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Preface

This is a book about Special Relativity. The potential reader may ask why yet another
book needs to be written on this subject when so many have already covered this
ground, including some classical early popularizations. There are four answers to
this question.

First, this book is intended to supplement the ordinary physics texts on Special Rela-
tivity. The author’s goal was to write a book that would satisfy the demands of differ-
ent categories of reader, such as college students on the one hand and college profes-
sors teaching physics on the other. To this end, many sections are written on two le-
vels. The lower level uses an intuitive approach that will help undergraduates to
grasp qualitatively, fundamental aspects of relativity theory. The higher level contains
a rigorous analytical treatment of the same problems, providing graduate students
and professional physicists with a good deal of novel material analyzed in depth. The
readers may benefit from this approach. There are not many books having the de-
scribed two-level structure (a rare and outstanding example is the monograph Gravi-
tation by C. W. Misner, K. S. Thorne, and J. A. Wheeler [1]).

Second, the book explores some phenomena and delves into some intriguing areas
that fall outside the scope of the standard treatments. For instance, in the current
book market on relativity one can spot a “hole” – an apparent lack of information (but
for just one or two books [2]) about faster-than-light phenomena. One of the purposes
of this book is to fill in the hole. The corresponding chapters (Chap. 6–8) aim to eluci-
date areas related to faster-than-light motions, which at first seem to contradict relativ-
ity, but upon examination reveal the consistency, subtlety, and depth of the theory.

Third, there have appeared recently a good deal of new theoretical studies and corre-
sponding experiments demonstrating superluminal propagation of light pulses,
which, on the face of it, could appear to imply possible violation of causality. (A simi-
lar approach has been used to slow the light pulses dramatically and, finally, to
“stop“ light by encoding information it carried, into the physical state of the med-
ium.) These experiments have been described in the most prestigious journals (see,
for instance, Refs. [3–6]), and have attracted much attention in the physics and optics
communities. This book describes the new results at a level accessible to an audience
with a minimal background in physics (Chap. 7). It contains an analysis of a simpler
version of this type of experiment [7–11], including a purely qualitative description,
which can be understood by any interested person with practically no math.
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Fourth, there exists another “gap” in a vast pool of books (and textbooks especially)
on the special theory of relativity: the significant lack of coverage of accelerated mo-
tions. This has produced another long-standing and widespread misconception
(even among professional physicists!) that the theory is restricted to inertial (uni-
form) motions of particles that are not subject to external forces. I was surprised to
find even in recently published books statements that the special theory of relativity
is incomplete because it cannot describe accelerated motions of any kind.

Nothing can be farther from the truth than such statements. How could the particle
accelerators that are routinely used in high-energy physics have been designed and
work properly without the special theory of relativity? One of the goals of this book
is to dispel the myth that accelerated motions cannot be treated in the framework of
the Special Relativity. The reader will find a standard treatment of accelerated mo-
tion in Chapter 4, which is devoted especially to the relativistic dynamics of a point
mass. In Chapter 5 we describe subtle phenomena associated with accelerated mo-
tion of extended bodies (Sects. 5.4 and 5.5), and motions in rotating reference
frames, including famous experiments with the atomic clocks flown around the
Earth (see references in Chap. 5, Sects. 5.7 and 5.8). In Chapter 6 the reader will find
a description of the rotational motion of a rod and motion of charged particles in a
magnetic field (Sects. 6.3 and 6.4), and in Chapter 8 accelerated superluminal mo-
tion is considered (Sects. 8.10 and 8.12).

Rather than being a textbook or a monograph, the book is a self-consistent collection
of selected topics in Special Relativity and adjacent areas, which are all arranged in a
logical sequence. They have been selected and are discussed in such a way as to pro-
vide the above-mentioned categories of readers with interesting material for study or
future thought. The book provides numerous examples of some of the most paradox-
ical-seeming aspects of the theory. What can contribute more to the real understand-
ing of a theory than resolving its paradoxes? Paraphrasing Martin Gardner [3], “you
have to know where and why opponents of Einstein go wrong, to know something
about relativity theory.”

The first three chapters cover traditional topics such as the Michelson–Morley ex-
periment, Lorentz transformations, etc.

A few chapters deal with the strange world of superluminal velocities and tachyons,
and other topics hardly to be found elsewhere. Their investigation takes us to the
boundaries of the permissible in relativity theory, exploring the remote domains of
superluminal phenomena, while at the same time serving as the foundation of a dee-
per understanding of Einstein’s unique contribution to scientific thought.

Initially the appearance of the theory of relativity, with its absolute insistence that no
signal carrying information can travel faster than light in a vacuum, created the opi-
nion among many that no superluminal motion of any kind was possible. In this
book a great many phenomena are described in which superluminal motion seems
to appear or does appear. Such phenomena may occur in some astrophysical pro-
cesses, in physical laboratories, and even in everyday life. However incredible some
of them might seem, they are all shown to be in accordance with Special Relativity,
since in an almost mysterious accord with the overriding dictates of the theory,
subtle details always conspire to insure that none of these phenomena can be used
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for signal transmission faster than light in a vacuum. And Special Relativity is just
the kind of theory for describing adequately this kind of motion.

A couple of decades ago there was a great controversy in the scientific literature
about hypothetical superluminal particles – tachyons. After extensive discussion it
was decided by the overwhelming majority of physicists that tachyons cannot exist
since their existence would bring about violations in causality, plunging the Universe
into unresolvable paradoxes, by changing the past. There are numerous papers
which argue that the kind of tachyon hypothesized in the early discussions cannot
exist (see the references in Chap. 8). Yet the reader of this book will find a descrip-
tion of real tachyon-like objects that can be “manufactured“ in the laboratory. They
possess a kind of duality, which allows one to represent a tachyon-like object as either
a superluminal or subliminal object, depending on what physical quantities are cho-
sen for its description.

Many of these topics are hardly to be found elsewhere, and some of them have so far
only been published in a few highly specialized professional journals. In this respect
this book should be a unique source of information for broad categories of readers.

As already mentioned above, the book is intended to satisfy also the demands of
those readers with a minimal background in math. They will find in many descrip-
tions an easy part showing the inner core of a phenomenon, its physical picture.
These readers can stop at this point – they have grasped the main idea.

For the better prepared, after they have been made capable of seeing the rather compli-
cated features involved, there follows a quantitative description with the equations and
other details. Many of the examples discussed are unusual and thought provoking;
they often start as unsolvable paradoxes, to be, after a few unexpected turns, finally re-
solved. One can find an example of such an approach in Chapter 5, Section 5.4.

Another example of this approach can be found in the discussion of phase and group
velocities (Chap. 6, Sect. 6.12). They are discussed on three different levels. The first
– intuitive – gives a pictorial representation of the phenomenon using a simple
model. This will help the beginner with no math at all to grasp the relationship be-
tween the two velocities. Then the same relationship is obtained graphically. Finally,
it is obtained by analyzing the superposition of two wave functions. The last two le-
vels are appropriate for everybody familiar with college math. The first one may be
good for two extreme categories of reader: the least prepared at the one pole, and the
most sophisticated (e.g. college professors) at the other. The former may find it good
to learn, while the latter may find it good to teach.

In summary, the book can be used as supplementary reading for college students
taking courses in physics. High school and college teachers can use it as a pool of ex-
amples for class discussion. Further, because it contains much new material beyond
standard college programs, it may be of interest for all those curious about the work-
ings of Nature. A mathematical background on the undergraduate level will be help-
ful in understanding quantitative details. More advanced readers can find in the
book much thought-provoking material, and professional physicists, while skipping
the topics that are familiar to them, or written on the elementary level, may well find
some new insights there or see a problem in a fresh light.
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1
Introduction

1.1
Relativity? What is it about?

One of the cornerstones of the Special Theory of Relativity is the Principle of Relativ-
ity. A good starting point for discussing it may be a battlefield. So imagine a battle-
field with deadly bullets whistling around and let me ask a question: could you catch
such a bullet with your bare hands?

The likely answer is: “Not I. You’d better try to do it yourself !”
Which implies: that’s impossible.
I remember that, as a schoolboy, I had given precisely the same answer to this ques-

tion. But then I read a story about a pilot in World War I who had in one of his flight
missions noticed a strange object moving alongside the plane, right near the cockpit.
The cockpits could easily be opened in those times, so the pilot just stretched out his
arm and grabbed the object. He saw that what he had caught was … a bullet. It had
been fired at his plane and was at the final stage of its flight when it caught up with
the plane and was caught itself.

The story shows that you really can catch a flying bullet. Nowadays, having space-
ships, one can, in principle, catch a ballistic missile. Assuming unlimited technolo-
gical development, we do not see anything that would prevent us from “catching”
any object by catching up with it – be it a solid, a liquid, or a jet of plasma – no mat-
ter how fast it is moving. If a natural object had been accelerated to a certain speed,
then a human being, who is also a natural object, can (although, perhaps, at a slower
rate) be accelerated up to the same speed.

We see that the velocity of an object is a sort of “flexible” characteristic. The bullet
that is perceived by a ground-based observer to be moving appears to be at rest to the
pilot. We will call such quantities observer-dependent, or relative.

Not all of the physical quantities are relative. Some of them are observer-independent,
or absolute. For example, the pilot may have noticed that the bullet he had caught was
made of lead and coated with steel, and the mass ratio of lead and steel in it is 24 :1.
This property of the bullet is absolute because it is true for anyone independently of
one’s state of motion. The gunner who had fired the bullet will agree with the pilot on
the ratio 24 :1 characterizing its composition. But he will disagree on its velocity. He will
hold that the bullet moves with high speed whereas it is obviously at rest for the pilot.

1
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Another example: if a car with three passengers has a velocity 45 miles per hour,
then the fact of its having this velocity is of a quite different category to the fact of its
having three passengers inside. The latter is absolute because it is true for anyone re-
gardless of one’s state of motion. The former is relative because it is only true for
those standing on the ground. But it is false, say, for a driver in another car moving
along the same straight road. The driver will agree with you on the number of pas-
sengers in the first car but disagree on its velocity. He may hold that the first car has
zero velocity because it has always been at the same distance from him.

Who is right – you or the second driver? Both are. And there is no contradiction
here, because each observer relates what he sees to his own “reference frame”.

Moreover, even one and the same observer can measure different velocities of the
same object. A policeman in a car using radar for measuring speeds of moving ob-
jects will register two different values for the velocity of a vehicle, if he measures the
velocity the first time when his own car just stands on the road, and the second time
when his car is moving. We emphasize that nothing happens to the observed vehicle,
it remains in the same state of motion with constant speed. And yet the value of this
speed as registered by the radar is different for the two cases.

We thus see that the value of a speed does not by itself tell us anything. It only be-
comes meaningful if you specify relative to what this speed is measured. This is what
we mean by saying that speed (more generally, velocity) is a relative physical quan-
tity.

Understanding the relative nature of some physical quantities (and the absolute nat-
ure of some others) is the first step to acquiring the main ideas of Special Relativity.
We will in this book outline its most characteristic features with all the contradic-
tions between the old and new concepts.

Let us start first with an account of the theory of relativity widespread among general
public:

“Einstein has proved that everything is relative. Even time is relative.”
One of these statements is true and profoundly deep; the other one is totally mis-

leading.
The true statement is that time is relative. Realization of the relative nature of time

was a revolutionary breakthrough in our understanding of the world.
The wrong statement in the above “popular” account of relativity is that everything is

relative. We already know that, for instance, the number of passengers in a car (or
the chemical composition of a bullet) is not relative. One of the most important prin-
ciples in relativity is that certain physical quantities are absolute (invariant). One such
invariable quantity is the speed of light in a vacuum. Also, certain combinations of
time and distance turn out to be invariant. We will discuss these absolute characteris-
tics in the next chapter. They are so important that we might as well call the theory
of relativity the theory of absoluteness. It all depends on which aspect of the theory
we want to emphasize.

We will now discuss the relativity aspect. Let us first recall the classical principle of
relativity in mechanics. Suppose you are inside a train car that moves uniformly
along a straight track. If the motion is smooth enough then, unless you look out of
the window, you cannot tell whether the train is moving or is at rest on the track. For
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instance, if you drop a book, it will fall straight down with the same acceleration, as
it would do on the stationary platform. It will hit the floor near your feet, as it would
do on the platform. If you play billiards, the balls will move, and collide, and bounce
off in precisely the same manner as they do on the platform. And all other experi-
ments will be indistinguishable from those on the platform. There is no way to tell
whether you are moving or not by performing mechanical tests. This means that the
states of rest or uniform motion are equivalent for mechanical phenomena. There is
no intrinsic, fundamental difference between them. This general statement was for-
mulated by Galileo, and it came to be known as his principle of relativity. According
to this principle, the statement: “My train is moving” has no absolute meaning. Of
course, you can find out that it is moving the moment you look out of the window.
But the moment you do it, you start referring all your observations to the platform.
You then can say: “My car is moving relative to the platform.” Platform constitutes
your reference frame in this case. But you may as well refer all your data to the car
you are in. Then the car itself will be your reference frame, and you may say: “My
car is at rest, while the platform is moving relative to it.” Now, pit the last two quoted
statements against each other. They seem to be in contradiction, but they are not, be-
cause they refer to different reference frames. Each statement is meaningful and cor-
rect, once you specify the corresponding frame of reference.

We see that the concept of reference frame plays a very important role in our descrip-
tion of natural phenomena. We can even reformulate the principle of relativity in
terms of reference frames. To broaden the pool of examples (and make the further
discussion more rigorous!) we will now switch from jittering trains, and from the
spinning Earth with its gravity, far into deep space. A better (and more modern) rea-
lization of a suitable reference frame would be a non-rotating spaceship with its en-
gines off, coasting far away from Earth or other lumps of matter. Suppose that initi-
ally the ship just hangs in space, motionless with respect to distant stars. You may
find this an ideal place to check the basic laws of mechanics. You perform corre-
sponding experiments and find all of them confirmed to even higher precision than
those on Earth.

If you release a book, it will not go down; there is no such thing as “up” or “down”
in your spaceship, because there is no gravity in it. The book will just hang in the air
close by you. If you give it an instantaneous push, it will start to move in the direc-
tion of the push. Inasmuch as you can neglect air resistance, the book will keep on
moving in a straight line with constant speed, until it collides with another object.
This is a manifestation of Newton’s first law of motion – the famous law of inertia.
Then you experiment with different objects, applying to them various forces or com-
binations of forces. You measure the forces, the objects‘ masses, and their response
to the forces. In all cases the results invariably confirm Newton’s second law – the
net force accelerates an object in the direction of the force, and the magnitude of the
acceleration is such that its product by the mass of the object equals the force. This
explains why the released book does not go down – in the absence of gravity it does
not know where “down” is. With no gravity, and possible other forces balanced, the
net force on the book, and thereby its acceleration, are zero. Then you push against
the wall of your compartment and immediately find yourself being pushed back by
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the wall and flying away from it. This is a manifestation of Newton’s third law: forces
always come in pairs; to every action there is always an equal and opposite reaction.

Let us now stop for a while and make a proper definition. Call a system where the
law of inertia holds an inertial system or inertial reference frame. Then you can say
that your ship represents an inertial system. So does the background of distant stars
relative to which the ship is resting.

Suppose now that you fall asleep, and during your sleep the engines are turned on.
The spaceship is propelled up to a certain velocity, after which the engines are turned
off again. You are still asleep, but the ship is now in a totally different state of mo-
tion. It has acquired a velocity relative to the background of stars, and it keeps on
coasting with this velocity due to inertia. The magnitude of this velocity may be arbi-
trary. But even if it is nearly as large as that of light, it will not by itself affect in any
way the course of events in the ship. After you have woken up and checked if every-
thing is functioning properly, you don’t find anything unusual. All your tests give
the same results as before. The law of inertia and other laws hold as they had done
before. Your ship therefore represents an inertial reference frame as it had been be-
fore. Unless you look outside and measure the spectra of different stars, you won’t
know that your ship is now in a different state of motion than it had originally been.
The reference frame associated with the ship is therefore also different from the pre-
vious one. But, according to our definition, it remains inertial.

What conclusions can we draw from this? First: any system moving uniformly rela-
tive to an inertial reference frame is also an inertial reference frame. Second: all the
inertial reference frames are equivalent with respect to all laws of mechanics. The
laws are the same in all of them. The last statement is the classical (Galilean) princi-
ple of relativity expressed in terms of the inertial reference frames.

The classical principle of relativity is very deep. It seems to run against our intuition.
In the era of computers and space exploration, I may still happen to come across a
student in my undergraduate physics class who would argue that if a passenger in a
uniformly moving train car dropped an apple, the apple would not fall straight
down, but rather would go somewhat backwards. He or she reasons that while the
apple is falling down, the car is being pulled forward from under it, which causes
the apple to hit the floor closer to the rear of the car. This argument (which overtly
invokes the platform as a fundamental reference frame) overlooks one crucial detail:
before being dropped, the apple in the passenger’s hand had moved forward together
with the car. This pre-existing component of motion persists in the falling apple due
to inertia and exactly cancels the effect described by the student, so that the apple as
seen by an observer in the car will go down strictly along its vertical path (Fig. 1.1).
This conclusion is confirmed by innumerous observations of falling objects in mov-
ing cars. It is a remarkable psychological phenomenon that sometimes not even
such strong evidence as direct observation can overrule the influence of a more an-
cient tradition of thought. About a century and a half ago, when the first railways
and trains appeared, some people were afraid to ride in them because of their great
speed. The same story repeated with the emergence of aviation. Many people were
afraid to board a plane not only because of the altitude of flight, but also because of
its great speed. Apart from the fear of a collision at high speed, it might have been
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the fear of the speed itself. Many believed that something terrible would happen to
them at such a speed. It took a great deal of time and new experience to realize that
speed itself, no matter how great, does not cause any disturbance in the regular pat-
terns of natural events so long as velocity remains constant. It is the change of velo-
city (deceleration, acceleration) during braking, collision, or turning that can be felt
and manifest itself inside a moving system. If you are in a car that is slowing, you
can immediately tell this by experiencing a force that pushes you forward. Likewise,
if the car accelerates, everything inside experiences a force in the backward direction.
It is precisely because of these forces that I wanted you to fall asleep during the accel-
eration of the spaceship, otherwise you would immediately have noticed the appear-
ance of a new force and known that your ship was changing its state of motion,
which I did not want you to do.

A remarkable thing about this new force is that it does not fit into the classical defi-
nition of a real force. It appears to be real because you can observe and measure it;
you have to apply a real force to balance it; when unbalanced, it causes acceleration,
as does any real force; it is equal to the product of a body’s mass and acceleration, as
is any real unbalanced force. In this respect, it obeys Newton’s second law. Yet it ap-
pears to be fictitious if you ask the questions: Who exerts this force? Where does it
come from? Then you realize that it, unlike all other forces in Nature, does not have
a physical source. It does not obey Newton’s third law, because it is not a part of an ac-
tion–reaction pair. You cannot find and single out a material object producing this
force, not even if you search out the whole Universe. Unless, of course, you prefer to
consider the whole universe becoming its source when the universe is accelerated
past your frame of reference.

51.1 Relativity? What is it about?

Fig. 1.1 The fall of an apple in a moving car as
observed from the platform. (a), (b), and (c) are
the three consecutive snapshots of the process.
The passenger sees the apple fall vertically, while

it traces out a parabola relative to the platform.
The shape of a trajectory turns out to be a rela-
tive property of motion.



The new force has been called the inertial force – and for a good reason. First, it is al-
ways proportional to the mass of a body to which it is applied – and mass is the mea-
sure of the body’s inertia. In this respect, it is similar to the force of gravity. Second,
its origin can be easily traced to a manifestation of inertia. Imagine two students,
Tom and Alice. They both observe the same phenomenon from two different refer-
ence frames. Tom is inside a car of a train that has just started to accelerate, while
Alice is on the platform. Alice’s reference frame is, to a very good approximation, in-
ertial, whereas Tom’s is not. Tom looks at a chandelier suspended from the car’s ceil-
ing. He notices that the chandelier deflects backwards during acceleration. He attri-
butes it to a fictitious force associated with the accelerating universe. Alice sees the
chandelier from the platform through the car’s window (Fig. 1.2), but she interprets
what she sees quite differently. “Well,” she says, “this is just what should be expected
from the Newton’s laws of motion. The unbalanced forces are exerted on the car by
the rails and, maybe, by the adjacent cars, causing the car to accelerate. However the
chandelier, which hangs from a chain, does not immediately experience these new
forces. Therefore it retains its original state of motion, according to the law of inertia,
which holds in my reference frame. At the start the chandelier accelerates back rela-
tive to the car only because the car accelerates forward relative to the platform. This
transitional process lasts until the deflected chain exerts sufficient horizontal force
on the chandelier.”

“Finally,” Alice concludes, “this force will accelerate the chandelier relative to the
platform at the rate of the car, and there will be no relative acceleration between the
car and chandelier.” All the forces are accounted for in Alice’s reference frame. In
Tom’s reference frame, the force of inertia that keeps the chandelier with the chain
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Fig. 1.2 A chandelier in an accelerated
car. To Alice, the tension force in the
deflected chain acquires a horizontal
component causing the chandelier to
accelerate at the same rate as the car.

Tom explains the deflection of the
chandelier as the result of the inertial
force. This force balances the horizontal
component of the chain’s tension.



off the vertical is felt everywhere throughout the car, but cannot be accounted for.
This state of affairs tells Tom that his car is accelerating.

Tom has also brought along an aquarium with fish in it. When the train starts to ac-
celerate, both Tom and Alice see the water in the aquarium bulge at the rear edge
and subside at the front edge, so that its surface forms an incline (Fig. 1.3). Alice in-
terprets this by noticing that the rear wall of the aquarium drives the adjacent layers
of water against the front layers, which tend to retain their initial velocity. This
causes the rear layers to rise. In contrast, the front layers sink because the front wall
of the fish tank accelerates away from them, so the water surface tilts.

Tom does not see any accelerated motions within his car, but he feels the horizontal
force pushing him towards the rear. “Aha,” Tom says, “this force seems to be every-
where indeed. It pushes me and the chandelier back, and now I see it doing the
same to water. It is similar to the gravity force, but it is horizontal and seems to have
no source. Its combination with the Earth-caused gravity gives the net force tilted
with respect to the vertical line.” Being as good a student as Alice, Tom knows that
the water surface always tends to adjust itself so as to be perpendicular to the net
force acting on it. Since the latter is now tilted towards the vertical, the water surface
in the aquarium becomes tilted to the horizontal by the same angle. The only trouble
is that there is no physical body responsible for the horizontal component of the net
force. “This indicates,” Tom concludes, “that the horizontal component is a fictitious
inertial force caused by acceleration of my car.”

In a similar way, one can detect a rotational motion, because the parts of a rotating
body accelerate towards its center. We call this centripetal acceleration. For instance,
we could tell that the Earth is rotating even if the sky was always cloudy so that we

71.1 Relativity? What is it about?

Fig. 1.3 The water in an accelerated
fish tank. The rear wall of the tank
rushes upon the water, raising its adja-
cent surface, while the front wall acceler-
ates away from the water, giving it extra

room in front, which causes the water
there to sink. To Tom, tilt of the water
surface is caused by inertial force. The
tilted chain of the chandelier makes the
right angle with the tilted water surface.



would be unable to see the Sun, Moon, or stars. That is, we could not “look out of
the window.” But we do not have to. Many mechanical phenomena on Earth betray
its rotation. The earth is slightly bulged along the equator and flattened at the poles.
A freely falling body does not fall precisely along the vertical line (unless you experi-
ment at one of the geographical poles). A pendulum does not swing all the time in
one plane. Many rivers tend to turn their flow. Thus, in the northern hemisphere,
rivers are more likely to have their right banks steep and precipitous and the left
ones shallow. In one-way railways, the right rails wear out faster than the left ones
because the rims of the trains‘ wheels are pressed mostly against the right rail. In
the southern hemisphere the situation is the opposite. It is easier to launch a satellite
in the east direction than in the north, south or west direction. All these phenomena
are manifestations of the inertial forces.

We will illustrate the origin of these forces with a simplified model of a train moving
radially on a rotating disk. Suppose that the train is moving down a radial track to-
wards the center of the disk, and you observe this motion from an inertial stationary
platform (Fig. 1.4). At any moment the instantaneous velocity of the train relative to
the platform has two components: radial towards the center and transverse, which is
due to the local rotational velocity of the disk. The peripheral parts of the disk have
higher rotational velocity than the central ones. As the train moves toward the center,
it tends, following the law of inertia that holds on the platform, to retain the larger
rotational velocity “inherited” from the peripheral parts of the disk. This would im-
mediately cause derailment on to the right side of the track, had it not been for the
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Fig. 1.4 Schematic of the inertial forces acting on a
moving car in a rotating reference frame. (a) View from
above. The train moves from A to B with speed v. Owing
to inertia, the train tends to transport its original rota-
tional velocity uA from A to B. Since uA is greater than uB,
the train experiences transverse inertial force F. (b) View
from behind. The force F is balanced by force F �.



wheels‘ rims that hold the train on the rails. The same effect causes the overall asym-
metry between the left and right banks of rivers. We thus see that these phenomena
are, in fact, manifestations of the inertia. Their common feature is that they perme-
ate all the space throughout an accelerated system, and cannot be attributed to an ac-
tion of a specific physical body. Because of them, the Earth can be considered as an
inertial system only to a certain approximation. Careful observation reveals the
Earth’s rotation without anyone ever having to look up into the sky.

All these examples show that inertial systems in classical physics form a very special
class of moving systems. The world when looked upon from such a system looks
simpler because there are no inertial forces. You can consider any inertial system as
stationary by choosing it to be your reference frame without bringing along any iner-
tial forces. There is no intrinsic physical difference between the states of rest and
uniform motion. All other types of motion are absolute in a sense that nature pro-
vides us with the criterion that distinguishes one such motion from all the others.
We can also relate all observational data to an accelerated system and consider it mo-
tionless. However, there are intrinsic physical phenomena (inertial forces) that reveal
its motion relative to an inertial reference frame. Not only can we detect this motion
without “looking out of the window,” we also can determine precisely all its charac-
teristics, including the magnitude and direction of acceleration, the rate of rotation,
and the direction of the rotational axis.

We thus arrive at the conclusion that Nature distinguishes between inertial and ac-
celerated motions. It does not mean at all that the theory cannot describe accelerated
motions. It can, and we will see examples of such a description later on in the book.
The special theory of relativity can even be formulated in arbitrary accelerated and
therefore non-inertial reference frames [13]. However, the description of motion in
such systems is far less straightforward, to a large extent because of the appearance
of the inertial forces. The General Theory of Relativity reveals deep connections be-
tween inertial forces in an accelerated system and gravitation. We will in this book
be concerned with Special Relativity.

1.2
Weirdness of Light

The special theory of relativity has emerged from studies of the motion of light.
Let us extend our discussion of motions of physical bodies to situations involving

light. Previously we had come to the conclusion that one can catch up with any ob-
ject. Does this statement include light? This question was torturing a high school
student, Albert Einstein, about a century ago and eventually brought him to Special
Relativity. What we have just learned about velocity prompts immediately a positive
answer to the question. Velocity is a relative quantity, it depends on a reference
frame. It can be changed by merely changing the reference frame. For instance, if an
object is moving relative to Earth with a speed v, we can change this speed by board-
ing a vehicle moving in the same direction with a speed V. Then the speed of the ob-
ject relative to us will be
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v � � v� V (1)

We can change v by “playing” with the vehicle – accelerating or decelerating it. For
instance, reversing the speed of the vehicle would result in changing the sign of V in
the above equation, and, accordingly, would greatly increase the relative speed of the
object without touching it. If we want to catch up with the object, we need to bring
its relative velocity down to zero. We can do this by accelerating the vehicle to the
speed V = v.

Because this works for objects such as bullets, planes, or baseballs, people naturally
believed that is should also work for light. It is true that we never saw light at rest be-
fore. However, as an old Arabic saying has it, “if the mountain does not go to Mo-
hammed, then Mohammed must go to the mountain.” If we cannot stop the light
on Earth, then we have to board a spaceship capable of moving relative to Earth as
fast as light does, and use this “vehicle” to transport us in the direction of light. Let c
be the speed of light relative to Earth, and V be the speed of a spaceship also relative
to Earth. If Equation (1) is universal, then we can apply it to this situation and expect
that the speed c � of light relative to the spaceship will decrease by the amount V:

c � � c � V (2)

Suppose that the rocket boosters accelerate the spaceship; its velocity V increases,
and c � decreases. When V becomes equal to c, the speed c � becomes zero. In other
words, light stops relative to us, that is, we have caught up with light. The same prin-
ciple that helped the pilot catch a bullet works here to help us catch the light. The
law (1) of addition of velocities says that it is possible.

However, there immediately follows an interesting conclusion. We know that the
Earth can to a good approximation be considered as an inertial reference frame, and
all inertial reference frames, according to mechanics, are equivalent. Einstein
thought that this principle could be extended beyond mechanics to include all nat-
ural phenomena. If this is true, then whatever we can observe in one inertial system
can also be observed in any other inertial system. If light can be stopped relative to at
least one spaceship, then it can be brought to rest relative to any other inertial sys-
tem, including Earth. In physics, if Mohammed can come to the mountain, the
mountain can come to Mohammed. To stop light relative to the spaceship, we need
to accelerate the ship up to the speed of light. To stop light relative to earth, we may,
for example, put a laser gun on this ship, and fire it backwards. Then the laser pulse,
while leaving the ship with velocity c relative to it, will have zero velocity with respect
to Earth. We will then witness a miraculous phenomenon of stopped light.

I can imagine an abstract from a science fiction story exploiting such a possibility,
something running like this:

“Mary stretched her arm cautiously and took the light into her hand. She felt its qui-
vering wave-like texture, which was constantly changing in shape, brightness, and
color. Its warm gleam has gradually penetrated her skin and permeated all her body,
filling it with an ecstatic thrill. She suddenly felt a divine joy, as though a new glor-
ious life was being conceived in her.”
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But, alas! Beautiful and tempting as it may seem, our conclusion that freely traveling
light can be stopped relative to Earth, or whatever else, is not confirmed by observa-
tion. It stands in flat contradiction with all known experiments involving light. As
had already been established before Einstein’s birth, light is electromagnetic waves.
The theory of electromagnetic phenomena, developed by J. C. Maxwell, shows a re-
markable agreement with experiments. And both theory and experiments show
quite counterintuitive and mysterious behavior of light: not only is it impossible to
catch up with light; it is impossible even to change its speed in a vacuum by a slight-
est degree, no matter what spaceship we board or in what direction or how fast it
moves.

We have arrived at a deep puzzle. Light does not obey the law of addition of velocities
expressed by Equation (1). The equation appears to be as fundamental as it is simple.
And yet there must be something fundamentally wrong about it.

“Wait a minute,” the reader may say, “Equation (1) is based on a vast number of pre-
cise experiments. It is therefore absolutely reliable, and it says that …”

“What it says is true for planes, bullets, planets, and all the objects moving much
slower than light. But it is not true for light,” I answer.

“Well, look here: the speed of light as measured in experiments on Earth is about
300000 km s–1. Suppose a spaceship passes by me with the velocity 200000 km s–1,
and I fire the laser pulse at the same moment in the same direction. Then 1 s later
the laser pulse will be 300000 km away from me, whereas the spaceship will be
200000 km away. Is it correct?”

“Absolutely.”
“Well, then, it must be equally true that the distance between the spaceship and the

pulse will be 100000 km, which means that the laser pulse makes 100000 km in 1 s
relative to the spaceship. It is quite obvious!”

“Apparently obvious, but not true.”
“How can that be?”
“This is a good question. The answer to it gives one the basic idea of what relativ-

ity is about. You will find the detailed explanations in the next chapter. It starts
with the analysis of one of the best known experiments that have demonstrated
the mysterious behavior of light mentioned above. But in order to understand it
better, let us first recall a simple problem from an Introductory Course of College
Physics.”

1.3
A steamer in the stream

The following is a textbook problem in non-relativistic mechanics; however, its solu-
tion may be essential for understanding one of the experimental foundations of Spe-
cial Relativity.

So, let us begin!
A steamer has a speed of u km h–1 relative to water. How long will it take to swim

the distance L km back and forth in a lake? The answer is

111.3 A steamer in the stream



t0 � 2
L
u

�3�

“Is that all?,” the reader may ask. No. It is just a preliminary exercise. The problem
is this: the same steamer starts at point A on the bank of the river with the stream
velocity v km h–1. It moves downstream to the point B on the same bank at a dis-
tance L from A, immediately turns back and moves upstream. How long will it take
to make round trip from A to B and back to A?

This is just a bit more complicated but still simple enough. Our reasoning may run
like this: if the steamer makes u km h–1 relative to water, and the stream makes
v km h–1 relative to the bank, then the steamer’s velocity relative to the bank is
(u + v) km h–1 when downstream and (u – v) km h–1 when upstream. We are inter-
ested in the resulting time, which is determined by the ratios of the distance to veloci-
ties. We must therefore use the speed averaged over time. The total time consists of
two parts: one (tAB), which is needed to move from A to B, and the other (tBA) to move
back from B to A. The time tBA is always greater than tAB, since the net velocity of the
steamer is less during this time. Thus, the net velocity of the steamer is greater than u
during the shorter time, and less than u by the same amount during the longer time.
Therefore, its average over the whole time is less than u. As a result, the total time it-
self must be greater than t0. It must become ever greater as v gets closer to u. This re-
sult becomes self-evident when v = u. Then the steamer after turning back is carried
down by the stream at the same rate as it makes in the up direction. So it will just re-
main at rest relative to the bank at B, and will never return to A. This is the same as to
say that it will return to A in the infinite future, that is, the total time is infinite.

What if v becomes greater than u, that is, the stream is faster than the steamer?
Then the steamer after the turn is even unable to remain at B; it will be dragged
down by the stream, getting ever further away from its destination. We can formally
describe this situation by ascribing a negative sign to the total time t.

Let us now solve the problem quantitatively. The times it takes to go from A to B and
then from B to A are, respectively,

tAB � L
u� v

� tBA � L
u� v

�4�

So the total time

t�� � tAB � tBA � L
u� v

� L
u� v

� t0

1� v2

u2

�5�

where t0 is the would be time in the still water, given by Equation (3).
If we plot the dependence in Equation (5) of time against the stream velocity, we ob-

tain the graph shown in Figure 1.5.
Equation (5) describes symbolically in one line all that was written over the whole

page and, moreover, it provides us with the exact numerical answer for each possible
situation. The graph in Figure 1.5 describes all possible situations visually. You see
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that for all v < u the time t is greater than t0, it becomes infinite at v = u, and negative
at all v > u. When v is very small relative to u, Equation (5) gives t�� � t0. This is nat-
ural, since for small v the impact of the stream is negligible, and we recover the re-
sult in Equation (3) obtained for the lake.

Now, consider another case. The river is L km wide. The same steamer has to cross
it from A to B right opposite A on another bank, and then come back, so the total dis-
tance to swim relative to the banks is again 2L. How long will it take to do this?

The only thing we have to know to get the answer is the speed of the steamer u � in
the direction AB right across the river. The steamer must head all the time a bit up-
stream relative to this direction to compensate for the drift caused by the stream. If
during the crossing time the steamer has drifted l km downstream, then in order to
get to B, it must head to a point B� l km upstream of B. Thus, its velocity relative to
water is u and directed along AB�, the velocity of the stream is v and directed along
B�B, and the resulting sought for velocity of the steamer relative to the banks is direc-
ted along AB. These three velocities form a right triangle (Fig. 1.6), and therefore

u � �
���������������

u2 � v2
�

� u

��������������

1� v2

u2

�

�6�

Hence our final answer for the total time back and forth between A and B is

t� � 2L
u �
� 2L

u

��������������

1� v2

u2

� � t0
��������������

1� v2

u2

� �7�

Note that Equations (6) and (7) give a meaningful result only when v < u (a side of
the right triangle is shorter than the hypotenuse). Then, according to Equation (7),
time t� is also greater than t0, but it is less than t��. Hence one can write

131.3 A steamer in the stream

Fig. 1.5 The dependence of round-trip
time t�� on speed v.



t0 � t� � t�� �8�

If v > u, the triangle in Figure 1.6 cannot be formed. The steamer’s drift per unit
time exceeds its velocity u, and the steamer will not be able to reach the point B, let
alone return to A. This circumstance is reflected in the mathematical structure of
Equations (6) and (7): these equations yield imaginary numbers when v > u. They
say that there is in this case no physical solution that would satisfy the conditions of
the problem.

Now, what is the link between this problem and the experiment with light men-
tioned above? Take the running waves on the water surface instead of the steamer
and you turn the mechanical problem into a hydrodynamic one. Then take the
sound waves in air during the wind instead of the steamer on the water stream, and
you get the same problem in fluid dynamics. And as the last step, consider the light
that propagates in a moving transparent medium in transverse and longitudinal di-
rections, and here you are with the optical problem that is identical with the initial
mechanical one.

This is why I started the book with this Introductory Physics problem. On the one
hand, its mathematical description is exactly the same as that of the problem ahead.
On the other hand, its solution is psychologically easier just because a mechanical
problem is more familiar to a great majority of people. I believe that even the less ad-
vanced students will feel more comfortable with this book if it starts with a familiar
problem.

However, I want to stress here again that the treatment of the problem is based on
unspoken assumptions about addition of velocities, which were shown later to be in-
correct. The corresponding errors in the results obtained are negligible for a steamer
or for sound in air, so we can use them for these cases; but they may become large
in the case of light. What the physical nature of these misconceptions is, and how
they are related to the nature of light, are discussed in the next chapter.
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2
Light and Relativity

2.1
The Michelson experiment

In the history of the study of the world, one can trace a tendency to explain the great-
est possible number of phenomena using the smallest number of basic principles.
In the eighteenth and nineteenth centuries it seemed that the solution of this task
was not far off. This period witnessed a spectacular flourish of Newtonian me-
chanics. Using its basic concepts, scientists made astonishing progress in astron-
omy, navigation, technology, earth studies, etc. Later the advance of the molecular–
kinetic theory allowed the huge field of thermodynamic phenomena to be described
in the language of mechanics.

This engendered a hypothesis that all natural phenomena can be reduced to me-
chanics, that is, one could construct an entirely mechanical picture of the world –
a picture based on the laws of Newton and on the corresponding concepts of abso-
lute time and space. Consequently, physicists sought to integrate electromagnetic
phenomena and particularly the propagation of light into mechanical theory.

By that time it had been proved that light propagation is a wave process for which
the phenomena of interference and diffraction, common for all waves, could be ob-
served. And since all waves known in mechanics could propagate only in some
medium with elastic properties, it seemed reasonable to assume that light waves
are also mechanical oscillations of some elastic medium which penetrates all physi-
cal objects and fills all space in the Universe. This hypothetical medium was called
the ether.

The ether hypothesis leads to a number of inferences, the examination of which may
confirm or refute the hypothesis itself. In this section we will consider one of such
inferences, the analysis of which has played an important role in the history of
science.

Let us assume that the space is filled with ether. Then, since the Earth is traveling
through the ether, an earthly observer may expect to discover an “ether wind.” The
speed of light in the ether as measured by the earthly observer may in this case de-
pend on direction. If the wind has a speed v relative to the Earth, the observer would
expect to measure for the speed of light c� = c + v in the direction of the wind and
c� = c – v in the opposite direction. And what is the speed of light in the transverse
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direction? In order for light to move perpendicularly to the wind it is necessary to
compensate for the lateral “drift,” which means that the light’s velocity relative to the
ether must have a longitudinal component against the wind, equal to v. However,
the total velocity of light relative to the ether is equal to c. Therefore, according to our
results in the previous section, the transverse component must be equal to
c� =

��������������

c2 � v2
�

(Fig. 1.6 with u = c and u � = c�). If our reasoning is correct, the speed
of light relative to the Earth must be anisotropic (that is, dependent upon the direc-
tion) owing to the Earth’s motion in the ether. Conversely, an observation of such ani-
sotropy would enable us to detect this motion and to find its speed. In other words,
optical phenomena would reveal a fundamental difference between a moving refer-
ence frame and a “privileged” frame attached to the ether. This would mean that the
relativity principle formulated by Galileo for mechanical phenomena is invalid for
optical phenomena, and so we would be able to distinguish the state of uniform mo-
tion in a straight line from the state of “absolute rest.“

The prominent physicist–experimenter Michelson, later accompanied by Morley,
had actually tried to discover this effect in a series of experiments. The idea of these
experiments was very simple and based on the interference of light waves. Consider
two rays with the same oscillation frequency f, which have been obtained by splitting
a beam from a small light source. The splitting of the beam occurs in a glass plate P
which partially transmits and partially reflects light. At a certain position of the
beam-splitter, the reflected and transmitted parts of the light wave propagate in two
mutually perpendicular directions, and then come back, after reflection in the mir-
rors A and B (Fig. 2.1 a). Because the split beams have taken different routes, they
may accordingly have spent different times traveling along their respective paths. As
a result, their oscillations will have a certain phase shift with respect to one another
when they recombine. The phase shift can be determined as a ratio of the relative
time lag to the oscillation period T, multiplied by 2�. If the two waves of the same
frequency and the same individual light intensity I0 meet having a phase difference
�� at a certain point, the net intensity at this point will be

I � 2 I0 �1� cos��� �1�

For waves oscillating in synchrony we have �� = 0, and the waves reinforce each
other, producing the net intensity equal to four individual intensities (constructive
intereference). When the wave oscillations are totally out of phase (�� = 180�), the
waves cancel each other out, giving zero net intensity at corresponding point. In this
case light combined with light produces darkness (destructive intereference).

Generally, the phase shift�� is different for different points on the screen. Consider,
for instance, an interferometer with its mirrors not ideally perpendicular to each
other. Interference in this case is similar to that on a wedge-shaped layer of air be-
tween two interfaces. Imagine your eye placed at the screen (Fig. 2.1 b). Then you
will see simultaneously the mirror B and the image A� of the mirror A. If the mirrors
are not ideally perpendicular, then the image A� is not parallel to B, and the interfer-
ence is equivalent to that on an air wedge BOA�. It is clearly seen from Figure 2.1b
that the further from the edge, the greater is the path difference between the interfer-
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ing beams, and accordingly the phase shift ��. Hence the phase shift is a function
of a distance y between the observation point and the image of the edge on the
screen: �� = �� (y ). As you sweep across the screen, you will pass places with differ-
ent phase shifts between the combining waves and accordingly different light inten-
sity. The screen will display a pattern of bright and dark fringes (that is, alternating
regions of high and low intensity). Such a pattern will be observed even when the
“arms” of the interferometer (the distances between the center of the beam-splitter
and the centers of the mirrors) are the same: L1 = L2 = L.

Let us consider this case and calculate an additional phase difference caused by a
possible time lag due to hypothetical ether wind. Suppose that the wind “blows”
along one of the arms of the interferometer. We can treat this problem in total ana-
logy with our treatment of the “Steamer in the stream” in the previous section. The light
here will play the role of the steamer, and the ether wind will be the stream. Then,
by the same reasoning as before, the time required for the light to travel there and
back along the “longitudinal” arm should be equal:

t�� � L
c � v

� L
c � v

� 2
L c

c2 � v2
� 2

L
c
�1� �2� �2�

where � is the ratio v/c (which is much smaller than 1).
The round-trip time in the transverse direction is determined by the above-men-

tioned “transverse” speed c� and equals

t� � 2 L
c�
� 2 L

��������������

c2 � v2
� � 2 L

c
�������������

1� �2
� � 2 L

c
1� 1

2
�2

� �

�3�

In the last two equations, we also wrote the approximations to the exact expressions
to the accuracy of the second order of �. Thus, the time lag between these two waves
will be

�t � t�� � t� � L
c
�2 �4�

The corresponding phase shift, according to the above definition, is

172.1 The Michelson experiment

Fig. 2.1 (a) Schematic of the Michelson interfe-
rometer. S – source of light, A and B – mirrors.
(b) An equivalent air-wedge A�OB produced by
an angular misalignment of mirrors A and B.



��e � 2�
L�2

cT
� 2 �

L�2

�
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where � = cT is the wavelength of light (the distance traveled in one period).
As we see from Equation (5), the contribution from the ether wind depends only on

the wavelength, the arm length, and the speed of the Earth relative to the ether.
Therefore, it must be to a high accuracy the same for all points on the screen. Thus,
the possible influence of the ether wind can be described as a constant [Eq. (5)],
added to the phase �� (y ) in Equation (1). If a constant is added to a phase in the
sine or cosine function, the graph of this function will just shift along the y -axis.
Therefore, with the ether wind, the observed interference pattern on the screen
would be shifted relative to its position in the absence of the wind.

Suppose now that we have turned the whole device by 90�, so that the beam which
was parallel to the “wind” now travels in the transverse direction, and vice versa.
Then the wave that had previously arrived at a given point with delay will now arrive
earlier; in other words, the time lag will change sign. This must result in the shift of
the observed interference pattern corresponding to the change in phase difference
by 2��e. Therefore, if there is no ether wind, the turning of the device will not affect
the interference pattern. If the wind exists and affects the speed of light, the interfer-
ence pattern will shift with the turning of the device. It was this shift that Michelson
and Morley wanted to observe in their experiments.

In order to observe the effect, the pattern on the screen must shift a distance compar-
able to the fringe spacing, that is, the additional phase shift ��e due to the expected
“ether wind” must be comparable with 2�. According to Equation (5), this requires
an experimental setup in which the distance L is of the order of �/�2. For the wave-
lengths of visible light and the speed of ether wind comparable to the speed of
Earth’s motion around the Sun, the length of the travel path of light in the device
must be not less than 100 m. Therefore, the light in the Michelson interferometer
was made to travel many times back and forth along either of the two paths before
recombining to make the interference pattern on the screen [14]. The whole setup
was state of the art by the time (1881–87) the experiments were carried out.

The experiments conducted based on this scheme and repeated many times there-
after with ever increasing accuracy did not produce the expected result. The ether
wind, and thereby motion of Earth, could not be detected. This can be considered as
evidence that motion of a reference frame does not affect the speed of light.

A plethora of studies have been devoted to the analysis of the Michelson experiment.
In some of them the authors tried to retain the concept of ether. In order to account
for the negative results of the Michelson experiment, they had to assume that the
ether wind is precluded from being observed by some countereffect. For instance,
the change of direction of the ether wind relative to the device could deform the in-
terferometer’s arms in such a way as to compensate the change of the interference
pattern. As a result, no effect would be observed. Precisely such an explanation was
proposed by the physicists H. A. Lorentz and G. F. FitzGerald.

Lorentz and FitzGerald had assumed that any system moving at a speed v relative to
the ether contracts in the direction of motion by the amount (1 – v2/c2)1/2. Such a
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contraction explains the negative result of the Michelson experiment. Indeed, if we
multiply the longitudinal size in Equation (2) by the above factor, the time t�� will be-
come equal to t�, which means that the light’s traveling time for both rays and, cor-
respondingly, the interference pattern, will no longer depend on the interferometer’s
orientation. Such an explanation is logically consistent, but it is unduly complicated.
It implies the necessity of a few independent postulates:

1 The ether does exist (and in addition, it must possess a number of very special
and hardly compatible properties, and each of them must also be postulated).

2 The motion of any system through the ether contracts the system in the longitudi-
nal direction.

3 This contraction is such as to compensate all observable manifestations of the
ether wind.

In addition to its complexity, the described scheme is faulty in two respects. First, its
primary substance (ether), whose existence it postulates, does not reveal itself in the
observed phenomena (the scheme itself has been designed to account for this fact).
Second, it leads to a number of subsequent difficulties and complications. Therefore,
it could not have become a foundation for a physical theory.

All these difficulties were eliminated in Einstein’s special theory of relativity. This
theory does not in any way mention ether. At the basis of the theory lies Einstein’s
principle of relativity, according to which all natural laws and thus all physical phe-
nomena (and not only mechanical ones) look similar in all inertial reference frames.
In other words, all inertial systems are absolutely equivalent.

This principle easily explains why no indications of the Earth’s motion were detected
in the Michelson experiment. Since the Earth’s orbital motion is inertial with a high
degree of accuracy on any small segment of its orbit, it cannot affect the outcome of
any laboratory experiment.

Thus Einstein’s principle of relativity makes the negative result of the Michelson ex-
periment obvious from the very beginning. An interesting historical fact is that Ein-
stein himself was probably unaware of the Michelson experiment when he pub-
lished his first famous article on the theory of relativity. This does not mean, how-
ever, that such an experiment was unnecessary. Regardless of whether it was known
to Einstein or not at the time, the Michelson experiment is one of the cornerstones
of the experimental basis of the theory of relativity. Its result greatly facilitated the ac-
ceptance of this theory and helped to comprehend quickly its striking revelations
about the basic properties of time and space. This is what comprises the historical
role of the Michelson experiment.

2.2
The speed of light and the principle of relativity

Let us now try to interpret the results of the above-mentioned experiments with light.
These results contradict our intuition based on observing motions much slower than
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light. Our experience expressed in Equation (1) in Section 1.2 shows that the velocities
of such motions just add together. In particular, this equation accurately describes a
well known fact that if a surfer reaches the same speed as a running ocean wave by
just riding it, then the speed of the wave relative to the surfer is zero.

However, what can be done with an oceanic (or sound) wave cannot be done with
light. The experiments did not support the viewpoint that light waves are just pertur-
bations in a specific medium (ether) permeating the whole space. And with no scien-
tific evidence, it makes no sense to speak about such a medium. Therefore, we accept
the viewpoint that space does not contain any light-carrying substance (ether), in
which light could spread like the sound in air or waves in the ocean. A light wave
can exist “all by itself ” in a free space, and only in motion. A notion of “still” or even
“slow” light waves in an empty space contradicts both electromagnetic theory and
the experiment. Light always moves with the same universal speed. We cannot tell
whether we are on a stationary platform, or in a uniformly moving car, or in a rush-
ing spaceship with engines off, by measuring the speed of light: in either case the re-
sult is the same. Nor can we tell uniform motion from rest by observing any other
electromagnetic phenomena. These phenomena, as well as the mechanical ones, are
“insensitive” to a state of uniform motion of the observer. Einstein accepted this
statement as part of a universal principle that he had formulated (Einstein’s principle
of relativity) – that all natural phenomena (rather than only mechanical ones) look
the same in all inertial reference frames. In other words, Nature possesses a deep
symmetry which is manifest in the equivalence of all inertial systems. All observed
phenomena confirm this conclusion.

From my teaching experience, I can foresee a typical objection by a skeptical reader:
“Excuse me, but this conclusion seems ridiculous. I can understand that the invar-

iance of the speed of light, difficult as it is to grasp, indicates that all inertial refer-
ence frames are equivalent. However, the speed of an object such as a stone or bullet
is not invariant, and yet you say that this is also a manifestation of the same principle
of relativity. How can that be?“

The answer to this is that the speed of a stone may vary even in one reference frame,
depending on the initial conditions or on the applied forces. Therefore, any differ-
ence in such speed measured by different observers reflects only the difference in
the initial conditions, not the difference in the laws of Nature. For instance, the fall-
ing item in Figure 1.1 in the Introduction has no initial velocity in the horizontal di-
rection as seen from the train, and has an initial horizontal velocity equal to that of
the train as seen from the ground. Therefore, it falls straight down relative to the
train and traces out a parabola relative to the platform. But it might as well start mov-
ing without an initial horizontal component if dropped by the person on the plat-
form, in which case it would fall straight down relative to the platform. Or, it might
start moving in the train car with an initial horizontal component if pushed horizon-
tally by the passenger, in which case it would move there in a parabola, as it does on
the platform under similar conditions. Therefore, if we have two identical systems in
two different inertial reference frames K and K �, and both systems start from identi-
cal initial conditions, they perform identical motions. Also, in either frame the speed
of corresponding mass can vary within the same range – from zero to a speed ap-
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proaching that of light. This is a more rigorous formulation of the principle of rela-
tivity for systems such as stones or planes.

Light, on the other hand, can move only with one fixed speed in one reference frame.
The principle of relativity in this case requires that this fixed speed remains the
same in any other inertial reference frame, regardless of the initial conditions.

But here the same thoughtful reader may ask another question:
“OK, this explanation is logically consistent, if we accept that the speed of light, un-

like the speeds of most other objects, is the fixed quantity. But how can it be that
light, which moves in the same space and time as do objects such as cars, bullets,
and planets, does not obey the law of addition of velocities [Eq. (1) in Sect. 1.2] that
applies to these objects?“

This question, as I noted in the Introduction, is crucial for understanding relativity.
Let us trace the origin of the law of addition of velocities. Consider two inertial refer-

ence frames K and K �. Let K � move relative to K in the x-direction with a speed V,
and the origins of both systems coincide at the moment t = 0. Consider an object M
at a later (non-zero) moment t. By this moment the origin of system K � will have tra-
veled a distance Vt (Fig. 2.2). Therefore, the x-coordinate of the object in K at this
moment will differ from its x �-coordinate in K � by this distance:

x � x � � V t

t � t �

�

�6�

The second of Equations (6) expresses the obvious fact that time is the same in both
systems. The relations (6) between the space and time coordinates of an event ob-
served in two different reference frames is known as galilean transformations. The
law of addition of velocities follows directly from these transformations. The speed
of the object in K is v = dx/dt. Its speed in K � is v � = dx �/dt �. Since t = t �, we have

v � dx
dt
� dx �

dt
� V � dx �

dt �
� V � v � � V �7�

This is the addition rule expressed by Equation (1) in Section 1.2. For v = c we recover
Equation (2) in Section 1.2 as a special case.

However, since Equation (7) does not hold for light, it must be generally wrong, even
though it describes accurately the slow motions. But how can it be wrong if it follows
directly from most fundamental properties [Eq. (6)] of space and time? There can be
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only one answer: the “fundamental” properties [Eq. (6)] that we had considered as
self-evident must themselves be generally wrong and need critical revision. That was
Einstein’s brilliant idea, that became a starting point for his theory of relativity.

2.3
"Obvious"" does not always mean "true"!

When we enter the area of speeds comparable to the speed of light, we must general-
ize the law of velocities addition in such a way that one equation would describe
both the simple addition of low-speed motions and the “weird” behavior of light. To
do this, we will analyze in more detail here the initial premises on which the law of
velocities addition is based.

Consider the following situation: a spaceship (system K�) moves at a speed V relative
to an inertial system K, assumed to be stationary. An object moves inside the space-
ship from its rear to its front (i. e. parallel to the spaceship’s velocity) at a speed v �.
The speed v of the object relative to K is then given by the “obvious” Equation (7).

Let us now scrutinize the definition of speed used in the previous section. The ob-

ject’s speed v � relative to the spaceship is v � =
�x �

�t �
, where �x � is the length of the

spaceship and �t � is the time it takes for the object to travel this length. Thus, Equa-
tion (7) means that

v � V � �x �

�t �
�8�

Scrutinize the meaning of all the terms in this equation. The first two terms (the
speeds v of the object and V of the spaceship relative to K) are measured using rulers
and clocks, which belong to the system K and do not participate in the spaceship’s mo-
tion. The last term (the speed of the object relative to the spaceship) is measured by
the spaceship’s crew using the rulers and the clocks they find on the spaceship. Of
course, the rulers and clocks in K and K� are identical in the sense that they have
been constructed in the same way (the possibility of their structures being identical
is guaranteed by the identity of all the laws of nature in both systems, i. e. by Ein-
stein’s principle of relativity). However, the two systems of rulers and clocks are mov-
ing relative to each other, and we do not know beforehand how this will affect the re-
sult of their direct comparison with each other. That is why it is utterly wrong to mea-
sure both items on the right of Equation (8), which contribute to the net speed v, in
the units belonging to different reference systems. The rulers and clocks of system K
may be affected by its motion relative to K.

The correct equation, corresponding precisely to the definition of velocity of an ob-
ject in K , is

v � V � �x
�t

�9�
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where �x is the length of the spaceship measured in units of system K and �t is the
corresponding time (i. e. the time it takes for the object to move from the rear to the
front of the spaceship) measured using the clocks of the system K.

The correct Equation (9) can be reduced to Equation (7) only if we make two addi-
tional assumptions:

1. The distance �x � in K� (in our case the length of the spaceship measured by its
own rulers) is transferred without any change to the system K (that is, �x � = �x).

2. The duration �t � of a process (in our case the time that the object spends in mo-
tion) in system K� is the same as its duration in system K (that is, �t � = �t).

In other words, objects‘ sizes (or distances between objects) and durations of pro-
cesses (or time intervals between events) had been assumed to be absolute regardless
of the state of motion of the system to which we attach our clocks and scales. The ab-
soluteness of distances and the invariance of time in all reference systems must re-
sult in simple addition [Eq. (7)] of velocities. However, since the “simple addition”
law, when applied to light, clashes with experiment, it must be generally wrong.
Therefore, the assumption that space and time are absolute must also be wrong. We
have already emphasized that the belief in absoluteness of space and time was
“born” in the world of low speeds. However, the speed of light is not low! It follows
that the concepts of absolute time and space upon which Equation (7) was based
must be changed in such a way as to obtain a description of the world that would
hold for any motions, slow or fast.

2.4
Light determines simultaneity

It is natural that light, whose “weird” behavior has prompted us to revise the concepts
of time and space, is itself suggesting the direction of such a revision. In fact, not only
does it suggest it, but rather it points unambiguously to the only possible solution.

Light propagates in the same physical space where other objects are moving. How-
ever, while the speeds of most objects can change (in particular, after transition into
another reference frame), the magnitude of the velocity of light remains constant.
The properties of time and space must be reconciled with this fundamental fact.

The invariance of the speed of light suggests, as the above analysis shows, that the
time interval �t � between two events at different points of the system K� is generally
different from the time interval �t between the same events in the system K, that is,
�t � �t �.

In particular, this means that if �t = 0 (if both events occur simultaneously in K),
then �t � may be different from zero, and these same events will not be simultaneous
in system K�. It is at this point where the most fundamental break with Newtonian
concepts lies.

The classical notion of absolute simultaneity is based upon the intuitive idea that
time is something universal and is the same at any moment for all points in space
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and in any reference frame. Space itself is perceived as the locus of all points (or,
more precisely, “events“), “snapped” at some moment of time.

But what does it mean – one and the same moment of time for two points A and B a
way apart?

Let two clocks with identical structure be placed at the points of interest. We call two
events occurring at these points simultaneous if the clocks A and B show the same
time readings at the corresponding moments. But this definition is based on an un-
spoken assumption that both clocks had been started at the same time. It follows that
the simultaneity of the two given events at A and B depends upon the definition of si-
multaneity of another pair of events (the starts of clocks A and B). Since a concept can-
not be defined in terms of itself, it is necessary to find some other definition.

The concept of simultaneity for spatially separated events (and thereby the mere idea
of space “at a given moment“) can only have a clear physical meaning (that is, be
based on a realizable experimental procedure) if there exists a universal means to
overcome the disconnection of events at different places. Light provides us with such
a means! The process of propagation of light (or, more generally, electromagnetic in-
teractions) is precisely what makes it possible to connect the time “there” with the
time “here.” Being a universal “messenger” between different regions of space, light
makes it possible to judge the simultaneity of spatially separated events. The experi-
mental fact that the speed of light is independent of the reference frame allows to de-
fine an electromagnetic procedure for clocks‘ synchronization, which is uniform for
all inertial systems. The clocks A and B that are at rest at adistance x from one another
in a given reference frame are synchronized if the light signal emitted from A at the
moment tA arrives at B at the moment tB = tA + x/c. It follows from this definition
that the two light signals from a flash at a moment tC at the point C just in the mid-
dle of the segment AB reach the ends A and B simultaneously:

tA � tB � tC � 1 x
2 c

�10�

If we reverse this procedure, we will come to Einstein’s definition of simultaneity:
two events at points A and B are simultaneous if the light signals from these events
meet exactly in the middle between A and B.

Becauseof the invarianceof thespeed of light, theconclusionabout relativity ofsimulta-
neity follows immediately from Einstein’s definition. Let us consider again the space-
ship from the previous section, assuming that its walls are transparent and that a detec-
tor of light signals is positioned in the middle of the spaceship. This detector does not
respond to a signal coming from only one direction or to signals arriving from the oppo-
site directions at different moments. If, however, the detector is lit from both directions
simultaneously, a wiring device switches on, and the detector explodes. A similar detector
is put at the point C of the “stationary” system K (Fig. 2.3a). Suppose that precisely at
the moment when both detectors were coincident (tC = t �C = 0) we marked the instanta-
neous positions of the end points A and B of the spaceship in system K. The phrase
“precisely at the moment” now has a clear physical meaning due to the definition of si-
multaneity: it means that if two flashes of light occur at points A and B at this moment,
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then the emitted signals will meet exactly in the middle of the segment AB, i.e. at the
point C, where our detector is located, and the latter, being lit simultaneously from the
opposite directions, will explode. Since the spaceship is transparent, we can also observe
the course of events in the spaceship while remaining outside (Fig. 2.3b). We will watch
the spaceship’s detector moving toward one signal and running away from the other
while it goes past point C. By the moment when both signals meet at C, exploding our
detector, the detector on the spaceship will reach some other point C � and remain intact
because it will be lit by only one (oncoming) signal. Thus, in the spaceship’s system, the
signals will meet not at its center but at some other point and so the detector will not ex-
plode. On the other hand, relative to the spaceship, both signals move with the same
speed c as they do in system K! So how is it possible that they do not meet at the middle
of the spaceship? Or, more precisely, why does the signal from the front travel a longer
distance than that from the rear? There is only one plausible answer: because it was
emitted earlier! To put it another way, in the spaceship’s system the flashes were not si-
multaneous. The flash in the front occurred earlier than the flash in the rear.

Let us calculate how much earlier. Let �x � be the distance between the center of the
spaceship and the point C � where the signals meet, measured relative to the spaceship.
We will call it the proper distance. To play it safe, we will avoid the statement that
�x � is equal to �x = CC � with CC � being the distance measured in system K (later we
shall see that such a precaution is justified). In contrast, since the segment �x � is
moving together with the spaceship at a speed V relative to K, its length �x = CC �,
measured in system K, might differ from its length �x � measured in system K� by a
factor � (V), which depends on V:

�x � ��1 �V��x � �11�

On the other hand, in the system K the distance �x is �x = Vt, where t is the time in-
terval between the flashes at A and B, and the detector’s explosion at C. If we denote
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Fig. 2.3 A thought experiment
illustrating the relativity of si-
multaneity. (a) The initial mo-
ment: two flashes at the end
points of a moving spaceship
are simultaneous in K. (b) The
final moment: the photons
from the flashes explode detec-
tor D, but not detector D �.



the distance AC = CB (i. e. half of the spaceship’s length in the system K) as x, then
t = x/c, and therefore

�x � V
c

x �12�

Exluding �x from Equations (11) and (12), we find

�x � � � �V� V
c

x �13�

Thus, we have found that the signal coming from the front of the spaceship has tra-

veled a distance longer by 2�x � = 2� (V)
V
c

x than the signal coming from the rear.

This means that it was emitted earlier by the time interval 2�t � = 2�x �/c. Suppose
now that a clock has been attached to each of the two detectors and that both clocks
read zero time (tC = t �C = 0) at the moment when they were coincident. We will then
obtain the following result for the moments of two flashes at A and B:

In system K: tA � tB � �

In system K� : t �A �
�x �

c
� � �V� V

c2 x � t �B � �t �A

�
�
�
�
�
�
�

(14)

We can put it this way: when the flash occurred at A, the spaceship’s clock located at
that point reads the time t �A = �x �/c, and when the flash occurred at B, the corre-
sponding clock reads t �B = –�x �/c, if both clocks on the the spaceship had previously been
synchronized in their reference frame according to Einstein’s definition of simultaneity.

We want to emphasize the importance of this conclusion. We are discussing natural
phenomena. A pair of spatially separated events is being considered. And it turns out
that these events are simultaneous in one reference frame but non-simultaneous in
another. This means that simultaneity is relative. Its relativity is due to the fact that the
speed of light is invariable. If light obeyed the simple law of velocities addition, the
light signal would travel faster from the front to the rear than from the rear to the front
in the reference frame of the spaceship. This would account for the fact that the two
signals do not meet in the center of the spaceship. The flashes would remain simulta-
neous. In that case, however, the laws for electromagnetic phenomena (e.g. the speed
of light propagation!) and the corresponding procedures used to define simultaneity
would not be the same for all inertial systems. There would be only one “privileged”
system of reference, where the speed of light would be the same in all directions. The
clocks of all other systems would be set according to the clocks of this “absolutely still”
system, which would bring us back to Newtonian concept of absolute time.

However, light does not leave us such a possibility, because it moves with one fixed
speed in all inertial systems, rendering them all equivalent. Thus, Einstein’s principle
of relativity, together with invariance of the speed of light, implies the relativity of time.
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2.5
Light, times, and distances

The relativity of time causes the relativity of distances and time intervals: these quan-
tities are different in different reference systems.

Let us consider a vertical cylinder of length �l � with mirrored butt-ends; a light sig-
nal is traveling back and forth periodically inside the cylinder (Fig. 2.4 a). In a system
K� attached to the cylinder, the time interval between two successive arrivals of the
signal to a chosen end is equal to

�t � � 2
�l �

c
�15�

The interval �t � can be called an eigen (proper) period of the signal’s motion. Now
we can analyze the whole process in system K, in which the cylinder moves horizon-
tally at speed V. What is the time of this process in system K? Denote this time as �t.
In system K, light participates simultaneously in two motions: in the vertical direc-
tion (along the cylinder’s axis) and in the horizontal direction (together with the cy-
linder). As a result, during the period �t of one “oscillation” up and down, the signal
will travel the distance V�t in the horizontal direction, and so its trajectory will be-
come a broken line AB�A� (Fig. 2.4b).

The length lAB�A� of the element AB�A� is equal to

lAB�A�� � 2

�����������������������������������

�l �2 � 1
2

V�t

� �2
�

�
��������������������������������

c2 �t �2 � V2 �t2
�

�16�

It is greater than 2�l �. At the same time, the speed of light along the broken line in
the system K must remain equal to c. To travel a greater distance at the same speed
takes a longer time. Indeed, putting lAB�A� = c�t for the element’s length in Equation
(16), we will obtain the following relationship between �t and �t � :

c�t �
��������������������������������

c2 �t �2 � V2 �t2
�

�17�

It follows that

�t � � �t

���������������

1� V2

c2

�

�18�

As we can see from Equation (18), the period of the same process – one complete os-
cillation of the light signal inside the cylinder – is different in different systems and
is smallest in a system where the cylinder is at rest.

There is another way to see it. In system K light moves along AB� with speed c, while
moving horizontally with speed V. We can see from Figure 2.4 that the vertical com-
ponent of its motion must be
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v �
����������������

c2 � V2
�

� c

���������������

1� V2

c2

�

�19�

The motion of light along the cylinder is slower than c when the cylinder is moving,
and its period �t is accordingly greater than �t � by the same factor, which is the es-
sence of Equation (18).

Further, we have suggested [Eq. (11)] that the “longitudinal” size of an object, that is,
its length in the direction of the velocity of its relative motion, may be relative, too.
To find the law for the length transformation, we will modify our experiment slightly
by directing the axis of the cylinder along its relative velocity (Fig. 2.5).
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Fig. 2.4 The light pulse in a vertical cy-
linder that is moving horizontally. (a) In
the rest frame of the cylinder (system
K�). (b) In system K.

Fig. 2.5 The same as in Figure 2.4, but
now the cylinder is horizontal. (a) In the
rest frame of the cylinder (system K�).
(b) In system K. AB is the initial position
of the cylinder (the pulse starts at A);

A�B� is its intermediate position (the
pulse reaches the front at B�); A�B� is
its final position (the reflected pulse re-
turns to the rear at A�).



Obviously, in the system K�, this operation will not affect the cylinder’s length �l �
(the size of an object in its rest system does not change when the object is turned!)
Correspondingly, the period of motion [Eq. (15)] of the light signal will remain the
same. However, if the time interval �t � between two events (emission and return of
the signal) at one point (the point A of the cylinder) in system K� does not depend on
orientation of the cylinder, then the corresponding time interval �t between those
same events considered from system K also will not change. Therefore, Equation
(18) must also hold for the cylinder in the horizontal position. Using the relationship
in Equation (18) between �t and �t �, we obtain

�t � �t �
���������������

1� V2

c2

� � 2�l �

c
1� V2

c2

� ��1�2

�20�

Now let us express the time interval �t in terms of the “longitudinal” length �l of
the cylinder in system K. In this system the light now travels in a moving horizontal
“corridor” of length �l, catching up with the mirror B which runs away from it at a
speed V. How long does it take light to catch up with the front end B? Denote this
time interval as �t1. The distance traveled by the light pulse from point A to point B�
where it catches up with the front of the cylinder is c�t1. The same distance can be
expressed in terms of the length of the cylinder as V�t1 + �l (Fig. 2.5). Thus we have
c�t1 = V�t1 + �l, so that �t1 = �l/(c – V). After the reflection from mirror B, the light
returns to point A (rear of the cylinder), which moves towards it at speed V. The time
�t2 it takes the reflected signal to return to this point can be found in a similar way
and is equal to

�t2 � �l��c � V� �21�

The total time �t the signal spends between its departure and return to the same
end of the cylinder is

�t � �t1 � �t2 � �l
c � V

� �l
c � V

� 2�l
c

1� V2

c2

� ��1

�22�

It turns out to have been calculated in the same way as the corresponding time for
the “horizontal” beam in the Michelson experiment. However, we must keep in
mind that here the quantities c – V and c + V are the rates of change of the distance
between the signal and the butt-ends of the cylinder in system K, and they by no
means represent the speeds of the signal relative to the cylinder, i. e. its speed in sys-
tem K�. Similarly, the distance �l is the length of the cylinder in system K, and, as we
will now show, it is indeed different from its length measured in its rest frame.

Comparing Equations (20) and (22), we obtain

2
�l
c

1� V2

c2

� ��1

� 2
�l �

c
1� V2

c2

� ��1�2

�23�

292.5 Light, times, and distances



that is

�l � �l �

���������������

1� V2

c2

�

�24�

According to Equation (24), the length of a moving segment is smaller than its
length in its rest frame by a factor of (1 – V2/c2)–1/2. In other words, the sizes of mov-
ing objects are contracted in the direction of motion. This effect is called Lorentz
contraction. However, it has a completely different meaning from the contraction in-
troduced by Lorentz in connection with the Michelson experiment. Lorentz assumed
that the longitudinal contraction appears only when an object is moving relative to
the ether which serves as a universal system of reference. As a consequence, a seg-
ment that is stationary relative to the ether possesses the greatest length. In reality,
the length contraction is observed for any object moving relative to any inertial sys-
tem. And the segment has the greatest length in its own system of rest, which may
be moving relative to a given inertial system at an arbitrary speed V . The ratio

�l
�l �
� ��1 �V��

���������������

1� V2

c2

�

�25�

is precisely the same proportionality coefficient as in Equation (11) between the
length of a moving segment and its “rest” length that was introduced in the previous
section. Now, analyzing our thought experiments with light, we have found the exact
value of this coefficient. Because we will come across this coefficient fairly often (in-
deed, we will see later that not a single relativistic effect can be described without it),
we shall give it a special name – the Lorentz factor, and stick to our symbol � (V), re-
membering that the explicit form [Equation (25)] of the function � (V) is known to
us. Using this symbol, we can rewrite the essential Equations (18) and (24) for time
and length transformation:

�t � � �V��t � �26�

�l � ��1 �V��l � �27�

It is essential for the correct use of these equations that we understand clearly the
physical meaning of the related quantities: �t � is the time between two different
events taking place at one and the same point of the system K� ; �t is the time between
the same events in K, where these events are being observed at different points of
space. Similarly, �l � is the length of a segment in its rest system K� ; �l is its length
in K that slides along the segment with a speed V. Since in the system K the segment
is moving, the coordinates of its end points must be recorded at one and the same mo-
ment in K; the quantity �l represents the distance in K between these two instanta-
neous positions. As a consequence of the relative nature of simultaneity, the record-
ings of instantaneous positions of the end points, performed simultaneously in the
system K, are not simultaneous in the system K �.
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2.6
The Lorentz transformations

The examples considered in the previous sections demonstrate how the invariance
of the speed of light leads to the relativity of time and space. Now we shall proceed
with the deduction of the equations which provide a complete description of the fun-
damental properties of time and space. These equations are called the Lorentz trans-
formations. They show how the coordinates of any arbitrary event (the Cartesian co-
ordinates of a point where the event has occurred, and the corresponding moment
of time) become transformed after transition from one inertial system to another.

Let axes x, y, z of a system K be parallel to the axes x �, y �, z � of system K�, moving in
the direction x at a speed V relative to K (Figure 2.2). Let the origins O and O� of both
systems coincide at the moment t = t � = 0 on their clocks there. This can always be
achieved by a proper choice of the initial moments of time in both systems.

Let at this moment a flash of light at the origin produce a diverging spherical wave.
Because of the invariance of the speed of light, this wave will be spherical in both reference
frames. Let us express this fact in mathematical terms.

By the moment t in system K the wave front will form a spherical surface of radius
r = ct centered at the origin; this surface is described by the equation

x2 � y2 � z2 � c2 t2 � � �28�

Similarly, we conclude that the space and time coordinates of the expanding wave
front in system K� must also satisfy the equation of the spherical surface centered at
the origin of K� and having radius r � = c t � :

x �2 � y �2 � z �2 � c2 t �2 � � �29�

Equating the left parts of these two equations, we obtain

c2 t2 � x2 � y2 � z2 � c2 t �2 � x �2 � y �2 � z �2 �30�

The expression

���������������������������������������

c2 t2 � x2 � y2 � z2
�

�31�

is called the space–time interval. It generalizes the spatial distance between two
events1). We can see from Equation (30) that the value of this interval is invariant. If
we use identical synchronized clocks, as well as Cartesian coordinates with identical
length units in all systems of reference, then the mathematical form of this expression
(the combination of squares of all four coordinates, each square taken with a definite
sign) will be maintained. This property of the space–time interval is called covariance.

312.6 The Lorentz transformations

1) The “spatial“ part of the interval (31) is –r2,
where r is the length of the vector with coordi-
nates (x, y, z).



Now we must find the relations between the coordinates (t, x, y, z) and (t �, x �, y �, z �),
which will satisfy the requirement that the interval be covariant. First of all, these rela-
tions, that is, functions t (t �, x �, y �, z �), x (t �, x �, y �, z �), y (t �, x �, y �, z �), and z (t �, x �, y �, z �),
have to be linear:

c t � a00 ct � � a01 x � � a02 y � � a03 z �

x � a10 ct � � a11 x � � a12 y � � a13 z �

y � a20 ct � � a21 x � � a22 y � � a23 z �

z � a30 ct � � a31 x � � a32 y � � a33 z �

�
�
�
�
�

(32 a)

For those familiar with the formalism of linear algebra, this can be represented as a
matrix equation:

ct
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�32b�

Equations (32) follow from the fact that only linear relationships between coordi-
nates can ensure the covariance of the expression (31) for the interval. If instead of
Equations (32) we put into expression (31) any other function of the primed coordi-
nates, we will not obtain the sum of squares of these coordinates. Further, the linear
function is the only one whose inverse function is also linear. No other mathematical
relationship possesses this property, which must hold here because the equivalence
of systems K and K� implies that the inverse relationship between (t �, x �, y �, z �) and
(t, x, y, z) has the same mathematical form as the direct one.

These mathematical conditions have a simple physical meaning: the linearity of the
relationship (ct, x, y, z) � (ct �, x �, y �, z �) expresses both the equivalence of all points of
space and moments of time, and the equivalence of inertial systems K and K�.

Thus, the physics of the considered phenomena dictates the linearity of the transfor-
mation between the coordinates of an event observed in different inertial systems. In
our case, when the velocity V is parallel to the x axis, the transverse coordinates must
have the same values in both systems:

y � y � � z � z � �33�

The reason is that the speed of relative motion of the systems K and K� is zero in the
directions y and z. Given Equations (33), the matrix Equation (32 b) simplifies to

c t
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z
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a00 a01 0 0
a10 a11 0 0
0 0 1 0
0 0 0 1
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that is,
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c t � a00 ct � � a01 x �

x � a10 ct � � a11 x �

y � y �

z � z �

�
�
�
�
�

(34 b)

However, the point O � moves at a speed V relative to K, so by the moment t its posi-
tion in K is given by the coordinate x = Vt. Assuming x � = 0 and putting into Equa-
tion (34 b) x = Vt, we have

c t � a00 c t �

V t � a10 c t �

�

(35)

from which there follows

a10

a00
� V

c
�36�

Thus we have the following matrix equation for the transformation of x and t:

c t
x

� �

�
a00 a01

V
c

a00 a11

�




�




c t �

x �

� �

�37�

To find the remaining three unknowns, we substitute the linear Equation (37) into
the equation

c2 t2 � x2 � c2 t �2 � x �2 �38�

obtaining

�a00 ct � � a01 x ��2 � �a00Vt � � a11 x ��2 � �c t ��2 � x �2 �39�

Now we demand that the expression on the left might be reduced to the form c2 t �2 –
x �2. This is only possible if

a2
00 1� V2

c2

� �

�a2
00 �
�2 �V� � 1

a01 � V
c

a11 � 0

a2
01 � a2

11 � �1

�
�
�
�
�
�
�
�
�

(40)

We have a system of three equations for three unknowns. The solution is simple and
gives
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a00 � a11 � � �V� � a01 � V
c

� �V� �41�

Taking into account Equation (36), we finally obtain

c t
x

� �

� � �V�
1

V
c

V
c

1

�

	




�

�




c t �

x �

� �

�42�

or

c t � � �V� c t � � V
c

x �
� �

x � � �V� �x � � V t ��

�
�
�
�
�

(43)

This is the Lorentz transformation. Changing the sign of V, we can obtain the in-
verse transformation:

c t � � � �V� c t� V
c

x

� �

x � � � �V� �x � V t�

�
�
�
�
�

(44)

If we substitute these transformations into Equation (30), it will become an identity,
which means that the expression (31) for the interval is covariant with respect to the
Lorentz transformation. In a special case when the speed V is much smaller than c,
the ratio V/c is negligible, the Lorentz factor approaches 1, and Equation (44) reduces
to Galilean transformations in Equations (6).

2.7
The relativity of simultaneity

Using the Lorentz transformation in its general and explicit form, we can arrive at
the results that are already familiar to us, and in particular the conclusion about rela-
tivity of time. This relativity can not only be observed, but also be described quantita-
tively, with the help of the following imaginary experiment. Let us arrange equally
spaced identical clocks along the x-axis in the system K, assuming the clocks to be
synchronized in K according to the previously described Einstein’s definition of si-
multaneity. Let us place identical clocks at equal distances from each other along the
x � axis of K�. As previously, the expression “identical” means that the clocks of the
system K� are constructed in this system from the materials and under conditions
identical with the materials and conditions in system K; the possibility of such iden-
tical conditions is guaranteed by Einstein’s relativity principle (independence of all
laws of nature from a state of inertial motion.) All clocks of the system K� are also
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synchronized in this system using the light signals according to Einstein’s proce-
dure. In the final result, we have two linear sets of identical clocks synchronized in
their respective systems and moving relative to one another at a speed V.

Let us define the initial moment so that when the origins of both systems coincide
(x = x � = 0), the corresponding local clocks there would read the same time t = t � = 0.
Consider other points of space in system K at this moment. The phrase “at this mo-
ment” means that all the K-clocks placed at these points read the same time t = 0. All
events that occur at this moment form a set that is simultaneous in K. (What we call
“space” is just an infinite and continuous set of different but simultaneous events!)
In system K�, however, these same events do not form a simultaneous set, and thus
the system’s clocks have different readings at different points. To ascertain this fact,
we use the Lorentz transformation. Substituting t = 0 into Equation (43) or (44), we
obtain

t � � �� �V� V
c2

x �45�

i. e. the already familiar result, Equation (14).
We see that the spatially separated events occuring all at one moment t = 0 in K oc-

cur at different moments in K�, depending on location of a K�-clock. Namely, a K�-
clock to the right of the origin of K� (at x � > 0) reads earlier time than does the K�-
clock currently passing by the origin. A clock to the left of the origin (at x � < 0) reads
later time than the K�-clock at the origin. According to Equation (45), the discrepancy
between readings of “moving” and “stationary” clocks is proportional to their dis-
tance from the origin (Fig. 2.6).

In should be emphasized that this conclusion is quite general in its character, since
it does not depend on any assumptions about the nature or internal structure of the
clocks. A clock can be based on some periodic process such as mechanical or electro-
magnetic oscillations, or radioactive decay of some nuclei. It does not matter what
physical phenomenon provides the basis for functioning of a given clock. In any
case the result will be the same. This allows us to ignore the properties of specific
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clocks or physical processes and focus on the properties of time itself. Let us repeat
the essential point of our previous discussion: spatially separated events that are si-
multaneous in one system of reference are generally not simultaneous in another
one. An exception occurs when the given events are taking place in a plane perpendi-
cular to the direction of the systems’ relative motion.

All relativistic phenomena are in fact the consequences of this fundamental property
of time, which itself is due to the existence of the universal speed c. We shall find out
shortly how relativity of time affects the appearance of a process or of an object in
different reference frames.

2.8
A proper length and a proper time

Consider a point (x �, y �, z �) in a system K�. Suppose the clock records the moments
t �1 and t �2 of two successive events at this point. The difference �t � = t �2 – t �1 is the time
interval between these events in the system K�. The time interval between the two
events occuring at the same point is called the proper time. What time between these
two events will be measured in another reference system K?

Using the Lorentz transformation (43), we have for a fixed value of x �1 = x �2 = x � :

c t1 � � �V� c t �1 �
V
c

x �
� �

c t2 � � �V� c t �2 �
V
c

x �
� �

�
�
�
�
�
�
�

(46)

and hence it follows that

�t � t2 � t1 � � �V� �t �2 � t �1� � � �V��t � �47�

Since � (V) is always greater than 1, we find that �t > �t �, that is, in system K, where
the considered events are observed at different points of space, they are separated by a
longer time interval than in system K�. A process localized at one point in some re-
ference frame lasts the shortest when it is observed from this reference frame. Any
change of an object’s location due to its motion is accompanied by slowing down of
its evolution. A moving clock “ticks” slower than a stationary clock by a factor � (V).

Let t �1 and t �2 be the moments of birth and decay of a particle, for instance, a �-meson,
in its proper system. Then the time interval �t � = t �2 – t �1 is its proper lifetime. For the
�-meson this time is about 2�10–6 sec. But in a system K, in which the �-meson is
moving at a speed V, its birth and decay take place at different points, i. e. because of
the particle’s motion, its life is “spread” in space. Accordingly, its life span in the
new system is � (V) times longer than its “proper” lifetime. If V is large enough (e.g.
v � c), then �t will be much greater than �t �, and the particle will cover a vast dis-
tance before its decay. Precisely this phenomenon had been discovered for �-mesons
created in the upper atmosphere (at altitudes of about 100 km) under the influence
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of cosmic rays. The greatest distance a particle can travel in 2�10–6 s is �r = c�t � �
2�10–6 s�3�108m s–1 = 600 m. Therefore, if time were absolute, �-mesons would
decay not far from the point of their creation – practically at the same altitude of
about 100 km above the Earth’s surface. In fact, however, these particles can be de-
tected at sea level, which means that they manage to travel trough the whole thick-
ness of the Earth’s atmosphere during their lifetime. In this fact the relativity of time
is revealed in its full sway: since in the Earth’s reference system the �-meson moves
at a subluminal speed, its lifetime in this system greatly exceeds its “proper” life-
time. This allows it to travel such a long distance.

Now let us consider the consequences of the Lorentz transformation for space.
A rod of length

�x � � x �2 � x �1 �48�

is positioned parallel to the x � axis in system K�. What is the rod’s length in K? As
mentioned previously, in order to measure the length, we have to mark the instanta-
neous coordinates x1 and x2 of the edges of the rod at the same moment t in
system K. The clearing between the marks gives us the wanted length:

�x � x2 � x1 �49�

According to the Lorentz transformations, we have for the moment t

x �1 � � �V� �x1 � V t� � x �2 � � �V� �x2 � V t� �50�

so that

�x � � x �2 � x �1 � � �V� �x2 � x1� � � �V��x �51a�

or

�x � ��1 �V��x � �51b�

in full agreement with Equations (11) and (27). We have obtained an already familiar
result: the length of the rod is the greatest in a system where the rod is at rest (the
proper length). In a system where the rod is moving while being parallel to its velo-
city, its length diminishes by a factor of � (V).

The describedeffect of the length contraction allows one to explain the result of the ex-
periment with atmospheric �-mesons from the viewpoint of a fictitious observer tra-
veling together with these particles. Relative to this observer, the �-mesons are mo-
tionless while the Earth is rushing toward them at a speed V. The observer measures
the lifetime of �-mesons in his system of reference and, naturally, finds it equal to
their proper lifetime 2�10–6 s. In such a small time interval the Earth, even at a speed
close to c, will travel less than 600 m toward him. How can it be then that the �-mesons
born in the upper layers of atmosphere, i. e. about 100 km from the Earth, can be de-
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tected near the Earth’s surface? The explanation lies in the effect of Lorentz contrac-
tion of the Earth in the direction of relative motion. The 100 km length that we have
mentioned is the proper thickness of the atmosphere. In the system of �-mesons mov-
ing towards the Earth, both the Earth and its atmosphere are flattened owing to the
length contraction. The atmosphere’s thickness of 100 km is contracted to about
600 m – just enough to pass by the observer in as small a time as 10–6 s!

Thus, the entire picture of the process becomes intrinsically consistent. Time and
space transform in such a way that even though different inertial observers will mea-
sure different values for these quantities, they all register the same result: a �-meson
is created in the upper layers of the atmosphere and decays at the sea level or even in
the depths of the ocean. The relativity of time and space is consistent with the covar-
iance of dynamic laws.

The described experiment with �-mesons demonstrates the unity of Nature. Our
statement about relativity of time and space was deduced from studies of electromag-
netic interactions. Meanwhile, interactions that lead to decay of �-mesons are not
electromagnetic. They have a different nature and are called weak interactions. But
the time dilation of �-meson decay follows the same Lorentz transformation rules
that we have obtained analyzing the properties of light. Different kinds of interaction
turn out to have common properties.

This suggests that at a deeper level all kinds of interaction will prove to be manifesta-
tions of yet unknown universal interaction just like the electric and magnetic fields,
which initially appeared fundamentally different, have proven to be merely special
cases of the electromagnetic field. Now we have a developed theory that unifies elec-
tromagnetic and weak interactions. According to this theory, both interactions, de-
spite all the differences between them (we have just pointed out that they are differ-
ent!), are manifestations of a more fundamental electro-weak interaction. The theory
had predicted hitherto unknown phenomena, which have now received an experi-
mental confirmation!

In the last years of his life, Einstein tried unsuccessfully to find a theory that would
unify all observable physical phenomena (“the theory of everything“). It is only now,
at a more developed level of our knowledge, that the approaches to the long coveted
“Great Unification” of all known forces appear to be emerging.

Thus Einstein’s principle of relativity that had been postulated on the basis of me-
chanics and electromagnetism about a century ago still remains a powerful guide in
our search for an understanding of the workings of Nature.

2.9
Minkowski’s world

Our study of the relationship between space and time can be made geometrically
clear by using a remarkable construction – so called space–time diagrams. They
were introduced by an outstanding mathematician, Germann Minkowski, who had
been the young Einstein’s instructor in the Zurich Polytechnicum. After Einstein
had published his theory of relativity, Minkowski allegedly said: “To tell the truth,
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I did not expect this from Einstein.” Einstein, on his part, also allegedly, remarked
after the publication of Minkowski’s work: “After the mathematicians had taken care
of my theory, I no longer can understand a bean in it.” He joked, of course. The geo-
metrical approach introduced by Minkowski was an important contribution to the
theory. It was later used by Einstein himself to extend his theory to include gravita-
tion. Now this approach is universally used in both the special and general theories
of relativity.

A space–time diagram is in its essence just a graph of a displacement versus time de-
pendence for a given motion. The basic element in this construction is a concept of an
event. An event is any phenomenon so fleeting and occupying so small a region that it
can be considered as instantaneous and point-like. It therefore can be characterized by
one moment of time t and three spatial coordinates (x, y, z). Hence to any possible
event there corresponds a set of four numbers (t, x, y, z), and vice versa; each set of
four numbers (t, x, y, z) specifies an event in space and time. For instance, a set of
numbers (43 s, 2 m, –54.6 m, 0.33 m) labels an event that happened at 43 s a.m. today,
at a point with coordinates 2 m, –54.6 m, and 0.33 m along the x, y, and z directions re-
spectively. All possible events that have ever happened, are happening, and are going
to happen, form a four-dimensional set which is a combination of three spatial and
one temporal dimensions. This set was called Minkowski’s world [15, 16].

In order for all four coordinates of Minkowski’s world to have common dimensions,
it is convenient to use ct rather than t as a time coordinate. This means that instead
of measuring time in seconds, we measure it in equivalent units of length – so-called
light seconds: 1 light second is the distance traveled by light in 1 second. Accord-
ingly, we might express spatial distances in these new units of length. We thus would
obtain one common unit for all four dimensions of our world.

As a first illustration of a space–time diagram, consider a light signal moving in the
positive x direction: x = ct (Fig. 2.7). This motion is represented graphically by a
straight line OS which is a bisector of the angle between the axes x and ct (it is conve-
nient to direct the ct axis upwards). The light signal moving in the opposite direction
(x = –ct) will be represented graphically by a straight line OS�. We can consider either
of the two lines as a trajectory of the light pulse in a plane (x, ct). We call such a tra-
jectory the world line. Thus, OS is a world line of a light signal moving in the positive
x direction, and OS� is the world line of a signal moving in the negative x direction.
Now, what is it good for?

Consider two events: the first is the emission of a light pulse from a laser gun at a
point (x1, y1, z1) at a moment t1, and the second is the absorption of this signal by a
detector at point x2, y2, z2 at a moment t2. The distance between the gun and the de-
tector is

r12 �
�����������������������������������������������������������������������

�x2 � x1�2 � �y2 � y1�2 � �z2 � z1�2
�

� c �t2 � t1� �52�

We can write the relation (52) between the distance r12 and time t12 � t2 – t1 in the
form

c2 �t2 � t1�2 � �x2 � x1�2 � �y2 � y1�2 � �z2 � z1�2 � 0 �53�
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Denote the expression in the left-hand side of this equation as s2
12. Then the equation

for the light pulse can be written as

s2
12 � 0 �54�

The quantity s12 is called the four-dimensional interval (or just the interval) between
events 1 and 2 [recall Eq. (31)]. We see that the interval for a light signal in vacuum
is equal to zero.

Suppose that the same process is being observed from another inertial reference
frame K�. The space and time coordinates for the same two events (emission and ab-
sorption of the signal) in system K� will be (ct �1, x �1, y �1, z �1) and (ct �2, x �2, y �2, z �2), respec-
tively. The distance r �12 between the laser gun and the detector and the time interval
t �12 � t �2 – t �1 between the emission and absorption of the signal will also be different.
However, because of the invariance of the speed of light there must be r �12/t �12 = c, or
c2 (t �12)2 – (r �12)2 = 0. Therefore, if an observer in system K� also considers the quantity
(s �12)2 � c2 (t �12)2 – (r �12)2, he can write

�s �12�2 � s2
12 � 0 �55�

The zero value for a light signal’s interval turns out to be a universal property inde-
pendent of reference frame.

Thus far, the invariance of the four-dimensional interval under four-dimensional ro-
tations (Lorentz transformations) was established in Equations (54) and (55) only for
the light intervals as a direct consequence of the invariance of the speed of light in a
vacuum. This result, however, turns out to be much more general. Consider two ar-
bitrary events (t1, x1, y1, z1) and (t2, x2, y2, z2), that are not necessarily connected by
the light signal (do not lie on the light’s world line), and introduce the corresponding
interval

s2
12 � c2 �t2 � t1�2 � �x2 � x1�2 � �y2 � y1�2 � �z2 � z1�2 �56�
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Applying the Lorentz transformations (43), the reader can prove that this interval
also turns out to be independent of the choice of the reference frame:

s12 � s �12 �57�

Thus, our geometrical interpretation is not limited to the processes involving the
propagation of light, but holds for all possible processes. It reflects fundamental phy-
sical properties of time and space as a whole.

Now, let us look at this result from a geometrical viewpoint. In a three-dimensional
space, the distance between two points (the length of the segment connecting them)
does not depend on the orientation of axes (x, y, z). When we switch to another system of
axes (x �, y �, z �), each point is assigned a new set of coordinates. The new coordinates of a
point are linear combinations of the old ones with the coefficients depending on the
angles between the old and new axes; however, the length of a segment does not change.

The behavior of the four-dimensional interval displays a striking similarity to this
property of the segment: as we switch to another reference system K�, the new coor-
dinates of an event are expressed in terms of the old ones by linear equations (Lor-
entz transformations), whose coefficients depend on the relative velocity between the
two systems; however, the interval itself does not change. We can therefore consider
the interval s12 as the “distance” between corresponding points in four-dimensional
space; the Lorentz transformations from this viewpoint can be thought of as a rota-
tion from one four-dimensional system of axes to another.

However, the analogy found with ordinary three-dimensional space is not complete.
Unlike the distances in ordinary space, the squares of the temporal and spatial coordi-
nates in the interval (56) enter with the opposite signs. This fact is a manifestation of the
fundamental physical difference between time and space. In order to emphasize this
difference, their combination is sometimes called (3 + 1)- rather than four-dimensional
space. It is a four-dimensional space where one dimension is physically different from
the other three. This leads to a peculiar property that the value of s2

12, unlike the square
of the ordinary distance, can be negative or equal to zero even if the interval connects
two different events. As a result, for any chosen point (that is an event t1, r1) in Minkovs-
ky’s world, the set of all other events can be divided into three different regions:

1. The region where

s2
12 � 0 �58�

that is c2 (t2 – t1)2 > r2
12 (the temporal component of the interval is greater than the

spatial component). We call such intervals the time-like intervals. In particular,
when r1 = r2 that is r12 = 0 (both events occur in the same place), the four-dimen-
sional interval reduces to just the time interval between the events (a proper
time!), multiplied by c.

2. The region where

s2
12 � 0 � �59�
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that is c2 (t2 – t1)2 < r2
12 (the spatial component of the interval is greater than the

temporal component). We call such intervals space-like. In particular, when t1 = t2
(the two events are simultaneous), the interval is determined only by the distance
between the events. We see from Equations (59) and (56) that the spatial “contri-
bution” to s2

12 is the negative square of the distance r12.
3. The region where

s2
12 � 0 �60�

(the temporal and spatial components in the interval have equal weights). We call
such intervals the zero- or else isotropic intervals. The term “zero” is self-evident
from the definition in Equation (60). The term “isotropic” stems from ordinary
three-dimensional geometry, where a vector r12 = 0 reduces to a single point and
therefore cannot be characterized by any specific direction. In this respect it is iso-
tropic. The reader must be careful about this part of the analogy, because a four-di-
mensional zero-interval does not necessarily reduce to a single point! It can con-
nect two different points. These points represent the events that can be linked to
one another by a light signal. The zero length of this four-dimensional interval re-
flects the fact that the squares of its temporal and spatial parts, being equal in
magnitude, enter the interval with the opposite signs.

Because of the invariance of the interval, its belonging to one of the three different
types has an absolute character, that is, it does not depend on the choice of the refer-
ence frame.

Juxtaposition of physical events and points of the four-dimensional space–time al-
lows us to visualize the relationships between different events by using space–time
diagrams. It is true that we cannot adequately image all four dimensions of Min-
kowski’s world on a sheet of paper having only two dimensions. We will therefore
plot on the graph only one spatial dimension x and the time dimension ct. Physi-
cally, this means that we consider only the set of events that happen on one straight
line (the x-axis). Looking at it slightly differently, we may say that we consider the
history of this axis.

Pick up one of the events in this history (call it event O) as a reference event. It will
serve as an origin for measuring time ct and the spatial coordinate x. Draw the ct-
axis through this point up perpendicularly to the x-axis (Fig. 2.7). Let us take the di-
rections indicated by arrows in Figure 2.7 to be positive. Now, all the events that hap-
pen at the “origin” of the line x after the event O, are represented by the points on
the ct-axis above point O; all events preceding the event O belong to the part of the
ct-axis below this point. We say that the ct-axis forms the world line of the point x = 0
(that is, a set of all events successively happening at this point). On the other hand,
all the points of the x-axis at the moment t = 0 are represented by the x-axis itself.
We may call it a world line of all events on x that are simultaneous with the event O.
Alternatively, we may call it a world line of a hypothetical superluminal particle that
traces out all the line x at one moment ct = 0 (it must therefore move with an infinite
speed).
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If we attempt to take into the picture the y-axis (which is perpendicular to both ct
and x), then the world lines of all the photons moving in the xy plane and passing
through the origin form generatrices of a conical surface with the open angle 90�
(Fig. 2.8). This surface had been called the light cone. Because there is also the z-axis,
the (ct, x, y) light cone forms a sort of “subsurface” of the four-dimensional Min-
kowski’s world. If one wants to include the z direction to make the complete descrip-
tion, one has to consider all the photons moving in three-dimensional space (x, y, z)
and passing through the origin at the zero moment. Their world lines will form a
three-dimensional conical surface in four-dimensional space–time. Mathematicians
call this type of surface a “hyper-surface“. We can try somehow to imagine it, but we
cannot model or depict it in real space.

From the geometrical viewpoint, any world line in space–time is just a graph of mo-
tion of some particle or process. It forms a trajectory in space–time. We should not
confuse it with a purely spatial trajectory of the given motion. For example, the
space–time trajectory (the world line) of a stationary particle at point x = 0 is the ct-
axis. The purely spatial trajectory of the same point is the point x = 0 itself. The spa-
tial trajectory is in this case reduced to a point in space (because the particle is sta-
tionary!) The spatial trajectories of the photons moving through the origin in the
plane xy all lie in this plane, whereas their world lines all lie on the surface of the
light cone in Figure 2.8.

Let us now plot on our diagram all possible types of intervals connecting the event O
with other events. We will then see that the three types of intervals indicated above
fill out three different regions of Minkovski’s space-time.

Indeed, all time-like intervals [of the type in Eq. (58)] fall inside the light cone. The
space-like intervals [of the type in Eq. (59)] turn out to lie outside the light cone.
And, finally, all zero intervals [of the type in Eq. (60)] lie along generatrices of the
light cone itself. Thus, three different types of intervals analytically distinguished by
the criteria (58)–(60) correspond to their locations in geometrically different do-
mains. This geometrical difference, in turn, corresponds to fundamental physical
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difference between them. We can see it with full clarity if we write down Equation
(56) for an interval in terms of the speed of corresponding object or process:

v � 	r2 � r1	
t2 � t1

� r12

t2 � t1
�61�

We will have

s2
12 � c2 �t2 � t1�2 � r2

12 � c2 �t2 � t1�2 1� v2

c2

� �

� c2 �t2 � t1�2 ��2 �v� �62�

It follows that for the time-like intervals �2 (v) > 0 and the speed v < c; for the zero in-
tervals � (v) = 	 and v = c; and finally, for space-like intervals, �2 (v) < 0, which corre-
sponds to v > c. The intervals of the first two types lie inside or on the surface of the
light cone in Figure 2.8. They connect the events which can be either the cause or
the effect of the event O. In contrast, the intervals of the third type lie outside the
light cone; they may connect events only by a process characterized by superluminal
speed v > c. As we will show later, this type of process cannot be used for signaling;
therefore, there is no causal connection between corresponding events. The same
event outside the light cone with the vertex at O can be observed as occurring earlier
or later than the event O, depending on a chosen reference frame. In particular, we
can find a system of reference in which the event occurs simultaneously with O. The
concept “earlier–later–simultaneous” is relative for such pairs of events.

We can illustrate this relativity figuratively using Minkovski’s diagrams, if we depict
in one graph the coordinate axes for two different inertial systems K and K�. We have
already noticed that the time axis of an inertial system is coincident with its origin’s
world line. Let now a real particle move uniformly along x with a speed v and pass
the point x = 0 at the moment t = 0, so that

x � vt � v
c

 c t �63�

The particle is stationary in a reference frame K� co-moving together with it. If the
particle is at the origin of this reference frame, Equation (63) describes the world
line of the origin (Fig. 2.9). On the other hand, we have found that the world line of
an origin is the time axis of the associated reference frame. Thus, the time axis c t � of
system K� is just the world line of its origin traced out in system K. As is seen from
Figure 2.9, the axis c t � makes with c t an angle

	 � arctan
v
c

�64�

For positive v this line is in the first and third quadrants of the (c t, x) plane. For a par-
ticle moving in the negative x direction we have v < 0, and the corresponding world
line passes in the second and fourth quadrants of the plane (c t, x). If this particle is
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a photon, then v = c, and 	 = 
45�. We see again that the world lines of photons
moving in the positive or negative x direction form mutually perpendicular bisectors
of the angles between the coordinate axes.

Since the world line of the origin O� represents the time axis of the corresponding
system K�, all the events happening at O� after the moment t � = 0 are represented by
the points on c t � above the origin; all the events that occur there before this moment
are on the lower part of line c t �.

Let us now turn to the x �-axis. How is it represented in our diagram? Earlier, you re-
member, we have defined a spatial coordinate axis as the set of all events on this axis
that are simultaneous with the event O. Because now we are interested in the x �-axis
of moving system K�, we must consider the events on this axis that are simultaneous
with the event O by clocks of system K �. All these events are characterized by one mo-
ment t � = 0 in readings of all K�-clocks. Using Equations (44), we find that in K all
these events occur at different moments depending on their coordinate x:

c t � v
c

x �65�

However, this is just the equation for the line passing through the origin and mak-
ing with the x-axis the same angle as in Equation (64). This line represents the x �-
axis of system K� from the viewpoint of system K.

We see that the axes c t � and x � turn out to have been rotated through the same angle
relative to c t and x respectively (Fig. 2.9). However, in contrast with the usual geo-
metry of purely spatial rotations, the rotations here are in the opposite senses (this is
yet another manifestation of the physical difference between space and time). As a
result, the coordinate system (c t �, x �) seems skewed (deformed) from the viewpoint
of system K [in exactly the same way, the system (x, c t) would look distorted from
the viewpoint of system K�]. Precisely because of such a “deformation“, the photon’s
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world line remains, as it should, the bisector of the angle between the c t �- and x �-
axes, that is, the speed of light in K� is also equal to c. But now the photon’s world
line in Figure 2.9 makes the angle 
 = 45� – 	 < 45� with the axes c t �, x �. This is due
to the fact that these axes are plotted in the system K, which is “alien” for them. At
v � c the angle 	 approaches 45�, and 
 approaches zero, that is, the axes c t � and x �
approach the photon’s world line; however, the c t �-axis always remains inside,
whereas the x �-axis remains outside the light cone.

If we now consider an event P, then its coordinates (c tP, xP) in K are the normal pro-
jections of point P on the axes c t, x, and the coordinates (c t �P, x �P) are the oblique pro-
jections of this point on the axes c t �, x � (Fig. 2.10).

We can now consider the relation “earlier–later” between different events graphically,
from the viewpoint of the systems K and K�. Let, for example, the event P lie inside
the light cone with the vertex at O. This means that the events O and P admit a cau-
sal connection. If c tP > 0 (P lies in the upper fold of the light cone), then event P can
result as an effect (the consequence) of event O. Projecting point P onto the c t �-axis,
we see that at any possible tilt of this axis, projection c t �P lies in the upper semi-
plane, that is, c t �P > 0. The event P occurs after event O for all possible observers. We
say that it is in absolute future with respect to O.

If the point P lies in the lower fold of the light cone, then event P can be the cause of
the event O and accordingly it will be observed before O in any reference frame. In
this case it is in absolute past with respect to O.

Consider now another point Q lying outside the light cone (Fig. 2.11). Let this point
lie above the x-axis, that is, its projection c tQ > 0. Physically, it means that Q occurs
later than O in the inertial system K. But the projection c t �Q of the very same point
onto the c t � axis can be negative (this will be the case for any system with the x �-
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axis passing above Q, as is seen from Fig. 2.11). Physically it means that in corre-
sponding inertial system K� the event Q occurs earlier than O. The relation earlier–
later is not invariant for pairs of events like O and Q. For such events one can al-
ways find a reference frame for which their time ordering is switched to the oppo-
site. Also there exists such a system for which both events of the pair are simulta-
neous (c tQ = 0). In this system the interval between the events is determined en-
tirely by their spatial separation r �OQ. Therefore, all the events outside the light
cone can be called absolutely remote with respect to the event O. They are connected
with O by space-like intervals.

It is easy to see that any communications between the event O and an event outside
the light cone would involve signals moving faster than light in a vacuum. We will
discuss later the relation between such signals and a fundamental physical principle
of causality.

We conclude this section by demonstrating how the concept of interval can be used
to derive the equation for proper time. Consider two successive events A and B on a
stationary body K. The proper time between the events is the difference �t = tB – tA
between the moments tA and tB of these events read by a clock K. Since both events
occur at the same place, we have xAB = xB – xA = 0, and the interval between the
events in this reference frame is reduced to s2

AB = c2 (� t)2. In another reference frame
K� moving with speed V along the x-axis, the body K moves in the opposite direction
with the same speed V. The clocks of system K� read the moments t �A and t �B for the
events A and B, respectively, so that the time interval between the events is
� t � = t �B – t �A. In system K� these events are spatially separated by the distance
x � = V� t �. The four-dimensional interval between the events expressed in terms of
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the coordinates of system K� is (s �AB)2 = c2 (� t �)2 – V2 (� t �)2. Because of the invariance
of the interval we have c2 (� t)2 = (c2 – V2)(� t �)2 or

� t � ��1 �V�� t � �66�

This is the result in Equation (18) obtained in different way in Section 2.5.

2.10
What is horizontal?

Mister O’Bryen is a very rich man. When back on Earth from his space missions, he
likes to travel in his own jet ship with a swimming pool in it. Each time when the
pool is being filled with fresh sea water, Mr. O’Bryen likes to watch the water rising.
Knowing some physics, he never misses an opportunity to note that the surface of
the rising water remains horizontal in the uniformly moving ship as it does when
the ship is anchored in a harbor. “What a sound manifestation of the principle of re-
lativity,” Mr. O’Bryen murmurs. “A ship’s resident cannot tell whether the ship is
moving or anchored by observing the rising water in the ship’s tank.“

At this very time an observer on the sea shore also watches the same process, and no-
tices an unusual phenomenon: the surface of the rising water in the moving ship is
tilted to the horizon, so that the water at the rear edge of the pool is higher than that
at the front edge (Fig 2.12). The faster the ship’s motion, the steeper is the tilt. It
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Fig. 2.12 The rising water in a moving
tank as observed from the shore. The tilt
occurs because the events A and B that
are simultaneous in the shore’s refer-
ence frame are not simultaneous in the

ship. Event B occurs later in the ship’s
history than event A. Accordingly, the
water at B is higher than it is at A. The
line AB as observed from the shore now
is tilted. The tilt is highly exaggerated.



even occurs to the observer (who also happens to be a good engineer) that this phe-
nomenon could be used for measuring the ship’s speed. “What a sound manifesta-
tion of the relativity of time,” thinks the engineer. “Two simultaneous events sepa-
rated by a distance x along the ship’s motion are not simultaneous in the moving
ship. They are separated by a time t � = � (u) ux/c2, if u is the ship’s speed. The points
A and B that I mark now at the front and the rear edges of the water surface are
marked with the different moments of time by the ship’s synchronized clocks. Now
the ship’s clock at A lags behind the ship’s clock at B by the amount t �. If the water in
the ship’s tank rises at a rate v � = dy �/dt � by the ship’s clock, its level at B must be
higher than at A by the amount y = y � = v � t �, since it had more time to rise. Using
the above expression for t �, one would obtain for y

y � � �u� uv �

c2 x � �2 �u� uv
c2 x �67�

where v is the rate of the water rise in the shore’s reference frame. Thus the water
surface observed by me must be inclined by the angle 
:

tan 
 � y
x
� �2 �u� uv

c2
� � �u� uv �

c2
�68�

If I know v �, the engineer concludes, then measuring 
 (provided that my instru-
ments are sensitive enough) will give me a quantitative measure of the ship’s velocity
u through Equation (68).

Now, let us read this equation. It says that there is no tilt when u = 0. This makes
sense, doesn’t it? When the ship is anchored, the rising water surface in its tank is
horizontal at any moment for either Mr. O’Bryen or the engineer. If v � = 0 (the water
is still) there is again no tilt, which also makes sense. The surface of still water is hor-
izontal for both observers no matter how fast the ship moves so long as the motion
remains uniform. It is only when the ship and the water in its tank are both moving
that the effect is being observed by the engineer. When v � < 0 (the water in the tank
is sinking), the sign of tan
 is negative, which means that the water level as observed
by the engineer is higher at the front edge than at the rear (Fig. 2.12). Thus the sur-
face of the same pool of water is horizontal in one inertial reference frame (the
ship), and it may be inclined in another one (e.g. the sea shore). The property of
being horizontal turns out to be relative even for the two observers in the same local-
ity, because of relativity of time.

Some readers may be tempted to think that the phenomenon is of the same nature
as one observed by Alice and Tom (recall the experiment with the aquarium in the
Introduction). However, the water tilt in that experiment was caused exclusively by
the acceleration, not the velocity. And this makes all the difference. The water tilt in
the “aquarium effect” is determined by the ratio a/g where a is the acceleration of
Tom’s reference frame, and g is the acceleration due to gravity. The effect is easy to
observe since the acceleration a comparable to g is easy to achieve. And it was ob-
served for even a still water (v � = 0!) by both Alice and Tom. It is therefore of the ef-
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fects that we would call absolute. It reveals the acceleration of a system to an insider.
In contrast, the “pool effect” is observed only by the engineer when the water rises
or sinks (v ��0!) and the ship moves without acceleration at a speed u. We have no g
as a scaling constant here. Instead, a new constant, c, enters the picture. The water
surface tilt is in this case determined by two ratios, u/c and v �/c. In the real condi-
tions both of them are small, and accordingly the surface tilt 
 would be ridiculously
small. For example, if Mr. O’Bryen’s ship rushes at a speed of 360 km h–1 (like a
small aeroplane!) and the water in his tank rises at a rate of 1 m s–1, Equation (68)
gives 
�1.1�10–13! We see that we have badly overestimated the precision of the
engineer’s measurements in our thought experiment. However, the equations that
we use are correct. For other conditions they can give, as we shall see further, notice-
able values of 
. Generally, they describe a new relativistic effect that is seen and re-
gistered differently in different inertial frames.

Now, suppose that our inertial observers, Mr. O’Bryen and the engineer, have both
focused on the motion of the same element of the water surface in the pool. As the
water in the pool rises, the surface element moves vertically as seen by Mr.
O’Bryen, and sideways as seen by the engineer (Fig. 2.13). The engineer denotes
the velocity of the surface element as V; he measures u for its horizontal compo-
nent and v = v �/� (u) for the vertical component. So the velocity vector makes an an-
gle 	 with the vertical, where

tan 	 � u
v
� u

v �
� �u� �69�

Comparison with Equation (68) shows that 	�
, that is, the direction of V is not
generally perpendicular to the surface element. Well, we have already become psy-
chologically prepared for various manifestations of relativity, and here is just another
one: the water surface moves perpendicularly to itself as seen by Mr. O’Bryen, and
not perpendicularly to itself as observed by the engineer.

Is there at least a small island of absoluteness in this ocean of relativity? Does there ex-
ist such a speed of water rise in the pool at which the water surface would move per-
pendicularly to itself in all inertial reference frames? And if it does,what is its value?

Let us introduce a unit vector n perpendicular to the water surface in the engineer’s
reference frame. By definition, vector n makes an angle 
 with the vertical. So the
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of the surface element and its
velocity. (a) In the ship’s refer-
ence frame. (b) In the shore’s
reference frame.



mathematical condition for our question and the sought for value of v is V ||n , that
is, tan
 = tan	, or

u
v
� �2 �u� uv

c2 �70�

Since v � = � (u) v, the last equation is satisfied for v � = c. The water in Mr. O’Bryen’s
tank should rise or sink with the speed of light!

Let us for a while set aside the question of whether the water can do such a feat; let
us first focus on the result itself. We know already that the value of c is an invariant
of Lorentz transformations – it is absolute. We therefore suspect that in this case the
magnitude of V, the surface element’s speed as measured by the engineer, must also
remain equal to c. Let us check this. For v � = c the transverse component of V mea-
sured by the engineer will be v = v ��–1 (u) = c�–1 (u). The magnitude of V is therefore

V �
���������������

v2 � u2
�

�
����������������������

c2 ��2 � u2
�

� c �71�

A remarkable result! If the water in the tank could rise (or sink) with the speed of light
in a vacuum, then any shore-based observer would also see it rising or sinking with
the same speed in the direction perpendicular to its surface. The surface’s property of
moving perpendicular to itself becomes absolute when it acquires the absolute speed
– that of light in a vacuum! But since the surface is now tilted, the direction of its mo-
tion must also be tilted by the same angle with respect to the vertical direction.

Now, if the reader compares the above conclusion with that shown in Fig. 2.4 from a
quite different viewpoint, he will find them identical. No wonder! Once we have ad-
mitted the possibility of the water surface moving with the speed of light, we have
naturally arrived at the result shown in Fig. 2.4 for a light wave.

The water cannot, of course, move with the speed c, but it can, in principle, move
with a speed arbitrarily close to c. That would definitely be an utterly exotic situation.
But the equations we used describe the same effect for any moving surface. We can
therefore, first, substitute the water surface with a wave front of any nature. It may
be the rising shock wave produced by hitting the bottom of the tank, or the waves
from a pebble thrown on to a still water surface. It may be a light wave in any trans-
parent medium. It may also be a shock wave propagating in an ultra-dense medium,
say the interior of a neutron star. Second, we may consider a reference frame moving
much faster than Mr. O’Bryen’s jet ship. In the last two cases the values of 
 and 	
may be measurable. Consider, for example, the light wave rising from a bulb in the
water tank of a spaceship from a “Star Trek” serial. The spaceship moves horizontally
with speed 300 km s–1 (which is real for an advanced technology, and very slow by a
science fiction standard). The speed of light in water is about 1.33 times less than c.
For these conditions, Equations (68) and (69) give 
 = 7.5�10–4 and 	 = 1.33�10–3,
respectively. The difference in values for 
 and 	 shows that vector V does not make a
right-angle with the wave surface. This result illustrates our previous conclusion: the
surface element or the element of the wave front moving perpendicular to itself in
one reference frame does not generally move perpendicularly to itself in another in-
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ertial reference frame but for one exception: when an element moves with the speed
of light in a vacuum.

We can summarize these results in the following way. Generally, the wave front in a
moving medium is not necessarily perpendicular to the wave velocity V. Particularly,
waves from a pebble thrown into Mr. O’Bryen’s pool are circular as seen by Mr.
O’Bryen, and non-circular for the engineer. The deviation from concentricity will be
very small for these waves. However, for the case of the light waves diverging from a
bulb in a water tank inside a spaceship the difference would be noticeable for the
two different inertial observers. Again, the waves would be spherical for Mr. O’Bryen
and non-spherical for the engineer, and this non-sphericity could be measured. Mr.
O’Bryen interprets what he sees as yet another manifestation of the principle of rela-
tivity: he cannot tell whether his ship is at rest or on the move by observing waves in
his pool. The engineer interpreted his observations as a kinematic effect: he sees the
very same waves diverging non-spherically because the medium supporting the
waves (water in the pool) is itself moving with the ship. Naturally, this motion
singles out a special direction among all the others – the direction of the ship’s velo-
city, that of u. As a result, some physical properties of such moving medium (e.g. its
ability to transmit waves) depend on the angle between u and the wave vector k. We
call such a medium non-isotropic (or anisotropic). Our conclusion is that any isotro-
pic medium, when moving, is equivalent to a fictitious stationary anisotropic me-
dium. In this respect, it can resemble a certain type of crystals, whose physical prop-
erties are different for different directions, or else it resembles a fluid at rest in an ex-
ternal electric or magnetic field.

However, if a disturbance in a fluid can propagate, as light in a vacuum, with the
speed c, this propagation, according to our equations, will not be affected by transla-
tional motion of the fluid. Whether this fluid moves or not becomes immaterial,
since the motion of this medium will not be revealed in observations. Why, then,
talk about the medium at all? According to all experiments, a disturbance propagat-
ing with v � = c can in all respects be considered as propagating just in a vacuum.
Stop talking of the medium! It was just what happened to ether about 100 years ago.
Since 1905 people have almost never mentioned ether. They refer to vacuum when
talking about light propagation in the intergalactic space or in a laboratory container
with all the air pumped out. It is true that, as was found out later, vacuum is not an
absolute emptiness, and all the particles, photons included, can be described as ex-
cited states of vacuum. But this is a different story. And no matter what the revealed
complexity of vacuum may be, when it comes to light’s motion, its description does
not require any carrier necessary to support the light waves. In this respect (as we
can see things today), light exists and propagates in its own right!

Well, what happens if we apply our equations to light in a vacuum? Consider Mr.
O’Bryen during one of his space missions trying to signal with a laser pulse from
his spaceship to the engineer. The pulse is fired in the direction perpendicular to the
ship’s motion (Fig. 2.14). But the engineer sees the pulse propagating in a slightly
different direction that makes an angle 	 with the perpendicular line. Accordingly,
he observes the wave front of the pulse tilted through the same angle (since 
 = 	 in
this case). He finds the angle by putting in the equations v � = c:
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tan 
 � tan 	 � u
c
� �u� �72�

He accordingly has to tilt his detector to achieve better acceptance of the pulse.
Now, substitute the spaceship with a distant star moving in the direction transverse

to the line connecting it with the engineer (or an astronomer, for that matter).
Then we will get the same result for the light from that star! The astronomer will
have to tilt his telescope to achieve a better image of the star (or the star’s image
will be shifted slightly from the center of the vision field). There is a subtle point
here, however: in the case of light the astronomer cannot tell relative to what does
he have to tilt his telescope, since the actual line of sight to the star is his only re-
ference direction. The effect can only be observed if the astronomer’s reference
frame changes the direction of its motion. With the position of the telescope rigidly
fixed in this reference frame, the change in its motion will cause the star’s image
to shift slightly with time. This shift can be found by comparing the star’s photo-
graphs taken at different times. But precisely such a situation is realized on Earth,
which changes the direction of its translational motion due to its orbiting around
the Sun. Such motion must be manifest in periodic (with a period of 1 year) circu-
lar or elliptic motion of a star’s image in the photographic films obtained with a
fixed telescope. This phenomenon was noticed long ago by astronomers and is
known as the aberration of light [17]. But what is less well known is this: while the

532.10 What is horizontal?

Fig. 2.14 Laser signaling from the spaceship to the engineer.
(a) Observed by Mr. O’Bryen. (b) Observed by the engineer.



deviation of the light’s velocity vector from the perpendicular line can be easily ex-
plained in terms of non-relativistic addition of velocities, the corresponding tilt of
the wave front, which remains perpendicular to the velocity vector, is a purely relati-
vistic effect. Actually, it is the manifestation of relativity of time, discussed by the engi-
neer at the beginning of this section.
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3
The Velocities’ Play

3.1
The addition of collinear velocities

We now have sufficient background to establish a universal law of velocity transfor-
mation. It would relate the velocities of an object measured in two different refer-
ence frames.

The most general expression for the result of superposition of two motions (along
the same line) with velocities V and v has the form

v � � �V� v �� �V � v �� �1�

The function � (V, v �) must be such that for V � c, v � � c, the value of � (V, v �) ap-
proaches 1. On the other hand, the speed of light added with the speed V must again
give c in the result. In other words, for v � = c there must be

v � � �V� c� �V � c� � c �2�

It follows that

� �V� c� � c
V � c

� 1

1� V
c

�3a�

The symmetry with regard to the interchange between V and v � demands that

� �c� v �� � 1

1� v �

c

�3b�

To satisfy both requirements, � (V, v �) must have the form

� �V� v �� � 1

1� V v �

c2

�4�
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Thus, the result of addition of two collinear velocities, which complies with the pos-
tulate that c is constant, is given by

v � V � v �

1� V v �

c2

�5�

Note that in deriving Equation (5) we did not use the Lorentz transformation expli-
citly. Our reasoning was based only upon the general requirement that the expres-
sion has to be symmetrical with regard to the velocities being added and that if one
of the velocities equals c, the result of their addition must also be equal to c. How-
ever, as we have seen in Chapter 1, this latter requirement leads immediately to the
Lorentz transformation for spatial and time coordinates. That is why the use of this
condition in the derivation of Equation (5) is equivalent to an implicit use of the
transformation itself.

Let us derive Equation (5) in another way, where the Lorentz transformation is used
explicitly. For that purpose, we will take the correct Equation (9) in Section 2.5 and
express the length �x in the system K in terms of the proper length:

�x � ��1 �V��x � �6�

and the time of the object’s motion, in terms of the corresponding quantities �x �
and �t �, according to Equation (43) in Section 2.6:

�t � � �V� �t � � V
c2 �x �

� �

�7�

The reader should remember that �x here is the length in K of a moving segment
whose ends’ coordinates are being measured simultaneously, and �t is the time in K
corresponding to the motion of some point along this segment. The beginning and
the end of this motion are being observed both in K an K� at different points in space,
namely at the beginning and the end of the segment �x. This is why both �t � and �x �
are present in Equation (7) for �t. The time �t � in Equation (7) is not a proper time of
some process in K�, since the point in question is moving in both reference frames.

Finally, we compose the ratio

�x
�t
� ��2 �V� �x �

�t � � V
c2 �x �

�8�

and add the resulting expression to V:

v � V � �x
�t
� V � 1� V2

c2

� �

v �

1� V v �

c2

� V � v �

1� V v �

c2

�9�

The result we obtained is in agreement with Equation (5).
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3.2
The addition of arbitrarily directed velocities

The Lorentz transformation also allows us to obtain the general law of addition of ve-
locities with arbitrary directions.

Suppose again that the system K� is moving relative to K at a speed V along the x-
axis. Consider an object in a state of relative motion at a velocity v � with respect to K�.
The nature of this object has no importance whatsoever: it can be a massive particle,
a photon, or just a mathematical point with a given law of motion. The components
of velocity v � are

v �x �
dx �

dt �
� v �y �

dy �

dt �
� v �z �

dz �

dt �
�10�

Now, what is the velocity of the same object as observed from the system K? The
answer follows almost automatically from the Lorentz transformation. According to
the definition of velocity, one has in system K

vx � dx
dt
� vy � dy

dt
� vz � dz

dt
�11�

Here the infinitely small time interval dt and corresponding increments of coordi-
nates dx, dy, dz, separate two events: the passing of the object through two near
points. For the observer in K� the same events are separated by increments dt �, dx �,
dy �, dz �. Now all we have to do is to express the increments in K in terms of the cor-
responding increments in K�. Taking differential of the Lorentz transformation in
Equation (43) in Section 2.6, we have

dx � � �V� �dx � � V dt �� � dy � dy � � dz � dz � � dt � � �V� dt � � V
c2 dx �

� �

�12�

It follows immediately that the sought-for components of velocity are

vx � dx
dt
� dx � � V dt �

dt � � V
c2 dx �

� V � v �x

1� V v �x
c2

vy �
v �y

� �V� 1� V v �x
c2

� � � vz � v �z

� �V� 1� V v �x
c2

� �

�
�
�
�
�
�
�
�
�

(13)

We have expressed the velocity components in the stationary system in terms of the
velocity components in the moving system.

If we regard K� as stationary and K as moving, we can obtain the reciprocal transfor-
mation by just swapping primed and unprimed components and changing the sign
of the relative velocity:
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v �x �
V � vx

1� V vx

c2

� v �y �
vy

� �V� 1� V vx

c2

� � � v �z �
vz

� �V� 1� V vx

c2

� � �14�

The reader can obtain the same result by solving Equation (13) for the primed com-
ponents of the velocity v �.

We have thus arrived at the sought-for general equations for velocity transformation,
which describe both the simple addition of slow (relative to light) motions and the
“weird” behavior of light.

3.3
The velocities’ play

Let us now “play” a little with the derived equations in order to see how they work in
different situations.

First, we want to make sure that for the motions slow with respect to light our equa-
tions reduce to simple addition of velocities. Setting in Equation (14) V � c, v �x � c,
we obtain

vx � V � v �x � vy � v �y � vz � v �z �15�

The first of these relationships is equivalent to Equation (7) in Section 2.2. The
theory of relativity has not overturned the previous theory, it has only revealed
its approximate character and clearly charted the domain of its applicability. One
only has to keep in mind that the borders of this domain are themselves relative
– they depend on the accuracy of our measurements. On increasing this accu-
racy, we can in principle notice the approximate character of the relations (15)
even at very small velocities. We will discuss one such situation in detail in Sec-
tion 5.7.

The new and unexpected (from the viewpoint of Newtonian mechanics) phenomena
become significant when the velocities involved are comparable to c.

Consider an object moving in system K� with velocity v ��V, that is, v �x = 0. Then the
exact Equations (13) yield

vx � V � vy � ��1 �V� v �y � vz � ��1 �V� v �z �16�

We see that the transverse components vy, vz are diminished in system K by a factor
of � (V), in total accord with the effect of time dilation.

Let now v �y = c, v �z = 0; this corresponds to the experiment with the light pulse within
a vertical cylinder, moving horizontally, which has been considered in Section 2.5.
According to Equations (16), the speed of the pulse along the cylinder as measured
in system K is equal to

vy � ��1 �V� c �17�
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which is less than c by a factor of � (V). However, it does not follow from here that
the light pulse moves slower in system K. Indeed, Equation (17) is not yet the whole
result of the transformations (13), but only one part of it, related to the transverse
component of the velocity. Let us now take into account its second part – the emer-
gence of the longitudinal component in system K:

vx � V �18�

which is caused by the motion of the cylinder itself. Owing to this component, the
velocity vector turns out to have been rotated, so that in system K the velocity v is not
perpendicular to V.

In our case,when the object moving inside the cylinder is a photon, this longitudinal
component gives the precisely right contribution to the full velocity to compensate
for the slowdown of the transverse motion, so that the total speed is

v �
����������������

V2 � v2
y

�

�
��������������������������������������

V2 � c2 1� V2

c2

� �

�

� c �19�

Thus, the light velocity vector is oriented differently in system K than in system K�,
but its magnitude remains equal to c.

Now we are going to consider a few cases where the velocity of an object is parallel to
the relative velocity of the system K and K�.

1. Let system K� be a spaceship moving relative to K with a speed V close to the speed
of light. There is a particle accelerator working inside the spaceship, which pro-
duces high-energy particles moving from the rear to the front with a speed v � rela-
tive to the spaceship. This speed is also close to that of light, so that we can write

V � c � �V � v � � c � �v � �20�

where

�V � c � �v � � c �21�

What is the particles’ speed relative to system K?
According to the “obvious” pre-relativistic Equation (1) in Section 1.2 we would have

v � V � v � � 2 c � �V � �v � �22�

that is, the particles’ speed in K must be nearly twice the speed of light. In reality,
however, the particles’ speed in K is described by Equation (7) in Section 2.2, lead-
ing to Equation (5), so that we have

v � V � v �

1� V v �

c2

� 2 c � �V � �v �

2� �V � �v �

c
� �V � �v �

c2

� c

1� �V �v �

c �2 c � �V � �v ��
�23�
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Taking into account the condition (21), we can to a high accuracy approximate this
exact equation by

v 	 c 1� 1
2

�V �v �

c2

� �

�24�

We see that v remains less than c.
2. Imagine now two relativistic spaceships moving away from each other. They re-

present two different inertial systems K1 and K2, and their speeds v1 and v2 are
measured relative to one and the same system K. Because in this case we use the
same time t when measuring both speeds, the simple addition equation

d �x2 � x1�
dt

� v1 � v2 �25�

retains a certain physical meaning. It shows the rate of change of the distance be-
tween the spaceships in system K. For instance, if the spaceships fly apart in sys-
tem K at a speed 0.9 c each, then the separation between them, as seen by an obser-
ver in K, increases at a rate 1.8 c. This does not in any way contradict the theory of
relativity, because the 1.8 c is not the speed of their relative motion. To determine
their relative speed, one has to use the measuring devices of one of the spaceships,
that is, to transfer to the rest frame of this spaceship, and then measure the speed
of the other spaceship. In this case one will obtain

v � v1 � v2

1� v1 v2

c2

� 1�8c

1� �����2 	 �����c �26�

that is, v remains less than c again.
Thus, the number 1.8 c in this example emerges as an intermediate result of the al-
gebraic calculation. It has a physical meaning of the rate of separation change be-
tween the two objects in the “alien” reference frame K, in which they are both
moving. This number is not the experimental result of the direct measurement of
the speed of one of the objects relative to the other.
One could ask: “I see two objects flying apart each with a speed 0.9 c relative to
me, don’t I therefore see them flying apart with the relative speed 1.8 c?“
The answer to this would be “No. They do fly apart with the speed 1.8c, but this is
not the speed of their relative motion. The relative speed is observed in the rest
frame of one of the objects.“
This example shows the difference between the speeds v1 + v2 and the relative
speed v.

3. The situation is again the same as in case 1, except that the objects in question are
photons, because instead of particle accelerator, the crew of the spaceship is now
using a laser. Then v � = c. Equation (1) in Section 1.2 would give for the photon
speed in K the value v = c + V; in reality, however, we will have
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v � V � c

1� V c
c2

� c �27�

Here we do not even need any special assumptions about value of V (whether it is
much smaller than c or close to c.) At any V the relativistic law of addition of veloci-
ties gives for the speed of a photon the same value c. The equation works as a sim-
ple and at the same time intricate machine: no matter what speed is entered into
the machine together with the “c,” “c” always comes out in the output. The same
result follows if the speed “c” of a photon is determined first in a stationary system
K and then one looks at its speed in the spaceship dashing after the photon with a
speed V. Here we come back to the question from which Einstein had started his
musings that lead him to the theory of relativity. And the theory gives an immedi-
ate answer: the spaceship’s system K� is equivalent to K, and in it one observes the
same laws of nature and the same rule of addition of velocities. One only has to
change V to –V, because relative to K� the system K where the photon speed c has
been measured is moving in the opposite direction. We obtain

v � � c � V

1� V c
c2

� c �28�

No matter how hard is the spaceship accelerating, the photon will run away from
it with the same speed c.

We have considered these examples, perhaps even in too minute detail, in order to
emphasize once again the basic fact lying at the core of the theory of relativity: the in-
variance of the speed of light. We can express this invariance using a simple geome-
trical construction. Let us represent all theoretically possible speeds as points on a
“speed axis.” Then the speed c will be also represented by a point on this axis. It
turns out then that this point is singled out from all the rest by its immobility. In-
deed, any speed different from c changes under the Lorentz transformations along
the direction of motion, and therefore the point representing such a speed changes
its position on the axis. However, the point corresponding to the speed c remains in
place. This can be considered as a geometrical representation of the physical fact of
the invariance of the speed of light in a vacuum.

From this representation, one can deduce another important property of the speed
of light. As we have found from the rule of addition of velocities, no speed less than
c can be made equal to c. If at some moment of time an object is moving slower than
light, then no matter how many Lorentz transformations we apply (no matter how
hard and long we accelerate the object), the representing point can approach the
point “c” infinitesimally closely, but will never merge with it (otherwise one could by
a succession of reverse Lorentz transformations change the position of the point “c,”
which would contradict its basic property – immobility.) It follows that the value of
“c” is not only a fundamental constant, but also the unattainable limit for all other
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speeds. The speed of light turns out to be a barrier that not only cannot be crossed,
but cannot even be attained.

Will it then be legitimate to ask what there is behind the barrier? Does it make sense
to discuss superluminal velocities?

We will consider these questions in Chapters 6–8.
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4
Relativistic Mechanics of a Point Mass

4.1
Relativistic kinematics

We can now develop the relativistic kinematics of a particle. The most natural way
to do this would be to use the concept of Minkowski’s world. By analogy with the
four-dimensional vector of an event (ct, r) = (ct, x, y, z), we introduce a general con-
cept of a four-dimensional vector as any quantity characterized by four components
which transform as the four components (coordinates) of an event in Minkowski’s
world. As an example directly related to our topic, we will first consider four-dimen-
sional velocity (or just 4-velocity) of a particle. Suppose we picked up two close
points on the particle’s world line: A1 = (ct1, x1, y1, z1) and A2 = (ct2, x2, y2, z2).
They are connected by a small interval ds which can be specified by its projections
(cdt, dx, dy, dz) onto coordinate axes, where dt = t2 – t1, dx = x2 – x1, dy = y2 – y1,
dz = z2 – z1. In the Minkowski world, we can consider these projections as the
components of a four-dimensional displacement with the temporal part cdt and the
spatial part dr = (dx, dy, dz).

In Newtonian mechanics the motion of a particle from A1 to A2 is characterized by
velocity v = dr/dt. The velocity v is a three-dimensional vector in space. We obtain it
by dividing 3-displacement dr by corresponding time interval dt, which is the invar-
iant under three-dimensional rotations and Galilean transformations. If we want to
obtain a four-dimensional analog of velocity in Minkowski’s world, we must take the
4-displacement (dt, dr) and divide it by a quantity that is related to the motion of a
particle between the points A1 and A2 and at the same time is invariant under four-di-
mensional rotations, that is, under Lorentz transformations. Such a quantity is the in-
terval ds! Therefore, we can define 4-velocity as

u � �ut� ux� uy� uz� � cdt
ds

�
dx
ds

�
dy
ds
�

dz
ds

� �

�1�

The 4-velocity thus defined turns out to be dimensionless, as is, for instance, the ra-
tio � � v/c. It also follows from this definition that the square of any 4-velocity is
equal to unity:
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u2
t � u2

x � u2
y � u2

z �
c2 dt2 � dx2 � dy2 � dz2

ds2 � 1 �2�

This means that in a four-dimensional space on whose axes are plotted the compo-
nents of a 4-velocity vector, the tip of this vector always remains on the surface of the
“sphere” of unit radius, centered about the origin. Mathematicians call such a sphere
a pseudo-sphere.

How can such a vector of constant “length” characterize the real physical velocity of
a particle, which can vary over continuous ranges of values and directions?

This becomes clear if we turn to components of the 4-velocity and express them in
terms of ordinary velocity v. To this end, we write

ds2 � c2dt2 � dx2 � dy2 � dz2 � c2 dt2 � dr2 � c2 dt2 1� v2

c2

� �

� ��2 �v� c2 dt2 �3�

Therefore,

ut � � �v� � ux � vx

c
� �v� � uy � vy

c
� �v� � uz � vz

c
� �v� �4a�

or

u � � �v� � v
c
� �v�

� �

�4b�

We see that even though the square of a 4-velocity is always equal to 1 for any possi-
ble motion, its components are variables depending on v. For a photon, the compo-
nents of its 4-velocity are infinite. They can combine into a vector of unit length only
because the squares of its temporal and spatial components add with the opposite
signs. The infinite values for the components of the 4-velocity of a photon emphasize
the special role of the speed of light, and its unattainability for the particles with
non-zero rest mass.

In Newtonian mechanics the product of the particle’s velocity by its mass gives the
momentum:

P � mv �5�

In relativistic mechanics, the analogous product of the rest mass by 4-velocity and by
c gives 4-momentum:

Pj � m0 uj c �6�

Here and hereafter subscript j can take on the values 0, 1, 2, 3, which stand for the
axes ct, x, y, z, respectively. When considering only three spatial dimensions, we will
often use the Greek letter � ranging through 1, 2, 3 for x, y, z, respectively.
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All the components of the 4-momentum have a simple physical meaning. For the
spatial components we have a regular three-dimensional momentum:

Pa � m0 � �v� va � m va � or P � mv �7�

where

m �v� � m0 � �v� �8�

and the subscript a, as just defined, stands only for the spatial components x, y, z.
The factor m multiplying v in relativistic momentum is called relativistic mass. We

see that this mass depends on the speed of the particle. When the speed is small, m
is practically indistinguishable from the particle’s rest mass m0. This is the situation
that we have been used to in non-relativistic physics. However, at high enough
speeds the mass increases. As the speed approaches c, mass m becomes infinitely
large.

For the temporal component of the 4-momentum we have

P0 � m0 c � �v� � mc �9�

where the subscript 0 on P stands for the “ct” component of momentum; do not con-
fuse it with the similar subscript on m to indicate the rest mass. Combining Equation
(9) with Einstein’s famous equation relating total mass to the energy, E = mc2, we can
rewrite it as

P0 � E
c

�10�

In other words, the temporal component of 4-momentum has the physical meaning
of the energy of the particle.

These expressions can be written in the form showing the similarity between time–
space on the one hand and energy–momentum on the other. Using Equations (7),
(9), and (10), we obtain direct relationship between E and P :

E2

c2
� P2

x � P2
y � P2

z �
E2

c2
� P2 � m2

0 c2 �11�

The algebraic structure of the left-hand side of this equation is precisely the same as
the structure of the expression for the interval in Minkowski’s world. The values of
E/c and P are different for different observers (that is, in different reference frames),
but, because the rest mass of a particle is constant, the difference of their squares is
invariant. Therefore, the values E/c, Px , Py, and Pz can be considered as coordinates
of a point in a ficticious four-dimensional space similar to Minkowsky’s space–time
(the momentum space). The coordinate E/c in this space is similar to the time coor-
dinate ct, and Px , Py, and Pz are similar to the spatial coordinates x, y, and z. It fol-
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lows that the quantities E/c and P must transform in the same way as do ct and r
when one switches between two inertial frames moving with relative velocity V:

E � � � �V� �E � V Px� �

P �x � � �V� Px � V
c2

E

� �

� P �y � Py � P �z � Pz

�
�
�
�
�

(12)

If we know the energy and momentum of a given particle, we can find its velocity.
The general expression for the velocity of the particle in terms of its energy and mo-
mentum is the same as in Newtonian mechanics:

v � dE
dP

�13�

Differentiating Equation (11) with respect to P, we obtain

v � dE
dP
� P

E
c2 � c

��������������������

1� m2
0 c4

E2

�

� c �14�

Because the total energy of the particle is always higher than its rest energy, the ex-
pression under the square root sign is positive and less than 1, and the particle’s
speed automatically comes out always less than c. For a photon, which does not have
a rest mass because it never rests (m0 = 0), Equation (14) yields v = c.

4.2
Relativistic dynamics

The change in our concepts of space and time causes similar changes in our con-
cepts of motion and force. We have already seen that the velocity of a moving object
behaves “paradoxically” when we consider it from different reference frames. In par-
ticular, it does not obey the “obvious” law of addition of velocities. We can rephrase
this in the language of transformations by stating that the velocity behaves differ-
ently with respect to different transformations: so far as we are confined to one refer-
ence frame (for instance, we rotate the axes in our three-dimensional space, but re-
main within the same system K), time t behaves as a scalar quantity, and the velocity
v transforms like a regular three-dimensional vector. However, when we perform ro-
tations in four-dimensional space–time involving the time axis (which physically cor-
responds to a transition to another reference frame), the velocity does not behave as
a four-dimensional vector. This role is taken up by the “representative” – the 4-velo-
city. We have defined the 4-velocity in Equation (1) as ui = dxi/ds, i = 0, 1, 2, 3, where
index 0 corresponds to the time axis, and 1, 2, and 3 correspond to the three spatial
axes, whereas the interval ds is a scalar under 4-rotations.

The same can be done to describe the dynamic characteristics – momentum, energy,
and force. By analogy with the definition of 3-momentum as a vector with three com-
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ponents, pa = m0 va = m0 dxa/dt, we have defined 4-momentum as a vector with four
components:

Pi � m0 ui � m0
dxi

ds
�15�

How do these changes affect the concept of force and accelerated motion?
The basic definition of force is

f � dP
dt

�16�

Formally it is similar to definition of velocity as v = dr/dt. Like the velocity, force be-
haves as a three-dimensional vector under restricted Lorentz transformations not in-
volving time (pure spatial rotations). The 3-momentum P is the product of mass and
velocity:

P � mv � m0 � �v� v �17�

Because of the relativistic factor � (v), the relationship between the mass, accelera-
tion, and force is more subtle than in non-relativistic mechanics. To show it, let us
express the force directly in terms of acceleration. This will require a little algebra.

Putting Equation (17) for P into definition (16) and performing differentiation, we
obtain

f � m0
d
dt

v � �v� � m0
dv
dt
� � �v� � v

d
dt

� �v�
� �

�18�

Now, since v2 = v2, the Lorentz factor can be written as � (v) = (1 – v2/c2)–1/2. There-
fore,

d
dt

� �v� � d
dt

1� v2

c2

� ��1�2

� � 1
2

1� v2

c2

� ��3�2

� �2
v
c2

dv
dt

� �

� �3 �v� av
c2

�19�

Putting this into the previous equation yields

f � m0 � �v� a� �2 �v� av
c2 � v

� �

�20�

Now, let us read this equation. We see that the relation between force and accelera-
tion is not that simple as it is in non-relativistic mechanics. Its most interesting fea-
ture is that acceleration, even though it is caused by a force, does not generally point
in the direction of the force!

We will illustrate the relation (20) by considering a few special cases.
First, consider slow motions. Then the second term in the brackets is negligible
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compared with the first, and the Lorentz factor is close to 1. The equation then re-
duces, as it should, to the known non-relativistic limit f = m0 a.

Let velocity now be arbitrary, and change only in direction. Geometrically this means
that the moving mass traces out an arch of a circle. The acceleration is accordingly
perpendicular to the velocity, and the scalar product av is zero. Then

f � m0 � �v� a �21�

Next consider the case when velocity changes only in magnitude (the force is applied
along the velocity). Then av = av, the mass moves in a straight line, and we have

f � m0 � �v� a� �2 �v� v2

c2
� a

� �

� m0 �3 �v� a �22�

Now, compare the two results. Don’t you notice something strange about them?
In non-relativistic mechanics,we actually have two definitions of mass: as a measure

of the amount of matter in a body, and as a measure of a body’s inertia. The first can
be measured, for instance, by weighing the body, and the second can be determined
as a ratio of the applied force to the resulting acceleration. Both definitions had gone
peacefully together, hand in hand.

In relativistic mechanics, the situation is different, and the two definitions of mass
turn out to represent two characteristics with different behavior. The first definition
– mass as the amount of matter in a body – applies directly to the body at rest. It tells
us what we get if we stop the body, and is represented by a constant factor m0 – rest
mass. For instance, if we try to stop the photon, we get nothing, and we accordingly
say that the rest mass of a photon is zero. But we do not actually have to stop a mov-
ing object or to catch up with it to measure its rest mass – we can instead measure
its energy E and momentum P and then find the rest mass as the invariant (E2 –
P2c2)1/2/c2. If we apply this procedure to a photon, we will get zero.

The second definition – mass as the amount of body’s inertia (call it inertial mass) –
has a direct and clear physical meaning only in situations when it can be measured
as the ratio of the force to acceleration. Generally such interpretation is not applic-
able because, according to Equation (20), the force and acceleration are not parallel,
but it can be applied in special cases such as Equations (21) and (22).

We then obtain two different results and accordingly introduce two different nota-
tions for corresponding inertial mass:

m� � m0 � �v� �23a�

and

m		 � m0 �3 �v� �23b�

The mass m		 turns out to be larger than the mass m�. Physically this means that
the body is more inert in the longitudinal direction than in the transverse direction.
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When you push it in the direction of its trajectory, the body resists harder than when
you push it the direction perpendicular to its trajectory. The inertial mass is anisotro-
pic!

How can we understand this result? Actually, there is no need for any deeper un-
derstanding here, this is how Nature works, the equations we use give the ade-
quate description of motion in excellent agreement with experiment and predict
correctly the outcome of other experiments, and this is all one should expect from
a theory.

But I would still offer the somewhat naive comment that might appeal to our drive
to have one common explanation for many different “faces” of the world.

Relativity forbids any physical body with non-zero rest mass to reach the speed of
light. To implement this ban, it has made the inertial mass a variable quantity in-
creasing with speed, so that the closer the speed is to c, the more vigorous is the
body’s resistance to a further change of speed. It already resists harder than the rest
mass would do when the applied force is perpendicular to the velocity, even though
such force cannot change the speed. But when the force pushes along the velocity to
increase the speed, the resistance is much harder still – as if to make the ban more
efficient! It is true that the ban works both ways – according to Equation (23b), the
resistance is the same for the force tending to accelerate the body and for the force
tending to decelerate the body. But the main thing is that the “longitudinal” inertia
increases with speed faster than the “transverse” inertia – and this is precisely what
Equations (23 a and b) tell us!

Equations (23 a and b) describe only two special cases. One might need an expres-
sion that would determine acceleration in the general case of arbitrary orientation
between the velocity and the force. In non-relativistic mechanics the corresponding
expression a = m–1 f does not depend on orientation because the mass is a constant.
Since this is not so in relativistic mechanics, the derivation of the wanted expression
is more difficult. Unfortunately, we cannot factorize the acceleration from the right-
hand side of Equation (20), because it is entangled with velocity in a scalar product
av. If we rewrite the equation as

a � f
m0 � �v� � �2 �v� av

c2
v �24�

it would be of little help because a is also present in the right-hand side. But we can
do the following trick. Multiply Equation (24) by v to form a scalar product on both
sides. Since vv = v2 we have

av � fv
m0 � �v� � �2 �v� v2

c2 av �25�

This can be rewritten as

1� �2 �v� v2

c2

� �

av � fv
m0 � �v� �26a�
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or

�2 �v� av � fv
m0 � �v� �26b�

Put this back into Equation (20)! Immediately, we will obtain the desired expression
with a on only one side:

a � 1
m0 � �v� f � fv

c2 v
� �

�27�

Read this equation. It says that acceleration is determined not only by the force, but
also by the velocity of the body, and generally is not parallel to the force.

So far we had discussed the properties of force in one reference frame. Our next
question is how the force would behave if we transfer to another frame of reference.
How would the force measurements carried out by different observers relate to each
other?

One way to obtain the answer would be using the analogy with the velocity vector. In
the Minkowski space it is represented by 4-velocity ui = dxi/ds. Similarly, we can
form a four-dimensional vector (4-force) representing the physical force, and use its
transformation properties to find the transformation rules for the force f.

We define the 4-force in Minkowski’s space–time as the derivative of 4-momentum
with respect to corresponding interval [16]. Recalling the definition in Equation (6)
of 4-momentum, we have

Gi � dPi

ds
� m0 c

dui

ds
�28�

It is easy to notice that 4-force as we have defined it is perpendicular to the 4-velocity:

Gu�G0 u0 �Ga ua � m0 c u0
du0

ds
� ua

dua

ds

� �

� 1
2

m0 c
du2

ds
� � �29�

In this equation we applied Einstein’s “summation rule” according to which we per-
form the summation over the ranging indexes appearing twice in an expression. Be-
cause the 4-velocity has a constant kinematic length, its derivative is zero. And if the
dot product of the two vectors is zero, the vectors are perpendicular, just as is the
case in three-dimensional space.

Let us now express 4-force G explicitly in terms of the 3-force. Writing ds = cdt/� (v)
[recall Equation (3)!] and keeping in mind that dP/dt = f, we have

Gi � � �v�
c

dPi

dt
� � �v�

c
dP0

dt
�

dP
dt

� �

� � �v�
c

dE
c dt

� f
� �

� � �v�
c

fv
c
� f

� �

�30�

The time component of the 4-force turns out to be connected with the work of the
force.
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Once we have defined G as a 4-vector, we know its transformation properties. We
thus can relate the components of the 4-force measured by two different inertial ob-
servers. On the other hand, we can express the components G � of this force in an-
other reference frame in terms of the 3-force f �. This will give us the equations con-
necting the components of the 3-force as measured in two different frames. The dili-
gent reader can try to do this as an exercise.

However, we can obtain the same result more easily by using the definition in Equa-
tion (16) of the 3-force and applying the transformation rules to momentum and
time. Consider two frames K and K� with parallel axes. Suppose the frame K� slides
relative to K along the x-axis with a speed V. Then we have

dPx� � � �V� dPx � V
c2 dE

� �

� dPy� � dPy � dPz� � dPz

dt � � � �V� dt� V
c2 dx

� �

�
�
�
�
�
�
�

(31)

Suppose the motion takes place in the plane xy, so that we can consider only x and y
components of force. Using the result in Equation (13), we find

fx� � dPx�

dt �
�

dPx � V
c2

dE

dt� V
c2

dx
� dPx

dt

1� V
c2

dE
dPx

1� V vx

c2

� dPx

dt
� fx

fy� � dPy�

dt �
� dPy

� �V� dt 1� V vx

c2

� � � fy

� �V� 1� V vx

c2

� �

�
�
�
�
�
�
�
�
�
�
�

(32)

The component of force along the direction of relative motion of the two systems is
unchanged. The transformation law for the transverse component of force is more
complicated – it depends on the velocity of a moving mass. In a special case when
the mass moves together with the reference frame K�, we have vx = V, and the second
Equation (32) reduces to

fy� � � �V� fy �33�

Consider a possible physical situation illustrating this result. If we measure the grav-
ity force acting on a car moving with a speed V on a horizontal track, then the driver
of this car would measure a slightly greater force: since the direction of this force is
perpendicular to the direction of motion, the force in the driver’s reference frame is
given by Equation (33). The difference is very small because the Lorentz factor is
practically indistinguishable from unity in this case. However, in the case of relativis-
tic velocities the difference may be very large. We will see possible dramatic conse-
quences of such a difference in Section 5.4.
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5
Imaginary Paradoxes

5.1
The three clocks paradox

The relativistic effects following from Einstein’s relativity principle have caused a
long-standing controversy in the scientific literature. Critics thought that these ef-
fects lead to paradoxes. In the first place this pertained to the conclusion that time is
relative. This statement, the critics declared, resulted in the following contradiction.
According to Einstein’s theory, a moving clock A is always slow compared with a sta-
tionary clock B. However, according to the same theory, it makes no difference which
one of the clocks we regard as moving and which one as stationary. We could as well
describe clock A as stationary and clock B as moving. Then we must inevitably con-
clude that it is clock B that is slow compared with A. So, one method of analysis im-
plies that A is slower than B and the other that B is slower than A. The question is
which clock is actually slower.

An attempt to solve the paradox put in this way would be fallacious because we are
asked here to answer the wrong question. Indeed, the alleged “contradiction” is
based upon the conviction that “in reality” only one certain clock can be slower than
another and that otherwise we would get a logical nonsense.

Meanwhile, in reality, there is no contradiction whatsoever. The situation is similar
to an example with two antipodes, each of whom is convinced that he is standing
“normally” while his antipode is turned upside-down. We know that they are both
right, yet this does not cause a logical contradiction because the very idea of “down”
is relative: it is a direction towards the center of the Earth, which is different for each
antipode. In exactly the same way, the statement that any clock, A or B, can be slower
than its counterpart is not self-contradictory because each possibility is linked to its
own observational procedure.

When we assume the clock B1 to be moving, it is not enough to have only one sam-
ple of stationary clocks (for instance, clock A1) to compare their rates. Comparing
the clocks‘ rates involves more than just comparing their instantaneous readings. It
requires taking their readings at different moments of time. Suppose that when
clock B1 passes by clock A1, their readings are the same. However, at a later moment
the moving clock B1 will pass by another place, so we will now have to compare its
reading with the reading of another stationary clock A2 at that place. That is how we
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discover that B1 has a slower rate. If we now “switch” to a system K�, where B1 is sta-
tionary, and start taking readings of one sample of K-clocks (say, clock A1), then, as a
consequence of this clock’s motion relative to K�, we will have to use a pair of K�-
clocks: first B1 and then B2. Now A1 will be slower than B1. But there is no paradox
here, because two different pairs of events are being considered. In the first case we
have clock B1 passing by A1 and A2, and in the second case clock A1 passing by B1

and B2. It is no surprise that two different cases give two different results. The pro-
cess of clocks’ juxtaposition is asymmetric. In this process, the clock that turns out
to be slower is always the one that is compared with a number of clocks in the other
reference frame – no matter whether the given clock is considered as moving or stationary.
The last statement means that if both observers – one in K and the other in K� –
agreed to consider one and the same pair of events, then both would obtain the same
result. However, the observers would offer different explanations of this result. The
first observer, who is stationary relative to the chosen pair of clocks, would explain
the result by the above-considered “dilation” of time. The second observer, from
whose viewpoint this pair of clocks is moving, would point to a discrepancy between
readings of the moving clocks.

This argument is important for a real understanding of the time dilation effect, and
it is worthwhile to consider it in more detail. Suppose that two series of observations
are being carried out by two observers, Alice and Tom. In the first series Tom in his
system T compares one sample of Alice’s clocks with a pair of his spatially separated
but synchronized clocks. He finds that the rate of Alice’s clock is � (v) times slower
than the rate of his clocks. Similarly, Alice in her system A compares one sample of
Tom’s clocks with a pair of her clocks synchronized in her system A. She notices that
the rate of the Tom’s clock is � (v) times slower. After analyzing the procedure of mea-
surements, both observers will come to the conclusion that each of them is right,
and their results appear to contradict each other only because they were considering
different pairs of events.

The second series consists of only one experiment. Both observers have agreed to
consider the same pair of events, for example, the moments of coincidence of Alice’s
clock A with Tom’s separated clocks B1 and B2. For Tom, who is stationary relative to
his clocks, this experiment is an exact repetition of the first series of measurements,
and naturally it yields the same result

t �B2
� t �B1

� � �v��tA �1�

where t �B1
� t �B2

are the moments of clocks’ coincidences in T as determined by the
clocks B1 and B2, and �tA is the time interval between these coincidences by Alice’s
clock A.

But for Alice, this experiment is different from the ones she had performed in the
first series. She had found then that every single clock B is slower as compared to
her pair of clocks. Now, however, she compares one sample of her clock A with two of
Tom’s clocks B1 and B2 that pass one after onother by her chosen clock. Since the ac-
tual readings of any clock do not depend upon who is looking at it, Alice will record
the same readings t �B1

� t �B2
and �tA1 of the respective clocks as Tom did, and therefore
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will find that Equation (1) is correct. However, this equation states that interval �tA1

of her A-clock’s proper time between its meetings with B1 and B2 is � (v) times shorter
than the interval t �B2

� t �B1
. This result seems natural to Tom, but not to Alice. “How

can it be,” she asks, “that moving clocks B1 and B2, whose rate is slowed down by a
factor of � (v), nevertheless show a � (v) times greater difference between their read-
ings than my stationary clock A?”

The reason behind this “paradox” lies in the relativity of simultaneity. The clocks B1

and B2 have been synchronized in their rest frame T. However, they show different
readings at any single moment in system A. Using Equation (45) in Sec. 2.7, which
gives the dependence of these readings on the clocks‘ positions, we find that at the
moment t �B1

when the clocks B1 and A are coincident, the clock B2 reads the time

t �B1
� � �v� v

c2 x �2�

where

x � v�t �3�

is the distance in A between the clocks B1 and B2. Putting this expression for x into
Equation (2), we obtain for this reading

t �B1
� � �v� v2

c2 �tA1 �4�

Thus, the clocks B1 and B2 synchronized in their rest frame are not synchronized in
system A. For Alice, at the moment when clocks A and B1 are coincident, clock B2

shows a greater time reading than B1 by � �v� v2

c2
�tA1. This effect of the initial “time

gain” of the clock B2 over clock B1 (observed in A) is larger than the effect of “slow-
ing down” of both clocks. It results in a greater difference between the readings of
both clocks as they pass by A than the time �tA1 between these events measured by
clock A itself. Clock B2 passes by A �tA1 seconds after B1. But according to the “time
dilation” effect, the time interval �tA1 is linked to the interval �t � for the moving
clocks: �t � � ��1 �v��tA1 . Adding this time to Equation (4), we obtain

t �B2
� t �B1

� � �v� v2

c2
� ��1 �v�

� �

�tA1 �5�

It immediately follows from here that

t �B2
� t �B1

� � �v��tA1 �6�

which is simply Equation (1).
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Thus, Alice and Tom arrive at the same result. However, it is only for Tom that the
difference between readings of B1 and B2 has a meaning of time between the events.
This is why Tom regards the results of his measurements as an experimental mani-
festation of the time dilation effect. For Alice, however, the difference t �B2

� t �B1
is not

the duration of any process because the clocks B1 and B2 read different times at the
same moment of her time in system A. Alice will explain the result in Equation (1)
by this initial time discrepancy between the moving clocks. If she, too, wants to com-
pare the flow of time in different reference systems, she must go back to the first ser-
ies of experiments, i. e. consider the passing of Tom’s one clock B by the pair of her
clocks A1 and A2. Then she (and Tom!) will obtain the result opposite to Equation
(1). But these opposite results do not in any way contradict each other, because they
relate to different pairs of events.

5.2
The dialog of two atoms

We have seen that to compare the “flow of time” in two different inertial systems, it
is necessary to have at least three samples of identical clocks. Two of them belong to
one system (in which they are synchronized) and one to another system of reference.
As a result, the comparison procedure is asymmetric with respect to the two sys-
tems. The asymmetry is in this case evident from the oddness of the minimal num-
ber of clocks that are needed for the experiment. Obviously, the clocks here cannot
be distributed evenly between two reference frames.

Is it possible to find such a procedure of comparing two clocks that would be sym-
metrical? To do that, we must compare one clock in one reference frame with only
one clock in another reference frame. It is true that, as was previously emphasized,
the number of clocks compared cannot be less than three. This, however, pertains to
situations when we use nothing else but clocks. But what if we employ, for instance,
light signals? Couldn’t we then get by without the third clock?

Consider the following thought experiment. Suppose Alice has an excited hydrogen
atom A. The atom emits light of a certain frequency �0 uniformly in all directions.
(We disregard here the quantum nature of radiation, according to which every sin-
gle photon is found to have been emitted within a small solid angle around a cer-
tain direction. What is essential for the experiment considered here is the statisti-
cally averaged picture of this process, and this is equivalent to the continuous radia-
tion of a diverging spherical wave.) Then Alice measures the wavelength of the
emitted light:

�0 � 2 �
c
�0

�7�

Suppose Tom is moving at a speed V along the x-axis in this system. Tom also has a
hydrogen atom B in the same exited state as the atom A. Naturally, Tom’s atom also
emits spherical light waves with the same (proper!) frequency �0 and wavelength
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�0 � 2 �
c
�0

in its rest frame B (since there is now only one atom in each system, we

can call each atom by the name of corresponding system).
Each atom represents a perfect sample of a clock; both clocks are absolutely identical

and have the same proper period of one oscillation:

T0 � 2�
�0

�8�

This period can be measured as the time interval between two successive passings of
the crests and troughs of emitted waves through a point stationary relative to the gi-
ven atom. Thus, the “oscillations of the atomic clock” are accompanied by radiation
that carries information about the oscillation period. The electromagnetic “ticking”
of the stationary atomic clock is reproduced with the same period at all other points
of the given reference system. This eliminates the need to supply every point of
space with its own clock. (This is precisely what actually happens in Nature: the in-
formation about time is being carried by radiation.) Hence the possibility arises of
comparing the rates of two clocks moving relative to each other without any addi-
tional clocks: we will use instead the light from the considered clocks themselves.
Wouldn’t that be a symmetrical comparison procedure?

Our observersstart counting the light wave oscillations at the moment when the atom
B passes by A, that is, when the line AB connecting the atoms is perpendicular to the
x-axis. This initial moment is taken as a zero moment in both systems (the simultane-
ity of the two events holds for both systems because at the zero moment both atoms
lie on a line which is perpendicular to the direction of their relative motion).

We already know that in system A, the oscillation rate of the moving atom B is
slower. How will this effect manifest itself when we compare the pattern of oscilla-
tions of the two atoms?

In system A, the atom B oscillates with a period

T � � �v�T0 �9�

This period is greater than T0. Since T0 is also the proper period of the atom A, the
latter will emit more than one wave during the time T > T0. To put it another way, it
will take T s for one wave emitted by the atom B to pass through A, during which
time the atom A itself will emit a � (v) times greater number of waves (Fig. 5.1 a). Ac-
cordingly, the frequency of radiation from B, measured by Alice at the origin of her
system A, is � (v) times smaller than its proper radiation frequency �0. Such a de-
crease in the wave frequency from a rapidly moving source, when the direction of on-
coming radiation is perpendicular to the relative velocity V, had been observed by
Eves and Stilwell in their beautiful experiments with ion beams [18] and is known as
the transverse Doppler effect. These experiments (and also the observations of atmo-
spheric �-mesons described in Section2.8), provide another demonstration of the re-
lativity of time. Once again we observe a slowing of the rate of a moving clock com-
pared with the identical stationary clock. But we know that any description of a sys-
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tem as moving or stationary is relative. And in the current example the effect of time
dilation manifests itself in what appears to be a symmetrical procedure: we took
only one clock from each of the systems! We immediately arrive at a logical contra-
diction: a direct comparison of the clocks’ rates shows that clock B is slower than A
and clock A is slower than B at the same time!

Of course, there can be no logical contradictions in Nature – they can only occur in
our mind. In this case the paradox has emerged because we had assumed the com-
parison procedure to be symmetrical for the only reason that there were just two
samples of clocks. Yet this fact alone is still not sufficient for the procedure to be
symmetrical! Indeed, are the clocks in the procedure being compared directly with
one another? Not at all! Let us take another glance at Figure 5.1. We see that the
readings of clock A are matched not with those of B, but with the sequence of light
waves from B arriving at A – and this makes quite a difference. In such a matching
we consider two different pairs of events: Alice records the passing of two successive
waves from B through her clock A (Fig. 5.1a). But A is moving relative to B! Tom in
B, using a similar procedure, records the passing of two wave crests from A through
his clock B (Fig. 5.1b). He will thereby observe a decrease in frequency of waves from
A. However, the conclusions of both observers would not contradict each other, since
they pertain to different pairs of events.

Thus, the elimination of the third clock did not eliminate the asymmetry in the com-
parison procedure. In order to compensate for one missing clock we are forced to in-
troduce some new element, e.g. light. It then turns out that with the use of light the
roles played by the two clocks in question are again not equivalent. In each reference
frame one considers the passing of waves from the moving clock through a point
that is at rest relative to that frame. It is here where the asymmetry lies: the moving
clock is used as a source of signals, and the clock at rest as a measuring device. As a
result, any source of periodic signals, while used as a detector counting a certain
number of passing signals from an identical moving source, emits a greater number
of its own signals. And once again, just as in the case of three clocks, the conclusion
does not depend on whether we regard the given source as moving or stationary.
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For the proof we assume again that two series of experiments are being conducted.
In the first series each observer, having counted the number of waves from the
other’s clock, realizes that the frequency � of passing radiation is less by a factor of
� (v) than the proper frequency �0. By looking into the measuring procedure the ob-
servers conclude that their results do not contradict each other since they pertain to
different sets of events.

Then the observers perform another series of experiments which are reduced to a
single experiment: both observers agree to consider one and the same pair of events,
say, the passing of two successive wave crests from A by clock B. For Tom, who is at
rest relative to B, this experiment is just a repetition of the experiments from the pre-
vious series and gives the same result:

T � � t �2 � t �1 � � �v�T0 �10�

where T � = t �2 – t �1 is the time interval by clock B between the passings through B of
two successive wave crests from A, and T0 is the proper period of B.

For Alice this experiment is different from those she performed in the first series.
She then had counted the waves from B passing through her clock A. Now she
counts the waves from A passing through clock B that is itself moving at a speed v.
But since the number of waves between the two given events does not depend on
who is counting them, Alice will obtain the same Equation (10) that Tom did. And it
states that clock B will emit � (v) waves while only one wave from A passes by it.

If we look once again at Figure 5.1a, which illustrates the picture of waves as seen
by Alice, it may appear that the opposite is true. The crests of the waves diverging
from A are closer in space than the crests of the waves from B; it seems that the
waves from A must pass by B faster. How come, then, that clock B emits more of
its own waves than it meets waves from A? In order to account for this “paradox,”
it suffices to note that by the moment when the first (counting from the initial
zero moment) wave crest from B arrives at A, the atom B itself will reach the point
B � (Fig. 5.2), that is, the instantaneous direction toward the moving source of radia-
tion is different from the direction of light arriving from the source. As to the first
crest of the wave from A, we can see from Figure 5.2 that it reaches atom B at a
still further point B�. At this point the velocity v of the atom B forms an angle �
with the wave crest, so the atom’s velocity will have a component perpendicular to
the wave crest and directed along the radius drawn from A. In other words, B runs
away from A’s waves and therefore successive wave crests reach B with a certain de-
lay. The waves from A pass by the receding B less frequently than by a stationary
point of system A. This effect of delay, caused by the fact that B is running away
from A, turns out to be stronger than the difference in density of the light waves’
“ripples” along the line AB (Fig. 5.2). Moreover, Figure 5.2 explicitly shows that the
direction AB now plays no role at all; in fact, its use may only cause more confu-
sion. Rather, what we have to do is to compare frequencies of “ripples” of the
waves from both sources along the instantaneous direction AB�. The motion of the
source B causes its own “light ripples” to be different in different directions: the
wave crests are packed more densely in front of the source and less densely behind
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it. It turns out that along AB� the frequency of “light ripples” from B is greater
than that of ripples from atom A. As a result, B actually emits more than one wave
between the encounters with two successive crests from A. How much more? Let
us calculate this effect quantitatively.

As we see from Fig. 5.2, the angle � between the direction AB� and OX is given by

cos � � v t1

c t1
� v

c
�11�

where t1 is the time measured in system A it takes light from atom A to reach
atom B. Therefore, the component of the velocity v along the line AB� is

vrunning
away

� v cos � � v2

c
�12�

In the absence of this component of velocity the next wave crest would reach the

atom B at the moment t1 � �0

c
� t1 � T0. However, since this component is present,

the crest will reach B at a later moment:

t2 � t1 � �0

c � vrunning
away

� t1 � �0

c � v2

c

� t1 � c T0

c � v2

c

� t1 � �2 �v�T0 �13�
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Thus, in system A, two successive passings of wave crests from atom A through
atom B are separated by the time interval 1)

t2 � t1 � �2 �v�T0 �14�

This interval is a factor �2 (v) greater than T0! Comparing it with Equation (9), we see
that it is a factor of � (v) greater than the time T (as measured in A) between two suc-
cessive emissions of waves by atom B. Thus, even though the period of light waves
from B, observed in A, is � (v) times greater than T0, the period t2 – t1 turns out to be
�2 (v) times greater. As a result, dividing Equation (14) by Equation (9), we find that
during the time interval t2 – t1 the atom B emits � (v) waves of its own. This is pre-
cisely the resulting Equation (14) obtained by Tom, who states quite correctly that
“his” atom B, considered as a clock, emits light waves � (v) times faster than “Alice’s”
one.

We thus see that if both observers register one and the same process – the arrival of
waves at B – then both of them (in different ways and independently of each other)
come to the same conclusion that the atom B emits � (v) times more waves of its own
than it encounters waves from A. However, the explanations of this fact offered by
the two observers will be absolutely different. Tom will point to the slower rate of os-
cillations of atom A, which moves relative to him. Alice will explain the same effect
by the fact that Tom’s atom B is moving away from the wave emitted by her atom A;
as a consequence, the number of waves emitted by B is by a factor of � (v) greater
than the number of waves coming to B even though B emits radiation � (v) times
slower than A does.

If, however, Alice considers the arrival at A of light signals from B,while Tom consid-
ers the arrival at B of signals from A, then the two observers record different sets of
events and, naturally, they come up with opposite results. Still, they do not contradict
each other. Each result is correct – but only in relation to corresponding reference
system.

As the last touch to complete the dialog of the two atoms, consider the following si-
tuation. Suppose that instead of maintaining both atoms in a state of continuous ra-
diation of monochromatic light, we allow them to return from their initial excited
state to their “normal” (non-excited) state after emitting only one photon each. Con-
sider these two photons from the two atoms as signals. Suppose each atom emits its
respective signal simultaneously at the zero moment of time in both systems (at this
moment the line connecting the atoms – line AB – is perpendicular to their relative
velocity v.) The atoms at this moment are at the distance of the closest approach to
each other. Call this distance L. Each atom emits its photon in the direction where it
can hit the other atom. In Alice’s reference frame these two directions are BA (for
the photon from atom B to atom A) and AB� (for the photon from atom A to
atom B.) Then Alice will record the arrival of the photon from Tom’s atom B at the
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1) The resulting Equation (14) can be immedia-
tely obtained from Equation (10) if we note
that t �2 – t �1 is simply the time events at a fixed

point of the system K� and apply to it the
transformation Equation (47) in Section 2.8.



moment tA � L
c

. She has also found that the photon from her atom A will hit the re-

ceding atom B at the point B� at a later moment tB� � AB�
c

. The simple geometry of

Figure 5.2 tells her that AB� = L/cos�, and since sin� = v/c, she gets for the arrival
time tB�

tB� � L
c cos �

� L
c
� �v� �15�

She also notices that the x-coordinate of this event is

xB� � v tB� � L
v
c
� �v� �16�

Alice’s conclusion is: “Both atoms fire their respective photons simultaneously, but
are hit by these photons at different times! My atom A gets hit first, and Tom’s atom
B receives the photon from A later. And this can be much later if the Lorentz factor is
sufficiently large.”

The strange thing about this statement is that Tom will disagree with it, even though
he observes the same set of events. He would maintain that he and his atom B are
both stationary, while Alice with her atom moves to the left with the speed v relative
to him. Then precisely the same treatment as Alice’s, but applied in Tom’s reference
frame, will lead Tom to the result that his atom B will be hit first by the photon from
atom A at the moment t �A = L/c, and Alice’s atom A will be hit by the photon from B

at a much later time t �B � � �v� L
c

. The only thing upon which Alice and Tom both

agree is that their atoms fire simultaneously. But their conclusions about the arrival
times of the two photons are dramatically different – they are just the opposite of
each other. I want to emphsize again that now both observers speak about the same
pair of events, and therefore it may seem that only one statement must be true. And
yet, either observer is right. How can that be?

The resolution of this puzzle lies in the fact that both events are spatially separated
in either reference frame. The diverging conclusions about their time ordering re-
flect the relative nature of time. We already know that two spacially separated events
may be simultaneous for one observer and not simultaneous for another observer.
The situation at hand illustrates that this relativity of time can be stretched a little
further: of two events A and B, A may occur earlier than B for one observer, and later
than B for another observer. If we go back to Section 2.9, we can see that such events
are separated by a space-like interval. The time ordering for the end points of a
space-like interval is interchangeable.

We can show this by applying Lorentz transformation to Alice’s times tA and tB�. The
time coordinates of the same events in Tom’s reference frame are
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t �A � � �v� tA � v
c2 xA

� �

t �B� � � �v� tB� � v
c2

xB�

� �

�
�
�
�
�

(17)

But Alice’s atom A stays at the origin of her system A, so that xA = 0. As for Tom’s
atom B, Alice had found its x-coordinate at the moment tB� to be given by Equation
(16). Putting this into Equation (17) gives

t �A � � �v�tA � � �v� L
c

t �B� � � �v� L
c
� �v� � v

c2
L

v
c
� �v�

� �

� L
c

�
�
�
�
�
�
�

(18)

In Tom’s reference frame, his atom B gets hit by the photon from A at the moment

L/c, and Alice’s atom A gets hit later, at the moment � �v� L
c

. This is precisely what

Tom claimed from the very beginning. This claim, although opposite to that of Alice,
does not contradict it logically, because it is related to another reference frame.

5.3
The longitudinal Doppler e ect

We have examined the case when the light from a source propagates in the direction
perpendicular to the velocity of the source. Here we consider another imaginary
paradox that arises in the case when these two directions are parallel, that is, when a
source of light is moving along the line of sight of the observer. This is a typical si-
tuation in astronomy. We are living in the expanding universe, and the distant ga-
laxies are running away from us the faster the further away they are. Even non-
science students taking an introductory astronomy course know that this motion is
accompanied by the “red shift” – the decrease in frequency and increase in the wave-
lengths of radiation from distant sources. The following is a typical argument illus-
trating a corresponding misconception:

„… the decrese in the light frequency from a receding source is accompanied by a
corresponding increase in the light’s wavelength, which secures the invariability of
the speed of light. However, the statement about contraction of lengths in moving
systems requires a decrease in the wavelength, which, given the decrease in fre-
quency, inevitably gives us a value smaller than c for the speed of light, if this speed
is defined as the product of frequency by the wavelength.”

Let us look into these statements.
Imagine a light source at rest in a system K. A light beam which moves at a speed c

from the source has a definite frequency � = 2� f and wavelength �, so that

c � � f �19�
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Suppose we can measure the frequency and wavelength directly. We can use, for ex-
ample, a set of small electric dipoles with rigidly fixed centers as a measuring device
for frequency. The dipole charges are being held near the equilibrium position by an
elastic force. Then the frequency of forced oscillations of a given dipole, i. e. the fre-
quency measured at a fixed point of our reference system, will give us the frequency of
light in this system.

Consider another system K� moving at a speed v relative to K in the direction parallel
to the light beam. Suppose it is equipped with a similar set of devices. They are sta-
tionary in K�, and thereby moving relative to K. What will their readings be?

First we note that a K�-observer will record a decrease in oscillation frequency of the
K-dipole that is being watched by the observer in K. The frequency and period of the
K-dipole observed from K� are given by

�f � ��1 f � �T � �T �20�

However, this smaller frequency is by no means the frequency of light in system K�. In-
deed, the chosen K-dipole is moving relative to K�, while the light frequency f � is the
frequency of oscillations at a point at rest in K�.

Therefore, in order to determine f �,we must watch the forced oscillations of a dipole,
rigidly fixed in K�. It is easy to calculate the oscillation frequency of this dipole once
the value of f is known in system K.

According to Equation (19), every new oscillation of the K-dipole begins in the sys-
tem K� �T s after the previous one. However, the emitted light signal will not reach
the detector (the K�-dipole) �T s after the previous signal. Since the K-dipole is moving
relative to K�, during the time �T it will travel the distance �v �T , so that any two suc-
cessive oscillations reaching the K�-dipole (and reproduced by it!) will be separated
in time by the interval

T � � �T � v �T
c
� 1� v

c

� �

�T �21�

where the “+” or “–” sign is chosen depending on whether K� is moving away from
the source or towards it. Thus, we obtain the frequency of light oscillations in K� :

f � � 1
T �
� 1

1� v
c

� �

�T
� 1

T

��������������

1� v2

c2

�

1� v
c

� f

�������������

1� v
c

1� v
c

�

�

�

�

�

	

�22�

We have derived a well-known equation for the relativistic Doppler effect for the case
of relative motion parallel to the light beam. It can be seen from Equation (22) that
the frequency of light oscillations in system K� is not necessarily smaller than f. It
may be greater than f if K� is approaching the source of radiation.

This problem also admits a different approach, which elucidates the role of the Lor-
entz transformations. The electric field E observed at a point x at the moment t in re-
ference frame K can be represented as
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E � E0 cos ��t� kx� �23�

where E0 is the amplitude, � = 2� f, and

k � 2�
f
c
� 2�

cT
� 2�

�
� �

c
�24�

The quantity k is called the propagation number. It shows the number of waves fit-
ting into the segment of length 2� in the direction of propagation.

In frame K� this disturbance has coordinates x � and t �, which are related to x and t by
the Lorentz transformations in Equations (43) in Section 2.6. Putting these relations
for x and t into Equation (23), we can express the same disturbance in terms of
primed coordinates:

E � E0 cos � �v� ��� vk� t � � k� v
c2

�
� �

x �
� �

�25�

Now we introduce the notations

�� � � �v� ��� vk� � k � � � �v� k� v
c2 �

� �

�26�

Then Equation (25) will take the form

E � E0 cos ��� t � � k �x �� �27�

Equation (27) describes wave propagation as observed in system K� (actually the elec-
tric field also undergoes Lorentz transformation, but this is immaterial for our pur-
poses, since we are only interested in the field dependence on space and time coordi-
nates.) The quantities �� and k � in Equation (27) have a clear physical meaning: they
are the wave frequency and propagation number in K�, respectively. Equations (26)
are in fact the Lorentz transformation for these quantities, which relates their values
in different reference frames. Using k = �/c from Equation (24) allows us to rewrite
Equation (26) as

�� � � �v� 1� v
c

� �

� �
1� v

c

1� v
c




�

�




�

�

�
�

� � k � � � �v� 1� v
c

� �

k �
1� v

c

1� v
c




�

�




�

�

�
�

k �28�

However, Equation (28) is just Equation (22), since the quantities f and � differ
merely by a factor 2�. As to the wavelength, its value in K� can be found from Equa-
tions (28) and (24) as
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The same also follows from Equation (22) by using � � c
f

.

Thus, there is no “wavelength contraction” of the kind described in the above state-
ment. If the system K� is moving in the direction of the light beam (that is, the
source of light is moving away from us), we have the “+” sign in Equation (29), and
the measured wavelength will be greater than that in K! When moving toward the
source of ray (the source of light is moving toward us), we have the “–” sign in the
same equation, and the observer in K� will indeed find the light waves shortened.
However, this “contraction” has little in common with the Lorentz contraction, and
differs quantitatively from the latter by an additional factor (1 + v/c)–1.

The conclusionabout relativity of length that we have previously discussedpertains to
sizes of material objects or distances between them. However, the size of a material
system is not exactly the same thing as the wavelength, which is a characteristic of a
periodic process. This difference manifests itself most clearly, for example, in the fact
that the wavelength can be measured in a procedure (interference and diffraction ex-
periments), which is different from measuring the size of a material body.1)

As a result of this difference, these two lengths are affected differently by the change
of reference system: while the length of a rod diminishes in any system moving along
the rod, regardless of the direction of motion, the wavelength in such a system can be
either greater or smaller than in the original system, depending on the direction of
relative motion of the source and detector.

Suppose we have a rod in system K, whose length l is equal to the wavelength of ra-
diation propagating along the direction of the rod in this system. In any other system
K� moving relative to K, the length of the same rod will not coincide with the new
wavelength. It can be said that the length of the rod and the wavelength � transform
differently when we switch from one reference frame to another. This means that
the relation � = l, which was established in system K, will not hold in other systems;
this relation, it is said, is not covariant with respect to Lorentz transformations. In-
deed, comparing Equations (28) here and Equations (51) in Section 2.8 (with primed
and unprimed coordinates swapped!), we will not obtain in the system K� the similar
relation �� = l �, but instead

�� � �

� �v� 1� v
c

� � � l

� �v� 1� v
c

� � � l �

1� v
c

	� l � �30�
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1) According to quantum mechanics, all material
objects possess wave properties, which become
prominent for bodies with a sufficiently small
mass. Diffraction of electrons, neutrons and
even atoms is a well known phenomenon.

This phenomenon can be only used to mea-
sure the corresponding wavelength which is
associated with the motion of these particles.
This so-called de Broglie wavelength has not-
hing to do with the size of a particle.



Finally, as to the speed of light, it is easy to show by calculating the product ���� that
no change in its value is observed in system K� :

c � � ���� � w �

k �
� w

k
� c �31�

in complete agreement with the invariance of the speed of light.

5.4
Predicaments of relativistic train

In this section we shall discuss what had at first emerged as an apparently unsolva-
ble paradox. The paradox is closely linked to the relativity of length, which we have
already considered in some detail in Section 2.8. We will hereafter consider the para-
dox as a dispute between the two opposing sides.

… The general public was alerted to the implications of the length contraction para-
dox after a superpower on planet Rulia had come forth with an ambitious Project RT
(Relativistic Train). The problem first popped up with the question: what would hap-
pen when such a train has to cross a canyon or river? Here I can give a very brief
and simplified description of the problem, retaining only the most essential details.
Imagine a train that has to pass a deep canyon. The train just fits across the canyon,
so that its proper length Lt is equal to the proper length Lb of the bridge (Fig. 5.3):

Lt � Lb � L0 �32�

where L0 stands for the comon proper length of the bridge and the train. Originally
the bridge had been designed to sustain the train’s weight W0 = m0 g , where m0 is the
rest mass of the train and g is the acceleration due to gravity on Rulia. The prelimin-
ary tests at low speeds were successful. The train had smoothly passed the bridge.
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Now, imagine this train moving with the speed close to c. Then it could fly over the
canyon with even no bridge at all. The crossing time would be so small that the train
would have practically no time to fall down by a tiniest increment in order to feel the
obstacle. Let us, for example, estimate the distance the train on Earth would fall
while flying across a canyon 1 km wide at a speed V = 200000 km s–1, that is, two-
thirds the speed of light. The time it takes for the front of the train to cross the can-
yon is t = L0/V = 5 × 10–6 s. Denoting the vertical direction as y and entering the data
into the equation y = (1/2) gE t2 with gE = 9.8 m s–2, we find y = 1.23 × 10–10 m, which
is about the size of an atom. It is smaller than the finest irregularities of the rails‘
surface and definitely less than the distance the Earth’s spherical surface curves
away from the flat plane over a horizontal shift of 1 km. In other words, the curva-
ture of the train’s path would be less than the curvature of the Earth’s surface. Such a
train would, with even no bridge in place, fly off the Earth rather than go down, since
its speed would by far exceed the escape speed for Earth (which is just 11.2 km s–1)
(Fig. 5.4). Apart from these, there is a finite time factor associated with the breakup of
a bridge or any other system under an excessive force. A certain time is needed for a
bridge to disintegrate and let the train down; this is the time necessary for a given
force to do corresponding work. And this time for any real bridge is considerably
greater than 5 × 10–6 s needed for the train to cross the bridge in our example.

But we are now concerned with the conceptual aspect of the problem rather than
with technical one. Therefore, in order to avoid purely technical details obscuring
the problem, we will represent a real system by its idealized model [19]. We will
make the following assumptions: both the train and the deck of the bridge are infi-
nitely thin, so that in the case of a crash it would take no time for the train to fall
through the deck; the deck itself is ideally straight. In other words, Rulia is so huge
that its surface is curved less than would be even the trajectory of a relativistic train
over an unbridged canyon. We therefore need not bother about the escape prevent-
ing the crash, since there would be no escape for the train under these conditions.
Astrophysicists would say that such a planet just falls short of becoming a huge
black hole. For us, however, the assumption about Rulia’s size just means that to a
high accuracy we can consider the corresponding area of the planet’s surface as flat,
and the gravitational field within this area homogeneous. Accordingly, the train’s tra-
jectory in the case of a crash would be that of a projectile – a well known parabolic
path from introductory college physics. We also suppose that the bridge is made of a
highly idealized material that responds instantaneously to an applied force. It breaks
instantaneously (in its own reference frame) under the whole train when the load
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Fig. 5.4 An escape trajectory of a rela-
tivistic object. The trajectory’s curvature
is highly exaggerated. (a) The tangent to
the planet’s surface; (b) the escape
trajectory; (c) one of the planet’s meri-
dians.



reaches a certain critical limit. We assume that this limit only slightly exceeds the
weight of the stationary or slowly moving train.

We also assume that all technical problems associated with the design and launch of
a relativistic train have been successively solved.

Now, after all these assumptions, the question is: how would the motion with relati-
vistic velocity affect the train and the bridge? Will the bridge sustain the train or
does it need to be reinforced? Will the train fly over the canyon or not?

An international team of experts from Earth had been invited to address the pro-
blem. Among the team members there was an engineer who had once worked at
SSC (Superconducting Super-Collider) and then carried out some interesting experi-
ments with Mr. O’Bryen during the latter’s space missions. The engineer’s opinion
was unequivocal: the bridge under given conditions would not sustain the load, and
the train would crash. The underlying reasoning is simple and straightforward.

“At a speed V close to c,” the engineer said, “the train will undergo a longitudinal
length contraction, so its length will be

lt � ��1 �V� L0 
 L0 �33�

and its weight will accordingly increase due to the relativistic increase of the mass
[Eq. 8, Sect. 2.1]:

W � mg � m0 � �V� g �W0 � �V� �W0 �34�

Therefore, the bridge must collapse, and the train will crash, smashed against the
opposite wall of the abyss.”

This conclusion is illustrated by Figure 5.5, in which, of course, the distance that the
train would fall is highly exaggerated, to emphasize the result.

The engineer had encountered formidable opposition from the Chief Expert, who
turned out to be one of the staunchest proponents of the Project. The Chief Expert
was a very important man. He was so important that nobody has either heard or
dared to ask about his real name. Everybody had respectfully referred of him as Mr.
Ex, emphasizing his undisputable Expertise in the field of relativistic engineering.

“Ladiesand gentlemen,”Mr. Exsaidamidst theawedhush, “if you want toseea realpic-
ture of the phenomenon, look at it from the viewpoint of the train’s passenger. You then
will see something different from the scenario conjured up by Mr. Fletcher (this was the
engineer’s name). The canyon with the bridge passes rushing by your train. The width
of the canyon and the length of the bridge undergo relativistic length contraction:

lb � ��1 �V� L0 
 L0 �35�

You can see from this equation that they are much shorter than the train.”
Mr. Ex has illustrated this result by Figure 5.6 showing a ridiculously narrow crevice

under the train.
“The train’s weight,” he went on after a significant pause, “will increase from its rest

value W0 up to the value W = � (V) W0, as stated by Mr. Fletcher, but for a different
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Fig. 5.5 The crash of relativistic
train as expected to be observed by
the engineer. The contracted and
overweighted train collapses the
underlying part of the bridge. The

train slips down through the gap
formed and traces out a parabola
(the curvature of which is highly ex-
aggerated).

Fig. 5.6 The canyon with the bridge as observed by a
train’s passenger (in Mr. Ex’s presentation).



reason. Since the planet is now moving relative to the train, the planet’s mass M0 un-
dergoes a relativistic increase:

M � � �V�M0 �36�

This will cause an increase in both the planet’s gravitational pull and corresponding
acceleration due to gravity:

g � � G
M

R2
0

� G
M0

R2
0

� �V� �37�

where R0 is the planet’s radius. The resulting weight of the train will be

W � � m� g � � m0 � �V� g �W0 � �V� �W �38�

To Mr. Fletcher’s credit, this particular piece of information about the train’s weight
in his report turned out to be correct. But, Ladies and Gentlemen,” Mr. Ex concluded
triumphantly after another significant pause, “the point is that only a small fraction
of this weight will fall atop the bridge, the rest being supported by the ground. As
you can see from Figure 5.6, this fraction is the same as the shaded fraction of the
train’s proper length L0 that fits into the contracted bridge:

lb
L0
� ��1 �V� �39�

The resulting load on the bridge will be only �–1 (V) W = W0. It is the same load as
that produced by the stationary or slowly moving train. But, as you all know, the
slowly moving train has successfully crossed the bridge.”

Mr. Ex made a third pause and fired his last victorious shot:
“We come unavoidably” (he stressed the word) “to the conclusion that the train will

pass safely across the canyon – for two reasons. Geometrically, the train cannot go
down because it just does not fit into the canyon’s width; physically, it cannot go
down because only a fraction of its full weight bears upon the bridge, and the frac-
tion just small enough for the bridge to sustain. Geometry and physics, the two
most general and established sciences about Nature, both give the same answer.”

The final glorious scene followed after the engineer had been given the opportunity
to reply.

“Sir,” said the engineer, “as we all know, Relativity grants equal rights to all inertial
observers. Therefore, a ground-based observer deserves the same respect as the pas-
senger of the train, and his conclusion must be considered with equal attention.
And if you do not see any error in my reasoning, then …”

“Young man,” Mr. Ex snapped, “it is not my business to look for errors in your rea-
soning. You had better find one in mine.”

Mr. Ex probably tried to imitate a famous Russian physicist, Lev Landau, who had al-
legedly been the author of the above aphorism. And, although the engineer had sus-
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pected that Mr. Ex was not a Landau, he could not, at the height and heat of the mo-
ment, spot any error in his opponent’s argument. After a moment’s silence, the audi-
ence burst into applause, and the project had been accepted. To make his victory
more impressive, Mr. Ex even volunteered to board the experimental train (which
was originally planned to be operated under remote control) and personally carry out
all the measurements during the first relativistic test. It was decided to design a spe-
cial cockpit for Mr. Ex. At the insistence of the Safety Board, the cockpit was to be in-
stalled at the rear of the train and equipped with an ultra-fast catapulting system.

The night after the meeting the engineer found what he believed to be an inconsis-
tency in the Mr. Ex’s treatment of the problem. He wrote down a detailed description
of his solution and mailed it to Mr. Ex together with the letter of his resignation
from the Project.

The essential parts of the engineer’s solution ran as follows.
In the problem discussed we have a logical paradox that goes beyond simple relativ-

ity of length. The latter paradox is easily resolved by saying that the statement “The
train is shorter than the bridge” is correct, and the statement “The bridge is shorter
than the train” is also correct. If you ask how the two mutually exclusive statements
may be both correct, the answer is that they are not mutually exclusive, because the
physical property “length” is not absolute. It depends on the reference frame used
when measuring the length of an object. The above two statements correspond to
the two different reference frames. The first is associated with the bridge and the
second with the train. Therefore, there is no paradox here, and both observers may
be right – with the caution that each speaks for his or her own reference frame.

But when we speak about what happens to the train, we come to a statement of a dif-
ferent nature. It is a statement about an occurrence, not about a physical property
that can be relative. An occurrence is something absolute, something that can be re-
corded by any observer. The reader can recall the examples with the number of pas-
sengers in a car or chemical composition of the bullet in the Introduction. Those
were the examples of an absolute physical fact. Likewise, the train’s crash (or its ab-
sence) is an absolute physical fact. If the train crashes, the event can be observed
from any reference frame. If not, then nobody will observe any crash, no matter
what the reference frame. The train either crashes or not, without any reference to a
system of reference. Therefore, if one observer predicts that a certain condition will
cause the train’s crash, whereas the other holds that this condition insures safety,
someone must be wrong. Who is?

In his report, the engineer indicates two errors in Mr. Ex’s argument. The first was
the statement that the gravity force in the train’s reference frame was the same as in
the engineer’s one [Eqs. (37) and (38)]. That was wrong because it did not take into
account the length contraction of the planet itself. Mr. Ex wrote Equation (37) (the
Newtonian expression for g �), which holds only for the spherically symmetrical
source of gravity. But because of the length contraction, the planet as observed from
the relativistic train is an oblate ellipsoid (Fig. 5.7). Apart from the planet’s mass
being increased by a Lorentz factor � (V), its longitudinal diameter decreases by the
same factor. This causes an additional increase in the gravity force exerted on the
train. The parts of the planet symmetrical with respect to the equatorial plane P (e.g.

915.4 Predicaments of relativistic train



A and B) get closer to the train, which results in the increase of the gravitational
force on the train. Also the angle subtended by the segment AB at T decreases, so
that the corresponding forces FA and FB exerted on the train work in greater accord,
which produces an additional increase in the resulting force.

The argument with individual forces as depicted in Figure 5.7 is not precisely accu-
rate. It gives us only a feel as to why the resulting weight of the train measured by its
passenger must be greater than W. According to the theory of relativity, a force exerted
on an object by a system of moving masses at a given instant is not determined by the
positions of the masses at the same instant. A proper account should be taken of the
retardation time needed for a gravitational perturbation from each moving mass to
reach the object. If we want to obtain a quantitative result, we have to write down the
relativistic expressions for all retarded forces due to all small masses constituting the
moving planet, and add them, that is, to perform the integration. However, we can get
the result more easily by applying the general transformation rules to the force.

According to the relativistic equations of motion, we have for the gravity force

Fg � dPy

dt
�40�

where Py is the vertical component of the 4-momentum of the train. But this compo-
nent, being transverse to the direction of train’s motion, behaves as the transverse
spatial dimension (see Sections 4.1 and 4.4!): it remains invariant under Lorentz
transformation. The force Fg therefore transforms as the reciprocal of dt, that is

F �g �
dP �y
dt �
� dPy

dt �
� � �V� dPy

dt
� � �V� Fg �41�
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Fig. 5.7 The planet Rulia as
observed from relativistic train
(engineer’s presentation). The
planet is rushing to the left with
a speed V. TM is a local vertical
at T. A and B are the two oppo-
site points on the contracted
Rulia. The forces FA and FB ex-
erted by masses at A and B on
Tare larger than in the refer-
ence frame associated with Ru-
lia because: (1) the masses are
larger and (2) they are closer to
T. This picture ignores retarda-
tion of forces exerted by a mov-
ing object.



In other words, Equations (37) and (38) written by Mr. Ex are wrong. The transverse
force is not the same in the two different inertial frames! This is precisely what Equa-
tion (33) in Section 4.2 on relativistic dynamics tells us: if the force on the train is
Fg = W = � (V) W0 in the engineer’s reference frame, it would be

F �g �W � � � �V�W � �2 �V�W0 �W �42�

in Mr. Ex’s reference frame (Fig. 5.8). It causes a corresponding increase in the acce-
leration of a free fall:

g � � �2 �V� g � � �V� g �43�

There is deep irony in the fact that just when Mr. Ex had so condescendingly
acknowledged the correctness of the engineer’s conclusion about the gravity force
being equal to � (V) W0, he was himself wrong in applying this conclusion to his
reference frame. As we had found from geometry of an ellipsoid and, more gener-
ally, from Equation (40), both the acceleration g � and the gravity force in Mr. Ex’s
reference frame are much greater than in the engineer’s. Therefore, even a small
fraction of the train that fits into the bridge will, contrary to Mr. Ex’s expectations,
cause a much greater burden than the bridge can hold. This was the first of
Mr. Ex’s blunders. The second was about his “geometrical” treatment of the pro-
blem.

According to Mr. Ex, the fact that the train in his reference frame will not fit into the
narrow crevice must prevent the train from crashing. But it does not. The train can
crash piecemeal, bending and going down the crevice in small increments, one at a
time (Fig. 5.9). From a passenger’s perspective, the fall would be accompanied by a
continuous deformation. First the front end goes down and is smashed against the
opposite wall of the crevice; this gives room for the following parts to do the same;
and this goes on until the whole train is swallowed up by the abyss. Instantaneous
snapshots of the process show that the falling train consists nearly all the time of
two different parts: one still horizontal, and one dangling above the crevice. The for-
mer is straight and the latter is curved down. The closer to the front, the steeper is
the slope of the curve. After the front touches the opposite wall of the crevice, there
emerges also a third part, common for all observers – the one smashed against the
wall – but we do not consider it.
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Fig. 5.8 The gravity force (a) on the stationary
train, (b) on the moving train (V�0) in the engi-

neer’s reference frame, and (c) on the train in Mr.
Ex’s reference frame (V�0, Rulia is moving).



From the moment when the train’s front dives down, we can no longer speak about
“the train’s reference frame,” because the train is no longer one rigid body. It is more
like a fluent combination of rods and hooks, continuously changing from more “rod-
dish” to more “hookish.” We shall under these circumstances refer to Mr. Ex’s refer-
ence frame, rather than the train’s reference frame, since Mr. Ex, presumably located
at the train’s rear, would keep moving in a straight line nearly all the time until the
very end (Fig. 5.9).
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Fig. 5.9 The train crash to be
observed by Mr. Ex (engineer’s
presentation). Three successive
moments of crash are depicted
here as (1), (2),and (3). The
train is slipping down through
the gap in the moving bridge.
C is the broken fraction of the
bridge.

Fig. 5.10 Various cuts
through a dumbbell
illustrate its various
possible two-dimen-
sional pictures.



Now, pit this picture against that observed by the engineer: the train going down all
at once, in one piece, keeping the horizontal position all the time. One and the
same thing is a totally straight rod for some observers, and a continuously changing
combination of straight and curved lines for others. How can this be? Well, it is just
one of those weird pictures of the world which, for all their strangeness, turn out to
be correct and reasonably explainable. The shape of an object is a relative physical
property. What we call shape is just a three-dimensional cross-section, cut trough
an absolute four-dimensional structure in Minkowsky’s world. Such sections are dif-
ferent for different “cuts” just as are two-dimensional sections cut through a three-
dimensional object (Fig. 5.10). The way the object looks now is not the same for
everyone because now is not one instant for everyone. In our case, the situation can
be made clear if we represent the train by a moving segment and draw its world
sheet in space–time (Fig. 5.11). It can be clearly seen from Figure 5.11 that what Mr.
Ex would observe now are different moments in the train’s history observed by the
engineer, and vice versa. The two events A� and B� observed simultaneously by Mr.
Ex occur at different moments to the engineer: the event A� at the front happens
after the event B� at the rear. This means that the front was further down the crevice
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Fig. 5.11 The “world sheet” of the
train. Its instantaneous cuts in the
engineer’s reference frame (K) and
that of Mr. Ex’s (K�) give the shapes
of the train seen by the two obser-
vers. All cuts in K are straight seg-
ments parallel to the x-axis (three
successive lines AB – before, at,
and after the moment of gap forma-
tion in the bridge.) The cuts in K�
are intersections with vertical
planes parallel to the x �-axis. Their
shapes depend on time t�. The first

line A�B� (when looking in the direc-
tion of increasing ct�) is a straight
segment; it represents the train’s
shape before the train reaches the
bridge. The second line is com-
posed of the straight and curved
parts, and gives the shape of the
train soon after the bridge had
started to collapse (the collapse
does not happen at one instant in
K� !). The third cut is a curved line; it
represents the train’s shape when
its rear passes the edge B.



than the rear when they were observed simultaneously by Mr. Ex. In other words,
Mr. Ex observes the ends of the train at different horizontal levels. Therefore, the
line going from A� to B�, that is the form of the train, turns out to be tilted in his re-
ference frame. The situation is in this respect similar to that with the rising water
in Section 2.10. The difference is only in the initial conditions: first, the “water”
(the train) is sinking now, and sinking with the acceleration; second, the train re-
mains horizontal in the engineer’s reference frame, rather than in Mr. Ex’s refer-
ence frame (we also have Mr. Ex instead of Mr. O’Bryen, but this is irrelevant to
physics). Now, if the point A� is “captured” after point B� in the engineer’s reference
frame, it is sinking faster. We know that the tilt is proportional to the velocity v of
sinking. Therefore, the tilt at A� is steeper than that at B�. Thus we obtain, at least
on the qualitative level, an account of the observed features of the train’s crash in
Mr. Ex’s reference frame.

The engineer’s letter also contained a more detailed quantitative description of the
transition process between the straight and the “hooked” parts of the train. I bring it
along here for the needs of more sophisticated readers. Let us place the origins of
the two discussed reference frames at points B and B�, and start to count time from
the moment when the origins of both systems coincide. Then the train’s vertical dis-
placement in the ground-based reference frame K is

y �
0 � t � 0

� 1
2

g t2 � t � 0

�

(44)

In the passenger’s reference frame K� the same displacement can be obtained by just
applying Lorentz transformation to y and t (note that transverse displacement is the
same in both systems!):

y � � y �
0 � for t � � V

c2 x � � 0

� 1
2

g �2 �V� t � � V x �

c2

� �2

� for t � � V
c2

x � � 0

�

�

�

�

�

�

�

(45)

As we see, an observer co-moving with the train’s rear would measure the accelera-
tion of the falling part of the train as g � = �2 (V) g, in complete accord with Equation
(43). The instantaneous velocity of the train’s fall at a point x � is

v � �x �� t �� �
0 for t � � V

c2 x � � 0

�g � t � � V
c2 x �

� �

for t � � V
c2

x � � 0

�

�

�

�

�

(46)

One might argue that Equation (46) cannot be true because it gives v � (x �, 0) =
– g � (V/c2) x ��0 for the initial velocity of fall at the zero moment t � = 0, whereas the
fall in a given case begins from rest (v � = 0). But the zero moment t � = 0 is not the in-
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itial moment of fall for a point x � on the train. Recall that the zero moment has been
determined as the moment when the rear of the train B� coincides with the edge B of
the bridge. By this time all the points x � to the front [that is, satisfying the second
condition (45)] have already fallen down a certain distance and acquired non-zero
vertical velocity. This velocity is given by the second term in Equation (46).

The instantaneous shape of the train in the system K� is automatically described by
Equations (45) as consisting of two parts. One is straight and the other one is curved
down with its tilt increasing for greater x �. The expression for a local tilt at a moment
t � is obtained from Equations (45) by taking the derivative

S � �x �� t �� � dy �

dx �
�

0 for t � � V
c2

x � � 0

�g �
V
c2 t � � V

c2 x �
� �

for t � � V
c2

x � � 0

�

�

�

�

�

(47)

Using the second of Equations (46), the last equation can be rewritten as

S � �x �� t �� � tan � �
0 for t � � V

c2
x � � 0

� V v �

c2 for t � � V
c2

x � � 0

�

�

�

�

�

(48)

in direct agreement with the engineer’s result for the tilt of moving water surface in
Section 2.10.

The transition point x �V between the “roddish” and “hookish” parts of the train is de-
termined by condition t � + (V/c2) x �V = 0, that is

x �V � �
c2

V
t � �49�

For each moment t � < 0 all x � to the left of x �V belong to the straight segment; all x � to
the right of this point belong to the “hooked” part. The succession of different snap-
shots of the process at different moments in both systems is shown in Figures 5.5
and 5.9. While the train falls as one horizontal piece in Figure 5.5, it slides gradually
down in Figure 5.9 through the narrow slot in the bridge. In both reference frames,
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Fig. 5.12 An instant in the
process of train crash depicted
by Mr. Ex in his response to the
engineer’s letter. The separation
point x �u between the straight
(horizontal) and curved part of
the train appears to coincide
with edge B of the bridge. They
appear to slide together to the
rear of the train in Mr. Ex’s
frame.



the slot is the �–1 (V) fraction of the whole bridge. This picture completes the engi-
neer’s description of the process as expected to be observed from the train’s cockpit.

A few days later the engineer received an official note of acceptance of his resigna-
tion. He was surprised to find an attachment written personally by Mr. Ex. The letter
started as follows:

“Sir,
Since you have made an attempt to find an error in my calculations, I am now re-

turning the favor by indicating one in yours.”
“Hm“, grinned the engineer, “so we are promoted from a young man to Sir along

with our resignation. What a twist of a career!”
But what he read next withered his grin.
“Look at Figure 5.12. It is drawn following your own description of the train’s fate as

observed from its rear. Clearly, the separation point between the two parts of the
train coincides with the point B (the left edge of the bridge). It is at this edge where
the train starts bending down in your scenario. As time goes by, the point x �V and the
edge B both slide together towards the rear of the train. Your Equation (49) states
that they both move down the track with a speed

u � x �V
t �
� c2

V
�50�

This result of yours is wrong for two reasons. First, the speed u is greater than the
speed of light! It thus follows from your treatment that the edge B moves faster than
light, which is in flat contradiction with the Theory of Relativity. Second, this result
is also in ridiculous contradiction with the initial conditions of the problem, accord-
ing to which the speed of the edge is less than c and equals V. And, finally, your beau-
tiful pictures in Figures 5.9 and 5.11 of the bent train may well represent a stick of
putty, but not a real train. Our train is rigid, it presents stiff resistance against any
deforming force. Therefore, your pictures contradict reality. This shows that all the
rest of your reasoning was wrong, and you could have made better use of your free
time by visiting a night club. I wish you all success in whatever career you choose.”

All the rest of the day the engineer was deep in thought. Mr. Ex’s argument about
Equation (49) was irrefutable. The engineer must have made a grave error. And his
pictures in Figures 5.9 and 5.11 indeed seem incompatible with the train’s rigidity.
Where could he have gone wrong? Up to this moment everything had seemed to fall
so neatly in place, but after this moment …

Instead of visiting a night club, the engineer spent the night over his papers. The
next morning he mailed his second letter to Mr. Ex. It is not known for sure whether
Mr. Ex had enough time to give full consideration to this letter.

A few months of preparation had passed with much fuss and fanfare. But on the eve-
ning of the day of the test the mass media reported about the miserable failure of
the Project RT. The train had crashed into the canyon in the very first test. The only
system that proved to be efficient was the catapult, that launched the cockpit with its
passenger into space and then delivered it back to Earth. Mr. Ex was found to be safe
and sound in all respects except that he was unable to speak for a considerable
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length of time, during which an investigation had been carried out. The investiga-
tion found, among other things, the engineer’s letters with the full account of the
problem.

The engineer’s account, together with the comments of other experts,was published
in the “Final Report” of the investigating Committee. The following gives a simpli-
fied description of the engineer’s last letter to Mr. Ex. The letter starts with the ac-
knowledgement that Mr. Ex’s statement about the superluminal velocity of the se-
paration point x �V (let us call it point D) was irrefutable. It follows directly from Lor-
entz transformations. The point D does move faster than light! But this does not in
any way undermine the validity of the engineer’s results, because point D does not
coincide with the edge B, except for the very last moment when they both merge at
the rear of the train. Let us take a close look at Figure 5.13. It corresponds to train’s
velocity V = 0.968 c, for which � (V) = 4. Accordingly, the train gets contracted to one-
quarter of its proper length (and of the bridge’s length) in the engineer’s reference
frame. The equal fraction of the bridge breaks under the train and falls into the can-
yon. In Mr. Ex’s reference frame it is the bridge that shrinks down to one-quarter of
its proper length; therefore, the gap in the bridge, being only one-quarter of the
whole bridge, is just (1/4)2 = 1/16 of the train’s proper length. Figure 5.13 a depicts
the moment when the train is 1/16 of its full length above the canyon. Since the
gravity force between the train and Rulia is, according to Equation (42), 16 times the
weight of the stationary train, the load on the bridge is at its limit. This is the mo-
ment when the bridge is just about to break. The train begins to bend where the
bridge begins to break. But it is not at the point B! The gap in the bridge forms in-
stantaneously in the engineer’s reference frame. But it is not one instant in Mr. Ex’s
reference frame! In his, the point on the bridge right under the train’s front (point
A �) gives in first, and it is here where the train starts to bend, shoving its head under
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Fig. 5.13 The initial (a) and fi-
nal (b) moments of the train
crash to be observed in Mr. Ex’s
reference frame (engineer’s pre-
sentation). The separation
point between the straight and
curved part of the train (point
D) does not coincide with B ex-
cept for the very last moment of
train’s crash. The edge B moves
to the left slower than light
(with the speed V), and separa-
tion point D moves faster than
light, so that the product of
their speeds is Vu� = c2. It is in-
structive to compare this figure
with Figure 5.5 (engineer’s re-
ference frame). There, both the
train and the falling part of the
bridge stay horizontal and re-
main on one (sinking) level.



the remaining part of the bridge on the right. The part on the left (which is already
doomed to be broken), remains at this moment strictly horizontal, and so does the
train, of course. There is thus an initial separation equal to the distance A�B (1/16 of
the train’s proper length) between points D and B. Only some time later (at the zero
moment t � = 0) will the edge B of the bridge be observed as giving in. But, by this
time, the edge B will reach B �, so that both points B and D will have merged only at
the rear of the train. By the zero moment t � = 0 the process of train’s bending in Mr.
Ex’s reference frame has been completed, and the train is converted entirely from a
rod into a hook. This is where relativity of time reveals itself in its full sway! In order
for D to catch up with B at the rear of the train, it must move faster than light while
the edge B is, as it should, moving slower than light with the prescribed velocity V.

The fact that the separation point moves faster than light does not by itself contradict
anything, since there is no energy transfer associated with this motion. We will see in
Chapter 6 that this kind of motion is a rather common physical phenomenon.

Now, let us describe the whole process symbolically. The time t �D that it takes the se-
paration point to move along the train from its front to the rear is

t �D �
L0

u
� V

c2 L0 �51�

The time t �B that it takes the edge B to reach the train’s rear is BB �/V , where BB � is
the original distance between them when the bridge started to break. From the above
numerical example and Figure 5.12, this distance is readily found to be

BB � � L0 � ��2 �V� L0 � 1� ��2 �V�
� �

L0 �52�

Therefore,

t �B �
BB �

V
� V

c2 L0 � t �D �53�

It is therefore proved that, although the edge B moves, as any physical body should,
slower than light, it needs the same time to reach the rear of the train as the super-
luminal point D, because it has to travel a shorter distance (BB � < L0). The boundary
between the “roddish” and the “hookish” parts of the train starts from the train’s
front and moves to its rear faster than light. The product of these two velocities, ac-
cording to Equation (50), is equal to uV = c2.

Ironically, the superluminal speed of point x �V, which, in Mr. Ex’s opinion,was a fatal
flaw of the engineer’s description, actually resolves the problem with the “rigid” train
resisting any bending force. No matter how rigid the object, the bending forces be-
tween its atoms cannot transfer information about atomic displacements faster than
light. Consider a train’s atom that starts to fall together with the collapsing part of
the bridge. The adjacent atom finds itself also on the collapsing part and thereby al-
ready in a free fall before it knows that its neighbor had already started to do so. Be-
cause the process of falling is propagating along the train faster than light, there is
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no time left for internal forces to respond. In this respect, the train, bent as it is in
Mr. Ex’s reference frame, remains physically non-deformed, so that the engineer’s
presentation accurately describes reality without contradicting anything.

This completes the description of a picture that the train’s passenger would observe
in the fleeting time interval before the crash if he or she were unlucky enough to re-
main there. Both physics and geometry in this description go hand in hand and see
to it that there are no privileged observers, but everybody gets the same facts. The ob-
served features and instantaneous physical characteristics of the phenomenon may
be dramatically different in the two systems, but in either system they contrive to
bring about the same result. The train that crashes in the engineer’s reference frame
crashes in the passenger’s one. This is the way in which the relativity of certain phy-
sical quantities ensures the absoluteness of physical events.

5.5
Dramatic stop

Alice was watching a relativistic train of proper length L0 = 50 m, approaching a nar-
row canyon of length l0 = 10 m. The speed of the train was such that the Lorentz fac-
tor � (V) determining the length contraction

L � L0

� �V� � � �V� � 1� V2

c2

� ��1
2

�54�

was equal to 5, so that the train measured only L = l0 = 10 m in the ground-based re-
ference frame. Then at a certain moment the train must just fit into the bridge
across the canyon (Fig. 5.14 a).

“What happens,” Alice thought, “if at this moment the train is suddenly stopped by
a huge braking force, applied simultaneously to all its parts (assume that produced
heat quickly dissipates).” The question seemed a real puzzle to Alice. On the one
hand, the stopped train should, according to Equation (54), measure its proper
length L0 = 50 m in Alice’s reference frame, which means that its front and rear
would each stick 20 m from the respective edges of the bridge (Fig. 5.14 b); but, on
the other hand, if the equal forces are applied to equal parts of the train, then all the
parts should have equal acceleration (or deceleration, for that matter), so that the
length of the train cannot change (Fig. 5.14 c).
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Definitely, there must be something wrong with our logic here. A brief contempla-
tion shows that when we talked about the applied force we were not careful enough
with the words “simultaneous” and “force.” We should have asked two crucial ques-
tions:

1. Simultaneous – in what reference frame?
2. Is the braking force the only actor in the play, or there are other participants?

The answers to these questions would put everything in place. It turns out that the
outcome of the process dramatically depends on its mechanism [20–22].

So let us analyze the whole process as seen by the observers in two different inertial
reference frames: one originally associated with the train, and the other associated
with the bridge. We will first neglect the internal forces as compared with the brak-
ing force. Then we will take them into account and discuss qualitatively their role in
the length contraction effect described by Equation (54).

We invite Alice and Tom as the observers. Let Alice stay on the ground (system A)
and let Tom ride in the train before it stops (system T).

5.5.1
Braking uniformly in A

We consider first the mechanism in which the braking forces are dominant and are
applied to all parts of the train simultaneously in system A. We start with Alice’s ac-
count of the process. The moment Alice sees the rushing train all fit into the bridge,
she records the readings (zero time) of her synchronized clocks at the two opposite
sides of the canyon. The train’s length measured by Alice after the stop turns out to
be 10 m – just as it was before the stop. This is precisely what one would expect
from the dynamics of motion: if we apply equal longitudinal forces simultaneously
to equal parts of the train, then all the parts will stop synchronously; this cannot af-
fect the size of the train. Thus, our assumption of the train slowing down simulta-
neously in all parts in system A is logically incompatible with the assumption of the
train retaining its proper length (50 m) after the stop. If the moving train comes to a
stop, and retains its proper length, then its length measured by Alice after the stop
must be equal to its length measured by Tom before the stop. The length measured
by Tom before the stop was 50 m. Therefore, Alice would expect to see the transition
from the 10 m length-contracted moving train to the 50 m stationary train, just as it
was depicted in Figure 5.14 b. But this is not what she actually observes. We therefore
conclude that the proper length of an object may change after its state of motion had
changed! Under the considered action of braking forces the proper length of the
train must change from 50 m before the braking to only 10 m after the braking.

This change must be caused by an actual physical deformation that compensates for
the disappearance of length contraction due to the stop. Accordingly, whereas Alice
sees no net change in the length of the train, Tom must see the train contracted dur-
ing the braking. If the theory of relativity is logically consistent, it must account for
this discrepancy between two observations. There must be a physical reason for de-
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formation of the train in Tom’s reference frame. We thus turn our attention to sys-
tem T – to Tom’s account of the same process.

Owing to the relativity of time, events simultaneous in system A are generally not si-
multaneous in system T, and vice versa. The coincidences of the ends of the train
with the sides of the canyon, which happen at the same moment (zero time) in A,
happen at different moments in T. Tom sees the bridge moving to the left down the
train (Fig. 5.15). The first event (the right edge of the bridge coincides with the front
of the train) happens earlier in Tom’s time than the second event (the left edge coin-
cides with the train’s rear). Applying the Lorentz transformation for time coordinates
of the two events, taking into account that these events both happen at t = 0 in sys-
tem A, and using Equation (54), we can express the time interval between the events
in T in terms of the proper length of the train:

�t � � V L0

c2
�55�

The length of the bridge as observed in system T must be much smaller than the
length of the train: Tom sees the moving bridge contracted down to one-fifth of its
proper length, that is, to l = l0/� = L0/�2 = 2 m. This is similar to the picture of the
canyon narrowed down to a crevice, seen by a passenger in the relativistic train in
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the previous section. This is also consistent with the just-mentioned fact that the
right edge of the bridge coincides with the front of the train before the left edge
reaches the rear of the train.

In the first of these events the braking force stops the train’s front relative to the
bridge. But in Tom’s reference frame the bridge is moving to the left. Therefore, Tom
sees first the front of the train grip firmly with the moving bridge, and dragged by it
to the left (Fig. 5.15a) This compresses the train! As the new fractions of the braking
train grip with the bridge, they become involved in motion to the left together with
the bridge (Fig. 5.15b). Thus the wave of compression forms and propagates to the
left along the train. The front of the wave separates the train into two parts: one un-
compressed to the left of the wave front, and the other compressed and moving to-
gether with the bridge, behind the wave front. So the wave front can be considered
as the running separation between the two parts. Just as the separation point on the
train in the previous section, here too the separation point runs down the train faster
than light. Also, as in the previous case, the superluminal motion of the separation
point does not contradict anything, because this point is just a moving boundary be-
tween the two regions rather than a physical particle. The compressed parts of the
train move together with the bridge slower than light. The separation point outruns
them because the new parts in front of it join this motion as they grip with the
bridge.

As in the previous case, we can find the superluminal speed of the separation point
between the two parts of the train. This point travels a distance L0 in time �t � given
by Equation (55) – essentially the same equation as used in Section 2.10. Thus,

u � L0

�t �
� c2

V
�56�

This superluminal wave of contraction stops when the separation point reaches the
rear of the train. And, because the compressed parts of the train were also moving to-
wards its rear, by the end of the process the train turns out to be contracted to the
size of the bridge (Fig. 5.15c).

During this process, we cannot consider the train as one reference frame. It belongs
to two different frames of reference: one to the left of the advancing wave front (sys-
tem T), and the other to the right of the wave front, but involved in motion to the left
with the bridge and the canyon (system A). The separation into two systems starts
from the whole train constituting one system T, and ends up with the whole train
constituting (together with the bridge) system A. This also reminds us of the situa-
tion in the previous section, when the train, bent over the collapsing part of the
bridge, no longer constitutes one rigid reference frame. The difference between the
two cases is that the bent parts of the train in Section 5.4 were moving in the direc-
tion perpendicular to its straight part, whereas now the compressed parts of the train
are moving along the train. In other words, the compressed parts of the train are
moving in the direction in which we measure its length. However, if one part of the
object is moving relative to the other in the direction of measurement, the two parts
cannot have a common rest frame as it is defined for a uniformly moving rigid ob-
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ject. The concept of a rest frame should in this case be generalized as a reference
frame where the total momentum of the object is zero. In our case such a reference
frame is not inertial because the total momentum of the train is not conserved owing
to its interaction with the bridge. Only in the end of the contraction process, when
the relative motion of the two parts of the train stops, can the train be assigned a con-
stant proper length again. However, this new proper length is now different from
the old one: the train shrinks down to the size of the bridge. The physical process re-
sponsible for this contraction is deformation of the material of the train under the
applied frictional force.

The deformation in this case is so severe that no solid body could actually sustain it.
A real train would be just destroyed in the described process, because it cannot be
“accordioned” down to 20 % of its original length and remain straight.

But here Alice interrupts the story.
“What deformation are you talking about?,” she asks. “I do not see any deformation.

All parts of the train are being stopped simultaneously. The distance between any
two adjacent particles along the train cannot change in such a process. Therefore,
there cannot be any change in the inter-atomic interactions, and if we manage to re-
move heat, the train cannot deform, let alone be destroyed.”

But if Alice takes a closer look at her experiment, she will realize that even with heat
instantly removed, what used to be the rigid train is now, at best, an exotic system
with unusually high mass density, glued to the bridge across its surface.

We can understand this outcome by taking a closer look at the hitherto neglected
atomic interactions and their role in the process.

Although it is true that we could, in principle, keep the inter-atomic distances con-
stant during the braking, it is not true that inter-atomic forces will remain constant
in this process [16]. The proper distance between two neighboring atoms in a typical
solid is about a0 = 0.1 nm (10–10 m). At this distance each atom is in a state of stable
equilibrium (or vibrates about its equilibrium position). Imagine inter-atomic forces
as springs connecting neighboring atoms. In equilibrium, the springs are neither
stretched nor compressed.

According to the principle of relativity, an equilibrium state of a stationary system
must be the same in any reference frame. Therefore, Alice and Tom must each ob-
serve such a state as a stationary chain of equidistant atoms separated by the distance
a0. Now, Tom, initially, has a train in such a state. Alice observes this state from her
bridge, and measures the inter-atomic distance along the train to be only 0.2a0. It
does not contradict anything, because the train is moving relative to her. If she man-
ages to stop the train without changing its length, she has after the stop a stationary
system with unchanged longitudinal inter-atomic distance 0.2a0. But this distance is
five times shorter than the one characteristic of the state of equilibrium! Alice begins
to realize that what she has is not an equilibrium state. It is a state with its atoms
crushed and squeezed together. The springs representing inter-atomic forces are
compressed to one-fifth of their normal length. This produces huge forces of repul-
sion between the atoms, which, if left unopposed, would destroy any real train. It is
due only to the incredibly strong external forces that the atoms of the train are being
kept in place after the stop.
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In a model that represents atomic forces by springs obeying Hooke’s law, a sudden
disappearance of external forces will send the system into longitudinal vibrations
around its natural proper size. If the vibrations are damped, the system will ulti-
mately relax to this size, thus restoring its proper length.

Although springs model real internal forces only approximately, the conclusion that
these forces act to some extent as the “keeper” of proper length does not depend on
the model. For instance, if we solve the Maxwell equations for a moving point
charge, we will find its field flattened in the direction of motion [16, 23]. Because the
point charge has no size, this flattening is an intrinsic property of the field as such,
depending only on relative motion between the charge and a reference frame, rather
than on the shape of the charge. It can be considered as the length contraction of the
field (Fig. 5.16). However, if the source of the field has a finite size, it has to possess
the same property because the Maxwell’s equations are self-consistent. The same is
true for all other forces, since they all obey the relativistic equations, which are
Lorentz-invariant. For a moving system, its particles and the equilibrium distances
between them must be all Lorentz-contracted along the direction of motion (Fig.
5.17 a,b).

When the train stops, the individual fields of its particles (as observed in A) restore
the shape characteristic for the stationary train, and the equilibrium distances in-
crease. If the particles themselves are not allowed accordingly to shift apart, their
fields become strongly overlapped (Fig. 5.17c), which produces huge repulsive
forces. If the external forces are suddenly removed, this repulsion may blow up the
train. If external forces stay, we will have the “post-stop” picture observed by Alice –
the dynamically compressed train with accordingly reduced proper length. However,
if the external forces weaken sufficiently slowly, the internal forces can restore the
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braking in A: stationary, outrageously deformed,
extremely unstable.
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Fig. 5.16 Electric field of a point charge: (a) stationary; (b) moving.



original proper length of the train. In this respect, the internal fields act as a mem-
ory, keeping information about proper shape of an object.

Alice could summarize this part of the discussion in the following way. Before the
stop, the train, although length-contracted, was not deformed, because the atomic
distances matched the shape of the internal field produced by moving atoms. After
the stop, even though the length of the train did not technically change in system A,
the train was deformed because the atomic distances no longer matched the equili-
brium shape of the stationary internal field. Our concept of deformation should be
refined to describe adequately this kind of process in relativistic mechanics.

In this thought experiment, not only the train as a whole, but also each separate car,
behaves first as a stick of putty, and only some time later as a rigid body. Therefore, in
cases with huge external forces acting during a very short time (less than the travel
time of the shock wave between the points of interest), we can first use the model of an
infinitely deformable object (in essence, such an object can be represented by its two
end points). Then we can try to find out how the internal forces change the results.

Whatever the model, we arrive at the description of the phenomenon, which, while
appearing different to different observers, is consistent for all of them and predicts
the final state upon which everybody agrees. To Alice, the train retains its initial con-
tracted size because the equal external forces are applied simultaneously to its equal
parts. Such forces can (and do) stop the train, but they cannot change its length. To
Tom, the train has been compressed by external forces because they did not act syn-
chronously. Such forces both stop and deform the train. Both agree that in the final
state the train is physically deformed and just fits into the bridge.

(Tom, as Mr. Ex in the previous section, boards the rear cockpit of the train. By the
end of the process, he is catapulted in the forward direction to continue his state of
motion.)

5.5.2
Accelerating uniformly in T

Tom now suggests that in order to conserve the proper length of the train, the external
forces should be applied to its ends simultaneously in his reference frame T, which is initi-
ally the rest frame of the train. Accordingly, we now start with the picture of the pro-
cess as observed by Tom. So imagine two jet engines at the ends of the train, and Tom
originally at the middle. Tom sees the canyon with the bridge rushing to the left.
When the bridge passes the center of the train, both engines are switched on to acceler-
ate the train in the same direction (Fig. 5.18). The left engine pulls to the left, stretch-
ing the train. The right engine pushes to the left, compressing the train. Both actions
together accelerate the train to the left without changing its length in system T. If the
engines are sufficiently powerful, the train acquires the speed of the bridge practically
instantaneously. In the final state, the train and the bridge both form one single
whole, and the edges of the train stick out of the bridge symmetrically on both sides.

This situation is “reciprocal” to the previous one. Tom and Alice exchange their roles.
Alice had seen the moving train stopped. Now Tom sees the stationary train acceler-
ated. Alice had claimed that the length of the train did not change. Now Tom claims
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the same. But since the length in system T had been the proper length, both now ex-
pect the proper length to be conserved.

However, very soon they notice that there is again something wrong with this result.
Take a closer look at what happened. Tom is no longer on the train. The train started
to rush from him the moment both engines roared in his system T. The engines in-
stantaneously accelerated the train to the speed of the bridge. They transferred all
the train at once from system T to system A. Tom, remaining in T, now observes the
train with its unchanged original length 50 m moving together with the bridge
whose length in system T is only 2 m. The ratio of these lengths is 25 : 1. Since both
objects are now moving as a single whole, any other observer will measure the same
ratio for their lengths. Therefore, Alice (who now sees the train and the bridge both
at rest in her system A) also must see the train to be 25 times as long as the bridge.
Because the proper length of the bridge is 10 m, she now measures the length of the
train as 250 m, instead of the expected 50 m!

How can we explain this result? There remains only one possible explanation: this
time the train must have undergone physical deformation (change in proper length),
causing it to stretch! And, what is most surprising, the stretch must by far (by a fac-
tor of �) exceed the original proper length of the train.

Let us try to imagine the same process as seen by Alice. She first sees the contracted
10-m train moving to the right. Then she observes two flashes indicating the ignition
of the jet engines. The crucial point here is that these two events are not simultaneous
in frame A (Fig. 5.19). First the rear engine of the train starts, immediately bringing
the rear to a halt. The front car keeps on moving, thus extending the train! The en-
gine at the right starts a certain time after it had passed by Alice. When it stopped,
the train and the bridge form a single whole; the rear and front of the train are
250 m apart, and positioned symmetrically on either side of the canyon.

This qualitative account by Alice does not explain the actual amount of the stretch.
We will outline here a more rigorous treatment using a simplified model mentioned
above: two end points instead of a train.

The system A moves relative to system T in the –x direction with a speed V. Let x1

and x2 be the coordinates of the left and right ends, respectively, of the train in sys-
tem T. Tom observes two simultaneous engine flashes at these points. He denotes
the times of these events as t1 and t2, respectively, and sets t1 = t2 = 0.
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Alice observes the same pair of events in her frame A. The space and time coordi-
nates of these events measured by Alice are related to their coordinates x1, x2, t1, t2 in
Tom’s system by Lorentz transformations. Alice applies these transformations, and
puts into them the zero values for both time coordinates t1 and t2. She then takes
into account that the positions of the rear and front of the train in system Tat the mo-
ment t1 = t2 = 0 are –x1 = x2 = (1/2) L0. She puts these values into Lorentz transforma-
tion, and obtains the expressions for coordinates x �1, x �2, t �1, t �2 of the same events in
her system A in terms of the proper length of the train and relative speed V.

According to her results, the end points of the stopped train are symmetrical with re-
spect to the center of the bridge; they stop at different moments of time t �2 > 0 > t �1.
The length of the stopped train is:

�x � � x �2 � x �1 � � �V� L0 �57�

For the time interval between the stops of the rear and the front of the train Alice ob-
tains

�t � � � �V� L0V
c2 �58�

Inserting the values L0 = 50 m and � (V) = 5, Alice obtains from Equation (57) �x � =
250 m – the number that had been inferred from Tom’s observations. For the time in-
terval between the stops of the end points of the train she obtains �t � = 8�10–7 s. The
reader can check these results by carrying out all the calculations that Alice had done.

Now, imagine the train as a row of equidistant cars, each with its own engine, and
all the engines fire simultaneously to stop the train at the zero moment in system T.
Then Alice would observe a succession of consecutive flashes of the engines, each
stopping its respective car, so that the pulse of flashes will run from the rear to the
front of the train. The pulse starts at point x �1 at the moment t �1 and stops at point x �2
at the moment t �2 in Alice’s reference frame. Therefore, its speed is

u � �x �

�t �
� c2

V
�59�
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is, from the viewpoint of Alice, a non-uniform

braking. (a) Right before the braking; (b) right
after the braking.



Again, the pulse propagates faster than light, but this does not violate any laws, be-
cause it is not associated with a signal or energy transfer.

Thus, simultaneous application of forces in T, with the atomic interactions turned
off, also fails to preserve the proper length. And again, both observers come,
although in different ways, to the same conclusion: in this case, contrary to the pre-
vious one, the train undergoes stretch.

How will this result change if there are internal forces? Let the end cars be con-
nected by a spring. Some time after the engines stop (the cars are released), the
stretched spring starts to contract. The system begins to vibrate around its equili-
brium size that corresponds to the relaxed spring. By definition, the size of the sta-
tionary spring in equilibrium is the proper length of the train. In our particular case,
the vibrations will not be symmetrical with respect to this size, because the stretch
exceeds the proper length (the spring must be very elastic!). However, if the vibra-
tions are damped, the system will ultimately relax to its natural size, thus restoring
its proper length.

5.5.3
Non-uniform braking

After the two failed attempts to preserve the proper length of the train in its transi-
tion between the two inertial frames, Alice and Tom decide just to stop the ends of
the train at the positions, shown in Fig. 5.14 b, where the proper length is conserved.
As we had initially expected for this case, the rear must stop at the 25-m mark to the
left of the center of the bridge, and the front must stop at the 25-m mark to the right
of the center. The spacing between the marks will be the needed 50 m. But because
the moving train was length-contracted, its ends cannot pass these markings simul-
taneously. First the rear of the train will pass the –25-m mark, and we should stop it
at this very moment. Only some time later, the front of the train will pass the +25-m
mark, and it must be stopped at this instant.

We now need to find these moments of time. We use again the model, in which the
train is represented by its two end points. Tom is moving in the middle. Tom’s posi-
tion is the origin of system T. The center of the bridge is the origin of system A.
Both observers set their personal clocks to zero when they pass each other. For the
train with the proper length L0, Alice would want to stop the rear and the front ends
at the marks:

x1 � � 1
2

L0 � x2 � 1
2

L0 �60�

respectively. When the rear point reaches the mark x1, Alice observes Tom being clo-
ser to the center of the bridge by half of the contracted train. The distance between
Tom and Alice at this instant is

D � 1
2

L0 � 1
2

L0

� �V� �
1
2

L0
�� 1
�

�61�
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The stopping of the rear point at mark x1 does not affect Tom’s motion. He passes by
Alice D/V s. later. Since the moment of their passing each other is set to be zero, the
moment when the rear end of the rod stops in A must be –D/V. Similarly, we find
that the front end of the rod must be stopped at the moment D/V. Hence the instants
of Alice’s time corresponding to the marks x1 and x2, are, respectively,

t1 � � 1
2

L0

V
�� 1
�

� t2 � 1
2

L0

V
�� 1
�

�62�

If, instead of only two end points, we imagined the train as a chain of cars, each
stopped by its individual engine one after another at equidistant moments, starting
at t1 and ending at t2, then Alice could observe the pulse of engine flashes rushing
from rear to front of the stopping train. The edge of the pulse separates two parts of
the train – one stopped and the other still moving. The speed of the separation point
can be easily found as

u � x2 � x1

t2 � t1
� L0

t2 � t1
� V

1� ���
� c2

V
1� ��1
� �

�63�

Again, the separation point moves faster than light. In the end, Alice sees the train
stopped in the position depicted in Figure 5.14 b. In the process she observed the train
being stretched from its Lorentz-contracted length L0/� to its proper length L0. But
she could only achieve this by stopping different parts of the train at different moments.

How does this process look from Tom’s viewpoint? Applying Lorentz transforma-
tions to coordinates x1, x2, t1, t2 [Eqs. (60) and (62)], we find the coordinates of the
same events in T:

x �1 � �
1
2

L0 � x �2 � �
1
2

L0 �64�

and

t �1 �
1
2

L0

V
�� 1
�

� t �2 � �
1
2

L0

V
�� 1
�

�65�

Equations (65) give the coordinates of the end points of the train, measured by Tom
at the moments when their engines fire. They are just what one would expect. But
the corresponding moments of time are, according to Equations (64), observed in T
in the reverse order: the moment t �1 is later than the moment t �2. This is another as-
pect of relativity of time. We can understand this if we recall the properties of space–
time intervals in Minkowski’s world (Section 2.9): if the time between two events is
less than the time needed for light to travel from one to another (space-like interval!),
the events are not in a cause and effect relationship. As is seen from Equation (63),
the time between two engine flashes in Alice’s reference frame is less than it takes
light to travel between them (the pulse of flashes travels from one to another faster
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than light.) Therefore, these events are connected by a space-like interval, and the
time ordering of the flashes is not invariant.

Our next question is the dynamics of the process observed in system T. Tom sees
Alice and the bridge moving to the left. By the time the engine on Tom’s right fires,
Alice has not yet passed by, because this time is before the zero moment. Alice’s coor-
dinate at this time is xA(t �2) = –Vt �2 = (1/2) L0 (� – 1)/�, so the distance between her
and the right end of the train is

DR � 1
2

L0 � xA �t �2� �
1
2

L0

�
�66�

At this moment the right end is accelerated to the speed V, it is “hurled” into Alice’s
reference frame and starts to move to the left. With the rear of the train still fixed,
this means that Tom observes the train shrinking! After Alice had passed by Tom, at
the moment t �1, the left engine fires and hurls the rear of the train to Alice’s refer-
ence frame. Now Alice’s coordinate is xA (t �1) = –Vt �1 = – (1/2) L0 (� – 1)/� , so the dis-
tance in system T between her and the left end is

DL � xA �t �1� � x �1 � xA �t �1� �
1
2

L0 � DR �67�

The resulting distance between the edges of the train measured by Tom in the end of
the process is DL + DR = L0/�. The ends of the train are symmetrical with respect to
the center of the bridge. If we imagine again the train as consisting of equidistant
cars, accelerating from rest to the speed V one after another, starting from the right,
then Tom would observe the compression pulse running down the train from right
to left. The velocity of this pulse would be

u � � �u �68�

Both Alice and Tom observe the same pulse, but to Alice it is an expansion pulse
moving to the right whereas to Tom it is a compression pulse moving to the left.

Tom observes that in the end of the process the train has shrunk from its proper
length L0 down to the Lorentz-contracted length L0/�. Because the train is now mov-
ing with speed V relative to Tom, he concludes that the proper length of the train
measured by Alice is the same as the one originally measured by him – it is con-
served. The train shrinks in length to retain its proper length! This statement ap-
pears no less crazy than those in Sections 5.5.1 and 5.5.2, where the respective obser-
vers retained the length of the train in their respective reference frames, only to rea-
lize that the train has undergone severe deformation with dramatic change of its
proper length. And, just as in previous two cases, our latest “crazy” conclusion is
quite rational and self-consistent. That the proper length here remains the same after
compression is no contradiction, because the considered process of compression is
relative. What is observed as compression by Tom is observed as expansion by Alice!
One and the same system appears to evolve in the opposite directions when viewed from two
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different reference frames. The direction of evolution of an accelerated object can be a
relative property. This is due to the fact that the moments of the start and the end of
this evolution have opposite ordering in these systems. In the final run, this is an-
other manifestation of relativity of time. Here, as in many other situations, we find
the relativity of time at the core of seeming paradoxes in the theory of relativity.

Let us summarize what we have learned from the thought experiments with Alice
and Tom.

1. Contrary to a widespread misconception, the special theory of relativity describes
accelerated motions in addition to uniform motions.

2. The accelerated motion of an extended system is a subtle process, involving the
interplay of various forces, and the outcome depends critically on both the details
of the process and the physical structure of the object.

3. If one stops a moving object by applying equal braking forces simultaneously to
all its moving parts, it tends to compress the object in its original rest frame, thus
decreasing its proper length.

4. If one accelerates an object by applying equal forces to its parts simultaneously in
its original rest frame, it tends to stretch the object in its final rest frame, thus in-
creasing its proper length.

5. If one stops an object by applying braking forces to its parts at different moments
timed so that its proper length remains the same after the stopping, it tends to
stretch the object in the reference frame where it had originally moved, and com-
press it in the reference frame where it had originally rested.

6. The binding internal forces within an accelerated object tend ultimately to restore
its proper length perturbed by the external forces.

7. Accelerated extended objects may look very different (and sometimes even appear
to evolve in the opposite directions) in different reference frames; but each obser-
ver has a consistent description, leading to the final state upon which everyone
agrees.

5.6
The twin paradox

“Mom, who is that weird gentleman?”
“He is an astronaut, dear. A space traveler. He had visited some distant outer worlds,

and now he’s back.”
“Look, he is behaving so funny!”
“Well, he is a man from the past. Let me see in my Quantum Reference … Yes, this

is the way people normally behaved in the 21st century. At that time a spaceship
started from Earth to a star 300 light years away. It took them more than 600 years
for a round trip.”

“So he must be more than 600 years old?”
“No, dear, he is only 50.”
“Are you kidding me?”
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“Not at all. His proper age is just 50. Take a closer look at him. He does not look at
all old. His biological age measured by his own watch is about 50 years.”

“How can that be?”
“You see,when he was traveling, his time was running slower because he was speed-

ing up and slowing down.”
In the year 2650 from which I conjure up this possible dialog, the concept of relative

time will probably seem to be almost as natural and simple as breathing. Imagine
that once space travel is a common occurrence, you could encounter an astronaut
who historical records indicate left the Earth 600 years ago. When he returns to the
Earth, he is biologically, and by his own clocks, only 20 years older than when he
left. So you can see in person real and relatively young people “hurled” into your his-
torical period from the past via relativistic round trips. Then the concept of relative
time would be no abstract matter for you; it would be the matter of everyday life ex-
perience. I have started this section with the above dialog in an attempt to bring the
less sophisticated reader to a better psychological awareness of the paradox to be dis-
cussed here: the famous twin paradox. The paradox can be considered as a natural
extension of our previous discussions of relativity of time. Remember, we considered
the time of a process observed from two different reference frames and found it to
be different for each frame despite the symmetry between all inertial frames (Sec-
tions 2.5, 2.8, and 5.2). We explained the difference as being due to the asymmetry
of the observational procedure. In the twin paradox a situation is considered where
the observational asymmetry seems to be eliminated, because it is now one and the
same pair of events that is considered in either reference frame: the departure and
return of a spaceship with one of the twins aboard. The paradox has been discussed
so thoroughly and extensively, and its presentations are so elaborated, that I will just
outline it following the way adopted in a good college textbook [24–26]. However, I
will emphasize an important point that is either missing or left vague even in some
good textbooks. I will also sharpen the paradox by increasing the time discrepancy
beyond the biological lifetime for humans.

Consider first the conventional textbook version. Imagine two identical twins, Larry
and Joe. Larry leaves the Earth to visit a distant star, while Joe remains at home. After
a long journey, Larry returns home and turns out to have aged much less than Joe.
This effect is predicted by the theory of relativity, and is confirmed experimentally in
a laboratory version of the situation – experiments with a decay rate of �-mesons
moving in a circle in a magnetic field. The effect can be thought of as yet another
manifestation of time dilation that we had studied earlier, in Sections 2.5 and 2.8.
But now the effect seems to be a real paradox, because of the seemingly symmetrical
role of both the twins and their respective observational procedures. According to
this symmetry, Larry might claim that he could consider himself stationary and Joe
moving together with the Earth first away from and then back towards Larry, in
which case the same relativistic equations should give the result of Joe having had
aged less than Larry. We thus come to two mutually contradictory statements: by the
time of their reunion, Larry turns out to be younger than Joe, and Joe turns out to be
younger than Larry. Both statements now refer to one situation when the twins are
together in one place in one time in one common reference frame.
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To sharpen the paradox, let us assume that the destination of the spaceship is hun-
dreds of light years away. In this case there can be no possibility of a twins‘ re-
union, unless there is some dramatic increase in human longevity, which we do
not suppose to happen here. By the time of the ship’s return, many centuries may
have gone by on Earth and all Larry’s contemporaries will have been dead for a
long time. But Larry may still be alive! Suppose that the ship’s speed is very close
to the speed of light. Then Larry’s proper time interval for the journey lasting
many centuries by the Earth’s time may, according to Equation (47) in Section 2.8,
be just a few years. In other words, he will be just a few years older when he re-
turns while many hundreds of years will have passed on Earth. He will thus find
himself having been “hurled” into the distant future. This is the conclusion given
by the special theory of relativity applied to the inertial reference frame associated
with our Solar System. Things might look differently from Larry’s perspective if he
tried to apply the same theory to his ship’s reference frame. Then he could claim
that he is stationary in his ship while the Solar System with the rest of the Uni-
verse is moving relative to him. In which case, according to the same relativistic
equations, it is he who will long have been dead inside the rusted ship, whereas Joe
will be alive and kicking by the time the Earth “returns” to the ship. The paradox is
thus restated as follows: when the ship returns, Larry is alive and sees Joe’s ancient
grave, and Joe is alive and sees Larry’s skeleton in the remainder of the ship. The
paradox is in that both statements refer to the same situation with the two objects
(or subjects) brought together.

We now proceed with the solution of the paradox. First, although Larry might con-
sider himself as stationary, his reference frame is not symmetrical to that of Joe. It is
by no means inertial, because in order to return back to Earth, the ship must change
its velocity, that is, it must accelerate. Larry might object that he observed Joe acceler-
ated. But this dissention can be easily resolved by asking one simple question: who
actually experienced the forces needed to produce the acceleration? Definitely it was
not Joe. It was Larry who needed to turn the engines on to accelerate his ship to-
wards its destination, then to decelerate it for landing, then to accelerate it this time
back towards the Earth, then to decelerate it again for landing on Earth. The forces
exerted on Larry and observed by Joe are real forces having a real source: for exam-
ple, the jet stream of plasma from the ship’s engines. The forces exerted on Joe (and
the whole Earth) and observed by Larry are fictitious forces of inertia discussed in
the Introduction. Larry cannot identify any real physical body responsible for these
forces. These forces are due only to Larry’s choice of his ship as a reference frame.
From this fact alone, Larry could conclude that his is not an inertial reference frame.
Therefore, the symmetry originally assumed to exist between the two reference
frames turns out to be an illusion. The two systems are not equivalent.

Second, since Larry’s reference frame turns out to be non-inertial, Larry must in all
his calculations use the equations of the General Theory of Relativity.

Third, the General Theory of Relativity used in Larry’s reference frame will give the
same result as that of the Special Theory used by Joe: Larry will have aged less than
Joe. In case of large time discrepancies, the common answer is: Larry will be alive
and Joe will be dead.
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Thus both possible approaches, if performed consistently, give results that are in
agreement with each other and with the above-mentioned experiment with decaying
mesons. Both twins (if they are educated enough) know these results and thus know
in advance the only possible outcome of the anticipated space Odyssey: Larry will
outlive Joe. They also know that there is no discrimination against Joe in this state of
affairs, because Joe’s biological life is not in any way physically affected by Larry’s
journey. Quite the contrary, it is Larry’s life that has been so dramatically affected as
to be extended into the distant future without the slightest change in his biological
life-span. This is just another, and very sound, manifestation of the relativity of time.

We will now turn to a detailed description of the phenomenon and its possible obser-
vation. We will consider here an idealized situation in order to see how we can get
the same answer for both parties using only the Special Theory of Relativity. Imagine
a distant star M 2000 orbited by a planet that, according to recent data, might harbor
extraterrestrial life. The star is 300 light years away from our solar system. Larry
starts a journey to the star in a spaceship that accelerates practically instantaneously
(this is our idealization!) up to 0.999 of the speed of light, then moves uniformly un-
til he reaches the star, then turns also instantaneously and rushes back to Earth with
the same speed. As in our previous discussions, we neglect technical details such as
motions of the Earth and the other planets, the energy needed to accelerate the
spaceship, the rate of energy supply to accelerate it that fast, and so on. These details,
important as they are, will not change one essential feature of the anticipated jour-
ney: its dramatic effect on Larry’s proper time.

We will try to understand the origin of the time discrepancy between the twins’ life-
spans by considering radio communication between the two reference frames. The
Earth and the ship communicate by sending regular radio signals. Suppose they ar-
range to send each other one signal a year. Then each will know the other’s age by
just counting the total number of signals received between the moments of depar-
ture and return of the ship. Since time is a continuous variable, whereas the signals
come in discrete lumps, let us divide each year into 10 equal time intervals, and
mark each interval by sending a weaker signal; the number of such signals will give
us the corresponding number in the first decimal place after the integral number of
years; for instance, if we received five strong signals followed by only two weak sig-
nals, we can write the total number of signals as 5.2, which will correspond to 5.2
years of the sender’s time. We can follow this procedure to mark ever smaller deci-
mal fractions of the year. Thus the total number of signals in our treatment can be
fractional, which enables us to specify time by the number of signals to an arbitrarily
high precision.

Let us first evaluate the number of signals from Larry received by Earth. For the
speed v = 0.999 c, the round trip to a star 300 light years away will take about 600.6
years. Half of that time, 300.3 years, Larry will be receding from Earth. Owing to the
Doppler effect, the signals sent to Earth by Larry while receding will be received on
Earth at the lower rate. Applying Equation (22), we find for the low rate 0.0224 signal
per year. This succession of low-rate signals will keep arriving on Earth during 600.3
years: 300.3 years of sending such signals plus 300 years it takes the last such signal
sent from the destination point to reach the Earth. Multiplying 0.0224 by 600.3 gives
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the total of 13.43 low-rate signals. In the remaining 0.3 years until Larry’s return, the
Earth will receive signals from the approaching ship at a higher rate. Applying again
the same equation to the case of the source approaching the detector, we find the
rate 44.7 signals per year. The total number of such signals is 44.7 × 0.3 = 13.4 sig-
nals. Hence the net number of signals received by Earth is 13.4 + 13.4 = 26.8. Since
each signal marks 1 year of Larry’s life, we see that Larry has aged by only 26.8 years
whereas 600.6 years have gone by on Earth. If Larry was 24 years old at the moment
of start, he will be 50.8 years old when he returns. This conclusion is confirmed by
compelling experimental evidence: the sight of smiling Larry emerging from the
ship – the sight of a man slightly over 50!

Consider now the situation from Larry’s perspective. In Larry’s reference frame, both
the Earth and the star M 2000 are moving with the speed 0.999 c along the line con-
necting them. The distance between the Earth and the star is correspondingly con-
tracted by a factor � (v) = 22.3 and is equal to just 13.4 light years. The total time it
takes him to travel this distance back and forth is 2 (13.4/0.999) = 26.8 years, in total
agreement with the number of signals received from him by the Earth. Now, what is
the number of signals from Earth received by Larry during his trip? In the first part
of the trip the Earth is receding from Larry, and he receives, according to the same
Equation (22), the signals at low rate 0.0224 signal per year. The total number of the
low-rate signals received by Larry is 0.0224 × 13.4 = 0.3. The moment Larry reaches
the star M 2000 and turns back (that is, the moment when the Earth stopped reced-
ing and started approaching his ship), he begins to receive signals at a higher rate.
The rate is now given by Equation (22) (with changed signs) for the case of the ap-
proaching source and is again equal to 44.7 signals per year. The total number of
high-rate signals received by Larry is 44.7 × 13.4 = 600.3 (one of these signals, say
number 96, might have brought him the sad news about his twin brother Joe having
passed away). Summing the high- and low-rate signals gives the net number of
600.6 signals received by Larry from Earth. Since each signal marks 1 year of Earth
time, Larry knows that 600.6 years have gone by on Earth during his trip. Again, this
is in agreement with the time it takes Larry’s ship to make it to the star M 2000 and
back to Earth.

For the mathematically curious, we will now present the analytical treatment of the
problem. Assume our Solar System and another star M to be stationary. Let L0 be the
distance between them measured in their common inertial reference frame S0.
A spaceship starts from Earth at a speed v and moves to M. While moving to M the
ship represents inertial system S. Upon reaching M, the ship turns and moves with
the same speed but in the opposite direction, and therefore it now represents an-
other inertial reference frame S �. The time it takes for a round trip is

T0 � 2
L0

v
�69�

The proper time of the ship can be found in two different, but equivalent, ways: one
can find the contracted distance L between the star M and the Sun, divide this dis-
tance by v and double the result for a round trip time:
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L � ��1 �v� L0 � T � 2
��� �v� L0

v
�70�

Or, one can apply Equation (46) in Section 2.8 for the time dilation to Equation (69):

T � ��1 �v�T0 � 2
��� �v� L0

v
�71�

Thus simple treatment within the framework of the special theory of relativity gives
us the unambiguous result that the proper time of the spaceship, Equation (71), is
less than that of the Earth, Equation (69), by a factor �–1 (v). This factor can be made
arbitrarily small for relativistic motions, so the proper time of the ship can be made
arbitrarily small. Some people think that the equations of the Special Theory of Rela-
tivity cannot be applied to a spaceship in this kind of problem because the ship’s mo-
tion is not inertial. This is a common misconception. The Special Theory of Relativ-
ity can be applied both to accelerated motions and to uniform motions; the only con-
dition is that the system of reference where this motion is being considered be iner-
tial, if we want a straightforward treatment. Insofar as we consider the ship’s motion
relative to an inertial reference frame S0 associated with the Solar System, our treat-
ment is not only valid, but also fairly simple. The difficulties may arise when we try
to apply the equations of Special Relativity in the reference frame of the ship, which
does not move inertially all the time. In the following treatment, we will avoid these
difficulties by applying the equations of Special Relativity to the ship twice: first,
when the ship moves uniformly toward the star M (the inertial system S), and sec-
ond, when the ship moves toward the Earth (the inertial system S �).

With this in mind, we are now going to obtain the same results, Equations (69) and
(71), by collecting the counts of radio signals received by Earth’s and ship’s detectors
from their respective senders.

The number of signals from the ship received on Earth is the sum of the low- and
high-rate successions of signals. The low-rate signals are from the receding ship and
the high-rate signals are from the approaching ship. If the proper frequency is
f0 = 1 S/y (signal per year), then the low and high rates are, respectively,

f L �
������������

1� �
1� �

�

� f H �
������������

1� �
1� �

�

� � � v
c

�72�

The time TL on Earth for low-rate signals coming in consists of two intervals: the
time T1 = L0/v during which these signals are produced by the receding source, and
the time T2 = L0/c needed for the last of these signals to travel the distance L0 be-
tween the Earth and the source. So LL = T1 + T2 = (L0/�c) (1 + �). The number of low-
rate signals is thus

NL �
������������

1� �
1� �

�


 TL � L0

�c
�1� ��

������������

1� �
1� �

�

� ��1 �v� L0

v
�73�
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The time TH of high-rate signals coming to Earth from the ship is just the time inter-
val between the moment of the first such signal’s arrival and the moment of the
ship’s return to Earth:

TH � L0

v
� L0

c
� L0

v
�1� �� �74�

The corresponding number of high-rate signals is

NH �
������������

1� �
1� �

�

TH � ��1 �v� L0

v
�75�

The total number of signals from the ship and accordingly, the number of years
passed there, is

N � T � NL �NH � 2
��1 �v� L0

v
�76�

This result is identical with Equation (71).
In a similar way we calculate the number of signals from Earth received on the ship.

During the first part of the journey, the ship’s detector counts low-rate signals; dur-
ing the second part, which starts immediately after the turn, the ship receives high-

rate signals. Both parts of the journey take the same time
1
2

T � ��1 �v� L0

v
. There-

fore, the total number of low- and high-rate counts in the ship’s detectors is

N0 � T0 � ��1 �v� L0

v

������������

1� �
1� �

�

�
������������

1� �
1� �

�

� �

� 2
L0

v
�77�

which is identical with Equation (69). Hence both the theoretical prediction of the
time dilation effect and the described thought experiment with signal exchange give
the same result: the Earth’s history and the ship’s history evolving during their se-
paration are characterized by different times. The ship’s time is less than the Earth’s
time. This property of split histories does not depend on the reference frame. The
ship’s crew observing the history of Earth from their rushing outpost get the same
reading T0 for Earth’s time as do historians or physicists on Earth. The latter get the
same reading T for the ship’s round trip time as do the ship’s clocks. And in everybo-
dy’s account T turns out to be less than T0 by the same amount. The time discre-
pancy between the two split and then reunited histories is their common physical
characteristics.

There is, however, something missing in this account. It describes how all partici-
pants of the experiment get a common result for T0 and then a common result for T.
It does not explain why the results turn out to be the way they do. The attentive
reader may have noticed an asymmetry in the counting procedure that was em-
ployed without much comment. When counting low- and high-rate signals coming
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to Earth from the ship, we said that low-rate signals kept arriving for much longer
time than high-rate signals. When counting the signals coming to the ship from Earth
we said that both low- and high-rate signals had been received within the two equal
time intervals. Why is it so?

The observers on Earth remain in place when the ship is on its way to the star M. If
we had not calculated the ship’s progress in advance, we would not know when the
ship reached its destination. Actually, we have no other means to even know whether
the ship has reached it at all, except for the radio signals coming from the ship. How-
ever, these signals need time to travel from the ship to Earth: zero time for the very
first signal (sent at the start), and a very large time L0/c for the last low-rate signal.
The time between the arrivals of the first and the last low-rate signals is thus ex-
tended by this time interval L0/c. When we receive high-rate signals from the return-
ing ship, the last high-rate signal is received immediately (the ship is already here),
while the first high rate signal is received only L0/c years after the moment it was
sent. Thus the time between the arrivals of the first and last of the high-rate signals
is shortened by the same time interval. As you think of it, you find both processes to
be just manifestations of the Doppler effect, which works for the first and last signals
in a succession in the same way as it does for the two neighboring signals.

The crucial question is: why does the same not apply to the ship’s reference frame?
There, you remember, we found the same time intervals for the successions of low-
and high-rate signals from Earth. Does the ship’s crew not have to wait until the last
low-rate signal and the first high-rate signal from Earth reached the ship? The an-
swer is: it would have to, had it remained in the same reference frame S. But as the ship
jerks back upon reaching the star M, it is equivalent to jumping from one reference
frame S moving away from the Earth to another reference frame S � moving towards
the Earth. The moment the ship performs the jump, its detectors already start rush-
ing towards the Earth (thereby making the Earth rush towards the ship). This imme-
diately changes the extended succession of low-rate signals incident on the ship into
a compressed succession of high-rate signals. The transition from low- to high-rate
signals in the ship’s reference frame occurs the moment the ship reaches the star M,
whereas on Earth it occurs a long time after this event. You remember, we discussed
the difference between Joe’s and Larry’s motions in our original example? We had
emphasized that no real forces act on Joe whereas there are real forces exerted on
Larry. It is these forces that cause the ship to jump and thereby change so dramati-
cally its proper time. It is here where the crucial difference between the two systems
comes into play.

The whole phenomenon becomes crystal clear if we draw the world lines of both
systems (Fig. 5.20) and of the radio signals that they use. We will then see that the
world line of the Earth is as straight as a laser beam, whereas the world line of the
ship consists of two different segments of equal “lengths.” The separation point C
on the Earth’s world line between the low- and high-rate signals from the ship is
shifted from the middle of the line towards the future. There is not much room
left for high-rate signals, which results in a relatively small net amount of signals
received from the ship. On the ship’s world line, the transition point between two
successions of signals from Earth is at the vertex. The high-rate signals arrive dur-
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ing the same time as the low-rate signals, which results in a large total number of
signals. Accordingly, a large time is recorded for Earth and a small time for the
ship by the moment they meet again. Topologically, it is due to the vertex in the
ship’s world line, that is, to the singular point with an infinite curvature. This is a
manifestation of a general law: out of two lines between the two points (events) in
Minkowsky’s world, the one with larger curvature has the shorter “length.” Accord-
ingly, an object moving along the line with a larger curvature has a shorter proper
time between the two events.

This stands in a sharp contradiction with what we actually see in Figure 5.20. The
path OPO � is longer, not shorter, than the straight line OO �. It is because we see the
geometrical path, in whose length the contributions from the horizontal and the verti-
cal components of the segment OP, say, come with the same sign (Pythagorean theo-
rem OP2 = OM2 + MP2). The reader should recall that the world line being discussed
here is the kinematic path in Minkowsky’s world. Segment MP represents time, not
distance. Contributions from the temporal and the spatial components of the inter-
val in Minkowsky’s world come, as we have learned in Section 2.9, with the opposite
signs. The kinematic length of the OPO � is smaller than that of OO �. Because the ki-
nematic length (the space–time interval) is absolute (invariant under Lorentz trans-
formations), this relationship between OPO � and OO � is true for all observers. Physi-
cally, the kinematic length of the OPO � is Larry’s proper time (multiplied by c) dur-
ing his journey (recall Section 2.9). Thus, the proper time of anyone making a round
trip relative to an inertial reference frame is always less than the proper time of the
one remaining in place in this system. This statement is the shortest and the clearest
explanation of the “twin paradox.”
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Fig. 5.20 Space–time diagram of Lar-
ry’s round trip. OO�, the world line of
Earth; OPO�, the world line of the space-
ship between the same events; MM�,
the world line of the planet system M;
dashed lines, the world lines of radio
signals between the Earth and the ship.
(a) Signals from the Earth to the ship;
(b) signals from the ship to Earth.



We conclude this section by looking back at the dialog at the beginning. This will
turn our attention to something that has been half hidden in the intricacies of the
above analysis and that actually forms its most essential part: time travel is possible.
This exciting conclusion follows in the most straightforward way from the compari-
son of the world lines OO � and OPO � in Figure 5.20. The space traveler comes back
to find himself in a distant future that is extended far beyond the lifetime of all his
former contemporaries on Earth. He thereby becomes a time traveler. He has shifted
from his epoch to another one. Such a possibility is not a speculation. It is a scienti-
fic prediction confirmed by experiment. The above-mentioned �-mesons circling in
a magnetic field provide a perfect laboratory model of time travel. Suppose you put a
stationary �-meson somewhere in the circular path and call this meson A. Call the
circling meson B, and draw a space–time diagram for A and B (Fig. 5.21). Its only
difference from the diagram in Figure 5.20 is that the world line of B forms a helix.
Because of its curvature, the kinematic length of the helix is less than the world line
of A between their two consequtive meetings. Accordingly, the proper time of B is
less than that of A. Suppose that A and B are born simultaneously.

But if B is moving fast enough, it makes a full cycle within its lifetime while A will
have decayed long before the cycle is completed. We call it the time dilation for B,
but actually it is time travel: B finds itself in a distant future; its former “contempor-
ary” had long ago decayed. Time travel is a real physical phenomenon.

The theory of relativity gave more than just a prediction of this phenomenon. It has
shown practical means for its realization for humans. The means to travel in time
(towards the future!) is to travel in space with a speed close to the speed of light. It is
very difficult technically, but possible in principle. A couple decades before the first
landing on the Moon only few believed that this would ever happen. Incredible as it
may seem, time travel for humans may be just a question of time.
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Fig. 5.21 The world lines of mesons A (OO�)
and B (OP). Meson B is moving in a circle in
plane XY, and meson A rests at a point O on this
circle. The kinematic length OPO� is shorter
than the length OO�. This means that the proper
time of B between two successive meetings with
A is less than that of A. If B is moving fast en-
ough, it will find A to have decayed long before B
completes one cycle, while it will take many cy-
cles for B to decay.



5.7
Circumnavigations with atomic clocks

More than half a century after the birth of the theory of relativity, the manifold and
many-times told story about the twin paradox (or, more generally, the clock paradox)
took on a new twist. By that time, the advances in experimental physics had led to
the development of new types of clock – so-called atomic clocks – whose tickings
were periods in radiation emitted by some atoms in the optical transitions between
specified states with different, sharply defined energy levels. The precision and accu-
racy of the atomic clocks by far exceed those of any other clocks based on known
macroscopic phenomena – mechanical, electromagnetic, or astronomical. For in-
stance, the reported inherent drift of the hydrogen maser clock is less than 1 part in
1014 [27]. This allows us to extend the testing ground of the Special Theory of Relativ-
ity into the realm of non-relativistic velocities (see Section 3.3). Using an atomic
clock, one can detect tiny changes of its proper time caused by motion with non-rela-
tivistic speed, such as that of satellites and even jet planes, by comparing it with the
proper time of a similar clock that remained in place. Such an experiment had been
suggested, designed, and carried out by Hafele and Keating and the crews of com-
mercial flights in the early 1970s [28, 29]. The experimental scheme was fairly sim-
ple. Four cesium beam atomic clocks were flown on regular commercial jet flights
around the Earth twice – once eastwards and once westwards. In both cases the
clocks‘ speed was the same – equal to a typical jet speed of about 300 m s–1. After
one circumnavigation the flown clocks were compared with identical reference
clocks at the US Naval Observatory. The results, within the margin of the experimen-
tal and computational errors, confirmed the predicition of the theory for a given si-
tuation. Before presenting the results, it is worthwhile to ask: what kind of predic-
tion should we expect for this case?

According to the analysis in the previous section, we would expect that both flying
clocks will lose a certain amount of their proper time compared with the reference
clock that remained stationary, and inasmuch as they move with equal speeds, the
lost amounts must be equal for the east- and westbound clocks.

Now, both statements here are wrong. The experiment showed that not only is there
no symmetry in the lost proper time of the flown clocks, but there is even no appar-
ent loss of proper time in one of them. The west-flying clock turned out to have
gained proper time against the reference clock! These results stand in flat contradic-
tion with the unambiguous prediction of the theory in the previous section.

Therefore,when the results were published, many people considered them as the ex-
perimental refutation of the theory of relativity. Here is a typical comment of the op-
ponents of the theory of relativity:

“The theory of relativity clearly predicts that the time dilation should be equal for
both flying clocks if they move with equal speeds. But in fact the westward-flying
clock showed no time dilation at all – quite the contrary, it gained time against the re-
ference clock. So there is a conflict between theoretical prediction and observation. If
the observations made by Hafele and Keating are correct, we can consider the theory
of relativity to have been empirically refuted.”
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Now, where is the fallacy of these arguments?
It is in that the reference clock on Earth is confused with the stationary clock in an

inertial reference frame. According to the theory, the loss in time, which is indepen-
dent of the direction of flight, will be observed relative to a stationary clock in an iner-
tial reference frame. In the experiment we discuss, the reference clock was stationary
relative to the rotating Earth, which is by no means an inertial reference frame (Fig-
ure 5.22). There is an innate asymmetry between eastward and westward directions
in a rotating system, which is imposed by the pre-existing direction of its rotation.
This asymmetry can be described in three different but equivalent ways: first, on the
qualitative level, one can draw and analyze a free-body space–time diagram for the
world lines of all clocks (including the imaginary stationary clock on the extension of
the Earth’s rotational axis in the inertial reference frame); second, one can consider
all the clocks involved (reference clocks included!) as non-stationary clocks moving
with different velocities and accelerations in an inertial reference frame, and apply
the correlations of the Special Theory of Relativity; third, one can use the known so-
lution to Einstein’s equations of the General Theory of Relativity for a gravitating
mass representing the Earth, and apply it to clocks moved around the mass in circu-
lar orbits. We will use the first two options, and start with the simplest one – the
space–time diagram.

To understand things better, consider first a hypothetical situation of a non-rotating
Earth. The world lines of all clocks involved are shown in Figure 5.23 a. Here the cy-
lindrical surface represents the world sheet of the Earth’s equator. The vertical gener-
atrix OO � of the cylinder represents the world line of the reference clock. In the ab-
sence of rotation the reference clock is stationary and inertial. The two symmetric
helixes represent the world lines of the flying clocks. As was the case in the previous
sections, these world lines have the same curvature if the clocks fly at the same
speed. They must accordingly have a smaller kinematic lengh than the line OO �. Be-
cause the kinematic length of a world line represents the proper time of an object
tracing out this line, the proper times of the flying clocks after one circumnavigation
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Fig. 5.22 The rotating Earth in the inertial
(non-rotating!) reference frame. S, stationary
clock; R, reference clock on the Earth’s equator;
E and W, the east- and west-bound clocks, re-
spectively; arrows represent the speeds of the
clocks. To the stationary observer, the west-
bound plane appears to fly backwards because a
typical speed of a commercial flight is less than
the rotational speed of the Earth at the equator.



are both less than the proper time of the reference clock. If their speeds are equal,
the loss of the proper time is the same for eastward- and westward-flying clocks – in
total accord with the prediction of the theory of relativity for the non-rotating Earth.

Now we turn to the real rotating planet Earth. Because of rotation, the reference
clock at the US Naval Observatory is no longer an inertial clock! Its world line is ac-
cordingly also a helix, and now has to be considered on a par with the world lines of
the other two clocks. We can still consider the system of the three clocks within the
framework of the Special Theory of Relativity. All we have to do is to compare their
readings with those of a stationary clock in an inertial reference frame.

We will then immediately see that the world lines of all clocks fall neatly into two
completely different categories (Fig. 5.23 b). The world line of the stationary inertial
clock on the Earth’s axis will be as straight as a laser beam, whereas the world lines
of all other clocks (including the reference clock on the ground) will be twisted and
curved into helixes. In terms of time intervals this means that the world line with no
curvature corresponds to the maximum possible interval of the proper time between
a given pair of events (the start and the finish of the circumnavigation trip, both sig-
naled to the inertial clock); the world lines of the remaining three sets of clocks cor-
respond to smaller proper times, that is, all three sets of experimental clocks run slower
than the stationary clock in the inertial reference frame, in direct accordance with the
prediction of the theory of relativity. Now, among these three experimental sets, the
world line of the clock flying westwards has the least curvature, which corresponds
to the greatest proper time for this category The world line of the reference clock on
the ground has greater curvature (and smaller proper time) because this clock has
greater acceleration than the westward-flying clock. Finally, the eastward-flying clock
has the greatest curvature and the smallest proper time per circumnavigation. So
there must be an asymmetry in the time readings in this situation. The actual flying
clocks had, of course, traveled at some altitude (more than 10 000 ft) above the refer-
ence clock, and had accordingly experienced a different gravitational field strength
than the reference clock. The gravitational field slows down the evolution of an ob-
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Fig. 5.23 The world lines of all the clocks in-
volved (a) for non-rotating Earth and (b) for ro-
tating Earth. In (b), the E clock is moving faster
than the R clock, and its world line is curved
more; this clock ages slower than the R clock.
The W clock has the least curved world line; this
clock ages faster than the R clock. All three mov-
ing clocks age faster (to different degrees) than
the stationary clock S, whose world line OO� is
straight.



ject. This effect can be rigorously described by the General Theory of Relativity,
which lies beyond the scope of this book. The fact that the flying clocks had all been
at a higher altitude caused a corresponding increase in their rate, which adds an ad-
ditional contribution to the asymmetry in changes of proper time. This contribution
partially accounts for the fact that the readings of the reference clocks are much clo-
ser to those of the eastward-flying clocks than to those of the westward-flying clocks.
Even this fact has a full and clear explanation on the quantitative level. Thus the the-
ory of relativity had predicted a new subtle and remarkable phenomenon, that was
first pointed out by Hafele and Keating and soon after found experimental confirma-
tion.

Now, for the mathematically trained, we will treat quantitatively the Hafele–Keating
experiment. We here present a simplified version of the analysis, considering an ex-
perimental model in which all sets of clocks had all the time been at the same alti-
tude.

The Special Theory of Relativity is equally well equipped for considering all possible
kinds of motion – uniform or accelerated, rectilinear or in arbitrarily curved lines,
subluminal or superluminal. The calculations are most straightforward if the motion
to be discussed is considered relative to an inertial reference frame. This is precisely
what Hafele and Keating did in their papers [28, 29]. The non-rotating system at-
tached to the center of the Earth is inertial to a high degree of accuracy, because the
centripetal acceleration associated with the Earth’s orbital motion around the Sun is
about 6 × 10–3 m s–2, that is, less than one thousandth of the acceleration due to
gravity on Earth. Also if, in addition, we take into account that this system is in a
state of a free fall in the gravity field of the Sun, then, according to Einstein’s princi-
ple of equivalence (which had been shown experimentally to be correct to an accu-
racy of 10–12 [1]), this system is inertial for all practical purposes.

We said that the situation at hand is non-relativistic in that all the clocks involved, as
well as all the points on the rotating Earth, move much slower than light. But even
in a non-relativistic situation, we can come to fundamentally different conclusions
depending on whether we treat the problem according to Newtonian mechanics or
according to relativistic mechanics. The motions in a rotational system that we are
considering provide a good illustration. To see it, let us first find the results in a New-
tonian approximation.

Place the reference clock at some spot on the Earth’s equator. Let	 be the angular ve-
locity of the Earth’s rotation and R be its equatorial radius. Relative to the inertial
(non-rotating!) frame, the reference clock moves with a speed vR = 	R. Now suppose
two planes with the clocks depart simultaneously from the same spot and with the
same speed v, one eastwards (clock E) and the other westwards (clock W). Relative to
the inertial frame, the planes move with the speeds

vE � vR � v � vW � vR � v �78�

Now find the time tE for one circumnavigation of the E-clock. To do it, we notice that
relative to the stationary frame the E-clock makes precisely one rotation more than the
reference clock (if you outrun your competitor on a racetrack, next time you catch up
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with him you’ll make one round more than him). Therefore the distance vE tE tra-
veled by the E-clock will be one equator longer than that vR tE of the reference clock
by the time they meet again:

�vR � v� tE � 2�R� vR tE �79�

It follows that

tE � 2 �R
v

�80�

The same reasoning applied to clock W shows that since it is moving slower than
the reference clock relative to the inertial reference frame, by the time they meet
again it will have traveled one equatorial length less than the reference clock, so we
can write

�vR � v� tW � vR tW � 2�R � tW � 2�R
v
� tE �81�

The travel times are the same for both type of clocks if they move relative to Earth
with the same speed.

The Earth-based observer can comment with a smile: “You could have saved your
time if you ask me. I would have told the result to you immediately without any cal-
culations. In Newtonian physics the time measured in a reference frame is the same
in all other reference frames, therefore the times in Equations (80) and (81) found
for the inertial frame must by definition be the same as the time of the Earth-based
observer. Such an observer would obtain this result immediately without “looking
out” beyond the Earth.”

I agree. And now, before doing the relativistic treatment of the same problem, I want
to follow this advice and ask: what outcome would one expect in this case?

We know that relativistic mechanics is more subtle than Newtonian mechanics, but
in this case the result seems obvious. If I sit in a spot somewhere on the equator and
dispatch two planes, one eastwards and one westwards, and the planes move with
the same speed relative to me, they will surely circumnavigate the Earth in the same
time by my clock, and after circumnavigation they will arrive simultaneously.

Well, this is wrong! We will now show this rigorously.
Let me remind again, that in Special Relativity, if we want to obtain the correct results

in the most straightforward way, we need to consider the events relative to an inertial
reference frame. So, we must first find the speeds of the flying clocks relative to the
non-rotating frame attached to the center of the Earth. For this frame, we have, by apply-
ing, instead of Equation (78), the relativistic rule for addition of velocities (Section 3.1)

vE � vR � v

1� vR v
c2

� vW � vR � v

1� vR v
c2

�82�
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Accordingly, Equations (79) and (80) for the travel times measured by the stationary
(inertial!) observer will now take the form

vR � v

1� vR v
c2

tE � vR tE � 2 �R ;
vR � v

1� vR v
c2

tW � vR tW � 2�R �83�

Solve these equations for tE and tW:

tE � 2 �R
v

1� vR v
c2

1� v2
R

c2

� tW � 2�R
v

1� vR v
c2

1� v2
R

c2

�84�

Now we can find corresponding proper times for the two circumnavigations.Accord-
ing to our general result in Section 2.8, the proper time of a moving clock is related
to the coordinate time read by the inertial system of clocks by the corresponding Lor-
entz factor depending on the clock’s speed.

The speed of the reference clock is vR. Therefore its proper times 
(E)
R and 
(W)

R are
given by


�E�R � tE�� �vR� � tE

��������������

1� v2
R

c2

�

� 
�W�R � tW�� �vR� � tW

��������������

1� v2
R

c2

�

�85�

The travel times are different!
Where does this difference come from? The times were equal when we considered

the problem in the framework of Newtonian mechanics and derived Equations (78)–
(81). It is only because we have switched from the Newtonian rule in Equation (78)
of addition of velocities to the relativistic rule in Equation (82) that the difference in
times crept in. And the reason is that by rule (78) the velocities of the flying clocks
remain symmetrical with respect to the speed vR (one greater and the other smaller
than vR by the same amount), whereas by rule (82) this symmetry is broken. We see
that the resulting difference in the travel times is a purely relativistic effect.

We will accordingly treat these two cases separately.
Case E: the coordinate time for one circumnavigation in the eastward direction is given

by the first Equation (84). The speed of the E-clock is vE. Therefore, its proper time 
E is


E � tE�� �vE� � tE

��������������

1� v2
E

c2

�

�86�

Now we are able to estimate the experimentally observed quantity – the relative time
offset between the E-clock and the reference clock:

�E � 
E � 
�E�R


�E�R

� 
E


�E�R

� 1 �87�
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Using the two previous equations and retaining only the terms of the order of c–2, we
obtain (you have to do some calculus to check it)

�E � � v �2 vR � v�
2 c2

�88�

Case W: the coordinate time of one circumnavigation in the westward direction is gi-
ven by the second Equation (84). Note that this equation, and also all other expres-
sions for the W-clock, can be obtained from the corresponding equations for the E-
clock by just changing the sign of v. Therefore, we can obtain the offset for the W-
clock directly from Equation (88) as

�W � v �2 vR � v�
2 c2

�89�

The offsets are different! For the E-clock the offset is negative, that is, it loses a cer-
tain fraction of its proper time with respect to the proper time of the reference clock.
We can easily explain this by noting that this clock moves relative to the stationary
frame faster than the reference clock, and therefore “ticks” slower. It turns out to
have aged less when the clocks meet again.

For the W-clock, the sign of the offset depends on its speed. If the speed is greater
than 2vR, the offset is also negative, and this clock will also have aged less than the
reference clock when they meet again. We can explain this if we note that at a speed
exceding 2 vR the W-clock is moving westwards faster relative to the stationary frame
than the reference clock is being carried eastwards by the Earth’s rotation. Again, the
clock that moves faster ages slower. If the speed v is much larger than 2vR, so that
we can neglect the rotational motion, then Equations (88) and (89) tell us just what
one would expect for this case – that both clocks will have aged less than the refer-
ence clock by approximately the same amount when they meet again. However, if
the speed v is less than 2vR, then the W-clock moves slower relative to the stationary
system than the reference clock, and will after one circumnavigation have aged more
than the reference clock. This will produce a positive offset.

(At speeds somewhere between vR and 2 vR, the W-clock is moving westwards relative
to the stationary frame. If the speed v of the W-clock is equal to vR, it “cancels” the ef-
fect of the Eath’s rotation, and the W-clock stands still in the stationary reference
frame. In this case it has the maximum aging rate. If its speed is less than vR, its is
moving eastwards relative to the stationary frame.)

For typical conditions of international jet flights (altitude about 10 km and a speed
v�300 m s–1) the theoretical prediction (including the above-mentioned contribu-
tion from the gravitational effect) was that the E-clock should have lost 40�23 ns,
and the W-clock should have gained 275�21 ns compared with the reference clock.
The experimental data showed that the E-clock actually lost 59�10 ns and the W-
clock gained 273�7 n.

We see that the experimental results stand in quantitative agreement with the predic-
tions of the theory of relativity if we take proper account of the motion of the refer-
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ence clock. As Hafele and Keating put it, “These results provide an unambiguous
empirical resolution of the famous clock ‘paradox’ with macroscopic clocks.” So if
we believe in the observations made by Hafele and Keating, we can then believe in
Einstein’s theory of relativity even more firmly then ever before.

And yet there remains one point mentioned above in passing [in comment to Eqs.
(82) –(84)] which seems to constitute a real paradox. Here it is. We have proved that
the two objects launched with the same speed in opposite directions must have differ-
ent circumnavigation times. But this implies that they must have had different
speeds! Indeed, imagine that you are sitting somewhere on the equator with the re-
ference clock. At a certain moment of time (call it the zero moment) you record two
planes departing with equal speeds, one eastwards and one westwards. If they main-
tain equal speeds during the whole flight, then how can it be that they return after
circumnavigation at different times by your clock? Restate the argument. Suppose
that the two planes take off simultaneously, fly around the Earth in opposite direc-
tions, and return back to the same airport at different times. Will you say that the
planes had the same speed? The likely answer is: not unless I am crazy. And you
confirm your answer with a simple calculation. If the radius of the Earth is R, then
the length of the Earth’s equator measured by an inertial observer is L = 2�R . Its
proper length measured by people on Earth is � = � (	R) L = 2�R� (	R). The speed
of the E-clock is �/
(E)

R and the speed of the W-clock is �/
(W)
R . Using Equations (84),

(85), we easily obtain

vE � v

1� vR v
c2

� vW � v

1� vR v
c2

�90�

Thus, if the travel times are not equal, we obtain travel speeds that are not equal. This
result appeals to our common sense but apparently contradicts the initial condition,
according to which the speeds of both flying clocks relative to Earth are the same.
The statement about the equal speeds resulting from unequal travel times over the
same distance seems absolutely crazy. The equivalent statement that it takes differ-
ent times for planes with the equal speeds to fly around the Earth must therefore
also be crazy. As we mentioned in the comments to Equation (84), this result only
appears when we switch from Newtonian mechanics to relativistic mechanics. Now
we obtained Equations (90) also using relativistic mechanics. Does this mean that
the theory of relativity contains contradicitions after all? If so, this would be the
death sentence for the theory. Or does this mean that all our calculations have been
fundamentally flawed? The whole situation appears to be not even a paradox, but
just a huge nonsense. How can one reasonably explain this nonsense?

We will look for the answer in the next section.
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5.8
Photon races in a centrifuge

Consider a disk with a circular path of length L around its center O. Pick a point P
on the path and place two detectors there.

Suppose we launch two photons (considered as localized particles) from this point in
opposite directions along the path. Each photon will circumnavigate the path and
come back to P where it will be detected. Since both photons travel the same dis-
tance, and the speed of light does not depend on direction, both photons will return
at the same time T0 = L/c, and the detectors will fire simultaneously.

Now complicate the matter. Bring the whole platform with the pathway L into rapid
rotation about its center O. Call it an optical centrifuge. Again launch two photons
from P in two opposite directions along the path and wait for their return back to P
after one circumnavigation around the path (Fig. 5.24). What would you expect to
see? Will the two photons return to P simultaneously or not?

The answer to this question has been known for a long time, after the French physi-
cist Sagnac had carried out the corresponding experiment [30]. The two photons no
longer arrive back at the same time: the one launched in the direction of rotation ar-
rives at P later than the one launched in the opposite direction.

How can we explain this result in terms of what we have learned?
According to the theory of relativity, the speed of light is a universal constant. It is

the same in all directions and does not depend on the motion of its source. There-
fore, each photon will start from P with the same speed c independent of direction
even though the source P is moving itself. If we mark the position of P at the mo-
ment of the emission, both photons will return back to this position simultaneously.
But the emitter itself (carrying also the detectors) is no longer there – it has pro-
gressed to another position P � due to the rotation of the platform (Fig. 5.24b). The
photon that had been launched in the same direction has not yet reached this point;
the photon launched in the opposite direction, however, has already passed this
point and had accordingly been detected. Thus, the photons cannot arrive back at
the emitter at the same time. Once the platform starts to rotate, the clockwise and
counterclockwise motions in a circular path are no longer equivalent.

Just as we did in the previous section, we can calculate the arrival times, and, as be-
fore, it is easier to do it from the viewpoint of the stationary observer. Look at Figure
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Fig. 5.24 A circular race-track
(optical centrifuge) with a
photon emitter and two detec-
tors. The emitter launches two
photons in the opposite direc-
tions (“east” and “west”), while
the detectors record their return
time. The photons do not com-
plete their respective cycles si-
multaneously.



5.24. As usual, we introduce some notations. Let R stand for the radius of the circu-
lar path, and let 	 be the angular velocity of the platform. Call the photon launched
from P in the direction of the platform’s rotation the east photon. The photon
launched in the opposite direction will be called the west photon.

As can be seen from Figure 5.24, the west photon will meet with the detector again
when it is at position P�. The east photon will hit the detector at a later time, when
the detector will be at a position P�. The same treatment as in the previous section
gives for the arrival times measured by a stationary observer

T1 � 2�R�c

1� 	R
c

� T0

1� 	R
c

� T2 � 2�R�c

1� 	R
c

� T0

1� 	R
c

�91�

where T0 is the travel time along the loop for the stationary platform.
We see that T1 < T0, which is no surprise, as the west photon has traveled the shorter

length between its emission and absorption. The time T2, on the other hand, is
greater than T0, because the east photon has to travel a longer distance in the station-
ary system between its emission and absorption.

Consider now the same process from the viewpoint of the disk inhabitant Paul. He
is sitting near P, and watches the motion of photons in his frame. Both photons tra-
vel the same distance along the circular loop. The length of the loop measured by
Paul is its proper length given by

� � L� �v� � 2�R�

���������������������

1� 	2 R2

c2

�

�92�

and the proper time of his clock is related to the corresponding time T in the stationary
system by 
 = T/� (	R), so that 
1 = T1 /� (	R), 
2 = T2 /� (	R). Thus, the clock at the de-
tector measures two different circumnavigation times for the east and west photons.

Now, in the spirit of the concluding remark in the previous section, Paul can define
the average speed of the photon circumnavigating the platform as the ratio �/
. Ap-
plying this definition to our case and using Equations (91) and (92) gives

c1 � �

1
� L�T0

1� 	R
c

� c2 � �

2
� L�T0

1� 	R
c

�93�

132 5 Imaginary Paradoxes

� �

�

�

�∆

Fig. 5.25



But the ratio L/T0 is local speed of light. Therefore

c1 � c

1� 	R
c

� c2 � �

1� 	R
c

�94�

Equations (94) can also be obtained directly from the general expressions (90) as a
special case when v = c .

The photon speeds [Equations (94)] found by Paul from his measurements of their
travel times are different from the speed of light! The west photon appears to move
faster than light; if the rotation of the disk is rapid enough, such a photon travels ar-
bitrarily fast. The east photon, on the other hand, appears to move slower than light,
and on a sufficiently rapidly rotating disk it can slow down to half the speed of light.

So far these results pertain to the average speed of the photons. But we apparently
cannot avoid the conclusion that the same must be also true for the local speed: it
must be smaller than c if the light moves in the direction of rotation of the disk, and
greater than c if light moves in the opposite direction. The results of the Sagnac ex-
periment seem to provide unambiguous proof of this. Here is the argument pre-
sented by Paul.

“One of the goals of physics is to draw meaningful conclusions from experiments.
As a platform-based observer I do not have to think much about its rotation and how
it may affect the phenomena. I have to do the measurements. If the measurements
tell me that both photons arrive back at P simultaneously, I conclude that the light
propagates in two opposite directions with the same speed. If the oppositely travel-
ing photons that had been emitted simultaneously do not return to me simulta-
neously, I have to conclude that they travel at different speeds. Now, I did perform
the experiment and I see that when there is no rotation, the photons that were
emitted simultaneously in the two opposite directions return simultaneously. I ac-
cordingly interpret this as another confirmation of Einstein’s postulate about the
constancy of the speed of light. However, when I repeat the experiment during rota-
tion of the disk, the photons do not return simultaneously. The only conclusion I
can draw from this is that the speed of light in a rotating system is different in differ-
ent directions. And this must be true not only for the average speed, but also for local
speed in any location.”

This argument by Paul seems very strong indeed: since the conditions are the same
at any point along the photon’s circular path around the center, the average velocity
along this path must be equal to velocity measured locally. Therefore, the Sagnac ex-
periment can be considered as a direct measurement of the local speed of light sepa-
rately for one and the other direction.

However, the last conclusion would be wrong. It does not follow from the Sagnac ex-
periment! This experiment by itself only shows that apart from the local speed c,
which describes the rate of photon motion from one point to another, one can also
introduce two other speeds characterizing complete cycles of clockwise and counter-
clockwise motions of light around the center of a rotating system. These new speeds
are different from the local speed c because the procedure of their measurement is
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different from the local measurement. To show the difference, I will first present a
purely physical argument in the form of a thought experiment, and then the argu-
ments based on the definition of measurement and on the concept of time in rotat-
ing systems.

Consider on the rim of our disk an element �W with the segment of arch AB
(Fig. 5.25). According to Paul’s interpretation of Equations (94), the local speeds of
light in the directions A 
B and A�B differ from one another. Let now the radius
of the disk increase and its angular velocity decrease in such a way that the product
	�R and thereby the speeds c1 and c2 remain constant. The reference frame formed
by the local region �W with ever increasing accuracy approximates the inertial refer-
ence frame in the limit R
	, 	
0 (one can make sure of it by noticing that cen-
tripetal acceleration a = 	2R = (	R)	 = const�	 of the element �W under given
condition goes to zero). It follows then that Paul’s conclusion about different local
speeds of light in different directions has to be true for this inertial reference frame.
And owing to the principle of relativity, it then has to be true in general!

To see the physical consequences of this, let us continue our thought experiment. In
Figure 5.25 you see a spaceship traveling alongside with �W with the same speed v
as the rim of the disk, that is v = 	R . Assume that 	R = 0.99999999 c, so that c1 is
nearly infinite, and c2 is nearly half of c. The spaceship moves in a straight line and
therefore represents an inertial reference frame. The disk radius R is so huge that
even the region �W that is small with respect to the whole disk is still huge by our
standards. It is so huge that our spaceship is co-moving together with it for a consid-
erable time required to perform our experiment, and all this time they practically
touch each other. A crew member, Sam, who is an old friend of Paul, comes out to
meet his friend. They greet each other and start to discuss problems of common in-
terest. As they do so, they run together on cosmic roller-blades specially designed for
space strolls and able to accelerate to nearly the speed of light. They are running
shoulder by shoulder – Sam on a sideboard of his spaceship, and Paul along the rim
of his disk – you remember, their platforms nearly touch each other. Suppose they
start running in the direction from A to B. Nothing seems to be in the way of this
run. For instance, Sam can step on Paul’s platform without even noticing it, since
the spaceship and the region �W are to the highest accuracy at rest relative to each
other. But the moment Sam’s roller-blades speed him up to half the speed of light,
Paul yells:

“Hey, slow down, I cannot accompany you any further!”
“Why?”
“Because I cannot outrun light, and it propagates with the speed of only 0.5000001 c

in this direction.”
“Come on, I also see this beam – it behaves quite normally.”
“Yes, in your reference frame, but things are different on my disk.”
“What are you talking about? There is no difference between our systems! They are

stationary relative to each other. For all practical purposes they form one common re-
ference frame. I do not know what is going on elsewhere on your disk, but this spot
does not in any way differ from my spaceship. We are in the same conditions. But if
you mind going further this way, let us turn back.”
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They turn back, accelerate up to nearly the speed of light c, and now Sam yells at
Paul:

“Hey, slow down, I cannot follow you further!”
“What’s wrong?”
“I cannot move faster than light, my blades are at their limit!”
“Come on, we are just crawling like the wretched photons in your spaceship, but

here the speed of light is 107 c, we can frolic to our hearts‘ content!”
And Paul disappears from Sam’s view – he crosses the light barrier without violating

anything: even though he now runs much faster than c, it is still less than his limit
of 107 c!

Now, if Paul is right in his conclusions, the above scene could in principle be possi-
ble. But this would flatly contradict the laws of Nature in the domain where they are
established beyond any doubt. We have to conclude that we cannot identify the
speeds c1 and c2 with the local speed of light, which remains c regardless of direction.

What, then, is the difference between them?
The best answer to this question would probably be the inspection of corresponding

space–time diagrams. To measure the local speed, we mark, as usual, two events M
and N along the trajectory of an object – its departure from one point and arrival at
another point. Since each point is equipped with its own clock, the local speed of
light is determined from the segment of the photon world line between the two
world lines of these clocks (Fig. 5.26 a). To measure the speed c1 or c2 in the Sagnac
experiment, we wait for the photon to return to the same clock after one circumnavi-
gation. The resulting speed is determined in this case from the segment of the world
line of this clock within one pitch of the helix representing the photon’s world line
(Fig. 5.26b). In the more familiar terms of three-dimensional space, the local speed
of light is measured along a small segment with two end points, whereas the speeds
c1 and c2 are measured from two consecutive readings of only one clock on the closed
loop. The fundamental difference between these two procedures is seen, for in-
stance, from the fact that the former admits also the speed measurement for the
“geodesic” photon moving in a straight line tangential to the rim of the disk,
whereas the latter is unable to do this in principle. It is not surprising that the two
fundamentally different procedures of measurement give generally different results
– they actually measure two different physical characteristics. The speeds c1 and c2

in the Sagnac experiment have nothing to do with local speed of light.
From Figure 5.26 we can also clearly see why the “global” speed c1,2 turns out to be

double-valued. If the photons were moving along the rim of a stationary disk, the
world line of the recording clock would be the vertical line OO � – the generatrix of
the cylindrical surface representing “the world pipe” of the rim. In this case the in-
tersection points of OO � with the world lines of the east and west photons coincide,
which would yield the same travel time for both photons. In case of rotation, the he-
lixes representing the world lines of the photons do not change because the local
speed of light does not change. The world line of the clock, however, is now also
twisted into a helix, and intersects with the photons‘ lines already at different points,
which produces the difference between the travel times and thereby the different
“global” speeds c1, c2.

1355.8 Photon races in a centrifuge



Therefore, if Paul asks: “Why does it take different times for a photon to travel
along the same circle in opposite directions?” the answer would be: first, because
the world line of the measuring device (the clock P) is twisted by the rotation of the
disk; and second, this twist is mismatched with those of the photon lines. Were the
photon lines affected by the rotation in the same way, as is the line of the clock,
they would remain symmetrical with respect to this line, and all three would again in-
tersect at the same point. This is precisely what happens in non-relativistic me-
chanics when we use the Newtonian law of addition of velocities. Recall our non-re-
lativistic treatment of the circumnavigating clocks in the previous section, Equa-
tions (78)–(81). In that case, you remember, we obtained the same value for the tra-
vel times in the east and west directions (and accordingly for the local and global
speeds). It was not for nothing, after all, that we had derived apparently unneces-
sary non-relativistic Equations (78)–(81). They now clearly illustrate that had the
photons behaved in the same non-relativistic fashion, they would not display any
time discrepancy either. Because the Sagnac experiment does record the discrepancy,
it can be considered as yet further evidence of the relativistic nature of photons; and
the measured magnitude of this discrepancy corresponds to the relativistic limit,
when the photon speed added with any other speed (for instance that of the disk’s
rim) remains unchanged. In other words, the Sagnac experiment, which on the face
of it appears to disprove Einstein’s assertion about the invariance of the speed of
light, gives an additional proof that the local speed of light is the same in any refer-
ence frame, rotating included!
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and west directions. However, if the
centrifuge is rotating, the world line of
the measuring clock is twisted (OO�)
and accordingly intersects with the
world lines of the east and west
photons at different points (P and Q).
This corresponds to different arrival
times and thereby different global
speeds of the two photons.



Reversing this argument,we can obtain yet another perspective of the Sagnac experi-
ment: the appearance of two additional speeds c1 and c2 indicates the rotation of the
system. Thus, not only can we detect such rotation mechanically without “looking
out” (recall the Introduction!), we can also do it optically. From this viewpoint, the
Sagnac experiment can be considered as an optical analogue of Faucault’s famous ex-
periment with a pendulum [31].

The above analysis pertains not only to the speed of light – it has a general character.
As another example, we illustrate the difference between the local and “global”
speeds for the case opposite to that of light: the stationary particle. So, imagine a par-
ticle stationary in K and sitting close to the rim of the rotating disk. Its local speed re-
lative to Paul is vL = 	R . Let us now try to find this speed using the procedure analo-
gous to Sagnac’s experiment, that is, divide the circumference length � = 2�R� (	R)
of the circle in K � by the time interval 
 = T/� (	R) on the clock P between its two
consecutive meetings with the particle (T is the rotation period of the disk). The re-
sult will be

vG � �


� 2 �R� �	R�

T�� �	R� �
2�R

T
�2 �	R� � vL

1� 	2R2

c2

	� vL �95�

This result is a special case of the general Equations (90) in the previous section,
when the west-bound object moves relative to a rotating system with speed v =
vR = 	R and therefore remains still in the stationary inertial system.

Suppose that we are unaware of the above analysis and naively believe that the result
in Equation (95) yields the local speed of the particle. But upon closer inspection we
will realize that the speed vG has nothing to do with the local speed, and at suffi-
ciently large 	R it can become infinite – and this for a particle resting in K!

The speeds vL and vG in this example, as in the previous ones, have different physical
meanings (Fig. 5.27). The local speed is determined from the readings of the two
synchronized clocks in K� at the end points of the segment MN of the world line of
the particle. The global speed is determined by the proper time of the one pitch of
the helix representing the world line of one clock K�. There is no reason to expect
any equivalence between these two essentially different experimental procedures.

The following analysis of connections between the local and global speeds leads to
another astounding discovery in the rotating wonder-world: there is no such thing
there as one time for the whole space – even in one reference frame.

Let us apply the measurement procedure for the local speed of light to our case. The
segment of the photon trajectory is along the circle of radius R (Fig. 5.28). In an iner-
tial (non-rotating) system K associated with the center of the disk, the spatial separa-
tion between the events is dl, and the time interval between them is dt. Since the
events are on the photon’s world line, dl/dt = ± c, depending on the direction of the
photon’s motion along the segment dl. The + and – signs relate to this direction. The
speed itself is c regardless of direction. Now, perform the same measurement in the
role of Paul – the observer on the rotating disk. If Paul measures the local speed, the
procedure that he uses has nothing to do with the Sagnac experiment. He also marks
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the end points of the directed segment dl � and the moments of the time interval dt �
between the same events, and then calculates the ratio dl �/dt �. The result is given by
the Lorentz transformation:

c � � dl �

dt �
� dl � 	R dt

dt� 	R
c2

dl
�96�

Since dl/dt = ± c, the last equation reduces to c � = � c .
How does this relate to the Sagnac experiment? Note that all the conditions at all

points of the considered circular path are the same. Therefore, for each pair of close
points along the path we can use the same inertial reference frame K, only at each lo-
cality its spatial axis along the direction of the motion of the photon at this locality is
slightly tilted with respect to that of neighboring locality. Because the Lorentz trans-
formations are linear and contain in our case the same parameter 	R, their times
dt � and distances dl � just add up algebraically, so we can apply the previous equation
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Fig. 5.27 The local and global speeds of a par-
ticle, measured in a rotating system K� in a spe-
cial case when the particle sits still in the station-
ary system. (a) The local speed is determined by
the difference in readings of pair of clocks K�1
and K�2 at the intersections M and N with the
world line of the particle, and the spatial separa-
tion between these clocks in K�. (b) The global
speed is determined by the kinematic length of
the world line of a single clock K� and the cir-
cumference of the track.

Fig. 5.28 The system of clocks on a rotating
disk. If we synchronize the clocks, going step by
step around the circle, then we realize that it is
impossible to assign only one moment of time
to an event. A, B, C, D: stationary clocks.



to an arch of finite length l � and to corresponding finite travel time t � and obtain the
same result

c � � l �

t �
� � c �97�

At each stage of this process we can use the “integral” Equation (97), which will al-
ways give |c �| = c for both directions of the photon motion.

The situation changes radically when we apply Equation (97) to the whole rim of the
disk so that the end points of the arch merge together at the opposite side of the rim,
producing a complete circumference. In this case we can still use formally Equation
(97) and obtain the result c � = � c . But now this result does not correspond to the
real physical situation. The local times of the two events in the photon’s life (its de-
parture from and return to the detector) are now measured by the same clock. This
by itself would be all right were the system not rotating. In a rotating system we can-
not uniquely allocate one time to a point using a synchronization procedure around
the closed loop. Look at Figure 5.28. At a certain moment in the stationary system all
stationary clocks read the same time. On the disk, each clock ahead of the previous
one reads an earlier time. I emphasize – each pair of clocks on the disk are synchro-
nized. However, if we apply the same procedure until we return to the original clock,
we realize that this clock should read two different times at once. (Go back to the
chain of moving clocks in Figure 2.6 in Section 2.7 and try to imagine what happens
if you wrap the chain around a circle!). We see that the clock synchronization proce-
dure carried out along a closed loop around the center in a rotating system will allo-
cate two (and more!) different times to the same point of space!

Peculiar properties of “global” time in rotating systems are accompanied by peculiar
properties of space. First, Equation (92) tells us the same thing that we have men-
tioned in the previous section about the Earth’s equator: that the rim of the rotating
platform is not the same as the rim of the stationary platform. This has no practical
consequences for Earth because the difference is negligible in this case, but gener-
ally the effect may be important. Owing to the Lorentz factor, the circumference �
increases with increasing rotational speed of the disk. The disk radius, on the other
hand, does not change. Therefore, the ratio of the circumference to the radius on the
rotating disk is greater than 2�. What can this mean? Only one thing: the geometry
of a rotating system is not the Eucledean geometry we learned in school! What we
call space is now curved so that some of the axioms of the “regular” space no longer
work there. Strange as this appears to be, it can still be understood if we refer to the
space–time diagram. Consider such a diagram for a point P on the rotating disk
(Fig. 5.29 a). Its world line is a helix. What we perceive as space is the set of events si-
multaneous in a given reference frame. For the observer in this frame all three spa-
tial axes are perpendicular to the time axis, which is the world line of a stationary par-
ticle in this frame. Unable to represent all three spatial axes on a two-dimensional
sheet of paper, Paul limits himself to two axes, X � and Y �, in the plane of the disk. He
draws them perpendicular to the world line of P. But this world line is neither worse
nor better than the world line of any other point on the disk. Therefore, the plane de-
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fined by the X �- and Y �-axes must also be perpendicular to the world line of any other
point on the disk. In an inertial reference frame we have no problem in satisfying
this requirement, because the world lines of all the points of this frame are repre-
sented by straight lines all parallel to each other; so a plane perpendicular to one of
them is automatically perpendicular to all the rest. Now, try to perform the same
trick here together with Paul! You cannot! Because all the world lines of the particles
on the rotating disk (except for that of its center) are twisted, a plane perpendicular
to one of them will not be perpendicular to another (Fig. 5.29a). Accordingly, the
events on such a plane are not simultaneous – they do not form the space of the
disk. The only way for Paul to make the plane perpendicular to the world lines of all
the particles of his disk is to twist the plane accordingly, so it is no longer a plane
from our viewpoint. But it is a plane for Paul, with the distinction that it is no longer
a Eucledean plane!

The considered effect of the twist is only manifest along a line of finite length. It has
no effect on a local speed of light. The same is true about the whole space of the sys-
tem. We define the space as a three-dimensional “hyper-surface” perpendicular to
the world lines of the clocks stationary in a given system [32]. Rotation, while retain-
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Fig. 5.29 (a) The plane X�Y� is perpendicular to
the world line PP� of a disk particle. Therefore,
its vicinity around intersection point A repre-
sents a small area on the rotating disk. However,
this plane is not perpendicular to the world lines
of other disk particles (for instance, line QQ� or
line OO� of the center of the disk.) Correspond-

ing elements cannot represent spatial areas
around points O and Q. (b) If we twist the plane
to make it perpendicular to the world lines of all
the disk particles, its geometry departs from Eu-
cleadean geometry, and the surface becomes
self-intersecting.



ing the same structure of four-dimensional space, disrupts the whole fabric of the
three-dimensional space. But it is well known that the change in topological proper-
ties of a space does not by itself affect its local properties. Therefore, synchronization
of clocks and setting common simultaneity turn out to be impossible for the whole
space if the system is rotating, but it remains always possible in any local region – in
accordance with the postulate of the constancy of the local speed of light.

Applying this to the concluding part of the previous section,we see that there was no
contradiction between Equation (90) and the initial condition that both flying clocks
had the same speed. The speeds vE and vW found there are the “global” speeds char-
acterizing complete cycles of motion of the clocks, whereas v is the local speed of the
clocks. Both types of speed are different characteristics of motion in a rotating system,
and both can be used for the full description of such motion.

Thus a close examination clarifies the “paradoxes” associated with the Sagnac experi-
ment and rotational motion, and reveals some of its subtleties.
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6
Superluminal Motions

6.1
Velocity, information, signal

After the appearance of the Special Theory of Relativity, many people came to believe
that speeds exceeding the speed of light in a vacuum are impossible in principle.
This statement, however, is wrong. The value of c is the limit for the speeds of mate-
rial bodies or of the processes that could be used for the transmission of a signal.
Under the term “signal” we mean the transmission of a certain amount of energy
that carries information about an event at a point r1 at the moment t1 and can
change the state of a certain physical system at a point r2 at the moment t2. Accord-
ing to what we know today from experiments, the nature of things is such that for
all motions of this type

�v� � �r2 � r1�
t2 � t1

� c �1�

And nevertheless, motions with v� c also occur in nature. This does not contradict
the above statement in Equation (1), since the latter type of motion is not associated
with mass or energy transfer from r1 to r2. In other words, such motions cannot be
used as a signal. The corresponding point representing this motion in the velocity
space (recall Section 3.3) is not associated with the velocity of a real object. This point
cannot be obtained from subluminal velocities in the framework of the usual Lor-
entz transformations. In what follows we will consider a number of examples of
superluminal motions. A separate example of superluminal propagation of a light
pulse in a specially “prepared” medium will be considered in Chapter 7. I have tried
to make the pool of examples as representative as possible within the limited size of
the book.

There are situations when superluminal motions of physical objects may appear in
the phenomena associated with strong gravitational fields. Gravitation can be consid-
ered as a manifestation of curvature of space–time caused by stationary or moving
matter. The apparent superluminal motions of an object in space–time curved in a
special way are described in a book Black Holes and Time Warps by Kip Thorne [33].
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6.2
The scissors e ect

Let plane P be defined by the two intersecting straight lines AB and A�B�. The line
AB is stationary while the line A�B� rotates uniformly in the plane P with the angular
velocity � about the point O �, which is separated from AB by a distance a (Fig. 6.1).
Owing to this rotation, the angle � between the lines changes with time. We chose
the initial moment t = 0 so that the lines are at this moment perpendicular to each
other: � (0) = 0. Then for an arbitrary moment t we will have � (t) = �/2 – �t. The
angle � changes within the range 0 < � < �/2, so that �t < �/2. As time evolves, the
point M of intersection slides along AB just like the intersection point of the scissor
blades when at work. By analogy, we will call the associated phenomena the scissors
effect. Now, what is the velocity of the intersection point? Qualitatively, we can see
that as �t approaches �/2 (that is, ��0) the point M slides away to infinity within

the finite time interval 0 � t �
�

2�
. It means that in the end of the process point M

acquires infinite speed. We can easily find the expression for the instantaneous velo-
city of M for any moment within the considered time interval.

Denoting the distance OM as x, we can readily see from Figure 6.1 that x = a tan�t.
Therefore,

v � dx
dt
� a�

cos2 �t
�2�

At a certain moment equal to tc � 1
�

arccos
�����������

a��c
�

, the point M has instantaneous

velocity c. Between the moments tc and t = �/2� it moves faster than light. At
t ��/2� the velocity becomes infinite; at t = �/2�, point M jumps instantaneously
from x = +� to x = –�.

The superluminal motion of the point M does not in any way contradict the special
theory of relativity, since we are dealing here with the mathematical point void of
any physical content. This point does not represent a physical particle. Even if we
could materialize segments AB and A�B� as very long edges of the gigantic scissors,
then at different moments t the point M would pass by the different physical parti-
cles constituting the edges. None of these particles moves together with M.

One can argue that such a particle will appear if we place at M a small ring through
which both rods can pass freely. Then the rotation of A�B� would cause the ring to

1436.2 The scissors effect

��

� �

��

��

�

� ψ   ω��

ϕ �

Fig. 6.1



move with the velocity given by Equation (2), and this would mean the superluminal
velocity of a physical body!

The answer to this is that such an effect cannot be realized. Together with the ring, a
new element will unavoidably enter the picture: the mass. The acceleration of the
ring with even a very small mass requires the energy supply. As we know from
Chapter 4, the kinetic energy of a body with a rest mass m and velocity v is
K = � (v) mc2. As v � c, the energy K ��. The energy of the whole Universe would
not be enough to accelerate the ring to the speed of light, and therefore such an ex-
periment cannot be carried out in principle. It is just another way to say that the
speed of light is an unattainable limit for any object with a non-zero rest mass.

6.3
The whirling swords

Let us consider another version of this thought experiment. The line AB is rotating
uniformly about point A with an angular velocity c. Suppose that we are looking at a
certain point M on this line. Let the distance OM be denoted as R. Then the linear
velocity of M is

v � �R �3�

and if R is large enough, then v > c. As in the previous case, the interpretation of this
result is different depending on whether we regard AB as a mathematical abstraction
or as a physical object (for example, a rod). In the first case the superluminal velocity
of a point on the line does not contradict anything because there is no real motion of
a physical object involved in this case. In the second case the rod possesses a certain
mass and therefore the acceleration of any segment up to the speed v > c is impossi-
ble. This confines the possible length to the limit determined by the condition
�R < c, or

R �
c
�

�4�

The value c/� is the maximum possible limit for the radius of any rigid rotating ma-
terial system.

Now there arises a question: how could a real rigid rod rotate if its length exceeds
this limit? To answer this question, we must use the requirement that the physical
speed of any, however distant, physical element on the rod cannot exceed the speed
of light. But then we immediately come into contradiction with Equation (3), unless
the angular velocity is zero. The only way out of this contradiction is to admit that
the angular velocity is different for different points on the rod. This means that what
we have assumed to be a rigid rod cannot actually rotate as a rigid body. Any attempt
to realize such a rotation for a sufficiently long rod (there are no restrictions on
length in relativity!) would result in deformation. Only a limited section of the rod
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would rotate approximately as a rigid body in accordance with Equation (3), while
the more distant parts would lag behind. For any real rod this effect would be ob-
served for distances much less than c/�. In all practical cases this limiting length is
very large. For example, a spoke of a bike wheel rotating at � = 30 rad s–1 can in prin-
ciple be brought to a state of a “rigid” rotation only if its length is less than
3 × 108/30 m. The rod must be very long indeed in order for us to observe any
deviation from the “rigid” rotation. This is why we have never observed this effect in
everyday life.

In the general case, for very large � or very long rods, the picture would appear as a
continuously spiraling, twisting, and expanding rubber plate rather than rigid rod
(Fig. 6.2). Hence in order to preserve the wholeness of the rod, we have to attribute
to it unlimited elasticity. Thus the Special Relativity has again, as in Section 5.5, led
us from a concept of an ideally rigid body to the directly opposite concept! Of course,
any real body will just be destroyed under the given conditions; therefore, it is better
in this case to consider the motion of a set of separate elements of finite size or point
particles. This is what we will try to do in the next section.

6.4
Waltz in a magnetic field

There is a well known phenomenon which can be used as a model for a process un-
der consideration: the motion of electrically charged particles in a uniform stationary
magnetic field H. Let the field permeate the whole space and the charges be so small
that their Coulomb interactions are negligible compared with the magnetic force.
Under these conditions, a charge q of mass M moves in a circle with the angular ve-
locity [16, 23]

�0 � qH
Mc

�5�
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Fig. 6.2 Three consecutive
snapshots of a rotating “rigid”
rod (e. g. a whirling sword) of
unlimited length.



If the ratio q/M is common for all particles, the angular velocity will also be com-
mon. The radius of each circle is proportional to the particle’s speed: R = �0

–1 v. The
particles with various speeds will trace out circles of various radii.

Suppose that at some moment the particles are aligned along the straight line AB,
just as dancers on a stage. Suppose further that their velocities are all perpendicular
to AB and proportional to their distances from a stationary point O (Fig. 6.3). We
also assume that both AB and all velocity vectors are perpendicular to H. This ar-
rangement ensures that all the particles rotate about a common center O in the
same plane.

Because the angular velocity is the same for all particles, they must remain on
one straight line while the line itself rotates about O. Thus our system, being actu-
ally a one-dimensional gas, realizes the model of a rotating rigid rod. But this
model, too, can be realized only for relatively small distances AB. For sufficiently
remote particles the existence of the light barrier will prevent superluminal mo-
tion, so that the proportionality between R and v cannot be maintained. The same
relativistic Equation (8) in Section 4.1 that did not allow the mass to reach the
light barrier comes in here again. The relativistic increase in the mass with in-
crease in the speed must be taken into account in Equation (5) for the angular fre-
quency. We have to put for mass in Equation (5) its expression given by Equation
(8) from Section 4.1 to get the ��R dependence consistent with the requirements
of the theory of relativity:

� � qH
Mc

��1 �v� �6�

The last equation precludes the possibility of our particles reaching or exceeding
light’s velocity. At v � c we have ��0, and at v > c the angular velocity becomes
imaginary.

Equation (6) describes the dependence � (R) implicitly, since upon substituting �R
for v in the right-hand side, � will appear on both sides of the equation. Solving this
equation for �, we obtain an explicit dependence:
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� �R� � �0 1� �2
0R2

c2

� ��1�2

� �� � qH
MC

�7�

It turns out that, contrary to our initial assumption, each particle rotates with indivi-
dual angular velocity depending on the distance R. For the corresponding linear velo-
city we have

v �R� � � �R�R � �0R 1� �2
0R2

c2

� ��1�2

�8�

Assuming here that R��, we find that for very distant particles � (R) �0 and
v � c. We have automatically obtained the same result as for the rod. As was the case
with the rod, the line AB which was originally straight, gradually bends into a spiral
similar to that shown in Figure 6.4. Now, however, our knowledge of specific proper-
ties of the system enables us to obtain an exact form of the spiral for any moment. If
all the particles were initially arranged along the straight line making an angle
� = �0 with the x-axis, then at later moments t the line will deform into a spiral:

� �t� � �0 � � �R� 	 t � �0 �
�0 t

���������������������

1� �2
0 R2

c2

� �9�

According to Equation (9), the closer a spiral segment is to the origin, the faster it
twists.

A reader familiar with astronomy will possibly notice that Figure 6.4 reminds us of
the picture of a spiral galaxy. At present there are only a few hypotheses to explain
the origin of the spiral branches of such galaxies. One of these hypotheses is con-
nected with the results of a study carried out by the astrophysicists Sophue and Fud-
simoto [34], and is conceptually close to our model here. The difference is that in our
model the magnetic field twists a system of particles into a spiral, whereas in the ga-
laxies a system of charged particles (plasma) twists the magnetic field into a spiral.
The latter mechanism can be understood in terms of the magnetic field lines pene-
trating plasma. If the plasma is sufficiently dense, the magnetic lines are “glued” to
the substance of the plasma they penetrate. The moving plasma carries the magnetic
lines along with its motion. In particular, it twists them while rotating. This mechan-
ism might be responsible for the appearance of the spiral branches.

The observations by Sophue and Fudsimoto showed that the galactic magnetic field
is aligned along the branches, where the interstellar gas and young stars are concen-
trated. The field in one branch is directed towards the center of the galaxy, and in the
opposite branch away from the center. In other words, the field lines enter the galaxy
through the end of one branch and exit through the end of the other one. This geo-
metry of the field is consistent with the hypothesis according to which such a field
has an external origin and had existed before the galaxy was formed.

Figure 6.4 shows successive stages in the formation of the spiral structure of the ga-
lactic magnetic field. At first there is a uniform magnetic field permeating a thinned,
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slowly rotating cloud of plasma. As this cloud compresses due to gravity, it becomes
denser, and the original magnetic field, following the plasma matter, also com-
presses and intesifies without losing its connection with its external sources outside
the galaxy. Because of conservation of angular momentum, the compressed cloud ac-
celerates its rotation, carrying along the magnetic field lines. But far away from the
center of the galaxy, the substance and the field lines “frozen” in it cannot rotate at
the same angular velocity as near the center (we can think of the field lines as elastic
strings being “anchored” at the remote stationary sources). As a result, a spiral struc-
ture forms, looking much as the spiral shown in Figure 6.2. In this case, however,
the process occurs naturally on a cosmic scale.

As in previous examples, the spirals are formed here because the remote parts of a
system (in the last case, the intergalactic gas) cannot rotate with the same angular ve-
locity as those in the galactic core. It is forbidden by the existence of the light barrier.
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6.5
Spiraling ray

The next example deals with a rotating beam of light. There are two different ways of
realizing such a beam. The first is to use a stationary source of monochromatic light at
the center of a rotating opaque spherical shell with a hole at its equator. The second in-
volves the direct rotation of the source itself, e. g. a rotating searchlight or laser.

Consider first the source with the shell. The aperture lets out a ray of light that pro-
pagates away from the center along a straight line connecting the source and the
hole. If we place a screen far away from the shell but directly against the hole, and
the shell does not rotate, we will see a bright spot right at the center of the screen.
We describe the situation by saying that the ray projects the image of the hole onto
the screen. Some people may say that the hole projects the image of the source onto
the screen. We shall not worry about these terminological differences, they are a mat-
ter of choice. So far as we all agree that the source, the hole, and the image (illumi-
nated spot on the screen) are on the same straight line, we have a common under-
standing of what “projection” means. Let us call the whole experimental setup “the
projector.” Now, set the shell rotating. How will it affect the ray and the image?

Well, the ray from the rotating projector will also rotate, and the bright spot on the
screen will move. To observe this motion, we have to encircle the projector with a cy-
lindrical screen of a large radius, whose symmetry axis coincides with the axis of ro-
tation. The question now is: what are in this case the instantaneous form of the ray,
the instantaneous position of the image, and the speed of its motion along the
screen? It may seem at first that the ray must in this case realize the model of the ro-
tating straight line, that is, a rotating infinite (or very long) rigid rod. After all, it is a
well known fact that light in a homogeneous medium propagates along a straight
line. It therefore seems impossible to bend a light beam in a vacuum. And indeed,
ideally straight pencils of light from a searchlight scanning the night sky or sweep-
ing across the horizon seem to present direct visual evidence of this conclusion.

And yet, the conclusion is wrong. The beam seems rectilinear only because the speed
of the rotating aperture is much less than c. If the projector could rotate very fast, or
if we could observe a beam of a sufficiently great length, we would see the beam
bent. Since the speed of light is finite, it takes a while for it to form an image on the
distant screen. While the photons from the aperture rush to the screen, the aperture
itself shifts to another position, so the image, the hole, and the source are no longer
on the same straight line. As a result, one would see the beam twisted as a spiral.
However, this spiral differs drastically from those considered above: it rotates as a ri-
gid body, that is, all its segments, no matter how distant from the center, have a com-
mon angular velocity � which is equal to that of the shell. A remarkable distinction!
A long rigid rod from Section 6.3 has to be deformable as a fluid when rotating,
whereas such a soft matter as light forms a “rigid” structure. Therefore, the resulting
form of the beam asymptotically (that is, at large distances) remains spiral rather
than approaches a straight line (Fig. 6.5a). In this case, the linear rotational velocity
of a sufficiently distant segment of the ray (that is, the velocity of the bright spot
traced out by the beam on the cylindrical screen) can be arbitrarily greater than c.

1496.5 Spiraling ray



We have apparently come to an absurdity: a light beam is traveling faster than light!
A swarm of photons sweeps across the screen faster than each single photon can
ever do. Apart from this logical absurdity, there is a physical one. An electromag-
netic field stores energy. A bright spot on the screen can be considered as a loca-
lized lump of energy. If we plot the instantaneous energy density distribution over
the screen, the illuminated spot can be represented graphically as an isolated hill in
a desert. And, as we know, any energy is associated with corresponding mass ac-
cording to M = E/c2. So we have a massive “energy hill” in a desert. No mass can
move faster than light, but this hill can. For a screen sufficiently distant, it sweeps
over the “desert” with a superluminal speed. Let us find out what the solution to
this paradox is.

The easiest way to understand the phenomenon is to consider light as a flux of
photons – small clots of electromagnetic energy. From this viewpoint, the light
source can be considered as a photon “machine-gun.” With the shell rotating, the
outcoming photons shoot across the entire plane perpendicular to the rotational
axis. The trajectory of each individual photon is a straight line emerging from the
source. This line is just a path followed by a photon. Because of the rotation of the
aperture, each next photon that is let out will move along a radial line which makes
a small angle with the previous one. If the time interval between two successive
photon emissions from the aperture is dt, then the angle will be d� = �dt. Since
each successive photon is emitted later than the previous one by the time interval dt,
its distance from the center is at any moment less than that of its predecessor by cdt,
that is dr = – cdt. As a result, all photons at any moment turn out to be aligned along
a spiral. This spiral forms a true instantaneous picture of the rotating beam
(Fig. 31.1a).

Combining the last expressions for d� and dr, we have for each small segment of the
spiral

dr � � c
�

d� �10�
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The minus sign here shows that larger � correspond to smaller r. If the photons are
being emitted continuously one after another, we obtain a continuous curve de-
scribed by Equation (10). In the integral form the equation reads

r � r0 � � c
�
��� �0� �11�

Here the constants r0 and �0 depend on the moment we choose to start timing and
on the size of the shell. We can express these constants in terms of the boundary
and initial conditions. Let a be the radius of the shell, and the timing starts when the
aperture intersects the direction � = 0. The photon exiting through the aperture at
this moment is at the distance r = a from the center. It keeps on moving along the di-
rection � = 0, so that by the time t its distance from the center is r (0) = a + ct. By this
moment the aperture will have swept through the angular range 0 < ���t, sending
photons in the corresponding directions. Let us focus on a photon moving along a
direction � within this range. This photon was emitted later than the first one by the
time � it takes the aperture to turn through the angle �:

� � ��� �12�

Its distance from the origin will therefore be

r ��� � a� c t� c� � a� c t� c
�
� �13�

This equation is equivalent to Equation (11) with the constants t0 and �0 expressed
in terms of the shell’s radius and the initial condition. This condition is actually a re-
quirement that only the photons outside the shell are being considered, that is,
r�a .

The curve described by Equations (11) or (13) was probably first considered by Archi-
medes and has ever since been called Archimedes’ spiral. While each small element
of this spiral (each photon) moves strictly radially, away from the center, the entire
system (spiral beam) appears rotating as an ideally rigid body with an angular velo-
city equal to that of the shell. In other words, the spiral can be thought of as a rigid
protuberance from the aperture. The linear rotational velocity of a spiral element at a
distance r from the origin is equal to

v � r d�
dt
� r� �14�

This velocity, unlike those for spirals considered above, becomes greater than c at
r > rc, where

rc � c
�

�15�
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The corresponding superluminal bright spot, however, cannot carry any signal in
the direction of its motion (that is, along the screen). The light spot at the point A� at
the moment t � does not originate from the light spot A at the previous moment t. It
is caused by the photons shot independently in the direction OA�. These photons
know nothing of the fate of photons emitted earlier along OA. Thus, the flux of en-
ergy (and information) is by no means directed along the screen. It flows through the
screen – radially away from the source.

We can arrive at the same result if we use the picture of running electromagnetic
waves rather than photons, and study the wave field structure within the spiral. We
will then see that at each moment the crests and troughs of the waves do not at all
form spirals, but rather concentric arcs (Fig. 6.5 b) just like the waves from a stone
dropped into water. The wave carries energy in the direction of motion of its crests.
This direction in our case is radial. The waves diverge radially from the origin with
the speed of light. These radial directions are what we call the true rays. What, then,
is the spiral ray? It is just an area carved out by the rotating aperture from the radially
diverging waves. We can see from the Figure 6.5b that it is only in the direct vicinity
of the shell that the spiral beam is approximately coincident with the real radial ray.

A more advanced reader can arrive at these results using the concept of the instanta-
neous light intensity (the Poynting vector). The energy density in the electromagnetic
field at any point in space is given by [23]

� � 1
2

�0 E2 � 1
	0

B2
� �

�16�

where E and B are the instantaneous electric and magnetic field vectors at this point.
In the electromagnetic wave, this energy is transferred at the speed c in the direction
n perpendicular to both E and B. The amount of energy flowing per unit time
through a unit area perpendicular to n is given by

S � E 
 B
	0

�17�

where E�B is the cross product of the two vectors. In waves running in free space
the vectors E and B are mutually perpendicular, and E = cB, so that

S � E2

c	0
n �18�

If we in addition recall that 	0 �0 = c–2, we can easily verify by the direct inspection
that the last expression is equal to �cn. Thus, the instantaneous light intensity is
equal to the product of the energy density and the velocity cn of the energy transport.
Since the orientations of E and B in the spiral beam are the same as in a divergent
spherical wave, the last equation immediately gives the already known result:
whereas the illuminated spot runs along the screen, the energy is transported radially
through the screen at the speed c. If the screen is opaque, the incident energy is ab-
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sorbed and dissipates into heat. There is no energy transport with the bright spot
along the screen, because the subsequent positions of the spot consist of the entirely
different photons, arriving independently along the different radial lines and know-
ing nothing of one another. The time interval between the two different appearances
of the spot on the screen may be arbitrarily short, just as the time difference between
the two rain drops hitting the ground at two different points. It may be shorter than
the time it takes light to travel from one point to another. This does not mean a
superluminal transfer of mass or energy, because we have two different independent
drops. We can, of course, connect the resulting wet spots by a straight line and say
that the second spot has emerged after the first one faster that it would take light to
travel between the spots. But it does not mean real superluminal motion of a drop
between the places.

6.6
Star war games and neutron stars

A message from the Early Warning Center informed of an approaching target
launched to imitate an alien military cruiser. Neither its exact position, nor distance
from the station, nor velocity were known. The only information available was that
the ship’s orbit was in the same plane as the orbit of the station. The ship was coated
with a special alloy absorbing nearly all incident electromagnetic radiation, which
rendered it practically invisible in all regions of the spectrum. Captain Fletcher’s task
was to destroy the ship as soon as possible.

“In such a situation,” the Captain thought, “there are two possible strategies. One is
to shoot in random directions in the orbit’s plane. Then the target will sooner or later
be hit by a random shot. Another is to set the laser to a regime of continuous radia-
tion and rotate it in the ship’s orbit’s plane, so that the whole plane be swept out by
the laser beam. Then the target will be hit with certainty within the time needed for
the laser to make one full rotation.“

Now, let us estimate the strategies. In the first one there is a chance that the target
will be hit with the first shot, but it is pretty slim. It may as well happen that the tar-
get will still remain unhit after a year of shooting. So the average “life expectancy” of
the spaceship is very large. But they do not want the target to be hit some day. The or-
der is to hit it as soon as possible. The second strategy does precisely this. The period
of one rotation of a laser may be just a few seconds. For “as soon as possible,” a few
seconds will be acceptable. We decide in favor of the second strategy, and so did Cap-
tain Fletcher.

What is the difference between this situation and that of rotating perforated shell in
the previous section? The shell’s role was only that of a chisel – to carve out a spiral
from a spherical wave radiated by a stationary source in all directions. Both the
source and the observer of the ray belonged to one inertial reference frame. In con-
trast, now the source itself (the laser gun) is rotating, while Captain Fletcher with his
team are at rest. The source and the Station embody two different reference frames.
Accordingly, the resulting beam as observed from the Station will now have a differ-
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ent structure. To find the difference we must recall Captain Fletcher’s reasoning
when he, as a shore-based engineer, observed the rising water in Mr. O’Bryen’s ship
(Section 2.10). The two different marks A and B that we observe now on the wave
front are not simultaneous events in the laser’s reference frame (Fig. 6.6). They be-
long to the same advancing front, but to different moments in its history. B is charac-
terized by a later moment than A by the laser’s clock t �B > t �A. By that moment B must
have progressed further away along the laser’s axis than A by the moment t �A. Since
it is us who observe now the different moments of the laser time, the line AB as ob-
served by us is inclined to its direction A�B� in the laser’s reference frame. In the case
of light the tilt angle 
 is given by Equation (68) in Section 2.10. The wave vector k
makes the same angle � = 
 with the laser’s axis. The current situation is more com-
plicated, though, because the laser’s motion is rotational, rather than translational.
The different parts of the laser have different velocities. Accordingly, we must ob-
serve different tilts for different parts of the wave, as shown in Figure 6.6. The fore-
most part just leaving the laser has the largest tilt. Let us call it �m. Once free, the
wave retains its original direction, propagating along a straight line making an angle
�m with the corresponding radial line (for the rotating shell in the previous section
the angle �m is equal to zero, and the photons would propagate strictly radially).

Consider again light as the flux of photons. As the laser rotates, it spills the photons,
each photon making the same angle �m with the laser axis. At a certain moment t in
a stationary reference frame, one can observe all the photons that have been fired
since the rotating laser had started shooting. The set of these photons forms a curve
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bent like a spiral around the rotational axis (Fig. 6.7). For a later moment we will
have the same spiral turned around this axis through a certain angle. Qualitatively,
we can regard the spiral as a rigid curved extension of the laser, rotating together
with it. Imagine again a far away cylindrical screen centered about the rotational
axis. The illuminated spot made by the spiral ray on this screen will run along it
with an angular velocity � equal to that of the spiral. If the screen is far enough, the
spot will run across it with superluminal speed. This explains why just a few seconds
may suffice for the laser beam to sweep out the unimaginably vast area with the lurk-
ing alien spaceship in it.

Now, to become better prepared for ever-changing situations in a star war game, we,
in addition to Captain Fletcher, have to solve the whole problem quantitatively. We
need to prove that the laser beam will indeed rotate synchronously with the laser as
its huge rigid protuberance. And we also need to know the exact shape of the beam
at any moment in order to determine how to move and aim the laser gun to hit an ar-
bitrary moving target with certainty.

For a moment t, consider an instantaneous position of the spiral beam and single
out an arbitrary point A on it (Fig. 6.8). It is a distance r away from the origin O
formed by the center of the rotating platform. Take an instantaneous direction of the
laser at the initial moment t = 0 as the reference direction OO� in our inertial refer-
ence frame. Let the radial line OA to the chosen point make an angle � with the re-
ference direction. We need to find the equation relating r to � for any moment t.
Since the point A is arbitrary, this equation would hold for any point and thereby
contain all information about the motion and shape of the whole beam.

To find the equation, note that the photon at A must have been fired at an earlier mo-
ment t � when the laser made an angle �� with the direction OO�. If the laser rotates
with angular velocity �, then �� = � t �. Label as A� the corresponding starting point
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of the photon that is now at A. It must be a distance l from the center, where l is the
length of the laser. The distance A�A is equal to c (t – t �), and AA� makes an angle �m

with OA�. Now, applying high-school geometry (the sine theorem) to the triangle
OAA�, we have two equations:

r
sin �m

� l
sin ��m � �� ��� �19�

and

r
sin �m

� c �t� �����
sin ��� ��� �20�

We use the first equation to express �� in terms of �m and �:

sin ��� ��� �
����������������������������

1� �2 sin2 �m

�

� � cos �m

� �

sin �m �21�

sin�� � � sin �m cos ��m � �� �
����������������������������

1� �2 sin2 �m

�

sin ��m � �� �22�

where �� l/r < 1. Putting this into the second equation gives

�����������������������������

r2 � l2 sin2 �m

�

� l cos�m �

c t� c
�

arcsin
l
r

sin�m cos ��m � �� �
�����������������������������������

1� l
r

� �2

sin2 �m

�

sin ��m � ��
�

	




� �23�

This is the sought relation between r, �, and t. Let us play with it. Figure 6.7 shows
two different positions of the beam calculated from Equation (23) with �m = 30�,
which corresponds to an extremely rapid rotation of ~1.5 × 106 cycles per second for
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l = 15 m). The positions correspond to two different moments of time. The reader
can easily obtain either one of them from another by simple rotation of the figure.
Those who like mathematical rigorousness can set r = R, where R is any constant dis-
tance greater than l. One will in this case obtain the equation relating the angle � to
time for a point on the beam with a fixed distance R from the center. Differentiating
the resulting equation with respect to time gives

d�
dt
� � �24�

The result does not contain R, and therefore holds for any point on the beam. This
proves that the whole beam rotates as one rigid body with the angular velocity �.

Let us now compare the rotating laser beam (Fig. 6.8) with that of the rotating shell
(Fig. 6.5). Since the photons from the shell propagate strictly radially from the very
beginning, we might expect the initial segment of the corresponding spiral to be ra-
dial. Instead, it is inclined to the radial direction. In contrast, the laser photons leave
sideways to the laser axis, and therefore we could expect the initial segment of the la-
ser beam to be accordingly tilted. Instead, it is strictly radial. It looks at first as if Fig-
ures 6.5 and 6.8 have been mistakenly interchanged in the process of printing. But
no, everything is correct. In the first case, the photons’ velocities have no transverse
component, while the aperture letting them through moves in the transverse direc-
tion. As a result, the line connecting the two neighboring photons must be tilted to
the radial line. In the second case, the velocity of each emitted photon has a trans-
verse component equal to the laser tip’s velocity. Therefore, the segment connecting
the two neighboring photons turns out to be radial. Thus the behavior of the system
of photons does not imitate their individual behavior.

Now, consider some special cases. First of all, if �m = 0, the photons must propagate
radially, and the situation must be the same as in the previous section. Indeed, if we
set �m = 0 in Equation (23), it reduces to

r � l � c t� c
�
� �25�

and we recover the Equation (13). The same conclusion follows for very large dis-
tances, where deviation from the radial motion becomes insignificant, no matter the
value of �m. Setting in Equation (23) r� l, that is, ��1, we obtain

r � c t� c
�
�m � c

�
� �26�

which differs only by a constant from the result in Equation (23) and also describes
uniform rotation with angular velocity �. The reader may have noticed from Figures
6.7 and 6.8 that the further away from the center, the smaller is the angle between
the wave front and the axis of the beam. In this respect the peripheral parts of Cap-
tain Fletcher’s beam are almost indistinguishable from those of the rotating perfo-
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rated shell. In both cases the wave front becomes practically parallel to the axis of
the beam and to the surface of the screen. This provides us with another explanation
as to why the illuminated spot runs along the screen faster than the light signal. Sup-
pose there are two alien ships A1 and A2 “on the screen,” separated by some angular
distance �� (Fig. 6.9). The arc between them would be �s = R�� m long. Let � be
the angle the beam’s axis makes with the cylindrical screen of radius R at the point
of their intersection (Fig. 6.9). It is readily seen from Figure 6.9 that as the wave front
advances outwards, the intersection point (the light spot) moves over the screen with
the velocity

v � c
sin �

�27�

Differentiating Equation (23) with respect to � and then setting r = R gives for � the
expression tan � = dr/R d� = c/�R. When R is large enough, � becomes so small that
sin�� tan ����0, and v exceeds the speed of light. This means that the ships
would be vaporized one after another with a time interval much shorter than the
time needed for the direct laser shot from A1 to reach A2. But this does not contradict
anything, since in the case of the spiral beam there is no causal connection between
the two events. The two blasts that have almost simultaneously converted two islands
of life in the vastness of space into two clouds of atomic vapor were caused by two in-
dependent groups of photons knowing nothing of one another.

All this rolls over in Captain Fletcher’s mind while he is giving orders and then waits
for the results. Captain Fletcher knew that the command “as soon as possible”
should be taken seriously and therefore he ordered the use of the smallest of his la-
ser units, whose rotation rate is most rapid. It makes one complete circle in just 3 s,
and is easier to start. Accordingly, the Captain expects to see a flash of blast in the
sky within 3 s after the start. At the latest, the flash may come a fraction of a second
past this time if the target happens to be close to the initial line of shooting but in
the direction opposite to the rotation of the gun, and allowing for the time that the
light signal of the blast needs to reach the station.
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But 3 s passed, then 4, then 6, … and nothing happened. For a moment Captain
Fletcher’s face bore a puzzled expression. But then it became tranquil again. “Aha,”
he thought, “the superluminal motions do not overrule causality. With all these
bright spots running faster than light along an imaginary screen, it is an outward-di-
rected flux of energy that would hit the aliens. In the final run, I cannot hit the target
faster than it takes a laser pulse from my gun to reach it. The fact that I did not get
any signal of the target being destroyed indicates merely that it is further away from
the Station than I had originally thought. I see now that I was not precisely correct
when saying that the whole plane would be swept out by my laser beam in one period
of rotation. What it actually meant was that an angular region ranging from 0 to 2�
would be swept out by the beam. It does not mean covering of the whole plane,
which would also involve ranging from 0 to � for a radial variable r.“

Captain Fletcher asks his computer to shade and display the area actually swept out
by the laser beam in one rotation since the start. The printout from the computer is
shown in Figure 6.10 a. We see a sharp tooth and the indentation rather than a uni-
form circle. If an alien ship happened to be in this indentation, it would remain in-
tact during the first rotation, but be hit in the second one. Since this did not happen
either, the ship must have been further than 3 light seconds (about 900000 km)
away from the station (Fig. 6.10 b). Beyond this distance, the laser’s power may only
suffice to damage the target, rather than destroy it. “My strategy was correct, but not
implemented in its full sway,” Captain Fletcher thought. “I won’t be so bashful this
time.” He commanded to bring into operation the biggest firing laser facility in his
unit, a 200 m monster with enough power do dig a canyon across the Moon’s surface
in the twinkling of an eye. It takes a full minute for one rotation, and Captain
Fletcher figured out that the target would be hit, at worst, about 1.5 min after the
shooting started. Actually, just 43 s after it, the optical scanners had registered the
emergence of a new star in the sky on its intercept with the shooting plane. The star
was so bright that its fleeting appearance was clearly seen by the naked eye through
a large illuminator in the Station’s battle compartment. The computer monitors of
the Advance Defense Unit displayed a huge blast with the message: TARGET DE-
STROYED. Captain Fletcher’s subordinates saw a shadow of a smile cross their com-
mander’s face.

The story of Captain Fletcher may or may not be found in the early records of the
third millennium, but its essence is much closer to reality than most science fiction
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directions given by the local
arrows. (a) represents the area
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(b) is the area swept out in two
rotations.



stories. Events similar to those described above have been happening for millions of
years, but only recently, in the late-1960s, did we become aware of them. The story
about real events might have been much more dramatic, since in it our whole planet
plays the role of an alien spaceship under the fusillades of laser beams whose
sources are infinitely more powerful than the biggest of Captain Fletcher’s puny
monsters. Our planet’s salvation lies only in the fact that these natural sources are
too far away from us.

Their discovery is reminiscent of a detective story. In 1967a very sensitive radio tele-
scope was constructed near Cambridge in England by a team under Sir A. Hewish.
The telescope was designed to detect and study weak sources of cosmic radio waves.
One day the telescope started to receive very unusual signals: a rapid periodic se-
quence of sharp pulses of radiation [35].

Regularity as such is commonplace in astronomy. It was its period that astounded
the researchers. The period was just about 1 s in contrast with hours, days, or years
characteristic of the known periodic motions of celestial bodies. A 1-s period was
more characteristic of the heartbeats or pulse of a living creature rather than of a cos-
mic object. Naturally, the first (and very appealing) thought was about the signals
being a message from extraterrestrial civilization. But, on the other hand, the struc-
ture of the signals rendered this possibility very improbable. It would be natural to
expect that a signal from intelligent life must carry some encoded meaningful mes-
sage. Accordingly, a series of pulses should have had some patterns similar to those
in speech or writing. But no such things were found. The sequence of almost identi-
cal spikes carried no information other than about the period of its source.

Soon after, a few more sources similar to the first one were detected in other regions
of the sky. This has rendered the extraterrestrial intelligence hypothesis utterly im-
plausible. It was improbable enough to find one such intelligence. To find a few that
would simultaneously have taken special interest and pain to conduct a directed
broadcast for us makes the idea highly incredible. Most probably, the received sig-
nals must have been a manifestation of a natural periodic motion associated with a
new type of cosmic object. Further analysis showed that it might be an extremely
compact rotating star. The smallest and most compact stars observed by that time
were so called white dwarfs. Most stars evolve into white dwarfs after their nuclear
fuel has burned out. We have sound reasons to believe that our Sun will also even-
tually shrink down to the size of a planet like our Earth and become a white dwarf
(this will take a few billions years, so we need not worry about it). But not even a
white dwarf can spin at a rate of one or more cycles per second. It would be torn
apart by the centrifugal forces (which are actually the inertial forces, recall the Intro-
duction!). It must be something much smaller and denser than even a white dwarf
to sustain such a rapid rotation. But nobody has ever observed anything that small
and compact. Then the researchers recalled a theoretical prediction made as early as
the late-1930s of the possibility of the existence of neutron stars. Such a possibility fol-
lowed from the theory of evolution of a certain type of stars considerably more mas-
sive than our Sun. When the nuclear oven inside such a star runs out of its fuel, the
star’s huge gravity can no longer be balanced by the internal pressure. The star keeps
shrinking beyond a white dwarf’s size, until all the electrons are pressed into the nu-
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clei and merge with the protons, giving rise to the emergence of new neutrons in ad-
dition to those already present in nuclei. The whole star is thus converted into a con-
gregate of neutrons. Hence the name of a newly born object – the neutron star. The
whole mass of the former star is now compressed into a size of 5–50 km. The result-
ing mass density is stunning. If we would want to get something that dense here on
earth, we would need to squeeze the whole of mankind into a raindrop. The unima-
ginably high density of nuclear matter produces pressure that can stop the advance
of gravitational collapse, so that the neutron star is stable. The reader can find a bril-
liant account of the physics of neutron stars in the already mentioned book by Kip
Thorne [33].

Now the question arises of why the neutron star should rotate so rapidly. This rota-
tion is actually inherited from the parent star. The angular momentum of an isolated
system is conserved just as is its linear momentum. When a star shrinks, its angular
momentum must remain constant (assuming that its mass M does not change).
Therefore, the reduction of the size must be compensated for by the increase in its
angular velocity �. The more a body shrinks, the faster it rotates.

This phenomenon is often used in skating. A skater first begins spinning with her
arms stretched out. When she pulls the arms in, her rotation rate suddenly in-
creases, producing an impressive finish.

If a star like our Sun (which makes one full rotation in about 27 days) were to turn
into a neutron star of radius 100 km, its new frequency would be one rotation in just
about 3 × 10–2 s.

Now we want to understand why and how a neutron star can radiate a directed flux
of energy. The answer lies in the fact that together with rotation, the neutron star
also inherits from the parent star its magnetic field. The field undergoes the same
“procedure” as the rotation. As the star contracts, so does its magnetic field, until it
becomes a billion times stronger than before. The resulting object is an incredibly
powerful rotating magnet. The magnetic field lines connecting its magnetic poles
can channel the motion of the charged particles and their radiation in the atmo-
sphere of the neutron star [36, 37]. Imagine now that the magnetic axis of the mag-
net does not coincide with its rotational axis. Assume for simplicity’s sake that these
axes make an angle of 90� with one another. Then we have a rotating beacon (or a
cosmic laser gun, for that matter), continuously emitting a beam of radiation sweep-
ing out the equatorial plane. The resulting beam has a spiral shape similar to that of
the Captain Fletcher’s rotating laser. In the general case, when the rotational and
magnetic axes of the neutron star make an arbitrary angle, the beam traces out a
conical surface. Now, if our solar system happens to be close to such a surface, the
beam periodically “thrashes” the Earth, and at these moments our detectors record
splashes of radiation. The time interval between the two closest splashes is just the
period of rotation of the source. Each new splash is seen as a spike on a recording
tape. It is produced by a beacon that circumnavigates along a circle whose radius is a
distance between the Earth and the rotational axis of the source. Typically, this dis-
tance (and accordingly, the length of the circle) is of the order of hundreds of light
years. And the “light spot” makes it around the circle in just a fraction of a second!
Obviously, it must be moving with practically infinite speed. Thus the lasers of Cap-
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tain Fletcher and corresponding superluminal spots have been realized in Nature on
the cosmic scale. But in both cases the apparent “rigid” motion of a spiral beam and
superluminal velocities of its remote parts is a purely geometric effect. The position
of the spiral changes as if it were a rotating rigid body. In reality, however, the spiral
is not rigid and not even the same body. Its constituting material (electromagnetic
field) is continuously renewing, spurting out of the rotating source as does water
from a rotating nozzle of a garden hose. And, by the way, the argument presented in
this section, is, in its essence, entirely applicable for a rotating water stream. If you
water a sufficiently remote screen with such a stream, then the watered area can also
move along the screen faster than light. However, the water in the stream itself (that
is, each individual water particle) moves practically in a radial direction with normal
speed v� c. The wet spot in each new place of the screen is formed of the new water
particles from new parts of the stream. The motion of the wet spot is therefore not
the motion of the same object, and its superluminal speed does not contradict any-
thing.

6.7
Surprises of the surf

Having just mentioned water, let us consider another situation involving water:
waves on the sea. Let them run at a tilted angle against a straight segment of the
shore. If we compare the sea shore with the corresponding line on the screen, and
the crest of a sea wave with the crests of the electromagnetic wave in the spiral beam
in the previous section, we will find a certain difference between them. In the case of
the electromagnetic waves in Section 6.6, the corresponding part of the spiral makes
an acute angle with the screen, while the wave crests are almost parallel to the
screen. Now, in the case of sea waves, the wave crests are inclined to the shore line
(Fig. 6.11). Still, this difference is not essential. What is important is that both cases
allow us to realize superluminal motion. Indeed, if 
 is the angle between the shore
and the crest of a sea wave, then their point of intersection (which can be repre-
sented by a real breaker!) will run along the shore with a speed

v � vcrest

sin

�28�

If now 
 is sufficiently small (which is almost always the case!) then the breaker will
run faster than light. In particular, for 
�0 (all wave crests are parallel to the
shore), v �� (all segments of the crest reach the shore line simultaneously), and
the corresponding breaker instantaneously “traces out” the entire line AB (Fig. 6.11).

A reader who has observed the surf will possibly be surprised that superluminal mo-
tion can be realized in such a commonplace, everyday phenomenon. But in this si-
tuation, too, the superluminal breaker, for all its reality, cannot be used to transfer in-
formation faster than light. As in the above-considered cases, our breaker does not
consist of one and the same body of water. If a sea wave casts ashore a bottle with a
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sealed message, this bottle will remain at rest on the shore (or will be washed away
by another wave), but it will not rush at a superluminal speed along the shore. This
phenomenon has another, more relevant, electromagnetic analogue apart from the
spiral beam: the incidence of a plane wave front on the interface between the two dif-
ferent mediums. The intersection line between the wave front and the interface
moves with a speed

v � c�N
sin


�29�

where N is the refractive index of the medium. This equation is completely analo-
gous to Equation (28) and shows that at sin
 < N–1 the “bright spot” (the optical ana-
logue of the breaker) runs along the interface at a superluminal speed, which, how-
ever, cannot transport a signal.

6.8
The story of a superluminal electron

At the beginning of the 20th century Arnold Sommerfeld published a paper describ-
ing the electromagnetic field of an electron moving in a vacuum faster than light [38].
His basic result was that such an electron could not move uniformly with a constant
speed even if it was in a free space with no external forces applied to it. The reason for
this was the radiative force exerted on the electron by its own electromagnetic field.
This force must be directed opposite to the electron’s velocity, thus decreasing its mo-
mentum and energy. The energy lost must be carried away with the radiated field. In a
nutshell: a superluminal electron would emanate light, radiating away its energy.

The physical nature and origin of such radiation are easy to understand from a well
known analogy in hydrodynamics and acoustics.

Suppose you are in a boat that does not move. If you are jumping up and down, the
boat bobs up and down, and there emerge diverging concentric waves. If the boat is
moving, we can observe the Doppler effect, because the centers of the consecutive
circular waves diverging from the boat are no longer in one place (Fig. 6.12a). As a
result, the waves are compressed in front of the boat and extended behind the boat.
We can find quantitatively the amount of change in the wavelength if we write
� = uT, where u is the speed of the wave on the water surface and T is the period of
the wave. When the boat is moving with a speed v, it will travel the distance � = vT
during one period, so the distance between the two neighboring waves will be �	�
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(the + sign for the waves behind and the – sign for the waves in front). Hence we
can write for the Doppler-shifted wavelength

�� � �
 � � �
 vT � � 1
 v
u

� 


�30�

If the boat moves as fast as waves, it keeps abreast with the first wave, all the rest being
piled up on top of one another, building a big splash. The same can be seen from
Equation (30): when v = u, the distance between the two neighboring waves goes to
zero, they are all compressed into one (Fig. 6.12b). This one, straight wave front can
be considered as an embryo of what happens when the boat moves faster then the sur-
face waves. Equation (30) gives a negative wavelength in front of the boat for this situa-
tion. Physically, it means simply that there are no waves in front, since the boat out-
runs them. We then see two symmetrical breakers, trailing the boat on either side.
They emerge as an envelope of concentric waves diverging from the boat (Fig. 6.12c).

The moving boat does not have to bob to produce these waves. They are produced by
the mere fact of its motion, because it stirs the water surface.

The faster the boat moves, the sharper is the “wedge” formed by the two trailing side
waves. If the boat moves with an infinite speed, it traces out its trajectory all at once;
we can consider this trajectory as an instantaneous linear source of circular waves,
and their envelope will form two parallel crests receding symmetrically from the tra-
jectory of the boat.

Once we have understood the simple mechanism of formation of waves from a
source that outruns them (as envelopes of overlapping circular waves,) it is easy to
describe quantitatively the shape of the envelope. The wave from an initial position
O of the source will form in 1 second a circle of radius u centered about this position.
By this time the source will be at a new position O� a distance v from O. The two tan-
gential lines from O� to the first circle around O represent the envelope of all inter-
mediate circular waves. From the triangle OO�B we have

cos � � � u
v

�31�

Here the angle � � gives the direction of motion of the envelope with respect to the di-
rection of motion of the source. Consider a few special cases. When v = u, we expect
the envelope to move with the boat in the same direction. Equation (31) gives just
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that: cos� � = 1, � � = 0. When v = �, we expect from the above qualitative treatment
the angle � � to be 90�. Equation (31) gives just that: cos� � = 0, � � = �/2. The equation
describes correctly the motion of the two envelopes.

A similar effect is produced by a moving supersonic jet. The only difference is that
now we at each moment see a three-dimensional picture – an envelope of spherical
waves in air instead of circular waves on a two-dimensional surface. The envelope of
all the spherical waves forms a conical surface trailing the jet. Such a surface can be
obtained by rotation of Figure 6.12c about the symmetry axis – the trajectory of the
source – and is called the Mach cone. This surface of the cone moves perpendicularly
to itself, and the direction of motion is given by the same Equation (31). As in the
previous case, there are no waves outside the cone; but when the conical surface
reaches the observer, he hears a sudden sharp “boom” because of a big perturbation
there due to a large number of elementary waves piled up together. Therefore, the
Mach cone is also called a shock wave.

Now we can get back to electrodynamics. Sommerfeld showed that the picture of
motion of a superluminal source in vacuum is in many respects similar to the pic-
ture of the supersonic motion of a jet or projectile. The theory developed by Sommer-
feld predicted the formation of the Mach cone around the trajectory of the corre-
sponding source (a superluminal electron or any other superluminal charged parti-
cle). The only difference is that the cone is formed of the electromagnetic field rather
than acoustic waves. Although the stationary electron produces a spherically symme-
trical electric field around itself, this field becomes “Lorentz-contracted” for the uni-
formly moving electron (Section 5.5). This “contracted” field follows slavishly its
“master” – the electron that produces it. When the speed of the electron reaches c,
its field is flattened to a plane perpendicular to the direction of motion. The field in
the plane is very strong because it is built up of all its former parts that had pre-
viously been spread throughout the whole space. If the electron moves faster than c,
its field cannot keep up with its “master” any more, and forms instead a trailing
Mach cone similar to one described above for a supersonic jet. As in the case of a jet,
there is no electromagnetic field outside the cone. The field in front cannot form
when it is outrun by its source. Therefore, the observer first does not observe any
field, and then suddenly detects a “boom” – a rapid emergence of strong electromag-
netic perturbation (electromagnetic shock). The direction of propagation of the per-
turbation is again given by the same Equation (31), if we put there c instead of u.

Sommerfeld showed that the electromagnetic field of the cone carries away energy
and momentum. They are radiated from the electron. Accordingly, the electron must
lose its energy and momentum. The loss of momentum is experienced by the elec-
tron as a braking force directed against its motion. This braking force must be pro-
portional to the radiation rate. Sommerfeld obtained a simple equation relating the
radiation rate (power) W to the radiation force f :

W � f v �32�

It is similar to a familiar equation for a power consumed by a moving car experien-
cing a resistance force f.
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However, when Sommerfeld actually tried to calculate the electromagnetic field on
the cone, it turned out to be infinite! Accordingly, the radiative force and radiative
losses also turned out to be infinite.

Sommerfeld understood that these infinities were not due to the superluminal speed
of the electron. They resulted from the fact that he used the model of a point-like
electron. Such a model was a notorious trouble-maker in classical physics, even in
the well behaved mode of subliminal states. For instance, the electric field strength
of a stationary electron becomes infinite as the observation point approaches the
electron, and so is the amount of electromagnetic energy, stored by its field. There-
fore, Sommerfeld modified his theory by assigning a finite size to his electron. He
considered the simple model of a charged sphere of a finite radius a. But he did not
know then what we know now – that such a sphere should undergo a certain distor-
tion in the longitudinal (parallel to velocity) direction due to Lorentz contraction. He
considered the sphere as absolutely rigid, which, as we know (see Section 5.5), is im-
possible. Therefore, the results obtained for this model also suffered from some in-
consistencies. Soon after there appeared Einstein’s theory of relativity, which showed
that electrons cannot move faster than light. Therefore, the whole problem lost its
appeal, and was abandoned for about half a century.

After that gap, the story of the superluminal electron experienced an unexpected re-
birth. It started in Moscow, where a prominent Russian physicist, Sergey Vavilov, and
his postgraduate student Pavel Cerenkov had studied optical effects accompanying
the motion of high-energy charged particles in water or some other transparent me-
dium. As early as 1934–36 they observed a new phenomenon: when such a particle
(usually an electron or its counterpart – a positron) moves sufficiently fast, the me-
dium becomes luminous. The intrigued researchers tried to determine the physical
nature of this phenomenon. They tried various approaches and offered various expla-
nations – all in vain. The effect that they observed was not the regular luminescence
– the afterglow of some materials exposed to radiation. It did not look like anything
familiar from previous experience. The researchers published their discovery with a
detailed description of the experiments carried out and the behavior of the new kind
of luminescence. The phenomenon was named the Vavilov–Cerenkov effect (in the
West, just the Cerenkov effect.) An explanation came later: it was intuitively clear and
totally unexpected. Two other Russian physicists, Igor Tamm and Ilia Frank, showed
that the mysterious light observed by Vavilov and Cerenkov was coming from super-
luminal electrons! The “faster than light” charged particles, first introduced by Som-
merfeld and banned by Einstein’s theory of relativity, were gloriously resurrected into
being. Was Einstein wrong? No. Nature just displayed another of her tricks: a particle
in a medium can be superluminal without violating Einstein’s ban. The resolution of
the puzzle was very simple. The speed of light in a medium may differ from that in a
vacuum by a factor of n. If n is greater than 1, which is the case for most media in a
broad range of frequencies, then the speed of light in the medium is accordingly less
than c. Thus, for water n = 1.33 in the visible range of the spectrum, so light in water
moves with reduced speed c/1.33 
 225000 km s–1. An electron can move faster than
that, that is, it can be superluminal in water, without trespassing over the barrier c.
And, because it outruns light waves in water, it produces the same trailing cone of

166 6 Superluminal Motions



electromagnetic radiation as described above (Fig. 6.13). This radiation makes the
water shine and the electron lose its energy and slow down.

Tamm and Frank developed a detailed theory of this effect, which not only gave an
explanation for all its observed features, but was also in excellent quantitative agree-
ment with the results of measurements [39, 40]. Their theory was free from the flaws
of Sommerfeld’s previous treatment, in particular from the divergence of the radia-
tive losses. The reason for this was that not all possible frequencies could participate
in the formation of the Cerenkov cone. The high frequencies, as we shall see later,
propagate in media with speeds inaccessible for particles; therefore, they do not
form the cone, and without high frequencies the electromagnetic field of the cone,
and thereby the radiation rate, remain finite. In 1958 Cerenkov, Tamm and Frank
were awarded the Nobel Prize for the discovery, explanation, and theoretical descrip-
tion of the new physical phenomenon.

6.9
What do we see in the mirror?

Alice, Tom, and Peter were discussing relativity and, naturally, they started talking
about light. For some reason, they came to the question of why light follows the re-
flection and refraction laws. They exchanged their knowledge on this topic, learned
in college (they all attended different colleges). They were surprised to realize that in
each college, their professors told them different things about the subject, and yet all
arrived at the same laws. They decided that each should tell all the details about
what he or she had learned in order for each of them to learn more.

Peter started first.
“Our professor told us that the behavior of light on the boundary between the two

media can be entirely understood from Huygens’ principle. Consider, for instance, a
light wave incident on the water surface from air at an oblique angle (Peter drew
Fig. 6.14a). According to Huygens’ principle, each point on the wave front can be
considered as the center of the secondary waves propagating in all directions with
the same universal speed c. We can find the position of the new wave front at a later
moment as the envelope of all these waves. If we include the waves from the front’s
edge (where it intersects with the boundary) in this construction, we will obtain the
additional front that appears to propagate from the water surface back into air. The
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directions of both fronts are symmetrical with respect to the normal to the water sur-
face, which is the law of reflection.

We may also consider the spherical waves emitted from the edge of the incident
front into the water (Fig. 6.14 b). In water these secondary waves propagate more
slowly, with a speed c/n, where n is the refractive index of water. Therefore, the
spheres in water are smaller than their counterparts in air. The envelope of the smal-
ler spheres accordingly makes a smaller angle with the surface. The simple geome-
trical construction shows that the sine functions of these angles stay in the same pro-
portion as the refractive indices for air and water (nr = n, ni = 1):

sin �i

sin �r
� nr

ni
�33�

This is the Snell’s law of refraction,” Peter concluded.
“I did not know things can be explained so simply,” said Tom, “our professor told us

a different story. Here it is.” Tom paused a while and continued.
“Imagine that you are on a sea beach. Suddenly, you see a beautiful girl (he looked at

Alice) drowning. You rush to help her. If your way were all in air, you would naturally
run along a straight line connecting you and the girl (Tom drew Fig. 6.15). But then
you recall that you swim n times slower than you run. Knowing some physics, you
understand that you would rather lose some time by running a longer distance in
air, but in exchange, gain more time by swimming a shorter distance in water, so
you would rather follow a broken line ACB than run straight towards the girl. The
problem now is to find such a line that would give the least possible time.“

“I thought the problem was to save the girl,” Alice broke in.
“Please, don’t interrupt,” Peter said, “we are doing physics now, and this is getting in-

teresting. And one helps the other, anyway.“
“Yes,” Tom said, “and to do this we need some math.” He looked at Alice again. “Be

patient,” he said, “the rescue is coming!“
“Look at Figure 6.15,” he continued. “You see that the distance AC can be written as

h1/cos�1, and the time you need to run this distance with a speed v is h1/vcos�1. Si-
milarly, the swimming distance in water CB is h2/cos�2, and the corresponding
swimming time is nh2/vcos�2. So the total time for you to reach the girl is
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T � h1

v cos �1
� nh2

v cos �2
�34�

You can vary this time by changing the place where you enter the water, that is, by
moving point C and thereby changing the angles �1 and �2. So the time T is a func-
tion of the two angles. We want this function to take its minimum value. We know
that when a function is at its minimum (or maximum), its differential is zero. So we
have to take the differential of T and set it to be zero:

dT � h1

v cos2 �1
sin �1 d�1 � nh2

v cos2 �2
sin �2 d�2 � � �35�

Now we notice that whatever the angles, they are always related by the condition

A� B � � h1 tan �1 � h2 tan �2 � constant �36�

The differential of a constant is zero, therefore

h1

cos2 �1
d�1 � h2

cos2 �2
d�2 � 0 �37�

If we use this, Equation (35) simplifies to

sin �1 � n sin �2 �38�

which is Snell’s law, Equation (33), for air and water. We see that Snell’s law results
from the tendency of light to select out of an infinite number of possible paths be-
tween the two points the one that requires the least possible time. Thus math can
help us understand refraction better, and in addition save a girl’s life.“

1696.9 What do we see in the mirror?

Fig. 6.15



“Quite the contrary,” said Alice, “the poor creature would surely drown because of
your math. She would rather have you choose any way and do running and swim-
ming than do your math.“

“Much depends on how curious the girl is and how fast you can do math,” Tom an-
swered.

“And how does this math explain the reflection law?,” Peter asked.
“Oh, that’s pretty simple. Look at Figure 6.16. Both the incident and reflected rays

are in the same medium. The time to go from point A to the reflecting surface and
then to point B is the shortest when the distance is the shortest. And the distance is
the shortest when the image A� of A is symmetrical to the original (that is
AC = A�C), because in this case ACB = A�CB, and A�CB, being a straight line, is the
shortest distance between A� and B. Thus the principle of the least time explains
both the refraction and reflection laws, and the reason why an image in a flat mirror
is symmetrical to the original.“

“The latter is simple, indeed,” Peter said. “But how does light manage to pick up the
path that takes the least time? It cannot stop for a while and do calculations.“

“I think I could explain it,” Alice said. “Our professor happened to have been a stu-
dent of Richard Feynman himself. He said what Feynman had taught him, that light
waves do calculations automatically by trying to propagate along all possible paths at
once and allowing them to interfere. As a result, only those along the path of the
least time survive.“

Alice was very proud of her professor, so she tried to convey to her audience all she
had learned from him.

“He also showed to us another way to explain the refraction and reflection. I remem-
ber him saying that there is no such thing as reflected light. The light coming from
a mirror is not a marble bouncing off the wall. When you look in the mirror or on
the water surface, you do not see the same light that was incident on it. That light is
gone, it was either absorbed or passed straight into the medium.“

“What do we see, then?” Tom asked.
“We see the secondary light re-radiated by the surface. The incident light excites the

molecules on the interface, and they respond by emitting their own radiation.“
“But how does this explain the refraction and reflection laws?“
“Oh, this has to do with the Cerenkov radiation from the superluminal sources. A

source moving faster than light will radiate electromagnetic waves at such an angle
that its cosine is the ratio of two speeds: the speed of light and the speed of the
source.” Alice wrote the equation
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cos � � c
v

�39�

from the previous section.
“Where do you see these sources?,” asked Peter. “Such sources do not exist. Nothing

can move faster than light. And the surface molecules do not move at all, unless you
want to consider their thermal motion, which does not count here.“

“It is not molecules themselves that move, but the waves of their excitations that pro-
pagate along the surface,” said Alice. She pointed at Figure 6.14 drawn by Peter.
“Look at this figure: the wave front incident on the surface excites the molecules at
the intersection point B. The excited molecules emit secondary light. As the incident
wave proceeds, the intersection point runs down the surface with the speed

v � c
sin �

�40�

where � is the angle of incidence. This is faster than light. Although the molecules
themselves do stay in place, their excitation is being transferred from one to another
with a superluminal speed. It is just a running illuminated spot, and this kind of
superluminal motion is allowed. But the spot becomes the source of the secondary
radiation! And it is this radiation that we see as the reflected light.“

“How can you prove it?,” asked Peter.
“Very simple! Consider the direction of this radiation given by Equation (39). Take

into account that � = 90� – � �, and use Equation (40) for v. Then you will get � � = �,
which is just the law of reflection.“

“The same superluminal spot,” Alice continued, “radiates into the second medium.
But light moves in this medium with a speed c/n instead of c. Therefore, Equation
(39) becomes

cos �r �
c

nv
�41�

Putting here again Equation (40) and taking into account that �r = 90� – �r,we obtain

n sin �r � sin � �42�

which is Snell’s law. So-called refracted light is nothing else but Cerenkov radiation
from the running superluminal spot into the second medium.“

Alice paused, and summarized:
“If we take a look at the Cerenkov cone as it is explained in the previous section,we will

find that it is the envelope of the secondary spherical waves emitted by the moving
source. Therefore, it is just another example of Huygens principle. In this respect, we
come back to the original explanation of light behavior near an interface given by Peter.“

“Yes,” said Tom, “and if we take into account that interference of waves lies at the
heart of the principle of the least time, as we found out today, we can conclude that
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interference is the basic underlying concept explaining all the aspects of the dis-
cussed phenomena.“

And everybody has agreed with Tom.
When I was writing this conversation among the three friends, I recalled a compre-

hensive review of related phenomena, published by Bolotovsky and Ginzburg [41]
back in 1972. Speaking about refraction and reflection as a manifestation of Ceren-
kov radiation from superluminal sources, they wrote: “We can literally state that we
did not know for a long time that ‘we are speaking prose’ and that the superluminal
Cerenkov condition (as refraction and reflection laws – M.F.) … has already been
known for several centuries. The statements concerning the correspondence be-
tween the refraction and reflection laws, on the one hand, and Cerenkov radiation,
on the other, are … natural since all these relations are obtained from Huygens’ prin-
ciple in the same manner.“

I also recall an article about parity violation in the weak interactions, with an im-
pressive conclusion: “Next time, when you look in the mirror, think that maybe you
see your own antiself.“ (A good description of the physical basis for such an over-
emphasized statement is given in [42].)

It is still not certain if there are or even can be the cosmic-scale regions of space with
antimatter forming antigalaxies, antistars, antiplanets, and perhaps, antipeople. But
it is surely clear that people had seen radiation from superluminal sources long be-
fore they started arguing whether superluminal motions are possible. So next time,
when you look in the mirror, remember that you see the light from superluminal
sources – waves of charges and currents – triggered by light coming from, among
other things, your own self.

6.10
The starry merry-go-round

In this section we will discuss the apparent superluminal velocity which is related to
a phenomenon known from time immemorial: the apparent rotation of the starry
sky caused by the Earth’s rotation on its axis. Neglecting a number of subtle points
which are immaterial to us with regard to the questions in which we are interested,
we can state that the Earth rotates as a rigid solid sphere about a fixed axis resting in
space. Now we want to explore the motion of stars in this space. As always, we need
a reference frame for this purpose. Let us use for such a frame what our ancestors
had used for thousands of years: the Earth. But since the Earth is just a tiny speck in
the vastness of space, we need to extend it in all directions. Of course, we can only do
it as a thought experiment. So let us imagine a multitude of thin and arbitrarily long
rigid rods extending from the Earth along radial directions, like the needles of a por-
cupine. To make it more rigid (ideally rigid, we want it!), let us add a system of rigid
parallels and meridians similar to those on the Earth’s surface (of course, the latter
are also imaginary, but, imaginary as it is, we imagine it as ideally rigid). We obtain a
spherical coordinate system which embraces the entire Universe and rotates relative
to it. The rotation rate and direction are characterized by the vector w, which is just
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the angular velocity of the Earth’s rotation. If some object is at rest in the inertial sys-
tem K associated with the distant stars, it is moving in our rotating system with the
velocity

v � �w
 r �43�

where r is the object’s position vector originating from the Earth’s center. If the object
does not lie on the polar axis, then for sufficiently large | r |, its velocity turns out to
be greater than c. And, what is really disturbing, we are now talking about the motion
of a real celestial body.

Stars give us the most direct confirmation of this argument. All of them do one com-
plete revolution around the Earth in 24 h (more accurately, about 23 h and 56 min
[17]), which means that they have one common angular velocity (that of –w !) There-
fore, their linear velocities are given by Equation (43), where w is independent of r,
and this inevitably implies superluminal velocities of stars. Even the nearest star,
Proxima Centauri, is ~4.3 light years away from us. Its angular distance from the
equatorial plane is relatively small, so that corresponding parallel circle in which it
moves can be approximated by the equatorial line. I hope that all readers understand
that this is not the equatorial line on the Earth’s surface. This is the circle centered
about the Earth’s axis and drawn through the Proxima Centauri. Its length in system
K is about 2� × 4.3
27 light years. In the rotating system associated with the Earth,
this distance, as we know from Sections 5.7 and 5.8, is increased by a Lorentz factor.
Even if we disregard this factor, it would take 27 years for light to travel along this
gigantic circle. But Proxima Centauri makes this distance in 24 h! As a consequence,
its speed is 27 × 365
100000 times greater than the speed of light. And this is the
nearest star! What about more distant objects, other galaxies and quasars? Their
velocities, calculated in the same way, will be infinite for all practical purposes.

The paradox thus obtained has to do with two important circumstances. First, any
physically meaningful statement about properties of velocity must relate to a physi-
cal or local velocity (recall again Sections 5.7 and 5.8!). This velocity must admit, at
least in principle, to its measurement with the meter-sticks and clocks positioned in
the immediate vicinity of the given object. For instance, the reference clock in Sec-
tion 5.7 and the detector in Section 5.8 for the measurement of circumnavigation
times were positioned on the circumference, not at the center of the circle. Second,
the mere possibility of such an arrangement of meter-sticks and clocks requires that
the corresponding reference system in this area can be realized using material ob-
jects.

Neither of these conditions is fulfilled in our case. We have obtained the superlum-
inal velocity of a star as a result of dividing the length of the path traversed by the
star in some fantastically remote area by the Earth’s time. In other words, the time is
not being measured in the region where the given object is moving, and the distance
traveled by this object is not being measured at all. We have just estimated it suppos-
ing that the rotation of the Earth can be extended continuously to infinity as a rigid-
body rotation. But the latter assumption, as we had found in Sections 6.3 and 6.4, is
wrong in principle: the clocks and meter-sticks positioned close to a star on a rigid
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straight rod would have to move faster than light. Under such conditions, the Lor-
entz factor and thereby distance traveled and circumnavigation time of a star become
imaginary. This reflects the impossibility of performing measurements in a rotating
system sufficiently far from its center. It should come as no surprise that having as-
sumed an impossible thing – superluminal velocities of measuring devices – we ar-
rived at an impossible conclusion – that of superluminal velocities of the stars.

The superluminal velocities of stars, which we “observe” on Earth, is an artifact, be-
cause it is impossible to carry out a local experiment on an extended Earth to ob-
serve such a motion. The previously adduced estimate of stars’ velocities is incor-
rect since it was based on the assumed extension of a rigid rotating system beyond
its maximum possible radius rmax = c/�. Therefore, the computed superluminal va-
lues for the velocities of stars do not in any way relate to their real velocities. This
example illustrates the pitfalls one should avoid when attempting to interpret our
observations.

6.11
Weird dry spots, superluminal shadow, and exploding quasars

At the beginning of 1971 there came a report by a researcher at the Massachusetts
Institute of Technology, Irvin Shapiro [43], which stunned many people like a bolt
from the blue. Shapiro had observed the emission from the distant quasar 3C279
with the purpose of measuring an effect described by the General Theory of Relativ-
ity – the deflection of radio waves in the gravitational field of the Sun. He had used a
high-precision device, a radio-interferometer with super-high resolution, which al-
lowed one to distinguish the details of the quasar. Shapiro’s observations, unparal-
leled for their precision at the time, suggested that the separate parts of the quasar
3C279 were flying apart with a speed about 10 times greater than the speed of light!
Such “superluminal“ expansion has since then been observed for at least a few other
quasars.

This does seem to be a direct manifestation of the real superluminal motion of the
physical bodies. But let us not jump to conclusions too fast. We had already realized
more than once that an appearance may, upon closer examination, turn out to be
something different from what it seems to be. So, let us suspend judgement and re-
turn from the distant galaxies back to Earth for a while. We will see that fairly simple
college physics for undergraduates may help us to understand the message from far
reaches of the Universe.

We shall start by considering a situation that may seem somewhat boring: it is rain-
ing. Since the mathematical description of any situation involves some idealization,
the rain here is different from real rain: it consists of infinitesimally small droplets
that fill the whole space, leaving no dry air gaps. They all fall vertically with a con-
stant velocity u upon a horizontal plane 
. This grim monotony is disturbed by only
one single peculiarity – a waterproof object S (an umbrella), under which a continu-
ous vertical chain of small air bubbles emerges within otherwise uniform watery
shroud. We assume the size of the umbrella and thereby the size of the emerging
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bubbles to be small. Since there is no water inside the bubbles, we shall call them
dry holes. A corresponding chain of such holes extending from under the umbrella
can be called the dry thread.

First let the umbrella S be at rest, hovering at a certain height above the plane 
.
Then the attitude of the dry thread q is determined only by the direction of the falling
droplets, that is, the thread will be parallel to the rain streams. It is vertical in our
case, and there will therefore appear a small dry spot S � right under S on the plane 
.
From a geometrical viewpoint, S � is just a projection of point S upon the plane 
.
From the practical point of view, S � is the only place where a microscopic traveller
could find shelter in this utterly unfriendly surrounding (Fig. 6.17a).

Suppose now that the umbrella starts to move at a constant velocity v which makes
an angle � with the vertical direction. This will cause both the thread q and corre-
sponding dry spot S � to move (Fig. 6.17b). For our traveller to remain dry, he will
now have to move together with S �. At what speed and in what direction should he
move?

An obvious answer comes to mind immediately: since the dry spot S � is just a projec-
tion of the umbrella upon 
, it has to move with the speed equal to the projection of
the umbrella’s velocity v upon 
, that is, v � = vsin�. Accordingly, the speed v � can
never exceed v. Also, it will certainly move in the same direction as does the umbrella
(more accurately, in the direction of the horizontal component of the umbrella’s velo-
city). Finally, since the speed of the umbrella is less than the speed of light, v � must
always be less than c.
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Now, all the statements in this answer are wrong. They do not take into account the
finite velocity of the projecting rain. Because of this, the projection is no longer an
instantaneous event. It is a process, evolving with time. We could have ignored this in
the static situation, but now the retardation time has to be introduced into our de-
scription. It is the time interval between the generation of a bubble right under the
umbrella and its hitting the plane 
. The retardation time is equal to h/u, where h is
the umbrella’s altitude at the moment when a given bubble is generated. Because of
this retardation, each dry spot produced by the umbrella will no longer appear di-
rectly under it. It will rather lag behind. Further, since the umbrella’s velocity is
tipped below the horizon, its altitude h changes with time (i. e. is different for differ-
ent bubbles); so is retardation, and, consequently, the lag. As a result, the speed of
the dry spot will no longer be equal to vsin�. The whole picture becomes more com-
plicated and brings about unexpected consequences. To elucidate them, let us now
solve the problem rigorously.

We need, first of all, to give a more rigorous definition of the velocity v �. We can do
this using the above-introduced concept of a dry hole. The holes are being spilled
out continuously from under the umbrella and fall down with the rain at a speed u.
Consider two different positions of the umbrella S at the moments t1 and t2. A dry
hole detaches itself from S at each of these moments and speeds straight down. Let
t �1 and t �2 be the moments when these two holes hit the ground. Let �x � be the dis-
tance between the corresponding dry spots produced by the holes. We define the
speed v � as

v � � �x �

� t �
�44�

where �t � = t �2 – t �1. Using this definition, we can find how v � depends on u, v, and �
(Fig. 6.18a). The distance between the two positions of the umbrella at the moments
t1 and t2 is �l = v��t = v (t2 – t1), and therefore

�x � � �l sin � � v�t sin � �45�

The corresponding difference in the altitudes at these moments is �h = �l cos� =
v�t cos�. The time it takes a hole to travel this distance is �t12 = �h/u = (v/u)�t cos�.
This is the difference between the corresponding retardation times. The time inter-
val �t � differs from �t by this amount:

�t � � �t� �t12 � �t 1� v
u

cos �
� 


�46�

Equation (46) is equivalent to the well known expression for the classical (non-relati-
vistic) Doppler effect: the period �t � between the arrivals of the two successive sig-
nals from a moving source changes by (v�/u)�t from its proper period. Here the
quantity v� = vcos� is the longitudinal (parallel to the line of sight) component of
the source velocity and u is the speed of the signal. In our case it is the dry holes,
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with the particle S as their source, that play the role of the signal. Because �t � de-
pends explicitly on the longitudinal motion of the source, the corresponding phe-
nomenon is called the longitudinal Doppler effect (compare Section 5.3).

Putting now Equations (45) and (46) into Equation (44), we find

v � � v sin �

1� u
v

cos �
�47�

One can arrive at the same result using the concept of the dry thread. Notice that the
point S � appears at the intersection of the thread with the plane 
. The thread is car-
ried down by the rain with velocity u, whereas the source from which it is being
“drawn out” moves with the velocity v. As a result, the falling thread is parallel to the
vector w = u – v, and the problem reduces to determining the speed of advance of its
intersection point with the plane 
 (Fig. 6.18 b). This can be done easily enough, and
we leave it to the diligent reader to make sure that the solution of this elementary
geometrical problem leads exactly to Equation (47).

Now, let us see what this equation tells us. First, we can see that if the denominator
of Equation (47) is sufficiently small, the value of v � can become arbitrarily large and,
in particular, it can exceed the speed of light. This conclusion does not contradict any
laws of Nature, since it applies to an “object” that is not one and the same physical
body. Two different positions of the moving dry spot are caused by the “hits” of two
quite different dry holes. There are no limitations in Nature on the time interval be-
tween such events.

It can therefore happen that our traveller, in order to remain dry, would have to rush
like a madman together with the dry spot, even if the umbrella is hardly moving.
Furthermore, if v � does exceed the speed of light, then the traveller, no matter how
hard he tries, can by no means keep up with the dry spot: the superluminal velocity
cannot be reached by a physical body.

Second, if the denominator in Equation (47) becomes negative, the point S � will
move in the direction opposite to that of the horizontal component of the umbrella’s
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velocity. For instance, whereas the umbrella will shift eastwards, the traveller, in or-
der to avoid getting a running nose, will have to start running westwards.

Both results become obvious if we use the concept of a dry thread q falling on to the
plane 
. We already know that the intersection point between the thread and the plane
can move arbitrarily fast. In particular, when vcos� = u, the dry thread q is parallel to

, and all its points fall on to 
 simultaneously [Equation (46) then gives �t � = 0]. This
means that the point S � traverses its trajectory on the plane 
 instantaneously, i. e.
v � = � (Fig. 6.19). The reverse motion of the dry spot occurs when vcos� > u; physi-
cally, this means that the umbrella is falling down faster than the rain, outrunning the
rain drops, so that the associated dry thread, while falling down with the umbrella, re-
mains above it (Fig 6.20 a). Equation (46) gives for this situation �t � < 0. This means
that of the two dry holes, the one that had detached from the umbrella first hits the
ground last. It is readily seen from Figure 6.20 b that the first dry spot appears on the
plane 
 at the moment when the umbrella crashes into the plane; it then moves away
from the wreckage site in the direction from which the ill-fated craft had come.

If the vertical component of umbrella’s velocity vcos� only slightly exceeds u, the de-
nominator in Equation (47) is a small negative number. The value of v � is then nega-
tive and large. When its magnitude exceeds c, we will observe a negative superlum-
inal velocity of the dry spot, which just means that it will move faster than light, and
in the direction opposite to the umbrella’s horizontal drift.
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Let us make a brief preliminary summary of what we have learned. It amounts to a
statement that one can observe superluminal velocities in such everyday situation as
rainy weather on Earth. The dry image of a slowly moving object under slowly falling
rain can move along the ground faster than light in a vacuum.

Some variations in the conditions of the problem are possible. For example, the rain
can be replaced by broad beams of light streaming down. Then the velocity u in the
above equations must be replaced by c, and Equation (47) for v � will take the form
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v � � v sin �

1� v
c

cos �
�48�

Dry holes will in this case turn into dark holes, and the dry thread into dark thread
(the shadow cast by the umbrella). The denominator in Equation (48) is now always
positive since v < c. Therefore, the dark spot S � (the ray projection of the umbrella)
can only move in the same direction as its geometrical projection. This motion, how-
ever, can also be superluminal if the right-hand side of Equation (48) is greater than
c, that is, if

� sin �
1� � cos �

� 1 �49�

where � � v/c.
The interested reader can easily find the range of the values v and � for which the

above inequality holds. The corresponding area in the (v, �) plane forms a shaded
segment (Fig. 6.21). If the direction and the magnitude of the umbrella’s velocity are
such that the point (v, �) lies inside the segment, the umbrella’s shadow will move
with superluminal velocity. We will call the corresponding phenomenon “the super-
luminal shadow.” As can be seen from Figure 6.21 [or be obtained from Equation
(49)], such a shadow can emerge under the given conditions if the umbrella’s velocity
exceeds the value vc = c/

���

2
�

.
The mathematical formulation of the problem will not change if we “reverse the

signs” in the physical conditions: replace the incident light with darkness, the um-
brella with the light source, and the tilted dark thread (the shadow line q) with the
light ray composed of photons. These photons are being emitted by the source in the
downward direction in exactly the same way as the dry holes (the air bubbles) had
been “emitted” by the umbrella in the previous example (the concept of photons as
point particles is not precisely correct, but this will not cause any errors in the follow-
ing discussion.) The ray q can now be considered as the locus of all photons emitted

180 6 Superluminal Motions

Fig. 6.21



by the source S in the downward direction at different moments of time. The ray
strikes plane 
, producing bright spot S �. This spot can be considered as the image
of the source. More precisely, it is the image of a certain previous moment in the
source’s history, the moment when the given photon producing the bright spot was
emitted by the source.

Well, after we have made all these substitutions, our simple mathematical problem
suddenly turns from a funny trifle into a model of a grandiose astrophysical phe-
nomenon. With this model, we will be far better equipped to interpret observations
described at the beginning of this section. Imagine that there has occurred an explo-
sion of a distant cosmic object, and the clots of hot plasma are flying apart in all di-
rections from the sight of the cataclysm. One of the clots (denote it S) is moving to-
wards the Earth with a velocity v making an angle � with the line of sight to the ob-
ject. Then the image of the clot projected by the ray q on the plane 
 is moving with
a speed given by Equation (48). According to this equation, for the values of v and �
satisfying the inequality (49), the speed v � will be greater than c. And if we judge the
phenomenon only by its appearance to an observer (by the moving spot S �), we will
arrive at the wrong conclusion, that of the superluminal velocity of the source itself.
This observational artifact has been called “the relativistic cannonball.” If, for exam-
ple, the relativistic cannonball is moving almost directly towards the observer, the lat-
ter will see the ball’s optical image S � moving in the plane 
 perpendicular to the line
of sight (let us call it a picture plane) at a superluminal speed.1)

Another example may elucidate the nature of this effect. Let a relativistic clot of
plasma move toward the Earth with a speed equal to 0.99 c, but slightly sideways
rather than directly toward us, so that in 300 years it will shift in the picture plane by
25 light years from its original position. But in the longitudinal direction it will
come closer to us by

����������������������������������������

�300
 0�99�2 � 252
�

� 297 light years. The light emitted by
the clot from its new position will have to travel 297 light years less than its predeces-
sor. It will therefore reach us only 300 – 297 = 3 years after the arrival of the first sig-
nal. Consequently, it will appear to the observer on the Earth that the clot has shifted
by 25 light years in the picture plane in only 3 years, in other words, it was moving
with the speed of about 8 c! But this result is illusory, since it was obtained using the
time interval �t � between the receptions of the two consecutive signals. This time in-
terval can be much smaller than the time �t between the emissions of the signals be-
cause of the change in the distance to the source (longitudinal Doppler effect).

Thus we arrive at somewhat paradoxical conclusion that the apparent superluminal
transverse velocity is actually a manifestation of a longitudinal Doppler effect. The pos-
sibility of such a manifestation was predicted by a British astronomer, Martin Rees
[44], as far back as 1966, yet for a long time it had not attracted much attention.
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1) The described model is not precisely accurate.
The real source emits light in all directions
(this is why we can observe its different posi-
tions). Because of the immense distance to the
source, its image on the photographic film
may be shifted by only a fraction of millimeter
per year even for the above-considered condi-
tions. But the speed of the corresponding mo-

tion in the picture plane 
 (which is assumed
to lie very far away from the Earth and close to
the source) can be computed from the shift of
the secondary image on the photographic film
if proper account is taken of the distance to
the source. This computed speed is the above
speed v �, and it can exceed the value of c.



But publication of Shapiro’s results alerted the astronomers to the problem. Of
course, the overwhelming majority of physicists and astronomers are now convinced
that what we observe is not a real superluminal motion of physical objects, but in all
likelihood merely the manifestation of the effect of the relativistic cannonball. This
effect, as we have seen, can be well understood and simply described quantitatively
within the framework of known physics.

Those readers who had anticipated the Shapiro’s observations becoming one of the
greatest discoveries shattering the very foundations of science may feel disappointed
at seeing the would-be scientific revolution undercut by Rees’s crystal clear model of
the relativistic cannonball. They are wrong. The exploding quasars are a big discov-
ery. And it may shatter foundations. Just think what kind of cannonball has been dis-
covered here. Physicists of the 20th century were proud of being able to accelerate
elementary particles such as a proton or an electron up to relativistic velocities. But
we cannot accelerate clots of matter. There are two main obstacles in the way. First is
the amount of energy needed. Suppose we want to accelerate a 1-mg grain of matter
to v = 0.8 c
240000 km s–1. Then the energy input into this speck must be
~1.5 × 1011 J. It is definitely greater than the total energy stored in the speck according
to Einstein’s famous equation E = mc2, and is enough to lift 1.5 × 103 tons to the peak
of Mount Everest. Because of the very low efficiency of the acceleration process, the
actual amount of energy needed would be much more than that. Second, even if the
energy needed is available, there is a problem of how to convert it into kinetic energy
of the clot. The only efficient way that we know of now is to charge the body electri-
cally by stripping its atoms of at least one electron each, and then accelerate the ob-
tained charged clot in an external electromagnetic field. This scheme works fine for
one atom (or the molecule, for that matter). It will not work for a macroscopic body,
because the moment you have charged it in the above-described way (suppose you
know how to do so, to begin with!), it would blow up into constituent particles flying
apart faster than the whole thing could be accelerated. It would also blow up all
around itself as if in a thermonuclear blast, since the original energy input needed for
this preliminary charging is greater than that needed for the would-be acceleration.
And this tendency for the initial electric energy to exceed the final energy of the accel-
erated clot becomes ever more impressive as you go to heavier clots. For a 1-g clot the
ratio will be about 106 : 1, for 1 kg it jumps to 1011: 1, and so on. And this is with the
kinetic energy of the accelerated clot itself increasing proportionally to its mass.

So, with all our physics and all the sophisticated, state-of-the-art paraphernalia asso-
ciated with it, we do not know how to accelerate to relativistic velocities just a 1-mg
speck of matter. And with all that, here we are, observing relativistic velocities for
clots of matter – relativistic cannonballs – with a mass perhaps a million times
greater than that of the Sun! This drastic contrast shows that Shapiro’s observations
do constitute a discovery although, perhaps, one of a special kind. It is not the dis-
covery of superluminal velocities for physical bodies, so it does not seem to contra-
dict any of the fundamental laws of physics, and we therefore do not see any neces-
sity for a radical change of our picture of the world. It is rather a discovery of new
mechanisms for acceleration of huge cosmic objects up to relativistic velocities. What
are these mechanisms? What forces could accelerate to relativistic speeds gigantic,
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almost unimaginable, masses of matter? Definitely, it is not an electromagnetic me-
chanism of the type described above. Nature is more inventive than we are. Most
probably, the catastrophic explosions are caused by a peculiar combination of the
electromagnetic and the gravitational forces associated with gigantic black holes
supposedly lurking at the heart of quasars. But we are very far from a full under-
standing of what is going on there, let alone having a comprehensive theory de-
scribing it.

Thus, the discovery, and then a seemingly simple explanation, of the apparent super-
luminal velocities in the exploding quasars may put us at the beginning of a chain of
new exciting discoveries that may well extend far into the new millennium.

6.12
Phase and group velocities

Up to this point we have considered the phenomena associated with light propaga-
tion in a vacuum. New phenomena occur when electromagnetic waves pass through
a medium. One such phenomenon – refraction of waves – is caused by the fact that
the speed of a wave in a medium is different from that in vacuum. It is no longer
equal to c. Denote it as u. We know that the speed of a wave equals the product of its
frequency f and the wavelength �. The frequency f is not affected by the transition
from vacuum to the medium. Therefore, the change in the wave’s speed causes a cor-
responding change in the wavelength only, and in the same proportion. Generally,
this change is different for diffent frequencies, and so both u and � in a medium are
functions of f (or of �, for that matter). We can therefore write u = u (�) and
� = � (�). The ratio of c to the light wave’s speed u in a given medium is an important
characteristic of this medium; it is called the refractive index and, according to the
above note, is also the function of frequency:

n ��� � c
u ��� �

�0

� ��� �
k ���

k0
�50�

where k = 2�/� is the wavenumber and the subscript 0 indicates the vacuum value
of corresponding quantity. Since k0 = �/c, we derive from Equation (50) a general re-
lation between the wavenumber in a medium and corresponding refractive index:

k ��� � k0 n ��� � �
c

n ��� c2 �51�

Since light is the coupled oscillations of the electric and magnetic fields, we can ex-
pect the optical properties of a medium to be determined by its electric and magnetic
properties. Readers versed in electromagnetism will recall that the refractive index is
completely determined by a medium’s permittivity � and permiability 	:

n2 ��� � 	 ��� � ��� c2 �52�
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In many cases the frequency dependence (we call it dispersion) is not very pro-
nounced; the quantities involved change very slowly with the frequency within a cer-
tain frequency range. In such cases we can, as a first approximation, consider these
quantities as constants. For instance, the refractive index of water in the optical
range of the spectrum can, to good precision, be described by a constant number
n = 1.33. Glass in the same range is characterized by n = 1.5. If you put these num-
bers in Equation (50) you will see that the speed of light in these two media is less
than c: �2.2�108 m s–1 in water and �2�108 m s–1 in glass: nothing to be excited
about.

The situation becomes different, however, if we shift to a higher frequency range
or consider other states of matter, such as plasma. In the X-ray region the refractive
index experiences a noticable change with frequency. This change can be described
by

n ��� �
���������������

1� �2
p

�2

�

� � � �p �53�

where the constant parameter �p depending on the properties of the medium, is
called the plasma frequency. The term refers to the fact that at very high frequencies
of electromagnetic radiation the electrons of the medium react as if they were free,
as in plasma. Equation (53) holds for plasma also. In all cases it describes the propa-
gation of radiation through the medium for frequencies greater than �p.

Now, if you take a closer look at this equation under the above conditions, you notice
that the refractive index becomes less than 1. According to the definition of the re-
fractive index, it means that the propagation speed of electromagnetic waves be-
comes greater than c at the high enough frequencies:

u ��� � c
n ��� �

c
���������������

1� �2
p

�2

� � c �54�

In other words, light of high enough frequency can propagate in matter faster than
in a vacuum. It should be stressed that, unlike the cases with the “light spots” con-
sidered in the previous sections, we have here a superluminal velocity along the di-
rection of propagation of the wave. And since it is one and the same portion of the
electromagnetic energy advancing with the wave, it could be used as a proper carrier
for a signal. With such a carrier, faster-than-light signaling seems possible with
radiowaves in plasma or using radiation with sufficiently high frequencies through
some other media.

This conclusion, however, is wrong, because a wave with the sharply defined fre-
quency (monochromatic wave) cannot carry a signal. Such a wave exists for ever. It is
moving permanently and fills the entire space with ever repeating uniform ripples.
The electric charges in any detector exposed to such a wave would perform intermin-
able harmonic oscillations (see Section 5.3). The oscillations, and with them the state
of the detector, would never change. What a boring picture! No change – no message
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– no information! The wave does not carry any signal and, consequently, its super-
luminal velocity does not violate any known physical laws. It is merely the velocity
with which the wave’s phase is moving in space. It can be envisioned, for instance,
as a sinusoid [a wave profile represented by a sine function y = y0 sin (kx – �t)] slid-
ing along the x-axis at a speed

u � ��k �55�

Generally, it can be either smaller or greater than c, remaining in either case under
the jurisdiction of the theory of relativity.

If we want to send a signal with the wave, we must somehow violate wave’s unifor-
mity, making a kind of a “notch” or “incision” in it, change its amplitude or the wa-
velength at some place, i. e. to disturb it in any way within some segment �x. The ar-
rival of the distorted segment of the wave at some place will change the state of oscil-
lation of the charges in the local detector. The detector will record this change – it
will receive a signal.

What is the velocity of this signal? An obvious answer is that since the signal is car-
ried by a sinusoidal wave, it moves with the velocity of this wave. The conclusion is
definitely correct for empty space. The light pulse from a laser is not a sinusoid, its
instantaneous profile looks more like a spike, and this spike moves through the
emptiness of space at precisely the speed given by Equation (55) for an infinite sinu-
soidal wave. Generally, however, Equation (55) does not hold for the the signal’s velo-
city. In order to understand why it only holds for light in a vacuum, and does not
hold in general, we must learn more about signals.

As we have already mentioned, any signal introduces a certain distortion in the origi-
nal sinusoidal profile. Once distorted, it is no longer a sinusoid. The new profile (for
instance, the just mentioned “spike” of a laser pulse) is described by a new function
y (x, t)�y0 sin (kx – �t). Any such function can be thought of as a combination of
the whole group of monochromatic waves with slightly different frequencies within a
certain region �	�� around the central frequency �. In the case of a single pulse,
these waves, adding together, reinforce each other in the corresponding region of
space, producing a big splash there, because they all oscillate in phase; and they can-
cel each other outside this region, producing darkness since their oscillations there
fall out of phase and cancel each other out. In the general case, a combination of si-
nusoidal waves with different periods can form an arbitrary profile. Its shape will de-
pend on the amplitudes and initial phases of the individual waves. This remarkable
feature of sinusoidal waves is exploited, for instance, in electrical engineering to
shape out pulses with a desired form. The associated group of the individual waves
(and also the resulting pulse) is called a “wave packet“, and the velocity of the pulse
is called the group velocity.

Now, consider a packet of electromagnetic waves in a vacuum. Each individual wave
differs from the others in its frequency, but they all have one common velocity c.
They form a sort of a “rigid” system moving as a whole. In this case, there is no other
option for a resulting pulse (that is, for a signal) but to move in pace with all consti-
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tuent waves (that is, without changing its shape). The conclusion is that when all the
constituent waves of different frequencies move with the same velocity (no disper-
sion!), the resulting group also moves with the same velocity. In other words, the
group velocity must in this case be equal to the phase velocity. This situation is de-
scribed by Equation (55).

What happens when there is dispersion? The phase velocity will now be different for
different waves. The system of waves is no longer “rigid”: the individual sinusoids
slide relative to one another. Correspondingly, the resulting pulse cannot retain its
shape. Rather, it will spread out as it propagates. Now, what is its propagation speed?
An obvious answer is that it must be somewhere close to the average phase velocity
of the group. If the group propagates in a plasma, where all phase velocities are
greater than c, then the group velocity must also be greater than c. This would sug-
gest the possibility of faster-than-light communication through a plasma, or under
water when using X-rays. If this conclusion is correct, then the theory of relativity is
in real trouble, since it predicts that superluminal signal transfer is impossible.

Well, the above conclusion, obvious as it may seem, is not correct. It has been based
on the false analogy between the group of waves and, say, a group of cyclists on a
highway. For the cyclists, their group velocity can be roughly defined as the velocity
of the guy riding somewhat slower than the first cyclist in the group, but faster than
the last one. This will be close to the average velocity of the group. The situation
with the waves is more complicated because a wave is not a localized grain of matter;
it repeats itself interminably. To obtain correct result for waves, we must find a model
retaining their periodicity.

Well, here is the model. Consider two very long trains on parallel tracks. They move
in the same direction, but with different velocities u1 and u2. Each train has a row of
windows through which bright beams of light shine on the wall parallel to the tracks
(Fig. 6.22). The row models periodicity; the distance between the centers of the two
closest windows is analogous to the wavelength; let these lengths be �1 and �2 for
the first and second train, respectively; each window models a wave crest and each
spacing between the two closest windows represents a trough. Suppose now that at a
certain moment a window in one train is just opposite that of the second train. Then
the beams out of both windows combine together, producing a spot on the wall twice
as bright as each beam taken separately. The other windows in both trains, closest to
the first two, will overlap only partially, producing dimmer spots on the wall. Let us
call the system of spots a group, and the brightest spot its center. Consider this bright
center as representative of the whole group, and call its velocity the group velocity.
This completes the description of our model. Now, what does this model tell us
about the group velocity?

If both trains moved at the same speed, the whole group would run along the wall
with the speed of the trains. But the speeds are not the same. How will this affect
the motion of the bright spot? We can visualize what happens before doing calcula-
tions. The original two windows producing the bright spot will move apart owing to
the difference in velocities, so that at some later moment this spot will fade. Instead,
the two other windows in the trains, closest to the original ones, will line up with
each other, producing a bright spot of their own at some other place on the wall.
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This spot is in all respects identical to the original one except for its location, so we can
consider it as the old one just having jumped into the new place. Hence the resulting
motion of the bright spot can be thought of as the combination of the continuous trans-
lational motion with the average velocity of the trains and the jumps between their win-
dows. Because of these jumps, the resulting velocity v of the group may be quite differ-
ent from the average velocity u. The difference must be proportional to the range of
one jump, that is, to the average spacing between the windows. Since these spacings re-
present the wavelength, it must be proportional to �. It also must be proportional to the
difference �u in the trains’ velocities: the greater the difference, the faster will the
bright spot fade and then resurrect in another place: the faster the jump. Also, it must
be inversely proportional to the difference in the spacings (that is, the wavelengths):
the greater this difference, the longer it takes for the next two windows to line up with
one another: the slower the jump. Combining all this information, we can express the
rather lengthy verbal description of the process by one short equation:
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Fig. 6.22 A model illustrating the group velo-
city. The train on the upper track models the
wave train with longer waves than that on the
lower track. The train windows are labeled with
capital letters. (a) The windows K of both trains
are lined up, producing a bright spot on the
screen OO�. (b) The windows J are lined up, pro-
ducing the bright spot on the screen. The posi-
tion of the second spot is a result of two mo-
tions: the shift D in the forward direction due to

motion of both trains, and jump � from K to J
(for the situation depicted here – with the long
waves moving faster). The group velocity is in
this case smaller than the phase velocity (the
bright spot moves slower than either train). This
suggests that for waves moving faster than light,
longer waves must move faster than the shorter
waves, in order for the group to move slower
than light. We will see later whether Nature com-
plies with this requirement.



v � u� �
�u
��

�56�

For more sophisticated readers we can give a few more derivations. Let u1 > u2 and
�1 > �2. Suppose you run with train No. 1, so that it stands still relative to you. The
second train will move slowly relative to you with a velocity �u = u1 – u2 in the oppo-
site direction. Originally you are in the bright spot. However, since the second train
is moving, some time later the spot will jump from you by a distance �1 to the next
window of the first train. This jump will occur within the time interval it takes the
second train to move a distance �� (for its next window to line up with the next win-
dow of the first train). That is, �t = ��/�u. Thus, the velocity of the jump relative to
you is �/�t = � (�u/��). Relative to the platform, we obtain for the group velocity
Equation (56).

You may notice an inconsistency in this derivation: when commuting between the
two reference frames, we have used non-relativistic transformation rules for the
length, time, and velocity. In the relativistic domain, would this not cause a large er-
ror? The answer is: it might, if we were to remain in the moving reference frame.
But we have not remained there: we boarded this frame for a while, wrote wrong ex-
pressions there, and then returned to the platform, writing wrong transformations
once again. The errors made in these transformations, when performed in the two
opposite directions, canceled each other out, producing the correct output. This kind
of “error compensation” always happens when we actually remain in one reference
frame. Similarly, we may not bother that it is physically impossible for a real train or
observer to run together with the light wave, whose speed in plasma exceeds c. This
is just a thought experiment. We cannot outrun light, but we can imagine doing so.

Now that our model has served its purpose,we can get rid of it, and go on to consider
a real wave picture of the process. We want to see how individual waves in the group
interfere with one another. Because each wave moves with its own speed u (�), the
relationships between their phases are always changing; for example, if at some mo-
ment the crest of one wave coincides with the crest of another wave, producing a
peak there, then the next moment the crests slide apart, and the big splash at this
point will decrease; the maximum will jump one wavelength to where the two neigh-
boring crests become coincident. As a result, the envelope of all the waves and, in
particular, its maximum, ride along the whole system at a speed that is completely
different from those of individual monochromatic components.

To find the velocity of this maximum, consider two waves with close frequencies �
and � �. At some moment t0 the two crests of these waves coincide, producing the
maximum at the corresponding point x0 (Fig. 6.23). Consider the region x0 – �x,
x0 + �x on whose borders the two waves have opposite phases (Fig. 6.23).

�� � �� �� � 2 ��x
1
�
� 1

��

� �

� �x �k� k �� � �x �k � � �57�

The envelope of the two waves falls off from the peak value at x0 to zero within the
distance �x = �/�k on either side of x0. What will we see at some later moment
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t0 + �t? The upper and the lower train of waves in Fig. 6.23 will move to the right by
the slightly different distances u (�)�t and u (� �)�t, respectively. Their crests that
originally coincided will slide apart by (u – u �)�t. The maximum that they initially
produced will blur and eventually disappear. Instead, the crests neighboring them
which were initially separated by the distance � – � � will now line up, producing a
new maximum. Since both distances must be the same, � – � � = (u – u �)�t, we have

�t � �� ��

u� u �
� ��

�u
�58�

The point where the new wave crests coincide will be shifted from x0 by:

�s � u�t� � �59�

The corresponding group velocity is

v � �s
�t
� u� �

�u
��

�60�

We see that v is different from the phase velocity u.
It is convenient to express v in terms of the wavenumber k rather than �. This can

easily be done by rewriting Equation (60) as

v � u��� ��u
��

� u ��� u��

�� ��
� u ���� � u��

1��� � 1��
� � � � �

k � � k
� ��

�k
�61�

Concluding this set of derivations, we will obtain the same result in a more formal
way similar to that used when analyzing the Michelson experiment. We just add to-
gether two sinusoids with the same amplitude E0 but slightly different wavenumbers
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k1, k2 and frequencies �1, �2, and apply the equation for the sum of the two sine
functions:

E0 �sin �k1x � �1t� � sin �k2x � �2t�� �

2 E0 cos
k1 � k2

2
x � �1 � �2

2
t

� �

sin
k1 � k2

2
x � �1 � �2

2
t

� �

�

2 E0 cos
1
2
��kx � �� t� sin �kx � � �� �62�

Here we put k � 1
2
�k1 � k�� and � � 1

2
��1 � �2� for the average values of the cor-

responding quantities k1, k2 and �1, �2.
The last multiplier in Equation (62) describes a running wave with frequency �, the

wave number k, and phase velocity u = �/k. However, the amplitude of this wave is

itself changing in space and time – it is modulated with the frequency
1
2
�� and the

wavenumber
1
2
�k [compare with Equation (57)!]. It therefore has a maximum

whose location is at any moment defined by the condition

�kx � �� t � 0 �63�

It is moving at the speed v = x/t = ��/�k. This expression is identical with Equation
(61). At ���0, �k�0, both expressions become

v � d�
dk

�64�

Thus, the phase velocity is equal to the ratio�/k, whereas the group velocity at which
the signal is transported, equals the derivative d�/dk.

Now we can explain the “paradox” with the superluminal propagation of the radio-
waves in plasma. This propagation pertains entirely to separated monochromatic
waves, which cannot transmit a signal. The latter can only be transferred with a
group of waves. It remains for us to find the group velocity for the case in Equation
(53) using Equations (60) and (51), and see if the result complies with the theory of
relativity. Putting in Equation (51) the expression (53), we obtain

k ��� � �

c

�����������������

�2 � �2
p

�

�65�

Using Equation (65) and k = 2�/�,we can express� in terms of �. Putting this expres-
sion into Equation (54) gives the phase velocity in terms of the wavelength. The corre-
sponding dependence u (�) is shown in Fig. 6.24. We see that very short waves (��0)
move with a speed slightly above c, and the speed increases with increasing wave-
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length. Beyond the light barrier, the longer the waves the faster they run! This is pre-
cisely the kind of behavior predicted by our simple model illustrated in Fig. 6.22.

Due to this behavior, the derivative du/d� is positive, and the Equation (60) gives for
this case a group velocity, which is not only just less than the phase velocity, but less
than c. Everything is tuned so neatly in Nature, that the greater the phase velocity,
the grater the subtracted term in Equation (60). It can be readily seen from Fig. 6.24
that far from the origin, the derivative du/d��u/�. As a result, the Equation (60)
not only brings the group velocity within the subliminal domain, but it even makes
it approach zero when � and u go to infinity. In this limit the corresponding fre-
quency approaches the plasma frequency �p, and the wave’s energy goes nowhere.

In general, it is easy to show that the considered group velocity is always less than c
by applying its equivalent definition (64) to Equation (65).

It follows for v:

v � d�
dk
� dk

d�

� ��1

� c

���������������

1� �2
p

�2

�

�66�

This is less than c! The paradox has disappeared.
For those who like to see things from different perspectives, it may be instructive to

explore another approach to the problem. Recall that there is an energy flow asso-
ciated with any wave. One can thus talk of the energy transfer even for one mono-
chromatic wave, when there is no signal transfer. How fast, then, is energy trans-
ferred? We had already defined the corresponding velocity in Section 6.5. It is the ra-
tio of the energy flux density to the energy density. The flux S in a medium is deter-
mined by Equation (17) that holds in general case. The only distinction is that the va-
lues E and B are now related to one another by

B � 	H� H �
����

�
	

�

E �67�

Concerning the energy density, the expression for it changes in a dispersive med-
ium. It follows from Maxwell’s equations (see, for instance, Ref. [46]) that in such a
medium
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� � 1
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d ����
d�
�E2� � d ��	�

d�
�H2�

� �

�68�

Here a quantity in brackets means its time average over the period.
If we express, using Equation (67), the quantities S and � in terms of only the electric

field, we will obtain

S � �EH� �
����

�
	

�

�E2� �69�

� � 1
2

d ����
d�
� �

	
d ��	�

d�

� �

�E2� �70�

We therefore find for the velocity of energy transfer (ET)

vET � S
�
� 2

����

	
�

�

d ����
d�
�

����

�
	

�

d ��	�
d�

�71�

This symmetrical expression can easily be transformed to

vET � 2

2
d �� �����

	�
� �

d�
� � �

d
�������

	��
�
d�

� 	
d
�������

��	
�
d�

� � �72�

The expression in parentheses in the denominator is equal to zero and
�����

	�
� � n

�
.

Hence

vET � c
d�

d ��n� �
d�

d ��n�c� �73�

According to Equation (5.2), the quantity
�
c

n is the magnitude of the wave vector in
the medium. We finally have

vET � d�
dk
� v �74�

Thus, energy is transferred with the group velocity! And the latter, as we had seen, is
less than c even in the situations with the superluminal phase velocities.

In the simplest possible case, when motion occurs in vacuum, we have � = ck, and
the group velocity is d�/dk = �/k = c, that is equal to the phase velocity. This is nat-
ural: if all monochromatic waves in a group have a common speed, the signal can
only have the same speed. This is what allows us to talk about the same velocity c for
both distributed electromagnetic waves and localized, ultrashort laser pulses! In
other words, it is the absence of dispersion in vacuum that brings about velocity c as
a fundamental constant of nature.
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6.13
The de Broglie waves

Another unusual example of superluminal phase velocities occurs in quantum me-
chanics. We have already mentioned that light which seems to be continuous can
also be represented as a flux of particles, each carrying a sharply defined portion
(quantum) of the electromagnetic energy. The corpuscular characteristics of an indi-
vidual quantum – its energy E and momentum p – are determined by the frequency
and the wavenumber of the corresponding wave:

E � �� � p � �k �75�

where � is Planck’s constant equal to ~10–34 J s. The idea that light possesses both
wave and particle properties can be traced back to Planck and Einstein. A powerful
complementary idea was introduced by de Broglie. He suggested that there must be
a deep symmetry in Nature. If a light wave can turn out to an observer to be a parti-
cle, then for any particle of matter there also exists a certain kind of an associated
wave, whose frequency and the wavenumber are determined by the particle’s energy
and momentum:

� � E
�
� k � p

�
�76�

The waves associated with the particles according to this equation have come to be
known as the de Broglie waves. These waves have a probabilistic nature. Their in-
tensity at a given point r at the moment t determines the probability to find the par-
ticle at the vicinity of this point if you look at it at this moment of time. Once the
energy and momentum of the particle have been determined with an ideal accu-
racy, the frequency and the wavenumber of the associated de Broglie wave are de-
termined with the same precision according to Equation (76). That is, we will have
a monochromatic wave with a constant amplitude, and therefore this particle is
equally likely to be found at any point in space. In other words, its location prior to
observation is totally undefined. If, however, we carry out a measurement and find
the particle localized within certain place, then, according to the probabilistic nat-
ure of the de Broglie waves, they must now have finite intensity at this place and
the zero intensity elsewhere. However, this is only possible when there is a group
of monochromatic waves with different frequencies, producing a splash inside the
volume with the particle and canceling each other outside this volume. The loca-
lized particle can be identified with such a group. But this means that a localized
particle does not possess a definite momentum; we have seen in the previous sec-
tion [see Equation (57)] that a group of waves producing splash within a region �x
must have different wavenumbers within an interval �k such that �k�x = �. It fol-
lows then from the de Broglie Equation (76) that a particle’s momentum has differ-
ent values within an interval
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�p � �
�x

�77�

whenever a particle is localized within a region of size �x. This relationship between
the uncertainties �x and �p in the particle’s position and momentum follows imme-
diately from the de Broglie postulate and the probabilistic interpretation of the de
Broglie waves. This was first pointed out by Heisenberg and had since come to be
known as his uncertainty, or indeterminacy, principle.

Now, for all these concepts to be consistent, the group velocity of the de Broglie
waves must equal the real velocity of the associated particle. Let us check if this re-
quirement is met. In both classical and relativistic mechanics, the velocity of a parti-
cle is related to its kinetic energy and momentum by

v � dE
dp

�78�

([Sect. 4.1, Eq. 13])
Taking the equation for the group velocity vg = d�/dk, and expressing in it � and k

in terms of E and p according to the de Broglie relation, we immediately obtain

vg � dE
dp
� v �79�

We see that, at least in this respect, the concepts of quantum mechanics do make
sense! However, if we ask about the phase velocity of the de Broglie waves, the an-
swer would be different. The phase velocity is given by the ratio �/k, which, accord-
ing to Equation (76), is equal to E/p. In relativistic mechanics, the energy and the
momentum of a particle with the rest mass m are

E � mc2 � �v� � p � mv� �v� �80�

This gives for the phase velocity

u � E
p
� c2

v
�81�

that is,

uv � c2 �82�

Equation (82) displays a remarkable symmetry between the phase and group veloci-
ties. They are on different sides of the light barrier, and in such a way that the speed
of light is always given by their product. Because the velocities of the material parti-
cles are less than c, the phase velocities of their de Broglie waves are always super-
luminal. In particular, for the particle at rest the associated de Broglie wave has infi-
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nite phase velocity! But we are already mature enough not to get too excited about it.
We know that the energy of the particle is transferred at the group velocity, which is
subluminal, and for the resting particle is just zero. There is another thing worth
mentioning, however: if the particle is really at rest – if it knows that it has precisely
zero velocity – then, according to the uncertainty principle, it has no idea whatsoever
about where in the world it is resting!

6.14
What happens at crossing of rays?

We consider here another example of superluminal velocity that can be realized in a
vacuum and may be important for further discussions [45]. Recall a superluminal
light spot running along the interface between two media 1 and 2 when a plane wave
is incident upon it at a slanting angle. The velocity of the corresponding light spot is
then given by Equation (40). We now want to get rid of the two media separated by a
stationary plane interface. Replace this plane interface by a new wave front moving at
the same speed as the first one. We obtain two crossed plane waves in the same me-
dium. This medium can also be a vacuum, then n = 1, and it is just the case we will
study. Both waves can be realized in the form of plane wave packets. Think of either
packet as a very thin, luminous sheet. The two intersecting sheets rush each with a
speed c in the direction of its normal n1 = k1/k or n2 = k2/k, respectively (Fig. 6.25).
Denote the angle between n1 and n2 as 2�. The intersection line q between the sheets
is sliding perpendicular to itself along the bisector of this angle with a speed

v � c
cos�

�83�

The maximum energy density is concentrated along the line q. Think of it as of a rod
that is brighter and moves faster than the two individual sheets producing it. Now we
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have a region with high energy density (a “lump” of energy) that outruns light in a va-
cuum. We had found earlier that moving lumps of energy may constitute a signal
whose velocity in a stable medium is just the lump’s velocity. We therefore cannot
avoid the conclusion that here we have a genuine case of superluminal signal transfer.

Our doubts will increase if we consider the surfaces of constant phase in a system of
cross-waves. Let us first consider two monochromatic waves with the same ampli-
tude E0 and the common frequency �, each wave belonging to its packet 1 or 2, re-
spectively. Let light in both packets be polarized parallel to the intersection line.
Then the electric fields E1 and E2 in both waves oscillate parallel to the rod, and we
can add them algebraically:

E �r� t� � E1 �r� t� � E2 �r� t� � E0 �sin �k1r � �t� � sin �k2r � �t�� �84�

where k1 and k2 are the propagation vectors of the two waves, that is, their propaga-
tion number k multiplied by the unit vector n1 or n2, respectively. Adding the two
sine functions in the same way as we did before, we obtain

E �r� t� � 2E0 cos
1
2
�kr

� �

	 sin �kr � �t� �85�

where

�k � k1 � k2 � k � 1
2
�k1 � k2� �86�

Thus vector k points along the direction of advance of the rod and vector �k perpen-
dicular to it and to the rod.

When computing the resultant magnetic field, we have to be more careful, because
the magnetic field vectors B1 and B2 under given conditions do not oscillate along
the same direction (Fig. 6.25). The summation is therefore to be carried out sepa-
rately for the different components. Call the direction of propagation of the rod the
positive z direction. Direct y along the rod, out of the page. Then the positive x will
point up the page (Fig. 6.25). With these notations we have

Bx �r� t� � B1x �r� t� � B2x �r� t� � B1x sin �k1r � �t� � B2x sin �k2r � �t� �87a�

Bz �r� t� � B1z �r� t� � B2z �r� t� � B1z sin �k1r � �t� � B2z sin �k2r � �t� �87b�

But

B1x � B2x � E0

c
cos� � B1z � �B2z � E0

c
sin� �88�

This leads to the sum of the two sines in Equation (87a) and to their difference in
Equation (87 b), and we obtain
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Bx �r� t� � 2
E0

c
cos� 	 cos

1
2
�kr 	 sin �kr � �t� �89a�

Bz �r� t� � 2
E0

c
sin� 	 sin

1
2
�kr 	 cos �kr � �t� �89b�

The surface of constant phase in Equations (85) and (89) is defined by the condi-
tion


 � kr � �t � constant �90�

This condition determines, for any given moment t, a family of the phase planes
that are all perpendicular to the vector k (see Fig. 6.25). We can rewrite the last equa-
tions as kr cos� = const + �t , where � is the angle between r and k. The product
r cos� is just the distance z of a given phase plane from the origin. The above equa-
tion thus says that this distance changes with time as

z � constant� �t
k

� constant� �
k

t �91�

According to Equation (91), any chosen plane of the set and thereby the whole set
moves in the direction k with the speed

u � �
k

�92�

Now, it is readily seen from Figure 6.25 that

k � k1 cos� � k2 cos� � �
c

cos� �93�

and therefore

u � c
cos�

�94�

which is just Equation (83). We have carried out more detailed and rigorous calcula-
tions to emphasize two points here. First, there emerges a family of phase planes
that are quite different from the original ones. Second, this family moves as a whole
with the phase velocity [Equation (83)] exceeding c. And this seems to be more than
just a superluminal motion of a mathematical point! Here we have come across a si-
tuation where the phase planes in a system of electromagnetic waves in vacuum
move with the superluminal velocity!

We know that, generally, the superluminal phase velocities are possible in certain
media and for certain frequencies. However, for an electromagnetic wave in vacuum,
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both phase and group velocities are always equal to c. And yet, here we have the case
that contradicts this law: a genuine paradox!

This paradox can be resolved if we look more attentively at the system of crossed
waves. We then will notice that neither of the resulting waves [Equations (85) and
(89)] is actually a plane wave. A wave is called plane if its surfaces of constant phase
are infinite planes and if it has a constant amplitude in such a plane. The amplitudes
of the waves in Equations (85) and (89) are different at different points of the wave
surface [Equation (90)]. In particular, the values of E and Bx become zero on the
“node planes” determined by the equation

1
2
�kr � 
 j� 1

2

� �

� �95�

and the value Bz remains equal to zero in the planes

1
2
�kr � 
 j� � j � 0� 1� 2� � � � �96�

These planes divide each of the phase surfaces in Equation (90) into a system of
strips parallel to the vector E so that amplitudes in any two neighboring strips have
opposite signs. However, the sign of the amplitude, by definition, is always positive.
The difference in sign simply means that the field components in the adjacent strips
oscillate out of phase (Fig. 6.26). Thus the “phase surfaces” in Equation (90) turn out
not to be what they “pretend” to be. They are not at all the surfaces of constant
phase. It is true that the phase remains constant within each separate strip – after
all, the phase does satisfy the condition (90)! – but it is not the same in the two adja-
cent strips. The phases in each such two strips differ by �. Also, this change of phase
at the boundary between the two strips cannot even be called discontinuity. There is
no actual jump here because the boundary is where the corresponding field compo-
nent has a node. Now, if we look at the amplitude itself, we will see that it changes
even within each strip, from zero on the edges to maximum in the middle.
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We can find the width �x of the strip, noticing that it is just the distance between
the two neighboring node lines. From Equation (96) we have

1
2
�k 	 �x � � � �x � 2�

�k
�97�

Now, from Fig. 6.25 and Equation (86):

�k � 2 k tan� � 2
�
c

cos�
� 


tan� � 2
�
c

sin� ����

Finally,

�x � �c
� sin�

� �
2 sin�

�99�

We conclude that the resulting wave propagating along k is by no means a plane wave.
Accordingly, its velocity u = c/cos� cannot be called a phase velocity. It is just the velo-
city of a certain mathematical construction – system of strips. This is not very much dif-
ferent from the motion of the intersection point of scissor blades. And once we have
“lost” the phase velocity, the notion of the group velocity in such a system also loses its
meaning. The group velocity had initially been defined in terms of the phase velocity
[see Equation (56)!], and therefore disappears with it. Putting it another way: we have
defined a group as a set of plane waves moving in the same direction. Accordingly, their
wave vectors were different in magnitude, but all collinear. What we have now is a set
of crossed plane waves. Their corresponding wave vectors are equal in magnitude, but
not collinear. This is a different physical system, which we can no longer call a group
(at least not in the above-considered sense). Only in the limit k1�k2 �k (that is,
��0) is the strip of constant phase broadened to sweep across the whole plane, and
the system of waves becomes what we had called a group; but then, according to Equa-
tion (83), v � c. In the general case ��0, we actually have the two different groups pro-
pagating each with speed c in one of the two different directions symmetrical with re-
spect to the z-axis. The superluminal rod that appears along their intersection slides
along z without carrying any signal in this direction. To prove this, let us set up an opaque
screen with a slit in it just large enough for the rod to pass through it and transfer its
energy from the point M to point N on the opposite side of the screen (Fig. 6.25). The
screen will absorb all the energy of the waves that “feed” the rod except for those parts
that pass through the slit. After passing through it, the original rod will split into two
new rods,which will now each move with velocity c at angles � to the z-axis and, in addi-
tion, spread in the transverse directions owing to diffraction on the slit. There will be
no energy transport from M to N since the original rod will just disintegrate [45].

Someone may want to argue that this negative result is caused by the introduction of
the screen which destroys the conditions for the stable motion of the rod, whereas with
no screen the rod would carry a superluminal signal. This argument is self-dismissive:
by assuming that the screen destroys the conditions for the stable motion of the rod
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you admit that the energy does not flow together with the rod whose path MN remains
unobstructed. But even granting the validity of the objection, we will now show that
there is no superluminal transport of energy even in a free space with no screen. Con-
sider the two different positions M and N in the undisturbed motion of the rod (Fig.
6.25). The velocity of the rod is MN/t = c/cos�. However, this velocity has nothing to do
with the actual energy flow. The energy feeding the rod at N has come from the regions
around the points P and Q on the constituting wave fronts. It is the distance NP or NQ
that has to be divided by t to obtain the signal’s velocity at N, and the result will be equal
to c. As to its component along MN, it will be c�cos�, that is, less that c!

It may be instructive for the advanced reader to find the velocity of energy transport
by using the formal algorithm. Let us find the energy density in a system of the
crossed waves:

� � 1
2

�0E2 � B2

	0

� �

� 1
2
�0 E2 � c2 �B2

x � B2
z�

� � �100�

(we have used here a textbook equation, c2 = 1/	0 �0 [23]). Now use Equations (85)
and (89) and carry out all the calculations. You will come up with

� � 2�0E2
0 �1� cos2�� cos2 1

2
�k 	 r

� �

sin2�k 	 r � �t� � sin2�
�

	 sin2 1
2
�k 	 r

� �

cos2 1
2
�k 	 r � �t

� ��

(101)

Similarly, we determine the density of energy flow S = E�B/	0 (the Poynting vector).
This time it is more complicated than in Section 6.12, because we are now dealing
with two crossed waves. Using the rules for the cross product of the two vectors, and
doing all the calculations, we find

Sx � 1
	0c

E2
0 sin� 	 sin ��k 	 r� sin 2 �k 	 r � �t� �102a�

Sz � 4
	0c

E2
0 cos� 	 cos2 1

2
�k 	 r

� �

	 sin2 �k 	 r � �t� �102b�

We see that the energy density and both components of the energy flow density are
distributed periodically in space, and change periodically with time at each point. It
is left for the reader to verify that at each point an instantaneous velocity of the en-
ergy transport does not exceed c:

v �r� t� � S �r� t�
� �r� t� �

�����������������������������������

S2
x �r� t� � S2

y �r� t�
�

� �r� t� � c �103�

However, in actual experiments we usually observe average values of the quantities
in question. Let us now find the average velocity of energy flow � (r, t). The averaging
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of �, Sx, and Sz over variables r and t is carried out independently. The expression for
the x-component of S contains the factor sin2 (kr – �t), and its averaging over time
gives zero. This is just what one would expect, since vectors k1 and k2 have the oppo-
site x-components. Thus, the averaged energy flow moves precisely along the z-axis.
We now turn to its magnitude, i. e. the z-component of S [Equation (102 b). The fac-

tors sin2 (kr – �t) and cos2 1
2
�k 	 r

� �

give 1/2 after averaging over t and r, respec-

tively. Therefore,

�S� � �Sz� � E2
0

	0c
cos� �104�

The same procedure for � gives

��� � �0E2
0 �105�

We now define the average velocity of energy transport by the equation [46]

vav � �S���� �106�

Then, using Equations (104) and (105), we obtain

vav � cos�
	0 �0 c

�107�

Finally, since 1/	0 �0 = c2:

vav � c cos� �108�

This is precisely the result that was obtained from simple geometrical considera-
tions.

If, instead of the two monochromatic waves, we now consider two wave packets pro-
pagating in the directions n1 and n2, then the fields E1 and E2 in each packet will be
the sum of many monochromatic waves with various frequencies, and the same is
true with regard to B1 and B2. When composing the products E�B, E2, B2 we will get
mixed terms of the form sin�t�sin� �t, sin�t�cos� �t, etc. The average value of all
such terms is zero, and expressions for ��� and �S� will reduce to the sum of corre-
sponding expressions for the separate monochromatic components. Because for

each such component the ratio
�S ����
�� ���� does not depend on � and is equal to ccos�,

the ratio of their sums is also equal to

vav � �S���� �
� �S ���� d�
� �� ���� d� � c cos� �109�
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Hence our result has a general character and is to the effect that in any symmetrical
system of crossing waves the velocity of the “phase planes” and of the corresponding
electromagnetic “clot of energy” is greater than c and equal to c/cos�, whereas the ve-
locity of energy transfer is less than c and equal to c/cos�. The product of these two
velocities is equal to

uv � c2 �110�

A remarkable result! The velocities u and v here relate to c in precisely the same way
as the phase and group velocities of the de Broglie waves do in Equation (82). What
is it: a formal similarity, or something deeper? We don’t know as yet …

6.15
The mystery of quantum telecommunication

We conclude this chapter with a discussion of one of the most fascinating phenom-
ena that, on the face of it, appears to demonstrate beyond any doubt the existence of
superluminal (and even instanteneous) communication between distant objects.
The phenomenon was called quantum non-locality, and is so impressive and difficult
to accept that it appears to be on the verge of mystical. It has been widely discussed
from the early days of quantum mechanics up to this day [47]. Its most characteristic
features were recently confirmed in experiments by Aspect et al. [48]. These experi-
ments aroused great interest in the physics and optics communities. They also
caused numerous speculations in which their results have been interpreted as a pro-
ven demonstration of instantaneous signal transfer.

As we have seen so far, none of the discussed superluminal motions can be used for
faster-than-light communication. Here we want to show that this applies also to the
manifestations of non-locality demonstrated in the mentioned experiments. The de-
monstrated non-locality is just another aspect of the probabilistic nature of the wave
function describing the behavior of physical objects (see Section 6.13). Even for a sin-
gle electron with initially undefined position (that is in a state described by a plane
wave embracing the entire universe), its wave function collapses instantaneously at
the moment of measurement of its position to a well-defined wave packet within a
small region of space. Such a collapse, or reduction of the wave packet from initially
infinite to a finite size, occurs with an infinite speed (imagine something shrinking
within a twinkling of an eye from the size of the visible universe down to the size of
an atom!). And there is no contradiction with the theory of relativity in it, because al-
ready prior to the act of measurement there was a non-zero chance for the electron
to happen to be at precisely the same atom where it was found to be after the mea-
surement. On the other hand, even though there was a much greater chance for it to
find itself some place within the Andromeda nebula, it was only a chance, not a cer-
tainty! One cannot therefore describe the collapse of the wave function in terms of
cause and effect, for instance, as the convergence of a certain compressible fluid
whose tractable parts occupy at any moment a well defined place in space. Therefore,
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these quantum mechanical phenomena, subtle as they are, do not in any way under-
mine the foundation of the theory of relativity. There is an extensive physical litera-
ture on all these questions, e. g. see Refs. [49], [50] and [51].

Quantum non-locality is closely connected with the quantum mechanical descrip-
tion of subatomic phenomena. It has received wide attention after Einstein, Po-
dolsky, and Rosen [EPR] wrote their famous paper [52] intended to show that the
conventional theoretical scheme of quantum mechanics was incomplete.

Let me first describe the basic idea of this paper. Imagine that two high-energy
photons (� quanta) move from opposite directions towards each other. There is a
chance that when they collide they will both disappear and produce instead a pair of
particle and antiparticle. Suppose that this chance has been realized, and they produce
an electron–positron (e + p) pair. The energy needed to create the pair comes from the
energy of the two photons, and all other conservation laws are equally satisfied.

We will now focus on one important physical characteristic of micro-particles: angu-
lar momentum. Electrons have an intrinsic angular momentum called spin, and the
same is true, of course, for positrons. In macrophysics, we represent the angular mo-
mentum by an arrow. The direction of the arrow gives the orientation of the rota-
tional axis and the sense of rotation around it. We can use the same representation
for spin in microphysics.

Suppose that the initial photons were so polarized that their total angular momentum
was zero. Then the total spin of the system (e + p) must also be zero. This means that
the arrows representing the individual spins of the two particles must point in oppo-
site directions. If, for instance, the electron is in the state with its spin up (e�), then
the positron must have its spin down (p�). The combined state of the pair would then
be (��) (here and below the first arrow in the double is for the electron and the second
for the positron). Let us call this state A. Were the electron to have its spin down (e�),
then the positron by necessity would have its spin up (p�). The combined state of the
system of two particles would then be (��). Call this state B. Since in either state the in-
dividual arrows point in opposite directions, the total spin of the pair is in both cases
zero, as it should be. Nevertheless, the states A and B are physically different, because
the individual spins are different in the two cases. For instance, the electron’s spin in
state A points up, whereas in state B it points down.

If the initial conditions are such that the system is in a sharply defined state A or in
a sharply defined state B, no problems arise. However, it can so happen that the in-
itial condition at the moment of the creation of the pair did not specify spin direction
of either particle. Then all we can say about the physical state of the pair can be ex-
pressed in two statements:

1. The electron has its spin either up or down.
2. If the electron spin happens to point down, then the positron spin has to be up,

and vice versa.

We can compress these two statements into a very short symbolic expression. We are
not allowed to consider state A only, or state B only, because the particles of the pair
have not been created in a state with definite spin. The system can be in either of
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states A or B and, accordingly, we must consider both of them at once. The physical
state of the pair is a specific combination (superposition) of both states. Let us call
this new physical state �. Then we can write1)

� � A� B � ��� � � �111�

Here we come to the crucial point, which is the source of many apparent paradoxes
in quantum mechanics. The superposition (111) describes a very interesting state of
the two particles. Either of the particles here shares a certain part of its individuality
with the other one. Neither of them has a physical state of its own, because its state
is not separated from the rest of the Universe (in our case, from the state of its coun-
terpart.) The particles are entangled with one another, and the state of the pair is
called the entangled state. The basic property of the entangled particle is that one or
several of its characteristics depend on analogous characteristics of another particle.
Measurements of any such characteristics in one would accordingly change the cor-
responding characteristics of another. After the measurement, the particles will be
disentangled with respect to this characteristic. To disentangle our system (e + p), we
must perform the measurement of an individual spin. Suppose we measure the spin
of the electron, and the measurement has shown that the electron spin is up. Then,
according to our basic statement about the properties of the pair, it is immediately
known that the spin of the positron must be down. Hence the measurement of the
spin of the electron also determines the spin of the positron. The resulting state of
the system is A. The system has collapsed from being in both state A and state B to
being only in state A. If the measurement shows that the spin of the electron is
down, it automatically determines the spin of the positron to be up. The correspond-
ing state of the whole pair is now state B. The wave function has collapsed from a
superposition of A and B to B only.

Things can be understood better through comparison. To understand the nature of
the entangled state (111) better, let us compare it with another possible state of the
electron–positron pair. Consider again a situation when the direction of an electron
spin is not specified by the initial physical conditions, but this time it does not de-
pend on the spin direction of any other particle. Then it has a state of its own – a
superposition of the two basic states – one with its spin up and the other with its
spin down. Denoting this superposition as �e, we can write

�e � �� � �112�

[The superposition (112) of the two arrows is not the double (��). Both arrows in
superposition pertain to the same particle, whereas in the double one arrow pertains
to the electron and the other pertains to the positron.]

Similarly, we can consider a positron whose spin variable can be measured without
disturbing other particles. Such a positron also can be described by its individual
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wave function �p. If the spin direction of the positron has not been determined, this
wave function is a superposition of two basic states – spin up and spin down:

�p � �� � �113�

We can consider the system of the electron and the positron described by expres-
sions (112) and (113) as one physical system. This system will be represented by a
wave function

�� � �e�p � ��� �� ��� �� �114�

Carrying out multiplication, we obtain

�� � ��� ��� � �� � � �115�

Apart from the familiar double-terms �� and ��, describing the (e + p) states with
opposite (antiparallel) individual spins, we also see here the states �� and ��, de-
scribing two particles with parallel spins – both up or both down. Physically, the pre-
sence of the additional terms means that there is no correlation between the particles
– they were not born together, and are generally independent of one another. Mea-
suring the spin of the electron bears no effect on the state of positron, and vice versa.
Both spins are to be measured independently, and their measurements can produce any
possible outcome. In the state (115) there is an equal 25% chance for any one of the
four possible outcomes of measurement.

The entangled state (111), on the other hand, describes a rigid correlation between
the particles – their spins must always come up opposite, so that the spin measure-
ments can only produce the anti-parallel doubles, and measurement of only one spin
automatically gives the result for another one.

Now let the members of the entangled pair fly apart, so that some time later they are
far away from one another. But, if they do not interact with anything else, they keep
their common entangled state �. Much later, even though they may be separated by
millions of light years of space, they remember their initial conditions. Neither parti-
cle knows the direction of its spin until the measurement is performed. And yet
either particle knows that this direction, whatever it might turn out to be, must be
opposite of that of its partner.

Now, here comes the crunch. Suppose that our electron is now on Earth, and its
twin antiparticle is in another galaxy, on planet Rulia. The physicists on Earth mea-
sure the spin of the electron and find it to point up. Immediately it becomes certain
that the spin of the positron on Rulia must be down. If the Rulian physicists do a
measurement (which is no longer necessary!), the measurement will only confirm
this fact. Apparently, there must have been some agent that instantaneously trans-
ferred to Rulia the information about the measurement outcome on Earth, which
helped the positron to decide upon the direction of its own spin.

The intention of EPR was, first, to demonstrate that the spin of a particle can some-
times be measured without performing an actual measurement on it and, second, to
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point out that such measurement demonstrates an instantaneous physical action at
a distance, which would be incompatible with Special Relativity. Einstein, Podolsky,
and Rosen had interpreted this contradiction with Relativity as an indication that the
theoretical description of the world given by quantum mechanics was incomplete
(EPR paradox).

The first of these statements is true. The second one is false.
But before moving further and explaining why it is false, let us analyze a possible ob-

jection to the interpretation of this thought experiment. Suppose that someone on
Earth prepared two bottles of wine. One bottle is Burgundy and the other is Char-
donnet. One is for himself, the other for a friend on Rulia. It does not matter who
gets which wine, so the sender just puts one of them in his refrigerator and the other
one into the cargo spaceship due Rulia, – without looking – and then goes into hiber-
nation for a few million years. After a long trip, the spaceship arrives at its destina-
tion. The Earth-based physicist wakes up completely unaware of which wine is on
which planet. He opens the refrigerator and immediately knows that the wine on
Rulia is Chardonnet.

How could he in an instant get information about an object in another galaxy?
The answer is very simple in this case. The earthling did not receive any signal from

Rulia. The only signal he has got is the one from his own refrigerator. The signal has
changed his knowledge about the refrigerator’s contents from total uncertainty
(50 : 50 chance of the wine there being of a definite kind) to complete certainty
(100 %) that it is Burgundy. Together with preliminary information about the two
bottles that he had, this enables him to conclude with the same dead certainty that
the wine on Rulia is Chardonnet.

The act of observation in this case did not (and could not) physically change the type
of wine in either package. The Burgundy that was taken out from the refrigerator
had been Burgundy before the observation. The Chardonnet on Rulia had been
Chardonnet long before it arrived there. We can distinguish here between the physi-
cal state of the observed object and the physical state of the observer. Only the latter
has changed in the act of observation. There was no distant communication in this
case.

This might tempt some readers to draw the same conclusion about the experiment
with the entangled particles. But such a conclusion would be wrong. The situation
with our pair of particles is fundamentally different from the two bottles of wine de-
scribed above. When the observer on Earth performs the experiment and finds that
his particle has spin up, this does not mean that the particle had had its spin up be-
fore the experiment. No! The particle undergoes a dramatic change of its physical
state in the process of measurement. It converts from the entanglement with its dis-
tant partner into a disentangled state of its own. In the former state the particle,
even though separated from its partner by the vastness of space, did not have its full
identity totally independent of the partner’s identity. Their identities remained inti-
mately shared. In the final state each particle has its own full identity and can be de-
scribed by a wave function of its own, independent of the rest of the world.

Thus the measurement made on Earth changes instantaneously the situation not
only on Earth, but also on Rulia (and vice versa). In the language of the wave func-

206 6 Superluminal Motions



tions we can say that the wave function of the whole entangled system instantly col-
lapses into one of the two possible independent wave

� � ��� � �� either ��
or � �

���	�
�

It appears that some physical agent does indeed carry the information about the
change on Earth, and this communication occurs instantaneously, changing imme-
diately the situation on Rulia. It does look like we are facing a completely new phe-
nomenon – a superluminal (instant) quantum telecommunication.

Yet this conclusion would be also wrong. Relativity is not violated, because the
changes of states that we discuss are inherently statistical. By its original defini-
tion, the event N can be considered to be causally affected by the event M only if
the change in M changes an observable property of N from one uniquely defined
value to another uniquely defined value, for instance, if the influence of M
changes the spin of N from up (�) to down (�). In our case, however, the original
spin direction of the positron on Rulia was not sharply defined. The positron was
in a state with an indefinite direction of spin. There was from the very beginning
a 50 % chance of finding its spin up, and a 50 % chance of finding it down. There-
fore, in any individual measurement, when you find the positron spin up, you can
always say: so what? If I could have known with certainty that the spin before the
measurement was down, and now I find it up, I could interpret this change as the
effect of some outside agent. But when there had already been a 50 % chance of
finding it up, and I do find it up, why should I attribute it to some external influ-
ence? I will rather say that this outcome is just the realization of pre-existing po-
tentiality.

Thus, no individual outcome can be the evidence of superluminal or any other tele-
communication. If the measurement results are statistical by nature, the only way
we can make sure that the instantaneous telecommunication does take place is to
find the difference in statistical distributions of measurements at N with and with-
out corresponding measurements at M.

Following this program, we must perform the set of individual measurements in
two different conditions and compare their results.

Condition 1. Prepare a big ensemble of (e + p) pairs all in the same state � (111). For
each pair, measure only the positron spin on Rulia without disturbing its counterpart
on Earth, and record the results.
Condition 2. Prepare again the same ensemble. For each pair, measure first the elec-
tron spin on Earth, and immediately after the electron spin on Rulia, and record the
results.

Next we compare the records obtained for the two conditions. Here they are:
1. Results for condition 1: the measurement outcomes are distributed uniformly –

50 : 50. Within the margin of statistical fluctuations, half the positrons collapse to
the state up and the other half collapse to the state down.

2076.15 The mystery of quantum telecommunication



2. Results for condition 2: the measurement outcomes are distributed uniformly –
50 : 50. Within the margin of statistical fluctuations, half the positrons collapse to
the state up and the other half collapse to the state down.

The net results are identical. The measurements on Earth do not cause any changes
in the collective experimental data for measurements on Rulia. The whole experi-
ment does not reveal any evidence whatsoever of any communications or signaling
between the distant objects.

At the same time, if we compare in case 2 the individual results for members of each
pair, rather than only the averaged data, we obtain the absolutely irrefutable evidence
of the long-distance (non-local) correlations between individual events. For each pair,
if the electron spin on Earth collapses to the state up, the positron spin on Rulia,
measured at nearly the same moment, collapses to the state down. If the electron on
Earth is found in the state down, the positron on Rulia is found in the state up. The
positron appears to know instantaneously what happened to its counterpart millions
of light years away. And yet it does not prove the existence of a signal exchange be-
tween them, because in each case the positron (or we) can say that the correlation is
a mere coincidence. Its chance was 50 %, so there is nothing extraordinary that it
happens. But why do these coincidences happen 10, 20, …, 1000 times in a row?
Well, this is really weird, the chances of N coincidences in a row are small indeed,
(1/2)–N, but they remain finite for any finite N.

These nearly absolutely improbable multiple coincidences reveal a new physical phe-
nomenon – non-local quantum correlations (or quantum non-locality). They have no
classical analogue and show that a quantum system can keep certain correlations be-
tween its parts even when these parts are separated by voids of space. These correla-
tions are manifest in the fact that the spatially separated parts of an entangled sys-
tem collapse simultaneously to correlated states even when the measurement is per-
formed on only one part. As you think more of it, this collapse seems no more (and
no less!) surprising than the collapse of the wave function for a single particle from
the state of the uniform and infinitely large probability cloud to the state of the infi-
nite density at a single point surrounded by emptiness with no clouds.

The reader will understand that the situation described above is only a thought experi-
ment. The real experiments are much more difficult, because it is extremely difficult to
maintain the “purity” of the system – to protect its parts from random perturbations.
Such perturbations (or fluctuations) from the surroundings destroy the quantum cor-
relations (quantum coherence) within the system, and the further apart its constitu-
ents, the harder it is to preclude them from “decoherence.” But, despite numerous dif-
ficulties, the experiments [48] have been successfully carried out. They had been per-
formed on a much smaller scale than the thought experiment considered here, but
their ideas and results are essentially the same. They showed the ability of quantum
systems to keep a memory about a common past. They did not show in either indivi-
dual or collective experimental data any evidence of faster-than-light communications.

The whole situation also shows how tricky Nature is. She seems to tease us. In the
above experiments, she appears to violate blatantly the relativity postulates, but with
each new trial attempting to catch her in action she comes clean of any violations.
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7
Slow Light and Fast Light

The Queen propped her up against a tree, and said kindly, “You may rest
a little now.”
Alice looked round her in great surprise. “Why, I do believe we’ve been
under this tree the whole time! Everything’s just as it was!”
“Of course it is,” said the Queen, “what would you have it?”
“Well, in OUR country,” said Alice, still panting a little, “you’d generally
get to somewhere else – if you run very fast for a long time, as we’ve
been doing.”
“A slow sort of country!” said the Queen. “Now, HERE, you see, it takes
all the running YOU can do, to keep in the same place. If you want to
get somewhere else, you must run at least twice as fast as that!”

Lewis Carroll
Through the Looking Glass

7.1
Monitoring the speed of light

We start this chapter with a brief summary of what we have learnt after more than
two centuries of intense studies of electromagnetic phenomena: the speed of light in
a vacuum is a fundamental constant of Nature; its speed in a medium is an intrinsic
characteristic of this medium, specified by the refractive index n.

Having made these statements, I now want to describe some new experiments with
light demonstrating how tricky Nature is in her every turn, and how physicists unra-
vel her tricks. We will see how researchers have managed to influence light’s propa-
gation rate in different media; in other words, how they have succeeded in effectively
changing a medium’s refractive index. They now can fool a medium into guiding
light much slower than it would ordinarily do, or, even more surprisingly, much fas-
ter. They can create conditions under which a light pulse in a medium travels faster
than light in a vacuum! We want to see how it is possible and whether or not we can
use it for superluminal signal transmission.

Let me first describe some experiments with retardation of light. They can be divided
into two different categories according to two different physical phenomena used to
tackle the natural optical properties of matter. In the first category a medium’s ability
to transmit or absorb light is influenced by shining on it an additional light beam of
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different color. One of the recent experiments of this type was reported in a 1999 issue
of the journal Nature [53]. A group of researchers cooled a cloud of sodium atoms to ul-
tra-low temperatures (50 nK–2 K). At such temperatures the sodium cloud experi-
ences a transition to the so called Bose–Einstein condensate – a state of matter where
nearly all constituent atoms are in the same physical state. Whereas at higher tem-
peratures motion of an individual atom in a gas is random and independent of others,
in Bose–Einstein condensate all the atoms share the same state of motion. Imagine
first a crowd of people rushing each on his or her own business in a hectic market-
place; then a military unit standing still and only breathing synchronously, or march-
ing in a highly organized fashion during a parade – and you will have a glimpse of the
difference between the ordinary state of matter and Bose–Einstein condensate. A
stable monochromatic laser beam is an example of Bose–Einstein condensate of
photons as opposed to the glow of a light bulb. The identical motions of all the parti-
cles in a Bose–Einstein condensate make it possible to influence all of them by an ex-
ternal agent (e.g. a beam of laser light) in the same predictable way.

For a cloud of atoms one would expect the refractive index to be only slightly larger
than 1, which corresponds to light propagation just slightly slower than in a vacuum.
However, the light of certain colors (frequencies) may be absorbed by the cloud. The
range of frequencies at which the light is absorbed in a given medium is called the ab-
sorption band, and each medium has its own specific set of absorption bands. Nor-
mally this also holds true for a Bose–Einstein condensate. However, in the described
experiment the propagation conditions in the condensate were carefully designed to
produce an apparently “abnormal” situation. First, the major frequency of the light
pulse sent through the sample was chosen to lie in the absorption band of sodium va-
por. This does seem weird, for how are you going to study the pulse propagation in a
medium that is opaque in a chosen frequency range? Second, simultaneously with the
probing pulse, the researchers beamed the cloud with additional light of a slightly dif-
ferent frequency (called the coupling frequency), as if they had not had enough trouble
already with the doomed probe pulse. It turned out, however, that the combination of
the two conditions worked miraculously towards the success of the experiment. The
combined electromagnetic field of the probe and the coupling beam canceled absorp-
tion, thus making the vapor effectively transparent for the probe. This phenomenon is
called electromagnetically induced transparency (EIT) because the medium is made effec-
tively transparent by the “electromagnetic intervention” of the coupling beam.

What is important for us here is the fact that in a frequency range where light is ab-
sorbed, the refractive index changes rapidly (Fig. 7.1). This variation is effectively en-
hanced by the coupling beam. The rapid change of the refractive index with fre-
quency may result in the dramatic change of the group velocity even though the in-
dex itself is close to 1. You will remember that we found in Section 6.12 that the
group velocity of the pulse is determined by the derivative dw/dk. When we applied
this result to the propagation of a light pulse in a plasma, we found its group velocity
to be less than the speed of light in a vacuum even though the phase velocities of con-
stituent waves were all greater than the speed of light in a vacuum. We may expect
the retardation of a light pulse in a condensate to be even more impressive because
the constituent waves here already move slower that the speed of light in a vacuum.
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In the described experiment the observed group velocity of the pulse was just
17 m s–1 – the speed of light retarded by about 20 million times!

So rapid is the pace of discovery at times that it makes it difficult for anybody to write
about it. Soon after the news about that astoundingly slow light, there appeared a re-
port in the January 19, 2001 issue of Nature [5] announcing that the same group of
researchers had managed to bring a laser beam to a complete stop!

A stopped light is such an extraodinary phenomenon that the original authors‘ ac-
count of it in Nature was preceded by a special science update column, written by
Philip Ball under the title “Stop that light beam, I want to get off,” and with a tag “E-
mail this story to a friend.“

The detailed explanation of how the coupling beams can slow light in a probe lies be-
yond the scope of this book (interested readers are referred to, e.g., Refs.[53] and [54]).

However, there is another category of experiments with light retardation. The experi-
ments in this category are conducted under less exotic conditions – at normal tem-
peratures and with no coupling beams. Only one pulse at a time is passed through a
medium. But the pulse’s frequency range is also selected to lie in the medium’s ab-
sorption band. How can one compensate for absorption of light in this case? The ex-
perimenters achieve such compensation by using pulses of very high intensity. Light
of high intensity striking an opaque medium causes a non-linear optical effect called
saturation of absorption, thereby making the medium transparent to this light. This
kind of transparency, imposed on the medium by extremely bright light passing
through it, has been called self-induced transparency (SID). The researchers demon-
strated that self-induced transparency can be accompanied by a dramatic delay in
pulse propagation (slow light). The pulse velocity is in this case neither phase velocity
nor group velocity; it depends not only on the physical properties of the medium,
but also on the brightness of the pulse itself. Thus, it can be changed by varying the
pulse intensity. Already in the early 1970s there appeared descriptions of experi-
ments on slowing the intense pulses of laser light [7, 8].

A similar technique, but with some variations, has been used for the “manufactur-
ing” of most bizarre and puzzling objects – superluminal pulses. The experimenters
shone a laser pulse on a specially prepared medium and observed rapid acceleration
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Fig. 7.1 Two optical properties of a
medium – the coefficient of absorption
(dashed curve) and refractive index(so-
lid curve) are plotted against frequency
w. All three quantities are expressed in
arbitrary units. The value of ws is the fre-
quency at which the absorption reaches
its peak. Within the absorption band
(the frequency range with high absorp-
tion) the refractive index undergoes a ra-
pid change. In mathematical terms, the
derivative dn/dw and thereby dk/dw be-
come very large in this region. Accord-
ing to results in Section 6.12, this corre-
sponds to small group velocities.



of the pulse (fast light). One of the latest experiments of this kind was described in
the July 20, 2000 issue of Nature [3, 4]. A light pulse with a specially shaped profile
was directed towards the front face of a cell containing cesium (Cs) vapor. The re-
searchers observed the emergence of the pulse from the back face of the cell before it
entered its front face! The effect appeared to precede the cause! This astounding re-
sult made a big splash in the scientific community, although the professional physi-
cists received the news much more quietly. Most of those working in the field knew
about much earlier experiments with superluminal light pulses. As far back as 1969
there appeared an article and a review in Russian journals [9, 10]. The authors not
only described experiments with superluminal group velocities in certain media, but
also gave a detailed explanation of the observed effects. Readers can find a descrip-
tion of these phenomena from a very general point of view in a monograph [55].

Now the time has also come for us to look for a clear explanation of the phenomena
described in this section. We will try to address all the basic questions raised in the
above experiments, especially ones about superluminal pulses. We know already
about superluminal phase velocities in plasmas, and we know that we cannot use
them for superluminal transmission of a signal. We have learned how a group of
waves with such velocities always contrives to sweep across the medium much
slower than any of constituent monochromatic waves. We have proved that the
group velocity of any group carrying a signal is always less than c. We visualize a
group as a pulse of a certain shape with a maximum, shaped something like a tor-
toise, or a bell, or a bump, for that matter (Fig. 7.2). Now we consider experiments

212 7 Slow Light and Fast Light

x

x

x

���

���

���

���	
�

Fig. 7.2 (a) A snapshot of the instantaneous distribu-
tion of the electric field strength in a light pulse moving
along the x-direction. (b) Corresponding instantaneous
light intensity distribution. (c) Light intensity distribution
(a “bump”) as observed with lower resolution.



with a light pulse, or a “luminal” bump, propagating faster than c. Because such pro-
pagation seems to violate causality, we must consider these experimental results
with all seriousness.

We will focus on the following questions:

1. How is it possible for a light pulse in an opaque medium to induce transparency?
2. Why and how does the induced transparency cause the pulse to slow down?
3. How is it possible to switch from slowing a pulse to accelerating it?
4. Does or does not a superluminal pulse carry a signal, and if it does not, why?

I want to proceed with a somewhat fantastic and apparently unrelated episode in-
spired by Lewis Carroll’s famous books Alice in Wonderland and Through the Looking
Glass [56, 57]. Physicists often refer to these books, because the world of Carroll’s
creative imagination appears to reveal in a most artistic and poetic way intimate con-
nections to hidden intricacies of the real world. I invite you to read again the epi-
graph to this chapter before plunging into the next section.

7.2
Adventures of the Bump

Alice wandered away from the Garden of Live Flowers deep in thought.
“How is it possible to stay in the same place while running as fast as you can?,” she

kept asking herself. “And how can you run TWICE as fast as THAT? This is the
most weird thing of all I have ever met here!”

She thought it over for a while and decided: “It probably means that in this world, if
you really run as fast as you can, you sometimes lag behind yourself, and sometimes
outrun yourself.”

Alice was very proud of her discovery, even though she could not clearly see how it was
possible for anyone to run either behind or ahead of oneself. While she was turning it
over in her head, she stepped right in a big hole probably made by rabbits or moles.
Down she went into a deep well. After a long fall, she crashed with a deafening
“Bang!,” and found herself having bumped into a big Rabbit with the glasses on his
nose. The Rabbit held a book, Alice in Wonderland, in one hand and a clock in another.

“Hi, Alice,” he said, “you came right on time. We are just starting our show with the
Bump.”

Alice greeted him politely and looked around. They were in a long, brightly lit corridor
with a shelf running horizontally all the way down high on one of the walls. And then
she saw what the Rabbit has referred to as the Bump. It was just a big heap of earth
piled on top of a flat wheeled platform. The platform was pushed down the corridor at
a fast, steady rate by a few creatures resembling small chimpanzees in shape (Fig. 7.3).

“These chimps are the fastest runners known in our world. Therefore nothing can
outrun the Bump,” the Rabbit said proudly.

“Is this a show? It does not at all make any sense to me,” Alice thought.
“It will make more sense to you,” said the Rabbit, “when you see it all.”
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At this moment Alice noticed a row of moles down the track, each with a spade in its
paws (Fig. 7.4). What followed next was very strange indeed. Just when the front
slope of the Bump was well inside the corridor, the moles, one by one, started scoop-
ing the earth from it and hurling it up on to the shelf (Fig. 7.5). As the platform with
the Bump progressed down the corridor, the higher and higher parts of the slope
passed each mole; accordingly, each mole worked faster in proportion to the height
of the slope passing by. When the top of the Bump was abreast of the moles, they
handled their spades so furiously that the top was almost immediately flattened,
with huge amounts of earth hurled on to the shelf. Now Alice noticed that the shelf
had been perforated, and the earth that had been piled up on it started to spill down
through the holes right on the back slope of the Bump. The net result of these activ-
ities was that the earth was being continuously transferred from the front of the
Bump to its rear, thus impeding the Bump’s progress (Fig. 7.6).

Alice watched in amazement how the platform supporting the Bump kept on advan-
cing forward at the original fast rate, while the Bump itself was now hardly moving
past the row of working moles. Because of the moles’ work, it was continuously dis-
placed to the back of the platform at almost the same rate as the platform’s advance
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Fig. 7.4 The moles are preparing for their job on the approach-
ing Bump.



in the forward direction. The overall motion of the Bump became so slow that it ap-
peared to Alice almost stationary.

“The slow Bump,” whispered the Rabbit. And the Queen’s voice rang again in the
Alice’s ears:

“Now, HERE, you see, it takes all the running you can do, to keep in the same
place.”

“How wonderful,” Alice thought. “It seems to me, I now understand how one can
lag behind oneself while running at top speed. But,” Alice sighed, “I am still a little
foggy about how one could run AHEAD of oneself.“

“Well, you will see more of it now. Here it comes to the next stage,” said the Rabbit.
The platform, with the Bump having been recycled to its very rear, had passed the

row of moles. Now that the moles were left behind, the Bump was again moving fast
together with the platform.

A minute later, the scene changed. A new platform with the Bump on its rear was
approaching the entrance to the corridor. There were moles along the track again,
and the same long horizontal shelf running higher than the Bump’s top. But the mo-
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Fig. 7.5 The moles start their work. Each mole works at a rate
proportional to the instantaneous hight of the slope passing by.

Fig. 7.6 The moles are slowing the Bump by taking the earth
from its leading slope and hurling it up on to the shelf.



les were fewer than before, and over the shelf, across its whole length, there were al-
ready spread in advance large piles of earth (Fig. 7.7).

As the front slope of the Bump was entering the corridor, the moles began, as before,
to throw the earth from the slope on to the shelf. But owing to vibration from the
moving platform, much more earth started to spill down on to the slope through the
shelf’s holes. For each handful of earth hurled up by the moles there were a dozen
or more streaming down from the shelf. Alice stopped paying any attention to the
moles at all, and focused instead on what was happening to the Bump. And what
she saw looked pretty weird. Because so much earth was being spilled on to the front
slope of the Bump, the front became higher and steeper, and soon it had grown
nearly as high as the Bump’s top! Less earth remained on the shelf for the parts of
the slope closer to the original top of the Bump, and these parts grew slower than
the front. The overall result of this remarkable play was that the Bump appeared to
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Fig. 7.7 The heaps of earth on the shelf are prepared in advance
to be spilled on the front slope of the approaching Bump.

Fig. 7.8 The Bump outruns itself by producing vibrations which
cause the earth on the shelf to spill onto the Bump’s leading
slope. The slope grows into a new Bump that propagates faster
than its original self.



move faster than its own head; and soon the newly grown front peak had run so far
ahead that it emerged from the end of the corridor before the original Bump entered
its beginning (Fig. 7.8)!

“The fast Bump!” screamed the Rabbit, and the whole crowd of participants ex-
ploded in cheers. This was the very essence and the culmination of the ceremony.

The ensuing noise and tumult helped Alice shake off her spell. She recalled vividly
the Queen’s last words: “If you want to get somewhere else, you must run at least
twice as fast as that!”

“Well, I think that now …” Alice started thinking.
“Well, I think now you understand a little better how one can outrun oneself,”

echoed the Rabbit to Alice’s unfinished thought.
“Even if …” Alice started thinking again, struggling to get everything straight.
“Yes,” said the Rabbit and winked significantly, “even if one is already running at

TOP speed!”

7.3
Slow light

Strange as it may seem, the fantastic scene in the previous section provides a pretty
close analogy for a qualitative understanding of slow and fast light propagation in
some media. Here we will use the analogy to gain more insight into the physics of
slow light in the regime of self-induced transparency. We had emphasized that in
this regime the medium is normally opaque for the chosen frequency: the light is
being absorbed by the medium. The absorption process can be understood on the
microscopic level if we imagine the light pulse as a bunch of photons. In absorbing
material the atoms are tuned to the photon frequency so that each photon is ab-
sorbed almost immediately upon entering the medium. An absorbing atom gains
the photon’s energy – gets “excited” in physicists’ jargon. We illustrate this in the fol-
lowing way: represent each atom by a dot, and the atom’s energy by the dot’s position
on the energy scale plotted vertically. Normally an atom is in a state with the lowest
energy – the ground state. We put the dot representing such an atom on the lowest
level – the ground level. The excited atom has a higher energy, and therefore the cor-
responding dot should be put on a higher level on the energy scale, just as we find
ourselves on a higher level after gaining some potential energy when climbing up-
stairs (Fig. 7.9). The excited atomic states are usually short-lived: the atom either
squanders its energy into heat or re-radiates it in a random direction. The last pro-
cess is called spontaneous emission. In either case the incident photons are removed
from the original beam and the beam dies out rapidly – the light is absorbed.

What happens if we increase the light intensity so that more and more photons are
rushing by? It turns out that the atoms‘ ability to absorb photons increases with the
abundance of photons. A thick crowd of photons “invigorates” atoms, enabling them
to do their job faster. Moreover, this “invigoration” works both ways: once in the ex-
cited state, an atom is quickly coerced by passing photons (which are all indistin-
guishable from one another in a laser beam) to release its energy back in the form of
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the original photon. This coerced emission of a photon into the same state as that
of photons whizzing by is called the stimulated emission. The more crowded the
photons‘ beam, the greater is the chance that an absorbed photon would be returned
to the beam rather than spewed in a random direction or lost to heat; accordingly,
the higher is the rate of stimulated emission. At sufficiently high intensities practi-
cally all absorbed photons are being returned back to the beam! At this state we have
at each moment the same number of atoms on the ground and on the excited levels.
The former absorb photons and get excited; the latter re-emit them in the direction
of the beam and return back into the ground state. Absorption is balanced by stimu-
lated emission. The photons are not being taken away from the beam permanently,
but rather are “borrowed,” soon to be returned. The beam therefore proceeds practi-
cally without attenuation, even though the medium is intrinsically opaque! This pe-
culiar state of permanent recycling is what we referred to in Section 7.1 as saturation
of absorption and self-induced transparency.

Now imagine that instead of a continuous beam we have a powerful but short pulse of
laser light. How would it affect the light propagation? There is no single answer to
this question, because the outcome would depend on the pulse’s shape. But there are
certain shapes for which the pulse propagation becomes very similar to the retarded
motion of the Bump in the previous section. In that motion, the earth taken from the
Bump by the moles represented the absorption of light; the earth spilled back down
on to the Bump represented stimulated emission, returning light back into the pulse;
and the return time between the two processes was tuned to the motion of the plat-
form so that the earth taken from the leading slope of the Bump started to spill back
down precisely when the trailing slope was passing under it – no sooner, no later.

Now, the same trick can be performed with light! Suppose the light intensity in the
pulse is such that the time between the absorption and subsequent stimulated emis-
sion of a photon is 10–11 s (normally this time is longer, about 10–9 s, but here atoms
are invigorated by the intense pulse!). Suppose, further, that with the given intensity
we adjust the width of the light pulse so that it travels a distance equal to this width
in the same time, 10–11 s. As a result, a photon absorbed by the atom from the front
slope will be re-emitted precisely when the rear slope will pass by it. The photons
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will be transferred from the front to the rear of the pulse in the same way as the
earth had been shuffled from the front to the rear slope of the Bump. This will result
in effective retardation of the pulse. It turns out that one can always find self-consis-
tent conditions under which the pulse will move through the medium with de-
creased speed without changing its shape. Such a pulse represents an example of so-
called solitons – solitary waves with stabilizied shape.

There is one more thing to emphasize here. Although the motion of the above lumi-
nous soliton is indeed dramatically slowed, it does not mean that the constituent
photons have become more sluggish. Recall the scene in the previous section with
the Bump being recycled towards the back of the moving platform. While this was
happening, every lump of earth in the Bump kept on moving together with the plat-
form with the initial speed. The earth making up the Bump was not sliding back re-
lative to the platform.

The Bump appeared to move slower because of its continuous reshaping produced
by the moles. This reshaping effectively slows the Bump as a whole, but it does not
affect the motion of individual particles of earth that remain inside. Similarly, the
continuous reshaping of the pulse in slow light does not change the speed of indivi-
dual photons between the acts of their interaction with the absorbing atoms. The
light slows without impeding the rush of its photons. It takes all the running the
photons can do to keep them all in place.

7.4 Fast light

After a thought trip to the land of moles, followed by the discussion of slow light, we
must be better prepared for understanding the most intriguing part of the propaga-
tion of light. We will now consider experiments in which researchers observed super-
luminal group velocities of the light pulses. As in our previous discussions, we define
the group velocity as the velocity of the maximum of the wave packet (that is, the top
of the Bump!). We will first describe qualitatively a way to create such a “Bump,”
and then consider whether superluminal bumps would allow superluminal commu-
nications, thereby overthrowing limitations imposed by the theory of relativity.

Following this outline, I want first to refer to the concluding part of the ceremony ob-
served by Alice at the end of Section 7.2, the fabrication of the fast Bump. What do
you think was the most important feature in this process? It was the fact that this
time the busy moles had not been employed for the purpose (the few ones seen by
Alice had worked, as before, for retardation of the Bump, rather than its acceleration,
and their role in the whole process was insignificant). One might be tempted to
think that acceleration of the Bump’s motion could be achieved by just instructing
the moles to do the opposite of what they had done before: to throw earth from the
rear slope of the Bump to its front slope. But this is impossible! In order to hurl a
lump of earth from rear to front one must impart to it a speed greater than that of
the platform. But the speed of the platform represented the speed of light in a va-
cuum, which could not be exceeded by a physical body. By the same token, one could
not use the upper shelf as a vehicle for the earth transfer: in order to transport the
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earth from the Bump’s rear to its front, the shelf should itself be moving faster than
the platform. We see that the acceleration of the Bump cannot be achieved by just re-
grouping pieces of earth of which it is made up. However, it is possible to grow its
front by adding to it new earth prepared in advance along the way! Hence the heaps
of earth on the shelf, waiting to be shaken off down on to the front slope by vibra-
tions, as the Bump makes its way down the track. In this arrangement, the Bump re-
presents the original light pulse, and the earth on the shelf represents the excited
atoms ready to release their energy to feed the leading slope of the pulse.

We can describe it graphically in the following way. Suppose that an input pulse at
an initial moment t1 has a shape described by a function E (x, t1) with a maximum at
point x1 (Fig. 7.10). By the moment t2 the pulse shifts some distance in the x direc-
tion. Its new profile is now described by a new function E (x, t2) with a sharper and
possibly higher maximum at a point x2. If we measure the velocity of this maximum
as u = (x2 – x1)/(t2 – t1), it turns out that u exceeds the speed c. The superluminal ve-
locity of the maximum is in this case achieved not so much because of its own shift,
but because of the specific distortion of its shape. Its front slope has become steeper,
which has caused an additional advance of the maximum in the forward direction.
Physically, this advance is caused by the increase in the intensity in the front region
of the propagating pulse. This increase is produced by the influx of energy that has
been stored in the excited molecules of the medium prior to arrival of the pulse. The
excited medium is unstable. As the pulse sweeps through it, even a relatively weak
electromagnetic field of its leading slope triggers light emission from the excited mo-
lecules there. This produces additional quanta of light (photons) identical with those
already present in the front side of the pulse. The newly acquired photons intensify
the front field in the pulse. What had previously been the front slope of the pulse
gradually becomes its new “peak”. The lagging sides of the pulse have to pass
through the “exhausted” medium that had already been “skimmed” by the front. If
the external source cannot restore the population of excited molecules (the rate of sti-
mulated emission exceeds the pumping rate), then the center and the back of the ori-
ginal pulse cannot increase significantly. As a result, we observe a preferential in-
crease of the leading slope of the pulse at the expense of the medium’s energy. If this
increase is sufficiently large, the field magnitude in the front may reach and even ex-
ceed that in the original peak as shown in Fig. 7.10. This results in the additional ad-
vance of the peak that manifests itself as the acceleration of the pulse. Because of the

220 7 Slow Light and Fast Light

�� ��
�
��

�� ��
�
��

��

��

�

�

���

���
Fig. 7.10 (a) A disturbance at an initial
moment t1. (b) The same disturbance in a
non-equilibrious medium at a later moment t2.



specific distortion of its shape, the pulse “outruns itself,” so that its velocity can be-
come superluminal. If the original pulse is broad enough (broader than the experi-
mental cell), we can even observe it exiting the cell before it enters it – precisely what
Alice had seen in the land of moles!

Recall now the previous chapter where we have shown that a group of waves transfers
both energy and signal, and the group velocity can only be subluminal. This appears
to stand in flat contradiction with the result obtained right now. Because this result is
well established experimentally, it seems to overthrow the very foundations of the
theory of relativity. This, however, is not the case, and here is why. All theoretical and
experimental evidence that the group velocity cannot exceed the value of c refers to
media close to a state of thermodynamic equilibrium. The medium that we are deal-
ing with now is not in a state of thermodynamic equilibrium. It contains many more
atoms in the excited states than in the ground states. Using the procedure described
in Section 7.3, we represent this situation graphically in Figure 7.11. It looks pretty
much like the shelf with prepared earth heaps in the fast Bump ceremony. We call it
a system with inversely populated energy levels, and, as is readily seen from Figure
7.7 (and Figure 7.11!), the name is self-explanatory. Such a system is unstable, and it
feeds the front slope of the pulse to grow a runaway top just as the heaps of earth in
the fast Bump ceremony fell down from the shelf to form the Bump’s runaway head.
We see that owing to the instability of such a system it is possible for the top of the
pulse and thereby a group velocity to exceed the speed of light!

Now we will discuss whether or not this phenomenon constitutes a contradiction
with the established physical principles. We will show that a superluminal distur-
bance in a non-equilibrious medium cannot be used for a superluminal transport of
a signal.

Consider a pulse observed at a point A at a moment tA. Let this be a moment before
the pulse enters the experimental cell. Suppose that a detector at point B at the oppo-
site side of the cell records the disturbance (also shaped as a pulse) at the same mo-
ment tA (Fig. 7.12). Since the event at B occurs before the original pulse at A entirely
enters the cell, it appears that the effect in this experiment precedes its cause. But
this can only be true if the change in the detector’s state is indeed caused by the dis-
turbance that we have observed at A. It may well happen, however, that the forerunner
of the initial disturbance – its leading slope – has been intensified by the medium in
the cell, and the detector will have felt its front edge much earlier than it would nor-
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mally do. In this situation, the detector is prematurely triggered by the arriving dis-
turbance because of the influence of the medium between points A and B rather
than because of the event at A. Precisely such a phenomenon occurs when the med-
ium is not in an equilibrium state.

Let us now consider the propagation of a disturbance in such a medium in more
detail.

When we observe the motion of a pulse, we record the advance of its maximum. In
the process we have just considered, the maximum at point B originates not from
the maximum at A, but from the amplified field in the vicinity of point B (in the
case of Fig. 7.12, in the layers of the cell adjacent to its exit face.) As we have just
mentioned, the increased field here results from the stimulated emission caused by
the “forerunner” – the pulse’s leading slope that enters the cell when the top is still
outside. This, in turn, stimulates new emission from the excited atoms there and
further down the way. As a result, the propagating pulse is being distorted by a non-
uniform amplification favoring its front slope. The amplification wave thus formed
can, in principle, accelerate itself up to infinite speed at the expense of the medium’s
energy. The illusion of superluminal velocity of the signal appears just because the
speed of the amplified wave is added to the velocity of the actual signal.

To see it, imagine that a certain message is encoded at the original top of the light
pulse (Fig. 7.13). Can the detector at B read this message? The answer is, yes, but
only at a later time when the specific feature at the original top will reach it. Can the
detector read it now, when the feature has not yet entered the cell? The answer is, no.
The detector does record the arrival of a pulse at the moment depicted in Figure
7.13, but this pulse is just a runaway head produced by the amplification wave. It
contains information only about physical conditions in the immediate vicinity of the
point B, having nothing to do with the awaited message from A.

There is another, more rigorous (and perhaps more elegant), way to show that the
signal velocity cannot exceed c even in the “fast light” experiments. To see it, note
that all the confusion about superluminal communications is associated with the
amplification wave being allowed to propagate unimpeded over large distances be-
cause we use a very broad initial pulse. We have assumed in our discussions that the
slopes of a pulse only gradually (asymptotically, in mathematical language) approach
the zero level. Under these conditions, the front slope of an approaching pulse is
spread far (theoretically, infinitely far) ahead of its top, and accordingly, the amplifi-
cation starts long before the center of the pulse with the encrypted message enters
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the medium. It is not surprising that we can detect a “signal” before the arrival of
the original message. It takes some scrutiny to realize that the signal is false.

Consider now a more realistic model – a pulse of a finite width with a sharply defined
leading edge (Fig. 7.14a). There is no perturbation before the edge, and therefore the
detector there records no signal at all (noise neglected!) – no matter whether the med-
ium is inverted or not. The detector only starts to read a regular signal at the moment
when the leading edge arrives at its location. It is natural, therefore, to define the sig-
nal velocity as the velocity of the leading edge. Once we have made this definition, it
becomes crystal clear that the signal velocity cannot be affected by the amplification
wave. The latter can only be originated by the initial perturbation, which is non-exis-
tent in front of the pulse with the sharply defined edge. The amplification wave starts
within the span of the pulse, distorts and accelerates its top, but is stopped at the
edge (Fig. 7.14 b). The distorted top can become superluminal, but it does not carry a
signal; the edge does, but its velocity remains equal to or less than c.

The last question: what is the actual speed of the photons inside the superluminal
pulse?

Let us again use the analogy with the Bump in Section 7.2. In the Bump’s fast stage,
when it appeared to move faster than the platform, not a single speck of earth shared
this faster motion. The earth inside the Bump was not sliding forward relative to the
platform; it was moving together with it as a passenger in a car. The apparent accel-
eration of the Bump was associated with new earth spilled down on to its front slope.
The added earth contributed to the Bump’s width, whose expansion in the forward
direction appeared as acceleration of the Bump itself. Actually, each new lump of
earth, once settled down on the Bump’s surface, acquired its speed of motion to-
gether with the platform.

Similarly, the fast light’s energy is not being carried along with superluminal speed.
Like the new earth in the previous example, it is being donated to the pulse from the
excesses of the excited medium as the pulse sweeps across. The donated energy is re-
leased in the form of photons that pop into existence from the excited atoms in front
of the approaching pulse. Once there, the new photons start their life moving for-
ward with a speed equal to or less than c. The apparent superluminal speed of the
fast light results from the expansion of the pulse’s width in the forward direction by
acquiring more and more new photons in front. This expansion by gaining new par-
ticles is not the same thing as motion of particles themselves. The fast light is made
up of normal photons moving together with a common speed not exceeding c. Since
the light energy is carried by photons, we conclude that the energy in fast light also
flows no faster than c.

Thus, as we take a close look at the fast light, there is no room left for the notion of a
superluminal communication or superluminal energy transfer.
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8
Tachyons and Tachyon-like Objects

To be, or not to be: that is the question …
Shakespeare
Hamlet

8.1
Superluminal motions and causality

In previous chapters we have realized that the apparently simple concept of velocity
turned out to be not that simple after all. A few quite different velocities can be asso-
ciated with the same process. Here are some of them:

1. phase velocity (the propagation rate of a surface of constant phase)
2. the phase velocity of a bounded area at the crossing of rays (Sect. 6.14)
3. the group velocity
4. the velocity of signal (and energy) transfer.

We have seen that the first three types of velocity can take on any value (for the
group velocity, recall Sect. 7.4), and it would not contradict anything. But there is
one velocity – that of a signal transport – that does not exceed c in any observations.
This special status of the signal velocity is attributed to the fact that signal (and
thereby energy) exchange carry out the causal connections between spatially separated
events. In order to see how the ban on superluminal signal transfer between causally
connected events emerges from the existing theory, we have to discuss causality –
one of the most important scientific concepts.

In the physical world, not a single event is isolated from others. One of the most im-
portant manifestations of causality is that the world’s events always influence one
another in a certain way. Namely, for any event (the effect) it is always possible to find
at least one other event that has brought it into being – its cause. (There is one re-
markable exception that does not fall into the scheme: the Big Bang, that brought
our Universe into being. The Big Bang can be considered as the ultimate cause of
everything in existence today; but what caused the Big Bang itself, or whether it had
any cause at all, remains a murky issue at the time of writing this book.)

All observable events are governed by a fundamental principle: the cause precedes
the effect. We call this principle the retarding causality (an effect occurs later than its
cause). We introduce this principle here as an additional element in the description of
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the world. This additional element, combined with relativity, restricts the speed of
any interactions transferring a signal. Let us see how it works.

Suppose that the signal velocity u can take on any value and consider an event A at a
point rA at moment tA; let A cause another event B to happen at a position rB and
moment tB. Draw the x-axis through points rA and rB. Then the y and z coordinates
of the two events are zero, and the positions of the events are characterized by their
x-coordinates xA and xB so that separation between the events will be �x � xB – xA.

According to the principle of retarding causality, B happens later than A, that is

�t � tB � tA � 0 �1�

Since the events are connected with the signal traveling at a speed u, we have

�x � u�t �2�

Consider now another system K �, moving uniformly along the x-direction with velo-
city V. What time interval between the same events will be measured by an observer
in K �? Assuming the axes x �, y �, z � in K � running parallel to x, y, z, and using Lorentz
transformations (44) in Chapter 2, we have

�t � � t �B � t �A � � �V� �t� V
c2 �x

� �

�3�

Now, using Equation (2), Equation (3) gives

�t � � � �V� 1� uV
c2

� �

�t �4�

Thus, �t � is proportional to�t. The factor � (V) is, according to its definition, positive
for all V < c. As to the second factor (1 – uV/c2), it can generally have any sign de-
pending on the signal velocity u. However, according to the principle of relativity, the
causality relation for the considered pair of events must hold in all reference frames.
Therefore there must be �t � > 0. As is clearly seen from Equation (3), this means
that the factor (1 – uV/c2) must always remain positive no matter the relative velocity
V between the reference frames. And this can only be the case if the signal velocity u
does not exceed c. Indeed, if it were possible for events A and B to be connected by a
superluminal signal, that is u > c, one could always find a reference frame K �, mov-
ing relative to K with a speed

V �
c2

u
�5�

for which the factor uV > c2, that is, 1 – uV/c2 < 0, and accordingly, �t � < 0. This
means that for the pair of causally connected events A and B the effect would be ob-
served before its cause.
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So here is the logical chain restricting the speed of causal interactions: the invar-
iance of the speed of light requires the relativity of time; the relativity of time
makes it possible for a succession of events to be different in different reference
frames: an event A can precede B in a reference frame K and follow B in a re-
ference frame K � (recall, for instance, the phenomena discussed in Sections 5.4
and 5.5). However, if A and B are causally connected, then, according to retarding
causality, their ordering must be the same for all observers, despite relativity of
time. This requires the speed of any causal interaction between them not to ex-
ceed c. If this requirement is not met, then the time ordering of A and B can
be reversed for an observer in some other reference frame K �. In the framework
of the above reasoning, this would be violation of causality. To prevent this from
happening, it seems to be necessary to exclude the possibility of superluminal
signals.

8.2
The physics of imaginary quantities

The essence of almost all “bans” for material objects to move faster than light lies in
the algebraic structure of the Lorentz factor:

� �v� � 1� v2

c2

� ��1�2

�6�

The value of v here is either the relative velocity of the two inertial reference frames
or the speed of an object. Provided that this speed remains less than c, everything
runs smoothly. The problems arise when we set v � c. Let us discuss some of them.

We start with the Lorentz transformations (43) and (44) in Section 2.6. Consider an
event with coordinates (x, y, z, t) in a reference system K. Then in another reference
frame K �, which would move along the x-axis of K with velocity v = c, we would have
x � = �, t � = �. This means that in the reference frame K � all points of physical space
and the times of all the events would be infinitely far away from the event O � at the
origin. In a conventional sense, they would not exist in real space–time. All physical
concepts lose their conventional meaning in such a system. We therefore say that no
reference frames (that is, material bodies carrying clocks and meter-sticks) can move
with a speed c.

Consider now the case v > c. Then the Lorentz factor becomes imaginary:

� �v� � 1� v2

c2

� ��1�2

� �i �� �v� � �� �v� � v2

c2 � 1
� ��1�2

�7�

and we obtain

y � � y � z � � z � x � � �i �� �v� �x � vt� � t � � �i �� �v� t� v
c2 x

� �

�8�
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Now the coordinates x � and t � are both finite, but they have imaginary values! Since
all directly measurable physical quantities can be only real, we have to conclude that
the space and time coordinates of events cannot be directly measured in superlum-
inal reference frames. This, in turn, may lead us to conclude that such systems are
impossible.

But from the mathematical viewpoint, the transformations (8) are as good for v > c as
they are for v < c. The main requirement of the invariance of an interval under the
Lorentz transformations is satisfied in both cases. Let us check it for a relative velocity
v > c. Putting Equations (8) into the expression for the interval of an event (Sect. 2.9),
we perform somewhat tedious but straightforward manipulations:

c2t �2 � x �2 � � ��2�v� c2 t� v
c2

x
� �2

� ��2�v� �x � vt�2

� ��2�v� � c2t2 � 2 vtx � v2

c2 x2

� �

� �x2 � 2 vtx � v2t2�
� �

� ��2�v� �v2 � c2� t2 � v2

c2 � 1
� �

x2

� �

� c2t2 � x2 �9�

Thus, one can formally speak about superluminal Lorentz transformations (SLT)
and superluminal reference frames [58]. However, such systems cannot be formed
by ordinary matter.

What specifically is it in the physical properties of material bodies that does not allow
it to form a superluminal reference frame? Let us consider first a material particle of
a mass m0, radius r0, and a proper lifetime �0. According to Equation (8) in Sec-
tion 4.1, the total mass depends on the particle’s speed:

m �v� � m0� �v� �10�

When v � c, the mass m (v) ��, and so do the particle’s kinetic energy and momen-
tum. We have already emphasized that because of this no material body of finite
mass m0 can reach the limit of light velocity.

Now, apply the relativistic Equations (47) and (51) in Section 2.8 to the particle’s size
and lifetime:

r� �v� � r0 ��1 �v� � � �v� � �0 � �v� �11�

where r� is the longitudinal size along the direction of the particle’s motion. Again,
we see that when v � c, the particle’s longitudinal dimension goes to zero, and its life-
time goes to infinity. In other words, the particle moving with the speed of light would
“lose” one of its spatial dimensions (it would degenerate into an infinitesimally thin
disk perpendicular to the direction of motion) and “freeze” in its internal evolution.

The latter conclusion can be visualized in terms of the Doppler effect. Imagine an ex-
cited atom emitting light. Since light carries energy, the atom’s excited state lasts
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only a short time. If the atom is moving, the waves emitted in the forward direction
become “compressed,” while the waves emitted in the backward direction become
extended (Fig. 6.12 with u = c). This decreases the rate of the energy output, thus in-
creasing the atom’s lifetime in the stationary reference frame. If the atom’s speed
could reach the limiting speed c, it would “ride on its own waves,” the waves would
not be able to depart from it, and there would be no energy loss. As a result, the ex-
cited state would last forever – it would freeze in time.

Now, what would happen if the particle could move faster than light in a vacuum?
Setting in Euations (10) and (11) v > c and using the definition in Equation (1), we

obtain

m �v� � �i m0 �� �v� � r� �v� � i r0 ���1 �v� � � �v� � i �0 �� �v� �12�

The equations tell us that beyond the light speed barrier, the particle’s mass, and
thereby its energy and momentum, become imaginary. The same result follows for
its longitudinal size and the lifetime.

Because all the observable properties of material objects are real, the appearance of
the imaginary values in the theory indicates that corresponding quantities cannot be
observed and measured. But what cannot, in principle, be observed does not exist. In
other words, there cannot be any superluminal particles.

Thus, apart from the general requirement of retarding causality, the requirement for
the observable physical quantities to be real excludes the possibility of the superlum-
inal motions of physical objects. This conclusion had for a long time been regarded
as absolutely clear, and had not been subjected to serious doubt. Not until recently.

8.3
The reversal of causality

There is a fascinating story written by an outstanding popularizer of science, Camille
Flammarion, long before the appearance of the theory of relativity [59]. The main char-
acter of the story leaves the Earth and starts receding from it with a superluminal velo-
city. In this way, he outruns the electromagnetic waves from Earth, in which is en-
coded information of all the events of the Earth’s history. Our hero catches up first
with the waves that were emitted recently, and then with the waves having started ear-
lier. Accordingly, he observes the whole historical process in reverse succession, as in
a movie run backwards. For example, in the battle of Waterloo he sees first the battle-
field soaked with blood and covered with corpses. The blood then gets absorbed back
into the corpses of the dead soldiers, they come back to life, jump up, grab at the weap-
ons having flown into their hands, and run backwards to form their original units.
The cannon balls burst out of the earth pits and fly into cannon barrels. Then the col-
umns of the hostile armies, marching backwards, diverge in different directions.

This is a very unusual world, where people would live their lives backwards, first
emerging from their graves, then changing into babies and returning into their
mothers‘ wombs. The amount of disorder in such a world would decrease, and the
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amount of order would increase. According to thermodynamics, that studies subtle
connections between the observable macroscopic phenomena and the motions of
the constituent micro-particles, the probability of such a world is zero. But in all
other respects, this reversed world, for all its apparent weirdness, would be subordi-
nated to laws that are intrinsically consistent. It would follow the rule of cause and
effect. The only difference is that compared with our usual world, the cause and ef-
fect switch roles. What is the cause in our world is the effect in the described one,
and vice versa. For instance, the cause of a cup of tea jumping on to the table would
be its self-assembling from the splinters on the floor, absorbing moisture from it
and collecting heat, part of which would accumulate into kinetic energy. Although
some of the laws of nature appear to be turned inside out, causality not only con-
serves but, strangely enough, even retains its retarding character. This is due to the
fact that simultaneously with the reversal of time, the cause and effect change roles.

Most of the laws of nature are invariant with respect to the time reversal. This means
that, unlike the macroscopic world, which seems different and strange when run
backwards, in the micro-world of single particles there is often no difference be-
tween the direct and reversed flow of time. Let, for instance, an excited atom A1 radi-
ate a photon at a moment t1 and return to its ground (normal) state. The emitted
photon becomes absorbed by another atom A2 at a later moment t2, and causes its
transition from the ground state to the excited state. Clearly, the cause of the excita-
tion of the atom A2 was the photon emission from the atom A1. Let us now reverse
the process. Then we will first observe the radiation of the photon by atom A2 due to
its optical transition to the lower state at the moment t2. This will cause the excita-
tion of the atom A1 due to its absorption of the photon at the moment t1. Because
time is reversed, the moment t1 now occurs later than the moment t2, so that again,
the cause precedes the effect. Despite the reversal of time, there is nothing unusual
in the resulting process.

In contrast, the reversing of macroscopic phenomena seems unusual, but the laws
of nature remain self-consistent, because synchronously, the cause and effect also
change their roles. Ordinarily, if a hare is shot dead by a hunter, the hunter’s shot is
the cause and happens earlier in time, while the death of the hare is the effect and
happens later. In the time-reversed world, the dead hare would suddenly resurrect,
with the bullet emerging out of it, and then this bullet, moving backwards, would
whack into the barrel of the hunter’s gun. One would now call the first event (the
emission of the bullet from the hare) the cause, and the second one (the “absorp-
tion” of this bullet by the gun) the effect. This reinterpretation of the cause and the ef-
fect saves the principle of the retarded causality in the time-reversed world.

Let us now apply a similar trick to the problem of superluminal signals. Suppose
that our atoms exchange superluminal signals instead of photons. Let such a signal
be represented by a fictitious superluminal particle. Imagine observing such a parti-
cle emitted by an atom A1 at a moment t1 and then absorbed by another atom A2 at a
later moment t2 in an inertial reference frame K. It is clear that the first event is the
cause of the second. But we know already that for a superluminal signaling the inter-
val between the corresponding events is space-like, and one can always find such in-
ertial reference frame K �, in which the time ordering of the events changes. This
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seems to contradict retarded causality. However, one can avoid this contradiction in a
way similar to that described for the time reverse, but in a more limited sense: one
might reinterpret the cause and effect only for the events along the space-like inter-
vals and their end points, when their time ordering is reversed under the corre-
sponding Lorentz transformation (that is, when we transfer to another reference
frame moving sufficiently fast). The superluminal agent moving from A to B and
causing some change in B would be observed from another reference frame as mov-
ing from B to A and causing a corresponding change in A.

“What’s the big deal?,” one might think. “This is a familiar effect, I often see it dur-
ing driving, when I happen to outrun a pedestrian strolling in the same direction on
the sidewalk. Relative to my car, the pedestrian then appears to move in the opposite
direction.”

But this would be a false analogy. If the pedestrian first crossed 6th Street, and then
7th Street, you will from your car see him doing this in the same succession. You
will not see him crossing 7th street first and 6th street after that, no matter how fast
you drive.

The situation with a superluminal particle is totally different. You do not (and can-
not) outrun such a particle. And yet you can see its motion in reverse – literally in re-
verse, that is – crossing 7th Street first, and only then 6th Street. This is a purely rela-
tivistic effect, when the two events are interchanged in time for an observer in an-
other reference frame.

We now can describe some implications of the above properties of the space-like tra-
jectories on a macroscopic scale. Imagine that tachyons do exist and people have
learned how to manufacture superluminal bullets out of them. Imagine that the
hunter Tom fires such a bullet and kills a hare. Because the bullet is superluminal,
these two events (the shot and resulting death of the hare) are connected by a space-
like interval.

Now consider the same process from the viewpoint of Alice flying by in a spaceship.
Traveling in a spaceship does not produce any global time reverse of the type de-
scribed in the beginning of this section, so Alice will observe Tom’s and the hare’s
lives in their normal course. In Alice’s reference frame, as in Tom’s, Tom first aims,
then shoots; the hare first grazes, then dies. And yet in the shooting episode she will
see something strange (it so happens that Alice often gets into strange situations).
Here is her account.

“I flew by and watched a hare frolicking on a forest meadow. Then all of a sudden
the hare dropped dead. A bullet burst out of it and zipped away with a stupendous
speed. Then I saw my friend Tom hunting. His behavior was a little weird. He no-
ticed the hare and took good aim at it as if the hare were not dead. At this moment
the bullet from the hare struck Tom’s gun right in the barrel, and a tiniest fraction of
a second later Tom pulled the trigger. Then he ran to see what had happened to the
hare. It appears to me from what I saw that the hare died by itself and produced that
horrible bullet aimed at Tom, and the recoil of Tom’s gun was the effect of this
event.”

As you compare Alice’s and Tom’s accounts, you will see obvious contradictions be-
tween them. Tom insists that he has fired first and killed the animal with his bullet.
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His shot was the cause and the hare’s death was the effect. Alice witnessed that the
hare has died first, and its death was accompanied by the emergence of the bullet
that caused the recoil of Tom’s gun.

Who is right?
Both are, because the time ordering of the events separated by the space-like interval

is relative, and so may be the designation – which event is the cause and which is
the effect. Alice’s reinterpretation of what is the cause and what is the effect is logi-
cally consistent and helps save the principle of retarded causality. By using the rein-
terpretation, the principle holds in either reference frame.

The possibility of such reinterpretation would mean that superluminal communica-
tions do not by themselves contradict retarded causality. One can therefore speculate
about the possibility of the existence of the superluminal particles and superluminal
communications.

It would be much more difficult for Alice to explain why Tom’s aiming and trigger-
ing his gun were so remarkably accurately timed with the arrival of the bullet from
the hare. In Alice’s reference frame, the triggering of the gun is not the cause of the
bullet having flown into it. Nor is it its effect. At the same time there is an obvious
correlation between them – a non-causal correlation. It is manifest in the time coin-
cidence between them. A possible explanation is that this is just a chance coinci-
dence. Such a coincidence would be, of course, extremely unlikely, but logically pos-
sible.

And what about Equations (12), which prohibit real particles from moving faster
than light? We will discuss these questions in more detail in the following sections.

8.4
Once again the physics of imaginary quantities

“Suppose that someone studying the distribution of population on the Hindustan
Peninsula cockshuredly believes that there are no people north of the Himalayas, be-
cause nobody can pass through the mountain ranges! That would be an absurd con-
clusion. The inhabitants of Central Asia have been born there; they are not obliged
to be born in India and then cross the mountain ranges. The same can be said about
superluminal particles.”

These lines belong to an Indian physicist, Sudarshan, who was one of the first to re-
vive the concept of superluminal particles [60, 61]. They answer the question at the
end of the previous section.

Indeed, as we know, Equations (10) and (11) prohibit the values v� c for a massive
object. If such an object at a certain moment moves slower than light, then it cannot
acquire a speed faster than light. Not only cannot such objects cross the light barrier,
they cannot even reach it because this would require an infinite amount of energy
and momentum.

And yet the equations do not rule out the possibility of the existence of the objects
that always move faster than light. After all, we know of the existence of photons
which are thriving and can only live at the speed v = c, whereas Equation (10) prohi-
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bits this speed! And nothing horrible happens to photons, they all have decent finite
energies and momentums.

How do the photons get around the ban? Very simple! The photon’s energy and mo-
mentum – the quantities that we can measure! – remain finite because the infinity
of its Lorentz factor is multiplied by zero. The photon’s rest mass is equal to zero.
Zero rest mass of an object means the absence of the resting object itself. In other
words, a stationary photon in a vacuum is impossible. We have come again to the
known result that one cannot stop a photon in a vacuum. This result means that one
cannot slow down a photon to a non-zero speed v < c either, because we could always
find a co-moving reference frame in which such a photon would be stationary. The
photons can only exist by balancing on the razor’s edge – by moving with the speed c,
which is unattainable for any “massive” particle.

Thus, the divergence of the Lorentz factor [� (v) ��] at v � c means only that it is
impossible to accelerate a “massive” (m0�0) particle up to the speed of light; it does
not exclude the objects with the zero rest mass, for which always v = c. And this is
consistent with the fact that the value of c does not depend on the choice of a refer-
ence frame – it does not change under the Lorentz transformations – it is absolute.

Now, we can apply the same reasoning to motions faster than light!
Just as the divergence of the Lorentz factor at v � c is compensated for by the zero

rest mass for a photon, the imaginary value of this factor at v > c for a superluminal
particle can be compensated for by an imaginary value of its rest mass. The same can
be said about a proper longitudinal size and a proper time of such a particle. Accord-
ing to Equations (12), they all have to be imaginary to compensate for the imaginary
value of � (v). Let us write this down in symbols:

m0 	 �m0 � i m0 � r0 	 �r0 � i r0 � �0 	 ��0 � i �0 �13�

Here and hereafter we will frequently denote quantities related to tachyons by sym-
bols with the “tilde” symbol, ~. Equation (13) states that tachyon’s “rest mass” �m0,
“proper radius” �r0, and “proper lifetime” ��0 are all imaginary. This conclusion does
not contradict anything, because the proper values �m0, �r0, and ��0 are not observable
physical quantities for superluminal motions. They are characteristics of the station-
ary state, but the particles moving faster than light cannot be stationary relative to or-
dinary matter. To bring a superluminal particle to rest, we must board a spaceship
moving faster than light and catch up with the particle; but no spaceship made of
the ordinary matter can move faster than light. The superluminal reference frame
made of ordinary matter co-moving with a superluminal particle is in principle im-
possible; therefore, it is impossible to make any direct measurement of their proper
characteristics – which is manifest in the fact that their values are imaginary. At the
same time the observable (not proper!) values of the energy (and thereby the total
mass �m � �E�c2), momentum, size, and the lifetime, which can be measured during
the passing of a superluminal particle, turn out to be real when we make the transi-
tion (13) in Equations (12), so that we have a self-consistent picture.

We could also, in principle, measure �m0, �r0, and ��0 indirectly in a fairly simple way.
Consider, for instance, measuring the rest mass of a superluminal particle. To em-
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phasize that the rest mass is imaginary, let us write it according to Equation (13) as
�m0 � i m0, where m0 is a real number. We could measure it, for instance, by measur-
ing the total energy and then using �m � �E�c2. We can measure simultaneously the
speed �v. Then, knowing �m and �v, we can calculate m0 using Equation (12).

Alternatively, we can use the relativistic energy–momentum relation:

�E2 � �p2c2 � �m2
0 c4 � �p2 c2 �m2

0 c4 �14�

and measure the energy and momentum of a superluminal particle. Then we can
calculate m0 directly from Equation (14).

An even more “exotic” remedy can be found for the problem of imaginary proper
times and distances measured in superluminal reference frames (Sect. 8.2). We will
illustrate this remedy first graphically, and then analytically.

Look at Figure 8.1. It represents a moving reference frame K � from the viewpoint of
a frame K, which is considered stationary. The coordinate axes of K � are skewed with
respect to K. We know the physical meaning of this geometrical distortion (Sect. 2.9):
the events along the spatial axis x �, which are all instantaneous in system K �, are not
instantaneous in K, so that the world line connecting these events has a time compo-
nent in K. Similarly, the consecutive events along c t �, which all happen at one place
in K �, are observed at different points of space in K, so the world line connecting
these events has a spatial component to it. However, although the two axes are
skewed in K �, the x �-axis remains space-like, and the c t �-axis remains time-like.

Imagine now the system K � moving faster than light. Then a strange thing happens
(Fig. 8.1b). The spatial axis x � of K � will lie in the “time-like” domain of space–time,
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Fig. 8.1 (a) The axes of reference frame K� re-
presented in the reference fame K. From the
viewpoint of K, the axes c t �, x � are rotated toward
each other (to the photon world line PP�). Were
system K� able to move with the speed of light,
the axes c t �, x � would both merge with the line

PP�, and there would be no difference between
time and space in this system. (b) The same for
a hypothetical reference frame K� moving faster
than light. The x �-axis would then lie in the “time
domain” of K, and the c t �-axis would lie in the
“space domain”.



and the temporal axis c t � will lie in the “space-like” domain! The axes exchange their
roles. What is time for K is space for K �, and vice versa! More accurately: of the three
space dimensions, any one along the direction of relative supeluminal motion of the
two reference frames is interchangeable with time. If material objects could move
faster than light, then by selecting the direction of relative motion, we could make
time interchangeable with any one of spatial dimensions. This astounding conclu-
sion follows directly from the diagrams in Figure 8.1. In terms of the space–time
physics, we can understand this in the following way.

If the two events at the points x1 and x2 on the x-axis of system K are separated by a
space-like interval, this interval is time-like in K �. In particular, if K � is moving at
such a speed that its origin passes points x1 and x2 at the respective moments when
the above two events happen there, then both events occur at the origin of system
K �, so that the interval between them in K � is a pure time c� t �. If the two events hap-
pen simultaneously in K, so that the interval between them is purely spatial distance
�x = x2 – x1, and K � is moving infinitely fast, then a pure space interval �x in K is
changed to a pure time interval �t � in K �.

Similarly, if the two consecutive events occur at the origin of K at the moments t1
and t2, so that the interval between them is just a pure time c� t = c (t2 – t1), this in-
terval is space-like in K �. Indeed, the origin of K slides down the axis x � of system K �
to the left with a speed v. Because this speed is superluminal, the two events at the
origin of K will be separated in K � by the distance �x � = v�t � greater than c�t �. Thus,
the space-like component of the interval between the events is larger than the time-
like component, so the total interval is space-like. If again the speed v is much
greater than c, then �x �� c�t �, the temporal component can be neglected, and the
interval in K � would be almost pure distance in space.

These results follow directly from the superluminal Lorentz transformations (8). For
instance, setting there ct � = 0 (set of simultaneous events in K � , forming the space
in K �) yields x = (c/v) ct < ct (the set of the same events turns out to form a time-like
world line in K). If we set in Equations (8) x � = y � = z � = 0 (all the events occurring at
the origin of K �, that is the world line of the origin – a pure time interval in K �), the
equation yields x = (v/c) ct > ct (the same events turn out to form a space-like world
line in K).

Thus, the basic assertion of Einstein, that time and space are relative properties and
can be mixed together to form a more general entity, space–time, can potentially be ex-
tended still further. We can now say that if superluminal objects exist, then space and
time can be converted into one another via superluminal Lorentz transformations.

Realizing this allows us to interpret the imaginary values of the transformed coordi-
nates x � and ct � in system K �. Squaring the imaginary time coordinate ct � will give
the negative contribution to s �2. Also recall that by definition of the interval, the
squares of the spatial coordinates are subtracted from the square of the time coordi-
nate. Therefore, when the corresponding coordinate (in our case x �) is imaginary, its
square will give the positive contribution to the s �2. Now, according to the same basic
definition of the square of the interval, the coordinate whose square enters s �2 with
the plus sign is the time coordinate, and the one whose square enters with the
minus sign is the spatial coordinate. Hence ct � now plays the role of a space coordi-
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nate, and x � plays the role of the time coordinate. We have already realized that this
is precisely what happens under superluminal Lorentz transformation. Now we
come to the same conclusion from the analysis of the imaginary values of the trans-
formed coordinates. These values actually tell us that we should reassign the nota-
tions for coordinates in a superluminal reference frame: ct � = – i x̃ �, x � = – ic t̃ �. Then
the expression for the interval in system K � will take the form

s �2 � c2t �2 � x �2 � c2�t �2 � �x �2 �15�

While the variables t � and x � here are imaginary and have a meaning opposite to
their original notations, the variables t̃ � and x̃ � are real and have the physical mean-
ing of time and space coordinates, respectively, in system K �.

Hence we come to a conclusion that it is possible to introduce into physics a new
type of particle, which is different from all the others in that it always moves faster
than light. This kind of particle has been named, at the suggestion of John Feinberg
[62], the tachyon – after the Greek word meaning “fast”. The concept of tachyons
makes the world more symmetrical by allowing the existence of natural objects on
both sides of the light barrier, so that the latter becomes the two-sided limit for all
possible speeds. The fuller symmetry makes the world appear more perfect, which
appeals to our esthetic feelings. Therefore, the curious reader may attempt to ven-
ture into the new uncharted waters. The ideas we are going to describe in the follow-
ing sections may appear to be unusual, and some of them may be controversial, but
this is always the case when we cross the boundaries of established knowledge.

8.5
Tachyons and tardyons

Once we have realized that the existence of tachyons can be a logical possibility
within the framework of the special theory of relativity, we can explore the emerging
new domain. We will then find a striking symmetry between the world of tachyons
and our conventional physical world.

First let us introduce new terms. If we have given a name to the superluminal parti-
cles, it is reasonable to do the same for the subluminal particles. Using the same ar-
senal from ancient Greek, physicists have dubbed regular, well behaved subliminal
particles the tardyons (the English words retardation, retarded stem from this root.)
Thus, all the particles that can possibly exist in the Universe fall into three different
categories according to their speed: tardyons (v < c), photons and gravitons (v = c),
and tachyons (v > c).

It is easy to see that these three categories correspond to the three different domains
of Minkowski’s world (Fig. 8.2). Pick an event O in space–time. Let it be a reference
event. Consider all possible world lines passing through the event O. Each line can
be a four-dimensional path of a particle. The world lines of tardyons are all time-like
and fill out the interior of the light cone with the apex at event O. The world lines of
tachyons are space-like and fill out the exterior of this cone. The world lines of
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photons (and gravitons) are isotropic (have zero kinematic length!) and form the
generatrices of the light cone.

Next, let us look again at some basic concepts of relativistic kinematics – the kine-
matics of tardyons and photons. We will see how easily it can incorporate the tach-
yons.

We start with the basic expression for the interval ds between two close events on the
world line of a particle moving with a speed v:

ds2 � c2 dt2 � dr2 � c2 dt2��2 �v� �16�

Recall that according to its definition in Equation (25) in Section 2.5, the Lorentz fac-
tor � is positive for the tardyons, infinite for the photons, and imaginary for the tach-
yons. Therefore, the interval ds is real for a tardyon, and for the photons it is zero,-
just as one would expect from the definition of the photon’s world line. As for the
tachyons, the value of ds turns out to be imaginary. But this does not by itself pre-
clude tachyons from existence, because the interval is not directly measurable quan-
tity. It is only the mathematical expression formed from dt and dr, which are all real
for all kinds of particle.

The same can be said about the components of 4-velocity of a tachyon. Although the
magnitude of 4-velocity, according to its definition [see Eqs. (1) and (2) in Sec-
tion 4.1], is always equal to 1 for any kind of particle, the components of 4-velocity
for tachyons

u0 � � ��v� � ua � �va

c
� ��v� � � � 1� 2� 3 �17�

turn out to be imaginary [Eq. (4 b) in Section 4.1]. But this does not mean that these
components cannot be observed. Unlike the usual coordinates and velocities, as well
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as energy and momentum, the components of 4-velocity are not directly measurable
quantities. But they can be measured indirectly, by computing from directly mea-
sured components of �v, which are always real.

In the special theory of relativity the product of the rest mass by c and by the 4-velo-
city gives the 4-momentum [Eq. (6) in Sect. 4.1]. For an ordinary particle

pj � m0 c uj � uj � 0� 1� 2� 3 �18a�

For a tachyon

�pj � �m0 c �uj �18b�

Since both factors m̃0 and ũj are imaginary for a tachyon, its momentum is real.
All the components of 4-momentum have a simple physical interpretation. Setting

in Equation (18b) j = 0, one has

�p0 � �m0 c � ��v� �
�E
c

�19�

and for the spatial components � = 1, 2, 3 (that is, x, y, z) :

�pa � �m0 �va � ��v� � �m �va �20�

Thus, the zeroth component (in analogy with the time coordinate in Minkowski’s
space–time) is just the energy divided by c, and the spatial components are just the
components of the regular relativistic 3-momentum. Thus, the components of the
4-momentum for a tachyon have the same meaning as the components of the 4-mo-
mentum [Eqs. (9)–(11) in Sect. 4.1] for a tardyon, obtained in Section 4.1.

Based on this interpretation, we obtain the relation between the energy and momen-
tum of a tachyon:

�E2

c2 � �p2 � �m2
0 c2 �21�

in the same way as we did in Equation (11) in Section 4.1 for a tardyon.. The reader
should keep in mind that while the tachyon’s rest mass m̃0 is imaginary (it cannot be
brought to rest in our space), its energy and momentum are real (and therefore mea-
surable) physical quantities.

The left-hand sides of Equation (11) in Section 4.1 and Equation (21) here look ex-
actly the same as the square of the four-dimensional interval between two events (re-
call Sections 2.9 and 4.1). They show that all the properties of an interval apply to
any four-dimensional vector.

With this in mind, we see from Equation (11) in Section 4.1 and Equation (21) here
that the 4-momentum of a tardyon is time-like (has real magnitude m0 c), and the
4-momentum of a tachyon is space-like (has imaginary magnitude m̃0 c). This is just
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another way to say that tardyons always move slower that light and reside in the in-
terior of the light cones, and tachyons, if in existence, move faster than light and re-
side in their exteriors.

For a photon (m0 = 0) the 4-momentum is isotropic (has a zero length). This is a nat-
ural result of the fact that the photons’ world lines form the generatrices of light
cones.

These statements are expressed analytically in three simple relations:

E � pc
E � pc
�E � �pc

�
�
�
�
�

(22)

for a tardyon, a photon, and a tachyon, respectively.
We can now express the speed of a particle in terms of its energy. Using Equa-

tion (21), we have

v � dE
dp
� p

E
c2 � c

��������������������

1� m2
0 c4

E2

�

� c �23a�

�v � d �E
d�p
� �p

�E
c2 � c

��������������������

1� �m2
0 c4

�E2

�

� c �23b�

Now we want to depict graphically Equation (21) and compare the graphs for differ-
ent kinds of particles. In order to remove inessential details, consider the case when
the vectors p and p̃ are collinear, and the absolute values of masses are equal (m0 has
the same value for both kinds of particle). Then the 3-vectors of momentum are re-
duced to only one component along their common direction, and the equations take
the form

E2 � p2 c2 � m2
0 c4 �24a�

�E2 � �p2 c2 � �m2
0 c4 �24b�

In a coordinate system where the energy and momentum of a particle are plotted
along the axes (Fig. 8.3), Equations (24) describe a hyperbola whose slope at each point
(for each pair of variables p and E) determines the speed of a particle with given values
of the variables. For a regular tardyon (the branch of the hyperbola in the upper part of
the plane) this slope is everywhere less than 1. No matter how much we increase the
energy and momentum of the particle, the corresponding point in the plane will slide
along the curve ever further from the origin, and the speed of the particle, although
approaching ever closer the speed of light, will remain less than c.

Of special interest is the point where p = 0. It corresponds to a particle at rest with
the minimum possible energy. This minimum, as is seen from Equation (24 a) at
p = 0, is equal to E0 = m0 c2. It is called the rest energy of the particle.

If the rest mass of the particle is zero (a photon or graviton), so is its rest energy.
This means that if you try to stop such a particle, you are left with nothing. Particles
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of this kind do not exist at rest. The corresponding Equation (24a) splits into two
simpler equations:

E � pc � 0 �25a�
E � pc � 0 �25b�

that is, E =�pc. They describe a hyperbola, degenerated into two intersecting
straight lines passing through the origin. Physically they correspond to the propaga-
tion of photons, whose energies, as we know, satisfy Equations (25). The straight
lines represented by Equations (25) lie on the generatrices of a light cone in “mo-
mentum space” and are the asymptotes of the hyperbolas represented by Equa-
tions (24).

In geometry, the set of hyperbolas described by the equation x2 – y2 = constant con-
sists not only of the curves for which the constant is positive or zero, but also in-
cludes the curves for which the constant is negative. A pair of such curves is shown
in Figure 8.3 – they are the right and the left branches of a hyperbola, with their
apexes on the pc-axis. These branches are described by Equation (24 b) and corre-
spond to tachyons. Thus, by allowing tachyons to exist, we give a physical meaning
to this group of curves in the hyperbolas family, that is, introduce an element com-
pleting the picture to the full symmetry.1)

The hyperbolas of this group, as is clearly seen from Figure 8.3, have at any point a
slope (that is, dẼ/cdp̃) larger than 1. But the difference from tardyons is not restricted
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1) In fact, the full symmetry is not achieved even
in this case, because the tardions with negative
energies corresponding to the lower branch of

the hyperbola are unknown. We will not dis-
cuss the related topics here.



to this distinction only. The dependence of the tachyon’s energy and momentum on
its speed is also dramatically different from that of the tardyon, namely, the energy
and momentum of a tachyon decrease with the increase in its speed! Look at a branch
of the hyperbola corresponding to tachyons. As a point on this branch slides away
from its apex, both Ẽ and p̃ increase, while the slope of the curve approaches 1, that
is, the speed of the tachyon decreases, approaching c. Thus, to slow down a tachyon
with Ẽ > 0, one has to pump it with additional energy, and to speed up the tachyon
one has to subtract energy from it!

Such behavior at first seems paradoxical, but if we give it more thought, this beha-
vior is natural and even necessary in the world of superluminal velocities. The
mere term “superluminal” means that the speed of light is the lower limit for this
type of particle. To approach this limit, the particle must slow down, and for the
limit to be unattainable, the slow down must require unlimited energy supply. This
“paradoxical” behavior of the tachyons ensures the symmetry of the light barrier:
no matter from which side an object approaches the barrier (the speed of a particle
approaches c), this is accompanied by unlimited growth of energy and momentum
of the object.

The curves Ẽ (v) and p̃ (v) illustrate another weird feature in the behavior of tachyons:
as the tachyon is accelerated to an infinite speed, its energy does not just decrease,
but goes to zero independently of its proper mass m̃0, and its momentum remains fi-
nite and goes to m0 c.

The speeds v = 0 and v = � can be considered symmetrical with respect to c in that
either of them is maximally remote (in the corresponding domain) from the light
barrier. We can say that the speed v = � plays the same role for a tachyon, as the
speed v = 0 for a tardyon. However, if we compare the energy and momentum of the
tardyon at v = 0 with those of the tachyon at v = �, we will notice another peculiarity.
Whereas for a tardyon

E �v � 0� � m0 c2 � p �v � 0� � 0 �26�

for an “equivalent” tachyon with “symmetrical” speed v = � one has

�E � 0 � �p � m0 c �27�

The quantities E and p change roles: the energy of the tachyon behaves more like
the momentum, and the momentum behaves more like the energy. This is a natural
consequence of the “reinterpretation” of the meaning of the temporal and spatial co-
ordinates for tachyons, as discussed in Section 8.4.

We call the particle with v = 0 the stationary particle. The tachyon with the infinite
speed also deserves a special name. It has been named transcendent. The properties
of transcendent tachyons are very unusual. Such a tachyon, tracing out the whole
space in an instant, is observed at all points of its trajectory at once. But this observa-
tion lasts only an infinitesimally short moment, because owing to the infinite speed
of the transcendent tachyon, it emerges and momentarily disappears simultaneously
at all points on its track. Therefore, a strange phenomenon is observed in the corre-
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sponding reference frame: at first there is nothing there, and then there suddenly
appears and momentarily disappears an infinitely long rigid “rod” consisting of the
tachyon “smeared out” along its whole length.

In this respect, a stationary tardyon and a transcendent tachyon act as certain kind of
antipodes: the former stays at one point in space throughout the whole time; the lat-
ter stays for only an instant at all points of a spatial line. The former has zero mo-
mentum and finite energy E = m0 c2, whereas the latter has zero energy and final mo-
mentum p̃c = m0 c2. The former is represented by an apex A0 of the hyperbola (24 a),
and the latter by the point Ã0 of the hyperbola (54b), which is symmetrical to A0

with respect to a photon line OO �. The equations

�E � pc � �pc � E �28�

are the analytical expression of this symmetry. In some respects, the resting tardyon
and the transient tachyon of the same mass m0 are the symmetrical counterparts of
one another.

But there is more to it! If we take a closer look at Figure 8.3, it hints at an obvious
generalization of this symmetry. Suppose we pick up a tardyon with some arbitrary
speed v < c. It will be represented by a point A with corresponding “coordinates” E
and pc on branch 1 of the hyperbola in Figure 8.3. Can we find a tachyon symmetri-
cal to this tardyon? The graph suggests a positive answer. It would be the tachyon re-
presented by a point symmetrical to A with respect to the asymptote (generatrix)
OO �. The “coordinates” of this point are related to coordinates E and pc by Equations
(28). The corresponding vectors (E, pc) and (Ẽ, p̃ c) satisfy the equation

E �E � p�pc2 � 0 �29�

which is equivalent to Equations (28). In the geometry of Minkowski’s world, the
expression E2 – p2c2 determines the square of the 4-vector (E, pc), and thereby its
magnitude (kinematic length). Similarly, the expression EẼ – pp̃c2 determines the
scalar product of the two different vectors. In our case this product is equal to zero.
As we know from geometry, it means that the two vectors are perpendicular. The
fact that the vectors OA and OÃ in Figure 8.3 do not look mutually perpendicular,
is caused by inadequacy of the graphical representation used: we have to represent
the relations of the pseudo-Euclidian geometry on the ordinary Euclidian plane. For
the pseudo-Euclidian space we say that these vectors are dual to one another. Let us
also call the tardyon and symmetrical tachyon represented by mutually dual vectors
on the diagram in Figure 8.3, mutually dual. The property of two particles to be
mutually dual is Lorentz invariant. If this property is found for a pair of particles
in one inertial reference frame, then owing to Lorentz invariance of the scalar pro-
duct of the representing vectors, it will be found in any other inertial reference
frame.

Now, here is an interesting question: how are the speeds of mutually dual tardyon
and tachyon related to each other? According to the general definition of speed
[Equation (14) in Section 4.2], we have
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�v � �p
�E

c2 � v � p
E

c2 �30�

so that

v �v � p�p

E �E
c4 � c2 �31�

or

�v � c2

v
�32�

We have obtained this same relation between two velocities a few times, on different
occasions, and now we have it again! Recall, for instance, that the same relation con-
nects the phase and group velocities of the de Broglie waves of a free particle.

Hence the speed of a tachyon dual to a given tardyon is equal to the phase velocity of
the de Broglie wave associated with this tardyon! This allows us to suggest that the
concept of a tachyon not only is logically possible within the framework of the spe-
cial theory of relativity, but also has some physical meaning. As we think of it, there
appears an impression that we have caught a glimpse of something deep. But today
we can only say that if the tachyons do exist, then tardyons and tachyons can come
in dual pairs whose characteristics are described by Equations (28) and (29) or by the
equivalent equations

�m0 � im0 � �v � c2�v �33�

We want to emphasize once again that the transition from one member of a dual
pair to another described by the transformations in Equations (28), (29), and (33)
cannot be realized by a continuous change from v to ṽ or vice versa through the light
barrier. We have already shown this using the law of conservation of energy (the
transition through the light barrier would require an infinite energy). It will be in-
structive to show the same thing using the law of addition of velocities.

The impossibility of reaching the barrier from its subluminal side has already been
shown in Chapter 3. It is clearly seen from Equation (27) there that if one of the
two input speeds is c, the output does not depend on the second speed. If we ad-
mit the possibility of superluminal reference frames consisting of tachyons, then
the speed of light relative to such reference frames would also be constant and
equal to c.

Consider now a tardyon and a tachyon whose velocities are collinear and differ from
c by the same amount �v, so that

v � c � �v � �v � c � �v �34�

Their relative speed, according to the rule in Equation (5) in Section 3.1, is

242 8 Tachyons and Tachyon-like Objects



�v � � �v� v

1� v�v
c2

� 2
c2

�v
�35�

Let the tardyon speed up and the tachyon slow down, so that �v �0, and their
speeds approach from the opposite sides their common limit – the speed of light. If
we plot the two velocities as points on the velocity axis, then corresponding points
approach closer and closer to each other, eventually merging together at the common
point representing c. One would be tempted to imagine the corresponding two parti-
cles eventually moving together at one common speed – the speed of light. However,
their relative speed, given by Equation (35), will go to infinity! Here the impossibility
of crossing the light barrier from either side is manifested in the most dramatic and
impressive way.

When the two particles approach the light barrier from opposite sides, they must re-
main in different realms separated by the barrier. If you sit on the tardyon, the tach-
yon on the other side of the barrier should move relative to you faster than light – its
relative speed must exceed c, no matter how close to the light barrier you both are. If
the special theory of relativity is logically consistent, it must meet this requirement.
And this is precisely what it does – with astounding efficiency: the infinite relative
speed in the limit �v �0 is definitely larger than c!

On the other hand, if the tardyon with the same speed v = c – �v is moving towards
the tachyon with a speed ṽ = c + �v, their relative speed decreases; applying the rule in
Equation (5) in Section 3.1 to this case yields

�v � � �v� v

1� v�v
c2

� c

1� �v2

2 c2

� c � �v �36�

The reader can check that this inequality holds for all �v < c. It tells us that the rela-
tive speed, while remaining larger than c, is smaller than the tachyon speed in the in-
itial reference frame. This result, although not as dramatic as the previous one, still
contradicts our intuition, according to which, if I go 5 km h–1 to meet a friend who
runs towards me at 10 km h–1, our relative speed will increase to 15 km h–1, rather
than decrease.

Note that the speed of the transcendent tachyon relative to a stationary tardyon is in-
finite. On the other hand, we know that such a pair is a special case of mutually dual
particles. In this connection there arises an interesting question: what is the relative
velocity between two dual particles in the general case? We can obtain an answer if
we recall that duality between the two particles is an invariant property. Paradoxical
as it may sound, the same is true for the value of relative velocity, by mere definition
of this quantity (to measure relative velocity of the two objects, any observer has to
transfer to the rest frame of one of the objects; recall Section 3.3). Therefore, the rela-
tive velocity between an arbitrary tardyon and the dual tachyon will not change, nor
will they stop being dual to each other, if we switch to the rest frame of this tardyon.
By doing this we come back to the special case of the tachyon dual to the stationary
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tardyon. But such a tachyon is trancendent, it moves with an infinite speed. Because
the relative speed is invariant, it must have been infinite in the original reference
frame also.

We can obtain the same result directly from the law of addition of velocities. Putting
in Equation (5) in Section 3.1 mutually dual velocities v and ṽ = c2/v, we will obtain

�v � � �v� v

1� v�v
c2

�� �37�

Reversing this argument, we can give another definition of dual particles: two parti-
cles with equal absolute values of the rest mass are mutually dual if their relative
speed is infinite. Indeed, the infinite relative speed requires that the denominator of
the above expression be zero, from which there immediately follows vṽ = c2, the defi-
nition of dual particles.

Another interesting question is: what is the relative velocity between the two tach-
yons? Once we admit that such particles can, at least in principle, exist, then one
could, at least in principle, admit a reference frame and clocks connected with each
of them (probably made of the same kind of particle.) That would allow us to mea-
sure the velocity of one tachyon relative to another. Let the tachyons move in one di-
rection with speeds ṽ1 and ṽ2. The relativistic law of addition of velocities applies
equally well to any velocity – subluminal or superluminal. Applying it to two super-
luminal velocities ṽ1 = c + �1, ṽ2 = c + �2, �1, �2 > 0, gives

�v12 � �v2 � �v1

1� �v1 �v2

c2

� �2 � �1

� �1 � �2

c
� �1�2

c2

� c �38�

Let us make the tachyons move in the opposite directions (ṽ2 = – ṽ1), to increase their
relative velocity. Then the same addition law gives

�v12 � c
2� �1 � �2

c

2� �1 � �2

c
� �1�2

c2

� c �39�

Thus, any two tachyons move relative to one another with a speed less than the
speed of light! In other words, they behave like tardyons with respect to each other!

Let us summarize our conclusions. In the same physical space and time (in Min-
kowski’s world) there can exist two equivalent worlds. The objects of either world
move relative to each other slower than light. But the relative velocity of the two ob-
jects belonging to different worlds is always more than c. No object can by continu-
ous change of speed transfer from one world to another. The worlds are impene-
trable. They are separated by the impenetrable barrier – the speed of light – the speed
of photons and gravitons. The latter particles form the third world, all the particles
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of which move relative to all other particles with the same fundamental speed – the
speed of light.

There emerges a picture so complete in its symmetry that one might start to wish
that tachyons really exist!

But not everything is that simple in Nature. Hypotheses about tachyons can be con-
sidered with full seriousness only under the condition of their observability. The lat-
ter is possible only if tachyons can interact with the known matter – tardyons,
photons, and gravitons. But the moment we admit the possibility of such interac-
tions, we run into major difficulties and contradictions. We consider some of them
in the next two sections.

8.6
Tachyon–tardyon interactions

The difficulties begin the moment we look at the lower part of the tachyon–tardyon dia-
gram (Fig. 8.3),where the tachyon energy is negative. Let us call such tachyons negative
tachyons. Applying the relation p̃ = (Ẽ/c2) ṽ to negative tachyons, we see that for these p̃
and ṽ are of the opposite signs. This means that momentum carried by a negative tach-
yon points opposite to its velocity. If the tachyon moves, say, to the right, the momen-
tum assotiated with this motion, points to the left! How are we to understand this?

Momentum is a property that can be transferred from one object to another, if the
objects can interact. We have admitted the possibility of tachyon–tardyon interac-
tions. So imagine what happens if a negative tachyon moving to the right collides
with a stationary tardyon. Normally one would expect the tardyon to get a kick to the
right. But now it will acquire the momentum of the negative tachyon, which points
to the left. Accordingly, it will start moving to the left!

Now, what happens if we push a negative tachyon in the direction of its velocity, try-
ing to accelerate it? We can see the result by analyzing Figure 8.3. The negative tach-
yon, moving to the right, has its momentum pointing to the left. This is represented
by a point on the lower left branch. By pushing it to the right (that is, by applying a
force pointing to the right), we add to it the right-directed momentum �p̃. The re-
sulting momentum will be smaller in magnitude than the original one by �p̃. There-
fore, the point representing our tachyon will slide along the curve closer to the ori-
gin, where its slope is steeper. Accordingly, the magnitude of its velocity increases.
Thus, it behaves in this respect like a regular tardyon.

Consider another type of interaction: that of tachyons and photons. Suppose that a
tachyon can radiate light. The photons will then be emitted into the frontal hemi-
sphere of the moving tachyon. Actually this emission is the Cerenkov radiation con-
sidered in the Chapter 6. Then we can see from the same diagram in Figure 8.3 that
radiating positive tachyons (Ẽ > 0) lose their energy (approach the state with Ẽ = 0)
and thereby accelerate. For radiating negative tachyons, the loss of energy also re-
sults in sliding down the curve. But in this case the sliding takes them further down
from the state Ẽ = 0. They become more and more negative, and their speed de-
creases in magnitude, approaching the speed of light! The beautiful explanation of
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why tachyons cannot reach the speed of light, which we developed in the previous
section, works here in the opposite direction! Whereas positive tachyons need an in-
finite energy input to reach the speed of light, negative tachyons can spontaneously
release an infinite energy and approach the light barrier!

If this result is true, and tachyons exist, we should observe huge spontaneous out-
bursts of energy in the form of electromagnetic and gravitational radiation. Astrono-
mers do observe grandiose phenomena in remote parts of the Universe. One of
them is so called gamma-bursts – unimaginably powerful explosions resulting in
flashes of �-radiation. It is tempting to speculate whether tachyon–tardyon interac-
tions can provide a plausible explanation of some of these effects. For instance, the
Big Bang itself: can it be the result of just one tachyon having decayed into huge
numbers of photons and gravitons?

But it is not that simple. For instance, if a tachyon can emit a photon, it should also
be able to absorb a photon. Then we should observe the occurrences of spontaneous
absorption of radiation. We do not observe such phenomena. This negative observa-
tional result can be considered as indirect evidence against negative tachyons.

Some physicists have long been trying to eliminate negative particles from the pic-
ture of the world. They partially succeeded with negative tardyons, at least in the do-
main of classical physics. It is easy to see from Figure 8.3 why they could have done
this. The negative branch for tardyons is separated from the positive branch by a gap
that cannot be classically transcended. This allows one to say that even though there
exists a possibility of negative tardyons, which is reflected in the existence of the ne-
gative branch in Figure 8.3, the initial conditions might have been such that no nega-
tive tardyons had been created. If this was the case, this condition must persist be-
cause positive tardyons cannot cross the gap between the two branches: all interac-
tions in classical physics involve only continuous energy exchange.

This argument, of course, does not hold in quantum mechanics. Also, for the tach-
yons, it does not hold at all, because either one of the two negative branches for tach-
yons is just the continuous extension of the corresponding positive one. Therefore,
nothing precludes even a classical tachyon from sliding down the curve to its nega-
tive branch – to the lower half of the (E, p) plane.

A glance at the plane shows that the situation is even worse than that. Both right
and left tachyonic branches lie in the space-like domain of the plane, where the sign
of the energy is not invariant, nor is the sign of the time coordinate [see Eq. (44) in
Section 2.6 and Eq. (12) in Section 4.1]. Therefore, one and the same tachyon, while
being positive in one reference frame, can be negative in another reference frame!

Consider a situation: a stationary atom in the ground state is approached by a posi-
tive tachyon with energy �� and momentum �p. Let the total energy of the atom be EA.
Then the total initial energy and momentum of the whole system are

Etot � EA � ��
ptot � �p

	

(40)

Suppose that the tachyon energy �� is tuned to an allowed atomic transition, so that it
is absorbed by the atom at zero time. We can describe the absorption by saying that
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in the past (t < 0) there were two objects, the atom and the tachyon, and in the future
(t > 0) there is only one object, the slowly moving excited atom (Fig. 8.4a). The atom
is moving because it must have inherited the momentum of the tachyon. The final
energy and momentum of the atom are equal to the initial energy and momentum
of the system:

Efinal � EA � ��
pfinal � �p

	

(41)

The absorbed tachyon energy �� is shared between the internal energy of the atom
and the kinetic energy of its motion. Everything seems O.K., nothing unusual.

Consider now the same process from another reference frame K � that carries the
experienced observer Alice to the right with velocity V. The synchronized clocks in K �
are set to show time t � = 0 when the origin of K � coincides with the origin of the sys-
tem K. What does the above picture of absorption look like to Alice? The answer de-
pends on how fast she is moving. If she moves so fast that Vṽ > c2, the ordering of
any two events along the direction of motion, connected by the tachyon world line, is
reversed. The world line of a tachyon is space-like. Accordingly, the tachyon’s life
must be seen in reverse by Alice if Vṽ > c2. It is important to emphasize that this
does not pertain to the atom’s life, whose chronology is, of course, Lorentz-invariant
(Fig. 8.4b). Therefore, Alice sees first (in her past, t � < 0) only one object, the atom in
the ground state moving relative to her with velocity –V. In her future (t � > 0) she
sees two objects, the excited atom and the tachyon moving away from it to her left.
From her viewpoint, the tachyon has been emitted from the atom. Indeed, at zero
time Alice sees the atom performing a sudden transition from the ground state to
the excited state, with the emerging tachyon that subsequently recedes away. What is
seen as absorption in K is seen as emission in K � ! But how can the atom become ex-
cited, that is, increase its internal energy, and simultaneously emit a particle, which
also must carry some energy? The reader can already anticipate the answer: in
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Fig. 8.4 The world lines of a tach-
yon and an atom interacting with
each other. (a) In system K: The
atom in its ground state absorbs
the tachyon, which causes its transi-

tion to the excited state. (b) In sys-
tem K� : The moving atom in its
ground state emits the tachyon,
which causes it to slow down and
transfer to the excited state.



Lorentz transformations, the energy transforms in the same way as time does. For
any object with a space-like world line, if its time coordinate changes its sign, so
does its energy. Therefore, the energy of the emitted particle in our case must be
negative. If an object emits a particle with positive energy, the energy of the object
decreases. If the object emits a particle with a negative energy, the energy of the
object increases. Therefore, the emission of a negative tachyon is perfectly consistent
with the excitation of the emitting atom.

Let us check whether this nice scheme really works. All we have to do is to apply the
Lorentz transformation to the energy and momentum of the system. Alice in her
past (t � < 0) sees only the atom and no tachyon. The energy and momentum of the
atom are, respectively

E �A �initial� � � �V� �EA � VpA� � � �V�EA

p �A �initial� � � �V� pA �
V
c2 EA

� �

� � � �V� EA

c2 V

�
�
�
�
�

(42)

Since there is nothing else but an atom before the zero moment, Equations (42) give
the total energy and momentum of the system in the initial state.

After the zero moment we have the same atom in the excited state and the receding
tachyon. The energy and momentum of the atom are

E �A �final� � � �V� �EA � �� VpA �final�� � � �V� �EA � �� V �p�

p �A �final� � � �V� �p� V
c2 �EA � ��


 �

�
�
�
�
�

(43)

(recall that the atom after the absorption in K carries the tachyon momentum p̃).
The energy and momentum of the tachyon in K � are, respectively

�� � �final� � � �V� ���� V �p� � � �V� 1� V �v
c2

� �

��

�p � �final� � � �V� �p� V
c2

��
� �

� � �V� ��v� V� ��
c2

�
�
�
�
�

(44)

Now we can find the total final energy and momentum of the system in K � by sum-
ming Equations (43) and (44) and compare them with the total initial energy:

E � �final� � � �V� �EA � 2 ��� 2V �p�

p � �final� � � �V� 2 �p� V
c2 �EA � 2 ���


 �

�
�
�
�
�

(45)

Now compare this with Equations (42). The initial and final energies and momenta
are not the same in K� – they do not conserve!
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The reverse of the ordering at the transition from K to K�, that “hurls” the tachyon
from Alice’s past (t � < 0) into her future (t � > 0) and converts the absorption into
emission has disastrous consequences!

This would be an emergency situation in physics. It shows that either the original as-
sumption about the possibility of tachyons was wrong, or such particles cannot inter-
act with tardyons, or else some additional hypotheses about tachyons are needed.

The first two assumptions are physically equivalent. If a certain entity does not inter-
act in any observable way with the ordinary matter, this entity is, in all practical
terms, as good as non-existent. Thus, if one still wants to save the concept of tach-
yons that brings about an additional symmetry in the world, one should invent an
additional hypothesis to save the conservation laws.

Such a hypothesis had been suggested by Bilaniuk, Deshpande, and Sudarshan [60].
It was called the “reinterpretation principle.” Its essence can be described in the fol-
lowing way. The authors had noticed that the same condition Vṽ > c2 that swaps a
tachyon’s past and future automatically reverses the sign of its energy and momen-
tum. They suggested that in all such cases we should make an additional sign re-
verse of the two latter dynamic quantities. In other words, together with reinterpret-
ing the cause in K as the effect in K� and vice versa, we should reinterpret the nega-
tive tachyon in K� as positive (the sign of momentum will then be reversed automati-
cally). So, if we do,

�� � 	 ��� � � 0 �46�

then, automatically,

�p � 	 ��p � � 0 �47�

This would be mathematically equivalent to mechanically (without changing signs!)
transferring these variables to the other side of Equations (43), (45). Physically, this
is equivalent to swapping the tachyon back between the initial and final states, thus
restoring the status quo, characteristic of ordinary particles. Then, as if by magic,
everything will fall into place. If the curious reader goes back to Equations (43), (45)
and performs the described operations, the terms with the “extra” tachyonic vari-
ables will cancel, and the conservation laws will be restored.

But here Alice intervenes.
“Excuse me, but I cannot believe your math,” she says. “It contradicts all I see. I first

see the atom in its ground state, and moving to the left. Then I see this atom per-
forming a transition to an excited state, and emitting the tachyon. I could under-
stand this when the tachyon energy was negative. Now you are saying that it must
be positive, because only in this way can the total energy be conserved. But this
seems ridiculous. How can the atom become excited, that is, increase its internal en-
ergy, and simultaneously emit a positive tachyon, which requires additional energy?
Where does all this energy come from?”

How can we answer her? By taking into account that the atom in her system K� had
been moving to the left with a speed V. Then it emitted the tachyon to the left. Since
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the tachyon has been declared to be positive, its momentum must also point to the
left. This left-directed momentum comes from the atom. The magnitude of the
atomic momentum, and thereby its speed and kinetic energy, must accordingly de-
crease. Thus, the energy of the atomic excitation and the positive tachyon energy
both come from the kinetic energy of the atom.

“Well,” says Alice after turning it over in her head, “now I think I can understand a
little better why the poor hare in Section 8.3 was killed when the superluminal bullet
had formed inside its body and burst out of it. The bullet must have consisted of a
huge number of tachyons. Each tachyon was born in a spontaneous excitation of an
atom, so a huge number of atoms in the tachyon’s way must have been excited or
even ionized. The energy for both atom excitation and the tachyon production must
have come from the kinetic energy of the hare and the planet, which had been both
moving together relative to my spaceship. Definitely, the simultaneous exitation of
so many atoms must be fatal for any organism. This is how the law of conservation
of energy can include tachyons, and work on the macroscopic scale.”

Alice thought a little more, then sighed and said, “There is one thing here that
seems quite mysterious to me. How could so many atoms be spontaneously excited
practically all at once? And, for goodness sake, how could their excitations be so ac-
curately arranged as to form a bullet aimed directly at the barrel of Tom’s gun, at pre-
cisely the moment when Tom was about to trigger it?“

Alice’s questions pose a few difficulties in the hypothesis of tachyons.
First, the restoration of the conservation laws has been achieved at a high price. The

operations in Equations (46) and (47) are essentially the statement that, physically,
the tachyon with a negative energy is equivalent in its behavior to the tachyon with
the same proper mass and positive energy – to its anti-tachyon. But the arbitrary
change of sign in the Lorentz transformations is not a legitimate operation. It is arbi-
trary because it is performed only on tachyons and never on tardyons. And for tach-
yons, it is performed only when Vṽ > c2, and never when it is otherwise. Hence chan-
ging V or ṽ, or both, will change the criteria for applicability of the reinterpretation.
In other words, the same tachyon may be a particle for one observer and its anti-par-
ticle for another observer. If such an interpretation represents reality, then a tachyon
cannot carry any of the known physical charges (for instance, electric charge), be-
cause a charge of a particle does not change under Lorentz transformations.

Second, the way things would look on a macroscopic scale if tachyons are involved
and behave as described (e.g. in the scene with the hare) is definitely different from
normal physical behavior. Spontaneous atomic transitions, whose individual times
are in principle unpredictable, cannot produce a macroscopically ordered motion,
which is in addition highly correlated with motion of other macroscopic bodies a
long distance away. It would contradict one of the most fundamental and firmly es-
tablished laws of nature – the second law of thermodynamics, already mentioned in
Section 8.2.

Such a state of affairs is, of course, unsatisfactory. Either the whole concept of tach-
yons, despite its tempting attractiveness, is fundamentally incompatible with relativ-
ity, or it should be reintroduced with some additional ideas that so far seem to be
missing.
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8.7
Flickering phantoms

Suppose you stand in front of a mirror with a source of tachyons. What happens if
you fire a tachyon at the mirror? Suppose that tachyons can interact with the mirror
as photons do. Then we will first see a tachyon with energy Ẽ and momentum p̃ ap-
proaching the mirror, and then the tachyon with the same energy and momentum
– p̃ moving away from the mirror after reflection (Fig. 8.5).

Consider the same process from the viewpoint of an observer Peter in another refer-
ence frame K�, which is moving to the right with a speed V along the x-axis of the ori-
ginal system K. We can reconstruct his observations qualitatively by considering the
world lines of all the parties involved (Fig. 8.5 a, b). If Peter’s motion is sufficiently
fast (his x �-axis runs below the tachyon’s world line), then he sees the tachyon’s his-
tory differently than we do. The moment of reflection occurs in his system before all
other moments of the tachyon’s history, so that both approaching and receding
branches of its world line start at the moment of reflection and move towards the fu-
ture. The word “approaching” in this case becomes a misnomer, since both branches
are now receding. The tachyon moving from left to right in the original system K is
moving from right to left in system K�. Peter first sees nothing; then, at some mo-
ment of his time the mirror emits two tachyons at once, which then both whiz to the
left at different speeds. The difference in speeds is due to the fact that to each of the
two tachyons in K� corresponds one and the same tachyon in K but at different times
t1 (before the reflection) and t2 (after reflection); at the moment t1 the tachyon was
moving with the speed ṽ to the right, and after the reflection it was moving with the
same speed to the left. Applying the law of addition of velocities to these two cases,
we obtain two different speeds in system K�.

Now, if this can be true, what about conservation laws? If created tachyons are “the
real things,” they must each possess some energy and momentum. Who pays for
them? They appear to pop out of nothing. However, knowing some physics, Peter
understands that to obtain the correct conclusion, all the objects involved have to be
considered, mirror included. Conservation laws must hold for combined system
tachyons + the mirror. As the created tachyons are fired to the left, the moving mir-
ror gets a kick to the right, which slightly decreases its momentum and thereby its
kinetic energy. The lost energy of the mirror goes to the tachyons.
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If mathematical framework of relativity can incorporate the tachyons, then the com-
bined systems tardyons + tachyons must obey the laws of relativistic kinematics in
all reference frames. We had found that with respect to conservation laws this is true
only for the reference frames with relative speed V� c2/ṽ. If the relative speed ex-
ceeds this limit, we can only save the conservation laws by performing a pretty ugly
trick – an arbitrary change of the sign of energy. Some readers may find it instructive
to see how it works in the case of the mirror. For these readers we consider the case
quantitatively, and on the way we will find a couple of additional interesting details.

Let us focus first on the energy; once it is known, we can always find the momentum
using the universal relativistic relation

�p �
�E
c2

�v �48�

In reference frame K we have a stationary mirror and one tachyon. The tachyon’s en-
ergy and momentum are Ẽ, p̃, respectively, for the approaching (incoming) branch
of its world line, and Ẽ, – p̃, respectively, for its receding (outgoing) branch. Label
these two branches 1 and 2, respectively. Although the property of being incoming
or outgoing is not generally invariant, each branch itself is a geometrical object inde-
pendent of a reference frame, so that the label 1 or 2 uniquely specifies the branch.
We can now determine characteristics of each branch in the reference frame K� by
applying the Lorentz transformation:

�E �1 � � �V� � �E � V �p� � �E �2 � � �V� � �E � V �p� �49�

Using Equation (48), one can express this in terms of only the energy and speeds:

�E �1 � � �V� 1� V �v
c2

� �

�E � �E �2 � � �V� 1� V �v
c2

� �

�E �50�

If Vṽ < c2, the ordering of all the events on the whole world line is conserved. Peter
observes the same stages of the reflection process as we do. The only difference is
that he sees the mirror moving to the left rather than stationary, and this is the physi-
cal reason why the tachyon in his system has greater energy after the reflection than
before (Ẽ �2 > Ẽ �1). The kinetic energy of a baseball also increases when it is hit by an
oncoming bat, at the expense of the bat’s energy.

If Vṽ > c2, the ordering of events on branch 1 is reversed in Peter’s reference frame;
to him, both branches become outgoing, and he observes two tachyons, emitted to
the left by the moving mirror. And the energy of the tachyon moving along branch 1
(“tachyon 1”) turns out to be negative. This tachyon belongs to the lower branch of
hyperbola in Figure 8.3. But we know that in such cases we must forcibly “hurl it
back” on to the upper branch: we must perform the operation in Equation (46),
Ẽ �1	 –Ẽ �1. Then the total energy of the pair of tachyons will be

�E �T � � �E �1 � �E �2 � 2� �V�V �p �51�
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A similar operation is automatically performed on the momentum of tachyon 1. It is
easier to find the individual momenta in K� from Lorentz transformation combined
with Equation (48):

�p �1 � � �V� �p� V
c2

�E

� �

� � �V�
�E
c2
��v� V� �

�p �2 � � �V� ��p� V
c2

�E

� �

� � �V�
�E
c2
���v� V� �52�

The total momentum of the pair is determined as the sum of p̃ �2 and negative of p̃ �1:

�pT � ��p �1 � �p �2 � �2� �V� �p �53�

The momentum of the mirror must then decrease by the same amount:

�pM � �p �T � 2� �V� �p �54�

Now we can account for the energy needed to produce the pair of tachyons. The de-
crease in momentum of the mirror decreases its kinetic energy by the amount

�EM � �V�pM � �2� �V�V �p �55�

This is exactly the result in Equation (51) – the energy of the two created tachyons.
The conservation law holds (but keep in mind the price of it.)

Suppose now that there are two mirrors at a fixed distance L from one another along
the x-axis (Fig. 8.6). The world line of the left mirror (which is placed at the origin of
an inertial system K) is represented by the time axis ct. The world line of the right
mirror is given by the vertical line x = L. The area on the plane (ct, x) between the
verticals x = 0 and x = L forms the world sheet of the whole segment (0, L). Let a
tachyon zip back and forth between the two mirrors with a speed ṽ. Part of its history
between the two successive reflections is given by the segment of the world line OP1,
and the whole process by the broken line OP1P2P3 …

Consider again the observer Peter in another reference frame K�, which is moving to
the right along the x-axis of the original system K at a speed V. The coordinate axes
of the new system are also shown in Figure 8.6. Peter observes the same process as
we do. We notice that the axis x � intersects the broken world line of the tachyon at
points A0, A1, A2, …, Aj , … What does this mean?

Using the rules for determining coordinates of the events in the skewed coordinate
system (Sect. 2.9), we can reconstruct the picture observed by Peter.

Recall that all the events simultaneous in Peter’s reference frame lie on a line paral-
lel to his x �-axis; if they occur at the zero moment by his system of clocks, they coin-
cide with this axis. And vice versa, all the events “forming“ the x �-axis, are simulta-
neous for Peter – they all occur at one moment t � = 0 of his time. This is also true for
the intersection points A0, A1, A2, … in Figure 8.6. Each such point corresponds to
an event – passing of the tachyon by this point. For Peter, all these events occur at dif-
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ferent points in space, but at one moment of time. In other words, Peter sees the
same tachyon in different places at once.

This is not the same thing as the observation of a transcendent tachyon discussed in
the previous section! The transcendent tachyon moves infinitely fast, its world line
is parallel to the corresponding spatial coordinate axis, and it is observed simulta-
neously at all points of its trajectory. The tachyon observed by Peter has a finite speed
(unless V = c2/ṽ), its world line is not parallel to the x �-axis, and it is observed simul-
taneously only at the discrete set of points Aj , j = 0, 1, 2, … But whatever is observed
in separate disconnected places at once is perceived as separate objects. In other
words, Peter observes a few identical, but independent, tachyons between the mir-
rors! The number of these tachyons is equal to the number of intersection points be-
tween the x �-axis and the broken line OP1P2P3 … within the world sheet of the cylin-
der. In turn, it is equal to the number of legs of the broken line inside the rectangle
OO�L�L in Figure 8.6. We can find this number from Figure 8.6 as the integral part
of the ratio OO �/LP1 (from here on, italics indicate distances) plus 1. Now, if we do
some algebra, we can express this number in terms of two speeds: the speed of tach-
yon and the speed of Peter.
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It is seen from Figure 8.6 that the faster the tachyon moves, the shallower are the
legs of its world line, and thereby more legs will fit into the rectangle OO �L�L. The
faster Peter moves, the steeper is the x �-axis, and the higher the rectangle. Hence the
number of intersections must be proportional to the product of the two speeds.

Let us now find this number rigorously. We have from Figure 8.6: OO � = L tan �,
where � is the angle between the x- and x �-axes. Recall that, according to Equa-
tion (64) in Section 2.9, tan� = V/c. Thus OO � = LV/c. Regarding LP1, it represents
just the time it takes the tachyon to make a one-way trip down the cylinder, multi-
plied by c: LP1 = cL/ṽ. Combining these expressions gives

N � V �v
c2


 �

� 1 �56�

where the designation [X] means the integral part of X.
The number of tachyons observed simultaneously by Peter does not depend on L,

and is completely determined by the product Vṽ. In order for this number to be >1,
it is necessary that this product be not less than c2. If it is less than c2, then Peter ob-
serves, just as we do, only one tachyon at any moment. At Vṽ = c2, Peter can see one
(transcendent) tachyon; at Vṽ slightly exceeding c2 he sees already two tachyons, and
he registers two tachyons in all cases where the product Vṽ changes within the range
c2�Vṽ < 2 c2. For the range 2 c2�Vṽ < 3 c2 Peter can observe simultaneously three
tachyons between the mirrors, and so on. If ṽ��, the number of tachyons between
the mirrors as observed by Peter can be arbitrarily large, while we have only one tach-
yon there. The number of tachyons is not invariant!

The reader can recall how emphatically we stressed in Chapter 1 that the total number
of stable objects is one of the most important, absolute (Lorentz-invariant) characteris-
tics of a system. Now we see this “sacred rule” outrageously violated by tachyons.

But this is not all. The mere picture of motion observed by Peter is also unusual. We
know already that in each cycle, the tachyon approaching the right mirror can be ob-
served by Peter as receding from this mirror, so that he can within each cycle see two
tachyons moving away from the mirror at different speeds. Applying Lorentz trans-
formation to their speeds in reference frame K, we find their speeds in K� :

�v �1 �
�v� V

1� �vV
c2

� �v �2 �
� �v� V

1� �vV
c2

�57�

Because of the difference in speeds, the two tachyons reach the left mirror at differ-
ent times: one at the zero moment t �1 = 0 and another at t �2 > 0 (this event is repre-
sented by point P2 in Figure 8.6).

The “multiplying” of the tachyon when an observer switches from system K to K� oc-
curs only under the condition Vṽ > c2. The same condition, as is seen from Equa-
tions (57), makes ṽ �1 negative, interchanging temporal coordinates of the events O
and P1. Equations (57) confirm that the velocities of the two tachyons in system K�
are different in magnitudes and both negative, that is, directed to the left.
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Hence each cycle of the oscillatory motion of the tachyon in system K transforms
into motion of two tachyons from the right to left mirror in system K�. The resulting
picture of motion observed by Peter can be described with the following figurative
model. Imagine two teams – male and female – of alien runners from another
world, who call themselves “Tachyons.” The members of the female team run at the
speed ṽ �1 and members of the male team at the speed ṽ �2. The members of the two
teams are interspersed and run in pairs between the mirrors, which move to the left
at speed V. At certain moments of time t �j , j = 1, 2, …, t �j+1 > t �j , a pair is born at the
right mirror, and its male and female members rush to the left at their respective
speeds. The female runner reaches the left mirror earlier, at which moment she
catches up with the male member of the previous pair and they both disappear. At
the moment the male runner of the pair reaches this mirror, the female runner of
next pair catches up with him, and they also both disappear. When the male runner
of this pair comes to the place, the female from the third pair reaches it too, and they
again mutually annihilate, and so on. The Tachyons are born in pairs at the right
mirror and annihilate at the left mirror, with the members of the neighboring pairs.
And all this phantasmagoria of flickering phantoms are just different events of his-
tory of only one tachyon in system K, which are “projected” simultaneously on to Pe-
ter’s system K�.

Next, we can imagine our tachyon evolving in time. Suppose, for instance, that a
tachyon is an extended object (we will see soon that there are sound reasons for such
an assumption!), and its size is increasing in time. Then we will see in K one tach-
yon bouncing between the mirrors and growing larger like an inflated balloon as it
does so. Peter will see in his system something different and even more weird than
before. He will see again many Tachyons at once racing in pairs from the right to the
left mirror. But this time they are all of different size except for the moments of their
birth and death. Each time when a pair is born at the right mirror, both of its part-
ners are of the same size, but both are larger than the members of the previous pair
and smaller than the members of the next pair. As they start towards the left mirror,
the male Tachyon expands, which stands in total accord with tachyon history in K.
But its female partner shrinks! At the left mirror she catches up with the male run-
ner of the previous pair, who was born smaller than she, but since he was growing in
the run while she was diminishing, they meet being equal in size and both annihi-
late. When her male partner reaches the left mirror, he is caught up with by the fe-
male runner of the next pair, who was born larger than him; but now they are both
of the same size, and both annihilate each other.

We can easily understand why the participants of this carnival are generally all differ-
ent in size. It is again a manifestation of relativity of time. What Peter sees in K� are
different events of the life of one object. While these events follow one after another
in K, they appear all at once to Peter in K�. The Tachyons of different size that Peter
sees simultaneously are merely different ages (and thereby different sizes) of the
same tachyon in K.

But for Peter all the tachyons observed simultaneously appear to be separate inde-
pendent entities, rather than only ghost images of the single real tachyon. What tests
can we perform to find out which possibility is true?
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First, we can measure one of the basic properties of the tachyon, say, its energy and
momentum in our system K, and suggest that Peter does the same with his tachyons
in his system K�. If each one of Peter’s tachyons contributes to the total on an equal
footing with its partners, then each can be considered, at least to some extent, as an
independent particle. Otherwise, some of them are “ghosts” that do not really have
mass or energy, or possess any other property of a particle. But we have seen that
this type of test is rather ambiguous. It does show that all the tachyons carry energy
and momentum and obey conservation laws like any well-behaved real object, but
only if we “reinterpret” the energies of some of them by changing their sign.

Alternatively, we can try to interrupt the tachyon history in K at some moment, and
ask Peter how this interruption affects his observations. Indeed, once we have ad-
mitted the interactions between tachyons and tardyons, it is natural to assume that
we can at any moment influence the tachyon at our will. So, imagine that we “knock
down“ our tachyon, for instance, at the event A4 by firing at it a tardyon that absorbs
it when they collide. Immediately, its world line above this point on Figure 52.2a
(that is, A4P5A5P6 …) is obliterated, so that the events P5, A5, P6, … of the tachyon
history are prevented from happening. Accordingly, Peter sees (Fig. 8.6 b) that the
right mirror stops to produce the next tachyon pairs after the moment P3. On the
other hand, this mirror is far away from the collision point and cannot be affected by
this collision. Does this mean that these pairs would have all been ghosts, and only
the previous ones were the real things? It does not. Suppose we decide to hit the ori-
ginal tachyon in K at a later moment, say at the event A6, in which case Peter would
not see any tachyons with numbers greater than 6. We see that the designation of a
tachyon in K� as a ghost or a real object depends on what we do to the tachyon in K
and when we do it. So shooting the tachyon does not give us a clear-cut criterion.

But if the tachyons in system K� are all real, how can their production by the mirror
be affected by a distant event? Let us turn to Peter’s report of his observations. What
we see as the tachyon absorption is seen in K� as its emission by the tardyon. Fig-
ure 8.6 b, presented by Peter, shows that the mirror stops producing pairs after the
event P3. But the moments P3, P5, P7 are before the event A4 in Peter’s reference
frame! Hence shooting the tachyon affects in K� its past history! How does the signal
travel into past?

Peter may want to describe the observed phenomena in K� without any reference to
another reference frame. And relativity not only grants him the right to do so, but
must also provide him with the means to do it (recall Sections 5.4 and 5.5). If the
right mirror knows that it has to stop producing next tachyons before the moment of
tachyon absorption, then there must be a physical effect responsible for it. However,
unlike the situation with the relativistic train, now there is none to be seen except,
maybe, for something yet unknown – what can that be?

In our attempts to explain things without referring to the system K, we are forced
back to this system. Take a closer look at our thought experiment. The regular crea-
tion of tachyon pairs at one mirror and their coordinated annihilation with the mem-
bers of subsequent pairs at the opposite mirror indicate a very special initial condi-
tion. This condition is periodic motion of just one tachyon in the rest frame of the
mirrors. The coordinated motions of tachyons in system K�, even though they appear
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to Peter to be independent, are intimately connected with each other by their com-
mon origin. This may seem to have something in common with the non-local quan-
tum mechanical correlations of distant particles, discussed in Section 6.15. But the
situation here is even more dramatic. In Section 6.15, the positron on Rulia ap-
peared to know instantaneously what had happened to the electron on the Earth, and
changed its state accordingly. Now, the right mirror appears to know about the dis-
tant tachyon absorption in advance, and changes its behavior (stops producing pairs)
accordingly. It looks as if together with the introduction of tachyons, we must intro-
duce the possibility of a new physical effect – the flow of information from the future
into the past!

Can this be possible? And, if it can, how could it change the picture of the world?
We will try to analyze this question in the next section.

8.8
To be, or not to be?

This section will not require heavy math. Its results can be illustrated by a couple of
simple diagrams and accordingly allow a more casual style of writing. In what fol-
lows, the possible dramatic consequences of superluminal signaling are described in
the form of a science fiction story.

… Commander Fletcher was leaving the planet Rulia with heavy misgivings. His
mission fell short of successful. He could not have persuaded the leadership of Rulia
to stop developing the most powerful weapon of mass destruction – tachyonic beams.
The superpower on planet Rulia was notoriously ambitious. After the first reports of
the discovery of tachyons had been published, it saw in tachyons a weapon of unlim-
ited potential, capable of instant destruction of the remotest recalcitrant planets.

Right in the midst of preparation of his spaceship Alvad for departure, Commander
Fletcher received information that Alvad had been chosen as the first experimental tar-
get to be hit by a tachyon beam. Just the day before the arrival of Alvad, the dictator of
Rulia, General Hiss, personally inspected the military facilities on the Rulian space
station M. And right after the negotiations had finished with no agreement, he or-
dered preparations to fire the destructive beam from station M at the moment “P” of
Rulian time, when Alvad would be well on its way back to Earth. General Hiss wanted
to make sure that the far away target could be destroyed instantaneously. Therefore,
he ordered the use of the high-power beam moving with a nearly infinite speed.

The moment Rulia was left behind, Commander Fletcher drew two space–time dia-
grams with the world lines of Rulia and Alvad. Knowing the shooting time and
speed of the beam, and also the speed of Alvad, he calculated the arrival time of the
beam. The calculation showed that the beam was to be expected in 12 h.

There was not much time left for discussions. Commander Fletcher ordered the acti-
vation of the protective shield and Alvad’s tachyon firing facilities to be brought to
the highest alert. His strict instruction was to avoid any hostile actions until the mo-
ment of attack. If, and only if, the Alvad is hit by the beam from Rulia should it re-
spond by firing its own beam. The beam should be aimed at the Rulian space station
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M and move with nearly an infinite speed relative to Alvad. The power of the beam
must be sufficient to destroy all military facilities on M.

After about 12 h of anxious waiting, a violent jerk shook the ship. Nearly all of the
protective shield was gone, vaporized in the twinkling of an eye. A few crew mem-
bers were seriously hurt. Just a few seconds later, the gunmen of Alvad, following
the initial orders, were about to fire their own tachyon gun. But at the very last mo-
ment, a new order came to postpone the firing. Nobody could understand what had
happened.

The first mate ventured to interfere. “Commander,” he said, “don’t take my question
as insubordination. But this is an emergency situation, so will you please tell me,
what are we waiting for?”

Commander Fletcher was deep in thought. “Our shield is gone,” he said. “We cannot
afford to suffer another attack.”

“Then why are we waiting? Are we going to give them a chance to strike again?”
“Quite the contrary,” Commander Fletcher said as if answering his own thoughts

rather than his mate’s. “We want to minimize their ability to strike again.”
“By not responding?” asked the mate.
“By responding at a proper moment.”
“Sir, what moment can be more proper than the earliest one?”
“I will tell you when we check our calculations.”
In half an hour, Commander Fletcher told his mate the exact time of the Alvad’s re-

sponse. It was in about 6 h from the present moment. For all this time the crew was
again to follow strict orders – not to shoot.

Nothing serious happened during these 6 h. And when they had gone by, the power-
ful tachyon flux from Alvad zipped to Rulia with a nearly infinite speed and con-
verted its military station M into atomic vapor.

Now the time has come for us to discuss this “Star Wars”-like episode. For a better
understanding of the underlying physics, we consider the described situation from
two viewpoints – that of Rulia (system R) and that of Alvad (system A).

A good way to see the basic features involved is to look at the two figures drawn by
Commander Fletcher.

We start with Figure 8.7. On this figure, the vertical line O–ct represents the world
line of Rulia, and O–ct � represents the world line of Alvad in Rulian coordinates (the
Rulian time ct and spatial coordinate x in the direction to Alvad are drawn at right-
angles to each other). The line O–x � represents the spatial coordinate axis of system
A. The point S represents the starting moment of the whole story – the inspection
visit of General Hiss on station M. The point P represents the tragic event in the his-
tory of Rulia – the shooting of the tachyon beam to destroy Alvad – and point Q re-
presents the event of blasting off Alvad’s protecting shield by this beam. Accordingly,
the line PQ represents the world line of the beam. Point C gives the event – response
of Alvad’s tachyon gun. The interval QC gives the waiting time, calculated by Com-
mander Fletcher and his Strategic Research Division team, and so bitterly disputed
by the Commander’s mate.

Why was this waiting interval needed? This becomes clear when we find the world
line of the tachyon beam from the Alvad. You will remember that the speed of the
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beam was nearly infinite relative to Alvad. Therefore, the beam’s world line must
run parallel to the spatial axis x �. Its intersection S with O–ct would represent the ar-
rival of the retaliating beam at Rulia’s space station M. The arrival of the beam hap-
pens earlier in Rulian time than its departure from the Alvad. We are already familiar
with this phenomenon. Moreover, it is seen from the diagram that the retaliating
beam may have arrived at M and destroyed it even before the guns at M started shoot-
ing! As Commander Fletcher thought it over, he realized that this gives him a
chance to do away with General Hiss along with the station and thus greatly reduce
the chance of further strikes from Rulia. Commander Fletcher knew that General
Hiss had personally inspected the station before the Alvad’s arrival at Rulia. He
knew exactly the inspection time from the message he had received before his depar-
ture from Rulia. He decided to hit station M with the beam right at that time. But he
had seen from the diagrams that if he shoots immediately after having been at-
tacked, the intersection point S � would fall below S, and the beam would hit M
slightly too early. Therefore, he decided, after painful hesitation, to postpone the
shooting. Together with his research team, he calculated exactly the needed waiting
period – it turned out to be about 6 h. His foresight was correct and his calculations
were accurate. The postponed beam from Alvad turned the whole station M into an
atomic cloud just at the moment S when General Hiss was there for the inspection.

Now we can get back to Figure 8.7.
Take the event S as a starting point of the loop. The line SP represents the period of

Rulia’s history from that event to the fatal shot of the Rulian tachyon gun (event P).
The arrow PQ represents the world line of the tachyon beam from station M to Al-
vad. The arrow QC is the waiting period on Alvad. Finally, arrow CS represents the
world line of the retaliating beam from Alvad to station M. This arrow closes the
loop, but not the story. Think again about the events at the end point of this arrow:
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which one is the cause and which one is the effect? From all we know, one would
tend to conclude that the shot from the Alvad’s gun was the cause, and the destruc-
tion of station M and death of General Hiss were the effect. But to the Rulians these
two events (and also all the intermediate events on the world line CS) are reversed in
time. They first observe the event S. They see it as the spontaneous disappearance of
their station M in a gigantic explosion, accompanied by the outburst of a powerful
tachyon beam in the direction in which the Alvad had departed after the negotia-
tions. Then they (or their outpost observers) could watch how this beam caught up
with the receding Alvad at a later moment and disappear in the Alvad’s tachyonic
gun, which was at that moment aiming precisely at what used to be station M.

The Rulian physicists have been arguing about the direction of the information flow
in the beam. According to the reinterpretation principle, they were prone to consider
the earlier event S as the cause, and the later event C as the effect. But there was
much greater embarrassment for them and the entire population of Rulia – the
question about the physical and legal status of General Hiss. It was a recorded physi-
cal and historical fact that station M was functioning normally and General Hiss was
alive and active at the moment P long after the explosion on station M. It was at that
later moment that he ordered the station to fire the tachyon beam at Alvad. And it
was also a physical and historical fact established beyond doubt that General Hiss
was killed by a spontaneous explosion of station M at the earlier moment S. Both
facts together are, of course, logically incompatible, and the Rulians found it impos-
sible to resolve this contradiction. Facing this unbearable situation drove them into a
state of complete hysterical frenzy.

Now consider the same events from the viewpoint of the Alvad’s crew. Look at the
second diagram (Fig. 8.8) of the above events, which is now scaled to Alvad’s coordi-
nates (its temporal and spatial axes are drawn perpendicular to each other, and the
corresponding “Rulian” axes are skewed).

It is convenient to start the account of the events as observed on the Alvad from
event Q – the spontaneous explosion of the Alvad’s protective shield. According to
common sense, this event was the result of event P – the shot of the tachyon gun
from station M. The corresponding interval PQ represents the world line of the tach-
yon beam fired from M at Alvad in that shot. But according to the reinterpretation
principle, this world line would be better read as QP, because event Q happened be-
fore event P by the Alvad’s clocks. The crew of the Alvad first observed the sponta-
neous explosion of their shield, accompanied by the outburst of the tachyon beam,
which rushed towards Rulian station M and then disappeared into the barrel of its
tachyon gun, which was at that moment aiming directly at Alvad. With this chronol-
ogy, the spontaneous shield explosion appears to be the cause, and the emergence of
the tachyon beam due station M and its subsequent absorption by its tachyon gun
appear to be the effect.

The world line QC represents the waiting period between the explosion of the Al-
vad’s shield and the retaliating shot of its tachyon gun. The shot at moment C, as al-
ready mentioned, was accurately timed to hit the Rulian station M with the infinitely
fast beam precisely at the moment when General Hiss was there for the inspection.
The world line CS represents the space–time trajectory of the corresponding beam.
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The end point S of this line represents the destruction of station M together with
General Hiss.

The total picture of all these events and their interpretation drove the crew on the Al-
vad no less crazy than the population on Rulia. The physicists on the Alvad bitterly dis-
puted the nature of the beam QP. From the viewpoint of those on Rulia, the beam
was, with absolute certainty, fired from station M. They witnessed and recorded all
preceding developments and preparations leading to this tragic event. But the Alvad’s
records showed, with equal certainty, that the source of the beam was the explosion of
their protective shield, accompanied by the outburst of tachyons towards Rulia, and
the beam hit station M at a later time. If we indicate the directions along the beams by
arrows pointing from the Alvad’s past to its future, then both arrows QP and CS point
from the Alvad to Rulia (recall that the speed of the beam CS was only nearly infinite,
so that the event S occurred slightly later than event C). Now, if we judge only from the
directions of the arrows, it is the Alvad that appears to be the aggressor!

Because both the crew of the Alvad and the informed inhabitants of Rulia knew that
the opposite was true, they all were intent to agree that in the first arrow QP the ac-
tual flow of information must have been the opposite to the direction of time – that
is, from P to Q. But this means that the information flew along this arrow from the
future to the past! That may seem hard to swallow, but it becomes easier as we recall
that for the space-like intervals the properties past and future are relative and depend
on a reference frame.
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But there was one thing much harder to comprehend: that of the physical and legal
status of General Hiss, and accordingly, in view of his role as a leader of the super-
power on the intergalactic scale, the political status and the current situation of all
the observable Universe. On the one hand, there could be no doubt that General
Hiss was alive and active at the moment P, when his order to start the war was coin-
cident and correlated with the arrival of the beam QP from the Alvad. On the other
hand, the earlier obliteration of station M together with General Hiss gave absolutely
solid evidence of his death before the moment P. This logical and political ambiguity
seemed to some unbearable. But Commander Fletcher thought that it was still better
to have the Alvad returning to Earth with the embarrassed crew than to have instead
an unambiguous atomic cloud with no crew at all.

The described results constitute a known logical paradox (so-called Tolman paradox
[63]) that arises when we exchange the tachyons between two systems in such a way
that the corresponding world lines form a loop. Whereas different observers may dis-
agree about separate elements of the loop, they all agree that the loop as a whole is a
self-contradictory entity. Looking again at either of Figures 8.7 and 8.8, we can sum-
marize the contradiction in the following way: If General Hiss is not killed at the mo-
ment S, then he is alive at the moment P, and sends to Q a signal that triggers
(through the chain of events QCS) his death at moment S. If he is killed at mo-
ment S, then he cannot send any signal at P, which cancels the chain PQCS, so he is
not killed at moment S.

The same self-contradictory conclusion can, of course, be drawn regarding the Al-
vad’s defensive actions: if the Alvad fired the retaliating beam that destroyed sta-
tion M, then this station did not exist at a later moment P, there is no shot at Al-
vad and no destruction of its shield, and therefore Alvad never fired the retaliating
beam.

To make things look even more impressive, although less dramatic, consider another
version of the tachyon communication loop, that has been discussed in a paper by
Benford, Book, and Newcomb [64]. In their paper, the tachyon beam carries instruc-
tive, rather than destructive, information.

Suppose tachyons had been discovered by Shakespeare’s time, and Shakespeare
types out the first copy of Hamlet, encodes it into modulated tachyon beam and
transmits it into space. The modulated beam carrying the text of Hamlet catches
up with an alien spaceship returning from Earth with an abducted earthling called
Francis Bacon. The earthling intercepts and decodes the beam and thereby be-
comes the second man from Earth who knows Hamlet. Draw a space–time dia-
gram of this communication and analyze it from the viewpoint of Bacon. If the
product Vṽ > c2, then he receives the encoded message about Hamlet before Shake-
speare sends it! It again appears that he receives a message from the future. How-
ever, what he really observes is quite different. All of a sudden, his receptor spon-
taneously emits a modulated beam of tachyons and types its decoded contents on
a tape. The beam reaches the receding Earth at some later time and illuminates
Shakespeare’s transmitter, which is moving on its own in mystically perfect syn-
chrony with modulations of the beam. When Bacon measures the energy of his
tachyons, he finds its value to be negative. When he looks through the whole tape,
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he is astounded to realize that instead of gibberish naturally expected from any
spontaneous process, the tape contains a masterpiece that will fascinate genera-
tions to come.

This is a more sophisticated version of the unhappy incidence with the killed hare
observed by Alice in Section 7.4. And both incidences contain, if not yet a logical
paradox, a deep puzzle. On the one hand, Bacon, as Alice before, holds that if there
is any causal connection between the observed events on his spaceship and the
Earth, the spontaneous triggering of his transmitter must be the cause (it has started
first), and the typing of Shakespeare’s transmitter must be the effect (it started later,
when the beam reached the Earth). Bacon reinterprets the designations of what
should be the cause and what should be the effect in accordance with the principle
of retarded causality. However, on the other hand, according to universal causality
(any event has its cause), the triggering of his transmitter must have its own cause.
Actually, however, it is totally spontaneous and has no preceding effects in the past
that could cause it. It appears to be a non-causal event, just as the deadly outburst of
tachyon beam from the hare, which so embarrassed Alice! In this respect, it violates
more general principle of universal causality.

The authors [64] summarized the results of the one-way communication in the fol-
lowing way:

… no amount of reinterpretation will make Bacon the author of Hamlet. It is Shakespeare,
not Bacon, who exercises control over the content of the message. For any tachyon trajectory
the time ordering of the end points is relative … But the direction of information transfer is
necessarily a relativistic invariant.”

This conclusion sounds as the most plausible explanation of the observed effects in
one-way communication. What else could account for the fact that Bacon’s transmit-
ter “spontaneously” produces a masterpiece that is produced independently and yet
letter by letter the same, after a proper prehistory, billions of miles away?

But the generalization that allows information to flow from the future to the past
along space-like trajectories is not by itself sufficient for closed loops. Suppose we
want to know what happens if Bacon now signals the obtained information back to
Earth. This would be similar to Commander Fletcher firing back to Rulia, and does
not even require special timing, since now there is no need to hit the Earth at some
special moment of time. Bacon’s only concern would be that the signal comes back
to Earth long before Shakespeare’s time. As we know, this can always be done if the
distance between the Earth and the spaceship and the ratio Vṽ/c2 are large enough.
So imagine Bacon signaling back the complete text of Hamlet he had obtained from
Shakespeare, and his message arriving at England about half a century before Shake-
speare’s birth. The message is intercepted by someone named, say, Snakespeare.
This person might have observed the transmission as a spontaneous outburst of a
modulated beam from his transmitter to a distant spaceship, but the information
flow is again from the future to the past. He records the information letter by letter,
and publishes it. Very soon he and his work become famous. When Shakespeare is
born, Hamlet is already taught in colleges, and one of the first plays he watches in
the Royal Theatre is the play Hamlet by the great Snakespeare. Naturally, Shake-
speare does not produce Hamlet.
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Here we arrive again at the logical paradox. Suppose that the whole story started
from Shakespeare. If Shakespeare wrote Hamlet, then he triggers the above chain,
and as a result he does not write Hamlet. If he does not write it, the chain is canceled,
and he writes it.

The type of logical loops associated with the modulated tachyon beams carrying in-
structive information can be not only puzzling, but also as dramatic as the case with
Rulia. The instructive information can be used for destructive purposes. Imagine
someone in today’s America transmitting information about the technology needed
to produce the atomic bomb, in a modulated tachyon beam addressed to a dictator of
the past!

Depending on whether General Hiss, the dictator of Superpower Rulia, is dead or
alive is the fate of the Universe. To be, or not to be? This is the kind of dilemma that
can be brought about in the world along with the concept of tachyons.

Either tachyons do not exist, and the above dilemma disappears together with them,
or they do exist but in such a way that resolves the paradox. So, what is the Nature’s
verdict on tachyons? To be, or not to be? So far, the answer to this question is sus-
pended in limbo.

8.9
They are non-local!

What remedies can we offer for the mind-boggling situations brought about in
the world by the hypothesis of tachyons? The most radical and simple one is
that tachyons just do not exist. But what if they do? Then there must be some
limitations on the emission–absorption processes that would preclude the appear-
ance of tachyons carrying information into the past. And, since the past and the
future are interchangeable for tachyons, we also have to ban signaling into the
future. As Feinberg put it: “Tachyons cannot be used for sending reliable signals
either forward or backward in time in the sense that one cannot fully control the
outcome of the experiments with emission or absorption of tachyons.” This
stands in accord with the fact that tachyon emission in many proceses with tach-
yon exchange in the previous sections did indeed appear as a spontaneous pro-
cess totally unexpected and out of control by an observer in a given reference
frame.

In the following sections we shall consider a few unusual properties of tachyons,
which will help resolve the above “existential” paradox.

The first such property is that tachyons are intrinsically non-localizable in a sense
that a space region occupied by a tachyon cannot in principle be reduced to a point.
Rather, a tachyon tends to occupy the whole space. The reason for this is the ta-
chyon’s imaginary rest mass m̃0 = im0. We already know from previous sections that
this results in the energy–momentum spectrum of a free tachyon, which is funda-
mentally different from that of a tardyon:

�p2 c2 � �E2 �m2
0 c4 �58�
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That is,while the momentum of a tardyon is smaller than its energy, the momentum
of a tachyon is greater than its energy. In particular, the tachyon retains a non-zero
momentum even when it has the zero energy [see Eq. (27)]. The product m0c is the
lowest possible limit of the tachyon’s momentum. We can write this as a mathemati-
cal restriction:


�p
 � m0 c �59�

Now, recall that according to quantum mechanics, any particle can be described as a
superposition of its de Broglie waves. The envelope of the resulting bundle of waves
(the wave packet) determines the spatial region occupied by the particle, and the pro-
pagation rate of the bundle (the group velocity of the packet) determines the velocity
of the particle. We want to apply these rules to a tachyon to find out how it is loca-
lized in space. Before doing any math, let us try to understand qualitatively how the
restriction (59) may affect the result.

When waves of many different wavelengths cross the same region of space, they in-
terfere constructively in some places and destructively in others, depending on corre-
lations between their phases. The places where the waves cancel each other out are
essentially empty (with regard to the particle in question). The place of constructive
interference is where we see a big splash, and accordingly there is a high probability
of finding a particle there. Figuratively, we can imagine that whatever may constitute
the particle (its mass, charge, etc.) is “smeared out” over the region of high probabil-
ity until an attempt at another observation is made or an interaction with another ob-
ject changes the original state.

Let us estimate qualitatively the role of different wavelengths in this process.
Short waves are absolutely necessary to shape out the fine details of the packet.
Manipulating with a set of different short waves, properly adjusting their phases
and amplitudes, one can produce a huge splash within a small range – construct
a physical state in which a particle occupies practically one point in space. Accord-
ing to de Broglie relationships (Sect. 6.13), short waves correspond to large mo-
mentums and energies. Therefore, physicists use high-energy particles (naturally
occurring in cosmic rays or produced in accelerators) to probe the properties of
matter on a small scale. Long waves, on the other hand, are necessary to shape
out the form of the packet on a large scale. In particular, they are needed to can-
cel the reiterating splashes produced by short waves far away from the main
splash. Without long waves, these smaller splashes remain in existence, and
therefore there is also a probability of finding the particle far away from the main
splash. The particle remains spread out in space rather than being perfectly loca-
lized at a point. Without long waves in a particle’s spectrum, Nature lacks the
tools to localize the particle completely. Long waves correspond to small momen-
tums. Therefore, without sufficiently small momentums, the particle cannot be
ideally localized to a point size.

Let us apply this result to tachyons. According to Equation (59), there is a cutoff in
the long-wave range (small momentums) of a tachyon spectrum. This means that
tachyons cannot, in principle, be point-like particles [65].

266 8 Tachyons and Tachyon-like Objects



The simplest non-local subliminal object of finite size is a sphere with an effective ra-
dius a0. The spherical symmetry is complete – you cannot invent anything more sym-
metrical (or simpler!) than a sphere. Corresponding models had been extended and
widely used also for the description of tachyons, but we will show in the following sec-
tions that a model of a tachyon with complete internal symmetry cannot be true.

8.10
Cerenkov radiation by a tachyon and Wimmel’s paradox

In the early 1970s, two researchers, Wimmel and Jones, at approximately the same
time, considered the same problem that Sommerfeld had once considered – that of
Cerenkov radiation by a charged superluminal particle. But they picked up where
Sommerfeld left off. They pointed out explicitly in their papers [66, 67] a few difficul-
ties associated with Cerenkov radiation by a tachyon (let us abbreviate this to CRT).

The first difficulty had been known to Sommerfeld himself: the field of a point
charge moving faster than light is infinite on the shock front (Mach cone). The phy-
sical reason for this can be explained without heavy math in the following way.

As we found in the previous section, in order to construct a point-like object from
waves, waves of all lengths are equally needed to extinguish each other properly
everywhere except for only one point of space where we want the object to be. The
contribution of the arbitrarily short waves (and thereby arbitrarily high frequencies)
is vital here because we want the total cancellation of all waves arbitrarily close to the
desired point, and their reinforcement at precisely this point. You cannot carry out
such a fine adjustment without short waves!

It is the contribution of the short waves (high frequencies) that makes the total radia-
tion field on the Mach cone and total radiation power infinite. This leads to infinitely
large values for both radiation power and the drag force on the charge.

Later, with the advance of quantum mechanics, some researchers had tried to get
around this difficulty by taking account of the quantum nature of the emission pro-
cess, according to which the emission occurs as a quantum jump with the release of
the whole lump of electromagnetic energy � = �� in the form of a photon of frequency
� (see Sect. 7.1 and 7.4). According to this mechanism, a particle cannot emit a
photon with more energy than the particle had by the moment of emission. This is for-
bidden by the conservation of energy. Thus, all frequencies higher than � > �/h must
be forcibly exempt (“cut off ”) from the Cerenkov radiation spectrum for a point-like
tachyon with energy �, and the corresponding procedure was called the cutoff. The ab-
sence of the high frequencies makes all the observable quantities for the point charge
finite. But the resulting expression for the radiation power is not Lorentz-invariant,
and therefore it cannot give the correct description of the process.

The only natural way to get rid of the high frequencies without the artificial cutoff is
to consider an extended, rather than a point-like, charge distribution as a source of
field. This makes all the observable variables finite, because for the extended charge
the relative contribution of the short waves (high frequencies) sharply decreases of
its own accord.
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To construct the extended charge, the constituent waves must produce a finite splash
within a finite region of space. The requirement for the waves to cancel each other is
dropped within the region occupied by the object. The wavelengths smaller than the
size of the object are no longer necessary, except maybe for a moderate amount
needed to delineate a possible sharp boundary of the object. As a result, the spec-
trum of the constituent waves (called form-factor) falls off at high frequencies, and
their net contribution to the radiation power and the drag force becomes finite.

This fact had been known to Sommerfeld, but his treatment using it was not suc-
cessful either, because he used the model of a non-deformable (that is, non-relativis-
tic) sphere (see Sect. 6.8). Jones refined Sommerfeld’s treatment by taking account
of the fact that the shape of a tachyon must undergo a relativistic length contraction
(as we will see later, it takes the form of length extension at sufficiently high speeds.)
He used a model of a relativistic sphere of radius a (in its own reference frame). He
also assumed the total charge q to be uniformly distributed over the volume of the
sphere. This led him to a finite (and very simple!) expression for the drag force:

d �E
dt
� � f �v � f � � 9

8
q2

a2
�60�

This expression retains its form in all reference frames moving along the initial di-
rection of ṽ. Consider, for instance, another reference frame moving along this direc-
tion to the right with speed V. We have in the new frame (using ṽ = dẼ/dp̃)
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The radiation power in the new system is
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But the factor in the middle of the right-hand side of Equation (62) is just the tach-
yon speed ṽ � in the new system (Sect. 3.1). Therefore,

d �E �

dt �
� �v �

�v
d �E
dt

�63�

Finally, using Equation (60) for dẼ/dt, we obtain

d �E �

dt �
� � f �v � �64�
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This expression has the same form as Equation (60) – it is Lorentz-invariant, with
the drag force being just invariant (having the same numerical value in another re-
ference frame).

Since the force changes the speed of the tachyon, its world line must be curved. The
resulting world line of the tachyon turns out to be the hyperbola (Fig. 8.9):

x2 � c2 t2 � b�2 � b � constant �65�

This expression is also invariant because its left-hand side has the form of the inter-
val. Everything seems to be OK.

And yet the results are not 100% satisfactory. Here are the comments of Jones him-
self: “Both expressions are Lorentz invariant only under a restricted class of Lorentz
transformations involving only x and t. Those Lorentz frames in which tachyon tra-
jectories are rectilinear (that is, moving along the x-axis), constitute a class of pre-
ferred frames, but they are singled out by the initial conditions and not by the law of
motion hence no violation of Lorentz invariance is implied.”

But this non-violation is restricted by very special initial conditions for tachyon velo-
city and acceleration. In particular, Jones has to assume that “… the apparatus that
produces a tachyon would do so with its initial 3-velocity and 3-acceleration parallel
in the rest frame of the apparatus.” A natural question then arises: what physical
agent causes such special conditions?

Wimmel saw a real paradox in the fact that the equations for Cerenkov radiation
from a tachyon with internal spherical symmetry yielded a Lorentz-invariant solu-
tion only for the case when the tachyon’s acceleration is parallel to its velocity, and
for reference frames moving along this common direction. He concluded his analy-
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sis of this problem by a general negative statement: “No unique equation dẼ/dt for
Cerenkov energy loss can exist.”

Now, if we take a look at the the world line in Equation (65), we will also see some-
thing weird. The world line is shown in Figure 8.9 (the reader should not confuse
the tachyon world line in this figure with Figure 8.3, showing energy-momentum
curves in momentum space). Take a closer look at the branch PRQ. It is, of course,
space-like and symmetrical with respect to axis ct. As time progresses from –� to
– t0, the tachyon moves from the left to the origin. As it approaches the origin, its
speed increases without bounds. The moment it reaches the origin, its speed be-
comes infinite, and the tachyon becomes for this instant a transcendent tachyon.
After this moment it proceeds to move to the right with decreasing speed, but with
negative energy and backward in time! As Wimmel puts it: “The classical Cerenkov
energy loss is finite only if a tachyon is not a point particle, and leads to tachyon
world lines that bend back in time when they go through the state zero energy.” We
already know what it means. The motion along the branch RQ should be reinter-
preted (and would actually appear to an observer) as the motion of the tachyon with
positive energy from right to left forward in time. Therefore, the observer sees two
symmetrical tachyons moving along the x-axis towards each other with equal and in-
creasing speeds. They meet at the origin and disappear (mutually annihilate), leav-
ing after them an expanding front of electromagnetic (and gravitational!) radiation
diverging from the x-axis. We know that in order for the two particles to annihilate
each other in empty space, they must be particle and antiparticle with respect to
each other. Therefore, we have, as other authors [60, 61] had done, extended the rein-
terpretation principle by adding the requirement that apart from the operations in
Equations (46) and (47), we must change a tachyon to its antitachyon. If we denote
the tachyon as �, and the antitachyon as ��, then, symbolically,

�	 �� �66�

But this leads to another paradox: whenever you launch a tachyon, its fate is known
in advance! It is bound to annihilate with its own anti-self at a point where its energy
becomes zero. This annihilation, prescribed by Equation (65), is unavoidable and
must be considered as an essential part of CRT.

This, in turn, leads to other difficulties concerning causality. Indeed, the impending
annihilation implies a mystical connection between the participants, like a prelimin-
ary arrangement between them about the exact moment of time, initial energies,
and directions of their emission in order for them always to meet at the right place
and time (at x = 0 and t = – t0). In other words, the emission of a tachyon in a certain
direction is only possible if there is a source of antitachyons straight ahead, and this
source fires in the oncoming direction at just the right moment to ensure annihila-
tion of our tachyon just when it becomes transcendent. This stands in flat contradic-
tion with all we know about the world in general, and about annihilation as a totally
random event.

The bizarre conclusion that we arrived at can be considered as yet more evidence
against the existence of tachyons: since no tachyon can be born and emitted in what-

270 8 Tachyons and Tachyon-like Objects



ever direction without a corresponding source of antitachyon lurking in wait in that
direction, and since asking for such sources to wink into existence any time at our
will would be too much, tachyons just cannot be born.

Such a conclusion, however, would be premature. It turns out that all three para-
doxes described above – the existential paradox with closed loops in spacetime, Wim-
mel’s paradox with the absence of a unique function of energy for radiation loss in
CRT, and the latest paradox with annihilation – can be removed if we take into ac-
count an additional feature of CRT connected with an important property of the tach-
yon itself – its general asymmetry [68, 69].

In the remaining part of the section we will show that CRT does not generally pos-
sess an axial symmetry about its velocity vector ṽ. As a result, the spectrum depends,
in addition to the frequency �, on two additional variables: the azimuth angle 	 and
the angle of misalignment 
, whose physical meaning will be made clear below.

The absence, in the general case, of the axial symmetry of CRT follows directly from
transformation properties of the 4-vector (�/c, k), where k is the wave vector of radia-
tion of frequency �. Owing to these properties (or because of the Doppler effect,
which is the same), the radiation axially symmetrical with respect to ṽ in some iner-
tial reference frame K0 is asymmetric in another reference frame K moving with ve-
locity V perpendicular to ṽ. This effect is manifest with maximum clarity when the
tachyon speed in K0 is ṽ = � and accordingly CRT is a diverging cylindrical wave. So
imagine a reference frame K moving relative to K0 at V�ṽ0. In this reference frame,
the tachyon speed is again ṽ = ṽ0 = �, and the front of the diverging radiation is also
cylindrical (recall Sect. 2.6!). But now, apart from the shape of the wave front, we are
also interested in the spectrum of the emitted radiation. And the spectrum is sensitive
to relative motion (recall the discussion of the Doppler effect in Section 5.3)! Because
of the Doppler frequency shift, the frequency ratio of radiation emitted in the two op-
posite directions – one parallel to V and one antiparallel to it – is (c – V)/(c + V), and
becomes arbitrarily small as V� c .

In the general case (ṽ0��), the transition K0	 K is accompanied by changes in
both the magnitude and direction of the tachyon velocity. This complicates the situa-
tion, but the qualitative picture of the phenomenon remains the same. Below we
consider in some detail the basic features of the CRT symmetry breaking, its possible
observable manifestations, and the way it removes the above difficulties in the hy-
pothesis of tachyons.

Suppose we managed to launch a tachyon whose CR (Cerenkov radiation) is axially
symmetrical with respect to its velocity ṽ0. Consider an observer moving along the di-
rection of ṽ0. For this observer, the tachyon is moving with different speed, but along
the same direction, and its CR will remain axisymmetrical. We did not specify the
speed of the observer, therefore the result is true for any speed in this direction. In
other words, for all inertial reference frames, moving relative to each other with dif-
ferent speeds but all along the original direction of ṽ0, the axial symmetry of CRT is
conserved. All these reference frames can be obtained from one another by continu-
ous Lorentz-transformation with relative velocity V �� ṽ0 or V �� ṽ0. We will call the
set of these reference frames the “privileged” frames with respect to the given tach-
yon, and will denote them, and also all the physical quantities of the tachyon mea-
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sured in these frames, with the subscript 0. In all reference frames other than “privi-
leged”, the CRT (for the given tachyon!) will not possess axial symmetry.

Similar loss of symmetry is known for the charged tardyons moving sufficiently fast
in a homogeneous transparent medium (Sect. 6.8). The Mach cone of their Cerenkov
radiation is symmetrical with respect to their velocity v in the laboratory reference
frame – the rest frame of the medium where the particle moves. If we board another
reference frame moving relative to this medium with some velocity parallel to v, the
observed radiation remains axisymmetrical. However, if we transfer to a reference
frame moving perpendicular to v, this symmetry will be broken. In this case we can
attribute the asymmetry to the influence of the medium. In the new reference frame
the medium as a whole moves relative to the observer in a direction different from
the direction of the moving particle. This additional direction is singled out as an op-
tical axis of the medium, because the moving medium is optically anisotropic (see
Sect. 2.10). We say that the isotropy of CRT is lost because the particle is moving in
an anisotropic medium at an angle to its optical axis.

In the case with tachyons, the situation is fundamentally different. The motion oc-
curs in a vacuum, there is no medium to which we could attribute the breaking of
symmetry. Such a situation can only be possible if the tachyon itself has an intrinsic
vector e, which singles out a “privileged” direction in space. Such a direction can, of
course, be different for another tachyon because of the isotropy of space. But for
each tachyon this direction (which can be considered as its individual characteristic)
is, in the absence of external forces, a conserving property. We can summarize this
in the following statement: the tachyon must be a vector particle – it must carry an
intrinsic vector in the sense defined above.

The physical nature of the tachyon vector e, most probably, cannot be found from
general principles alone. However, it is clear from the above that the transformation
properties of e must be the same as those of a segment of length or electric dipole
moment. It would therefore be natural to assume that a tachyon can be characterized
by an intrinsic dipole moment e = d = ql, where q is the charge and l is the dipole
length.

There is a ban on the dipole moment of stable particles in view of T-invariance [70];
however, the T-invariance itself is not universal, and a tachyon is not a stable particle:
in any event, it must emit gravitational Cerenkov radiation [71].

We want to stress, however, that the hypothesis of the dipolar nature of the vector e,
although quite natural, is not at all necessary. The vector e may be a dipole, but may
as well be something else. We will discuss this question in more detail in the next
section, and for now will focus only on the properties of CRT and their conse-
quences.

Now we want to find out the basic features of CRT for an extended charge. Following
the approach used by Wimmel and Jones, we will carry the search started by them a
little further. We will consider here the same spherical charge q of radius a0 and
d = 0 (in this case the intrinsic vector e must have a non-dipole nature), but will go
beyond the domain of “privileged” reference frames (the reader can look for more
detail in [68].) Suppose first that the tachyon is moving along its intrinsic direction e.
The “spherical” tachyon will observed as an ellipsoid of rotation about the direction e
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with transverse semi-axis a0 and longitudinal semi-axis l undergoing Lorentz con-
traction at ṽ� c :

l � a0

�� ��v0� � �� ��v0� � �i� ��v0� � �v2
0

c2 � 1
� ��1

2

� cot�0 �67�

where �0 is the Cerenkov angle in system K0. Because the tachyon “lives” beyond the
light barrier, its length contraction described by Equation (67) is pretty weird: the
tachyon appears to us a sphere at ṽ0 = �2 c, as a flattened (contracted) sphere at
c < ṽ0 < �2 c and as an elongated sphere at ṽ0 > �2 c . In the last case it actually experi-
ences length dilation, because its longitudinal diameter extends!

Consider now the same tachyon from a reference frame moving relative to K0 with a
speed V in a direction perpendicular to e. The change of reference frame does not
change the direction of the intrinsic vector e. But the tachyon velocity in the new sys-
tem will no longer be parallel to e – it will acquire a transverse component,V – and
will accordingly make with e a certain angle 
. We also expect that in the new refer-
ence frame the CRT is not axisymmetrical, that is, different powers and frequencies
may be radiated away along different generatrices of the Cerenkov cone (Fig. 8.10).
These factors combined must result in an expression for the radiated power in an ar-
bitrary reference frame, which depends on the misalignment angle 
. We want to
find this expression.

Carrying out this idea, we direct the z0-and z-axes of the two systems along the rela-
tive velocity V�e; while the x0 and x-axes are parallel to e. We will then have the fol-
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lowing expressions for the components and the magnitude of the tachyon velocity ṽ
in K:

�vz � �V � �vx � ��� �V� �v0 �68�

�v2 � �v2
0 �

V� �v2
0

c2
� V2 �69�

According to Equation (68), the vectors ṽ and e make an angle 
 determined by

sin
 � V
�v

�70�

This angle is an additional tachyon variable (degree of freedom) determining the or-
ientation of the vector e with respect to its velocity. The magnitude of 
 could in prin-
ciple be estimated by measuring the observed asymmetry of CRT.

It follows from the invariance of the spherical fronts whose envelope forms the
shock wave that in system K one would also observe the Mach cone. The Cerenkov
radiation will make an angle � with the vector ṽ such that cos� = c/ṽ. Hence we find,
applying Equations (68)–(70):

sin �0 � sin �
cos 


� 
 � V
c
� sin 


cos �
� 0 � sin 
 � cos � �71�

Apply now the Lorentz transformation directly to Equation (60) for total loss! We are
considering a reference frame moving perpendicularly to the x-axis. In this case the
differentials dẼ and dt transform similarly, and we obtain

d �E0

dt0
� d �E

dt
� � f 0 �v0 �72�

Because we are now in a reference frame where the tachyon’s speed is given by Equa-
tion (70), we have to express the original speed in K0 in terms of ṽ. After that we ex-
press ṽ in terms of the tachyon energy and rest mass. Using Equations (70) and (71),
after some algebra we obtain

d �E
dt
� � f 0 c

�E2 �m2
0 c4

�E2 �m2
0 c4 tan2 


� 
1�2

� 0 � tan 
 �
�E

m0 c2
�73�

This gives the solution of Wimmel’s paradox! We solve it by extending the pool of
variables describing CRT. It is true that there is no universal expression for the radia-
tion power of CRTof the form dẼ/dt = – F (Ẽ). This general negative statement is cor-
rect if we expect the function F to depend on a single variable E. But if we introduce
the second independent variable 
, which is, as shown above, absolutely essential for
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a complete description of the tachyon, we obtain a simple expression, Equation (73)
for the radiation power, which is true in an arbitrary reference frame.

I want to stress that Equation (73) is obtained for a model of a “spherical” tachyon.
And even for this model, the simplest possible, there emerges, seemingly out of
nothing, an internal vector e. This indicates that not even a spherical tachyon can
possess complete spherical symmetry. This must be even more so for more compli-
cated models. Therefore, the above analysis can be considered as a general proof of
the vector nature of tachyons, whereas identifying the tachyon vector e with electrical
dipole d is, as already mentioned, only a more or less justified assumption. A tach-
yon without the dipole moment or any other vector property familiar to us still must
possess an intrinsic vector e!

Where does this vector come from? We will look for the answer in the next section.

8.11
How symmetry breaks

As in the previous sections, we will start with the simplest possible model – a tach-
yon with complete internal symmetry (the “marble”). But before moving further, we
want to define the concept of “internal symmetry” for a superluminal object.

The shape of such an object is observed in regular reference frames, where it can be
directly measured, and therefore has direct physical meaning. Its “internal symme-
try,” on the other hand, can only be revealed in its rest frame, that is, in a superlum-
inal frame of reference, and therefore cannot be directly observed. Nevertheless it
can be “reconstructed” by the measurements in an ordinary reference frame – in di-
rect analogy with determining the proper mass of the tachyon from its measured en-
ergy Ẽ and momentum p̃ – as the invariant m0 = c–2 ( p̃2 c2 – Ẽ2)1/2. And just as the
quantity m0 is a fundamental characteristic of a tachyon, even though there is no re-
ference frame where we could measure it directly, we can speak about a proper or in-
trinsic shape of a tachyon as an invariant characteristic that can be determined from
measurements in regular reference frames.

Let in one such frame K0 the tachyon be an ellipsoid of revolution about its velocity
vector ṽ, and the length of its corresponding longitudinal axis is az (ṽ). Then its
proper length, taking account of the Lorentz factor [see Eq. (12)], is determined as
the invariant

a
0 � � i a0 � az ��v� � ��v� � � ��v� � 1� �v2

c2

� ��1�2

�74�

If we impose a condition a� = a0 on the transverse semi-axis, then the tachyon, simi-
lar to a tardyon under the same condition, might be expected to possess complete in-
ternal symmetry in the sense defined above: it would require only one characteristic,
a0, to describe its shape.

However, we will see that even for this model – the simplest possible – only one ra-
dius a0 is not enough for the complete description of its shape, and therefore the
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symmetry of this “spherical” tachyon cannot be equivalent to that of a spherical tard-
yon. This directly follows from the fact that the longitudinal “proper” radius of the
superluminal sphere [Eq. (13)] is imaginary, whereas the transverse radius is real.
But in order to clarify the nature of the symmetry breaking connected with this cir-
cumstance, a rigorous proof is needed.

With this goal in mind, let us assume the opposite: suppose that complete symmetry
is also possible at ṽ > c. Then in any inertial frame at any velocity ṽ, the correspond-
ing shape of the object must be an ellipsoid of revolution about ṽ, with the ratio of
semi-axes a�/az = i� (ṽ), according to the fact that an object with a complete symme-
try cannot be characterized by any direction other than ṽ. Taking the z-axis of the in-
ertial frame K0 along the direction of ṽ, we have for an arbitrary moment of time t
the equation of the surface of the ellipsoid

x2

a2
0
� y2

a2
0
� �z� �v t�2

a2
z ��v�

� 1 �75�

It follows, in view of Equation (74), that

x2 � y2 � �2 �v� �z� v t�2 � a2
0 � v � c �76a�

and

x2 � y2 � �2 ��v� �z� �v t�2 � a2
0 � �v � c �76b�

Equation (76b) differs from Equation (76 a) only in the sign of the middle term.
This distinction causes a fundamental difference between the behavior of tach-
yons and tardyons. Namely, Equation (76 a) is Lorentz-invariant, whereas Equation
(76 b) is not. We will show this with a concrete example – by transition to another
inertial frame K moving relative to K0 with a speed V along the positive x-direc-
tion.

The invariance of Equation (76 a) follows directly from the group properties of Lor-
entz transformations and the spherical symmetry of the tardyon in its rest frame.
We can see it in two steps – first by returning to the rest frame of the tardyon, where
it is obviously spherical, and then by looking at it from the new system K, where it
will be Lorentz-contracted along the new direction of its velocity. In any reference
frame, its contraction is uniquely determined by its velocity in this frame, so it does
not require any new variables for its description.

For a tachyon, on the other hand, the two-step transition K0	 K via its rest frame is
impossible in the set of Lorentz transformations with V < c. We will therefore con-
sider direct transformation from K0 to K. Setting the axes x̃, z̃ of the new system to
be parallel to x and z, respectively, and performing the Lorentz transformation in
Equation (76):

x � � �V� � �x � V�t� � y � �y � z � �z � t � � �V� �t� V
c2

�x

� �

�77�
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we obtain

�2�V� � �x � V�t�2 � �y2 � �2 ��v� �z� �v �t� V
c2

�x

� �
 �2

� a2
0 �78�

where the + and – signs refer to cases v < c and ṽ > c, respectively. The new speed of
the tachyon in K is

�v � � �v2 � V2 �v2

c2
� V2

� �1�2

�79�

It is easy to see that

� ��v �� � � �V� � ��v� �80�

and the direction of the new velocity ṽ � makes an angle 
 with the z̃-axis, for which

sin 
 � V
�v �

�81�

Let us now carry out a purely spatial rotation through the angle 
 in the system K so
that the new axis z � is directed along the velocity ṽ � :

�x � x � cos 
� z � sin 
 � �y � y �

�z � x � sin 
� z � cos 
 � �t � t

	

(82)

Putting Equations (82) into Equation (78) and using Equations (79)–(81), we find

�v
�v �

x � � � �V� V
�v �
�z � � �v � t ��


 �2

� y � � V
�v � � ��v� x � � �v

�v �
� ��v �� �z � � �v � t ��


 �2

� a2
0 �83�

For v < c it follows after some algebra that

x �2 � y �2 � �2 ��v �� �z � � �v � t ��2 � a2
0 �84�

which is, as it should be, the equation for an ellipsoid of rotation about the direction
of ṽ � in the new system K.

The situation is absolutely different for ṽ > c. In this case [the “–” sign in Equation
(83)!] the mixed terms containing the product x � (z � – ṽ � t �) do not cancel, but add up!
As a result, the shape of the tachyon in K is characterized by the ellipsoid

Px �2 � y �2 � Q �z � � �v � t ��2 � Rx � �z � � �v � t �� � a2
0 �85�
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where

P � �2 ��v �� � tan2 

�2 ��v �� � tan2 


� 1 � Q � � �2 ��v ��P � R � 4 tan 

1� ��2 ��v �� tan2 


�86�

This is not an ellipsoid of rotation! And neither of its axes coincides with the direc-
tion of ṽ � ! The lengths of the three principal axes are

a1 � 2
���

2
�

a0
����������������������������������������������������

P �Q �
�����������������������������

�P � Q�2 � R2
�

� � a2 � 2 a0 � a3 � 2
���

2
�

a0
����������������������������������������������������

P �Q �
�����������������������������

�P �Q�2 � R2
�

�

(87)

As we see, they are all different. In particular, at V� c we have from Equation (79)
ṽ �� c, and Equations (87) give

a1 � 0 � a2 � � a0 � a3 � 2 a0 2
�v2

c2
� 1

� �1�2

�88�

For the angle � betwen the direction ṽ � and the axis a3 we have

tan 2� � R
P � Q

� 4 tan

1� �2 ��v ��� �

1� ��2 ��v �� tan2

� � �89�

Thus, the mere transition to a new frame of reference K0	 K destroys the axial sym-
metry of the tachyon – just as it did for its radiation field. Therefore, the shape and atti-
tude of a superluminal ellipsoid is always determined by at least two independent
variables – the velocity vector ṽ � and the angle 
 between ṽ � and the z-axis (if you
remember, the z-axis of the system K0 is along the “privileged” direction in space
where the tachyon is axisymmetrical). The direction z is “memorized” by the tachyon
at the transition K0	 K , which indicates the existence of a constant intrinsic vector e.

The state of the tachyon can be also determined by the unit vector � along the semi-
axis a3 (z �-axis in K) (Fig. 8.11). Vector � depends on e by the relation (89) and (as
long as the physical meaning of e is not clarified) has the advantage of direct geome-
trical clarity.

Because of the Lorentz invariance of physical laws, the break of the axial symmetry
of the tachyon in transitions to other reference frames means that also in a single re-
ference frame a tachyon can be arbitrarily oriented to the direction of its velocity.
This could be manifest in some observable effects depending on the tachyon shape.
For instance, one could observe Cerenkov radiation from two identical tachyons,
with a symmetrical spectrum for one and an asymmetric one for another (see the
previous section). Such an observation would be experimental evidence that the tach-
yons are actually in different states of “polarization.”

We therefore come to conclusion that the superluminal objects described by Equa-
tion (76 b) are non-scalar objects.
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It would be instructive to observe the origin of this result by comparing the tach-
yons with non-scalar tardyons. For such a tardyon, the change of its orientation
with respect to its velocity is caused by the absence of total internal symmetry
(non-sphericity, a dipole moment, spin, etc.) Consider a particular case when the
asymmetry is caused by the existence of the electrical dipole moment d (Fig. 8.12).
The tardyon is a sphere in its rest frame, so without the dipole moment it would
possess complete symmetry. Let the charges forming the dipole moment d be dis-
tributed as shown in Figure 8.12 a – they occupy two semi-spheres (in their rest
frame) separated by the equatorial plane PQ. In a system K0 moving parallel to d,
the tardyon is an ellipsoid of revolution about is velocity. The charges here are
again separated by the equatorial plane. If we now transfer to another system K
moving relative to K0 with velocity V�d, the vector d will not be affected by the
transition, whereas the direction of the tachyon’s velocity will change by the angle 

determined by Equation (81). The tardyon remains the ellipsoid of revolution about
the new direction of its velocity (Fig. 8.12 b). But the plane PQ separating the + and
– charges will now make with d an angle (recall Sect. 2.10!)

� � Arctan
c2

Vv� �V� �90�

The new positions of the separation plane and the equatorial plane of the ellipsoid
are shown in Figure 8.12 b. The position of the separation plane in K does not coin-
cide with the equatorial plane! Even though the geometric shape of the tardyon retains
its axial symmetry with respect to its velocity, its internal physical structure (electric
charge distribution) and therefore its physical state no longer have this symmetry.
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This result becomes self-evident if, instead of continuous charge distribution, we
consider two spatially separated point charges.

It is important to realize that for a tardyon to lose its scalar nature, it has to be im-
parted with some intrinsic asymmetry of the kind considered above. For a tachyon,
in contrast, the conclusion regarding its vector character follows without any as-
sumptions about its internal physical properties and is manifest in the fact that, un-
like tardyons, its cannot retain the axial symmetry of its geometric shape. In this
case, the geometric shape becomes a physical factor.

We can still ask: what specifically is the source of the vector nature of tachyons?
Such a source has already been mentioned: original anisotropy – its imaginary

proper length along the direction of its velocity. At the core of this, somewhat for-
mal, explanation lies very clear physics: the source of the vector nature of a tachyon
is its superluminal motion. The superluminal velocity singles out a space-like axis
in Minkowski’s world, which is purely spatial in some inertial frame. An axially
symmetrical mass distribution around this direction turns out to be sufficient for
“memorizing” it under Lorentz transformations. In a regular (subluminal) scalar
object the memory of the initial direction of its velocity is totally erased by transi-
tion to its rest frame. In a tachyon, this memory can only be destroyed with the
tachyon itself. It is recorded in the physical structure that singles out a direction in
space along which the tachyon is axisymmetrical. We cannot destroy it because we
cannot transfer to a tachyon’s rest frame. This leads us to the concept of an intrin-
sic vector e, which can be parallel to the tachyon’s velocity in some reference
frames, and in others will make a non-zero angle with it. Thus, even though the
vector e is caused by the superluminal velocity of the tachyon, it is not uniquely de-
termined by velocity alone.

There may or may not be additional anwers to the question about the physical nature
of vector e. From the above analysis we can only suggest that the vector e is con-
nected somehow with the form factor of the tachyon, and the latter depends on the
initial conditions at the moment of its birth.

There is, however, an additional twist to the whole story about the vector nature of
tachyons. Take another look at Equations (76). If in Equation (76 b), while keeping
the condition ṽ > c, we change “by hand” the sign at �2 (ṽ), we will obtain the equation
for a one-folded hyperboloid of revolution about ṽ rather than an ellipsoid. But the
change of sign will do much more than just reshape the ellipsoid (object of finite
size) into a hyperboloid (an object of infinite size). It will also restore its universal
axial symmetry! The superluminal objects of such shape would remain axisymmetri-
cal in all reference frames. This is also true for tachyons shaped as two-folded hyper-
boloids, which were introduced by Recami and co-workers [72]. The region occupied
by such a tachyon is bounded by the two folds of the hyperboloid, and by the two-
folded conical surface (Fig. 8.13). The whole structure, while being always axially
symmetrical with respect to the direction of tachyon’s velocity, is not rigid, because
the solid angle at the apex of the cone depends on the tachyon speed. However, the
most interesting thing about it is that this angle is equal to the angle of the Mach
cone produced by an object with this speed. This may tempt one to identify the ob-
ject itself with the cone of its Cerenkov radiation. But this would be wrong! The cone
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of Cerenkov radiation trails the tachyon. Here we indeed have one trailing cone, but
in addition there is one in front of the apex! Apart from the orientation of this lead-
ing cone, the geometry of both cones is the same as that of Cerenkov radiation, but
their physical nature is not. It is just the tachyon’s substance itself so exotically dis-
tributed over the region shown in Figure 8.13. Moreover, the authors have shown
that such a distribution will not emit Cerenkov radiation at all!

When I first learned about this idea, my reaction to it was very skeptical, for four rea-
sons. First, the authors achieved universal symmetry at a high price – they had to as-
sume that the square of the four-dimensional interval ds2 changes sign under the
superluminal Lorentz transformations in Equation (9). In other words, they saved
the invariance of tachyon symmetry at the cost of the invariance of the interval. Sec-
ond, in view of the paradoxes in the above sections, the asymmetry of tachyons and
their radiation should be considered as a virtue, because it helps resolve the para-
doxes. The restoration of the tachyon symmetry, and their non-radiation, apart from
the price paid, would bring the paradoxes back! Third, an infinite size of a particle is
hardly a plausible physical property. If there are any interactions between them and
the rest of the world, they will effectively restrict the tachyon size in the longitudinal
direction by non-hyperbolic surfaces (Recami and co-workers themselves suggested
such a restriction by two planes [72]). Fourth, the additional restricted surfaces will
again cause the symmetry break of the whole object at the K0	 K transition. Hence
we can say that the symmetry breaking comes back as an unavoidable property of
any localized superluminal object.

By the time of writing this book, however, my skepticism had nearly disappeared –
for reasons which will become clear in the next sections.

8.12
Paradoxes revised

The fundamental asymmetry of the tachyon, discussed above, must have profound
consequences. In particular, it dramatically affects its motion and thereby its ability
for superluminal signaling. In this section, we will revise all the above paradoxes as-
sociated with this ability, and show that the asymmetry precludes tachyons from
transporting any information and thereby restores the “world order.”

The asymmetry of CRTmust cause the appearance of the drag force transverse to ve-
locity ṽ, and accordingly there must appear a transverse component of the accelera-
tion. This will curve the spatial path of the tachyon! This kind of curvature has a crys-
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tal clear analogy in non-relativistic mechanics: go back to the Introduction and con-
sider a falling item dropped by a passenger in a subway car. The item will fall with
acceleration, but along a straight path relative to the car. This is similar to an acceler-
ated motion of the tachyon in an inertial reference frame K0, where the tachyon ac-
celeration is parallel to its velocity. The car in our example plays the role of such a
“privileged” reference frame K0. However, the same trajectory of the falling item is
curved (parabolic) in the reference frame of the platform (system K) – because the
item’s velocity relative to platform is not vertical, and acceleration due to gravity has
the component transverse to it! This is similar to the curved trajectory of the tachyon
seen from system K. The analogy is incomplete because the asymmetry in the case
of a falling item has an external source, the gravitational field of the Earth, whereas
the source of the tachyon’s asymmetry is the tachyon itself. However, the effect of
the asymmetry on motion is essentially the same in both cases.

Our problem now will be to find the components of the tachyon acceleration in an
arbitrary reference frame K. To this end, we have first to determine the components
of force f. We can do it by writing the Lorentz transformation for 4-force
G = � (V){ f ṽ/c2, f0/c} (Sect. 4.2). In the original system K0 we have only two non-zero
components: the time component Gct0

= � (ṽ0)( f0 ṽ0/c2), and the z-component
Gz0

= � (ṽ0)( f0/c), In system K, moving perpendicularly to the direction ṽ0, with the
axes x̃, ỹ, z̃, parallel to those of K0, there will be already three non-zero components:
Gct, Gx̃ , Gz̃ . We are interested in the last two (spatial) components. They are related
to corresponding components in K0 by Lorentz transformations:

G �x � � �V��Gx0 �Gct0 � � G�z � Gz �91�

The z-component does not transform because it is transverse to the direction of the
relative motion of the two systems. Now the diligent reader is invited to perform a
simple algebraic exercise: express all the Gs in Equation (91) in terms of real physi-
cal force f as indicated above, use � (ṽ) = � (V)� (ṽ0), and show that

f �x � �
V �v0

c2
f 0 � f �z � ��1 �V� f 0 �92�

The components we have found are related to the K-axes that are parallel to corre-
sponding axes of the original system K0. But what we actually want to find is the
force components related to the direction of the tachyon’s velocity in K, which is tilted
to the z̃-axis (Fig. 8.14). The angle 
 between these directions is given by Equation
(81). Therefore, we now have to carry out a purely spatial rotation within the sys-
tem K – to rotate it about the y-axis through an angle 
. Call the new axes x, y, z. The
z-axis is directed along ṽ, and the x-axis is perpendicular to ṽ.

As can be found by inspection of Figure 8.14, the components of f along x and z are
related to the components of Equation (92) by

f x � f �x cos
� f �z sin


f z � �f �x sin
� f �z cos


	

(93)
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Putting here Equation (92) gives

f x � � V �v0

c�
cos
� ��1 �V� sin


� �

f 0

f z �
V �v0

c�
sin
� ��1 �V� cos


� �

f 0

�
�
�
�
�

(94)

Our next step is to express ṽ0 in terms of ṽ :

�v2
0 � ��v2 � V2� �2 �V� � �v2 1� V2

�v2

� �

�2 �V� � �v2 �2 �V� cos2


Putting this into Equation (94) and expressing also all the speeds in terms of the an-
gles according to Equations (70) and (71), we will finally arrive at fairly simple equa-
tions for the force components:

f x � �
tan
 tan2�
�������������������������������

1� tan2
 tan2�
� f 0 � f z �

f 0
�������������������������������

1� tan2
 tan2�
� �95�

Now, let us read these equations. Look at Figure 8.15 and recall that the value of f0 is ne-
gative – it is a drag force! Accordingly, the transverse component of the radiation force
on the tachyon in K is in the positive x-direction. The tachyon’s behavior in directions
perpendicular to its velocity is the same as that of a tardyon, and so is its response to a
transverse force. Therefore, it must accelerate in the direction of the corresponding
force component – in the positive x-direction – just as a tardyon would do. Now, if you
look at Figure 8.15, you will see that such acceleration would tend to decrease the angle

 – it will bend the tachyon’s path so as to make its velocity parallel to vector e again.

Concerning longitudinal acceleration, for a tachyon it must be opposite to the applied
force – recall our analysis in Section 8.5. This means that the tachyon will accelerate
under the negative (braking) force!

We can confirm these results quantitatively if we use the results in Section 4.2. You
remember, we obtained there Equation (27) in Section 4.2 – one of the basic relations
in the relativistic dynamics of a point mass. Now the time has come to use this equa-
tion. Applying it to our case, we have for the x-component of the acceleration
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ax � f x

m0 �� ��v� �96�

and for the z-component

az �
f z �

�v f z

c2
�v

m0 �� ��v� �
f z

m0 ��3 ��v� �97�

Using Equations (95) and the identity ��–1 (ṽ) = tan� [Eq. (67)], we obtain

ax � � tan
 tan3�
�������������������������������

1� tan2
 tan2�
� a � az � � tan3�

�������������������������������

1� tan2
 tan2�
� a �98�

where a = – f0/m0.
Let us introduce the angle � between the vectors a and ṽ. We see from the last equa-

tion that both ax and az are positive, in accordance with our quantitative conclusion.
Therefore, tan� = tan
, � = 
. It follows that a��e, and the radiation reaction tends
to decrease 
, “pressing” vector ṽ to e. Since at the same time it increases the magni-
tude ṽ, the tachyon moves ever faster and its trajectory becomes more and more par-
allel to e (Fig. 8.15 a). Therefore, in the limit ṽ�� the speed of tachyon obtained
under the given initial condition becomes parallel to e in any reference frame. (This
does not mean that at ṽ�� CRT becomes axially symmetrical again. We have al-
ready mentioned that at ṽ�� the condition 
 = 0 is not by itself sufficient for select-
ing the subset K0.)

We can also show another remarkable property of the tachyon trajectories. Let us
start again from system K0. We already mentioned that the equation f = dP/dt leads
in this system to the trajectory

z2
0 � c2 t2

0 � ��c2�a�2 �99�

We can “project” the shape of this trajectory into system K by expressing coordinates
x0 = 0; z0, t0 in terms of the coordinates x̃, z̃, t̃ of system K:
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x0 � � �V� � �x � V�t� � 0 � z0 � �z � t0 � � �V� �t� V
c2

�x

� �

�100�

As a result we will obtain

�z2 � 
2 �x2 � � �c2�a�2 �101�

In this equation the value of 
 = V/c is a constant parameter. On the other hand, ac-
cording to Equations (71), this constant is the combination of the variables 
 and �.
We thus can conclude that for each tachyon the quantity


c � V � �c�cos�� sin
 � �v sin
 �102�

is the integral of motion along its whole trajectory! As the tachyon is moving, the
variables 
 and � change, but in such a coordinated manner that their combination
in Equation (102) remains constant. Also, this constant shows the result that we al-
ready obtained in a different way from the analysis of the tachyon acceleration: as
the tachyon’s speed increases, the angle 
 decreases, so that the trajectory bends to-
wards the direction e.

Figure 8.15 shows two different families of tachyon trajectories with different 
 cor-
responding to different initial values 
, �, that is, pertaining to different initial ṽ with
common e (“self-channeling” of the tachyon beam (Fig. 8.15 a), and the opposite
case (“e-divergence” of the beam, Fig. 8.15b).

The effect of the curving of the trajectory has been experimentally observed for a Cer-
enkov dipole in a medium. However, in that case the dipole’s velocity can deflect
away from the dipole’s axis. This may appear as the experimental disproof of our the-
ory. But it is not. Recall that at v < c the radiation force decreases the speed v! There-
fore, assuming that the same rule, Equation (102), applies to a tardyon in a medium,
we see that it prescribes for this case an increase of 
 with time, in accordance with
the experiment!

However, the main difference from the dipole in the medium is that the bend of the
tachyon’s trajectory is a general phenomenon not necessarily connected with the exis-
tence of the dipole moment. It is a fundamental property determining the way in
which a tachyon moves.

With this general result, we are now prepared to come back to the paradoxes we dis-
cussed above. It turns out that the paradoxes disappear the moment we take account of
the properties of tachyon motion. In order to transport the signal or information in a
certain direction, one must exercise full control over the characteristics of motion of
the beam used for the transport. However, the properties of tachyon’s motion tell us
that we cannot control these characteristics, especially the direction of motion. Sup-
pose you want to hit a target or send a message in a certain direction. You shoot a tach-
yon bullet, or you beam a signal in this direction, but the moment the carrier of the sig-
nal is out of your transmitter, it curves away from the direction to your target. It will go
where the intrinsic vector e tells it to go, not where the gun had been directed. Since we
have no control over the intrinsic properties of a tachyon, we cannot predict its motion.
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This conclusion about the uselessness of tachyons for communication purposes be-
comes even more fundamental if we take account of the quantum nature of radia-
tion. According to the classical theory of CRT, the Cerenkov emission occurs for all
tachyon energies down to Ẽ = 0. At this point the radiation can only be possible if
the final tachyon energy can become negative. As we know, at this moment one
could actually observe the annihilation of the tachyon and antitachyon with positive
energies (reinterpretation principle). As we pointed out, such an outcome admits a
mysterious connection between the partners that appear to have conspired in ad-
vance about all essential characteristics of their motion and their initial positions,
which are needed for them to meet. But this unphysical conclusion follows only be-
cause we use a classical approach beyond the limits of its applicability. The classical
treatment of CRT is valid under the condition

��� �E �103�

When the tachyon is accelerated by its own radiation to almost infinite speed, its en-
ergy goes to zero, and the condition in Equation (103) breaks practically for the
whole frequency range. The radiation now has to be treated quantum mechanically.
In this case we have discrete acts of the photon emission instead of continuous ra-
diation. If the tachyon after the emission has to be reinterpreted as an antitachyon
(which happens when �� > Ẽ), we have the act of annihilation as random as the
emission of the photon itself. The direction of the emission is now also random, no
longer given by the Cerenkov classical rule in Equation (31), Section 6.8, and accord-
ingly there must be a random tachyon recoil. As a result, the “true” tachyon trajec-
tory must be more and more like a trajectory of a particle performing the Brownian
motion and in addition “blown away” with a superluminal speed (Fig. 8.16). The
points where the trajectory is broken correspond to random emissions of a photon.
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The smooth curve of the type shown in Figure 8.15 is only an averaged result of
these random “breakups.”

We may therefore conclude that at least the kind of tachyons discussed here cannot
be used for a signal or energy transfer in any given direction, for two reasons: first,
because of the uncontrollable spread of individual vectors e taking tachyons away
from this direction, and second, because of degradation and Brownian wanderings
of tachyons due to photo-decay. This also refers to tachyons that may be stable with
respect to photo-decay, owing to unavoidable gravitational Cerenkov radiation [71].

There is no room left for “prearranged” annihilations, causality violations, or other
paradoxical processes, except for random spontaneous effects, in which the statistical
aspects of tachyon behavior are exactly the same as those of any regular particle. All
our thought experiments with Alice, Peter, and Tom, Commander Fletcher and Gen-
eral Hiss, Shakespeare, Snakspeare, and Francis Bacon, where the superluminal sig-
nals and bullets were moving in straight lines, cannot be performed with the kind of
superluminal particles allowed by the theory. Let alone the fact that such particles
have not yet been discovered!

8.13
Laboratory-made tachyons

In this section we consider a weird object, which has the elements moving faster
than light in vacuum and obeys the kinematic of tachyons. It can be easily manufac-
tured in the laboratory, and even at home if you have a simple pulse laser, a pair of
lenses, and a conical mirror. The embryo of such an object has been considered in
Section 6.14. It is a system of two crossing plane waves in vacuum. Now we will take
two more steps to transform this system into an electromagnetic model of a tachyon
(EMT).

Step 1. Instead of monochromatic waves, use the narrow wave packets propagating
in the directions n1 and n2 (Fig. 8.17a). The intersection line between the packets
slides along the bisector of the angle BOB � with the speed ṽ = c/cos�.

Step 2. Instead of only two flat wave packets, make a system with an axial symmetry
by rotating Figure 8.17 a about the line OO �. As a result, we will obtain the conical
surface A, the envelope of all the flat fronts, and the apex O, where the energy den-
sity is maximum (Fig. 8.17 b).

There is a simple way of manufacturing a system of such waves with axial symmetry.
Consider a conical mirror and let a flat packet AB be incident on the mirror along its
symmetry axis (Fig. 8.17 c). As a source of the packet with a small width one can use
a picosecond pulse laser (at a pulse period ~10–12 s, the pulse width is about
3 × 10–2 cm). Upon reflection in the mirror the flat packet will be converted into a
conical wave with the maximum intensity at the apex. The region of high energy
density around the apex has a size of the characteristic wavelength of the packet. The
maximum intensity depends on the ratio z/�, where z is the distance traveled by the
apex from the moment of its formation. For a typical wavelength of about half a mi-
cron and z = 10 cm, the energy density at the apex can be a few million times that in
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the initial packet. This allows us to speak about the high-intensity region as a lump
of electromagnetic energy and associate it with a moving particle. The speed of the
lump is, of course, the same as that of the apex:

�v � c
cos�

�104�

Since the speed is superluminal, the particle we associate it with must be the tach-
yon. This is a very special tachyon consisting entirely of the electromagnetic field,
and it therefore deserves a special name. Let us call it the electromagnetic tachyon
(EMT).

As the open angle of the mirror changes from � to �/2 , the angle � changes from
zero to �/2 , and the speed in Equation (104) changes accordingly from c (the reflec-
tion from a flat mirror, no cone is formed) to � (the cone is degenerated into a cylin-
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der). In mirrors with an open angle of less than �/2 the “tachyon” formed moves in
the opposite direction – from the base to the apex of the mirror.

In a vacuum, the EMT formed exists within a lifetime determined by the transverse
size of the incident packets and the angle of the mirror. The “extra” plane B shown
in the figure does not form if we use the conical mirror as described above.

The drawback of this model is that the electric (and magnetic) field on the cone is
different from that of a real charged tachyon considered in Section 8.10. With the
above technique it cannot be made polarized along the generatrices of the conical
surface. This drawback can be eliminated if we use a more sophisticated technique,
which can hardly be carried out under domestic conditions. The idea is to obtain real
Cerenkov radiation from a bunch of electrons in a medium, and then shake the cone
off the bunch by letting the system go out into vacuum. The expanding cone can
then be reflected from a properly positioned conical mirror (Fig. 8.18). The object
produced would be much closer to a “true” tachyon – its Mach cone has been “appro-
priated” from a real superluminal (in the medium) charged particle! The electric
field lines will be “combed” along generatrices of the cone, and magnetic field lines
will form circular loops as shown in Figure 8.18. Such field structure is characteristic
of the Cerenkov radiation by any charged particle.

Denote with E the total electromagnetic energy of the reflected packet. What is its to-
tal momentum? When the cone has just formed, it has one fold with its open side
ahead and its apex behind. We can consider the total energy as the sum of the ele-
ments �E contained in narrow strips along the generatrices of the cone. Each strip
moves perpendicular to itself and has the momentum �P = �E/c, with a longitudinal
component (�E/c) cos�. When we sum all the elements, the transverse components
will all cancel each other out, because owing to the axial symmetry to each transverse
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component there is another one with the opposite sign. Only the longitudinal com-
ponents contribute to the whole, resulting in the net momentum

P � E
c

cos� �105�

As a result, the conical electromagnetic field formed after the reflection will have a
non-zero rest mass:

m0 � 1
c2

��������������������

E2 � p2 c2
�

� E
c2

sin� �106�

Any object with non-zero rest mass has the rest frame where this mass can be mea-
sured directly. The reader will not confuse this rest frame with the rest frame of the
mirror! In the rest frame of the cone the whole energy distribution stands still – it
has zero momentum. Applying the general Equation (106) to this frame, we will see
that for P = 0 there must be � = �/2, and the cone degenerates into a cylindrical
wave. The speed of this system relative to the mirror coincides with the speed of the
“center of mass” of the cone:

v � dE
dP
� P

E
c2 �107�

and, as is seen from Figure 8.17 (and Equation 105), is equal to the z-component of
velocity of the conical front:

v � c cos� �108�

Equations (105)–(108) describe a regular subliminal object.
Now we will show that the same object has all the basic properties of a tachyon.

First, as we already know, the apex of the cone outruns its center of mass – it
moves with the superluminal speed given by Equation (104). We have formally
identified this maximum with a particle, and now we can see that the radiation di-
rection in the trailing cone is exactly the same as it would be for the Cerenkov ra-
diation from this particle.

Now,we know that the tachyon must be essentially a non-local particle. Its transverse
(with respect to velocity ṽ) size r� is constant, and longitudinal size undergoes Lo-
rentz contraction

r � i
r0

� ��v� � r0

��������������

�v2

c2
� 1

�

�109�

The lump at the apex possesses the same properties! Indeed, for a quasi-monochro-
matic radiation the width of the incident packet is proportional to the number N of
the characteristic wavelengths that fit into it: � = N� = 2�N/k. The region of the
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strong field formed at the apex is bounded by the surface obtained by rotation of the
rhomb ABCD about the z-axis (Fig. 8.19). The transverse size of the rhomb is

�� � ��sin� � 2�
N

k sin�
�110�

We can show the invariance of this expression by noting that ksin� = k� is the trans-
verse component of the wave vector, which remains invariant under the Lorentz
transformations along the z-direction.

More generally, we can consider the electromagnetic field of the cone as consisting
of the photons with momenta p = �k. The individual photon momentum p is E/cNf,
where Nf is the net number of photons in the field. Thus, k = p/� = E/c�Nf and

�� � 2 �
N Nf �c

E sin�
�111�

However, according to Equation (106), E sin� = m0 c2 is the invariant rest mass of the
cone, and therefore

�� � 2 �N Nf
�

m0 c
� inv �112�

Thus, the length �� can be interpreted as an invariant transverse size of the tachyon
associated with the cone. For the longitudinal size one has, in view of Equation (110),

� � ��cos� � �0 tan� � �0
�v2

c2
� 1

� �1�2

�113�

which is identical with Equation (109). We see that the geometrical properties of the
lump are exactly the same as those of the tachyon.

Next we want to show a really weird thing. We know that the superluminal motion of
the lump is actually the motion of geometrical region of high energy density, and its
identification with the tachyon is rather formal. Actually, the whole cone with both its
sheets behaves as a normal object with an energy E, momentum P < E/c given by
Equation (105) and a rest mass given by Equation (106). And yet we will take the small
advantage of having a tiny region around the apex moving with a superluminal speed,
and introduce, also formally, but according to the already known general definition,
the energy Ẽ and momentum P̃ for the object moving with this speed:

�E � i m0 c2 � ��v� � �P � i m0 �v � ��v� �114�

Here the role of m0 is played by the rest mass of the cone, and the role of ṽ is played
by the speed of its apex. By introducing the new characteristics in Equation (114)
specific for a tachyon, we assign to this tachyon the mass m0. Thus the cone and the
associated tachyon are both characterized by the same rest mass, and their speeds,
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according to Equations (104) and (108) satisfy the condition v ṽ = c2. Recall that if a
tardyon has a counterpart with the same mass on the other side of the light barrier,
whose speed satisfies this condition, the two particles are mutually dual. Their 4-mo-
menta must be mutually perpendicular. Let us check if the energy–momentum in
Equation (114) is perpendicular to the energy–momentum of the cone. Using the re-
lations v = P c2/E, and ṽ = P̃ c2/Ẽ, we have

0 � v �v� c2 � P �P

E �E
c4 � c2 �115�

It follows that

E �E � P �P c2 � 0 �116�

Yes! The energy–momentum vectors are equal in magnitude (m0) and mutually per-
pendicular. And, owing to the invariance of a scalar product, this property holds in
all inertial reference frames.

Thus, the introduction of apparently irrelevant characteristics [Eq. (114)] unexpect-
edly provides us with an additional consistent description of the same object. Having
emerged as a tardyon, it now appears to have more and more properties of a tach-
yon.

We can push the analogy a little further. Let us write down another scalar product –
for the energy–momentum of the tachyon and that of a photon in the Cerenkov cone
(Fig. 8.20):

�E
c
�� �P k �

�E
c
�� �P k cos� � i m0 � ��v�� 1� �v

c
cos�

� �

�117�

Using again the invariance of the scalar products, we can write for two arbitrary re-
ference frames

� ��v�� 1� �v
c

cos�
� �

� � ��v ��� � 1� �v �

c
cos� �

� �

�118�
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But we know [look at Equation (104)!] that at least in one reference frame the quan-

tity 1� �v
c

cos� � 0. Therefore, the whole scalar product must be zero, and once this

takes place in one reference frame, in must hold in all of them! Thus, we can write

�v cos� � �v � cos� � � c �119�

This means that the picture of the superluminal lump at the apex of the circular
cone connected with it is Lorentz-invariant, in complete analogy with CRT studied in
the previous section.

At the same time in the systems K moving perpendicularly to the z-axis, the axial
symmetry of the electromagnetic radiation in the cone breaks down. Indeed, as we per-
form the transition to such a system, the velocities of the cone and its apex are
turned through different angles 
 and �
, for which sin
 = V/v and sin �
 = V/ṽ. The
misalignment between the new directions v and ṽ is caused by the Doppler effect
which produces the asymmetry of the spectrum: while the cone of radiation around
the direction of velocity retains its circular form, the radiation frequency and inten-
sity begin to depend on the azimuth angle 	 (different “generatrices” of the cone ac-
quire different “weight”, see Figure 8.20). This leads to different trajectories of the
cone apex and its center of mass.

The resulting asymmetry is exactly the same as that of CRT in Section 8.10, because
in both cases we have the same cone of radiation.

Thus, all considered kinematic relations admit the “tachyonic” interpretation of the
cone. This allows us to speak about the duality of its description. Depending on
whether we choose the center of mass velocity v or the apex velocity ṽ as a character-
istic property of the electromagnetic cone, we can accordingly describe it as either a
regular tardyon with the 4-momentum (E/c, P), or as a dual tachyon with the 4-mo-
mentum (Ẽ/c, P̃). Here again it would be relevant to recall the purely theoretical pos-
sibility discussed above – for a subliminal system with a rest mass m0 to have a
“ghost” partner in another world beyond the light barrier – the dual superluminal
object of the same mass. Well, now we can demonstrate a simple home-made or la-
boratory-made model where both dual partners are not only damn real, but are both
enrolled in one!

There still remain questions about the analogy drawn between the cone and conven-
tional tachyon. Here is one: it is more or less O.K. when we choose to consider the
superluminal lump as a tachyon, and the trailing cone as its Mach cone of Cerenkov
radiation. But how should we interpret the leading cone that we have? In our system,
the energy “radiated” through the trailing cone, is “supplied” from the leading one.
This is not what one would expect to observe if “true” tachyons were discovered, and
the difference may appear to preclude us from identifying fully our model with a
“true” tachyon. But such a conclusion is not necessarily correct. We know already
that a picture of a superluminal particle with trailing Mach cone is not the only
model of a tachyon. Recall another alternative – the model proposed by Recami and
co-workers [72]. In their model a tachyon is a “rigid” two-folded structure as shown
in Figure 8.13. The trailing fold is geometrically similar to the Mach cone for the par-
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ticle with the given speed and size (determined by its rest mass). The leading cone
looks like a mirror reflection of the trailing one. The whole system thus looks like a
doubled Mach cone (with the hyperboloidal cavities in each), and one might ask how
we should interpret the extra fold? The answer to this is that the sheets are not
Cerenkov radiation. They are similar to a Mach cone in shape, but physically differ-
ent (see the previous section).

Similarly, our electromagnetic cone, even though it is made of Cerenkov radiation
once kidnapped from a real charge, does not generate from the apex in its current
afterlife. Rather, the apex itself should now be considered as a special point in the
formed radiation structure.

We can therefore suggest this structure as a realization of the theoretical model pro-
posed by Recami and co-workers. The existence and physical properties of the struc-
ture give their model additional credibility. But we must bear in mind that our struc-
ture is not totally identical with their model either. Whereas their model is always
axially symmetrical, the real cone here still suffers the symmetry break – not in its
geometrical shape, but in its physical properties described above. The reason for this
is that it consists of waves with non-zero frequencies. Another distinction is that
EMT is finite in space and time, whereas the original model [72] is infinite. However,
after all, the EMT is a real object, and it might drop some hints at how we could refine
our theoretical models of tachyon!

The most important feature of EMT is that we cannot use it for superluminal signal-
ing! Recall the simple experiment described in Section 6.14. We have the same situa-
tion here. A mere attempt to pass the lump through an aperture to specify the trajec-
tory along which we want to transport the signal destroys the whole structure. Nor
can we “shoot down” our tachyon by affecting in any way the instantaneous lump at
the apex. Suppose, for instance, that we want to block its way by putting a small ab-
sorbing screen at point z (Fig. 8.21). The screen would indeed absorb all the energy
of the lump, but it will not prevent the tachyon from propagating farther down the
same path. The energy at point z + �z further down the way comes from the section
�l of the leading cone, not from the point z. Thus, we cannot transport the tachyon
along any chosen path by opening it, and we cannot prevent it from moving along
this path by closing it!
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The lump does not carry signal or energy along its trajectory. It is not a self-identical
entity keeping memory of its previous self. It is a continuously decaying and renew-
ing entity having no memory of its past or any anticipation of its future.

The EMT is not precisely the original exotic concept of a tachyon, getting us (and the
whole Universe) into trouble, puzzles, and paradoxes. It offers none of the embarras-
sing situations with signal transfer from the future, world line loops, and tachyon
shooting between mirrors, and in this respect it is as good as non-existing. And yet,
here it is, a real self-dual tachyon–tardyon object, the double-faced Janus! And both
of its faces are fully and consistently described by the special theory of relativity.

2958.13 Laboratory-made tachyons



296

References

1 C. W. Misner, K. S. Thorne,

J. A. Wheeler: Gravitation, Freeman,
San Francisco, 1973.

2 N. Herbert: Faster Than Light, New
American Library, New York, 1988.

3 J. Marangos, Nature, 2000, 406, 243–
244.

4 L. G. Wang, A. Kuzmich, A. Dogarin,

Nature, 2000, 406, 277–279.
5 C. Liu, Z. Dutton, C. H. Behroozi,

L. V. Hau, Nature, 2001, 409, 490–493.
6 D. F. Phillips, A. Fleischhauer,

A. Mair, R. L. Walsworth, Phys. Rev.
Lett., in press.

7 R. E. Slusher: Self-induced transpar-
ency, in Progress in Optics, ed. E. Wolf,
Amsterdam, 1974, Band XII.

8 I. Poluektov,Yu. Popov,V. S. Roit-

berg, Sov. Phys., Usp., 1974, 114(2), 97.
9 N. G. Basov, R. V. Ambartsumyan,

V. S. Zuev, P. G. Krykov,V. S. Leto-

khov, Sov. Phys., JETP, 1966, 23(1), 16–
22.

10 P. G. Kroukov,V. S. Letokhov, Sov.
Phys., Usp., 1969, 99(2), 169–227.

11 R. W. Chiao, Phys. Rev. A, 1993, 48, 34–
37.

12 K. Frasier, Skeptical Inquirer, 1998,
22(2), 37.

13 V. A. Fock: The Theory of Space,Time,
Gravitation, Pergamon Press, Oxford,
1958.

14 E. Taylor, J. A. Wheeler: Spacetime
Physics, Freeman, San Francisco, 1966.

15 P. G. Bergmann: Introduction to the
Theory of Relativity, Prentice-Hall, Eng-
lewood Cliffs, NJ, 1942, Ch. 4, 5.

16 L. Landau, I. Lifshits: The Field Theory,
Butterworth-Heinemann, 1980.

17 J. D. Fix: Astronomy. Journey to the Cos-

mic Frontier,WCB/McGraw-Hill, New
York, 1997, 148–149.

18 H. P. Robertson, Rev. Mod. Phys.,
1949, 21, 374.

19 E. M. Dewan, Am. J. Phys., 1963, 31,
383–386.

20 G. Cavalleri, G. Spinelli, Nuovo Ci-
mento B, 1970, 66(1), 11–20.

21 Ø. Crøn, Am. J. Phys., 1977, 45(1), 65–
70.

22 H. Nicolic, Am. J. Phys., 1999, 67(11),
1007–1012.

23 J. D. Jackson: Classical Electrodynamics,
2nd edition, John Wiley & Sons, New
York, 1975, 554–556.

24 P. Tipler: Elementary Modern Physics,
Worth Publishers, New York, 1992.

25 K. Krane: Modern Physics, John Wiley
& Sons, New York, 1992.

26 P. G. Hewitt: Conceptual Physics, Har-
per Collins College Publishers, New
York, 1992.

27 J. C. Hafele, Am. J. Phys., 1972, 40, 81–
85.

28 J. C. Hafele, R. E. Keating, Science,
1972, 166–170.

29 Hafele, Keating.

30 Ya. B. Zeldovich, I. D. Novikov: The
Theory of Gravitation and Stellar Evolu-
tion, Nauka, Moscow, 1971, Sects 3 and 4.

31 Sagnac exp.

32 Sagnac exp.

33 K. Thorne: Black Holes and Time
Warps, Einstein’s Outrages Legacy, Nor-
ton, New York, 1994.

34 Y. Sofue, M. Fudsimoto, Astrophys. J.,
1983, 265(2), 722–729.

35 A. Hewish, J. S. Bell, D. J. Pilking-

ton, F. P. Scott, A. R. Collins, Nature,
1968, 217, 709.

Special Relativity and Motions Faster than Light. Moses Fayngold
Copyright � 2002 WILEY-VCH Verlag GmbH,Weinheim
ISBN: 3-527-40344-2



297References

36 V. L. Ginzburg, Sov. Phys., Usp., 1968,.
37 V. L. Ginzburg,V. V. Zheleznyakov,

V. V. Zaitsev, Sov. Phys., Usp., 12(3),
378–398.

38 A. Sommerfeld, Gotting. Nachr., 1904,
99, 201.

39 P. Cerenkov, I. Tamm, I. Frank, Sov.
Phys., Usp., 1958, 68, 376–415.

40 J. V. Jelley: Cerenkov Radiation and Its
Applications, Pergamon Press, Oxford,
1958.

41 B. Bolotovsky,V. Ginzburg, Sov. Phys.,
Usp., 1972, 106(4), 577–592.

42 L. S. Rodberg,V. F. Weisskopf, Science,
1957, 125, 627.

43 I. Shapiro.

44 M. Rees.

45 M. Fayngold: On a Superluminal Spot
of the Type of a Moving Focus, in The
Einstein Collection, Nauka, Moscow,
1976, 276.

46 L. Landau, E. Lifshits: Electrodynamics
of Continuous Media, Nauka, Moscow,
1982, 80.

47 D. Bohm: Quantum Mechanics, Pren-
tice-Hall, New York, 1952.

48 A. Aspect, P. Grangier, G. Roger,

Phys. Rev. Lett., 1982, 49, 91–94.
49 G. F. Clauser, A. Shimony, Rep. Prog.

Phys., 1978, 41, 1881–1927.
50 G. Greenstein, A. G. Zajonc: The

Quantum Challenge, Jones and Bartlett,
Sudbury, MA, 1997.

51 M. P. Silverman: More Than One Mys-
tery. Explorations in Quantum Interfer-
ence, Springer, New York, 1994.

52 A. Einstein, B. Podolsky, N. Rosen,

Phys. Rev., 1935, 47, 777–780.
53 L. V. Hau et al., Nature, 1999, 397, 594.
54 S. E. Harris, Phys. Today, 1997, 50(7),

36–42.
55 M. Schubert,l B. Wilhelmi, Einfüh-

rung in die Nichtlineare Optik, Teil II,
Teubner, Leipzig, 1978.

56 L. Carroll, Alice’s Adventures in Wonder-
land, Easton Press, Norwalk, CT, 1977.

57 L. Carroll,Through the Looking Glass,.
58 R. Mignani, E. Recami, Nuovo Cimento

A, 1973, 14, 169; 16, 208.
59 Camill Flammarion.

60 O. M. Bilaniuk,V. K. Deshpande,

E. C. G. Sudarshan, Am. J. Phys., 1962,
30(10), 718–723.

61 O. M. Bilaniuk, E. C. G. Sudarshan,

Phys. Today, 1969, 22, 43.
62 J. Feinberg, Phys. Rev., 1967, 159(5),

1089–1105.
63 R. C. Tolman: Relativity, Thermody-

namics, Cosmology, Oxford, 1934, 205.
64 G. A. Benford, D. L. Book,W. A. New-

comb, Phys. Rev. D, 1970, 2(2), 263.
65 R. Fox, C. G. Cuper, S. G. Lipson, Proc.

R. Soc. London, ser. A, 1970, 316, 515–
524.

66 H. K. Wimmel, Nature Phys. Sci., 1972,
236(66), 79–80.

67 F. C. Jones, Phys. Rev. D, 1972, 6(10),
2727–2735.

68 M. Fayngold, Sov. Phys. Teor. Mater.
Fiz., 1981, 46(6), 395–406.

69 M. Fayngold, Sov. Phys., Ukr. Fiz. Zh.,
1982, 27(3), 440–442.

70 A. M. Perelomov, Sov. Phys., Dokl.,
1962, 146, 75.

71 A. Peres, Phys. Lett. A, 1970, 31(7),
361–362.

72 A. O. Barut, G. D. Maccarone, E. Re-

cami, Preprints of Nuclear Physics Insti-
tute, Catania, Italy, INFN/AE, June
1982.

73 M. Fayngold, Sov. Phys., Radiofiz.,
1979, 22(5), 531–541.

74 M. Fayngold, Sov. Phys., Tech. Phys.,
1980, 25(5), 552–556.



Index

a
aberration of light 53
absolute 23, 42, 121
– distances 23
– time intervals 23
absolute future 46
absolute past 46
absolutely remote 47
absorption 132, 210, 217 f., 229, 246 f.
– of light 218
– of radiation 246
absorption band 210f.
acceleration 3, 5, 7, 49, 269
– centripetal 7
– due to gravity 49
accelerators 266
acoustics 163
action at a distance 205
addition of velocities 128
additional tachyon variable 274
amplification 222
– non-uniform 222
amplification wave 222f.
angle of misalignment 271
angular frequency 146
angular momentum 148, 161, 203
angular velocity 126, 132, 134, 144 ff., 148 f.,

155, 157
anisotropic 16
anisotropy 16
annihilation 270
anti-tachyon 250, 270
Archimedes 151
Archimedes’ spiral 151
Aspect, A. 202
asymmetry 272
asymmetry of CRT 281
asymmetry of the tachyon 281
asymptote 241
asymptotes 239

– of the hyperbolas 239
atom 75, 85, 209, 217, 229, 247
– excited 75, 217, 222f., 229, 247
– sodium 210
atom in its ground state 246 f.
– stationary 247
atomic chain 106
– deformed 106
– moving 106
– non-deformed 106
– stable 106
– stationary 106
– unstable 106
atomic clocks 123
atomic excitation 250
atomic momentum 250
atomic states 217
– excited 217
atomic transitions 250
– spontaneous 250
atom’s life 247
atom’s lifetime 228
average speed 133
averaging over time 201
axial symmetry 271, 289, 293
axial symmetry of CRT 271
axis 139, 161
– magnetic 161
– rotational 161
– spatial 139
– time 139

b
Bacon, F. 263, 287
Ball, P. 211
barrier 62
Benford, G. A. 263
Big Bang 224, 246
Bilaniuk, O. M. 249
black hole 87, 142, 183

298

Special Relativity and Motions Faster than Light. Moses Fayngold
Copyright � 2002 WILEY-VCH Verlag GmbH,Weinheim
ISBN: 3-527-40344-2



Bolotovsky, B. 172
Book, D. L. 263
Bose-Einstein 210
Bose-Einstein condensate 210
braking force 165
break of the axial symmetry 278
bridge 107
Brownian motion 286

c
Carroll, Lewis 209, 213
Cartesian coordinates 31
causal connection 46, 224
causality IX, 47, 159, 224, 224 f., 228 f.
– retarding 225
– reversal of 228
cause 221
cause and effect 202, 229
centrifuge 131, 136
Cerenkov cone 167, 171, 292
Cerenkov effect 166
Cerenkov energy loss 270
Cerenkov radiation 170f., 245, 267, 269, 272,

274, 278, 281, 287, 289 f.
– asymmetric 278
– gravitational 272, 287
– symmetrical 278
Cerenkov radiation spectrum 267
Cerenkov, P. 166
cesium beam atomic clock 123
cesium (Cs) vapor 212
characteristics 2
– absolute 2
– invariant 2
charge conjugation 172
charged superluminal particle 267
charged tardyons 272
circumnavigation 123, 129
circumnavigation times 132
classical theory of CRT 286
clock 76, 102, 124 ff., 130, 136, 139
– atomic 76
– circumnavigating 136
– flying 126
– inertial 125
– macroscopic 130
– non-stationary 124
– reference 124
– stationary 124f., 139
– synchronized 102, 139
clock paradox 123
clocks X, 24, 35, 49, 73 f.
– atomic X
– synchronized 24, 35, 49, 73 f.

closed loops in spacetime 271
coefficient of absorption 211
collapse of the wave function 208
collapse, reduction of the wave packet 202
communication 186, 202, 219, 222f.
– faster-than-light 186, 202
– superluminal 202, 219, 222 f.
complete internal symmetry 267, 275
component 41, 64
– spatial 41, 64
– temporal 41, 64
compression 112
conical mirror 287
conical surface 281
– two-folded 281
conservation 253
conservation laws 250f., 257
conservation of energy 267
coordinated annihilation 257
coordinates 32, 65
– spatial 65
– transverse 32
correlated states 208
cosmic rays 266
Coulomb 145
coupling frequency 210
covariance 31, 38
covariant 34
CR (Cerenkov radiation) 271
– axially symmetrical 271
crossed waves 198
cross-section 95
– three-dimensional 95
– two-dimensional 95
CRT 267, 270 f., 273f.
curvature 121f., 124 f.
curvature of space-time 142
cutoff 266 f.

d
de Broglie 85, 193
– equation 193
– wavelength 85
de Broglie postulate 194
de Broglie relationships 266
de Broglie waves 193, 242, 266
– superposition 266
decay 35 ff.
– radioactive 35
deceleration 5
decoherence 208
deformation 103, 105, 107 f., 144
– physical 108
Deshpande,V. K. 249

299Index



diffraction 15, 85
dimensions 64
– spatial 64
dipole moment 279
– electrical 279
dipoles 83
– electric 83
dispersion 184, 186, 192
dispersive medium 191
3-displacement 63
distance 105
– inter-atomic 105
– proper 105
disturbance 220f.
– superluminal 221
Doppler 76, 164
– effect 76
Doppler effect 82, 163, 176 f., 181, 227, 271
– longitudinal 82, 181
dot product 70
drag force 281
drag force on the charge 267
dual 241
dual particles 244
dual tachyon 293
duality XI, 243, 293
dynamic 112
dynamic laws 38
dynamics X, 66 ff.
– relativistic X, 66

e
effect 77
– time dilation 77
Einstein 9 f., 38, 70, 166, 182, 193, 203, 205,

234
Einstein’s postulate 133
Einstein’s principle of equivalence 126
electric dipole moment 272
electric field strength 166, 212
– distribution 212
electrodynamics 165
electromagnetic model of a tachyon

(EMT) 287
electromagnetic tachyon (EMT) 288
electromagnetic waves 152
electromagnetically induced transparency (EIT)

210
electron 85, 163, 166, 182, 202 ff.
– superluminal 163
electron–positron (e + p) pair 203
ellipsoid 91, 93
– oblate 91
ellipsoid of revolution 275f., 279

ellipsoid of rotation 277
emission 132, 217 f., 220, 222, 270
– of a tachyon 270
– spontaneous 217
– stimulated 220, 222
emission or absorption of tachyons 265
emission-absorption processes 265
– stimulated 218
emissions of a photon 286
– random 286
EMT 289, 295
energies and momenta 248
– final 248
– initial 248
energy 66, 150, 163, 165 f., 182, 184, 192 f.,

232, 240, 247 f., 251
– electric 182
– electromagnetic 166, 184, 192
– internal 247
– kinetic 182, 247
– negative 248
– of the atom 247
– positive 248
energy and momentum 248, 257
energy density 152
energy density distribution 150
energy flow 191, 200 f.
– averaged 201
– density 200
energy level 123
energy levels 221
– inversely populated 221
energy-momentum 65, 292
– of a photon 292
– of the tachyon 292
energy transfer 100, 142, 191, 223
– superluminal 223
energy transport 152 f.
energy-momentum curves 270
energy-momentum relation 233
energy–momentum spectrum of a free tachyon

265
ensemble of (e + p) pairs 207
entangled state 204 f.
entangled system 206, 208
EPR 205
EPR paradox 205
equilibrium 105
– stable 105
equilibrium distance 106
escape speed 87
escape trajectory 87
ether 15 ff., 19
ether wind 15, 18

300 Index



Eucledean geometry 140
Euclidian plane 241
event 39 ff., 63
Eves, H. E. 76
excitation 229, 250
– spontaneous 250
excited molecules 220
excited state 52, 246
expansion 112
extended charge 268
extraterrestrial civilization 160
extraterrestrial intelligence hypothesis 160

f
fast light 209, 212
Faucault 137
Feinberg, John 235, 265
Feynman, Richard 170
field X, 52, 83f., 107, 114, 125, 142, 145, 147 f.,

161, 163, 165, 174, 182, 196, 210, 220, 222,
282, 291

– amplified 222
– electric 52, 83 f., 165
– electromagnetic 163, 165, 182, 210, 220,

291
– gravitational 125, 142, 174, 282
– internal 107
– magnetic X, 52, 114, 145, 147 f., 161, 196
– of the cone 291
– radiated 163
– spherically symmetrical 165
– stationary 107
field on the cone 289
– electric 289
– magnetic 289
field vector 152
– electric 152
– magnetic 152
FitzGerald 18
Flammarion, Camille 228
flux of energy 152, 159
force 6 ff., 70, 91 f., 102, 104 ff., 110, 113, 115,

145, 282
– braking 102, 104
– external 106 f., 113
– frictional 105
– gravitational 92
– inertial 6 ff.
– inter-atomic 105
– internal 106 f., 110, 113
– magnetic 145
– of gravity 6 f, 91
– of inertia 115
– repulsive 106

– retardation 92
– retarded 92
forces 183, 272
– electromagnetic 183
– external 272
– gravitational 183
forerunner 222
form-factor 268
form-factor of the tachyon 280
four-dimensional interval ds2 281
four-dimensional rotations 40
frame 70, 126
– inertial 126
– non-rotating 126
– stationary 126
frame of reference 3, 70
Francis Bacon 263, 287
Frank, Ilia 166 f.
frequency 76
– proper 76
Fudsimoto, M. 147
functions 32
– linear 32

g
galactic core 148
galaxy 173
Galilean transformations 34
Galileo 3, 16
gamma-bursts 246
generatrices 43, 236, 238, 273, 289
– of the Cerenkov cone 273
– of the conical surface 289
– of the light cone 236, 238
generatrix 124, 135
geometry 139
– Eucledean 139
Ginzburg,V. 172
global time 139
gravitation 142
gravitational collapse 161
graviton 235, 238
gravity field 126
gravity force 93
ground level 217
ground state 217
group 183, 185f., 191, 199
– of monochromatic waves 185
– of the individual waves 185
group of waves 186, 212, 221
group velocity 185, 187, 189 f., 192, 194 f., 198,

210, 219, 221, 266
– subluminal 221
– superluminal 219

301Index



h
Hafele, J. C. 123, 126, 130
Hafele-Keating experiment 126
Heisenberg,W. 194
helix 122, 125, 135, 139
Hewish, A. 160
high-energy charged particles 166
high-energy particles 59, 266
Hooke 106
– Hooke’s law 106
Huygens, C. 167
Huygens’ principle 167, 171
hydrodynamics 163
hydrogen maser clock 123
hyperbola 238ff. f., 269
– degenerated 239
hyperboloid of revolution 280
– one-folded 280
– two-folded 281
hyper-surface 43, 140

i
imaginary quantities 226
inertia 3 ff., 9, 68
inertial mass 69
inertial reference frame 134
influx of energy 220
information 142
information transfer 264
input pulse 220
instability 221
integral of motion 285
interaction 105, 110
– atomic 105, 110
– inter-atomic 105
interactions 24, 38
– electromagnetic 24, 38
– electro-weak 38
– weak 38
interference 15 f., 85
– constructive 16
– destructive 16
interference pattern 18
interferometer 16
intergalactic gas 148
internal pressure 160
internal symmetry for a superluminal object

275
interval 31, 34, 40 ff., 47, 63, 81, 111 f., 230,

234
– four-dimensional 40, 42
– isotropic 42
– space-like 42 f., 81, 111 f., 230, 234
– spatial 31, 42

– temporal 42
– time-like 41, 43
– zero 42
intrinsic dipole moment e 272
intrinsic vector e 272
invariance 20, 23, 31, 42, 48, 61, 86
– of the speed of light 31, 61, 86
invariant 63, 68, 121
isotropic 237
– 4-momentum 238

j
Jones, F. C. 267, 269, 272

k
Keating, R. E. 123, 126, 130
kinematic length 70, 121 f., 124, 138, 236,

241
kinematics 63
– relativistic 63
kinetic energy 144, 182, 227, 229, 250

l
laboratory reference frame 272
Landau, L. 90 f.
laser 60, 149, 153 f., 161, 185
– rotating 154
– wave fronts 154
laser beam 155, 157, 159, 210
– monochromatic 210
– rotating 157
laser gun 159
laser light 210 f., 218
laser pulse 159
law of addition of velocities 251
law of refraction 168
leading cone 293f.
leading edge 223
length 28, 70, 86, 102, 111 f.
– kinematic 70
– Lorentz-contracted 111f.
– proper 102, 111f.
– transformation 28
length contraction 86, 91, 102, 106

(see also Lorentz contraction)
length dilation 273
length extension 268
levels 218
– excited 218
– ground 218
lifetime 232
light 80, 149, 170 f.
– incident 170
– monochromatic 80, 149

302 Index



– reflected 170
– re-radiated 170
– secondary 170f.
light barrier 62, 146, 148, 194, 235, 240, 242,

293
light beam 149
light cone 43
light intensity 152, 217 f.
light intensity distribution 212
light pulse 39, 142, 185, 209 f., 212 f., 217
light retardation 211
light signals 75
light spot 195
– superluminal 195
linear algebra 32
linear momentum 161
local speed 133
local speed of light 133, 140
localized superluminal object 281
logical loops 265
Lorentz, H. A. 18, 29, 56 f., 106
– contracted 106
– transformation 56f.
Lorentz contraction 29, 38, 166, 273
Lorentz factor 29, 34, 68, 71, 91, 139, 174, 226,

232, 236, 275
Lorentz invariance 241, 269, 278
– of physical laws 278
Lorentz transformations X, 31, 34, 63, 67,

83 f., 92, 96, 99, 103, 109, 121, 230, 248, 226f.,
250, 252 f., 269, 271, 274, 276, 282

– group properties 276
– restricted 269
– superluminal (SLT) 227
Lorentz-invariant 106
luminescence 166

m
Mach cone 165, 267, 274, 281, 289, 293 f.
– doubled 294
magnet 161
– rotating 161
magnetic field lines 147f.
magnetic field vectors 196
mass 68, 124, 142
– gravitating 124
– inertial 68
mass density 161
matrix 32
matrix equation 33
Maxwell, J. C. 11, 106
Maxwell’s equations 106, 191
mechanics 11, 15, 63, 67ff., 107, 127f., 130,

136, 194

– classical 194
– Newtonian 15, 127 f., 130
– non-relativistic 11, 67 f., 136
– relativistic 63, 68 f., 107, 127, 130, 194
medium 52, 209, 211, 213, 220 f., 223, 272
– anisotropic 52, 272
– excited 220, 223
– exhausted 220
– homogeneous 272
– isotropic 52
– moving 52
– non-equilibrious 220f.
– non-isotropic 52
– opaque 211, 213
– optically anisotropic 272
– skimmed 220
– transparent 211, 272
– unstable 220
�-meson 36ff., 114, 116, 122
– decaying 116
�-mesons 76
– atmospheric 76
Michelson 16, 18f.
– experiment 15, 19
– interferometer 17 f.
Michelson-Morley X
micro-particles 229
micro-world 229
Minkowski, H. 70
Minkowski’s space-time 65, 237
Minkowski’s world 38 ff., 63, 95, 111, 235, 241,

244, 280
misalignment angle � 273
model 166
– charged sphere 166
– point-like electron 166
modulated tachyon beams 265
Mohammed 10
molecule 171, 220
– excited 171, 220
momentum 64ff., 70, 105, 163, 165, 193, 227,

232, 237, 240, 245, 251, 266
momentum carried by a negative tachyon 245
momentum of tachyon 253
momentum space 65, 270
monitoring the speed of light 209
Morley 16, 18
motion X, 52f., 60, 67, 71, 104, 106, 154, 159,

172
– accelerated X, 9 ff., 67
– charged particles X
– circular 53
– elliptic 53
– faster-than-light IX

303Index



– inertial X, 9
– relative 60, 71, 106
– rotational X, 154ff.
– superluminal IXf., 9, 104, 142 ff., 159, 172
– translational 52 f., 154
– uniform X
mutually dual 241

n
negative energy 250
negative particles 246
negative tachyons 245
negative tardyons 246
neutron 85, 161
neutron star 51, 153, 160 f.
Newcomb,W. A. 263
Newton 3
Newtonian approximation 126
non-sphericity 279
non-causal event 264
(non-local) correlations 208
non-local quantum correlations 208
non-locality 202
non-rotating frame 127
nuclear matter 161

o
object XI
– subluminal XI
– superluminal XI
– tachyon-like XI
offset 129
one-dimensional gas 146
optical axis 272
optical centrifuge 131
optical transition 123, 229
oscillations 15, 27, 35, 183 f., 185
– coupled 183
– electromagnetic 35
– harmonic 184
– mechanical 15, 35
oscillatory motion of the tachyon 256

p
pair of tachyons 253
parabola 5, 20
particle 145, 193, 232, 242, 248, 290
– electrically charged 145
– emitted 248
– free 242
– localized 193
– massive 232
– non-local 290
– superluminal 232

particle accelerator X, 59 f.
particles 204, 243, 266
– dual 243
– entangled 204
– point-like 266
permiability 183
permittivity 183
perturbation 92, 165
– electromagnetic 165
– gravitational 92
– random 208
phase 183, 196, 198
phase difference (see phase shift)
phase planes 197
phase shift 16ff.
phase velocities 192, 210, 212
– superluminal 192, 212
phase velocity 187, 189 f., 197, 199, 242
phenomena 15f., 19 f., 26, 229
– electromagnetic 15, 20, 26
– macroscopic 229
– mechanical 19 f.
– of interference and diffraction 15
– optical 16
– physical 19
– thermodynamic 15
photo-decay 287
photon 60f., 64, 68, 75, 80f., 131 f., 135, 149,

151, 154, 217, 219, 238
– geodesic 135
photon emission 229
photon emitter 131
photons 180, 223, 232, 235
photons and gravitons 244
photon’s world line 233, 236
Planck, M. 193
Planck’s constant 193
plane 140
– Eucledean 140
plane wave 198, 202
plane wave front 163
plane wave packets 195
plane waves 199
– crossed 199
plasma 1, 115, 147, 181, 184, 186, 188, 210,

212
plasma frequency 184
Podolsky, B. 203, 205
point-like electron 166
– model 166
point-like tachyon 267
pole 161
– magnetic 161
positron 166, 203 f.

304 Index



Poynting vector 152
principle of relativity 1, 4, 19, 48, 225
– classical 4
– Einstein’s 19
– Galilean 4
principle of retarded causality 231
principle of the least time 170
probabilistic interpretation of the de Broglie

waves 194
probabilistic nature of the wave function

202
probability 193
probability cloud 208
projection 149, 175 f., 180
– geometrical 180
– ray 180
projector 149
propagation number 84, 196
propagation of the radiowaves in plasma

191
– superluminal 191
propagation vectors 196
proper 25, 27, 102
– distance 25
– length 36, 102, 106, 275
– period 27, 76
proper time 36, 122, 124ff., 128 f.
proton 182
Proxima Centauri 173
pseudo-Euclidian geometry 241
pseudo-sphere 64
pulse 11, 28, 109, 111 f., 185, 213, 218f.
– compression 112
– expansion 112
– laser 11
– of flashes 109, 111
– superluminal 213
pulse laser 287
pulses of radiation 160

q
quanta 203
quantities 1 f.
– absolute 1 ff. f.
– invariant 2
– relative 1 ff.
– scalar 66
quantum 193
quantum coherence 208
quantum jump 267
quantum mechanics 85
quantum non-locality 202 f., 208
quantum telecommunication 202
quasar 173

quasar 3C279 174
quasars 174, 182 f.
– exploding 174, 182

r
radiated power 273
radiation 153, 246, 270, 272
– axisymmetrical 272
– continuous 153
– electromagnetic 153, 246, 270
– gravitational 246, 270
radiation cone 288
radiation power 267f., 275
radiation rate 165
radiative force 163
radio communication 116
radio signal 116, 120 f.
radio-interferometer 174
random breakups 287
Recami, E. 281, 294
red shift 82
Rees, Martin 181f.
reference clock 125
reference frame X, 2 ff., 4, 9 f., 70, 91, 96, 102,

105, 107, 115, 119 f., 124, 139, 227, 229, 232 f.,
241, 257, 273, 282

– inertial 4, 10, 102, 105, 115, 124, 229, 241,
282

– non-inertial 9, 115
– non-rotating 124
– rotating X
– superluminal 227, 232
reflection 167, 170
refraction 170
refraction and reflection laws 167, 170
refractive index 163, 168, 183 f., 209 f.
reinterpretation 229, 231
reinterpretation principle 249, 286
relative time offset 128
relative velocity 243
relative velocity between the two tachyons

244
relativistic 63
– mechanics 63
relativistic cannonball 181
relativistic dynamics 66
relativistic invariant 264
relativistic kinematics 63, 236, 252
relativistic length contraction 268
relativity IX ff., 1 ff., 24, 27, 31, 38 f., 74, 76,

81, 85, 91, 100, 116
– classical principle 2
– general 39
– of distances 27

305Index



– of length 85, 91
– of time 49, 53, 76, 81, 116
– principle 1, 3
– of simultaneity 24, 34, 74
– of space 31, 38
– special IX, 39 ff.
– special theory 1
– theory IX
– of time 27, 31, 38, 100
rest energy 238
rest frame 74, 76, 104 f., 107, 275, 290
rest frame of the medium 272
rest mass 64 f., 68 f., 144, 194, 232, 237 f., 265,

274, 290 f.
– imaginary 265
– of the cone 291
rest system 29ff.
retardation 92, 209 f., 235
– force 92
– of a light pulse 210
– of light 209
retardation time 92, 176
retarding causality 224
reversal 229
– of time 229
Rosen, N. 203, 205
rotating system 126, 133
rotational axis 124, 155, 203
rotations 63, 66 f.
– four-dimensional 63
– spatial 67
– three-dimensional 63

s
Sagnac, M. G. 131
Sagnac experiment 133, 136f., 141
saturation of absorption 211, 218
scalar product 68 f., 241
second law of thermodynamics 250
self-induced transparency (SID) 211, 217 f.
Shakespeare 224, 263, 287
Shapiro, Irvin 174, 182
shock wave 51, 104, 107, 165, 274
signal X, 80, 116 f., 120, 142, 181, 185, 191 f.,

199, 212, 221, 225, 229
– emissions 181
– high-rate 117, 120
– low-rate 116, 120
– receptions 181
– superluminal 199, 229
signal transfer 186, 191, 202, 295
– from the future 295
– instantaneous 202
– superluminal 186

signal transmission 209
– superluminal 209
signal transport 224
signal velocity 222, 224
simultaneity 23 ff., 26, 29, 76
simultaneous 24
sine function 190
sine theorem 156
singular point 121
sinusoid 185, 190
slow light 209, 211, 217
Snell 168
Snell’s law 169, 171
sodium vapor 210
solar system 115, 117 f.
soliton 219
– luminous 219
solution of Wimmel’s paradox 274
Sommerfeld, A. 163, 165, 267 f.
Sophue,Y. 147
source 77, 153, 165, 170, 172, 271
– moving 77
– of antitachyons 271
– rotating 153
– stationary 77, 153
– superluminal 165, 170, 172
space 35, 64 ff., 139, 141, 234
– curved 139
– four-dimensional 64f., 141
– three-dimensional 66, 141
space-like axis 280
space-time 43, 66, 70, 95, 142, 226, 234
– curved 142
– four-dimensional 66
space-time diagram 38, 121, 124, 135, 139
space-time interval 31, 111, 121
spatial 31
spatial rotation 277, 282
spatial trajectory 43
special relativity 145
special theory of relativity 118
spectrum 153, 278
– asymmetric 278
– symmetrical 278
speed 100, 135 f., 141, 155, 162, 192
– global 135 f., 141
– local 135 f., 141
– subluminal 192
– superluminal 100, 155, 162
speed of light 19, 31, 131, 242 f.
– invariance 31
speed of light in a vacuum 142
sphere 268
– non-deformable 268

306 Index



spherical coordinate system 172
spherical symmetry 267
spherical tachyon 275
spherical wave 165
spin 203, 279
spiral 147, 149 f., 155
spiral beam 162
spiral galaxy 147
spontaneous emission 217
spring 110
– relaxed 110
– stationary 110
– stretched 110
state 80, 105, 204, 221 f., 229, 232, 248
– entangled 204
– equilibrium 105, 222
– excited 80, 221, 248
– ground 221, 229
– initial 248
– non-excited 80
– normal 229
– stationary 232
statistical distributions 207
Stilwell, G. R. 76
stimulated emission 218
subatomic phenomena 203
Sudarshan, E. C. G. 231, 249
summation rule 70
sun 117, 126, 160f., 174, 182
superluminal 42, 171
superluminal bullet 250
superluminal communications 231
superluminal electron 165f.
superluminal ellipsoid 278
superluminal (instant) quantum telecommuni-

cation 207
superluminal Lorentz transformations 234,

281
superluminal lump 293
superluminal motion 143
superluminal particles 228ff., 293
superluminal pulses 211f.
superluminal shadow 174
superluminal signal 225 ff.
superluminal signaling 281, 294
superluminal speed 150, 290
superluminal sphere 276
superluminal spot 162
superluminal velocities 179, 240
superluminal velocity 177, 181, 195, 220,

228
superposition XI, 55, 204
surface 140, 165
– conical 165

– self-intersecting 140
surface of constant phase 197
symmetry between the phase and group veloci-

ties 194
symmetry breaking 281, 294
synchronization 24
synchronization of clocks 141
synchronization procedure 139
system 4, 76, 105, 137 ff., 174
– inertial 4, 9
– reference 76
– rotating 137f., 174
– stationary 105, 139
system of the crossed waves 196, 200

t
tachyon 235ff. f., 238, 246f., 249, 251 f., 254,

266, 271
– asymmetry 271
– negative 247, 249
– positive 247, 249
– transcendent 254
tachyon absorption 257
tachyon acceleration 282
tachyon emission 265
tachyon energy 274
tachyon exchange 265
tachyon pairs 257
tachyon production 250
tachyon spectrum 266
– cutoff 266
tachyon trajectories 269
tachyon vector e 272, 275
tachyon with internal spherical symmetry

269
tachyon world line 269
tachyonic beams 258
tachyon-like objects XI, 224 ff.
tachyons XI, 224, 232, 240
– transcendent 240
tachyon’s asymmetry 282
tachyons carrying information 265
tachyon’s history 251
tachyon’s life 247
tachyon-tardyon diagram 245
tachyon–tardyon interactions 246
tachyon–tardyon object 295
– self-dual 295
Tamm, Igor 166f.
tardyon 237f., 243, 266, 276
– spherical 276
– stationary 243
telecommunication 207
theory of everything 38

307Index



theory of relativity 9, 19, 115f., 124 ff., 130,
142, 166, 174, 202, 219, 228, 237

– general 9, 115, 124, 126, 174
– special 9, 116, 125, 142, 237
thermodynamic equilibrium 221
thermodynamics 229
Thorne, Kip 142
thought experiment 188
time 73, 100, 229, 234
– dilation 73, 75, 77, 123
– reversal 229
time and space 15
– absolute 15
time loop 260, 262
time ordering 81, 112
time reversal 229
time travel 122
T-invariance 272
Tolman paradox 263
trailing cone of electromagnetic radiation 167
transcendent 270
transcendent tachyon 254
transformation 28, 58
– of length 28
– of velocity 58
transformation properties of the 4-vector 271
transformations 21, 63, 66
– Galilean 21, 63
transmission of a signal 212
– superluminal 212
transparency 213
– induced 213
transport 221
– superluminal 221
transverse size of the tachyon 291
twin paradox 113, 123

u
unattainability 64
uncertainty or indeterminacy, principle 194 f.
universal causality 264
US Naval Observatory 123, 125

v
vacuum XI, 52, 61, 149, 165, 183 f., 192, 195,

197, 210, 289
Vavilov-Cerenkov effect 166
Vavilov, Sergey 166
vector 63, 66, 71
– four-dimensional 63, 66, 70
– three-dimensional 63, 66
vector particle 272
vector (4-force) 70
3-vectors 238, 241

velocities X, 55, 58, 61, 71, 174, 182 f., 242
– addition 58, 61
– collinear 55, 242
– group 183
– law of addition 61
– phase XI, 183 ff.
– relativistic 71, 182
– rule of addition 61
– superluminal X, 174 ff.
velocity 1, 8, 55, 58, 63 f., 66, 70, 99, 123, 133,

142, 144, 149, 152, 154, 162, 173, 181, 185,
224, 226, 236, 243, 269

– average 133
– four-dimensional 63
– group XI, 224 ff.
– instantaneous 8
– local 154, 173
– measured locally 133
– non-relativistic 123
– of a bounded area 224
– of the energy transport 152
– phase 224
– radial 8
– relative 226, 243
– rotational 8, 149
– signal (and energy) transfer 224
– subluminal 142
– superluminal 99, 144, 162, 185
– transformation 55, 58
– transverse 8, 181
velocity space 142
velocity vector 70
vertex 120f.
vibration 110
– damped 110

w
wave 75 f., 104, 152, 163, 167 f., 170, 184 f.,

192 f., 197
– concentric 163
– electromagnetic 170, 197
– frequency 76
– monochromatic 184, 192 f.
– of compression 104
– secondary 167f.
– spherical 75, 152, 168
wave front 164, 167
wave function XI, 206
wave packet 185, 202, 266
wavenumber 183, 190, 193
waves 191f., 196, 212, 219, 228
– electromagnetic 192, 228
– monochromatic 191, 196, 212
– solitary 219

308 Index



white dwarfs 160
Wimmel, H. K. 267, 270, 272
Wimmel’s paradox 271
world line 39, 42, 63, 120 f., 124f., 136 f., 140,

235, 246, 247, 252
– of a tachyon 247
– space-like 247

world line loops 295
world line of the tachyon 269
world sheet 95, 124, 253

x
X-ray region 184
X-rays 186

309Index




