requires skill, science, and the lion’s share of the work. The
effectiveness of the later analysis strongly depends on the knowledge learned
during the earlier ground work. For an example, the analyst needs to know,
what are the variables that are relevant (e.g., for predicting probability of
recovery from a disease—vital statistics, past history, genetic propensity)? Of
these, how many variables can be measured and how many are a part of the
available data? How many are correlated and redundant? Which values are
suspicious and possibly inaccurate?

The work of identifying the final analysis strategy is an iterative (but com-
putationally inexpensive) process alternating between exploratory data
mining (EDM) and data cleaning (improving data quality (DQ)). EDM con-
sists of simple and fast summaries and analyses that reveal characteristics of
the data, such as typical values (averages, medians), variability (variance,
range), prevalence of different values (quantiles) and inter-relationships (cor-
relations). During the course of EDM, certain data points that seem to be
unlikely (e.g., an outlier such as an 80-year-old third grader, a sign-up date of
08-31-95 for a service launched in 1997) motivate further investigation. Closer
scrutiny often finds data quality issues (a mistyped value, a system default
date), which, when fixed, result in cleaner, better quality data. In a later
chapter, we discuss a case study related to a provisioning data base where
clearing up data problems unearthed by EDM allowed us to significantly sim-
plify the model needed to represent the structure in the data. We note that
addressing DQ issues involves consulting with domain experts and incorpo-
rating their knowledge into the next round of EDM. Therefore, EDM and DQ
have to be performed in conjunction.

1.4 CHALLENGES

Unfortunately, the analyst has to do considerable ground work before the
underlying structure in the data comes into focus. Some of the challenges of
EDM and DQ are:

- Heterogeneity and Diversity: The data are often collected from many
sources and stitched together. This is particularly true of data gathered
from different organizations of a single “federation enterprise”, or of an
enterprise resulting from corporate mergers. Often, it is a problem even
for data gathered from different departments in the same organization.
The data might also be gathered from outside vendors (e.g., demograph-
ics). While the combined information is presented to the analyst as a
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single data set, it usually contains a superposition of several statistical
processes. Analyzing such data using a single method or a black box
approach can produce misleading, if not totally incorrect results, as will
be explained later.

+ Data Quality: Gathering data from different organizations, companies,
and sources makes the information rich in content but poor in quality. It
is hard to correlate data across sources since there are often no common
keys to match on. For example, we might have information about Ms. X,
who buys clothing from one business unit and books from another. If
there is no common identifier in the two databases (such as customer ID,
phone number, or social security number) it is hard to combine the infor-
mation from the two business units. Keys like names and addresses are
often used for the matching. However, there is no standard for names and
addresses (Elizabeth, Liz; Street, St.; Saint, St.; other variants) so that
matching databases using such soft keys is inexact (and time consuming),
resulting in many data quality issues. Information related to the same cus-
tomer might not be matched, whereas spurious matches might occur
between similarly spelled names and addresses.

Data quality issues abound in data sets generated automatically
(telecommunication switches, Internet routers, e-transactions). Software,
hardware and processing errors (reverting to defaults, truncating data,
incomplete processing) are frequent.

Other sources of data integrity issues are bad data models and inade-
quate documentation. The interpretation of an important attribute might
depend on ancillary attributes that are not updated properly. For example,
“Var A represents the current salary if Var B is populated. If not, it rep-
resents the salary upon termination. The termination date is represented
by Variable C that is updated every three months.” For Var A to be
accurate, timely and complete, Var B and Var C should be maintained
diligently. Furthermore, interpretation of Var A requires good docu-
mentation that is very rarely available. Such metadata reside in many
places, often passed on through word-of-mouth or informal notes.

Finally, there are the challenges of missing attributes, confusing default
values (such as zero, i.e. zero revenue differs significantly from revenue
whose value is not known that month) and good old-fashioned manual
errors (data clerk entering elementary school student profile types age as
80 instead of 08). In the latter instance, if we did not know the data
characteristics (typical ages of elementary school children) we would have
no reason to suspect that the high value is corrupt, which would have
significantly altered the results (e.g., average age of elementary school
kids).

+ Scale: Often the sheer volume of the data (e.g., an average of 60 Gbytes
a day of packet flows on the network) is intimidating. Aside from the
issues of collection, storage, and retrieval, the analyst has to worry about



6 EXPLORATORY DATA MINING AND DATA CLEANING

summarizing the data meaningfully and accurately, trading-off storage
constraints versus future analytical needs. Suppose, for example, that to
perform a time series analysis we need at least 30 days worth of data.
However, we can efficiently store and retrieve only a week’s worth at the
most. Therefore, computing and storing statistical summaries (averages,
deviations, histograms) that will facilitate sophisticated analysis, as well as
developing summary-based analyses, are a major part of the analyst’s
challenge.

+ New Data Paradigms: The term “data” has taken on a broad meaning—
any information that needs to be analyzed is considered “data”. Nowa-
days, data come in all flavors. We have data that are scraped off the web,
text documents, streaming data that accumulate very quickly, server logs
from web servers and all kinds of audio and image data. It is a challenge
to collect, store, integrate and manage such disparate types of data. There
are no established methods for doing this as yet.

1.5 METHODS

In this section we give a brief outline of EDM and DQ methods. In subse-
quent chapters, we will explore these topics in detail.

A typical data set consists of data points, where each data point is defined
by a set of variables or attributes. For example, a data point in a hypothetical
data set of network traffic might be described by:

(source _IP _addpress, destination_ IP _address,
number _of _ packets _sent, number _of _hops, time _ taken)

The above set of variables enclosed in parentheses is called a vector of
attributes, where each item in the vector represents an aspect of the data point.
Each data point differs from the other. Some attributes, such as the IP address,
are assigned and are completely known. Variables such as packets_sent and
time_taken vary from data point to data point depending on many observable
and hidden factors such as network capacity, the speed of the connection, the
load on the network and so on. The variability or uncertainty in the values of
the attributes can be represented compactly using a probabilistic law or rule
represented by f. A well-known example of fis the Gaussian, or Normal, dis-
tribution. In a way, f represents a complete description of the data, so that if
we know f, we can easily infer any fact we want to derive from the data. We
will discuss this aspect more in Section 2.2. Estimating the probabilistic rule
fis important and valuable, however it is also difficult. Therefore we break it
up into smaller sequential phases, where we leverage the information from
each phase to make informed assumptions about some aspect of f. The
assumptions are often pre-requisites for more sophisticated approaches to
estimating f.
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The first phase in the estimation of f is to gather high-level informa-
tion, such as typical values of the attributes, extent of variation and inter-
relationships among attributes. For instance, we can:

1.6

Describe a typical value. “A typical network flow consists of 100 packets,
lasting 1 second.” The actual attributes of most of the flows should be close
to these typical values.

Quantify departures from typical behavior. “Two percent of the flows are
abnormally large.”

Isolate subgroups that behave differently. “The distribution of the dura-
tion of flows between Destination A and Destination B differs from that
of the flows between Destination A and Destination C.”

Generate hypotheses for further testing. “Is the number of packets trans-
mitted correlated with duration?”

Characterize aggregate movements over time such as “Packet flows

between Destination A and Destination B are increasing linearly with
time.”

EDM

A good exploratory data mining method should meet the following criteria:

Wide applicability: The method should make few or no assumptions about
the statistical process that generates the data. Distributional assumptions
(e.g., the exponential family of distributions) and model assumptions (e.g.,
log-linear) limit the applicability of models. This aspect is particularly
important while dealing with an unfamiliar data set where we have no
prior knowledge.

Quick response time: When we explore a data set for the first time, we
would like to perform a wide range of analyses rapidly, to gather as much
knowledge as possible to determine our future modeling course. From an
applied perspective where an analyst wants to explore a real data set to
answer a real scientific or business question, it is not acceptable for an
analytical task to take hours, let alone days and weeks. There is a real
danger of the analysis becoming irrelevant and the analyst being bypassed
by the decision-makers. Since data mining is typically associated with very
large data sets, the EDM method should not be overwhelmed by large
and high-dimensional data sets. Note that models which require several
passes (log-linear, classification, certain types of clustering) over the data
do not meet this requirement.

Easy to update: Analysts frequently receive additional data (data arrives
over time, new sources become available, for example, new routers on the
network) and need to update or recalibrate their models. Again, many
parametric (log-linear) and nonparametric (clustering, classification)
models do not meet this criterion.
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* Suitable for downstream use: Few end-users of the EDM results have
access to gigabytes of storage or hefty processing power. Even if com-
puting power is not an issue, an analyst would prefer a small, compact
data extract that allows manual browsing and intuitive inferences about
associations and patterns. In this context, an interesting by-product of
EDM is data publishing, where the essence of the raw data is summarized
as a compact data set for further inspection by an analyst. (We discuss this
in detail in Section 4.3.3.)

- Easy to interpret: The EDM method as well as its results should be easy
to interpret and use. While this seems obvious, there are methods, like
neural networks, that are opaque and hard to understand. Therefore,
when given a choice, a simple, easily understood method should be chosen
over methods whose logic is not clear.

Sometimes the findings from EDM can be used to make assumptions for
choosing parametric methods, which enable powerful inferences based on rel-
atively little data. Then, a small sample of the data can be used to implement
the computationally intensive parametric methods.

In this section, we give a brief outline of summaries that we will later discuss
in detail. Statistical summaries are used to capture the properties that char-
acterize the underlying density f that generates the data. There are two possi-
ble approaches to understanding f. Note that while we make a distinction
between these two approaches for expository reasons, they represent differ-
ent points on the same analytical spectrum and share a common analytical lan-
guage. Each approach can often be expressed as a more general or particular
form of the other. Furthermore, estimates such as the mean, variance and
median play an important role in both approaches.

1.6.1 EDM Summaries—Parametric

A parametric approach believes that f belongs to a general mathematical
family of distributions (like a Normal distribution) and its specifics can be cap-
tured by a handful of parameters, much like a person can be identified as
belonging to the general species Homo sapiens and described in particular
using, height, weight, color of eyes and hair. The parameters are estimated from
the collected data. The parameters that characterize a distribution can be clas-
sified broadly as:

- Measures of centrality: These parameters identify a core or center of the
data set that is typical—parameters included in this category are mean,
median, trimmed means, mode and others that we will discuss in detail
later. We expect most of the data to be concentrated or located around
these typical values. The estimates can be computed easily from the data.
Each type of estimator has advantages and disadvantages that need to be



EDM 9

weighed while making the choice. For example, averages are easy to
compute but are not robust. That is, a small corruption or outlier in the
data can distort the mean. The median, on the other hand, is robust, in the
sense that outliers do not affect it. However, the median is hard to
compute in higher dimensions. Note that estimates such as the mean and
median are meaningful by themselves in the context of the data, regard-
less of f, and hence play an important role in nonparamteric estimation
as well (discussed below).

Measures of dispersion: These parameters quantify the extent of spread
of the data around the core. The parametric approach assumes that the
data is distributed according to some probability law f. In accordance with
f, the data thins away from the center. The diffusion or dispersion of data
points in space around the center is captured through the measures of dis-
persion. Parameters that characterize the extent of spread include the
variance, range, inter-quartile range and absolute deviation from the
median, among others.

Measures of skewness: These parameters describe the manner of the
spread—is the data spread symmetrically around the center or does it have
a long tail in any particular direction? Is it elliptical or spherical in shape?

1.6.2 EDM Summaries—Nonparametric

The second, nonparametric approach simply computes the anchor points of
the density f based on the data. The anchor points represent the cut-offs that
divide the area under the density curve into regions containing equal pro-
bability mass. This concept is related to rank-based analysis common in
nonparametric statistics. Empirically, computing the anchor points would
entail dividing the sorted data set into pieces that contain equal number of

. .. . . K
points. In the univariate case, the set of anchor points {g,}=5 is the o~ — set
n

of cut-off points of fif:
[l fwdu=a,¥i, (1.1)
q(i-1)

where gy = —e0 and g = . g; are called the o quantiles of f (see Fig. 1.1).

Quantiles are the basis for histograms, summaries of f that describe the pro-
portion of data that lies in various regions of the data space. In the univariate
case, histograms consist of bins (e.g., interval ranges) and the proportion of
data contained in them. (E.g., 0-10 has 10% of the data, 10-15 has the next
10%, etc.). Histograms also come in many flavors, such as equi-distance, equi-
depth, and so on. We defer a detailed discussion until later chapters.

The nonparametric approach outlined above is based on the concept of
ordering or ranking data, that is, & proportion of the data is less than X,, and
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Alpha-Quantiles
TN

q_q_i
(i-1)
Area between consecutive bars = alpha

Figure 1.1: o quantiles of f.

so on. In higher dimensions, an analogous concept is depth. A data point
located deep inside the data cloud has greater depth than one located on the
periphery. Examples of data depth include simplicial depth, likelihood depth,
Mahalanobis depth and Tukey’s half-plane depth and others. Estimating data
depth is computationally challenging, involving methods such as convex hull
peeling, depth contours, and so on. We will include a detailed discussion in
Section 2.9.1.

An important aspect of EDM is to capture correlations and interactions
between variables. Many simple measures of capturing bivariate interactions
exist, such as covariance, ranked correlation and others. These are easy to esti-
mate but have the same weakness as means, namely, lack of stability. Visual
methods include scatter plots, trend charts and Q-Q plots. Fractal dimension,
mutual information are more complex ways of capturing interaction.

Another important way of capturing interactions is through multivariate
histograms. For example, the table below shows that there is a strong associa-
tion between number of packets and time taken for a packet flow to be trans-
mitted. The numbers in the table represent the proportion of flows that falls
in any particular combination of number of packets and duration, such as
“Few-Medium” which contains 0.01 of all the flows.

Short Medium Long

Few 0.3 0.01 0
Average 0.08 0.2 0.01
Many 0.01 0.09 0.3

We have created the above bivariate histogram by “discretizing” the
numeric variables packets (Few = 0 — 19, Average = 20 — 70, Many = 70+) and
duration (Short = Less than 1sec, Medium = 1 — 5sec Long = 5+ sec). The com-
bination of the discretized variables results in a partition of the data space that
has nine classes which are exhaustive and non-overlapping.
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Partitions of data space are an important way of reducing a large data set
into more manageable chunks. Each chunk or class can be represented by sum-
maries of the data points that lie in that class. The summaries are typically
orders of magnitude smaller than the raw data. These summaries can be used
for further, more sophisticated analysis.

However, it is important to ensure that any given class of a partition con-
sists of data points that are reasonably similar. Otherwise, important differ-
ences will be lost in the summarization of the class. For example, if elementary
school children and graduate students are included in the same class, then a
summary such as “average age” is not representative of either group. Parti-
tions with homogeneous classes have the following advantages:

- As mentioned earlier, the summaries for each class are more reliable and
representative.

+ Each class is considerably smaller and less complex than the entire data
set. Methods suitable for small samples (scatter plots, box plots) could be
used on classes that are of particular interest (parts of the network that
experience unusual packet loss).

+ Representing the data set by a collection of summaries for each class in
the partition provides a more detailed (and accurate) understanding of
the data set than using one single coarse summary. For example, parti-
tioning the data into two classes, elementary students and graduate stu-
dents, will give us two average ages for each class (8.9 and 24), rather than
a single average age of 17. This kind of a partition, based on an observed
attribute (elementary school, graduate school) is called stratification, a
popular partitioning scheme in Statistics.

The example in the above table is a rectilinear partition where the bound-
aries of the classes are parallel to the axes. A major drawback with creating a
rectilinear partition by binning each attribute individually is the exponential
increase in the number of classes. If there are d attributes with k bins each,
the resulting partition will have k“ classes. Just six attributes with ten bins will
result in one million classes! However data cubes and OLAP software can
help the analyst manage this combinatorial explosion (see Section 3.2). Other
examples of axis aligned partitions are those induced by classifiers. Clustering
methods too induce classes (e.g., each cluster is a class). However such induced
partitions are parameterized by the method, so that they do not generalize
easily.

Another partitioning scheme, the DataSphere or DS, scales well with the
number of attributes and is sufficiently general. The number of classes in the
partition increases only linearly with the number of variables. The partition-
ing method consists of dividing the data into depth layers around the center
(like the layers of an onion) and superimposing directional pyramids to
capture the axis (attribute) related information. Every layer-pyramid combi-
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DataSphere Partition in 2-D

Depth quantile layers enclosing mass o;
Four pyramids in 2-D, Y+, Y—, X+, X-.

Figure 1.2: A DS partition in 2-D: Depth layers, directional puramids.

nation represents a class in the DS partition (see Figure 1.2). All the points
within a class are summarized using aggregates (EDM summaries) that can be
combined easily (sums, sum of products, counts). A detailed discussion is in
Section 3.4.

Two major uses of partition based summaries computed during EDM are
(a) to isolate data glitches and (b) to guide the choice of models for further
analyses. Fitting simple nonparametric models within each class of the parti-
tion and observing the changes from class to class can lead to an understand-
ing of the nonlinear interactions between attributes. For example, fitting simple
survival functions within each class of a partition of the covariates can help us
to choose the appropriate proportional hazards model in a survival analysis
study. In some cases, such piecewise models can even function as approxima-
tions to more sophisticated models.

1.7 END-TO-END DATA QUALITY (DQ)
As noted earlier, data cleaning is an integral part of analysis. In fact,

DATA+ANALYSIS =RESULTS,

so that the effects of bad data and bad analysis are inseparable. The most
sophisticated analyses cannot wring intelligence out of bad data. Even worse,
if an analyst is unaware of data glitches, misleading results can be used to make
important decisions leading to lost credibility (wrong projections), lost rev-
enues (billing errors), irate customers (billed twice) and sometimes fatalities
(incorrect computation of flight paths). Finding data glitches, publicizing them
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to downstream users and decision makers, and implementing programs to fix
the glitches on an ongoing basis should be an integral part of any data quality
and data analysis program.

Data quality is a very complex issue, given the innumerable sources as well
as the highly domain specific nature of the problems that cause the data
glitches. In this section, we briefly outline a comprehensive DQ strategy, with
detailed discussions to follow in later chapters. To accommodate the radical
changes in the nature of data and what is expected from the data, we update
conventional static definitions of data quality to incorporate concepts such as
data interpretation, suitability to analysis and availability of metadata to for-
mulate business rules which are dynamic in nature and span multiple systems
and processes.

171 DQ in Data Preparation

Many decisions about data preparation are made during the data processing
stage (prior to the first EDM pass). These decisions are made “on the fly” by
technicians whose end goal is not necessarily an accurate analysis of the data.
The analyst should be involved in these decisions, but frequently is not. As a
result, unrecoverable biases are often unknowingly introduced into the data
set. For example, consider the choice of default values. While most choices are
sensible, sometimes bad defaults are chosen. A negative value (-99999) is a
poor default value for an attribute like billed amount, since it is possible to
have large amounts credited to a bill.

Another important decision is how to merge different data sources when
common keys are either not available or are corrupt. In this situation, domain
experts are invaluable. In one of our case studies, the match key was available
across three different variables in one data source and across two different
variables in the other (for obscure reasons related to the organizational struc-
ture). Without the input of domain experts, we would never have identified
these keys. In the absence of any common keys, names and addresses are often
used. Many tools are available for such name and address matching, for
example, Trillium.

Missing values are another source of ambiguity. Discarding all data points
that are missing one or more variables can waste a lot of data, and also can
introduce unknown biases (all the traffic for destination A to destination B
with more than 2 hops is missing). There are many techniques which focus on
treating missing values (use typical values, use regression) that we will cover
in detail in Section 5.2.2.

1.7.2 EDM and Data Glitches

Partitions are very helpful in detecting glitches. Many data errors are swamped
by aggregates. For example, if a small branch of a major company is late in
sending the revenues, aggregates such as averages will not be able to detect it.
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However, if we break down the data set into a partition, the class in which
the branch falls will register a drop, leading to an investigation. We discuss
this aspect in detail in our case study on set comparison with DataSphere
partitions.

1.7.3 Tools for DQ

No single technique or tool can solve all the data quality issues. Different
stages of the process can be tackled using different types of tools. Data gath-
ering and storing can be approached by designing transmission protocols with
proper checks and using various ETL tools. Data can be scrubbed and inte-
grated using data browsing techniques, missing value imputation, outlier detec-
tion, goodness-of-fit tests and others. In addition, there are tools for dealing
with duplicates, name and address correction. Analysis and publishing can rely
on EDM and other well-known techniques. The point to note is that a wide
range of tools and techniques have to be chosen depending on the data and
the task at hand. No single button can be pushed to make the data quality
issues disappear.

1.7.4 End-to-End DQ: The Data Quality Continuum

As demonstrated in the previous sections, an effective data mining and analy-
sis program should integrate data quality into the entire lifecycle of the data
which we call the data quality continuum. Roughly, the stages are:

- Data Gathering and Data Integration: Data gathering processes and
instruments (software and hardware, others) should be checked fre-
quently to make sure that avoidable errors are weeded out. For example,
some systems overwrite certain dates when they run reconciliation pro-
grams to synchronize databases. The overwritten dates cannot be used for
any kind of life cycle or time dependent analyses. In general, it is impor-
tant to make sure that the data gathered are current, accurate and com-
plete. In addition, the user should be clearly notified and continuously
updated of any changes made, and made aware of any non-standard fea-
tures of the data (e.g., different chunks of the data have different recency)
to avoid misleading results and conclusions.

While trying to integrate data from different sources, a frequently
encountered problem is that there is no known join key (or match key)
to match them on. Clear documentation, binding data to metadata (e.g.,
XML) and using data browsing to discover join paths are potential
solutions.

+ Data Storage and Knowledge Sharing: Good data models and clear,
current documentation are critical for future analysis. Frequently, people
in charge of building the data repository are under a time pressure and
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fail to create proper documentation. A significant portion of the knowl-
edge, particularly changes in content and convention, is passed on by word
of mouth, informally. When the experts leave, the knowledge is lost
forever. Therefore, it is important to motivate people to document and
share knowledge about the data (the metadata), especially business rules
which tend to be highly domain specific.

« Data Analysis: Our case studies will demonstrate the need for incorpo-
rating DQ into analysis. Most analytical techniques start with the assump-
tion that they are given a clean set of data vectors to work with. The
analyst should consider potential data glitches, work around them,
and caveat the analysis on the possible biases introduced. A frequently
encountered problem is adjustment for time lags. For example, while com-
paring the usage of different customers, we should ensure that the usage
records cover the same period. If that is not possible (billing cycle of cus-
tomer A starts the 15th of every month, whereas the billing cycle for cus-
tomer B starts on the 25th), the heuristics used for the comparison (e.g.,
overlapping business days) should be made clear.

Data Publishing: Very few data analysts have the computing power to deal
with raw data, therefore, summarized abbreviated versions are published
for further analysis, typically on PC platforms, as noted earlier. However,
data quality considerations are secondary. Since the data set is summa-
rized, the end user (analyst) is often unaware of propagated errors. Even
if he/she notices inconsistent results, the glitches are irretrievably embed-
ded in summaries. Therefore, a strong focus on data quality is particularly
important when publishing data for downstream use.

EDM reveals many data glitches. For example, we can use summaries such
as averages, variances, and histograms to determine which values are unlikely.
Unlikely values or outliers are worth investigating since they often represent
data glitches. Similarly, time series analysis can be used to detect unusual fluc-
tuations that can be caused by process glitches. For example, sudden drops in
revenues could be caused by overlooking the contribution of a biller from
some region. Similarly, drops in traffic could be caused by outages or failure
in the software that records the traffic.

1.7.5 Measuring Data Quality

Given that data quality means different things in different applications, data
quality metrics need to be defined within the context of the problem. Some
choices include (a) the increase in usability and reliability of the data, (b) pro-
portion of instances that flow through the process as specified by the business
rules, (c) extent of automation, and (d) the usual metrics of completeness,
accuracy, uniqueness, consistency and timeliness. A detailed discussion is
deferred to Sections 4.2 and 4.5.
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1.8 CONCLUSION

We have given an overview of the major aspects of EDM and data cleaning
in this chapter. We will elaborate on this theme in the rest of the book, with
detailed references and case studies. Our intent is to provide a guide to prac-
titioners and students of large scale data analysis.



CHAPTER 2

Exploratory Data Mining

2.1 INTRODUCTION

Data are collected in many different ways for many different reasons. We are
all familiar with sports stats, weather monitoring, census data, marketing data-
bases of consumer behavior, information regarding large galaxies and moun-
tains of data to simulate the motion of subatomic particles. The motivations
for analyzing and understanding data sets are equally varied. Census data are
used to create high-level summaries and identify large trends. “Those in the
age group 35-49 on an average make $100,000 per year,” or “The race X,
gender Y segment had the highest increase in employment rate.” Sports sta-
tistics are used to track atypical performances (known as outliers). “Mark
McGuire is approaching an all time record for home runs.” Customer data are
analyzed for finding associations and patterns that can be acted upon. “People
who buy candy at the grocery checkout also buy kid’s cereals,” or “customers
who complain about service more than once in a month will most likely switch
to a competitor within six weeks of the first complaint.” High-level summaries
as in the census are easy to compute for almost any data set. But predictions,
as in the customer behavior example, require more sophisticated analysis. The
choice of the analysis itself is dictated by:

+ Our prior experience and knowledge of the data—For example, we might
know that only 0.5% of ball players have crossed 60 home runs in a
season. So we know that Mark McGuire is exceptional because of our
prior experience with baseball performance.

« The quantity of the data—If there were only hundreds of customers,
we could use visual techniques to pick out the customer who called two
times and then switched to a competitor. However, if there are millions
of such customers, establishing the patterns as well as identifying those
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that are inclined toward such patterns becomes very difficult, even with
computers.

+ Quality of the data—If the people polled in the census lied about
their age or income, or they were noted down incorrectly or entered
erroneously into the computer, summaries based on such data are
meaningless.

In this chapter and the next, we are concerned with exploring large unfa-
miliar data sets inexpensively, to learn characteristics of the data set. Simple
summaries such as typical values of attributes (“a typical person is 68 inches
tall, weighs 130 pounds”) and the variations in the attributes (“most people
are between 60 inches and 76 inches tall, weighing between 100lbs and
1601bs™) are a good starting point. In addition to characterizing the data,
summaries help us to weed out unlikely or inconsistent values that can be
further examined for data problems, as discussed below.

Summaries that identify a single characteristic of the data, (such as the
average value of an attribute), are called point estimates, since they output a
single quantity. More complex variations in the data can be captured with sum-
maries such as histograms and Cumulative Distribution Functions (CDFs).
Statistical properties of estimates help us to identify summaries that are good
for exploratory data mining (EDM) (explained below) and data cleaning.
Good EDM summaries help us discover systematic structure in data and guide
us toward appropriate modeling strategies (e.g., clustering should be used to
find groups of customers that buy groceries—veggie lovers, diet fetishists, red
meat eaters, couch potatoes, etc.).

In Section 2.2, we introduce an example that will be used throughout the
book to informally motivate the concepts of uncertainty, random variables and
probability distributions. Our focus is on relating these concepts to exploratory
data mining. There are many text books that offer formal and rigorous treat-
ment of these topics. In Section 2.3, we introduce the concept of Exploratory
Data Mining (EDM) and list the characteristics of a good EDM technique. In
Sections 2.4 and 2.5, we discuss summaries (estimates) such as means, vari-
ances, medians and quantiles. We outline properties of the summary statistics
and identify desirable characteristics of a good summary from an EDM per-
spective. Such considerations help us to choose rapid and reliable techniques
for EDM. Simple estimates like means and medians capture very limited
aspects of the variation in the data, so we need more sophisticated summaries
for the purposes of EDM. In Section 2.6, we introduce complex estimates like
histograms and the empirical cumulative distribution function (ECDF) that
capture the variation in attributes across the attribute space. In Section 2.7,
we discuss the challenges of EDM in higher dimensions. In Section 2.8, we
discuss multivariate histograms that have linear boundaries, parallel to the
original variable axes, that is, axis-aligned. Since such histograms grow expo-
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Figure 2.1: A sleeping Gryphon.

nentially in size as the number of attributes increases, we need more scalable
alternatives for fast EDM. Toward this end, we discuss in Section 2.9, data
depth, its variations and using depth to order data points in higher dimensions.
Depth-based quantiles can be used for binning in higher dimensions. The next
chapter focuses on more sophisticated exploration based on space partitions
using depth based binning, and capturing complex, nonlinear relationships
through EDM summaries. Section 2.9 discusses the role of data depth and
multivariate depth which play an important role in multivariate binning. We
conclude with a brief summary of the chapter in Section 2.10.

2.2 UNCERTAINTY

Consider the following scenario: A new but stable ecosystem is discovered in
the Himalayas. Further, suppose that there are only three species: the mythi-
cal beasts Snarks (S), Gryphons (G) and Unicorns (U).

A scientist selects a subset of organisms from the ecosystem to be studied.
The subset N of organisms from the ecosystem that is selected and measured
is called a sample of size N from the ecosystem. We would like to infer the
properties of the whole ecosystem by studying samples. The scientist painstak-
ingly collects the following data for every member of the sample:

species, age, weight, volume.

The collection of four items above is a description of an individual organism.
Each item in the collection is an attribute or variable whose value gives us
information about the organism. We will use the terms variable and attribute
interchangeably throughout this book. The values of the attributes vary from
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organism to organism. For example, two different organisms might be des-
cribed by the following tuples:

(S,4,10,12) 2.1)
(G,3,9,15). 2.2)

We cannot be certain what the value of any particular attribute will be, before
we actually catch an organism and measure its attributes. An attribute whose
value can vary from case to case is called a random variable. The set of all pos-
sible values that an attribute (or random variable) can take is called its support
or domain. (Note that the term “support” can have different meanings in other
contexts such as association rules in data mining.) In the above example, the
support of the attribute species is given by the set S, G, U. The uncertainty in
the value of an attribute can be expressed using some function f. For example,
if we believe that all three species are equally prevalent, then the uncertainty
of which species will turn up as the next data point in the sample is expressed
by:

chances of species S = chances of species G = chances of species U =1/3
We can represent this in a general form as:
f:x—B, (2.3)

where y is the set of all possible outcomes and 3B is the interval [0,1]. For the
attribute Species, the set y is (Snark, Gryphon, Unicorn). The function fis a
rule, called a probability distribution, that associates a probability of occur-
rence with every value of an attribute, when the attribute takes discrete values.
(We will consider the case of continuous attributes in Section 2.4.2). A prob-
ability distribution represents the uncertainty associated with a particular value
of an attribute being observed.

The probability distribution fis very powerful information, we can answer
any question regarding any subset of attributes if we know f. For example,
consider the question “What are the chances of catching a Snark whose age
is between 40 and 50, and occupies more than 20 units of space?”. All we need
to do is sum the probabilities (f) of the attributes that lie in the intervals men-
tioned in the question. So,

a=50 y=co

P((A0<SA<50)N(Sp=S)n(V=20)= D D f(A=a,Sp=S,V=v), (24)

a=40 v=20

where the random variable A stands for Age, Sp for Species, and V for Volume
and where f (age = a, species = S, volume = v) represents the probability that
age is exactly a, species is S and volume is exactly v as specified by the multi-
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Figure 2.2: A representation of a multivariate support. Each box represents a species. The sample
organisms that have the attributes Sp = Snark (S), A € [40,50] and V > 20 fall in the shaded region.
The dotted lines could potentially represent quantiles for estimating f.

variate distribution function f, defined in the next paragraph. Figure 2.2 shows
a simplified picture.

It is not always possible to express the probability distribution in a simple
concise fashion. As Iyl, the size of the set of all possible values for the attrib-
ute increases, we cannot list every outcome and the associated probability of
occurrence as we did with the species selection. However, there are some
popular distributions that can express the probability distribution in the form
of a compact mathematical equation. In general, f can be arbitrarily complex,
especially if it involves more than one attribute. A multivariate distribution
represents the probability that a set of attributes takes on a given set of values.
(We sometimes refer to a set of attributes as a vector.) The probability distri-
bution f may assign the value 0.5 to tuples such as

(species = S, age = 30, weight = 10, volume = 15)
and the value 0.1 to a tuple like
(species = U, age = 3, weight = 5, volume = 55).
Intuitively, it is clear that the first set of attributes is five times more likely to

appear than the second.
We can think of f as hidden structure in the data, which can be simple and
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expressed as a compact mathematical expression (e.g., f(x) = €™, the expo-
nential distribution) or arbitrarily complex, not captured by a simple mathe-
matical equation. If fis known, the task of prediction and analysis are very
simple. However, in reality, fis seldom known. In order to compute the prob-
abilities like the one in Equation 2.4, we need to guess or estimate f, or some
approximation thereof, using data. Approximations can range from simple
summaries like averages, to classification rules like “if male, aged between 18
and 50, then will see action movie”. Building up approximations to the under-
lying structure f in the data using rapid, scalable techniques is an important
task in EDM.

In this book, since the unknown f can be complex, we break the EDM task
of estimating f into smaller sequential steps, where we leverage the informa-
tion from each step to perform increasingly complicated analysis tasks. The
first EDM phase in discovering the structure of fis gathering high-level infor-
mation such as typical values of the attributes, extent of variation and inter-
relationships among attributes. To illustrate, let us use the ecosystem example.
As an initial exploratory phase, we can:

+ Describe typical values of attributes. “A typical Snark is 45 units old,
weighs 10 units and occupies 16 units of space.” The actual attributes of
most of Snarks should be close to these typical values.

+ Quantify departures from typical behavior. “Two percent of Gryphons
have abnormally large weights.”

Identify differences in subgroups. “Snarks and Unicorns have different
probability distributions of weight”. (See Figure 2.3.) Most Snarks are of
Medium weight with relatively few falling in the Light and Heavy cate-
gories. In contrast, most Unicorns are either Heavy or Light, with very
few weighing-in at Medium. Note that our pictures and explanations are
very simplistic (blurring the difference between continuous and discrete
attributes) for the purpose of illustration. We will give more rigorous
explanations later in the book.

Generate hypotheses for further testing. “For Snarks, are age and volume
correlated?” Or if we had time series information, “Is the size of the
population of Unicorns inversely related the size of the population of
Gryphons?”

- Characterize aggregate movements in attributes over time. Such infor-
mation can be used toward building predictive models, such as “Unicorns
that have gained weight in the three consecutive time periods are most
likely to die.”

Typical values also help us to define departures from the normal. For
example, if we know that most Snarks weigh 20 Units, if we see that one of
the measurements is 200, we should investigate further, to make sure that our
measurement was not faulty (device flawed, entered extra O by mistake while
noting the value). In other words, typical values allow us to identify “abnor-
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Proportion of Population

1

Light Medium Heavy Light Medium Heavy
Snark Weight Unicorn Weight

Figure 2.3: Hypothesis: Snarks and Unicorns have different distribution of the attribute Weight.

mal values” which might be data glitches as in the above Snark example or
which might be genuinely far-out observations (“outliers”).

2.2.1 Annotated Bibliography

An overview of probability theory and probability distributions is given in the
two classic volumes [44] and [45]. A more introductory and application ori-
ented description is found in [110]. Both the references contain examples of
the probability rule f, including discrete distributions such as Binomial and
Poisson. Figure 2.1 is from [15].

2.3 EDM: EXPLORATORY DATA MINING

We define Exploratory Data Mining (EDM) to be the preliminary process of
discovering structure in a data set using statistical summaries, visualization and
other means. As mentioned earlier, EDM also reveals unlikely values that are
artifacts or inconsistent patterns that frequently turn out to be data problems.
Cleaning up data glitches is a critical part of data analysis, which often takes
up considerable time, as much as 80% of the total time from the time the data
are available to the time to final analysis of the data. EDM helps in detecting
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the glitches before performing expensive analyses, avoiding misleading results
caused by hidden data problems. Another important aspect of EDM is that it
reveals information about the structure in the data that can be used to make
assumptions (e.g., f is Gaussian or attribute Y is related to attributes X, U, V
in a linear fashion) that facilitate the use of parametric methods (log-linear
models, etc.). Such methods enable powerful inferences with strong accuracy
guarantees based on relatively little data.

A good exploratory data mining method should meet the following
criteria:

* Widely applicable: Typically, in a data mining setting, an analyst investi-
gating a new, unfamiliar data set has little or no information about the
underlying data. Therefore, a good EDM method should not make any
assumptions about the statistical process f (the multivariate distribution)
that generates the data. Since we are gathering preliminary information
in order to infer some property of f (“How often do Gryphons and Uni-
corns share the same weight and volume?”), it would be restrictive, if not
circular, to make assumptions about f. In fact, the very reason for col-
lecting initial summaries is to help make appropriate distributional as-
sumptions about f (if at all), so that we can use more powerful methods
of analysis.

- Interactive response times: The purpose of EDM is to quickly investigate
several possible methods of analysis and to rapidly eliminate unproduc-
tive paths. Therefore, a good EDM method should be fast, even when the
number of data points and the number attributes starts increasing. In fact,
large data sets are the ones most in need of exploratory techniques for
the following reasons. Massive data sets tend to be complex and hetero-
geneous, so that visual and manual methods are usually not feasible.
Although sampling is an option, it is more suited for aggregate inferences
about typical instances rather than rare occurrences that are often the
target of data mining. Therefore, it is very important that an EDM tech-
nique should scale well as the data set increases in size, so that an analyst
can explore it interactively.

- Easy to use and interpret: Methods that require complex transformations
of the attributes (such as Principal Components Analysis) are hard to
interpret. Most users of EDM might not have the time or expertise to
be able to accurately interpret the outcomes. Similarly, neural networks
(besides being computationally expensive) are too opaque for a user to
feel comfortable with the results. In other words, a good EDM technique
should be easy to use and interpret.

- Easy to update: Suppose that after we are finished with EDM, we discover
that we have missed a group of Snarks, Gryphons, and Unicorns hiding out
in a cave. It would be a waste if we had to recompute the summaries all
over. Worse, we might have thrown away the raw data since we did not
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have enough space to keep them, storing just the summaries instead. But
if the summaries and analyses in the EDM are such that we can compute
the combined summaries from the summaries of the original set and the
data from the creatures hiding in the cave, we can update the values not
just this once, but whenever new information becomes available. This is a
very critical property for EDM techniques implemented on data that are
updated over time, as opposed to a one-time analysis.

+ Easy to store and deploy: The input and output to EDM techniques
should be such that they can easily be stored and deployed. For example,
if the summaries produced by the EDM techniques are almost as big as
the raw data, then no data reduction or summarization has been achieved.

24 EDM SUMMARIES

EDM can be approached in two possibly complementary ways. The first is a
“model driven” or parametric approach, by assuming a specific functional form
for f and estimating the parameters that define the function. A parametric
EDM approach is useful if we have prior knowledge (nature of the process,
previous experience) about the structure of the data. In the ecosystem ex-
ample, we might assume that the functional form of the distribution of age is
exponential so that:

P(X<x)= %J‘; e du

and 6 is the parameter that we need to estimate in order to know the proba-
bility rule f completely. The data would consist of the values of the attribute
age, for example, 10, 5,4,7,7,3,9,11,...,6,9 of N organisms. We would esti-
mate 6 by the mean of the N sample values of age.

The second approach to EDM is a “data-driven” or nonparametric ap-
proach, without any prior assumptions about specific functional form of f or
other inter-relationships. Such an approach is used when dealing with new, un-
familiar data sets, where we have no basis for making assumptions.

EDM summaries called statistics are computed from the data to capture
aspects of the structure in the data. If Z represents the collection of data
vectors Z, then we can think of a statistic as a function 7T that associates a
value with every sample Z. Formally,

T:S—>R?, (2.5)

where S is the set of all possible samples Z, R is the set of real numbers and
R is (d)-dimensional space. Examples of statistics T are the sample mean,
standard deviation, median and other quantiles. We note that while such point
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Symmetric and Skewed Densities

Figure 2.4: Examples of density curves—symmetric, skewed.

estimates when based on the entire data set are too coarse to be valuable, they
are powerful EDM summaries when applied to smaller chunks of data and
considered together. We will discuss them in detail in the sections ahead. Sta-
tistics are an important part of EDM, helping us to construct a navigational
map for the structure in the data.

In the example above, the statistic 7(X) is the mean age of the organisms
in the ecosystem. 7(X) is also called an estimator of 6. The actual value of
T(X) for a given sample X, is called an estimate of 0, denoted by 6. The hat
notation distinguishes an estimate that is specific to a sample (changes from
sample to sample), from the true mean 6 of the organisms in the ecosystem.
The estimate 6 gets closer and closer to the real 6 as we sample and measure
more and more organisms from the ecosystem.

Typically, statistics 7(X) constitute EDM summaries which can capture
important characteristics of f such as:

+ Identify a typical core or center of the attribute distribution that is
representative of the population;

+ Quantify the extent of spread of the attribute values around the core; and

+ Describe the manner of the spread (description of shape, symmetric,
skewed). See Figure 2.4.

2.4.1 Typical Values

Certain statistics are designed to measure typical or “central” values of an
attribute which are representative of the population in some way. These are
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called measures of location in traditional statistics literature and are an impor-
tant part of EDM and DQ (Data Quality) analysis. By choosing a handful of
representative summaries and using them (instead of the raw data) for further
analysis, we speed up the task of EDM considerably. Computing typical values
gives us an idea of what to expect and helps us identify “atypical” behavior
that can be either due to data glitches or due to genuine outliers. The results
are useful either toward data cleaning or toward mining interesting patterns
(e.g., high-volume users) that are profitable and not obvious at first glance.

Several statistics have been devised to capture this notion of central or
“typical behavior”. Each statistic has its own advantages and disadvantages
and conceptual motivation. Using several summaries is advisable since each
brings out a particular aspect of the data. Often, when used in conjunction,
they reveal more about the structure than when used individually. For
example, the mean and the median together can reveal information about the
skewness in the data, as we will see in Section 2.4.3.

Mean

The mean has been traditionally used to represent “typical” values. The mean
or expected value of an attribute is the weighted average of all possible values
where the weight of any value is its likelihood of occurrence. It can be ex-
pressed as

E(X)=p=]"uf@)du, (2.6)

where f is the probability law that governs the distribution of the single
attribute X. If the attribute is discrete we merely sum over the product of the
value and the corresponding probability. Namely,

EQO) == Yu f(w). @)

where the sum is over all possible values. By convention, probability distribu-
tions are represented by p(x) rather than f(x) which is reserved for densities.
However, we use a uniform notation since the underlying concepts are similar.
Note that not all distributions have means. Heavy tailed distributions, such as
the Cauchy density and the Pareto density (for certain parameter values) have
infinite means. In addition, categorical attributes such as species can not be
“averaged”. However, the proportion of a given species is an average analo-
gous to proportion of “heads” in a sequence of coin tosses.

An estimator of the mean u of an attribute is the sample mean. The sample
mean is easy to compute and is often the first EDM step. It is given by

X ook (2.8)
-as= _
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where N is the size of the sample. See example in Section 2.4.3 for illustration.

The sample mean varies from sample to sample. Such variations from
one sample to the next are called sampling variations. Additional samples
enrich our understanding of the ecosystem precisely because of this varia-
tion. However, we need to be able to bound these variations for the estimates
to be of any practical use. For example, it is useful to know that “It is
very likely that the mean age of 95 out of 100 samples will lie in the interval
[8,12].” Statements such as this are useful for providing guarantees. Industrial
quality control and process management rely heavily on such guarantees.
We can extend this concept to data quality. For instance, if we know
that certain subsets of data (female engineers in New Jersey) have certain
characteristics (mean income of $150,000) then if we see a subset with a
remarkably different value (mean income of $15,000) we can suspect a data
glitch and investigate further. In fact, we use a similar approach in our
algorithm for automatic detection of glitches in massive data discussed in
Section 3.5.

We present below a very terse description of the reasoning behind the guar-
antees. Please see the bibliography for references to detailed discussions. The
guarantees are based on a fundamental result from statistics to construct inter-
vals that enclose the true mean with a high likelihood, called confidence inter-
vals. The purpose of such intervals is to associate a measure of accuracy with
the estimate, to quantify the reliability of the EDM results. The Central Limit
Theorem which (loosely) states that as we choose samples of increasing size
N that consist of independently chosen items all with the same distribution f,
then the sampling distribution gy of the sample mean looks more and more
like a Normal density, irrespective of what the underlying density f of the
sample elements is, as long the mean u and variance ¢ of f are finite. (Infor-
mally, variance refers to the variation or spread in the values of an attribute.
We will define it shortly.) Further, the mean and variance (spread) of gy are

given by u and %. We can use the sampling distribution of the mean to con-

struct the following enclosing interval for the mean of f.

= N = N

where the standard deviation s is estimated from the sample by averaging the
squared deviations from the sample mean (the standard deviation is defined
in detail in Section 2.4.2). The above interval is called a 95% Confidence
Interval for the unknown mean u of the density f. This implies that we can
guarantee that 95% of the means based on samples of size N will lie in
this interval. Therefore, samples that yield means outside this interval are
“unexpected” and should be investigated for data glitches, abnormal values
and other outliers.
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The concept of the mean is easily extended to multiple dimensions or at-

tributes, where the multivariate mean is simply the vector of means of indi-
vidual attributes. For instance, let

Zi:(ZiI’ZiZ"”9Zid)9 l:19’d (210)

be a sample of multidimensional vectors where d is the number of numeric
attributes. Then the mean of the multidimensional vectors is given by

Z =(Z1,22,...,20), (2.11)
where
z:m k=1,....d 2.12)
n

is the mean of individual attributes 1 through d.

The sample mean is attractive since it is easy to compute and conceptually
easy to extend to higher dimensions. However, the sample mean is very sen-
sitive to extreme values. It can become corrupted to an arbitrary extent by a
single extreme valued data point. This is a major drawback from a data quality
perspective, given that dirty data are often the rule rather than the exception.
Consider the following scores given to a student on a suite of 10 tests, each
scored on a scale of 0 to 100:

(95, 90, 93, 98,91, 90, 98, 97, 99, 9). (2.13)

The last score is suspicious since it is so different from the others, while usually
test scores are highly correlated. In reality, 95 has been misrecorded as 9,
pulling the average score from a legitimate 94.6 to a corrupted value of 86,
which might make the difference between acceptance and rejection to a good
academic program. While such aberrations have less impact on very large
sample statistics, in principle the mean can be distorted irrespective of the size
of the sample, by corrupting just a single data point by a very large amount.

One way to address the sensitivity is to trim off a certain proportion of
extremely low and extremely high observations. For example, we can drop the
scores of 9 and 99 in the above vector of test scores and compute a trimmed
mean based on the remaining eight values,

M =2=94, (2.14)

which is much closer to the real value of 94.6 than the corrupted mean of 86.
Means obtained by snipping off extreme values are called trimmed means.
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They offer better protection against outliers than dirty data. Clearly, extrava-
gant trimming is a waste of data and is not recommended. Discarding between
2% and 10% (half from each end of the sorted values of the attribute) is
acceptable. Trimming more than 20% (total) would not be advisable and
would result in the loss of valuable information about the attribute in the
atypical portions of its support.

Median

The sample median is another important EDM summary that estimates the
center of an attribute distribution. In one dimension, the median is the mid-
dlemost value when the sample values are arranged in a sorted order. Roughly
half the data points are higher in value than the median. For example, if we
list the ages of children in a playground

(1’ 4’ 37 6’ 7) 85 35 27 6)) (215)
then the corresponding sorted set of ages is
(1,2,3,3,4,6,6,7,8). (2.16)

Since there are 9 data points, the median age of the children on the playground
is the fifth observation in the sorted set, namely 4. If there are an even number
of data points, by convention the median is the average of the two middle
observations. With respect to the density f, the median M is the value in the
support of the attribute X at which the cumulative probability of occurrence
is 0.5. That is,

P(X<M)=[" fdu=05, (2.17)

where X is the random variable representing the attribute. For a discrete
attribute, we simply use the sum over the probabilities associated with the
sorted values of the attribute, stopping as soon as the sum reaches 0.5.

Median or “middle” implies ordering attribute values from largest to small-
est or vice versa. Since qualitative attributes like species and color cannot be
ranked, we cannot define the median for non-ordinal, categorical attributes.

Note that while the mean of a distribution might not always exist (i.e., the
value of the formulas 2.7 or 2.8 might be infinite), the median does. Recent
algorithms that can compute approximate medians (with error bounds) have
made the computation of medians for large data viable.

An important property of the median is its stability. The median does not
move drastically away from the center of the data until at least half the data
values are changed (as long as the ordering stays the same), as opposed to the
mean that can be distorted away from the main body of the data by a single
corrupt observation. Clearly, stability is both an advantage as well as a dis-
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Median X(0.5) of Density f(X)

X(0.5)
Shaded region = half the area under f(x)

Figure 2.5: Median.

advantage. It is a protection against an occasional aberrant data point. For
instance, consider the example of the test scores of the student in Equation
2.13. The median remains between 95 and 97, irrespective of the error in
recording 95 as 9, giving the student a fair representation. On the other hand,
the insensitivity is a disadvantage since the median might not pick up changes
in the distribution until half the data points have been affected. In the example
of the children on the playground, let us replace the four older kids by senior
citizens to get the new data vector

(1,2,3,3,4, 60, 60, 70, 80). (2.18)

The median remains at 4 and does not reflect the change in the age distribu-
tion. Such a property is particularly undesirable from a data quality perspec-
tive, where we would like to detect glitches before they become widespread
or get compounded over time.

The median is hard to generalize to higher dimensions, since sorting by one
attribute will disrupt the ordering along other attributes. One option is to
compute the median for each attribute and define the multivariate median to
be the vector of the attribute-wise medians. Note that the dimension-wise
median obtained in this manner is a special case of the trimmed mean where
all data points but the middlemost one have been trimmed away. The
dimension-wise median would work in special situations where the data are
packed in space in some nice way (symmetric, spherical etc.). However, there
are instances where it can be quite misleading. Consider the following ex-
ample with three attributes and three data points:
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Figure 2.6: Attrbute-wise median lies outside the plane of the data.

(1,0,0), (0, 1, 0), (0,0, 1). (2.19)

The median of each attribute is zero so that the component-wise median is
(0,0, 0). Figure 2.6 shows that the median computed in this manner is outside
a plane that passes through the three points, and is not really a center of this
data. On the other hand, the mean (0.33, 0.33, 0.33) lies on the plane and is
closer to the concept of a center than (0, 0, 0). Other definitions of the median
in higher dimensions require the notion of data depth, which we discuss in
detail in Section 2.9.

We will also discuss quantiles, generalized versions of the median, and con-
fidence intervals for quantiles, in Section 2.4.2.

Mode

Yet another important EDM summary is the mode, the most likely value of
an attribute. The mode and its variants (frequency counts) are useful, espe-
cially for categorical attributes, where mean and median have no direct
meaning, We estimate the mode by choosing the most frequently occurring
data point in the sample. Consider the following data vector:

(1,2,3,4,6,5,3,7,3,4,2,5,7). (2.20)

The data point that occurs most frequently is 3. Finding the mode of the dis-
tribution is equivalent to finding the peak of the density f.

However, the mode is not widely used as an indicator of the core or center
of a distribution. Its sampling distribution is not well known. Multimodal dis-
tributions require combining or choosing among many modes in a meaning-
ful fashion. There has been work recently in finding modes in multivariate and
multimodal distributions.
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Mode 1 Mode 2

Bi-modal Density (X)

Figure 2.7: Modes of a density.

Summary

We have presented three EDM statistics that estimate typical values of a data
set. Each statistic has its advantages and disadvantages, so that some situations
call for the use of one type of statistic (median for heavy tailed distributions)
while others require a different kind (mode for categorical attributes). Com-
parison of different measures of location sheds more light on the nature of the
distribution of the attribute. For instance, if the mean is much greater than the
median, then the distribution is possibly skewed to the right, that is, it has a
long, trailing right tail. Hence it is important to compute a variety of statistics
even though they represent similar characteristics of the distribution.

2.4.2 Attribute Variation

Some density functions are concentrated over relatively small intervals of
the real line (peaked), whereas some are spread over large (flat) ranges. For
example, the distribution of age of individuals living in a city is much more
spread out (has a greater variation) than the distribution of the age at which
individuals first start driving. When a density is spread out, there is a greater
likelihood of a large variation in the values of the attribute observed in the
data. Summaries that indicate the spread of the data are called measures of
dispersion.

Measures of spread are important from an EDM-DQ perspective. If we
understand how much variation to expect, we can identify abnormal behav-
ior. For instance, if we know that an attribute is most likely to fall between 10
and 40, we will be suspicious if we see a value of 98. This is a powerful means
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of detecting data glitches as well as rare events that might be of particular
interest. In addition, we use measures of dispersion such as the variance, to
provide guarantees (or error bounds) of EDM estimates through confidence
intervals. If the error bounds or confidence intervals are small, the EDM
estimate is more reliable and useful. For example, “the expected arrival time
is between 10:00 AM and 10:15 AM” is a more useful statement than “the
expected arrival time is between 6:00 AM and 2:00 PM”, all other things being
equal. Anyone who has had to wait for a cable installation can attest to this.

Other ways of measuring spread are by computing distances between quan-
tiles. Quantiles divide the support of an attribute into intervals that contain
equal proportion of data. Therefore, if the deciles (10% of data points lie
between consecutive deciles) of the age of Snarks are

(5, 6,10, 12,14, 16, 18, 20, 25, 26, 30)
and that of Unicorns are
(2,6,10, 14, 18,22, 24, 26, 30, 40, 50)

then we know that the Unicorn age is more spread out than that of the Snarks.
The range and the inter-quartile range are constructed from quantiles. Quan-
tiles have other significant applications (histograms, ECDF) that will become
apparent later in this chapter.

Another important aspect of dispersion is how attributes vary relative to
each other. Understanding inter-relationships between attributes is an im-
portant component of EDM that helps simplify and untangle the complex
structure in the data (represented by the multivariate density f). By using
assumptions such as those of conditional independence (e.g., “if two individ-
uals have no common parent, then their scores on an I1Q test are independent
of each other”), some nonparametric techniques attempt to construct com-
putationally tractable models. Eliminating linear dependency (collinearity)
among attributes is an important part of variable selection (feature selection)
for analytical models to eliminate bias and singularity. Attribute relation-
ships are important in data cleaning for finding join paths in the absence
of reliable schemas and for validating approximate joins, as we will see in
Section 5.3.4.

Attribute inter-relationships can be quantified using many measures such
as covariance, contingency tables and Q-Q plots which we will explain in the
sections ahead.

Variance: Deviation from the Mean

The variance and its square root, the standard deviation, play a key role in
defining error bounds of expected values. The error bounds, in turn, help detect
data glitches, outliers and abnormal values. The variance of an attribute with
density fis:
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Peaked and Flat Densities

f(x)

g(x)

Variance (g(x)) > Variance (f(x))

Figure 2.8: Dispersion.

o= (u-u) fu)du
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The sample equivalent s% called the sample variance is the average sum of

squares of differences between every data point and the sample mean. That
is,
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where N is the sample size. (See Section 2.4.3 for a numerical example.) The
mysterious N — 1 in the denominator ensures that the estimator 7(X) = s° is
unbiased (averages out to the true value), as we explain in Section 2.5. The
second step follows upon simple algebraic expansion. From the second step,
it is clear that the sample variance can be computed with just one pass over
the data by storing the sums and sums of squares of the data points. Note that
the variance need not always exist. There are several densities, such as the
Cauchy density or Pareto density (for certain parameter values) that have in-
finite variance. They typically have heavy tails and fall off slowly. Such dis-
tributions are seen frequently, for example, in call holding times in the
telecommunications industry. Heavy tails imply that extreme values occur
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more frequently relative to other distributions. For example, we would see a
large number of users who tie up resources even when they are not active.
From the service provider’s perspective, such users are a burden since they
consume a disproportionately large chunk of the company’s resources com-
pared to the revenue they generate. An easy way to detect heavy tailed dis-
tributions is to compare them against a known benchmark using O-Q plots
(seen in Figure 2.12) discussed in Section 2.4.4. For instance, in one of our case
studies, we noticed that the durations that were conventionally assumed to be
exponential were much more heavy tailed than any reasonable exponential
distribution. A Pareto assumption was more appropriate. (See Figures 2.11 and
2.12))

The variance generalizes well to multivariate observations. Let (X,Y) be a
pair of attributes, say Z; and Z;, of a larger multivariate vector of attributes,
Z=(Z\,2Z,...,Z,;. By convention, the variance in a multivariate distribu-
tion is represented by X, called the dispersion matrix. The diagonal elements
are component-wise variances of the individual attributes. The off diagonal
elements are called covariances between pairs of attributes. The covariance
and the dispersion matrix are measures of association between two attributes
which we discuss in the Section 2.4.4 on attribute associations.

Absolute Deviation

The Median Absolute Deviation (MAD) is yet another way of measuring the
data spread. For a given sample, the MAD is usually taken from the median.
The motivation for MAD lies in the need for robustness. We will see in the
chapters ahead (space partitioning, regression) that the measure of dispersion
plays an important role in rescaling attributes to establish comparability
among them. Otherwise attributes with high variability will dominate the
analysis. In this context, it is very important that the estimator of dispersion
be robust and representative, and not be sensitive to extreme values. The
MAD is given by

MAD = median|X —&:(0.5)|, (2.21)

where &:(0.5) is the median of the probability distribution f of the attribute X.
The sample estimate of the MAD is obtained by using the sample equivalents
of the median of f and the median of deviations.
Consider the example of Weight and Age in the example in Section 2.4.3.
Observe that:
M,=11.5
M, =10.5
MAD, =median (0.5,1.5,1.5,0.5,3.5,2.5)=1.5
MAD,, = median (0.5,4.5,0.5,2.5,3.5,0.5)=1.5.
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There are other geometric considerations that make the MAD attractive.

Quantiles
Consider a point &(g) in the support of a numeric attribute X (frefers to the
probability distribution of X) such that

P(X<&(q)=q,

where f can be dropped from the notation if there is no ambiguity about the
probability distribution in question. &() is called the quantile function of f.
Given any probability g, &rassociates a value X of the attribute, such that the
cumulative probability using f exceeds g for the first time as we traverse from
the lower end of the support of the attribute X to the higher end. As an
example consider a distribution f where each of the 10 values

0,1,2,3,4,5,6,7,8,9)
are equally likely. Then,

E(@) =0, gel0,0.1]
E(q)=1, qe(0.1,02]

&(@)=9, qe(09,1.0]

More generally, consider an attribute that varies continuously, such as weight
measured on an ultra-precise scale. The transition from discrete to continuous
can be thought of as allowing the attribute to take all possible values. As the
number of values that an attribute can take become closely packed, f looks
smoother and ultimately becomes a continuous curve. Intuitively, since the
attribute can take all possible values in an interval (or union of intervals) the
probability is spread among infinitely many values. So instead of associating
probabilities with discrete values of attributes such as 1 or 0, we associate
probabilities with intervals of values. The probability is higher in certain
regions of the interval and lower in others. This is indicated by a continuous
function f, which is now called a probability density rather than distribution.
The peaked or high parts of f correspond to areas where the values of the
attribute are very likely. Flatter parts of f that are close to the horizontal axis
correspond to values of the attribute that are unlikely. The probability as-
sociated with any interval of attribute values is obtained by finding the
area under the curve in that interval which is equivalent to “adding up” the
probabilities in that interval. The quantiles for the continuous attribute are
the set {g,}=§ such that:
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Alpha-Quantiles
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Figure 2.9: Quantiles divide support of an attribute into segments of equal probability.

" fw) du=a, Vi, 2.22)

qi-»

where gy = —~ and gx = « and o = % The collection ¢; is the set of o-

quantiles f. The o-quantiles divide the support of X into intervals such that
the area under f for each interval is equal, given by c. (See Figure 2.9 for an
illustration.)

Empirically, quantiles are estimated by dividing the sorted data set into
pieces that contain equal number of points. Conversely, every sample point is
a quantile estimate, corresponding to the proportion of data points less than
it.

That is, for the sample X;, X,,..., X,..., X,, we define indicator
variables /,(X) such that

I,(X) = 1, le <= Xi
As the name implies, indicator variables indicate whether a certain condi-

tion is fulfilled or not by taking on the binary values 1 and zero respectively.
If

N (X))

n

é:

is the estimated probability that X < X;, then X, = &,(¢) is the estimate of the
g-quantile &,(g) of f. There are many convergence results regarding &:(q)
and gthat we will not consider here. In essence, we use the sample to compute
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quantities (probabilities, proportions, quantiles) to mimic the parameters that
characterize f.

Analogous to the confidence interval for the sample mean, we need to guar-
antee the accuracy of the sample median as a stand-in for the median of
the density f. By convention, the median of the density is denoted by
£(0.5), where & is the quantile function. The sampling distribution of the
median is well understood when the functional form of f is known. When
the underlying data distribution f is not well-known, we can construct a
confidence interval for the median using the method below, which we
present without proof. Note that we are focusing on the value of the median.
(Another approach would be to obtain a confidence interval for the
rank of our estimated median as in “we expect the rank of X,, to lie in the
interval [0.45, 0.55] with probability 95%” when we repeat the exercise many
times.)

« Let X}, X, . . ., X, be the sorted values of a sample of n observations for
a given attribute. (This is a univariate argument).

+ Let X, be the middlemost observation, the sample median.

+ Let B =[X,_1, X,,.1] be the interval defined by the neighboring quantiles
of the sample median. Then B is a confidence interval for the population
median &(0.5). In general, we can choose any interval B = [X,, 4, Xnul,
where k should be such that m + k <= n and m — k >= 0. While larger
values of k result in a greater likelihood or confidence of B containing
the median, the confidence intervals get wider and less useful. As an
extreme example, [X, = 0, X, = 1000] has a higher confidence of
containing the median, but [X,,_; = 456, X,,,; = 501] is “tighter” and more
informative.

* (1) Compute the proportions associated with X(,._;, and X,.1,, namely,

~y -

m
PL=

., m+1 .
and pj = , respectively.

+ (2) The probability with which &:(0.5) falls in B is equivalent to the pro-

M] with mean 0.5 and

bability that the Normal variate N (0,5,
n

variance M falls in the interval
n

This probability

N(O.S,M) e 15t b0
n
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represents the confidence associated with the interval [pf, py]. We can
replace 0.5 with g for computing a confidence interval for a general g-

quantile &(q).

There are several statistical packages (e.g., SAS) that will compute confi-
dence intervals for quantiles and ranks.

Range of Values

Another class of measures of dispersion is based on the range of values of an
attribute. The range of an attribute is the difference between the maximum
and minimum values of an attribute observed in the sample. The range is a
very intuitive concept, making it an attractive estimator of dispersion. If X,
X5, ..., Xy is the sample then the range R is:

R =max;(X,)-min(X;), i=1,...,N. (2.23)

The range is not very robust since it is determined solely by the extreme values
which vary wildly from sample to sample. The extreme values are usually a result
of rare conditions, such as mistyping. In fact, many analyses require the identi-
fication and elimination of extreme values (outliers) to make the results more
general and robust. Extreme values are good candidates for data quality checks.

We can use the quartiles to define a more robust version of the range, the
inter quartile range (IQR). Let Qs be an estimate of the third quartile £(0.75)
(i.e., 75% of the attribute values are below the third quartile) based on the
sample and let Q; be an estimate of the first quartile £(0.25). (To be precise,
we should subscript the quartiles &(.) with f and the sample estimates O, Q,
with the sample size N to show the dependence. However, a simple notation
helps in explaining the concepts easily.) The IQR is the difference between
the first and third quartiles, given by

IOR =&(0.75) - £(0.25) (2.24)
and a guess based on the sample at hand is given by
I0R=0:-0Q.. (2.25)
Consider the following example:
1,2,2,3,4,6,6,80). (2.26)
In this instance, N = 8, Min = 1, Max = 80, Q, =2 and Qs = 6. Then,

R=80-1=79
IOR=6-2=4.
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Table 2.1: Himalayan ecosystem example.

41

Subject Sum  Sum of Sum of
P21 i=2 i=3 i=4 i=5 i=6 Squares  Products
Age 12 13 10 11 8 14 68 794
Weight 10 15 11 14 8 10 68 806 783

The sampling distributions of the range and IQR are not straightforward. The
confidence intervals for the quartiles can be adapted for computing the con-

fidence interval for the IQR.

2.4.3 Example

For comparing various estimates and their behavior, consider the simple
example of weight and age of Snarks, from the Himalayan ecosystem in Table
2.1. If the subscripts w and a denote weight and age, respectively, then

X, =@=11.33,

@)

X, = 68 _ 11.33

@)}

2
o719 (68)
“T6-1 6(6-1)

=4.67

2
o _ 806 (68)
"T6-1 6(6-1)

s, =2.66
R,=14-8=6
R, =15-8=7

Med, =11.5
Med, =10.5
MAD, =15
MAD, =1.5

=7.07

It is interesting that the measures of spread are so varied ranging from a
Range of 6 for Weight to a MAD of only 1.5. Each measure of dispersion high-
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lights a different aspect of the distribution. For instance, if the IQR is consid-
erably smaller than the variance (if some additional conditions hold), then we
know that the distribution has long tails. Since there is not much additional
expense involved, it is useful to collect as many different types of summaries
as possible for effective EDM.

2.4.4 Attribute Relationships

During EDM, we are often interested in the inter-relationships between
attributes. How are weight and height related to each other? Does weight
increase linearly with the amount of calorie intake? If not, how do we
summarize a nonlinear relationship between them? How do we determine if
two attributes are independent of each other? In this section we discuss simple
and fast techniques for exploring relationships between attributes. While the
techniques seem radically different in flavor, (e.g., O—Q plots, mutual infor-
mation) they are based on simple summaries such as counts and sums and use
basic principles to infer attribute relationships. It is the easy nature of the
summaries and principles, that makes these statistics ideal for use in EDM
tasks.

Covariance and Correlation

The covariance and correlation coefficient are the simplest measures of linear
association between attributes. The covariance of two attributes X and Y is
given by

CX.Y)=[ (X = )Y - py)df
= E(X - EQXO)(Y - E(Y))).

The sample equivalent is given by:

N (X -X)Y-Y
C(X’Y)=Z ( N—l)( )

CXLXYe L XI LY
- N N(N-1) ’

where X = Z; and Y = Z; are two numeric attributes of the data vector Z = (Z,,
Z,,...,7Z,) and the index k refers to a data point. The correlation coefficient
of fis a normalized covariance given by

=C(X,Y)

: 2.27
pr (2.27)
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where C(X,Y) is the covariance described earlier, and oy and oy are the
standard deviations of X and Y respectively.
For the example in Section 2.4.3, the covariance is

_ 783 (68)(68)

Cov @)= =661

=2267.

The dispersion matrix X for the bivariate distribution of Age and Weight is
defined to be

T= (V“ Cla, W)), (2.28)

Cw,a) V,

where V, is the variance of attribute Age, C(a,w) is the covariance between
Age and Weight, and so on. Note that the matrix X is symmetric about its
diagonal, since

C(X,Y)=C(Y, X).

The sample estimate of X is given by

(2.29)

i_(4.67 2.467)
\2467 707 )

The sample correlation coefficient is given by

— Cw,a) 2467

wa — - = 0439
P = e T Na6INT07

The correlation coefficient measures the extent of a linear relation between
X(i.e., Z;) and Y(i.e., Z;) and is normalized to lie between —1 and +1. Large
absolute values of p imply a strong correlation and small values imply weak
correlation. An example of uncorrelated attributes is the number of letters in
an individual’s name and the individual’s age.

If two attributes are independent (e.g., see Figure 2.10 bottom left), then
the correlation coefficient should be 0. However, a zero correlation does not
imply independence. It merely implies the absence of linear variation in X with
Y, and does not exclude a non-linear relationship. For example, consider the
tuples (X,Y) given by

(-1,1),(1,1),(0,0),(2,4), (-2, 4). (2.30)
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Figure 2.10: Correlation: Top left, positive correlation; Top right, negative correlation; Bottom left,
no correlation; Bottom right, no correlation but perfect quadratic relationship.

The correlation coefficient is 0, but it is clear that Y = X?, a perfect quadratic
relationship (see bottom right, Figure 2.10). While the example we have given
is very contrived, the situation where attributes are strongly related but the
correlation is 0 occurs frequently in practice, particularly in large data sets. For
example, as the number of subscribers of a “closed” service (can be used only
if other users have it, e.g., telephone) grows, there is an initial slow increase in
usage but once the critical mass of subscribers is reached, there is explosive
growth in usage followed by a flatter usage growth period as the service gets
saturated. This is a classic nonlinear “S-Curve” relationship observed in many
data sets.

A positive p implies that X and Y move in the same direction. An example
of positive correlation is between stock prices and spending. People tend to
borrow more and spend more when the stock prices go up. This is called the
“wealth effect” (see top left, Figure 2.10). On the other hand, when interest
rates go down, the sale of homes tends to go up. There is a negative correla-
tion between interest rates and home sales. A negative correlation is reflected
by a negative value of p (see top right, Figure 2.10).

Measuring correlations is tricky for categorical attributes like color.
However, we can use contingency tables for measuring associations between
categorical attributes, as we will see in Section 2.4.4. In the multivariate case,
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Figure 2.11: Density plot: Exponential versus Pareto.

the determinant of the dispersion matrix X is considered a measure of the
variation of the multivariate density f.

0-0 Plots
We have seen that quantiles are good EDM summaries. Quantiles can be used
for exploring associations between attributes through O-Q plots.

In the most common form of the O-Q plot, the quantiles of a suitably trans-
formed attribute (e.g., [attribute — attribute mean] / attribute standard devia-
tion) are plotted against the quantiles of a well-known distribution such as the
Normal with mean 0 and variance 1. The shape of the resulting plot relative
to a straight line helps us understand the nature of the attribute distribution.

For example, in Figure 2.11 we have plotted two densities, the exponential
and Pareto with appropriate parameters. The Pareto density (the flatter curve)
has a longer tail than the Exponential. Now consider Figure 2.12, where we
have plotted the quantiles of the exponential versus the Pareto. We can see
that the quantiles of the Exponential density are consistently higher than the
Pareto (the O-Q plot lies below the straight line Y = X) until the very end
where the quantiles of the Exponential fall sharply below that of the Pareto,
indicating the heavy, long drawn out nature of the Pareto distribution.

Therefore Q—-Q plots are good EDM tools for understanding the shape of
an attribute distribution, i.e., whether the shape is skewed to the left, or has a
long right tail or has heavy tails.

0-0 plots can be used to compare marginal distributions (ignoring depend-
ence on other attributes) of attributes. For example, do Snarks and Gryphons
have the same age distribution? We can plot the quantiles of the two groups
against each other. A straight line would indicate identical distribution and
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Figure 2.12: O-Q Plot: Exponential versus Pareto. (Axes have been truncated at 1.)

departures can be interpreted in a manner similar to the conventional O-Q
plot. This is a very simple but powerful visual EDM technique and convenient
since we need to plot just a handful of quantiles. After examining the outcome,
more rigorous tests can be performed if needed.

Contingency Tables and Independence of Attributes

A basic concept in probability theory is that of attribute independence, which
implies that the attributes do not influence or depend on each other. If two
attributes are independent, you can multiply their individual probabilities to
get the probability of their joint occurrence. We will revisit the notion of inde-
pendence a little later in the chapter.

A contingency table is a cross-tabulation of data with frequency counts for
two or more attributes. We can use contingency tables for verifying the inde-
pendence of attributes. Suppose an attribute X has r categories (e.g., r = 3 if
X is the attribute species with values Snark, Gryphon and Unicorn in our
example) and attribute Y has s categories (e.g.,s = 3 if Y'is the attribute Weight
discretized into bins High, Medium, Low) and let n; be the number of data
points in class i of attribute X and class j of attribute Y, then the statistic

T(X.,Y)= Zzw (2.31)

n; n;

n,

called a chi-square statistic, can be used to determine whether the attributes
X and Y are independent. Here, n; denotes the sum of all counts in the cate-
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Table 2.2: Chi-square test example.

Species Weight Row Total
High Medium Low

Snark 20 30 40 90

Gryphon 20 20 20 60

Unicorn 40 30 10 80

Column Total 80 80 70 230

gory i of the X attribute (marginal total of row i) and n; represents the total
of all counts in j category of the Y attribute (marginal total of column j) and
n_represents the overall total of all counts. See Table 2.2 for an example and
see Section 2.6.1 for related concepts of marginal distributions. 7(X,Y) is
benchmarked against a well-known distribution called chi-square with
(r — 1)(s — 1) “degrees of freedom” denoted by y*;.)1). For the purpose of
our discussion, we can think of it as a reference distribution with which we
compare the statistic 7(X,Y). If T(X,Y) is greater than a particular tabulated
value of )(2(,_1)(5_1), then we decide that the attributes are NOT independent. If
it is less than the tabulated value, we decide that the attributes are independ-
ent. The tabulated values are available at various levels of confidence. The con-
fidence refers to how reliable the results are. There are several software
packages (such as SAS) that will print out the reference chi-square values.
We merely mention how to make the decision, without any explanations. A
discussion of statistical hypothesis testing is outside the scope of this book.

Consider Table 2.2 to illustrate the chi-square test for independence. The
benchmark value of chi-square with (3 — 1) (3 — 1) =4 degrees of freedom is
9.48773 corresponding to the cumulative probability 0.95 (also known as 95%
confidence level). The chi-square computed according to Equation 2.31 is
24.1295. Since our computed chi-square exceeds the benchmark, we reject the
hypothesis of independence. That is, from our test, we have no reason to
believe that the attributes Species and Weight are distributed independently
of each other.

The chi-square test is a very versatile test. In Chapter 5, we will discuss using
the test to determine the suitability of the data and the analysis to each other.

Mutual Information
Another concept that we can use for testing the extent of associations between
attributes is mutual information. If two attributes are independent then:

P(X=a,Y=b)=P(X =a)P(Y =Db),

that is, as noted earlier, the probability of joint occurrence is simply the
product of the individual marginal probabilities. Mutual information given by



48 EXPLORATORY DATA MINING

P(X,Y) j

I(X,Y)= EP(X,Y)(IOg P(X)P(Y)

measures the departure from this expectation, in a slightly different form than
the y* test. Note that the expectation is computed over the joint distribution.
The closer I(X,Y) is to O, the less there is in common between the two
attributes.

From a computation/estimation perspective,

)

X V)= X 5% 1og 2
21" 2,‘ n, nn

In the example in the previous section on the chi-square test for independ-
ence, the mutual information works out to be 0.056. It is hard to interpret this
number. However, we can use it to rank attribute pairs in terms of the amount
of information they contain about each other for choosing variables to be
included in models (feature selection) etc. Note that in actual computation
terms, both the y? test for independence as well as mutual information require
a two-way table of X-Y counts (n;), a precursor to bivariate histograms which
we discuss later in the chapter.

Fractal Dimension

A significant problem with correlation coefficients is that they only capture
the linear relationship between two attributes. However, the relationship
between two attributes is often highly non-linear. Mutual information, from
the discussion above, measures the expected extent of dependence between
two attributes. Computing a fractal dimension is an alternative approach which
emphasizes the geometric aspect over the likelihood or probabilistic aspect. It
is concerned more with the geometric layout of the points in space rather than
the density of the points in space.

Suppose that we have normalized the values of two attributes, X ={X, . . .,
X,}and Y={Y,,...,Y,}sothat 0 < X, Y;<1.Let us divide the rectangle con-
taining the data set into r* subrectangles, each of which is a 1/r square. Let N(r)
be the number of rectangles containing at least one (X,Y) point.

What does counting the non-empty rectangles buy us? Suppose that all of
the (X,Y) values were concentrated around a single point. Then N(r) would
remain almost constant as r increases. Similarly, N(r) will grow linearly with r
if the points (X,Y) are concentrated along an (arbitrary) line, and quadrati-
cally if X and Y are completely independent. Thus, N(r) gives information
about the association between X and Y while making no assumptions about
what that association might be. More formally, the Hausdorf fractal dimension
is defined as
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Figure 2.13: A fractal data set (Serpinski triangle).

D, = limM (2.32)
= log(r)

The fractal dimension need not be integral and, in fact, is designed to
measure the dimension of “fractal” data sets. In practice, our data sets are of
finite size, so that log(N(r)) cannot be larger than n, the sample size, and the
limit value of D, is 0. However, a plot of log(N(r)) by log(r) will have an initial
settling-in transient, then a slope of D,, and then it will flatten out.

Let us consider an example. Figure 2.13 is a two-dimensional Serpinski tri-
angle (a common fractal example), which has fractal dimension 1.585. Figure
2.14 plots log(N(r)) against log(r) for this data set, and also the backwards dif-
ferences (i.e., the slope of the curve). The backwards differences settle into a
flat area with a value of about 1.58, closely agreeing with the theoretical fractal
dimension. Finally, we note that the fractal dimension can be computed over
arbitrary dimension data sets.

2.4.5 Annotated Bibliography

An excellent discussion of statistical estimation, inference and hypothesis
testing including summary statistics and estimators, their sampling distribu-
tions and asymptotic laws such as the Central Limit Theorem are found in
[105]. The book is also a good reference for contingency tables and the chi-
square test for independence of attributes. An implementation can be found
in SAS software [65].

See [117] for specific discussion of convergence theorems and confidence
bounds. See [105] for constructing a confidence interval for the median when
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Figure 2.14: Computing the fractal dimension of a 500,000 point Serpinski triangle.

the underlying distribution fis known. A measure theoretic approach to prob-
ability and convergence is in [8]. See [23] for a discussion of heavy tailed dis-
tributions such as the Cauchy and other examples where the mean and higher
order statistics could be infinite. The reference also discusses interesting geo-
metric properties of the sample mean. See [60] for a comparative discussion
of the mean, the median and trimmed means. The book provides a good
overview of exploratory data analysis and robustness properties of estimates
like the mean, median, MAD and trimmed mean, and a nice discussion of O—-Q
plots. A discussion of detecting modes and multimodality can be found in [92].
Rank based tests are discussed in [80]. A theoretical discussion of estimates
and their robustness properties can be found in [63]. An interesting account
of the breakdown properties of multivariate estimators is in [37]. Mutual
information is discussed in [22] and [105], along with related concepts such
as entropy.

For a discussion of the rapid computation of approximate medians with
error bounds for large data, see [85]. The use of the fractal dimension to deter-
mine attribute relationships was proposed in [6]. We used the algorithm
described in [4] to generate the Serpinski triangle.

2.5 WHAT MAKES A SUMMARY USEFUL?

EDM often involves collecting summaries and using them for more sophisti-
cated analysis, to speed up computation and reduce storage overhead. Once
the summaries are computed, they are the authoritative source of information
(e.g., data publishing, where manageable, summarized versions of the massive
data are published for downstream analysis) and the raw data are typically
never accessed again. Therefore, it is important that the summaries be
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accurate, be general enough to serve as many analyses as possible, be robust
and be easy to compute, among other things.

In this book, we try to present different types of summaries that serve com-
plementary needs. Techniques such as fractal dimensions are more geometric
than probabilistic. Methods like mutual information, Q-Q plots and piecewise
summaries, discussed in the next chapter, are exploratory and sometimes visual
in nature. In addition, we also rely on classical summaries that help us provide
confidence guarantees, upper and lower bounds and convergence assurance,
which are comforting from an analysis perspective. Such assurances are
insurance against our results being too unstable or volatile and measure the
accuracy and reliability of the EDM estimates. We present below some
characteristics that are desirable in an EDM summary. Not all of them are
applicable to all the summaries that we have discussed. The first set is related
to statistical summaries and associated guarantees. The second set of proper-
ties are related to computational considerations such as scalability to large
multidimensional data sets.

2.5.1 Statistical Properties

We will briefly describe four important statistical properties of sample statis-
tics. Some of these properties were motivated by having too little data (small
samples) and might not be an issue in EDM in general. However, when we
break up the data into smaller chunks (partitioning), to speed up analysis and
make it scale, the properties discussed in this section become important.

Unbiasedness guarantees that the statistic 7(X) used for EDM to under-
stand the structure in the data gets closer on an average to the true parame-
ter 6, as we use more data for computing the statistic. For instance, we use a
sample mean as an estimate of the true average. We do not use the top 20 data
points or the lowest 10%, because if we do the average we compute will have
a bias. See Figure 2.15, top panel, for an example of a biased estimator as its
values drift upwards with increasing sample size. Unbiased estimates are
reliably close to the true value of the parameter. However, a trimmed mean
has other desirable properties like being relatively immune to outliers and
corruption. Therefore, it is important to choose a wide variety of statistics for
the purpose of data publishing and data reduction, where the summaries could
be used for further analysis.

The unbiasedness property is expressed formally as

lim E(Ty (X)) -6, (2.33)

where E(T(X)) is the expected value of T(X), 0 is the true parameter that
T(X) estimates and N is the number of data points that are used to compute
T(X). The limit notation limy_,.. implies that we are choosing progressively
larger samples.
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Figure 2.15: Properties of estimators.

An unbiased estimate of the mean of the density f, (regardless of f) is given
by choosing Tn(X) to be the sample mean. Recall that Ty(X) is a random
variable that varies from sample to sample due to sampling variation.

It can be shown that the sample variance is not an unbiased estimate of the
true variance o of f. The bias b(s?) is given by

N b

b(s*)=E(s*)-0c%= (2.34)

where o7 is the true variance of the density f. If o is large, the sample needs
to be quite large to keep the bias down to an insignificant level.

Consistency of 7y(X) implies that the fluctuations in the value of Ty(X) get
smaller and become arbitrarily close to zero as more data points are included
in the computation of 7(X). Again, the motivation is to choose statistics for
EDM that are reliable, and do not change wildly when additional data become
available. See Figure 2.15, middle panel, for variations that do not get damp-
ened down when the sample size becomes increasingly large. Consistency can
be expressed as

lim V(T (X)) = 0. (2.35)
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It can be shown that the sample mean is consistent, that is,

O.2

V(Xy)= N (2.36)

The subscript denotes the dependence on the sample size. Clearly, as N
2
becomes large, V(X)= % becomes smaller, ultimately becoming 0.

The first panel in Figure 2.15 shows a biased estimate that drifts away from
the true value u as we incorporate more and more data into the estimate. The
second panel shows an estimator that continues to have high variability as the
sample size increases. The third panel shows a nice estimator that becomes
more and more reliable (low variability) as well as accurate (closer to the true
value) as the sample size increases.

Sufficiency is a way to measure the value of a statistic for the purpose of
data summarization and reduction. Sufficiency guarantees that, for a given
family of densities F, knowing the statistics 7(X) is sufficient to have com-
plete knowledge of the density, individual data points provide no additional
information. For example, if we are given that fis a Poisson density where

—Xa
P(X:a):exz' Ca=12,...,

with an unknown rate parameter A, then it is enough to know the sum of the
sample observations, (we do not need to know the individual sample values)
to replace the parameter in the density and specify it completely. When
nothing is known about F, the ordered statistics (i.e., the ordered sample)
are the sufficient statistic. The less we know about the family of densities F,
finer the granularity of the summaries and lesser the data reduction achieved.

Finally, a statistic 7(X) is efficient if it has the minimum possible variance.
This is a valuable EDM property since it implies that 7(X) is the most accu-
rate estimate (least variance) that we can find. In other words, we can bound
our guess 7(X) by the smallest possible interval. For instance, the statement
“The average weight of a Snark is between 10 and 12” is a more informative
or stronger statement than “The average weight of a Snark is between 0 and
40”.The lower bound of the variance of an estimator 7(X) is given by a bound
called Fisher’s Information Limit. However, the Information Limit need not
always be achieved.

Our intention in the preceding discussion is to provide a flavor of the desir-
able properties that classical estimates have. We can leverage these properties
to certify the accuracy of our results. However, such estimates have to be used
in conjunction with other estimates that might not have these properties but
fulfill other needs of EDM and data cleaning.
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2.5.2 Computational Criteria

For EDM, interactive response times are important, hence statistics that take
too long to compute are not valuable. Summaries that do not result in con-
siderable data reduction over the original data are not desirable. We might as
well keep the original data around instead of wasting resources computing the
summaries. Summaries that can be aggregated across different data sets and
different pieces of a single data set are important from an EDM perspective.
For example, when additional data becomes available, we need to aggregate
these summaries for the combined data. Conversely, during EDM, we often
need to break the data into smaller pieces (partition), compute summaries and
put them back together while building piecewise models to approximate
nonlinear relationships (see next chapter). Sums, counts, min, max are all
aggregable. A mean without a count is not aggregable.

2.5.3 Annotated Bibliography

A discussion of the statistical properties of sample statistics is in [23] as well
as [105]. The latter book has a good discussion of Fisher’s information and
other efficiency bounds for statistics.

2.6 DATA-DRIVEN APPROACH—NONPARAMETRIC ANALYSIS

In the discussion so far, we discussed an underlying structure f that generates
the data, and its characteristics (center, spread) that can be estimated from the
data. If we have reason to believe that fhas a certain structure (as in Bayesian
approaches), the estimates that we have discussed are very useful. When we
have absolutely no knowledge or prior experience of the data, we have no
starting point to make the model assumptions. We have to use the data as it
is, and investigate its characteristics. The characteristics can be explored with
simple counts (which values or combination of values occur frequently, his-
tograms), identifying values that co-occur a significant number of times (asso-
ciation rules), deriving rules that can be applied generally (classification,
neural networks), identifying co-dependencies among sets of attributes
(Bayesian networks), and so on. We can term this approach a nonparametric
one, since we do not make any prior assumptions about an underlying true
distribution f, its parameters or any interrelationships between attributes.
While we make the distinction between parametric and nonparametric
approaches to underscore the different approaches to data analysis, note that
they do share a common framework of concepts and should be considered to
be at different ends of an analysis spectrum. For instance, a nonparametric
approach can be considered to be parametric with an infinite number of
parameters. Additionally, estimates like the mean and the median play an
important role in both parametric and nonparamteric approaches.
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Table 2.3: Example of a frequency table: age vs. weight.

Age Weight Row Total
0-5 5-10 10-30 30-50 50+
0-10 3 4 5 2 1 15
10-20 5 10 2 4 0 21
20-30 4 7 2 1 1 15
30+ 1 2 0 1 0 4
Column Total 13 23 9 8 2 55

In this section, we will briefly discuss a subset of nonparametric methods
that are useful for EDM and DQ. We start with techniques for counting
frequencies and simple summaries, such as histograms. We do not discuss
well-known techniques like classification, neural networks, Bayesian nets and
so on, since there are many textbooks that cover these techniques.

2.6.1 The Joy of Counting

In the previous section we discussed point estimates (estimate a single quan-
tity) like sample means, and their characteristics to summarize coarse proper-
ties of the data set as an initial EDM step. However, we need to understand
more complex structure in the data such as localized variation of attributes
and their distribution in space, intricate nonlinear relationships among attrib-
utes and other fine-grained interactions. For instance: How many people in
New Jersey travel on a particular stretch of highway between 8:00 AM and
10:00 AM on weekdays? What items are frequently bought together so they
can be co-located on grocery shelves?

In the exploratory spirit of EDM (fast, simple, approximate), we can con-
struct a frequency table of counts. (We will address the issue of scalability of
such a solution shortly.) Consider the two-attribute Table 2.3 based on the
Himalayan ecosystem example. The Weight attribute is represented by the
intervals 0-5, 5-10, 10-30, 30-50 and 50+ (all values of weight exceeding 50).
All organisms whose weight lies between 0 and 5 will be treated as one group
with no further distinction in their weights. A similar collapsing is done for the
age attribute. The numbers at the intersection of a row and column represent
the number of organisms that fall into the corresponding age and weight inter-
vals. There are 10 organisms whose age is between 10 and 20 and weight
is between 5-10. The last column represents the row totals and the last row
represents the column totals.

The counts corresponding to totals of individual rows and columns are
called marginal totals, given by the last row (marginal totals for Weight) and
the last column (marginal totals for Age). The marginal totals are a rough way
to estimate the marginal probability of the attribute. For example,



56 EXPLORATORY DATA MINING

Marginal of X

I
[ Nyd I [ TN
[N] []

Marginal of Y Conditional of X|Y

O
L ]

Conditional of Y|X Joint of (X, Y)

Oz
Bl —

Figure 2.16: Probability distributions.

P(A=a)=) P(A=a,W =w) (2.37)

is the marginal probability that age A has the value a, obtained by summing
over all possible values of weight W. Estimates of the marginal probability of
an attribute (say A) are given by

21

P(A e(10,20)) = 5= (2.38)

The P notation is to indicate that the proportion is an estimate of the
probability.

Suppose, we wish to know the behavior of the age attribute among
organisms whose weight is restricted to the interval 5-10. Then:

10

P(A e(10,20) |W e (5,10)) = > (2.39)

This is the proportion of organisms whose age falls in the interval [10,20], given
that their weight lies in the interval [5,10]. The proportion is an estimate of
the conditional probability of “age given weight”. Note that this is different
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from the joint probability that “A lies in [10,20] and W in [5,10]” which is
given by

10

P(Ae(10,20) "W &(5,10)) = = (2.40)

The relationship between the marginal, conditional and joint probabilities is
given by

P(Ace,nWel,)
PWel,)

P(Acl,|Wel,)= (2.41)

for all intervals I, and I,. This property can be verified easily from Table 2.3.

Frequency tables are the intuition behind data summaries like the Empir-
ical Cumulative Distribution Function and histograms that we discuss next.
Such summaries are the next step in EDM and capture inter-relationships
among attributes and variations over the entire attribute space. Contingency
tables used to test the independence of attributes are based on two-way
(or multiway) frequency tables. Similarly mutual information computation
requires building a two-way frequency table. Fractal dimension computation
too has a frequency table flavor to it.

2.6.2 Empirical Cumulative Distribution Function (ECDF)

The Cumulative Distribution Function (CDF) keeps track of the proportion
of points that fall below any given value of an attribute. The CDF at X = x,
for any x € S, the support of X, is defined to be

F(x)=P(X <x). (2.42)

We can think of the CDF as an inverse quantile function. That is, for a given
probability p, the quantile function associates a value of the attribute &(p) such
that the probability that a data point has an attribute value less than &(p)
is p. The CDF does exactly the opposite, namely, associate a probability
P(X < x) = F(x) with every attribute value x. For example, the proportion of
organisms whose weight is less than 10, from Table 2.3 is

Fy (10) = P(W < 10)
_36
T 55°

where the hat notation indicates estimates and the subscript W references the
attribute (weight) that the CDF F pertains to. Clearly, the proportion of points
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below W =t increases as ¢ increases. That is, there are more organisms whose
weight is less than 20 than those that are less than 10, since all of the latter are
included in the former category. (There will be at least as many, if there is no
single organism with weight between 10 and 20.) Therefore, the CDF is non-
decreasing.

The Cumulative Distribution Function can be estimated from the data
in a very simple manner. The estimate is called the Empirical Cumulative
Distribution Function.

F(;) _ number of points S X (2.43)

total number of points

Zn Ii(x)
=== 2.44
N (2:44)
where

],-(x)=l, Xi Sx (2.45)
=0, X, <x, (2.46)

where X; is the i sample point. Variables that take values 0 or 1 based upon
some condition (such as I;(x) above) are called indicator variables. N is the
total number of data points. It is a step function since its value changes only
at values of X observed in the sample. These change points are the ordered
statistics of the data set.

The ECDF is a very powerful EDM tool. Steeper sections of the ECDF
correspond to regions where we are more likely to find data points. For
example, weights between 10 and 20 occur more frequently than weights
between 80 and 90 in any sample. One can read off the median by drawing a
line from the Y-axis at p = 0.5 to intersect the ECDF and drawing a line
from there to intersect the X-axis. Other quantiles can be read off in a
similar fashion. We can compare two groups (e.g. Snarks and Gryphons) by
overlaying the ECDFs of the attribute. A visual inspection may quickly tell us
that they are different. If they look similar, we can perform more rigorous
tests.

Another EDM application of the ECDF is benchmarking against a known
distribution. For example, if we suspect the distribution of age to be of a
particular type, say exponential, we can overlay the ECDFs of the two
and perform a quick visual check, followed by more rigorous tests if needed.

The ECDF itself is a random quantity since it is computed from the sample,
therefore subject to sampling variation. The pointwise confidence intervals
for the ECDF can be obtained by computing the confidence intervals for the
corresponding quantiles. Packages like SAS automatically compute and plot
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Table 2.4: Histogram: age by species.

Age Species Total
Snark Gryphon Unicorn

0-10 10 20 50 80
10-20 20 50 60 130
20-30 30 20 50 100
3040 20 10 40 70
40-50 10 5 10 25
50+ 5 10 10 25

these intervals. Simultaneous confidence bounds (as opposed to pointwise) for
the entire ECDF can be computed as well.

The ECDF has nice EDM properties, namely, easy to compute, easily aggre-
gated across many data sets or data sections, easy to visualize. It has good
statistical properties as well (unbiased, consistent).

2.6.3 Univariate Histograms

Like the ECDF, a histogram is a representation of the concentration of data
points over the attribute support. One of the frequently asked questions in
EDM is, “How many data points lie in a certain interval?”. For example, “How
many people make more than 10 long distance phone calls a month?” More
complex EDM questions need multivariate histograms, which we discuss in
later sections.

Construction of a histogram involves two major steps.

1. Divide the support of the attribute into intervals or bins
2. Count the data points that fall into these bins

Consider the first row of data in Table 2.4, an example of a histogram of
the ages of the organisms in the ecosystem. The first column represents the
range of ages, between 0 and 10 units. The second column is the number of
Snarks that are between ages 0 and 10. The last column represents the total
for all the three species for that age group. Figure 2.17 shows a histogram of
the above data.

Figure 2.17 is actually four histograms in one—one for each species,
denoted by different shades of gray plus an overall histogram. The three
together add up to fourth the overall histogram of age for the entire ecosys-
tem. Note that in order to construct this summary we divide the range of the
age variable into intervals and make no further distinction between points
within this age interval. This is an important step in data reduction. The choice
of the intervals clearly affects the histogram. There is extensive literature on
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Figure 2.17: Three-in-one equi-spaced histogram of age.

the optimal choice of the histogram intervals. We will discuss two types of his-
tograms in this section, the equi-spaced histograms and equi-depth histograms.

Types of Histograms
The example above is an equi-spaced histogram. We have divided the attrib-
ute age into intervals or bins of equal length. The last bin is an exception, it
contains everything that spills over from the other bins. The advantage of this
scheme is that the bins can be defined (in principle) a priori and independ-
ently of the data. The construction of an equi-spaced histogram requires only
one pass over the data and is very quick. In addition, bins can be collapsed to
create coarser equi-spaced histograms. Equi-spaced histograms make it easy
to compare the distribution of points in different regions as well as compare
histograms of different data.

An alternative approach is based upon having equal proportion of points
(or mass) in each bin. Such a construction leads to an equi-depth histogram
whose bin boundaries are quantiles.

Reconstructing Information from a Histogram
In order to retrieve information from a histograms, certain assumptions have
to be made, since we can no longer distinguish between the points that are in
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the same bin. If there are 25 observations in the bin 40-50, we can use one of
the following simple assumptions:

1. The observations are evenly (uniformly) distributed over the interval
40-50. The number of observations is proportional to the length of the
interval and does not depend on the actual values of the data points. So
the segment 40-42 (one-fifth the length of the interval 40-50) would
contain one-fifth the number of observations in 40-50, namely, 5.

2. All the observations are centered at the mid-point, namely, 45. That is,
there are 25 observations all of which have the value 45.

3. More complicated assumptions require the retention of additional infor-
mation. For example, we could keep the mean of the 25 observations that
fall in this bin while creating the histogram, and assume that all the 25
values have the same value as the mean.

4. Distributional assumptions about the allocation of the points in the bins.
For example, instead of a uniform distribution, they have a normal dis-
tribution around the mean. This requires storing information other than
just the bins and bin counts.

5. Using splines to approximate the distribution of points inside the bins.

On the basis of such assumptions we can now recover other information from
the histogram. Under the second assumption, we can compute the following:

- The mean age is given by (for species A)

Y. - 5#10+15%20+25%30+35*%20+45*10+55*5 2525

. (24
4 95 95 (2:47)

+ Probability that age (of any individual from species A) is less than 30 is
given by

10+20+30

P(Age(A)<30)= 95

(2.48)

Note that for the last bin we are assuming that the mass is concentrated at 55.

2.6.4 Annotated Bibliography

Multivariate distributions and the relationship between conditional, joint and
marginal distributions are described in most texts on probability and statistics.
See [105], as an example. Well-known nonparametric techniques for exploring
and understanding multivariate distributions include clustering [69], some
pattern recognition techniques [38], hierarchical networks [99] and neural
networks [9].
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Estimating univariate distributions through histograms and other estimates
like the ECDF has been covered in many books. See [63] for and advanced
discussion of the ECDF, and its properties. A discussion of simultaneous con-
fidence bounds, which are stronger than pointwise confidence bounds, is avail-
able in [20]. See [115] for detailed discussions of histograms, their construction,
density estimation and other related concepts. The use of splines for recover-
ing information from histograms is described in [91]. Given the importance of
the choice of the bins, there has been a lot of interest in determining optimal
bin selection. An important approach is discussed in [67].

2.7 EDM IN HIGHER DIMENSIONS

An important challenge in large-scale data analysis is the “curse of dimen-
sionality”. As the number of attributes (also known as dimensions) increases,
analytical techniques slow down, often in exponential or polynomial propor-
tion to the number of dimensions. Techniques based on computational geom-
etry seldom go beyond three or four dimensions. In general, nice properties
that hold in lower dimensions disappear in higher dimensions. Visual tech-
niques all but fail after five dimensions, becoming increasingly complex with
color coding and animation. Ordering data in two or more dimensions requires
defining special transforms to induce a one dimensional order. In addition,
there is “space warp”, that is, data points tend to get packed at the boundaries
leaving large tracts of empty space (see [115]). Small perturbations in the data
can cause large shifts in the results of the analysis.

We first discuss below a natural extension of the univariate histogram by
using a multivariate rectilinear grid. A discussion of scalability will follow in
Chapter 3.

2.8 RECTILINEAR HISTOGRAMS

Table 2.3 which we used in the frequency table example, is a rudimentary
two-way histogram. Each combination of ranges of the two attributes is a bin.
For example, constraining the age to lie between 10 and 15 AND the weight
to lie between 15 and 18 would correspond to a rectangular region, a “bin” in
two dimensions. If all of the attributes are numeric, the bins of a rectilinear
histogram are specified as

Xy elxu, xu 0 Xs €lxa, x0]...0 Xy €lxa, xa], (2.49)

where each attribute X; has to lie in a specified interval [x;, x;] and / and u
in the subscripts denote lower and upper bounds of the interval. One or
more of the attributes of the histogram can be categorical. For example,
Table 2.4 is a two-way histogram with a categorical attribute. The categorical



RECTILINEAR HISTOGRAMS 63

Table 2.5: Histogram binning scheme.

Original Binned
Age Weight Volume Age Weight Volume
8 12 9 0 0 0
6 11 12 0 0 1
7 17 8 0 1 0
8 16 5 0 1 0
12 13 9 1 0 0
13 13 9 1 0 0
15 12 7 1 0 0
12 13 17 1 0 1
15 13 16 1 0 1
14 12 14 1 0 1
18 14 16 1 0 1
18 20 9 1 1 0
19 19 9 1 1 0
12 18 9 1 1 0
15 16 8 1 1 0
22 19 9 1 1 0
22 25 20 1 1 1
18 18 15 1 1 1
16 15 22 1 1 1

attributes can also be “binned” into coarser subdivisions, as is discussed in
Section 3.2.

Let us consider the ecosystem example. There are three numerical
attributes—age, weight, and volume. We construct an artificial example by
selecting two bins for each attribute 1 (high values) and 0 (low values) by
choosing some cut off values (e.g., age cut-off = 10, weight cut-off = 15, volume
cut-off = 10). Table 2.5 shows the mapping from the data values to the bins,
which is summarized into the multivariate histogram shown in Table 2.6.

The last column of Table 2.6 represents the number of organisms with that
particular combination of the three attributes. We can see that the histogram
is a compact representation of the raw data. There is a loss of information
caused by binning the variables age, weight and volume into two bins each
0 and 1. We can increase the granularity and use three bins for each attribute
(-1 (low), 0 (medium), 1 (high)) resulting in a total of 3’ = 27 combinations
as opposed to the current 2° = 8. As the number of attributes increases, the
rectilinear histograms become unmanageably large. For example, a histogram
based on merely 6 attributes and 10 bins for each attribute results in

10°, (2.50)

a million bins!
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Table 2.6: Multivariate histogram on age, weight, and volume.

Age Weight Volume Count
0 0 0 1
0 0 1 1
0 1 0 2
0 1 1 0
1 0 0 3
1 0 1 4
1 1 0 5
1 1 1 3

The problem is mitigated somewhat by the use of data cubes, which permit
aggregation based on the levels of categorical attributes. Datacubes are dis-
cussed in the next chapter. The DataSphere partitioning scheme is a nonlinear
technique that allows scalable partitioning, resulting in a number of bins that
is related linearly to the number of dimensions, as opposed to exponentially.
In the next chapter, we explore data cubes, DataSpheres, potential partition-
ing schemes based on depth and their advantage over context specific parti-
tions induced by models like classifiers.

2.9 DEPTH AND MULTIVARIATE BINNING

Data depth denotes how deeply embedded a data point is in the data cloud.
Depth is relevant to EDM and DQ for several reasons:

- Data depth is important for many EDM tasks such as understanding the
distribution of data points in space. Such information is useful for identify-
ing outliers, for finding which points are “close” to each other, and so on.

+ We can use depth based bins for building a skeleton of the data through
multivariate binning. The skeleton can then be used for data aggregation
and summarization, including counts, sums, cross products and sums of
squares. The aggregates, in turn, can be used for data publishing.

+ In higher dimensions, parametric analysis based on assumptions about
the underlying distribution becomes harder due to the mathematical
complexity of the functional forms f. We can used depth to partition the
attribute space and use simple nonparametric methods to approximate
complex data structure.

In this chapter, we will introduce depth, to lay the ground work for the next
chapter on partitioning and nonlinear EDM.
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2.9.1 Data Depth

Picture the following: Apples are arranged in a display on a barrel in a grocery
store. The barrel can be accessed from all sides. In order to get to the one really
good apple which the grocer has malevolently hidden in the center of the
display, we would need to carefully remove the outer apples. The good apple
is deep inside the crowd of apples. If we pretend the apples are data points in
three-dimensional space, data depth is a measure of how deeply entrenched
a point is with respect to the other data points. We motivate below some
intuitive notions of depth.

In the case of a single attribute, the data points can be plotted on the real
line. As we traverse the real line from either of the extreme values (the Min
or the Max of the data points) we will pass through the sample points. The
more points we need to cross in order to get to a given point, the deeper it is
inside the data set. Clearly the median is the deepest point.

Next consider a data set with two attributes. We can imagine a straight line
sweeping through (without rotation) the data cloud to reach a given data
point. The line that passes through the smallest number of points will deter-
mine the depth of the point, given by the number of points it has to pass
through. Alternately, we can think of the data points organized into layers, as
in an onion. All the outermost points lie on a layer that can be peeled away
and the next set of points on another layer and so on recursively until we reach
the very center (core of the onion). In such a formulation, a rough measure of
depth would be the number of layers that need to peeled off in order to get
to the point of interest. Yet another intuition for depth is based on the con-
struction of triangles. If we consider the bivariate case as an example, we can
construct triangles by connecting all possible sets of three data points that do
not lie in a straight line (noncollinear). (There will be (5) such possibilities).
Points on the periphery will be contained in fewer triangles than the points
towards the interior of the cloud. The number of the triangles that contain the
point of interest is an indication of how deeply embedded the point is in the
data cloud. Thus there are many ways of defining depth in multivariate space.
Several formal definitions of multivariate depth exist. We will discuss some
well-known definitions below. Note that they are all applicable to a general
d-dimensional space, in principle. However, the expense of computing the
depth might be prohibitive for some definitions when the number of data
points and/or the number of attributes increases.

+ Mahalanobis Depth: The Mahalanobis depth of a point x from a multi-
variate density with mean u and covariance matrix X is given by

d(x) = (x— ) (Z)(x - p). (2.51)

This is also called the statistical distance. The Mahalanobis distance
requires the existence of second order moments.
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- Half-plane Depth (Tukey Depth): Consider various planes that pass
through a point x in multidimensional space. Each plane partitions the
space into two parts. With each halfspace, we can associate a likelihood
of finding data points. Empirically this would be the proportion of data
points contained in that halfspace. The smallest such probability over all
possible halfspaces associated with x is its Tukey depth.

+ The Convex Hull Peeling Depth: If the data set consists of »n points, con-
struct a convex hull containing all the n points. We can think of a convex
hull as the smallest convex polygon that contains the outermost points of
the data cloud. If the data were scattered in a sphere, we can think of
convex hulls as the layers of an onion. We start by peeling off the outer-
most convex hull (called a layer of depth 0), thus removing all the points
lying on it. Next, we construct the convex hull of the remaining points.
This is a convex layer of depth 1, and so on. The depth of a point is the
depth of the convex layer it lies on.

- Simplicial Depth: We give here an informal definition. If x is a point in d
dimensional space, consider the convex hulls of all subsets formed by a
specified number (d + 1) of points. When these are well defined (the points
do not lie on a straight line), such a convex hull is called a simplex. The
simplicial depth is the probability that a point x will lie in a simplex. The
sample version is the proportion of simplices that contain x. In Figure 2.18,
the point represented by the big dot, is enclosed in many simplices
(triangles in this case) as compared to the point represented by the
square. Hence the big dot has greater depth that than the square.

+ Other concepts of depth include the likelihood depth based on the density
at x. Another related concept is regression depth, which measures the
depth of a regression plane with respect to the data. We relate this concept
to goodness-of-fit and outlier finding in Section 5.2.6.

With the exception of Mahalanobis depth, the depth metrics are computa-
tionally intensive. However, in situations where it is feasible, computing
other depth metrics offer insights about the joint distribution (half-plane
depth, convex hull peeling depth, likelihood based depth) and its structure that
are valuable in their own right. (See Section 2.9.2 below.)

2.9.2 Aside: Depth-Related Topics

Depth Median

Let us revisit the notion of multivariate center, using depth. In the univariate
case the median can be defined to be a single data point. In higher dimensions,
it is more common to define a median region, the region containing data points
with the maximum depth. For example, the median region would be the region
contained in the innermost convex hull obtained by peeling. We have seen that
in the univariate case the median is a robust alternative to the mean. The
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Simplicial Depth

Figure 2.18: The big dot has greater simplicial depth than the square.

robustness of a center is important, especially when it is the parameter
that defines a partitioning scheme for data reduction as in DataSpheres, a
nonlinear partitioning scheme we discuss in the next chapter.

Depth Contours

Points that have the same depth lie on the same depth contour or level curve.
Depth contours differ from probability contours. The latter represent areas
of equal density, while depth contours pertain to relative location. Depth
contours are important for:

+ Outlier detection—Usually peripheral points or outliers are different
from the majority of the data points. Their extreme nature makes them
(a) interesting as in identifying high-usage customers or data glitches, or
(b) a nuisance as in skewing averages and typical behavior. In either of
these situations it is useful to identify them and separate them from the
rest of the data set. The outermost depth contour (or layer of depth 0)
contains multivariate outliers. We will return to outlier detection in a
Section 5.2.3.

+ Change in density—The algorithm that computes the depth contours
keeps track of the number of points that fall inside each depth contour.
Therefore we can compute the change in the density as we peel off
consecutive layers.

+ Finally, depth contours can be used to construct a scalable partition of
multivariate data space for data aggregation. We can define a depth
equivalence class, or de-class as a set of points that fall within a certain
depth range. Each de-class could be a class in the partition.
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2.9.3 Annotated Bibliography

See [83] for an overview of multivariate depth and related concepts. A
discussion of simplicial depth can be found in [82]. See [124], Tukey’s paper
on stochastically equivalent blocks for a description of de-classes.

For an introduction to convex hulls and their computation see [101]. See
[89] and [121] for computation of location depth and depth contours. See [111]
and [112] for more on regression depth.

2.10 CONCLUSION

In this chapter we introduced statistical summaries that play an important role
in EDM. We discussed the characteristics of good EDM summaries. Some of
the summaries can be used for detecting glitches in massive data and screen-
ing them for data quality purposes. We discussed both model-driven sum-
maries as well as data-driven summaries like quantiles, histograms, ECDF and
others. We used data depth to generalize the concept of quantiles to higher
dimensions and set the stage for scalable multivariate space partitions or bins.
Such partitions will be used extensively in the next chapter to find fast, simple
EDM models for capturing nonlinear relationships among attributes.



CHAPTER33

Partitions and Piecewise Models

3.1 DIVIDE AND CONQUER

Experience tells us that a difficult problem can be tackled better if it is broken
down into smaller pieces. For example, exploring a new city can be done by
dividing it into regions and exploring each piece separately and systematically
until all the regions are covered. Similarly, a large intractable data set can be
divided into smaller pieces for easier exploration and analysis. Furthermore,
large data sets are usually heterogeneous and consist of a mixture of proba-
bility laws. We are interested in unraveling the mixture and identifying each
component to the greatest extent possible. For example, clustering techniques
divide the data into clusters of like data points (married with kids, single and
employed, retired but less than 70 years of age). Such groupings are very
popular in advertising and marketing campaigns to target consumers. Classi-
fication techniques (machine learning, neural networks, logistic regression)
divide the data into “classes” which constitute meaningful pieces of the data
set (likely to switch phone companies, unlikely to switch phone companies).
There are more general ways of dividing the data set as well.

In this chapter, we discuss methods for dividing up the data into manage-
able pieces for the purpose of (a) data summarization, (b) data cleaning, and
(c) scaling up analyses to massive data through piecewise models built using
EDM summaries. In the rest of this section, we motivate partitions and parti-
tion based analysis. In Section 3.2, we discuss linear partitions. In Section 3.3
we focus on nonlinear partitions. DataSpheres, a particular type of nonlinear
partitions are discussed in Section 3.4. In Section 3.5, we describe set com-
parison techniques based on EDM summaries of partitions for detecting
changes in data sets, whether caused by genuine shifts in distributions or by
data glitches. Section 3.6 describes the process of approximating complex
structure in data using a collection of simpler models. In Sections 3.7 and 3.8,
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Figure 3.1: Rectilinear boundaries.

Figure 3.2: Curved distance partitions: X* + Y? = C%

we give instances of such approximations, namely piecewise linear regression
and one-pass classification. We conclude with a summary in Section 3.9.

The process of dividing the data set into non-overlapping parts that account
for the entire data set is called partitioning and each resulting piece of the data
set is called a class of the partition. Figures 3.1 and 3.2 show examples of
partitions with different types of boundaries.

3.11 Why Do We Need Partitions?
Partitions serve many useful purposes.

+ Simplify: A partition provides a simplified, high-level, schematic version
of the data set, similar to the human skeleton. It makes it possible to iden-
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tify different portions of the data at a high level, study their inter-
relationships (the back bone is connected to the hip bone . . .) and identify
interesting hypotheses (the skull has a hairline fracture). The hypotheses
can be investigated in greater detail by looking at that portion of the data
(the head region, skin lacerations, muscle, blood vessels) in greater detail.

Summarize: In the context of EDM, the classes of the partition can be
used as a binning scheme to collect aggregates. Histograms are examples
where we used the bins to collect counts of the number of data points that
lie in a bin. We can also collect other aggregates such as sums, sums of
squares, min, max, a sample, and so on, which can be used for data explo-
ration, visualization, exploratory model fitting, data publishing and for
data cleaning purposes. The process of creating a smaller representation
of the data using summaries is called data reduction.

Reduce Variability and Data Set Size: Data partitions help us treat the
data at a level of granularity that suits our constraints of resources and
time. Computing aggregates of the whole data without any partitioning
(the coarsest level of analysis) hides most of the interesting variations and
features of the data. Treating every data point as a class of its own (the
finest level of granularity) results in too much noise, so that it is not
possible to capture general patterns that are applicable to large portions
of the data. Besides, it might be computationally impossible to treat data
at its raw granularity in the case of massive data. The optimal choice of
granularity for a partition lies between these two extremes, where there is
sufficient reduction in variability to dampen noise but enough detail to
preserve interesting local structure in the data.

3.1.2 Dividing Data

The data set cannot be apportioned arbitrarily. It has to be done in such a
fashion that interesting structure in the data is preserved and can be inferred
from the smaller pieces of the partition. For example, if we were to randomly
pick fragments of the human body and jumble them up indiscriminately into
classes (combine the thigh bone, one vertebra and a fragment of the skull into
one class) we will not gain valuable insights. Every class will be a garbled mess.
Therefore, it is important to have some notion of contiguity and similarity
while creating a partition. However, the constraints should not be so strong
that we cannot use the partition and the EDM summaries in a general context.

Partition induced by context-specific techniques (clustering, classification)
(Figure 3.3) are parameterized by the technique, just as parametric methods
are based on assumptions about distributions and inter-relationships between
attributes. Therefore, while these induced partitions are attractive because
they result in a handful of meaningful classes, they are less useful in more
general contexts of data summarization and data publishing. During the data
exploration phase of an analysis, we cannot be sure that the models that induce
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Figure 3.3: Partition induced by decision trees.

the partition are appropriate for the data. When they are, the models tend to
be closely tailored to the specific data set at hand, so that they do not gen-
eralize well to other data sets. Therefore, during data exploration it is better
to choose an exploratory partitioning scheme rather than a partition induced
by a model designed for a specific objective, based on several tunable parame-
ters and assumptions. Finally, some context-specific partitioning techniques
are computationally expensive, again making them inappropriate for data
exploration.

The task of creating multipurpose partitions is relatively straightforward in
the univariate case (e.g. bin using quantiles of the attribute) but it gets com-
plicated in higher dimensions. As mentioned earlier, choosing bins compo-
nentwise and considering all combinations results in a rapid (exponential)
increase in the number of classes of the partition. However, such partitions
are simple to interpret (age between 50 and 60, income between $50K and
$100K) and therefore attractive. Furthermore, such schemes fit nicely into a
data management scheme called data cubes.

In this chapter, we will focus primarily on two nonparametric partitions—
(1) the axis aligned partitions mentioned above called data cubes, and (2)
DataSphere, a nonlinear scalable partitioning strategy. (Induced partitions
should be studied in the context of the technique that generates them, e.g.,
clustering. They are not a topic for this book.) We will use the nonparametric
partitions to create a set of EDM summaries.
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Figure 3.4: Visualizing cluster sizes.

3.1.3 Applications of Partition-Based EDM Summaries

We outline below the analysis applications of partition-based EDM summaries
that we discuss in this chapter.

+ Visualization is an effective and intuitive part of EDM. However, due to
the limitation of display media as well as the human eye, visualizing data
in more than 4-5 dimensions (aided by, e.g., animation, color coding) is
difficult. Complicated projection tours and other techniques require
considerable expertise and often break down for large data sets. In this
context, partitions and partition-based EDM summaries play an impor-
tant role in reducing the dimensionality as well as the size of the data,
facilitating visualization. There are examples of partition-based visualiza-
tion throughout the chapter as well as the rest of the book. We will briefly
mention a few below.

First, consider an ordinary histogram or bar chart. It facilitates
visualization by plotting aggregates (bin counts) rather than the raw
data. Plotting the raw data would result in an indecipherable mass. Next
consider the cluster size plots in Figure 3.4. The clusters are computed in
six dimensions based on around 17,000 data points, each of which repre-
sents a provisioning process. The size of the circles is proportional to the
size of the cluster. A circle is centered at the cluster means of two of
the attributes streams and stages, which are measures of complexity of the
process being depicted. The plot helps us understand the relative sizes
of the clusters (partition classes) as well as their relationship to two of
the clustering attributes.
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Another kind of visualization is facilitated by the DataSphere (DS)
partition discussed below, where a multi-dimensional space can be repre-
sented in two dimensions that uniquely determine the class of a partition.
We defer a discussion to the section on set comparison where the DS
partition based bead plots (see Section 3.5.4) are used for illustrating the
dispersion of points in high-dimensional space.

+ Set Comparison and Detection of Data Glitches—An important use of
the EDM summaries is the comparison of two or more massive data sets.
We can rapidly identify subgroups that are different (elementary school
students in New Jersey are statistically different in their academic
performance from those in California) as well as detect sections of the
data that look suspiciously different from a well-known standard. We
will discuss set comparison as a powerful data cleaning technique in the
next chapter.

- Interactive Model Fitting—The EDM summaries can also be used to
learn the structure of the data by rapidly building approximate models
that can point the way to further, more sophisticated models (e.g., non-
linear regression will work, parametric failure models not appropriate
since assumptions are not valid, etc.). Such exploratory model fitting is an
important application of EDM summaries because randomly trying dif-
ferent models from a suite of data mining methods is very expensive. In
this chapter, we will give two examples of piecewise model approxima-
tion with EDM summaries.

3.2 AXIS-ALIGNED PARTITIONS AND DATA CUBES

During the 1990s, the database community (both research and industrial) has
developed technologies (e.g., On Line Analytical Processing (OLAP), star
schemas, data cubes, etc.) to enable users to explore large data sets. Many of
the ideas derive from earlier work on statistical databases, but they have
been refined to allow them to better apply to large and complex data ware-
houses (databases specifically for long-term storage and analysis of data sets).
This material is well covered in other books, so we provide only a summary
here.

A data warehouse will contain one or more fact tables, which contain the
data to be analyzed. The fields of a fact table can be either dimensional attri-
butes, which describe the entity represented by an entry in the fact table,
or measure attributes, which are measurements of the entity. (In Statistical
terminology, the values of the dimension attributes are called the levels of a
categorical variable.) For an example, let us recall the data set from Chapter
2 that describes the Himalayan ecosystem. The fields of this fact table are:

species, age, weight, volume.
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The Species field describes the measured animal, hence it is a dimension.
Age, Weight, and Volume are measures.

Our data warehouse is likely to contain supplementary information about
each of the species—for example, their myth of origin, fur color, relation to
Lewis Carroll, and so on. These fields describe the species rather than the
individual, so good database design and common sense dictate that we store
the information about species in a separate dimension table:

AnimalSize(SpeciesID, Age, Weight, Volume)
Speciesinfo(SpeciesID, Name, Myth, FurColor, Carroll)

Since we are dealing with multiple tables, we need to assign each table a
name, for example, AnimalSize. Entries in the two tables are related using the
SpeciesID field. Given an entry in the AnimalSize table, we can find the name
of the species of the measured animal by looking for the entry in the
SpeciesInfo table with the same SpeciesID, and using the value of the Name
field. This process is referred to as the join of the two tables, and is a basic
activity in relational databases.

When these measurements are collected, there is often a great deal of addi-
tional descriptive information available. For example, the scientist might
record the year in which he makes the measurement, the location of the meas-
urement, and so on. Therefore our fact table will look like the following:

AnimalSize(SpeciesID, TimelD, LocationlD, Age, Weight, Volume)
Speciesinfo(SpeciesID, Name, Myth, FurColor, Carroll)
MeasurementTime(TimelD, Year, Month, Day, Hour)
Location(LocationlD, MountainName, Face, Height)

When the tables and their relations are visualized, the fact table (Animal-
Size) will be in the middle with the dimension tables radiating out from it and
linked by their join relationship. Hence this type of database organization is
often called a star schema. On-line Analytical Processing (OLAP) refers to
the activity of analyzing data sets in a data warehouse, especially data sets
stored using star schemas. One of the main purposes of OLAP systems is to
allow users to easily and quickly issue data exploration queries, which usually
partition the fact table using the dimension fields and summarize one or more
of the measure fields. An example query is “For each year from 1990 to 2002,
report the average weight of Gryphons on the North face of Mt. Everest.”

Answering these questions on a very large data set can be painfully slow.
One way to speed up the processing is to precompute some of the summaries,
and use them to compute the answer. Taking this idea to its logical conclusion,
a data cube is the collection of all possible summaries. Since the answer to all
summarization questions have already been computed, we can provide the
user with an answer by looking it up rather than by computing it (which is
likely to be much faster). For example, suppose that the queries involve
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Figure 3.5: A three dimensional data cube.

average weights and counts of the number of animals. Then the data cube for
answering these questions is:

AnimalSummaryl (SpeciesID, TimelD, LocationlD, Avg(Weight), Count)
AnimalSummary2(TimelD, LocationlD, Avg(Weight), Count)
AnimalSummary3(SpeciesID, LocationlD, Avg(Weight), Count)
AnimalSummary4(SpeciesID, TimelD, Avg(Weight), Count)
AnimalSummary5(SpeciesID, Avg(Weight), Count)
AnimalSummary6(LocationID, Avg(Weight), Count)
AnimalSummary7(TimelD, Avg(Weight), Count)
AnimalSummary8(Avg(Weight), Count)

A data cube is useful not only to speed up answers to OLAP queries,
but also to help understand the data set. By comparing the tables Animal
Summary3(SpeciesID, LocationlD, Avg(Weight), Count) and Animal
Summary6(LocationID, Avg(Weight), Count), we can quickly see which
species are dominant in a location and whether their weight is significantly dif-
ferent from the average. The name “data cube” is derived from visualizing
three-dimensional data and each of the marginal summaries, for example in
Figure 3.5. The lightly shaded area corresponds to AnimalSummary2, while
the darkly shaded region corresponds to AnimalSummaryob.

The dimensions of a data cube can have additional structure. For example,
the MeasurementTime table contains a hierarchy of Years, Months in the
Years, Days in the Months, and Hours in the Days. Therefore, we can select
the granularity of summarization by selecting a position in the Measurement-
Time hierarchy (e.g., average over months vs. average over hours). Further-
more, a dimension can contain multiple orthogonal hierarchies. For example,
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a position in the Location table can be further refined by specifying the Face
of the mountain, the Height on the mountain, or both. These two subdimen-
sions might have dimension tables of their own, producing a snowflake
hierarchy.

A variety of software packages provide dimensional “data cube” summa-
rization. For example, modern spreadsheet packages will compute two-
dimensional data cubes, called pivot tables, but the dimensions can be hierar-
chical. Most modern database systems provide extensive OLAP and dimen-
sional analysis facilities.

These types of powerful data summarization products are a useful and
readily available tool for data exploration. The use of hierarchical dimensions
is particularly valuable because it reduces the apparent dimensionality of the
data set. For example, our Himalayan animal measurement data set would at
first appear to have eight dimensions (species name, year, month, day, hour,
mountain, face, height), but they can be arranged into a more manageable
three dimensions.

As can be seen from the list of tables in a data cube, OLAP software allows
the user to readily specify the level of detail to be presented. Each of the tables
of a data cube represents a slice of the data set. The detail in the report can
be reduced by rolling up on one or more dimensions. Conversely, the detail in
the report can be increased by drilling down on one or more dimensions.

3.2.1 Annotated Bibliography

Data cubes were proposed by Gray et al. [54]. Since then, an extensive litera-
ture has been published. A survey of the literature can be found in [18]. Most
of the commercial database engines provide OLAP support, we recommend
reading their manuals.

3.3 NONLINEAR PARTITIONS

Nonlinear partitions are important in the context of reducing the dimension-
ality of a dataset and capturing the interaction between attributes. For
example, if we can partition a data set into clusters, a data point can be iden-
tified by its cluster membership and perhaps a few characteristics (cluster
center, cluster diameter) that define the cluster. We need not keep track of the
individual attributes that define the data point. We will not discuss clustering
in this book but merely allude to it since it is a potential space partitioning
technique. Informally, clustering involves grouping “similar” data points
together so that the points in the same cluster resemble each other more than
points in any other cluster. Similarity is defined based on various metrics such
as distance, density and other criteria. Such grouping into well-defined and
well-separated clusters is much sought after, especially in consumer market-
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ing studies. However, clustering requires a fair amount of domain expertise,
experience with the algorithms and the tuning parameters, and might prove to
be computationally expensive.

In the next section, we focus on a fast and nonparametric nonlinear parti-
tion which is called the DataSphere (DS) partition. This partitioning technique
has been proposed for the rapid exploration and understanding of large, high-
dimensional data sets. The construction of the DataSphere is akin to making
a mold for the data. The mold can then be used for a variety of purposes. We
can test to see if other data sets “fit” our mold. If they fit snugly, we can infer
that the data sets are similar. If not, we can identify the regions of the mold
where the fit is not good. These concepts play an important role in the auto-
matic detection of glitches in massive data sets. We formalize the notion of
testing the fit of a DataSphere mold to a dataset using set comparison tech-
niques described in Section 3.5 of this chapter.

3.3.1 Annotated Bibliography

For an overview of clustering see [69]. For a discussion of validity of cluster-
ing and the different ways of measuring goodness-of-fit of clusters, see [68].
Note that implementing the tests for validity of clusters with respect to the
data could involve MCMC (Markov Chain Monte Carlo) simulations, making
it time consuming. Such tests are often not implemented. For computationally
feasible algorithms for massive data, see [51]. For clustering mixtures of
Gaussians see [28].

DataSpheres were introduced in [29], and a more evolved description
including the effect of different centers and scaling parameters on the bound-
aries of a DataSphere is presented in [72].

3.4 DATASPHERES (DS)

The DS method partitions the data based on two criteria for the numeric
attributes, that of distance or depth, and direction. Each class in the partition
is uniquely defined based on the combination of these two criteria. Using “data
cube” terminology, they are two of the dimensions of the entries in our fact
table, while the categorical attributes provide other dimensions.

To use a DataSphere, we compute EDM summaries for every class by
calculating specialized aggregates based on the points that fall into the class.
The DataSphere summaries, which have special properties, described
in Section 3.4.3, are used as a basis for EDM and further analysis, including
visualization. These summaries are usually provided by OLAP software
packages. By treating DataSphere depth and direction as two of the dimen-
sions in a data cube, OLAP software packages can be readily and profitably
employed.



DATASPHERES (DS) 79

DataSphere Representation in 2-D
Layers 1, 2, 3 -- Pyramids X+, X—, Y+, Y-

Figure 3.6: DataSphere partition in 2-D.

3.4.1 Layers

The first step in creating a DataSphere is defining depth layers using an
appropriate subset of the numeric attributes. The attributes that are used to
compute the layers are called depth attributes. The layers divide the data into
concentric depth shells (like the layers of an onion), based on a suitably
chosen measure of depth. If the data set is unfamiliar, all the numeric
attributes should be treated as depth attributes. In the ecosystem example,
weight, age and volume are potential depth attributes. The categorical
(“dimension”) attributes are also used to partition the data. In the context of
statistical partitioning, such variables are called cohort attributes. For example,
species is a cohort attribute. Every combination of cohort attributes defines a
subpopulation of the data. For example, Snarks constitute a subpopulation.

For the DS computation, we use a center outward approach for depth, by
choosing a reference center and computing the depth of every point relative
to that center. Points that fall within the same depth range constitute a depth
layer. This approach is attractive because it is computationally tractable and
has a nice interpretation. From our discussion in the previous chapter, the
inner depth layers (Figure 3.6, layers 1, 2) close to the center represent
“typical” or representative data points. The outer depth layers correspond to
outlying or abnormal data points, presumably from the tails of a multivariate
distribution f. We have observed in practice that the technique will work
despite the strange behavior of data in higher dimensions, where it tends to
concentrate at the boundaries.
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The depth layers can be computed as follows:

- Compute a center for the data cloud using the depth attributes. Practical
choices include multivariate mean, multivariate trimmed mean and
componentwise median.

Center and rescale the depth attributes using the center computed above
and using an appropriate measure of dispersion such as the standard
deviation or interquartile range. It seems natural to pair the mean and
the quadratic deviation measured by the standard deviation, and the
median and the absolute deviation measured by the MAD, as per the
discussion in section on typicality.

A data point X; = (x;1, Xp, - - -, X;g) Will be transformed to Y; where
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where x; and 6, are the mean and standard deviation, respectively, of the
j™ component. We can replace the mean and standard deviation with other
choices. Standardizing the data makes attributes free of measurement
units and scales, making them comparable.

Compute the distance d; of every point from the center.

We have used the Euclidean distance, but other choices such the
Manbhattan (L,) distance can be used too. The choice of distance effects
the DataSphere partition boundaries. Other depth boundaries (depth
contours, convex hulls), while meaningful and data driven, are geome-
trically complex and difficult to compute.

Sort the data points by distance d; from the center and define the layer
boundaries to be distance quantiles. That is, all data points whose distance
lies between two consecutive distance (or depth) quantiles constitute a
layer. The number of layers can be chosen at will. Extra layers can be
collapsed into a coarser partition subsequently, if needed.

Depth quantiles are computed efficiently using recent one-pass fast
quantiling algorithms. Using the distance quantiles as layer boundaries
ensures that there are roughly the same number of data points in each
layer.
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The center and the distance layer boundaries, called the DataSphere
parameters, together define a unique DataSphere representation of the data.
Note that in higher dimensions, sparseness and concentration of data points
along boundaries might be an issue. In practice, however, we found the tech-
nique to be effective in quite high-dimensional data sets. Our center is merely
a reference point and therefore meaningful even if the data is concentrated
along boundaries. Furthermore, the distance layers give an indication of the
dispersion. The inner layers are usually close together, with the distance
between consecutive layers exploding as we get to the outer layers.

A partition of the data space based just on distance layers has no direc-
tional information. We do not know the contribution of each attribute to the
distance, so that an observation that lies in layer n can be either due to
extremely high values of attribute Age or extremely low values of attribute
Weight. In order to incorporate directional information we refine the partition
using data pyramids, described below.

3.4.2 Data Pyramids

A data point can be characterized by the attribute that influences the distance
most, the one with the maximum deviation from the center (measured in
standardized values). For example, we need to distinguish between outliers in
Age apart from the outliers in Weight. We can do this (to an extent) using the
concept of pyramids. Briefly, a d-dimensional set can be partitioned into 2d
pyramids P, i=1,...,d whose apexes meet at the center of the data cloud.
That is, for any point data point p

pEPH 1f|y,|>|y]|,yl>0 ]=1,,d]¢l
pe P iflyl>lyl,y;<0 j=1,...,dj#1i

In other words, the data points p is most “deviant” or “atypical” in the i com-
ponent in the positive (above average) direction.

Therefore, there are a total of 2d possible pyramids that the d-dimensional
data set can be divided into. For example, in Fig. 3.6, there are two dimensions
X and Y, with four pyramids Y*, X*, Y~ and X". We call the attribute with the
maximum deviation the pyramid variable.

Hyperpyramids

A finer DS partition is obtained by subdividing the pyramids into hyperpyra-
mids. A hyperpyramid is specified by the attributes with the two largest
deviations. If we extend the 2-D example above to a third dimension Z, we
can define hyperpyramids of level 1. A point in the hyperpyramid Y* X" has
the maximum deviation in the Y attribute and is above average, and the next
highest deviation is in the X attribute where it is again above average. There
are 2d(2(d — 1)) possible hyperpyramids of level 1 in d-dimensional space.
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Level 1 hyperpyramids are a refinement of (level-0) pyramids, so level 1
hyperpyramids can be readily represented in a data cube by using a hierar-
chical dimension. Level 2 hyperpyramids are a further refinement of level 1
hyperpyramids, and can be represented by a three-level hierarchical dimen-
sion. In our experience, one level of hyperpyramids is quite sufficient for most
analyses. However, the outer layers of heterogeneous data can sometimes
benefit from a level-2 hyperpyramid. Here the benefit of using OLAP soft-
ware is clear: the level of partitioning refinement can be easily manipulated.

3.4.3 EDM Summaries

Every layer-(hyper)pyramid combination represents a class in the DS parti-
tion. The data points in each DS class are summarized by statistics that are
aggregable, that is, summaries of combined classes can be computed from the
existing summaries without going back to the raw data. Some examples of
aggregable summaries are counts (which we use in histograms), sums, sums
of squares and approximate quantiles. Summaries are computed for all the
attributes, not just the depth attributes. Attributes that are summarized but
do not contribute to the depth computation are called profiled or predicted
attributes, depending on their role. We will discuss predicted attributes later
on in the chapter. The summaries need to be aggregable to facilitate rolling
up the partition into a coarser partition (minimal partition computation)
without re-visiting the raw data. The summaries are used for further analysis
(set comparison, visualization, approximate nonlinear models). Note that we
can keep a sample of data points from each class as an EDM summary. The
sample can be used for the kinds of analyses (e.g., clustering) that cannot be
performed with aggregates.

3.44 Annotated Bibliography

A center-outward approach to depth computation is discussed in [82] and
[83]. See [72] for a discussion of the choice of center and its effect on the DS
partition. Data pyramids were introduced in [7]. Finer partitions of data
pyramids called hyperpyramids are discussed in [72]. A one-pass, efficient
algorithm for computation of depth quantiles is presented in [85].

3.5 SET COMPARISON USING EDM SUMMARIES

We are often faced with the question of comparing two data sets. Are this
week’s network statistics different from last week’s? If so, what is causing the
difference? Is it very long, data-intensive sessions or relatively short bursts?
There are many ways of comparing small data sets or univariate cases. We can
compare means, quantiles, and so on. However, it is meaningless to compare
the means (or any point estimate) of data sets that have millions of records.
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The analysis is at too high a level and the interesting variations and details get
swamped by the sheer volume of “typical” data. We discuss below set com-
parison based on a class-by-class testing technique.

3.5.1 Motivation

The comparison of two data sets can reveal a great deal of information. It can
identify groups that are statistically different. For example, when it comes to
buying automobiles, do women have different buying preferences from men?
In general, we can use set comparison techniques for comparing customer
behavior by region, by group, by month; comparing the output of automated
data collecting devices to establish uniformity; Another important application
lies in detecting inconsistencies between data sets. An automated fast screen-
ing of data sets for obvious data integrity issues could save valuable analysis
time. Other applications include data process flow management and monitor-
ing. An unexpected change in a data set can indicate a problem in the data
collection process. We discuss the glitch detection aspect of set comparison
techniques using a case study in Section 5.2.4 of Chapter 5. Set comparison
can be also used to detect unexpected shifts in data over time. For example,
suppose that the points in a data set represent a customer’s activity measured
through many attributes such as intensity of usage, duration, frequency of use
and others. A comparison of the distribution of points in data sets collected at
different points in time can indicate how the customer activity has changed
between the observation periods. We will discuss how to tell genuine trends
and shifts from spurious glitch related shifts.

However, detecting differences in the structure of large, high-dimensional
data sets is a difficult problem. Furthermore, the classical multivariate statis-
tics approach has centered heavily around the assumption of normality, pri-
marily due to analytical convenience in terms of closed-form solutions. When
the data sets are large, assumptions of homogeneity (e.g., i.i.d. observations)
that underlie classical statistical inference might not be valid.

We have found DataSphere EDM summaries to be useful in performing non-
parametric, piecewise statistical testing to identify sections where two (or more)
data sets differ from each other. In principle, the following discussion is appli-
cable to any partition, including axis-aligned linear and nonlinear partitions.

3.5.2 Comparison Strategy

In order to compare two or more data sets, we need to define a metric for
similarity of two or more data sets. Similarity is tested in a multi step fashion
(see Figure 3.7), using just the EDM summaries, which speeds up computation
significantly. First, we test the distribution of points among the DS partition
classes, within each subpopulation (combination of cohort values or equiva-
lently every slice of the data cube). Second, we compare the multivariate means
of the points that fall in each DS partition class. In addition, we use univariate



84 PARTITIONS AND PIECEWISE MODELS

DS* of DS* of
Data 1 Data 2

Multinomial Test
for Distribution of Points

DS* class-wise Mahalanobis Distance Test;

Other Tests
No Diﬁerence’/ \)iﬁerent?
Done Univariate Tests;

Methods suitable for
small data sets.

Isolate classes that are different;
Identify attributes that are different.

DS* = DataSphere Partition

Figure 3.7: Set comparison of two data sets using the DataSphere partition.

tests for each variable individually to see which variable is driving the dif-
ference. In particular, we are interested in answering the following questions.

1. Which subpopulations have changed their behavior in Data 1 as com-
pared to Data 2?

2. Of the subpopulations which changed their behavior, which sections
show the most change?

3. Of the subpopulations which changed their behavior, which variables
exhibit the most change?

3.5.3 Statistical Texts for Change

We use two complementary statistical tests that use only the EDM summaries.
The first test is the Multinomial test for proportions, which compares the
proportion of points that fall into each DS class. The second test is the Maha-
lanobis D? test, which we use to establish the closeness of the multivariate
means of each DS class within each subpopulation, for the two data sets. We
use the distance between the multivariate means as a measure of similarity.
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Note that it is sufficient but not necessary that the joint distribution of the two
data sets be the same to pass these tests, and hence we use a strategy of
multiple tests. In addition, one of the EDM summaries could be a sample of
data points from the class. We can then use the EDM sample to implement
nonparametric tests for shifts in distribution.

3.5.4 Application—Two Case Studies

In this section, we describe briefly two applications to illustrate the possible
types of analyses.

We applied the DataSphere technique to data sets obtained from a cor-
porate data warehouse. The first data set describes customer interactions with
a service offered by the corporation. The data consists of over six million ob-
servations collected at nine evenly spaced intervals (approximately a month).
Every data point consists of two cohort variables (VarA and VarB) related to
types of service and tenure of a customer and six quantitative variables (Var0
through Var5) related to the usage of the service. The data set is divided into
subpopulations based on the levels of the cohort attributes. Each subpopula-
tion is subdivided into 10 layers using depth quantiles and each layer into 12
pyramids. A profile of EDM summaries is computed for each such layer-
pyramid class. We expect that in aggregate, the customers in a subpopulation
should have the same behavior from month to month. Any differences are
worth investigating.

We analyzed the data set by applying a DataSphere to each successive pair
of monthly data. Figure 3.8 shows the distribution of data points for a parti-
cular subpopulation among different layer-pyramid classes. The X-axis indi-
cates increasing layers (layer 1 is the innermost layer, while layer 10 is the
outermost) and negative layers indicate negative pyramids, and the Y-axis
indicates different pyramids. The size of a circle is proportional to the number
of points that lie in the indicated section. Note that the points are not distrib-
uted evenly among the layers because we plot the distribution of a pyramid
and subpopulation, which constitutes a subset of the data points in a layer.
Also note that creating a partition based on two criteria (distance layers and
directional pyramids) enables us to visualize the aggregates of six-dimensional
space in two dimensions.

We compared data sets from successive observation periods to determine
if customer behavior changes between periods. In Figure 3.9 we show the
results of the multinomial test. We plot a dot whenever the multinomial test
indicates a significant difference. The purpose of this bead plot is to identify
subpopulations that have a different distribution of data points among layer-
pyramids, as compared to the previous month. Note that the beads are con-
centrated at lower end of the “age” (the tenure of the customer with respect
to a particular service) variable. That is, in general, new customers change their
behavior, then settle into a more stable pattern. Such information is useful for
determining how best to provide service to the corporation’s customers.
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Figure 3.8: Distribution of points from the customer data set among sections. Dot size indicates
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Figure 3.9: Multinomial test on the customer data for a given value of VarA. Dots indicate
significant differences.

For the next stage of set comparison, we select two data sets where the sub-
populations differ and apply the more detailed multivariate means test on a
class-by-class basis. We plot the results in Figure 3.10, where the dots again
identify layers that are statistically different. This comparison also shows that
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Figure 3.10: Multivariate means test on the customer data for a given value of VarA. Dots indi-
cate significant differences.

recent customers change their behavior (from one month to the next) almost
everywhere in the attribute space (e.g., they increase their usage, log on more
often, etc.), while older customers are more stable.

Our second case study is a description of network traffic. The data set con-
sists of 600,000 data points with two cohort variables (VarA and VarB) and
three quantitative variables. Again, we give a high-level description to capture
the nature of set comparison, without disrupting the narrative flow too much.

We collected two data sets from two different observation periods. We are
interested in determining if network traffic is different at different observa-
tion periods. Our analysis indicated that there is no significant difference
between the data sets collected at different time periods, indicating that the
characteristics of network use are stable over time.

Next, we compared the network use for different subpopulations based on
the cohort variable A. We found some significant differences. In Figure 3.11
we plot the distribution of points of a particular pyramid across the layers in
the pyramid, for four subpopulations. The distributions of points for the sub-
populations show the same basic shape, but some subtle differences. For a
more refined analysis, we show the multivariate means test in Figure 3.12. Sig-
nificant differences show up only for a particular pyramid PO- corresponding
to low values of one of the numeric attributes (e.g., very short bursts of traffic).
Hence we conclude that the subpopulations differ only in that section of the
data that has exceptionally low values of the particular attribute. We have thus
isolated subpopulations and the specific sections within the subpopulations
that are different.

By partitioning the data sets, we can use well-developed nonparametric
statistical tests to compare data sets. Data set comparison can yield interest-
ing and useful information, indicating whether it is changing, and how. In
Section 5.2.4 of Chapter 5, we will use this technique to detect glitches and
learn how to distinguish genuine changes in data sets from data quality issues.
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3.5.5 Annotated Bibliography

Statistical tests like the Multinomial test for distribution of points in classes
and the Mahalanobis test for distance between multivariate means are dis-
cussed in [105]. The book is also a good reference text for hypothesis testing,
statistical estimation and linear statistical inference. A detailed description of
set comparison using DataSpheres is in [71].
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3.6 DISCOVERING COMPLEX STRUCTURE IN
DATA WITH EDM SUMMARIES

In addition to set comparison, we are often interested in expressing relation-
ships between attributes in a concise, compact fashion. For example, “every
additional year spent studying increases the potential earnings of an individ-
ual by $20,000 annually.” Or, “smokers are twice as likely to die of lung cancer
than non-smokers at any given age.” Such an exercise helps in prediction and
is called model fitting or model selection. Model fitting is a way of compactly
representing the structure in the data (data summarization, data reduction).
There are many methods and disciplines, ranging from statistical models like
log-linear models (logistic regression), proportional hazards to computational
models like neural networks, clustering and hierarchical Bayesian networks.
The common idea is to express the structure in the data set through a rela-
tively small set of rules or specifications about the data and attribute rela-
tionships, that characterizes a major portion of the data with an acceptable
degree of accuracy (“goodness-of-fit”).

3.6.1 Exploratory Model Fitting in Interactive Response Time

Model fitting for large, heterogeneous, multidimensional data sets is difficult.
As mentioned earlier, the data sets typically consist of a mixture of potentially
large number of probability distributions so that most of the assumptions
underlying existing techniques do not hold (e.g., “data are drawn from a dis-
tribution that belongs to the exponential family”). While these methods can
be generalized to a mixture of distributions in principle, computing them
involves too many parameters. That is, no single compact model with a rea-
sonable number of parameters can accurately represent a major portion of the
data set. Furthermore, representing complex nonlinear relationships is com-
putationally expensive (e.g., clustering, classifiers) even for moderately large
data sets.

An effective solution is to break up the data into smaller pieces and fit fast,
simple, approximate models locally within each piece using EDM summaries.
Such an approach is fast since it is based on summaries and enables us to inter-
actively explore a large set of modeling options. The collection of approximate
models represents the composite model for the entire data space. Such a com-
posite model can be tailored to approximate the “true, arbitrarily complex
model” to a desired degree of closeness by varying the granularity of the par-
tition used to divide the data into pieces. However we should be careful not
to overfit in which case we will be modeling the noise and not the structure in
the data. The partitioning scheme use to generate the pieces of the data should
result in a manageable number of classes, else the number of models to fit and
store will be very large.

We discuss below two examples of piecewise fitting of approximate models.
The first example is about approximating traditional statistical approaches
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where we are interested in answering a particular question like “how is a
particular kind of response (buying brand A, switching telecom companies,
amount of money spent on entertainment) affected by observable attributes
(income level, education, number of telecom competitors in the area etc.)”.
Such questions are answered using statistical models that are broadly called
regression type models.

The second example is more in the spirit of nonparametric approaches such
as classification and clustering. We improve classification models by fitting
simple one pass classifiers locally within each class of a partition of the covari-
ate (feature) space, so that the attribute interactions are captured indirectly.
Note that the common theme in the two approximate modeling techniques is
the use of simple EDM summaries to approximate complex structure in the
data.

3.6.2 Annotated Bibliography

A good overview of linear, log-linear and other types of regression models is
presented [86]. A discussion of survival models such as the proportional
hazards can be found in [24]. Piecewise model fitting and associated issues of
smoothing and boundary conditions are discussed in [42] and [48].

3.7 PIECEWISE LINEAR REGRESSION

Consider the case where we wish to estimate the effect of the vector of covari-
ates X on the response variable Y, represented by g(Y) = f(X), where g and f
are functions. Parametric methods assume that f(X) has a convenient reduced
representation such as

g(¥) = f(x.5)

where g and f are known functions and B is a vector, of parameters. The
problem is reduced to estimating just the parameters f. Log-linear models
are examples of parametric models. Computing the model parameters (e.g.,
maximum likelihood estimates) requires several iterations over all the data,
using expensive algorithms such as Newton-Raphson or EM. If the assump-
tions are true, the fitted parametric models can be powerful, accurate and can
be fitted using very little data. The problem becomes much harder when there
is no prior knowledge to facilitate distributional assumptions or model selec-
tion. Ad hoc exploratory methods are an unsatisfactory option.

Therefore, using EDM summaries (which often include sufficient statistics)
to construct fast nonparametric piecewise models is very attractive if we
believe that such nonlinear relationships exist in our data. Furthermore, the
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Figure 3.13: Piecewise linear regression with one covariate.

nonparametric models can often be leveraged to identify a suitable a set of
parametric models that can be built using an EDM sample of the data.

A particular type of relationship that is easy to estimate from EDM sum-
maries is linear regression, where the function f(x, ) is linear in the fSs. That
is,

g(Y):ﬁo +x1ﬁ1 +x2ﬁ2+...+xdﬂd +8,

where B, are the regression parameters, x;s are the attributes or covariates, and
€1is a random error.

Linear regression simply means that the effect of certain attributes (covari-
ates), on an attribute that we are trying to predict (response variable) is addi-
tive, as in:

Weight =20+ 0.5Height +0.75Age + €. (3.1

In the above example, if we know the height and age of an individual, we
can predict weight using the additive relationship. The quantities 20, 0.5 and
0.75, are called the regression parameters or coefficients and are estimated
from the data using techniques like least-squares. We will not discuss regres-
sion methods in this book.

In Figure 3.13, there is just one covariate, so the piecewise model consists
of splitting the single covariate into intervals and fitting a straight line within
each. (Note that we need to impose constraints at the boundaries so that the
two values from the neighboring straight pieces agree where we split the inter-
val.) There is a vast amount of literature on smoothing, boundary conditions
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and choosing the intervals. When there are two covariates (example age and
height), the covariate space is two-dimensional, so that our partition consists
of rectangles rather than intervals. In higher dimensions, as we discussed
earlier, the number of pieces in a rectilinear partition increases exponentially
with a corresponding increase in the number of models to fit and to store.
DataSpheres are a simple way to partition the covariate space into a man-
ageable number of pieces to fit the models.

3.71 An Application

In this section, we give a brief description of the application of piecewise linear
regression. We focus on conveying the potential use. The analysis is based on
a real data set from a leading telecommunications company data warehouse.
It has two objectives:

1. First, to use simple EDM summaries to construct regression parameters
and use them to identify interesting attribute relationships for more rig-
orous testing (“every year adds 0.5 pounds to an individual’s weight”).

2. Second, to quantify the gains of using a piecewise regression model
based on the DataSphere partition over fitting one single regression
equation to all the data. We would expect the piecewise model to do
better since it is reflects the local variations in the data better.

The data set consists of six quantitative variables measured on 947,711 indi-
viduals. The variables measure different aspects of an online service offered
to consumers. In addition, two cohort variables corresponding to a subscrip-
tion date and type of service are associated with each customer.

We are interested in expressing the relationship between the predicted vari-
able, which measures the duration spent using the service, in terms of five
covariates, which are measurements of different types of activity generated
while using this service. We used the five covariates as depth variables (from
our DS terminology), to create a DataSphere for every combination of the
levels of the categorical variables (i.e., cohort variables). The EDM summaries
from every layer-pyramid combination are then used to compute the linear
regression coefficients for relating the predicted variable to the five covariates
(X, through X5) using the least squares method.

3.7.2 Regression Coefficients

Briefly, the picture in Figure 3.14 plots the regression parameters (fs) of three
of the covariates for each class of the DS partition. The plot clearly shows that
there is enough variation in the coefficients to justify a piecewise fit using the
DataSphere partitioning scheme. Similar variations can be seen in coefficients
corresponding to other covariates as well.
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Figure 3.14: Variation in regression coefficients of X1, X3, X5.
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Figure 3.15: Regression coefficients of X3 across layers.

Next, consider Figure 3.15, which shows the values of the regression param-
eters (f) for one of the covariates for two subpopulations (black dots, white
dots), corresponding to two different types of online services. The regression
parameter is plotted against the layers, where a negative layer corresponds to
a layer in a negative pyramid of a particular attribute. It is clear that the coef-
ficients of the two subpopulations A and B occupy different regions. The two
groups can be distinguished or separated based on their regression coefficients.
The statistical significance of the difference in the coefficients of the two
groups needs further testing. We have used the approximate model based on
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EDM summaries to rapidly identify subpopulations that are potentially dif-
ferent. The suspect subpopulations, being significantly smaller than the entire
dataset, can be investigated further using more computationally intensive
methods if necessary.

3.7.3 Improvement in Fit

We computed the R-square for each of the classes in the DS partition. R-square
is a measure of goodness-of-fit and represents the amount of random varia-
tion in the predicted variable associated with the variation in the covariates.
We give an informal definition below, where Y is the response variable:

> (r-¥)
Xy

for a given section. Here, Y represents the predicted value of the response vari-
able Y, obtained from the regression equation for each class. We will use the
difference in R-square as an informal measure of difference in fit, in tune with
the exploratory nature of the DataSphere analysis. We restricted ourselves to
sections in the partition that have a minimum of 10 observations. We noticed
that the sections with the maximum improvement in R-square were those that
have a small number of observations and were often the outer layers. This indi-
cates that the coefficients are considerably different from the overall fit. That
is, we have isolated subgroups that are different from the overall population
and need separate models.

In this section, we have shown that the EDM summaries based on a suit-
able partition provide a fast way of fitting piecewise regression models for pre-
diction. We have not included discussion of smoothing the piecewise models
and boundary conditions since this is a more specializes branch of analysis that
is outside the scope of this book.

Note that the approach is applicable to other nonlinear models like pro-
portional hazards and others where we can find simple nonparametric models
that use EDM summaries and provide the same functionality as parametric
models, are much faster and more widely applicable. We have successfully used
the nonparametric Kaplan-Meier estimate of the survival function within
every class of the DataSphere partition to approximate complex nonlinear
models like the proportional hazards model.

R*=1- (32)

3.74 Annotated Bibliography

A general reference for linear models is [86]. The book also contains a dis-
cussion of the Newton Raphson method. The EM algorithm is discussed in
[35]. An introductory, intuitive explanation of regression, random variation,
estimation through least squares and the R-square measure of fit can be found
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in [47]. A linear algebraic treatment of linear regression with discussion about
error assumptions is found in [105].

A discussion of smoothing, boundary conditions and other matters related
to piecewise models can be found in [42] and [48].

For an introduction to survival analysis and the proportional hazards
model, see [24]. An example of approximating a nonlinear model like the pro-
portional hazards with a collection of piecewise estimates of the survival func-
tion is presented in [31].

3.8 ONE-PASS CLASSIFICATION

An important focus in EDM is to reach an approximate solution relatively fast,
rather than find an extremely accurate solution that takes hours if not days to
complete. While this is contrary to the classical statistics approach, it is a neces-
sity dictated by the volumes of data (e.g., streaming data) that get seriously
backlogged if not dealt with rapidly. In this paper, we propose scaling a popular
data mining technique, classification, to large multivariate data sets by fitting
simple one-pass classifiers within each class of a scalable partition of the at-
tribute space. In addition to speed and flexibility, the technique has the ad-
vantage that the assumptions of independence of attributes that underlie the
simple models (Naive Bayes) hold locally within each class of the partition.
The variation in the classifiers across the classes captures the interaction of
the attributes.

3.8.1 Quantile-Based Prediction with Piecewise Models

Consider the problem of binary prediction. Given a binary response variable
Y, we are interested in predicting its value as a function of the covariate vector
X=(X,...,Xy).

A simple model can be built based on the conditional distribution of X;
given Y. An example is Naive Bayes classifier, which uses the Bayes rule for
prediction. That is,

a P(Xi|Y)P(Y)

P(YlX) - Hi:l P(Xl) s

where the covariates X; are assumed to be mutually independent. Continuous

covariates require further assumptions about the form of P(X/Y). We take a

more general approach by “discretizing” the X;’s using quantiles.
Furthermore, we make the above simple model more effective by applying

it within each class of a partition of the covariate space. Axis-aligned, recti-

linear grids based on equi-depth marginal histograms (ecach bin has same

mass) of the covariates are not suitable because number of classes in the par-
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Figure 3.16: Left: Univariate prediction, independence assumption; Right: Multivariate, piecewise
prediction.

tition increases exponentially with the number of dimensions. Within each
class of the DS partition of the covariate space, we apply the simple binary
prediction model with quantile based discretization of the covariates. The
interactions between the covariates are reflected in the variations in the pre-
dictive models across the classes of the partition.

The simplest method of estimating P(X;|Y) is linear interpolation within
any bin of the histogram, assuming that all values are equally likely within the
bin. More sophisticated estimates can be computed using kernel splines or by
making other assumptions about distribution of points within a bin. For dis-
crete variables, we simply take the proportion of all sample points that fall in
the bin.

In general, the overall likelihood ratio is computed via

1(Y=1|X)_Hd P(X,|Y =1)

I(X):l(Y:OIX) “Lapx Yy =0y

after simplification. (See Figure 3.16, left.) We ensure that the estimates are
robust by choosing quantile based intervals that contain a guaranteed number
of points.

The process of prediction simply consists of choosing a cutoff y such that
we predict Y =1 if /(X) > y and 0 otherwise. Note that y is a parameter of the
model, whose choice can be determined by trading off the different types of
errors, such as Type I and Type II. y will vary across the partition.

3.8.2 Simulation Study

We created a data set where the response variable Y was 1 if:

2x—-y*+0.5z% +3xy+5yz+xyz>=1
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and 0 otherwise, where x,y,z are standard Normal variates. The data set con-
sisted of 200,000 observations with 124,692 responses being zero, so that
approximately 37.66% of the responses were 1.

An application of the likelihood ratio based prediction using marginal dis-
tribution of the covariates, to the entire data set resulted in a 13.09% mis-
classification error. We then created a DS partition of the covariate space x, y,
z into five concentric distance layers and fitted a binary prediction model
within each layer.

S-Layer Partition Layer-Pyramid Partition

Layer N % Error Layer Pyramid N % Error

0 39,984 16.5 0 0 10,795 5.45

1 39,990 18.6 0 1 13,878 7.4

2 39,969 15.7 0 2 15,311 15.51

3 40,083 10.4 1 0 12,902 7.2

4 39,974 8.3 1 1 12,743 14.54
1 2 14,345 13.76
2 0 12,812 8.5
2 1 12,655 11.76
2 2 14,502 8.31

The central layer around the center is referred to as the 0 layer. Since layers
3 and 4 seem to have a lower error rate, we ignored them and further parti-
tioned the layers 0,1,2 into 3 pyramids, by dropping the distinction between
the positive and negative pyramids of any attribute. The overall error rate
is now 10%. That is, even with a very crude partition of 11 large classes (N >
10K), we have a significant reduction in the error rate. Note that we can
selectively refine the partition to focus on regions where the fit is poor. How-
ever, we have to be cautious not to overfit.

We have shown that a fast, effective way of modelling a complex multi-
variate data set is through quantile based, scalable partition such as the DS
partition which serves as a grid for fitting piecewise models. Furthermore, we
have shown that a simple quantile based binary prediction model based on
assumption of independence of covariates can be extended to capture covari-
ate interactions by applying it within each class of the partition.

Further refinements can be made by exploring: (1) The effect of highly
correlated variables—correlated attributes will reinforce each other and
dominate the prediction. It is enough to keep a single representative at-
tribute. (2) Other options for variable selection, and (3) Different types of
probability estimation to improve the model while preserving simplicity,
computational speed and ease of interpretation.
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3.8.3 Annotated Bibliography

See [52] for a discussion of statistical modelling with quantile functions. See
[36] for a discussion of Naive Bayes classifier and the robustness to the failure
of the independence assumption.

3.9 CONCLUSION

In this chapter we have introduced data partitions such as data cubes,
DataSpheres and others that are induced. We have used the partitions to
create fine grained summaries of the data which we call EDM summaries. In
addition to revealing simple characteristics of the data, the EDM summaries
can be used to make comparisons of groups and to detect trends over time.
Furthermore, EDM summaries are very effective in rapidly detecting struc-
ture in the data such as inter-relationships between variables. The results from
such exploratory model fitting can be used to interactively select more ac-
curate, sophisticated models which can be computed using a very small subset
of the data. Alternately, we can construct piecewise models with simple com-
ponents using EDM summaries to approximate complex nonlinear models.
EDM summaries can also be used to detect anomalies in data sets.



CHAPTER4

Data Quality

41 INTRODUCTION

Data quality is a complex and essentially unstructured concept. Many disci-
plines have taken one-shot approaches addressing simpler abstract versions of
the real problem. A major challenge in devising general solutions is that
solving data quality problems requires highly domain-specific and context-
dependent information, involving interaction with domain experts. Only
experts can specify the rules and data flows (dynamic constraints) that are
correct. Developing such a set of rules is a critical step in data checking and
validation. In addition, the set of specifications that define appropriate data
behavior are skewed, in the sense that, while a handful of rules can specify say
50% of the data, every additional rule specifies smaller and smaller portions
of the data. To cover 90%-95% of the data, we might need hundreds of
rules, coming down to a case-by-case basis in the last 10% or so of the data.
We will explain this in detail in Sections 4.4.6 and 5.5. The ultimate goal of
DQ methods as well as metrics is the improved usability and reliability of
the data.

Data quality monitoring is an incessant and continuous activity starting
right from the data gathering stage to the ultimate choice of analysis and inter-
pretation of the results. We need to update the static conventional definitions
and metrics of data quality to reflect the continuous and flexible nature of the
DQ process and metrics needed to effectively measure and monitor data
quality. Consider the following two remarks:

1. “Current data quality problems cost U.S. businesses more than 600
billion dollars a year.”

2. “Between 30% to 80% of the data analysis task is spent on cleaning and
understanding the data.”

Exploratory Data Mining and Data Cleaning, by Tamraparni Dasu and Theodore Johnson
ISBN: 0-471-26851-8 Copyright © 2003 by John Wiley & Sons, Inc.
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The first remark is based on a study conducted by The Data Warehouse
Institute, commissioned by DataFlux [122]. The second remark is survey based,
from conversations with practitioners of data mining. Factual or anecdotal, the
importance of data quality is becoming increasingly clear, as evidenced by the
surge in software, tools, consulting companies, and seminars addressing data
quality issues. In addition to the cost in terms of time and resources, there are
hidden costs to poor corporate data. Bad data can lead to inaccurate bills,
resulting in loss of revenues (underbilling, losing customers through over-
billing), loss of credibility (“If they cannot bill correctly, how can they
provide 24/7 network reliability?”) and an immense overhead in customer
care. In addition, inaccurate databases can hamper the provisioning of new
services. For example, customers might want to manage their own accounts in
terms of changing the products and services they buy (e-management and e-
provisioning). However, in order to offer this convenience, the databases
need to reflect accurate and current views of the customer’s account.

In this chapter we discuss data quality as a continuous concept from the
data gathering stage to the ultimate analysis stage. We call this the data quality
continuum. Each stage has its unique source of problems that need specific
solutions. Therefore, we discuss defining data quality in the context of the data
quality continuum. Such an approach requires updating conventional data
quality definitions to suit the vastly changed data universe today.

An important aspect of the data quality continuum approach is the inter-
action with the data. Data quality is an iterative process where data mining
(EDM) techniques can help unearth data glitches. As discussed earlier, the two
are closely related. The top results of a data mining exercise are certain to
include at least one data glitch or data misinterpretation. Data misinterpreta-
tion occurs when the metadata are insufficient to fully interpret the data. For
example, “the attribute Income represents the after-tax income, except in the
state of New Jersey, where it represents the pre-tax income.” If this rule were
not known, New Jersey residents would show up as extreme outliers in a data
mining exercise. An EDM phase is often an effective way to unearth incon-
sistencies that point to potential hidden data rules. Data browsing and data
profiling are effective EDM methods that help “discover” rules and specifica-
tions that were not officially documented, in addition to starkly highlighting
the flaws in the data.

Consider the following example, where we don’t know much about the data
and need to discover a unique identifier to match the data set D1 with other
data sets.

+ Data Set: D1
+ Number of data points: 1000

- Attribute: A
Unique values: 4
Missing Values: 3
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Figure 4.1: Data quality watch points.

- Attribute: B
Unique values: 980
Missing Values: 0
Frequency Tables:
“Null” 6
“0”5
“Blank”5
“000-000-0000” 5
“N/A” 4
“123-456-0000” 1
“123-456-0001" 1

« Attribute: C
Unique Values: 10
Missing values: 950

Attribute A is well populated but has only 4 unique values. It is unlikely to
be a unique identifier (match key). Attribute B is well populated and has a
large percentage (98%) of unique values. However it has a small amount of
corruption in it in the form of nulls and junk strings like “000-000-0000”. Once
the junk is removed, attribute B is a good candidate for a match key. Attribute
C is fairly useless since it is not populated most of the time. It is clear from
this simple example that data browsing and profiling can provide insights and
help identify obvious data quality issues. In the next chapter we will discuss
tools and algorithms that help with data browsing aspect of EDM.

In this chapter, we will give a brief overview of four complementary
approaches to data quality derived from the areas of:
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. Process;
. Statistics;
. Database; and

=W -

. Metadata and domain expertise.

The statistical and database approaches are frequently diagnostic in the
sense that they happen after data collection. We discuss these two approaches
in detail in Chapter 5. The process and metadata/domain expertise aspects are
integral to the design of data gathering, data flows, data specification, data
storage, data retrieval, data analysis and data monitoring. We consider these
to be pre-emptive approaches to data quality and discuss them in this chapter.
Wherever possible, we integrate case studies into the narrative.

Previous texts have discussed static and context-free definitions of the
meaning of data quality. In this book, we explore a definition of data quality
which relies on the nature of the data and its intended use. Finally, we propose
a method for developing data quality metrics, based on defining a set of con-
straints that the data should satisfy. These constraints are of two types: static
constraints, which match the data to its schema or other descriptions, and
dynamic constraints, which match data flows to business rules.

42 THE MEANING OF DATA QUALITY

The meaning of data quality is often closely tied to the context and applica-
tion. However, there are certain conditions and constraints that are common
to most data sets. In this section, we will discuss both types of data quality
(DQ) considerations.

4.2.1 An Example

Before we discuss the meaning of data quality, consider the following hypo-
thetical example:

T.Das|9733608327]24.95]Y| ~|0.0[1000
Ted] |973 — 360 — 8779[2000|N|M|N'Y|1000

The data represent two records with pipe (“I”) delimited fields.

- Can we interpret the data?: Without a data dictionary the above data are
unusable. It does not matter even if the data are accurate, timely, consis-
tent and complete. While we can make some educated guesses about the
meaning of the fields, the lack of sufficient data descriptions are a leading
cause of poor data quality. Next, suppose we get hold of a data diction-
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ary. It tells us that the fields are name, phone number, revenue, indicator,
gender, state and usage.

Data quality problems: At the very first glance, we can identify some data
problems. The name field has two different representations “First initial
Last name” and “First name Last initial.” There is no standard way of rep-
resenting the name attribute. If there are no standards across and within
a database, joining tables to create integrated views becomes a huge
problem since there are so many exceptions that need to be considered.
A similar problem exists with the phone number which is hyphenated in
the second record but not in the first. In addition, note the typo of “0” as
“0”. The possible reason could be manual entry of data. Also note that
the Gender attribute is missing in the first record. Another inconsistent
entry is the State attribute in the first record. It should be a string but what
does “0.0” mean? We could find the above obvious problems using the
data description given. However, there are other problems of data parsing
and data interpretation that are not evident. Such problems are revealed
as a consequence of verifying the static constraints on the field formats.

Metadata and Domain Expertise: There are hidden problems that require
knowledge over and above a mere description of the data. For example,
it seems that Ted J. generates revenues several magnitudes larger than T.
Das. A data mining algorithm would pick Ted J. as an outlier. However, it
is possible that T.Das’ revenue was reported in dollars (convention in New
Jersey state) while Ted J.’s revenues were reported in cents (convention
in New York). Similarly, we would put both the users in the same usage
category since the usage is 1000 for both. However, we were not given an
important piece of information. If the indicator is “Y” then, the usage has
been censored. That is, we know that the usage is at least 1000, we do not
know if it is 1001 or 100000. We will discuss censoring in greater detail
further in the chapter. From this example it is clear that there are rules
and conventions related to process implementation that need to be used
to interpret that data. Such rules are often obtained from domain experts
and should be a part of metadata, data about the data. We will define
these concepts in detail in Section 5.4. Major failures in data quality (data
misinterpretation) often arise from insufficient metadata and domain
expertise.

4.2.2 Data Glitches

A data glitch is any change introduced in the data by causes external to the
process that generates the data and is different from the usual random noise
present in most data sets. Noise is caused by uncontrollable measurement
errors such as imprecise instruments, subtle variations in measurement condi-
tions (normal wear and tear of hardware, software degeneration, climatic
conditions) and human factors. Data glitches on the other hand are system-
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atic changes caused by mega phenomena such as unreported or dropped data,
unintended duplicate records, switched fields and so on. Some inconsistencies
are obvious and easy to detect while others are subtle, and are noticed only
after they have been compounded several times resulting in significant devia-
tions from the true values, necessitating expensive backtracking. Localized
errors are swamped in aggregates, and therefore go undetected for quite some
time. We present below an anecdotal discussion of a subset of commonly
encountered data glitches.

Unreported Changes in Layout

When data processing centers make changes, downstream users are not aware
of these changes for a short interval of time. However, they continue to receive
and use the data feeds during this interval. Some of these changes are obvious,
such as a change in layout where the position of a 13 character string variable
is switched with a float. But sometimes the changes are subtle (e.g., a swap of
two numeric fields) affecting only a few variables that resemble each other in
their univariate behavior but differ in their interaction with other important
variables. These glitches can be hard to detect because univariate tests and
aggregates will not detect such changes. An example of such a condition could
be the switching of the fields that measure the customer usage of a service
with two competing providers. While the overall patterns might be similar,
each provider might be used for a different purpose, affecting its interaction
with other variables such as time of day, application and others.

Unreported Changes in Measurement/Scale/Format

In some situations, a field or variable is sent to the users without being
processed completely. This could be due to a program exiting without com-
pleting, yet generating no error message. The processing could be such that it
affects only a small proportion of the records, but has serious consequences.
An example is the application of volume discounts to generate customer bills.
Some discounts are so structured that only a fraction of percentage of top users
qualify. However, failure to process the discounts can create serious customer
satisfaction problems alienating valuable customers. Again, tests based on
aggregates often fail to detect such errors.

Temporary Reversion to Defaults

A third kind of frequently encountered glitch is caused by the defaulting of
measuring devices to pre-set limits. For example, the reported length of any
telephone call exceeding 100 minutes could be defaulted to 100, due to some
temporary condition in the switches. Aggregates do not reveal such glitches
unless the error condition persists for a prolonged period of time. However,
the existence of such a condition for even short periods of time could result
in lost revenues. Therefore it is important to detect such errors as close to real
time as possible.
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Missing and Default Values

Missing values are very prevalent in data sets. There are many different ways
of dealing with them such as dropping them from analysis or substituting
typical values for them. The approach depends on the amount of data missing
as well as the nature of the application. An extra complication occurs when
the missing values are defaulted to a valid value of the variable itself, usually
an infrequent one. An example is representing missing values by zero, even
though zero might be a valid but unlikely value of the variable. The implica-
tions can be serious if there is a sudden increase in the valid “zero” values,
which will be masked by the missing “zero” values. While it is obvious that
setting such defaults is incorrect, decisions for data collection and measure-
ment processes are not necessarily made with a view to future analyses. Some-
times the limitations of the systems that process the data force such ambiguous
defaults.

Gaps in Time Series Records

Discontinuities in historical or transactional records can be detected easily
once the need for detection has been established. For example, in a system
that updates the status of a data point, it is simple to verify that the update
applied to the old status results in the new status. Consider the following
sequence of updates:

1. current status = 3 cellular phones, 4 phone lines
2. update: drop = 2 cellular phones, add = 1 phone line
3. new status = 0 cellular phones, 9 phone lines.

Clearly, some intermediate updates are missing. However, the problem
becomes serious when there are many such missing records and a large portion
of the data set is quickly disqualified.

4.2.3 Conventional Definition of DQ

Traditionally, data quality has been defined and measured using stringent
constraints that need to be satisfied. For example, the concepts of accuracy,
completeness, timeliness and consistency figure frequently. We discuss these
concepts briefly. Accuracy pertains to the closeness of the value in our data-
base to the true value. Accuracy is difficult to measure since very often we do
not know the true value. However some instances like “0.0” or “NX” for the
attribute State are obviously inaccurate. Completeness measures how com-
pletely the target domain is represented in our database. For example, if we
are trying to represent the Himalayan organisms, to what extent have we
covered the population? Many data quality issues arise out of a lack of com-
pleteness. What if the census mistakenly leaves out the Asian or Hispanic pop-
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ulations in the United States? Poor performance on this metric can seriously
bias the analysis performed using the data and the decisions thus made, even
if the data are accurate. Completeness also is difficult to measure. Timeliness
refers to the currency of the data. That is, the most recent time when it was
updated. This DQ dimension is critical for certain attributes like weight that
change over time, while it is irrelevant for attributes like specie type and
gender that are fixed and do not change with time. A special consideration
with respect to the time aspect is synchronization—ensuring that time
windows match up (e.g., we can’t roll up weekly summary to compare to
monthly summaries without a significant loss of accuracy). Consistency
ensures that the there are no conflicts within or between data sets. For
example, we might find usage for a service that a customer has not subscribed
to, or the same person might have different genders in different data sets.
Many databases provide for automatic checking of inconsistency by defining
constraints that the data values need to satisfy. Despite such provisions, incon-
sistencies abound in most real-life data sets.

There are other dimensions of data quality such as content, level of detail,
appropriateness, interpretability and portability pertaining to conceptual
views and representations of the data. We will discuss these issues along with
additional concepts in the context of the data quality continuum.

4.2.4 Times Have Changed

The DQ metrics discussed in the above section impose rigid and somewhat
static requirements on the data. However, we need more updated and flexible
criteria for judging the quality of contemporary data sets. The nature of col-
lection as well as the size, variety and content of data have changed dramati-
cally in the last decade. In fact, the definition of data itself has changed
dramatically to include any kind of information that is analyzed systematically.
So have the expectations of data changed. In addition, we need to incorporate
the domain-specific nature of DQ into the metrics by making them flexible
and easy to customize. Some reasons for revisiting the definition of DQ metrics
are:

- New data paradigms: Traditionally, data were collected from well-
designed experiments tailored to answer specific questions. The measure-
ments were often meticulous and repeated to adjust for random
variability. Statisticians are accustomed to such data. However, things
have changed dramatically We now have automatic data collection
systems that spew out monster torrents of data (we discussed summariz-
ing such data in previous chapters). These data sets are often “found
data”—being a byproduct of another process (e.g., web server logs), or
extracted from a non-authoritative source (e.g., web-scraped tables).
Therefore, such data streams are plagued by data quality problems. We
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cannot exercise any control over the design or collection of such data. In
fact, the data collection mechanisms and conventions are frequently
opaque so that our understanding of the data is flawed, introducing data
quality concerns. In addition to the volume, lack of control and trans-
parency, the type of data has taken on new forms as well. We now have
images, web pages, web server logs, audio files and time series that arrive
out of chronological order. A frequent source of DQ problems is the
inappropriate use of known data representations to incorporate new data

types.

Federated Data: As corporations seek to use their data effectively, they
try to make their data “information rich” by bringing together many
different data sources. Enterprise data, where many disparate data are
integrated, often by force, are highly valued. However, data integration
creates its own DQ worries. Data sets often do not have common match
keys to bring them together. For example, if data set D1 contains species
type and weight and data set D2 contains species type and volume, how
do we get a complete picture of each of the Himalayan organisms? We
need an additional attribute in each of the data sets, say Id, that uniquely
identifies each organism and is the same in the two data sets. We can then
join the two data sets using the Id, constructing a combined data set D3
that has the complete information

1d, specietype, weight, volume
for each of the uniquely identifiable Himalayan organisms. Frequently,
within the same corporation as well as when companies acquire each
other, a clean common match key (or join key) is missing. We are forced
to use approximate joins using imperfect match keys like name and
address resulting in approximate joins. For example,

Ted Johnson, 3 apples, 09-01-2001
and

Theodore Johnson, 2 CDs, 09-02-2001

pertain to the same individual but cannot be integrated because the first
name is spelled differently. Approximate matching algorithms (we discuss
these in detail in Section 5.3.4) can give spurious matches with

Ed Johnson, Eddy Johnson, Todd Johnson

potentially different individuals. Such situations require the use of strong
DQ checks, validation and controls.
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+ Disconnect between data collection and analysis: In the past, data were
collected specifically with a particular objective in mind. The attributes
needed were predetermined and measured. In fact, even the analysis was
determined ahead of time and the data were measured accordingly. The
area of design of experiments in statistics is dedicated to this topic.
However the data sets that are “mined” and analyzed today are chaotic,
entered by harried sales personnel, scraped from convenient but buggy
sources, and/or generated as a byproduct of a process. There is no consis-
tency or a standard representation for the same data attribute, as we saw
in the example where revenues for T. Das were reported in dollars and
revenues for Ted J. were reported in cents. Furthermore, the meaning and
interpretation of the data are inadequately documented so that the data
become unusable by the time the analyst gets it.

- Great Expectations: As the data sets have become more massive and
varied, the expectations from the data have changed. No longer do we use
data for merely creating sedate summaries and reports. We want to mine
data, analyze it and use it as an oracle to prophecy trends, opportunities
and risks. At one point, the vision was to have a “black box” that would
ingest raw data and output actionable intelligence and rare insights.
However, it is now accepted that data mining is an interactive process
with several iterations incorporating feedback from experts, domain
knowledge and insights from earlier data mining phases.

Given the dynamic nature of the data domains and technology environ-
ments, the meaning of DQ and associated metrics should be revisited frequently
to incorporate the changing needs.

4.2.5 Annotated Bibliography

See [106] for a detailed discussion of the concepts of consistency, accuracy,
uniqueness and timeliness and other process related issues. These constitute
the static constraints. The book also contains a discussion of other dimensions
of data quality. Dasu and Johnson [30] provide an extensive discussion of data
glitches. See [81] for material on the treatment of missing values in Statistics.
Fisher [46] is a good reference for the statistical design of experiments.

4.3 UPDATING DQ METRICS: DATA QUALITY CONTINUUM

In this section, we emphasize the continuous and pervasive nature of data
quality measurement by discussing it in the context of the entire data flow
process using the data quality continuum. The major stages in the data quality
continuum are depicted in Figure 4.1. As mentioned earlier, the DQ problems
that arise at each of these stages are different, and need different metrics as
well as solutions.
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4.3.1 Data Gathering

In increasingly rare cases, the data gathering stage is preceded by a planning
stage, where the amount and type of data gathered are planned and provided
for. More often than not, however, it is the constraints on measuring devices
(“router can be polled only every one hour”) and business exigencies (“the
data base to support Product A has to be up and running by tomorrow”) that
determine the kind of data that is gathered, without the pre-planning stage.

Problems

As we saw in the example in the introduction, a major source of error at the
data gathering stage is the manual entry of data, which can result in mis-typed
data such as age is 90 instead of 19. Manual entry can also lead to incomplete
and missing data as often happens when the data source’s priority is to ‘sell,
sell, sell’ rather than accurate data entry. It can also lead to non-standard entry
like “Ted J.” and “T. Das”. Another frequently encountered problem is dupli-
cate entry of data. The database community has several algorithms for merging
and purging duplicates as we will see in Section 5.3.4.

The lack of a pre-planning stage often introduces intractable DQ errors such
as a mismatch between the scale of the problem and the scale of the hard-
ware/software used. It can lead to short sighted or uninformed decisions that
constrain the functionality of the data. For instance, it might be decided to use
daily aggregates rather than hourly aggregates of network traffic due to disk
or memory constraints. However, this might make the data unusable for fine-
grained analysis to study peak traffic patterns. Or the measuring device might
measure only a maximum of 1000 kilograms, “censoring” all values above that
limit. The database design might try save a few bytes through a special data
encoding, which makes hidden assumptions about the data to be stored (e.g.,
the infamous “Y2K” problem). Finally, there is always the measurement error
caused by inherent random variability that can be addressed using statistical
techniques. We have recounted a small fraction of the potential errors that can
be made during the data gathering stage.

Potential Solutions

There are two major approaches to handling DQ errors during data gather-
ing—pre-emptive and diagnostic. A pre-emptive approach is based on process
and architecture, to ensure the following:

+ Design and manage the processes to automate the work flows as much as
possible and avoid manual intervention and inputs.

+ Enter data once and enter it right—interfaces should be designed to
permit data entry in a standard form and to prevent duplicate entries.

+ Emphasize data sharing and data maintenance. Any changes in the meta-
data should be shared with downstream users immediately. In fact, data
and metadata should be inseparable.
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+ Assign responsibility to data stewards, who are subject matter experts,
who know and understand the data and how they are used. They are
charged with maintaining the quality of the data. U.S. government agen-
cies such as the EPA use data stewards extensively.

+ Conduct frequent end-to-end audits, starting at the data gathering stage,
to catch data corruption as soon as possible. Such audits need to be con-
tinuous and could be hard to implement.

Frequently, there is no way to control or manage the processes. The data
are what they are and the analysts and data miners have to deal with the data
the way they are. Statisticians and the database community have developed
diagnostic measures to hunt for data glitches in data sets and for cleaning them
up. These include methods for merging and purging duplicates, mapping non-
standard formats to “tokens” that can be used across tables and data sets, set
comparison techniques to identify sections of data that are suspicious and
others. We discuss these techniques in detail in the next chapter.

4.3.2 Data Delivery

The process by which the data are sent from the place of origin to a perma-
nent storage place constitutes data delivery. It is a complex process involving
multiple files, multiple feeds that have cross dependencies and time synchro-
nization issues. It takes rigorous design and monitoring to ensure data deliv-
ery without loss and distortion of the data.

DQ Problems During Data Delivery

There are two major categories of problems that arise during data delivery.
The first has to do with data mutilation and the second concerns data loss. It
is hard to say which is worse!

- Data mutilation: Often, the data are pre-processed before being sent to
downstream users. Reasons for doing this include space constraints,
memory constraints, time limitations, and sometimes a desire to hide
information. Data are aggregated (e.g., by time, by demographic group)
so that fine-level granularity is lost. This can be a problem if we want to
analyze patterns in short intervals of time or if we want to analyze indi-
vidual customer behavior.

Another instance of data mangling is inappropriate choice of defaults.
An unfortunate choice for representing missing values is 0 with no way
of telling a missing value 0 from a genuine 0. A revenue manager was once
shocked at how many customers were “zero-billers” until he figured out
that over 60% of the 0’s were missing values populated subsequently by
a process that was delayed.

Yet another source of data mangling are measuring devices with
hidden limitations that can introduce potential DQ errors. Some counters
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reset themselves after they reach a maximum. Some devices cannot
measure more than a certain quantity. Some measurements are too
insignificant from a revenue perspective and are dropped all together.
These introduce truncation (some observations are dropped and the data
set is truncated) and censoring (some observations are incomplete) errors
that we will discuss in Section 5.2.2.

+ Data Loss: Data can be lost for many reasons and in many ways. Just a
few attributes could be missing or entire records and files can be lost.
Buffer overflows (e.g., running out of disk space, overflowing pre-
allocated memory) are a major reason for data loss and unexpected
behavior of software that can lead to faulty data. Similarly, during trans-
mission, if either the receiving end or the transmitting end have problems,
files can be lost in transmission. Processes are often not properly designed
to perform checks and to ask for re-transmission of files should something
be missing.

Potential Solutions
The solutions for the DQ problems that arise during data delivery are pre-
dominantly process based.

+ Transmission Protocol: The transmission protocol that is used for data
exchange should permit the running of validation tasks to confirm that
the entire data has been transmitted. There are many protocols with dif-
ferent capabilities, such as CONNECT:Direct and FTP. Each protocol
has different functionalities and is compatible with different operating
systems.

— Relay Data: One way of avoiding data loss is to relay data to interme-
diate sites. This way, the transmitting server doesn’t get backed up if the
receiving server is unable to receive the data for a short period.

+ Verification: Run verification tasks to make sure that all the data have
arrived, and that there are no spurious data. The sooner that problems
are detected, the better the chance of making a successful recovery.

— Typically, there is a predictable pattern in the set of received data files.
For example, on Wednesdays you would expect 20 files from the New
York office totalling 180 Mbytes and 4 files from the New Jersey office
totalling 7 Mbytes. The file names will often indicate the contents (e.g.,
NYC_June_3_2002.dat), and often there is a data file header contain-
ing additional identifying information. The patterns in file delivery can
be readily discovered using the EDM techniques discussed in Chapters
2 and 3. Raise an alert if the set of received files significantly deviates
from the expected set.

— Verify that the files are in their expected format, and contain the
expected data. Consider writing a lightweight version of the file parser
which verifies the file format, and that for example the
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NYC June_3 2002.dat file contains data for the New York office and
not the Boston office.

+ Feed Integrity: Ensure that the feeds and files that constitute the data do
not have integrity problems (perhaps requiring a more intensive pro-
cessing than the transmission verification step) before they are combined
with other feeds. Ask for retransmission if there is a discrepancy between
what has been sent and received.

+ Feed Format: Make sure that there is enough documentation (record
format, file format) to be able to interpret the data and its structure.

Relationships: Most data processes have interdependent feeds that need
to be understood and synchronized to create the complete data. While
delivering these feeds it is important to verify the inter-relationships
among feeds and the relationship between the feeds and the source. Some
questions to ask are:

— Is the feed that we get an incremental view (changes since the last view)
or a replacement? If it is incremental, do we have the baseline to apply
it to? Should we obtain a replacement from time to time to make sure
that the two views are the same? Very often, the views get out of sync
quickly due to the fact that the rules used to apply the increment to get
a current view are seldom completely documented. New rules (“if the
value is ‘NULL’ change it to 0 because our software doesn’t like mixed
mode”) are made spontaneously to force a recalcitrant process to run.
The downstream user never finds out until the reconstructed view gets
out of sync with the original.

— Are the data coming in a stream (“packets that are flowing through the
router”) or as a database dump (census data)?

— Do we know the dependencies between the feeds? Which feed needs
input from others for processing?

Interface Agreements: As we have seen earlier, data are unusable if we
cannot understand and interpret them. It might be worthwhile negotiat-
ing a contractual agreement wherever possible to have access to the (a)
data dictionary and other documentation (b) notification whenever there
is a change or update to the process and (c) a well-established mechanism
for resolving problems.

We note that the most of the data delivery solutions are process related,
including accounting for all the data and making agreements to get informa-
tion (data dictionary, business rules), to understand and interpret the data
(metadata).

As seen in the preceding discussion, an important part of process based data
quality control is closely monitoring the data flows, checking at various stages
for data leakage and data publishing. We discuss below data monitoring and
data publishing, which should be incorporated in the data flow to improve the
data quality.
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Figure 4.2: Feedback loop in a process.

4.3.3 Data Monitoring

Let us consider how a new transaction (sale, Internet session, phone call) orig-
inates and flows through the work flow process being measured and recorded
in various databases on the way. We use the highly simplified example of a
process flow in Figure 4.2. Typically, every stage is represented by a database
or a collection of databases that contain every transaction or action taken by
the process. For example, a customer’s request for a service or product will
result in an input to the database. The information is passed on to a sales order
system that will create a request and also fill in the customer specific infor-
mation such as name, address, and request date. The information is then passed
on to a provisioning group that fulfills the order by arranging for various
resources (a port, an installer) to complete the order. The specific resources
allocated are recorded in a database. Finally, the customer is billed for the
services. There are recurring and nonrecurring charges that contribute to the
bill. Each of the stages in the data flow is represented by a complex set of
databases and data warehouses.

In addition to the internal consistency of these databases, problems arise
during handoffs between databases. We have found this to be a recurring
problem. At a very fundamental level, disagreements between definitions of
data constraints and business rules cause significant data quality issues. Some-
times, the owners of the process are not even aware that such inconsistences
and differing implementation of the same data and business rules exist.

Data quality problems in workflow data have dire consequences such as:

+ Revenue Loss and Revenue Assurance: A significant percentage of the
transactions do not make it from the databases that measure the usage to
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the billing systems. It is estimated that in the telecommunication sector,
on average between 3% to 8% of total revenues are lost, often reaching
as high as 15%. Revenue assurance, the field of plugging revenue leakage
by accurately billing all usage, is closely tied to data quality improvement.

Accurate view of resources: From the perspective of provisioning, it is
important to have an accurate view of the resources available, whether it
is the telecommunication network or a cineplex or airline bookings. If a
resource is not de-allocated when the customer leaves, the company will
either have to deny service that it can actually deliver or spend precious
cash obtaining additional resources.

Inability to provide new services: If the customers requests online access
to manage their own resource needs in real time, a corporation that does
not maintain accurate data processes will not be able to offer it, losing
valuable business to competitors in the process.

In addition to technical and process related reasons, there are many socio-
logical reasons that can be obstructions to smooth data flows.

Organizational Boundaries: Organizations seldom share information, even
though they are all a part of the same data flow process. Each organization
is focused on improving data quality within. However, if the systems have
interdependencies, it is not sufficient to clean up within an organization. In
fact, locally improving a database might have the opposite effect on other
databases further downstream by making them incompatible.

Transitions: Information, typically metadata that relates to conventions
about processing the data and hidden rules, are not communicated prop-
erly during personnel, project or company transitions and are lost over
time, making the data opaque, riddled with hidden pitfalls.

For all of the above reasons and many more, data monitoring is a critical step
in data management and data quality.

Methods for Monitoring Data

Data monitoring is a continuous process as the name suggests, since data
quality issues arise constantly and cannot be solved in a single one-shot clean
up initiative. An incomplete list of solutions is:

Track Data: A simple method of tracking data is to follow instances as
they flow through the process. Sampling vertically at any given point in
the process will not help. Furthermore, the longitudinal tracking of data
has to be done regularly since problems arise over time. Continuous or
online auditing systems are being developed to address the need for data
monitoring continuously in time.
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+ Reconcile and Validate: When the feeds consist of incremental updates,
it is easy for them to get out of step with the original feed due to missing
information. It is good to validate the data by reconciling it with the
original periodically.

+ Mandate: A corporation wide diktat could potentially mandate that a
minimum set of data elements should be maintained or obtained from a
database of record to ensure that the data are consistent across the cor-
poration. Pressure from upper management is an extremely effective tool
in obtaining DQ compliance.

+ Feedback Loops: Perhaps the most important data monitoring tool is the
feedback loop. There are natural feedback loops in some instances. For
example, overbilled customers will usually call the company to complain.
However, this process is asymmetric—most customers will not call to
report underbilling (or not being billed at all). Therefore, a company
needs to put in place its own feedback loop to check for errors. In Figure
4.2 the dotted arrows represent loops that need to be in place to make
sure that the databases of customer accounts, provisioning and billing are
always able to communicate with each other.

Whenever a change is made anywhere in the system, the changes have
to be propagated and cycled throughout the system to ensure that every
system which uses that data element is informed. At the very least the
data base of record (which serves as the ultimate authority for that piece
of data) should be updated. If a customer calls to disconnect a particular
service or product and the provisioning system is not informed, the
resource will not be deallocated and soon all the resources will be flagged
as “in use” when they really are not.

Data Publishing

As an important data monitoring strategy, data are made accessible to the
users through data publishing. The motivation for data publishing is often the
scale of the data. The raw data are overwhelming in size and complexity, and
integrated from several sources. The task is made easier for the end user of
the data by preprocessing the data and making it available in a manageable
form through publishing. The access to the data is often provided over the web.
Data publishing also involves publishing a description of the data serving as
documentation. Data integrity problems and their resolution are also posted
serving as an evolutionary history. Most of all, data publishing allows many
users to scrutinize the data, each using a different portion of it, in a different
way, for a different purpose. This serves as a “testing” phase for the data since
the users are sure to report data problems, increasing the likelihood of detect-
ing data quality issues. However, a drawback is that the data problems pointed
out by the users could be potentially used to discredit the data source and used
as political ammunition.
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In order to publish data, massive data are summarized to manageable
proportions, using data squashing techniques among others. In addition to
summaries, publishing exceptions serves as a data alert mechanism.

Data Squashing
Data squashing is an important example of the use of EDM for data quality.
Three important EDM techniques for squashing data are:

1. Aggregates based on data cubes: We described data cubes in Section 3.2.
A common form of squashing involves computing aggregates such as
frequency counts, sums and other “summable” aggregates.

2. Parametric Data Squashing: Dumouchel et al. in their 1999 paper on data
squashing propose using parametric methods to impute values within a
cell of a partition using various distributional techniques such as the mul-
tivariate Gaussian. With such an assumption, we can compute any aggre-
gate that is required.

3. Nonparametric Data Squashing: DataSpheres are the basis for a non-
parametric squashing of data. The boundaries and the summaries are
dictated by the data and are mostly assumption free.

4.3.4 Data Storage

Once the data have been delivered, they must to be stored on devices in some
format and with some storage management software. In these days when a
corporate operations database can easily fit in an inexpensive desktop PC,
physical storage is generally not a problem. We do not address physical storage
in this book except to note the problems which can occur (e.g., insufficient
space, limits on file size, data loss).

This book is more concerned with the logical storage of the data—whether
in a collection of files, in a database, or in some other structure. In any case, a
schema must be developed, storage conventions decided upon, and metadata
developed for the end user. The major DQ problems that arise during storage
are:

- Lack of Awareness and Planning: Decisions are based on outdated
notions of storage and capabilities. It is possible to store terabytes of data
on PCs now at very little cost. However, people continue to take short-
cuts in planning and storage to save disk space.

+ Paucity of metadata: Metadata are data about the data that we use to
understand and interpret the data. Typically metadata are stored as
documents and data dictionaries. They tend to be incomplete for several
reasons. Often the rules and exceptions that govern corporate data are so
complex that they are not documented completely. Even if they start off
complete, many changes are made along the way that are not added to
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the metadata store because of time pressures or simple oversight. In
legacy systems, valuable metadata are lost due to personnel changes. They
often exist only as oral traditions passed on from administrator to
administrator, seldom shared with downstream users. In such situations
the user might have to “discover” the metadata by browsing the data. We
revisit this topic in Sections 5.3.5 and 5.4.

A common problem is that the metadata and data exist independently
of each other, even though most DBMS provide facilities for embedding
the metadata within the DBMS. However, these facilities are not always
used and only the minimum amount of data description is documented.

Inappropriate data models: It is essential to represent a data element with
an appropriate data structure. A common problem is a failure to properly
represent historical or time series information, because only a current
snapshot is stored. For example, an employee might receive a raise in July.
If a database stores only current salary, it cannot accurately compute the
amount the employee is paid in 2002. A proper structure records not only
a salary, but also the time period during which that salary is valid. Such
mistakes arise when people with inadequate skills design the data storage.
Therefore, it is important to pick the people with right skills to handle
various aspects of the data flow.

Ad hoc modifications and changes: Decisions are sometimes made in a
myopic fashion, due to time pressures. For instance, a particular GUI
(graphics user interface) might allow only eight characters in an input
field so a decision is made to report a particular revenue in dollars rather
than cents. If this standard is not implemented for all data centers and the
data users made aware of it, DQ problems will arise. When the data are
integrated for a global analysis, misinterpretation such as the one in the
example at the beginning of this chapter (T. Das’s revenue was 24, Ted J.’s
was 2000) will occur.

Software and hardware constraints: In the previous example, the limita-
tion of the GUI capabilities introduced a DQ error. Similarly, other meas-
uring devices introduce DQ errors as well. For example, a metering device
might be able to measure calls only for 3600 minutes, and will not record
anything higher. This introduces censoring errors where we can only
observe a part of the data value. In some other cases, due to limitations
on disk space, certain items are not recorded at all. For example, calls less
than 2 seconds might not be recorded. This procedure alters the number
of data points and is called truncation since the data set gets truncated.
Censored and truncated data are also called incomplete data. By contrast,
missing data can occur when storage space runs out. This problem can
happen when a file system fills up, or because of constraints on the
maximum size of a file (2 Gbytes on many systems).

Software and hardware constraints can lead to other forms of data
mangling in a short-sighted effort to save a few bytes. The most famous
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example is the Y2K problem, but the problem occurs in many forms, For
example, using too few digits in a “unique identifier”, so that the identi-
fier numbers must be recycled (and therefore perhaps duplicated).

Potential Solutions

The DQ problems that arise during data storage have reasonably actionable
solutions. Most of the solution lies in planning ahead and keeping information
updated.

- Metadata, metadata, metadata: Clear and accurate information about the
data is the biggest DQ problem encountered in practice. It is also the
hardest to solve, since the analyst who is the user of metadata has no
control over how and how much of metadata are documented. Mandat-
ing accurate and updated metadata and rewarding compliance are an
important solution to DQ problems. In the next section we will discuss
technologies that are available to facilitate managing metadata.

+ Plan Ahead: Many DQ problems arise when there is a mismatch between
the hardware, software, expertise required to handle the data, and the
actual resources used. Planning ahead to size the problem, project future
needs, hiring the right skills, and building in appropriate checks and con-
trols can help mitigate the problem. DBMS have the ability to build-in
constraints that can automatically check to see whether data elements
meet the specifications defined by the constraints. We will discuss this in
the next chapter.

+ Data browsing: Exploring the data is an effective way of discovering
hidden rules about the data as well as unearthing obvious flaws such as
missing chunks of data, censored data, and truncated data. There are
several tools available for interactive data browsing, both broad data
mining oriented products (SAS, IBM data mining products, Evoke data
profiling) as well as smaller cutting-edge research efforts like Bellman,
devised specifically for data quality and detecting hidden relationships in
data.

4.3.5 Data Integration

The most intractable DQ problems arise during data integration, the process
by which multiple data feeds are brought together to create a rich and com-
plete dataset. Most corporations are creating federated data, where data from
different sources are stitched together to form a whole. For example, a
company might have a unit that sells detergents and another that sells
cosmetics. It would be reasonable (provided no customer privacy rules are
breached) to bring together the data from the two units to study associations
between detergent and cosmetic buying patterns. On other occasions, compa-
nies merge or acquire each other. If they have a common customer base, it
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makes sense to combine the data. The major DQ challenges during data
integration are:

Multiple Data Sources: When data from multiple sources have to be inte-
grated, we need a common match key or join key to join the data together.
For example, if we know the social security number, we can bring together
(hypothetically) the credit history and medical history of an individual.
The lack of a good key is a common DQ problem.

In the absence of a definitive key like the social security number,
integrators resort to approximate joins based on messy fields like names
and addresses that have no standardized representation. Or, if there is a
declared key, say a phone number, but the match rate is not good,
analysts resort to arbitrary matching heuristics such as “match on keyl
from dataset A and key2 from dataset B, if that doesn’t result in a good
match rate, also try matching key3 in dataset A and key4 and keyS5 from
dataset B, because they look like phone numbers”. This can be consi-
dered an inferred join. While this might improve the match rate, who
knows what the resulting data represent?

Different Definitions: A related problem is that different organizations
in a company have necessarily different views of the same entity. For
example, a customer could be a contract, a service order, a bill, an assigned
physical resource, or a designated site. Each organization would maintain
its own version and the mappings could potentially be many-to-many. In
such situations, integrating the data requires a careful understanding of
the underlying meaning of a “customer” and the data that are used to
represent the customer.

Time synchronization: When dealing with multiple feeds, especially those
that change frequently, it is important to see that they are synchronized
properly during data integration. For example, if we are combining
network traffic data and network performance data, it is important to
get the feeds synchronized correctly, otherwise the analysis will produce
misleading results.

Unconventional Data: There are many new data types such as audio,
video, images, web pages, web server logs, and text. Storing and combin-
ing these data presents new challenges that are not yet fully explored or
understood.

Legacy Systems: Aging legacy systems pose difficulties because of inter-
nal inconsistencies that have been compounded over the years. Further-
more, they function on outdated hardware and software platforms so that
sometimes the data cannot be accessed. However, there are commercial
firms that specialize in moving legacy systems onto more modern
platforms.

Sociological Factors: The biggest hurdles to data integration are socio-
logical factors. Organizations within the same company do not like
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sharing their data, either because it dilutes their power or it might bring
to light any flaws. Sociological and political factors make obtaining data
and metadata very time consuming.

Potential Solutions
- Mandate accurate time stamps: As mentioned earlier, certain precautions
like insisting on accurate and detailed timestamps can help synchronize
feeds. However, it might not be operationally easy to implement it.

- Commercial vendors: There are commercial vendors that will scrub,
profile and migrate data. We do not want to mention any by name;
however, a simple search on the Internet will bring up the major com-
panies that provide services in this field.

Browsing Tools: Exploratory data browsing can identify hidden relation-
ships that can point to ways of integrating data by identifying simple and
multi-part match keys. We will describe some techniques in Section 5.3.5.

4.3.6 Data Retrieval

Problems in data retrieval are primarily resource constraint and resource mis-
match issues.

- Human Error: A frequently occurring but easily solvable problem is
human error. However, human error problems cannot be solved on a
large scale for massive data. A query is not properly written, the wrong
attributes are specified, or there is some other error not related to syn-
tax. Such errors can result in the wrong data being used for analysis (April
bills analyzed instead of May bills) or the retrieval process taking an
inordinately long time due to improperly structured queries.

+ Computational constraints: On occasion, the data are overwhelming in
size, so that in order to accommodate computational and space criteria
we have to modify the retrieval request. It might take too long to retrieve
minute-by-minute aggregates of network traffic for a two month period,
so we decide to use only hourly aggregates. Such approximations impact
the analysis further down the data chain.

+ Software incompatibility: A frequently encountered problem in practice
is that the data are provided in a format that the user cannot read.
For example, the database dump is in a particular version of a DBMS
software but we have some other incompatible version. The negotia-
tions during data transfer often do not get down to this level of detail,
and so data access is delayed.

Potential Solutions
The solutions to DQ problems arising in data integration are primarily process
based.
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Tools: We should use appropriate tools such as XML for data interchange
that will tie metadata to the data. Furthermore, data browsing and EDM
tools (e.g. Bellman) help in discovering functional dependencies and join
paths when the metadata are missing or inaccurate.

Testing: The queries used to retrieve the data should be rigorously tested
and the output verified to make sure that the data retrieved are the data
we want to retrieve.

Planning Ahead: Before retrieving the data, we should plan what kind of
data, how much, when we need them and to choose the right tools to
retrieve them from the format in which they are stored.

4.3.7 Data Mining/Analysis

Traditionally, the analysis phase is not considered a source of data quality
issues. However, given that the ultimate result is a combination of the quality
of the data as well as the quality of the analysis, we cannot neglect the analy-
sis aspect, particularly in its suitability to the data.

DATA+ANALYSIS =RESULTS. 4.1)

Scale, performance and confidence guarantees: If the dataset is massive,
the issues of scale and performance can introduce DQ problems. Certain
techniques like classification and particular types of clustering algorithms
are computationally expensive. In order to reduce the data to manage-
able size, analysts resort to sampling, that is, choosing a small subset of
the data. While sampling works when we are interested in aggregate and
typical results, it is not suitable if we are interested in peculiar or outly-
ing data points. On the other hand, some methods perform well on large
data sets but do not provide confidence guarantees. Fast clustering
methods like k-means are an example. While they guarantee that the
clusters are optimal according to a specific objective function (e.g. mini-
mize within distance and maximize between distance), they provide no
measurement (let alone guarantee) as to how well the model fits the data.

Black boxes and dart boards: At one point in the mid 90’s, it was believed
that data mining could and would replace a human analyst. Raw data
would go through a data mining “black box” and emerge as succinct, inter-
esting patterns or results. However, most analysis involves domain-
specific knowledge that cannot be incorporated into black boxes. A
related approach is to throw many models at the data hoping that at least
one would hit the target. However, this is wasteful and does not result in
a high success rate. Worse, there might be a spurious, purely accidental
match between the data and the model resulting in dangerously mislead-
ing conclusions. The resources are better spent in EDM to learn from the
data the kind of models that are appropriate for representing the data.
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- Attachment to Models: Analysts are known to get attached to particular
types of models. Many criteria drive the choice of the model—simplicity,
easy to understand and interpret, easy to implement. All these are impor-
tant but the most important criterion should be the match between data
and the model. This can be evaluated initially by using EDM methods to
sequentially refine the model choice and using “goodness-of-fit” methods
to determine the suitability of the models to the data.

- Insufficient Domain Expertise: Domain expertise (DE) is essential at
every stage of the data flow process. What data need to be collected, what
they mean, how they should be used and how the results should be inter-
preted as well as assessing the importance of the results all depend on
DE. In many data mining exercises, the top 10 results are findings that
can be ascribed to not taking into account hidden “business rules”. While
nothing can replace DE, browsing the data using EDM techniques can
help us understand the characteristics of the data. For example, the
revenue attribute is highly correlated with usage attribute but not with
the length-of-tenure attribute.

+ “Casual empiricism”: Casual empiricism is the use of numbers that are
not backed by rigorous reasoning. This is particularly true of thresholds
and cut-offs. Anything above 10 is “big”, between 5 and 10 is “medium”
and less than 5 is “small”. It could be that 99% of the data lie in the
“medium” category, making the thresholds almost meaningless. Such
parameterizations are often done before exploring the data.

Potential Solutions

In the next chapter, we will discuss statistical techniques that can help address
DQ concerns. We mention below a few general solutions to ensure DQ during
the data mining stage.

- EDM: Exploring the data using EDM techniques (data browsing) is an
excellent DQ strategy. It increases our understanding of the data, identi-
fies peculiarities (long tailed distributions, appropriate variable transfor-
mations) and detects dependencies and associations among attributes for
the purpose of selecting attributes for inclusion in models and discover-
ing join paths. It helps us to discover certain types of “hidden” metadata
and identify potential join paths between tables as well as databases.
EDM enables us to hone a modeling strategy suitable for the data.

+ Accountability: The analysts should be required to justify their choice of
analysis and be accountable for the results, irrespective of whether they
have moved organizations or not.

- Continuous Analysis: Data changes from day to day, either due to changes
in the entities being measured or due to changes in the data processes.
One-shot analyses do not capture this dynamic aspect. Therefore, we
should design analyses to function continuously and reflect the changes.
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+ Sampling Versus Full Analysis: Sampling is used when the raw data
are overwhelmingly large. Many techniques like neural networks and
nonlinear techniques like logistic regression do not perform well on
large data sets. However, sampling works well when we are interested
in “typical” behavior or in events that happen frequently. Sampling will
not work if we are interested in every individual data point or rarely
occurring patterns.

+ Feedback loops: Analysis can serve as a good DQ control check point.
The findings of the analysis should be used to suggest improvements to
the data gathering processes in terms of what, how much and how data
are collected. We indicate this by a dotted line in Figure 4.1.

Let us revisit the definition of data quality in the context of the data quality
continuum.

4.3.8 Annotated Bibliography

See [30] for a detailed account of data errors. The paper [14] discusses the role
of data stewardship and its impact. In the context of data loss, see [87] for an
introduction to buffer overflows. Please see [13] for an example of revenue
assurance in the telecommunications industry. See [17] for a general discus-
sion of continuous auditing.

Data squashing is discussed in [39] where a parametric approach is used.
Nonlinear squashing is discussed in [71]. Bellman, a data browsing tool that
profiles data, discovers functional dependencies and infers join paths is dis-
cussed in [33].
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Conventional DQ metrics focus on the data meeting stringent specifications
such as accuracy, completeness, and consistency. However, in the light of the
discussion in the preceding section, the metrics are inadequate to cover all the
aspects of data quality. We need to update and expand the list of DQ metrics
to create a more comprehensive and practical definition of data quality.

In addition to the schema-related constraints that are generally applicable
to any data set, there are constraints that are specific to an application,
expressed as a set of business rules that should be reflected in the data.
For example, a company’s inventory might consist of some items that are for
sale to the public and other items for its own use. The business rules that
determine the nature of the items (red ones for internal use only) will be
implemented in the data flow process (if color=red then use=internal; else
use=for sale) and reflected in the database as:
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item_id = 1233, color = red, use = internal
item_id = 1234, color = white, use = internal
item_id = 1235, color = blue, use = for sale

Notice that item 1234 violates the business rule. Both types of constraints
play an important role in determining data quality.

4.4.1 Data Interpretation

It is essential to have the correct and complete information to interpret data
(metadata). This might be in the form of a data dictionary, a schema, or a set
of rules to apply to the data. Some rules can be quite complex. For example,
“if attribute A has value N, then generate 20 additional records, with the value
of attribute A going from 1 to 20, all other attributes remain exactly the same.”
The data are meaningless if this rule is not made available to the data user.
Such rules are frequently used in practice for informal “data compression”.
The data models have to be specified clearly and updated when any changes
are made. We should check to see that the data conforms to the models
specified. Finally, the data and metadata have to be easily accessible. The
above criteria measure the interpretability of the data. Low interpretability
is a significant source of DQ issues.

4.4.2 Data Suitability

DQ problems arise when a data set is not suitable for the question being
posed. For example, we cannot “analyze” the performance of the network if
all we have are configuration data with no traffic data. While this is an egre-
gious example, there are practical instances where snapshot data have been
used to analyze behavior that changes with time. Therefore, it is important to
determine if the dataset contains relevant and sufficient information to answer
the questions we pose. Similarly, it is important to determine whether the
analysis options available are suitable for use on the data.

4.4.3 Dataset Type

The DQ metrics, the definition of DQ, as well as the tools used depend on the
nature of the data set. Each has a different set of challenges and peculiarities.

Federated Data

Primary challenges in enterprise data that are woven together from different
sources are those of sparseness and improper joins. The DQ metrics should
take into consideration the fact that when data are “missing” it is probably
due to the fact that attribute is not relevant rather than it being measurable
but missing. For example, not every customer subscribes to all the services a



THE MEANING OF DATA QUALITY REVISITED 125

company offers. When an integrated view of the customer is constructed,
attributes corresponding to unsubscribed services will not be relevant and
should not be considered as missing. Therefore, the conventional metric of
“completeness” has to be updated in this context.

Federated data require that disparate data sources be combined. When no
clear way to match the datasets exists (which is almost always the case)
approximate matches are made, based on fuzzy criteria. This could lead to
improperly matched records. For example, consider:

T.Das|9733608000|20calls|54minutes| Billed06/01 (4.2)
and
TedJ |9733608000[350calls|1000minutes| Billed07/01 (4.3)

For example, the above two records might be “matched” based on the phone
number, however additional data (not seen here) would reveal that the phone
number was recycled from T. Das to Ted J. before the mandatory wait period
of 60 days was over. This happens frequently in metro areas where there is a
shortage of phone numbers. In the absence of additional data, we would infer
that the customer T. Das has seen a sudden surge in usage. The attribute name
should have been used to validate the match but this is seldom done in prac-
tice. We will talk more about validation of joins in Sectiom 5.3.4.

Massive, High-Dimensional Data

Scalability of techniques and processes should be a significant component of
the DQ metric while considering massive data. Failure to do so would result
in backlogs, processes exiting without completing, and so on, giving rise to all
kinds of hidden and unpredictable errors.

Descriptive Data

Descriptive data usually consist of many tables with complicated interrela-
tionships. Typically, such data describe relationships, allocations, and assign-
ments. Consider the following simple example which depicts allocation of
resources to projects in a consulting company:

Company Id = 123456789

Business Unit = A

Department = 1

Department Manager = Ms. X

Member = Mr. Y

Member Expertise = Statistics

Member Assignment = 70% Project A, 30% Project B
Member Status = Fully allocated
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To represent these data company wide, we would need multiple tables, each
containing the details of a particular aspect such as Department, Project, and
so on. When a new project is proposed, the database would reflect the avail-
ability of resources (personnel) with the requisite expertise for the project. It
is important that the database should be updated whenever there is a change
and the change should be propagated throughout the system. Otherwise, the
company could turn down lucrative project contracts under the false impres-
sion that no staff is available, if the members are not “de-allocated” from the
projects on completion. Conversely, if the assignment of members to project
was not updated, the company could take on projects that it does not have
the resources to fulfill. Real-life network configuration databases and other
descriptive databases are incredibly complex and difficult to validate (“Is
customer A really homed on port 1 in cabinet 2 in building A on Main St,
Suburmania, NJ?”). DQ metrics and solutions are primarily process based—
enforcing strict feedback loops, continuous auditing, and validation of random
samples.

Longitudinal Data
Time series data are important in the study of life cycles, periodicities, trends
over time and for forecasting future behavior. From a process perspective, we
can approach longitudinal data in two ways, either by observing the value of
an attribute at a given point in the process as it changes over time or by fol-
lowing an individual data point over time as it passes through various stages
of the process. From a DQ perspective, both approaches help us identify prob-
lems—process flows, the way in which data tend to get corrupted over time
and the processes that contribute to it. We can infer propagation of errors and
their compounding as they pass through the processing stages. In the absence
of metadata, longitudinal studies can help us learn about the process flows.
An important DQ component of time series data is synchronization.
Misleading results and DQ errors happen when time series are correlated
improperly. For instance, in a study pertaining to inventory flows, an initial
analysis revealed that a large proportions of components had conflicting labels
when the snapshots of three major databases in the end-to-end process were
compared. The analysis had accounted for the time taken for the data to flow
from one database to the next. However, the time lags in reality did not match
up with the lags that were documented and used by the analysis. As a result,
while DB-A and DB-B had fresh data, DB-C still had the previous week’s
view of the data, resulting in over 5% of the data (thousands of records) being
rejected as flawed. The inventory case study is described in detail in the next
chapter, as well as a case study in using statistical techniques to identify DQ
problems in time series data.

Streaming Data
A data stream is a sequence of data emanating sequentially at a high rate
of accumulation from a single source that we get to observe (for practical
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purposes) just once. In real life, data streams arise in telecommunications
(call detail records), network related studies (performance data derived
from polling routers) and meteorology (measurements on weather-related
phenomena, particularly fast-changing ones such as storms and cyclones).
The challenge is to devise analyses that take into account the volume and
rate of data accumulation as well as the fact that we do not get to see all the
data at any one given time. Data streams require real-time DQ.

Here is an example of a data stream where the columns in order are time-
stamp, calendar date, time, and four types of network traffic measurements:

948205525 01/18/2000 09:25:25 1379358875 1767967974 188471501 1917803055
948205585 01/18/2000 09:26:25 1379597278 1769003702 189510384 1917949117
948205645 01/18/2000 09:27:25 1379823191 1769738866 190248893 1918084438

Such data are plagued by all kinds of problems—Iost data, counters resetting
themselves, synchronizing multiple sources and so on. We need careful DQ
consideration in the analysis to account for such problems. Furthermore, an
additional DQ concern is the stability of estimates that are used to summa-
rize and publish streaming data.

Web Data— Text Mining

Data that are “scraped” off the web are used frequently to leverage the abun-
dance of data available over the web. Sometimes, the web is the primary or
the only electronic source of particular types of data where they are published
specifically for sharing, in order to comply with legal or corporate require-
ments. However such data are inherently messy as the data were not intended
for integration with other resources.

Web-scraped data might be generated by collecting a set of web pages
related to a particular topic using a search engine. The data set can be
expanded by further collecting all pages within k links of the above collection
of pages. Formatting tools (e.g., perl scripts) are then used to transform the
data, for instance from HTML tables to comma separated values (CSV).

Data scraped from the web have unconventional formats and low DQ stan-
dards. Sometimes, the data are intentionally corrupted so that 212-555-1212 is
misrepresented as 2i2-555-i2i2 or name@domain.com might be represented as
“my last name at domain dot com” (to avoid being picked up by programs
that harvest information from the web).

Another flavor of web data are web server logs. When a user sends a re-
quest to a server, a log is generated which contains a wealth of information.
The log entries can be written in various formats, one of which is the Com-
mon Log Format (CLF). This is a standard format that can be produced
by many different web servers and read by many log analysis programs.
We have taken the following example from the Apache web site
http://www.apache.com.
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127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] “GET /apache_pb.gif HTTP/1.0” 200 2326

This line has several parsable components, for example, that the user
“frank” at IP address 127.0.0.1 issued a “GET /apache_pb.gif HTTP/1.0”
request at [10/Oct/2000:13:55:36 -0700]. Some pieces of information are
missing (e.g., the “-” indicates that RFC 1413 identity of the client is not
known), and other pieces should be viewed with suspicion (e.g.,is 127.0.0.1 the
actual IP address of the requestor, or is it the IP address of a proxy?).

Given the nature of web data as well as the eclectic uses it is put to, defin-
ing metrics and finding tools for cleaning such data are highly domain specific.
Data cleaning involves scrubbing headers, searching for embedded text and
other techniques. Apache as well as Yahoo and other major portals and search
engines offer tools for analyzing and cleaning server log data. Such tools are
very popular for monitoring security of web sites to prevent hacking and
denial-of-service attacks.

Text data and its analysis are inevitably tied to information retrieval, natural
language models, and computational linguistics, all of which are outside the
scope of this book. There has been great focus and activity in these areas with
the development of search engines like Google. However, in terms of data
quality techniques, there are no well-defined techniques or references.

In the rest of the book, we only consider text data that occur as a part of a
larger heterogeneous data set (character attributes), not text data as defined
by a document of text alone.

4.4.4 Attribute Type

Just as the DQ challenges vary depending on the data set type, the DQ metrics
as well as the tools used depend on the attribute type. Statistical methods like
outlier detection, control charts and goodness-of-fit metrics can be used for
evaluating the quality of numeric attributes in a data set.

As we saw earlier, descriptive attributes require more process-related,
audit-based techniques. Such data are hard to validate since they cannot be
inferred from patterns or trends the way numeric and even text data can be.
Descriptive data might require a sampling-based approach where selected
data are verified. We might choose a few hundred records out of thousands
and have them validated by humans—*“Is this customer’s connection homed
at this particular physical location? Is equipment A really located at the geo-
graphical address mentioned in the database?”

Similarly, character attributes would require tools that can match every
value with a set of allowable values to verify the quality. For instance, if there
is an attribute called Color which has permitted values red, white and blue,
then a data quality validator will have to be able to scrub a value of “rde” and
map it to the correct value “red”. Such scrubbing is done frequently in data
pertaining to names and addresses. We will mention a subset of such applica-
tions and techniques in the next chapter.
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Web data and related text data require techniques that can recognize and
work around pitfalls such as replacing Os with os in phone numbers. Such
techniques are so context specific that they often consist of perl and cgi
scripts written by individuals on an as-needed basis.

4.4.5 Application Type

A DQ metric is closely tied to the application. Users have a high tolerance
to missing or corrupt data if they are interested in aggregates and typical
behavior. It is likely that they can get reliable results from a small portion of
the data provided they can separate the bad data from the good data. They
might resort to sampling, which can be a good strategy if the proportion of
bad data is very small. Such a user might not be too concerned with com-
pleteness, focusing instead on the accuracy, accessibility and interpretability of
the available data. On the other hand, users who need to focus on individual
observations or abnormal observations in the tails of the distribution need to
ensure a high degree of completeness.

4.4.6 Data Quality—A Many Splendored Thing

The preceding discussion shows that data quality is a very complex beast that
cannot be contained with a simple clean solution that can be applied uniformly
and universally. Overall, there are two broad components to DQ: A general
component that is applicable to all datasets and a domain-specific aspect that
varies from context to context. The general component consists of matching
data and data models with specifications and constraints and looking for
obvious inconsistencies in the data. However, the specification of the rules,
constraints and the metadata that are needed for matching data against
specifications are highly domain specific, with a “long tailed” distribution.
That is, while there are a few rules that can specify and are applicable to say
50% of the data, subsequent rules are applicable to smaller and smaller chunks
of the data so that we would end up with hundreds of rules just to specify
80% to 90% of the data. In other words, some specifications are almost on a
case-by-case basis. For example, suppose that we are investigating data quality
issues in a process that involves flow of consumer data from DB-A through
DB-B to DB-C.

Rule 1: If Billing status = 1, then flow to DB-B and DB-C.
Rule 2: If Revenue lies in interval [A-B] then do not flow beyond DB-A.

Rules 3-10: Combinations of flows depends on combinations of billing
status and revenue buckets. (At this point we would have covered say
60% of the data.)
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Rule 11: If Billing status = 10, AND revenue greater than C AND state =
NJ AND date between 2001 and 2002 AND company not equal Bad Co.
then flow to DB-B but not DB-C. Rule 11 would cover an additional 1%
of the data. And so on until.

Rule 256: If Billing Status = 12, revenue less than Z, state = TX, company
= QOil Co. then flow to DB-C but not DB-B, which would provide a cov-
erage of 0.0000001 proportion of the data.

Note that there are two intertwined issues here. First, in order to define
the rules, we need access to top-notch experts. Second, the rules do not gen-
eralize to other data sets so that every exercise in DQ has this inevitable,
highly manual and time-consuming task of developing domain rules that are
necessary for validating the data. Answering this problem would require the
interaction between several disciplines such as statistics, Al (expert systems,
knowledge representation and engineering), process engineering and com-
puter science, to name a few.

4.4.7 Annotated Bibliography

Please see [130] for an interesting application of mining data streams and for
references to other literature in this area. See [21] for a discussion of inte-
grating and using data gathered from the web. An example of the analysis of
web server logs can be found in [70]. We refer the reader to a general tutorial
on text mining [93] and to serve as a source for further references. An intro-
duction to information retrieval can be found in [119].

45 MEASURING DATA QUALITY

By now it is clear that DQ is not a well-defined concept that can be measured
and tracked with a crisp set of numbers. There are many subjective aspects.
Some data glitches can remain hidden if they pertain to very rarely used appli-
cations of the data. For example, the information on T. Das might look like

T. Dasl666-666-66661666166.661-1666

which is clearly suspicious. However, checks on individual attributes or within
aggregates would not have detected this peculiarity. It is likely that this glitch
would have remained undetected until a specific query asked for T. Das. In
other instances, there is just no way to determine if a data quality problem
exists. How do we know if the “age” or “income” reported in a survey are
correct? Therefore an important question to ask is:

Is the data quality component measurable?
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At the outset, we need to establish the data and methods that are available
for measuring DQ. In this section, we discuss criteria for measuring data
quality and potential ways of measuring data quality. We revisit the topic in
Section 5.5, and discuss the specifics in the context of a case study.

45.1 DQ Components and Their Measurement

The device for measuring data quality that we have found to be useful is to
establish a set of constraints that the data should meet. We can then establish
metrics by measuring how well the data meets the constraints. Static con-
straints (also known as schema constraints) are properties of the data itself—
for example that a field is populated, that a “key” is unique, that two tables
can be joined, and so on. Dynamic constraints are related to the end-to-end
flow of the data through the process, as specified by business rules. An example
of a dynamic constraint would be that a service termination is followed by a
release of equipment within three days. Constraints give us a way to measure
properties which are not immediately visible, especially properties of the data
itself.

A way to classify metrics is to specify whether they are operational or diag-
nostic. Operational metrics measure our ability to achieve tasks using the
data—they tend to be process related. While the end goal of a data quality
improvement study is to improve at least some operational metrics, they are
often too high-level to indicate what is wrong with the data. For example,
“reduce the number of manual intervention by 10%” does not shed light on
where the problem lies. Also, operational metrics do not indicate how well the
data will perform for a new task. Similarly, it is not clear whether the improve-
ment in the operational metric will actually improve the data quality in terms
of reliability and usability for introducing a new e-provisioning service. There-
fore we also use diagnostic metrics which are defined on the data itself.

In general, we will need to use all types of constraints (static vs. dynamic),
and metrics (operational vs. diagnostic) to develop a usable data quality
metric. We note that while we discuss a general list of criteria, the choice of
DQ metrics and their actual measurement depends on the DQ implementer
(see the case study in Section 5.5).

+ Extent of automation: is a dynamic, operational DQ metric that measures
the amount of manual intervention (hence the opportunities for intro-
ducing errors) required during the process. An approximate way to
measure this is to follow a sample of transactions chosen randomly
through the process and measure the number of human touches needed.

Successful completion of end-to-end process: is a dynamic, operational
metric. While it is difficult to measure whether a process conforms to
specifications, we can measure the outcome. That is, what proportion
of instances flow through the process with the desired outcome at the
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end. For example, we might want to terminate transactions of customers
with unpaid bills outstanding more than 60 days, while letting other
transactions flow through. The sampling approach used above can be
used here as well. The metric is the proportion of instances in the ran-
domly chosen sample that terminate with the intended outcome at the end
of the process. A more expensive alternative is to simulate the entire
process, run various scenarios on it, and measure the performance.
However, this requires a clear specification of the process which might
not be available.

Glitches in Analysis: is a static operational metric which measures the
degree to which glitched data causes glitched analysis. We can measure
analysis glitches by counting the number of findings (perhaps weighted
by severity) which are invalidated or tainted by data quality problems.
While analysis glitches can be difficult to measure, in our experience there
is often some sort of feedback loop which accompanies the analysis,
whether it is customers complaining about how their bill is calculated or
analysts validating their findings before making a report.

Accessibility: is a general diagnostic metric that is applicable to all DQ
situations. One measure is the time between request for access and the
actual ability to view the data. Another related measure is the number of
contacts such as phone calls, e-mails, and so on, needed to get access to
the data. Yet another measure is the level of escalation needed to get the
access. A metric based on these aspects is suitable.

As with any of these metrics, it is possible to cheat. For example, the
keepers of a database might provide access to the data through a GUI
with a predefined set of canned queries. The GUI might look good and
be easy to use, measuring high on the “accessibility” component of a
metric. However if the canned queries do not meet the needs of the user,
then the metric is skewed.

Interpretability: is a diagnostic metric that applies in a general context
as well. The interpretability metric should be based on availability of
metadata (e.g., counting the proportion of fields, tables, keys, foreign-key
joins, and so on, which are documented), and the adherence of data to
specifications (e.g., by counting the number of reported glitches that are
resolved by updating the metadata).

Conformance to Business Rules: is a dynamic diagnostic metric based on
constraints of the type listed in Section 4.4.6.

Conformance to Schema: is a static diagnostic metric which measures how
well a snapshot of the data conforms to the metadata in its schema. For
example, are the keys unique, do the values in the fields fit their formats,
is there a single well-documented default value, are related fields joinable,
and so on? While it is easy to generate a very long list of schema con-
straints, the data quality analyst must generally pick a select set of
“important” constraints on which to focus.
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+ “Traditional” metrics: We have discussed the “traditional” metrics of
accuracy, consistency, uniqueness, timeliness, and completeness in
Section 4.2. While these are all desirable properties, we need a concrete
way to measure them and to weight their relevance to the data’s
application.

— Accuracy: measures the degree to which data values reflect the entity
that they model, and can be regarded as a static diagnostic constraint.
Unfortunately, accuracy can be difficult and expensive to measure. For
example, we might want to establish the accuracy of a database which
describes a warehouse inventory. Because accuracy measures a rela-
tionship between the database and the real world, we must incur a real-
world cost to measure accuracy—namely, to hire a team to perform a
warehouse inventory. Often, the data quality analyst resorts to sampling
or the use of a proxy (e.g., complaints about accuracy) to lower meas-
urement costs. However, the analyst must then be careful about intro-
ducing a bias in the measurement. On other occasions, as in a survey,
there is simply no way to establish whether the respondent is telling the
truth. A customer might say that they have no intention of switching to
a competitor but might do so the very next day if an appropriate incen-
tive (“we will give you $100 if you switch”) or irritant (“Oops, we dis-
connected your service by mistake”) comes along.

— Consistency: measures the agreement between tables in a database or
between databases. For example, a residential customer should be
served by residential lines. Consistency is thus a readily measured static
diagnostic metric (once we know which things should be in agreement
and how).

— Uniqueness: refers to the property that there is one record for each
unique thing. A common way for duplicate records to enter a database
is when the record’s key is incorrectly entered, for example, the cus-
tomer’s name. Duplicate elimination (see Section 5.3.4) refers to the
process of eliminating these duplicate records. We can measure unique-
ness by counting the proportion of records which are removed.
The caveats which apply to approximate joins apply here also—the
“duplicates” might actually refer to different things.

— Timeliness: What proportion of the data arrives as scheduled? What
proportion of the data has accurate time stamps which will help us
synchronize data feeds? What is the lag between the origin of the data
and its use? How frequently do the data change? What is the ratio of
the lag between updates to the frequency of change? If the data are
updated in shorter time intervals than the intervals between data feeds,
there is a serious danger of changes being overwritten, depending on
how the process is set up.

All such aspects have to be considered and weighed when designing
a metric for measuring timeliness.



134 DATA QUALITY

— Completeness: measures the degree to which we have recorded all
relevant properties of all the things we want to record. Since com-
pleteness is a relationship between the database and the real world,
it can be very difficult or even impossible to measure. In some cases
completeness is merely expensive to measure (e.g., requiring an inven-
tory of a warehouse, as with accuracy). In other cases, it is impossible
(e.g., recording the identity of every Snark in the world). The data
quality analyst frequently resorts to proxies to measure completeness,
such as the number of null or default values in fields, the number of
times a new thing unexpectedly turns up, and so on.

We note that there is a flip side to completeness—the database
should not contain entries for things which do not exist (such as dis-
connected customers or non-existent inventory). Fortunately, counting
spurious records is usually not impossible, only difficult.

4.5.2 Combining DQ Metrics

We have seen that there are many measurements that can determine DQ. Can
these be combined into a simpler set of numbers? We can consider a simple
weighted average and determine the weights according to our needs—we can
stress the dynamic, process related metrics more and down play the actual
static, data related metrics if our purpose is to improve the processes. On the
other hand, if we are more interested in the data itself, we might stress the
static, data related metrics more. In our experience, a data quality improve-
ment project generally starts by improving diagnostic metrics, then moves to
improving operational metrics as the data becomes cleaner.

Ultimately, what is the purpose of the DQ metrics? It is to indicate whether
the data are usable and reliable. In order to reflect this, an improvement in the
metrics should be accompanied by an improvement in usability of the data
and the reliability of the results obtained by analyzing the data. That is, the
metrics should be directionally correct. Especially, diagnostic metrics should
be directionally correct with respect to operational metrics. We illustrate this
with a case study in Section 5.5, where we measure DQ by the increase in
usability of the data and the increase in the automation of the data flow
processes.

4.6 THE DQ PROCESS

Based on our discussions of the preceding sections we can outline a data
quality process. Bear in mind that any such process has to be customized to
the application as well as to evolving definitions and needs of data quality. We
illustrate the DQ process with a case study in Chapter 5.

The DQ process starts with data gathered from different sources such as
files, feeds, the web and so on. We can use various tools available for manag-



THE DQ PROCESS 135

Data Quality Process

Data Gathering —— > Data Loading (ETL)

Data Scrub — data profiling, validate data constraints

Data Integration — functional dependencies

@)

evelop Biz Rules and Metrics

. .
interact with domain experts Validate biz rules

1

Stabilize Biz Rules ———  Verify Biz Rules

f

Recommendations
Quantify Results
Summarize Learning

Data Quality Check

Figure 4.3: Data quality process.

ing these processes and protocols. The next stage of loading the data could
use specialized ETL tools that we discuss in the next chapter. Data scrubbing
and data integration involve schema constraint satisfaction and discovering
functional dependencies for join paths to perform the integration. Data
browsing tools are invaluable for this purpose.

The box in the middle is the most arduous stage—developing and stabiliz-
ing the business constraints and the problem specific DQ metrics. This stage
is often the riskiest since the success of the project is heavily predicated on
the success of this stage. It entails interaction with domain experts. In Chapter
5, the case study will illustrate the social and political issues that make this
stage the trickiest.

Once the business rules are agreed upon, the process proceeds to validate
the data against the rules and identify the faulty data for more rigorous inspec-
tion. The learning from this stage is fed back into the business rules and into
the very beginning of the process.

The “good” data that satisfy the static (schema specific) constraints as well
as the dynamic (business) constraints are certified and used for quantifying
the quality of the data.

We have presented a very high level view of the process. As DQ
practitioners, we need to employ a diverse arsenal of tools at each stage,
whether mechanical, software related or good, old-fashioned people skills,
to ensure success. In addition, note that there is a fair amount of customiza-
tion of the process needed for each application (which we illustrate in Section
5.5).
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4.7 CONCLUSION

We have seen that data quality is a complex concept with many aspects, some
of which are measurable and some not. It requires intense interaction with the
data as well as experts who can define the constraints that the data has to meet.
In this section we give a brief description of four inter-related yet comple-
mentary approaches that have sought to provide solutions to aspects of data
quality detection and assurance. These are drawn from process management,
statistics, database management and metadata and domain expertise specifi-
cation. We will give references to the process-related approaches having dis-
cussed the details in the context of the data quality continuum and definition
of DQ. The remaining three approaches will be discussed in detail in the next
chapter.

4.71 Four Complementary Approaches

We have touched on the various aspects of data quality that arise during the
data flow process. Process-based management is critical given the complexity
of the data flow process. We have seen that many DQ problems are born of
bad process design and control and no data engineering for processes. The
primary body work in the process management arena is in the TDQM program
of MIT. The program mission is to “Establish a solid theoretical foundation
for Total Data Quality Management, to devise practical methods for business
and industry to improve data quality. Redesign business practices and imple-
ment new technologies in order to significantly improve the quality of corpo-
rate information.”

In the past, statisticians had very few data quality problems. The problem
was clearly defined a priori, experiments were designed carefully with a par-
ticular analysis in mind, and the data were collected meticulously. However,
with more and more data being “found” data, statisticians have devised some
techniques to deal with the flaws in such data sets. There are three broad
categories of methods (a) missing and incomplete data, (b) suspicious data and
(c) issues of the fit between data and analysis. Most data sets have a signifi-
cant percentage of missing data, be it individual attributes or entire records.
In federated data, missing data and sparse data are particularly egregious. If
not addressed, it can lead to the wastage of 30%—70% of the data. There are
many methods of imputing values to missing data, ranging from simple point
estimates to complex regression and simulation based estimates. If the missing
data are not addressed properly, the resulting analysis can be biased and mis-
leading. Furthermore, tracking down missing data and studying their patterns
can suggest solutions for DQ problems. On the other hand, suspicious data are
those that deviate from what we “expect” the data to be. Such data are called
outliers and we discuss methods for identifying and dealing with outliers in
the next chapter. Goodness-of-fit methods can be used to investigate the suit-
ability of the data to the analysis and vice versa, in keeping with our belief



CONCLUSION 137

expressed in Equation 4.1 that data quality is a function of the data as well as
the interplay between the data and the analysis.

The database community has developed numerous methods, prominent
among these are techniques for cleaning up duplicates, correcting names and
addresses and others. Other more recent approaches include exploring and
profiling data, discovering functional dependencies among tables and attrib-
utes and using them to identify and validate match keys, finding complex join
paths and others. We will discuss these techniques in detail in the next chapter.

Finally, the recording, transmitting and updating of metadata and domain
expertise merit a thorough discussion given their critical role in data quality.
There are technologies such as XML for the interchange of data that ensure
that data and their definitions are closely tied together so that where there
are data, there are metadata as well. Recording domain expertise is a more
complex and manual process that might be helped by techniques from expert
systems.

In the next chapter, we will discuss the above three approaches highlight-
ing techniques and tools, and including case studies wherever possible.

4.7.2 Annotated Bibliography

Prominent in the body of work are [62] by Kuan-Tsae Huang, Yang W. Lee,
Richard Y. Wang and [127]. A more comprehensive list of references can be
found at the MIT TDQM web site http://web.mit.edu/tdgm/www/about.html.






CHAPTERS

Data Quality: Techniques
and Algorithms

5.1 INTRODUCTION

In the previous chapter we delved into the origin of many data quality issues,
their impact, and the motivation for solving them. We emphasized the process
because it has a direct bearing on the origin of a majority of data quality
concerns.

In this chapter, we will focus on tools, techniques, and algorithms that can
be used to address and repair some of the data quality problems that arise.
However, there is no panacea, no single tool that can solve a majority of DQ
problems. As mentioned earlier, data quality problems are highly complex and
context dependent, requiring extensive domain knowledge and involving solu-
tions that often need to be chosen case by case. In other words, a big part of
the solution involves human involvement and expertise, so that complete
automation is often not feasible. That said, automation can help with imple-
menting checks and controls, isolating discrepancies, designing end-to-end
audits that can be run at regular intervals and, in general, scaling up manual
data quality checks to massive data.

We have seen that the DQ process involves verifying two distinct types of
constraints (static and dynamic). The tools that we discuss in this chapter are
drawn from several disciplines and are targeted at different aspects of the DQ
process. These are representative solutions that can be customized to the
problem at hand. Data browsing is a basic diagnostic activity—you cannot fix
the problems until you know what they are. This activity entails many of the
EDM methods discussed in Chapters 2 and 3 to get an understanding of the
data set, as well as more specialized activities such as validating data defini-
tions against their instantiation (validating schema-specific static constraints),
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cross-checking data flows end-to-end against business rules (validating
dynamic constraints), summarizing typical trends (data publishing), identify-
ing interrelationships, isolating outliers and analyzing them further. Other
algorithms are used to detect and repair mangled data such as missing values,
improbable outliers and values that have been incompletely recorded. Yet
other methods can be used to integrate data sources. All these methods
together help us to detect and fix to some extent the complex inconsistencies
that are hidden in the data that data miners deal with on a regular basis.

In Section 5.2, we focus on techniques drawn from statistics such as missing
value imputation, outlier detection and goodness-of-fit methods for detecting
inconsistencies in interrelationships in attributes. In Section 5.3, we discuss
tools specialized for use on database-resident data, such as Extraction-
Transformation-Loading (ETL) tools, techniques for fuzzy joins, and advanced
database profiling. In Section 5.4, we highlight the role of metadata and
domain expertise in data quality implementation. The importance of metadata
and domain expertise cannot be underestimated. The lack of metadata and
domain expertise can make the data uninterpretable, frustrating any attempt
at detecting or repairing data quality damage. In a majority of our case studies,
a lack of metadata has been the most significant stumbling block. In Section
5.5, we present a case study of inventory building and revisit DQ metrics in
this specific context. We conclude with a summary of data quality, its defini-
tion and measurement, and the accompanying challenges.

5.2 DQ TOOLS BASED ON STATISTICAL TECHNIQUES

Traditionally, statisticians dealt with data that was small and carefully
collected. They could collect the data through careful design that was cus-
tomized to the analysis technique which, in turn, was tailor-made to the sub-
stantive question, for instance, “Does the fertilizer A improve the yield of
wheat? Is the effect of fertilizer A significantly different from that of fertilizer
B?” In fact, many analyses such as ANOVA (analysis of variance) were actu-
ally developed in agricultural experiments where data such as crop yield, fer-
tilizer amount, size of plots, and so on, were carefully measured. In other
words, the statisticians were closely involved with the data gathering process
and could control the quality of the data. Therefore, many of the techniques
that we will discuss in this section were not developed with data quality in
mind. They were developed to address small glitches (a missing measurement
here and there) so that we need to be cautious when we use them on a large
scale to address the systematic issues that seep into contemporary data sets.
There are three broad categories of techniques: (1) missing data, (2) incom-
plete data and (3) outliers. Missing data are a constant feature of massive data,
where individual cells, columns, rows or entire sections of the data can be
missing. There are techniques ranging from the naive to the complex for imput-
ing values missing data. Sometimes, the data are not missing but incomplete.
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For example, we might know that a process was still running after the 10-day
observation period, but we wouldn’t know exactly when it stopped. Therefore,
all we know is that the system ran for at least 10 days. We will discuss other
forms of incomplete data as well. On other occasions, datapoints are consid-
erably out of line with what we expect them to be. Such datapoints, called out-
liers, are suspicious data points that could be potentially legitimate. There are
several techniques for identifying, measuring and incorporating outliers into
various analyses.

5.2.1 Missing Values

There are many reasons why there are holes in data sets. Federated data are
prime candidates since they are formed by integrating different pieces which
might have some common attributes, but also some that are specific to a
dataset. For example, not every telecommunications customer has a cable
modem. On other occasions, when the same exact data are gathered from dif-
ferent sources (e.g., sales from different branches of a retail store) a particu-
lar source might not send its data in time for the compilation of the integrated
dataset. Yet in other cases, an individual sale might not be logged or some data
element (e.g., customer phone number) might not be entered by the sales
person. System and process related reasons abound as well. Another data
quality issue arises when the same values are used to represent defaults and
missing values. It is important to make the distinction between genuine zero-
quantity bills and bills whose quantity have defaulted to zero because those
data haven’t come in yet for those particular bills.

Why Should We Care?

Why should we worry about missing data? First of all, we would waste an enor-
mous amount of data (anywhere between 30% to 70% in federated data sets)
if we threw away all data with a missing data field. Furthermore, studying
patterns in missing data can help trace causes (e.g., all data from Trenton, NJ
are missing) and reveal other DQ issues. Finally, missing data can introduce
serious biases into the analysis since data seldom disappear in a random
pattern. We might underreport network usage and loads if data from two or
three high-end users are not reported. Justifiably, there is not a great deal of
confidence placed in reports based on data with large missing portions.

Detecting Missing Data

Some types of missing data are easily detected. For example, we can scan rows
and columns of data for gaps. We should match the data specifications against
the actual data itself. Are there any attributes that are missing? If so, imme-
diately check with the sources of the data. We should also implement checks
during file transfer processes—check the number of files, the file sizes, the
number of records and duplicates. Did we receive all the information that was
sent? Another effective technique is to use historical information. We have
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data for a particular data point (e.g., a router) last n times the data was
collected but we have no data this time around? What changed? While many
of these checks seem simple, they are seldom implemented, resulting in serious
DAQ issues.

Other types of missing data are harder to detect. An effective way of detect-
ing missing data are keeping track of estimated values and error bounds, such
as total counts, averages, medians and standard errors. For example, we expect
the new orders to be around 20,000 this month, give or take 1000. A consid-
erable deviance from this estimate should trigger a more detailed analysis of
the new orders. A particular concern in this approach is that the aggregates
and estimates should be computed at a reasonable level of granularity (traffic
per router, sales per metropolitan region), otherwise small discrepancies
caused by missing data could be swamped in aggregates.

The problem of confounding defaults with missing values is more difficult
to tackle. Access to historical data and domain expertise is needed. Domain
expertise is needed to establish the existence of such a problem in the
first place. Historical data would help establish the consistency of the value.
If a value suddenly drops to zero and comes back to its previous value
next time around, it is sure to be a missing data value that has been de-
faulted to zero. The flip-flop pattern is a good identifier of missing values in
time series.

Occasionally, the pattern of missing data could lead to other data that could
be potentially missing. For example, if spatial or geographic data for New
Jersey are missing, it is worthwhile to check if all the data for Delaware have
come in, because data for border areas might be missing even though there
might be data recorded for Delaware as a whole.

Imputing Missing Values

The process of guessing the values of missing data is called imputing missing
values. We should use the technique with great caution because while imputed
values are good for aggregate analysis, no individual imputed value should be
trusted (because it is an estimate).

The simplest imputation method is based on treating every attribute indi-
vidually, ignoring any interrelationships with other attributes. Point estimates
such as the mean or the median can be used to replace missing values. For
example,

1’273’193’19’9’3

has three missing values all of which could be replaced by 2, the median
of the non-missing values. Or, we could simulate a distribution using the non-
missing values and draw from the distribution each time we encounter a
missing value. So, in our simple example, the simulated distribution is:

P(1)=3/7,P(2)=1/7 and P(3)=3/7,
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so that the distribution of missing values will faithfully follow the overall dis-
tribution. Clearly, the assumption here is that the missing values follow the
same distribution as the non-missing values. While the point estimate approach
and the simulation approach are naive and based on potentially incorrect
assumptions, they are very simple to implement, inexpensive to run and easy
to understand and interpret.

We describe briefly more complex methods of imputation that exploit
interrelationships between attributes and impute multiple values rather than
a single value.

The multiple values reflect all plausible values for the missing value, rather
than a single value. Imputing multiple values will result in multiple data
sets (one for each of the multiple values). Each of the data sets are individu-
ally analyzed and the results are combined. A popular multiple imputation
method is the regression method, where a regression model is fitted for every
attribute using the previous attributes. There is an underlying assumption
that attributes are missing monotonically, that is, in a data set with d attrib-
utes Y;, Y,, ..., Y, and if Y} is not missing, then Y, Y5, ..., Y, are all not
missing. In other words, all the attributes preceding the attribute in question
are populated for all data points. Monotonicity can be induced by using
simulation methods described below. Here is an example of monotonically
missing data.

Weight Age Height Health_Index

20 2 10 5
15 5 9 3
25 5 10

20 4

10 1

The regression is preformed recursively, generating each attribute as we
progress from left to right. So the first regression model would be:

Height = o+ 3, Age+ B,Weight.

After each regression, the missing values are replaced by the predicted value
from the regression model plus an error term (a scaled normal deviate) and
then the next regression model would be derived:

Health _Index = o+ B, Age + B, Weight + B; Height,

and so on, until all the missing values are replaced with the regressed values.
Since the error term varies randomly, we can generate multiple data sets by
cycling through the imputation process. Each data set is analyzed individually
and the analyses from the multiple data sets are combined to create a reliable
single set of results.
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Another method groups data by the propensity of any attribute to be
missing, again with assumption of monotonically missing data. We describe the
method briefly. An indicator variable (0 or 1 values) is built to indicate whether
attribute Y; is missing or not. A logistic regression model is built based on the
values of attributes Y7, ..., Y, to compute the probability that attribute Y is
missing for any given observation. The observations are grouped by the prob-
ability that attribute Y; is missing. Values of Y; are generated for the missing
values from the known values of Y; within each propensity group using a
mechanism called approximate Bayesian bootstrap, a discussion of which is
outside the scope of this book.

For arbitrary missing value patterns, the MCMC (Markov Chain Monte
Carlo) method is used to simulate data. The data are assumed to have a
multivariate normal distribution. Next, the missing values are estimated by (a)
building the conditional distribution of the missing values given the observed
values and (b) computing the parameters of a multivariate normal distribu-
tion using the filled in sample. Steps (a) and (b) are repeated until the esti-
mates become stable. The Markov chain refers to the tuples

(Y,6,),

where Y is the set of estimates of the missing values and 6 the set of param-
eters estimated at the i iteration. The values at the i” iteration depend only
on values at the (i — 1) iteration, hence the name Markov chain. As expected,
the method is expensive and infeasible for large data sets as the complexity
of the imputation increases. However, the best use of the MCMC method
might be to simulate just those values needed to induce montonicity in the
missing values so that the simpler regression methods might be used for
imputation.

We have singled out these three methods because reliable software imple-
mentation of the techniques is available from SAS. Missing data and their
treatment is an important data quality issue for data miners. A suitable solu-
tion depends on the computational resources as well as the tolerance to errors
in approximating missing values.

5.2.2 Incomplete Data

There are situations where the data exist but are changed or mangled by the
time they get to the user. There are two important classes of such data which
are termed by statisticians as incomplete data.

A dataset has truncated data when observations are dropped from the data
set. For example, customers who spend less than a dollar a year might not be
included in a customer database. When such observations are dropped from a
data set, they affect the sample size. Metadata and domain expertise are crucial
in dealing with truncated data, otherwise it is difficult to detect that such a bias
has been introduced into the data set.
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Left and Right censored

Left Censored

Right censored

Complete

Begin Study Time End Study

Figure 5.1: Types of censored data.

Another type of data are called censored data. Such data are typically
studied in duration analysis, where times until certain types of events happen
(time elapsed before the next earthquake, time until a machine runs before
failing, duration before a patient’s symptoms recur, time for the successful
completion of a task) are of interest. Such durations have a built-in uncer-
tainty in the sense that they cannot be predicted exactly. The focus is on under-
standing the probability distribution of the time intervals to be able to isolate
periods of high likelihood when the event of interest (e.g., earthquake) could
take place. A challenge in such data is that the intervals could be incomplete.
For instance, a patient might not develop symptoms during our study and
might become untrackable afterwards. So we would know that the symptoms
did not occur for at least two years, but they could have recurred after two
years and a week or after 10 years. We will not be able to tell the difference
between the two cases, as in examples 1 and 2 in Figure 5.1. Similarly, when
we measure the time to failure of a machine, we might not know when it
started operating, only the time elapsed since the start of our study. The two
cases we discussed are called right censored and left censored respectively.
(See Figure 5.1.)

Truncation and censoring of data occur in expected as well as unexpected
ways. Integer overflows might result in censored values—for example, a signed
32-bit integer can only range up to a little over 2 billion. Higher values cannot
be represented. Or, the maximum duration that can be measured on a tele-
phone switch is 24 hours. A long call is broken up into a series of shorter calls—
however, we do have data to reconstruct the original data. An alarming
example of censoring is when timestamps are set to defaults. In one field study,
a sales order system populated missing dates on active orders with a default
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Figure 5.2: Spikes in histograms—is it censored data?

date of its choice. As a consequence, service orders with missing values all had
exactly the same vintage. Such egregious instances of undocumented censor-
ing can be detected with the help of histograms and frequency distributions.
In Figure 5.2, the spike at right is a telltale sign that something is amiss, in this
case, inadvertent left censoring caused by a default date. Histograms are useful
because sudden changes in the distribution that appear as spikes or “V”-
shaped valleys are pointers to data problems—either caused by an inexplica-
ble preponderance of a given value (default dates, censored intervals) or data
being lost or truncated.

The consequences too are unpredictable. It might be practical to drop cus-
tomers who bill less than $1 per year from the data set. However, if the data
analyst is unaware of the truncation or does not know the number of records
truncated in this fashion, the per capita expenditure of a customer will be over-
stated, with eventually unpleasant consequences on Wall Street.

Given the disconnect between data collection and data mining, metadata
are very important in the context of incomplete data. Otherwise, the data set
is just a collection of numbers and we cannot tell the difference between an
exact value and a censored value or whether the data set has been truncated.
EDM techniques such as histograms and other profiling techniques are useful
in detecting hidden censoring and truncation.

5.2.3 Outliers

Consider the following data:
3,4,7,4,8,3,9,5,7,6,92

Intuition tells us that 92 is a “suspicious” entry because our experience with
the rest of the data tells us to “expect” numbers between 0 and 10. An obser-
vation that is suspicious because it is not in line with the rest of the data is an
outlier. We will discuss precise definitions further in this section.
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Outliers are important from two perspectives. They could potentially rep-
resent the consequential elements in the data. For instance, according to the
informal “80-20" rule, 20% of the customer base generates 80% of the profits.
Analogous rules exist in where a small percentage of root causes generate a
bulk of failures in networks, software, and so on. Data miners dream of hitting
this highly profitable vein of customers by sifting through the data. Such cus-
tomers tend to be outliers in terms of the profits they generate. On the other
hand, outliers could be data glitches. In the above list, 92 could be a simple
typo where the separating “comma” is missing. Similarly, zeroes in network
traffic data are almost always data glitches, especially when they occur
fleetingly as in

10278643,10876373,10938746, 10298462, 0,
10289377,10939874, 10837646, 10298274

or in the absence of any known outage. It is important to be able to tell the
difference between outliers and data glitches. There are ways of making the
distinction, as we will see further down in the chapter.

Outliers are detected by the departure of data points from what we expect
them to be. The way we define “expected” and “departure” gives rise to dif-
ferent types of outliers. A simple approach suitable for dealing with one attrib-
ute at a time is based on error bounds. For instance, we can examine aggregates
such as means of groups of data and see whether they fall within error bounds
based upon standard errors and confidence intervals that we discussed in the
chapter on point estimation. This approach is called the control chart
approach. A more complex approach is to capture the interrelationships
between attributes using models (e.g., regression models, generalized linear
models) and detect points that are unexpected as defined by the model, giving
rise to model based outliers. Geometric outliers, favored by data miners, are
defined based on the geometric relationship with other points, irrespective of
the density or sparseness of data. In contrast, distributional outliers are those
that tend to be found in sparsely populated areas, not in the company of other
data points. Finally, time series outliers require analysis based on historical
data to detect unexpectedness. For example, in network data, it is common to
see sudden bursts in traffic. In isolation, the bursts might seem like outliers but
they might be quite consistent with the traffic patterns over time. We will
discuss each of the above types of outliers below.

Control Charts

Control charts were developed in the manufacturing industry to monitor the
quality of production lots. Several data samples are collected and select
summary statistics (sample mean, standard error, correlation coefficient) are
computed for each sample. The name of the control chart is derived from the
statistic that denotes the expected value of the sample such as a X-chart if it
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Figure 5.3: Example of a univariate control chart.

is the sample mean or the R-chart if the statistic computed for the sample is
the correlation coefficient. The values are then plotted on a control chart,
which typically consists of:

A central horizontal line that denotes an “expected value”, such as a mean
or a sum (usually of binary 1/0 attributes).

Two lines parallel to the central line that represent “acceptable bounds”
for the statistic corresponding to the central line. For example, in an X-
chart the error bounds are based on the standard error, which represents
the standard deviation of the sample mean. The intuition is based on the
confidence interval discussion of point estimation which states that we can
construct intervals within which the sample mean will lie for approxi-
mately 95% of the samples. The bounds are also called sigma-limits
since they are based on the sample standard deviation, commonly
denoted by o.

The statistic corresponding to each sample is plotted, with the sample ID
(historically corresponding to a manufacturing lot number) on the X-axis
and the sample statistic on the Y-axis.

Any sample whose statistic falls outside the error bounds is said to be out
of control. Figure 5.3 shows an example where the X-axis corresponds to the
time when the sample is drawn. The plot shows one data point in the upper
right-hand side that is outside the bounds. This particular data point is an
outlier, a good candidate for further investigation.

Control charts are easy to compute, understand, and explain. Since they are
based on aggregates, they scale well to large data sets. But notice that the com-
putation of the error bounds depends on the sampling distribution of the sta-
tistic used to capture the expected values. The mean is ideal since its sampling
distribution does not depend on the distribution of the underlying data. (See
Chapter 2.) However, other statistics such as the correlation coefficient require
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Figure 5.4: Example of a bivariate control chart.

assumptions about the underlying distribution of the data (e.g., multivariate
normal for the R-chart), which is not in keeping with the nonparametric nature
of data mining.

Control charts are primarily suitable for studying one or two attributes at
a time. They cannot be used for capturing outliers based on interrelationships
between attributes. It is quite possible that a data point might be well behaved
with respect to any given attribute, but out of control with respect to the attrib-
utes taken together. In Figure 5.4, the region inside the rectangle represents
attribute-wise control limits whereas the region inside the ellipse represents
the joint control limits based on taking into account the joint distribution of
the two attributes. Clearly, the two regions are not identical. Therefore, a point
could fall outside the real joint control region and be a potential outlier, yet
could fall inside the rectangular region and be interpreted as “in control” on
an attribute-by-attribute basis.

There has been some work on bivariate control charts like the one in Figure
5.4. While there is not much work on multivariate control charts, there are
two interesting approaches. The first approach by Liu and Singh maps n-
dimensional data to a single dimension depth and constructs univariate control
charts based on the attribute depth. The second approach is derived from the
field of chemical process control and uses wavelet representations to detect
outliers that occur at multiple scales.

Model Based Outlier Detection

Interrelationships between attributes are captured using parametric models
such as linear regression, logistic regression, and others. Such representations
are simple and can be computed from a small amount of data. (The
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Figure 5.5: Finding outliers using linear regression.

appropriateness, however, depends on whether or not the distribution assump-
tions are correct.) If a model represents a large portion of the data and cap-
tures general attribute relationships, we can identify data points that do not
conform to the models. Linear regression provides a simple example.

In Figure 5.5, the solid line represents the linear regression model that
represents the majority of the data. The dotted lines represent the confidence
bounds. We can see that there is one point that lies outside the confidence
bounds dictated by the model, a potential outlier. There are well-known
methods of detecting outliers with respect to regression models, and which are
available in standard software such as SAS. Such methods compute the dif-
ference between expected values (as per the model) and observed values and
tag data points where the difference is outside that of statistical error. The dif-
ferences, called residuals, can be analyzed further to reveal any systematic
biases and patterns (e.g., heteroscedasticity—the variance of an attribute
depends on the values of another attribute) that exist in the outliers.

Set comparison is a major application of model-based outlier detection. We
discussed this in Section 3.5. Set comparison techniques can rapidly isolate
sections where the data differ, enabling us to use more sophisticated tech-
niques to analyze just the suspect or “outlying” sections. The set comparison
technique can be used to compare a test data set to a baseline data set that
has been certified to be clean, to identify sections in the data that are differ-
ent from the clean data set.

Another technique is to use piecewise linear regression (or any piecewise
summarization of the data using parametric and nonparametric models) by
fitting linear regression models within each partition and using the model
parameters to compare and detect abnormal sections of the data. We discuss
below an example of detecting glitches through set comparison.
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5.2.4 Detecting Glitches Using Set Comparison

We conducted two experiments to illustrate glitch detection by knowingly
corrupting a data set. The first experiment simulates the switching of two fields
that are similar in their marginal behavior but differ in their interactions with
other variables. The second experiment mimics two errors, incomplete pro-
cessing of a variable and the censoring of another.

We generated a clean data set D, of 62,500 observations, each with three
variables Wait, Length, and Fee. All three are numeric variables. The first two
are negatively correlated but have very similar marginal distributions. They
are uncorrelated with the third variable Fee. The baseline DataSphere param-
eters which serve as a benchmark for comparison are computed using this data
set.

Switched Fields

For the first experiment, we created a corrupted data set (denoted D,) by
switching fields Wait and Length in our original data set (denoted by D,). We
then applied the set comparison analysis of Section 3.5, please refer back to
that section for details.

There are 43 populated classes of the DataSphere partition of D,. The chi-
square for the Multinomial test is 56.16. The p-value for the y* at 42 =43 — 1
degrees of freedom is 0.07. That is, the y* from the Multinomial test shows sig-
nificant differences at 90% level of confidence. This test indicates a possible
difference between D, and D, in the distribution of points among the parti-
tion classes, so we performed the Mahalanobis test for difference in multi-
variate means of D, and D, each DataSphere partition class. There were 43
such tests, one for each populated DataSphere class.

The Mahalanobis test identifies many classes where the multivariate means
of the corresponding DataSphere classes are significantly different; see the
bubble plot in Figure 5.6. The X-axis represents the distance layers where
negative layers correspond to negative pyramids. The Y-axis represents the
pyramid. For example, the tuple (-5, WAIT) represents the class in the Data-
Sphere partition corresponding to distance layer number 5 (from the center)
and the pyramid of the attribute WAIT, where the deviation from the center
is maximum for the attribute WAIT and the deviation is below average
(negative sign) with respect to WAIT. The presence of a bead indicates a
significant difference in the multivariate mean of the DataSphere class (X, Y)
between the data sets D, and D,. There are many differences all across the
dataset as a result of switching the fields.

Improper Processing and Censoring of Variables

In the second experiment, we introduced two glitches. First, a volume charge
that was applied to obtain Fee in the good data set D, (only very large values
of Wait qualify for the penalty) was not applied for D,. Second, measurements
of Length were censored so that any value below 0.05 was set to 0.05 and any
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Figure 5.6: Comparison of D, and D.,.

value above 20 was set to 20. In short, the glitches affected a small proportion
of data in the tails of the distribution.

The multinomial test came out to be not significant since the corrupted
points fall in outlying layers in both the good and bad data sets. However,
the Mahalanobis test of DataSphere section centers identifies the problem
segments. The multivariate means for the corrupted sections of the data are
significantly different and are immediately identifiable on the bead plot
shown in Figure 5.7.

We note that univariate tests do not identify any differences in any of the
variables, in any of the sections, even after partitioning the data using
DataSpheres.

Once the corrupted classes have been identified, the individual data points
that fall into those classes can be extracted and studied further to determine
the cause of the difference. Figure 5.8 shows the univariate box plots of data
points in the subset identified by the Mahalanobis test. It is clear that the vari-
able Wait is unchanged, while Length is censored at the tails and the distri-
bution of Fee is less spread out for the “BAD” data set when compared to the
“OK?” data set. Since we could isolate the corrupt classes, we could examine
them closely with methods suitable for small data sets.

Geometric Outliers

Data points that are on the periphery of the data set can be termed geomet-
ric outliers. A natural intuition for geometric outliers can be seen in Tukey’s
definition of peeling. We can think of the data set as consisting of layers (like
an onion) and we peel off layer after layer to go from outlying data to the very
heart of the deepest reaches of the data set. There are two approaches to
peeling: (a) we can peel off successive convex hulls (i.e., a polygon of minimum
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area that contains all of the points) where the external convex hulls would
ideally contain the outliers. (b) we can compute depth contours, perhaps in a
center outward fashion and define depth contours as data points with the same
depth. The depth contours with the least depth would potentially contain the
outliers.

As expected, the computation of convex hulls and depth contours is expen-
sive and cannot be done in more than three dimensions as of now. While there
are efficient algorithms for 2-D and 3-D the lower bound on the computa-
tional complexity increases rapidly at the rate of

Q(Nceil(d/Z))
where N is the number of data points and d is the number of dimensions.

Distributional Outliers

Distributional outliers are defined as those points which are in a region of “low
density”. Since these points are relatively isolated, there is a good chance that
they are outliers. One way to define distributional outliers is to compute, for
every point x in the data set, the value

DB[D](x),

which is the fraction of points in the data set at distance D or greater
from x. Then, the set of DB(p, D)-outliers is the set of points {x} such that
DBI[D](x) > p.

The intuition behind this definition is that outliers are likely to be at a large
distance (appropriately defined, e.g., L,) from the other points. However, the
outliers might be clustered, perhaps because of default or censored values for
some of the fields. Therefore, p can be adjusted to account for these clusters.

An advantage of this definition of distributional outlier is that is fairly non-
parametric, although some tweaking of p, D, and the distance function is
required. Another advantage is the availability of fast algorithms for comput-
ing the DB(p, D) outliers. One method is to compute the distance from every
point to every other, resulting in a O(dN?) algorithm, where d is the number
of dimensions and N is the number of points. Another method is to partition
the space into ¢ segments, such that every pair of points in the same cell is
within distance D of each other. Then, points in neighboring cells are com-
pared to each other, resulting in an O(c’N) algorithm.

5.2.5 Time Series Outliers: A Case Study

Longitudinal data, or time series data, must be analyzed in a different manner
from snapshot or cross-sectional data. First of all, data that are close together
in time tend to be highly correlated. We are often interested in identifying
these correlations. Furthermore, there could be cycles in the data, for example,
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long distance telephone usage has weekday morning and afternoon peaks. In
order to determine whether a data point is an outlier or not, it is important to
check its past behavior. We will discuss this point in some detail using a case
study because we feel that there is no strong reference for the discussion of
this material.

We discuss a two-step approach to detecting outliers in time series that
could be potential data glitches. We build the glitch detection mechanism using
the EDM summaries that we discussed in Chapter 2. First, we divide the attri-
bute space into sections using a space partitioning strategy, in this instance, the
DS technique. We treat each class of this partition as a state that a data point
can be at any point in time. A given time series can then be expressed as a tra-
jectory of the states. The trajectories can be characterized using transition
probabilities that are estimated from the data. At any point in time, transitions
can be ranked by their likelihood. “Low-likelihood” transitions are outliers
that should be flagged as data alerts. The data alerts can be further analyzed
to separate abnormal but legitimate behavior (bursty traffic) from data
glitches (missing data). Since the data alerts constitute a small subset of the
original data, statistical methods intended for smaller data sets could be used
to separate the truly bad data. In the second step, we map the multivariate
time series to a time series of two deviation attributes. We then define condi-
tions under which the deviations are flagged as abnormal.

The first measure of deviation is the Relative Deviation, which represents
the movement of a data point relative to other data points over time. For
example, an online customer might be purchasing merchandise at a faster rate
than others. Another customer might continue at the same rate at which he or
she started. The trajectories of purchases of these customers will be different.

The second measure of deviation is the Within Deviation that measures
whether a data point is different at any given time ¢ with respect to its own
expected behavior. The latter can be defined in several ways, depending on the
resource constraints. A simple strategy would be to fit a linear model to the
time series of a given record using summaries and identify departures from
the model.

Note that the relative deviation is more robust, since it is difficult to change
state (i.e., position in the attribute space relative to others) without a signifi-
cant change in the attributes. The relative deviation serves an additional
purpose of identifying the data point as typical (states that are in the inner
distance layers) or atypical (in the outer layers). In contrast, the within devi-
ation is very sensitive to minor changes and is better for capturing long-term
trends of the individual data point. Due to this property, we can use the within
deviation to differentiate between legitimate changes and data glitches as
discussed later in this section.

Example—ATM/Frame Relay Data
We used a data set that measured four attributes for a type of data service
“connection”, namely, Bytes Received, Bytes Transmitted, Frames Received,
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and Frames Transmitted, over a 31 day period. There were 15,596 connections
that were observed daily. The data consisted of the daily totals of the four
attributes during the 31-day period. We computed the within deviation of
a point at time ¢ simply to be the sum of the standardized deviations of the
individual attributes

Sij

where x;(¢) is the value of the j* attribute of the i data point (in this case the
connection) at time ¢, X;; is the 31-day average of the j” attribute for the i” data
point and s; is the standard deviation of the j” attribute for the i” individual
over the 31-day period.

We used the connection average for 31 days to create a data partition using
DataSpheres with 4 layers and 8 pyramids, 2 pyramids for every attribute. For
the purpose of simplification, we collapsed all the negative pyramids into a
single “negative” orthant and all the positive pyramids into a single “positive”
orthant within each of the 4 layers.

Next, we computed the transition matrices using the sample proportion

i (t )

ni(t)’

P, jt)=

where P(i, j, t) is the probability of changing from state i to state j at time
t (P denotes an estimate), ny(f) is the number of points in state i at time f,
and n; () is the number of points that move from state i at time ¢ to state j
at time ¢ + 1.

We noticed that the estimated probability of changing states at any point
in time was less than 0.25, usually less than 0.2. Therefore, we extracted the
entire multivariate time series for every data point that changed its state at
least once in the 31-day period. That is, we used “change in state” to flag data
alerts. The change in state happens when a data point crosses a class bound-
ary which, in turn, is a function of all four attributes. Note that if data points
changed states more frequently we could have defined the most likely
transition state(s) whose transition probabilities add up to some threshold
o (say 0.80) and flag all other state transitions as abnormal (yet another way
to define the relative deviation).

We also noticed that there was one distinctive feature that set the data prob-
lems apart from the changes caused by abnormal but genuine events, namely
a successive flip flop in states. For example, the transition sequence of states
i = j — i over three consecutive time steps. This sequence was usually caused
by missing data or a short-term outage that caused the traffic to drop.
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Two Types of Deviation over Time
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Figure 5.9: Data problem indicated by flip-flop of states.

To illustrate, we plotted four representative types of “abnormal patterns”.
In Figure 5.9, the data problem is indicated by a consecutive flip-flopping of
states indicated by the relative deviation. (For the purpose of plotting alone,
we have used a suitable transformation of the change in state variable to
denote relative deviation.) Note that the within deviation is much more
volatile. The fact that the within deviation drops to the same level on each of
the three times large variations indicates that the values are being set to some
default (such as zero) due to missing data.

In Figure 5.10, there is significant volatility indicating occasional bursts of
activity. However, note that the within deviation at time 21 is in the opposite
direction, dropping to a default value indicative of missing data.

In Figure 5.11, the behavior is quite different. The drop in the two devia-
tions is indicative of migration of usage to other services or carriers, with occa-
sional dribbles of traffic. Note that the flip-flop at times 15 and 30 correspond
to within deviations of different amounts indicating that they are genuine
bursts of traffic rather than data problems.

Finally, Figure 5.12 seems to indicate a genuinely volatile customer. The flip-
flop at time 17 is probably legitimate and not a data problem. This could
happen when a data point is close to the partition class boundary.

We have used the within and relative deviations to isolate a handful (20%)
of the data as potentially “dirty”. We note that automatic detection techniques
such as logistic regression or machine learning or clustering are expensive and



158 DATA QUALITY: TECHNIQUES AND ALGORITHMS

Two Types of Deviation over Time
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Figure 5.10: Data problem mixed in with bursty traffic.
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Figure 5.11: Big shifts in behavior.

will not be effective on noisy data. Additionally, note that we have built up
this effective mechanism of glitch detection in massive time series data using
the simple EDM summaries like mean, proportion and standard deviation that
we discussed in Chapter 2.
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Two Types of Deviation over Time
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Figure 5.12: Legitimate volatile behavior.

Glitches or Legitimate?
Once the outliers are identified, there are two major issues we need to address.
First, we need to distinguish between real data problems and genuine but
atypical changes in the data. Second, we need to define the action to be taken
with respect to the data glitches.

How can we tell the difference between an outlier and a legitimate change
in the data? We propose below broad guidelines:

Genuine changes are usually persistent over time, whereas data problems
appear and disappear quickly.

Arbitrary data glitches tend to appear randomly without any structure
while glitches with a reason can be “rationalized”. Even though they can
be rationalized, they are still glitches because they are unintended. For
example, a geographical proximity in the glitches would suggest a systemic
cause such as a drought resulting in lower crop yields in that region.
Similarly, a drop in revenues at a single point in time is more likely to
be a data problem (missing data) than a sustained downward trend. Note
that patterns in glitches can reveal systemic causes such as data from a
particular segment being missing.

We can use the within deviation of a data point to separate out differ-
ences with “structure” (systemic changes in the process that generates the
data, resulting in shifts in the distribution) as opposed to random aberra-
tions. Using the departure from linear autoregressive models as measures
of within deviation is a potential way of detecting structure.
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ECDF Vs. Normal CDF
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Figure 5.13: Measuring the distance between an assumed (Normal) and empirical CDF.

We can use the methods discussed in process based data quality techniques
and missing value imputation to deal with glitches and outliers detected in
time series data. They can be dropped, studied separately, or substituted with
more reasonable imputed values.

5.2.6 Goodness-of-Fit

Statisticians have used “goodness-of-fit” tests to check whether there is a
good match between the data and the model or the hypothesis used to
represent the data. Prominent among these are the chi-square test for testing
the hypothesis of independence of attributes and the Kolmogorov-Smirnov
test for testing how well a specified distribution represents the data based
on the empirical cumulative distribution function that we discussed in
Chapter 3.

In the context of data quality, we can use goodness of fit tests to validate
the analysis techniques. For example, a common starting point for many tech-
niques is to assume that the data have a specific distribution say Binomial or
Normal. Everything that follows hinges on the assumption being correct. Is
such an analytic assumption suitable for the data? For a discrete distribution
(such as the Binomial) we can use the chi-square test. Suppose we expect that
the probabilities in the d categories should be py, ps, . . . , p4, as per the assump-
tion, then we would expect that in category i, there should be np; data points.
However, our data indicate that there are n; data points. Then

i (Observed — Expected)’ 2 —np)’
= Expected
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has chi-square distribution with d — 1 degrees of freedom. We discussed this
in Section 2.4.4 in the context of equation 2.31. We can establish whether this
is a reasonable value by comparing the above value with the value from an
appropriate chi-square distribution. If the values are too far apart, then our
assumption is incorrect. The specified values py, ..., p, are obtained either
from past experience or by assuming a distribution like the Binomial and com-
puting the probabilities. (Note that these are univariate tests, though we dis-
cussed a multivariate version based on the DataSphere bins in Chapter 3.)

For continuous distributions such as the Normal distribution, the
Kolmogorov test measures the maximum distance between the assumed dis-
tribution and the empirical distribution computed from the data. More
complex goodness-of-fit tests exist for models such as logistic regression, gen-
eralized linear models, and others. The Q — Q plots that we discussed in
Chapter 3 are another good diagnostic tool for verifying goodness of fit
between assumptions and data. Many software packages offer goodness-of-fit
statistics. SAS has extensive coverage in its PROCs UNIVARIATE, NLIN,
LOGISTIC, GENMOD and others.

We can define the goodness-of-fit of a given regression model, as measured
by regression depth (see Section 2.9.1). Intuitively, a regression line (plane)
has greater regression depth if it has to pass through many data points to rotate
to the completely vertical position which represents a “non-fit”, since it implies
no relationship between the response variable and the covariate(s). The
greater the regression depth of the model, the better it is at representing the
data.

Choosing a model that reflects the true nature of the data is an integral part
of the data quality process. The quality of the results from a data mining exer-
cise depends both on the reliability of the data as well as the appropriateness
of the assumptions and models used in the analysis. Therefore, it is important
to spend time using goodness-of-fit tests to verify the suitability of the assump-
tions and models used to analyze the data.

5.2.7 Annotated Bibliography

Designing experiments for collecting data is described in R. A. Fisher’s book
[46]. Please see [81] for a discussion of statistical analysis with missing data
including imputation through regression. In particular, see [108] for a discus-
sion of the role of the propensity scores. Please see [113] for a discussion of
the MCMC method of imputation. Please see a SAS white paper [129] for a
summary of the missing value imputation techniques and explanation of the
use of SAS procedures MI and MIANALYZE mentioned in [66]. An inter-
esting way of discovering glitches in massive time series data using a Markov
chain representation is discussed in [32]. In this paper, missing values in time
series are isolated by searching for flip-flop patterns. Other references for
dealing with missing data include a tutorial presented at the SIAM Interna-
tional Conference on Data Mining in 2002 [100].
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Failure time data and their analysis is covered in [74]. Please see [75] for an
overview of failure analysis techniques for censored and truncated data.

An introduction to quality control in industry and the use of control charts
and statistics in given in [40]. A bivariate approach to control charts is dis-
cussed in [1]. A depth-based approach to multivariate process control is
discussed in [83]. Discovering departures from expected bounds for errors
occurring at different scales is discussed in [3].

Departures from expected values as determined by models can be identi-
fied by analyzing the residuals (the differences between observed and pre-
dicted values). Please see [5] for a discussion of regression diagnostics. Please
see [111] for the computation of regression depth of points in high dimensions.

The concept of “peeling” off layers of data is discussed by Tukey in [123].
Peeling by convex hulls is discussed in the book by Preparata and Shamos
[101], which is an excellent introduction to geometric methods. Johnson, Kwok
and Ng [73] and Miller et al. [88] give fast algorithms for computing depth
contours.

The definition of DB(p, D)-outliers and fast algorithms for computing them
are found in [77]. This idea is extended to local outliers in [12].

Goodness-of-fit tests such as the chi-square and Kolmogorov-Smirnov for
changes in distribution are discussed in [27]. More complex tests for regres-
sion models and generalized linear models are discussed in [86] and [105].

5.3 DATABASE TECHNIQUES FOR DQ

A large fraction of today’s data is stored in modern relational database
management systems (DBMS). This situation is fortunate because a modern
relational DBMS has extensive facilities for ensuring data quality and
documenting metadata.

5.3.1 What is a Relational Database?

A relational database is a collection of tables (or relations). Each table is an
unordered collection of records, and each record has a collection of named
fields. In turn, tables are collected into tablespaces. Figure 5.14 shows an
example database layout. At the top level is a collection of tablespaces (Sales,
Provisioning, etc.), each containing a related collection of tables. For example,
the Sales tablespace contains a number of tables, including Salesforce and
Orders. The Salesforce tablespace contains fields which describe individual
members of the sales force, including the name of the salesperson, and their
base salary and sales commission rate.

A relational database thus consists of a collection of tables. One of the key
ideas in building and using relational databases is to join tables together to
merge the information stored in different tables. For example, one of the fields
in the Orders tables is the SalesforceID (denoted by Orders.SalesforcelD),
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Tablespace : Tables :
! I
Sales | : Salesforce :
- | Name ID |Base Salary | Commission| |
Provisioning | I
: Joe 1101 10,000 14% :
|
: Kumar 1113 20,000 10% :
Analysis l Mary | 1211 15,000 12% !
|
| | Sunita |1514 | 8,000 15% |
|
! I
| Orders !
|
! ID |SalesforcelD| SaleDate |DeliveryDate | |
| [22122] 1101 [Aug3,2002 [Aug9,2002 | |
|
: 22124 1514 Aug 8, 2002 |Aug 23, 2002 :
| [22325] 1211 |Aug 15, 2002 |
|
: 23001 1514 Aug 24, 2002|Sep 4, 2002 :
|
! I

Figure 5.14: Data layout in a relational DBMS.

which indicates which member of the sales force negotiated the sale. The field
Salesforce.ID is a primary key of the Salesforce table, meaning that it uniquely
identifies the member of the sales force. (The field Name is also unique in
every record of this instance of Salesforce, but there is no guarantee of unique-
ness, for example, if another salesperson named Joe was hired.) Because the
field Orders.SalesforcelD refers to the primary key of Salesforce, it is a foreign
key, and the association of Orders records to Salesforce records through the
association Orders.Salesforceid = Salesforce.ID is a foreign key join. That is,
Orders.Salesforceid and Salesforce.ld are match keys or join keys. A database
in which redundant information (such as the salary of the salesperson
who negotiated an order) is factored out to separate tables is said to be
normalized.

One important way in which a relational DBMS can help to ensure data
integrity is through the design of the database. We can relate a salesperson to
all of their sales through the foreign key join—we do not need to record this
information on a per-order basis. By recording the information about a sales-
person only once, its consistency throughout the database is ensured, and we
are better able to keep its values correct.

Another important facility for ensuring data quality is the use of transac-
tions—which ensure that database updates (and queries) occur in an isolated
and all-or-nothing fashion. For example, each order might consist of a number
of items, stored in the table OrderItem and related to the Orders table by the
foreign key join Orderltem.OrderID=Orders.ID. Suppose that Kumar makes
a sale for 5 Snarks and 4 Gryphons. Recording this order requires three data-
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base updates, one apiece in OrderItems for the Snarks and the Gryphons, and
one in Orders for the order itself. If any of these three updates is not per-
formed, the database becomes inconsistent.

A modern DBMS can also enforce a number of data integrity constraints:

+ Every field in a table has a data type as well as a name. Common data
types are string (text), integer, floating point, and date. An attempt to store
“Bob” in a date field would be rejected as an error.

+ The values of a field can be further restricted. For example, a field which
stores a person’s Age could be an integer restricted to the range 0 through
150. String values are often constrained to satisfy a regular expression.
For example, a constraint on TelephoneNumber might be that it satisfy a
regular expression such as “([0-9]{3}) [0-9]{3}-[0-9]{4}” (three digits, a
space, three digits, a dash, four digits).

- We might often work with special data types, such as telephone numbers,
social security numbers, and so on, and use them in many fields. To ensure
a consistent definition of the field constraint, we can define a domain—
essentially a named field constraint.

- If we do not know the value of a field, we can specify that it is NULL
(e.g., order 22325 in the Orders table of Figure 5.14 has a NULL Deliv-
eryDate). We can specify whether entries of a field can be NULL or not.
Similarly, we can specify which fields or field combinations are keys
(e.g., they must be unique in every record).

+ We can specify the foreign key-primary key associations, and the actions
to be taken in case of a violation (ranging from issuing a warning to
cascading deletions).

+ We can specify application-specific constraints through the use of triggers,
which specify an action to occur whenever a constraint is satisfied. For
example, a trigger can send an e-mail to the head of sales whenever a
salesperson negotiates a sale for a price lower than production costs.

A relational database will have a data querying and manipulation language
which is a variant of standard SQL (Structured Query Language). SQL is a
powerful query language which can express many complex reporting tasks in
just a few lines. Many DBMSs have further reporting tools which make data
analysis even easier, for instance, a point and click graphical interface.

A database is part of a larger system in which users interact with the data-
base in a variety of ways to accomplish their tasks. Many of these tasks can
be written in SQL and, in fact, stored in the DBMS and made available to
authorized users:

- The database can contain stored procedures, which encode a combination
of SQL and procedural logic to accomplish specialized tasks. One stored
procedure can be a simple data transformation (e.g., to change the format
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of a telephone number from (123) 456-7890 to 1234567890), or a complex
procedure involving multiple database queries and updates (e.g., to check
if an order can be provisioned, and if so, reserve the resources).

+ The database can store queries (called views) over its tables, and make
them transparently appear as tables to the users. For example, a view
might associate the related Salesforce record with each Orders record,
giving the head of sales a more convenient view of the sale force’s
performance.

Finally, a modern DBMS will store a large amount of metadata, including:

For every field, the field name, its data type or domain, any additional
constraints, and comments about the meaning of the field.

For every table, the table name, its keys and primary keys, any additional
constraints, and comments about the meaning of the table.

For every tablespace, comments about the meaning of the tablespace.

+ The set of all primary key to foreign key associations, and other inter-
table constraints such as triggers.

+ The set of all stored procedures and views.

+ An audit log of all transactions issued by the users (with an association
to the user who issued the transaction).

- Other information such as character sets, user authorization lists, and so
forth.

5.3.2 Why Are Data Dirty?

Given the many data integrity and metadata resources provided by a DBMS,
it would seem that all data quality problems should have been resolved by
now. Why is it that all the data we have analyzed, including much accessed
directly from the DBMS, have significant data quality problems?

There are as many reasons as data sets, but some common reasons are:

+ A significant quantity of data is stored in legacy (pre-relational) data-
bases, flat files, spreadsheets, log files, and ad-hoc structures.

+ Metadata and data integrity are lost when data is transferred from the
database, for instance, in flat files representing the output of a view.

« Incorrect data are entered, for example, typos, and so on.

+ The DataBase Administrator (DBA) does not understand how to apply
the DBMS data integrity features, or otherwise does not use them. One
problem is that setting up the features can be time consuming and unre-
warded (e.g., adding comments about the meaning of each field). Con-
straint checking can be very expensive (e.g., foreign key join constraints
and triggers), causing the DBA to turn them off. Similarly, it can be easier
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to disable constraint checking than to diagnose the cause of data quality
problems.

+ The database can be so complex that the DBA cannot figure out the
proper set of constraints to use, or the proper database structure. For
example, the DeliveryDate field in the Orders table might be NULL until
the order is fulfilled. What happens if a decision is made to allow partial
fulfillment of orders? The meanings of many fields, tables, views, and
stored procedures must now be changed. Some constraints can have un-
intended consequences, such as preventing the entry of valid data (e.g., a
database might expect that everyone has a first and last name, but some
people in the world have only one name, or more than two names).
Enforcing the foreign key join constraint can cause cascading deletes. For
example, suppose that Joe is fired, and his record is deleted from the Sales-
force table. To ensure the foreign key constraint on Orders.SalesforcelD,
all of Joe’s sales are deleted from the Orders table—not what was
intended.

- Many business processes involve interactions among multiple organiza-
tions (e.g., sales, warehouse, billing), and therefore multiple databases. The
interaction between these organizations and their databases is very fre-
quently a cause of problems. One issue is that few DBMSs support trans-
actions between different DBMSs, so many interactions are recorded at
one database but not another. (this problem can be mitigated by using
“persistent queues” to store pending updates.) Another problem is a lack
of communication between the organizations, so that consistency con-
straints across the multiple databases is not maintained.

- Sometimes problems are caused by data cleanup efforts! For example,
a duplicate elimination effort (see Section 5.3.4) might decide that two
different customers are the same—and thereby “lose” one of them. In
general, acting on incomplete knowledge is a dangerous thing.

Many of these problems are not database specific, and other chapters of
this book address problem sources and solution techniques. In this section, we
discuss some database-specific tools, namely, ETL tools, database profiling, and
approximate join techniques.

5.3.3 Extraction, Transformation, and Loading (ETL)

Extraction, Transformation, and Loading (ETL) refers to the process of
loading data into a database, usually from a less-than-reliable source. The data
might be difficult to extract, and once extracted, in the wrong format. As can
be imagined, data obtained via an ETL tool are likely to be quite problem-
atic. However, a wide variety of research has been performed and many com-
panies sell software to help mitigate these problems.
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Extraction

Extraction tools make accessing data from a variety of sources easier. An
extraction tool might be as simple as a driver for reading a delimited ASCII
or ODBC data source. More complex tools can extract data from legacy data
sources, for example, IMS databases. Other complex tools submit queries and
perform screen scraping (e.g., simulate a 3270 terminal to extract data) or
HTML scraping.

The data sources are often provided in a structure which is incompatible
with the desired output. The data source might provide a limited query inter-
face, or provide a set of tables which must be joined or otherwise transformed
to provide the desired answer. In this case mediators and schema mapping
tools can help to find a strategy for extracting the desired data.

Given the vast amounts of information published on the Web, it is a very
attractive data source. However scraping web data is difficult for many
reasons—HTML is a text markup language rather than a data publishing lan-
guage, the layouts change rapidly, and many data sources try to make scrap-
ing difficult. Much research and many software companies have produced
tools to help automate web scraping.

A common problem with scraped data is the lack of a schema, or data layout
description. Some tools have facilities which can guess the meaning of a field.
The main idea is to define a collection of domains (e.g., name, address, tele-
phone number, quantity, etc.) and a set of regular expressions for each of the
domains. For example, a set of regular expressions for a telephone number
could include { [1]?[0-9]{10}, ([0-9]{3}) [0-9]{3}-[0-9]{4}, .. .}. Each value of
a field is matched against the regular expressions for each of the domains.
When the field value matches one of the regular expressions, it “votes” for
the domain (a field value can vote for a domains only once, but it might vote
for multiple domains). The domain with the highest vote count wins, but of
course, tight elections require a close examination of the dimpled chads.
Obviously, such a tool is useful in many settings.

Transformation

After extraction, the data are probably not in the desired format. An ETL tool
typically provides a collection of transformation services. Many of these are
simple field transformation, for example, extracting a first name and last name
from an input name field, normalizing telephone numbers to the format (123)
456-7890, and so on. Other transformations are more complex, and can involve
join queries, or even more complex transformations such as pivots (which turn
fields into sets of records and vice versa).

Loading

ETL tools facilitate database loading by certifying that the records to be
loaded already satisfy the DBMS’s integrity constraints. This allows the DBA
to use the “fast load” option in the database loader, which can speed database
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loading by an order of magnitude. The ETL loader can also use fast bulk algo-
rithms for testing more complex constraints, such as foreign key constraints.
In general, a good loading component of an ETL tool can eliminate perform-
ance concerns for enforcing data integrity constraints.

5.3.4 Approximate Matching

In Figure 5.14, the method for joining Orders with Salesforce is an precise join
using the predicate Orders.SalesforcelD = Salesforce.ID. We are assured that
every value of Salesforce.ID is unique and that it has been accurately tran-
scribed in Orders.SalesforcelD. This case is taken to be the norm by most data-
base literature.

However, we are often faced with the need to associate two tables without
the benefit of a precise join key. One example occurs when we need to asso-
ciate data from different organizations (e.g., after a corporate merger, when
combining information from two different divisions of the same company,
etc.)—the databases are unlikely to share the same key. Another example
occurs when the key information is entered manually, and with many typos.
The technique for associating these tables without the benefit of an exact join
key is to use an approximate join (or a fuzzy join).

A related problem occurs when imprecise information is used as the key of
a table. For example, a customer’s name might be used as the key of a cus-
tomer account table. If the sales representatives manually enter these names,
any given customer might be entered in the table with several creative mis-
spellings of their name. The process of combining multiple entries into a single
entry is called duplicate elimination.

Many vendors provide approximate join and duplicate elimination software
and services. In this section, we briefly discuss the principles of how these
systems work.

Approximate Field Matching
One of the fundamental tools for performing approximate joins is a method
for determining that two things are similar, and also a method for computing
how similar they are. For some data types, this is fairly easy. For example, if
we are looking for a person who is about 40 years old, we can search our data-
base for all people between the ages of 35 and 45. We would then order the
output by the closeness of the listed age to 40.

Other data types require more sophisticated techniques, which we discuss
below. Because so much of the data in a database consists of text, we pay par-
ticular attention to string matching.

String matching

To perform string matching, we need a metric which tells us how far apart two
strings are. By analogy, we know that 38 is closer to 40 than 35 is because
(40-38) is smaller than (40-35). The usual metric is the string edit distance, or
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how many elementary edit operations are required to change one string into
another. The most common set of editing operations are (a) change any letter
into any other, (b) insert any letter at any position, and (c) delete any letter.
For example “Snark” is edit distance 2 from “Snort”, but edit distance 5 from
“Gryphon” (and therefore a Snark is closer to a Snort than to a Gryphon).

Other editing operations have been proposed to better capture typos (e.g.,
allow character transpose), but the basic three editing operations generally
capture the meaning of “similar strings”. There are many fast algorithms for
computing the string edit distance, and they can be found in most elementary
algorithms textbooks. Our problem is a little different, however. We want to
compare a one string against a very large number of others, and to do so
without making individual comparisons. (One string distance computation is
fast; 100,000,000 of them is pretty slow.)

There are three basic approaches to finding all strings in a source list at dis-
tance k or less from a target string s:

1. Build an index on the source list of strings (this is easily accomplished
when the source list is a field of a table in a database). Generate the set
of all strings at edit distance k from s, and use the index to see if they
are in the list. If & is larger than 1 or 2, this method will generate a very
large number of index lookups.

2. Build a supplementary index on the target list as follows: For each string
in the target list, compute the set of all g-grams, or g-character substrings.
Create a supplementary table with two fields: a g-gram field and a source
string field. Fill the supplementary table with an entry (Q,t) for every g-
gram Q of every string ¢ in the source list. To find source list strings which
are close to target string s, compute the set of g-grams of s, and find a
set of candidates from the source list strings whose set of g-grams is
similar to the that of s. Compute the edit distance between s and all of
the candidates, and return those at distance k or less.

The idea behind the g-gram index approach is that any single string
edit operation can affect at most g of the common g-grams of s and .
The effectiveness of the filter can be improved by storing not only the
g-grams, but also their position in the string, and requiring not only that
the g-grams match, but that their positions are close.

3. A hybrid of the above two approaches.

The second approach (g-gram index) has the advantage that the supple-
mentary index table can be stored in the database, and the search for the can-
didate list is a simple SQL query which is readily optimized.

Tree matching
Some data, such as XML records, are tree structured (see Section 5.4). Because
XML data are likely to be as dirty as relational data, it is sometimes valuable
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to perform approximate matching on tree data. The natural metric on tree
structured data is the tree edit distance, analogous to the string edit distance.
Unfortunately, computing the tree edit distance is very expensive (string edit
distance is O(n?), where n is the number of characters, while tree edit distance
is O(l*), where [ is the number of leaves). Recent research has produced faster
approximate algorithms, which we discuss in the annotated bibliography.

Feature vector matching

Similarity search is a basic data mining tool. The idea is to represent an object
by a list of (usually numeric) features (the feature vector). The distance be-
tween two objects is usually the L, distance between their feature vectors.
For example, a color can be represented by its reflectivity in the red, blue, and
green spectrums. To find all colors similar to a particular shade of yellow, we
look for colors with a close match on the red, blue, and green reflectivity. A
large literature and many software tools have been developed for feature
vector matching, and we provide some citations in the annotated bibliography.

Ad-hoc matching

In many cases, there is a special trick that can be exploited to find similar
objects. For example, toll fraud investigators have found that calling patterns
contain valuable information for uncovering instances of identity theft. Once
they have determined that an account was taken out under false pretenses,
they can save that calling pattern, since it contains the friends and relatives of
the crook behind the identity theft. It is expected that the crooks will continue
to call their friends and relatives even if they assume yet another identity. So
by matching calling patterns from already compromised accounts to new
accounts, fraud can be detected quickly, even with very dissimilar names on
the accounts.

Approximate Joins and Duplicate Elimination
While approximate matching is a very useful tool for performing approximate
joins, there is more to the story:

- Approximate matches are just that—approximate. To have confidence in
the match, we need to look at correlating information. For example, if we
match a customer in the billing database and the provisioning database,
a customer who has a lot of equipment allocated to them should be gen-
erating large bills, and vice versa.

+ Usually, no single field is always close. For example, if the customer name
is alternatively recorded as “GE” and “General Eclectic”, we are unlikely
to approximately match these records on customer name. However if
their phone numbers are the same, then we would have a reason to believe
that they are the same entity.
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Because of the application-specific nature of many approximate matching
problems, many approximate-join software packages provide facilities for
building an approximate-join application, rather than a pre-configured appli-
cation (there are exceptions for very common approximate matching prob-
lems, e.g. address matching). Such a package typically works as follows:

+ Define a set of buckets, and put the records from the tables to be matched
in these buckets (in the case of duplicate elimination, there is only one
table). There are several ways to define these buckets, including
— Compute a hash function (i.e., a small summary) of one or more fields,

sort the records on the hash, and use region around the sort position
of the source record in the target list as the bucket for the source record.

— Compute a hash function of one or more fields, and use an exact match
on its value to define the buckets.

— Use one of the approximate matching techniques to define the buckets.
Records which reside in the same bucket are candidates for matching.

« For each pair of candidates, apply a match evaluation function. Accept
the pairs with a high rating.

The exact working of the algorithm depend on the desired result. An
approximate join algorithm matches candidates from the two different
tables, while duplicate elimination matches records from the same table. The
purpose of defining candidates as records which fall into the same bucket is
to reduce the number of times that the (perhaps expensive) match evaluation
function must be applied. If no prefiltering is done, the match evaluation func-
tion must be applied to every pair of records—O(N?) pairs, where N is the
number of records. It is possible, even desirable, to use several bucket defini-
tions to find match candidates (e.g., if the names are far apart, the telephone
number might still be close). The hash functions might be very simple, for
example, just the field value, or it might be a transformation of the field value.
Common hash functions are Soundex (developed by the U.S. Census Bureau
for duplicate elimination), and using the first few letters or consonants of a
name.

The evaluation function is a heuristic rating of the similarity of two records.
Because this function is run on a reduced set of candidate pairs, it can
perform expensive operations, for example, look at a wide set of correlating
information, perform multiple transformations to match fields, and so on.
However, it is often the case that no single hash function will bring together
matching records (e.g., sometimes it is the names that are similar, some-
times it is the telephone numbers). Fortunately this problem is easy to solve—
use a set of hash functions and run the matching algorithm with each of
them.

Thus the approximate-join software provides a matching engine which
is customized by the user. The software will also provide libraries of
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Figure 5.15: Approximate join of Sales and Provisioning.

transformation, hashing, approximate match, and match evaluation utilities.
The matching and evaluation rules are often highly application specific, for
example, does “St.” expand to “Street” or “Saint”. Exploratory data mining
often helps to identify the best set of matching rules.

Let’s consider an example, illustrated in Figure 5.15. We are trying to join
data from two tables, Sales and Provisioning, using an approximate join. We
the hash of a record to be the first three characters of the company name (a
simple but probably not effective choice). Within the “Gen” bucket, we have
four records from Sales and three records from Provisioning. The match
evaluation function performs a variety of tests on the 12 combinations, and
finds three pairs with a high rating (of .75 or higher).

When performing duplicate elimination, there is one additional considera-
tion. Matching records refer to the same underlying entity. Therefore, if R1
matches to R2, and R2 matches to R3, we can infer that these three records
all refer to the same entity, even if we would not otherwise match R1 to R3
(i.e., matching records form an equivalence class). More concretely, if record
R1 with customer name “General Eclectic” matches to record R2 with cus-
tomer name “GE” because of a common telephone number, it will also match
to record R3 which has no fields in common, but matches to R2 on the cus-
tomer name “GE”. This matching tool is powerful but dangerous—it can
greatly reduce the number of false negatives but greatly increase the number
of false positives.

5.3.5 Database Profiling

In our experience, no data quality project can proceed without an extensive
look at the data. Database profiling is just that—a systematic summarization
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of the contents of a database. Many of these summaries embody the EDM
methods described in Chapters 2 and 3. For example, we have found the fol-
lowing query to be extremely helpful:

Select FIELD, count(*) as CNT
From TABLE
Group By FIELD

This SOL query reports the number of times each different value of field
FIELD occurs in table TABLE. If we sort by the count in descending order
(“Order By CNT DESC”), undocumented default values usually appear near
the top of the list (we often find two or more). If we sort by the count in ascend-
ing order (“Order By CNT ASC”), we can often see typos. Viewing typical
contents of a field generally reveals a wealth of unexpected insights.

In this section, we discuss some of the database-specific summaries that
database profiling systems collect, and how they can be used. To a large extent,
these summaries recover the database metadata from the data itself—a very
useful function if the metadata is unavailable or untrustworthy.

Functional Dependencies and Keys

Recall from Section 5.3.1 that a well-designed database (i.e., normalized) has
removed redundancies from its tables. In particular, there should be no func-
tional dependencies, that is, a set of fields whose value determines the value
of another field in the same table. For example, if we know the zip code of an
address then we can determine the value of the state using only a lookup-table.
Therefore the zip-code functionally determines the state', so any table which
contains both zip code and state contains some degree of redundancy. A key
is a set of fields which is unique in every record of a table. We note that a key
can consist of more than one field. For example, a last name field is probably
not unique in every record of a table, but a (first name, last name) combina-
tion might be. We are generally interested in minimal functional dependencies
and keys (you can always add fields to a functional dependence or a key, and
it is still a functional dependence/key). For example, if (first name, last name)
is unique in every field, the (first name, last name, state) is also, but the smaller
key is more useful. An approximate functional dependency is a set of fields
which usually determine the value of another, and an approximate key is a set
of fields which is unique in almost every record.

Fundamentally, the algorithms for finding keys and functional dependen-
cies issue lots of counting queries to the DBMS. For example, if the number
of unique values of the zip code is equal to the number of unique (zip code,
state) pairs and there are more zip codes than states, then the zip code func-
tionally determines the state in the table. Similarly, if the number of unique

!Actually, in some areas of sparsely populated western states, a zip code can span more than one
state—it is an approximate functional dependency.
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customer names is equal to the number of records in a table, then the cus-
tomer name is a key for the table.

Key and functional dependence finding can be extremely expensive. If there
are F fields in a table, then finding keys of up to k fields requires O(F*) expen-
sive counting queries. Fortunately it is possible to reduce this cost, and we
outline a fast key finding algorithm that we have found to be effective.

1. Eliminate all fields which are obviously bad candidates, for instance,
because there are few unique values, because they are mostly null,
because they have a data type such as floating point, and so forth.

2. Collect a sample of these fields in main memory.

3. Find keys within the sample in a level-wise fashion. That is, find all single-
field keys, then two-field keys, and so on.

4. Issue count queries on the keys of the sampled table to verify that they
are keys in the full table.

The point of finding keys in the sampled table is to allow the use of a
pruning rule: don’t bother computing the count of the number of unique values
of a set of fields if some subset of these fields has already been determined to
be a key or a functional dependency. Because the counting is done on a sample
of the table, a sample key might not be an actual key, hence the verification
step. However counting in the sampled table is much faster than in the full
table, and serves as a very effective filter.

Finding functional dependencies in the tables of a database can help deter-
mine whether there is redundancy in the database schema design, possible
leading to a more normalized database schema. However, there are a couple
of caveats: (a) tables are often left un-normalized, to improve performance
(i.e., avoid joins), and (b) there might be apparent but not actual functional
dependencies in a table (e.g., zip codes appear to functionally determine state,
but logically they do not). Perhaps more interesting are approximate func-
tional dependencies. Why are they only approximate and not exact?

Finding keys and approximate keys helps us to find join paths, and to obtain
correlating information for approximate joins. In many cases, we have been
given data sets in which the field which is supposed to be the primary key was
not actually unique in all records, but we were able to find other keys in the
table and use them to join tables or to verify approximate joins.

Field Value Classification

In many data sets, the fields data types (or domains) are either not given, or
are poorly specified. Field value classification attempts to recover these meta-
data. The simplest mechanisms classify fields by their length and by their char-
acter sets (numeric, alphabetical, etc.). More useful is a domain classification
mechanism described in Section 5.3.3. We often know that a field contains text
data of up to 20 characters, but does it appear to be a name, phone number,
job title, or so on?
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Join Paths

A join path is the sequence of one or more joins required to associate data in
one table with the data in another. The join paths tell you the structure of a
relational database—they indicate how information from different tables
combines to describe an entity and its properties. Very often, this information
is missing, incomplete, or inaccurate. However, we can recover much of this
information by special field value classification mechanisms.

Finding join paths can be an extremely expensive task. A database of
moderate complexity will have hundreds of tables and thousands of fields. If
we try to find join paths by evaluating the join of all pairs of fields, we will
submit O(F?) very expensive queries, where F is the number of fields in the
database.

If we have classified fields into a set of domains, we can greatly reduce the
number of field pairs that we need to test. That is, phone numbers will be
matched to phone numbers, and so on. Still, a very large number of very expen-
sive queries is needed.

There is a special sampling technique, called min hash sampling, which can
help with finding join paths. A min hash sample of a field returns a small
number (50 to 100) hash values, called the signature of a field. (A hash is a
small summary of a value, usually an integer value.) A comparison of the sig-
natures of two fields can compute their resemblance, or the size of the inter-
section of the set of unique values of the two fields divided by the size of the
union. From the resemblance and the number of unique values in each of the
two fields, we can compute the size of the intersection, and whether set of
values of one field is contain in the other. This information is sufficient to find
all pairs of fields which are likely to be joinable. Because the signatures are
small and the resemblance computation is a simple query, finding these pairs
is very fast.

In many cases, two fields can be joined after a small transformation. For
example, one table might store customer names in the format “Lastname, First-
name”, while the other stores it in the format “Firstname Lastname”. While it
is very difficult to automatically find join paths when transformations are
required, it is possible to find fields which are “textually similar”. Once pairs
of textually similar fields are found, a quick visual inspection can usually deter-
mine whether the fields are potentially related and what transformations can
be applied. The trick to finding textually related fields is to compute the min
hash samples on the g-grams of the field values, rather than the field values
themselves. Textually similar fields will have a largely overlapping set of g-
grams, and therefore a high resemblance.

5.3.6 Annotated Bibliography

Good database textbooks include [34, 98]. These texts cover material on data-
base design (keys, functional dependencies, normal forms, etc.) and the SQL
query language. Rahm and Do [103] survey database-related research in on
data quality issues.
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Research in ETL has been performed in many guises, we provide an entry
to the literature here. Access to legacy data is often assisted by the use of medi-
ators [95]. Legacy or web data sources often provide limited query interfaces,
requiring query transformations. This problem is addressed by [125], and
Halevy [55] provides a survey of this technology. Even when the query inter-
face does not present a problem, the source database often does not have the
desired structure. Miller, Haas, and Hernandez [90] give algorithms for schema
mapping. Lakshmanan, Sadri, and Subramanian [79] describe data transfor-
mation techniques such as pivot, unpivot, etc. Problems related to extracting
data from free-form web sources are discussed in [10, 76]. Borkar, Deshmukh,
and Sarawagi [11] present a method for segmenting free-form text into struc-
tured records. Rahm and Do [103] provide a summary of ETL research, and
Vassiliadis et al. [126] describe an ETL system.

A summary of string matching algorithms can be found in [96, 97]. Gravano
et al. [53] show how approximate string matching can be phrased as an SQL
query. Koudas et al. [78] provide fast approximate tree (XML) matching algo-
rithms. The book by Faloutsos [43] is an excellent source on (non-string) sim-
ilarity search. The algorithms for approximate joins and duplicate elimination
are from [58, 59, 94]. An industrial approximate join implementation is
described in [16]. In [2], the authors propose using the hierarchical informa-
tion commonly found in data warehouses. An alternative Artificial Intelligence
based approach is described in [21].

An industrial implementation of database profiling is described in [120].
Efficient algorithms for finding keys and functional dependencies is given by
[64]. Systems which summarize field values are described in [33, 104, 128]. A
method for keyword search in a relational database is presented in [61].

Researchers have developed prototype data cleaning software systems.
Ajax [49] provides extended database operators (for field transformation,
approximate matching, and duplicate elimination) to allow the declarative
expression of an ETL data flow. Potter’s Wheel [104] is an ETL system with
two notable features. First, it provides an interactive system for viewing the
results of data transformations, making clear their effect. Second, it has a
domain discovery mechanism, and uses it to find discrepancies in field values.
Bellman [33] provides a suite of advanced profiling tools including min hash
sampling.

5.4 METADATA AND DOMAIN EXPERTISE

In this section we give a brief overview of metadata and domain expertise, and
techniques for creating and storing metadata. Consider the following scenario:
A team of data quality gurus run extensive analyses and come up with a subset
of records that are peculiar. The fields in these records behave very differently
from the majority of the data set. The owners of the data are not impressed.
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They say “Oh, we did that on purpose. Our GUI wouldn’t allow us to add an
additional field so we decided to put Service A and Service B together in the
same field. We can tell the difference because Service A starts where Service
B leaves off.” The data quality gurus are understandably annoyed that this
piece of information about the data was never mentioned to them, leave alone
documented anywhere. In reality, a major part of data quality findings consist
of unspecified and undocumented metadata, data about data.

An efficient way of recording, updating and transmitting metadata is to
have a complete, accurate and up to date schema—essentially the metadata
that is contained in a well-designed database that resides in a relational DBMS
(see Section 5.3.1). Formal schemas come in three major flavors—Based on
entity-relationships (hierarchical schemas), object-oriented schemas that
include data encapsulation, and relational schemas as previously discussed.

Not many data sets come with good schemas. Although modern relational
databases provide extensive facilities for schema documentation, they are
often not used or not maintained. Also, in many instances the data set resides
in legacy databases or in ad hoc structures. In these cases, the schemas are
often informal and ad hoc, integrated into the programs that produce or use
the data or in the heads of people, subject to mutation every time it is trans-
ferred from person to person. Worse, the knowledge is lost if the key person
leaves without documenting the schema, making the data unusable. Most often
the data reside in relational data bases, but when data are transmitted from
one group to another, it often comes in delimited flat files, with a rudimentary
schema describing the field layout.

When no formal schema exists, or the existing one is inadequate, the data
users have to reverse engineer a schema from data (see Section 5.3.5). Data
quality problems arise when the schema is incomplete or underspecified, or
when the schema is ignored by the producer or the user of the data. Very often
the schemas do not evolve as data changes. Even if the schema is updated, the
data user has no way of knowing until she or he is notified. So the users often
create their own mechanism for detecting and inferring changes in the schema.
There are other sociological (reward sales but not documentation) and tech-
nical (limitations of systems, interfaces, expense of making system changes)
issues that could result in improper or inadequate schemas.

A schema in the strictest definition of the word is sometimes not adequate.
We need to know how to interpret values such as the scale that is used (some-
times values are “standardized” to make them more interpretable), units of
measurement and meaning of labels for categorical attributes. Furthermore,
we need to know how to interpret the tables—the frequency of refresh, asso-
ciations between tables, the definition of the view that the tables represents
Most work done in this areas has been for scientific databases where meta-
data can include programs for interpreting the data set (in an enterprise data-
base, the metadata includes the business rules (dynamic constraints) for
processing and interpreting the data). However, facilities for storing this meta-
data are readily available in relational databases, either directly (e.g., the
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<tutorial>

<title> Problems, Solutions, & Research? <\title>

<Conference area="Statistics”> SIAM Data Mining Conference <\Conference>
<author> T. Dasu
<bio> Statistician <\bio> <\author>
<author> T. Johnson

<institution> AT&T Labs <\institution> <\author>

<\tutorial>

Figure 5.16: An example XML record.

stored procedures which interpret the data are part of the database itself), or
indirectly (e.g., through user-created metadata tables). Unfortunately, these
facilities are under-used and are often not transmitted with interchanged data.

In recent times, there has been interest in a more general platform for the
exchange of metadata regarding data shared by multiple groups of users (such
as a consortium of manufacturers of auto parts) and across multiple applica-
tions. Data interchange formats describe logical characteristics of shared data
and contain semantics of multiple data-exchange applications. The data and
the schema are intermingled and serve as a contract between multiple pro-
ducers and consumers. Data exchange schemas are independent of storage
system and data model making them more widely applicable. The close con-
nection between schema and the data makes it harder to introduce data
quality errors of misinterpretation by making it harder to circumvent the
schema.

A data interchange format especially developed for web applications is
XML. While XML is actually a text markup language (being derived from
SGML, the Standard Generalized Markup Language), it has facilities and
extensions for transmitting significant amounts of metadata. While a detailed
discussion of such languages is outside the scope of this book, we give a brief
description.

Figure 5.16 shows an example XML record. A quick glance at the record
shows the “self-describing” nature of XML records—each field of the record
is labeled with its name. Also note the nested structure of the record. The
“tutorial” has a “title”, a “Conference”, and two “authors”. One of the authors
has a “bio”, while the other has an “institution”. The free-form tree structure
of the data avoids data interchange problems of forcing data into an alien
structure, instead the data can be presented in the manner in which it is
recorded. For one example, there is no need to supply default values for fields,
instead missing fields are literally missing. In addition to providing the names
of the fields and their nested interrelations, fields can have attributes. For
example, the field “Conference” has the attribute “area”, whose value is
“Statistics”. Attributes provide a mechanism to provide additional informa-
tion about the meaning of a field—that is, to provide additional metadata.

An XML record can be too free-form. For data interchange, we often want
to specify a minimal set of fields which will be in any valid record. XML allows
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the specification of Document Type Definitions, or DTDs. The DTD of a
record specifies a minimal set of fields in the record, and their nesting struc-
ture. The DTD of a record is specified as a URI in the document type decla-
ration of the record. For example, the following document type declaration
states that records rooted by “tutorial” have a DTD which can be found at
http://www.research.att.com/"tamr/tutorial.dtd:

(!\DOCTYPE tutorial SYSTEM “http://www.research.att.com/tamr/tutorial.dtd”)

For complex data, the DTD has some limitations. One significant limitation
is the lack of field domains (recall Section 5.3.1): we cannot specify that the
text in a field is a number, a name, an address, or so forth. Furthermore, DTDs
are not able to express many of the interesting constraints on the data set. To
address these shortcomings, XML schema languages (such as the W3C XML
Schema) have been proposed. Using XML Schema, the schema can declare
that elements are of particular data types or domains.

5.4.1 Lineage Tracing

In data warehouses, the source data feeds are transformed, processed, cleaned,
and aggregated to a great extent to make them usable and interpretable.
However, this processing is often not well documented, making it difficult to
understand how the values in a particular record in the data warehouse were
derived. Lineage tracing records the process by which records in a table were
derived—obviously a very useful piece of metadata. Lineage tracing can be
done at the coarse level of tables or at a finer granularity of an individual
record. The transformation steps can be recorded as a graph recording the
transformation operators and data sources. The results of lineage tracing are
useful for analysis (interpreting the probability distributions of truncated and
censored attributes), debugging (why are there suspicious drops and spikes in
the histograms of certain attributes) and for putting in place feedback loops.
For example, if a customer disconnects a service (Attribute = status in Table
= Customer is changed), make sure to de-allocate the associated resources
(change Attribute = availability in Table = Circuit and Attribute = Action in
Table = Sales). As a consequence, resources will be available for provisioning
as soon as they are discontinued by a customer, avoiding the spurious
“network saturation” problem.

5.4.2 Annotated Bibliography

A discussion of metadata issues can be found in [118]. In [114,116], the authors
propose the use of tags on data elements to attach metadata. An excellent
book on XML is [57]. Additional XML resources are [26, 109]. Research
literature on lineage tracing includes [25, 50].
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5.5 MEASURING DATA QUALITY?

So, at the end of the day, how do we measure data quality? It is not difficult
to define a set of numbers as a political exigency for all concerned parties to
sign off on. Uniqueness, completeness, accuracy—choose any or all. We can
ensure uniqueness by getting rid of seeming duplicates, only to find out later
that they are differentiated by a minute variation in the representation of an
attribute which is critical to a downstream application. Completeness can be
induced by imputing values but might introduce a bias which can skew
the results of the analysis at the end of the data chain. Accuracy cut-offs can
be met by all kind of workarounds or simply playing with the definitions of
the data. The biggest danger in adhering strongly to a mandated set of golden
rules is that the data can be manipulated to meet these rules if there is enough
political pressure on those responsible for those numbers.

Instead, the questions to ask are: “Do the data quality metrics truly reflect
the quality of the data in terms of usefulness and reliability? Do the end users
of the data see improvement in their applications and results when the data
quality metrics improve?” In other words, are the metrics directionally correct
with respect to the utility of the data to its consumers at various points in the
data chain? To illustrate this, we discuss an example, which is based on a real
case study. We have changed, for proprietary reasons, elements of the case
study that will not impact the conclusions in any way. In some places we have
simplified the processes for clarity of explanation.

5.5.1 Inventory Building—A Case Study

Holy Cow Corp. sells high-tech machinery to clients all across the United
Stated in a highly competitive market. The machines come in many varieties
and are assembled from different types of components in local warehouses
geographically close to the client location. The company wants a complete and
accurate inventory of its machinery (the ability to assemble a given type of
machine) to be sold by its sales force. False positives (tell customer that Holy
Cow can provide the machine when it cannot) and false negatives (tell cus-
tomer Holy Cow cannot provide the machine to the customer when it has the
capability) carry a very high penalty—the client will go to the competitor
either way. The loss of every sale has a big impact on Holy Cow’s ability to
survive in a very tough market.

Task Description
A data quality task force was set up to complete the task of inventory build-
ing within an ambitious time period. The task force was backed by the top
officers of the company.

The task force identified the databases that played a critical role in the
problem of inventory building for the sales force. Many phone calls, meetings



MEASURING DATA QUALITY? 181

and e-mail exchanges were needed to accomplish this. The task force had to
use the name of the top management on several occasions to escalate and get
responses in a reasonable time frame. The following databases were identified:

+ Operations DB (OPED)—Identifies the components that are available at
each local warehouse, the latter identified by an address. For example

Record 1:
Warehouseid=XYZ;
Machineid=XYZ1;
Component A = 10;
Component B = 1;
Component C = 5;
Address=180 park Avenue, Florham Park, NJ 07932;
Machine = Type 1;
Status = Deployed
Record 2:
Warehouseid=XYZ;
Machineid=XYZ2;
Component A = 6;
Component B = 3;
Component C = 5;
Address=180 park Avenue, Florham Park, NJ 07932;
Machine = Type 1;
Status = Inactive
Record 3:
Warehouseid=XYZ;
Machineid=XYZ1;
Component A = 10;
Component B = 1;
Component C = 5;
Address=180 Park Avenue Florham Park NJ 07932;
Machine = Type 1;
Status = Deployed

where warehouse XYZ located at 180 Park Ave in Florham Park NJ has
multiple records showing the type of machines, their status and the com-
ponents used in building them. DQ alert: Records 1 and 3 are identical
except for the commas in the address. In principle, the two records are
duplicates and should be cleaned up. However, domain experts assure us
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that the duplication is necessary since some downstream databases can
handle commas in the address and some cannot. The problem will hope-
fully be cleaned up when the downstream databases are fixed. However,
there is a chance that they may never be cleaned up.

+ Information Warehouse (IOWA)—A data warehouse that provides some
additional information such as machine descriptions and the information
about the owners.

Record 1:
Warehouseid=XYZ;
Machineid=XYZ1;
Component A = 10;
Component B =1;
Component C = 5;
Street Number=180;
Street Name = Park Avenue;
City=Florham Park;
State=NJ;
Zip=07932;
Machine = Type 1;
Status = Deployed;
Machine Description= High powered reflector;
Customer = Big Bad Wolf Inc.;
Customer Contact = 973-555-1212

- Sales and Provisioning DB (SAPDB)—The information that is actually
seen by the sales accountants who deal directly with the client to make
the sale.

Record 1:
Warehouseid=XYZ;
Machineid=XYZ1;
Component A = 10;
Component B =1;
Component C = 5;
Street Number=180;
Street Name = Park Avenue;
City=Florham Park;
State=N1J;
Zip=07932;
Machine = Type 1;
Status = Deployed;
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Machine Description= High powered reflector;
Customer = Big Bad Wolf Inc.;

Customer Contact = 973-555-1212;

Customer Address = 1500 Central Avenue, Madison, NJ;

When a sales person makes a sale, a request goes back to the field
operations to assemble and deploy a particular type of machine at the
customer’s location.

The data flow consisted of:

OPED — IOWA — SAPDB

Metadata
The task force started receiving the data feeds after several weeks of negotia-
tions, stalling and phone calls. The first task was browsing the data to answer
two questions (a) what data flowed from OPED to SAPDB intact and (b) what
data fell out or was changed in an unauthorized, unintended way while in
transit via IOWA.

EDM performed on the three databases showed that:

« The documented metadata was a microscopic part of the metadata
needed to correctly interpret the data—(a) Warehouseid in OPED was
corrupted and there was a workaround for constructing the accurate
Warehouseid that was not documented. So the initial efforts of matching
the 3 DBs on Warehouseid failed.

+ There were over 70 different machine types in OPED whereas only 10
were documented and defined.

- SAPDB database contained less than 15% of the records in OPED or
IOWA.

Data quality alert: (a) The documentation is incomplete. (b) There is an inter-
mediate step between IOWA and SAPDB that is causing a lot of data to fall
out.

The taskforce went back to the data keepers with the discrepancies and
found that (a) they did not know that many machine types existed, let alone
what they mean (b) not all machines are made for sale to clients. Some
machines are meant for the internal use of Holy Cow or to barter with com-
petitors. The rules for what machine types are “sellable” and which are not
were not clearly defined nor were they documented. Only the sellable
machines were supposed to flow to SAPDB.

The taskforce then sought the help of a team of engineers to define each
of the more than 70 machine types, the components needed to assemble them,
the type of service and machine description and which were suitable for sale
to customers and which were not. To build consensus on each of the defini-
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tions and establishing a standard and documenting it took more than 5 weeks
of daily conference calls with participation ranging from 20-30 individuals
from various departments. Finally, the rules were nailed down and the process
of matching up the definitions and rules of flow against the data began.

Data Audits

The first data audit pass using custom built scripts that embody the definitions
and rules i.e. business rules (dynamic constraints) revealed that (a) a big
portion of the data did not flow to SAPDB because it was mislabeled with the
wrong machine type and tagged as “internal use”. (b) There were certain types
of machines that were totally missing from OPED. (c) There were Machines
that were duplicated in SAPDB with conflicting machine types.

A meeting with the data keepers explained that: (a) there were three sep-
arate manual workarounds by which data was entered into the system outside
the process. There were thousands of such records where the machine type
was manually changed to make them flow to SAPDB, causing the duplication.
(b) There were small “databases” (more like informal spreadsheets) that
existed in various groups across the country that did not make it into OPED,
the alleged and intended DBoR (DataBase of Record). The satellite datasets
were supposed to be entered into OPED but were not. (¢) Furthermore, there
were numerous users authorized to access OPED and change any data
element. The taskforce found that there were many changes made daily
without documentation or notification.

Several weeks were spent ensuring that the satellite data were included in
OPED and that in the future would be entered directly into OPED and not
into the spreadsheets. Explicit mandates to this effect from the highest officer
in Holy Cow went out to all managers above a certain level. In the meantime,
system fixes were put in place to avoid the manual workarounds.

By this time more than 60% of the allotted time had elapsed and the leader
of the taskforce was getting seriously nervous. There was still no inventory, let
alone complete or accurate.

The second pass indicated an improved flow from OPED to SAPDB, but
the proportion of sales orders sent from SAPDB to field operations that were
being thrown out as unprovisionable was still very high. A closer examination
revealed that almost 15% to 20% of the records in OPED had conflicting
addresses in SAPDB, resulting in the order being tagged unprovisionable since
there was no means of determining the correct address of the local warehouse
that contained the machine components.

Data quality alert: The data provided for the second audit run came in a dif-
ferent format then the feeds sent for the first audit run. This required either
(a) the data should be re-sent in the correct format or (b) the scripts that per-
formed the audit should be changed to incorporate the new format. The latter
would require the scripts to be re-tested. In either case, the changing format
of the feeds introduced delays.
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An address correction tool was used to assign standardized addresses, but
not before a pitted political battle was waged over several weeks to protest the
interference with the systems. Despite the address correction, the third pass
did not show any more improvement in the fallout rate between SAPDB and
field operations. It turns out that OPED did not correctly reflect what was
available and in place in local warehouses in certain regions, especially the
Northeast. A painstaking manual check of each and every warehouse that had
at least one fallout was commissioned to be completed within 10 days—a team
of over 15 people worked literally 16-18-hour days to achieve this task. Again,
such dedication and compliance came about primarily due to the mandate of
the top ranking managers in Holy Cow. OPED was corrected to reflect the
accurate data in the warehouse.

The Accomplishment
The final audit pass (which was again plagued by changing feed formats), con-
ducted two days before the deadline, showed a vast improvement.

+ The unintended fall out rate (as opposed to records that were designed
to fall out) between OPED and SAPDB via IOWA had fallen to 2% from
an incredible 50%-60%;

+ OPED’s inventory had swelled by over 15% (translates to tens of thou-
sands of records) due to the inclusion of all the satellite databases;

+ Over 10 system fixes had been put in place to improve automation and
avoid manual entries;

- Addresses were standardized;

+ Almost 98% of the data were flowing correctly as defined from OPED to
IOWA to SAPDB, up from less than 40%. As a consequence, the inven-
tory of sellable machines increased dramatically;

+ The taskforce had mended over 70% of the data one way or another;

+ The biggest achievement was a clear documentation of the rules and con-
ventions that could serve as reference and a starting point for keeping
track of the system as it evolves in the future.

Measuring Data Quality

In Section 4.5, we describe in general how constraints can be used as data
quality metrics. What about in this specific case? There are several metrics
we could use that reflect the utility of the data clean up efforts to the
users and the systems. Some significant metrics are listed below, with
parenthetic references to the general components from Section 4.5 that they
correspond to.

« Increase in usable data, up from approximately 40% to 98%, as measured
by conformance to schema (static metric) and conformance to business
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rules (dynamic metric). As a side effect of listing and testing the business
rules, we actually found problems with the business process and managed
to resolve them.

+ Consolidation of data into one single source, the DBoR OPED, elimi-
nating satellite databases that needed to be fed in manually (extent of
automation—a dynamic, operational metric; completeness, a diagnostic
metric);

- Increase in “sellable” inventory (diagnostic metric of accuracy i.e., usabil-
ity, entails validation of static constraints);

+ Reduction in manual workarounds (extent of automation—dynamic,
operational DQ metric);

+ Increase in accurate flow, where accurate implies “working as per speci-
fications” (successful completion of end-to-end process—operational
metric involving the satisfaction of dynamic constraints);

+ A clear documentation of the data definitions, constraints, rules and speci-
fications (diagnostic metrics of accessibility and interpretability).

The list is incomplete since there are many intangibles that cannot be captured
by metrics. However, the point is that the metrics themselves are highly
problem-specific and should be tailored to the business problem that is being
solved by the data quality task, in consultation with the data creators, data
keepers, data users and the subject matter experts.

5.5.2 Learning and Recommendations

What did we learn from the case study? What recommendations can we make?

+ Learning:
Take NOTHING for granted. The data are never what they are supposed
to be, even after they are “cleaned up”. The schemas, layouts, content and
nature of content are never completely known or documented and con-
tinue to change dynamically.
Recommendation(1):
Check and re-check schema constraints and business rules (dynamic con-
straints) (constraint checks) every time fresh data arrive. Immediately
identify and send discrepancies to responsible parties. (Feedback loop).
Recommendation(2):
Maintain a good relationship with the data owners and data creators to
keep up with the changes as well to ensure a quick turnaround in case of
problems.

+ Learning:
Abigingredient of the success of a data quality effort (e.g.,directed at clean-
ing up operations) is the backing of upper management. The best way to
convince managers about the importance of a data quality effort (or any
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undertaking) is to quantify the impact in terms of dollars. It was noted that
the lack of an accurate inventory was costing Holy Cow approximately one
billion dollars annually in terms of various charges,fees and settlements.The
taskforce in the case study would have not succeeded to the extent it did as
well as in that short a time frame (3 months) without the mandate from the
top management of Holy Cow, which in turn was motivated by the big dollar
impact. The taskforce invoked the dollar mantra and the name of the higher-
ups several times during its three-month mission.

Recommendation:

Line up big management names who are willing to intervene in case of
uncooperative partners. Given that data are a power source, such issues
of data sharing and knowledge sharing arise very frequently.

+ Learning:
A major source of data quality errors is manual entry and manual
intervention.
Recommendation(1):
Data entry as well as other data processes should be fully automated in
such a manner that data need be entered only once. Furthermore, data
should only be entered and processed as per schema and business
specifications.
Recommendation(2):
Perform continuous and end-to-end audits to immediately identify dis-
crepancies. In fact, these should be a routine part of data processing.

+ Learning:
Lack of a clear specification of the data schema (static constraints) and
business rules (dynamic constraints) are a major obstacle to the usability
of the data. The Holy Cow taskforce spent a major chunk of its time
acquiring schemas and researching business rules.
Recommendation:
Maintain an updated and accurate view of the schema and business rules.
Use proper software and tools such as XML to enable this.

+ Learning:
A primary reason for the sad state of Holy Cow’s data processes was that
each separate organization was looking after its own piece and no one
had the overall responsibility for the entire process.
Recommendation(1):
Appoint a data steward who owns the entire process and is accountable
for the quality of the data. Reward “good” data.
Recommendation(2):
Publish the data where it can be seen and used by as many users as pos-
sible so that data discrepancies are more likely to be reported. Too often
data are cloaked in secrecy and protected by bureaucratic procedures
(submit a work request, specify business need, get authorization from
manager X, can only see a few tables, cannot issue queries, and so on).
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5.6 DATA QUALITY AND ITS CHALLENGES

In this chapter and the previous one, we have discussed data quality’s multi-
faceted nature. Data quality cannot be captured with a set of numbers or static
rules. We must design processes, systems and analyses explicitly to monitor,
isolate, and repair data that do not conform to a set of rules. These, in turn,
are constantly scrutinized, updated, and documented as the data quality needs
change. An additional challenge in measuring data quality is the sheer com-
plexity of the problem given that there are more exceptions than rules while
constructing a description of what constitutes good data. The set of rules is
ever changing, often incomplete (insufficient metadata) and a significant, chal-
lenging data set in its own right! Furthermore, the rules are highly context spe-
cific, and need to be put together on a case-by-case basis. Therefore, creating
a general, reusable solution that can automatically scan data and create a set
of data quality constraints, and isolate the records that do not meet this process
is quite far from reality at this point. It is a painstakingly manual process,
involving many iterations, validity checks, and interaction between domain
experts, data creators, data keepers, and data users.

We have to focus particularly on metadata and domain expertise in data
quality projects, since they determine the success of a cleanup effort to a large
extent. Data mining and browsing can provide additional insights and fill gaps
in metadata.

Tools and algorithms in this area are in their infancy right now. Since the
problem is complex and difficult to automate, existing algorithms attack small
portions of the problem. A data quality implementer has to use a combina-
tion of such tools (Bellman, AJAX, Potter’s wheel) and commercially avail-
able software to automate and speed up wherever possible.

In the end, the best defense is relentless monitoring of data and metadata,
continuous auditing and validating the data/metadata against domain ex-
pertise using tools, algorithms and old-fashioned “looking over the data” to
see if it all makes sense.
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Absolute deviation, 36-37
Accessibility, metric, 132
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Accuracy, data quality and, 105
Accuracy metric, 133
Ad hoc matching, 170
Ajax, 176
o-quantiles, 38
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accountability for, 122
choice of, 17-18
data exploration phase of, 71-72
glitches in, 132
response time of, 7
versus sampling, 123
Analysis types, case studies on, 85-88
Analysts, accountability and, 122
Application type, 129
Approximate Bayesian bootstrap, 144
Approximate field matching, 168-170
Approximate functional dependency,
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Approximate joins, 107, 119, 168,
170-172
Approximate key, 173
ATM/frame relay data, 155-158
Attribute relationships, 34, 4249
Attributes, 19-20. See also Attribute
relationships
independence of, 46-47
marginal probability of, 55-56
monotonically missing, 143
range of, 40-41
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typical values of, 26-33
variation in, 3341
Audit log, 165
Audits, end-to-end, 110, 187
Automation, extent of, 131
Averages, robust, 9
Axis-aligned linear boundaries, 18

Bayesian bootstrap, approximate, 144
Bayes rule for prediction, 95
Bead plots, 74, 85
Benchmarking, against a known
distribution, 58

Bias, 51
Binning, multivariate, 64—68
Bivariate control chart, 149
Black boxes, 2, 121
Browsing tools, 120
Business rules, 131

disregarding, 122

Business rules conformance metric, 132

Casual empiricism, 122
Censored data, 145
Censoring, 111

of errors, 117
Centrality, measures of, 89
Central Limit Theorem, 28, 49
Central values, 26-27
Chi-square statistic, 4647
Chi-square test, 160, 162
Classification technique, 95-98
Clustering, 69, 77-78
Cohort attributes, 79
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Common Log Format (CLF), 127-128
Completeness, data quality and, 105
Completeness metric, 134
Complex data structure, EDM
summaries and, 89-90

Computational constraints, 120
Conditional probability, 56
Confidence guarantees, 121
Confidence intervals, 28
Confidence levels, 47
Consistency

data quality and, 106

metric for, 133

of a statistic, 52-53
Constraint checks, 186
Contingency tables, 46, 57
Continuous analysis, 122
Control charts, 147-149
Convex hull peeling depth, 66
Convex hulls, 152-154
Correlating information, 170
Correlation coefficient, 42-44
Counting, 55-57
Covariance, 36, 42
Cumulative Distribution Function
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“Dart board” approach, 121
Data. See also Dirty data; Information;
Metadata; Unconventional data
diversity of, 4-5
dividing, 71-72
heterogeneity and diversity of, 4-5
incomplete, 144-146
interpreting, 102-103, 124
visualizing, 73-74
volume of, 5-6
Data alert mechanism, 116, 155, 156
Data analysis, 15
Data audits, 184-185
DataBase Administrator (DBA),
165-166
Database loading, 167-168
Database management systems
(DBMS), 162, 163-165
Database of record, mandates
concerning, 115
Database profiling, 172-175
Data browsing, 118, 139
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Data change, outlier versus legitimate,
159-160
Data cleaning, v, 2, 128
Data collection/analysis, disconnect
between, 108. See also Data
gathering
Data compression, 124
Data cubes, 11, 72, 75-77
summarization software for, 77
Data delivery, 110-112
Data depth, multivariate binning and,
64-67
Data entry
duplicate, 109
manual, 103, 109
Data errors, 13-14. See also Data
glitches
Data exchange schemas, 178
Data extracts, 8
Data gathering, 14, 109-110
Data glitches, 12-13, 23, 103-105
detection of, 74
EDM and, 15
measures of spread and, 33-34
Data integration, 14, 118-120
sociological factors and, 119-120
Data integrity constraints, 164
Data mining, v—vi, 121-122. See also
Exploratory data mining (EDM)
interactive nature of, 108
Data models, inappropriate, 117. See also
Data paradigms
Data monitoring, 113-116
methods for, 114-115
Data mutilation, 110-111
Data paradigms, 6
new, 106-107
Data publishing, 8, 15, 50, 51, 115-116,
187
Data pyramids, 81-82
Data quality (DQ), vii-viii, 4, 12-15,
99-137, 139-188. See also Data
quality continuum; DQ components
challenges associated with, 188
combining metrics for, 134
complementary approaches to,
136-137
complexity of, 129-130
conventional definition of, 105-106
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database techniques for, 162-176
in data preparation, 13
issues in, 5
management of, vi
meaning of, 102-108
measuring, 15, 130-134, 180-187
methods for, 6-7
monitoring, 99-100
problems with, 103
real-time, 127
tools for, 14, 140-162
updating, 106-108, 108-123
ways to ensure, 122-123
Data quality alerts, 183, 184
Data quality checks, 40
Data quality continuum, 14-15, 100, 101,
108
Data quality errors, approaches to,
109-110
Data quality problems
consequences of, 113-114
during storage, 116-118
Data reconciliation, 115
Data reduction, 71
Data relay, 111
Data retrieval, problems in, 120-121
Data sets, vi-vii
comparison of, 74, 83-84, 85-87
default values in, 105
missing values in, 105, 141-144
types of, 124-128
Data sources, multiple, 119
Data space, partitions of, 10-11
DataSphere (DS) partitioning scheme,
11, 64, 67,72,74,78-82, 85
parameters in, 81
Data squashing, 116
Data stewards, 110, 187
Data storage, 14-15, 116-118
Data stores, merging, vi-vii
Data stream, 126-127
Data suitability, 124
Data taming, 4
Data tracking, 114
Data type, 164
Data warehouses, 74
Defaults
choice of, 110
temporary reversion to, 104
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Depth attributes, 79

Depth concept, 10

Depth contours, 67

Depth equivalence class (de-class), 67

Depth layers, 11, 79-81

computing, 80

Depth median, 66-67

Depth quantiles, 80

Descriptive data, 125-126

Deviation, measures of, 155. See also
Median Absolute Deviation
(MAD); Standard deviation (o)

Diagnostic approaches, 102

Diagnostic measures, 110, 131

Dimensional attributes, 74

Dimension table, 75

Directionally correct metrics, 180

Directional pyramids, 11

Dirty data, 165-166

Dispersion, measures of, 9, 33

Dispersion matrix, 36, 43

Distributional outliers, 147, 154

Distributions, simulating, 142-143

Document Type Definitions (DTDs),
179

Domain expertise, 103, 122, 176-179

Domains, 20

defining, 164

DQ components, measurement of,
131-134

Drilling down, 77

Duplicate data entry, 109

Duplicate elimination, 168, 170-172

Duration analysis, 145

Dynamic constraints, 131

EDM input/output, storing and
deploying, 25

EDM methods
applicability of, 24
criteria for, 6-8
interpreting results of, 8, 24
response times and, 24
updating, 24-25

EDM summaries, 25-50, 82
complex data structure and, 89-90
computational criteria for, 54
nonparametric, 9-12
parametric, 8-9
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partition-based, 73-74
set comparison using, 82-88
usefulness of, 50-54
Empirical Cumulative Distribution
Function (ECDF), 18, 57-59
End-to-end process, completion of,
131-132
Enterprise data, 107
Equi-depth histograms, 60, 95
Equi-spaced histogram, 60
Equivalence class, 172
Error bounds, tracking, 142
Errors
censoring, 117
human, 120
Estimates, 22, 26
comparing, 41-42
unbiased, 51
Experiment design, 108
Exploratory data mining (EDM), v—vii,
1-16, 17-68. See also EDM entries
challenges in, 6
data depth and, 64-67
data errors and, 13-14
defined, 4, 23-25
in higher dimensions, 62
nonparametric analysis and, 54-62
one-pass classification in, 95-98
problems in, 2-3
rectilinear histograms and, 62-64
uncertainty and, 19-23
Exploratory model fitting, 74, 89-90
Exponential distribution, 45
Exponential form, 25
Extraction tools, 167

Extraction, Transformation, and Loading

(ETL), 166-168

Fact tables, 74

Feature vector matching, 170

Federated data, 107, 118, 124-125
missing values in, 141

Feedback loops, 115, 123

Feeds, 112

Field matching, approximate, 168-170

Fields, switched, 151

Field value classification, 174

Fisher’s Information Limit, 53

Flip-flop pattern, 142, 157, 161

Foreign key joins, 163
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Fractal dimension, 4849
Frequency table, 55

Functional dependencies, 173-174
Fuzzy joins, 168

Geometric outliers, 147, 152-154
Glitch detection, using set comparison,
151-154
Goodness-of-fit, 3
methods for, 136-137
R-square and, 94
tests for, 160-161, 162

Half-plane depth, 66
Hardware, constraints on, 117-118
Hash, 175
Hausdorf fractal dimension, 48
Heterogeneity, of data, 4-5
Heteroscedasticity, 150
Hierarchical schemas, 76-77, 177
High-dimensional data, 125
Histogram binning scheme, 63
Histograms, 9, 146, 59-61
equi-depth marginal, 95
reconstructing information from,
60-61
rectilinear, 62-64
univariate, 59-61
Historical information, 141-142
Hyperpyramids, 81-82

Incomplete data, 117, 144-146
Indexes, building, 169
Indicator variables, 38
Inferred joins, 119
Information. See also Data
correlating, 170
reconstructing from histograms,
60-61
Inter quartile range (IQR), 40-41
Interactive model fitting, 74
Interactive response time, exploratory
model fitting in, 89-90
Interface agreements, 112
Intermediate sites, data relay to, 111
Interpretability
of data, 124
metric, 132
Inventory building, case study on,
180-186
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Join keys, 14, 107, 119, 163. See also Keys
Join paths, 175
Joins
approximate, 107, 119, 168
of data sets, 107
fuzzy, 168
inferred, 119
of tables, 75
Joint probability, 57

Kernel splines, 96

Keys, 173-174. See also Join keys; Match
keys

Knowledge sharing, 14-15

Kolmogorov-Smirnov test, 160, 161, 162

Layout, unreported changes in, 104
Least-squares technique, 91
Left censored data, 145
Legacy systems, 119
Level of escalation, 132
Lineage tracing, 179
Linear regression, 150
piecewise, 90-95
Location, measures of, 27
Log-linear models, 2
Longitudinal data, 126

Mahalanobis depth, 65
Mabhalanobis test, 84, 151, 152, 153
Manual data entry, 103, 109
Marginal probability, 55-56
Markov Chain Monte Carlo (MCMC)
method, 78, 144
Matching, approximate, 168
Matching heuristics, arbitrary, 119
Match keys, 107, 119, 163
Mean, 27-30
deviation from, 34-36
Measure attributes, 74
Measurement
of data quality, 15, 130-134, 180-187
unreported changes in, 104
Measuring devices, defaulting of, 104
Median, 30-32. See also Depth median
Median Absolute Deviation (MAD),
36-37
Mediators, 167, 176
Metadata, 15, 103, 118, 165, 176-179
availability of, 132
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exchange of, 178
in inventory building, 183-184
paucity of, 116-117
Metrics
data quality, 1
directionally correct, 180
traditional, 133134
Min hash sampling, 175
Missing values, 117, 141-144
in data sets, 141-144
imputing, 142
Mode, 32
Model-based outliers, 147
detection of, 149-150
Model fitting, 89-90
interactive, 74
Models
attachment to, 122
goodness-of-fit of, vii
limitations of, 2-3
regression type, 90
selecting, 89
updating, 7-8
Modifications, ad hoc, 117
Monotonically missing data, 143-144
Multimodal distributions, 32
Multinomial tests, 151, 152
for proportions, 84, 86
Multiple values, imputing, 143
Multivariate binning, data depth and,
64-67
Multivariate distribution, 21
Multivariate median, 31
Multivariate support, 21
Mutual information, 47-48

Naive Bayes classifier, 95

Nonlinear partitions, 77-78
Nonparametric analysis, 25, 54-62
Nonparametric data squashing, 116
Nonparametric EDM summaries, 9-12
Normalized database, 163

One-pass classification, 95-98

On Line Analytical Processing (OLAP)
software, 11, 74,75, 78

Operational metrics, 131

Organizational boundaries, 114

Outlier detection, model-based,
149-150
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Outliers, 15, 146-150. See also Time
series outliers
detecting, 67
distributional, 154
geometric, 152-154
types of, 147

Parameterized partition, 71
Parameters, estimating, 25
Parametric approach, 8-9, 25
Parametric data squashing, 116
Parametric EDM summaries, 8-9
Pareto distribution, 45
Partition-based EDM summaries,
applications of, 73-74

Partitions, 11-12

axis-aligned, 74-77

classes of, 70

of a data space, 10-11

EDM summaries of, 69

glitch detection and, 13-14

nonlinear, 77-78

purposes of, 70-71
Peeling, 152

Piecewise linear regression, vii, 90-95,

150

Piecewise models, 69

quantile-based prediction with,

95-96

Pivot tables, 77
Planning, 109, 118, 121

lack of, 116
Point estimates, 18
Potter’s Wheel, 176
Predicted attributes, 82
Pre-emptive approaches, 102, 109
Primary key, 163
Probability

conditional, 56

joint, 57

marginal, 55-56
Probability density, 37
Probability distribution, 20
Procedures, stored, 164
Profiled attributes, 82
Project transitions, 114
Publishing. See Data publishing
Pyramids. See Data pyramids
Pyramid variable, 81
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g-gram index approach, 169
0-0 plots, 36, 45-46
Quantile-based prediction, 95-96
Quantiles, 9, 37-40

Random variable, 20

Range of values, 4041

R-chart, 148

Real-time data quality, 127

Reconciliation programs, 14

Records, database, 162

Rectilinear histograms, 62-64

Rectilinear partition, 11

Reference center, 79

Regression depth, 66

Regression method, 143

Regression parameters (coefficients), 91,
92-94

Regression type models, 90

Relational databases, 162

Relative deviation, 155

Relay data, ATM/frame, 155-158

Resemblance, 175

Residuals, 150

Resources, accurate view of, 114

Results, accountability for, 122

Retransmission, 112

Revenue loss/assurance, 113-114

Right censored data, 145

Rolling up, 77

R-square, 94

Sample correlation coefficient, 43

Sample mean, 27, 29

Sample median, 30, 39

Samples, out-of-control, 148

Sample size, 19

Sample statistics, statistical properties of,
51-53

Sample variance, 28, 35

Sampling, 123, 128

SAS software, 47, 58-59, 150, 161

Schema, 177

Schema conformance metric, 132

Schema constraints, 131

Schema mapping, 167, 176

S-Curve relationship, 44

Serpinski triangle, 49

Services, providing new, 114
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Set comparison, 150
detecting glitches using, 151-154
using EDM summaries, 82-88
Sigma-limits, 148
Signature, of a field, 175
Simplicial depth, 66
Simulation study, 96-97
Simultaneous confidence bounds, 62
Skewness, measures of, 9
Slice, of a data set, 77
Snowflake hierarchy, 77
Soft keys, 5
Software. See also SAS software
constraints on, 117-118
incompatibility of, 120
Spread, measures of, 33-34
Standard deviation (o), 34-36, 148
Star schema, 75
Static constraints, 131
Statistical distance, 65
Statistical techniques, 140-162
Statistical tests, 84-85
Statistics, 25
consistency, efficiency, and sufficiency
of, 52-53
design of experiments in, 108
Stratification, 11
Streaming data, 126-127
String edit distance, 168-169
String matching, 168-169
Structured Query Language (SQL), 164
Subpopulation, 79
Summaries. See EDM summaries
Support, 20
multivariate, 21
Synchronization, 106, 126

Tables, joining, 162
Tablespaces, 162
Testing, in data retrieval, 121
Text mining, 127-128
Timeliness
data quality and, 106
metric for, 133

Time series data, 126
Time series outliers, 147

case study of, 154-160
Time series records, gaps in, 105
Time stamps, accurate, 120
Time synchronization, 119
Tools, appropriate, 121
Transactions, 163
Transformation services, 167
Transmission protocol, 111-112
Tree matching, 169-170
Triggers, 164
Trimmed means, 29-30
Truncation, 111, 117, 144
Tukey depth, 66

Unbiasedness, 51

Uncertainty, 19-23

Unconventional data, 119

Uniqueness metric, 133

Univariate distributions, estimating,
62

Values
missing and default, 105
range of, 40-41
typical, 22-23
Variables, 19-20
censoring of improper, 151-152
Variance, 34-36
Vector of attributes, 6
Vectors, 21
Vendors, commercial, 120
Verification tasks, 111-112
Views, 165
Visualization, 73

“Wealth effect,” 44

Web data, 127-128, 129, 167
Web server logs, 127
Within deviation, 155, 159

X-chart, 147
XML records, 178
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