
TLFeBOOK

Feedback Control
of Computing Systems

Joseph L. Hellerstein
Yixin Diao

Sujay Parekh
Dawn M. Tilbury

IEEE PRESS

A JOHN WILEY & SONS, INC., PUBLICATION

TLFeBOOK

TLFeBOOK

Feedback Control
of Computing Systems

TLFeBOOK

TLFeBOOK

Feedback Control
of Computing Systems

Joseph L. Hellerstein
Yixin Diao

Sujay Parekh
Dawn M. Tilbury

IEEE PRESS

A JOHN WILEY & SONS, INC., PUBLICATION

TLFeBOOK

Copyright c© 2004 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, 978-750-8400, fax 978-646-8600, or on the web at www.copyright.com. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information on our other products and services please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or
fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Feedback control of computing systems / Joseph L. Hellerstein . . . [et al.].
p. cm.

“A Wiley-Interscience publication.”
Includes bibliographical references and index.
ISBN 0-471-26637-X (cloth)
1. Feedback control systems. 2. Control theory. 3. Electronic data processing. I.

Hellerstein, Joseph, 1952-

TJ216.F44 2004
629.8′3–dc22

2004040490

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

TLFeBOOK

http://www.copyright.com

To Our Families

TLFeBOOK

TLFeBOOK

Contents

PREFACE xv

PART I BACKGROUND 1

1 Introduction and Overview 3
1.1 The Nature of Feedback Control / 3
1.2 Control Objectives / 6
1.3 Properties of Feedback Control Systems / 7
1.4 Open-Loop versus Closed-Loop Control / 10
1.5 Summary of Applications of Control Theory to Computing

Systems / 11
1.6 Computer Examples of Feedback Control Systems / 13

1.6.1 IBM Lotus Domino Server / 13
1.6.2 Queueing Systems / 15
1.6.3 Apache HTTP Server / 16
1.6.4 Random Early Detection of Router Overloads / 19
1.6.5 Load Balancing / 20
1.6.6 Streaming Media / 21
1.6.7 Caching with Differentiated Service / 22

1.7 Challenges in Applying Control Theory to Computing
Systems / 24

1.8 Summary / 26
1.9 Exercises / 27

vii

TLFeBOOK

viii CONTENTS

PART II SYSTEM MODELING 29

2 Model Construction 31

2.1 Basics of Queueing Theory / 31
2.2 Modeling Dynamic Behavior / 35

2.2.1 Model Variables / 35
2.2.2 Signals / 35
2.2.3 Linear, Time-Invariant Difference Equations / 38
2.2.4 Nonlinearities / 40

2.3 First-Principles Models / 42
2.4 Black-Box Models / 44

2.4.1 Model Scope / 45
2.4.2 Experimental Design / 47
2.4.3 Parameter Estimation / 49
2.4.4 Model Evaluation / 53

2.5 Summary / 56
2.6 Extended Examples / 56

2.6.1 IBM Lotus Domino Server / 56
2.6.2 Apache HTTP Server / 57
2.6.3 M/M/1/K Comparisons / 58

*2.7 Parameter Estimation Using MATLAB / 59
2.8 Exercises / 62

3 Z-Transforms and Transfer Functions 65

3.1 Z-Transform Basics / 65
3.1.1 Z-Transform Definition / 66
3.1.2 Z-Transforms of Common Signals / 68
3.1.3 Properties of Z-Transforms / 71
3.1.4 Inverse Z-Transforms / 74
3.1.5 Using Z-Transforms to Solve Difference Equations / 75

3.2 Characteristics Inferred from Z-Transforms / 81
3.2.1 Review of Complex Variables / 81
3.2.2 Poles and Zeros of a Z-Transform / 83
3.2.3 Steady-State Analysis / 86
3.2.4 Time Domain versus Z-Domain / 88

3.3 Transfer Functions / 89
3.3.1 Stability / 92
3.3.2 Steady-State Gain / 95
3.3.3 System Order / 96

TLFeBOOK

CONTENTS ix

3.3.4 Dominant Poles and Model Simplification / 96
3.3.5 Simulating Transfer Functions / 100

3.4 Summary / 102
3.5 Extended Examples / 103

3.5.1 M/M/1/K from System Identification / 103
3.5.2 IBM Lotus Domino Server: Sensor Delay / 103
3.5.3 Apache HTTP Server: Combining Control Inputs / 104

*3.6 Z-Transforms and MATLAB / 105
3.7 Exercises / 107

4 System Modeling with Block Diagrams 111

4.1 Block Diagrams Basics / 111
4.2 Transforming Block Diagrams / 115

4.2.1 Special Aggregations of Blocks / 115
4.3 Transfer Functions for Control Analysis / 116
4.4 Block Diagram Restructuring / 119
4.5 Summary / 120
4.6 Extended Examples / 121

4.6.1 IBM Lotus Domino Server / 121
4.6.2 Apache HTTP Server with Control Loops / 123
4.6.3 Streaming / 124

*4.7 Composing Transfer Functions in MATLAB / 126
4.8 Exercises / 128

5 First-Order Systems 129

5.1 First-Order Model / 129
5.2 System Response / 131

5.2.1 Steady-State and Transient Responses / 131
5.2.2 Input Signal Model / 133
5.2.3 Time-Domain Solution / 133

5.3 Initial Condition Response / 135
5.4 Impulse Response / 136
5.5 Step Response / 141

5.5.1 Numerical Example / 141
5.5.2 Time-Domain Solution / 141
5.5.3 Steady-State Response / 143
5.5.4 Transient Response / 144

5.6 Transient Response to Other Signals / 147
5.6.1 Ramp Response / 147
5.6.2 Frequency Response / 150

TLFeBOOK

x CONTENTS

5.7 Effect of Stochastics / 152
5.8 Summary / 154
5.9 Extended Examples / 156

5.9.1 Estimating Operating Region of the Apache
HTTP Server / 156

5.9.2 IBM Lotus Domino Server with a Disturbance / 157
5.9.3 Feedback Control of the IBM Lotus Domino

Server / 159
*5.10 Analyzing Transient Response with MATLAB / 161
5.11 Exercises / 162

6 Higher-Order Systems 165

6.1 Motivation and Definitions / 165
6.2 Real Poles / 168

6.2.1 Initial Condition Response / 168
6.2.2 Impulse Response / 171
6.2.3 Step Response / 174
6.2.4 Other Signals / 176
6.2.5 Effect of Zeros / 177

6.3 Complex Poles / 179
6.3.1 Second-Order System / 179
6.3.2 Impulse Response / 181
6.3.3 Step Response / 183

6.4 Summary / 185
6.5 Extended Examples / 186

6.5.1 Apache HTTP Server with a Filter / 186
6.5.2 Apache HTTP Server with a Filter and Controller / 189
6.5.3 IBM Lotus Domino Server with a Filter

and Controller / 191
6.5.4 M/M/1/K with a Filter and Controller / 192

*6.6 Analyzing Transient Response with MATLAB / 196
6.7 Exercises / 197

7 State-Space Models 201

7.1 State Variables / 201
7.2 State-Space Models / 204
7.3 Solving Difference Equations in State Space / 207
7.4 Converting Between Transfer Function Models and State-Space

Models / 211

TLFeBOOK

CONTENTS xi

7.5 Analysis of State-Space Models / 216
7.5.1 Stability Analysis of State-Space Models / 216
7.5.2 Steady-State Analysis of State-Space Models / 218
7.5.3 Transient Analysis of State-Space Models / 220

7.6 Special Considerations in State-Space Models / 221
7.6.1 Equivalence of State Variables / 221
7.6.2 Controllability / 222
7.6.3 Observability / 225

7.7 Summary / 228
7.8 Extended Examples / 229

7.8.1 MIMO System Identification of the Apache HTTP
Server / 229

7.8.2 State-Space Model of the IBM Lotus Domino Server
with Sensor Delay / 234

*7.9 Constructing State-Space Models in MATLAB / 237
7.10 Exercises / 239

PART III CONTROL ANALYSIS AND DESIGN 243

8 Proportional Control 245

8.1 Control Laws and Controller Operation / 245
8.2 Desirable Properties of Controllers / 252
8.3 Framework for Analyzing Proportional Control / 254

8.3.1 Closed-Loop Transfer Functions / 255
8.3.2 Stability / 257
8.3.3 Accuracy / 258
8.3.4 Settling Time / 260
8.3.5 Maximum Overshoot / 260

8.4 P-Control: Robustness, Delays, and Filters / 261
8.4.1 First-Order Target System / 261
8.4.2 Measurement Delay / 266
8.4.3 Moving-Average Filter / 268

8.5 Design of Proportional Controllers / 271
8.6 Summary / 275
8.7 Extended Examples / 276

8.7.1 IBM Lotus Domino Server with a Moving-Average
Filter / 276

8.7.2 Apache with Precompensation / 278
8.7.3 Apache with Disturbance Rejection / 282

TLFeBOOK

xii CONTENTS

8.7.4 Effect of Operating Region on M/M/1/K

Control / 282
*8.8 Designing P-Controllers in MATLAB / 286
8.9 Exercises / 289

9 PID Controllers 293

9.1 Integral Control / 293
9.1.1 Steady-State Error with Integral Control / 294
9.1.2 Transient Response with Integral Control / 296

9.2 Proportional–Integral Control / 301
9.2.1 Steady-State Error with PI Control / 303
9.2.2 PI Control Design by Pole Placement / 303
9.2.3 PI Control Design Using Root Locus / 307
9.2.4 PI Control Design Using Empirical Methods / 309

9.3 Proportional–Derivative Control / 315
9.4 PID Control / 320
9.5 Summary / 324
9.6 Extended Examples / 325

9.6.1 PI Control of the Apache HTTP Server Using Empirical
Methods / 325

9.6.2 Designing a PI Controller for the Apache HTTP Server
Using Pole Placement Design / 327

9.6.3 IBM Lotus Domino Server with a Sensor Delay / 328
9.6.4 Caching with Feedback Control / 330

*9.7 Designing PI Controllers in MATLAB / 332
9.8 Exercises / 333

10 State-Space Feedback Control 337

10.1 State-Space Analysis / 337
10.2 State Feedback Control Systems / 339

10.2.1 Static State Feedback / 340
10.2.2 Precompensated Static State Feedback / 342
10.2.3 Dynamic State Feedback / 346
10.2.4 Comparison of Control Architectures / 351

10.3 Design Techniques / 353
10.3.1 Pole Placement Design / 353
10.3.2 LQR Optimal Control Design / 358

10.4 Summary / 362
10.5 Extended Examples / 364

TLFeBOOK

CONTENTS xiii

10.5.1 MIMO Control of the Apache HTTP Server / 364
10.5.2 Effect of the LQR Design Parameters in a Dynamic

State Feedback System / 370
*10.6 Designing State-Space Controllers Using MATLAB / 372
10.7 Exercises / 373

11 Advanced Topics 375

11.1 Motivating Example / 376
11.2 Gain Scheduling / 378
11.3 Self-Tuning Regulators / 381
11.4 Minimum-Variance Control / 384
11.5 Fluid Flow Analysis / 386
11.6 Fuzzy Control / 389
11.7 Summary / 393
11.8 Exercises / 395

APPENDIX A MATHEMATICAL NOTATION 397

APPENDIX B ACRONYMS 401

APPENDIX C KEY RESULTS 403
C.1 Modeling / 403

C.1.1 Dominant Pole Approximation / 403
C.1.2 Closed-Loop Transfer Functions / 403

C.2 Analysis / 404
C.2.1 Stability / 404
C.2.2 Settling Time / 405
C.2.3 Maximum Overshoot / 405
C.2.4 Steady-State Gain / 405

C.3 Controller Design / 405
C.3.1 Control Laws / 405
C.3.2 Pole Placement Design / 406
C.3.3 LQR Design / 407

APPENDIX D ESSENTIALS OF LINEAR ALGEBRA 409
D.1 Matrix Inverse, Singularity / 409
D.2 Matrix Minor, Determinant, and Adjoint / 409
D.3 Vector Spaces / 410
D.4 Matrix Rank / 411
D.5 Eigenvalues / 411

TLFeBOOK

xiv CONTENTS

APPENDIX E MATLAB BASICS 413
E.1 Variables and Values / 413

E.1.1 Vectors / 414
E.1.2 Matrices / 415

E.2 Functions / 416
E.3 Plotting / 417
E.4 M-files / 418
E.5 Summary of MATLAB Functions and Commands / 420

REFERENCES 421

INDEX 427

TLFeBOOK

Preface

This book is intended primarily for practitioners engaged in the analysis and
design of computing systems. Analysts and designers are extremely interested in
the performance characteristics of computing systems, especially response times,
throughputs, queue lengths, and utilizations. Although steady-state characteristics
can be well understood using queueing theory (e.g., as is done with capacity plan-
ning), practitioners lack the conceptual tools to address the dynamics of resource
management, especially changes in workloads and configuration. The focus of
this book is to distill and make accessible the essentials of control theory needed
by computing practitioners to address these dynamics.

The dynamics of computing systems are important considerations in ensuring
the profitability and availability of many businesses. For example, e-commerce
sites frequently contend with workloads that change so rapidly that service
degradations and failures result. Experienced designers know that leaving the
management of dynamics to operators is not acceptable because many changes
occur too rapidly for humans to be able to respond in a timely manner. As a result,
ad hoc automation is frequently deployed with surprising results, such as wild
oscillations or very slow responses to changes in workloads. Our belief is that by
understanding the essential elements of control theory, computing practitioners
can design systems that adapt in a more reliable manner.

A second audience for this book comprises researchers in the fields of com-
puter science and controls. Today, very few computer science researchers have
familiarity with control theory. As a result, many resource management schemes
fail to address concepts that are well understood in control, such as the effect of
measurement and system delays on stability and other aspects of control perfor-
mance. Similarly, researchers in control fields rarely appreciate the issues partic-
ular to computing systems, such as considerations for policy-based management,

xv

TLFeBOOK

xvi PREFACE

service-level agreements, and the implications of modifying computing systems
to provide sensors and actuators that are appropriate for control purposes. To
address this second audience, we show through numerous examples how control
theoretic techniques can be applied to computer systems, and describe the many
challenges that remain.

Much effort has been devoted to making this book accessible to computer
scientists. First, the examples focus on computer systems and their components,
such as Web servers, caching, and load balancing. Second, our approach to mod-
eling draws heavily on insights from queueing systems and their dynamics (as
opposed to Newton’s laws). Third, we focus almost entirely on discrete-time
systems rather than continuous-time systems (as is traditional in controls books).
There are two reasons for this: (1) performance measurements of computer sys-
tems are solicited on a sampled basis, which is best described by a discrete-time
model; and (2) computer scientists are quite comfortable thinking in terms of
difference equations, and much less comfortable thinking in terms of differential
equations.

Prerequisites

The book assumes background in series and their convergence, all of which
is common in an undergraduate engineering and mathematics curriculum. Some
prior exposure to Z-transforms (or Laplace transforms) is also of benefit, although
not required. Also helpful is experience with developing statistical models, espe-
cially using linear regression.

Having appropriate software tools is immensely helpful in developing statis-
tical models as well as for control analysis and design. Throughout the book,
we use MATLAB r©, a very powerful analysis environment that is arguably the
standard for control engineers1. In Appendix E we provide an introduction to
MATLAB (including the Control System Toolbox). However, access to MATLAB is
not required for the vast majority of the book, only the optional section (indicated
by ∗) at the end of each chapter.

Outline of the Book

The book is divided into three parts. Part I, Background, consists of one chapter
introducing the control problem and giving an overview of the area. Part II,
Modeling, contains six chapters and covers modeling of dynamic systems in
discrete time using difference equations, Z-transforms, block diagrams, trans-
fer functions, and transient analysis. The focus is on single-input, single-output
first- and second-order systems, although Chapter 7 is devoted to multiple-input,
multiple-output (MIMO) systems. Part III, Control, has four chapters. In the
first chapter we describe proportional control and pole placement design. In the
next chapter we consider integral and differential control as well, including PID

1MATLAB is a registered trademark of The MathWorks, Inc.

TLFeBOOK

PREFACE xvii

(proportional–integral–differential) control tuning techniques. In the third chapter
we address state-space feedback control, including the application of pole place-
ment to MIMO systems and design using linear quadratic regulators. In the last
chapter we discuss a variety of advanced topics, such as adaptive control, gain
scheduling, minimum-variance control, and fuzzy control. In all three parts,
examples are used extensively to illustrate the problems addressed, the techniques
employed, and the value provided by the techniques.

Several appendixes are provided to make the book more useful as a refer-
ence and more self-contained. Appendix A summarizes the mathematical notation
used, Appendix B lists key acronyms, and Appendix C contains key results
developed in the book. Anothertwo appendixes contain supplemental material.
Appendix D describes results from linear algebra that are used in Chapters 7 and
10. In Appendix E we provide an overview of the facilities in MATLAB for doing
control analysis and design along with a brief MATLAB tutorial.

Considerable thought was given to the choice of examples. We sought examples
that both aid in communicating key concepts and provide a basis for modeling
systems encountered in practice (especially based on our experience at IBM and
that of colleagues elsewhere in industry and academia). Our most basic example is
a single-server queueing system with exponential interarrival and service times and
a finite-size buffer (M/M/1/K), which provides a means to study the dynamics
of admission control and proportional scheduling. The e-mail example based on
the IBM Lotus r© DominoTM Server2 provides insight into challenges faced in
system identification. The Apache HTTP Server3 example serves as a vehicle for
studying MIMO control. Additional examples include caching with differentiated
service and load balancing.

Roadmaps of the Book

The book may be approached in many ways depending on the interests of the
reader. As depicted in Figure P.1, computer scientists interested in the basics
of control theory should read Chapters 1 and 4 in detail. Chapters 2, 3, and 5
should be skimmed to gain insight into the nature of control system modeling,
and Chapter 8 can be read in modest detail to understand the essence of control
system design. Chapter 11 will also be of interest since it discusses other areas
of control theory that are potentially applicable to computing systems.

Designers of computing systems who want to apply control theory in practice
should proceed as shown in Figure P.2 by readying Chapters 1 through 6 and
Chapters 8 and 9. State-space techniques, which are described in Chapters 7 and
10, should be approached only after there is a solid understanding of the other
chapters. Considerable effort has been made to include worked examples that can
be the basis for more extensive analysis and design studies. Also, all of these
chapters include a section of extended examples that should stimulate ideas about
the range of applications of control theory to computing systems.

2IBM Lotus Domino is a registered trademark of IBM Corporation.
3Apache is a trademark of The Apache Software Foundation and is used with permission.

TLFeBOOK

xviii PREFACE

4: System Modeling and Block Diagrams

3: Z-Transforms and Transfer Functions

5: First-Order Systems

8: Proportional Control

11: Advanced Topics

2: Model Construction

1: Introduction and Overview

Fig. P.1 Roadmap for computer scientists interested in the basics of control theory. Dashed
boxes indicate chapters that should be skimmed.

4: System Modeling with Block Diagrams

3: Z-Transforms and Transfer Functions

5: First-Order Systems

8: Proportional Control

9: PID Controllers

2: Model Construction

1: Introduction and Overview

6: Higher-Order Systems

7: State-Space Models

10: State-Space Feedback Control

11: Advanced Topics

Fig. P.2 Roadmap for computer scientists interested in applying control theory. Dashed boxes
indicate chapters that should be skimmed.

TLFeBOOK

PREFACE xix

4: System Modeling and Block Diagrams (Examples)

5: First-Order Systems (Examples)

8: Proportional Control (Examples)

9: PID Controllers (Examples)

1: Introduction and Overview

6: Higher-Order Systems (Examples)

7: State-Space Models (Examples)

10: State-Space Feedback Control (Examples)

11: Advanced Topics (Examples)

Fig. P.3 Roadmap for control theorists interested in applications to computing systems. The
focus should be on the examples, both the short in-chapter examples and the extended
examples at the end of each chapter.

Control theorists interested in computing system applications should proceed
as depicted in Figure P.3. Desirable properties of controllers in computing sys-
tems and many examples of computing systems are described in Chapter 1.
Chapters 4 through 11 contain a rich set of control problems based on these
examples, especially the extended examples at the end of chapters.

Errata and Additions

We intend to post errata and various additions to the book on the Web site http://
www.research.ibm.com/fbcs/. For example, several of us are currently teaching a
class based on the book at Columbia University. This has resulted in a number of
new ideas about how to present the material.

Acknowledgments

We wish to acknowledge the many colleagues who have helped with this book
in various ways. Xichu Chen at the University of Michigan, Freeman Rawson
at IBM Research in Austin, Texas, and Jose Renato Santos at Hewlett-Packard

TLFeBOOK

xx PREFACE

Laboratory provided detailed comments on the text. David Patterson at the Uni-
versity of California–Berkeley and Armando Fox at Stanford aided us in better
focusing the book for a computer science audience. Nagui Halim at IBM Research
in Hawthorne, New York, gave strong support for this project from the start and
provided constant enthusiasm throughout.

J.L. HELLERSTEIN

IBM Thomas J. Watson Research Center
Hawthorne, New York

Y. DIAO

IBM Thomas J. Watson Research Center
Hawthorne, New York

S. PAREKH

IBM Thomas J. Watson Research Center
Hawthorne, New York

D.M. TILBURY

Mechanical Engineering Department
University of Michigan

Ann Arbor, Michigan

TLFeBOOK

Part I

Background

1

TLFeBOOK

TLFeBOOK

1
Introduction and Overview

This book is about feedback control of computing systems. The main idea of
feedback control is to use measurements of a system’s outputs, such as response
times, throughputs, and utilizations, to achieve externally specified goals. This is
done by adjusting the system control inputs, such as parameters that affect buffer
sizes, scheduling policies, and concurrency levels. Since the measured outputs
are used to determine the control inputs, and the inputs then affect the outputs,
the architecture is called feedback or closed loop. Almost any system that is
considered automatic has some element of feedback control. In this book we
focus on the closed-loop control of computing systems and methods for their
analysis and design.

1.1 THE NATURE OF FEEDBACK CONTROL

Feedback control is about regulating the characteristics of a system. We begin
with some key concepts: the measured output, which is the characteristic to be
regulated to a desired value; the control input, which is what influences the
measured output; and a disturbance, which affects the way in which the input
affects the output. These are illustrated in a later section.

The reader may be familiar with everyday feedback control systems, such as
cruise control in an automobile, a thermostat in a house, or the human sensorimo-
tor system. A cruise control system achieves the desired speed by adjusting the
accelerator pedal based on a velocity measurement from the speedometer. Here,

Feedback Control of Computing Systems, by Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury
ISBN 0-471-26637-X Copyright c© 2004 John Wiley & Sons, Inc.

3

TLFeBOOK

4 INTRODUCTION AND OVERVIEW

the accelerator pedal adjustments are the control input that provides a means to
regulate speed, the measured output. The desired speed is maintained even when
the car goes up or down hills or encounters head or tail winds, all of which are
examples of disturbances that affect the relationship between the control input
and the measured output. A thermostat achieves the desired temperature (output)
by adjusting the furnace cycle and fan (input). The desired temperature is main-
tained even when the outside temperature increases or decreases (disturbance).
The sensorimotor system achieves the desired hand position (output) to pick up
an object by adjusting the muscle tensions (inputs) based on the current position
sensed by the eyes and touch.

These concepts of feedback control apply to computing systems as well. Con-
sider a computing system with a desired output characteristic. For example,
operators of computing systems, or administrators , may want each of three
Apache HTTP Servers [24] to run at no greater than 66% utilization, so that
if any one of them fails, the other two can immediately absorb the entire load.
Here, the measured output is CPU utilization. In computing systems, the mea-
sured output typically depends on the nature of the requests being served, or
workload . Workload is often characterized in terms of the arrival process (e.g.,
Poisson, self-similar), and the distribution of service times for the resources used
(e.g., CPU, memory, and database locks) [20]. In our studies of the Apache
HTTP Server, CPU utilization depends on the workload and the control input.
The workload is characterized by the request rate and whether the requests are for
static or dynamic hypertext pages. The control input is the maximum number of
connections that the server permits as specified by the MaxClients parameter.
The workload is uncontrolled and so can be viewed as a disturbance. The control
input MaxClients can be manipulated by an administrator or an automatic
controller to affect CPU utilization.

Much of feedback control deals with understanding how the control input and
disturbance affect the measured output. Continuing with the Apache HTTP Server
example, as MaxClients increases, the CPU utilization increases. However,
the effect is not instantaneous. A larger MaxClients only allows more users
to connect; the system must wait some time for the users to arrive. Similarly,
when MaxClients is decreased, current users are not disconnected until their
sessions have timed out. Further, the value of MaxClients that results in a
66% utilization depends on the current workload, which may be unknown a
priori and/or may change over time. Feedback control provides a method for
setting MaxClients automatically to achieve the desired utilization that takes
into account these dynamics and the effects of disturbances.

With this context we can describe feedback control in more detail. How-
ever, before doing so, a change in perspective is required. In computing systems
we think in terms of the flow of work units or data through a system. Thus,
input–output relationships reflect how work is done and/or data are transformed.
Control theory also relies heavily on input–output relationships. However, the
semantics are different. In control analysis, the inputs and outputs are metric
values (e.g., CPU utilization) and/or control settings (e.g., MaxClients).

TLFeBOOK

THE NATURE OF FEEDBACK CONTROL 5

Target
SystemController

Control
Input

Reference
Input

Measured
Output

Transduced
Output

Transducer

Disturbance
Input

+
−

Control
Error

Noise
Input

Fig. 1.1 Block diagram of a feedback control system. The reference input is the desired value
of the system’s measured output. The controller adjusts the setting of control input to the target
system so that its measured output is equal to the reference input. The transducer represents
effects such as unit conversions and delays.

Figure 1.1 is an example of a single-input, single-output SISO control system,
a control system that has a single control input (i.e., MaxClients) and a single
measured output (i.e., CPU utilization). More commonly in computing we deal
with MIMO systems, which have multiple control inputs (e.g., settings of con-
figuration parameters) and multiple measured outputs (e.g., response times and
throughputs by service class). For pedagogical purposes, the sequel focuses on
SISO systems, although MIMO considerations are addressed in passing.

The essential elements of feedback control system are depicted in Figure 1.1.
These elements are:

• Control error , which is the difference between the reference input and the
measured output.

• Control input , which is a parameter that affects the behavior of the tar-
get system and can be adjusted dynamically (such as the MaxClients
parameter in the Apache HTTP Server).

• Controller , which determines the setting of the control input needed to
achieve the reference input. The controller computes values of the control
input based on current and past values of control error.

• Disturbance input , which is any change that affects the way in which the
control input influences the measured output.

• Measured output , which is a measurable characteristic of the target system,
such as CPU utilization and response time.

• Noise input , which is any effect that changes the measured output produced
by the target system. This is also called sensor noise or measurement noise.

• Reference input , which is the desired value of the measured outputs (or
transformations of them), such as CPU utilization, should be 66%. Some-
times, the reference input is referred to as desired output or the setpoint .

• Target system , which is the computing system to be controlled (see the
examples of target systems in Section 1.6).

TLFeBOOK

6 INTRODUCTION AND OVERVIEW

• Transducer , which transforms the measured output so that it can be com-
pared with the reference input.

The circular flow of information in Figure 1.1 motivates our use of the term
closed-loop system to refer to a feedback control system. We will use these terms
interchangeably.

An appeal of feedback control is that administrators can achieve the desired
output in a direct way by specifying the reference input instead of indirectly by
manipulating the control input (an approach that is time consuming and requires
considerable skill). The focus of this book is on designing feedback controllers
to achieve a desired output.

The disturbance inputs are factors that affect the measured output but for
which there is no governing control input. The disturbance input is depicted as
a second input to the target system in Figure 1.1. An example of a disturbance
input in the Apache HTTP Server is the executions of tasks such as backups
and virus scans (collectively referred to as administrative tasks) that affect the
relationship between the control input MaxClients and the measured output
CPU utilizations and response times. One reason that feedback control is so
powerful and so widely used is that it can ensure that the measured output is
very close to the reference input even in the presence of disturbances.

The transducer transforms the measured output into the values used by the
controller. An example of a transducer is a moving-average filter that smooths
the stochastics of computer system measurements. Another example is a mea-
surement sensor, especially if the sensor introduces time delays because of the
manner in which measurements are collected. A third example is unit conver-
sions, such as converting from queue lengths into response times using formulas
such as Little’s result [35] in systems that do not measure response times directly.
Not all feedback systems contain a transducer. However, in other systems, the
transducer is a complicated element that performs multiple functions.

Before closing this section, we note that systematic construction of controllers
requires a model of the input–output relationships of the target system. We refer
to this as the system model . Because of the central role that the system model
plays in controller design, a significant fraction of the book is devoted to modeling
techniques (especially based on linear system theory) and their application to
computing systems.

1.2 CONTROL OBJECTIVES

Controllers are designed for some intended purpose. We refer to this purpose as
the control objective. The most common objectives are:

• Regulatory control. Ensure that the measured output is equal to (or near)
the reference input. For example, the utilization of a Web server should be
maintained at 66%. The focus here is on changes in the reference input,

TLFeBOOK

PROPERTIES OF FEEDBACK CONTROL SYSTEMS 7

such as changing the target utilization from 66% to 75% if a fourth server
becomes available. The term tracking control is used if the reference input
changes frequently.

• Disturbance rejection. Ensure that disturbances acting on the system do
not significantly affect the measured output. For example, when a backup
or virus scan is run on a Web server, the overall utilization of the system
is maintained at 66%. This differs from regulatory control in that we focus
on changes in the disturbance input, not in the reference input.

• Optimization. Obtain the “best” value of the measured output. For example,
in Chapter 11 we describe a fuzzy controller that adjusts MaxClients in
the Apache HTTP Server so as to minimize response times.

Much of the book is about regulatory control with disturbance rejection. The
need for regulatory control arises in three ways in computing systems. First, as
already noted, regulation arises when there is a need to maintain reserve capac-
ity (sometimes referred to as head room). Second, regulatory control is used
for a kind of constrained optimization, such as “maximize throughput subject to
response time being no greater than 1 second.” A common heuristic for such
an objective is to accept as many requests as possible without exceeding the
response-time constraint (e.g., regulate response time to be 1 second). Third,
regulation is important in the enforcement of service-level agreements. Distur-
bance rejection addresses the fact that the foregoing must be done in the presence
of time-varying loads and changes in hardware and software configurations.

To elaborate on the last point, service-level agreements (or SLAs) are a con-
tract between a service provider and its customers. Such agreements consist
of one or more service-level objectives (SLOs). Examples of service providers
include Internet service providers, application service providers, and internal IT
organizations. An example of an SLO is: “Gold customer response times should
be no greater than 2 seconds.” There are three parts to an SLO: the metric (e.g.,
response time), the bound (e.g., 2 seconds), and a relational operator (e.g., less
than). Intuitively, service providers want to have sufficient resources to meet their
SLOs. But they do not want to have more resources than required since doing
so imposes unnecessary costs. As a result, SLO enforcement often becomes a
regulation problem. In terms of the architecture in Figure 1.1, the SLO metric is
the measured output, and the SLO bound is the reference input.

The choice of control objective typically depends on the application. Indeed,
with multiuse target systems, the same target system may have multiple con-
trollers with different SLOs.

1.3 PROPERTIES OF FEEDBACK CONTROL SYSTEMS

There are several properties of feedback control systems that should be considered
when comparing controllers for computing systems. Our choice of metrics is
drawn from experience with the commercial information technology systems.

TLFeBOOK

8 INTRODUCTION AND OVERVIEW

Other properties may be of interest in different settings. For example, [43] discuss
properties of interest for control of real-time systems.

Below, we motivate and present the main ideas of the properties considered.
More formal definitions are given later in the book.

• A system is said to be stable if for any bounded input, the output is also
bounded. (We discuss stability in detail in Chapter 3 .) Stability is typically
the first property considered in designing control systems since unstable
systems cannot be used for mission-critical work.

• The control system is accurate if the measured output converges (or becomes
sufficiently close) to the reference input. Accurate systems are essential to
ensuring that control objectives are met, such as differentiating between gold
and silver classes of service and ensuring that throughput is maximized
without exceeding response-time constraints. Typically, we do not quan-
tify accuracy. Rather, we measure inaccuracy. For a system in steady state,
its inaccuracy, or steady-state error , is the steady-state value of the control
error.

• The system has short settling times if it converges quickly to its steady-
state value. Short settling times are particularly important for disturbance
rejection in the presence of time-varying workloads so that convergence is
obtained before the workload changes.

• The system should achieve its objectives in a manner that does not over-
shoot. Consider a system in which the objective is to maximize throughput
subject to the constraint that response time is less than 1 second, which is
often achieved by a regulator that keeps response times at their upper limit
so that throughput is maximized. Suppose that incoming requests change
so that they are less CPU intensive and hence response times decrease to
0.5 second. Then, by avoiding overshoot, we mean that as the controller
changes the control input that causes throughput to increase (and hence
response time to increase), response times should not exceed 1 second.

Much of the focus of the book is on these SASO properties: stability, accuracy,
settling time, and overshoot.

We begin with what constitutes a stable system. For computing systems we
want the output of feedback control to converge, although it may not be constant
due to the stochastic nature of the system. To refine this further, computing
systems have operating regions (i.e., combinations of workloads and configuration
settings) in which they perform acceptably and other operating regions in which
they do not. Thus, in general, we refer to the stability of a system within an
operating region. Clearly, if a system is not stable, its utility is severely limited.
In particular, the system’s response times will be large and highly variable, a
situation that can make the system unusable.

Figure 1.2 displays an instability in the Apache HTTP Server that employs
an improperly designed controller. The horizontal axis is time, and the vertical
axis is CPU utilization (which ranges between 0 and 1). The solid line is the

TLFeBOOK

PROPERTIES OF FEEDBACK CONTROL SYSTEMS 9

k

0 100 200 300 400 500 600 700
0

0.5

1
C

P
U

Fig. 1.2 Example of an unstable feedback control system for the Apache HTTP Server. The
instability results from having an improperly designed controller.

reference input for CPU utilization, and the line with markers is the measured
value. During the first 300 seconds, the system operates in open loop. When the
controller is turned on, a reference input of 0.5 is used. At this point, the system
begins to oscillate and the amplitude of the oscillations increases. This is a result
of a controller design that overreacts to the stochastics in the CPU utilization
measurement. Note that the amplitude of the oscillations is constrained by the
range of the CPU utilization metric.

If the feedback system is stable, it makes sense to consider the remaining
SASO properties: accuracy, settling time, and overshoot. The vertical lines in
Figure 1.3 plot the measured output of a stable feedback system. Initially, the
(normalized) reference input is 0. At time 0, the reference input is changed to its
steady value rss = 2. The system responds and its measured output eventually
converges to yss = 3, as indicated by the heavy dashed line. The steady-state
error ess is −1, where ess = rss − yss. The settling time of the system ks is

0 2 4 6 8 10 12 14
0

1

2

3

4

M
ea

su
re

d
O

ut
pu

t yssMP

yss

Time (k)
ks

ess

rss

Fig. 1.3 Response of a stable system to a step change in the reference input. At time 0, the
reference input changes from 0 to 2. The system reaches steady state when its output always
lies between the lightweight dashed lines. Depicted are the steady-state error (ess), settling time
(ks), and maximum overshoot (Mp).

TLFeBOOK

10 INTRODUCTION AND OVERVIEW

the time from the change in input to when the measured output is sufficiently
close to its new steady-state value (as indicated by the light dashed lines). In
the figure, ks = 9. The maximum overshoot MP is the (normalized) maximum
amount by which the measured output exceeds its steady-state value. In the figure
the maximum value of the output is 3.95, so (1 +MP)yss = 3.95, or MP = 0.32.

There is one more property of importance for feedback control of computing
systems—robustness. Robustness addresses the effect on feedback performance
if there are changes in the target system or its environment. For example, more
memory may be added to an e-mail server, a clustered Web server might operate
in a degraded mode if some servers are removed from operation, and software
updates can affect performance characteristics. Environmental changes include
workload changes (e.g., the proportion of “buy” versus “browse” transactions)
and the location of network access points. Informally, a controller is robust if such
changes have little effect on the control system properties, especially stability and
accuracy.

The properties of feedback systems are used in two ways. The first relates to
the analysis. Here, we are interested in determining if the system is stable as well
as measuring and/or estimating its steady-state error, settling time, and maximum
overshoot. The second is in the design of feedback systems. Here, the properties
are design goals . That is, we construct the feedback system to have the desired
values of steady-state error, settling times, and maximum overshoot.

1.4 OPEN-LOOP VERSUS CLOSED-LOOP CONTROL

Although closed-loop control has considerable appeal, its use requires, among
other things, online measurements and careful design to ensure desirable system
properties, especially stability, accuracy, short settling times, and small overshoot.

An alternative is open-loop control , a technique that avoids using the measured
output to adjust the control input. (Open-loop control is sometimes referred to
as feedforward control .) Figure 1.4 depicts such a system. The feedforward
controller uses the reference input (and sometimes the disturbance input) to
determine the setting of the control input needed to achieve the desired measured
output; the measured output is not used. A feedforward scheme in which the

Target
SystemController

Control
Input

Reference
Input

Measured
Output

Disturbance
Input

Noise
Input

Feedforward

Fig. 1.4 Block diagram of feedforward control. In contrast to Figure 1.1, the measured output
is not used by the (feedforward) controller to determine the control input needed to achieve the
reference input.

TLFeBOOK

SUMMARY OF APPLICATIONS OF CONTROL THEORY TO COMPUTING SYSTEMS 11

TABLE 1.1 Comparison of Open- and Closed-Loop
Control

Open Loop Closed Loop

Avoids using measured
outputs

Yes No

Cannot make stable system
unstable

Yes No

Simple system model No Yes
Adapts to disturbances No Yes

control input is a deterministic function of the reference (and/or disturbance) input
is stable if the target system is stable. However, to construct such a system, we
must have an accurate model of the target system (e.g., as a result of detailed
experiments) from which the setting of the control input is determined. This
model must be robust to changes in the system and its operating environment
(including disturbances such as the execution of administrative tasks).

To illustrate these points, consider the Apache HTTP Server. The administrator
may experiment with several different MaxClients and find one that results in
a CPU utilization of 66%. However, if the workloads are time varying (e.g., by
time of day, day of week), MaxClients may need to be adjusted to maintain
the desired CPU utilization. Unlike closed-loop control, open-loop control cannot
compensate for disturbances or noise. In contrast, closed-loop control can provide
such compensation. Also, closed-loop systems do not require an accurate system
model, something that is difficult to obtain in practice.

Table 1.1 summarizes the comparison of open- and closed-loop systems.
Although open-loop systems have appeal in terms of reducing design complexity
(e.g., avoiding the use of measured outputs) and ensuring stability, they are rarely
used in practice because they cannot adapt to change and it is almost impossi-
ble to obtain an accurate system model. The remainder of the book focuses on
closed-loop systems, especially on designing feedback controllers that are stable,
minimize steady-state error, and have short settling times and small overshoot.

1.5 SUMMARY OF APPLICATIONS OF CONTROL THEORY
TO COMPUTING SYSTEMS

Since the early 1990s, there has been broad interest in the application of control
theory to computing systems, especially in the areas of data networks operating
systems, middleware (e.g., Web servers, database servers), multimedia, and power
management. Below we summarize these efforts, although we make no claim that
this is a comprehensive survey.

In the area of data networks, there has been considerable interest in applying
control theory to problems of flow control. One of the first, [34], develops the
concept of a Rate Allocating Server that regulates the flow of packets through

TLFeBOOK

12 INTRODUCTION AND OVERVIEW

queues. Others have applied control theory to short-term rate variations in TCP
(e.g., [40]) and some have considered stochastic control [5]. More recently, there
have been detailed models of TCP developed in continuous time (using fluid
flow approximations) that have produced interesting insights into the operation of
buffer management schemes in routers (see [29], [28]). The area of Asynchronous
Transfer Mode (ATM) Networks has been an area of intensive exploitation of
control theory in the 1990s (e.g., [10], [58], [32], [63], [56], [46]). However,
the limited success of ATM technology and the use of continuous time and/or
advanced control techniques (e.g., stochastic control) meant that there was little
adoption of control theory by computing practitioners.

Although not nearly as prodigious, there has been considerable interest in
applying control techniques to operating systems as well. [6] describes the details
of control techniques widely used in IBM’s Multiple Virtual Storage (MVS)
operating system to achieve several kinds of service level objectives. The fore-
going is based primarily on detailed knowledge of the operating system’s control
inputs and measured outputs. Others have proposed approaches that require little
knowledge of details, relying instead on learning algorithms (e.g., [11]).

One of the most recent areas in which control theory has been applied to is
middleware. Middleware are software systems that facilitate the development
of robust, enterprise level applications. Examples include application servers
(e.g., Apache HTTP Server), database management systems (e.g., IBM’s Uni-
versal Database Server), and e-mail servers (e.g., IBM Lotus Domino Server).
There are three types of control problems that are typically addressed. The first
is to provide a capability for enforcing service level agreements in that cus-
tomers receive the service levels for which they contracted. Often referred to as
service differentiation , this is achieved by enforcing relative delays [2], prefer-
ential caching of data [44], or in special cases modifying application codes to
insert effectors (e.g., [54]). The second problem is to regulate resource utiliza-
tions so that they are not excessive, either because of reliability considerations
(e.g., some software systems become fragile at heavy loads) or because of sys-
tem design (e.g., to allow spare capacity for fail overs). Examples here include
a mixture of queueing and control theory used to regulate the Apache HTTP
Server [62], regulation of the IBM Lotus Domino Server [53], and multiple-
input, multiple-output control of the Apache HTTP Server (e.g., simultaneous
regulation of CPU and memory resources) [17]. The third problem that is often
addressed is to optimize the system configuration, such as to minimize response
times [18].

Management of multimedia streams has also been an area of focus for applying
control theory to computing systems. The challenge here is that end-user perfor-
mance is related to receiving a regular flow of correlated streams of data (e.g.,
voice and video), whereas the underlying systems operate more on a contention
basis (e.g., execution priority). One solution to this is to regulate process priori-
ties in accordance with the desired service levels (e.g., [61]). Another approach
is to develop a control framework in which to build the capabilities for providing
these service levels (e.g., [39]).

TLFeBOOK

COMPUTER EXAMPLES OF FEEDBACK CONTROL SYSTEMS 13

There is one last area we mention in passing—dynamic power management.
The expense and engineering complications associated with supplying power to
computational elements have motivated intensive investigations into how power
can be managed within computing elements. Considerations here include address-
ing nonstationary service requests [15], the success of which largely depends
on being able to model dynamics (a key concern in any control system). More
extensive discussions of power-aware computing can be found in [65] and related
articles in the same issue.

We close this discussion by pointing to an overview of the application of
control techniques to computing in [60] and related articles in the same issue.

1.6 COMPUTER EXAMPLES OF FEEDBACK CONTROL SYSTEMS

In this section we present several examples of feedback control in computing sys-
tems to illustrate the kinds of dynamics that must be addressed, along with possi-
ble approaches and technical challenges. Many of these examples are used in later
chapters to demonstrate techniques for control analysis and design. Each example
begins by describing the computing system, such as the flow of Web requests
through the Apache HTTP Server. Then the control problem is presented in terms
of Figure 1.1, and we discuss the issues in control design and implementation. A
common theme is the difference between the computing systems perspective and
the control perspective. In particular, the former emphasizes the flow of work
though functional components of a target system. The latter focuses on regulating
measurement values that characterize the operation of the target system.

1.6.1 IBM Lotus Domino Server

Today’s corporate information technology environment typically devotes a sub-
stantial fraction of its budget to e-mail service. This example considers a specific
e-mail server in detail—the IBM Lotus Domino Server. We also refer to this as
the Notes Server.

As shown in Figure 1.5, Lotus Notes is a client–server application. Client
machines interact with end users to provide access to e-mail and other applications

Notes
Server

RPCs

Server
Log

Notes
Client

Notes
Client

RPC
Records

Administrative
Tasks

Fig. 1.5 Components and data flows in a system with the IBM Lotus Domino Server. End
users interact with Lotus Notes client software, which sends remote procedure calls (RPCs) to
the IBM Lotus Domino Server. Records of RPCs processed are written to the server log.

TLFeBOOK

14 INTRODUCTION AND OVERVIEW

enabled by the IBM Lotus Domino Server. The server uses a database abstraction
to provide an application computing environment. For example, clients access
e-mail by opening an e-mail database, obtaining a view of the elements in
the database, and then reading, updating, deleting, and inserting entries in the
database. The interaction between the client and server is in the form of remote
procedure calls (RPCs). The IBM Lotus Domino Server maintains a server log
of statistics on RPCs once they have completed. In addition to end-user-initiated
RPCs, the IBM Lotus Domino Server handles various administrative tasks.

Administrators responsible for the IBM Lotus Domino Server pay considerable
attention to the number of RPCs currently being processed by the server. We refer
to this as RIS , the number of RPCs in the server. RIS is closely related to the
number of active users, those users with an RPC being processed by the server.
If RIS becomes too large, there may be excessive use of CPU, memory, and
other resources, thereby causing poor performance.

One way to limit RIS is by the MaxUsers parameter, which can be adjusted
dynamically through a console interface. MaxUsers constrains the number of
concurrent sessions, that is, the number of client connections to the IBM Lotus
Domino Server. It is important to note that the number of connections is not
the same as RIS since (1) connected users may be thinking and hence have
no RPC in the server, and (2) there are administrative tasks that are treated
in a manner similar to user RPCs but for which there is no connection. Thus,
the relationship between MaxUsers and active users is approximate at best. In
practice, this is resolved by having administrators monitor server resource use
and adjust MaxUsers so as to achieve the desired value for RIS.

From the foregoing we see that one control objective for the IBM Lotus
Domino Server is regulating RIS. Figure 1.6 shows how a controller can be
used to achieve this regulation. The target system is the IBM Lotus Domino
Server in combination with a sensor that uses the server log to obtain RPC
statistics. The administrator specifies a reference input for RIS. The control error
is the difference between this reference input and measured RIS (as obtained
from the sensor). From this, the controller computes settings of the control input

Notes
ServerController

MaxUsersReference
RIS Actual

RIS
Sensor

Measured
RIS

Administrative
Tasks

Target System

Fig. 1.6 Control system for the IBM Lotus Domino Server. The target system encompasses
both the IBM Lotus Domino Server and the sensor. The reference input is the desired number of
RPCs in the server (RIS). The measured output is obtained through the server log. The control
input is MaxUsers.

TLFeBOOK

COMPUTER EXAMPLES OF FEEDBACK CONTROL SYSTEMS 15

MaxUsers. Note that the sensor is not treated as a transducer since it affects
the measured output.

One subtlety in this design is that the sensor introduces a delay due to waiting
for the RPC to complete so that the server log can be written. As we show in
later chapters, such delays can have a dramatic effect on the properties of the
feedback control system. Further details of feedback control of the IBM Lotus
Domino Server can be found in [53].

1.6.2 Queueing Systems

Queueing systems are widely used to model the performance of computing
systems. As such, queueing models provide an excellent way to study a vari-
ety of control issues in computing systems. Consider an elementary queue,
as shown in Figure 1.7. Work requests (or customers) arrive and are placed
in a queue or buffer (the rectangle with multiple vertical lines), where they
are selected for processing by the server (the circle). Requests may be distin-
guished as belonging to difference service classes. Examples of Web services
are browsing (which may only require searching the online catalog) and buy-
ing (which typically involves a secure server and a third-party payment system).
E-commerce sites would like to use these class distinctions to allocate resources
in a more favorable way to those users who have the most potential to make a
purchase.

The queueing model can be applied to the problem of meeting service-level
objectives. Consider the SLO “Response time for a credit card inquiry should
be less than 5 seconds.” One approach to handling this constraint is to reduce
the delay experienced by credit card inquiries by limiting the number of “other”
requests that are accepted into the queue; the other requests are directed else-
where (e.g., using the HTTP REDIRECT verb). In terms of the queueing system
example, response time can be regulated using as a control input the size of
the buffer (in units of the number of requests that can be queued), with the
understanding that requests that do not fit into the buffer are redirected.

Figure 1.8(a) depicts a feedback control system that regulates response times
for the queueing system described above. The implicit objective of this system
can be expressed as a service-level objective—maximize the number of requests
processed subject to constraints on response times. One example of such an
objective is service providers who obtain revenue from subscriber transactions
but must abide by SLOs. In the system depicted, the reference input is the

Buffer Server

Service
Requests

Service
Completions

(Queue)

Fig. 1.7 Single-server queueing system. Requests are placed in a buffer, where they await
service. Completed requests depart the system.

TLFeBOOK

16 INTRODUCTION AND OVERVIEW

Queueing
SystemController

Buffer
Size

Reference
Response Time

Measured
Response Time

(a) Measurement of response time

Controller

Estimated
Response Time

Reference
Response Time Queueing

System

Buffer
Size

Actual
Response Time

Measured
Queue LengthEstimator

Response Time

(b) Estimate of response time using a transducer

Fig. 1.8 Use of a transducer to estimate response times in a queueing system.

desired response time, and the control input is the buffer size. The control error
is computed by subtracting measured response times from the reference response
time.

Figure 1.8(a) can be extended in many ways. First, it may be difficult or unde-
sirable to use measured response times, especially for long-running transactions.
The issue here is that for long-running transactions the use of response-time
measurements introduces delay into the feedback loop since work must com-
plete before its response time is recorded. Figure 1.8(b) depicts an alternative
approach that is appropriate if arrival rates are fairly constant. Here, a transducer
is used to estimate response time from the queue length (which can be measured
instantaneously) using Little’s result (e.g., [35]).

Some other extensions to Figure 1.8(a) are also worthy of note. There may be
other control inputs, such as the fraction of the server devoted to each service
class, a technique that is referred to as generalized processor sharing. Thus, if
a gold customer is about to exceed its response-time constraints, and a silver
customer is well below its constraint, a larger fraction of the server may be
devoted to gold. Other generalizations include having multiple measured out-
puts (e.g., queue length, utilization) and using a moving-average filter to smooth
stochastics in the output. Further details on queueing systems can be found in
[35] and [4].

1.6.3 Apache HTTP Server

Web servers are an essential part of information distribution and electronic com-
merce. In a typical configuration, end users interact with client workstations that
in turn send hypertext transfer protocol (HTTP) requests (e.g., browse a page or
download a file) to one or more Web servers. The Web server replies with the
appropriate information.

TLFeBOOK

COMPUTER EXAMPLES OF FEEDBACK CONTROL SYSTEMS 17

Accept
Queue

Connection
Requests

Worker MaxClients

Connection
Close

KeepAlive
Busy Wait

Idle

Busy Wait

Idle

Worker 1

Fig. 1.9 Apache architecture and session flow. MaxClients is the maximum number of
workers; there is one worker devoted to each connection. KeepAlive is the maximum time
that a worker remains in the wait state before the connection to its client is closed. While in the
wait state, workers accept requests only from their connected client.

The Apache HTTP Server [24] is structured as a pool of workers (either threads
or processes, depending on the specific software release), as shown in Figure 1.9.
Requests enter the server at the accept queue, where they wait until a worker
(indicated by the large circles) is available. A worker is available if it is in the
“idle” state. While the worker is processing a request, it is in the “busy” state.
The widely used HTTP 1.1 protocol provides for persistent connections. That is,
the worker does not close the connection after the request has been processed.
Instead, the worker enters the “wait” state, and the connection remains open so
that subsequent requests from the same client can be processed more efficiently.
Note that while the worker is in the wait state, it cannot process requests from
clients other than the one to which it is connected.

TLFeBOOK

18 INTRODUCTION AND OVERVIEW

Two configuration parameters affect the resource consumption and perfor-
mance of the Apache HTTP Server. The MaxClients parameter limits the size
of this worker pool, thereby imposing a limitation on the processing rate of the
server. A higher MaxClients value allows the Apache HTTP Server to pro-
cess more client requests. But if MaxClients is too large, there is excessive
consumption of CPU and memory resources that degrades performance for all
clients.

The Apache KeepAlive configuration parameter controls the maximum time
that a worker can remain in the wait state before it transitions to the idle state
and the connection to its client is closed. If KeepAlive is too large, CPU is
underutilized since clients with requests to process cannot connect to the server.
Reducing the timeout value means that workers spend less time in the wait state
and more time in the busy state (if connection overheads are modest compared
with the time for processing requests). Hence, CPU increases. If the timeout is
too small, the TCP connection terminates prematurely, which increases CPU
consumption since the connection must be rebuilt for the next request from the
same client.

One control problem in managing Web servers is regulating resource uti-
lizations such as CPU and memory. Figure 1.10 displays one approach to this
regulation in the Apache HTTP Server. Administrators specify the desired values
for CPU and memory utilizations. The controller uses these two reference inputs
as well as measured CPU and memory utilizations to adjust both KeepAlive
and MaxClients.

The Apache HTTP Server is a MIMO system. Specifically, the control inputs
KeepAlive and MaxClients are used to regulate the measured outputs CPU
and memory utilizations. One complication in constructing a controller is that
both of the control inputs affect CPU utilization. This is one motivation for the
state-space techniques discussed in Chapters 7 and 10.

Further discussion of the Apache HTTP Server can be found in [24] and
[2], [42], and [17] provide examples of applying linear feedback control to the
Apache HTTP Server. A more elaborate scheme that includes nonlinear control
is described in [57].

Apache
HTTP Server

KeepAlive

MaxClients

Controller

CPU
Reference

MEM
Reference

CPU
Measured

MEM
Measured

Fig. 1.10 Regulatory control of utilization for the Apache HTTP Server target system.

TLFeBOOK

COMPUTER EXAMPLES OF FEEDBACK CONTROL SYSTEMS 19

1.6.4 Random Early Detection of Router Overloads

A central element of the Internet is TCP, the transmission control protocol, which
provides end-to-end communication across network nodes. The designers of TCP
were concerned about regulating traffic flows in the presence of network con-
gestion. One way in which this regulation occurs is at routers that direct packets
between endpoints. In particular, routers have finite-size buffers. Thus, to prevent
buffer overflows during congestion, routers may discard packets (which results
in their later retransmission as part of the TCP protocol).

Unfortunately, by the time that buffer overflows occur, it may be that the
network is already congested. The idea behind random early detection (RED) is
to take action before congestion becomes severe. RED measures how much of
critical buffers are consumed, a metric that is referred to as the buffer fill level
(BFL). As depicted in Figure 1.11, RED introduces the capability of randomly
dropping packets even if buffer capacity is not exceeded. If BFL is small, no
packets are dropped. However, as BFL grows larger, progressively more packets
are dropped.

RED has been shown to reduce network congestion and to improve network
throughput [23]. However, one challenge with using RED in practice is specify-
ing its configuration parameters, especially the BFL at which packets start being
dropped and the maximum drop probability. One approach to this tuning has
been to view RED as a feedback control system with a regulation objective in
which the reference input is a desired BFL and the control input is drop prob-
ability. Figure 1.12 depicts this perspective. Control theory is used to study the
impact on stability and other properties for different settings of RED configura-
tion parameters [28]. Finally, proportional–integral (PI) control has been used
for management of the accept queues of network routers [29].

Incoming
Packets

Forwarded
Packets

Dropped
Packets

Router
Network

Fig. 1.11 Router operation under random early detection. Incoming packets are dropped
based on an adjustable drop probability. Drop probability controls the buffer fill level inside the
router.

RouterController

Drop
Probability

Reference
BFL

Measured
BFL

RED Network

Fig. 1.12 Feedback control of buffer fill level in a router. The reference input is the desired
BFL, and the drop probability is the control input.

TLFeBOOK

20 INTRODUCTION AND OVERVIEW

1.6.5 Load Balancing

One of the most common techniques for constructing high-performance comput-
ing systems is to use a collection of similarly configured servers (often called a
server farm or cluster) and balance the load between the servers. There is a vast
literature on load balancing, including its use in multiple source routing [68],
implementations for L4 switches [30], techniques for balancing loads in data
warehouses [45], and redirection algorithms for web-server systems [13]. There
have also been studies that analyze general strategies, especially static load bal-
ancing (which makes use of long-term trends) versus dynamic load balancing
(which exploits current changes in state) [33]. Herein, we describe how load
balancing can be viewed in terms of control theory.

Figure 1.13 displays the architecture of a load-balancing system. There are
multiple computer clients that generate work requests such as Web page accesses
and files to download. Instead of sending these requests to a specific server, they
are sent to a work router that selects an appropriate server based on its server
load levels. Work routers may use a round-robin scheme in which servers are
chosen in sequence as requests arrive. To account for differences in loads on the
servers as well as differences in their processing capabilities, a routing weight is
employed. Servers with a larger weight receive more requests.

Figure 1.14 depicts a feedback control system for achieving balanced utiliza-
tions (or other metrics) across the servers in a load-balancing system. The target
system encompasses multiple blocks, as indicated by the dashed rectangle. The
work router and servers appear in Figure 1.13. The block “computed balance
level” is added to calculate the degree to which the servers are balanced for one
or more metrics. For example, the balance level might be the difference between
the maximum and minimum utilization of the servers. The control input is the
routing weight, and the measured output is the balance level. The controller com-
putes routing weights based on the difference between the reference input and
computed balance level.

More details on load balancing can be found in [31] and [7]. An application
of load balancing to peer-to-peer networks is described in [52].

Work
Router

Computer
Client

Computer
Client Requests

Work Server

Server

Fig. 1.13 Architecture of a load-balancing system. Computer clients send work requests to
the work router, which directs these requests to more lightly loaded servers.

TLFeBOOK

COMPUTER EXAMPLES OF FEEDBACK CONTROL SYSTEMS 21

Controller

Routing
Weights

Server

Server

Router
Work

Reference
Balance

Level Computed
Balance

Level

Reference
Balance

Level

Target System

Measured
Balance

Level

Fig. 1.14 Feedback control for load balancing. The target system encompasses the work
router, the servers, and an element that computes the balance level. The reference input is how
closely utilizations (or other metrics) should match between servers. The control input to the
work router are routing weights, the relative fraction of load that should be routed to the servers.

1.6.6 Streaming Media

A rapidly growing area of interest is that of streaming media. Examples include
Internet radio, Internet TV, and live music. Such applications require the con-
tinuous delivery of information at a predetermined rate. This is a considerable
challenge in conventional computer systems that are more oriented toward max-
imizing throughput rather than a guaranteed rate of delivery. In particular, the
service-level objectives are to keep response times below specified levels to avoid
“jerky” video, interrupted audio, and so on.

Providing support for streaming media can be viewed as regulating response
times for these applications. One way of doing this is to control the amount
of nonstreaming work on the streaming resources so as to (1) ensure that the
streaming work complies with its service-level objectives, and (2) maximize
the throughput of the resources. Figure 1.15 displays a simple illustration of
these ideas. In Figure 1.16 there are two resources (e.g., CPU and disk) that
are required to process streaming requests. Other work may enter the system as

Streaming
Requests

Other
Requests

Completions

System 2System 1 Other
Requests

Fig. 1.15 Simple example of streaming media. The example consists of two queueing systems
in tandem, such as CPU and disk. There are two classes of customers, streaming requests
and other requests. Streaming requests must traverse both queues within a constrained time if
service-level objectives are to be met.

TLFeBOOK

22 INTRODUCTION AND OVERVIEW

C1 S1

R1

C2 S2
R2

C
R

U1

U2

Y1

Y2

Fig. 1.16 Feedback control to enforce streaming service-level objectives. S1 and S2 correspond
to systems 1 and 2 in Figure 1.15. Each system is controlled separately using a scheme such
as that shown in Figure 1.8(a). A higher-level controller regulates the reference inputs for these
control systems so as to achieve an end-to-end throughput that complies with the service-level
objective.

well. The service-level objective is to ensure that the load carried (throughput)
in the streaming system is sufficient for the application (e.g., 30 frames/second
for streaming video).

Figure 1.16 translates this into regulatory control. A convenient approach is
to employ a control hierarchy. That is, the individual systems use a scheme such
as in Figure 1.8(a). Here R1, C1, S1, and Y1 correspond to the reference input,
controller, queueing system, and measured output in Figure 1.8(a). Here, C1 is
a local controller for resource 1 (e.g., CPU). The reference input specifies the S1
throughput required to achieve the overall service-level objective; the controller
adjusts the resource allocation U1 used by S1 (e.g., CPU allocation), which results
in the measured throughput of Y1. R2, C2, U2, S2, and Y2 are defined in the same
way for a second queueing system. A higher-level controller, C, determines the
setting for the reference inputs R1 and R2 based on their outputs and the service-
level objective specified by R. An example of controlling streaming media is
contained in [1], and more details on the connections with queueing theory can
be found in [26].

1.6.7 Caching with Differentiated Service

Caching is widely used to improve the performance of computing systems. An
example is placing Web server pages in main memory to reduce page retrieval
times by eliminating disk accesses. Clearly, the number of pages that can be kept
in main memory is limited. The term hit is used for a page reference (either
read or write) that is resolved by an in-memory (cached) page. A miss is a
memory access that requires reading disk memory for a noncached page. A
good caching system keeps in memory those pages with the highest probability
of being accessed next.

The performance of a caching system is measured in terms of average access
time. Since the access time to a cached page is typically much less than accessing
a page in backing store, performance is determined largely by the hit probability.

TLFeBOOK

COMPUTER EXAMPLES OF FEEDBACK CONTROL SYSTEMS 23

Store
Backing

Pool 1

Pool 2

Pool 3

Memory Pools

Fig. 1.17 Caching system that supports differentiated service. Requests are directed to the
storage pools that correspond to their service class. Requests for data that are not in a memory
pool require physical I/O from the backing store.

If reasonable algorithms are used to manage cache memory, the hit probability
increases with the size of cache memory.

Now consider a variation on the caching problem. A Web content service
provider has several classes of customers, differentiated by how much they pay
for the service. Providing service differentiation requires having a caching sys-
tem that can deliver desired hit probabilities for each customer class. Figure 1.17
displays an architecture for how this can be accomplished. Requests, which are
indicated by the arrows, are made to specific cache pools (blocks of memory) of
different sizes. Requests that cannot be satisfied by in-memory data require access
to the backing store, which takes considerably longer (often by a factor of 1000).

Once again, we have a regulation problem. The reference inputs are the desired
response times for each class of service, and the control input is the pool size.
Figure 1.18 displays a diagram of a feedback control system for differentiated
caching. Note that there are multiple control inputs since each pool is controlled
separately. Also, there are multiple outputs since there is a measured output for
each service class.

Further details on differentiated service for caching can be found in [44].
In particular, the authors address a couple of challenging problems in applying
control theory. For example, with multiple customer classes and a finite amount

Caching
SystemController

Pool
Sizes

Reference Cache
Response Times

Measured Cache
Response Times

Fig. 1.18 Feedback control to enforce differentiated service in a caching system. The target
system is the caching system.

TLFeBOOK

24 INTRODUCTION AND OVERVIEW

of cache memory, there are constraints on what hit probabilities are feasible. One
way to circumvent this difficulty is to use relative hit probabilities. That is, the
absolute hit probability is divided by the sum of the hit probabilities of the other
classes. This works well if the sum of the hit probabilities is constant or changes
very slowly. Otherwise, a nonlinearity results.

1.7 CHALLENGES IN APPLYING CONTROL THEORY
TO COMPUTING SYSTEMS

As discussed in Section 1.5, control theory has been applied to a wide range
of computing systems. Our experience with IBM products has been that control
theory provides a systematic way to assess the implications of controller designs
such as settling times and resource oscillations. We have found these insights to
be of great value in designing real world systems.

Unfortunately, control theory is rarely used by computing practitioners. A
central goal of this book is to distill from control theory those techniques that are
most important for computing systems and make them accessible to computing
researchers and practitioners. Much as there is only a small subset of queueing
theory that is essential to deal with steady-state stochastics of computing systems
(e.g., Little’s result, M/G/1, product form networks), we believe that control
theory can be used to address dynamics in computing systems.

Control theory has developed a wide range of very sophisticated tools. Our
philosophy is to start with the simplest tools and assess their value for control-
ling computing systems. In this book, “simple tools” means linear, deterministic,
time-invariant systems. This approach is consistent with current research in apply-
ing control theory to computing systems in that the research contributions have
focused on appropriate models of target system and/or novel ways of applying
existing control theory. Very little innovation has been done with extending con-
trol theory or even the choice of controller designs. For example, most of the
existing work uses a proportional–integral controller, which has been the stan-
dard industrial controller in the electromechanical and chemical industries for
more than 40 years.

With this in mind, we see three broad areas of challenges in applying con-
trol theory to computing systems: (1) developing evaluation criteria for feedback
controllers, (2) constructing models of the target system and controller, and
(3) designing the feedback controllers.

The most fundamental question concerns the criteria for evaluating controllers.
This book focuses on regulatory control, a relatively simple control problem with
broad application to computing systems. For these problems, we are interested
in stability, steady-state error (i.e., accuracy), and transient performance (espe-
cially, settling time and overshoot). Clearly, stability is almost always desirable.
However, it is more difficult to determine the specifications for steady-state error
and transient performance in computing systems. Exploring this further, we note
that today, regulation is done by administrators as an informal way to achieve

TLFeBOOK

CHALLENGES IN APPLYING CONTROL THEORY 25

some kind of optimization. For example, service providers may regulate the
request rate to servers to avoid excessive resource utilizations that could lead to
long response times that violate service-level objectives. Thus, the broader prob-
lem is optimizing the profits of service providers, not regulating request rates.

There are many aspects to modeling the target system and controller. One
of the most basic considerations is the decision to model in discrete time or
continuous time. Continuous time facilitates certain kinds of modeling, especially
fluid models (a very powerful tool for modeling characteristics of computing
systems). However, discrete time is consistent with the way that measurements
are obtained from computing systems and, in our experience, is conceptually
more digestible to the computer science community. For these reasons, the book
focuses on discrete time. We note that ignoring continuous time is somewhat of
an “unnatural act” from a controls perspective, in that all introductory books on
control theory that we know of begin with continuous time.

Another aspect of modeling is the manner in which the model is constructed.
A first-principles approach starts with known properties of the target system. In
mechanical systems, the starting point is Newton’s laws. There are a few such
laws that apply to computing systems. For example, the number of requests in the
system at time k is equal to the number in the system at time k−1 plus the number
of arrivals in (k−1, k] minus the number of departures. Another example is flow
balance: The time-averaged request rate must equal the time-averaged completion
rate to achieve stability in steady state. Although considerable sophistication has
been developed in some applications (e.g., TCP/IP Window size in [28]), requir-
ing that such models be developed in order to apply control would be a significant
impediment to its exploitation in computing systems. Thus, we have emphasized
“black-box” models that use statistical techniques to relate inputs to outputs.

Still another modeling consideration relates to nonlinearities inherent in com-
puting systems. For example, response times increase exponentially with utiliza-
tions at heavy loads. Another nonlinearity is saturation. There are two types.
Output saturation occurs if the output metric is confined to a range, such as
utilizations (which must lie between 0 and 1). Input saturation happens if the
configuration parameter being manipulated has a finite range. An example of
the latter is the MaxClients parameter in the Apache HTTP Server. Max-
Clients cannot be less than 1 since at least one worker must be present to
receive HTTP requests. While MaxClients can be set quite high (although it
is constrained by operating system limits), it has no effect unless there is offered
load that allows the demand for slave processes to grow as MaxClients is
increased.

A final modeling challenge we have encountered is dealing with stochastics.
Although there is a well-developed area of stochastic control, it is addressed
only briefly in Chapter 11 because we (and others) have been very successful
with applying deterministic control to real systems. However, there are short-
comings. In particular, it is sometimes difficult to distinguish between effects
related to controllers and those that are a result of stochastics. In essence, ignor-
ing stochastics introduces little error if variability is small compared to the effect

TLFeBOOK

26 INTRODUCTION AND OVERVIEW

of the control action. The simulation studies in Chapter 5 address this point in
more detail.

A third area of challenge is controller design. In many cases, the goal of
control design coincides with the Hippocratic admonition “at least do no harm.”1

We interpret this to mean that the closed-loop system should be stable. Thus,
techniques such as gain and phase margins work well. However, as we learn
more about the true control requirements, we discover that transient response
matters. For simple (low-order) systems, pole placement works well. Indeed, that
is the primary approach used in this book. However, as complexity grows, it
may well be that frequency response techniques are needed. If this is the case,
considerably more sophistication will be required to do control design.

Research is under way in applying control theory to computing systems, espe-
cially in caching, Web servers, and e-mail servers. In particular, there has been a
recent flurry of interest in using control theory to evaluate and design algorithms
for congestion control of routers (via RED, as described in Section 1.6.4). We
fully expect these efforts to identify new control problems. One likely area is
hybrid systems that combine discrete and continuous control, a combination that
may prove effective for computing systems.

1.8 SUMMARY

1. The key elements of a control system are:

(a) The reference input, which specifies the desired value of the measured
output to be achieved by the control system.

(b) The target system (e.g., the Apache HTTP Server) whose performance
is to be controlled. The target system has one or more control inputs
(e.g., MaxClients in the Apache HTTP Server) that are adjusted
dynamically to control performance.

(c) Measured outputs, which are metrics that quantify the performance
characteristics to be controlled (e.g., response time).

(d) The controller, which adjusts the control inputs of the target system
based on the control objectives.

2. Two kinds of controllers are commonly used:

(a) Feedforward controllers use a model of the target system to adjust
control inputs.

(b) Feedback controllers use the difference between the desired and mea-
sured output to adjust control inputs.

3. Feedforward control does not suffer from stability problems, but it requires
an accurate model of the target system. Feedback control does not require
an accurate model of the target system (which makes it robust to changes
in the target system), but it can introduce instabilities.

1Hippocrates, Epidemics, Book I, Sect. XI.

TLFeBOOK

EXERCISES 27

4. There are several kinds of control objectives: regulation, disturbance rejec-
tion, and optimization.

5. Desirable properties of feedback control systems are (a) stability (e.g., a
bounded input produces a bounded output); (b) accuracy (e.g., achieves its
objectives for service differentiation); (c) speed (short settling time) in that
changes in the system or workloads are handled quickly; and (d) small
overshoot.

1.9 EXERCISES

1. What control objectives and properties of feedback control systems apply to
the following:

(a) A video player used exclusively by a single person.
(b) A video server that can deliver multiple video streams concurrently to

many clients.
(c) A city street.

Could the objectives of these systems be satisfied with open-loop control?

2. A cruise control system in an automobile keeps the vehicle at a constant
speed.

(a) What is the controller and the target system?
(b) What is the reference input, control input, and measured output?
(c) What is an example of a disturbance?
(d) Draw a block diagram of a cruise control system.

3. Identify the components (i.e., target system, controller) and data (i.e., ref-
erence input, control input, disturbance input, and measured output) in the
systems in Exercise 1.

4. A somewhat comical explanation for yawning being contagious is based on
the following principles:

(a) People yawn because they need more oxygen.
(b) Yawning consumes more oxygen than normal breathing consumes.

Thus, one person yawning consumes more oxygen, which in turn causes other
people to yawn. Describe a system that regulates yawning by raising and
lowering windows. What is the controller? The target system? What are the
reference inputs, control inputs, and measured outputs?

5. Cyclic behavior, often referred to as “boom and bust” cycles is common
in industrial economies. One reason for these cycles may be that consumer
behavior changes more rapidly than it is possible to develop and staff new
plants and services. Using this explanation, describe a simple control system
that explains cyclic oscillations.

TLFeBOOK

TLFeBOOK

Part II

System Modeling

29

TLFeBOOK

TLFeBOOK

2
Model Construction

All models are wrong–but some models are useful.

—G.E.P. Box [12]

The systematic design of feedback systems requires an ability to quantify the
effect of control inputs (e.g., buffer size) on measured outputs (e.g., response
times), both of which may vary with time. Indeed, developing such models is
at the heart of applying control theory in practice. The approach employed
throughout this book is to start simple. This does not mean that the target system
is simple! Rather, if simple models suffice, there is no need to develop complex
models.

Our starting point is queueing theory, a widely used conceptual framework
in which computing systems are viewed as networks of queues and servers.
Over the last 30 years, queueing theory has proven quite effective at modeling
the steady-state behavior of computing systems. Unfortunately, queueing models
become complicated if dynamics are considered. In this chapter we introduce
linear difference equations to model the dynamics of computing systems and
employ insights from queueing theory to construct such models. We discuss
briefly how difference equations can be constructed from first principles. Our
focus, however, is to construct models using statistical or black-box methods, a
process that is referred to as system identification.

2.1 BASICS OF QUEUEING THEORY

A queueing system consists of one or more buffers (queues) in which work
requests wait for one or more servers. Figure 1.7 displays a queueing system

Feedback Control of Computing Systems, by Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury
ISBN 0-471-26637-X Copyright c© 2004 John Wiley & Sons, Inc.

31

TLFeBOOK

32 MODEL CONSTRUCTION

with a single queue and a single server. This system operates as follows:

• When a request arrives, it is placed in the queue.
• When the server completes a request, another request is selected from the

queue.
• If the queue is empty, the server remains idle until the next request arrives.

Consider a queueing system in which requests are selected in a first-come, first-
served manner from the queue. Figure 2.1 depicts the dynamics of this system.
The horizontal line is time, which is numbered 0 through 9. The vertical axis
indicates the state of a request. The states are:

• Arrived: has arrived and is waiting in the queue
• Serving: is in service
• Departed: has departed the system

We see that request 21 arrives at time 0 and immediately goes into service
since the system is empty upon its arrival. This request begins a busy period, a
time interval during which the server is busy. When request 22 arrives at time 1,
it must wait until time 2 to enter service since that is when request 21 completes
its service and departs. The busy period extends until time 7, when request 24
departs. Then the server enters an idle period until the next request arrives at
time 9.

Several metrics can be used to quantify the performance of a queueing system.
The number in system at time t is the number of requests that have arrived and
whose service has not completed. For example, at time 3 in Figure 2.1, there are

Arrived
1 532 4 6 87 9

21 22 23 24

21 22 23 24

21 22 23 24

Serving

Departed

25

0

Idle
Period

Busy
Period

State Time

Fig. 2.1 Dynamics of a single-server queueing system with a first-come, first-served scheduling
policy.

TLFeBOOK

BASICS OF QUEUEING THEORY 33

three requests in the system (22 through 24). The utilization of a server is the
fraction of time that the system is busy over an interval. This is computed as
the busy time divided by the sum of busy and idle times. Typically, utilization
is denoted by ρ. In Figure 2.1, ρ = 7/9. The response time for a request is the
elapsed time from the arrival of the request until its departure. The response
time of request 22 is 3 since it arrives at 1 and departs at 4. The waiting time of
a request is the time during which it is in the queue and not receiving service.
Its service time is defined as the time when the request is being processed by
the server. For example, request 22 has a waiting time of 1 since it arrives at 1
and enters service at 2, and its service time is 2. The rate at which requests are
received by a system is the arrival rate. Sometimes, we also refer to the time
between arrivals, or the interarrival time (which is the reciprocal of the arrival
rate). Response time is the sum of service time and waiting time. The throughput
of a queueing system is the rate at which requests leave; that is, the number of
completions divided by the time over which the completions occur. For example,
in Figure 2.1, throughput is 4/9.

The queue is typically implemented as a finite-size buffer. Requests that arrive
when the buffer is full do not enter the queue and are not processed by the server.
Such requests may be routed elsewhere, held in a separate queue (e.g., on disk),
or discarded. Buffer size is often used as a control input.

The steady-state analysis of queueing systems can be done by making appro-
priate assumptions about the distribution of interarrival times and service times.
Doing so allows us to compute metrics such as utilization, response time, and
number in system (e.g., see [35] for details). Suppose that (1) service times
are exponentially distributed with mean 1/µ, (2) the time between the arrival of
requests is exponentially distributed with mean 1/λ, and (3) both of the foregoing
processes are independent and identically distributed and mutually independent of
each other. These assumptions define an M/M/1/K queueing system. The two
M’s refer to the exponential (memoryless) distribution, the 1 indicates a single
server, and K is the size of the buffer. A little manipulation of the M/M/1/K

results in [35] allows us to compute key metrics. For example, utilization is 1
minus the probability that the server is idle, which is

ρ = 1 − 1 − λ/µ

1 − (λ/µ)K+1

The expected number in the system is

N = (λ/µ)[1 − (λ/µ)K − K(λ/µ)K + K(λ/µ)K+1]

(1 − λ/µ)[1 − (λ/µ)K+1]
(2.1)

From Little’s result [35], we know that R = N/λ, where R is steady-state
response time.

Control analysis focuses on the effect of the control input on the measured
output. In M/M/1/K , buffer size can be used as a control input. That is, we
can vary the buffer size dynamically to obtain desired response times, number in
system, or other metrics. As discussed in Section 1.6.2, requests that arrive when

TLFeBOOK

34 MODEL CONSTRUCTION

the buffer is full can be handled in many ways, such as redirecting requests to
less busy servers.

From Equation (2.1) we know that the metrics N , ρ, and R are nonlinear
functions of the control input K . Figure 2.2 plots these relationships for different
values of λ. Observe that each curve can be partitioned into three regions of
buffer size, as specified below.

• Region I [e.g., for N and λ = 3.5, this is approximately K ∈ [0, 25)].
There is a linear relationship between K and the metrics, although the
slope depends on the metric. Note that for a specific metric, the slope is
fairly consistent across different values of λ.

• Region II [e.g., for N and λ = 3.5, this is approximately K ∈ [25, 40)].
This is the transition between regions I and III. This clearly is nonlinear.
Also, it tends to be a relatively small region for lower values of λ than for
larger values of λ.

• Region III [e.g., for N and λ = 3.5, this is approximately K ∈ [40, ∞)].
The slope is zero. That is, K has no effect on the metric since the buffer
size is large enough so that requests are never discarded.

We underscore that the foregoing are steady-state results and so do not include
transient effects, an important consideration for feedback control. Section 5.7

0 50 100
0

2

4

6

8

10

12

14

16

18

20

 K

 N

0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 K

ρ

λ = 3.8
λ = 3.5
λ = 3
λ = 2

0 50 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 K

 R

Fig. 2.2 Effect of buffer size (K) on the steady-state characteristics of an M/M/1/K queueing
system. The service rate µ = 4. Arrival rates (λ) are indicated in the box. The steady-state
metrics are number in system N , utilization ρ, and response time R.

TLFeBOOK

MODELING DYNAMIC BEHAVIOR 35

presents simulation studies of the transient effect of adjusting buffer sizes in
M/M/1/K .

2.2 MODELING DYNAMIC BEHAVIOR

In this section we introduce concepts that are central to modeling dynamic behav-
ior in computing systems. We begin by discussing the variables used, especially
their characterization as signals. Also addressed are considerations of discrete and
continuous time as well as difference equations. Finally, we address nonlinearities
present in computing systems.

2.2.1 Model Variables

We use the term target system to refer to the computing system (e.g., the Apache
HTTP Server, the IBM Lotus Domino Server) or computing system element (e.g.,
a memory cache) that is to be controlled. Figure 2.3 displays the relationship
between the input and output of a target system. The control input can be char-
acteristics such as configuration parameters (e.g., buffer size) that are adjusted
dynamically to regulate the measured output we want to control (e.g., response
time, throughput, utilization). Disturbances are uncontrolled factors such as a
change in workload (e.g., an increase in service times or arrival rates).

In addition, there may be state variables . These are possibly unmeasured
quantities that aid in modeling input–output relationships. For example, consider
a tandem queueing system in which the output of one queue is input to the next
queue. Suppose that we are only interested in the end-to-end response time from
entry into the first queue until exit from the second queue. One way to model
such a system is to employ as state variables the response times at each queueing
system, an approach that is detailed in Chapter 7. These individual response times
are state variables in that they aid us in estimating the measured output.

2.2.2 Signals

The analysis of feedback control systems includes considerations of time-domain
properties such as stability and transient response. Thus, it is essential that the

Internal State (x)

Disturbance
Input (d)

Measured

Output (y)

Control

Input (u)

Target System

Fig. 2.3 Relationships between the input, output, and state variable for a target system. The
input affects the behavior of the system, and the output quantifies this effect. The internal state
variables provide a way to characterize the effects of the input and the output produced.

TLFeBOOK

36 MODEL CONSTRUCTION

models we construct consider time. A variable that changes over time is called a
signal . A complete signal takes on a value at each instant of time (e.g., utilization,
number in system). A partial signal may be undefined at some time instants (e.g.,
response time).

There are several signals of interest in computing systems, especially number
in system, utilization, and response time. We denote these time-varying metrics
by nc(t), ρc(t), and rc(t). The subscript c indicates that these are continuous
signals in the sense that they are measured at time t , an instant in continuous
time. Figure 2.4 displays an illustrative example of how these signals change as
requests arrive at and depart from the queueing system. nc(t) increases by one
when an arrival occurs, and it decreases by one when there is a departure. If
multiple arrivals and departures occur simultaneously (at least within the reso-
lution of the time granularity used), nc(t) is changed by the difference between
the number of arrivals and the number of departures. For example, at t = 0.6
in Figure 2.4, there is one arrival and one departure, so nc(t) does not change.
ρc(t) = 1 if nc(t) > 0 and is 0 otherwise. rc(t) is measured when there is a ser-
vice completion and hence is a partial signal. In Figure 2.4 there are 10 service
completions, so there are 10 values of response times, each of which is indicated
by an “×” (although two are overlaid with a solid circle).

A discrete signal has a value only at specific instants in time. For our purposes,
we assume that these instants can be indexed by an integer; typically, we use k.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

2

4

 n
c(

t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

ρ c
(t

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

1

2

t

 r
c(

t)

x

x
x x

x

x x xx x

Fig. 2.4 Time evolution of the metrics nc(t) (number in system), ρc(t) (utilization), and rc(t)

(response time). Circles at t = 1, 2, . . . represent sampling points. Each ‘‘×’’ in the response-
time graph corresponds to a departure of a request, at which time a response time is recorded.
Note that at t = 0.6, an arrival and a departure occur simultaneously.

TLFeBOOK

MODELING DYNAMIC BEHAVIOR 37

For computing systems, it is usually more convenient to work with discrete-time
signals rather than continuous signals. There are several reasons for this. Measure-
ment tools used in computing systems typically report values at regular intervals.
Also, the overhead of continuous measurement is considerable, often requiring
special hardware. Thus, even if continuous outputs are available, they are costly
to obtain. Last, control actions are usually taken at discrete times, and it is much
more natural to work with discrete output signals if the input signal is discrete.

Discrete signals can be constructed from continuous signals in many ways.
One approach is sampling. Here, there is a fixed sample time, denoted by Ts , such
that x(k) = xc(kTs). Such an approach is illustrated in Figure 2.4 by the vertical
lines with filled circles. An issue here is that for highly variable data, sample
times must be sufficiently short to capture the dynamics of the continuous-time
signal in the discrete-time signal. Also, for discrete signals, sampling times should
coincide with instants at which the signal is defined. For example, in Figure 2.4
only two of the samples of r(t) have a value.

An alternative approach is to compute average values. Consider response
times. We define the kth interval of an output to be (Ts(k − 1), Tsk]. Sup-
pose that there are Nk departures during the kth interval, with response times
of (y1,k, . . . , yNk,k), where the subscript j, k indicates the j th departure in the
kth interval. We define the average value ya(k) as

ya(k) = 1

Nk

Nk∑
j=1

yj,k (2.2)

For example, as shown in Figure 2.5, ya(4) is the average of the two response
times in the interval (3, 4]. Note that even though we average response times,
we may still have missing values unless sample times are sufficiently large.

0 1 2 3 4 5 6
0

2

4

 n
(k

)

0 1 2 3 4 5 6
0

0.5

1

ρ(
k)

0 1 2 3 4 5 6
0

1

2

 k

 r
(k

)

Fig. 2.5 Average values of signals in Figure 2.4. Ts is 1 second.

TLFeBOOK

38 MODEL CONSTRUCTION

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

 k

 u
(k

),
 y

(k
)

y(0)

y(1)

y(2)

y(3)

u(0)

u(1)

u(2)

u(3)

Fig. 2.6 Relationship between input signal u(k) and output signal y(k). u(k), the horizontal
lines, reflect values in [kTs , (k + 1)Ts). y(k), the vertical lines, reflect values in ((k − 1)Ts , kTs].
The solid dots indicate the starting value of u(k). The open circle indicates the point at which
u(t) changes.

Averaging can result in more representative values than sampling. For example,
we see that in Figure 2.4, sampled utilization is 0 at time k = 4. However, the
server is busy for much of (3, 4]. Figure 2.5 shows that average utilization at k = 4
is 0.6, which more accurately portrays utilization during the fourth interval.

In the remainder of the book we consider only discrete-time systems. The
output signal y(k) reflects average values in the interval ((k − 1)Ts, kTs]. Input
signals (e.g., buffer size) typically take effect at the beginning of an interval.
Thus, u(k) reflects values during the interval [kTs, (k + 1)Ts). This is depicted
in Figure 2.6. Note that y(k) is affected by u(k − 1), not by u(k).

2.2.3 Linear, Time-Invariant Difference Equations

The relationship between control inputs and measured outputs can be quantified
by linear difference equations. In this subsection we give several examples of
difference equations that we have used in modeling computing systems.

A difference equation relates current and past outputs to current and past
inputs. A simple example of this is an integrator, such as that used in the propor-
tional–integral (PI) controller to include the effect of accumulated control error.
(We discuss PI control in detail in Chapter 9.) If u is the input signal and y is
the output signal, the integrator is

y(k + 1) =
k∑

i=0

u(i)

TLFeBOOK

MODELING DYNAMIC BEHAVIOR 39

This relationship can be rewritten as a difference equation by subtracting suc-
cessive values of y. That is, y(k + 1) − y(k) = u(k). Typically, we assume that
initial conditions are zero, but this is not required. More commonly, we express
this difference equation as

y(k + 1) = y(k) + u(k) (2.3)

Another commonly used model is the moving-average filter . Such filters are
particularly useful when there is a signal that is extremely variable, such as CPU
or disk utilization. Here, the input is a raw signal [denoted by u(k) as before],
and the output is a filtered or smoothed value y(k):

y(k + 1) = cy(k) + (1 − c)u(k) (2.4)

As with Equation (2.3), Equation (2.4) expresses y(k+1) as a linear combination
of y(k) and u(k). Here, the coefficients are c and 1 − c, where 0 ≤ c < 1. For
values of c close to 1, we discount current measurements and rely more on the
previous estimate. For values of c close to 0, we give more weight to the current
measurement. If c = 0, then y(k+1) = u(k). This is a one-step delay. We note
that in some cases, we can avoid this delay, in which case the filter is defined
as

y(k + 1) = cy(k) + (1 − c)u(k + 1)

We can generalize Equations (2.3) and Equations (2.4) by having separate
constants for y(k) and u(k):

y(k + 1) = ay(k) + bu(k) (2.5)

where a and b are scalars. We have found Equation (2.5) to be very useful in
practice. For example, it turns out that the relationship between KeepAlive and
CPU in the Apache HTTP Server can be expressed in terms of such a difference
equation, as discussed in Section 2.6.2. Equation (2.5) is a first-order model , a
model in which the next output depends only on the inputs and outputs from
one time unit in the past. Equation (2.5) is also an example of a single-input,
single-output or SISO model , since there is only one input u and one output y.

Equation (2.5) can be extended to consider n past output values y(k), . . . , y(k−
n + 1) in combination with m past input values u(k), . . . , u(k − m + 1):

y(k + 1) = a1y(k) + · · · + any(k − n + 1) + b1u(k) + · · · + bmu(k − m + 1)

(2.6)

This more general form is an ARX model .1 Using such a model requires that we
specify n and m in addition to the coefficients ak and bk . It is common to refer to

1Readers familiar with time-series models will note that the mathematical definition of ARX is identical
to that of an autoregressive moving-average (ARMA) model. The distinction between ARX and ARMA
is that u in an ARX model is controllable, whereas in an ARMA model, u is uncontrolled white noise.

TLFeBOOK

40 MODEL CONSTRUCTION

n and m as the model structure and to the coefficients as the model parameters .
Also observe that Equation (2.6) is equivalent to

y(k) = a1y(k − 1) + · · · + any(k − n) + b1u(k − 1) + · · · + bmu(k − m)

(2.7)

since all we did was shift k by one time unit.
We can generalize further by considering multiple inputs and multiple outputs,

which we refer to as a MIMO model . For example, in the Apache HTTP Server
described in Section 1.6.3, the inputs are KeepAlive and MaxClients and
the outputs are CPU and MEM. One way to quantify the relationships between
inputs and outputs is

CPU(k + 1) = a11CPU(k) + a12MEM(k) + b11KA(k) + b12MC(k) (2.8)

MEM(k + 1) = a21CPU(k) + a22MEM(k) + b21KA(k) + b22MC(k) (2.9)

(Section 2.6.2 provides more details.) In general, a MIMO model has one differ-
ence equation for each output. As such, writing these equations becomes tedious,
especially if the MIMO model is a higher-order system with inputs (and/or out-
puts) from many time periods in the past. For these systems, it makes more sense
to use a state-space model. State-space models are discussed in Chapter 7.

2.2.4 Nonlinearities

As with most real-world systems, computing systems are nonlinear, which is
apparent in Figure 2.2. Despite this, our experience (and that of other researchers
as well) has been that linear models work surprisingly well for many control
applications (a statement that is consistent with the quote from G.E.P. Box at the
beginning of this chapter). Here, we discuss the kinds of nonlinearities present
in computing systems and how to approach their linearization.

The first source of nonlinearities is the functional effect of the control input
on the measured output. Our starting point is Section 2.1, where we discuss
the M/M/1/K queueing system, in which buffer size has a nonlinear effect
on utilization, number in system, and response time. Similar nonlinearities are
common in production systems. For example, in the Apache HTTP Server, the
parameter MaxClients has a nonlinear effect on response times, a relationship
that is detailed in our discussion of fuzzy control in Section 11.6.

Another source of nonlinearities are constraints on metric values. For example,
consider the effect of request rate on utilizations. Utilization is a linear func-
tion of request rate until the request rate equals the service rate. At that point,
increasing the request rate does not increase utilization, since utilization cannot
exceed 1.

Utilization is an example of a constrained metric, one whose value has pre-
scribed limits. Such constraints are a very common form of nonlinearity in

TLFeBOOK

MODELING DYNAMIC BEHAVIOR 41

computing systems. For example, most metrics cannot be negative. Many have
upper limits for semantic reasons (e.g., utilizations). Others are limited by con-
figuration. For example, we cannot increase disk input–output rates beyond the
capacity of the disk drives, and we cannot have queue lengths that exceed the
capacity of the buffers in which requests are held.

Nonlinearities can also arise if the control objective is optimization. Consider
load balancing, as discussed in Section 1.6.5. A common approach to determining
the reference value of load for a work server is to compute the total load across
all servers and then determine what fraction of this load should be handled by
specific servers. Doing so requires dividing by the total load, which introduces
a nonlinearity. If total load is fairly constant, this is not a problem. However,
if total load varies considerably, we must be concerned with how well we can
approximate this nonlinear function with a linear function.

The foregoing can potentially be handled in a very general way. A commonly
used approach is to express the nonlinear function as a Taylor series (e.g., [50])
and then construct a linear approximation by including only the linear terms.
In this very general framework, the control inputs are vectors denoted by ũ,
and the measured outputs are ỹ. f describes the relationship between inputs and
outputs:

ỹ(k + 1) = f(ỹ(k), ũ(k)) (2.10)

We know from the discussion of M/M/1/K in Section 2.1 that the linear
approximation very much depends on the range of control inputs considered. The
operating region of a system is the range of control inputs (and their associated
outputs) that are observed in operation. The operating point of a system is the
desired steady values of y and u such that

y = f(y, u) (2.11)

This means that if the input is held constant at u, the output will be constant
at y.

Most commonly, we linearize about an operating point. Doing so relies on the
assumption that nonlinear functions can be approximated accurately by a linear
function in regions that are sufficiently close to the operating point. Thus, the
accuracy of the approximation depends on the operating region and the shape
of f around the operating point. For regulatory control, the operating point is
typically chosen to lie close to the reference value. This ensures that we have
an accurate model of the target system in its desired region of operation, which
is important if we hope to regulate the control input so that the system stays in
this region.

The Taylor series is constructed as follows using the offset value, which is
the deviation from the operating point. The offset value of the control input ũ(k)

and the measured output ỹ(k) are computed as follows:

u(k) = ũ(k) − u

y(k) = ỹ(k) − y
(2.12)

TLFeBOOK

42 MODEL CONSTRUCTION

Assuming that f is smooth, we have

ỹ(k + 1) = f(ỹ(k), ũ(k))

y + y(k + 1) = f(y + y(k), u + u(k))

y + y(k + 1) = f(y, u) +
(

∂f
∂y

)
y,u

y(k) +
(

∂f
∂u

)
y,u

u(k) + · · ·

y(k + 1) ≈ Ay(k) + Bu(k)

The second equation substitutes for ũ and ỹ using Equation (2.12). The third
introduces the Taylor series expansion. The fourth subtracts the value of the
operating point based on the equality in Equation (2.11), where A = (∂f/∂y)y,u
and B = (∂f/∂u)x,u̇.

Unfortunately, it is rare that we can use this kind of linearization in practice
since we do not know f. However, the foregoing strongly suggests that a lin-
ear approximation works well if we choose the appropriate operating point and
operating region. If a linear approximation works poorly, more sophisticated
techniques may be required, such as those described in Chapter 11.

2.3 FIRST-PRINCIPLES MODELS

Mechanical and electrical systems abide by a number of physical laws that can
be expressed as mathematical relationships. For example, Newton’s laws are
widely used to characterize mechanical systems. A few such laws exist for com-
puting systems as well. These laws are primarily a consequence of queueing
relationships.

To illustrate, we develop a first-principles model for the system in Section 2.1
for the measured output number in system. For ease of presentation, we assume
a fixed sample time (although this is not required). Let n(k) be the number
observed in the system at time k. Further, suppose that we can count the number
of arrivals to and departures from the queue during the kth interval. Let v(k)

be the difference between the number of arrivals and departures during the kth
interval (which we might manipulate through admission control):

n(k + 1) = n(k) + v(k) (2.13)

Note that this is a linear difference equation that has the form of Equation (2.5),
where a = 1 and b = 1. Further, this is a very general expression in that we do
not specify the number of servers, the scheduling policy, or anything about the
statistics of interarrivals or service times.

At first glance, it may seem counterintuitive that we obtain a linear model
for the dynamics of number in system since we know from Figure 2.2 that the
long-run average of the number in system for an M/M/1/K queue is nonlin-
ear. The reason for this apparent contradiction is the nature of the relationships

TLFeBOOK

FIRST-PRINCIPLES MODELS 43

being characterized. In Figure 2.2 we plot the number in the system as a func-
tion of buffer size (K). However, the expression above relates the number in
the system to the difference between arrivals and departures in the previous
interval.

For response times, we make assumptions that are more restrictive than the
foregoing but still less constrained than the M/M/1/K queueing system de-
scribed previously. We assume a first-come, first-served scheduling policy and a
single-server queueing system. Thus, requests depart in the same order in which
they arrive. No restriction is imposed on the interarrival and service-time distri-
butions. Let yi denote the response time of the ith request, uI

i denote the time
between the arrival of the (i −1)st request and the ith request, and uS

i be the ser-
vice time of the ith request. We can relate these variables using Equation (1.120)
from Kleinrock [36]:

yi =
(
yi−1 − uI

i

)+ + uS
i (2.14)

To explain, request i arrives during either a busy period or an idle period. In the
former case, it has a wait equal to the response time of request (i −1), except for
the interarrival time. In the latter case, uI

i > yi−1, so its response time is simply
uS

i . Relationships such as Equation (2.14) can be useful if we control uI
i (e.g.,

through admission control) and/or uS
i (e.g., through execution priorities if there

are multiple classes of work). In the following, we focus on controlling service
times. In particular, we use the approximation

y(k + 1) ≈ ay(k) + u(k) (2.15)

where y(k) is the average response time during ((k − 1)Ts, kTs] and u(k) is the
average service time during [kTs, (k + 1)Ts). Here, a depends on the utilization
of the server. Indeed, a ≈ 1 if the system is always busy, and a = 0 if a request
never arrives when another request is in service.

Whereas our first example Equation (2.13) yields an exact relationship, the
second example Equation (2.15) results in a linear difference equation that
approximates the true relationship between the control input and the measured
output. The latter approach is much more common than the former in practice.

Others have developed more sophisticated first-principles models. Misra et
al. [48] develop a system of coupled differential equations that approximate the
relationship between TCP/IP window size and router queue lengths under RED
(random early detection) queue management. Lu et al. [44] use continuous-time
techniques to model the allocation of storage to cache memory pools.

Although these efforts suggest that first-principles approaches can yield suc-
cess, they also indicate that considerable sophistication is required to do so.
Further, for complex computing systems, constructing first-principles models may
be extremely difficult, if not impossible. In that case, we have to rely on empiri-
cal models, that is, models based on data collected from an actual system. In the
next section we discuss some techniques for building these models.

TLFeBOOK

44 MODEL CONSTRUCTION

2.4 BLACK-BOX MODELS

The difficulty of constructing first-principles models of computing systems moti-
vates an approach that requires a less detailed knowledge of the relationships
between inputs and outputs. Statistical techniques have considerable appeal since
we reduce the knowledge required for model construction. That is, instead of
employing detailed knowledge of the target system, we infer relationships between
inputs and outputs by applying statistical techniques to data collected from the tar-
get system. The term black-box model is used since only the inputs and outputs
of the target system need be known. In general, we employ an ARX model [as in
Equation (2.6)] to describe the relationship between inputs and outputs.

In order to develop a black-box model, several steps must be followed. These
steps are outlined in Figure 2.7 and described in detail in the following subsec-
tions. In summary, these steps are:

1. Specify the scope of what is to be modeled in the form of the inputs and
outputs considered.

2. Design experiments and collect data that are sufficient to estimate the
parameters of a linear difference equation of the desired order.

Specify the
model scope

Design
experiments

Estimate
parameters

Evaluate
the model

Is model
acceptable?No

Yes

Done

Fig. 2.7 Steps in black-box system identification.

TLFeBOOK

BLACK-BOX MODELS 45

3. Estimate the parameters of the model using least-squares techniques.
4. Evaluate the quality of the model fit. If the model quality must be improved,

one or more of the foregoing steps are revisited.

2.4.1 Model Scope

There are many dimensions to the scope of the model. These are discussed below.

Stochastics For control purposes, we focus on the effect of control inputs
on the measured outputs. Unfortunately, it is frequently the case that measured
outputs are highly variable, due to the stochastic nature of computing systems
(e.g., randomness in interarrival times and service requirements). This can make
it difficult to ascertain the effect of the inputs. Smoothing the output reduces
variability, so can make the effect of the input signal more pronounced.

One way to smooth the outputs is to use longer sample times. This has the
advantage of reducing the overheads for measurement collection on the target
system. If sample times cannot be controlled, another approach is to use a filter,
such as a running average. Note that both of these approaches mean that the
system reacts slower to changes, such as a workload surge. Another approach
to smoothing outputs is to use Equation (2.4), or techniques such as computing
averages or medians within samples.

Model Structure To apply the black-box approach, the model structure [m
and n in Equation (2.6)] must be specified. In general, a better model is obtained
if larger values of m and n are used. However, there is a danger of overfitting .
By overfitting we mean that the model uses such large values of m and/or n that
the model generalizes poorly to data other than those used to build the model.
Overfitting results in poor model accuracy in practice. In general, overfitting is a
problem with small data sets, those with the number of values close to m+n. To
avoid overfitting, we initially consider a first-order model (m = 1 = n) and then
see if higher-order models provide significantly greater accuracy. The best model
is the one with the smallest values of m and n that provides a reasonable level
of accuracy. (In Section 2.4.4 we discuss metrics for quantifying accuracy.) A
lower-order model has the additional advantage of simplifying controller design.
A more detailed discussion of how to choose a model structure is provided
in [19].

Workloads The workload of a computing system is the characteristic of
requests that affect the performance metrics of the target system, such as through-
puts, response times, and number in system. Examples of workload characteristics
are the distributions of interarrival times and service times. Indeed, a major focus
of queueing theory is estimating performance metrics based on workload char-
acteristics.

The perspective taken in control analysis is different. We focus on the control
input, not the workload. Workload is typically considered a disturbance that

TLFeBOOK

46 MODEL CONSTRUCTION

affects the way that control inputs affect the outputs. One implication for a
black-box approach is that it is important to collect measurement data using
representative workloads so that we correctly estimate the effect of control inputs
on measured outputs in the operating environment.

If the typical (or worst-case) workload is known, it may suffice to build a sin-
gle model that applies to this workload. However, better controller performance
can sometimes be achieved by constructing separate controllers from workload-
specific models and then switching to the appropriate controllers as workloads
change. This is referred to as gain scheduling and is discussed in more detail in
Section 11.2.

Example 2.1: M/M/1/K Workloads and sample times The choice of sample
time (Ts) often depends on workload. Consider an M/M/1/K queueing system
in which the service rate (customers per second) is µ = 4 and the arrival rate
(requests per second) is λ ∈ {2.8, 3.8}, so that ρ ∈ {0.7, 0.95}. Figure 2.8 displays
average response time for a sine-wave input signal (buffer size) with a period
of 35 minutes. The figure shows six plots that are structured into two rows of
workloads in combination with three columns of sample times Ts ∈ {0.5, 2, 15}
minutes. The circles are individual response times, and the dashed line is the
input signal (which is scaled to a second vertical axis).

There are several features of interest in this figure. First note that as sample
time increases, the output becomes less variable, which is consistent with our

0 0.5 1 1.5 2
0

1

2

3

W
L:

 ρ
 =

 0
.7

Ts = 0.5 min

0 0.5 1 1.5 2
0

1

2

3

Ts = 2 min

0 0.5 1 1.5 2
0

1

2

3

Ts = 15 min

0 0.5 1 1.5 2
0

1

2

3

W
L:

 ρ
 =

 0
.9

5

Time (hours)

0 0.5 1 1.5 2
0

1

2

3

Time (hours)

0 0.5 1 1.5 2
0

1

2

3

Time (hours)

Fig. 2.8 Effect of workload and sample times on response times of M/M/1/K. Measured
response times are shown by the open circles; the dotted lines represent buffer size (which is
scaled to a second vertical axis).

TLFeBOOK

BLACK-BOX MODELS 47

expectations. However, if sample times get too large, it is difficult to see the
effect of buffer size on response time. For example, when Ts = 15 minutes,
sample times are nearly half the period of the input signal. As a result, measured
response times peak and dip at times that do not correspond to the input.

We also see that the best choice of Ts depends on workload. Consider the first
row in which ρ = 0.7. When Ts = 0.5, the input signal is barely discernible in the
output signal, due to the large variability of the response times. This variability
results from the load being light enough so that buffer size has less effect at larger
values. The effect of the input signal is somewhat more clear if Ts = 2, since
we average the impact of buffer size across more observations. A disadvantage,
however, is that the output signal is flattened compared to that at Ts = 0.5. For
ρ = 0.95, the choice of Ts is more of an issue. At Ts = 0.5, we clearly see
the effect of the buffer size on response times since load is so heavy that small
changes in buffer size affect the dynamics of the queueing system. At Ts = 2
we still get a sense of the input signal. However, the peaks are lower and more
shifted in time from the input, due to measurement delays.

2.4.2 Experimental Design

Constructing black-box models requires data to estimate model parameters such
as a and b in Equation (2.5). Such training data take the form of output signals
(e.g., number in system and response times) and the corresponding input sig-
nals (e.g., buffer size) used to produce the output signals. Experimental design
addresses how to construct input signals so that it is possible (although not guar-
anteed) to construct models that are sufficiently accurate for control purposes. To
this end, three considerations are of importance in terms of the input signal:

• Range of values of the input signal
• Coverage of values within the operating region
• “Richness” in exciting the dynamics of the target system

We begin with the range of the input signal. We want to choose a range of
control inputs that are representative of the operation of the feedback system.
To do this, we work backward. Assume that the control objective is regulation
(which is often the case in computing systems). Thus, we have some knowledge
of the operating point of the target system in that outputs should be close to the
reference values during operation. This means further that during operation the
control inputs should be close to those values that result in the desired values
of the outputs. Now consider the range of measured values that occur during
operations (e.g., due to changes in the reference values). Here, too, we need to
work backward from the associated control inputs that yield this range around
the operating point.

At first glance, it may appear that there is a “chicken and egg” problem in that
we cannot quantify the relationship between inputs and outputs without know-
ing the relationship between inputs and outputs. We address this by conducting

TLFeBOOK

48 MODEL CONSTRUCTION

exploratory experiments. These experiments not only assess the functional rela-
tionship between inputs and outputs but also consider (1) how large the operating
region should be to moderate the effect of stochastics, and (2) how narrow the
operating region must be to address nonlinearities (at least for the operating point
chosen). Once the operating point and region have been specified, experiments
must be conducted to determine the range of inputs needed to produce these
outputs.

A second consideration is the coverage of values within the range of the
inputs signals. To avoid biasing the parameters of black-box models, data should
be collected uniformly across the range of inputs. This is particularly important if
the target system has significant nonlinearities, since if data come predominantly
from smaller (or larger) values of the input signal, there may be substantial
inaccuracies in prediction.

Finally, we address the dynamics of the input signal. Intuitively, the input
signal should be able to excite the target system so that its dynamics are apparent.
Typically, this means that the input must contain at least as many frequencies
(i.e., different rates of signal variation) as the order of the linear model. (See [41]
for more details.) Our experience has been that for low-order models (e.g., first
order), it suffices to use a low-frequency, discretized sine wave.

The issues associated with the dynamics of the input signal are best illustrated
by example. Consider the MaxClients control parameters in the Apache HTTP
Server. MaxClients determines the number of worker processes, which in
turn determines the number of possible concurrent connections. Increasing Max-
Clients causes the Apache HTTP Server to increase the number of workers,
and decreasing MaxClients causes the Apache HTTP Server to kill one or
more workers. Creating a new process can be done with minimal delay. How-
ever, killing a process may take some time since the master process must wait
until an existing worker completes so that its current request is not lost. Further
complicating these dynamics is the fact that if MaxClients is large, it is more
likely that at least one worker process completes its current request within a
short period. From the foregoing, we see that (1) MaxClients’s dynamics are
asymmetric in that the transients associated with increasing MaxClients are
not the same as with decreasing MaxClients, and (2) the dynamics change as
MaxClients is varied. Thus, a linear model is only a rough approximation to
the dynamics of the true system. However, our experience has been that this
approximation suffices for regulatory control.

Example 2.2: M/M/1/K Input signal We show the effect of different input
signals (buffer size, K) on the operating point, operating region, and coverage of
the input space. Figure 2.9 displays response times (open circles) and the input
signals considered (the dashed lines) for an M/M/1/K system in which λ = 3.8
and µ = 4. Two factors are explored: (1) the type of input signal is either a step
(top row) or a sine wave (bottom row), and (2) the range of the input signal is
structured by column with values of [21, 31] (left), [1, 51] (center), and [1, 101]
(right). Note that for both input signals we see more effect if the range is larger.

TLFeBOOK

BLACK-BOX MODELS 49

0 5
0

20

40

60

80

100
[21, 31]

0 5

[1, 51]

0 5

[1, 101]

0 5

Time (hours)

0 5

Time (hours)

0 5

Time (hours)

B
uf

fe
r

S
iz

e

R
es

po
ns

e
T

im
e

0

20

40

60

80

100

B
uf

fe
r

S
iz

e

Step

R
es

po
ns

e
T

im
e

Sine Wave

0

10

20

30

0

10

20

30

Fig. 2.9 Time-serial effect of buffer size on response time in M/M/1/K. The circles are
response times, and the input signals are indicated by dashed lines (which are drawn to the
second vertical axis).

Figure 2.10 presents the same data in a slightly different way in order to show
issues of coverage and the potential for obtaining accurate models. Here, response
times are plotted against buffer size. Note that for small ranges of the input
signal, there is little difference between the step and the sine wave. However, as
the range increases, the coverage provided by the steps is not nearly as good as
that provided by the sine wave, as evidenced by the large gaps between values
on the horizontal axis in the first row of plots.

The effect of signal range (columns) is most noticeable in the second row. At
[21, 31], the range is so small that the effect of buffer size is not noticeable. At
[1, 51], the impact of buffer size is clear, although there is considerable variability
at the higher end of the range. In [1, 101], the variance at the high end of the
range makes constructing an accurate model quite difficult.

2.4.3 Parameter Estimation

In this section we describe how to estimate model parameters once data have been
collected. We focus on a commonly-used method called least squares regression.
Our treatment is brief since this material is covered in detail in most introduc-
tory texts on applied statistics (e.g., [19]). There exist many other techniques
for estimating model parameters from experimental data, but the discussion is
beyond the scope of this text. In what follows, the focus is estimating a and b

in Equation (2.5).

TLFeBOOK

50 MODEL CONSTRUCTION

0 50 100
0

10

20

30
[21, 31]

0 50 100
0

10

20

30
[1, 51]

0 50 100
0

10

20

30
[1, 101]

0 50 100
0

10

20

30

Buffer Size

0 50 100
0

10

20

30

Buffer Size

0 50 100
0

10

20

30

Buffer Size

R
es

po
ns

e
T

im
e

Step

R
es

po
ns

e
T

im
e

Sine Wave

Fig. 2.10 Effect of the input range in an M/M/1/K queueing system. The input is buffer size,
with the signals shown in Figure 2.9. The output is response time.

The training data consists of a set of observations of the control input(s) sup-
plied to the system and the corresponding output. Let the raw data be represented
by a sequence of tuples {ũ(k), ỹ(k)}, 1 ≤ k ≤ N + 1. We begin by normalizing
the input and output around their operating points. Let u be the mean input value
and y be the mean output value. We assume that (y, u) is the operating point.
That is, if ỹ(k + 1) = f (ỹ(k), ũ(k)), then y = f (y, u). Then, the offset values
are y(k) = ỹ(k) − y and u(k) = ũ(k) − u.

First, observe that Equation (2.5) provides a way to predict y(k+1) from y(k)

and u(k). We denote this predicted value by ŷ(k + 1). That is,

ŷ(k + 1) = ay(k) + bu(k) (2.16)

The (k + 1)st residual is e(k + 1) = y(k + 1) − ŷ(k + 1). This is also known as
the prediction error . We want to choose a and b so as to minimize the sum of
the squared errors (residuals)–hence the name “least squares”. More formally,
we want to minimize the function

J (a, b) =
N∑

k=1

e2(k + 1) =
N∑

k=1

[
y(k + 1) − ay(k) − bu(k)

]2
(2.17)

where N + 1 is the total number of observations.

TLFeBOOK

BLACK-BOX MODELS 51

We can find the values of a and b that minimize J (a, b) by taking partial
derivatives and setting them to zero. This results in

∂

∂a
J (a, b) = −2

N∑
k=1

y(k)
[
y(k + 1) − ay(k) − bu(k)

] = 0 (2.18)

∂

∂b
J (a, b) = −2

N∑
k=1

u(k)
[
y(k + 1) − ay(k) − bu(k)

] = 0 (2.19)

We can now solve these simultaneous equations for a and b. For convenience
of notation, define the following quantities

S1 =
N∑

k=1

y2(k) (2.20)

S2 =
N∑

k=1

u(k)y(k) (2.21)

S3 =
N∑

k=1

u2(k) (2.22)

S4 =
N∑

k=1

y(k)y(k + 1) (2.23)

S5 =
N∑

k=1

u(k)y(k + 1) (2.24)

Manipulating the normal equations (2.18) and (2.19), we have

a = S3S4 − S2S5

S1S3 − S2
2

(2.25)

b = S1S5 − S2S4

S1S3 − S2
2

(2.26)

These are fairly easy computations to program. (See [41] for more details of the
computations.) Alternatively, commercially available software such as MATLAB
and Excel provide packaged solutions for least-squares regression.

Example 2.3: Parameter estimates for M/M/1/K We fit a first-order model
to data collected from an M/M/1/K queueing system for which λ = 3.8,
µ = 4, ỹ(k) is response time, and ũ(k) is buffer size. The sample data are
shown in Table 2.1. Note that N = 10 since N + 1 = 11 is the number of
samples. Figure 2.11 plots the raw data in the space of y and u. Our goal is to

TLFeBOOK

52 MODEL CONSTRUCTION

0
1

2 05101520

0.5

y(k)

y(k+1)

u(k)

0

0.5

1

1.5

2

2.5

3

Fig. 2.11 Fit of regression in Example 2.3. This is a three-dimensional space defined by u(k),
y(k), and y(k + 1). The points are observed values, and the plane is ŷ(k + 1). The least-squares
method estimates a and b so that the ŷ plane lies in the middle of the observed values.

estimate a and b so as to estimate y as indicated by the plane fitting the raw
data.

We proceed as follows:

1. The mean buffer size and response time are computed. The former is com-
puted over [1, 10] (since the last value is not used in the estimates produced)
and the latter over [2, 11] [which is the mean of the y(k + 1)’s]. The result
is u = 7.7 and y = 1.17.

2. y and u are computed as shown in Table 2.1.

TABLE 2.1 Data Used in Example 2.3

k ũ(k) ỹ(k) u(k) y(k)

1 4 0.62 −3.7 −0.55
2 5 0.72 −2.7 −0.45
3 5 0.76 −2.7 −0.41
4 6 0.52 −1.7 −0.65
5 7 0.91 −0.7 −0.27
6 8 0.92 0.3 −0.25
7 9 0.97 1.3 −0.20
8 10 1.52 2.3 0.35
9 11 1.42 3.3 0.26

10 12 1.99 4.3 0.82
11 13 1.95 5.3 0.78

TLFeBOOK

BLACK-BOX MODELS 53

TABLE 2.2 Values of Si

Estimates for the Data in
Example 2.1

i Si

1 2.12
2 10.47
3 68.10
4 1.85
5 12.16

3. Using Equations (2.20) through (2.24), we compute the Si as shown in
Table 2.2. Note that the Si are computed using k ∈ [1, 10] since we estimate
ŷ(2), . . . , ŷ(11).

4. From the Si just calculated and Equations (2.25) and (2.26), we have a =
−0.087 and b = 0.19.

5. With this, we can calculate ŷ(k + 1) = ay(k) + bu(k) and ˆ̃y(k + 1) =
ŷ(k + 1) + y.

We note in passing that with different data, we get different estimates. For
example, repeating Example 2.3 with a data set consisting of 480 observations
and u(k) ∈ [1, 51], we obtain a = 0.49 and b = 0.033. This differs considerably
from the estimates a = −0.045 and b = 0.19 obtained in Example 2.3 with
11 observations. In general, having more observations decreases the variability
of parameter estimates, although other factors must be considered as well (e.g.,
linearity of the region over which the experiments are conducted).

2.4.4 Model Evaluation

Model evaluation quantifies the extent to which the model structure can explain
the data collected. If the data are not well explained by the model, then vari-
ous adjustments should be considered (e.g., employing a higher-order model is
needed). Examples of the latter include adjusting how much the output sig-
nals are smoothed and changing the range of inputs considered in the design of
experiments.

The accuracy of a model can be quantified based on the training data or a
separate set of test data. In general, the latter provides better insight and guards
against overfitting (although techniques such as cross validation can be used on
the training data [49]).

One widely used metric for assessing accuracy is the root-mean-square error
(RMSE). This is defined as

RMSE =
√√√√ 1

N

N∑
k=1

[
y(k + 1) − ŷ(k + 1)

]2
(2.27)

TLFeBOOK

54 MODEL CONSTRUCTION

In essence, RMSE estimates the standard deviation of the residuals and so pro-
vides insight into the accuracy of predictions based on the model.

A second way to quantify accuracy is by computing the variability explained
by the model. This is denoted by R2 and

R2 = 1 − var(y − ŷ)

var(y)
(2.28)

where var(y) is the variance of the y(k). R2 ranges from 0 to 1. A value of 0
means that the model does no better than using the mean value of y to estimate
y(k). A value of 1 suggests (but does not guarantee) a perfect fit. In general, we
look for models with R2 ≥ 0.8.

A third measure of model quality is the correlation coefficient (CC) between
the input and the residuals. This is computed as

CC =
∑

k e(k)u(k)√
var(e(k))var(u(k))

A small correlation coefficient (CC) shows that most of the information in the
control input (e.g., buffer size) has been extracted by the model, so little can be
done to refine the model further.

Although RMSE, R2, and the correlation coefficient have appeal, they can be
misleading. For example, a very large R2 can be obtained if data are clustered
around extreme values. For this reason it is advisable to use residual analysis
plots to confirm the insights provided these metrics. Such plots often provide
insight into how the model should be changed to improve accuracy. An example
of a residual analysis plot is a scatter plot of measured versus predicted values as
used in the following example. (See [16] for more details on residual analysis.)

Example 2.4: Assessment of model for M/M/1/K Using a step-up and step-
down input signal as used in the upper middle plot of Figure 2.9, test data
were collected to evaluate the first-order model whose parameters are estimated
in Example 2.3 with 480 points. Table 2.3 displays the results. The R2 values
are fairly small, and RMSE is fairly large compared to the range of data values
of response time. Putting the latter in perspective, we view RMSE as residual
standard deviation. Thus, a 95% prediction interval around an estimate would
have a width of approximately four times RMSE. Hence, in this data set, the
95% prediction interval is roughly half the range of the observed data, which is
extremely wide. Note that the R2 is slightly smaller for the test data than for the
training data. We expect that a and b should explain more variability in the data

TABLE 2.3 Model Assessment for the M/M/1/K

Model Evaluation RMSE R2 CC

Training data 1.62 0.34 0.006
Test data 1.53 0.33 0.030

TLFeBOOK

BLACK-BOX MODELS 55

from which they are estimated. The RMSE is smaller in the test data than the
training data due to randomness in the way the data sets are generated.

One reason why the fit is poor may be that we need a higher-order model.
We tried a model in which m = 2 = n, but this model increases R2 by less
than 0.01 on both the training and test data. To gain more insight into the under-
lying difficulties, Figure 2.12 plots measured versus actual values. This plot is
particularly effective at identifying issues in system identification. Note that if
we had a perfect model, all points would lie on the line of unit slope. How-
ever, this does not occur in Figure 2.12, even at small values of response times,
where a linear model works well. The latter is because we used a very large
operating region and least-squares fit a plane to the entire range of values, which
included nonlinear regions. Further, we see that as response times increase, vari-
ance increases as well. This is called heteroschedasticity . Heteroschedasticity is
common in queueing systems, as evidenced by the queueing formulas for metrics
such as response times and number in system. Heteroschedasticity undermines an
assumption needed for prediction based on least-squares regression, that residu-
als are realizations of independent and identically distributed random variables.
Common ways of addressing heteroschedasticity are to model the square root or
log of the raw data instead of the raw data itself (e.g., [19]).

One more consideration in model evaluation relates to the values used to
calculate ŷ(k+1). Consider Equation (2.5). The parameters a and b are obtained
from least squares, and u(k) is known by experimental design. However, there
are two choices for the value of the measured output at k. In the first, we produce
estimates as

ŷ(k + 1) = ay(k) + bu(k)

This is referred to as one-step prediction , in that it extrapolates only one step
ahead of the measured outputs since a is multiplied by y(k). The second choice,
which is called multistep prediction , constructs estimates as

ŷ(k + 1) = aŷ(k) + bu(k)

0 2 4 6 8 10 12
0

1

2

3

4

5

Measured RT

P
re

di
ct

ed
 R

T

Fig. 2.12 Comparison of measured and predicted data for M/M/1/K.

TLFeBOOK

56 MODEL CONSTRUCTION

Here, the measured outputs are not used at all [or possibly only at y(0)] in that a is
multiplied by the previous estimate of the measured output. In general, multistep
prediction is a more challenging assessment of the model than one-step prediction.
Multistep prediction is often used in practice for controller design since the true
system and controller may not be available. Hence, we use multistep prediction
in this book.

2.5 SUMMARY

1. Signals are variables that are a function of time. Examples of signals are time-
series measurements of response times, number in system, and utilization.

2. Queueing theory provides a way to estimate steady-state metrics of com-
puting systems (e.g., response time, throughput) based on characteristics of
workloads and other factors.

3. Difference equations provide a way to express dynamic relationships be-
tween variables, such as the transient effect on response times in the Apache
HTTP Server when the value of MaxClients is changed.

4. ARX models are difference equations that relate linear functions of one
variable’s history to a linear function of another variable’s history.

5. First-principles models are developed based on knowledge of how a sys-
tem operates. Black-box models require minimal knowledge of the system,
relying instead on statistical techniques (e.g., to construct ARX models).

6. The operating point of a system is the values of the input and output
variables that are expected when the system is in steady state.

7. Constructing ARX models using black-box methods requires conducting
appropriate experiments so that the data are representative of the region in
which the model will be used.

8. The parameters of an ARX model can be estimated using least-squares
regression, and the model accuracy can be assessed by using R2, RMSE,
and/or the correlation coefficient.

2.6 EXTENDED EXAMPLES

In this section we present several examples of system identification. We begin
with studies done on the Apache HTTP Server and the IBM Lotus Domino
Server. Then we return to the M/M/1/K queueing system to gain a deeper
understanding of the impact of nonlinearities.

2.6.1 IBM Lotus Domino Server

Administrators of the IBM Lotus Domino Server often try to regulate the number
of remote procedure calls (RPCs) in the server, a quantity that we denote by RIS.

TLFeBOOK

EXTENDED EXAMPLES 57

This regulation is accomplished by using the MaxUsers tuning parameter. Thus,
for system identification, we construct a model whose input is MaxUsers and the
output is RIS. A standard workload was applied to a IBM Lotus Domino Server
running product-level software to obtain training and test data. In all cases, values
are averaged over a 1-minute interval. The operating point is MaxUsers =165,
RIS =135. The offset values are u(k) = MaxUsers(k) − MaxUsers, y(k) =
RIS(k) − RIS. The input signal employed is a discretization of a ramp in which
MaxUsers is increased by 20 every 20 minutes.

Figure 2.13(a) displays the input signal (solid line) and the corresponding
output signal (“×”s). The model for this system is

y(k + 1) = 0.43y(k) + 0.47u(k) (2.29)

The R2 value is 0.98. Figure 2.13(b) plots the measured and predicted RIS. Note
that most points line on or near the solid line of unit slope [where y(k) = ŷ(k)].
This confirms that the fit is quite good. More details can be found in [53].

2.6.2 Apache HTTP Server

Web server administrators frequently want to regulate resource utilizations since
excessive utilizations can result in long response times and possibly system fail-
ures (e.g., due to queue overflows). Two resources of particular interest are CPU
and MEM. The Apache HTTP Server exposes two controls that we have used:
KeepAlive (which controls how long an idle HTTP connection is held) and
MaxClients (the number of concurrent connections to the Web server). Here
we explore the extent to which KeepAlive can be used to control CPU.

Experiments were conducted using a session-oriented workload considered
to be a realistic workload for Web applications. KeepAlive was varied as a
discrete sine wave with a period of 1200 seconds, a mean of 11, and an amplitude

0 0.5 1 1.5 2 2.5

RIS
MaxUsers

R
IS

, M
ax

U
se

rs

Time

0

100

200

300

0 100 200

RIS
x = y

P
re

di
ct

ed
 R

IS

Observed RIS

0

100

200

(a) Data used in system identification (b) Model evaluation

Fig. 2.13 Data and model evaluation for the IBM Lotus Domino Server. Part (a) displays the
relationship between MaxUsers and RIS in system identification experiments. Part (b) shows
that predicted RIS lie close to the observed values.

TLFeBOOK

58 MODEL CONSTRUCTION

Time (seconds)

K
A

C
P

U

0

10

20

0

0.5

1

0 500 1000 1500 2000 2500 0 1
0

1

Actual

(a) Experimental data (b) Model evaluation

P
re

di
ct

ed

Fig. 2.14 Model of how KeepAlive affects CPU in Apache HTTP Server.

of 10. The mean value of CPU was 0.58. Figure 2.14(a) shows the input and
output signals. Thus, we use the operating point CPU = 0.58, KA = 11.

We use a first-order model to quantify the relationship between KeepAlive
and CPU. Here y(k) = CPU−0.58 and u(k) = KeepAlive−11. The estimates
of the model parameters are a = 0.6 and b = −0.014, and hence

y(k + 1) = 0.6y(k) − 0.014u(k) (2.30)

(b is negative since a larger KeepAlive decreases carried load and thereby
reduces utilizations.) R2 = 0.93. Figure 2.14(b) confirms that the model is very
accurate over the operating region studied. Further details can be found in [17].

2.6.3 M/M/1/K Comparisons

We investigate the effect of operating region on model accuracy for M/M/1/K .
As before, y is the offset value of response time, and u is the offset value of
buffer size (K). Also, λ = 3.8 is the arrival rate and µ = 4 is the service rate,
so ρ = 0.95. From Figure 2.2, we see that for these values of λ and µ, the
effect of K on response time is linear for 1 ≤ K ≤ 11, somewhat less linear for
1 ≤ K ≤ 51, and decidedly nonlinear for 1 ≤ K ≤ 101. We construct a first-
order model for each range of inputs using a discrete sine wave as the exciting
signal (centered on the middle of the range). We pick the operating point as the
mean buffer size K and the mean response time R of the operating region. Note
that this specification of the operating point is an approximation unless response
time is truly a linear function of buffer size.

The model results are displayed in Table 2.4. First, observe that RMSE increases
and R2 decreases as the range increases. This is to be expected since a linear model
provides a poor fit as the range increases. Also note that for the third range there
is a large difference between the results obtained using test data and those using
training data. Most likely, this is due to the much greater variability when K is
large. Last, observe the relationship between a and b as the range increases. In the

TLFeBOOK

PARAMETER ESTIMATION USING MATLAB 59

TABLE 2.4 System Identification of M/M/1/K for Various Input Rangesa

Input Range (K,R) (a, b) Evaluation RMSE R2

[1, 11] (6, 0.85) (−0.040, 0.11) Training data 0.20 0.78
Test data 0.18 0.77

[1, 51] (26, 2.7) (0.49, 0.033) Training data 1.62 0.34
Test data 1.53 0.33

[1, 101] (51, 4.01) (0.52, 0.014) Training data 2.09 0.20
Test data 2.62 0.17

aλ = 3.8, µ = 4. (K,R) is the operating point for buffer size and response time.

[1, 11] range, a ≈ 0, since response time is a linear function of K . Specifically,
we obtain the model

y(k + 1) = −0.04y(k) + 0.11u(k)

for the operating point K = 6 and R = 0.85. In [1, 51], b is smaller and a is
larger:

y(k + 1) = 0.49y(k) + 0.033u(k) (2.31)

for the operating point K = 26 and R = 2.7. This suggests that response times
are highly autocorrelated, thereby providing state information that can aid in
modeling the dynamics of the system. (The larger autocorrelation results from
having higher utilizations because of larger buffer sizes.) The foregoing effect
is even more pronounced for [1, 101]:

y(k + 1) = 0.52y(k) + 0.0014u(k)

for the operating point K = 51 and R = 4.01.
We note in passing that the middle row, in which (K, R) = (26, 2.7), is used

as a running example in the remainder of the book.

*2.7 PARAMETER ESTIMATION USING MATLAB

MATLAB is a powerful software tool that is widely used in technical computing
[67]. In particular, MATLAB is a very common environment for doing system
identification and control design. Appendix E provides a brief introduction to the
MATLAB environment.

Below we show how Example 2.3 can be solved using MATLAB. We begin
by defining variables for ỹ and ũ. These values are taken from Table 2.1.

yp = [0.62 0.72 0.76 0.52 0.91 0.92 0.97 1.52];
yp = [yp 1.42 1.99 1.95]’;
up = [4 5 5 6 7 8 9 10 11 12 13]’;

TLFeBOOK

60 MODEL CONSTRUCTION

Next, we compute the mean of the input and output values.

mu = mean(up(1:end-1));
my = mean(yp(2:end));
u = up - mu;
y = yp - my;

We can see the values computed by entering the following lines:

mu
my
[u y]

which produces the output

mu =
7.7000

my =
1.1680

u =
-3.7000
-2.7000
-2.7000
-1.7000
-0.7000
0.3000
1.3000
2.3000
3.3000
4.3000
5.3000

y =
-0.5480
-0.4480
-0.4080
-0.6480
-0.2580
-0.2480
-0.1980
0.3520
0.2520
0.8220
0.7820

TLFeBOOK

PARAMETER ESTIMATION USING MATLAB 61

Now, we compute the Si . We do this by creating a variable S that is initially
a vector of 0’s. Note that these computations differ somewhat from Equa-
tions (2.20)–(2.24) because there are assumed to be N + 1 data points (that
is, end= N + 1).

S = zeros(5,1);
S(1) = sum(y(1:end-1).^2);
S(2) = sum(u(1:end-1).*y(1:end-1));
S(3) = sum(u(1:end-1).^2);
S(4) = sum(y(1:end-1).*y(2:end));
S(5) = sum(u(1:end-1).*y(2:end));

We can view the results by entering S:

S =

2.1177
10.4650
68.1000
1.8419
12.1740

The parameters a and b are computed as

a = (S(3)*S(4)-S(2)*S(5))/(S(1)*S(3)-(S(2))^2);
b = (S(1)*S(5)-S(2)*S(4))/(S(1)*S(3)-(S(2))^2);

and [a b] results in the output

ans =

-0.0567 0.1875

Note that the estimate for a obtained here differs from that computed in
Section 2.4.3 because of the rounding done in the calculations in Section 2.4.3.
MATLAB has facilities for doing multiple variable regression that can make the

foregoing more convenient and allow us to scale to a larger number of variables.
This facility is invoked using the mldivide function, which is also accessed
with the backslash operator. For example, a and b can be estimated as follows:

H = [y(1:end-1) u(1:end-1)];
theta = H\y(2:end)

Since we did not end the second line with a semicolon, this produces the output

theta =

-0.0567
0.1875

TLFeBOOK

62 MODEL CONSTRUCTION

−0.5 0 0.5

Actual
P

re
di

ct
ed

−0.5

0

0.5

Fig. 2.15 Plot of actual versus predicted values for data in the MATLAB example.

H is a matrix whose columns are the variables to regress. theta(1) is a, and
theta(2) is b.
MATLAB has excellent plotting facilities that can aid in system identification.

A plot that we employ extensively is the predicted-versus-actual plot with a line
of unit slope shown for reference [e.g., Figures 2.12, 2.13, and 2.14(b)]. We can
construct such a plot for the sample data in this section using the following
commands:

yhat = a*y(1:end-1) + b*u(1:end-1);
plot(y(2:end),yhat, ’ * ’,y,y,’ -’);

The result is displayed in Figure 2.15.

2.8 EXERCISES

1. Identify the busy and idle periods in Figure 2.4.

2. Using the data in Figure 2.1, plot the time evolution of number in system,
utilization, and response time in the same manner as Figure 2.4.

3. Draw the time evolution of Figure 2.4 for 2-second averages.

4. Consider the IBM Lotus Domino Server system described in Section 1.6.1. In
that description, the administrator seeks to control the RIS for the server. Sup-
pose that a different administrator instead wants to control the CPU utilization
of the server. How does this change the control problem?

(a) What does the target system look like? What happens to the sensor?
(b) What are the new reference input, control input, system output, and dis-

turbance?
(c) Which of these are signals? Which are continuous? Which are discrete?

5. We continue with the system of Exercise 4. It is observed that the CPU
utilization of the system has significant stochastics. As a result, an experienced
control designer suggests that you should use a moving-average filter with

TLFeBOOK

EXERCISES 63

parameter 0.9 on the system output. Further, it is determined that a first-order
ARX model should be used to model the IBM Lotus Domino Server.

(a) Draw the new control block diagram.

(b) Write the ARX equations of the IBM Lotus Domino Server, and of the
moving-average filter.

(c) What signals do the variables in these equations map to?

(d) What are the parameters that must be identified through experimentation?

(e) You are now asked to design an experiment to identify these parameters.
What questions do you need to ask in order to design a proper experiment?

6. Use least-squares regression to estimate the parameter of y(k+1) = ay(k) for
n(k) in Figure 2.5. Compute R2 as well. [Remember that y(k) = n(k) − n.]

7. Fit a line to Equation (2.1) for λ = 3.8 over the range [0, 100] and compute
the R2 value. Now fit two curves to the same equation using the ranges
[0, 50] and [51, 100]. How do the R2’s of the latter fits compare with the
R2 of the first fit?

8. Often, computer systems will give preference to one class of customer over
another. One mechanism for doing this is to employ priorities.

(a) Redraw Figure 2.1 under the assumption that requests 22 and 24 have
higher priority than the other requests (although they do not preempt
lower-priority requests that are being served).

(b) Compare the response times of each request under the priority scheme
with those under the scheme without priorities.

(c) How are number in system and utilizations affected by the use of priorities?

9. Consider a queueing system with a waiting area that can accommodate only
two customers, in which requests are rejected (and not considered in queueing
metrics) if they arrive when the buffer is full. Draw a version of Figure 2.4
for this system assuming that there is no change in either arrival instants or
service times. (Remember that at time 0.6 there is a simultaneous arrival and
departure.)

(a) How many idle periods are present? How does this compare to the orig-
inal figure?

(b) How are response times affected? Why?

(c) Where would there be the most benefit if a third server were added?

(d) Return to Figure 2.4 and consider a queueing system whose waiting area
is changed from 5 to 2 at time 0.5 so that customers are admitted only if
no more than two customers are waiting. Also, assume that no previously
admitted customer is discarded. Compare n(t) and r(t) of this system with
one that has a fixed buffer size of 2.

TLFeBOOK

64 MODEL CONSTRUCTION

10. Write a system of difference equations that describe number in system at
departure instants in a first-come, first-serve queueing system with two non-
preemptive priority levels.

11. Suppose that

y(k + 1) = y2(k) − y(k)u(k)

(a) Find the operating point y for u = 2.
(b) Construct a linear equation about this operating point.

TLFeBOOK

3
Z-Transforms and

Transfer Functions

In this chapter we develop the tools for analyzing the statics and dynamics of
input–output relationships in discrete, time-invariant, linear systems. Our fun-
damental tool is the Z-transform, a simple but powerful mathematical technique
that is used throughout the remainder of the book. Z-transforms are used to solve
difference equations (such as those in Chapter 2), to infer steady-state properties
of signals, to assess the stability of systems, and to analyze transient response.
We do not assume prior exposure to Z-transforms.

3.1 Z-TRANSFORM BASICS

Control analysis and design frequently involves manipulating signals, especially
the following: adding and subtracting signals, shifting signals in time, and observ-
ing how signals change after being “operated on” by a system. Thus far, we have
described a signal as an ordered sequence, which we refer to as the time-domain
representation . However, this is not a convenient representation for the kinds of
manipulations we need to do.

Z-transforms provide a way to encode signals and to describe systems so that
we can easily extract key properties such as the steady-state value of a signal
and the settling time of a system. Further, many common ways in which we
combine smaller systems into larger systems (e.g., putting elements in series)
correspond to simple transformations of the Z-transforms of these systems (e.g.,
multiplication).

Feedback Control of Computing Systems, by Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury
ISBN 0-471-26637-X Copyright c© 2004 John Wiley & Sons, Inc.

65

TLFeBOOK

66 Z-TRANSFORMS AND TRANSFER FUNCTIONS

We begin by considering signals. The Z-transform provides a way to express
signals as a series of values at specific times. This is accomplished by using the
variable z to indicate time delays. Thus, instead of a list of values, we end up
with a sum that is much easier to manipulate mathematically. This representation
is much more convenient than the time-domain representation, although the Z-
transform is equivalent to the time-domain representation.

To provide some intuition, suppose that we have a signal {u(k)} whose first
few values are u(0) = 1, u(1) = 0.5, u(2) = 0.25, and u(3) = 0.125. The
time-domain representation is {1, 0.5, 0.25, 0.125, . . . }. It turns out that the Z-
transform of {u(k)} is

(1)z0 + (0.5)z−1 + (0.25)z−2 + (0.125)z−3 + · · · = z

z − 0.5

z/(z − 0.5) is a much more compact notation than the ordered list. Further, it is
very easy to manipulate signals using Z-transforms. For example, the Z-transform
of the sum of two signals is the sum of their Z-transforms.

Taking our intuition a bit further, consider the signal {u(k)} = {u(0), u(1),

u(2), u(3), u(4), u(5)} = {1, 0.8, 0.5, 0.3, 0.2, 0.1}, with u(k) = 0 for all other
values of k. Let U(z) be its Z-transform. Suppose that {u(k)} is shifted by one
time unit. That is, we have the signal {ushift(k)} = {0.8, 0.5, 0.3, 0.2, 0.1}, so
that ushift(k) = u(k + 1). Such effects are common in control analysis, but they
are cumbersome to express as an ordered set. However, it turns out that the
Z-transform of {ushift(k)} is zU(z). This is illustrated in Figure 3.1. Note that for
{udelay(k)} = {0, 1, 0.8, 0.5, 0.3, 0.2, 0.1}, the Z-transform is z−1U(z).

3.1.1 Z-Transform Definition

Z-transforms are defined for discrete-time signals. In this book we make the
additional assumption that all signals have a value of 0 for k < 0. Consider a
discrete-time signal:

{u(k)} = {u(0), u(1), u(2), . . . } (3.1)

The Z-transform of {u(k)} is

U(z) = u(0)z0 + u(1)z−1 + u(2)z−2 + · · · =
∞∑

k=0

u(k)z−k (3.2)

We also refer to the Z-transform of a signal as its Z-domain representation. By
definition, the sum starts at 0, which is the current time, and goes to ∞. By
convention, a capital letter [e.g., U(z)] is used to denote the Z-transforms of a
signal [e.g., {u(k)}].

The Z-transform provides an explicit representation of the time-domain signal
by encoding the values of the signal as the coefficients of z terms. That is, the
value of the signal with Z-transform U(z) at time k is the coefficient of z−k . For
example, u(0) is the value of the signal at time k = 0, which is indicated by its

TLFeBOOK

Z-TRANSFORM BASICS 67

0 1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (k)

 y

u (k)ushift(k) udelay(k)

Fig. 3.1 Time-shifted and time-delayed signals.

z term having an exponent of 0. u(1) occurs at time k = 1, which is indicated
by having a z term with an exponent of −1.

To develop this intuition further, consider {u(k)} in Figure 3.1. Observe that

U(z) = 1 × z0 + 0.8 × z−1 + 0.5 × z−2 + 0.3 × z−3 + 0.2 × z−4 + 0.1 × z−5

Now consider the effect of multiplying by z:

zU(z) = 1 × z1 + 0.8 × z0 + 0.5 × z−1 + 0.3 × z−2 + 0.2 × z−3 + 0.1 × z−4

We ignore the coefficient of z1 since this corresponds to k = −1, a term that is not
included in the summation in Equation (3.2). Thus, the time-domain representa-
tion of zU(z) is {0.8, 0.5, 0.3, 0.2, 0.1}, which is {ushift(k)}. That is, multiplication
by z has the effect of shifting the signal to the left (and discarding the k = 0
value of the original signal). Similarly, dividing by z has the effect of delaying
the original signal by one time unit. This is because u(k) becomes the coefficient
of z−k−1, and the coefficient of z−k−1 is the value of the signal at time k + 1.

The Z-transform is an infinite series. Considerations such as the convergence
of the infinite series are discussed in more detail in books on signals and systems

TLFeBOOK

68 Z-TRANSFORMS AND TRANSFER FUNCTIONS

(e.g., [51, 69]) and digital controls (e.g., [25]). In this book we assume that the
variable z is defined such that the series converges.

At first glance, the infinite series in Equation (3.2) may not seem any simpler
than the infinite sequence in Equation (3.1). However, for many common signals,
the infinite series has a very simple form. To illustrate, consider the geometric
sum 1 + a + a2 + · · · + ak , an expression that arises frequently in analysis
of queueing systems (e.g., the distribution of the number of customers in the
system). This sum can be expressed as a fraction:

1 + a + a2 + · · · + ak = (1 − a)(1 + a + a2 + · · · + ak)

1 − a

= 1 − a + a − a2 + a2 − a3 + a3 + · · · − ak + ak − ak+1

1 − a

= 1 − ak+1

1 − a

In the limit as k → ∞, we can see that

lim
k→∞

k∑
i=0

ai =
∞∑
i=0

ai = 1 + a + a2 + · · · = 1

1 − a

if |a| < 1.

3.1.2 Z-Transforms of Common Signals

In this section we present several signals that commonly occur in computing
systems and show how to obtain their Z-transforms. We begin with the impulse
signal . As depicted in Figure 3.2(a), an impulse models a signal of very short
duration. In discrete time, the shortest time unit is one sample time. The unit
impulse is defined as uimpulse(0) = 1, uimpulse(k) = 0 for k �= 0. An impulse sig-
nal of any magnitude can be obtained by multiplying uimpulse(k) by an appropriate
constant. In computing systems, impulse signals typically result from transients
such as a workload surge of short duration. The Z-transform of the unit impulse is

Uimpulse(z) = 1z0 + 0z−1 + 0z−2 + · · ·
= 1

Next, we consider the step signal . As shown in Figure 3.2(b), {ustep(k)} =
{1, 1, 1, 1, . . . }. The name step is motivated by the appearance of this signal when
it is plotted in continuous time. A step signal occurs in computing systems if, for
example, there is a change in workload that occurs in less than one sample time
or there is a rapid change in the resources configured (e.g., due to a permanent
failure). The Z-transform of the step is

Ustep(z) = 1 + z−1 + z−2 + · · · =
∞∑

k=0

z−k = 1

1 − z−1
= z

z − 1
(3.3)

TLFeBOOK

Z-TRANSFORM BASICS 69

0 2 4

(a) Impulse: y (0) = 1, y (k) = 0 for k > 0

6 8 10

0 2 4

(b) Step: y (k) = 1

6 8 10

0 2 4

(c) Ramp: y (k) = k

6 8 10

0

0.2

0.4

0.6

0.8

1

 y

0

0.2

0.4

0.6

0.8

1

 y

0

2

4

6

8

10

 y

Fig. 3.2 Common discrete-time signals, part 1.

The ramp signal , uramp(k) = k, is so-called because when the samples are
connected with a straight line, it resembles a ramp as shown in Figure 3.2(c). A
ramp can be used to model the gradual buildup of workload in a system or the
gradual arrival of end users at the beginning of a workday.

Uramp(z) = 0 + 1z−1 + 2z−2 + 3z−3 + · · ·

=
∞∑

k=0

kz−k

= z

(z − 1)2

TLFeBOOK

70 Z-TRANSFORMS AND TRANSFER FUNCTIONS

0 2 4 6

(a) Sine: y (k) = sin(qk), q = 36°
8 10

0 2 4 6

(c) Sinusoid modulated by an exponential: y (k) = ak sin(qk), q = 36°, a = 0.8

8 10

0 2 4 6

k

(b) Exponential: y (k) = ak, a = 0.8

8 10

−1

−0.5

0

0.5

1
 y

−1

−0.5

0

0.5

1

 y

0.6

0.4

0.2

0

0.8

1

 y

Fig. 3.3 Common discrete-time signals, part 2.

A discrete sine wave is defined as usine(k) = sin kθ for a frequency θ . A
discrete sine wave is displayed in Figure 3.3(a). Sine waves can be used to
model variations in workload due to time of day, day of week, and so on. Another
motivation for discussing sine waves is that any periodic signal can be expressed
as a combination of sinusoids at different frequencies (using a discrete Fourier
expansion).

TLFeBOOK

Z-TRANSFORM BASICS 71

Usine(z) = 0 + sin θz−1 + sin 2θz−2 + sin 3θz−3 + · · ·

=
∞∑

k=0

sin(kθ)z−k

= z sin θ

z2 − (2 cos θ)z + 1

An exponential or geometric signal is defined as uexp(k) = ak . If a > 1, it
grows with time; if 0 < a < 1, it approaches zero as shown in Figure 3.3(b).

Uexp(z) = 1 + az−1 + a2z−2 + a3z−3 + · · ·

=
∞∑

k=0

akz−k

= z

z − a

If |a| < 1, we refer to uexp as a decaying exponential . If |a| > 1, we refer to
uexp as a rising exponential . If a = 1, then Uexp(z) = z/(z − 1) = Ustep(z).

The final signal we consider is a sinusoid modulated by an exponential, as
displayed in Figure 3.3(c). The time-domain signal is uexpsin(k) = ak sin kθ . The
Z-transform of this signal is

Uexpsin(z) = 0 + (a sin θ)z−1 + (a2 sin 2θ)z−2 + (a3 sin 3θ)z−3 + · · ·

=
∞∑

k=0

ak sin(kθ)z−k

= za sin θ

z2 − (2a cos θ)z + a2

Both exponential signals and exponentially modulated sinusoids are commonly
found in linear systems.

Table 3.1 summarizes the Z-transforms of the common signals just discussed.
This table is used extensively in the remainder of the chapter. Note that the
Z-transforms in the table (and almost all Z-transforms in the book) are ratios of
polynomials of z.

3.1.3 Properties of Z-Transforms

The techniques employed in subsequent chapters combine and otherwise manip-
ulate the Z-transforms of signals to study the time-domain properties of systems.
Doing so is facilitated by certain properties of Z-transforms.

TLFeBOOK

72 Z-TRANSFORMS AND TRANSFER FUNCTIONS

TABLE 3.1 Z-Transforms of Common Signals

Signal Time Domain (k ≥ 0) Z-Transform

Impulse u(0) = 1 U(z) = 1

Step u(k) = 1 U(z) = z

z − 1

Ramp u(k) = k U(z) = z

(z − 1)2

Exponential u(k) = ak U(z) = z

z − a

Sine u(k) = sin kθ U(z) = z sin θ

z2 − (2 cos θ)z + 1

Cosine u(k) = cos kθ U(z) = z(z − cos θ)

z2 − (2 cos θ)z + 1

ExpSin u(k) = ak sin kθ U(z) = za sin θ

z2 − (2a cos θ)z + a2

ExpCos u(k) = ak cos kθ U(z) = z(z − a cos θ)

z2 − (2a cos θ)z + a2

First, we note that Z-transforms are linear functions. That is, if a signal {u(k)}
is multiplied by a constant a in the time domain, to give y(k) = au(k), then
its Z-transform is multiplied by the same constant to result in Y (z) = aU(z).
Similarly, if two signals {u(k)} and {v(k)} are added together in the time domain
to result in a new signal y(k) = u(k) + v(k), their Z-transforms are added to
give Y (z) = U(z) + V (z).

Frequently, our models describe how signals are shifted and delayed. Recall
from the discussion at the beginning of Section 3.1 that shifts and delays are
easily described in terms of Z-transforms. A delay corresponds to a multiplica-
tion by z−1. This can be shown directly from the definition of the Z-transform.
Consider y(k) = u(k − 1). The Z-transform of y(k) is

Y (z) =
∞∑

k=0

y(k)z−k =
∞∑

k=0

u(k − 1)z−k = z−1
∞∑

k=0

u(k − 1)z−(k−1)

= z−1
∞∑

m=−1

u(j)z−m = z−1
∞∑

m=0

u(j)z−m

= z−1U(z)

where we have used the substitution m = k − 1 and the fact that u(−1) =
0. Similarly, a delay of n sample times is represented as a multiplication by
z−n.

TLFeBOOK

Z-TRANSFORM BASICS 73

TABLE 3.2 Z-Transform Propertiesa

Property Time Domain Z-Transform

Scaling y(k) = au(k) Y (z) = aU(z)

Addition y(k) = u(k) + v(k) Y (z) = U(z) + V (z)

Unit delay y(k) = u(k − 1) Y (z) = z−1U(z)

n-delay y(k) = u(k − n) Y (z) = z−nU(z)

Unit shift y(k) = u(k + 1) Y (z) = zU(z) − zu(0)

n-shift y(k) = u(k + n) Y (z) = znU(z) − znu(0) − · · · − zu(n − 1)

au(k), v(k), y(k) are discrete-time signals, and U(z), V (z), Y (z) are their corresponding Z-transforms. The
numbers a, b, c are constants.

A shift is slightly more complicated because we must consider an initial con-
dition. Let y(k) = u(k + 1). Applying the definition of Z-transforms, we have

Y (z) =
∞∑

k=0

y(k)z−k =
∞∑

k=0

u(k + 1)z−k = z

∞∑
k=0

u(k + 1)z−(k+1)

= z

∞∑
m=1

u(j)z−m = z

[(∞∑
m=0

u(m)z−m

)
− u(0)

]

= z (U(z) − u(0))

The derivation uses the substitution m = k + 1 and must include the initial
condition u(0). Generalizing, a shift of n sample times is indicated by multiplying
by zn [with some care as to the initial conditions u(0), u(1), . . . , u(n − 1)].

The foregoing results are summarized in Table 3.2. An application of these
properties is discussed in the following example.

Example 3.1: Measuring RIS in the IBM Lotus Domino Server In the IBM
Lotus Domino Server of Section 1.6.1, every Ts seconds the sensor computes
RIS, the number of remote procedure calls (RPCs) in the IBM Lotus Domino
Server. The sensor uses the server log, which specifies the time at which each
RPC arrived and when it departed. Unfortunately, the log does not contain active
RPCs, those that are being processed by the IBM Lotus Domino Server at the time
that the log is sampled. Hence, the sensor underestimates the true value of RIS.
One way to increase accuracy is to delay one sample time before examining the
server log since some of the RPCs that are active at time k will have completed
by time k + 1 and hence have their records recorded in the server log. Indeed,
we could delay n ≥ 1 sample times before reading the log to ensure a still more
accurate measurement of RIS.

Introducing delays into a sensor changes its behavior. We use Z-transforms
to express this delay. Let q(k) denote the true value of RIS at time k, and let
m(k + n) be the measured value of RIS obtained by sampling the server log at
time k + n. A very simple (and not too accurate) way to model this is to view a
delay of one time step as resulting in m(k) = q(k − 1). Similarly, a delay of n

TLFeBOOK

74 Z-TRANSFORMS AND TRANSFER FUNCTIONS

time steps is modeled as m(k) = q(k −n). Using this approach, the Z-transform
of the output of a sensor with a delay of one time step is M(z) = z−1Q(z). For
an n-time-step delay, the Z-transform is M(z) = z−nQ(z).

3.1.4 Inverse Z-Transforms

The time-domain signal {u(k)} can be recovered from U(z) in several ways. The
simplest is through table look-up. If U(z) can be found directly in Table 3.1,
the time-domain signal can be simply read from the table. Even if the desired
transform is not a table entry, it may be a combination of entries that allow us
to use the properties in Table 3.2 to recover u(k).

For example, consider U(z) = z/(z − 1) + z/(z + 0.5). We use the entries for
step and exponential in Table 3.1 along with the addition property in Table 3.2
to see that u(k) = 1 + (−0.5)k.

A more involved example is U(z) = 2/(z − 1)2. This looks similar to the
ramp entry z/(z − 1)2, but there is a 2 in the numerator and no z. We can make
it look like the ramp entry by multiplying by z−1z = 1 and factoring out the
constant 2:

U(z) = 2z−1 z

(z − 1)2 (3.4)

This results in the Z-transform of a ramp multiplied by 2z−1. Consulting Table 3.2,
we see that the multiplication by a scalar (here 2) behaves analogously in the
time domain, and the multiplication by z−1 corresponds to a unit delay. Thus, the
corresponding time domain signal is

u(k) = 2(k − 1) (3.5)

for k ≥ 1.
Not all Z-transforms can be found in Table 3.1. In fact, there are infinitely many

possible time-domain signals, and it would be impossible to compile them all into
a table. However, the definition of the Z-transform provides another way to find
{u(k)}. Recall that U(z) is an infinite series in which the coefficient of z−k is
u(k). Thus, finding {u(k)} is equivalent to determining these coefficients. If U(z)

is expressed as a fraction, the u(k) can be found by long division. For example,
let U(z) = 2/(z − 1)2 = 2/(z2 − 2z + 1), as before. We set up the long division:

2z−2 + 4z−3 + 6z−4 + · · ·
z2 − 2z + 1

)
2 + 0z−1 + 0z−2 + 0z−3 + 0z−4 + · · ·
2 − 4z−1 + 2z−2

4z−1 − 2z−2

4z−1 − 8z−2 + 4z−3

6z−2 − 4z−3

6z−2 − 12z−3 + 6z−4

8z−3 − 6z−4

...

(3.6)

TLFeBOOK

Z-TRANSFORM BASICS 75

That is, u(2) = 2, u(3) = 4, and u(4) = 6. This is consistent with u(k) = 2(k−1)

for k ≥ 1.
Although long division can always be used to recover the time-domain signal,

it can be tedious to perform. An alternative is partial fraction expansion , which
allows us to express U(z) as a sum of simple components called partial fractions
[assuming that U(z) is a ratio of rational polynomials of z]. We can use Table 3.1
to invert the partial fractions and then apply the addition property to construct
{u(k)}.

To illustrate partial fraction expansion, suppose that we have U(z) = b/(z2 +
a1z+a2), and the denominator can be factored as z2+a1z+a2 = (z−p1)(z−p2),
where p1 and p2 are both real. Then

U(z) = b

(z − p1)(z − p2)

= c1

z − p1
+ c2

z − p2

where the terms ci/(z − pi) are called the partial fractions of U(z). The coeffi-
cients of the numerators, ci , can be found by collecting and matching terms:

U(z) = b

(z − p1)(z − p2)

= c1

(z − p1)
+ c2

(z − p2)

= c1(z − p2) + c2(z − p1)

(z − p1)(z − p2)

= (c1 + c2)z − (c1p2 + c2p1)

(z − p1)(z − p2)

Since the numerators must match for the equality to hold, we have

(c1 + c2)z = 0z

−(c1p2 + c2p1) = b

which gives us two equations to solve for the two unknowns c1 and c2. This
simple method works well when there are only two or three terms in the denom-
inator and all of the roots are real and distinct. Although the algebra is more
involved for higher-order terms and complex roots, there is a well-developed
method for manually finding partial fractions for arbitrary Z-transforms. We omit
this presentation here, however, and refer the reader to the MATLAB techniques
in Section 3.6 and to [25].

3.1.5 Using Z-Transforms to Solve Difference Equations

As described in Chapter 2, difference equations provide a simple way to model
the dynamics of computing systems. It turns out that Z-transforms can be used

TLFeBOOK

76 Z-TRANSFORMS AND TRANSFER FUNCTIONS

to solve linear difference equations. By solve, we mean expressing the output
y(k+1) in terms of the inputs u(1), . . . , u(k+1) and the initial conditions y(0).
Such an expression provides a convenient way to study the control characteristics
of systems, such as the effect of changes in the reference input as well as the
effects of disturbance and noise inputs.

The following four steps outline the procedure for solving difference equations
using Z-transforms:

1. Take the Z-transform of all terms in the difference equation.
2. Solve for the Z-transform of the unknown variable (output).
3. Plug in the Z-transform of the known variable (input).
4. Take the inverse Z-transform to find the output in the time domain.

The last step can sometimes be omitted, since many properties of a signal can
be inferred from its Z-transform.

Example 3.2: Discrete integrator A simple example of a linear difference equa-
tion is an integrator:

y(k + 1) = y(k) + u(k) (3.7)

Its Z-transform is found term by term using the properties derived in Section 3.1.3.
First, observe that

∞∑
k=0

y(k + 1)z−k = zY (z) − zy(0)

So

zY (z) − zy(0) = Y (z) + U(z) (3.8)

We now solve for Y (z) as

Y (z) = 1

z − 1

[
U(z) + zy(0)

]
(3.9)

This result applies to any input signal and any initial condition y(0). Now assume
that y(0) = 0 and U(z) = z/(z − 1) (a step function), as shown in the top left
plot of Figure 3.4. In this case we have

Y (z) = 1

z − 1

z

z − 1
= z

(z − 1)2 (3.10)

To find the inverse Z-transform , we consult Table 3.1 and see that y(k) = k is
a ramp function. As expected from basic calculus, the integral of a constant is a
ramp.

TLFeBOOK

Z-TRANSFORM BASICS 77

Discrete
Integrator

y (k)u(k)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2
Step Input

0

1

2

3

4

5
Ramp Output

Impulse Input

0

0.2

0.4

0.6

0.8

1

1.2
Delayed Step Output

y

yu

0

0.2

0.4

0.6

0.8

1

1.2

u

k
0 1 2 3 4 5

k

0 1 2 3 4 5
k

0 1 2 3 4 5
k

Fig. 3.4 Inputs and outputs for the discrete integrator. The discrete integral of a step is a ramp,
and the discrete integral of an impulse is a delayed step.

Next, suppose that u(k) is an impulse. Again, we assume that y(0) = 0, which
results in

Y (z) = 1

z − 1
· 1 = z−1

(
z

z − 1

)
(3.11)

This is a delayed step in that y(0) = 0 and y(k) = 1 for k ≥ 1. Thus, the
integral of an impulse is a delayed step. Figure 3.4 summarizes the input–output
relationships just discussed.

In general, the integral of a discrete time signal is not the same as its conti-
nuous-time counterpart. For example, the discrete integral of a ramp is not a
quadratic function, and the discrete integral of a cosine function is not a sine.

Example 3.3: Apache HTTP Server with impulse input Another example of
a difference equation is the model of the relationship between KeepAlive and
CPU in the Apache HTTP Server. Let y(k) be the offset value of CPU(k) and
u(k) be the offset value of KA(k) (KeepAlive). That is,

y(k) = CPU(k) − CPU

u(k) = KA(k) − KA

TLFeBOOK

78 Z-TRANSFORMS AND TRANSFER FUNCTIONS

where the operating point is KA = 11, CPU = 0.58. In Section 2.6.2 we identified
the following model:

y(k) = ay(k − 1) + bu(k − 1)

where the model parameters a, b are estimated as a = 0.6 and b = −0.014. We
can use this model to predict how the output (CPU utilization) reacts when the
input (KeepAlive) changes. To do this, we solve the difference equation to
obtain

zY (z) − zy(0) = aY (z) + bU(z)

(z − a) Y (z) = bU(z)

and so

Y (z) = b

z − a
U(z) (3.12)

Equation (3.12) holds for any input signal U(z), although it does assume that
y(0) = 0 (i.e., the initial conditions are 0).

Now consider Equation (3.12) with U(z) as an impulse with a magnitude of
10. This means that KA(0) = 10 + 11 = 21. At k = 1, we set KeepAlive back
to its operating point of 11, where it remains. Using Tables 3.1 and 3.2 we find
that U(z) = 10, and thus

Y (z) = 10b

z − a
= −0.14

z − 0.6
= −0.14z−1 z

z − 0.6
(3.13)

Again consulting Tables 3.1 and 3.2, we note that multiplying the Z-transform by
a constant (−0.14) multiplies the time-domain signal by the same constant. The
z−1 in front corresponds to a delay of one time step, and the fraction z/(z− 0.6)

gives a time-domain expression of (0.6)k . Thus, we arrive at the time-domain
solution

y(k) = −0.14(0.6)k−1 (3.14)

for k ≥ 1. That is,

CPU(k) = y(k) + CPU

= −0.14(0.6)k−1 + 0.58

Using this result and assuming that y(0) = 0, we have

y(k) = {0, −0.14,−0.084, −0.05, −0.03,−0.018, . . . }
CPU(k) = {0.58, 0.44, 0.50, 0.53, 0.55, 0.56, . . . }

A plot of CPU versus time is shown in Figure 3.5. The time evolution of CPU
is interpreted as follows. At first, CPU drops by 0.1 due to the increase in

TLFeBOOK

Z-TRANSFORM BASICS 79

0 5 10
0

0.2

0.4

0.6

k

0 5 10

k

C
P

U

0

0.2

0.4

0.6

C
P

U

 Response to Impulse Response to Step

Fig. 3.5 Predicted response of the Apache HTTP Server output CPU utilization to an impulse
and step change in the value of KeepAlive with a different workload in which b = −0.11.

KeepAlive. However, when KeepAlive returns to its operating point, CPU
utilization gradually increases to its operating point. Indeed, as k gets larger,
y(k) → 0 and CPU(k) → 0.58. After five time steps, CPU is within 1% of 0.58,
the operating point for CPU. Note that the speed at which this convergence occurs
depends on 0.6, the base of the exponent in Equation (3.14).

Example 3.4: Apache HTTP Server with a step input Now, consider a step
input, u(k) = 10 for k ≥ 0, in which KeepAlive is set to 21 at k = 0 and kept
there. We use a slight variation on Equation (3.12) in which there is a different
workload, so b = −0.11.

Y (z) = b

z − a

10z

z − 1
= 10bz

(z − 1)(z − a)
= −0.11z

z2 − 1.6z + 0.6
(3.15)

No similar form can be found in Table 3.1. However, we can also compute y(k)

directly by long division:

−0.11z−1 − 0.18z−2 − 0.22z−3 + · · ·
z2 − 1.6z + 0.6

) −0.11z + 0 + 0z−1 + 0z−2 +0z−3 + · · ·
− 0.11z + 0.18 − 0.066z−1

−0.18 + 0.066z−1

−0.18 + 0.29z−1 − 0.12z−2

− 0.22z−1 + 0.12z−2

− 0.22z−1 + 0.35z−2 − 0.13z−3

− 0.24z−2 + 0.13z−3

(3.16)

Thus, we have

y(k) = {0, −0.11,−0.18, −0.22, . . . }
CPU(k) = {0.58, 0.47, 0.40, . . . }

TLFeBOOK

80 Z-TRANSFORMS AND TRANSFER FUNCTIONS

Although we can see from this calculation that the model predicts that CPU
decreases when KeepAlive increases, it is not clear from the first few terms
in the sequence: (a) if CPU converges, (b) to what value it converges (if it does
converge), and (c) how long it takes to converge (again, if it converges). These
considerations motivate our desire to find the time-domain solution.

Another way of finding the inverse Z-transform is to transform Y (z) into a
sum of simple fractions using partial fraction expansion. This is done in a way
so that each simple fraction is in a form that matches an entry in Table 3.1. For
Equation (3.15) this is straightforward since the roots of the denominator are real
and distinct:

Y (z) = −0.11z

(z − 1)(z − 0.6)
= c1

z − 1
+ c2

z − 0.6
(3.17)

We want to solve for the constants c1 and c2 such that

−0.11z

(z − 1)(z − 0.6)
= c1

z − 1
+ c2

z − 0.6

= c1(z − 0.6) + c2(z − 1)

(z − 1)(z − 0.6)

= (c1 + c2)z − (0.6c1 + c2)

(z − 1)(z − 0.6)

Matching terms in the numerator on the left and right sides of the equation, we
get

(c1 + c2)z = −0.11z

0.6c1 + c2 = 0

which can be solved to find c1 = −0.275 and c2 = 0.165. Now Table 3.1 can
be used to find y(k):

Y (z) = −0.275

z − 1
+ 0.165

z − 0.6

= −0.275z−1 z

z − 1
+ 0.165z−1 z

z − 0.6

y(k) = −0.275 + 0.165(0.6)k−1 for k ≥ 1

From this we conclude that

CPU(k) = y(k) + CPU for k ≥ 1

= 0.305 + 0.165(0.6)k−1 for k ≥ 1

This shows that as k → ∞, the term (0.6)k−1 approaches zero, and thus y(k) →
−0.275 and CPU(k) → 0.305. A plot of the predicted CPU versus time is shown
in Figure 3.5.

TLFeBOOK

CHARACTERISTICS INFERRED FROM Z-TRANSFORMS 81

3.2 CHARACTERISTICS INFERRED FROM Z-TRANSFORMS

Z-transforms provide insight into the time-domain properties of signals without
the need for a time-domain solution. In fact, the most important time-domain
properties of signals only require knowledge of the roots of the denominator of
the Z-transform. In some cases, these roots are complex numbers. Thus, we
begin with a brief review of complex variables.

3.2.1 Review of Complex Variables

Complex variables are often needed to express the roots of polynomials. For
example, a first-order polynomial with real coefficients [e.g., P(z) = az + b]
always has one real root (exactly z = −b/a). However, a quadratic or second-
order polynomial may have complex roots. The roots of the polynomial P(z) can
be found using the well-known quadratic equation

P(z) = az2 + bz + c

z = −b ± √
b2 − 4ac

2a

If (b2 − 4ac) ≥ 0, both roots are real; otherwise, they are complex. We use
the imaginary number j to represent the square root of −1. That is, j = √−1.
(Another convention is i = √−1.) The complex roots can then be expressed as

z = −b

2a
± j

√
4ac − b2

2a
(3.18)

where we have factored the −1 out of the square root.
Complex numbers have both a real and an imaginary part. In this example, the

real part is −b/2a and the imaginary part is ±j
√

4ac − b2/2a. As a numerical
example, consider the polynomial P(z) = z2 + 2z + 10, with roots

z = −2 ±
√

22 − 4(1)(10)

2(1)

= −2 ± √−36

2

= −1 ± j3

Thus, we can write P(z) in its factored form as

P(z) = (z + 1 + j3)(z + 1 − j3)

Using rectangular coordinates , complex numbers can be represented graphi-
cally. The real part is the coordinate for the horizontal axis, and the imaginary
part is the coordinate for the vertical axis. For example, let z = c + jd be a

TLFeBOOK

82 Z-TRANSFORMS AND TRANSFER FUNCTIONS

Imaginary Axis

Real Axis

q

c + jd
jd

c − jd
−jd

c

r

−q

Fig. 3.6 Summary of the complex plane. For a complex number c+ jd, the real part (horizontal
axis) is c, and the imaginary part (vertical axis) is d. The distance from the origin to (c, d) is
r =

√
c2 + d2. The angle of the vector to (c, d) is θ = tan−1(d/c). c + jd and c − jd are complex

conjugates. They have the same distance from the origin. Their angles have opposite signs.

complex number. This is plotted as shown in Figure 3.6. In addition to rectangular
coordinates, z can also be represented as polar coordinates consisting of (1) the
distance to the origin or the magnitude of a complex number z, and (2) the angle
of a complex number z with respect to the positive real axis. Simple trigonometry
gives the distance as r = √

c2 + d2 and the angle as θ = tan−1(d/c).
The complex exponential is defined as ejθ = cos θ + j sin θ . Thus, from the

definitions of r and θ , we have

rejθ = r (cos θ + j sin θ)

= r
c√

c2 + d2
+ jr

d√
c2 + d2

= c + jd

That is,

c = r cos θ

d = r sin θ
(3.19)

We can also use the complex exponential to express sines and cosines. For
example, consider

ejθ + e−jθ = cos θ + j sin θ + cos θ − j sin θ = 2 cos θ

ejθ − e−jθ = cos θ + j sin θ − cos θ + j sin θ = 2j sin θ

TLFeBOOK

CHARACTERISTICS INFERRED FROM Z-TRANSFORMS 83

Thus, we have the expressions for sine and cosine in terms of complex exponen-
tials as

cos θ = 1

2
(ejθ + e−jθ)

sin θ = 1

2j
(ejθ − e−jθ)

Note that these formulas can also be used to obtain the Z-transforms of sin kθ,

cos kθ from the Z-transform of the exponential. Since sin kθ = (1/2j)(ejkθ −
e−jkθ) = (1/2j)[(ejθ)k − (e−jθ)k], we have that the Z-transform of sin kθ is

1

2j

(
z

z − ejθ
− z

z − e−jθ

)
= 1

2j

z(z − e−jθ) − z(z − ejθ)

(z − ejθ)(z − e−jθ)

= 1

2j

z
(
ejθ − e−jθ

)
z2 − z(ejθ + e−jθ) + 1

= z sin θ

z2 − 2z cos θ + 1

3.2.2 Poles and Zeros of a Z-Transform

Many properties of a signal can be inferred from its Z-transform. Consider
Equation (3.17). This can be written as

Y (z) = −0.11z

(z − 1)(z − 0.6)
= N(z)

D(z)
(3.20)

where N(z) = −0.11z and D(z) = (z − 1)(z − 0.6). That is, Y (z) is a ratio of
polynomials in z. It turns out that the denominator polynomial D(z) has special
significance. Indeed, it is referred to as the characteristic polynomial of the Z-
transform. The characteristic equation is obtained by setting the characteristic
polynomial to 0. Solving for z, we obtain the roots of the characteristic polyno-
mial, which are called the poles . One justification for the term pole is that if p

is a pole of Y (z), the magnitude of Y (z) increases rapidly as z → p, giving a
polelike appearance to the plot of Y (z).

The poles of a Z-transform are important because they determine key prop-
erties of y(k), especially stability and settling times. The intuition here is based
on the manner in which partial fraction expansion converts a Z-transform into
a time-domain expression. In essence, y(k) is expressed as the sum of terms
in which a single pole of Y (z) is raised to a power that is some constant plus
k. There is one such term for each pole. To illustrate, consider Example 3.4, in
which

Y (z) = −0.11z

(z − 1)(z − 0.6)

The poles are 1 and 0.6, and the time-domain solution is y(k) = (−0.275)(1)k

+(0.165)(0.6)k−1. Here, the pole at 1 is raised to the kth power, and the pole

TLFeBOOK

84 Z-TRANSFORMS AND TRANSFER FUNCTIONS

at 0.6 is raised to the (k − 1)th power. Thus, in general, if a pole a is larger
than 1, y(k) increases without bound since ak is unbounded as k increases. If
the pole a is negative, y(k) oscillates since ak is positive if k is even and is
negative if k is odd. And if two systems, each with a single pole, are such that
|a1| < |a2| < 1, the system with pole a1 settles faster than the system with pole
a2 since |a1|k < |a2|k .

Consider the (real-valued) exponential u(k) = ak that has the Z-transform
U(z) = z/(z − a). The denominator polynomial has one root, z = a, which
is always real. We note that in the limit as k → ∞, the time-domain signal
u(k) = ak approaches zero if the magnitude of a is less than 1, whereas it
approaches infinity if the magnitude of a is greater than 1. If the magnitude is
equal to 1, it stays bounded but does not go to zero (if a = 1, we have the step
function; if a = −1, the signal alternates between ±1).

Suppose that |a| < 1. The speed with which u(k) → 0 depends on the
magnitude of a. As shown in Figure 3.7, the convergence is fast if a is close
to 0, and becomes slower as a approaches 1. Also note that for a < 0, u(k)

alternates between positive and negative values.

−1

−0.5

0

0.5

1

 y

−1

−0.5

0

0.5

1

 y

−1

−0.5

0

0.5

1

 y

−1

−0.5

0

0.5

1

 y

−1

−0.5

0

0.5

1

 y

−1

−0.5

0

0.5

1

 y

 a = 0.1 a = −0.1

 a = 0.6 a = −0.6

 a = 0.9 a = −0.9

0 10 20

k
0 10 20

k

Fig. 3.7 Effect of pole magnitude on the speed of convergence of an exponentially decaying
signal y(k) = ak .

TLFeBOOK

CHARACTERISTICS INFERRED FROM Z-TRANSFORMS 85

Theoretically, u(k) never reaches exactly zero. However, a typical rule of
thumb is that u(k) ≈ 0 when it is 2% of u(0). We can find the time (in units
of k) to reach this 2% by solving for the value of k when u(k) = |a|k = 0.02
[assuming that u(0) = 1].

k log |a| = log 0.02 = −3.912

k ≈ −4

log |a|
where the logarithm refers to the natural logarithm (base e). If |a| < 1, log |a|
is negative, resulting in a positive value for k. To convert k into seconds (or
minutes), k must be multiplied by the sample time, Ts .

Now consider the sine function sin kθ and its Z-transforms,

U(z) = z sin θ

z2 − (2 cos θ)z + 1

This signal has a quadratic in the denominator, meaning that there are two roots,
and thus two poles. We can find them using the quadratic formula as

z = 2 cos θ ± √
4 cos2 θ − 4

2

= cos θ ±
√

− sin2 θ

= cos θ ± j sin θ

= e±jθ

Both poles have magnitude 1, and are at an angle of ±θ from the positive real
axis. Thus, the frequency of oscillation θ is determined by the angle of the roots
in the complex plane. Note that since the denominator of the Z-transform of
the cosine function is the same as that of the sine function, sine and cosine
have the same poles.

Finally, consider the sinusoid modulated by an exponential,

U(z) = za sin θ

z2 − (2a cos θ)z + a2

Again, there is a quadratic in the denominator, indicating a pair of poles. The
quadratic formula gives

z = 2a cos θ ± √
4a2 cos2 θ − 4a2

2

= a cos θ ±
√

−a2 sin2 θ

= a cos θ ± ja sin θ

= ae±jθ

TLFeBOOK

86 Z-TRANSFORMS AND TRANSFER FUNCTIONS

The roots have magnitude a and are at an angle of ±θ from the real axis. Thus,
the rate of decay of the signal (how fast it converges to zero) is determined by
a, and the frequency of oscillation is determined by θ .

Our analysis can easily be generalized to handle multiple poles. Recall that
using partial fraction expansion, U(z) can be expanded into a sum of simpler
terms. It turns out that each term has either a single real pole or a pair of complex
poles. We can apply the analysis above to determine the time-domain properties
of each term in the partial fraction expansion. Further, due to the addition property
of Z-transforms, u(k) is the sum of the time-domain contributions of each term.
For example, let

U(z) = z2 + 5z + 6

(z − 1)(z − 0.5)(z2 − z + 0.5)

= c1

z − 1
+ c2

z − 0.5
+ c3z + c4

z2 − z + 0.5

u(k) = c1 + c2(0.5)k + 0.71k[d3 cos(0.79k) + d4 sin(0.79k)]

The poles of U(z) are {1, 0.5, 0.5 ± j0.5} or {1, 0.5, 0.7e±j0.79}. For simplicity,
we do not compute the coefficients c1, c2, c3, c4, d3, d4. However, note that the
time-domain properties of u can be determined without knowing the u(k) values
exactly. The ci and di terms indicate the relative weight of the contribution
of each pole. The pole at 1 contributes a delayed step term, the pole at 0.5
contributes a decaying exponential, and the complex poles at 0.7e±j0.79 contribute
a combination of exponentially modulated sine and cosine terms, where the
exponential has the base 0.71 and the frequency of the sinusoid is 0.79.

Thus far, we have focused on the denominator of U(z). The roots of the
numerator of U(z) are called the zeros . That is, if q is a zero of U(z), then
U(q) = 0. The zeros of U(z) play a role in the time-domain properties of
{u(k)}, although not as central as the poles. In particular, the zeros contribute to
the relative weighting of the terms in the partial fraction expansion of U(z) and
thus are particularly important in determining the properties of u(k) for small k.

3.2.3 Steady-State Analysis

Often we are interested in what happens to a signal as k becomes very large.
In particular, if {y(k)} converges, we are interested in the value to which it
converges. We refer to this as the steady-state value of y(k) and denote it by
yss. One example of where the analysis of steady-state values is of great interest
is control error (the difference between the reference value and the output of a
feedback system) since we want to know if this signal converges to zero.

There are several ways to find the steady-state value of a signal (assuming that
the signal converges). One approach operates directly on the difference equations.
To find yss, we assume that the input is held constant at uss. If {y(k)} converges,
we can substitute uss for u (regardless of the time index) and similarly, substitute

TLFeBOOK

CHARACTERISTICS INFERRED FROM Z-TRANSFORMS 87

yss for y. Then we solve for yss. To illustrate, consider Equation (2.5) as k → ∞:

yss = ayss + buss

(1 − a)yss = buss (3.21)

yss = b

1 − a
uss

(assuming that |a| < 1).
The final value theorem provides a second approach to finding yss. The phrase

final value originates from the fact that yss = y(∞) (assuming that yss exists).

Theorem 3.1 (Final value theorem). If all the poles of (z − 1)F (z) are inside
the unit circle, then

lim
k→∞

f (k) = lim
z→1

(z − 1)F (z) (3.22)

To illustrate the use of the final value theorem, we once again consider
Equation (2.5). Taking Z-transforms, we have

zY (z) − zy(0) = aY (z) + bU(z)

As before, let u(k) = uss, so U(z) = uss[z/(z − 1)]. We can solve for Y (z) as

(z − a)Y (z) = zy(0) + b
ussz

z − 1

Y (z) = y(0)z

z − a
+ bussz

(z − a)(z − 1)

Note that (z − 1)Y (z) has one pole at z = a. Assuming that |a| < 1, the final
value theorem can be applied. Thus,

lim
k→∞

y(k) = lim
z→1

(z − 1)Y (z)

yss = lim
z→1

[
(z − 1)

y(0)z

z − a
+ (z − 1)

bussz

(z − a)(z − 1)

]

= b

1 − a
uss

which is the same as Equation (3.21).
We emphasize that care must be taken when applying the final value theorem

to ensure that the poles lie within the unit circle. For example, consider Y (z) =
z/(z − 2). Blindly applying Equation (3.22) gives

lim
k→∞

y(k) = lim
z→1

(z − 1)Y (z) = lim
z→1

(z − 1)
z

z − 2
= 0 (3.23)

TLFeBOOK

88 Z-TRANSFORMS AND TRANSFER FUNCTIONS

However, this result is incorrect because Y (z) has a pole at 2. Indeed, consulting
Table 3.1, we see that y(k) = 2k . So limk→∞ y(k) = ∞.

Example 3.5: Apache HTTP Server with step input (continued) Recall the
expression for Y (z) from Example 3.4:

Y (z) = −0.11z

z2 − 1.6z + 0.6
= −0.11z

(z − 1)(z − 0.6)
(3.15)

First, we note that the roots of the denominator of Y (z) are {0.6, 1}. When we
compute (z − 1)Y (z), there is a pole at 0.6. This pole is inside the unit circle, so
we can apply the final value theorem. We compute

lim
k→∞

y(k) = lim
z→1

(z − 1)Y (z)

= lim
z→1

(z − 1)
−0.11z

(z − 1)(z − 0.6)

= lim
z→1

−0.11z

z − 0.6

= −0.11

1 − 0.6
= −0.11

0.4
= −0.275

which agrees with our conclusion in Example 3.4. Note that to find the steady-
state value, we do not need to compute the time-domain solution. Only the
Z-transform Y (z) is needed.

3.2.4 Time Domain versus Z-Domain

An underlying theme in the preceding discussions is that the poles of the Z-transform
provide key insights into the time-domain properties of signals. Figure 3.8 shows

Re(z)

Im(z)

1.0−1.0

Fig. 3.8 Relationship between location of the poles of U(z) and the time-domain behavior of
u(k).

TLFeBOOK

TRANSFER FUNCTIONS 89

the relationship between the location of a pole in the complex plane and the time-
domain behavior of a signal with that pole. In particular, we compare this behavior
for three partitions of the complex plane: (1) inside versus outside the unit circle,
(2) on versus off the positive real axis, and (3) the negative real axis.

First consider the location of poles relative to the unit circle. From the figure,
poles that lie outside the unit circle result in unbounded signals, poles that lie on
the unit circle result in bounded signals, and poles inside the unit circle result in
signals that converge to zero. The rate of convergence depends on the magnitude
of the poles: The closer the pole is to the origin, the faster the convergence.
When the pole is zero, convergence occurs in one step.

Next, we compare signals with poles that lie on the positive real axis with
signals whose poles are not on the positive real axis. (In the complex plane,
poles on the negative real axis have an angle of 180 degrees.) Observe that the
latter have an oscillatory behavior. The frequency of this oscillation depends on
the angle of the pole relative to the origin. As the angle increases, so does the
frequency of oscillation. For poles on the unit circle, the oscillation is sustained
(as in a sinusoid). For poles inside the unit circle, the oscillation is modulated
by a decaying exponential. For poles outside the unit circle, the oscillation is
modulated by a rising exponential.

Last, consider poles that lie on the negative real axis. These poles have a
negative real part. From Figure 3.8 we see that such poles cause a time-domain
oscillation with a period of 2. The reason for this is that the time-domain solution
contains a term with the pole raised to the power k, the time index. This term
alternates its sign as k changes between even and odd values.

3.3 TRANSFER FUNCTIONS

Thus far, we have used Z-transforms to describe signals. Z-transforms can be
used to describe systems as well. Such a description is called a transfer function.
A transfer function of a system describes how an input U(z) is transformed into
the output Y (z). We define the transfer function G(z) as

G(z) = Y (z)

U(z)
(3.24)

Put differently, if we are given the system with transfer function G(z) and the
input U(z), we know that the output of the system Y (z) is the product of the
transfer function and the input to the system; that is, Y (z) = G(z)U(z).

One interpretation of Equation (3.24) is that it describes the response of a
system to a unit impulse (e.g., a short-lived change in request rates). Recall
that the Z-transform of the unit impulse is Uimpulse(z) = 1. Thus, Yimpulse(z) =
G(z)Uimpulse(z) = G(z). For example, if G(z) = 10, the response to a unit
impulse is Yimpulse(z) = 10 or y(0) = 10 and y(k) = 0 for k > 0. If G(z) =
10+5z−1+3z−2, the response to a unit impulse is Yimpulse(z) = 10+5z−1+3z−2

or y(0) = 10, y(1) = 5, y(2) = 3, and y(k) = 0 for k > 2.

TLFeBOOK

90 Z-TRANSFORMS AND TRANSFER FUNCTIONS

To provide more insight, we present some examples of transfer functions.
Consider the integrator, a very simple system that is described in Equation (3.9).
Here, Y (z) = [1/(z−1)] (U(z) + zy(0)). A transfer function assumes that initial
conditions are zero. That is,

Y (z) = 1

z − 1
U(z) (3.25)

Thus,

G(z) = Y (z)

U(z)
= 1

z − 1

A transfer function can be found for any system that can be modeled as a
linear difference equation. This is done as follows:

1. Find the difference equation that models the input–output relationship. That
is, a difference equation that relates {y(k)} to {u(k)}.

2. Take the Z-transform of all terms in the difference equation (e.g., using the
properties outlined in Table 3.2), and set all initial conditions to zero.

3. Solve for Y (z) in terms of U(z) by placing all the terms in Y on the left-
hand side and all the terms in U on the right-hand side. Every term should
be a multiple of either Y (z) or U(z).

4. Collect terms if necessary to find the transfer function G(z) = Y (z)/U(z).

We illustrate the foregoing on the first-order system in Equation (2.5).

1. The difference equation is y(k + 1) = ay(k) + bu(k).
2. Taking the Z-transform of both sides of the difference equation yields

∞∑
k=0

y(k + 1)z−k =
∞∑

k=0

ay(k)z−k +
∞∑

k=0

bu(k)z−k

zY (z) − zy(0) = aY (z) + bU(z)

Setting initial conditions to 0, we have

zY (z) = aY (z) + bU(z)

3. Solving for Y (z) in terms of U(z):

Y (z) = bU(z)

z − a

4. Computing the ratio of Y (z) to U(z) yields

G(z) = Y (z)

U(z)
= b

z − a
(3.26)

Consider the following examples.

TLFeBOOK

TRANSFER FUNCTIONS 91

Example 3.6: Transfer function of the Apache HTTP Server We start with
Equation (2.5). Let y(k) = CPU(k) − CPU and u(k) = KA(k) − KA. Then y(k +
1) = 0.6y(k) − 0.014u(k). Multiplying both sides by z−k and summing from 0
to ∞, we have

z

∞∑
k=0

y(k + 1)z−(k+1) = 0.6
∞∑

k=0

y(k)z−k − 0.014
∞∑

k=0

u(k)z−k

zY (z) = 0.6Y (z) − 0.014U(z)

(z − 0.6)Y (z) = −0.014U(z)

G(z) = Y (z)

U(z)
= −0.014

z − 0.6

Example 3.7: Transfer function of the IBM Lotus Domino Server We start
with Example 2.6.1. Let y(k) = RIS(k) − RIS and u(k) = MaxUsers(k) −
MaxUsers. Then y(k + 1) = 0.43y(k) + 0.47u(k). Multiplying both sides by
z−k and summing from 0 to ∞, we have

z

∞∑
k=0

y(k + 1)z−(k+1) = 0.43
∞∑

k=0

y(k)z−k + 0.47
∞∑

k=0

u(k)z−k

zY (z) = 0.43Y (z) + 0.47U(z)

(z − 0.43)Y (z) = 0.47U(z)

G(z) = Y (z)

U(z)
= 0.47

z − 0.43

The procedure above can be followed even if the inputs and outputs are
vectors. The resulting transfer function �G(z) is a matrix. Details of multiple-input,
multiple-output (MIMO) transfer functions are discussed in Chapter 7.

We can follow this procedure for a general difference equation such as
Equation (2.7):

Y (z) = a1z
−1Y (z) + · · · + anz

−nY (z)

+ b1z
−1U(z) + · · · + bmz−mU(z)

Y (z)
(

1 − a1z
−1 − · · · − anz

−n
)

=
(
b1z

−1 + · · · + bmz−m
)

U(z)

Y (z) = b1z
−1 + · · · + bmz−m

1 − a1z−1 − · · · − anz−n
U(z)

to get the transfer function G(z):

G(z) = Y (z)

U(z)
= b1z

−1 + · · · + bmz−m

1 − a1z−1 − · · · − anz−n

= b1z
n−1 + · · · + bmzn−m

zn − a1zn−1 − · · · − an

(3.27)

TLFeBOOK

92 Z-TRANSFORMS AND TRANSFER FUNCTIONS

Note that it is very easy to construct a transfer function model if we are given an
nth-order difference equation such as Equation (2.7). Specifically, the numerator
of the transfer function is the sum of the coefficients of u multiplied by a z term
that identifies the time shift for that coefficient. For example, b1 is the coefficient
of u(k − 1) in Equation (2.7). It is multiplied by z−1 to indicate a shift of one
time step. The denominator of the transfer function is 1 minus the sum of the
coefficients of y multiplied by a z term in the same manner as for the numerator.

3.3.1 Stability

One of the most important properties of a system is stability. Intuitively, we might
think of a system with an unbounded output as unstable. Here, we refine this
intuition, focusing on bounded-input, bounded-output (BIBO) stability.1 Further,
we show how BIBO stability can be determined from the transfer function of a
system.

Our starting point is to be precise about what it means for a signal to be
bounded. A signal {u(k)} is a bounded signal if there exists a positive constant
M such that |u(k)| ≤ M for all k. If this is not true, the signal is unbounded.
For a bounded signal, a pair of horizontal lines at ±M can be drawn, and the
time-domain plot of u(k) never crosses those lines. For an unbounded signal, no
matter how far apart the lines are drawn, there exists a k such that the signal
crosses the bound. Note that any signal of finite duration is bounded since we
can set M to 1 plus the maximum value of |u(k)|, which is possible since there
are a finite number of signal values. However, in general, we study signals for
which 0 ≤ k ≤ ∞. An example of a bounded signal is shown in Figure 3.9(a),
and the initial part of an unbounded signal is shown in Figure 3.9(b).

0 10 20 30 40 50
0
5

10
15
20
25
30
35
40
45
50

k

(a) A bounded signal (b) An unbounded signal

0 10 20 30 40 50
0

1

2

3

4

5

6

k

y

Fig. 3.9 The first 50 samples of two signals, one bounded and one unbounded. For the
bounded signal, |u(k)| is never greater than 50. The unbounded signal has an upward trend; no
bound exists.

1There are many definitions of stability. See [64] for more details.

TLFeBOOK

TRANSFER FUNCTIONS 93

Some examples help to illustrate how this definition can be applied. Suppose
that {u(k)} is an impulse. That is, u(k) = 0 for k �= 0. Now let M = |u(0)| +
1. Then, M > |u(k)| for all k, and hence {u(k)} is bounded. Using a similar
argument, the step signal is bounded as well. Note that the exact magnitude of
M does not matter in terms of satisfying the definition of a bounded signal.

Next consider a ramp signal {u(k)}. Intuitively, we know that {u(k)} is not
bounded. This can be proved from the definition as follows. If {u(k)} were
bounded, there would be an M such that M > |u(k)| for all k. Let M ′ be an
integer larger than M . By definition of a ramp, u(M ′) = M ′, so u(M ′) > M .
This means that {u(k)} cannot be bounded. A slightly more complicated case is
the exponential signal, u(k) = ak . If |a| ≤ 1, {u(k)} is bounded. But {u(k)} is
not bounded if |a| > 1.

Having defined a bounded signal, we define what is meant by bounded-input,
bounded-output stability. A system is BIBO stable if for any bounded input
{u(k)}, the output {y(k)} is bounded. The converse of this definition is often
used as well. That is, a system is not BIBO stable if there is at least one bounded
input that produces an unbounded output.

Example 3.8: BIBO stability of the integrator The integrator has a transfer
function GInteg(z) = 1/(z − 1). From Example 3.2 we know that the response of
an integrator to an impulse is a delayed step, which is bounded. However, the
response of an integrator to a step is a ramp, which is unbounded. Since there
is one bounded input that produces an unbounded output, the integrator is not
BIBO stable.

The Apache HTTP Server example, with transfer function GKA(z) = −0.014/

(z − 0.6), seems stable. With a step input, the output is a combination of a
delayed step and a decaying exponential, which is bounded. However, to satisfy
the definition, we need to verify that the output remains bounded for all possible
bounded inputs. Instead of embarking on this tedious search, we cite a theorem
that makes it easier to check BIBO stability.

Theorem 3.2 (BIBO stability). A system represented by a transfer function
G(z) is BIBO stable if and only if all the poles of G(z) are inside the unit circle.

(More details can be found in [25].)
We note that this theorem offers a relatively simple test for BIBO stability.

Once all the poles (roots of the denominator polynomial) of G(z) have been
found, it only remains to check that their magnitudes are all strictly less than 1.
If one or more poles has a magnitude greater than or equal to 1, the system is not
BIBO stable. That is, there exists at least one bounded input signal that results
in an unbounded output signal.

This theorem indicates that the integrator is not BIBO stable since it has
a pole that is not inside the unit circle. This conclusion is consistent with
Example 3.8.

TLFeBOOK

94 Z-TRANSFORMS AND TRANSFER FUNCTIONS

Example 3.9: BIBO stability of the Apache HTTP Server Consider the Apache
HTTP Server with transfer function GKA(z) = −0.014/(z − 0.6). This system has
one pole at z = 0.6. From Theorem 3.2 we conclude that this system is BIBO
stable since its one pole is inside the unit circle.

Observe that a system can be BIBO stable even if its output is unbounded.
Such situations occur if the input is unbounded as well. As a simple example,
consider the system whose transfer function is 1, so Y (z) = U(z). Clearly, this is
a stable system. However, if {u(k)} is a ramp (which is unbounded), so is {y(k)}.

There are several examples of unstable computing systems. One is a virtual
memory system. Here, the input is the multiprogramming level (MPL), and the
output is paging rate. When the multiprogramming level grows beyond a certain
level, thrashing results in very large paging rates (e.g., [66]). The paging rates are
not truly unbounded since they are limited by disk bandwidth. However, they do
increase dramatically. Another example is contention-based communication, such
as the slotted-ALOHA network on which Ethernet is based (e.g., [36]). If such
networks become overutilized, retransmissions dominate network traffic, causing
throughput to degrade dramatically.

Although the definition of stability in this book is BIBO, other definitions
of stability are often important in practice. For example, Figure 3.10 shows the
effect of increasing the reference value in a system that controls CPU of an
Apache HTTP Server. The result is a different kind of instability, one in which
CPU alternates between its extreme values, 0 and 1. This system is BIBO stable
since the output is bounded. However, the oscillation between extreme values,
which is called a limit cycle, means that we are no longer able to regulate CPU. In
control terminology, outputs with a limited range are called constrained. There
are constrained inputs as well, such as requiring that MaxClients be posi-
tive. Systems with constrained inputs and/or outputs are typically BIBO stable,
but they can have limit cycles. Analyzing these systems directly is complicated
because they are nonlinear (due to saturation). Instead, we analyze one or more
linear approximations for operating regions of interest and ensure BIBO stability
for the control systems constructed using these linear approximations. A final
consideration related to practice is that the (linear) models we consider are
constructed for a specific operating region. As such, stability results apply only
within that operating region.

0 100 200 300 400 500 600 700
0

0.5

1

Time (seconds)

C
P

U

Fig. 3.10 Example of a limit cycle in CPU in an Apache HTTP Server.

TLFeBOOK

TRANSFER FUNCTIONS 95

3.3.2 Steady-State Gain

Given a stable system, we would like simple characterizations of its behavior. One
such characterization is the steady-state output to a constant input. For example,
in the Apache HTTP Server, we would like to know the steady-state value of
CPU that is achieved if KeepAlive is constant.

Consider a BIBO stable system and a step input with magnitude uss. Under
these conditions, the output converges. Let yss denote this final value. The ratio
yss/uss is called the steady-state gain of the system. Sometimes, this is also
referred to as dc gain. Steady-state gain quantifies the steady-state effect of the
input on the output.

Steady-state gain can be computed in a straightforward way. Consider the
stable system described by Equation (2.7), which we express as

y(k) − a1y(k − 1) − · · · − any(k − n) = b1u(k − 1) + · · · + bmu(k − m)

Suppose that we apply a step input uss and then observe y for a long time.
Let k be sufficiently large so that we are at steady state and hence y(k) = · · ·
= y(k − n) = yss. Clearly, u(k − 1) = · · · = u(k − m) = uss. Then

(1 − a1 − · · · − an)yss = (b1 + · · · + bm)uss

yss

uss
= b1 + · · · + bm

1 − a1 − · · · − an

(3.28)

More commonly, we compute steady-state gain from the transfer function
G(z). This is done as follows. The output to a unit step input is Y (z) =
G(z)[z/(z − 1)]. If G(z) is BIBO stable, all the poles of (z − 1)Y (z) are inside
the unit circle, and yss can be found by using the final value theorem,

lim
k→∞

y(k) = lim
z→1

(z − 1)Y (z) = lim
z→1

(z − 1)G(z)
z

z − 1

= lim
z→1

zG(z) = lim
z→1

G(z) = G(1) (3.29)

Thus, for a unit step input, the steady-state output of the system is yss = G(1).
Let G(z) be defined as in Equation (3.27), which is the transfer function of
Equation (2.7). Thus,

G(1) = yss

uss
= b1 + · · · + bm

1 − a1 − · · · − an

Note that this is the same expression for steady-state gain as Equation (3.28).
Thus far, we have assumed that uss = 1. Suppose instead that U(z) is a step

of size c. Using the first entry in Table 3.2, we see that the steady-state output
of the system is yss = cG(1).

Example 3.10: Steady-state gain of the Apache HTTP Server Consider once
more the Apache HTTP Server example with G(z) = −0.014/(z − 0.6). Its

TLFeBOOK

96 Z-TRANSFORMS AND TRANSFER FUNCTIONS

steady-state gain is G(1) = −0.014/(1−0.6) = −0.014/0.4 = −0.035. The neg-
ative sign in the gain indicates that a positive change in the input (KeepAlive)
results in a negative change in the output (CPU), as we have seen in earlier
examples.

While steady-state gain offers considerable insight, we must be aware of its
limitations as well. Consider again the effect of KeepAlive on CPU, and assume
that the steady-state gain is −0.035. Now, suppose that there is a step increase
in KeepAlive of 100. Then the linear model predicts that the effect of this
increase will be to decrease CPU by 3.5. But this is clearly impossible since the
valid range of CPU is between 0 and 1.

Steady-state gain can be used in many ways. For example, since many comput-
ing systems have constrained outputs (e.g., utilizations), the steady-state gain can
predict the range of inputs that prevents the output from saturating. For example,
in the Apache HTTP Server we want to know how much KeepAlive can be
decreased before CPU goes to 1. Steady-state gain can be used in an inverse
fashion as well, to predict the range of outputs that are achievable given a con-
strained input variable. A third way in which steady-state gain can be used is
to quantify inaccuracies introduced by a measurement sensor. This is discussed
further in Section 3.5.2.

3.3.3 System Order

The system order (or model order) for the system with transfer function G(z) is
the number of poles (including repeated ones) in the denominator of G(z). For
instance, Example 3.9 is a first-order model of the Apache HTTP Server since
there is only one (unrepeated) pole.

First-order systems have a limited set of behaviors and are relatively easy to
study, even in the time domain. Second- and higher-order systems have more than
one pole, some of which may be complex. In Chapter 5 we discuss first-order
systems, and in Chapter 6 we address higher-order systems.

We note in passing that the system order is the same as the n in the ARX model
of Equation (2.7). This in turn is the same as the number of initial conditions
that are needed to solve the difference equation associated with the system.

3.3.4 Dominant Poles and Model Simplification

Typically, the behavior of a system is determined by the poles with the largest
magnitude. Figure 3.11 illustrates this for a step response. Eight systems are
considered. For each, the transfer function is

Gi(z) = bi

(z − p1) · · · (z − pn)

where n is the order of the system. bi = (1 − p1) · · · (1 − pn) is selected so that
the steady-state gain Gi(1) = 1. For example, the system with the poles 0.7, 0.1

TLFeBOOK

TRANSFER FUNCTIONS 97

0

1

2
 y

0

1

2

 y
0

1

2

 y

0

1

2

 y

0

1

2

 y

0

1

2

 y

0

1

2

 y

0

1

2

 y

G1 poles: 0.7 G2 poles: 0.9

G3 poles: 0.7 0.1 G4 poles: 0.9 0.1

G5 poles: 0.7 0.3 G6 poles: 0.9 0.3

0 5 10

k

G7 poles: 0.7 0.1 0.3

0 10 20 30

 k

G8 poles: 0.9 0.1 0.3

Fig. 3.11 Influence of the largest magnitude pole on settling times for a unit step input.

Gi(z) = bi

(z − p1) · · · (z − pn)
, where n is the order of the system and bi is selected to provide

a steady-state gain of 1. The dashed line is G(1). Note that the largest pole largely determines
settling times [i.e., how quickly y(k) converges to G(1)].

has the transfer function

G3(z) = 0.27

(z − 0.7)(z − 0.1)

One property of interest in analyzing systems is settling time, the time required
for the system to reach its steady-state value (e.g., after a unit step input is
applied). Comparing G1(z) = 0.3/(z−0.7) with G3(z), we see that the settling
times of these systems are quite similar. [The one time unit of “dead time” in
G3(z) is due to its being a second-order system.] The settling time of the system
with poles at 0.7, 0.3 is longer, and that for 0.7, 0.3, 0.1 is longer still. However,

TLFeBOOK

98 Z-TRANSFORMS AND TRANSFER FUNCTIONS

all of them are comparable because in all cases the largest pole is 0.7. A similar
insight is obtained by comparing G2(z) = 0.1/(z − 0.9) with

G4(z) = 0.09

(z − 0.9)(z − 0.1)
,

G6(z) = 0.07

(z − 0.9)(z − 0.3)
,

and

G8(z) = 0.063

(z − 0.9)(z − 0.3)(z − 0.1)

On the other hand, the systems that have 0.7 as their largest pole (the left column
of Figure 3.11) have much shorter settling times than the systems that have 0.9
as their largest pole (the right column of Figure 3.11).

What if the largest pole is negative? In this case, there is an oscillatory
response, as shown in Figure 3.12. As before, the largest pole determines settling
times, as evidenced by the fact that settling times are approximately equal in the
first column, and the same is true for the second column. Another characteristic is
approximated more poorly. This is maximum overshoot , the maximum amount
by which the transient response exceeds the steady-state value divided by the
steady-state value of the output. We see that approximating a higher-order sys-
tem by a first-order system that has the same largest pole provides a reasonable
estimate of maximum overshoot if the second largest pole of the original system
is fairly small compared to the largest pole [e.g., G12(z) and G13(z)].

The dominant pole of a system is the pole that determines the system’s tran-
sient response. Not all systems have a dominant pole. However, if there is a
dominant pole, it must be the pole with the largest magnitude. To simplify our lan-
guage, we refer to “the pole with the largest magnitude” as the largest pole, even
though this is somewhat imprecise since the pole with the largest magnitude may
be negative. Several factors affect whether the largest pole is a dominant pole.
In general, the largest pole should have twice the magnitude of the other poles
in order to be a dominant pole. This requirement is evidenced in Figure 3.11.
Comparing G1(z) with

G5(z) = 0.21

(z − 0.7)(z − 0.3)

we see that the settling time of G5(z) is approximately the same as that for
G1(z). Other factors affecting the presence of a dominant pole are the absolute
value of the largest pole and the order of the system.

The foregoing discussion suggests a way to approximate a high-order transfer
function whose largest pole is real. (In Chapter 6 we consider the case where
the pole with the largest magnitude is complex.) Consider

G(z) = b(z − q1) · · · (z − qm)

(z − p1) · · · (z − pn)

TLFeBOOK

TRANSFER FUNCTIONS 99

0

1

2
 y

0

1

2

 y
0

1

2

 y

0

1

2

 y

0

1

2

 y

0

1

2

 y

0

1

2

 y

0

1

2

 y

G10 poles: −0.7 G11 poles: −0.9

G12 poles: −0.7 0.1 G13 poles: −0.9 0.1

G14 poles: −0.7 0.3 G15 poles: −0.9 0.3

0 5 10

k k

G16 poles: −0.7 0.1 0.3

0 10 20 30

G17 poles: −0.9 0.1 0.3

Fig. 3.12 Influence of a large negative pole on settling times and overshoot for a unit step input.

Gi(z) = bi

(z − p1) · · · (z − pn)
, where n is the order of the system and bi is selected to provide

a steady-state gain of 1. The dashed line is G(1). As in Figure 3.11, the largest-magnitude
pole largely determines settling times. The first-order systems [G10(z) and G11(z)] provide an
accurate approximation of overshoot if the second largest pole is considerably smaller than the
largest pole.

where m ≤ n. Suppose that p′ is the dominant pole. Then G(z) can be approxi-
mated by the first-order system G′(z) as

G′(z) = G(1)(1 − p′)
z − p′ if p′ is real (3.30)

Note that G(z) and G′(z) have the same steady-state gain G(1) = G′(1), and
the settling times of the two systems are approximately the same.

TLFeBOOK

100 Z-TRANSFORMS AND TRANSFER FUNCTIONS

3.3.5 Simulating Transfer Functions

Sometimes the analysis of transfer functions using mathematical techniques is
sufficiently complicated so that it is useful to use simulation instead. This turns
out to be very easy to do. First, note that for Z-transforms that are the ratios
of polynomials in z, it is easy to convert the transfer function into a difference
equation. Consider the transfer function GKA(z) = −0.014/z − 0.6 from (the
offset value of) KeepAlive to (the offset value of) CPU in the Apache HTTP
Server. That is,

Y (z)

U(z)
= −0.014

z − 0.6

(z − 0.6)Y (z) = −0.014U(z)

zY (z) = 0.6Y (z) − 0.014U(z)

Since Y (z) is the Z-transform of y(k) and U(z) is the Z-transform of u(k), then
zY (z) is the Z-transform of y(k + 1) (assuming that the initial conditions are 0).
That is, we have the difference equation

y(k + 1) = 0.6y(k) − 0.014u(k)

At this point it is obvious that if we are given y(0) and values of the inputs
{u(k)}, we can iteratively compute {y(k)}.

More generally, consider the transfer function

G(z) = b1z
n−1 + · · · + bmzn−m

zn − a1z
n−1 − · · · − an

Suppose that at time k we want to predict y(k + 1). We begin by observing that
the transfer function above is equivalent to the difference equation

y(k + 1) = a1y(k) + · · · + any(k + 1 − n) + b1u(k) + · · · + bmu(k + 1 − m)

Thus, if we know y(k+1−n), . . . , y(k) and u(k+1−m), . . . , u(k), we can com-
pute the y(k+1). To compute y(k+h), we use y(2), . . . , y(k), u(2), . . . , u(k+1),
and the y(k +1) just obtained to compute y(k +2). Continuing in the same way,
we can compute y(k + 3), . . . , y(k + h).

Example 3.11: Simulation of the IBM Lotus Domino Server In Section 3.5.2
we discuss the IBM Lotus Domino Server transfer function S(z) from the actual
RIS q(k) to the sensor measurement m(k). If there is a one-step delay,

S(z) = 0.72z − 0.66

z2 − 0.8z

This has the difference equation

m(k) = 0.8m(k − 1) + 0.72q(k − 1) − 0.66q(k − 2)

TLFeBOOK

TRANSFER FUNCTIONS 101

TABLE 3.3 Inputs and Outputs in
Simulation Example

k q(k) m(k)

0 1 0
1 1 0
2 1 0.06
3 1 0.11
.
.
.

10 1 0.26
.
.
.

15 1 0.29
.
.
.

20 1 0.30
.
.
.

30 1 0.30

Consider a step input in which q(k) = 1, k ≥ 0 with the initial conditions
m(k) = 0 for k ∈ {0, 1}. This can easily be simulated using a spreadsheet.
Computations are organized in the manner displayed in Table 3.3. The columns
for k and q(k) contain constants. The first two rows of m(k) are constants for
initial conditions since this is a second-order system. Formulas are entered starting
with row 3 of the m(k) column. For example, the formula for computing m(3)

in row four of the table is 0.8m(2) + 0.72q(2) − 0.66q(1) = (0.8)(0.06) +
(0.72)(1) − (0.66)(1) = 0.11.

One way to check the simulation is to compare its steady-state value with
that predicted by Equation (3.29). We see that the predicted steady-state value
S(1) = 0.3 is equal to the simulated value of m(20) = m(30).

Since simulating transfer functions is so easy, why use analytic techniques?
There are two reasons. The first is that we gain insights into trade-offs between
properties such as settling time and maximum overshoot by seeing how controller
parameters and other factors affect the poles of the system. The second reason for
employing analytic techniques is that they provide a convenient way to design
control systems with specific properties, such as desired settling times and/or
steady-state gains. In essence, the analytic techniques allow us to convert a desired
settling time into a desired pole value. We can then design a controller that has
the desired closed-loop poles.

For a transfer function that is a ratio of polynomials in z (which is the focus
in this book), the number of zeros should never be larger than the number of
poles.2 The reason for this is as follows. The number of poles is equal to the order
of the polynomial in the denominator of the transfer function, and the number
of zeros is equal to the order of polynomial in the numerator. If the numerator
polynomial has a higher order than the denominator, the difference equation that

2We are including repeated poles and zeros in these counts.

TLFeBOOK

102 Z-TRANSFORMS AND TRANSFER FUNCTIONS

corresponds to the transfer function expresses the output y(k) in terms of a future
input u(k + h) for h ≥ 1. This violates our notion of causality.

3.4 SUMMARY

1. Z-transforms provide a way to represent a time-domain sequence as poly-
nomial in z. Doing so makes it easy to do operations such as time shifts
(multiply by z) and time delays (divide by z).

2. The Z-transform of common signals (e.g., impulse, step, and ramp) can be
constructed in a straightforward way and used as a basis for constructing
more complicated signals.

3. The inverse of a Z-transform is a time series, which is typically expressed
as a difference equation. The difference equation can be computed with
the aid of tables included in this chapter. Z-transforms can be used to solve
difference equations.

4. A transfer function is a Z-transform that expresses the dynamics of the
relationship between inputs and outputs of a system. The results in this book
are focused largely on the construction and analysis of transfer functions.

5. Although both signals and transfer functions are expressed as Z-transforms,
they are treated very differently. Signals have an inverse Z-transform (e.g.,
{y(k)}) as well as properties such as boundedness and a final value (if it
exists). None of these apply to transfer functions. On the other hand, transfer
functions have properties such as stability, steady-state gain, settling time,
and maximum overshoot, none of which make sense for signals.

6. If G(z) is the transfer function of a stable system, G(1) is the steady-state
gain [the value achieved by a system in response to a (unit) step input].

7. The order of the system with transfer function G(z) = N(z)/D(z) is the
degree of D(z) (the denominator polynomial of z).

8. The poles of a transfer function are the values of z for which the denomi-
nator goes to zero. The poles of a system provide valuable information.

(a) The system is stable (a bounded input produces a bounded output) if
the poles lie within the unit circle.

(b) The settling time of a system is determined largely by the magnitude
of its poles. Poles close to 1 result in long settling times. Poles close
to 0 have very short settling times.

(c) Systems with complex poles or real poles that are negative will have
an oscillatory response to transients. The frequency of the oscillation
depends on the angle of the pole in the complex plane.

9. A dominant pole is a pole whose magnitude is significantly larger than
the other poles. Often, it is sufficient to consider the dominant pole when
analyzing settling times, oscillations, and overshoot.

10. Given a system with the transfer function G(z), its time-domain response
to an input can be simulated without inverting the Z-transform.

TLFeBOOK

EXTENDED EXAMPLES 103

3.5 EXTENDED EXAMPLES

The following examples apply Z-transforms to computing systems.

3.5.1 M/M/1/K from System Identification

In Section 2.6.3 we address system identification for M/M/1/K . For inputs in
the range [1, 51], the system is modeled by the difference equation

y(k) = 0.49y(k − 1) + 0.033u(k − 1)

with an operating point for buffer size and response time equal to 26 and 2.7
seconds, respectively. We can convert this to a transfer function as follows:

G(z) = 0.033

z − 0.49

The transfer function has one pole at z = 0.49. This is inside the unit circle, and
hence the model is BIBO stable. The steady-state gain of the system is G(1) =
0.065. The gain is positive, which indicates that if the buffer size is increased by
1, the average response time (in steady state) increases by 65 milliseconds. Recall
that this is the linearized response of the system around an operating point, and
as such is most accurate near the operating point.

3.5.2 IBM Lotus Domino Server: Sensor Delay

The difference equation for the IBM Lotus Domino Server in Section 2.6.1 can
be expressed as a transfer function from MaxUsers to RIS as follows:

N(z) = Q(z)

U(z)
= 0.47

z − 0.43

where q(k) = RIS(k) − RIS and u(k) = MaxUsers(k) − MaxUsers. As indi-
cated in Example 3.1, while RIS can be obtained by postprocessing the server
log, it is not obtained through direct measurement for online control. Rather,
it is computed by sampling the IBM Lotus Domino Server log periodically.
Unfortunately, this log does not contain active RPCs; hence, measured RIS(k)

underestimates the actual RIS(k).
Let RIS(k) be the true value of RIS at time k, R̂IS(k) be the measured value

of RIS reported by the sensor, and S(z) be the transfer function of the sensor.
Further, the offset value of measured RIS is denoted by m(k), where m(k) =
R̂IS(k) − R̂IS and R̂IS is the mean value of measured RIS. Note that m(k)

depends on q(k − n), where n is the delay due to the sensor. A good way to
express this relationship is to look at the difference between m(k) and m(k − 1)

as compared to q(k−n) and q(k−1−n). This motivates the following difference
equation:

m(k) − am(k − 1) = b0q(k − n) + b1q(k − 1 − n)

TLFeBOOK

104 Z-TRANSFORMS AND TRANSFER FUNCTIONS

TABLE 3.4 Model Coefficients and Fits for S(z)

Delay (n) R2 a b0 b1 S(1)

0 0.76 0.64 0.17 −0.11 0.16
1 0.84 0.80 0.72 −0.66 0.30
2 0.91 0.92 0.94 −0.91 0.38

To find the transfer function, we compute

M(z) − az−1M(z) = b0z
−nQ(z) + b1z

−1−nQ(z)

zn+1M(z) − aznM(z) = b0zQ(z) + b1Q(z)

S(z) = b0z + b1

(z − a)zn

We collected data from a testbed running a product-level IBM Lotus Domino
Server with different sensor delays (n). The values of a, b0, and b1 are shown in
Table 3.4. Note that as n increases from 0 to 2, the fit, indicated by R2, improves
significantly, from 76% to 91%.

We can use steady-state gain to analyze the accuracy of the sensor. The sensor
is accurate if measured RIS is equal to actual RIS. That is, we want S(1) = 1.
From Table 3.4 we see that S(1) increases with n, suggesting that sensor accuracy
increases with measurement delay. However, even with a delay of two time units,
measured RIS is only 0.38 of the actual value.

3.5.3 Apache HTTP Server: Combining Control Inputs

Example 3.3 contains a difference equation that relates CPU to KeepAlive in
the Apache HTTP Server. Below, we repeat this equation with a slightly different
notation that qualifies {y(k)} and {u(k)}:

yCPU(k) = ayCPU(k − 1) + buKA(k − 1)

The Apache HTTP Server has another control input that affects CPU: the maximum
number of connected clients, MaxClients. In Example 3.3, MaxClients is
fixed at its operating point. If MaxClients is varied while keeping KeepAlive
fixed at its operating point, we obtain

yCPU(k) = cyCPU(k − 1) + duMC(k − 1)

The corresponding transfer function is

GMC(z) = d

z − c

Since both KeepAlive and MaxClients affect CPU, we would like to know
the combined effect of these controls. Assuming that the system is operating in

TLFeBOOK

Z-TRANSFORMS AND MATLAB 105

a linear region, the combined effect is obtained by addition:

YCPU(z) = GMCYMC(z) + GKAYKA(z)

Note, however, that this equation assumes that there is no interaction between
the two inputs. To account for interactions, a MIMO model must be used with
MIMO system identification. These considerations are discussed in Chapter 7.

*3.6 Z-TRANSFORMS AND MATLAB

MATLAB represents polynomials as vectors, with the entries in the vector indicat-
ing the coefficients of the polynomial. For example, the polynomial z2 − z + 0.5
is represented as

[1 -1 0.5]

The roots of the polynomial can be extracted as

roots([1 -1 0.5])

which produces the output

ans =

0.5000 + 0.5000i
0.5000 - 0.5000i

(Note that MATLAB defaults to use i for
√−1 but it also understands j .) The mag-

nitude and phase angle of a complex number can be found using the commands
abs and angle:

abs(0.5 + 0.5j)
angle(0.5 + 0.5j)

ans =

0.7071

ans =

0.7854

Note that the angle is in radians. The real and imaginary parts can be extracted
using real and imag:

real(exp(j*pi/3))
imag(exp(j*pi/3))

ans =

0.5000

TLFeBOOK

106 Z-TRANSFORMS AND TRANSFER FUNCTIONS

ans =

0.8660

where pi represents π .
Polynomials can be multiplied using the conv function. For example, we

compute (z2 − z + 0.5)(z2 − 1)

conv([1 -1 0.5],[1 0 -1])

ans =

1.0000 -1.0000 -0.5000 1.0000 -0.5000

which gives z4 − z3 − 0.5z2 + z − 0.5.
The partial fraction expansion of a ratio of polynomials can be found using

the residue command. For example, if

Y (z) = −0.11z

z2 − 1.6z + 0.6

we can get the partial fraction expansion as

[r,p,k] = residue([-0.11 0],[1 -1.6 0.6])

r =

-0.2750
0.1650

p =

1.0000
0.6000

k =

[]

Note that the polynomial −0.11z in the numerator is entered as [-0.11 0] to
indicate that the constant term is zero. The poles are returned in the vector p
and the numerators are returned in the vector r. If the order of the numerator is
greater than the order of the denominator, the direct term is returned in k. Thus,
we have that

−0.11z

z2 − 1.6z + 0.6
= −0.275

z − 1
+ 0.165

z − 0.6

TLFeBOOK

EXERCISES 107

Using the Control Systems Toolbox, transfer functions can also be entered into
MATLAB. For example, the transfer function for an integrator, G(z) = 1/(z− 1),
is entered using tf by specifying the numerator polynomial, the denominator
polynomial, and the sampling time. If the sampling time is set to -1, it is assumed
to be unspecified.

tf(1,[1 -1],-1)

Transfer function:
1

z - 1

Sampling time: unspecified

The Apache HTTP Server example with the transfer function G(z) = −0.014/

(z − 0.6) and a sampling time of 5 seconds is entered as

tf(-0.014,[1 -0.6],5)

Transfer function:
-0.014

z - 0.6

Sampling time: 5

3.7 EXERCISES

1. Find the Z-transform of the following (discrete-time) signals:

(a) y(k) = {0, 0, 3, 3, 3, . . . }
(b) y(k) = {10, 20, 30, 40, . . . }
(c) y(k) = {1, 0.1, 0.01, 0.001, . . . }
(d) y(k) = {0, 0, −0.2, 0.04, −0.008, −0.0016, . . . }

2. Using the answers from Exercise 1, find the Z-transform of the following
signals:

(a) y(k) = {0, 0, 9, 9, 9, . . . }
(b) y(k) = {0.01, 0.001, 0.0001, . . . }
(c) y(k) = {10.1, 20.01, 30.001, 40.0001, . . . }

3. Find the time-domain representation of the following signals:

(a) U(z) = 10z

z − 1

(b) V (z) = (z − 0.5)

(z2 − z + 1)

TLFeBOOK

108 Z-TRANSFORMS AND TRANSFER FUNCTIONS

(c) W(z) = 2.3

z(z − 0.3)

(d) Y (z) = z
2z − (a + 1)

(z − 1)(z − a)

4. Find y(1), y(2), and y(3) in response to a unit step for

F(z) = KP 0.47

z − 0.43 + KP 0.47

for KP ∈ {1, 2, 3, 3.5}. Assume that all initial conditions are 0. [Hint: Trans-
late F(z) into a difference equation and then directly compute the first few
terms.]

5. Find the steady-state gain of the transfer function

F(z) = −0.014KP

z − 0.6 − KP 0.011

for KP ∈ {1, 100}. Do the same for the transfer function

F(z) = KI(−0.011)

(z − 0.6)(z − 1) − KI 0.011

for KI ∈ {1, 100}.
6. For the transfer function F(z) = −0.014/(z − 0.6), plot its step response

and determine the settling time.

7. For the following Z-transforms, (i) find their poles, (ii) plot the poles in the
complex plane, and (iii) determine the magnitudes and angles of the poles.

(a)
4

z − 1.5

(b)
12

z2 − 0.4z − 0.05

(c)
1

z2 − 0.4z + 0.2

(d)
3

z3 − 0.2z2 − 0.03z − 0.36

8. For the following transfer functions, (i) find the order of the system, (ii)
compute the poles, and (iii) determine if the system is stable.

(a)
2z

z2 − 1.4z − 0.45

(b)
2z − 1

z3 − 1.2z2 + 0.35z − 0.024

(c)
13

z4 − z3 + 0.35z2 − 0.05z − 0.024

(d)
7

z4 − 1.31z3 + 1.21z2 − 0.287z − 0.0178

TLFeBOOK

EXERCISES 109

9. For the following systems, (i) determine if the system is stable, (ii) predict
the final value to a unit step input, (iii) determine the settling time (ks), and
(iv) simulate a step response.

(a)
0.94

z − 0.51

(b)
7

z4 − 1.31z3 + 1.21z2 − 0.287z − 0.0178

(c)
3z2 − 1

z5 − 0.6z4 + 0.13z3 − 0.364z2 + 0.1416z − 0.288

10. Find the response of the systems in Exercise 8 to the signals in Exercises 1–3.

TLFeBOOK

TLFeBOOK

4
System Modeling with

Block Diagrams

The key to a successful application of control theory is modeling. In Chapter 2
we described how to model individual components using difference equations,
and in Chapter 3, how to analyze these models using Z-transforms. In this chapter
we discuss the use of block diagrams to model systems that consist of many com-
ponents. We discuss the elements of a block diagram and principles for modeling
systems using these elements. Also addressed is how to use block diagrams to
obtain the transfer function of a system, thereby enabling the analysis of BIBO
stability and other properties using the techniques presented in Chapter 3.

4.1 BLOCK DIAGRAMS BASICS

A block diagram specifies the components of a system and the signals that flow
between them. The components are themselves systems. This means that block
diagrams are often recursive in that components may be expressed as block
diagrams of subcomponents, and so on.

A block diagram consists of many interconnected functional blocks. A func-
tional block, or simply block , represents a component of the system. This is
depicted by a rectangle that is usually labeled with the transfer function of the
component it represents. A signal is indicated by an arrow and is labeled by
the z-domain expression for the signal. Note that the measured output of a
block is the result of passing the input through the block’s transfer function. If

Feedback Control of Computing Systems, by Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury
ISBN 0-471-26637-X Copyright c© 2004 John Wiley & Sons, Inc.

111

TLFeBOOK

112 SYSTEM MODELING WITH BLOCK DIAGRAMS

R(z)
G(z)

D(z)

H(z)

E(z) U(z) V(z)

W(z)

Y(z)++

+

− K(z)

Transducer

Controller Target System

Fig. 4.1 Block diagram of a closed-loop system. R(z) is the reference input, E(z) is the control
error, U(z) is the control input, and Y (z) is the system output.

V (z) is the input, Y (z) is the output, and G(z) is the transfer function, then
Y (z) = G(z)V (z). For the most part, each block has one input signal and one
output signal.

Figure 4.1 depicts a general form for a feedback control system. There are two
inputs to this system, the reference R(z) and the disturbance D(z). The reference
specifies the desired value of the output (e.g., response time should be 2 seconds),
and the disturbance reflects uncontrolled effects (e.g., execution of administrative
tasks). The control error E(z) is the difference between the desired and measured
outputs. E(z) is used as input to the controller, with transfer function K(z), that
produces the control input U(z) (e.g., the setting of MaxClients in the Apache
HTTP Server). U(z) is input to the target system G(z) (e.g., the Apache HTTP
Server or the IBM Lotus Domino Server), possibly modified by the disturbance
D(z), to control the system output. The transducer block H(z) models effects
such as (1) the conversion between input and output units, (2) sensor delays, and
(3) averaging (often referred to as filtering).

The simplest block diagrams only include serial connections between blocks
in which the output of one block is the input to another block. More com-
plex relationships are possible. In particular, Figure 4.1 includes summation and
branching.

The addition of signals is specified by a circle with an “×” through it, as
on the left side of Figure 4.1. Such a summation point has multiple inputs and
one output. A plus or minus sign indicates whether the input signal is added or
subtracted. In the figure, the signal W(z) is subtracted from the reference signal
R(z) to obtain the error signal E(z).

A branching point is the origin of a signal with multiple destinations. For
example, Y (z) in Figure 4.1 is used both as the output of the system and as input
to the transducer.

Block diagrams provide an effective approach to representing many complex
interactions between elements. However, we emphasize that the relationships
modeled are only those needed for controller analysis and design. Other relation-
ships, such as sharing common code or having common information models, are
not represented in block diagrams. A block need not correspond to an architec-
tural or design element in a software system (e.g., a name server, object, method,

TLFeBOOK

BLOCK DIAGRAMS BASICS 113

or area of shared memory). It could be that a block represents multiple such
elements, as may be the case with a transducer block that models measurement
delays (which may involve collection and reporting functions present in many
architectural elements). A further implication is that the same system could be
represented by many different block diagrams.

Example 4.1: Modeling M/M/1/K feedback control Consider the M/M/

1/K single-server queue described in Section 2.1 Suppose that we are interested
in regulating response time by adjusting the buffer size in the presence of work-
load variations. Thus, the reference input R(z) to the resulting control system is
the desired response time and the output Y (z) is measured response time. Note
that although the “real” output of the system is the result of processing requests,
for control purposes, the average response time is considered to be the output.

Figure 4.2(a) displays a summation point that computes the control error E(z)

from R(z) and Y (z). Figure 4.2(b) shows that the controller K(z) inputs the

R(z) E(z)+

−

Y(z)

(a) E(z) = R(z) − Y(z)

E(z) U(z)
K(z)

(b) K(z) = U(z)
E(z)

(c) V(z) = U(z) + D(z)

D(z)

U(z) V(z)++

(d) G(z) = Y(z)
V(z)

G(z)
V(z) Y(z)

R(z)
G(z)

D(z)

E(z) U(z) V(z) Y(z)++

+

− K(z)

Controller M/M/1/K

Desired
Response

Time

Measured
Response

Time

Workload
Variations

(e) Control system

Fig. 4.2 Components of a control system for regulating the response times of an M/M/1/K

queueing system. R(z) is the desired response time, Y (z) is the measured response time that
is output from the control system, E(z) is the difference between the desired and measured
response time, K(z) is the controller, U(z) is the controller-specified buffer length, D(z) is the
disturbance due to workload variations, and G(z) is the M/M/1/K system.

TLFeBOOK

114 SYSTEM MODELING WITH BLOCK DIAGRAMS

control error and outputs a control-specified buffer size U(z). Figure 4.2(c)
models the actual buffer size V (z) as the sum of U(z) and the disturbance D(z).
Figure 4.2(d) displays how the M/M/1/K system takes buffer size as input and
outputs the response time of the control system. Figure 4.2(e) contains a block
diagram of the entire control system. Note that Figure 4.2(e) is very similar to
Figure 4.1, but the latter has a transducer block H(z).

As we show in the next section, one block diagram can be transformed easily
into an equivalent diagram using various semantics-preserving operations. These
operations allow us to simplify complex diagrams by combining multiple blocks
into a single block. Of course, the transfer function of the combined block may
be fairly complicated. Alternatively, a block with a complex transfer function
can be decomposed into a network of blocks with simpler transfer functions.

A further extension of Figure 4.1 is to consider cascaded control , as shown
in Figure 4.3. Cascaded control occurs when one controller controls another
controller. For example, the operating system of a Web server controls CPU
scheduling. However, in clustered environments, a load balancer controls the
work going to each Web server. Thus, there are two time scales in which the
systems operate: a fast time scale for scheduling CPU, and a slower time scale
for routing Web requests.

Such a strategy is depicted in Figure 4.3. Fast dynamics are modeled by the
target system G2(z). Slower dynamics are addressed by the target system G1(z).
An “inner” controller K2(z) controls G2(z), and an outer or “global” controller
K1(z) regulates the entire system by adjusting the reference input to the inner
system K2(z). Thus far, the arrows have represented scalar signals. This can be
generalized to vector-valued signals and vector-valued transfer functions, a topic
that is discussed in Chapter 7.

We close this section by observing that a block diagram is a pictorial rep-
resentation of a set of linear equations. Consider Figure 4.1. The relationship
between the output of the controller and its input is expressed by the equation
U(z) = K(z)E(z). Similar equations can be written for the target system and

R(z)
G2(z)

D(z)

H2(z)

E2(z) U2(z)

W2(z)

U1(z)
++

+

− K2(z) G1(z)
Y(z)V2(z) V1(z)

H1(z)

E1(z)

+

− K1(z)

W1(z)

Fig. 4.3 Block diagram of a system using cascaded control.

TLFeBOOK

TRANSFORMING BLOCK DIAGRAMS 115

transducer. Typically, we use a block diagram to find an equation that relates
Y (z) to its inputs, such as D(z) and R(z). While the approach is pictorial, we
are actually solving a set of equations.

4.2 TRANSFORMING BLOCK DIAGRAMS

In this section we describe how to transform block diagrams using the algebraic
rules of Z-transforms. These transformations yield a block diagram that is mathe-
matically equivalent to the original one but is in a more useful form. For example,
we can use these transformations to construct the Z-transform of the system or
to put the diagram into a more familiar form for which there are known results.

4.2.1 Special Aggregations of Blocks

Figure 4.4 shows combinations of the blocks in Figure 4.1 that have special sig-
nificance. These combined blocks are used to construct several transfer functions.
The first is the feedforward transfer function, as specified by the blocks labeled
(b) in Figure 4.4(a) and is displayed in Figure 4.4(b). The feedforward transfer
function is denoted by FFF(z) and indicates how the control error E(z) is trans-
formed into the output Y (z). Because the controller and target system blocks are
in series, the combined transfer function is the product of the component func-
tions. That is, FFF(z) = G(z)K(z). This follows from the definition of transfer
functions:

FFF(z) = Y (z)

E(z)

= U(z)

E(z)

Y (z)

U(z)

= K(z)G(z)

Note that for the multiplication of scalar transfer functions (our focus
here), the order of the transfer functions may be reversed. That is, G(z)K(z) =
K(z)G(z). However, this property does not necessarily hold for vector-valued
functions (as discussed in Chapter 7).

The feedforward transfer function can be extended to include the transducer,
yielding the loop transfer function . The loop transfer function is denoted by
FLP. Its input is E(z), and its output is W(z). In Figure 4.4(a), the loop transfer
function is the block labeled (c) and corresponds to Figure 4.4(c). Since the three
blocks are in series, the FLP = H(z)G(z)K(z). This is derived as follows:

FLP(z) = W(z)

E(z)

= U(z)

E(z)

Y (z)

U(z)

W(z)

Y (z)

= K(z)G(z)H(z)

TLFeBOOK

116 SYSTEM MODELING WITH BLOCK DIAGRAMS

R(z)
G(z)

Y(z)

H(z)

E(z) U(z)

W(z)

+

− K(z)

(b)

(c)

(d)

(a) Closed-loop system

(b) Feedforward transfer function

E(z)
FFF(z) = K(z)G(z)

Y(z)

(c) Loop transfer function

E(z)
FLP(z) = K(z)G(z)H(z)

W(z)

(d) Feedback transfer function
for reference input

R(z)
FR(z) =

Y(z)K(z)G(z)

 1 + K(z)G(z)H(z)

Fig. 4.4 Transfer functions in closed-loop systems. Dashed lines identify blocks used in several
transfer functions in Figure 4.4(a) that are defined in Figure 4.4(b), (c), and (d).

4.3 TRANSFER FUNCTIONS FOR CONTROL ANALYSIS

In this section we introduce several transfer functions that are used throughout the
book to analyze control of computing systems. Figure 4.5 depicts the general form
of the block diagram that we use for control analysis. There are three inputs: the
reference R(z), disturbance D(z), and noise N(z). Changes in the reference input
reflect changes in policy, such as changing a service-level objective. Changes in
the disturbance and noise inputs relate to the factors that are uncontrolled. We

TLFeBOOK

TRANSFER FUNCTIONS FOR CONTROL ANALYSIS 117

+
−

R(z)
K(z)

++ G(z)
T(z)

H(z)

D(z)

++

N(z)

Y(z)U(z)

W(z)

E(z)
Controller

Target
System

Transducer

V(z)

Fig. 4.5 General form of block diagrams used for control analysis. There are three inputs: the
reference R(z), the disturbance D(z), and noise N(z). There are two outputs of interest: the
measured output of the system T (z) and the control error E(z).

are interested in how these changes affect the output of systems. There are two
outputs of interest: T (z) and E(z). The measured output (with noise) of the
system T (z) is what is being regulated (e.g., CPU utilization, response time).
T (z) is the sum of the output of the target system Y (z) and noise N(z). If
N(z) = 0, then T (z) = Y (z). In these cases, we use Y (z) instead of T (z) as the
output of the system. The control error E(z) indicates how close the measured
output is to the reference input, where e(k) = 0 is the ideal case.

The reference feedback transfer function relates the reference input, R(z), to
the output, Y (z). Its derivation requires a little algebra. In essence, we solve for
Y (z)/R(z) using the set of equations specified by the block diagram. From the
definition of a transfer function, only one input is non zero, which in this case
is R(z). Thus,

W(z) = E(z)K(z)G(z)H(z)

E(z) = R(z) − W(z)

= R(z) − E(z)K(z)G(z)H(z)

[1 + K(z)G(z)H(z)]E(z) = R(z)

E(z) = R(z)

1 + K(z)G(z)H(z)

Y (z) = E(z)K(z)G(z)

= G(z)K(z)

1 + H(z)G(z)K(z)
R(z)

FR(z) = Y (z)

R(z)

= G(z)K(z)

1 + H(z)G(z)K(z)
(4.1)

TLFeBOOK

118 SYSTEM MODELING WITH BLOCK DIAGRAMS

Note that the numerator of FR(z) is the feedforward transfer function FFF(z) and
the denominator of FR(z) is one plus the loop transfer function FLP(z). That is

FR(z) = FFF(z)

1 + FLP(z)
(4.2)

This relationship holds in general, regardless of the specific blocks in the feedfor-
ward and loop transfer functions, as long as the feedback signal (e.g., transduced
measured output with noise) is subtracted from the reference input.

There are several other transfer functions that can be derived from diagrams
such as Figure 4.5. The transfer function FRE(z) is from the reference input to
the error signal. Here, the feedforward transfer function is 1 and the loop transfer
function is as before. Applying Equation (4.2), we have

FRE(z) = E(z)

R(z)

= 1

1 + K(z)G(z)H(z)
(4.3)

Another transfer function of interest is FD(z) from the disturbance input to
the output in Figure 4.5. Here, the feedforward transfer function is G(z) and the
loop transfer function is K(z)G(z)H(z). So

FD(z) = Y (z)

D(z)

= G(z)

1 + K(z)G(z)H(z)
(4.4)

Referring again Figure 4.5, we can assess the effect of a disturbance on control
error using the transfer function FDE = D(z)/E(z) [under the assumption that
all other inputs are 0, so R(z) = 0]. Here, the forward loop for the disturbance
to the control error is −G(z)H(z), so

FDE(z) = E(z)

D(z)

= −G(z)H(z)

1 + K(z)G(z)H(z)
(4.5)

Last, we consider two transfer functions for which the input is N(z). For these,
we use T (z) as the output instead of Y (z). The transfer function from the noise
input to the system output T (z) is

FN(z) = T (z)

N(z)

= 1

1 + K(z)G(z)H(z)
(4.6)

TLFeBOOK

BLOCK DIAGRAM RESTRUCTURING 119

and the transfer function from the noise input to the control error E(z) is

FNE(z) = E(z)

N(z)

= −H(z)

1 + K(z)G(z)H(z)
(4.7)

4.4 BLOCK DIAGRAM RESTRUCTURING

In some cases, the block diagrams may need to be transformed before it is
clear how to apply the simplifications above. These transformations change the
appearance of the block diagram, but the underlying equations are equivalent.

Consider the block diagram shown in Figure 4.6(a). There are two feed-
back loops that are intertwined in a way that makes it difficult to identify the
open-loop and closed-loop transfer functions. We can restructure the diagram
as follows. First, we move the K1(z) block to after the summation point, as
shown in Figure 4.6(b). To ensure that the input to K2(z) remains the same, we
include a factor of 1/K1(z) in the feedback loop.1 The next step in Figure 4.7(a)

G(z)
R(z)

H2(z)

H1(z)

−+ + −
K1(z) K2(z)

Y(z)

(a) Original system

G(z)
R(z)

H2(z)

H1(z)

−+ + −
K2(z)

Y(z)

K1(z)
1

K1(z)

(b) First reduction

Fig. 4.6 Sequence of block diagram reductions used to simplify a complex block diagram,
part 1. The next steps in the reduction are shown in Figure 4.7.

1We assume that 1/K1(z)H1(z) is such that the degree of the numerator is no greater than the degree
of the denominator.

TLFeBOOK

120 SYSTEM MODELING WITH BLOCK DIAGRAMS

G(z)
R(z) + − Y(z)

H1(z)
K1(z)

K1(z)K2(z)

1 + K1(z)K2(z)H2(z)

(b) Third reduction

R(z) Y(z)K1(z)K2(z)G(z)

1 + K1(z)K2(z)H2(z) + K2(z)G(z)H1(z)

(c) Final reduction

G(z)
R(z)

H2(z)

−++ − K2(z)
Y(z)

H1(z)

K1(z)

K1(z)

(a) Second reduction

Fig. 4.7 Sequence of block diagram reductions used to simplify a complex block diagram,
part 2. The first steps in the reduction are shown in Figure 4.6.

interchanges the order of the two summation points, which is possible since addi-
tion is a commutative operation for scalar values. This step also combines the
1/K1(z) and H1(z) blocks into a single block labeled H1(z)/K1(z).

We now see that this is a nested structure of two closed-loop systems, each of
which is similar to Figure 4.1. Hence, we apply Equation (4.1) to the inner loop,
which yields the block diagram in Figure 4.7(b). Applying Equation (4.1) again
results in Figure 4.7(c). The interested reader is encouraged to verify that these
transformations have preserved the relationship between R(z) and Y (z) (e.g., by
expressing each diagram as a system of linear equations).

4.5 SUMMARY

1. Block diagrams provide a graphical way to show the relationship between
components of a system by indicating how signals (e.g., CPU utilization,
buffer sizes) are communicated.

2. The elements of a block diagram are:

(a) Blocks, which represent components (which are also systems) and are
labeled with their transfer function

TLFeBOOK

EXTENDED EXAMPLES 121

(b) Arrows, which indicate the flow of signals and may be annotated by
their Z-transform

(c) Summation and branching points, which indicate how signals fan-in
and fan-out

3. Complex block diagrams can be transformed into simpler ones by properly
manipulating the transfer functions contained in the blocks.

4. There are several transfer functions of interests for feedback control of com-
puting systems. These transfer functions are from the reference, disturbance,
or noise input to the measured output or control error.

4.6 EXTENDED EXAMPLES

Block diagrams provide a pictorial representation of relationships between inputs
and outputs. In the following, we present several examples of block diagram
construction using techniques that we have found to be effective in practice. We
also highlight issues that arise during block diagram construction.

4.6.1 IBM Lotus Domino Server

This is a case study of modeling a control system for the IBM Lotus Domino
Server. We use this example to demonstrate that block diagram construction is
often an iterative process.

Consider the IBM Lotus Domino Server discussed in Section 1.6.1. Requests
made by clients to the IBM Lotus Domino Server take the form of remote pro-
cedure calls, or RPCs. There are several types of RPCs with different processing
requirements. We index these RPCs using the subscripts 1, . . . , n.

Based on the foregoing, we propose the model in Figure 4.8(a). The inputs
of the IBM Lotus Domino Server are MaxUsers and the rates of the different
types of RPCs. The output is RIS, the number of RPCs in the server.

Unfortunately, this model has a flaw. Recall that MaxUsers affects how
many users access the system. Hence, MaxUsers and the RPC rates are not
independent!

This problem arises in part because we model complex relationships at a high
level of abstraction. One way to resolve this is to develop a more detailed model.
In particular, we introduce the concept of a transaction, which we define as
end-user actions such as “read mail” and “send mail.” These actions generate a
sequence of RPCs that accomplish a set of related functions on the IBM Lotus
Domino Server (e.g., open a database, retrieve a view, retrieve the messages
in the view). Depending on the specific RPCs in the transaction, there may
be multiple checks for admission to the IBM Lotus Domino Server. Thus, the
rate at which transactions arrive is, in general, larger than the rate at which
transactions are accepted by the IBM Lotus Domino Server. This is modeled by
the components labeled Admit. There is one such component for each of the
m types of transactions. Next, we must convert from units of transaction rates

TLFeBOOK

122 SYSTEM MODELING WITH BLOCK DIAGRAMS

RPC1 rate
RPCn rate
MaxUsers

Notes
Server

RIS

(a) Initial model

+

RPC1
rate

RPCn
rate

MaxUsers

Notes
Server

RIS

+

Tx1 RPC1

Tx1 RPCn

Txm RPC1

Txm RPCn

Admit1

Admitm

+

+

(b) Detailed model

MaxUsers

Notes
Server

RIS

(c) Final model

Fig. 4.8 Evolution of models of the IBM Lotus Domino Server. Figure 4.8(b) and (c) assume
that the load offered exceeds MaxUsers.

to RPC rates. There is one such conversion function for each combination of
transaction type and RPC type. This is modeled by the “Tx RPC” blocks.

The effect of MaxUsers is essentially a min operation. That is, Active users =
min{MaxUsers, All users}. We focus on the region where MaxUsers<All
users because this represents the region where the system is overloaded and
most in need of control. In this case, Active users=MaxUsers. We now have
a complete mapping from MaxUsers to RPC rates, as shown in Figure 4.8(b),
where MaxUsers is an input to a set of m “admit” blocks, each of which is
essentially a scaling factor that determines the rate at which each of the m trans-
action types is generated. Each transaction results in zero or more RPCs of each
type RPC1 · · · RPCn. The IBM Lotus Domino Server model then maps the rate
of the n RPCs into RIS. Observe that this model eliminates MaxUsers as an
input to the IBM Lotus Domino Server.

TLFeBOOK

EXTENDED EXAMPLES 123

The revised model clearly describes the dependencies within the admission
scheme and indicates the role of MaxUsers in determining RIS. However, this
is a complex model. If there are m transaction types and n RPC types, we must
model m + nm + 1 transfer functions!

We simplify the model by taking a higher-level view. In particular, we rede-
fine the block for the IBM Lotus Domino Server so that it encompasses all of
the blocks in Figure 4.8(b). Now the diagram simplifies to the one shown in
Figure 4.8(c).

4.6.2 Apache HTTP Server with Control Loops

This example is a case study of controlling CPU and memory utilizations (hereafter
denoted byCPU andMEM) in the Apache HTTP Server as described in Section 1.6.3.
The situation considered involves two control inputs and two outputs.

The control inputs are MaxClients and KeepAlive. Some background
is needed to understand how these controls work. In the Apache HTTP Server,
clients (e.g., a user at a Web browser) connect to the server before they can
make requests. In version 1 of the Apache HTTP Server, each connection is
associated with a process on the Web server. MaxClients controls the num-
ber of these processes and hence the number of clients that can be connected
concurrently. In addition, version 1.1 of the hypertext transfer protocol (HTTP)
allows connections to persist between requests. Persistent connections have the
advantage of decreasing delays for clients that interact frequently by reducing
server overheads for connection buildup and tear-down. However, a disadvan-
tage of persistent connections is that throughput can be reduced. This occurs
if the number of connections equals MaxClients (which occurs under heavy
loads) and one or more workers is idle (e.g., as a result of long user “think
times”). To address this situation, the Apache HTTP Server includes the param-
eter KeepAlive that controls how long a connection may remain idle before
it is closed.

A simple way to model control of the Apache HTTP Server is to address Max-
Clients and KeepAlive separately as two single-input, single-output (SISO)
models. Observe that increasing KeepAlive forces server processes to wait
longer for their connected (but idle) clients and hence decreases CPU. Increasing
MaxClients increases the number of server processes, which in turn increases
both MEM (due to the larger memory footprint) and CPU (since a larger pool of
processes means more contention for execution resources). Since KeepAlive
affects only CPU, one SISO loop is KeepAlive-CPU. MaxClients affects
both CPU and MEM. Since we already have a SISO loop for CPU, the second
loop must be MaxClients-MEM. This is displayed in Figure 4.9(a).

Although simple, the SISO approach fails to capture the combined effects of
KeepAlive and MaxClients. Thus, we consider a second approach that is
depicted in Figure 4.9(b), in which both control inputs can potentially affect both
outputs. Such multiple-input, multiple-output (MIMO) models are addressed in
Chapter 7.

TLFeBOOK

124 SYSTEM MODELING WITH BLOCK DIAGRAMS

Controller

−+
+

−

KeepAlive

MaxClients

Apache Server

Desired MEM

Measured CPU

Measured MEM

Desired CPU

(b) One MIMO loop

(a) Two SISO loops

Controller 1

−+

+

−

Controller 2

KeepAlive

MaxClients

Apache
Server

Desired MEM

Desired CPU

Measured MEM

Measured CPU

Fig. 4.9 Block diagrams for alternative models for controlling the Apache HTTP Server.

We close by noting that the choice between SISO and MIMO models often
depends on the specifics of the control system. For example, increasing Max-
Clients increases both MEM and CPU. The latter is potentially a problem if it
causes the control error in the CPU SISO loop to become more negative. But
when this happens, KeepAlive increases to compensate for the larger CPU.
We note that if KeepAlive affected both CPU and MEM, the feedback mech-
anism may not have been able to compensate for the modeling inaccuracies of
the multiple SISO model.

4.6.3 Streaming

Streaming is widely used in the Internet to deliver audio and video content. Pro-
viding a high-quality streaming service requires ensuring that end-to-end response
times do not exceed user-perceivable values. End-to-end response times are man-
aged by controlling the response times of each resource traversed by the streaming

TLFeBOOK

EXTENDED EXAMPLES 125

requests. Examples of such resources are the CPUs and network interfaces of the
systems traversed in the path between server and client.

In the streaming example of Section 1.6.6, there is a controller at each resource
that determines how much nonstreaming traffic is accepted. The latter are often
referred to as best-efforts requests. Examples of best-efforts requests are packets
in file transfers and e-mails since end users rarely notice modest variations in the
response times of such requests. Best-efforts requests may be discarded (and later
retransmitted by the sender) if there are excessive delays for streaming requests.

There are several ways to architect a streaming system. One approach is to
centralize control decisions. Such an architecture is displayed in Figure 4.10(a)
for a system consisting of two resources whose transfer functions are denoted by
G1(z) and G2(z). The input to these resources is the probability of discarding
a best-efforts request, and the output is the average response time of streaming

(a) Global control with global reference input

R(z)

Y1(z)
G1(z)

K(z)

G2(z)
Y2(z)

E(z) U(z)+
− +

+ Y(z)

(b) Local control with local reference inputs

R(z)

Y1(z)−+

+

−

K1(z) G1(z)

K2(z) G2(z)
Y2(z)

R1(z)

R2(z)

E1(z)

E2(z)

U1(z)

U2(z)

+
+ Y(z)

p1

p2

(c) Local control with global reference inputs

R(z)

Y1(z)

+

p1 K1(z) G1(z)

K2(z) G2(z)
Y2(z)

E(z)

E2(z)

U1(z)

U2(z)

+
+ Y(z)

E1(z)

−

p2

Fig. 4.10 Block diagrams for streaming media. The diagrams are distinguished based on
whether control is local or global and how the reference input is obtained.

TLFeBOOK

126 SYSTEM MODELING WITH BLOCK DIAGRAMS

requests Y (z). There is one controller K(z) that determines the discard probability
for both G1(z) and G2(z). The reference response time is R(z). The control error
E(z) is R(z) − Y (z).

In a streaming system, it is common for resources to be distributed, which
makes it problematic to have a single global controller. Further, it may be
undesirable to have the same discard probability for all resources. Rather, it
is preferable to have a higher discard probability for resources that are traversed
earlier to reduce the consumption of resources by requests that are subsequently
discarded. These considerations motivate a second architecture. Here, we parti-
tion the reference response time into components for each resource. As shown in
Figure 4.10(b), there are two SISO control loops. The reference input for loop 1
is p1R(z), and the reference input for loop 2 is p2R(z). Of course, p1 +p2 = 1.

The second architecture allows resources to work independent of each other.
However, the lack of coordination between the resources can be a disadvantage
as well. For example, suppose that the reference response time is 2 seconds, with
p1 = 0.5 = p2. Further, suppose that y1(k) = 1.5 and y2(k) = 0.4. Then the
first controller will force the first resource to discard best-efforts requests even
though y1(k) + y2(k) < r(k).

Figure 4.10(c) displays an alternative approach to distributed control. Here we
partition the control error according to p1 and p2. That is, Ei(z) = pi[R(z) −
Y (z)]. Doing so avoids the shortcomings of Figure 4.10(b). However, there are
disadvantages to distributing the control error in that it increases coordination
overheads. In particular, R(z) − Y (z) must be available to each local controller
at the beginning of every control period.

*4.7 COMPOSING TRANSFER FUNCTIONS IN MATLAB

MATLAB provides some convenient facilities for composing complex transfer
functions from simpler ones. These techniques are applied to objects that are con-
structed using the MATLAB tf function or any of the related functions supported
by MATLAB. (More details are presented in Chapter 3.)

There are three main operations:

1. Concatenation. Two transfer functions connected in series are represented
by the multiplication operator (*). For example, as shown in Figure 4.11(a),
if G1 and G2 are MATLAB tf objects, the concatenation of these transfer
functions is computed as

G = G1 * G2

2. Summation. If two transfer functions are combined by addition, the asso-
ciated MATLAB objects are combined using the “plus” (+) or “minus”
(−) operators. For example, as shown in Figure 4.11(b), if G1 and G2 are
MATLAB tf objects, then

G = G1 + G2

TLFeBOOK

COMPOSING TRANSFER FUNCTIONS IN MATLAB 127

(b) Summation composition

Block Diagram

G=G1+G2
MATLABY(z)

G2(z)

G1(z)

U(z)

+
+

G(z)

(c) Feedback composition

MATLAB

Block Diagram

G=feedback(G1,G2)

Y(z)

G2(z)

G1(z)

G(z)

+

−
U(z)

(a) Concatenation composition

Y(z)
G2(z)G1(z)

U(z)

Block Diagram

G=G1*G2
MATLAB

G(z)

Fig. 4.11 Composing transfer functions with MATLAB. G1 is the MATLAB object that corre-
sponds to G1(z), and G2 is the MATLAB object that corresponds to G2(z). The figures show
how to obtain G, the MATLAB object that corresponds to G(z).

3. Feedback loop. Finally, MATLAB provides a convenient way to describe
closed-loop systems. For example, as shown in Figure 4.11(c), if G1 and
G2 are MATLAB tf objects, the transfer function for the feedback loop
G(z) is

G=feedback(G1,G2)

Here, the first argument is the feedforward transfer function and the sec-
ond argument is the transducer on the feedback path. Note that negative
feedback is assumed.

TLFeBOOK

128 SYSTEM MODELING WITH BLOCK DIAGRAMS

4.8 EXERCISES

1. Verify the simplification procedure that transforms Figure 4.7(a) into Figure
4.7(b). Do the same for the transformation of Figure 4.7(b) into Figure 4.7(c).
(Hint: Write out the equations associated with the block diagrams and then
show that the set of equations for the first block diagram are equivalent to the
set of equations for the second block diagram.)

2. Suppose in Figure 4.2(e) that r(k) is in milliseconds and y(k) is in seconds.
Include a transducer block that does unit conversions. What is the transfer
function of this block?

3. Derive the closed-loop transfer function of the M/M/1/K control block dia-
gram in Example 4.1 using a transfer function of M/M/1/K that is described
in Chapter 2. Assume that the controller is u(k) = u(k − 1) + e(k − 1).

4. Suppose that the system in Figure 4.10 contains a disturbance input for the
resources. Draw block diagrams that include a disturbance input for each
architecture and construct transfer functions from the disturbance inputs to
the outputs.

5. Show the steps required to simplify Figure 4.3 in the same manner as is done
in Figures 4.6 and 4.7.

TLFeBOOK

5
First-Order Systems

In this chapter we present techniques for analyzing first-order systems. First-
order systems are of interest for several reasons: (1) many real-world systems
(e.g., the IBM Lotus Domino Server and the Apache HTTP Server) can be mod-
eled as first-order systems; (2) several approximations used in control design are
based on first-order systems; and (3) first-order systems are simple and hence
have pedagogical value. In the chapter we address both the statics and dynam-
ics of first-order systems, with particular emphasis on dynamics. We specifically
consider the response to initial conditions as well as to different types of input
signals, especially the impulse, step, ramp, and sinusoid. The properties studied
are stability, steady-state output, settling time, and maximum overshoot. Where
possible, simple formulas are used to communicate the underlying theory. Var-
ious examples are used to demonstrate application of the theory to computing
systems.

5.1 FIRST-ORDER MODEL

The first-order system model we use is specified in Equation (2.5):

y(k + 1) = ay(k) + bu(k)

Feedback Control of Computing Systems, by Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury
ISBN 0-471-26637-X Copyright c© 2004 John Wiley & Sons, Inc.

129

TLFeBOOK

130 FIRST-ORDER SYSTEMS

where u is the offset of the input and y is the offset of the output. The transfer
function of the first-order model is

G(z) = b

z − a

Note that a is the pole of this system.
Although simple, first-order models are very useful for control analysis and

design of computing systems. For example, our model of the IBM Lotus Domino
Server in Equation (2.29) and the Apache HTTP Server in Equation (2.30) are
in the form of Equation (2.5).

The first-order model can be interpreted in an intuitive way. We begin with
the parameter a that specifies how the next value of the output depends on the
current value of the output. This is related to the lag 1 autocorrelation of the
sequence of output values. For the most part, a > 0 in computing systems since
there tends to be a positive correlation between metric values such as response
time and number in system in queueing systems. For example, a is positive in
our models of the IBM Lotus Domino Server, the Apache HTTP Server, and
M/M/1/K .

Sometimes, negative feedback within the target system can cause a < 0. An
example of such feedback is window-size adjustments in TCP/IP. Let v(k) be
the window size at time k. Consider a model for the change in window size
y(k) = v(k) − v(k − 1). Suppose that traffic is heavy but stationary. If y(k) > 0
(the window size increased), network congestion may well occur, causing round-
trip times to increase. As a result, v(k+1) < v(k) and so y(k+1) < 0. However,
if y(k) < 0, contention is reduced, round-trip time decreases, so y(k + 1) > 0.
Such effects can cause negative autocorrelations and hence result in a < 0.

A third possibility is that a = 0, or at least |a| is very small. Typically, this
indicates that there is little dynamics, possibly as a result of long sampling times.

The parameter b describes the functional relationship between the input and
the output. If b > 0, a positive change in the input causes a positive change in
the output. If b < 0, the output changes in the opposite direction as the input.
For example, in the Apache HTTP Server, as the input MaxClients increases,
so does the output CPU since concurrently processing more requests increases
CPU. However, as the input KeepAlive increases, the output CPU decreases.
This is because a larger KeepAlive value results in more idle workers, so CPU
utilization declines.

Equation (2.5) is a deterministic model. That is, if y(k) and u(k) are known,
Equation (2.5) predicts y(k +1) exactly. Most computing systems have a signifi-
cant stochastic component. Thus, we use Equation (2.5) only as an approximation
to the true behavior of the system, and recognize the limits of its predictive abil-
ity. Even so, we have found Equation (2.5) to be very useful in practice. We
note in passing that Section 5.7 provides an analysis of transient response in the
presence of stochastics.

Before continuing, we underscore a point made repeatedly in this book. Linear
models are constructed around an operating point and are valid only within the

TLFeBOOK

SYSTEM RESPONSE 131

operating region for which they were developed. As such, the analysis that follows
is predicated on the assumption that changes to initial conditions and/or inputs
do not place the system outside its operating region.

5.2 SYSTEM RESPONSE

The system response describes how the output y behaves over time. The output
can change for many reasons. During startup, there may be a “warm-up” period
during which buffers fill and processes complete their initializations. During
operation, there may be a transient fault in the system, or the workload may
change. All of these behaviors can be described by the system’s time-domain
response. If the system is adequately modeled by a difference equation such as
Equation (2.5), the output can be described by the solution to that equation with
the appropriate {u(k)} and initial conditions.

5.2.1 Steady-State and Transient Responses

The system response in the time domain can be divided into two parts: the
steady-state or long-term response (in the limit as time goes to infinity), and
the transient or short-term response. Although in theory the transient response is
infinitely long, in practice, a finite duration that captures the interesting behavior
is considered.

For example, consider the Apache HTTP Server operating with a constant
arrival rate of page requests. Memory and CPU utilizations will be more or less
constant over time. If the arrival rates change, memory and CPU utilizations
will also change; however, they may take some amount of time to reach their
new operating values. The time before the new operating condition is reached is
called the transient response, and after the new operating condition is reached
the system is said to be in steady state.

Figure 1.3 illustrates the steady-state and transient responses to a step change
in the reference input. The steady-state output of a system is the output that
results as time goes to infinity. From Chapter 3, we know that the system must
be BIBO stable to ensure convergence for bounded signals. We emphasize that
since our models are constructed within an operating region, BIBO stable really
means BIBO stable within the operating region of the model.

The output of a BIBO stable system may converge to a single value, called
yss, defined as yss = limk→∞ y(k); or it may converge to another signal. For the
latter, we use the notation yss(k) to denote that the output has reached steady
state but is not a constant. We note here that the response of a BIBO stable
system always converges to a steady-state output that has the same form as
the input signal. That is, a step input gives a constant steady-state output, a
ramp input gives a steady-state ramp output, a sinusoid input gives a steady-state
sinusoid output, and so forth. This property is explored in more detail later in
this chapter.

TLFeBOOK

132 FIRST-ORDER SYSTEMS

The settling time of the system is the time required before steady state is
reached (to a reasonable degree of accuracy). In this book, we use a 2% cri-
terion to define the settling time. (The precise definition depends on the input
signal.) The transient response of a system is defined as the output during its
settling time.

The maximum overshoot is the maximum amount that the transient system
output overshoots its steady-state value, divided by its steady-state value. The
maximum overshoot is often expressed as a percentage. Other characteristics of
the transient response include the peak time (the time to reach the maximum
overshoot point) and the delay time (the elapsed time before output starts to
react to input signal). These characteristics are usually not used as commonly as
are the settling time and maximum overshoot.

Example 5.1: Transient response in the Apache HTTP Server Figure 5.1
shows the transient response of the Apache HTTP Server controlled by a feed-
back controller. The desired value of CPU utilization changes from 0.3 to 0.8
at 900 seconds. The feedback controller acts to achieve this goal by adjusting
MaxClients. This results in CPU utilization changing as shown in Figure 5.1.
The output reflects both the control action and the effects of stochastics. A similar
plot is shown for memory utilization. Here, there are fewer stochastics, so the
transient response is clear.

Figure 5.2 shows the transient response of the Apache HTTP Server controlled
by a more “aggressive” feedback controller. A too-aggressive controller can cause
more system oscillation and larger overshoot.

900 950 1000 1050 1100 1150 1200

900 950 1000 1050

Time (sec)

1100 1150 1200

0

0.5

1

C
P

U
 U

til
iz

at
io

n

0

0.5

1

M
E

M
 U

til
iz

at
io

n

Fig. 5.1 Transient response of the Apache HTTP Server under control of a less aggressive
controller. The solid lines indicate the measured values. The dashed lines indicate the desired
values.

TLFeBOOK

SYSTEM RESPONSE 133

850 900 950 1000 1050 1100 1150 1200

850 900 950 1000 1050 1100 1150 1200

0

0.5

1

C
P

U
 U

til
iz

at
io

n

0

0.5

1

M
E

M
 U

til
iz

at
io

n

Time (sec)

Fig. 5.2 Transient response of the Apache HTTP Server under control of a more aggressive
controller. The solid lines indicate the measured values. The dashed lines indicate the desired
values.

5.2.2 Input Signal Model

To find the solution of Equation (2.5), the input signal must be known. From
Figure 4.5, we know that there are three kinds of inputs: the reference input,
disturbance input, and noise input. For example, in computing systems the dis-
turbance input can be used to model a change in the workload, a change in the
system parameters, or a fault condition. Indeed, the response to a disturbance
input is one of the more useful analyses for computing systems. A transient fault
of very short duration can be modeled as an impulse; that is, the signal is zero
for all time except for k = 0. A sudden jump in arrival rates can be modeled as a
step, followed by a negative step when the workload returns to its previous level.
A gradual increase or decrease in workload, such as at the start of a workday,
can be modeled as a ramp signal. Periodic variations in workload (e.g., to reflect
daily cycles or as a surrogate for variability) can be modeled with a sine wave
or combination of sine waves.

5.2.3 Time-Domain Solution

Both the transient and steady-state responses of a first-order system can be found
by solving Equation (2.5). This can be done either directly in the time domain
or by using Z-transforms as in Chapter 3.

For the solution in the time domain, we proceed by iteratively solving the
difference equation, using the initial condition y(0) and the input signal {u(k)}:

TLFeBOOK

134 FIRST-ORDER SYSTEMS

y(1) = ay(0) + bu(0)

y(2) = ay(1) + bu(1)

= a2y(0) + abu(0) + bu(1)

y(3) = ay(2) + bu(2)

= a3y(0) + a2bu(0) + abu(1) + bu(2)

Generalizing, we have

y(k) = aky(0) + ak−1bu(0) + ak−2bu(1) + · · · + abu(k − 2) + bu(k − 1)

= aky(0) + b

k−1∑
n=0

ak−1−nu(n) (5.1)

The kth output value y(k) depends on the initial condition y(0) and the first k

input values {u(0), u(1), . . . , u(k − 1)}.
The solution to the difference equation can also be found using Z-transforms.

First, we take the Z-transform of Equation (2.5) to get

zY (z) − zy(0) = aY (z) + bU(z)

(z − a)Y (z) = zy(0) + bU(z)

Y (z) = z

z − a
y(0) + b

z − a
U(z) (5.2)

When the inverse Z-transform is taken, there will be two terms: one including the
initial condition y(0) and one including the input U(z). Once the input U(z) is
known, Y (z) can be found directly, and y(k) can be determined using the inverse
Z-transform.

Equation (5.1) decomposes the factors affecting the output into the initial
condition y(0) and the input signal {u(k)}. Let yinitial(k) = aky(0) be the effects
due to initial conditions and yinput(k) = b

∑k−1
n=0 ak−1−nu(n) be the effects due

to the input signal. Clearly,

y(k) = yinitial(k) + yinput(k)

This is an example of the superposition property , which allows us to analyze
yinitial(k) and yinput(k) separately and then combine the results. That is, initial
conditions are studied with u(k) = 0, and the input signal is studied with y(0) =
0. The superposition property also applies to combinations of inputs. So, if u is
a sum of a step and a sine, the response of the system to the two different input
components can be found separately and then added together.

In the remainder of this chapter we study the response of first-order systems to
initial conditions (with zero input) and to several different types of input signals
(with zero initial conditions).

TLFeBOOK

INITIAL CONDITION RESPONSE 135

5.3 INITIAL CONDITION RESPONSE

Consider the first-order system represented by Equation (2.5) with u(k) = 0 for
all k. Under these conditions, the response of the system depends only on the ini-
tial condition y(0) and on the system parameter a, which is the pole of the transfer
function. This is called the initial condition response. From Equation (5.1) we
see that

y(k) = aky(0) (5.3)

Figure 5.3 evaluates the effect on the output of different values of the param-
eter a. For simplicity, we assume that the initial condition is y(0) = 1 since the
magnitude of the initial conditions affects only the scaling of the output. The
four plots on the top of Figure 5.3 have a < 0, and the four on the bottom have
a > 0. Note that negative values of a result in an oscillatory output (the output
flip-flops between positive and negative), while positive values of a result in an
output that is always the same sign as the initial condition [here positive, but if
y(0) < 0, the output would always be negative].

0 5 10
−1

−0.5

0

0.5

1
a = −0.4

0 5 10
−1

−0.5

0

0.5

1
a = −0.6

0 5 10
−1

−0.5

0

0.5

1
a = −1

0 5 10

a = −1.2

a = 0.4 a = 0.6 a = 1 a = 1.2

−6

−4

−2

0

2

4

6

 y
(k

)

0 5

k

10
−1

−0.5

0

0.5

1

0 5 10
−1

−0.5

0

0.5

1

0 5 10
−1

−0.5

0

0.5

1

0 5 10

−6

−4

−2

0

2

4

6

Fig. 5.3 Response to initial conditions of a first-order system with y(0) = 1 and various values
of a. The dashed line indicates yss, the steady-state signal, if it exists.

TLFeBOOK

136 FIRST-ORDER SYSTEMS

The four plots on the left side of Figure 5.3 have |a| < 1, and hence correspond
to stable systems. In all of these stable systems, the output converges to zero.
Recall that in the system model, a zero output corresponds to the operating
point. This means that if for some reason the system starts operating away from
its normal operating condition (such as due to execution of administrative tasks),
it will converge if it is stable. However, if the system is not stable, such as
those shown in the two plots on the right-hand side of Figure 5.3, the output
does not converge, and the response to a nonzero initial condition is unbounded.
If |a| = 1, the output is bounded but does not converge to the operating point.

For a stable system, we define its settling time to initial conditions as the time
until the output is within 2% of its largest magnitude value. From Equation (5.3),
we see that the largest magnitude is achieved at |y(0)|. Noting that for conver-
gence we must have |a| < 1, we find ks such that

|aks | = |y(ks)|
|y(0)| < 0.02

Taking the natural logarithm of both sides, and noting that log 0.02 ≈ −4, we
have for 0 < a < 1,

ks ≈ −4

log a

Since |a| < 1, log a < 0 and the right-hand side will be positive. A similar result
holds when −1 < a < 0. Combining these, we have

ks ≈ −4

log |a| (5.4)

Note that we define the settling time in the unit of sample intervals.

5.4 IMPULSE RESPONSE

The impulse response describes the output of the system when the input can
be modeled as an impulse. Recall that an impulse signal is nonzero only for a
very short time (one sample period). It can model a transient fault in a computer
system or a short burst of workload arriving all at once. The impulse signal is the
simplest nonzero signal, and hence a detailed analysis of the impulse response can
be used to give some guidance on deriving the responses to other input signals.
The following assumes that the initial condition is zero and that the impulse has
unit magnitude. We derive the main properties of the response, including settling
time, steady-state value, and peak time, and show how these properties relate to
the two parameters a and b in the first-order system model of Equation (2.5). By
the property of superposition, we can easily modify the solution by multiplying
the response by the constant M to account for an impulse input of magnitude
M , and/or adding in the response to a nonzero initial condition using the result
of Equation (5.3).

TLFeBOOK

IMPULSE RESPONSE 137

Consider the first-order system in Equation (2.5) with zero initial condition,
that is, y(0) = 0, and a unit impulse input, that is, {u(k)} = {1, 0, 0, . . . }. From
Equation (5.1) we can see that the output y(k) has the form

y(k) = b

k−1∑
n=0

ak−1−nu(n)

= bak−1 for k ≥ 1 (5.5)

This result can also be derived using Z-transforms. First, we take the Z-transform
of Equation (2.5):

zY (z) − zy(0) = aY (z) + bU(z)

Then, setting the initial condition y(0) to 0 and noting that the Z-transform of
an impulse input is U(z) = 1, we solve for Y (z) to get

(z − a)Y (z) = bU(z) = b · 1

Y (z) = b

z − a
= bz−1 z

z − a

and finally, consulting Table 3.1, we find the time-domain expression for y(k) as

y(k) = bak−1

which agrees exactly with Equation (5.5), as expected.
The impulse response differs from the initial conditions response in

Equation (5.3) in two important ways: (1) the response is delayed by one time
step [y(0) = 0], and (2) the output is multiplied by b.

Paralleling Figure 5.3, the impulse responses of different systems (for eight
different values of a) are plotted in Figure 5.4. Systems with a negative pole
a < 0 are on the top row, and those with a positive pole a > 0 are on the
bottom row. The oscillatory response of systems with a negative pole is also
seen in the impulse responses. As expected, the output converges to 0 for those
systems whose pole lies within the unit circle. The two systems with |a| = 1 do
not converge, but they do not diverge either. When |a| > 1, the output increases
without bound.

For all bounded impulse responses (those with |a| ≤ 1), the peak time occurs
at k = 1, when y(1) = ymax = b [from Equation (5.5)]. The settling time ks is
such that y(ks) is 2% of ymax. Clearly, for an impulse, ymax = b. Thus,

|y(ks)| ≈ |baks−1| = 0.02|b|
(ks − 1) log |a| ≈ log 0.02 ≈ −4

ks ≈ −4

log |a| + 1 (5.6)

TLFeBOOK

138 FIRST-ORDER SYSTEMS

0 5 10
−1

−0.5

0

0.5

1
a = −0.4

0 5 10
−1

−0.5

0

0.5

1

 k

 y
(k

)

a = 0.4

0 5 10
−1

−0.5

0

0.5

1
a = −0.6

0 5 10
−1

−0.5

0

0.5

1
a = −1

0 5 10
−3

−2

−1

0

1

2

3
a = −1.2

0 5 10
−1

−0.5

0

0.5

1
a = 0.6

0 5 10
−1

−0.5

0

0.5

1
 a = 1

0 5 10
−3

−2

−1

0

1

2

3
 a = 1.2

Fig. 5.4 Impulse response of a first-order system, with zero initial condition, y(0) = 0. The
parameter a is varied, and b = 0.5 for all responses. The dashed line indicates yss, the
steady-state value, if it exists.

For simplicity, we will often further approximate the settling time as

ks ≈ −4

log |a| (5.7)

As a simple numerical example, consider the first-order systems with poles |a1| =
0.4 and |a2| = 0.6. The settling times of these systems are

ks1 ≈ −4

log(0.4)
≈ 5

ks2 ≈ −4

log(0.6)
≈ 8

(where we have rounded the settling times up to the next-highest integer). This
means that for the system with |a1| = 0.4, |y(5)| < 0.02|ymax| = 0.01. When
|a2| = 0.6, after eight sample times the output is less than 0.01. It can be seen
from these equations and from Figure 5.4 that settling time increases with the

TLFeBOOK

IMPULSE RESPONSE 139

magnitude of the pole a. As a → 0, the settling time decreases, until at a = 0
the settling time is exactly one sample time.

Example 5.2: Impulse response in the IBM Lotus Domino Server Consider
the IBM Lotus Domino Server from Section 2.6.1, which is described as

y(k + 1) = 0.43y(k) + 0.47u(k)

This model is constructed around the operating point MaxUsers = 165, RIS =
135. Thus, the value of y and u in the model are the offset between the actual
values of MaxUsers and RIS and their operating points:

y(k) = RIS(k) − RIS

u(k) = MaxUsers(k) − MaxUsers

Suppose that there are administrative tasks of short duration whose effect can
be modeled as a change in the MaxUsers value seen by the IBM Lotus Domino
Server. Thus, MaxUsers(k) refers to the value of MaxUsers that is specified
through the IBM Lotus Domino Server command console or through appropriate
programming interfaces. Consider a situation in which multiple administrative
tasks are initiated at the same time. We refer to this as an administrative job.
The execution of administrative tasks is an example of a disturbance. Let d(k)

denote the effect of these tasks on the effective value of MaxUsers at time k.
Then we have the following dynamics:

y(k + 1) = 0.43y(k) + 0.47[u(k) + d(k)] (5.8)

Figure 5.5 displays a block diagram of the system just described.
If the administrative job runs for a short time, we model it as an impulse signal

(whose magnitude depends on the RPCs in the job). We consider a disturbance of
magnitude M = 40 (i.e., MaxUsers is increased by 40). Further, we assume that
the system was running at its operating point before the disturbance occurred,
thus MaxUsers(k) = MaxUsers, so u(k) = 0. The time-domain solution for
y can be obtained from Equation (5.5). Noting that we must multiply this by the
magnitude of the input to get the correct response, we obtain

y(k) = bak−1M = (0.47)(0.43)k−1(40) = 18.8(0.43)k−1

G(z)

D(z)

U(z) Y(z)++

Server

MaxUsers

Disturbance

RISEffective
MaxUsers

Fig. 5.5 IBM Lotus Domino Server with a disturbance input that is modeled as a change in
MaxUsers as seen by the server.

TLFeBOOK

140 FIRST-ORDER SYSTEMS

0 5 10
325

335

345

Time (minutes)

R
IS

Fig. 5.6 Prediction of offset RIS in the IBM Lotus Domino Server as a result of the execution
of a short administrative job that is modeled as an impulse.

We can also use Z-transforms to find the impulse response y. We let the initial
condition y(0) = 0; this implies that at time k = 0, the system was originally at
its operating point. Also, for an impulse response of magnitude 40 at time k = 0,
we have D(z) = 40.

zY (z) − zy(0) = 0.43Y (z) + 0.47D(z)

(z − 0.43)Y (z) = 0.47(40) = 18.8

Y (z) = 18.8

z − 0.43
= 18.8z−1 z

z − 0.43

y(k) = 18.8(0.43)k−1

As expected, both derivations give the same result for y. Note that the pole of
this system is 0.43.

The impulse response of Figure 5.6 shows the behavior of RIS in the IBM
Lotus Domino Server predicted by the model after the short-term job runs on the
server. The RIS initially increases by 18.8 (for a total RIS of 135 + 18.8), and
then gradually decreases to its operating point (yss = 0, or RIS = 135). The time
taken to reach the steady state (within 2% of the final value of the output) is the
settling time. Using Equation (5.6), we compute

ks ≈ −4

log 0.43
≈ 5

Since the model was identified for a sampling time of 1 minute, this system takes
5 minutes to return to its operating point after this short job has been processed
on the server.

Another example of an impulse response in a real system is given in
Example 3.3, Apache Web Server with impulse input.

TLFeBOOK

STEP RESPONSE 141

5.5 STEP RESPONSE

The step response describes the output of the system to a sustained change in
input that can be modeled as a step. A unit step is a signal that is zero for all time
k < 0, and one for all times k ≥ 0. It is called a step because when the points
are connected in the time domain, it resembles a step. Steps are frequently used
to model discontinuous changes in workload or parameter settings. We assume
in this section that the initial condition is y(0) = 0; if the initial condition is
nonzero, we can find the total response by superposition of the initial condition
response and the step response.

5.5.1 Numerical Example

Before deriving the general form of the step response of a first-order system, we
consider some numerical results for solving the first-order system in Equation (2.5)
with zero initial conditions and a unit step input. The results for eight different
values of a are shown in Figure 5.7; in all cases, the parameter b = 0.5. Sev-
eral observations can be made from this figure. For stable systems, those with a
pole inside the unit circle (|a| < 0), the step response converges to a constant,
nonzero value. For systems with poles outside the unit circle (|a| > 1), the output
is unbounded. When the poles are on the unit circle, the figure is inconclusive.
Although systems with |a| = 1 are not BIBO stable, there may still be some
bounded inputs that result in bounded outputs, such as when a = −1. However, a
bounded input may also result in an unbounded output, such as the step response
with a = 1. The figure also shows that the time taken for the step response to
converge (the settling time) is shorter for smaller values of a. Finally, similar to
the impulse response, a negative value of a results in oscillations in the output.

5.5.2 Time-Domain Solution

Consider the time-domain solution from Equation (5.1), and let the input be a
unit step (u(k) = 1 for all k ≥ 0) and the initial condition be zero [y(0) = 0]:

y(k) = b

k−1∑
n=0

ak−1−n = b

k−1∑
n=0

an

Recall from Chapter 3 that this geometric series can be expressed as

y(k) = b
1 − ak

1 − a
(5.9)

The step response can also be computed using Z-transforms. For this, we use
Equation (5.2) and set the initial condition equal to zero to get

Y (z) = b

z − a
U(z)

TLFeBOOK

142 FIRST-ORDER SYSTEMS

0 5 10
−1

−0.5

0

0.5

1
a = −0.4

0 5 10
−1

−0.5

0

0.5

1
a = −0.6

0 5 10
−1

−0.5

0

0.5

1
a = −1

0 5 10
−2

−1

0

1

2
a = −1.2

0 5 10
−2

−1

0

1

2

 k

 y
(k

)

a = 0.4

0 5 10
−2

−1

0

1

2
a = 0.6

0 5 10
−5

0

5
a = 1

0 5 10
−15

−10

−5

0

5

10

15
a = 1.2

Fig. 5.7 Step response of a first-order system. y(0) = 0, b = 0.5. The dashed line indicates
yss, the steady-state value, if it exists.

Recall that the transfer function G(z) is defined as

G(z) = Y (z)

U(z)
= b

z − a

Thus, to find the output, we multiply the transfer function by the Z-transform of
the input, Y (z) = G(z)U(z). From Table 3.1, the Z-transform of a unit step is
U(z) = z/(z − 1), and thus

Y (z) = G(z)U(z) = b

z − a

z

z − 1
(5.10)

For completeness, we solve for the inverse Z-transform, although many properties
can be determined simply from the form of Y (z).

In order to find y(k) from Y (z), we need to match the form of one or more
entries in Table 3.1. We do this through a partial fraction expansion, using one
term for each pole in the denominator of Y (z):

TLFeBOOK

STEP RESPONSE 143

Y (z) = b

z − a

z

z − 1
= c1

z − a
+ c2

z − 1

= c1(z − 1) + c2(z − a)

(z − 1)(z − a)

= (c1 + c2)z − (c1 + c2a)

(z − 1)(z − a)

Solving for the constants c1 and c2, we get

(c1 + c2) = b

(c1 + c2a) = 0

c1 = −ab

1 − a

c2 = b

1 − a

and thus, we have the form of Y (z) and can use Table 3.1 to find y(k):

Y (z) = c1

z − a
+ c2

z − 1

= −ab/(1 − a)

z − a
+ b/(1 − a)

z − 1

= z−1 −ab

1 − a

z

z − a
+ z−1 b

1 − a

z

z − 1

y(k) = −ab

1 − a
ak−1 + b

1 − a

y(k) = b(1 − ak)

1 − a
(5.11)

Although this agrees with the time-domain solution of Equation (5.9), it clearly
shows that there are two contributions to the response: one from the pole (the
exponential term with a) and the other from the step input. For any system, the
output dynamics are a combination of the input signal dynamics and the internal
dynamics of the system due to its pole(s).

5.5.3 Steady-State Response

From Theorem 3.2 we know that the first-order system is BIBO stable if and only
if |a| < 1. A step is a bounded input, and hence, the step response of a stable
first-order system is bounded. In fact, if the system is stable, the step response is
not only bounded, but converges to a final value. This steady-state value, yss, can
be found either as the limit as k → ∞ of y(k) or from the final value theorem
applied to Y (z). Both approaches to finding yss are considered here.

TLFeBOOK

144 FIRST-ORDER SYSTEMS

From Equation (5.9) we have

yss = lim
k→∞

y(k) = lim
k→∞

b
1 − ak

1 − a
= b

1 − a

The limit exists if |a| < 1. Alternatively, we can use the final value theorem
applied to the expression Y (z) from Equation (5.10):

yss = lim
z→1

(z − 1)Y (z) = lim
z→1

(z − 1)
b

z − a

z

z − 1
= lim

z→1

b

z − a
= b

1 − a

The final value theorem can be applied only if all the poles of (z − 1)Y (z) are
inside the unit circle: in this case, if |a| < 1.

Although the same answer can be found either from the time-domain solution
or from the final value theorem applied to Y (z), we note that to apply the final
value theorem, the exact form of the time-domain response is not needed. Thus, if
only the final value is desired, there is no need to find the time-domain response.
We also note that, by definition, the final value of the system output to a unit
step input is exactly the steady-state gain of the system:

G(1) = b

1 − a

5.5.4 Transient Response

The transient response is how the response behaves before it reaches steady state.
The expression for y in Equation (5.11) allows the transient and steady-state
responses to be separated easily. We have

y(k) = −ab

1 − a
ak−1 + b

1 − a

= ytr(k) + yss

The transient part of the step response is thus

ytr(k) = −ab

1 − a
ak−1 = − b

1 − a
ak

The settling time ks for a step input is such that y(ks) is within 2% of the
steady-state value yss. That is,∣∣∣∣y(k∗

s) − yss

yss

∣∣∣∣ =
∣∣∣∣ytr(k

∗
s)

yss

∣∣∣∣ =
∣∣∣∣ [b/(1 − a]aks

b/(1 − a)

∣∣∣∣ ≈ 0.02

∣∣∣aks

∣∣∣ ≈ 0.02

ks log |a| ≈ −4

ks ≈ −4

log |a| (5.12)

TLFeBOOK

STEP RESPONSE 145

Recall that since |a| < 1, log |a| will be negative. Note that the settling time
for the step response is the same as the settling time for the initial condition
response from Equation (5.4), but one less than the settling time for the impulse
response from Equation (5.6). This is because the settling time is defined with
regard to 2% of the maximum deviation. For the initial condition response and
the step response, the maximum deviation occurs at k = 0. However, for impulse
response, the maximum deviation occurs at k = 1.

Another important property of the transient response is the peak value, ymax.
This can be important in the case that the output is saturated and cannot reach
the predicted peak value. In that case, the system would no longer be operating
in its linear region, and the linear model would not be a good predictor of its
behavior. In other cases, too large an output response could cause problems in
the system, even though the steady-state value would be acceptable. Thus, the
peak value should be considered.

From Figure 5.7, consider the four stable responses (those on the left-hand side
of the figure). When the pole a is positive, the peak value is the steady-state value,
and it is reached after the settling time. However, when the pole a is negative,
there are oscillations in the response, and the peak value is reached at k = 1.
This can also be seen from the time-domain response of Equation (5.9). Since
y(k) = b(1 + a + a2 + a3 + · · ·), if a > 0, then y(k) is uniformly increasing and
there is no peak value. However, if −1 < a < 0, then y(k) alternately increases
and decreases, but by a diminishing difference at each step. Thus, the maximum
value is taken when y(1) = b. The peak time is kp = 1.

In practice, the peak value depends not only on the system parameter b but
also on the magnitude of the step input. For example, if a step input of 10 units is
applied, the maximum value is 10b. Also, the peak value has units that must be
accounted for (such as response time, number in system, etc). A more intrinsic
description of the peak value is the maximum overshoot , denoted Mp, which is
defined as the fraction (often expressed as a percentage) by which the response
exceeds its steady-state value.

Mp = ymax − yss

yss

The overshoot for the first-order system with a negative pole (a < 0) is

Mp = ymax − yss

yss
= b − [b/(1 − a)]

b/(1 − a)
= −a (5.13)

Since this relationship is valid only for a stable system, we have that |a| < 1,
and hence this can easily be interpreted as the fractional or percentage overshoot.
For a stable system with positive pole (a > 0), as ymax = yss, we have Mp = 0.

Example 5.3: Step response in the IBM Lotus Domino Server Consider again
the IBM Lotus Domino Server in Example 5.2 with a long-running administra-
tive job. This is modeled as a step with magnitude M = 40. If the system is
initially at its operating point, the initial condition is zero, and we can use the
transfer function G(z) to study the response of the system.

TLFeBOOK

146 FIRST-ORDER SYSTEMS

We use the transfer function G(z) = 0.47/(z−0.43). The output can be found
by multiplying the transfer function by the input. Treating the administrative jobs
as a disturbance with Z-transform D(z) = 40z/(z − 1), we have

Y (z) = G(z)D(z) = 0.47

z − 0.43

40z

z − 1
= 18.8z

(z − 0.43)(z − 1)

Instead of finding the inverse Z-transform of Y (z), we determine some important
properties of y directly from its Z-transform. First, note that Y (z) has two poles,
and hence its time-domain solution has two terms. One corresponds to the pole
at z = 1 and the other corresponds to the pole at z = 0.43. The final value
theorem can be applied because all the poles of (z − 1)Y (z) are within the unit
circle. Hence, we compute

yss = lim
k→∞

y(k) = lim
z→1

(z − 1)Y (z)

= lim
z→1

(z − 1)
18.8z

(z − 0.43)(z − 1)
= 18.8 · 1

1 − 0.43
= 33

This means that in steady state, after the transient response has died down, the
RIS (output) will be 33 more than the operating point (or 135 + 33 = 168).

The settling time, or the time required to reach this new steady-state value, can
also be determined from the poles of Y (z). The pole at 0.43 will contribute a term
such as c1(0.43)k to the time response. When this term has decreased to 2% of
its maximum value, the transient response can be considered to be approximately
zero. Applying Equation (5.12), we compute that the settling time as

ks ≈ −4

log 0.43
≈ 5

If the new job finishes some time later, this can be modeled as a negative step;
the initial condition must also be taken into account to solve for this response.
A simulation of the step response for the IBM Lotus Domino Server is shown
in Figure 5.8.

0 5 10
325

335

Time (minutes)

R
IS

345

355

Fig. 5.8 Predicted RIS in the IBM Lotus Domino Server after a long job (modeled as a step)
runs. The time scale is in minutes.

TLFeBOOK

TRANSIENT RESPONSE TO OTHER SIGNALS 147

For another example of a step response, see Example 3.4, Apache Web Server
with step input.

5.6 TRANSIENT RESPONSE TO OTHER SIGNALS

The response of a first-order system to any input u can be found either from the
time domain expression of Equation (5.1) or from the Z-transform expression of
Equation (5.2). Although the impulse and step are the two most common input
signals encountered in computing systems, in this section we also consider the
response of a first-order system to a ramp input and to a sinusoidal input.

5.6.1 Ramp Response

The ramp response describes the output of a system to a unit ramp, a signal
that increases linearly for k ≥ 0, u(k) = k. It is called a ramp because when
the points are connected in the time domain, it resembles a ramp. Ramps can be
used to model workload that arrives gradually, such as at the start of a working
day. A ramp signal is unbounded and thus is never seen in practice; however, a
section of a ramp is often an appropriate signal to use for modeling.

We assume in this section that the initial condition is y(0) = 0. If the initial
condition of the system is not zero, the total response can be found by superpo-
sition of the initial condition response (as derived in Section 5.3) and the ramp
response.

Before delving into the ramp response in detail, consider the numerical exper-
iments presented in Figure 5.9. Note that the output is unbounded for all different
values of a. Even if the system is BIBO stable (when |a| < 1), the output is
unbounded because the ramp input is unbounded. When the system is BIBO
stable, however, the steady-state output is also a ramp.

Now, consider the time-domain solution in detail. From Equation (5.1) we set
u(n) = n and simplify the sums.

y(k) = b

k−1∑
n=0

nak−n−1

= b(k + ak − 1 − ak)

(1 − a)2

=
[

b

1 − a
k − b

(1 − a)2

]
+

[
b

(1 − a)2

]
ak (5.14)

= yss(k) + ytr(k)

It can be seen that the ramp response has three terms: a ramp, a constant, and a
decaying geometric term. If the system is BIBO stable (i.e., if |a| < 1), we can
see that the first two terms, the ramp plus the constant, constitute the steady-state

TLFeBOOK

148 FIRST-ORDER SYSTEMS

0 5 10
−5

0

5
a = −0.4

0 5 10
−5

0

5
a = −0.6

0 5 10
−5

0

5
 a = −1

0 5 10
−5

0

5
a = −1.2

0 5 10
−10

−5

0

5

10

 k

 y
(k

)

 a = 0.4

0 5 10
−10

−5

0

5

10
a = 0.6

0 5 10
−50

0

50
a = 1

0 5 10
−50

0

50
a = 1.2

Fig. 5.9 Ramp response of a first-order system. y(0) = 0, b = 0.5. The dashed line indicates
the steady-state signal yss(k), if it exists.

response. The last term, the decaying geometric, constitutes the transient part
of the response since it goes to zero as k → ∞. Note that the slope of the ramp
input is 1, and the slope of the steady-state ramp output is b/(1 − a). This is
exactly the steady-state gain of the system G(1).

The time-domain solution can also be determined using Z-transforms. From
Table 3.1, the Z-transform of a unit ramp input is U(z) = z/(z − 1)2. Thus, we
have

Y (z) = G(z)U(z) = b

z − a

z

(z − 1)2
= d1

z − a
+ d2

z − 1
+ d3

(z − 1)2

Since the denominator for Y (z) is third order, three terms are needed in the partial
fraction expansion. Since one of the poles (z = 1) is repeated, it contributes
two terms: one with (z − 1) in the denominator and one with (z − 1)2 in the
denominator. The constants d1, d2, d3 can be found by putting the right-hand side
over a common denominator and equating coefficients to solve:

TLFeBOOK

TRANSIENT RESPONSE TO OTHER SIGNALS 149

bz

(z − a)(z − 1)2 = d1(z − 1)2 + d2(z − a)(z − 1) + d3(z − a)

(z − a)(z − 1)2

0z2 + bz + 0 = d1(z
2 − 2z + 1) + d2(z

2 − z − az + a) + d3(z − a)

= (d1 + d2)z
2 + (−2d1 − d2 − ad2 + d3)z + (d1 + ad2 − ad3)

The three equations that need to be solved for the three unknowns are

0 = d1 + d2

b = −2d1 − d2 − ad2 + d3

0 = d1 + ad2 − ad3

The first equation gives d1 = −d2, and then there remain two equations to solve
for two unknowns. A bit of algebra reveals that

d1 = ab

(1 − a)2

d2 = −ab

(1 − a)2

d3 = b

1 − a

and thus the Z-transform of the ramp response is given by

Y (z) = d1

z − a
+ d2

z − 1
+ d3

(z − 1)2

= ab

(1 − a)2
z−1 z

z − a
+ −ab

(1 − a)2
z−1 z

z − 1
+ b

1 − a
z−1 z

(z − 1)2

y(k) = ab

(1 − a)2
ak−1 +

[−ab

(1 − a)2
+ b

1 − a
(k − 1)

]
for k ≥ 1 (5.15)

= ytr(k) + yss(k)

Although the form is not exactly the same as Equation (5.14), the two expressions
can be shown to be identical after some further algebraic manipulation. The delay
in the response is shown clearly in Equation (5.15).

The transient part of the response is given by ytr(k) = c3a
k = d1a

k−1 =
[b/(1 − a)2]ak . The transient reaches its maximum value at k = 1 (since there
is a one time unit delay in the first-order system we consider). The 2% settling
time is when the value of the transient part of the response is less than 2% of the
maximum value of the transient part, equivalently, when ak−1 < 0.02. Following
the settling time derivation from the impulse response, we see that the settling
time will be

k ≈ 1 + −4

log |a|

TLFeBOOK

150 FIRST-ORDER SYSTEMS

For simplicity, we can further approximate this as

ks ≈ −4

log |a| (5.16)

Note that the settling time for the ramp response is the same as the settling time
for the impulse response from Equation (5.6). This is because the maximum
deviation occurs at k = 1 for both cases. We also note that the transient part of
the response is oscillatory if a < 0.

5.6.2 Frequency Response

Another type of input signal that is often seen in computing systems is a sinusoidal
signal. Cyclic patterns in user traffic due to time of day or day of the week can
often be modeled as sinusoids. In general, any periodic signal can be expressed as
a sum of sinusoids using a Fourier series [51]. By the principle of superposition,
the response of a linear system to a sum of sinusoids is simply the sum of the
responses to each sinusoid individually.

Figure 5.10 shows the output of several first-order systems to a sinusoidal
input u(k) = sin(0.5k). Note that if the system is BIBO stable (|a| < 1), the

0 5 10
−1

−0.5

0

0.5

1
a = −0.4

0 5 10
−1

−0.5

0

0.5

1
a = −0.6

0 5 10
−1

−0.5

0

0.5

1
a = −1

0 5 10
−10

−5

0

5

10
a = −1.2

0 5 10
−1

−0.5

0

0.5

1

 k

 y
(k

)

a = 0.4

0 5 10
−1

−0.5

0

0.5

1
a = 0.6

0 5 10
−2

−1

0

1

2
a = 1

0 5 10
−10

−5

0

5

10
a = 1.2

Fig. 5.10 First-order system responses to a sine wave. Different values of a are indicated in
the plot; b = 0.5. The sine wave input is u(k) = sin(0.5k).

TLFeBOOK

TRANSIENT RESPONSE TO OTHER SIGNALS 151

output is also a sinusoid with the same frequency as that of the input. However,
the magnitude of the output is different from that of the input. In addition, the
output is not in phase with the input; it reaches its maximum and zero values at
different times.

The time-domain solution of Equation (5.1) is difficult to find with a sinusoidal
input, so we focus on the Z-transform solution. From Table 3.1, the Z-transform
of a sinusoidal input u(k) = sin(θk) is

U(z) = z sin θ

z2 − (2 cos θ)z + 1

Thus, the Z-transform of the output can be found from

Y (z) = G(z)U(z) = b

z − a

z sin θ

z2 − (2 cos θ)z + 1

To find the time-domain solution from the Z-transform, we need to perform a
partial fraction expansion. Since the denominator of Y (z) is third order, we need
three terms in the expansion. One term will have in the denominator the factor
(z − a), and the other two terms will be associated with the complex poles from
the sinusoid: (z − ejθ) and (z − e−jθ) (as discussed in Chapter 3):

b

z − a

z sin θ

z2 − (2 cos θ)z + 1
= c1

z − a
+ c2

z − ejθ
+ c3

z − e−jθ

Although the algebra required to find the constants c1, c2, c3 is straightforward,
it is tedious and requires the manipulation of complex numbers. We omit it here.
However, it can be seen from the form of the solution for Y (z) that the only
terms that can be present in the time domain y(k) are the decaying exponential
(due to the pole at z = a) and sinusoidal terms due to the complex poles at
z = e±jθ :

y(k) = d1a
k + d2 sin(θk + φ)

If the system is BIBO stable, then in steady state only the sinusoidal term is
present. Noting that maxk | sin(θk+φ)| = 1 and assuming that d1 ≤ d2, we have

ks ≈ −4

log |a| (5.17)

The output of the system is a sinusoid with the same frequency as the input.
The magnitude of the output and the phase shift will depend on frequency of the
input and on the system properties [50]. In particular, we have

d2 = b√
a2 − 2a cos θ + 1

φ = tan−1
(

sin θ

a − cos θ

)

TLFeBOOK

152 FIRST-ORDER SYSTEMS

5.7 EFFECT OF STOCHASTICS

The models discussed thus far in this chapter are deterministic. That is, if the
current value of the output and the current value of the input are known, the next
value of the output can be predicted exactly. Most computing systems are not
deterministic but contain a significant stochastic component. These stochastics
arise from many sources, such as the distribution of user “think times” when
browsing Web pages and changes in data requirements. A stochastic component
may even be built into a system such as in the random wait time to resend after
a collision in the Ethernet protocol [36].

When studying the behavior of a computing system, the significance of the
transient response compared to the stochastics of the system must be understood.
If the stochastic component is large, the first-order system model may not predict
the system behavior very well. To explore this issue, we use simulations of the
M/M/1/K queueing system. Figure 5.11 shows the results for four separate
runs of an M/M/1/K simulation with different mean service times s; the arrival
rate is held constant at 1 request per second throughout the experiment. The

0 1000 2000 3000
0

10

20

30

40

50 s=0.85

0 1000 2000 3000
0

10

20

30

40

50 s=0.9

0 1000 2000 3000
0

10

20

30

40

50

N
IS

 k

 s=0.95

0 1000 2000 3000
0

10

20

30

40

50 s=0.99

Fig. 5.11 The dots in each figure show the output (average number of jobs in service) for
a single simulation of an M/M/1/K system. The input is the buffer size K (indicated by the
dashed lines), the arrival rate is fixed at 1 request per second, and the mean service time s is
indicated in each figure.

TLFeBOOK

EFFECT OF STOCHASTICS 153

input signal is the buffer size K and is shown in the figures by dashed lines.
Each dot indicates the number of requests in system averaged over a 1-second
interval. Considerable variability can be observed in the measurements; in fact,
it is difficult to discriminate between the transient response due to changes in
buffer size and the natural stochastic behavior of the system at a fixed buffer size.

To reduce the variability of the measurements, we repeated the same set of
experiments 250 times and averaged the output signal over all 250 replications.
The results are shown in Figure 5.12. In this figure, the two sets of dots for
each time instant show the 95% confidence bounds (plus and minus two standard
deviations from the average) for the measured number of jobs in the system; the
average and standard deviation are computed over the 250 replications. Instead
of showing the buffer size K (which is the same as in Figure 5.11), each figure
also includes the predicted steady-state number in system from Equation (2.1).
By replicating the simulation experiments and averaging, variability is reduced
and transient characteristics are seen more clearly.

The width of the confidence bounds quantifies the effect of variability on the
measurements. The confidence interval curves of Figure 5.12 give us much more
insight into effect of buffer size and allow us to better detect the presence and

0 1000 2000 3000
0

1

2

3

4

5

6

7

 s=0.85

0 1000 2000 3000
0

2

4

6

8

10

 s=0.9

0 1000 2000 3000
0

5

10

15

N
IS

 k

 s=0.95

0 1000 2000 3000
0

5

10

15

20

25

 s=0.99

Fig. 5.12 Assessment of transients in M/M/1/K as buffer size is changed. The inputs are
varied as in Figure 5.11. The dotted lines are plus and minus two standard deviations around the
mean value of number in system measured over 250 replications. The solid line is the expected
steady-state value of number in system from queueing theory.

TLFeBOOK

154 FIRST-ORDER SYSTEMS

magnitude of transient effects. If there were no transient effect, the confidence
bounds should include the mean steady-state value of the system as shown by the
solid lines in Figure 5.12. However, the mean value does not always lie within
the confidence bounds, especially just after the buffer length K has changed.

Consider first the plot where the mean service time is s = 0.85. For the most
part, the prediction indicated by the solid line lies within the confidence interval
shown by the dotted lines. Where this occurs, it suggests that the measurements
are varying around their steady-state values, so there is no transient effect due to
changes in K . However, there are some exceptions. Right after the first change in
buffer size (at T = 500), the confidence bounds are below the expected steady-
state value. Although the duration of this effect is short, its presence suggests
a transient. Also note that in the last stepdown of the downward ramp, the
confidence bounds are above the expected steady-state value, suggesting another
transient effect.

As the mean service rate s increases to 0.9, the transient effect becomes more
pronounced in that the solid line is farther away from the confidence bounds
for one or more of the steps in buffer size. Also, the time needed before the
confidence bounds contain the steady-state value is longer, suggesting that the
transient has a longer duration. As the mean service time s increases further,
the transient effect becomes increasingly pronounced and affects the second and
third steps of the input in addition to the first.

We now consider a first-order model for the M/M/1/K system. The param-
eters a and b for the model are estimated for each different value of the mean
service rate s using the system identification techniques described in Chapter 2.
The predictions of this simple model are presented in Figure 5.13, along with the
same confidence bounds from Figure 5.12. The solid line in this figure shows
the multistep prediction of the first-order model. Compared to the estimates pro-
duced by the steady-state queueing model, the first-order model has more gradual
transitions in the expected number in system as buffer size increases, especially
for larger values of s. Even though the first-order model is quite simple, its
ability to take into account transient effects results in a much better fit with
the M/M/1/K data than the static prediction from Equation (2.1). This is evi-
denced by how frequently the confidence bounds contain the value estimated by
the first-order model.

The first-order model works better for larger s, in part due to nonlinearities
that are more pronounced for smaller s in the range of K considered here.

5.8 SUMMARY

1. From Equation (2.5), the difference equation of a first-order system is y(k+
1) = ay(k)+bu(k). From Equation (3.26), its transfer function is b/(z−a).

2. The system response consists of the steady-state response and the transient
response. The transient response is the time from the change in the initial
conditions or the input signal until the steady state is reached.

TLFeBOOK

SUMMARY 155

0 1000 2000 3000
0

2

4

6

 s=0.85

0 1000 2000 3000
0

2

4

6

8

10

 s=0.9

0 1000 2000 3000
0

5

10

15

N
IS

 k

 s=0.95

0 1000 2000 3000
0

5

10

15

20

25

 s=0.99

Fig. 5.13 Assessment of first-order model for explaining transient response in an M/M/1/K

queueing system. Arrival rate is 1 request per second. Mean service time, s, is indicated in each
figure. The dotted lines are plus and minus two standard deviations around the mean value of
number in system measured over 250 replications. The solid line is the estimated number in
system from multiple-step prediction for a first-order model.

3. Transient analysis can be divided into two parts: response to initial condi-
tions and response to the input signal. These two effects can be combined
using the superposition property.

4. Transient response is determined largely by the pole a of the first-order
system. The response is:

(a) Unstable if |a| > 1
(b) Oscillatory if the a < 0
(c) Converges quickly if |a| is close to 0
(d) Converges slowly if |a| is close to 1 (but not outside the unit circle)

5. For a stable system, settling time ks is the time required to get sufficiently close
to the steady-state value. Using the 2% criterion, the settling time for initial
conditions [Equation (5.4)], impulse [Equation (5.7)], step [Equation (5.12)],

TLFeBOOK

156 FIRST-ORDER SYSTEMS

ramp [Equation (5.16)], and sine wave [Equation (5.17)] is

ks ≈ −4

log |a| (5.18)

6. For a stable system, the maximum overshoot to a step response is −a if
a < 0, and is 0 otherwise.

7. A stable system with a step of size uss has a steady-state output equal to
G(1)uss.

5.9 EXTENDED EXAMPLES

The following examples apply transient analysis of first-order systems to com-
puting systems.

5.9.1 Estimating Operating Region of the Apache HTTP Server

The operating regions of the the Apache HTTP Server can be investigated
through the physical limits of the system and the steady-state gain of the model.
The transfer function model of the Apache HTTP Server, using the values iden-
tified in Section 2.6.2, is given by

G(z) = Y (z)

U(z)
= −0.014

z − 0.59

where the input u(k) is the offset between the parameter KeepAlive and its
operating point KA, and the output y(k) is the offset between the CPU utilization
and its operating point CPU:

u(k) = KeepAlive(k) − KA = KeepAlive(k) − 11

y(k) = CPU(k) − CPU = CPU(k) − 0.58

We can use this model to predict the operating region over which this linear
model can be used.

First, we find the steady-state gain of the system model, as in Section 5.5.3,
and we compute that

G(1) = −0.014

1 − 0.59
= −0.034

The steady-state gain is negative, indicating that if KeepAlive increases by 1
(second), then CPU decreases by 0.034 (or 3.4%).

Suppose we conjecture that a reasonable operating region for KeepAlive is
[1, 30] (i.e., KeepAlive has a minimum value of 1 and a maximum value of
30). To use the linear model, we need to compute the offsets from the operating
point. Thus, the limits are

u1 = 1 − KeepAlive = −10 u2 = 30 − KeepAlive = 19

TLFeBOOK

EXTENDED EXAMPLES 157

The steady-state outputs associated with these inputs can be found using the
steady-state gain, yss = G(1)uss:

y1 = (−0.034)(−10) = 0.34 y2 = (−0.034)(19) = −0.65

and using the operating point again, we compute that

CPU1 = y1 + CPU = 0.92 CPU2 = y2 + CPU = −0.069

However, since CPU cannot be negative, KeepAlive ∈ [1, 30] is not a reason-
able operating region. We can compute the maximum operating region starting
from the physical limits on CPU (between 0 and 1). Thus, let

y3 = 0 − CPU = −0.58 y4 = 1 − CPU = 0.42

We use the inverse of the steady-state gain to find the corresponding input offsets,
uss = yss/G(1):

u3 = −0.58

−0.034
= 17 u4 = 0.42

−0.034
= −12

and then we find the KeepAlive values as

KeepAlive3 = u3 + KeepAlive = 28

KeepAlive4 = u4 + KeepAlive = −1

This gives a negative value of KeepAlive, which is also unreasonable. We will
assume that the minimum value of KeepAlive is 1, and thus, the maximum
operating region over which the linear model can be used is

KeepAlive ∈ [1, 28] CPU ∈ [0, 0.92]

Of course, CPU can never be exactly zero, so a smaller limit on KeepAlive
might be warranted. We recall, however, that the linear model (identified from
experimental data) is most accurate near the operating point, and that such a
model can only approximate the system’s response. These limits computed from
the steady-state gain can be useful as an initial assessment of the potential oper-
ating region of the system.

5.9.2 IBM Lotus Domino Server with a Disturbance

In this example we study further the effects of a disturbance in the IBM Lotus
Domino Server. It also motivates the next example on feedback control. In
this example an administrative job executes on the IBM Lotus Domino Server.
The job has the effect of distorting MaxUsers so that its effective value is
MaxUsers(k) + d(k), where d(k) is the disturbance.

Figure 5.5 displays a block diagram of the system we study using the transfer
function of the IBM Lotus Domino Server that is identified in Section 2.6.1,

G(z) = Y (z)

V (z)
= 0.47

z − 0.43

TLFeBOOK

158 FIRST-ORDER SYSTEMS

In the time domain, this is the first-order difference equation

y(k + 1) = 0.43y(k) + 0.47[u(k) + d(k)]

The output y(k) is the offset value of the number of RPCs in system (RIS), and
u(k) is the offset value of MaxUsers(k). That is,

u(k) = MaxUsers(k) − MaxUsers = MaxUsers(k) − 165

y(k) = RIS(k) − RIS = RIS(k) − 135

The system is initially at its operating point. A step disturbance of magnitude
100 occurs at time k = 0. The steady-state value of the output of the system is
dssG(1), where dss is the magnitude of the disturbance step. Note that G(1) =
(0.47)(1 − 0.43) = 0.82. Hence, yss = 82, or RIS increases by 82. The steady-
state value of RIS is then

RISss = 82 + RIS = 217

The time-domain response can be computed with MATLAB and is shown in
Figure 5.14.

This increased RIS will result in longer response times, and hence is unde-
sirable. If the administrator knew the magnitude and timing of the disturbance,
MaxUsers could be adjusted to compensate for the disturbance. Of course, such
information is rarely available in practice.

0 1 2 3 4 5
0

200

400

600

R
IS

0 1 2 3 4 5
0

100

200

300

400

Time (minutes)

M
ax

U
se

rs

Fig. 5.14 Time response of the output RIS for the IBM Lotus Domino Server when a step
disturbance of magnitude 100 occurs at time k = 0.

TLFeBOOK

EXTENDED EXAMPLES 159

5.9.3 Feedback Control of the IBM Lotus Domino Server

This is a continuation of the last example, in which there is an administrative
job that introduces a step disturbance of 100 RPCs. We assume that adminis-
trators have no prior knowledge of the administrative job and so cannot adjust
MaxUsers to compensate for their presence. We propose a solution based on
feedback control, as depicted in Figure 5.15. We assume that the controller is
able to measure the current RIS. The feedback controller adjusts the value of
MaxUsers automatically to account for the extra administrative tasks (the dis-
turbance). The value K of the controller is called the controller gain.

We find the output Y (z) as a function of the disturbance input D(z) using a
Z-domain analysis.

Y (z) = 0.47

z − 0.43
[U(z) + D(z)]

U(z) = −KY(z)

(z − 0.43)Y (z) = 0.47[−KY(z) + D(z)]

(z − 0.43 + 0.47K)Y (z) = 0.47D(z)

Y (z) = 0.47

z − (0.43 − 0.47K)
D(z) (5.19)

This can be done in the time domain as well:

y(k + 1) = 0.43y(k) + 0.47[u(k) + d(k)]

u(k) = −Ky(k)

y(k + 1) = 0.43y(k) + 0.47[−Ky(k) + d(k)]

= (0.43 − 0.47K)y(k) + 0.47d(k)

Note that the pole of the closed-loop system has changed—instead of being at
0.43, it is now at (0.43 − 0.47K), and hence, depends on the value of K . In
Chapter 8 we present methods for choosing an appropriate value of K ; here, we

G(z)

D(z)

U(z) Y(z)
++

Server

−K
V(z)

Fig. 5.15 Feedback control of the IBM Lotus Domino Server with a disturbance input modeled
as increasing the effective number of users on the system.

TLFeBOOK

160 FIRST-ORDER SYSTEMS

just consider several possible values of K and see how they affect the pole
location and system response.

Consider K = 1. We see that the closed-loop pole is 0.43 − 0.47K = −0.04.
To illustrate the operation of the system, suppose that 10 = y(k) = RIS(k)−135.
Then u(k) = −10K = −10, so MaxUsers(k) = −10 + 165 = 155.

Figure 5.16 displays the step response of the K = 1 system to a disturbance
of magnitude 100. We see that the steady-state value of the output is 180. To
understand why, we proceed as follows. From Equation (5.19), the steady-state
gain of the closed-loop system is 0.47/(1 + 0.04) = 0.45. So the steady-state
value of the output to an input of magnitude 100 is (100)(0.45)+135 = 180. This
is certainly an improvement compared with the open-loop system in Figure 5.14
in that the feedback controller has a steady-state error of 180 − 135 = 45 as
opposed to 217 − 135 = 82 for the open-loop system.

While K = 1 decreases the steady-state error, it is not eliminated. To improve
matters, we try a larger gain, such as K = 3.5. This causes the system to react
more strongly to the measured error in the RIS. The closed-loop pole is predicted
to be at 0.43 − 0.47(3.5) = −1.215. Since the pole is outside the unit circle,
the closed-loop system is unstable. The predicted response, along with the input
MaxUsers, is shown in Figure 5.17. In effect, the large control gain causes an
overreaction to a change in the measured RIS. For example, at k = 1, RIS is
too large, so MaxUsers is decreased almost to zero. Then, at k = 2, RIS is too
small, so MaxUsers is increased, and so on. At k = 3, MaxUsers becomes
negative, which is meaningless in practice, so the prediction of the linear model

0 1 2 3 4 5
0

100

200

300

400

R
IS

0 1 2 3 4 5
0

100

200

300

400

Time (minutes)

M
ax

U
se

rs

Fig. 5.16 Time response of the output RIS for the IBM Lotus Domino Server with a feedback
controller. The gain K = 1, and the step magnitude 100 occurs at time k = 0.

TLFeBOOK

ANALYZING TRANSIENT RESPONSE WITH MATLAB 161

0 1 2 3 4 5
0

200

400

600

800

R
IS

0 1 2 3 4 5
2000

1000

0

1000

2000

Time (minutes)

M
ax

U
se

rs

Fig. 5.17 Time response of the output RIS for the Notes server in closed-loop with a gain
K = 5 (unstable) when a step disturbance of magnitude 100 occurs at time k = 0.

after k = 3 cannot be used. However, the instability that is predicted can be
observed in the physical system.

It should be noted that the behavior of the IBM Lotus Domino Server has not
changed with feedback control. The IBM Lotus Domino Server remains a stable
first-order system with a pole at 0.43. What has been changed is the behavior of
the closed-loop system with the transfer function Y (z)/D(z).

This example underscores the need to design feedback loops in a systematic
way. In Chapters 8 to 11 we address this topic in detail.

*5.10 ANALYZING TRANSIENT RESPONSE WITH MATLAB

Using the Control Systems Toolbox, transfer functions can be entered into MAT-
LAB as described in Section *3.6. Once the transfer function has been entered,
the impulse and step response can be computed directly using the commands
step and impulse. For example, the IBM Lotus Domino Server considered in
this chapter with transfer function G(z) = 0.47/(z − 0.43) and a sampling time
of 60 seconds is entered as

notes = tf(0.47,[1 -0.43],60)

Transfer function:
0.47

z - 0.43

TLFeBOOK

162 FIRST-ORDER SYSTEMS

Sampling time: 60

The impulse and step responses of this system can be found using

impulse(notes)
step(notes)

Note that MATLAB plots the output automatically. To learn how to save the output
values in a vector, use help impulse or help step.

Both the impulse and step commands assume a unit magnitude input
(impulse or step). To consider an input of a different magnitude, the system can
be multiplied by the magnitude of the input (because of linearity, the output to
M*system with a unit input is the same as the output to system with an input
of magnitude M). Thus, we use

M = 40
step(M*notes)

to get the response shown in Figure 5.8.
To find the output of a system to a different input, the function lsim can be

used to simulate any linear system. In addition to the transfer function, a vector
of input signals and a time vector are needed. The time vector must have the
same sampling time as the system, and the input vector must have a one-to-
one correspondence with the time vector. To simulate the output of the Notes
example to a ramp input for 10 sample times (600 seconds), we use the following
commands:

time = 0:60:600;
ramp = 0:1:10;
lsim(notes,ramp,time)

5.11 EXERCISES

1. For the following first-order system, (i) find their poles, (ii) determine if
they are stable, (iii) compute the steady-state gains for the stable systems,
and (iv) plot the step response curve.

(a)
4

z − 1.5

(b)
12

z − 0.05

(c)
−1

z + 0.2

(d)
3

z − 0.36

TLFeBOOK

EXERCISES 163

2. Compute the constants c1, c2, c3, d1, d2, and φ in Section 5.6.2. Note that
c2 and c3 have conjugate complex values.

3. Consider the warm-up period of the IBM Lotus Domino Server. The initial
condition is RIS(0) = 0, and the input is MaxUsers = MaxUsers = 165.
Use the linear model of Section 2.6.1, and note that the initial condition
is y(0) = RIS(0) − RIS = −135. Find and plot RIS(k). What is the final
value? How long does the system take to reach its final value?

4. Repeat Exercise 3 for the Apache HTTP Server. The initial condition is
CPU(0) = 0, and the input is KeepAlive = KA = 11. Use the linear
model of Section 2.6.2. Find and plot CPU(k). What is the final value?
How long does the system take to reach its final value?

5. Follow the examples in Section 5.9.3 to compute the closed-loop pole and
plot the time response of RIS for the IBM Lotus Domino Server in closed-
loop for K = 2, K = 3, and K = 4.

6. Consider the models of M/M/1/K for different operating regions as detai-
led in Section 2.6.3.

(a) Find the transfer function and poles for each. Find their steady-state
gains and settling times.

(b) Construct feedback loops as in Section 5.9.3 for the three systems in
part (a). Find the transfer functions, poles, steady-state gains, and settling
times of closed-loop systems.

7. Determine a value for controller gain K in Section 5.9.3 such that settling
time is 10. (Hint: Express the closed-loop pole in terms of K and solve for
ks .) What is the steady value of the output in response to a disturbance input
of 100? Repeat this for a settling time of 5.

8. Figure 5.18 contains an open-loop system in which the Apache HTTP Server
is subjected to a disturbance that can be modeled as a change in KeepAlive.
Suppose the disturbance can be modeled as an impulse of magnitude 5 at time
k = 0. Find the response CPU(k).

9. Considering again Figure 5.18, suppose the disturbance can be modeled as a
step of magnitude 10. Find the response CPU(k).

G(z)

D(z)

U(z) Y(z)++

Server

KeepAlive

Disturbance

CPUEffective
KeepAlive

Fig. 5.18 Apache HTTP Server with a disturbance input that is modeled as a change in
KeepAlive as seen by the server.

TLFeBOOK

164 FIRST-ORDER SYSTEMS

10. Consider again Figure 5.18, and suppose that the disturbance can be modeled
such that d(k) = 10 for k ∈ [0, 2), d(k) = −4 for k ∈ [2, 5), and d(k) = 2
for k ∈ [5, ∞).

(a) Use a time-domain analysis to find CPU(k).
(b) Find D(z) and use a Z-domain analysis to find CPU(k).
(c) For part (b), how can the superposition property be used?

(Use the operating point specified in Section 5.9.1.)

TLFeBOOK

6
Higher-Order Systems

In this chapter we extend the analysis in Chapter 5 to systems with two or more
poles and one or more zeros. Such systems are commonly referred to as higher-
order systems . In computing systems, higher-order systems often result from
having many first-order components connected in series.

The presence of multiple poles and zeros makes it more difficult to estimate
settling times and maximum overshoot. Thus, we develop simple approximations
for both. For example, the approximation for settling time is based on a dominant
pole analysis that uses the results for first-order systems. Another complication
in higher-order systems is that poles may be complex, a situation that indicates
a oscillatory response to common inputs such as the impulse and step. Although
we address complex poles, we first discuss systems with real poles and zeros so
that readers less interested in mathematical details need only skim the material
on complex poles.

6.1 MOTIVATION AND DEFINITIONS

The order of the system reflects the extent to which previous inputs and outputs
affect the current output. For example, the current output of a first-order system
is determined by its input and output at the last sample time. In contrast, the
current output of a second-order system is affected by its previous two inputs

Feedback Control of Computing Systems, by Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury
ISBN 0-471-26637-X Copyright c© 2004 John Wiley & Sons, Inc.

165

TLFeBOOK

166 HIGHER-ORDER SYSTEMS

and outputs. More formally, a system is of order n if

y(k) = a1y(k − 1) + · · · + any(k − n) + b1u(k − 1) + · · · + bmu(k − m)

(6.1)
where 1 ≤ m ≤ n. That is, y(k) depends on the previous n outputs and the
previous m inputs. These relationships are depicted in Figure 6.1, in which the
solid circles indicate variables and there is a line between y(k) and each variable
that affects y(k). In some systems, it is possible that the current output can be
affected by the current input, in which case we permit m = 0. However, m < 0
violates the principle of casuality in that the current output is affected by a future
input.

The transfer function of a higher-order system can be obtained in a straight-
forward way. First, we shift forward n time units, which yields

y(n + k) = a1y(n + k − 1) + · · · + any(k)

+ b1u(n + k − 1) + · · · + bm(n + k − m)

Taking the Z-transforms of both sides and assuming that all initial conditions are
0, we have

znY (z) = a1z
n−1Y (z) + · · · + anY (z)

+ b1z
n−1U(z) + · · · + bmzn−mU(z)

Y (z)(zn − a1z
n−1 − · · · − an) = U(z)(b1z

n−1 + · · · + bmzn−m)

G(z) =
(
b1z

m−1 + · · · + bm

)
zn−m

zn − a1zn−1 − · · · − an

(6.2)

where G(z) = Y (z)/U(z) is the transfer function of the system.

y(k)

u(k-1)u(k-2)u(k-m)

y(k-1)y(k-2)y(k-m)y(k-m-1)y(k-n+1)y(k-n)

Fig. 6.1 Relationship between the current output and previous inputs and outputs in a model
of order n. y(k) depends on the previous outputs y(k − 1), . . . , y(k − n) and the previous inputs
u(k − 1), . . . , u(k − m).

TLFeBOOK

MOTIVATION AND DEFINITIONS 167

Higher-order systems arise frequently as a result of combining lower-order
systems, as illustrated in the following example.

Example 6.1: IBM Lotus Domino Server with sensor delay The transfer func-
tions for the IBM Lotus Domino Server N(z) and its sensor S(z) are

N(z) = Q(z)

U(z)
= 0.47

z − 0.43

S(z) = M(z)

Q(z)
= 0.17z − 0.11

z − 0.64

[N(z) is derived in Example 3.7 and S(z) in Section 3.5.2.] Figure 6.2 displays
a system in which the output of the IBM Lotus Domino Server is input into the
sensor as a result of the way in which measurements are collected. Thus, the
transfer function for this system is N(z)S(z), which is

M(z)

U(z)
= 0.08z − 0.052

z2 − 1.07z + 0.28
(6.3)

This is a second-order system. Equation (6.3) can be rewritten as a difference
equation in the same form as Equation (6.1):

m(k + 2) = 1.07m(k + 1) − 0.28m(k) + 0.08u(k + 1) − 0.052u(k)

Here n = 2 = m.

We can rewrite Equation (6.2) by factoring the numerator and denominator:

G(z) = b(z − q1) · · · (z − qm)zn−m

(z − p1) · · · (z − pn)
(6.4)

For example, Equation (6.3) can be rewritten as

M(z)

U(z)
= 0.08(z − 0.65)

(z − 0.43)(z − 0.64)

Here, b = 0.08, q1 = 0.65, p1 = 0.43, and p2 = 0.64. Put in this form, there is
much we can already say about higher-order systems. From Chapter 3 we know
that the qi are the zeros of G(z) and the pi are its poles. Note that because there
are multiple poles, we use the notation pi instead of the a used in Chapter 5.

U(z)
Server

0.47
z − 0.43 z - 0.64

0.17z − 0.11

Sensor

Q(z) M(z)

Fig. 6.2 Block diagram of the IBM Lotus Domino Server whose measured output is provided
by a sensor.

TLFeBOOK

REAL POLES 169

Consider the following second-order system

G(z) = b

(z − p1)(z − p2)
(6.5)

where b is such that G(1) = 1. If p2 is the dominant pole, we have the first-order
approximation

G′(z) = G(1)(1 − p2)

z − p2
(6.6)

= b

(1 − p1)(z − p2)
(6.7)

Clearly, G′(1) = G(1) = 1. From Equation (5.4), the initial condition response
of G′(z) has settling time ks ≈ −4/ log |p2|.

Figure 6.3 plots the response to initial conditions for several first- and second-
order systems. For the first-order systems, y(0) = 1, and for the second-order

−2

−1

0

1

2
 p=0.4

−2

−1

0

1

2
 p=0.8

−2

−1

0

1

2

 p
1
=0.2, p

2
=0.4

−2

−1

0

1

2

 p
1
=0.2, p

2
=0.8

0 5 10 15 20
−2

−1

0

1

2

 y
(k

)

 k

 p
1
=−0.2, p

2
=0.4

0 5 10 15 20
−2

−1

0

1

2

 k

 p
1
=−0.2, p

2
=0.8

Fig. 6.3 Initial condition response of first- and second-order systems whose dominant pole is
positive. Initial conditions are set to 1. Note that systems have similar settling times if they have
the same dominant pole.

TLFeBOOK

170 HIGHER-ORDER SYSTEMS

systems, y(0) = 1 = y(1) with |p2| > |p1|. We see that settling time is largely
determined by the dominant pole p2. Specifically, in the left column of the figure,
where p2 = 0.4, the systems have similar settling times; systems in the right
column of the figure, where p2 = 0.8, have similar settling times. However, the
systems in the left column have a much shorter settling time than those in the
right column because the dominant pole of the former is smaller than the latter.

Figure 6.4 displays the effect of having the dominant pole be negative. As
discussed in Chapter 5, there is an oscillating response. While the magnitude of
the oscillations and the settling times of the systems depend on the particular
poles, the systems whose dominant pole is the same tend to have a similar
settling time.

In the sequel we set initial conditions to 0, so that y(0) = 0 in the first-order
systems and y(0) = 0 = y(1) in the second-order systems. Doing so does not
limit our analysis since the effect of initial conditions can be incorporated by
applying the superposition property.

−2

−1

0

1

2
 p=−0.4

−2

−1

0

1

2
 p=−0.8

−2

−1

0

1

2

 p
1
=0.2, p

2
=−0.4

−2

−1

0

1

2

 p
1
=0.2, p

2
=−0.8

0 5 10 15 20
−2

−1

0

1

2

 y
(k

)

 k

 p
1
=−0.2, p

2
=−0.4

0 5 10 15 20
−2

−1

0

1

2

 k

 p
1
=−0.2, p

2
=−0.8

Fig. 6.4 Initial condition response of first- and second-order systems whose dominant pole is
negative. Initial conditions are set to 1. Note that systems have similar settling times if they have
the same dominant pole.

TLFeBOOK

REAL POLES 171

6.2.2 Impulse Response

The impulse input is defined as u(0) = 1 and u(k) = 0 for k �= 0. In com-
puting systems, such inputs arise if there is a workload spike. Once again, we
use G(z) as defined in Equation (6.5) and the approximation G′(z) as specified
in Equation (6.7). Applying Equation (5.6), the impulse response of G′(z) has
settling time ks ≈ −4/ log |p′|. For example, if |p′| = 0.4, then ks ≈ 4. And if
|p′| = 0.8, then ks ≈ 18.

Figure 6.5 plots the impulse response for the same first- and second-order
systems as in Figure 6.3. As with the response to initial conditions, the dominant
pole largely determines settling time. For example, the settling time of systems
in the first column is between 3 and 6, and the settling time of systems in
the second column is between 15 and 20. Both results are consistent with the
estimates constructed above.

Figure 6.6 displays the impulse response of systems whose dominant pole is
negative. As with initial condition response, substantial oscillations are apparent.

−2

0

2

 p=0.4

−2

0

2

 p=0.8

−2

0

2

 p
1
=0.2, p

2
=0.4

−2

0

2

 p
1
=0.2, p

2
=0.8

0 5 10 15 20

−2

0

2

 y
(k

)

 k

 p
1
=−0.2, p

2
=0.4

0 5 10 15 20

−2

0

2

 k

 p
1
=−0.2, p

2
=0.8

Fig. 6.5 Impulse response of first- and second-order systems whose dominant pole is positive.
Note that systems tend to have similar settling times if their dominant pole is the same.

TLFeBOOK

172 HIGHER-ORDER SYSTEMS

−2

0

2

 p=−0.4

−2

0

2

 p=−0.8

−2

0

2

 p
1
=0.2, p

2
=−0.4

−2

0

2

 p
1
=0.2, p

2
=−0.8

0 5 10 15 20

−2

0

2

 y
(k

)

 k

 p
1
=−0.2, p

2
=−0.4

0 5 10 15 20

−2

0

2

 k

 p
1
=−0.2, p

2
=−0.8

Fig. 6.6 Impulse response of first- and second-order systems whose dominant pole is negative.
Note that systems tend to have similar settling times if their dominant poles are the same.

Although the magnitude of these oscillations depends on the specifics of the
system, settling times are determined primarily by the dominant pole.

Example 6.2: Impulse response in the IBM Lotus Domino Server with a filter
Consider the impulse response of the IBM Lotus Domino Server together with a
moving-average filter, as shown in Figure 6.7. This is a second-order system. The
time-domain relationship between the control input MaxUsers and the output
RIS in the IBM Lotus Domino Server is y(k + 1) = 0.43y(k) + 0.47u(k) and its

U(z)
Server

0.47
z − 0.43 z − 0.95

 0.05

Filter

Y(z) W(z)

Fig. 6.7 Block diagram of the IBM Lotus Domino Server with a filter.

TLFeBOOK

REAL POLES 173

transfer function is

G(z) = Y (z)

U(z)
= 0.47

z − 0.43

The model is constructed around the operating point MaxUsers = 375, RIS =
325. Thus, the values of y and u in the model are the offsets between the actual
values of MaxUsers and RIS and their operating points:

y(k) = RIS(k) − RIS

u(k) = MaxUsers(k) − MaxUsers

We add a moving-average filter with the time-domain input–output relation-
ship w(k+1) = 0.95w(k)+0.05y(k), where w(k) is the filter (smoothed) output.
This filter has the transfer function

H(z) = W(z)

Y (z)
= 0.05

z − 0.95

Note that the steady-state gain of H(z) is 1 [i.e., H(1) = 1].
Placing the two systems above in series yields a system F(z) that smoothes

the output of the IBM Lotus Domino Server. The transfer function from U(z) to
W(z) is

F(z) = W(z)

U(z)
= G(z)H(z) = 0.024

(z − 0.43)(z − 0.95)

F (z) is a second-order system with two real poles. Its poles lie within the unit
circle, so F(z) is stable. Also, since H(1) = 1, the steady-state value of F(z) is
the same as G(z).

Now consider a situation in which several short-running RPCs are placed
into the queue for the IBM Lotus Domino Server. The resulting output can
be viewed as the response to an impulse. Figure 6.8 plots this response for an

0 10 20
320

325

330

335

340

345

 R
IS

Time (minutes)

0 10 20
320

325

330

335

340

345

 R
IS

Time (minutes)
(a) Without a filter (b) With a filter

Fig. 6.8 Response of the IBM Lotus Domino Server to an impulse of magnitude 40. Including
a filter smoothes the response, but it also increases the settling time.

TLFeBOOK

174 HIGHER-ORDER SYSTEMS

impulse of magnitude 40 for two cases: G(z), the system without a filter, and
F(z), the system with a filter. We see that the magnitude of the response of the
system without a filter, Figure 6.8(a), is much larger than the system with a filter,
Figure 6.8(b). On the other hand, the filter increases settling times.

6.2.3 Step Response

The step input is defined as u(k) = 1 for k ≥ 0. One way in which step inputs
arise in computing systems is if there is a change in configuration parameters,
such as changing MaxClients in the Apache HTTP Server.

We use G(z) and G′(z) as defined in Equations (6.5) and (6.7), respectively.
Applying Equation (5.12), we know that the step response of G′(z) has a settling
time of ks ≈ −4/ log |p′|.

Figure 6.9 plots the step response of the same first- and second-order systems
as in Figure 6.3. Once again, the dominant pole largely determines settling time.

−2

0

2

 p=0.4

−2

0

2

 p=0.8

−2

0

2

 p
1
=0.2, p

2
=0.4

−2

0

2

 p
1
=0.2, p

2
=0.8

0 5 10 15 20

−2

0

2

 y
(k

)

 k

 p
1
=−0.2, p

2
=0.4

0 5 10 15 20

−2

0

2

 k

 p
1
=−0.2, p

2
=0.8

Fig. 6.9 Step response of first- and second-order systems whose dominant pole is positive.
The dashed line indicates the steady-state value of the output. Note that systems tend to have
similar settling times if their dominant poles are the same. Also, there is no overshoot.

TLFeBOOK

REAL POLES 175

−2

0

2

 p=−0.4

−2

0

2

 p=−0.8

−2

0

2

 p
1
=0.2, p

2
=−0.4

−2

0

2

 p
1
=0.2, p

2
=−0.8

0 5 10 15 20

−2

0

2

 y
(k

)

 k

 p
1
=−0.2, p

2
=−0.4

0 5 10 15 20

−2

0

2

 k

 p
1
=−0.2, p

2
=−0.8

Fig. 6.10 Step response of first- and second-order systems whose dominant pole is negative.
The dashed line indicates the steady-state value of the output. Note that systems tend similar
settling times if their dominant pole is the same. The negative pole introduces overshoot.

Figure 6.10 displays the step response in systems whose dominant pole is
negative. Note that settling times are comparable to when the dominant pole is
positive.

Having a negative pole causes the system to overshoot its steady-state value.
This is quantified by MP, the maximum percent by which a step response exceeds
its steady-state value. From Equation (5.13), we know that for a first-order system
with a pole p < 0, MP = −p. This is a rough approximation to the simula-
tion results in Figure 6.10. However, we do observe that systems with a larger
(magnitude) dominant pole generally have greater overshoot. We see that the
second-order systems differ from this estimate of MP as follows. If the second
pole is positive, the actual overshoot is less than that for the first order. If the
second pole is negative, the overshoot is larger.

Example 6.3: Step response in the IBM Lotus Domino Server with a filter
Consider again the IBM Lotus Domino Server in Example 6.2. Now, instead of

TLFeBOOK

176 HIGHER-ORDER SYSTEMS

0 10 20 30
320

330

340

350

360

 R
IS

Time (minutes)

0 10 20 30
320

330

340

350

360

 R
IS

Time (minutes)
(a) Without a filter (b) With a filter

Fig. 6.11 Response of the IBM Lotus Domino Server to a step of magnitude 40. Including a
filter smoothes the response, but it also increases the settling time.

several short-running RPCs, there are a number of long-running RPCs that are
placed into the queue of the IBM Lotus Domino Server. This can be viewed as
a step. Consider a step of size 40, the same magnitude as the impulse used in
Example 6.2. We assume that the system is initially at its operating point, so that
all initial conditions are 0.

In Figure 6.8 we plot the step response of the system without a filter and the
system with a filter. We see that the step response of the system without a filter
rises rapidly to its steady-state value. The transient response of the system with
a filter is much more gradual. Indeed, the systems in Figure 6.11(a) and (b) have
the same steady-state value [although the full duration of the transient is not
shown in Figure 6.11(b)].

6.2.4 Other Signals

There is a wide range of input signals of interest in computing systems. The
response of higher-order systems to these signals can be studied analytically or
using simulation. Here, we consider briefly two other signals of interest: ramps
and sine waves. Ramps typically arise as a result of human behavior, especially
staggered starts to a workday. Sine waves can be used to study the effects of
cyclic patterns in user traffic, such as due to time of day, and they also provide
a way to study the effects of variability.

Figure 6.12 plots the ramp response of first- and second-order systems in
which the dominant pole is negative. The input signal is defined as u(k) = k for
k ≥ 0. The solid line indicates the output signal to which the system converges.
We see that as with a step response, the presence of a negative pole causes the
system to overshoot.

Next, we examine the response to the sinusoidal input u(k) = sin(k/1.5).
Figure 6.13 considers the case in which the dominant pole is positive. Once
again we see that the dominant pole largely determines the response. Figure 6.14
studies the case in which the dominant pole is negative. We see a combination

TLFeBOOK

REAL POLES 177

0

5

10
 p=−0.4

0

5

10
 p=−0.8

0

5

10

 p
1
=0.2, p

2
=−0.4

0

5

10

 p
1
=0.2, p

2
=−0.8

0 2 4 6 8 10
0

5

10

 y
(k

)

 k

 p
1
=−0.2, p

2
=−0.4

0 2 4 6 8 10
0

5

10

 k

 p
1
=−0.2, p

2
=−0.8

Fig. 6.12 Ramp response of first- and second-order systems whose dominant pole is negative.
Note that systems tend to have similar settling times if their dominant poles are the same. The
negative pole introduces overshoot.

of two sources of oscillation—the sinusoidal input and the negative pole. Thus,
it is clear that both the magnitude and sign of the dominant pole must be
considered in order to predict the response to a sinusoidal input.

6.2.5 Effect of Zeros

The effect of a zero q on a pole p depends on the difference |p−q|. To see this,
consider the second-order system

G(z) = b(z − q1)

(z − p1)(z − p2)
(6.8)

which has the poles p1, p2 and the zero q1. If q1 = p1, these two terms cancel
and we have the first-order system G(z) = b/(z − p2). This reduction in the
order of a system is called pole–zero cancellation.

Figure 6.15 studies the effect of zeros on the step response of several second-
order systems that have the same steady-state gain (10). There are six plots.

TLFeBOOK

178 HIGHER-ORDER SYSTEMS

−2

−1

0

1

2
 p=0.4

−2

−1

0

1

2
 p=0.8

−2

−1

0

1

2

 p
1
=0.2, p

2
=0.4

−2

−1

0

1

2

 p
1
=0.2, p

2
=0.8

0 5 10 15 20
−2

−1

0

1

2

 y
(k

)

 k

 p
1
=−0.2, p

2
=0.4

0 5 10 15 20
−2

−1

0

1

2

 k

 p
1
=−0.2, p

2
=0.8

Fig. 6.13 Sinusoid response of first- and second-order systems whose dominant pole is
positive. u(k) = sin(k/1.5). Note that systems have a similar settling time if their dominant pole
is the same.

Figure 6.15(a) and (b) display the step response of first-order systems with a
pole at 0.5 and 0.8, respectively. Figure 6.15(c) through (f) do the same for
second-order systems, three of which have a zero. We see that Figure 6.15(c),
the second-order system without a zero, has a transient response very much like
Figure 6.15(b), the first-order system with p1 = 0.8. This is consistent with dom-
inant pole analysis. Further, observe that the transient response of Figure 6.15(d)
is very close to that of Figure 6.15(c). This is because the zero in Figure 6.15(d)
is quite distant from its dominant pole. On the other hand, Figure 6.15(e), a
second-order system with q1 = 0.8, is almost identical to Figure 6.15(a). This is
a result of pole–zero cancellation.

One final comment on Figure 6.15. Observe that Figure 6.15(f) has a zero that
is outside the unit circle. The step response depicted in the figure is characteristic
of such systems—initially, the system moves in the direction opposite to the
steady-state value. Systems with a zero outside the unit circle are called non-
minimum-phase systems . In general, non-minimum-phase systems are undesirable
since initially, they respond in the opposite way from that desired.

TLFeBOOK

COMPLEX POLES 179

−2

−1

0

1

2
 p=−0.4

−2

−1

0

1

2
 p=−0.8

−2

−1

0

1

2

 p
1
=0.2, p

2
=−0.4

−2

−1

0

1

2

 p
1
=0.2, p

2
=−0.8

0 5 10 15 20
−2

−1

0

1

2

 y
(k

)

 k

 p
1
=−0.2, p

2
=−0.4

0 5 10 15 20
−2

−1

0

1

2

 k

 p
1
=−0.2, p

2
=−0.8

Fig. 6.14 Sinusoid response of first- and second-order systems whose dominant pole is
negative. Note that systems tend to have similar settling times if their dominant poles are the
same. The negative pole introduces overshoot.

6.3 COMPLEX POLES

In this section we study the effect of complex poles in high-order systems. The
intuition is that complex poles result in an oscillatory response to both impulse
and step inputs. However, going beyond this intuition involves some mathemati-
cal details. As such, readers may prefer to skim this section on their first reading
of the chapter, and study it in more detail later.

6.3.1 Second-Order System

Our analysis focuses on second-order systems. The time-domain equation for a
second-order system is

y(k) = a1y(k − 1) + a2y(k − 2) + b1u(k − 1) + b2u(k − 2) (6.9)

The equation says that the current value of the output y(k) depends on the value
of the output at two previous instances y(k − 1) and y(k − 2), and the value of

TLFeBOOK

180 HIGHER-ORDER SYSTEMS

0 10 20
−2

0

2

4

6

8

10

 y

 k

0 10

(a) p1 = 0.5 (b) p1 = 0.8

(c) p1, p2 = 0.5, 0.8 (c) p1, p2, q1 = 0.5, 0.8, 0.2

(e) p1, p2, q1 = 0.5, 0.8, 0.8 (f) p1, p2, q1 = 0.5, 0.8, 2

20
−2

0

2

4

6

8

10

 y

 k

0 10 20
−2

0

2

4

6

8

10

 y

 k

0 10 20
−2

0

2

4

6

8

10

 y

 k

0 10 20
−2

0

2

4

6

8

10

 y

 k

0 10 20
−2

0

2

4

6

8

10

 y

 k

Fig. 6.15 Effect of zeros on step response for systems with a steady-state gain of 10. pi are
the poles, and q1 is the zero. Pole–zero cancelation in Figure 6.15(e) causes it to behave like
Figure 6.15(a) rather than Figure 6.15(b). Having q1 = 2 > 1 in Figure 6.15(f) causes the system
initially to move in the opposite direction of the steady-state value.

the input at two previous instance u(k − 1) and u(k − 2). The constants a1, a2,
b1, and b2 define the system model.

The transfer function of the second-order system in Equation (6.9) is

G(z) = Y (z)

U(z)
= b1z + b2

z2 − a1z − a2
(6.10)

TLFeBOOK

COMPLEX POLES 181

The zero of this system is the value of z for which the numerator is zero. The
poles are the roots of the quadratic in the denominator. There are two cases for
the poles:

1. If a2
1 ≥ −4a2, the second-order system has two real poles:

{p1, p2} =
a1 ±

√
a2

1 + 4a2

2

In this case, we can rewrite Equation (6.10) as

G(z) = b1z + b2

z2 − a1z − a2
= b1z + b2

(z − p1)(z − p2)

In particular, if a2
1 = −4a2, the system has two identical real poles at a1/2.

2. If a2
1 < −4a2, the system has a pair of complex poles

{p1, p2} = a1

2
± j

√
−4a2 − a2

1

2
= re±jθ

where r = √−a2 and θ = cos−1(a1/2
√−a2). (Note that a2 < 0 as

a2
1 < −4a2.) In this case, we typically rewrite Equation (6.10) as

G(z) = b1z + b2

z2 − a1z − a2
= b1z + b2

z2 − 2r cos θz + r2

6.3.2 Impulse Response

We determine the time-domain impulse response by computing the inverse of
the Z-transform of the output of G(z) when the input is an impulse. If {u(k)} is
an impulse, then U(z) = 1. So if G(z) has two real poles p1 and p2,

Y (z) = G(z)U(z) = b1z + b2

(z − p1)(z − p2)
× 1

= c1

z − p1
+ c2

z − p2

= c1
z

z − p1
z−1 + c2

z

z − p2
z−1

where

c1 = b1p1 + b2

p1 − p2
and c2 = −b1p2 + b2

p1 − p2

Using Table 3.1, we see that the inverse Z-transform of this system is

y(k) = c1p
k−1
1 + c2p

k−1
2 (6.11)

For a stable system (i.e., |pi | < 1), the impulse response is a linear combina-
tion of decaying exponentials. In this form, it is apparent why this system would

TLFeBOOK

182 HIGHER-ORDER SYSTEMS

be unstable if either |pi | > 1, since we would have one term that grows without
bound. It is also clear why the dominant pole approximation works well since if
|p2| > |p1|, then |p2|k � |p1|k for moderate to large k.

For second-order systems with complex poles at re±jθ , we have

Y (z) = b1z + b2

z2 − 2r cos θz + r2

= b1z

z2 − (2r cos θ)z + r2 + b2

z2 − (2r cos θ)z + r2

= b1

r sin θ

r sin θz

z2 − (2r cos θ)z + r2
+ b2

r sin θ

r sin θz

z2 − (2r cos θ)z + r2
z−1

This yields the time-domain solution

y(k) = rk−1

sin θ

{
b1 sin kθ + b2

r
sin[(k − 1)θ]

}
(6.12)

Thus, the response is a sum of sinusoids of frequency θ modulated by an expo-
nential. If |r| < 1 (i.e., the system is stable), the response decays exponentially
with time.

Consider the impulse response of a second-order system with poles p1, p2
such that

y(k) = (p1 + p2)y(k − 1) − p1p2y(k − 2) + bu(k − 2)

or

Y (z) = b

(z − p1)(z − p2)
U(z)

Figure 6.16 shows the impulse responses of several such systems with initial con-
ditions set to zero. The systems in the top row have positive real poles, whereas
those in the bottom row have complex poles. None of the systems has a zero.

We see that the presence of complex poles leads to oscillatory system response.
Note that all of the complex poles in Figure 6.16 have the same magnitude, which
is

√
0.82 + 0.42 = 0.89 (although the angles are different). Since the magnitude

of these complex poles (0.89) is larger than the dominant real poles in the top
row, we see that the settling time for these systems is longer.

The settling time of the complex poles is determined by the decaying expo-
nential rk−1 of Equation (6.12). Observe that the sum of sinusoids term is at most
(b1 + b2/r), hence the maximum value of |y(k)| is c = (1/ sin θ)(b1 + b2/r).
Further, defining the settling time as the output being within 2% of its steady-state
value, we have

ks ≈ −4

log(r)
(6.13)

For the examples with complex poles, we have r = 0.89, which gives

ks ≈ −4

log(0.89)
≈ 35

TLFeBOOK

COMPLEX POLES 183

0 10 20
−2

−1

0

1

2

 p
1
=0.2, p

2
=0.4

 y
(k

)

0 10 20
−2

−1

0

1

2

 p
1
=0.2, p

2
=0.8

0 10 20
−2

−1

0

1

2

 p
1
=0.4, p

2
=0.8

0 10 20
−2

−1

0

1

2

 p
1,2

=0.8 ± 0.4 j

 y
(k

)

 k

0 10 20
−2

−1

0

1

2

 p
1,2

=0.4 ± 0.8 j

 k

0 10 20
−2

−1

0

1

2

 p
1,2

=−0.4 ± 0.8 j

 k

Fig. 6.16 Impulse responses of second-order systems with different poles (b = 1).

6.3.3 Step Response

For second-order systems with complex poles, we compute the step response as
follows:

Y (z) = b1z + b2

z2 − 2r cos θz + r2

z

z − 1

= c1

z − 1
+ c2z + c3

z2 − 2r cos θz + r2

= c1

z − 1
+ c2

r sin θ

r sin θz

z2 − 2r cos θz + r2

+ c3

r sin θ

r sin θz

z2 − 2r cos θz + r2
z−1

where we solve for c1, c2, and c3 as

c1 = b1 + b2

1 − 2r cos θ + r2
, c2 = b1 − b1 + b2

1 − 2r cos θ + r2
,

c3 = r2 b1 + b2

1 − 2r cos θ + r2

TLFeBOOK

184 HIGHER-ORDER SYSTEMS

This form can now be inverted to give the time-domain response as

y(k) = c1 + rk−1

sin θ

{
c2 sin kθ + c3

r
sin[(k − 1)θ]

}
(6.14)

In Equation 6.14 there is a constant term c1 that indicates the steady-state value
and an exponentially decaying term that determines the transient behavior.

The settling time of a system with complex poles can be approximated using
Equation (5.4) in a manner similar to that used for real poles by using r , the
absolute value of the pole

ks ≈ −4

log(r)
(6.15)

In addition to approximating settling times, we can also approximate the maxi-
mum overshoot. Consider a second-order system with complex poles p1 = c+dj

and p2 = c − dj . The characteristic polynomial can be written as

(z − p1)(z − p2) = z2 − 2r cos θz + r2

where r = √
c2 + d2 and θ = tan−1(d/c). Let MP be the maximum overshoot

of a system with this characteristic polynomial. From [38] we know that if the
system is stable (i.e., |r| < 1) and 0 ≤ θ ≤ π , then MP ≈ rπ/θ . For −π ≤ θ < 0,
we use MP ≈ r−π/θ . This leads to the general form

MP ≈ rπ/|θ | for − π ≤ θ ≤ π (6.16)

To gain some intuition into this approximation, suppose that θ = 0 and hence
p1, p2 are positive and real. This situation can be interpreted as having two first-
order systems in series, both of which have a positive pole. Here, MP = rπ/0 =
r∞ = 0. That is, there is no overshoot, which is what we expect if there is a
positive real pole in a first-order system. Now suppose that θ = π . Here, p1, p2
are negative and real, which can be interpreted as having two first-order systems
in series, both of which have a negative real pole. Let r = max{|p1|, |p2|}. Note
that MP = r1 = r , which is the maximum overshoot of a first-order system with
a negative pole at r .

We use Equation (6.16) to predict the maximum overshoot of several systems
whose step response is in Figure 6.17. Consider the systems with the complex
poles {p1, p2} = 0.8 ± 0.4j :

r =
√

0.82 + 0.42 = 0.89

θ = tan−1
(

0.4

0.8

)
= 0.46

so that the maximum overshoot is

MP = 0.89π/0.46 = 45%

TLFeBOOK

SUMMARY 185

0 10 20
−2

0

2

4

6

8

10

 p
1
=0.2, p

2
=0.4

 y
(k

)

0 10 20
−2

0

2

4

6

8

10

 p
1
=0.2, p

2
=0.8

0 10 20
−2

0

2

4

6

8

10

 p
1
=0.4, p

2
=0.8

0 10 20
−2

0

2

4

6

8

10

 p
1,2

=0.8 ± 0.4 j

 y
(k

)

 k

0 10 20
−2

0

2

4

6

8

10

 p
1,2

=0.4 ± 0.8 j

 k

0 10 20
−2

0

2

4

6

8

10

 p
1,2

=−0.4 ± 0.8 j

 k

Fig. 6.17 Step responses of second-order systems with real and complex poles. All of the
systems with complex poles have oscillations and overshoot. The second-order systems
evidence different mp because their poles have different angles.

From Figure 6.17, the steady-state value yss = 5. So the peak value ymax is

yss(1 + MP) = 5 × 1.45 = 7.25

which is close to the simulation result of ≈ 7.8 in Figure 6.17.
We note that the approximation in Equation (6.16) works well for second-

order systems without zeros. It remains a good approximation for higher-order
systems if the largest pole is a dominant pole and if the zeros do not contribute
much to transient response.

6.4 SUMMARY

1. Higher-order systems have transfer functions with multiple poles and may
have multiple zeros as well. Further, some of the poles and zeros may be

TLFeBOOK

186 HIGHER-ORDER SYSTEMS

complex. Such systems can arise when multiple elements of lower order are
connected in series or when a complex model is used for a single element.

2. The following are the same for first- and higher-order systems:

(a) A stable system has all of its poles inside the unit circle (i.e., |pi | < 1).
(b) G(1) is the steady-state gain of a stable system with the transfer func-

tion G(z).

3. The settling time of a higher-order system can be approximated using dom-
inant pole analysis by computing the settling time of a first-order system
whose pole is the same as the dominant pole of the higher-order system.

4. The maximum overshoot MP of a second-order system is approximately
rπ/|θ | for a complex pole with magnitude r and angle ±θ .

5. The presence of complex poles causes oscillations in the transient response
and complicates the estimation of overshoot.

6. A system with a zero outside the unit circle is called non-minimum-phase.
Its step response is initially in the opposite direction of the steady-state
output.

6.5 EXTENDED EXAMPLES

In this section we analyze steady-state and transient behavior of several comput-
ing systems. Considered first is the Apache HTTP Server with a moving-average
filter in which we demonstrate the trade-off between smoothing variable signals
(e.g., due to stochastics) and speed of response. The second example extends the
first by adding a simple feedback controller. The third example is the IBM Lotus
Domino Server with a controller that regulates the number of RPCs in the system
(RIS). In the last example, we study the effect of stochastics in an M/M/1/K

queue with a moving-average filter and a controller.

6.5.1 Apache HTTP Server with a Filter

The stochastic nature of computing systems often necessitates that signals be
smoothed to reduce noise. Consider the Apache HTTP Server. In practice, work-
load stochastics make it difficult to discern the effect of control inputs such as
KeepAlive on measured outputs such as CPU. Figure 6.18 displays a block
diagram of a system that uses a moving-average filter to reduce the effects of
random fluctuations. In the diagram, the input to the Apache HTTP Server is
KeepAlive, and the output is sampled CPU; the latter is in turn input to the
filter, and its output is smoothed CPU.

G(z)
W(z)

H(z)
Y(z)

Apache

U(z)

Server Filter

KA
Sampled

CPU
Smoothed

CPU

Fig. 6.18 Apache server with a filter.

TLFeBOOK

EXTENDED EXAMPLES 187

To obtain the transfer function for the Apache HTTP Server, we return to
Chapter 2, in which statistical techniques characterized this system’s input–output
relationships in terms of the difference equation y(k+1) = 0.59y(k)−0.014u(k).
From this, we obtain the transfer function for G(z):

G(z) = Y (z)

U(z)
= −0.014

z − 0.59
(6.17)

where U(z) and Y (z) are defined relative to the operating point:

u(k) = KA(k) − KA = KA(k) − 11

y(k) = CPU(k) − CPU = CPU(k) − 0.58

We structure the filter as follows. Let {y(k)} be the input to the filter and
{w(k)} be its output. Then

w(k + 1) = cw(k) + (1 − c)y(k) (6.18)

where 0 ≤ c < 1 is chosen to provide a desired level of smoothing. If c is
very small, the filtered signal looks like the input. If c is very large, new inputs
have little effect on the filtered output. Taking the Z-transform of both sides of
Equation (6.18) (and assuming that initial conditions are zero), we have zW(z) =
cW(z) + (1 − c)Y (z). So

H(z) = W(z)

Y (z)
= 1 − c

z − c
(6.19)

Note that H(1) = 1 so that the filter does not affect the steady-state gain of a
system into which it is incorporated.

Consider the transfer function F(z) from the input KeepAlive to the output
smoothed CPU. From Figure 6.18,

F(z) = W(z)

U(z)

= Y (z)

U(z)

W(z)

Y (z)

= G(z)H(z)

= −0.014(1 − c)

(z − 0.59)(z − c)

F (z) is a second-order system with two real poles. Since 0 ≤ c < 1, the poles
are within the unit circle, and hence the system is stable.

How should c be chosen? To answer this question, we consider two input
signals. The first is a sinusoid, which is used as a surrogate for stochastics.
Figure 6.19 displays the sinusoidal transient response of Figure 6.18 for four
values of c. In all cases, there is a sinusoidal output. However, the variability of
the output is much smaller if c is larger.

TLFeBOOK

188 HIGHER-ORDER SYSTEMS

0

0.5

1
 c = 0

0

0.5

1
 c = 0.5

0

0.5

1
 c = 0.7

0 5 10 15 20 25 30 35 40
0

0.5

1

 k

 C
P

U

 c = 0.95

Fig. 6.19 Sinusoidal response of the Apache HTTP Server for different filter coefficients c.
u(k) = sin(k). A larger c provides more smoothing.

Figure 6.20 displays the transient response to a step in which KeepAlive
increases from 11 (the operating point) to 21. The steady-state output of the
system is (21 − 11)F (1) + CPU, which is approximately 0.24. First, note that
the settling time for c = 0 is the same as for c = 0.5. This is because in both
systems the largest pole is 0.59. As c becomes larger than 0.59, settling times
increase. For example, if c = 0.95 in F(z), then ks ≈ −4/ log(0.95) = 78,
which is a substantial increase from ks = 8 for c = 0. Long settling times can
be problematic since characteristics of computing systems (e.g., workloads) can
change quickly.

The foregoing illustrates a common trade-off in the use of filters. A high
level of filtering (e.g., c = 0.95) typically makes the system slow to respond to
changes. On the other hand, a filter that allows for a fast response (e.g., c = 0.5)
does a poor job of smoothing stochastics. A good compromise is to choose c

equal to the magnitude of the dominant pole without the filter since this is the
largest value of c for which there is little effect on settling times.

TLFeBOOK

EXTENDED EXAMPLES 189

0

0.2

0.4

0.6
 c = 0, k

s
 = 8

0

0.2

0.4

0.6
 c = 0.5, k

s
 = 8

0

0.2

0.4

0.6
 c = 0.7, k

s
 = 12

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

 k

 C
P

U

 c = 0.95, k
s
 = 78

Fig. 6.20 Step response of the Apache HTTP Server for different filter coefficients c. Step size
is 10. When c is larger, settling times are longer.

6.5.2 Apache HTTP Server with a Filter and Controller

This example extends the preceding example to include feedback control. The
system considered is shown in Figure 6.21. R(z) is the reference input. The
smoothed output, W(z), is subtracted from R(z) to produce the control error
E(z). The controller takes this signal as input and produces as output U(z), the
new setting of KeepAlive.

R(z)
G(z)K(z) H(z)

E(z) U(z) Y(z) W(z)

Apache

+

−

Server FilterController

Fig. 6.21 Apache server with a filter and a controller.

TLFeBOOK

190 HIGHER-ORDER SYSTEMS

We consider a simple controller in which the setting of KeepAlive is pro-
portional to the control error e(k). That is,

u(k) = KPe(k)

The foregoing is referred to as proportional control. Observe that K(z) = KP.
Designing a proportional controller requires selecting KP so that the closed-loop
system has the desired properties for stability, steady-state gain, and transient
response.

To assess these properties, we construct the transfer function FR(z) from the
input R(z) to the output W(z). Using Equations (6.17) and (6.19) and setting
c = 0.95 yields

FR(z) = W(z)

R(z)

= KPG(z)H(z)

1 + KPG(z)H(z)

= −0.0007KP

z2 − 1.54z + 0.56 − 0.0007KP

(6.20)

Thus, the poles of FR(z) are

1.54 ±
√

1.542 − 4(0.56 − 0.0007KP)

2

The poles are complex if KP < −47; otherwise, the poles are real. For example,
if KP = −80, the closed-loop transfer function is

0.056

z2 − 1.54z + 0.616

which has the complex poles 0.77 ± 0.15j . This means that there will be some
oscillation in the system output. On the other hand, if KP = −20, the poles are
0.91 and 0.63.

Figure 6.22 plots the step response of FR(z) to an increase of 0.20 in the
reference value for several values of KP. We can apply our analysis techniques
to predict the steady-state value, settling time, and maximum overshoot. For
example, if KP = −80, the steady-state value of the output in response to
to a 0.20 step change in the reference input is (0.20)FR(1) + 0.58 = 0.73. The
magnitude of the poles is r = √

0.772 + 0.152 = 0.78, and the angle is θ = 0.19.
Thus, from Equation (6.15), the settling time ks ≈ −4/ log(0.78) = 16. Also,
from Equation (6.16), the maximum overshoot is MP = 0.78π/0.19 = 0.02. Note
that a larger KP decreases settling times but can also result in overshoot.

Proportional control is discussed in detail in Chapter 8.

TLFeBOOK

EXTENDED EXAMPLES 191

0.6

0.65

0.7

0.75

0.8
 C

P
U

 K
P
=−20, k

s
=41, M

p
=0%

0.6

0.65

0.7

0.75

0.8

 C
P

U

 K
P
=−80, k

s
=18, M

p
=2%

0 5 10 15 20 25 30 35 40

0.6

0.65

0.7

0.75

0.8

 k

 C
P

U

 K
P
=−180, k

s
=22, M

p
=21%

Fig. 6.22 Step response of the closed-loop system Equation (6.20) as kp is varied. The step
size is 0.2.

R(z)
G(z)K(z) H(z)

E(z) U(z) Y(z) W(z)

+

−

Server FilterController

Fig. 6.23 The IBM Lotus Domino Server with a filter and a controller. The reference input R(z)

and the output W(z) are in units of RIS. The control input U(z) is in units of MaxUsers.

6.5.3 IBM Lotus Domino Server with a Filter and Controller

In this example we study the IBM Lotus Domino Server with a propor-
tional–integral controller and a moving-average filter. Figure 6.23 displays the
closed-loop system we analyze. The IBM Lotus Domino Server is modeled by a

TLFeBOOK

192 HIGHER-ORDER SYSTEMS

first-order system

G(z) = Y (z)

U(z)
= 0.47

z − 0.43

at the operating point MaxUsers = 165, RIS = 135. H(z) is defined in
Equation (6.19) with c = 0.95.

The controller K(z) uses proportional–integral control in which u(k) = KI∑k
i e(i) + KPe(k), or u(k) − u(k − 1) = KIe(k) + KPe(k) − KPe(k − 1). In terms

of transfer functions, this is

K(z) = (KP + KI)z − KP

z − 1
(6.21)

KP and KI are referred to as the controller gains. Controller gains are selected
to provide desired properties of closed-loop systems. (Chapter 9 provides more
description of the motivation for and assessment of proportional–integral con-
trol.)

The feedforward loop of Figure 6.23 connects three components in series:
K(z), G(z), and H(z). Assuming no pole–zero cancellation, this means that the
order of the feedforward loops is the sum of the order of these three systems,
which is 3. The closed-loop transfer function FR(z) from the reference input to
the measured output is

FR(z) = W(z)

R(z)

= K(z)G(z)H(z)

1 + K(z)G(z)H(z)

= 0.026(KP + KI)z − 0.024KP

z3 − 2.4z2 + [1.8 + 0.024(KP + KI)]z − 0.024KP − 0.41

FR(z) has three poles and one zero. The locations of poles and zeros are affected
by the controller gains KP and KI (a fact that is exploited in controller design).
For example, if KP = 1 and KI = 0.1, the poles are {p1, p2} = 0.95 ± 0.047j

and p3 = 0.48, and the zero is q1 = 0.91. For this selection of gains, all poles
are within the unit circle, so FR(z) is stable.

Now consider the response of the system with KP = 1 and KI = 0.1, where the
reference input RIS increases from 135 to 235. Figure 6.24 displays simulation
results for this step response. The dashed lines indicate the ±0.02 margins around
235. The predicted steady-state value of this system is RIS+(235−135)FR(1) =
235, which is consistent with the simulation results. Since the dominant poles are
{p1, p2}, we predict a settling time of ks ≈ −4/ log(r) = 78, where r = |p1| =
|p2| = √

0.952 + 0.0472 = 0.95. We see that the prediction is fairly accurate.

6.5.4 M/M/1/K with a Filter and Controller

In this section we use the M/M/1/K queueing system to study the effects of
stochastics on the accuracy of the analysis techniques that we have developed.

TLFeBOOK

EXTENDED EXAMPLES 193

0 20 40 60 80 100
320

340

360

380

400

420

440

R
IS

(k
)

 k

Fig. 6.24 Step response of the closed-loop system in Figure 6.23 for the IBM Lotus Domino
Server with a proportional–integral controller. Step size is 100; kp = 1; KI = 0.1. The long
settling time is a result of having a pair dominant closed-loop poles with a magnitude of 0.95.

R(z)
G(z)K(z) H(z)

E(z) U(z) Y(z) W(z)

M/M/1/K

+

−

FilterController

Filtered M/M/1/K

Fig. 6.25 M/M/1/K with a filter and a controller. The dashed line indicates the feedforward
loop.

Figure 6.25 displays the system that we study. G(z) is the transfer function
from the buffer size U(z) to the response time Y (z) of an M/M/1/K sys-
tem as obtained in the system identification studies summarized in Table 2.3.
We use the operating point (K,R) = (26, 2.7), for which the transfer func-
tion is G(z) = 0.033/(z − 0.49). H(z) is the moving-average filter defined in
Equation (6.18), with c = 0.95. The controller K(z) regulates response times
by adjusting the buffer length used by the M/M/1/K system G(z). We use
K(z) = KP, which is proportional control.

Our starting point is Figure 6.25. We consider two transfer functions: (1) the
filtered M/M/1/K transfer function [from U(z) to W(z)], and (2) the closed-
loop transfer function (from R(z) to W(z)). The filtered M/M/1/K system

TLFeBOOK

194 HIGHER-ORDER SYSTEMS

GF (z) has two components: G(z) and H(z). Its transfer function quantifies how
W(z) is affected by U(z). Thus,

GF (z) = W(z)

U(z)
(6.22)

= G(z)H(z)

= 0.0017

z2 − 1.42 + 0.47

This is a second-order system with poles at 0.49 and 0.95, both of which are
real and lie within the unit circle (which indicates that the system is stable). The
transfer function from the reference input R(z) to the measured output W(z) is

FRW(z) = W(z)

R(z)
(6.23)

= K(z)G(z)H(z)

1 + K(z)G(z)H(z)

= 0.0017KP

z2 − 1.42 + 0.47 + 0.0017KP

The poles of FRW(z) depend on the choice of KP.
First, we study GF (z). Consider the response of this system to a step input in

which buffer size increases from 10 to 20. For this analysis (and in the sequel),
we use the values before the step as the operating point, a technique that we
have found can reduce inaccuracies resulting from the the nonlinearities of
queueing systems. Thus, (K, R) = (10, 1.4). So the response time after the
step should be R + (20 − 10)GF (1) = 1.4 + (10)(0.065) = 2.1. Figure 6.26
plots simulation results for such a step response of an M/M/1/K system in
series with a moving-average filter with c = 0.95 and 1-minute sample times.
We see that the steady-state output is very close to the predictions from our
analysis. Further, using dominant pole analysis, we expect the settling time to be
ks ≈ −4/ log(0.95) = 78 samples, or 1.3 hours. This matches reasonably well
with the simulation results.

Now consider the closed-loop system FR(z). This, too, is a second-order sys-
tem, but the location of its poles depends on the choice of KP. In particular, the
pi are the set of all z that satisfy the characteristic equation z2 − 1.4 + 0.47 +
0.0017KP = 0. The poles are complex if KP > 33, and are real otherwise.

Suppose that KP = 80. Then,

FR(z) = 0.13

z2 − 1.4 + 6.0

and the poles are 0.72 ± 0.28j . These poles correspond to ks = 15 and
MP = 11%. To assess this prediction, Figure 6.27 we plot in the response of
Figure 6.25 with KP = 80 to a step increase from 1 to 2.5. The estimated settling
time is consistent with the simulation results. Although the estimated maximum

TLFeBOOK

EXTENDED EXAMPLES 195

1 2 3 4 5 6 7 8
5

10

15

20

25

B
uf

fe
r

Le
ng

th

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

R
es

po
ns

e
T

im
e

Time (hours)

2.1

Fig. 6.26 Open-loop response of M/M/1/K. The response time is filtered. The operating point
used for prediction is the lower step, (K, R) = (10, 1.4). The dashed line is predicted response
time using a linear model.

1 2 3 4 5 6 7 8
0

50

100

150

B
uf

fe
r

Le
ng

th

1 2 3 4 5 6 7 8
0.5

1

1.5

2

2.5

3

R
es

po
ns

e
T

im
e

Time (hours)

2.3

Fig. 6.27 Step response of Figure 6.25 for kp = 80. The dashed line is the predicted steady-
state response. Note that there is considerable overshoot.

overshoot is smaller than what is obtained in the simulations, the estimate seems
reasonable given that M/M/1/K is a stochastic system. Also, the predicted
steady-state values are close to those reported by the simulations. If R = 1, the
predicted response time is 1+ (2.5−1)FR(1) = 2.3, which is consistent with the
values observed. Further, using dominant pole analysis (which is a considerable

TLFeBOOK

196 HIGHER-ORDER SYSTEMS

1 2 3 4 5 6 7 8
0

50

100

150

B
uf

fe
r

Le
ng

th

1 2 3 4 5 6 7 8
0.5

1

1.5

2

2.5

3

R
es

po
ns

e
T

im
e

Time (hours)

1.6

Fig. 6.28 Step response of Figure 6.25 for kp = 20. The dashed line is the predicted steady-
state response. Note that there is little overshoot.

approximation in this case), we have that ks ≈ 16, or about 16 minutes. Although
the presence of stochastics make it difficult to measure settling times precisely,
the value predicted appears to be consistent with the simulation results.

Last, consider KP = 20. Now the poles of the system are 0.58 and 0.86.
We study this for the operating point R = 0.8 and a step increase of 1.5. As
shown in Figure 6.28, there is no overshoot in the response-time plot. Further,
the steady-state value predicted is 0.8 + (2.5 − 1)FR(1) = 1.6, which is fairly
close to the actual value. Finally, ks ≈ 0.5 hour, which is reasonably consistent
with the data.

*6.6 ANALYZING TRANSIENT RESPONSE WITH MATLAB

The impulse and transient response of higher-order systems can be studied in
the same way as is done in Chapter 5 for first-order systems. Consider the IBM
Lotus Domino Server with the transfer function G(z) = 0.47/(z − 0.43) and a
sampling time of 60 seconds. This is entered into MATLAB as

notes = tf(0.47,[1 -0.43],60)

Transfer function:
0.47

z - 0.43

Sampling time: 60

TLFeBOOK

EXERCISES 197

Similarly, the moving-average filer with transfer function G(z) = 0.05/(z −
0.95) and a sampling time of 60 seconds is entered as

filter = tf(0.05,[1 -0.95],60)

Transfer function:
0.05

z - 0.95

Sampling time: 60

The open-loop system model consists of these two systems connected in series.
It is computed in MATLAB as

open = notes*filter

Transfer function:
0.0235

z^2 - 1.38 z + 0.4085

Sampling time: 60

The steady-state gain is computed as follows:

dcgain(open)

ans =

0.8246

The impulse and step responses of this system can be found using

impulse(open)

step(open)

6.7 EXERCISES

1. Write the difference equation for G(z) = Y (z)/U(z), where

G(z) = b1z
m−1 + · · · + bm

zn − a1zn−1 − · · · − an

and 1 ≤ m ≤ n. Draw a picture similar to Figure 6.1 that depicts the
relationship between the current output and previous inputs and outputs.
How does this differ from Figure 6.1?

TLFeBOOK

198 HIGHER-ORDER SYSTEMS

2. Estimate MP for the second-order systems with poles 0.4 ± 0.8j and
−0.4 ± 0.8j . How do these estimates compare with the simulation results
in Figure 6.17?

3. For the following second-order systems, (i) find the pole locations, (ii) plot
them in the complex plane, (iii) determine if they are stable, (iv) compute
the steady-state gains for the stable systems, (v) plot the step response curve,
and (vi) estimate the settling time to step input.

(a)
4

(z − 1.5)(z − 0.5)

(b)
12

(z − 0.05)(z − 0.85)

(c)
−1

(z + 0.2)(z − 0.2)

4. Repeat Exercise 3 for the following systems:

(a)
3

(z − 0.36)(z − 0.36)

(b)
3z − 1.56

(z − 0.52)(z − 0.36)

(c)
0.3

z2 − 0.2z + 0.6

5. Consider the IBM Lotus Domino Server with a moving average filter as
presented in Example 6.2. Find the “warm-up” response of the system using
an initial condition of RIS(0) = 0. Compare with the results from Exercise 3
in Chapter 5.

6. Consider the IBM Lotus Domino Server example in Section 6.5.3.

(a) For KI = 0.1, find the largest KP such that the system is still stable.
(b) For KP = 1, find the largest KI such that the system is still stable.
(c) Plot the pole locations as KI, KP are varied between their values in

Section 6.5.3 and these maximum values. At what point does the system
become unstable?

7. Figure 6.29 extends the system in Section 6.5.1 by adding a sensor between
the Apache HTTP Server and the filter. Suppose that the transfer function
of the sensor is

S(z) = 0.17z − 0.11

z − 0.64

(a) What is the order of the feedforward transfer function from E(z) to
W(z)? How many zeros does it have? What is the order and the number
of zeros of the closed-loop transfer function from R(z) to W(z)?

TLFeBOOK

EXERCISES 199

R(z)
G(z)K(z) H(z)

E(z) U(z) Y(z) W(z)

Apache

+

−

Server FilterController

S(z)

Sensor

Fig. 6.29 Apache HTTP Server with a filter, controller, and a sensor.

(b) List the poles and zeros of the feedforward transfer function. How do
the zero(s) affect the pole(s)?

(c) What is the closed-loop transfer function?
(d) For what values of KP will the closed-loop system be stable? When will

the poles be complex?
(e) What is the smallest settling time (and the associated KP) that the system

can achieve? Will there be overshoot with this settling time?

8. Consider the the Apache HTTP Server example in Section 6.5.1, and let the
filter pole be the same as the system pole, c = 0.59. Compute the sinusoidal
response and the step response and compare your result with the other values
of c shown in Figures 6.19 and 6.20. How does the step response compare
to that of the Apache HTTP Server without a filter?

9. Consider the the Apache HTTP Server example in Section 6.5.1. Find a
value of KP for which the steady-state gain is 0.99. For this KP, what are
the estimated settling time and maximum overshoot?

10. Consider a system modeled by a fourth-order transfer function

H(z) = Y (z)

U(z)
= 1

z4 + 0.9z3 + 0.06z2 + 0.74z + 0.18

(a) Find the dominant pole(s).
(b) Estimate the settling time ks and the maximum overshoot using the

dominant pole approximation.
(c) Compute the response to a unit step input. Compare the actual overshoot

and settling time to the approximations in part (c).

TLFeBOOK

TLFeBOOK

7
State-Space Models

In this chapter we introduce state-space models for describing system dynamics,
an alternative to the transfer function models presented in Chapter 5 and 6. The
idea of state space is to characterize how the system operates in terms of one or
more variables. Such state variables need not be measured outputs. Indeed, they
may not even be directly measurable. However, the state variables must be able
to express the dynamics of the system. State-space models provide a scalable
approach to modeling systems with a large number of inputs and outputs. It
turns out that many of the techniques and results for transfer functions, such as
dominant pole analysis, apply to state space as well.

7.1 STATE VARIABLES

It is sometimes convenient to describe system dynamics in terms of variables
other than the control input and the measured output. These auxiliary variables
are referred to as state variables . We motivate their use with an example.

Example 7.1: Modeling a tandem queue This example is motivated by com-
plex systems such as multitiered e-commerce environments in which there are
multiple interconnected components. A common way to model such systems is
as a network of queueing systems.

Feedback Control of Computing Systems, by Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury
ISBN 0-471-26637-X Copyright c© 2004 John Wiley & Sons, Inc.

201

TLFeBOOK

202 STATE-SPACE MODELS

Incoming
Requests

Outgoing
Requests

Queueing System 2Queueing System 1

Buffer size (K)

Response time
for system 1 (R1)

Total response time (R)

Response time
for system 2 (R2)

Fig. 7.1 Architecture diagram of a tandem queue.

One of the simplest queueing networks is a tandem queue. As depicted in
Figure 7.1, the tandem queue consists of two queueing systems in series. Incom-
ing requests arrive at system 1. If the server is idle, the request begins service
immediately. Otherwise, the request waits in buffer 1 until the server becomes
available. If buffer 1 is full, the request is discarded (e.g., as in packet-switching
networks).1 Departures from the first system become arrivals at the second sys-
tem. The second queueing system handles incoming requests in the same manner
as the first system. Departures from the second system are outgoing requests.

For the purposes of this example, we assume that buffer 2 is sufficiently large
so that departures from queue 1 are never discarded. We seek to control the
end-to-end response time of the tandem queue, which is the sum of the response
times of the two queues. Thus, the size of buffer 1 K(k) is the control input, and
end-to-end response time R(k) is the measured output.

Although this is a SISO system, it is natural to model it differently. Let R1(k)

be the average response time during the kth interval of requests entering the
first queueing system, and let R2(k) be the same metric for the second queueing
system. It is natural to construct separate models for the dynamics of R1(k)

and R2(k) since each queueing system can be modeled using a first-order ARX
model. However, neither of these variables is being controlled. We only want
to control their sum, R(k).

In the example, R1(k) and R2(k) are examples of state variables. Neither
is a measured output (although it is also possible for a state variable to be a
measured output). However, state variables are sufficient to express the dynam-
ics of the tandem queue system. In general, state variables may not even be
measured.

Often, multiple state variables may be required to characterize system oper-
ation. As such, it is natural to use a vector representation of state. Let
x1(k), . . . , xn(k) be the values of the n state variables that describe system state at

1We assume that requests consume one unit of space in the buffer.

TLFeBOOK

STATE VARIABLES 203

time k. The vector representation of these variables is x(k) =




x1(k)
...

xn(k)


. (Vectors

are denoted by boldface lowercase letters.) It is not required that state variables be
unrelated to one another. For example, one state variable may be a time-delayed
value of another state variable.

Example 7.2: Vector representation of state variables for a tandem queue
Continuing Example 7.1, a vector representation of the state is

x(k) =
[
x1(k)

x2(k)

]

=
[
R1(k) − R1

R2(k) − R2

]

where Ri is the operating point of queue i. The offset value xi(k) = Ri(k)−Ri .
The control input K(k) has the offset value

u(k) = K(k) − K

The Apache HTTP Server provides another example of a state-space model.

Example 7.3: State description of the Apache HTTP Server As discussed in
Section 1.6.3, the Apache HTTP Server has control inputs KeepAlive (KA)
and MaxClients (MC) and the measured outputs CPU and MEM. The offset
values are u1(k) = KA(k) − KA, u2(k) = MC(k) − MC, y1(k) = CPU(k) − CPU,
and y2(k) = MEM(k) − MEM. The operating point is CPU = 0.58, KA = 11,
MEM = 0.55, and MC = 600. Figure 7.2(a) displays the relationship between
these scalar inputs and outputs.

A vector representation can be constructed as well. Define

u(k) =
[
u1(k)

u2(k)

]

y(k) =
[
y1(k)

y2(k)

]

Apache
HTTP Server

(a) Scalar block (b) State-space block

u1

u2 y2

y1x1

x2

y(k)u(k)

Apache
HTTP Server

x(k)

Fig. 7.2 Scalar and state-space block diagrams of the Apache HTTP Server with x(k) = y(k).

TLFeBOOK

204 STATE-SPACE MODELS

Further, for this example, it is convenient to have the output variables also be
the state variables. Thus, x(k) = y(k). Figure 7.2(b) displays the block diagram
using the vector representation. Note that the double lines in this figure indicate
vector-valued variables.

7.2 STATE-SPACE MODELS

State-space models use state variables in two ways. The first is to describe dynam-
ics by showing how x(k + 1) evolves from x(k). The second is to obtain the
measured output y(k) from the state x(k). Figure 7.3 depicts how input, output,
and state variables relate to the system.

Example 7.4: State-space model of a tandem queue Continuing with Exam-
ple 7.1, assume that each queue is an M/M/1/K queueing system. Requests arrive
at the system at a rate of 3.8 per second, and the service rate is 4 requests per second.
Thus, the utilization ρ = 0.95. The sampling time is Ts = 60 seconds. The second
queueing system has service rate 3.7 and a fixed buffer size that is large enough
so that no incoming request is dropped. Further, the operating point is R1 = 2.5,
R2 = 6.5, so R = R1 + R2 = 9. K = 25 is such that R is achieved with the
arrival and service rates for the queueing systems.

We start by modeling the first queueing system. A first-order ARX model

x1(k + 1) = a11x1(k) + bu(k)

is used to represent the dynamics between buffer size and response time of the
first queueing system. Using system identification techniques, the model param-
eters are a11 = 0.13 and b = 0.069.

The dynamics of the second queueing system are affected by those of the
first system. In particular, long response times in the first queueing system often
indicate the presence of many requests, all of which will eventually enter the
second queueing system. This observation motivates the following model of the
dynamics of the second queueing system:

x2(k + 1) = a22x2(k) + a21x1(k)

Using system identification techniques, we obtain a21 = 0.46 and a22 = 0.63.

Internal State (x)
Measured
Outputs (y)

Control
Inputs (u)

System

Fig. 7.3 Representation of variable used in state-space models. The bold letters and double
lines indicate vector values instead of scalars.

TLFeBOOK

STATE-SPACE MODELS 205

To summarize, the state-space dynamics are

x1(k + 1) = 0.13x1(k) + 0.069u(k)

x2(k + 1) = 0.46x1(k) + 0.63x2(k)
(7.1)

and we know that

y(k) = x1(k) + x2(k) (7.2)

It is often more convenient to write state models in matrix notation. We use
the following:

x(k + 1) = Ax(k) + Bu(k) (7.3)

y(k) = Cx(k) (7.4)

where x(k) is an n × 1 vector of state variables, A is an n × n matrix, B is an
n × mI matrix, u(k) is an mI × 1 vector of inputs, y is an mO × 1 vector of
outputs, and C is an mO × n matrix. (The subscripts I and O indicate input
and output.) Note that matrices are denoted by boldface uppercase letters. Two
exceptions to this are that B and C are always uppercase even though B is a
vector if mI = 1 and C is a vector if mO = 1.

Example 7.5: Matrix representation of state model of a tandem queue From
Equation (7.4) we see that the number of states n in the tandem queue is 2, and
mI = 1 = mO . Thus,

x(k + 1) = Ax(k) + Bu(k)

where

A =
[

0.13 0
0.46 0.63

]

B =
[

0.069
0

]

and

y(k) = Cx(k)

where

C = [
1 1

]
Figure 7.4 depicts block diagrams for the scalar and matrix representation of the
state-space model of the tandem queue.

TLFeBOOK

206 STATE-SPACE MODELS

u(k) y(k)

Tandem Queue

(a) Scalar description

(b) Matrix description

x1(k+1)=0.13x1(k)+0.069u(k)
x2(k+1)=0.46x1(k)+0.63x2(k)
y(k)=x1(k)+x2(k)

u(k) y(k)
Tandem Queue

x(k+1)=Ax(k)+Bu(k)
y(k)=Cx(k)

Fig. 7.4 Scalar and matrix descriptions of the state-space model of the tandem queue.

The same approach can be used with the Apache HTTP Server example.

Example 7.6: State-space model of the Apache HTTP Server Consider Exam-
ple 7.3. Suppose that the following state dynamics hold:

x1(k + 1) = 0.54x1(k) − 0.11x2(k) − 0.0085u1(k) + 0.00044u2(k) (7.5)

x2(k + 1) = −0.026x1(k) + 0.63x2(k) − 0.00025u1(k) + 0.00028u2(k) (7.6)

Then

x(k + 1) = Ax(k) + Bu(k)

y = Cx(k)
(7.7)

where

A =
[

0.54 −0.11
−0.026 0.63

]

B =
[−0.0085 0.00044

−0.00025 0.00028

]

C =
[

1 0
0 1

]

Note that n = 2 = mI = mO . Figure 7.5 depicts scalar and matrix descriptions
of a block for the state-space model of the Apache HTTP Server.

Note that the matrix representation of the state-space model of the tandem
queue in Figure 7.4(b) has the same form as the matrix representation of the
state-space model of the Apache HTTP Server in Figure 7.5(b). In fact, the
only difference is that we have different values for A, B, and C. Thus, to better
describe the state-space models, we sometimes use scalar representations in block
diagrams.

TLFeBOOK

SOLVING DIFFERENCE EQUATIONS IN STATE SPACE 207

Apache HTTP Server

(a) Scalar description

(b) Matrix description

x1(k+1)=0.54x1(k)−0.11x2(k)−0.0085u1(k)+0.00044u2(k)
x2(k+1)=−0.026x1(k)+0.63x2(k)−0.00025u1(k)+0.00028u2(k)
y1(k)=x1(k)
y2(k)=x2k)

u(k) y(k)

Apache HTTP Server

x(k+1)=Ax(k)+Bu(k)
y(k)=Cx(k)

u(k) y(k)

Fig. 7.5 Scalar and matrix descriptions of the state-space model of the Apache HTTP Server.

To summarize, state-space models provide a concise expression of the rela-
tionships between inputs and outputs in MIMO systems. A system with mI inputs
and mO outputs has mI × mO transfer functions. However, there are just two
state-space equations: Equations (7.3) and (7.4).

7.3 SOLVING DIFFERENCE EQUATIONS IN STATE SPACE

In this section we address how to solve the difference equation for state dynamics
specified in Equations (7.3) and (7.4) based on the inputs u(0), . . . , u(k) and the
initial conditions x(0). The result is an explicit solution that provides a convenient
way to assess properties of state-space models such as steady-state gain, settling
time, and maximum overshoot.

We begin by focusing on state dynamics: x(k + 1) = Ax(k) + Bu(k). The
solution to this set of equations requires knowledge of the initial condition, x(0),
and the input signal {u(0), . . . , u(k)}. Proceeding as in Section 5.2.3, we have

x(1) = Ax(0) + Bu(0)

x(2) = Ax(1) + Bu(1)

= A2x(0) + ABu(0) + Bu(1)

x(3) = Ax(2) + Bu(2)

= A3x(0) + A2Bu(0) + ABu(1) + Bu(2)

Generalizing, we see that

x(k) = Akx(0) + Ak−1Bu(0) + Ak−2Bu(1) + · · · + ABu(k − 2) + Bu(k − 1)

= Akx(0) +
k−1∑
i=0

Ak−1−iBu(i) (7.8)

TLFeBOOK

208 STATE-SPACE MODELS

This result is almost identical to Equation (5.1), except that matrices and vectors
are used instead of scalars. The output is found by applying Equation (7.4):

y(k) = Cx(k) = CAkx(0) + C
k−1∑
i=0

Ak−1−iBu(i)

Note that unlike the scalar b in Equation (5.1), we cannot move the B matrix
outside the sum since matrix multiplication is not commutative.

Example 7.7: Transient response of the Apache HTTP Server in state space
Consider the Apache HTTP Server of Example 7.3. Suppose that due to back-
ground work, MEM is no longer at its operating point. We consider the response
to initial conditions. That is, u(k) = 0, or MaxClients and KeepAlive are
kept at their operating points.

Equation (7.7) provides a way to predict the evolution of the system output.
Suppose that the initial MEM value is 0.75, or 0.2 larger than its operating point.
The initial condition is thus

x(0) =
[

0
0.2

]

We solve for x(k) as

x(1) = Ax(0) =
[

0.54 −0.11
−0.026 0.63

] [
0

0.2

]

=
[−0.022

0.126

]

x(2) = Ax(1) =
[−0.026

0.08

]
(7.9)

Note that even though CPU starts at its operating point, the model predicts that CPU
decreases during the transient phase (although only by a small amount). Figure 7.6
displays the model predictions for x(k). Observe that eventually, x(k) = 0. That
is, the state returns to its operating point.

The solution to the difference Equation (7.3) can also be found using Z-trans-
forms. Although the algebra for solving a difference equation using Z-transforms
is similar to that in Chapter 3, some care must be taken since matrix multiplication
is not commutative. We begin by taking the Z-transform of Equation (7.3):

zX(z) − zx(0) = AX(z) + BU(z) (7.10)

From this we deduce that

(zI − A)X(z) = zx(0) + BU(z)

X(z) = (zI − A)−1(zx(0) + BU(z)) (7.11)

TLFeBOOK

SOLVING DIFFERENCE EQUATIONS IN STATE SPACE 209

0 50 100
-0.03

-0.02

-0.01

0

C
P

U
 O

ffs
et

Time (k)
0 50 100

0

0.05

0.1

0.15

0.2

M
E

M
 O

ffs
et

Time (k)

(a) Transient response of CPU (b) Transient response of MEM

Fig. 7.6 Response to initial conditions of the Apache HTTP Server.

Y(z) = CX(z)

= C(zI − A)−1(zx(0) + BU(z)) (7.12)

The superscript of −1 indicates that a matrix inverse is taken. Not all matrices
are invertible. A matrix that has an inverse is called a nonsingular matrix . The
matrix I is the identity matrix, where

I =




1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1




Typically, the dimension of the I is implicit, usually n×n (where n is the number
of state variables). Note that if V is invertible, then VV−1 = V−1V = I.

The inverse of a matrix can be found in a straightforward way. Let V be a
nonsingular 2 × 2 matrix,

V−1 =
[

v11 v12
v21 v22

]−1

= 1

det(V)

[
v22 −v12

−v21 v11

]
(7.13)

where det is the determinant function, which is described shortly. If V is a
nonsingular 3 × 3 matrix,

V−1 =

v11 v12 v13

v21 v22 v23
v31 v32 v33




−1

(7.14)

= 1

det(V)
W (7.15)

TLFeBOOK

210 STATE-SPACE MODELS

where

W =

−v23v32 + v22v33 v13v32 − v12v33, −v13v22 + v12v23

v23v31 − v21v33 −v13v31 + v11v33 v13v21 − v11v23
−v22v31 + v21v32 v12v31 − v11v32 −v12v21 + v11v22




The determinant function is a kind of volume measure. From the foregoing,
we see that the inverse of a matrix V exists only if det(V) �= 0. The determinant
is computed as follows. For a scalar v, det(v) = v. If V is a 2 × 2 matrix, then

det

([
v11 v12
v21 v22

])
= v11v22 − v12v21 (7.16)

and if V is a 3 × 3 matrix,

det





v11 v12 v13

v21 v22 v23
v31 v32 v33





 = v11v22v33 − v12v21v33 − v11v23v32

+v13v21v32 + v12v23v31 − v13v22v31 (7.17)

Appendix D contains formulas for computing the determinant of matrices of
larger dimensions as well as more background on linear algebra.

Now we return to the discussion of using Z-transforms to solve difference
equations for state-space models. This is done using the following steps:

1. Substitute into Equation (7.12) the values for A, B, C, x(0), and U(z).
2. Do the necessary matrix addition and multiplication operations. The result

should be an mO × 1 vector of Z-transforms.
3. Invert each of these Z-transforms in the same manner as discussed in

Chapter 3.

Example 7.8: Time-domain solution for the Apache HTTP Server MIMO model
We extend Example 7.7 to show how the time-domain solution can be obtained

using Z-transforms. The initial conditions are x(0) =
[

0
0.2

]
, the control input is

U(z) = 0, and

A =
[

0.54 −0.11
−0.026 0.63

]

B =
[−0.0085 0.00044

−0.00025 0.00028

]

C =
[

1 0
0 1

]

Applying Equation (7.12), we have

Y(z) = C(zI − A)−1[zx(0) + BU(z)][
Y1(z)

Y2(z)

]
=

[
1 0
0 1

](
zI −

[
0.54 −0.11

−0.026 0.63

])−1

z

[
0

0.2

]

TLFeBOOK

CONVERTING BETWEEN TRANSFER FUNCTION MODELS AND STATE-SPACE MODELS 211

Observe that

zI − A =
[
z − 0.54 0.11

0.026 z − 0.63

]

Applying Equation (7.13) yields

(zI − A)−1 = 1

det (zI − A)

[
z − 0.63 −0.11
−0.026 z − 0.54

]

where det (zI − A) = (z − 0.54)(z − 0.63) − (0.11)(0.026) = z2 − 1.17z + 0.34.
Hence,

[
Y1(z)

Y2(z)

]
=

[
1 0
0 1

]


z − 0.63

z2 − 1.17z + 0.34

−0.11

z2 − 1.17z + 0.34
−0.026

z2 − 1.17z + 0.34

z − 0.54

z2 − 1.17z + 0.34


 z

[
0
0.2

]

=




z2 − 0.63z

z2 − 1.17z + 0.34

−0.11z

z2 − 1.17z + 0.34
−0.026z

z2 − 1.17z + 0.34

z2 − 0.54z

z2 − 1.17z + 0.34




[
0
0.2

]

=




−0.022z

z2 − 1.17z + 0.34
0.2z2 − 0.108z

z2 − 1.17z + 0.34




The inverse Z-transform of Y1(z) is y1(k) = (0.125)0.54k−1 − (0.147)0.63k−1,
k ≥ 1. The inverse Z-transform of Y2(z) is y2(k) = (0.2)0.63k , k ≥ 0.

7.4 CONVERTING BETWEEN TRANSFER FUNCTION MODELS
AND STATE-SPACE MODELS

Sometimes a model is more natural to express as a transfer function, but it is
easier to solve in state space. Fortunately, any system represented by difference
equations can also be easily expressed as a state-space model. In this section we
describe how this can be accomplished.

Consider the second-order ARX scalar model

y(k) = a1y(k − 1) + a2y(k − 2) + b1u(k − 1) (7.18)

To convert this model to state space, we start by specifying the state variables.
The state variables must provide sufficient “context” to determine the next output
of the system if the input is known. Since two previous values of the output are
needed to compute y(k + 1), we “store” these values as the state vector:

x(k) =
[

y(k − 1)

y(k)

]

TLFeBOOK

212 STATE-SPACE MODELS

Observe that this implies that

x(k + 1) =
[

y(k)

y(k + 1)

]

To model the dynamics of the system, we express x(k + 1) in terms of x(k) and
the control input.

Reordering the terms and shifting time in Equation (7.18), we have the fol-
lowing two equations, one for each state variable:

[
y(k) = 0y(k − 1) + 1y(k) + 0u(k)

y(k + 1) = a2y(k − 1) + a1y(k) + b1u(k)

]
(7.19)

The first equations simply says that y(k) = y(k). The second equation is a
time-shifted version of Equation (7.18). Putting this into matrix form, we have

[
y(k)

y(k + 1)

]
=

[
0 1
a2 a1

] [
y(k − 1)

y(k)

]
+

[
0
b1

]
u(k) (7.20)

y(k) = [
0 1

] [
y(k − 1)

y(k)

]
(7.21)

Equation (7.20) is actually the same as Equation (7.19); Equation (7.21) is a
restatement of y(k) = y(k). Now, define the matrices A, B, C as

A =
[

0 1
a2 a1

]
B =

[
0
b

]
C = [

0 1
]

Note that x(k + 1) = Ax(k) + Bu(k) and y(k) = Cx(k). These equations are
special cases of Equations (7.3) and (7.4), where the input and output are scalars
instead of vectors.

The foregoing can be generalized to an nth- order ARX model that has the
form

y(k) = a1y(k − 1) + a2y(k − 2) + · · · + any(k − n) + b1u(k − 1) (7.22)

Here the state is

x(k) =




x1(k)

x2(k)
...

xn−1(k)

xn(k)




=




y(k − n + 1)

y(k − n + 2)
...

y(k − 1)

y(k)




TLFeBOOK

CONVERTING BETWEEN TRANSFER FUNCTION MODELS AND STATE-SPACE MODELS 213

Proceeding as before, we have



x1(k + 1)

x2(k + 1)
...

xn−1(k + 1)

xn(k + 1)




=




0 1 · · · 0 0
0 0 · · · 0 0
...

...
...

...

0 0 · · · 0 1
an an−1 · · · a2 a1







x1(k)

x2(k)
...

xn−1(k)

xn(k)




+




0
0
...

0
b1




u(k)

(7.23)

y(k) = [
0 · · · 1

]



x1(k)
...

xn(k)


 (7.24)

or, equivalently,

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

where

A =




0 1 · · · 0 0
...

...
...

...

0 0 · · · 0 1
an an−1 · · · a2 a1




B =




0
0
...

0
b1




C = [
0 · · · 1

]
Equations (7.23) and (7.24) provide a way to structure state-space models

that makes it easy to see the effect of control inputs. A further appeal of control
canonical form is that the states xi(k) are delayed values of the output y(k), so
all of the states can easily be measured.

Example 7.9: Converting the IBM Lotus Domino Server with a sensor into
a state-space model Consider the IBM Lotus Domino Server with a sensor,
as described in Section 3.5.2. The input to the IBM Lotus Domino Server is
MaxUsers, and its output is RIS. The latter is input to the sensor, and the
sensor output is measured RIS. The difference equations for these two systems are
expressed in terms of the offsets: u(k) is the difference between MaxUsers(k)

and its operating point MaxUsers, v(k) is the difference between RIS and its

TLFeBOOK

214 STATE-SPACE MODELS

operating point RIS, and y(k) is the difference between measured RIS and its
operating point.

First, we convert the transfer functions to difference equations. Adapting the
notation of Section 3.5.2 to this chapter, we have

G(z) = V (z)

U(z)
= 0.47

z − 0.43

In a straightforward way, we see that this is equivalent to

v(k + 1) = 0.43v(k) + 0.47u(k) (7.25)

Similarly, for the sensor (with no delay), we have

S(z) = Y (z)

V (z)
= 0.17z − 0.11

z − 0.64

y(k + 1) = 0.64y(k) + 0.17v(k + 1) − 0.11v(k)

(7.26)

The transfer function from MaxUsers to the sensor output is

H(z) = G(z)S(z) = 0.08z − 0.52

(z − 0.43)(z − 0.64)
(7.27)

To put Equations (7.25) and (7.26) into state-space form, we first need to
specify the state vector. Since there are two equations, each including one delay,
the state vector must be two-dimensional. We choose

x(k) =
[
x1(k)

x2(k)

]
=

[
v(k)

y(k)

]

The state-space equation thus has the form

x(k + 1) =
[
v(k + 1)

y(k + 1)

]
=

[
0.43 0
a21 a22

] [
v(k)

y(k)

]
+

[
0.47
b2

]
u(k)

y(k) = [
0 1

] [
v(k)

y(k)

]

Note that in this case

A =
[

0.43 0
a21 a22

]

B =
[

0.47
b2

]

C = [
0 1

]

TLFeBOOK

CONVERTING BETWEEN TRANSFER FUNCTION MODELS AND STATE-SPACE MODELS 215

The first row of the A and B matrices are obtained from Equation (7.25). The
missing values a21, a22 in the second row must come from Equation (7.26),
which can be computed by substituting Equation (7.25) into Equation (7.26):

y(k + 1) = 0.64y(k) + 0.17[0.43v(k) + 0.47u(k)] − 0.11v(k)

= 0.64y(k) + (0.17)(0.43)v(k) + (0.17)(0.47)u(k) − 0.11v(k)

= 0.64y(k) + 0.73v(k) − 0.11v(k) + 0.08u(k)

y(k + 1) = −0.037v(k) + 0.64y(k) + 0.08u(k)

and now we can fill in the rest of the A and B matrices easily.

x(k + 1) =
[

v(k + 1)

y(k + 1)

]
=

[
0.43 0

−0.037 0.64

] [
v(k)

y(k)

]
+

[
0.47
0.08

]
u(k)

(7.28)

and
y(k) = [

0 1
]

x(k)

In a MIMO system, there are multiple transfer functions that model potentially
complex interrelationships between inputs and outputs. If the operating points for
the different models are different, it may not make sense to combine them into a
MIMO state-space model. If it makes sense for the application, however, it is usually
possible to construct a state-space model from the multiple transfer functions.

Now we consider going from a state-space model to a transfer function model
for SISO systems. Recall that in the definition of a transfer function, all initial
conditions are assumed to be zero. Thus, we take the general solution of a state-
space equation, Equation (7.8), and set the initial conditions to zero, to get

Y(z) = C(zI − A)−1BU(z) (7.29)

In the SISO case, when Y (z) and U(z) are scalars, it follows directly that the
transfer function is

G(z) = Y (z)

U(z)
= C(zI − A)−1B (7.29a)

Example 7.10: Converting from a state-space model to a transfer function for
the IBM Lotus Domino Server with a sensor For the state-space representation
in Example 7.9, we have

A =
[

0.43 0
−0.037 0.64

]

B =
[

0.47
0.08

]

C = [
0 1

]
We use Equation (7.29) to convert this to a transfer function.

TLFeBOOK

216 STATE-SPACE MODELS

Note that

zI − A =
[
z − 0.43 0

0.037 z − 0.64

]

From Equation (7.13) we have

[
zI − A

]−1 = 1

(z − 0.64)(z − 0.43)

[
z − 0.64 0

− 0.037 z − 0.43

]

Applying Equation (7.29a) gives us

G(z) = C
[
zI − A

]−1 B

= [
0 1

] 1

(z − 0.64)(z − 0.43)

[
z − 0.64 0

− 0.037 z − 0.43

] [
0.47
0.08

]

= 0.08z − 0.52

(z − 0.64)(z − 0.43)

Note that this is the same as the original transfer function in Equation (7.27).

7.5 ANALYSIS OF STATE-SPACE MODELS

In this section we develop results for the stability, steady-state gain, settling time,
and maximum overshoot of state-space systems.

7.5.1 Stability Analysis of State-Space Models

We use the BIBO (bounded input, bounded output) criterion for stability that is
described in Chapter 3. That is, a system is stable if all bounded inputs produce
bounded outputs. It turns out that the analysis of BIBO stability for state space
can be done using Theorem 3.2 in much the same way as for transfer function
models. But doing so requires that we generalize the definition of a transfer
function.

Consider the expression for Y(z) in Equation (7.12). To study the transfer
function from U(z) to Y(z), we first set the initial conditions x(0) = 0.2 This
yields

Y(z) = C(zI − A)−1BU(z) (7.30)

We define the transfer function matrix as

G(z) = C(zI − A)−1B (7.31)

so
Y(z) = G(z)U(z)

2The effects of the initial condition may be added in later using the principle of superposition.

TLFeBOOK

ANALYSIS OF STATE-SPACE MODELS 217

G(z) has as many rows as there are outputs and as many columns as there are
inputs. The (i, j)th entry gij represents the effect of the j th input uj on the ith
output yi . Note that unless there is just one input and one output, we cannot write
G(z) = Y(z)/U(z) because the division operation is not defined for vectors.

The poles of a state-space model with the transfer function matrix G(z) are
the solutions to

det(zI − A) = 0 (7.32)

det (zI − A) is called the characteristic polynomial of the state-space system,
and Equation (7.32) is the characteristic equation . The values of z that satisfy
the characteristic equation are also referred to as the eigenvalues of A. Below is
a simple example of computing the poles of a state-space model.

Example 7.11: Open-loop poles of the IBM Lotus Domino Server Recall from
Example 7.9 that for the state-space model of the IBM Lotus Domino Server

A =
[

0.43 0
−0.037 0.64

]

The characteristic polynomial is det(zI−A) = (z−0.43)(z−0.64)−(0)(−0.037) =
(z − 0.43)(z − 0.64). Thus, the poles are 0.43 and 0.64 since these are the values
of z for which the characteristic equation is 0.

The BIBO stability criterion of Theorem 3.2 state that for a system to be
stable, its poles must lie within the unit circle (have magnitude less than 1).
Thus, if one or more of the eigenvalues of A are on or outside the unit circle, the
system is unstable.

Example 7.12: Stability of the Apache HTTP Server Recall from Example 7.6
that the A matrix for the Apache HTTP Server is given as

A =
[

0.54 −0.11
−0.026 0.63

]

The stability of the Apache HTTP Server is determined by the eigenvalues of A,
which are also the roots of the characteristic polynomial det (zI − A).

We compute the characteristic polynomial of A as

det (zI − A) = det

([
z 0
0 z

]
−

[
0.54 −0.11

−0.026 0.63

])

= det

[
z − 0.54 0.11

0.026 z − 0.63

]

= (z − 0.54)(z − 0.63) − (0.11)(0.026)

TLFeBOOK

218 STATE-SPACE MODELS

= z2 − 1.17z + 0.337

= (z − 0.65)(z − 0.52)

Thus, the eigenvalues of the Apache HTTP Server are 0.65 and 0.52. Since both
eigenvalues are inside the unit circle (have magnitude less than 1), the Apache
HTTP Server is stable.

7.5.2 Steady-State Analysis of State-Space Models

The steady-state analysis of state-space models is done in the same way as for
transfer function models.

Consider the steady-state value in response to a unit step input. The unit step
in vector form is

u(k) =




1
...

1


 , k ≥ 0

which has the Z-transform

U(z) =




1
...

1


 z

z − 1

From Equation (7.12) and assuming that all initial conditions are 0,

Y(z) = C(zI − A)−1BU(z)

= G(z)




1
...

1


 z

z − 1

From Equation (3.22), we know that the steady-state value of
Y(z) is limz→1(z − 1)Y(z) if the poles of (z − 1)Y(z) are within the unit circle.
Thus, for a step input, the steady-state value of y(k) is limz→1(z − 1)G(z)U(z)

if the poles of Y(z) are within the unit circle. If we generalize to non-unit-step

inputs uss =




u1
ss
...

u
mI
ss


 ,

yss = lim
z→1

(z − 1)Y(z)

= lim
z→1

(z − 1)C(zI − A)−1BU(z)

= C(I − A)−1Buss

= G(1)uss (7.33)

TLFeBOOK

ANALYSIS OF STATE-SPACE MODELS 219

The steady-state gain for state-space models is

G(1) = C(I − A)−1B (7.34)

This gain is a matrix whose (i, j)th entry describes the steady-state effect on
the ith output yi due to the j th input uj . This turns out to be very useful in
predicting the operating regions of MIMO systems.

Example 7.13: Steady-state analysis of the Apache HTTP Server Consider
the Apache HTTP Server as described in Equation (7.7). This system model has
two inputs (KeepAlive and MaxClients) and two outputs (CPU and MEM).
We have already seen in Example 7.12 that the system model is stable. Thus, the
steady-state gain is

G(1) = C(I − A)−1B

=
[−0.019 0.00079

0.00063 0.00070

]

The G(1) matrix provides some intuition. Element g11 = −0.019. This is the
steady-state change in CPU resulting from a unit magnitude change in Keep-
Alive. As we have seen in Example 3.10, this gain is negative. That is, increas-
ing KeepAlive decreases CPU (in particular increasing KeepAlive by 1
second decreases CPU by 0.019 or approximately 2%). Element g12 = 0.0079
is the increase in CPU due to a unit change in MaxClients. The positive
sign shows that CPU increases as MaxClients increases. The smaller absolute
value of g12 compared with g11 reflects both differences in the value ranges of
KeepAlive versus MaxClients as well as the magnitude of the effect of
MaxClients on CPU.

Steady-state gain can be used to predict the steady-state output to a step input.
Suppose that we increase KeepAlive from its operating point of 11 to 30 and
we increase MaxClients from its operating point of 600 to 800. Computing
the offsets from the operating point, we find that the steady-state input is

uss =
[

19
200

]

The steady-state output is predicted as follows:

yss = G(1)uss =
[−0.019 0.00079

0.00063 0.00070

] [
19

200

]

=
[−0.20

0.15

]

Thus, we predict that CPU will decrease by 0.2 from its operating point and MEM
will increase by 0.15. That is, the final values of CPU = 0.32,MEM = 0.68.

TLFeBOOK

220 STATE-SPACE MODELS

Steady-state gain can be used in another way as well—to predict the inputs
needed to achieve desired outputs. Suppose that the desired utilizations are CPU =
0.8,MEM = 0.4. This translates into a desired steady-state output of

yss =
[

0.28
−0.13

]

We invert the steady-state gain to get

uss = G(1)−1yss =
[−52 58

47 1400

] [
0.28

−0.13

]

=
[−22

−170

]

Now, adding the offsets to these steady-state inputs, we see that we must set
KeepAlive = −11,MaxClients = 430. Since a negative KeepAlive is
impossible, the model predicts that it is not feasible to achieve these desired
utilizations. The infeasibility of this reference point has also been observed exper-
imentally by Diao et al. [17].

7.5.3 Transient Analysis of State-Space Models

The transient analysis of state-space models is very similar to that for transfer
function models. Consider the state-space model x(k + 1) = Ax(k) + Bu(k). We
know that the poles are the eigenvalues of A. That is, we must find the z such
that det (zI − A) = 0. If these eigenvalues lie within the unit circle, the system
is stable.

Once the poles are identified, we proceed as in Chapter 6 by using dominant
pole analysis. Let p = rejθ be the dominant pole (where θ = 0 if there is a
single real pole). Then, from Equation (5.4), we know that ks ≈ −4/ log |r|.
From Equation (6.16) we know that the maximum overshoot MP ≈ rπ/|θ |.

Example 7.14: Settling time of the Apache HTTP Server Consider Exam-
ple 7.6, in which Equation (7.7) is a state-space model of the Apache HTTP
Server with

A =
[

0.54 −0.11
−0.026 0.63

]

From Example 7.12 we know that the poles of this system are 0.52 and 0.65.
Treating 0.65 as the dominant pole, the settling time is −4/ log 0.65 = 9 (round-
ing to the nearest whole number). Figure 7.7 plots the step response predicted

by Equation (7.7) to the inputs

[
19

200

]
. We see that approximate settling time

computed by dominant pole analysis is very close to the settling time predicted
by Equation (7.7).

TLFeBOOK

SPECIAL CONSIDERATIONS IN STATE-SPACE MODELS 221

0 5 10 15

−0.25

−0.2

−0.15

−0.1

−0.05

0

 y
1 (

k)

 k

0 5

(a) Offset CPU (b) Offset MEM

10 15
0

0.1

0.2

0.3

0.4

 y
2 (

k)

 k

Fig. 7.7 Transient response of the offset values of CPU and MEM in the Apache HTTP Server.
The dashed line is the steady-state value.

7.6 SPECIAL CONSIDERATIONS IN STATE-SPACE MODELS

State-space models provide a concise way to describe systems with a large num-
ber of inputs and outputs, something that is very difficult to do with transfer
function models. However, state-space models introduce some considerations
that are not present in transfer function models. One such consideration is the
selection of state variables. Another is controllability, whether we can drive the
system to an arbitrary state if the control inputs are properly selected. A third
consideration is observability, if it is possible to determine the state x(k) based
on the measured output y(k).

7.6.1 Equivalence of State Variables

The choice of state variables is not unique. That is, for the inputs u, there are
many choices for the state variables x that produce the same outputs y. Of course,
with different state variables there are different state-space models, as specified
by A, B, and C.

Sometimes it is desirable to transform the state variables such that the state-
space model has a particular form, such as the control canonical form described
earlier. Consider the tandem queue example, in which the state variables are the
response times of the queueing systems. In practice, response-time measurements
are difficult to obtain since probes must be inserted in multiple places. Thus, it
may be more convenient to measure the number in the system (which can be
sampled by a single probe) and estimate response times using Little’s result [35]
(although this approach works well only if arrival rates do not change much). Of
course, with different state variables, there are typically different values for A,
B, and C.

It turns out that if the new state variables can be expressed as a linear com-
bination of the old state variables, there is a straightforward way to determine
A, B, and C for the new model. Let T be a n × n nonsingular matrix. Then we

TLFeBOOK

222 STATE-SPACE MODELS

can construct a state-space model using the state vector Tx(k) such that the new
model has the same input–output relationships as the original model.

To see how this works, define the new state vector as w(k) = Tx(k). Because
T is nonsingular, we can compute x(k) = T−1w(k). Substituting this equality
into Equations (7.3) and (7.4), we get

T−1w(k + 1) = AT−1w(k) + Bu(k)

y(k) = CT−1w(k)

Multiplying the first of these two equations by T on the left-hand side, we obtain

w(k + 1) = (TAT−1)w(k) + (TB)u(k)

y(k) = (CT−1)w(k)

The A, B, C matrices have been replaced by (TAT−1), (TB), (CT−1), respec-
tively. The input u and output y are the same as in the original model. Only the
choice of state variables has changed.

7.6.2 Controllability

In state-space models, we are sometimes concerned about the relationship between
the input u(k) and the state vector x(k). For example, in the tandem queue it may
be desirable to have the inputs drive the system into a specific state as characterized
by the response times of the individual queueing systems. The term controllability
means that for any achievable final state xd , there exists some sequence of input
values {u(0), u(1), . . . , u(M − 1)} that will drive the system to x(M) = xd .

Consider a system with a single input so that u(k) is a scalar. Without loss
of generality, we assume a zero initial condition x(0) = 0. Substituting into
Equation (7.8), we see that

x(k) = Ak−1Bu(0) + Ak−2Bu(1) + · · · + ABu(k − 2) + Bu(k − 1) (7.35)

Since Aj is an n×n matrix and B is n×1, Aj B is n×1. Further, the inputs u(i) are
scalars. Thus, x(k) is a linear combination of the vectors {Ak−1B, Ak−2B, . . . ,

AB, B}. It turns out that if A is n × n and k ≥ n, the space spanned by these
vectors (i.e., all linear combinations of the vectors) can be expressed as a linear
combination of the n vectors {An−1B, An−2B, . . . , AB, B}. (For more details,
see the discussion of the Cayley–Hamilton theorem in [37].) The controllability
matrix C is the matrix whose columns are these vectors. That is,

C = [
An−1B An−2B · · · AB B

]
(7.36)

where n is the number of states in the system (i.e., length of x). A linear time-
invariant system is controllable if and only if C is invertible.

If a single-input system is controllable, it is straightforward to find the inputs
needed to drive the system to a desired state. To see this, rewrite Equation (7.35)

TLFeBOOK

SPECIAL CONSIDERATIONS IN STATE-SPACE MODELS 223

for k = n and put the inputs into a vector:

x(n) = An−1Bu(0) + An−2Bu(1) + · · · + Bu(n − 1)

= [
An−1B An−2B · · · B

]



u(0)

u(1)
...

u(n − 1)




= C




u(0)

u(1)
...

u(n − 1)




and then multiply both sides of the equation by the inverse of the controllability
matrix:

C−1x(n) =




u(0)

u(1)
...

u(n − 1)


 (7.37)

Example 7.15: Controllability of a tandem queue In the tandem queue example,

A =
[

0.13 0
0.46 0.63

]

B =
[

0.069
0

]

So the controllability matrix is computed as

C = [
AB B

]

=
[

0.009 0.069
0.032 0

]

det(C) = −0.022 �= 0, so C is nonsingular. Hence, the system is controllable.

The following example considers the inputs needed to drive the IBM Lotus
Domino Server into a specific state.

Example 7.16: Controllability of the IBM Lotus Domino Server with a sensor
The state-space dynamics of the IBM Lotus Domino Server with a sensor are
given in Equation (7.28) as

x(k + 1) =
[

0.43 0
−0.037 0.64

]
x(k) +

[
0.47
0.080

]
u(k)

TLFeBOOK

224 STATE-SPACE MODELS

To determine controllability, we first compute AB:

AB =
[

0.43 0
−0.037 0.64

] [
0.47
0.080

]
=

[
0.20
0.034

]

and then form the controllability matrix

C = [
AB B

] =
[

0.20 0.47
0.034 0.080

]

Since C is a 2 × 2 matrix, its determinant is easy to compute:

det (C) = det

([
0.20 0.47
0.034 0.080

])
= (0.20)(0.08) − (0.47)(0.034) = 0.000027

Since the determinant is nonzero, C is nonsingular and hence the system is con-
trollable.

Now, suppose that we want to drive the system to the state

x(2) =
[

1
1

]

This corresponds to an increase in both v(k) and y(k) of 1. The inverse of C is

C−1 = 1

0.000027

[
0.080 −0.47

−0.034 0.20

]
=

[
300 −1800

−130 760

]

We compute the inputs that would be required as[
u(0)

u(1)

]
= C−1

[
1
1

]
=

[−1500
630

]

While we have in theory computed the inputs needed to drive the system to
x(2), these inputs are not achievable in practice. To see why, consider k = 1.
MaxUsers should be decreased from its operating point by 1500, and then at
k = 2, MaxUsers should be increased by 630 over its operating point by 630.
Since the operating point of MaxUsers is only 375, and the user pool is not
likely to change that fast, it is unreasonable to expect that this sort of change
could be achieved in practice.

The underlying issue here is that C is nearly singular, which is apparent by
det(C) being so small. Because of this, large changes in the input are required to
effect the desired change in state.

It is worthwhile to note that a system constructed from a SISO ARX model
such as Equation (7.22) using the control canonical form of Equation (7.23) is
always controllable. This is easily seen from the controllability matrix. Consider
Equation (7.23) with n = 3. The controllability matrix is

C = [
A2B AB B

] = b1


 1 0 0

a1 1 0
a2 + a2

1 a1 1




TLFeBOOK

SPECIAL CONSIDERATIONS IN STATE-SPACE MODELS 225

since

AB =

 0 1 0

0 0 1
a3 a2 a1





 0

0
b1


 = b1


 0

1
a1




A(AB) =

 0 1 0

0 0 1
a3 a2 a1


 b1


 0

1
a1


 = b1


 1

a1

a2 + a2
1




Note that the diagonal entries in the controllability matrix C are all b1, and the
entries above the diagonal are all zeros. This means that det(C) = b3

1. So the
controllability matrix is invertible, and the system is controllable. This makes
intuitive sense as well in that b1 �= 0 means that the control input has an effect
on the measured output.

The foregoing analysis can be generalized to consider mI > 1 inputs. If u(k)

is mI × 1, then B is an n × mI matrix, which means that C has dimensions
n × nmI . Thus, the criteria for controllability is that rank(C) = n. (See [50] for
more details.)

7.6.3 Observability

State-space models express dynamics in terms of state variables. Thus, sys-
tem identification and prediction require measured values of state variables or
ways to infer these values. A system is observable if all states of the sys-
tem can be deduced by observing the measured outputs. Consider the tandem
queue in Example 7.1. The states are the individual response times of the two
queueing systems, and the measured output is the end-to-end response time. If
the system is observable, we can infer the components of response time from
the end-to-end response time. Doing so would allow us to isolate the bottle-
neck queueing system, an important consideration in problem determination and
tuning.

We begin by considering a system with n states and 1 output. Without loss of
generality, assume that the input is zero since nonzero inputs can be handled using
the principle of superposition. Thus, observability means that the following holds:
Given the system model specified by A, B, C and the outputs y(0), . . . , y(k),
we can determine the state x(k).

First, note that if we know x(0), then y(k) is readily determined. To see this,
note that by applying Equation (7.3) repeatedly, y(k) = Cx(k) = CAkx(0). After
n sample times, we have



y(n − 1)

y(n − 2)
...

y(1)

y(0)




=




CAn−1x(0)

CAn−2x(0)
...

CAx(0)

Cx(0)




=




CAn−1

CAn−2

...

CA
C




x(0)

TLFeBOOK

226 STATE-SPACE MODELS

Now consider the observability matrix O, which relates the initial condition
to the output.

O =




CAn−1

CAn−2

...

CA
C




(7.38)

If O is invertible, we can readily compute x(0) from the output sequence. That
is,

x(0) = O−1




y(n − 1)

y(n − 2)

...

y(1)

y(0)




A linear time-invariant system is observable if and only if O is invertible.

Example 7.17: Inferring components of end-to-end response times in a tandem
queue Consider the state description of the tandem queue in Example 7.5 for
which

x(k + 1) =
[

0.13 0
0.46 0.63

]
x(k) +

[
0.069
0

]
u(k)

y(k + 1) = [
1 1

]
x(k)

That is, A =
[

0.13 0
0.46 0.63

]
and C = [

1 1
]
. So O =

[
1 1
0.59 0.63

]
. Note that

det(O) = (1)(0.63)− (1)(0.59) �= 0. So the observability matrix is invertible and
hence the system is observable.

Since the tandem queue is observable, we can recover state information from

the output. Suppose that the tandem queue has the initial conditions x(0) =
[

1
1

]
,

which means that the response time for queueing system 1 is R1 + 1 = 3.5,
and the response time for queueing system 2 is R2 + 1 = 7.5. Assuming that
u(k) = 0, the output of the system is y(0) = Cx(0) = 2, y(1) = CAx(0) = 1.22.

Now suppose that we are given O, y(0), and y(1), but we cannot directly
measure the response times of the individual queueing systems. Since the system
is observable, we can determine x(0) as follows:

x(0) = O−1
[
y(1)

y(0)

]

TLFeBOOK

SPECIAL CONSIDERATIONS IN STATE-SPACE MODELS 227

=
[

15.75 −25
−14.75 25

] [
2
1.22

]

=
[

1
1

]

While the foregoing is an interesting example, it has practical limitations in
that a modest level of noise in the output can make it difficult to estimate internal
state. A more reliable approach to inferring the values of state variables is to use
online observers. More details on this topic can be found in [9].

The following is a more elaborate example of checking for observability.

Example 7.18: Observability of a third-order ARX model Consider a third-
order ARX model

y(k) = a1y(k − 1) + a2y(k − 2) + a3y(k − 3) + b1u(k − 1)

which we time shift to

y(k + 1) = a1y(k) + a2y(k − 1) + a3y(k − 2) + b1u(k) (7.39)

As described in Section 7.4, this can be expressed as a state-space model:
 y(k − 1)

y(k)

y(k + 1)


 =


 0 1 0

0 0 1
a3 a2 a1





 y(k − 2)

y(k − 1)

y(k)


 +


 0

0
b1


u(k)

y(k) = [
0 0 1

] 
 y(k − 2)

y(k − 1)

y(k)




The A, C matrices are given by

A =

 0 1 0

0 0 1
a3 a2 a1


 C = [

0 0 1
]

To find the observability matrix, we need to compute CA and CA2. First, we
compute CA:

CA = [
0 0 1

] 
 0 1 0

0 0 1
a3 a2 a1




= [
a3 a2 a1

]
and then CA2:

CA2 = CA(A) = [
a3 a2 a1

]
 0 1 0

0 0 1
a3 a2 a1




= [
a1a3 a1a2 + a3 a2

1 + a2
]

TLFeBOOK

228 STATE-SPACE MODELS

Now, we form the observability matrix:

O =

CA2

CA
C


 =


 a1a3 a1a2 + a3 a2

1 + a2
a3 a2 a1
0 0 1




To determine if O is invertible, we compute its determinant using Equation (7.17).
With a little computation, we discover that det(O) = −a2

3. So the system is observ-
ability as long as a3 �= 0. We note in passing that if a3 = 0, we would have a
second-order rather than a third-order system.

What should be done if a system is not observable? First, we note that although
observability is often desirable, it is not essential. (In contrast, stability is essen-
tial.) If observability is a requirement and O is singular, the most common
approach is to include additional variables in the measured outputs that can be
predicted by the x(k). Indeed, even if the system is theoretically observable, it
may be that the observability matrix O is nearly singular and so in practice it
may be difficult to reconstruct all of the state variables, particularly if there is
noise in the output (a common situation in computing systems). Such systems
may also require additional measured outputs.

7.7 SUMMARY

1. Transfer function models are effective at modeling SISO systems, those
with a single input and a single output. State-space models provide a scal-
able approach to modeling MIMO systems, those with a multiple inputs
and outputs. Specifically, if there are mI inputs and mO outputs, then there
are mI × mO transfer functions but only two state-space equations.

2. The set of variables used in a state-space model is called the state vector
or just state. The value of the state vector at time k is denoted by x(k).

3. A state-space model consists of two equations. The first, x(k+1) = Ax(k)+
Bu(k), describes the dynamics of the state variables. The second, y(k) =
Cx(k), specifies how state affects the measured outputs.

4. A system represented by an nth-order difference equation can be converted
into a state-space model in a straightforward way.

5. A state-space model can be viewed as a first-order difference equation. This
can be solved either directly by recursion or indirectly with Z-transforms.

6. The poles of a state-space system are the eigenvalues of the A matrix.
7. Using the bounded-input, bounded-output (BIBO) criterion of Theorem 3.2,

a system is stable if the eigenvalues of A are inside the unit circle.
8. The settling time and maximum overshoot of a stable state-space model are

computed from its poles in the same way as is done with transfer function
models.

TLFeBOOK

EXTENDED EXAMPLES 229

TABLE 7.1 Key Differences between State-Space and Transfer Function Frameworks

Property Transfer Function State Space

Domain z Time
Poles Roots of denominator polynomial Eigenvalues of the A matrix
Uniqueness Unique Many equivalent representations
Suited for SISO MIMO and SISO

9. State-space models have a transfer function matrix G(z) that relates inputs
to outputs, where G(z) = C(zI − A)−1B. That is, Y(z) = G(z)U(z).

10. The steady-state gain for state-space models is G(1) = C(I − A)−1B if the
system is stable. The steady-state values of a state-space model can be
found using the final value theorem.

11. A system is controllable if it can be driven to an arbitrary state by prop-
erly choosing a sequence of inputs. This condition holds if and only if its
controllability matrix C has full rank.

12. A system is observable if its state can be inferred from its outputs. This
condition holds if and only if the observability matrix O has full rank.

13. Table 7.1 compares transfer function and state-space models. In practice,
the choice between transfer function and state-space models depends on the
structure of the problem at hand.

7.8 EXTENDED EXAMPLES

We begin with a case study of MIMO system identification, a key challenge in
constructing MIMO models of computing systems. Considered next is a state-
space model of the IBM Lotus Domino Server with a sensor delay.

7.8.1 MIMO System Identification of the Apache HTTP Server

In this section we use the Apache HTTP Server to describe an approach to system
identification for MIMO models and demonstrates the value of using a MIMO
model instead of multiple SISO models.

In the Apache HTTP Server, the inputs are MaxClients (MC) and Keep-
Alive (KA); the outputs are CPU and MEM. We consider the operating point
KA = 11, MC = 600, CPU = 0.58, and MEM = 0.55. Hence,

u1(k) = KA(k) − KA = KA(k) − 11

u2(k) = MC(k) − MC = MC(k) − 600

y1(k) = CPU(k) − CPU = CPU(k) − 0.58

y2(k) = MEM(k) − MEM = MEM(k) − 0.55

TLFeBOOK

230 STATE-SPACE MODELS

Further,

u(k) =
[
u1(k)

u2(k)

]

x(k) = y(k) =
[
y1(k)

y2(k)

]

The goal of system identification is to construct a model that relates inputs to
outputs. Doing so requires having data that vary the inputs over a range that is
representative of what will occur in practice. Our approach varies MaxClients
and KeepAlive using discrete sine waves based on the following principles:

• The operating point of each input is chosen to be its mean value over the
run.

• The amplitude of the sine wave is selected to cover the range of possible
values of the input.

• For MIMO system identification, the periods of the two sine waves are
relatively prime (i.e., not a multiple of one another). By so doing, we
obtain a more uniform coverage of the input space.

Applying these principles, the MaxClients sine wave has a mean of 600, an
amplitude of 500, and a period of 500 seconds. The KeepAlive sine wave has a
mean of 11, an amplitude of 10, and a period of 1200 seconds. Figure 7.8 shows
both input signals plotted over time as well as a scatter plot of KeepAlive
versus MaxClients. Note that a fairly uniform coverage of the input space is
achieved.

We consider two approaches to modeling the Apache HTTP Server: mul-
tiple SISO models and a single MIMO model. The multiple SISO approach
is depicted in Figure 7.9(a). One SISO model captures the relationship between
KeepAlive and CPU; the other SISO model quantifies the relationship between

0 1000 2000
0

5

10

15

20

Time (sec)

K
A

0 1000 2000
0

200

400

600

800

1000

1200

Time (sec)

M
C

0 10 20
0

200

400

600

800

1000

1200

KA
(a) KeepAlive input (b) MaxClients input (c) Coverage of input space

M
C

Fig. 7.8 Inputs used for system identification, and the coverage of the input space.

TLFeBOOK

EXTENDED EXAMPLES 231

MC
SISO

MEM

KA
SISO

CPU

MC MEM

CPU

MIMO

KA

(a) Two SISO models (b) One MIMO model

Fig. 7.9 Architectures for the Apache HTTP Server with two inputs and two outputs.

MaxClients and MEM. The second approach is depicted in Figure 7.9(b), where
a single MIMO model captures the relationship between the inputs and the
outputs.

The two approaches to modeling the Apache HTTP Server result in slightly
different considerations for system identification. For the multiple SISO approach,
separate system identification is done for the two SISO models as described in
Section 2.4.2. The one additional consideration made here is to choose the value
of KeepAlive (MaxClients) when MaxClients (KeepAlive) is varied.
We use KeepAlive = 11 (MaxClients = 600), which is its mean value.
MIMO system identification varies the inputs simultaneously. Note that in general
more data are required for MIMO system identification than for SISO in order
to obtain uniform coverage of the input space (especially if there are more than
two inputs).

Figure 7.10 plots the input data used and the outputs from system identification
experiments. Model parameters are estimated using least-squares regression, as

MC

KA

CPU

MEM

Time (seconds)
0 1500

MC

KA

CPU

MEM

Time (seconds)
0 1500

Time (seconds)

(a) SISO model, vary (b) SISO model, vary (c) MIMO model, vary

KeepAlive MaxClients KeepAlive, MaxClients

MC

KA

CPU

MEM

0
1000

20
0

1
0

1
0

0 1500

Fig. 7.10 Results of system identification experiments for the Apache HTTP Server. In the
SISO models, only one input is varied; the other is set to its mean value. In the MIMO model,
both inputs are varied simultaneously. All three plots have the same scale.

TLFeBOOK

232 STATE-SPACE MODELS

described in Section 2.4.3. The SISO models identified in this way are

y1(k + 1) = 0.60y1(k) − 0.014u1(k) (7.40)

y2(k + 1) = 0.49y2(k) + 0.00036u2(k) (7.41)

The MIMO model is[
y1(k + 1)

y2(k + 1)

]
=

[
0.54 −0.11

−0.026 0.63

] [
y1(k)

y2(k)

]

+
[−0.0085 0.00044
−0.00025 0.00028

] [
u1(k)

u2(k)

]
(7.42)

Next, we evaluate the quality of the models produced by the multiple SISO
and MIMO approaches. The first evaluation employs one-step prediction (as
described in Section 2.4.4), in which the predicted output at k + 1 is compared
with the observed value y(k + 1). We focus on CPU since MEM is relatively easy
to predict. Figure 7.11 plots predicted versus measured values of CPU. A perfect
model has all observations (the diamonds) on the line of unit slope. Figure 7.11(a)
plots the SISO results using the SISO data. The fit is quite good; R2 = 0.93.
Figure 7.11(b) plots the results for the MIMO model using the MIMO data (both
inputs are varied). The fit here is also quite good, R2 = 0.92.

At first glance, it may seem that the predictions of the SISO model are as
accurate as those of the MIMO model. However, this is not the case. The issue
is that SISO identification does not vary MaxClients, so it tells us much
less than the MIMO model. Indeed, if we use the SISO model on the MIMO
data, in which both KeepAlive and MaxClients vary, the SISO model does
considerably worse. This is shown in Figure 7.11(c), where R2 = 0.78.

Our second evaluation employs multiple step predictions. For this, we use data
collected from a real Apache HTTP Server. Figure 7.12 compares the predictions
obtained from the SISO and MIMO models with the Apache HTTP Server. It
is clear that the SISO model is much less accurate than the MIMO model in

0 1
0

1

P
re

di
ct

ed

Actual
0 1

0

1

P
re

di
ct

ed

Actual
0 1

0

1

P
re

di
ct

ed

Actual

(a) SISO model
SISO data
R2 = 0.93

(b) MIMO model
MIMO data
R2 = 0.92

(c) SISO model
MIMO data
R2 = 0.78

Fig. 7.11 Results of one-step-ahead predictions for the CPU utilization. In each plot, the
horizontal axis is the actual value and the vertical axis is the predicted value. The line indicates
when the actual value equals the predicted value, which occurs when the model is perfect.

TLFeBOOK

EXTENDED EXAMPLES 233

0

1

C
P

U

0

1

M
E

M

0

20

K
A

0 500 1000 1500
0

1000

M
C

Time (seconds)

0

1

C
P

U

0

1

M
E

M

0

20

K
A

0 500 1000 1500
0

1000

M
C

Time (seconds)

(a) SISO model prediction (b) MIMO model prediction

Fig. 7.12 Results of multiple step prediction. In each plot, the solid line is the experimental
data and the dashed line is the model prediction. Both tuning parameters are varied in the
experiment.

terms of predicting the effect of MaxClients on CPU. However, there are
regions in which the accuracy of the MIMO model degrades, especially when
KeepAlive = 6 and MaxClients = 800. These regions reflect limitations of
the linear model. In particular, the linear model is most accurate near the center
of the operating region (KeepAlive = 11 and MaxClients = 600) and less
accurate farther from the center of the operating region.

Once we have a system model, it can be used in many ways. For example,
the system model can be used to determine regions of feasible outputs. Consider
the SISO system models in Equations (7.40) and (7.41) and the MIMO model
in Equation (7.42). These models can be used to determine steady-state values
of CPU and MEM based on the ranges of the inputs KeepAlive and Max-
Clients. This is illustrated in Figure 7.13. Figure 7.13(a) displays the range of
KeepAlive and MaxClients used. The corners that define the boundaries of
this range are labeled a, b, c, and d. Figure 7.13(b) displays four candidate values
of (CPU, MEM), as depicted by the bold x’s. The dashed rectangle is the feasible
region of MEM and CPU predicted by the SISO models based on the inputs in
Figure 7.13(a). Each corner is labeled with a letter enclosed in a dashed box
to indicate the point in the input space that produces that output. The solid
parallelogram is the feasible region predicted by the MIMO model, and its visi-
ble corners are labeled by letters enclosed in a solid box. The x’s indicate four
combinations of MEM and CPU. Note that all four x’s fall within the rectangle
that the SISO models predict as being feasible, while only two of the x’s are
predicted as being feasible by the MIMO model.

Consider (CPU = 0.3,MEM = 0.7), a point that the MIMO model predicts as
infeasible for the input range but that the SISO model predicts is feasible. Invert-
ing the MIMO model, we determine that the inputs needed to realize these outputs
are (KA = 30,MC = 800), a combination that does not lie within Figure 7.13(a).
Our experimental results using a testbed with a production Apache HTTP Server

TLFeBOOK

234 STATE-SPACE MODELS

0 5 10 15 20
0

200

400

600

800

1000

1200

KeepAlive

M
ax

C
lie

nt
s

a b

c d
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

CPU

(a) Range of inputs (b) Predicted range of feasible outputs

M
em

or
y

x

x

x

x

d
c

a ba

d

Fig. 7.13 Determining feasible regions for steady-state values of outputs. Part (a) shows the
range of KeepAlive and MaxClients considered. The corners of this region are labeled a,
b, c, d. Part (b) displays the regions into which the inputs are mapped. The SISO predictions
are indicated by the dashed rectangle, with corners labeled with letters enclosed in dashed
squares in correspondence to the input range. The MIMO model prediction is enclosed by the
solid line (parallelogram) with visible corners labeled with solid squares in correspondence with
its associated input. Candidate outputs are denoted by an ‘‘×’’.

confirm this conclusion. The second point that the MIMO model predicts is
infeasible is (CPU = 0.8,MEM = 0.4). Again inverting the MIMO model, we
determine that (KA = −10,MC = 450), a setting that cannot be achieved since
KeepAlive cannot be negative. Once again, our experimental results confirm
the results of the MIMO model.

7.8.2 State-Space Model of the IBM Lotus Domino Server
with Sensor Delay

In this section we study the IBM Lotus Domino Server with a sensor delay of
one time unit, which is an extension of Example 7.9. The difference equation
for the IBM Lotus Domino Server is given by Equation (7.25): v(k + 1) =
0.43v(k) + 0.47u(k). From Section 3.5.2 we know that the transfer function of
the sensor is

H(z) = Y (z)

V (z)
= b0z + b1

z(z − a)

Putting this into the form of a difference equation and including the values of
the constants obtained from system identification as reported in Section 3.5.2, we
have

y(k + 2) = 0.80y(k + 1) + 0.72v(k + 1) − 0.66v(k) (7.43)

To construct a state-space representation of this system, we start with the state
vector. There are two equations (one for the IBM Lotus Domino Server and one

TLFeBOOK

EXTENDED EXAMPLES 235

for the sensor), but in total, there are three delays. Thus, the state vector must be
three-dimensional. We choose

x(k) =

x1(k)

x2(k)

x3(k)


 =


 v(k)

y(k)

y(k + 1)




So the state-space equation can be expressed as

x(k + 1) =

v(k + 1)

y(k + 1)

y(k + 2)


 =


0.43 0 0

0 0 1
a31 a32 a33





 v(k)

y(k)

y(k + 1)


 +


0.47

0
b3


u(k)

y(k) = [
0 1 0

]

 v(k)

y(k)

y(k + 1)


 = Cx(k)

The first row of the A and B matrices is obtained in from Equation (7.25). The
second row is just the equality y(k + 1) = y(k + 1). The third row has four
unknowns: a31, a32, a33, and b3. To determine the values of these constants, we
use Equation (7.25) and substitute for v(k) in Equation (7.43).

y(k + 2) = 0.80y(k + 1) + 0.72 (0.43v(k) + 0.47u(k)) − 0.66v(k)

= −0.35v(k) + 0y(k) + 0.8y(k + 1) + 0.34u(k)

That is, a31 = −0.35, a32 = 0, a33 = 0.8, and b3 = 0.34. In matrix form, this is

x(k + 1) =

v(k + 1)

y(k + 1)

y(k + 2)


 =


 0.43 0 0

0 0 1
−0.35 0 0.80





 v(k)

y(k)

y(k + 1)


 +


0.47

0
0.34


 u(k)

This is in the form of Equation (7.3) with

A =

 0.43 0 0

0 0 1
−0.35 0 0.80




B =

0.47

0
0.34




We now illustrate the operation of this system in terms of the state-space
equation. Suppose that the system starts at its operating point. That is, x(0) = 0
or v(0) = y(0) = y(1) = 0). Now, consider a step input of magnitude 20 which
is applied at time k = 1. This means that the value of MaxUsers is increased
to 20 more than its operating point (or to a value of 395). We can solve for the

TLFeBOOK

236 STATE-SPACE MODELS

state vector as a function of time using the state-space equations.

x(0) =

0

0
0




x(1) = Ax(0) + Bu(0) =

9.4

0
6.8




x(2) = Ax(1) + Bu(1) =

13.4

6.8
8.9




x(3) = Ax(2) + Bu(2) =

15.2

8.9
9.2




Figure 7.14 displays the step response of the three state variables. The steady-
state values of the states can be found using an analysis similar to Equation (7.34)
by observing that

x(z) = (zI − A)−1U(z)

Thus, we have the steady-state values of the states expressed as

xss = (I − A)−1Buss

=

0.57 0 0

0 1 −1
0.35 0 0.20




−1 
0.47

0
0.34


 (20)

=

16.5

4.9
4.9




0 10 20
0

5

10

15

20

Time (k)

x 1 =
 R

IS
 o

ffs
et

0 10 20
0

2

4

6

8

10

Time (k)

x 2
=

M
ea

su
re

d
R

IS
 o

ffs
et

0 10 20
0

2

4

6

8

10

x 3

Time (k)

(a) x1(k) = v(k) (b) x2(k) = y(k) (c) x3(k) = x2(k + 1)

Fig. 7.14 Step response of the IBM Lotus Domino Server.

TLFeBOOK

CONSTRUCTING STATE-SPACE MODELS IN MATLAB 237

*7.9 CONSTRUCTING STATE-SPACE MODELS IN MATLAB

In this section we use Equation (7.7) to demonstrate the construction and analysis
of state-space models in MATLAB. We begin by entering the matrices that define
the state-space model:

>>A = [0.54 -0.11; -0.026 0.63]

A =
0.5400 -0.1100
-0.0260 0.6300

>>B = [-0.0085 0.00044; -0.00025 0.00028]

B =

-0.0085 0.0004
-0.0003 0.0003

>>C = [1 0; 0 1]

C =

1 0
0 1

Next, we use the MATLAB ss command to construct the state-space model:

>>sys = ss(A,B,C,0,-1)

a =
x1 x2

x1 0.54 -0.11
x2 -0.026 0.63

b =
u1 u2

x1 -0.0085 0.00044
x2 -0.00025 0.00028

c =
x1 x2

y1 1 0
y2 0 1

TLFeBOOK

238 STATE-SPACE MODELS

d =
u1 u2

y1 0 0
y2 0 0

Sampling time: unspecified
Discrete-time model.

The MATLAB ss function generalizes the state-space model in two ways. First,
Equation (7.4) is generalized to y(k) = Cx(k)+ Du(k). D is the fourth argument
of ss, so we set it to 0. Second, ss can specify both continuous- and discrete-
time models. The latter can be indicated by having −1 as the fifth argument
of ss.

The poles of the model can be found by computing the eigenvalues of A using
the eig function:

>>eig(A)

ans =

0.5151
0.6549

We can also find the poles directly from the model object sys:

>>pole(sys)

ans =

0.5151
0.6549

Further, the model object sys can be used to compute steady-state gain:

>>DCG = dcgain(sys)

DCG =

-0.0186 0.0008
0.0006 0.0007

The four outputs represent the steady-state gain of each of the two inputs for
each of the two outputs. The response to a step input can be obtained using

TLFeBOOK

EXERCISES 239

>>y=step(sys,1:10)

y(:,:,1) =

-0.0085 -0.0003
-0.0131 -0.0002
-0.0155 -0.0000
-0.0169 0.0001
-0.0176 0.0003
-0.0181 0.0004
-0.0183 0.0005
-0.0184 0.0005
-0.0185 0.0006
-0.0186 0.0006

y(:,:,2) =

1.0e-003 *

0.4400 0.2800
0.6468 0.4450
0.7403 0.5435
0.7800 0.6032
0.7948 0.6397
0.7988 0.6624
0.7985 0.6765
0.7968 0.6854
0.7949 0.6911
0.7932 0.6947

The rows indicate the time k. The first two columns, y(:,:,1), are the responses
of the first output to the inputs. The second two columns are the responses of the
second output to the inputs. Note that the transient response converges to the
steady-state gain.

7.10 EXERCISES

1. Using the Apache HTTP Server model of Equation (7.7), predict the final
values of CPU and MEM for settings of MaxClients = 400 and KeepAlive
= 15. What is predicted to occur if KeepAlive = 1 and MaxClients =
1000? Is this realistic? Why or why not? What does the result tell you about
the model?

TLFeBOOK

240 STATE-SPACE MODELS

2. Consider the state-space model in which

A =
[
a11 a12
a21 a22

]
=

[
0.54 −0.11

−0.26 0.63

]

What is the settling time of this system if a11 is 10% larger? How about
10% smaller? How much would settling times change if there could be a
maximum of a 10% error in estimating any of the aij ?

3. For the IBM Lotus Domino Server with a sensor that has no delay, pre-
dict the steady-state values of all of the states for a step input of 20 (i.e.,
MaxUsers is 20 over its operating point). How do the steady-state values
of the state variables in the no-delay system compare with the steady-state
values of the system in Section 7.8.2?

4. Check the observability of the IBM Lotus Domino Server and sensor model
both with and without delay in the sensor. Explain the answers you obtained.

5. For the IBM Lotus Domino Server with a sensor and a delay of two time
units,

(a) How many states will be needed?
(b) Put the equations into state-space form.
(c) Check the stability of the system. What are the poles?
(d) Construct the observability matrix O and determine whether or not the

system is observable.
(e) Construct the controllability matrix C and determine whether or not the

system is controllable.
(f) Predict the steady-state values of all the states to a step input of 10

(MaxUsers is 10 over its operating point).
(g) Find and plot the step response (only the output).

6. Using the state-space model of the tandem queue in Example 7.5,

(a) Study the response to initial condition

x(0) =
[

1
1

]

(b) Predict the end-to-end response time when the size of buffer 1 is 30.

7. Convert the following state-space models into transfer function models:

(a) A =
[

10 10
3 5

]
, B =

[
3
0

]
, C = [

3 1
]

(b) A =
[

1 1
0.5 0.5

]
, B =

[
1
1

]
, C = [

1 0
]

TLFeBOOK

EXERCISES 241

(c) A =

10 27 5

12 5 22
3 16 22


 , B =


 2 2

3 0
10 0


 , C = [

1 1 0
]

8. Convert the following ARX models into state-space models:

(a) y(k) = 0.2y(k − 1) + 0.3y(k − 2) + u(k − 1)

(b) y(k) = 0.1y(k − 1) − 0.4y(k − 2) + y(k − 3) + 0.5u(k − 1)

(c) y(k) = y(k − 2) + 0.3y(k − 4) + u(k − 2)

9. Analyze the stability and steady state gains of the following state-space
models:

(a) A =
[

0.25 10
5 0.5

]
, B =

[
1
0

]
, C = [

1 1
]

(b) A =
[

1 1
1 0.5

]
, B =

[
0
1

]
, C = [

0 1
]

(c) A =

1 7 5

2 5 2
1 6 8


 , B =


1

1
0


 , C = [

1 1 1
]

10. Analyze the controllability and observability of the following state-space
models:

(a) A =
[

0 2
5 0

]
, B =

[
1
0

]
, C = [

1 0
]

(b) A =

1 1 2

1 0 1
2 3 4


 , B =


0

1
2


 , C = [

0 1 1
]

(c) A =




1 4 2 3
1 2 2 10
1 9 8 7
1 2 1 9


 , B =




1 9
1 0
0 8
2 7


 , C = [

1 0 1 0
]

TLFeBOOK

TLFeBOOK

Part III

Control Analysis
and Design

243

TLFeBOOK

TLFeBOOK

8
Proportional Control

In this chapter we describe proportional control and analyze its characteristics
in computing systems. We use the simplicity of proportional control as a way to
provide insights into feedback control systems, including detailed examples with
step-by-step simulations. We introduce the concept of pole placement design, a
technique that views control design as constructing systems with desired closed-
loop poles. Other topics covered in this chapter include assessing controller
quality, controlling a first-order system with measurement delays and a moving-
average filter, and root locus analysis.

8.1 CONTROL LAWS AND CONTROLLER OPERATION

In this section we provide a detailed description of the operation of a feedback
control system. The intent is to familiarize the reader with the inputs, outputs,
and components of feedback systems and to gain insights into important prop-
erties. Consider the IBM Lotus Domino Server. We want to use MaxUsers to
control the number of RPCs being processed in the server (which is roughly
equal to the number of active users). Figure 8.1 puts this into a general frame-
work. The IBM Lotus Domino Server is the target system. Its control input is
MaxUsers, and the output is RIS, the number of RPCs in the Notes Server.
The operating point of the IBM Lotus Domino Server is (MaxUsers, RIS). In
our case, (MaxUsers, RIS) = (375, 325). The kth offset value of the input is

Feedback Control of Computing Systems, by Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury
ISBN 0-471-26637-X Copyright c© 2004 John Wiley & Sons, Inc.

245

TLFeBOOK

246 PROPORTIONAL CONTROL

G(z)
U(z) Y(z)

Fig. 8.1 Open-loop control. Administrator specifies the control input U(z) needed to achieve
the output desired.

u(k) = MaxUsers(k)−MaxUsers, and for the output it is y(k) = RIS(k)−RIS.
For the purposes of this example, we want the steady-state value of the output
to be 335. That is, yss = 10.

Our first observation is that the control input and output are in different units.
The control input, MaxUsers, refers to the number of connected users, whereas
the output is in units of active users. The relationship between the units of the
input and output is described by the transfer function of the target system. We
use G(z) to denote the transfer function, where G(z) = Y (z)/U(z). From the
system identification studies of the IBM Lotus Domino Server in Chapter 2,

G(z) = Y (z)

U(z)
= 0.47

z − 0.43

In the time domain, this is y(k+1) = (0.43)y(k)+(0.47)u(k). Further, we know
from Chapter 3 that the steady-state gain is G(1) = yss/uss. Thus, the value of
MaxUsers needed so that yss = 10 is uss = yss/G(1) = 10/0.82 = 12.

Figure 8.2 displays the results of simulating the system in Figure 8.1 using
the time-domain form of G(z) for the IBM Lotus Domino Server. We assume
that y(0) = 0. Thus, y(1) = (0.43)y(0) + (0.47)u(0) = (0.47)(12) = 5.7; and
y(2) = (0.43)y(1)+ (0.47)u(1) = (0.43)(0.57)+ (0.47)(12) = 8.1. Note that by
k = 5, we have y(k) = 9.9. Thus, by having the administrator specify the proper
input u(k), we are able to achieve the desired output y(k).

Now consider administrative tasks that occasionally execute in the background.
Such tasks can affect the way that MaxUsers operates. In general, these effects
are referred to as disturbances. Other examples of disturbances are changes in
workload and transient failures of hardware and software.

0

20

40

u(k)

0 1 2 3 4 5
0

20

40

 k

y(k)

Fig. 8.2 Simulation of the open-loop system in Figure 8.1 with a = 0.43 and b = 0.47. To
achieve y(k) = 10, we must set u(k) = 12.

TLFeBOOK

CONTROL LAWS AND CONTROLLER OPERATION 247

Figure 8.3 shows a block diagram in which open-loop control is done in
the presence of a disturbance. The disturbance signal is denoted by D(z). The
effect of the disturbance is modeled by adding d(k) to the value specified by the
administrator.

Figure 8.4 extends the simulation in Figure 8.2 to consider the disturbance
in Figure 8.3. In the first five time units, d(k) = 0, so we are able to achieve

G(z)

D(z)

U(z) Y(z)
++

Fig. 8.3 Open-loop control in the presence of a disturbance. Administrator specifies the
control input U(z) needed to achieve the desired output Y (z), but the effect of the control is
modified by the disturbance.

0

20

40

u(k)

0

20

40

d(k)

0

20

40

q(k)

0 1 2 3 4 5 6 7 8 9 10
0

20

40

k

y(k)

Fig. 8.4 Simulation of the open-loop system in Figure 8.3 with G(z) = Y (z)
U(z)

= 0.47
z−0.43 , and

d(k) = 20 for k ≥ 5. The output differs greatly from the desired value of 10 once d(k) �= 0.

TLFeBOOK

248 PROPORTIONAL CONTROL

R(z)
G(z)

Y(z)

D(z)

E(z) U(z)
+++

−
KP

Fig. 8.5 Feedback using proportional control. There are two inputs: the reference R(z) and
the disturbance D(z).

y(k) = 10. When k = 5, the disturbance d(k) = 20. To find the new steady-
state output, we must add the effect of the disturbance to the control input, so
yss = G(1)(uss + dss) = (0.82)(12 + 20) = 26.3 >> 10.

Compensating for disturbances requires a more complex system, as displayed
in Figure 8.5. First, we must explicitly specify the desired output value. This is
called the reference signal and is denoted by r(k). Second, we compute settings
of the control input, u(k), based on current and past values of y and r . More
precisely, we compute the control error, denoted by e(k), which is the difference
between the desired and actual values of the output. That is, e(k) = r(k) − y(k).

It is the responsibility of the controller to determine the value of u(k) based
on current and past values of e(k). This is done by specifying a control law that
quantifies how to set the control input to the target system. In this chapter we
study the proportional control law. Formally, the proportional control law is

u(k) = KPe(k) (8.1)

where KP is a constant that is chosen when designing the proportional con-
troller. KP is often referred to as the controller gain of the proportional controller.
Observe that the transfer function of a proportional controller is

U(z)

E(z)
= KP (8.2)

In Figure 8.5 we see a block labeled KP that corresponds to a proportional con-
troller.

Figure 8.6 simulates the operation of Figure 8.5 for the same disturbance as in
Figure 8.4. The figure displays the input signals r(k) and d(k). r(k) = 10 = rss
since this is the desired value for y(k). For the purposes of this example, we use
KP = 2. (In the remaining sections of this chapter we address the choice of KP.)

We start with k = 0, and assume that y(0) = 0 (the system starts at its
equilibrium value). Thus, e(0) = rss−y(0) = 10. We use the proportional control
law in Equation (8.1) to compute u(0). So u(0) = KPe(0) = 20. With this, we use
the difference equation for G(z) to calculate y(1) = 0.43y(0) + 0.47u(0) = 9.4.

Thus, by increasing the reference input r(k) from 0 to 10, we cause the control
error to increase, which in turn increases u thereby increasing y. This happens
because KP > 0 and b = 0.47 > 0. (Clearly, if b < 0, we want KP < 0.) To

TLFeBOOK

CONTROL LAWS AND CONTROLLER OPERATION 249

0

20

 r(k)

0

20

 e(k)

0

20

 d(k)

0

30

 u(k)

0 2 4 6 8 10
0

20

 k

 y(k)

Fig. 8.6 Simulation of a proportional controller for a step response in the presence of a
disturbance. Initial conditions are zero. The target system has the transfer function G(z) =
0.47/(z − 0.43), and KP = 2. The dashed line shows the reference value for y(k).

summarize the calculations:

e(0) = r(0) − y(0) = 10 − 0 = 10

u(0) = KPe(0) = (2)(10) = 20

y(1) = 0.43y(0) + 0.47u(0) = 9.4

Now, we begin the feedback sequence again with k = 1. Note that k advances
as we traverse G(z) because this block includes a time lag. Had there been other
blocks with time lags, more time may have elapsed in traversing the feedback
loop.

Moving ahead to k = 4, observe that y(k) converges to a value that is less
than the reference value. Thus, the steady-state error ess is greater than zero since
ess = rss −yss. Put differently, the controller is inaccurate in that its output differs
from what is desired. With proportional control, if the control error e(k) is zero,
the control input u(k) is also zero. Thus, if the reference and/or the disturbance

TLFeBOOK

250 PROPORTIONAL CONTROL

input is nonzero in a system with proportional control, there will be a nonzero
steady-state error.

One approach to dealing with this steady-state error is to use precompensation,
a technique that adjusts the reference input to compensate for this inaccuracy.
Of course, this cannot compensate for the inaccuracy due to a disturbance (unless
the disturbance is known and can be measured). Precompensation is illustrated
in Section 8.7.2. In Chapter 9 we describe how integral control can be used to
eliminate steady-state errors to both reference and disturbance inputs.

A second observation is that the transient response to the change in the ref-
erence is such that there are some oscillations in the y values. In particular,
y(1) > y(5) and y(2) < y(5). That is, this system overshoots its steady-state
value. From Chapter 5 we know that this is a characteristic of a first-order sys-
tem with a negative pole. Such oscillations contribute to variability, which is
undesirable for interactive and real-time applications.

Now consider what happens when d(k) > 0 starting at k = 5. Note that
y(5) = 6.4. So

e(5) = rss − y(5) = 10 − 6.4 = 3.6

u(5) = KPe(5) = (2)(3.6) = 7.2

The calculation of y(6) must consider d(5) since this is nonzero.

y(6) = 0.43y(5) + 0.47[u(5) + d(5)] = 15.5

Thus, the effect of the disturbance at k = 5 is to increase y(6). This causes e(6)

to be negative, which in turn reduces u(6) and hence decreases y(7). That is,

e(6) = rss − y(6) = 10 − 15.5 = −5.5

u(6) = KPe(6) = 2(−5.5) = −11

y(7) = 0.43y(6) + 0.47[u(6) + d(6)] = 10.9

These simple computations illustrate how the feedback controller compensates
for a disturbance. The disturbance causes the output to increase, the control error
then increases, and the feedback mechanism adjusts the control input to reduce
the error.

Moving ahead to k = 10, we see that y(k) again converges to a new steady-
state value. Thus, in some sense the controller is able to reject the effects of
the disturbance. Even so, observe that y(10) �= 10 = rss, which is the value we
hope to achieve. Further, y(10) = 12.7 > 6.4 = y(5). Thus, although the system
converges around k = 10, the disturbance has altered the output of the system.

Thus far, we have dealt with disturbances that are perturbations in the oper-
ation of the target system. Next we consider what happens if the measurements
of the target system are noisy. For example, it may be that under heavy load,
certain events are not captured (e.g., if the measurement collection process is low
priority).

TLFeBOOK

CONTROL LAWS AND CONTROLLER OPERATION 251

Figure 8.7 shows how measurement noise is incorporated into the block dia-
gram. There is an additional input N(z) that models the noise process. This signal
is added to the output Y (z) to produce T (z).

Figure 8.8 displays the results of simulating the system in Figure 8.7 for the
same inputs as in Figure 8.6 and a noise input n(k) = 5, k ≥ 10. The presence

R(z) Y(z)

D(z)

G(z)

N(z)

E(z) T(z)
++

+

−
++KP

U(z)

Fig. 8.7 Feedback using proportional control in the presence of measurement noise. There
are three inputs: the reference R(z), the disturbance D(z), and measurement noise N(z).

0

20

r(k)

0

20

e(k)

0

20

d(k)

0

30

u(k)

0

20

n(k)

0 5 10 15
0

20

k

t(k)

Fig. 8.8 Simulation of a proportional controller for a step response in the presence of a
disturbance and noise. Initial conditions are zero. The target system has the transfer function
G(z) = 0.47/(z− 0.43), and KP = 2. The dashed line shows the reference value for y(k). n(k) = 5
for k ≥ 10.

TLFeBOOK

252 PROPORTIONAL CONTROL

of noise changes the output values seen by the controller by adding n(k). Thus,
we have

t (10) = y(10) + n(10) = 12.7 + 5 = 17.7

e(10) = rss − [y(10) + n(10)] = 10 − 17.7 = −7.7

u(10) = KPe(10) = (2)(−7.7) = −15.4

y(11) = 0.43y(10) + 0.47[u(10) + d(10)] = 7.7

t (11) = 7.7 + 5 = 12.7

8.2 DESIRABLE PROPERTIES OF CONTROLLERS

Designing feedback systems requires having clear criteria for what makes one
controller preferable to another. In mechanical and electrical engineering, speci-
fications such as rise time, delay time, and overshoot are used since these relate
to physical limits of the target system. In computing systems, we focus on four
properties: stability, accuracy, settling times, and overshoot.

The most basic property of a controller is stability; that is, it results in a stable
closed-loop system. Previously, we defined a stable system to be a system for
which a bounded input always produces a bounded output. Clearly, it is undesir-
able to design a system for which unbounded outputs are possible. However, in
practice we do not see unbounded outputs due to saturation effects. For example,
CPU utilization is always bounded between 0 and 1. For systems with bounded
(saturated) control inputs and/or outputs, instability can manifest itself as a limit
cycle. Figure 8.9 displays a limit cycle resulting from an improperly designed
controller for the Apache HTTP Server that causes CPU utilization to oscillate
between its extreme values (0 and 1). Clearly, this is undesirable since it increases
the variability of end-user response times. Another way in which oscillations are
undesirable is that the controller must make changes more frequently, and doing
so can add to the overheads of the system.

k

0 100 200 300 400 500 600 700
0

0.5

1

C
P

U

Fig. 8.9 Example of instability in controlling CPU utilization of the Apache HTTP Server. Note
that after the reference changes at k = 300, the utilization begins to oscillate between its extreme
values of 0 and 1.

TLFeBOOK

DESIRABLE PROPERTIES OF CONTROLLERS 253

0 2 4 6 8 10 12 14
0

1

2

3

4
M

ea
su

re
d

O
ut

pu
t yssMP

yss

Time (k)
ks

ess

rss

Fig. 8.10 SASO properties in the step response of a closed-loop system (which is a repetition
of Figure 1.3). Stability is consistent with having a bounded output. Accuracy is quantified by
the steady-state error ess, where a larger magnitude indicates greater inaccuracy. Settling time
is indicated by Ks. Overshoot is quantified by MP, the maximum overshoot.

A second property that we desire in a controller is that it be accurate. We
quantify the accuracy of a closed loop in terms of steady-state error. From
Figure 8.10, we see that ess = rss − yss. An accurate controller is one for which
ess = 0, so that the control objective is achieved. For example, poor accuracy is
evident in Figure 8.6, in that rss = 10 �= yss.

Why is accuracy important? To answer this question, consider a subscription-
based e-commerce site that provides different levels of service quality depending
on the fees that a customer pays. Suppose that the response-time goals are 2
seconds for “gold customers,” 5 seconds for “silver customers,” and best efforts
(no goal) for “bronze customers.” An inaccurate controller might cause one of
the following to occur:

1. The response times of silver and/or gold customers might be much smaller
than their goals as a result of refusing to serve more bronze customers than
could have been served, thereby causing a potential loss of revenue to the
service provider. In this situation, ess > 0.

2. The response times of silver and/or gold customers might exceed their
goals as a result of serving too many bronze customers, thereby resulting
in financial penalties to the service provider. Here, ess < 0.

Although much of the theory we present is concerned only with the magnitude
of ess and not its sign, in practice there are different costs associated with positive
and negative errors.

A third property of interest is the settling time of the system, the time for
the output to reach a new steady-state value after a change in one of the inputs.
As shown in Figure 8.10, we use ks to denote the settling time. Typically, we
consider settling time in response to a step input, and we consider the output
to have settled when it is within 2% of its steady-state value. Since changes in
reference inputs are infrequent, we are particularly interested in the settling time
for disturbance inputs (e.g., transient failures and changes in workloads).

TLFeBOOK

254 PROPORTIONAL CONTROL

The final property we consider is maximum overshoot . As indicated in
Figure 8.10, maximum overshoot is the largest amount by which the transient
response exceeds the steady-state value as a result of a change in an input, scaled
by the steady-state value. Maximum overshoot, which we denote by MP, is of
concern when enforcing service-level agreements in that there may be financial
penalties if response times are too large. Overshoot is also suggestive of oscilla-
tory behavior since a large overshoot is typically followed by a large undershoot
[the amount by which y(k) is below the steady-state value].

To assess a controller, we evaluate these four properties for different param-
eter choices in the controller design and different conditions (reference change,
disturbance, noise, etc.) For example, we commonly consider a step change in the
inputs since we can compose arbitrary signals by a sequence of steps. Another
consideration is the robustness of the controller to errors in estimating the param-
eters of the target system. By robustness, we mean the effect on stability as a
result of under- or overestimated open-loop poles and/or zeros. For example, in
a first-order system such as G(z) = b/(z − a), we might want to know if the
closed-loop poles lie within the unit circle if a and b are underestimated by 25%.

8.3 FRAMEWORK FOR ANALYZING PROPORTIONAL CONTROL

In this section we develop a general framework for analyzing the properties of
stability, accuracy, settling time, and maximum overshoot. Our analysis frame-
work assumes that there is a transfer function that describes the target system
over a desired operating range. Obtaining such a transfer function may require
system identification (as described in Chapter 2) and/or the techniques developed
in Chapters 4 through 6. This accomplished, we analyze the following properties:

• S tability is assessed by determining if the poles of the closed-loop transfer
function have a magnitude less than 1.

• Accuracy is quantified by the magnitude of the steady-state control error
ess. We can assess the accuracy of a closed-loop system by computing
the steady-state gain of its transfer function from the reference input to
the measured output. There is a zero steady-state error if and only if this
steady-state gain is 1.

• S ettling time is a function of the closed-loop poles and is estimated using
Equation (5.18) by employing the dominant pole approximation.

• Overshoot is a property of the response to a step change in the reference
input. Overshoot occurs if one or more poles with a nonzero angle in
the complex plane (although the magnitude of the overshoot involves other
factors as well).

We refer to these as the SASO properties. The purpose of control analysis is to
ascertain the SASO properties of the closed-loop system. The purpose of control
design is to construct a closed-loop system with the desired SASO properties.

TLFeBOOK

FRAMEWORK FOR ANALYZING PROPORTIONAL CONTROL 255

+
−

R(z)
K(z)

++ G(z)
T(z)

H(z)

D(z)

++

N(z)

Y(z)U(z)

W(z)

E(z)
Controller

Target
System

Transducer

V(z)

Fig. 8.11 Block diagram of a closed-loop system (repeated from Figure 4.5). R(z) is the
reference input, D(z) is the disturbance input, N(z) is the noise input, E(z) is the control error,
U(z) is the control input, and Y (z) is the system output.

We begin by taking a broader perspective of the system under study by
including a measurement transducer (e.g., to describe measurement delays or a
moving-average filter). This is shown in Figure 8.11. The inputs are the reference
R(z), disturbance D(z), and noise N(z). The processing blocks are the propor-
tional controller KP, target system G(z), and measurement transducer H(z).

8.3.1 Closed-Loop Transfer Functions

The analysis of the SASO properties requires studying multiple transfer functions.
We do this by separately considering the reference, disturbance, and noise inputs.
That is, when analyzing one input, the others are set to zero. (Of course, the
combined effect of multiple inputs can be obtained easily using the superposition
property.)

Recall from Chapter 4 that we denote transfer functions by a subscript that
indicates the nonzero input signal and, in some cases, the output signal. From
Figure 8.11 the transfer function from the reference input to the measured output
is detailed in Equation (4.1):

FR(z) = Y (z)

R(z)

= G(z)K(z)

1 + K(z)G(z)H(z)

the transfer function from the disturbance input to the measured output is spec-
ified in Equation (4.4):

FD(z) = Y (z)

D(z)

= G(z)

1 + K(z)G(z)H(z)

TLFeBOOK

256 PROPORTIONAL CONTROL

and from the noise input to the output [including noise, which is the signal T (z)]
is described in Equation (4.6):

FN(z) = T (z)

N(z)

= 1

1 + K(z)G(z)H(z)

Observe that the three closed-loop transfer functions FR(z), FD(z), and FN(z)

provide a complete description of how Y (z) is affected by the inputs. Each
of these transfer functions assumes that only one input is nonzero. Using the
principle of superposition, the output can be expressed as a sum of the effect of
each input. That is,

T (z) = FR(z)R(z) + FD(z)D(z) + FN(z)N(z)

Thus, we can analyze each transfer function in isolation and greatly simplify the
analysis.

Example 8.1: Apache with proportional control Consider the open-loop trans-
fer function for the Apache HTTP Server from KeepAlive to CPU. The oper-
ating point is (KA,CPU) = (11, 0.58), as described in Chapter 2. Thus, u(k) =
KA(k) − KA, and y(k) = CPU(k) − CPU.

G(z) = Y (z)

U(z)
= −0.014

z − 0.59

We use the foregoing to obtain the closed-loop transfer functions under propor-
tional control. Substituting into Equation (4.1) and simplifying, we have

FR(z) = Y (z)

R(z)
= KP(−0.014)

z − 0.59 + KP(−0.014)

From Equation (4.4), we have

FD(z) = Y (z)

D(z)
= −0.014

z − 0.59 + KP(−0.014)

and from Equation (4.6), we have

FN(z) = T (z)

N(z)
= z − 0.59

z − 0.59 + KP(−0.014)

Note that H(z) = 1 in all of the foregoing.

Observe that the three transfer functions have the same poles, the values of z

for which 1+KPG(z)H(z) = 0. Thus, we only need to analyze one set of poles to
assess stability, settling time, and maximum overshoot. The analysis of the pole-
related properties of the system of Figure 8.11 requires studying specific plant
and transducer transfer functions G(z) and H(z), although a first- or second-
order approximation of the closed-loop characteristic polynomial can be useful
for estimating these properties.

TLFeBOOK

FRAMEWORK FOR ANALYZING PROPORTIONAL CONTROL 257

8.3.2 Stability

The stability of the closed-loop system is determined by the closed-loop poles.
From the foregoing, we see that all of the transfer functions we consider have
the same poles, which are the solutions to the characteristic equation

1 + KPG(z)H(z) = 0 (8.3)

The values of the closed-loop poles depend not only on the plant and transducer
transfer functions G(z) and H(z), but also on the value of the proportional gain
KP. The system is stable in closed loop if all of the poles have magnitude less
than 1.

One method for visualizing how the closed-loop poles depend on KP is to
plot the root locus of the system. This graphical approach is used to plot all
possible locations of the solutions of Equation (8.3) as KP varies from 0 to ∞.
For simplicity in the following, assume that H(z) = 1 and that

G(z) = b1z
−1 + · · · + bmz−m

1 − a1z
−1 − · · · − anz

−n

In this case, Equation (8.3) becomes

1 + KPG(z) = 0 (8.4)

Note that there are always n solutions to Equation (8.4), the same number as the
number of poles in G(z) (for any physical system, n ≥ m). Consider first the
limit as KP → 0. We can rewrite Equation (8.4) as

1

G(z)
+ KP = 0

Since G(z) is inverted, in the limit as KP → 0, the solutions to Equation (8.4) are
the poles of G(z). To consider the limit as KP → ∞, we rewrite Equation (8.4) as

1

KP

+ G(z) = 0

Hence, in the limit as KP → ∞, the solutions to Equation (8.4) are the zeros
of G(z). If G(z) has m finite zeros and n poles, it is considered that G(z) has
n − m zeros at infinity . Note that if m < n, limz→∞ G(z) = 0. The solutions
to Equation (8.4) are also continuous; that is, a small change in KP gives only a
small change in the solutions.

The root locus is, as its name implies, the locations of all possible roots of
Equation (8.4) as KP varies from 0 to ∞. There are n branches in the root locus,
one for each pole of G(z). Each branch starts at a pole of G(z) and ends at a
zero (either finite or at infinity). Note that any system that has at least one zero
at infinity will always become unstable in closed loop for a large enough value
of KP . Thus, stability is an important property to verify. A number of rules have
been developed to facilitate drawing the root locus [25], or a computer program

TLFeBOOK

258 PROPORTIONAL CONTROL

such as MATLAB can be used. In the case when H(z) �= 1, G(z) in Equation (8.4)
can be replaced by G(z)H(z) and the same procedure is followed. The closed-
loop system has as many poles as the combined number of poles in G(z)H(z),
and each branch of the root locus starts at one of the poles of G(z) or H(z) and
ends at one of the zeros (finite or at infinity).

Example 8.2: Root locus of the IBM Lotus Domino Server with measurement
delay Consider the IBM Lotus Domino Server, a first-order system with a =
0.43, b = 0.47 with a two-time-unit measurement delay. The system transfer
functions are

G(z) = Y (z)

U(z)
= 0.47

z − 0.43

H(z) = Y (z)

V (z)
= 1

z2

There are three open-loop poles; two at 0 and one at 0.43. There are no finite
zeros; thus, all three zeros are at infinity. The root locus of this system is shown
in Figure 8.12. The branches of the root locus, indicating the locations of the
closed-loop poles, start at the open-loop poles (indicated by “×”) and move to
the zeros at infinity as KP increases. Since there are two open-loop poles at
z = 0 (corresponding to the two-time-unit measurement delay), there are two
branches of the root locus that start at the origin (the third branch starts at the
pole z = 0.43). The unit circle is also shown as a dotted line in the root locus
plot. The closed-loop system becomes unstable at the smallest value of KP such
that one of the poles is outside the unit circle, in this case, at KP = 1.7.

8.3.3 Accuracy

The accuracy of a proportional controller can be analyzed in a very general way,
since it is independent of the pole locations (as long as they are all inside the

−2 0 2
−2

−1

0

1

2

KP =1.7

KP=3.0

Fig. 8.12 Root locus plot for the IBM Lotus Domino Server with a measurement delay of two
time units. The solid lines indicate the closed-loop poles that occur as KP varies from 0 to ∞;
the dotted line is the unit circle. The values of KP when the branches cross the unit circle are
indicated on the plot.

TLFeBOOK

FRAMEWORK FOR ANALYZING PROPORTIONAL CONTROL 259

unit circle). Let FR(z) = Y (z)/R(z) be the transfer function from the reference
input to the output of a stable feedback control system. Let r(k) be the reference
input with steady-state value rss. We claim that this system has ess = 0 if, and
only if, FR(1) = 1. To see this, note that

ess = lim
k→∞

r(k) − y(k) = rss − yss

Recall that FR(1) = yss/rss is the steady-state gain. Thus,

ess = rss[1 − FR(1)] (8.5)

So ess = 0 if, and only if, FR(1) = 1.

Thus, we want

1 = KPG(1)

1 + H(1)KPG(1)
.

so ess = 0 only if

KP = 1

G(1)(1 − H(1))
.

Clearly, if H(1) = 1, then KP must be infinite. Unfortunately, H(1) = 1 is
very common. For example, H(1) = 1 if there is an n-time-unit delay or if
the output is filtered using a moving average to reduce noise. If H(1) = 1,
then proportional control results in |ess| > 0; steady-state control error can be
reduced by using a larger KP.

We are also interested in the steady-state gain of FD(z) and FN(z). Here,
however, we want the steady-state gains to be 0 so that we can eliminate constant
disturbances and noise. For the disturbance input,

FD(1) = 0

= G(1)

1 + KPG(1)H(1)

and the steady-state error to a constant disturbance input dss is

ess = dssFD(1) (8.6)

This means that we are more effective at rejecting disturbances if KP is large.
The situation for noise proceeds as with the disturbance. We want FN(1) = 0.

That is,

FN(1) = 0

= 1

1 + KPG(1)H(1)

TLFeBOOK

260 PROPORTIONAL CONTROL

Thus, we want a larger KP in order to eliminate noise. Note that a smaller KP

means a larger ess and less effective elimination of disturbances. This type of
steady-state analysis of noise and disturbances is only useful for constant val-
ues of n and d . Although disturbances are often constant, noise is usually time
varying, and hence a thorough treatment of noise requires a frequency-domain
analysis, which is beyond the scope of this book.

8.3.4 Settling Time

The settling time of a system depends on the magnitude of the largest closed-
loop pole. The closer the pole is to the unit circle, the longer the system takes
to settle. As noted in Chapters 5 and 6, a system that has a pole with magnitude
r contributes a term of the form rk to the transient response. This term is less
than 2% of its maximum value when k > −4/ log r.

Using the dominant pole approximation, we estimate settling time from
Equation (5.18):

ks ≈ −4

log r
(8.7)

where r = maxi |pi | is the magnitude of the largest closed-loop pole.

8.3.5 Maximum Overshoot

The maximum overshoot is the absolute value of the largest difference between
the output signal and its steady-state value, divided by the steady-state value.
We use MP to denote the maximum overshoot to a unit step input. Let ymax be
the maximum value of y(k) in response to a step. If ymax ≤ yss, then MP = 0.
Otherwise, MP = |ymax − yss| /|yss|. MP is defined only for a change in the
reference input.

We can estimate MP from the transfer function G(z) using the first- and second-
order transfer functions of Chapters 5 and 6. First, consider a stable system with
transfer function G(z), and suppose that p1 is the dominant pole. If p1 is real,
we can use Equation (3.30) to approximate G(z) by a first-order system G′(z)
with a pole at p1 and the same steady-state gain as G(z):

G′(z) = (1 − p1)G(1)

z − p1

This is an accurate approximation if p1 is a dominant pole. If p1 > 0, our
estimate is that MP = 0. Otherwise, from Equation (5.13), our estimate is that
MP = |p1|.

If p1 is complex, there are a pair of complex poles, p1, p2 = re±jθ , with
magnitude r and angle θ. We approximate G(z) by a second-order system G′(z)

TLFeBOOK

P-CONTROL: ROBUSTNESS, DELAYS, AND FILTERS 261

with poles at p1, p2 and the same steady-state gain as G(z):

G′(z) = K ′

(z − p1)(z − p2)
= K ′

z2 − (2r cos θ)z + r2

where K ′ = (1 − 2r cos θ + r2)G(1). From Equation (6.16), a conservative
estimate of the maximum overshoot of the second-order system is given by
MP = rπ/|θ |. In summary, we have

MP ≈



0 real dominant pole p1 ≥ 0
|p1| real dominant pole p1 < 0
rπ/|θ | dominant poles p1, p2 = re±jθ

(8.8)

Zeros in the transfer function can substantially increase the overshoot. If there
are finite zeros (other than at 0), more detailed analysis or simulation should be
used to find the maximum overshoot.

8.4 P-CONTROL: ROBUSTNESS, DELAYS, AND FILTERS

In this section we analyze three systems: a first-order target system, a first-order
system with measurement delay, and a first-order system with measurement delay
and a moving-average filter.

8.4.1 First-Order Target System

In this subsection we study the pole-related properties of proportional control
of a first-order target system. Studying a first-order system is in part motivated
by simplicity. It is also motivated by our experience that a first-order model
provides a fairly accurate description of the control characteristics of many real-
world systems, including the Apache HTTP Server and the IBM Lotus Domino
Server.

Figure 8.13 displays a block diagram of the control system we consider. This
is a special case of Figure 8.11 in which G(z) = b/(z − a) and H(z) = 1. Since
we focus on the poles and all the closed-loop transfer functions have the same

R(z) E(z) U(z) Y(z)

Target

+

−

System

KP

Controller

b
z − a

Fig. 8.13 Proportional control of a first-order system.

TLFeBOOK

262 PROPORTIONAL CONTROL

poles, it suffices to consider FR(z). Substituting into Equation (4.1), we obtain

FR(z) = Y (z)

R(z)
= KPb

z − a + KPb
(8.9)

The poles are the roots of z − a + KPb. That is,

p = a − KPb (8.10)

and hence from Equation (8.7), the settling time is

ks = −4

log(a − KPb)
(8.11)

This result provides insights into Figure 8.6. We see that p = a − KPb =
0.43 − (2)(0.47) = −0.51. Since the pole lies within the unit circle, the closed-
loop system is stable. Using Equation (3.29), we conclude that the steady-state
response to a unit step is KPb/(1 − a − KPb) = 0.62, which is consistent with
y(5). Also, note that the pole is less than 0. This explains both the oscillations
and the overshoot in the output y(k).

FR(z) is a first-order system with input R(z) and output Y (z). Its time-domain
solution can be found using Equation (5.1):

y(k) = (a − KPb)k y(0) + KPb

k−1∑
n=0

(a − KPb)k−1 r(n)

For a unit step input and zero initial conditions, we have

y(k) = KPb
1 − (a − KPb)k

1 − a + KPb
(8.12)

Using a, b, and KP as in Figure 8.6, we obtain

y(k) = (0.94)
1 − (−0.51)k

1.51
, k ≥ 0

For example,

y(1) = (0.94)
1 − (−0.51)1

1.51
= (0.94)

1.51

1.51
= 0.94

From Equation (8.10) we see how KP affects the closed-loop poles. A small KP

results in a closed-loop pole that is close to the open-loop pole. However, larger
values of KP can cause the poles to be outside the unit circle, thereby resulting in
instability. This is quantified in Figure 8.14, which plots the relationship between
KP and the pole for the a, b used in Figure 8.6. Note that KP > 0 because we
must increase u(k) to increase y(k). For example, we know that MaxUsers
must be increased to increase the number of active users in the IBM Lotus

TLFeBOOK

P-CONTROL: ROBUSTNESS, DELAYS, AND FILTERS 263

0 1 2 3 4 5
−2

−1

0

1

2

 K
P

P
ol

e

Fig. 8.14 Effect of KP on the closed-loop pole of a first-order target system with a = 0.43 and
b = 0.47.

−1 0 1

−1

−0.5

0

0.5

1

Fig. 8.15 Effect of KP on the closed-loop pole of a first-order target system G(z) = 0.47/(z −
0.43). The × shows the location of the pole when KP = 0. The unit circle is shown to indicate
the stability boundary.

Domino Server. Also, it makes little sense to have KP = 0 since this means that
there is no feedback control. Indeed, KP = 0 results in FR(z) = 0.

Another way to visualize the effect of KP on the closed-loop system is to plot
the root locus, the location of the pole as KP is varied. The location of the closed-
loop pole in the complex plane varies with KP . This is shown in Figure 8.15.
At KP = 0, the pole is at a. As KP increases, the pole gets smaller and then
becomes negative. When the pole goes outside the unit circle, the closed-loop
system becomes unstable.

The time-domain effects of KP are illustrated in Figure 8.16. With KP = 1,
the convergence to steady state occurs within one time step. To see why, note
that Figure 8.14 shows that the closed-loop pole is approximately 0 if KP = 1.
Not surprisingly, with a small KP, |ess| is large (as seen in Figure 8.16). For
KP = 2, in Figure 8.16, we see overshoot and oscillations. This is also explained
in Figure 8.14 by the fact that the pole is −0.5 < 0. For KP = 3, the pole is −1
and y(k) oscillates between two values. At KP = 3.5, the pole is −1.25 and the
system is unstable.

It is straightforward to construct a bound for a and b so as to ensure the
stability of the closed-loop system. The closed-loop system is stable if its poles

TLFeBOOK

264 PROPORTIONAL CONTROL

1
 y

(k
)

 K
P
=1

1

 y
(k

)

 K
P
=2

1

 y
(k

)

 K
P
=3

0 2 4 6 8 10

1

 k

 y
(k

)

 K
P
=3.5

Fig. 8.16 Time-domain, unit step response for proportional control of a first-order target
system with a = 0.43 and b = 0.47. Larger values of KP improve accuracy but can lead to
instability.

lie within the unit circle. That is, |a − KPb| < 1. Assuming that 0 < a ≤ 1
(which has been the case in our studies), we have

a − 1

b
< KP <

1 + a

b

If b > 0, this simplifies to

0 ≤ KP <
1 + a

b

Often, we are unable to estimate accurately the parameters of the target system,
such as a, b in a first-order system. Thus, an important consideration in choosing
KP is robustness. A controller is robust if its behavior does not change much if
there are errors in estimating the parameters of the target system.

Figure 8.17 shows how the closed-loop pole changes if a and b are over- or
under-estimated. In both plots, the true values of a and b are 0.43 and 0.47,
respectively. Consider the bottom plot, which addresses the effect of errors in
estimating b. If the true value of b is 0.47, the middle (solid) line expresses the

TLFeBOOK

P-CONTROL: ROBUSTNESS, DELAYS, AND FILTERS 265

0 1 2 3 4 5

−2

−1

0

1

2

 K
P

P
ol

e

 b changes

+25% change in b
−25% change in b

0 1 2 3 4 5

−2

−1

0

1

2
P

ol
e

 a changes

−25% change in a
+25% change in a

Fig. 8.17 Robustness of proportional control to errors in estimating the open-loop pole and
gain of a first-order target system with a = 0.43, b = 0.47. The top plot shows how the closed-
loop pole changes with errors in estimating the open-loop pole. The bottom plot shows how
the closed-loop pole is affected by errors in estimating b. The solid line is with no change; it is
the same line as in Figure 8.14.

relationship between KP and the closed-loop pole (this is the same line as in
Figure 8.14). Now consider the case in which the estimated value of b is 25%
smaller than its true value. That is, we estimate b = 0.35 instead of b = 0.47.
The lower dashed-dotted line shows how this error in estimating b changes the
predicted effect of KP on the closed-loop pole. In particular, we predict smaller-
magnitude closed-loop poles. As a result, we predict that the system becomes
unstable at KP ≈ 4. In fact, the system goes unstable at KP = 3. Thus, by underes-
timating b we might mistakenly choose KP that causes the system to go unstable.

Now consider the case where the estimated b is 25% greater than its true value;
that is, we use b = 0.59 instead of b = 0.47. Here, the predicted closed-loop
poles are larger than the true closed-loop poles. This leads to a more conservative
selection of the control gain KP.

The top plot in Figure 8.17 studies the effect of errors in estimating a, the
open-loop pole. First, observe that the effect is much less pronounced than for b

in that the three lines lie very close together. Also note that the direction of the
effect is the opposite of that for b. That is, a smaller open-loop pole increases
the magnitude of the closed-loop pole.

Figure 8.18 displays the time-domain effects of having a fixed percentage
change in both a and b. Because a ≈ b and KP > 1, errors in estimating b

dominate the effect on the closed-loop pole.

TLFeBOOK

266 PROPORTIONAL CONTROL

1

 y
(k

)
Change in a,b: −25%

1

 y
(k

)

Change in a,b: 0%

0 2 4 6 8 10

1

 k

 y
(k

)

Change in a,b: +25%

Fig. 8.18 Time-domain effect of errors in estimating the open-loop pole and gain of a first-order
target system with a = 0.43, b = 0.47, and KP = 3.

R(z) E(z) U(z) Y(z)

Target

+

−

System

KP

Controller

b
z − a

z −n

Fig. 8.19 Proportional control of a first-order system with measurement delay.

8.4.2 Measurement Delay

Measurement delays are common in computing systems. For example, the IBM
Lotus Domino Server described in Chapter 1 has measurement delays due to
RPCs not being recorded until their processing is completed. In this section we
analyze the effect of measurement delays on closed-loop poles.

We study measurement delays in the context of Figure 8.19, which extends
Figure 8.13 by including a delay block in the feedback loop. Measurement delays
are one example of how the output signal may be transformed before it is seen
by the controller. Such transformations are indicated in Figure 8.11 by the block
labeled H(z). In the case of measurement delays, H(z) = z−n, where n is delay
in units of sample times. Adjusting Equation (8.9), we have

FR(z) = Y (z)

R(z)
= KP[b/(z − a)]

1 + z−nKP[b/(z − a)]

= znKPb

(z − a) zn + KPb

TLFeBOOK

P-CONTROL: ROBUSTNESS, DELAYS, AND FILTERS 267

Note that there are n+ 1 poles since the degree of z in the denominator is n+ 1.
Also, note that measurement delays do not affect steady-state gain and hence
accuracy. To see this, recall that steady-state gain of the measurement delay is
H(1) = 1n = 1.

Consider n = 1. Here, the poles are solutions to the characteristic equation
z2 − za + KPb = 0. We denote these solutions by

p1, p2 = a

2
±

√
a2 − 4KPb

2

Note that if a2 > 4KPb, the poles are real. Further, if a > 0 (which has been the
most common case in our experience), the pole with the largest magnitude is

a

2
+

√
a2 − 4KPb

2

We can use this pole in Equation (8.7) to approximate settling times. (The approx-
imation works best if settling times are short and/or the two poles are far apart.)
If a2 < 4KPb, there is a pair of complex conjugate poles. Since both poles have
the same magnitude, ks can be computed using either pole.

Figure 8.20 displays the effect of n on the position of the largest pole as KP

is varied for a = 0.43 and b = 0.47. With n ≥ 1, we can get complex poles.
Thus, we plot both the magnitude r and angle θ of the largest pole. Observe that
increasing n increases r as well (at least within the region in which the system

1 2 3
0

0.5

1

r

1 2 3
0

90

180

θ

 K
P

 n=0
 n=1
 n=2

Fig. 8.20 Effect of KP on the magnitude r and angle θ of the largest pole for different values
of pure delay (n) and G(z) = 0.47/(z − 0.43). Note that increasing n increases the magnitude of
the largest pole and hence increases settling time.

TLFeBOOK

268 PROPORTIONAL CONTROL

is stable). Also observe that if KP is sufficiently large, we have a nonzero pole
angle. For n = 0, a large KP results in an angle of 180 degrees, which means that
the pole is negative. The solid line in Figure 8.20 is the same as Figure 8.14;
there is only one pole and it is either positive or negative. For n = 1, 2, the
angles indicate that the poles have a nonzero imaginary part. Another important
observation is that increasing the measurement delay n decreases the region of
KP values where the closed-loop system is stable.

Another way to visualize the effect of KP on the behavior of the closed-loop
system is to plot the root locus, as in Figure 8.21. For n = 1, there are two
poles (the roots of z2 − za + KPb), and for n = 2 there are three poles. This
representation has the advantage of showing all the poles, not just the largest; on
the other hand, it does not explicitly show the values of KP .

8.4.3 Moving-Average Filter

As noted in the simulation in Figure 8.8, the presence of noise can severely impair
the operation of the controller. In computing systems, noise typically takes the
form of a random variations around a mean. An effective way to reduce such
variations is to smooth the signal with a moving-average filter. In this section we
extend the control system of Section 8.4.2 to include such a filter.

The input of the moving-average filter is the “raw” signal and its output is a
smoothed signal. We begin by being more precise about the filter. Let y(k) be the
unfiltered signal and let w(k) be its filtered version. The operation of the filter
is described by a single constant, c, where 0 ≤ c < 1. If c = 0, the output has
the same time-domain characteristics as the input signal, although it is delayed
by one time step. Values of c greater than 0 specify the degree of smoothing.
Formally, we define a moving-average filter as

w(k + 1) = cw(k) + (1 − c)y(k)

−1 0 1

−1

−0.5

0

0.5

1

−1 0

(a) n = 1 (b) n = 2

1

−1

−0.5

0

0.5

1

Fig. 8.21 Effect of KP on the closed-loop pole of a first-order target system G(z) = 0.47

z − 0.43
with measurement delay. The × shows the location of the poles when KP = 0. The unit circle is
shown to indicate the stability boundary.

TLFeBOOK

P-CONTROL: ROBUSTNESS, DELAYS, AND FILTERS 269

−1

0

1
 y

(k
)

−1

0

1

 w
(k

)

c=0

−1

0

1

 w
(k

) c=0.5

−1

0

1

 w
(k

)

c=0.85

0 10 20 30 40 50 60
−1

0

1

 w
(k

)

 k

c=0.95

Fig. 8.22 Effect of a moving-average filter on a sine wave for different values of the filter
parameter c. Note that c = 0 corresponds to a delay of one sample time.

This has the transfer function

H(z) = W(z)

Y (z)
= 1 − c

z − c

Figure 8.22 illustrates the effect of a moving-average filter on a sine wave. Note
that the frequency of the wave does not change, nor does its mean value. How-
ever, as c increases, the amplitude of the wave decreases. Also note that the
phase of the wave shifts as c increases in that peaks and valleys move to the
right. This indicates that the filter affects the transient response. Finally, observe
that the steady-state gain of this filter is 1 (which is why the mean value of the
output signal is the same as that of the input signal). This is by design so that the
filter does not affect accuracy. Sometimes, variations on this filter are used, such
as w(k + 1) = cw(k) + y(k). Such a filter has a transfer function of 1/(z − c),
which can affect accuracy.

Figure 8.23 describes the system we analyze. It augments the one in
Section 8.4.2 by including the filter just described. The measurement transducer

TLFeBOOK

270 PROPORTIONAL CONTROL

R(z) E(z) U(z)

Target

+

−

System

KP

Controller

b
z − a

z −n
z − c
1 − c

Y(z)

W(z)

Fig. 8.23 Proportional control of a first-order system with measurement delay and a moving-
average filter.

includes both a time delay of n sample times and a moving-average filter,

H(z) = z−n 1 − c

z − c

Thus, the closed-loop transfer function is

FR(z) = Y (z)

R(z)
= KP[b/(z − a)]

1 + z−n[(1 − c)/(z − c)]KP[b/(z − a)]

= KPbzn(z − c)

zn(z − c)(z − a) + (1 − c)KPb

As before, there may be multiple poles. Also, note that steady-state gain is unaf-
fected by the value of c since

FR(1) = KPb(1 − c)

(1 − c)(1 − a) + (1 − c)KPb

= KPb

(1 − a) + KPb

Figure 8.24 shows how the filter parameter c affects the magnitude r and angle
θ of the largest closed-loop pole. The top three plots show how the magnitude of
the largest pole is affected by KP, and the bottom three plots show the effect on
the angle of the largest pole. We consider c = 0, 0.5, 0.95. Since c = 0 is a pure
time delay, (c = 0, n = 0) in Figure 8.24 is the same as n = 1 in Figure 8.20,
and (c = 0, n = 1) in Figure 8.24 is the same as n = 2 in Figure 8.20.

A few observations are of interest. First, note that within the region in which
the system is stable (i.e., all poles have a magnitude less than 1), increasing the
delay (n) increases the magnitude of the largest pole. This is consistent with
the results of Section 8.4.2. Also note that increasing c causes r to decrease
for c ∈ {0, 0.5}. However, the behavior for c = 0.95 is more complicated due
to the relationship between the open-loop pole and the pole of the filter. (This
is explored in more depth in an exercise at the end of the chapter.) Another
effect of a larger c is to reduce θ . This is particularly noticeable for c = 0.95,
where θ = 0 until KP = 2. Thus, increasing c increases the region over which

TLFeBOOK

DESIGN OF PROPORTIONAL CONTROLLERS 271

0 1 2 3 4 5
0.5

0.75

1
M

ag
ni

tu
de

 (
r)

c=0

0 1 2 3 4 5

c=0.5

0 1 2 3 4 5

c=0.95

0 1 2 3 4 5
0

45

90

A
ng

le
 (

θ)

 K
P

c=0

0 1 2 3 4 5

c=0.5

0 1 2 3 4 5

c=0.95

n=2
n=1
n=0

Fig. 8.24 Effect of controller gain KP, number of time delays n, and filter parameter c on the
magnitude r and angle θ of the largest closed-loop pole. The target system is first-order with
a = 0.43 and b = 0.47.

the closed-loop system is stable. On the other hand, a moving-average filter
with c = 0.95 introduces an open-loop pole at 0.95 and hence slows down the
closed-loop response considerably, especially for small values of KP .

Another way to visualize the effect of the filter on the closed-loop system is
to plot all of the closed-loop poles simultaneously in the complex plane using the
root locus. Since c = 0 is a pure time delay, we focus on c = 0.5 and c = 0.95.
Figure 8.25 shows the pole locations as KP varies. For n = 0, there are two poles
in the closed-loop system, and for n = 1 there are three closed-loop poles. When
KP = 0, the closed-loop poles are at a, c, and 0 (if there is a time delay). As
KP increases, the poles move and eventually cross the unit circle (indicating an
unstable closed-loop system).

8.5 DESIGN OF PROPORTIONAL CONTROLLERS

Thus far, our goal has been to determine closed-loop poles based on knowing
one or more open-loop transfer functions. The next step is design—choosing KP

so that the resulting system has desirable properties, such as a small steady-state
error and short settling times.

Considered first is pole placement design, which selects controller parameters
that result in desired closed-loop poles. Pole placement starts by determining the
desired poles based on the SASO properties of the closed-loop system. Then the
closed-loop transfer function is constructed as a function of the proportional gain

TLFeBOOK

272 PROPORTIONAL CONTROL

−1 0 1

−1

−0.5

0

0.5

1

−1 0 1

−1

−0.5

0

0.5

1

−1 0

(a) n = 0, c = 0.5 (b) n = 0, c = 0.95

(c) n = 1, c = 0.5 (d) n = 1, c = 0.95

1

−1

−0.5

0

0.5

1

−1 0 1

−1

−0.5

0

0.5

1

Fig. 8.25 Effect of KP on the closed-loop pole of a first-order target system G(z) = Y (z)/U(z) =
0.47/z − 0.43 with measurement delay. The × shows the location of the poles when KP = 0. The
unit circle is shown to indicate the stability boundary.

KP. Next, we solve for the closed-loop poles in terms of KP. Last, the modeled
poles are set equal to the desired poles, which allows us to derive KP.

An alternative approach to determining KP is to plot the properties of steady-
state error, settling time, and maximum overshoot as a function of KP. Note that
since there is only one parameter KP and there may be many desired properties,
a solution may not exist. In this case, an alternative control strategy may be
needed, or some of the design goals must be relaxed.

We illustrate the pole placement procedure with a simple example.

Example 8.3: Proportional control of the IBM Lotus Domino Server Con-
sider the IBM Lotus Domino Server, with transfer function

G(z) = Y (z)

U(z)
= 0.47

z − 0.43
(8.13)

Recall that y(k) is the offset of RPCs in the system (RIS) from the operating
point, and u(k) is the offset of MaxUsers from the operating point. We consider
four design goals:

1. Stability
2. Steady-state error to unit step reference ess < 0.1

TLFeBOOK

DESIGN OF PROPORTIONAL CONTROLLERS 273

3. Settling time ks < 10
4. Maximum overshoot to unit step reference MP < 0.1

With proportional control (as in Figure 8.5), the closed-loop transfer function
from the reference to the output is

FR(z) = Y (z)

R(z)
= 0.47KP

z − 0.43 + 0.47KP

We consider the four design goals individually. First, for stability, we must have
all closed-loop poles inside the unit circle. The closed-loop transfer function is
first order, and hence there is only one closed-loop pole, p1 = 0.43 − 0.47 KP .
Considering the stability condition,

|p1| = |0.43 − 0.47KP| < 1

we solve for the conditions on KP to be

−1.21 < KP < 3.0

Now, consider steady-state error. From Equation (8.5) we have

ess = rss[1 − FR(1)]

The condition is for a unit step reference, and hence rss = 1. Setting ess < 0.1,
we have

ess = 1 − FR(1) = 1 − 0.47KP

1 − 0.43 + 0.47KP

< 0.1

0.47KP

0.57 + 0.47KP

> 0.9

KP > 10.9

Recall that the steady-state error condition is derived from the final value theorem,
and that theorem is valid only if the system is stable. From the first result we see
that if KP > 3.0, the system is unstable. Hence, the steady-state error condition
cannot be satisfied with any value of KP .

The settling time depends on the magnitude of the largest closed-loop pole.
Since there is only one pole, we have from Equation (8.7) that

ks ≈ −4

log |0.43 − 0.47KP| < 10

−0.4 > log |0.43 − 0.47KP|
e−0.4 = 0.67 > |0.43 − 0.47KP|

With the absolute value, we get two inequalities: 0.67 > 0.43−0.47KP > −0.67,
which simplifies to −0.51 < KP < 2.3.

TLFeBOOK

274 PROPORTIONAL CONTROL

Finally, we consider maximum overshoot. Since the system is first order, the
pole is always real. If it is positive, there is no overshoot; there is overshoot only
if it is negative. We use Equation (8.8) to estimate

MP = |0.43 − 0.47KP| < 0.1

which results in KP < 1.1.

To summarize, the desired properties of the closed-loop system impose the
following constraints on KP:

1. Stability: −1.21 < KP < 3.0
2. ess < 0.1: KP > 10.9
3. ks < 10: −0.51 < KP < 2.3
4. MP < 0.1: KP < 1.1

While the desired bound on steady-state error cannot be achieved, the other
properties are obtained if −0.51 < KP < 1.1.

Root locus analysis provides considerable insight into how the closed-loop
poles are affected by KP. However, to use this information for design purposes,
there is another step—showing the relationship between pole values and system
properties of interest. Indeed, for some properties, knowing the values of the
poles is not sufficient. In particular, ess depends on the steady-state gain.

These considerations motivate another approach in which we study the system
properties of interest directly. Figure 8.26 plots the steady-state error (ess), settling
time (ks), and maximum overshoot (MP) of the system in Equation (8.13) as KP

changes from 0 to 2. From Section 8.3, ess is a function of steady-state gain
(which is computed from the transfer function). Settling time is computed by only
considering the largest pole and using Equation (5.18). Maximum overshoot is
obtained using the estimation in Equation (8.8).

A few observations are of interest. The ideal ess is 0, but we barely fall below
0.5 for the range of KP values considered. The rationale for not considering larger
KP is clear from the plot of settling time. For KP > 1.5, settling times increase
dramatically. Also note that for this system, MP increases almost linearly with
KP (at least for KP > 0.25). Thus, we can reduce settling time and maximum
overshoot by having a smaller KP, although this is done at the expense of accuracy
in that ess is larger.

The foregoing suggests a procedure for controller design:

1. Determine the KP at which ess does not change much. In Figure 8.26, this
is KP ∈ [0.75, 2.0].

2. Determine the KP for which ks is acceptable. In Figure 8.26, this is KP ∈
[0, 1].

3. Take the intersection of the two regions, which is [0.75, 1.0] in our example.
4. Choose the KP within this range such that MP is minimized. In the figure,

this is KP = 0.75.

TLFeBOOK

SUMMARY 275

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
−1

0

1

 e
ss

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

5

10

 k
s

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.5

 M
P

 K
P

Fig. 8.26 Plots used in analyzing trade-offs in the value of KP for the IBM Lotus Domino Server,
and a two-time-unit measurement delay (n = 2). Ideally, KP is chosen so that |ess|, ks , and MP

are small. In practice, trade-offs are required.

Although such a procedure has appeal for a proportional controller, propor-
tional control is rarely used in practice. In Chapter 9 we discuss design tech-
niques for more commonly used controllers, especially the widely used propor-
tional–integral (PI) controller.

8.6 SUMMARY

1. Regulatory feedback control provides a way to maintain a desired output
value without precise knowledge of the characteristics of the target system.
For example, Section 8.1 shows that feedback control can compensate for
a disturbance of unknown magnitude.

2. The SASO properties of controllers are of most interest in computing
systems.

(a) Stability. Our formal definition of stability is that all bounded inputs
produce bounded outputs. However, in practice, instabilities may be
manifested as limit cycles in which the output alternates between ex-
treme values.

(b) Accuracy. An accurate system is one for which the output is equal to
the reference input. Hence, ess = 0. Accuracy is desirable, for example,
in service differentiation so that customers receive the service they paid
for, but no more (e.g., if the service provider could obtain revenue by

TLFeBOOK

276 PROPORTIONAL CONTROL

serving additional customers). A system has ess = 0 if its steady-state
gain from the reference input to the measured output is equal to 1, and
the steady-state gain from the disturbance input to the measured output
is equal to 0.

(c) Settling time. Changes in workloads and transient failures of resources
are examples of disturbances that disrupt how the target system responds
to control inputs. A fast system is one whose settling times are short. This
is desirable so that the system responds quickly to changes in workload,
transient failures, and other dynamics.

(d) Overshoot. Maximum overshoot is the largest amount (normalized by
the steady-state value of the output) by which the output exceeds its
steady-state value during a transient response (in our case, a unit step).
Overshoot is undesirable since it degrades interactions with computing
systems.

3. Proportional control is a simple way to relate control error (the differ-
ence between the reference input and output) to the control input (e.g.,
MaxUsers). In proportional control, u(k) = KPe(k). The choice of KP

constitutes the design problem for proportional control.
4. Proportional control is inherently inaccurate in that |ess| > 0 for a step

input. However, |ess| decreases as KP increases.
5. The properties of stability, settling times, and maximum overshoot are all

related to the poles of the transfer function.

(a) The system is stable if the poles lie within the unit circle.
(b) Settling times are shorter for poles closer to 0.
(c) The approximation in Section 8.3.5 suggests that MP increases with

pole magnitude and increases with the angle of the pole.

6. Choosing KP involves trade-offs. A larger KP improves accuracy (i.e.,
decreases ess). However, a sufficiently large KP increases the magnitude of
the closed-loop pole. This causes settling time and possibly the maximum
overshoot to increase and may cause instability.

7. Root locus analysis is a graphical approach to showing how poles change
as KP is varied.

8.7 EXTENDED EXAMPLES

In this section we present several examples of using proportional control and
explore issues with its application.

8.7.1 IBM Lotus Domino Server with a Moving-Average Filter

The stochastic nature of resource consumption in computing systems typically
results in substantial variability, especially for performance metrics such as response

TLFeBOOK

EXTENDED EXAMPLES 277

R(z) E(z) U(z) Y(z)

Lotus

+

−

Server

KP

Controller

0.47
z − 0.43 z − c

1 − cW(z)

Filter

Fig. 8.27 Block diagram of feedback control of the IBM Lotus Domino Server. A moving-
average filter is used to reduce the effect of stochastics.

times, queue lengths, and utilizations. Stochastics in a feedback loop make it diffi-
cult to separate the true dynamics (signal) from random variations (noise). Often, a
moving-average filter is used to mitigate the effect of stochastics. In this example
we study the effect of such a filter on the performance of a proportional controller
for the IBM Lotus Domino Server.

Figure 8.27 displays a block diagram of a feedback loop that controls the IBM
Lotus Domino Server. The control input, u(k), is MaxUsers, and the server
output RPCs in system (RIS) is w(k). A proportional controller is employed,
which has the transfer function KP. Also present is a moving-average filter as
described in Section 8.4.3. The filter constructs the smoothed signal y(k) from
the output by using y(k + 1) = cy(k)+ (1 − c)w(k), where 0 ≤ c ≤ 1. The filter
has the transfer function

H(z) = Y (z)

W(z)
= 1 − c

z − c

The closed-loop transfer function from the reference input to the filtered output is

FR(z) = Y (z)

R(z)
= KP0.47(1 − c)

(z − 0.43) (z − c) + 0.47(1 − c)KP

(8.14)

Figure 8.28 displays the effect of the filter constant c on steady-state error
ess, settling time ks , and maximum overshoot MP. Note that since the steady-
state gain of H(z) is 1, the steady-state error ess of the closed-loop system is
unaffected by c. However, c does affect settling times and maximum overshoot
MP. For example, note that KP = 2 is a reasonable value if c = 0.5 or 0.95. But
this choice of KP is a poor choice for c = 0.1, in that it results in huge settling
times.

Studying Figure 8.28 more, we see that for small to moderate values of c,
settling times increase with KP. However, for large c, settling times decrease
with KP. It turns out the effect of KP on settling times looks like an upward-
facing parabola. For smaller c, we see only the increasing part of this effect (the
rightmost part of the parabola) since KP > 0. At c = 0.95, we see primarily a
decrease in settling times for the range of KP considered (the leftmost part of the
parabola).

Finally, we see that MP ≈ 0 for c = 0.95. Intuitively, this make sense in that
smoothing reduces variability, including overshoot. A more detailed understand-
ing is obtained by examining the poles of Equation (8.14). It turns out that at

TLFeBOOK

278 PROPORTIONAL CONTROL

0 2 4
0

0.5

1
 e

ss

c = 0.1

0 2 4
0

50

100

 k
s

0 2 4
0

0.5

1

 M
P

 K
P

0 2 4
0

0.5

1
c = 0.5

0 2 4
0

50

100

0 2 4
0

0.5

1

 K
P

0 2 4
0

0.5

1
c = 0.95

0 2 4
0

50

100

0 2 4
0

0.5

1

 K
P

Fig. 8.28 Effect of the filter constant c and the proportional gain KP on the characteristics of
the feedback system in Figure 8.27.

large c, the poles have a very small imaginary part and thus are approximately
positive real numbers. Hence, from Section 8.3.5 we know that MP ≈ 0.

8.7.2 Apache with Precompensation

In Chapter 1 we described how KeepAlive (the time that idle HTTP connec-
tions are held) can be manipulated so as to regulate CPU (CPU utilizations). In
this example we investigate the use of precompensation to improve the accuracy
of regulating CPU using proportional control.

Figure 8.29 displays block diagrams for controlling CPU using KeepAlive.
The operating point is (CPU,KA) = (0.58, 11), and the offset values are u(k) =
KA(k) − KA, and y(k) = CPU(k) − CPU. The controller has the transfer function
KP, and the transfer function of the target system is

G(z) = Y (z)

U(z)
= −0.014

z − 0.59

TLFeBOOK

EXTENDED EXAMPLES 279

−0.014
z − 0.59

E(z) U(z) Y(z)+

−

Apache

KP

Controller

R(z)
P(z)

(a) No precompensation

(b) With precompensation

(c) With precompensation and a disturbance

E(z) U(z) Y(z)+

−

Apache

KP

Controller

−0.014
z − 0.59

R(z)

−0.014
z − 0.59

E(z) U(z) Y(z)+
−

Apache

KP

Controller

+ +

D(z)

R(z)
P(z)

Fig. 8.29 Block diagrams of the Apache HTTP Server showing how precompensation is used
and how a CPU disturbance can be modeled. P (z) is the transfer function of the precompensator.

We begin with Figure 8.29(a). From Equation (4.1), the transfer function from
the reference input to the output is

FR(z) = Y (z)

R(z)
= −0.014KP

z − 0.59 − 0.014KP

(8.15)

If there is a step change in the reference input with magnitude rss, the Z-transform
of the output signal is

Y (z) = FR(z)
z

z − 1
rss

Then the time-domain signal is CPU(k) = y(k) + CPU, where y(k) is obtained
from the Z-transform above. Figure 8.30(a) plots CPU(k) for Figure 8.29(a) when
the reference value is increased from 0.58 to 0.68 (so rss = 0.1). The dotted line
is the reference value, and the dashed line is the steady-state output.

We begin by making two observations. First, we want KP < 0 since we know
that CPU increases as KeepAlive decreases. This relationship is apparent in
Equation (8.15) in that the numerator is negative. Second, in Figure 8.30(a), the
distance between the dashed and dotted lines is |ess|. We see that |ess| > 0 and
that it increases as |KP| decreases.

TLFeBOOK

280 PROPORTIONAL CONTROL

0 5 10
0.4

0.5

0.6

0.7

0.8

0.9

C
P

U
(k

)

 k

K
P
 = −90

0 5 10
0.4

0.5

0.6

0.7

0.8

0.9

 k

K
P
 = −43

0 5 10
0.4

0.5

0.6

0.7

0.8

0.9

 k

K
P
 = −20

0 5 10
0.4

(a) Step response to a change in the reference input of Figure 8.29(a), a system
 with no precompensation

(b) Step response to a change in the reference input of Figure 8.29(b), a system
 with precompensation

(c) Step response of a change in the reference input and a disturbance of
 Figure 8.29(c), a system with precompensation

0.5

0.6

0.7

0.8

0.9
C

P
U

(k
)

 k

K
P
 = −90

0 5 10
0.4

0.5

0.6

0.7

0.8

0.9

 k

K
P
 = −43

0 5 10
0.4

0.5

0.6

0.7

0.8

0.9

 k

K
P
 = −20

0 5 10
0.4

0.5

0.6

0.7

0.8

0.9

 k

C
P

U
(k

)

K
P
 = −90

0 5 10
0.4

0.5

0.6

0.7

0.8

0.9

 k

K
P
 = −43

0 5 10
0.4

0.5

0.6

0.7

0.8

0.9

 k

K
P
 = −20

Fig. 8.30 Time-domain response to a change of reference value for the systems in Figure 8.29.
The reference value changes from 0.58 to 0.68. For Figure 8.29(c), d(k) = 0.3.

TLFeBOOK

EXTENDED EXAMPLES 281

We can eliminate steady-state error (i.e., reduce the distance between the
dashed and dotted lines) by using the system in Figure 8.29(b). This system
includes a block labeled P(z), the precompensator. P(z) provides a way to adjust
the reference signal R(z) to correct for the steady-state gain of the closed-loop
system. The transfer function from the reference input to the output is

F ′
R(z) = Y (z)

R(z)
= −0.014KPP(z)

z − 0.59 − 0.014KP

(8.16)

Note that P(z) only appears in the numerator of F ′
R and hence can be used to

adjust the steady-state gain of the system without affecting its poles. In particular,
we can make F ′

R(1) = 1 by having a constant precompensator

P(z) = 0.41 − 0.014KP

−0.014KP

which is the reciprocal of the steady-state gain of the system without the pre-
compensator. That is,

F ′
R(z) = Y (z)

R(z)
= −0.014KP[(0.41 − 0.014KP)/ − 0.014KP]

z − 0.59 − 0.014KP

= 0.41 − 0.014KP

z − 0.59 − 0.014KP

Clearly, with F ′
R(1) = 1, we have ess = 0. Figure 8.30(b) plots the step response

of Figure 8.29(b) for the same change in reference value as in Figure 8.30(a).
Note that we have eliminated the steady-state error for all three values of KP.
Also, observe that dynamics (e.g., ks , MP) are unaffected by precompensation.

Unfortunately, precompensation is not effective at eliminating steady-state
errors introduced by disturbances. Consider Figure 8.29(c). Here, there is a dis-
turbance that adds additional CPU utilization (e.g., due to the execution of
non-Apache tasks). The transfer function from the disturbance to the output is

F ′
D(z) = Y (z)

D(z)
= z − 0.59

z − 0.59 − 0.014KP

(8.17)

Note that P(z) does not appear in this transfer function since, by definition,
R(z) = 0 when we compute FD(z). The Z-transform of the output for a step
increase in the reference and disturbance inputs is

Y (z) = F ′
R(z)

z

z − 1
rss + F ′

D(z)
z

z − 1
dss

where dss is the steady-state magnitude of the constant disturbance. Figure 8.30(c)
plots the step response of Figure 8.29(c) for the same change in reference value
as in Figure 8.29(a) and a disturbance of magnitude 0.3. We see that |ess| > 0.
The reason for this is that

F ′
D(1) = 0.4

0.4 − 0.014KP

�= 0

TLFeBOOK

282 PROPORTIONAL CONTROL

unless KP = 0. But if KP = 0, then FR(z) = 0, so we cannot track the reference
value.

One might ask, “Why not use precompensation for the disturbance as well as
the reference inputs?” The difficulty here is that, by definition, the disturbance
is something that is usually unknown a priori and cannot be controlled. For
example, if the disturbance takes the form of non-Apache tasks executing on the
same computer, we have no way to adjust their execution times. As a result,
there is no way to implement a precompensator to correct for the effect of the
disturbance.

8.7.3 Apache with Disturbance Rejection

This is a continuation of the last example to investigate response to a dis-
turbance, especially steady-state error and settling time. Our starting point is
Figure 8.29(c). The operating point is (CPU,KA) = (0.58, 11), and the offsets
are u(k) = KA(k) − KA and y(k) = CPU(k) − CPU. Since the focus of this
example is disturbance rejection, the reference value r(k) = 0. The controller
has the transfer function KP, and the transfer function of the target system is

G(z) = Y (z)

U(z)
= −0.014

z − 0.59

The disturbance, D(z), reflects additional CPU utilizations, such as the execution
of non-Apache processes on the same server. From Equation (4.4), the transfer
function from the disturbance input to the output is

FD(z) = Y (z)

D(z)
= z − 0.59

z − 0.59 − 0.014KP

Figure 8.31 displays steady-state error and settling time for the system in
Figure 8.29(c) with a unit step disturbance input. We see that |ess| is smallest
when |KP| is largest, which is consistent with Equation (8.17). Settling time has
the shape of an upward-facing parabola. The minimum value of ks occurs at
KP = −43 since (−0.014)(−43) ≈ 0.6 and hence the pole is near 0.

Figure 8.32 displays the time-domain response to a step disturbance input of
magnitude 0.3 for three values of KP . We see that ks ≈ 10, 1, 3 for KP =
−90, −43,−20, which is consistent with Figure 8.31. Also in Figure 8.32, note
that the steady-state error increases as the magnitude of KP gets smaller, an effect
that is clear from Figure 8.31.

8.7.4 Effect of Operating Region on M/M/1/K Control

The relationship between control inputs and outputs in computing systems depends
on operating parameters such as arrival rates and service times. However, such
operating parameters may vary over time. For example, an e-commerce site may
have a mixture of “browse” and “buy” requests, with the latter being more com-
puter intensive than the former because of encrypting data for security purposes.

TLFeBOOK

EXTENDED EXAMPLES 283

−100 −90 −80 −70 −60 −50 −40 −30 −20 −10
−1

−0.5

0

0.5

1

 e
ss

−100 −90 −80 −70 −60 −50 −40 −30 −20 −10
0

5

10

 k
s

 K
P

Fig. 8.31 Assessment of steady-state error and settling time for the Apache HTTP Server in
Figure 8.29(c).

0 5 10
0.4

0.5

0.6

0.7

0.8

0.9

 k

C
P

U
(k

)

 K
P
 = −90

0 5 10
0.4

0.5

0.6

0.7

0.8

0.9

 k

 K
P
 = −43

0 5 10
0.4

0.5

0.6

0.7

0.8

0.9

 k

 K
P
 = −20

Fig. 8.32 Time-domain response of a step disturbance input in Figure 8.29(c). r(k) = 0 and
d(k) = 0.3, k ≥ 0. The dashed line is the steady-state output.

So changes in the relative proportion of the two request types (e.g., due to last-
minute shopping for Christmas) affects operating parameters. Hence, there is a
need to ensure that controller characteristics are robust to changes in operating
parameters. This example investigates such considerations in the context of the
M/M/1/K queueing system.

Recall that the static and dynamic characteristics of M/M/1/K are determined
by the arrival rate λ, the service rate µ, and the buffer size K . In this example,
λ is fixed at 1 second. K is the control input, and response time is the output.
We consider changes in µ (e.g., the CPU required to process a Web request).
Because it is more natural to think in terms of service times than service rates,
we use 1/µ in the sequel.

TLFeBOOK

284 PROPORTIONAL CONTROL

TABLE 8.1 Results of System Identification for
Response Times in M/M/1/K at Different Service
Times (1/µ)a

1/µ K R a b

0.85 15 4.4 0.83 0.0015
0.95 15 6.4 0.93 0.0023
0.99 15 7.3 0.97 0.0016

aλ = 1 and Ts = 10. All time units are in seconds.

We assume a first-order model for M/M/1/K , so

G(z) = Y (z)

U(z)
= b

z − a

The operating point is K = 15 and R is the expected value of response time at
the value of λ, µ, and K used. Let u(k) = K(k) − K and y(k) = R(k) − R.
Table 8.1 contains the results of system identification at several values of 1/µ in
which K(k) is increased in steps from 10 to 23.

Figure 8.33 displays the closed-loop system we consider in which a propor-
tional controller is used to regulate response times.1 The disturbance affects the
true buffer size (e.g., administrative tasks that consume buffers and are not regu-
lated by the controller). We consider a step disturbance in which the actual buffer
size is reduced. The control system includes a moving-average filter with transfer
function

H(z) = Y (z)

W(z)
= 1 − c

z − c
(0 ≤ c < 1)

that reduces the effect of stochastics. Thus, the transfer function from the distur-
bance to the filtered output is

FD(z) = Y (z)

D(z)
= b(1 − c)

(z − a)(z − c) + bKP(1 − c)
(8.18)

Figure 8.34 studies controller performance at different average service times
1/µ as KP is varied. We see that settling times change considerably with 1/µ,
as does steady state error.

Figure 8.35 studies the time-domain effects of changes in 1/µ and KP. The
solid lines are the results of M/M/1/K simulations (averaged over multiple
replications), and the dashed lines are predictions from Equation (8.18). The
disturbance occurs at k = 100 with d(k) = −4 for k ≥ 100. Due to the stochastic
nature of M/M/1/K , the correspondence between the predicted and actual values
is a bit rough. In particular, many of the plots evidence a rapid drop in R(k)

1Using buffer size to regulate response times means that some requests are not served. In practice, this
may mean that requests are sent elsewhere using a load-balancing scheme.

TLFeBOOK

EXTENDED EXAMPLES 285

R(z) E(z) U(z)+

−

M/M/1/K

KP

Controller

b
z −a

Y(z)+ +

D(z)

z − c
1 − cW(z)

Filter

Fig. 8.33 Block diagram of the M/M/1/K example. The control input is buffer size, and the
output is response time. The disturbance affects the control input. A moving-average filter is
used to reduce variability seen by the controller. The parameters a and b are determined by
system identification at different workload intensities as specified in Table 8.1.

0 250 500
−1

−0.5

0

0.5

1

 e
ss

1/µ = 0.85

0 250 500
0

50

100

150

200

 k
s

 K
P

0 250 500
−1

−0.5

0

0.5

1
1/µ = 0.95

0 250 500
0

50

100

150

200

 K
P

0 250 500
−1

−0.5

0

0.5

1
1/µ = 0.99

0 250 500
0

50

100

150

200

 K
P

Fig. 8.34 Effect of KP in Figure 8.33 on steady-state error and settling time. 1/µ is in seconds.

after the disturbance, but the values predicted show a much more gradual decline.
Even so, the simulations generally track the predictions.

Returning to Figure 8.34, we see that |ess| increases with service time, which
is reflected in Figure 8.35 as well. Note that ess < 0, which means that a unit
step disturbance causes y(k) to be larger than the reference. Thus, a negative
disturbance (decreasing the buffer size) should result in lower response times,
which is the case in Figure 8.35.

From the foregoing we draw three conclusions. First, the operating region has
a strong effect on how KP affects the control of M/M/1/K (which very likely
suggests a strong effect in real computing systems as well). Second, properly

TLFeBOOK

286 PROPORTIONAL CONTROL

3

4

5

6

7

8
R

es
po

ns
e

T
im

e

 K
P
=20 1/µ=0.85

3

4

5

6

7

8
 K

P
=20 1/µ=0.95

3

4

5

6

7

8
 K

P
=20 1/µ=0.99

3

4

5

6

7

8

R
es

po
ns

e
T

im
e

 K
P
=30 1/µ=0.85

3

4

5

6

7

8
 K

P
=30 1/µ=0.95

3

4

5

6

7

8
 K

P
=30 1/µ=0.99

100 150 200
3

4

5

6

7

8

Time

R
es

po
ns

e
T

im
e

 K
P
=40 1/µ=0.85

100 150 200
3

4

5

6

7

8

Time

 K
P
=40 1/µ=0.95

100 150 200
3

4

5

6

7

8

Time

 K
P
=40 1/µ=0.99

Fig. 8.35 Comparison of time-domain response to a disturbance in M/M/1/K with the
predictions from the transfer function model in Equation (8.18). Solid lines are the M/M/1/K

response averaged over 500 replications with c = 0.95. The dashed line is the value predicted.
d(k) = −4 for k ≥ 100. Ts = 10 seconds.

applied, transfer function models provide us with reasonable insights into how
changes in operating point affect control characteristics. From these two conclu-
sions we draw a third conclusion—that transfer function models should be used
to explore control characteristics for a range of operating points.

*8.8 DESIGNING P-CONTROLLERS IN MATLAB

In this section we illustrate how MATLAB can be used to analyze control sys-
tems. We use Equation (8.14) as a running example. We begin by observing that
Equation (8.14) is constructed from three transfer functions:

• The controller has the transfer function KP. In the following, we use KP = 2.

• The target system (the IBM Lotus Domino Server) has the transfer function
0.47/(z − 0.43).

TLFeBOOK

DESIGNING P-CONTROLLERS IN MATLAB 287

• The filter has the transfer function (1 − c)/(z− c). In the following, we use
c = 0.95.

The closed-loop transfer function is

KP0.47(1 − c)

(z − 0.43) (z − c) + (1 − c)KP0.47

We can construct this directly as follows:

>>Kp=2; c=0.95;

>>tf(Kp*0.47*[1-c],[1-(0.43+c)0.43*c+(1-c)*Kp*0.47],-1)

Transfer function:

0.047

z^2 - 1.38 z + 0.4555

Lines beginning with >> are user inputs, and those beginning with a space
are the MATLAB response to these inputs. The MATLAB function tf takes as
arguments the numerator of the transfer function, its denominator, and a time
specification. The numerator and denominator are expressed as polynomials in z.
For example, [1 -c] represents z − c. A −1 for the time specification means
that time is unspecified.
MATLAB provides a convenient way to construct feedback loops from transfer

functions for the feedforward loop and the filter. We start by constructing the
transfer function of the IBM Lotus Domino Server:

>> lotus=tf(0.47,[1 -0.43],-1)

Transfer function:

0.47

z - 0.43

and the transfer function for the filter:

>> filter = tf(1-c, [1 -c],-1)

Transfer function:

0.05

z - 0.95

TLFeBOOK

288 PROPORTIONAL CONTROL

The feedback loop has the product of the proportional gain KP and the IBM
Lotus Domino Server in feedforward (from the reference to the output) and the
filter in feedback. Hence, the closed-loop transfer function from the reference to
the output is

>> sys_cl = feedback(Kp*lotus,filter)

Transfer function:

0.047

z^2 - 1.38 z + 0.4555

which is the same as before.
MATLAB also provides functions to extract poles, zeros, and steady-state gain

from transfer functions. For example:

>> pole(sys_cl)

ans =

0.8335

0.5465

>> zero(sys_cl)

ans =

Empty matrix: 0-by-1

The latter is because sys cl has no finite zeros.

>> dcgain(sys_cl)

ans =

0.6225

We can also use MATLAB to plot the root locus of the system; note that here
we use the product of the loop transfer functions, since the root locus plots the
poles for all possible values of KP .

>> rlocus(lotus*filter)

Finally, MATLAB provides a way to simulate the response to a step input. For
example,

TLFeBOOK

EXERCISES 289

>> step(sys_cl)

results in a plot in which the horizontal axis is time and the vertical axis is the
output y(k).

8.9 EXERCISES

1. Consider a system with transfer function

G(z) = Y (z)

U(z)
= 0.5

z − 0.75

and proportional control, as in Figure 8.5. Find the range of values of KP

such that the closed-loop system

(a) Is stable
(b) Has steady-state error ess to a unit step reference less than 0.1
(c) Has setting time ks < 10
(d) Has maximum overshoot MP < 0.1

(Note: It may not be possible to satisfy all criteria.) Repeat with one time
delay in the feedback loop. Explain the change, if any, in KP.

2. Repeat Exercise 1 with an uncertain transfer function. That is,

G(z) = 0.5

z − a
where a = 0.75 ± 0.1

3. Plot the root locus of G(z) = 0.5/(z − 0.75) and indicate on the plot the
value(s) of KP at which instability results. Repeat with one time delay in
the feedback loop.

4. Consider a system with transfer function G(z) = 0.5/(z − 0.75) and pro-
portional control. Plot ess, ks , and MP as functions of KP for the range of
KP in which the closed-loop system is stable. Repeat with one and two time
delays in the loop.

5. Consider a system G(z) = 0.4/(z − 0.25). Design a proportional controller
to result in ks < 2. Add a precompensator to achieve zero steady-state error
to a step reference. Verify your control design by simulation. What is the
steady-state output of the system if there is a unit step disturbance entering
as in Figure 8.5?

6. Consider a system G(z) = −0.4/(z+ 0.25). Design a moving-average filter
and a proportional controller to result in MP < 0.1. Add a precompensator
to achieve zero steady-state error to a step reference. Verify your control
design by simulation.

TLFeBOOK

290 PROPORTIONAL CONTROL

7. Consider a closed-loop system consisting of a target system with transfer
function G(z) and a proportional controller. Prove that if G(z) has at least
one zero at infinity, there exists a sufficiently large KP such that the closed-
loop system is unstable.

8. Figure 8.8 can be divided into three sections: (1) k ∈ [0, 5), during which
d(k) = 0 = n(k); (2) k ∈ [5, 10), during which d(k) �= 0 = n(k); and (3)
k ∈ [10, 15], during which d(k) �= 0 �= n(k). For each section, find the
steady-state values of u(k), e(k), and t (k) for the inputs in each section.

9. Consider control systems with various placements of a moving-average filter
as depicted in Figure 8.36. How does the filter placement affect the poles
of the transfer functions for the reference and disturbance inputs? What is
the effect on settling times and maximum overshoot?

R(z) E(z) U(z)+

−

Target

KP

Controller

Y(z)+ +

D(z)

System

G(z)
z − c
1 − c

Filter

R(z) E(z) U(z)+

−

Target

KP

Controller

Y(z)+ +

D(z)

z − c
1 − c

Filter

System

G(z)

R(z) E(z) U(z)+

−

Target

KP

Controller

Y(z)+ +

D(z)

z − c
1 − c

FilterSystem

G(z)

(a) After E(z)

(b) After G(z)

(c) As transducer

Fig. 8.36 Various placements of filters in a feedback loop.

TLFeBOOK

EXERCISES 291

R(z) E(z) U(z)+

−

Target

KP

Controller

Y(z)+ +

D(z)

z − c1

1 − c1

Filter 1System

G(z)

z − c2

1 − c2

Filter 2

Fig. 8.37 Block diagram of proportional control system with multiple filters.

10. The system in Figure 8.37 has two filters. How do the transfer functions of
this system differ from those in Figure 8.36(b) and 8.36(c)? What are the
advantages and disadvantages of the design in Figure 8.37?

11. Explain the effect of KP on the magnitude of the largest pole in Figure 8.24
for c = 0.95.

TLFeBOOK

TLFeBOOK

9
PID Controllers

The proportional controller discussed in Chapter 8 reduces steady-state errors.
However, it cannot drive the steady-state error to zero. In this chapter we intro-
duce the integral and derivative control actions. Integral control can drive the
steady-state error to zero, although it may also slow controller response. Deriva-
tive control provides a way to respond quickly. Also addressed are various
combinations of proportional, integral, and derivative control actions, especially
the PID controller (which includes all three). PID control is widely used in the
process control industry [8]. Various approaches to controller design are dis-
cussed, with an emphasis on pole placement design.

9.1 INTEGRAL CONTROL

As shown in Section 8.3.3, steady-state error is unavoidable with proportional
control. This is because the output of a proportional controller is proportional
to the control error, a zero error implies a zero controller output. A constant
reference requires a nonzero control input and hence cannot be tracked exactly.
As shown in Section 8.7.2, a precompensator can be used to eliminate steady-state
error to a reference input, but this relies on a precise knowledge of the system
model and cannot eliminate steady-state error to a disturbance. In contrast, for
integral controllers, the change of the controller output is proportional to the
error, or equivalently, the controller output is proportional to the integral of the

Feedback Control of Computing Systems, by Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury
ISBN 0-471-26637-X Copyright c© 2004 John Wiley & Sons, Inc.

293

TLFeBOOK

294 PID CONTROLLERS

control error. Once a nonzero error exists, the controller output keeps changing
to reduce the error. The larger the error, the more the change. It is this integral
effect that can drive the steady-state error to zero.

The integral control law has the form

u(k) = u(k − 1) + KIe(k) (9.1)

where u(k) is the output of the integral controller and e(k) is the control error. The
controller parameter KI defines the ratio of control change (the difference between
the current and past inputs) to the control error. Note that unlike proportional
control, the control input u(k) can be nonzero even when the current error e(k)

is zero. This allows the system to have zero steady-state error in the presence
of a step change in reference and/or disturbance inputs.

The term integral control refers to the fact that the controller output is pro-
portional to the integral of all past errors. This can be seen by computing the kth
input u(k), as follows:

u(1) = u(0) + KIe(1)

u(2) = u(1) + KIe(2) = u(0) + KIe(1) + KIe(2)

...

u(k) = u(k − 1) + KIe(k) = u(0) + KIe(1) + · · · + KIe(k)

= u(0) + KI

k∑
j=1

e(j)

The transfer function of the integral controller can be found by taking the
Z-transform of Equation (9.1) with zero initial conditions:

U(z) = z−1U(z) + KIE(z) (9.2)

(1 − z−1)U(z) = KIE(z) (9.3)

U(z)

E(z)
= KI

1 − z−1
(9.4)

= KIz

z − 1
(9.5)

Note that the integrator has a pole at z = 1. In open loop, the integrator is not
BIBO stable. The integrator also has a zero at z = 0.

9.1.1 Steady-State Error with Integral Control

To show how the steady-state error of a system with integral control can be zero,
even with constant reference or disturbance inputs, we start with an example.

TLFeBOOK

INTEGRAL CONTROL 295

Example 9.1: Steady-state error of the IBM Lotus Domino Server with I con-
trol Consider the IBM Lotus Domino Server with an integral controller. Its
control input is MaxUsers, and the output is RIS, the number of RPCs in
the Notes Server. The operating point of the IBM Lotus Domino Server is
(MaxUsers, RIS). In our case, (MaxUsers, RIS) = (375, 325). The kth offset
value of the input is u(k) = MaxUsers(k) − MaxUsers, and for the output it
is y(k) = RIS(k) − RIS. The block diagram is shown in Figure 9.1. As derived
in Example 3.7, the transfer function of the IBM Lotus Domino Server is

G(z) = Y (z)

U(z)
= 0.47

z − 0.43

Referring to Figure 9.1, the closed-loop transfer function from the reference input
to the measured output is

FR(z) = Y (z)

R(z)
= [KIz/(z − 1)][0.47/(z − 0.43)]

1 + [KIz/(z − 1)][0.47/(z − 0.43)]

= 0.47KIz

z2 + (0.47KI − 1.43)z + 0.43

Note that for any value of KI, the steady-state gain of this transfer function is 1:

FR(1) = 0.47KI

1 + (0.47KI − 1.43) + 0.43
= 1

From Equation (8.5), the steady-state error to a constant reference of magnitude
rss is

ess = rss[1 − FR(1)] = 0

and thus, for any value of KI such that the closed-loop system is stable, the
steady-state error to a constant reference input is zero.

It turns out that the steady-state gain of a system with integral control does not
depend on the target system as long as the closed-loop system is stable. Indeed,
for a stable closed-loop system with integral control, the steady-state gain is 1.

This is a key result since having a steady-state gain of 1 means that there is no

R(z)

D(z)

G(z)
E(z) U(z) Y(z)

zKI
z −1

++

+

−

Fig. 9.1 Feedback loop with integral control.

TLFeBOOK

296 PID CONTROLLERS

steady-state error in response to step changes in the reference and disturbance
inputs.

The foregoing can be proved in a straightforward way. Referring to Figure 9.1,
we see that

FR(z) = Y (z)

R(z)
= [KIz/(z − 1)]G(z)

1 + [KIz/(z − 1)]G(z)

= KIzG(z)

(z − 1) + KIzG(z)

Now observe that

FR(1) = KIG(1)

0 + KIG(1)
= 1

Note that this result does not depend on KI as long as the closed-loop system is
stable.

Integral control also eliminates errors due to disturbance inputs. Consider again
the integral control system of Figure 9.1. The closed-loop transfer function for a
disturbance input is the forward gain from D(z) to Y (z) divided by 1 plus the
loop gain,

FD(z) = Y (z)

D(z)
= G(z)

1 + [KIz/(z − 1)]G(z)

= (z − 1)G(z)

(z − 1) + KIzG(z)

and the steady-state gain of this disturbance transfer function is

FD(1) = 0

0 + KIG(1)
= 0

From Equation (8.6), the steady-state error to a constant disturbance of magnitude
dss is

ess = dssFD(1) = 0

Again, the steady-state error to a constant disturbance is zero for any value of
KI and for any system model G(z), such that the closed-loop system is stable.

In summary, integral control eliminates steady-state error due to step changes
in either the reference or disturbance inputs, as long as the closed-loop system
is stable.

9.1.2 Transient Response with Integral Control

The elimination of steady-state error comes at a price in that integral control
slows system response. The reason for this is that the integrator adds an open-loop

TLFeBOOK

INTEGRAL CONTROL 297

pole at z = 1. Thus, the closed-loop system has one more pole than the open-
loop transfer function G(z). This additional pole is typically closer to the unit
circle than any of the open-loop poles, and hence results in a slower closed-loop
response.

Example 9.2: Closed-loop poles of the IBM Lotus Domino Server with inte-
gral control Consider the closed-loop system in Figure 9.1 in which G(z) =
0.47/(z−0.43). The closed-loop system has two poles, one from the IBM Lotus
Domino Server and one from the integrator. Instead of computing their locations
directly, we can plot the root locus—all possible locations of the closed loop
poles as KI varies from 0 to ∞. In Figure 9.2, the root locus of the IBM Lotus
Domino Server alone is shown on the left, and the root locus of the IBM Lotus
Domino Server plus an integrator is shown on the right. Since the integrator adds
an open-loop pole at z = 1, there are two branches to the root locus. One branch
ends at the finite zero (z = 0), and the other at the zero at infinity. The largest
closed-loop pole is always closer to the unit circle than the open-loop pole 0.43.

Another way to view the effect of integral control is to plot the magnitude of
the largest closed-loop pole versus the control gain. Figure 9.3 shows this plot
for both the IBM Lotus Domino Server with P control (top) and the IBM Lotus
Domino Server with I control (bottom). Recall that the settling time of the system
depends on the magnitude of the dominant closed-loop pole, as ks = −4/ log |p|,
where p is the dominant pole. Since the magnitude of the largest closed-loop pole
with I control is always greater than the magnitude of the open-loop pole (0.43),
and the settling time increases with the pole magnitude, the closed-loop response
will always be slower than the open-loop response, no matter what value of KI

is chosen. This trade-off between accuracy and speed is one of the many choices
that must be made in control design.

Consider three different choices for KI : KI = 1, 3, 5. According to Figure 9.3,
each of these choices results in a stable closed-loop system. The closed-loop poles
are shown in Table 9.1, along with the predicted settling time and maximum
overshoot. The predicted settling time is the same for all cases but is twice

−1 0 1

−1

−0.5

0

0.5

1

−1 0

(a) Without an integrator (b) With an integrator

1

−1

−0.5

0

0.5

1

Fig. 9.2 Root locus of the IBM Lotus Domino Server without and with an integrator in the loop.

TLFeBOOK

298 PID CONTROLLERS

0 1 2 3 4 5 6
0

0.5

1

 K
P

P
ol

e
M

ag
ni

tu
de

0 1 2 3 4 5 6
0

0.5

1

 K
I

La
rg

es
t P

ol
e

M
ag

ni
tu

de

Fig. 9.3 Magnitude of largest closed-loop pole, the IBM Lotus Domino Server with P control
(top) and I control (bottom).

TABLE 9.1 Closed-Loop Poles with Predicted and Actual Transient Behavior for the
IBM Lotus Domino Server with Integral Controla

Gain Closed-Loop Error ks MP MP

KI Poles ess (predicted) (predicted) (actual)

1 0.48 ± 0.45j = 0.66e±j (π/4) 0 10 0.19 0.18
3 0.01 ± 0.66j = 0.66e±j (π/2) 0 10 0.44 0.44
5 −0.46 ± 0.47j = 0.66e±j (3π/4) 0 10 0.57 1.35

aSee Figure 9.1.
Simulation results are shown in Figure 9.4.

as long as the settling time of the open-loop system [−4/ log(0.43) = 4.7].
The actual maximum overshoot is computed from the simulations as shown in
Figure 9.4, for a reference change of 20 (increasing RIS from 325 to 345). The
estimated and actual do not always agree, due to the presence of a zero in the
transfer function. As noted in Chapter 6, a zero in the transfer function can
increase the overshoot substantially.

Control design for an integral controller can be accomplished by plotting the
expected settling time and overshoot for a range of possible integral gains KI that
result in a stable closed-loop system (we omit plotting the steady-state error since
it is always zero if the closed-loop system is stable). From this plot, a reasonable
value of KI can be chosen. If MP is a critical factor in the design, the estimate
from the closed-loop poles should be validated by simulation, since the zero in
the integrator can cause the overshoot to increase. As an example, the expected
settling time ks and expected overshoot MP are plotted in Figure 9.5 for the IBM
Lotus Domino Server with integral control.

TLFeBOOK

INTEGRAL CONTROL 299

0 5 10 15
0

10

20
 y

(k
) K

I
 = 1

0 5 10 15
0

10

20

 y
(k

) K
I
 = 3

0 5 10 15
0

10

20

 y
(k

) K
I
 = 5

 k

Fig. 9.4 Transient response of the IBM Lotus Domino Server and integral control to a step
reference change of rss = 10 for three different values of KI . The closed-loop poles and transient
performance metrics are shown in Table 9.1.

0 1 2 3 4 5 6
0

5

10

15

20

 k
s

0 1 2 3 4 5 6
0

0.5

1

1.5

 M
p

 K
I

Estimated
Actual

Fig. 9.5 Settling time ks and maximum overshoot MP estimated from the dominant pole for
the system of the IBM Lotus Domino Server with integral control. The stability boundary is
indicated by the solid vertical line.

TLFeBOOK

300 PID CONTROLLERS

Example 9.3: Disturbance rejection in the IBM Lotus Domino Server with inte-
gral control Consider the IBM Lotus Domino Server with integral control, and
choose KI = 1. Suppose that as in Section 8.1, the desired reference is rss = 10,
but the initial condition is y = 0. That is, the system starts at its operating
point, and we want RIS to increase by 10. Further, there is a step increase in the
disturbance input, with dss = 20.

The time response of all signals in this system can be seen in Figure 9.6.
Note that the steady-state error to the step reference is zero and that the output
y reaches its steady-state value after ks = 10 sample times, as predicted. At
k = 10, the disturbance occurs. The control u reacts to this changed error, and
the output y again returns to its desired value after the settling time ks = 10.

Integral control achieves a zero steady-state error because the sum
∑k

i=0 e(i) is
nonzero even though e(k) = 0.

Example 9.4: Moving-average filter plus integral control In Section 8.4.3
we show how a moving-average filter can be used to smooth the output of the

0 5 10 15 20 25
0

5

10

 r
(k

)

0 5 10 15 20 25
0

10

20

 d
(k

)

0 5 10 15 20 25
−10

0

10

 e
(k

)

0 5 10 15 20 25
−20

0

20

 u
(k

)

0 5 10 15 20 25
0

10

20

 y
(k

)

 k

Fig. 9.6 Reference tracking (rss = 10) and disturbance rejection (dss = 20) in the IBM Lotus
Domino Server with integral control, KI = 1.

TLFeBOOK

PROPORTIONAL–INTEGRAL CONTROL 301

R(z) E(z) U(z) Y(z)

Lotus

+

−

NotesController

0.47
z − 0.43

z − c
1 − cW(z)

Filter

(a) Block diagram (b) Root locus

zKI
z −1

1 0 1

1

0.5

0

0.5

1

Fig. 9.7 Block diagram and root locus of the IBM Lotus Domino Server with integral control
and a moving-average filter (c = 0.9).

system before it is fed back to the controller. Such an approach is depicted in
Figure 9.7(a) for the IBM Lotus Domino Server. One consequence of a moving-
average filter is to slow the system response so that it reacts only to sustained
changes in the reference and disturbance inputs.

Since an integral controller also slows down the system response, the com-
bination of a moving-average filter with integral control can lead to undesirable
or overly slow behavior. To see this, consider the root locus of the IBM Lotus
Domino Server plus a moving-average filter and an integral controller, as shown
in Figure 9.7(b). There are in total three closed-loop poles: the integral controller
contributes a pole at z = 1, the moving-average filter contributes a pole at z = c

(here c = 0.9), and the IBM Lotus Domino Server contributes a pole at z = 0.43.

As can be seen in the root locus plot, the region of controller gains KI that result
in a stable closed-loop system is very small. In addition, since in the stable region
the dominant closed-loop pole is very close to the unit circle (magnitude greater
than 0.95, or halfway in between c and 1), the settling time will necessarily be
very long (here, ks > 78).

In essence, an integral controller acts like a moving-average filter. A short
transient disturbance contributes only slightly to the integral of the error, while a
sustained change in the output has a more substantial effect on the integral of the
error. The difference is that an integral controller can drive the steady-state error
to zero, whereas a moving-average filter, with a steady-state gain of 1, cannot
change the steady-state behavior of the system.

9.2 PROPORTIONAL–INTEGRAL CONTROL

Proportional–integral (PI) control combines the advantages of integral control
(zero steady-state error) with those of proportional control (increasing the speed
of the transient response). As shown in Figure 9.8, the control input is the sum of
the proportional and integral terms. For proportional control, the control input is
proportional to the control error, and for integral control, the change in control

TLFeBOOK

302 PID CONTROLLERS

KP

R(z)
G(z)

E(z) U(z) Y(z)
++

+

−

KI
z

z −1

PI Controller

Fig. 9.8 Feedback loop with PI control. The error E(z) = R −Y (z) is the input to the controller.
The control input U(z) is a sum of the proportional term KPE(z) and the integral term KI[z/(z−1)].

input is proportional to the control error:

uP (k) = KPe(k)

uI (k) = uI (k − 1) + KIe(k)

The PI controller adds these two terms together,

u(k) = uP (k) + uI (k)

= KPe(k) + uI (k − 1) + KIe(k)

To eliminate the uI term algebraically, it is simplest to write out the equation for
the change of u(k) :

u(k) − u(k − 1) = uP (k) − uP (k − 1) + uI (k) − uI (k − 1)

= KPe(k) − KPe(k − 1) + KIe(k)

Thus, the PI control law has the form

u(k) = u(k − 1) + (KP + KI)e(k) − KPe(k − 1) (9.6)

Note that to compute the current control input u(k), the controller needs to know
the current value of the control error e(k) along with the past value of the error
e(k − 1) and the past value of the control input u(k − 1). It is this memory
inherent in the PI controller that makes it dynamic (in contrast to the static P
controller).

The transfer function of the PI controller can be found by taking the Z-
transform of Equation (9.6) with zero initial conditions:

U(z) = z−1U(z) + (KP + KI)E(z) − KPz
−1E(z)

(1 − z−1)U(z) =
(
KP + KI − KPz

−1
)

E(z)

U(z)

E(z)
= (KP + KI)z − KP

z − 1
= KP + KIz

z − 1
(9.7)

TLFeBOOK

PROPORTIONAL–INTEGRAL CONTROL 303

The transfer function given in Equation (9.7) is written in two different ways.
One form emphasizes the separate contributions of the proportional and integral
terms, as shown in Figure 9.8, and the other emphasizes the pole and zero of the
controller. Similarly to the integral controller, the PI controller also has a pole at
z = 1; this corresponds to the integral action. The control transfer function also
has a finite zero, but instead of being at z = 0, as in the integral case, it is at
z = KP/(KP + KI). If KP and KI have the same sign (as is usually the case), the
zero is always on the real line between 0 and 1. When the zero is exactly at 0, PI
control reduces to the pure integral control case. When the zero is exactly at 1, it
cancels the pole at z = 1, negating the effect of the integral control, and reduces
to the pure proportional control case. A PI control loop is shown in Figure 9.9.

9.2.1 Steady-State Error with PI Control

Consider the steady-state error for a system with PI controller. Since PI includes
an integral control term, we expect the steady-state error to be zero. This can be
confirmed by finding the closed-loop transfer function of the system in Figure 9.9
for a generic transfer function G(z). The closed-loop transfer function is com-
puted as the forward gain from R to Y divided by 1 plus the loop gain:

FR(z) = Y (z)

R(z)
= {[(KP + KI)z − KP]/(z − 1)}G(z)

1 + {[(KP + KI)z − KP]/(z − 1)}G(z)

= [(KP + KI)z − KP] G(z)

(z − 1) + [(KP + KI)z − KP] G(z)
(9.8)

FR(1) = (KP + KI − KP)G(z)

0 + (KP + KI − KP)G(z)
= 1

That is, PI control has a zero steady-state error in response to a step change in
the reference input, if the closed-loop system is stable. This statement does not
depend on the choice of KP or KI. It turns out that the same holds for a step
change in the disturbance input. The proof of this is left as an exercise.

9.2.2 PI Control Design by Pole Placement

Consider the closed-loop system with PI control in Figure 9.9. We have four
design goals for the PI controller: (1) the closed-loop system is stable; (2) steady-
state error is minimized; (3) settling time does not exceed k∗

s ; and (4) maximum

R(z)

D(z)

G(z)
E(z) U(z) Y(z)

z –1
(KP+KI)z–KP ++

+

−

Fig. 9.9 Block diagram of a computing system G(z) with proportional–integral control.

TLFeBOOK

304 PID CONTROLLERS

overshoot does not exceed M∗
P . The first design goal is achieved by ensuring that

all poles lie within the unit circle. The second goal is achieved by using a PI
controller, at least for a step change in the reference and/or disturbance inputs.
Thus, the design problem is reduced to goals 3 and 4. These control goals can
be achieved by properly selecting the parameters KP and KI of the PI controller.

Our approach assumes that G(z) is a first-order system. If G(z) is a higher-
order system, we can use Equation (3.30) to construct a first-order approximation
of G(z). The case of G(z) having order 0 is considered in the problems at the end
of the chapter. Note that if G(z) is first order, the closed-loop system is second
order since the PI controller is a first-order system. Hence, the closed-loop system
has two poles.

Table 9.2 details the steps in our procedure for pole placement design. The
first step is to compute the desired poles of the closed-loop system based on
k∗
s and M∗

P . We assume that the poles are complex conjugates re±jθ . From
Equation (8.7) we know that ks < −4/ log r . Thus, an upper bound for r is

r = e−4/k∗
s (9.9)

Equation (8.8) relates MP to θ as MP ≈ rπ/θ (for θ ≥ 0) so

θ = π
log r

log M∗
P

(9.10)

Note that both r and θ are constructed so that smaller (absolute) values will also
satisfy the design goals.

The next step is to construct the desired characteristic polynomial , which
is the characteristic polynomial that we want for the closed-loop system. The
desired characteristic polynomial is

(z − rejθ)(z − re−jθ) = z2 − 2r cos θz + r2 (9.11)

The third step is to construct the modeled characteristic polynomial , which is
the denominator of the transfer function of the closed-loop system. In Figure 9.9
this is the denominator of

((KP + KI)z − KP)G(z)

z − 1 + ((KP + KI)z − KP)G(z)

In the fourth step we solve for KP and KI so that the desired characteristic
polynomial is the same as the modeled characteristic polynomial. This is done
by equating the coefficient of each power of z in the desired characteristic poly-
nomial with the coefficient of the same power of z in the modeled characteristic
polynomial. The result is two linear equations in the two unknowns KP and KI .

Having assigned values to KP and KI, we now verify that the design goals are
achieved. First, we confirm that the poles of the closed-loop transfer function lie
within the unit circle. Next, we simulate the transient response to confirm that
settling times do not exceed k∗

s and the maximum overshoot does not exceed M∗
P

.

TLFeBOOK

PROPORTIONAL–INTEGRAL CONTROL 305

TABLE 9.2 Procedure for Pole Placement Design for a PI Controller

The design goals are that settling time does not exceed k∗
s and that the maximum overshoot

does not exceed M∗
P .

1. Compute the desired closed-loop poles re±jθ :

• Compute r based on k∗
s using Equation (9.9).

• Compute θ based on MP using Equation (9.10).

2. Construct and expand the desired characteristic polynomial.

• From Equation (9.11), the desired characteristic polynomial is z2 − 2r cos θz + r2,
as specified in Equation (9.11).

3. Construct and expand the modeled characteristic polynomial.

• The modeled characteristic polynomial is the denominator of

K(z)G(z)

1 + K(z)G(z)

where

K(z) = (KP + KI)z − KP

z − 1

• Eliminate all fractions in the denominator (by multiplication) and expand the
polynomial.

4. Find KP and KI.

• Equate the coefficients of the desired characteristic polynomial with the coefficient
of the modeled characteristic polynomial of the same degree.

• Solve for KP and KI.

5. Verify the result.

• Check that the closed-loop poles lie within the unit circle.

• Simulate transient response to assess if the design goals are met.

Below we give an example of applying the procedure in Table 9.2.

Example 9.5: PI control design by pole placement Consider the IBM Lotus
Domino Server, with transfer function

G(z) = Y (z)

U(z)
= 0.47

z − 0.43
(9.12)

Recall that y(k) is the offset of RPC’s in the system (RIS) from the operating
point, and u(k) is the offset of MaxUsers from the operating point. We use the
procedure in Table 9.2 to design a PI controller so that k∗

s = 10 and M∗
P

= 10%.

1. Compute the dominant poles. Using Equation (9.9), we have r = e−4/10 =
0.67. Using Equation (9.10), we determine that θ = π(ln r/ ln 0.1) = 0.70.

To be conservative, we round this to r = 0.6 and θ = 0.6.

TLFeBOOK

306 PID CONTROLLERS

2. Construct and expand the desired characteristic polynomial. The desired
characteristic polynomial is z2 − 2r cos θz + r2 = z2 − z + 0.36.

3. Construct and expand the modeled characteristic polynomial. With PI con-
trol (as in Figure 9.9), the closed-loop transfer function from the reference
input to the measured output is

FR(z) = Y (z)

R(z)
= {[(KP + KI)z − KP]/(z − 1)}G(z)

1 + {[(KP + KI)z − KP]/(z − 1)}G(z)

= 0.47(KP + KI)z − 0.47KP

z2 + [0.47(KP + KI) − 1.43]z + 0.43 − 0.47KP

(9.13)

The modeled characteristic polynomial is the denominator of Equation (9.13),
which is z2 + [0.47(KP + KI) − 1.43]z + 0.43 − 0.47KP.

4. Solve for KP and KI. We want the desired characteristic polynomial to equal
the modeled characteristic polynomial. That is,

z2 − z + 0.36 = z2 + [0.47(KP + KI) − 1.43]z + 0.43 − 0.47KP

This is true if

0.47(KP + KI) − 1.43 = −1

0.43 − 0.47KP = 0.36

Solving this system of equations, we have

KP = 0.15

KI = 0.76

5. Verify the result. Substituting into Equation (9.13), we have

FR(z) = 0.47(0.15 + 0.76)z − (0.47)(0.15)

z2 + [0.47(0.15 + 0.76) − 1.43]z + 0.43 − (0.47)(0.15)

= 0.43z − 0.07

z2 − z + 0.36

As expected, the poles of FR(z) are 0.5 ± 0.33, so the system is stable.
FR(1) = 1 and hence there is no steady-state error to a step change in the
reference or disturbance inputs. Figure 9.10 displays simulation results to
a step increase of 10 in the reference input and an increase of 20 in the
disturbance input. We see that the design criteria are satisfied in that settling
times are well under the objective of 10, and the maximum overshoot is well
under 10%. Also shown in the figure are the magnitudes of the proportional
and integral components of the control signal u(k). Note that the integral
controller has the most effect on u(k).

Recall that the foregoing procedure handles higher-order G(z) by using a first-
order approximation. Another approach is to increase the number of controller

TLFeBOOK

PROPORTIONAL–INTEGRAL CONTROL 307

0 5 10 15 20 25
0

5

10

 r
(k

)

0 5 10 15 20 25
0

10

20

 d
(k

)

0 5 10 15 20 25
−10

0

10

 u
P
(k

)

0 5 10 15 20 25
−20

0

20

 u
I(k

)

0 5 10 15 20 25
−20

0

20

 u
(k

)

0 5 10 15 20 25
0

10

20

 y
(k

)

 k

Fig. 9.10 PI control of the IBM Lotus Domino Server with KP = 0.15, KI = 0.76. The reference
is 10 and there is a disturbance of 20. The design objectives are satisfied in that settling time
less than k = 10 and overshoot less than 0.1 (10%). The proportional and integral contributions
to the controller are shown separately, along with their sum: u(k) = uP (k) + uI (k).

parameters so that they are equal to the order of the system. This approach is
used in Chapter 10 in the discussion of pole placement design for state-space
feedback control.

9.2.3 PI Control Design Using Root Locus

In pole placement design, the desired closed-loop poles are determined based
on an a priori specification of desired properties of the closed-loop system (e.g.,
settling time and maximum overshoot). However, it could be that even shorter

TLFeBOOK

308 PID CONTROLLERS

settling times and a smaller maximum overshoot are possible based on the rela-
tionship between control gains and closed-loop poles. Root locus design provides
a way to explore the possible pole placements and hence gain insight into the
trade-offs in controller design.

As described in Chapter 8, the root locus of the system allows all possible
closed-loop pole locations to be considered at one time. However, the root locus
allows only one parameter to be varied, which creates a problem since PI con-
trollers have two parameters: KP and KI . One possible solution is to first fix KP

and then draw the root locus with respect to KI , choose a value of KI , then
draw the root locus with respect to KP , and so on. This is basically a trial-and-
error approach. Care must be taken to write the denominator of the closed-loop
transfer function in the correct form so that it matches the root locus definition
of Equation (8.4); some algebra is usually required to get it in this form.

A more effective approach is to transform KP and KI into a more convenient
form. For the first parameter, we use the location of the zero of the PI controller,
which is KP/(KP +KI). For the second parameter we use KP +KI, a quantity that
we refer to as the overall gain of the PI controller. Placing the zero effectively
fixes the ratio between the proportional and integral parts of the controller and
leaves only one parameter to vary. Then we vary the overall gain to assess control
performance. This method is outlined below.

1. The zero of the PI controller must be between 0 and 1 on the positive real
axis. Determine the possible locations relative to other poles and zeros on
the positive real axis.

2. For each relative location of the zero, draw the root locus. Study the possible
closed-loop poles. Determine which relative location is best to meet the
design constraints.

3. For the most promising relative location, choose a few possible exact loca-
tions (e.g., near the ends of the segment, in the middle of the segment),
and either draw an exact root locus or plot the expected settling time and
overshoot. Choose the zero location KP/(KP + KI) and the overall gain
(KP + KI).

4. Simulate to verify the design, since the zero introduced by the PI controller
and any zeros present in G(z) can affect the system overshoot.

This design method is illustrated in the following example.

Example 9.6: PI control using root locus Consider again the IBM Lotus
Domino Server. The open-loop pole is at z = 0.43. The zero can be placed
either to the right or to the left of the open-loop pole; the two different root locus
plots are shown in Figure 9.11. If the zero is to the right of the pole, there is
always a closed-loop pole between the zero location and z = 1. This closed-loop
pole near the unit circle results in a slow closed-loop response. If the zero is
placed to the left of the open-loop pole, the closed-loop response can be faster

TLFeBOOK

PROPORTIONAL–INTEGRAL CONTROL 309

−1 0 1

−1

−0.5

0

0.5

1

−1 0
(a) Zero left of pole (b) Zero right of pole

1

−1

−0.5

0

0.5

1

Fig. 9.11 Root locus of the IBM Lotus Domino Server and PI control. The zero can be placed
either to the left or to the right of the pole at 0.43. The root locus has a similar form no matter
where exactly the zero is placed.

than the open-loop response (the closed-loop poles can be closer to the origin).
However, since the closed-loop poles can be complex, there could be a significant
amount of overshoot in the closed-loop response, which may be undesirable.

We consider three different locations of the zero on the segment between the
origin and the open-loop pole: 0.1, 0.2, 0.4. The first is very near the origin,
the second is in the middle of the segment, and the third is near the open-loop
pole. For each of these zero locations, and a range of overall gains, we compute
the expected settling time and overshoot as predicted by the closed-loop poles.
We also compute the actual overshoot by simulation. The results are shown in
Figure 9.12.

The minimum settling time occurs with the zero at 0.2 and the overall gain of
4. However, the overshoot at this point is large (almost 90%). We choose to place
the zero at 0.4, since it gives a larger region of gains with no overshoot. A choice
of overall gain at 1.5 results in overshoot MP = 0 and settling time ks = 4.2. From
the zero location and overall gain, we can find the gains KP and KI as

KP

KP + KI

= 0.4

KP + KI = 1.5


 �⇒

{
KP = 0.6
KI = 0.9

The simulation results of Figure 9.13 show the response to a step reference of
10. As predicted, the settling time is less than 5 and the maximum overshoot is
zero. Comparing these results with those in Figure 9.10, we see that the larger
proportional gain results in a faster response. The contribution of the proportional
controller uP (k) is also much larger, as can be seen in the figures.

9.2.4 PI Control Design Using Empirical Methods

In many cases, the system model G(z) is unknown. One approach is to use
the system identification techniques described in Chapter 2 and then apply pole
placement design or root locus analysis to the estimated transfer function. Here,

TLFeBOOK

310 PID CONTROLLERS

0

5

10
 k

s

zero at 0.1

0

0.5

1

1.5

 M
p

Estimated
Actual

0

5

10

 k
s

zero at 0.2

0

0.5

1

1.5

 M
p

Estimated
Actual

0

5

10

 k
s

zero at 0.4

0 1 2 3 4 5 6
0

0.5

1

1.5

 M
p

Overall gain K
P

+ K
I

Estimated
Actual

Fig. 9.12 Predicted settling times and maximum overshoot for the IBM Lotus Domino Server
with PI control, for three different zero locations and a range of overall gains KP + KI. The
stability boundary is indicated by the solid vertical line. Note that MP is expressed as a fraction.

we describe an alternative approach in which the controller gains are computed
in a more direct manner.

The starting point is to obtain the step response of the target system by applying
a bump test , a step change in the control input. For computing systems, multiple
replications of the bump test are needed because of stochastics. Also, the step
input should be scaled by a factor uss so that the output response covers the
desired operating region of the system.

TLFeBOOK

PROPORTIONAL–INTEGRAL CONTROL 311

0 5 10 15 20 25
0

5

10
 r

(k
)

0 5 10 15 20 25
0

10

20

 d
(k

)

0 5 10 15 20 25
−10

0

10

 u
P
(k

)

0 5 10 15 20 25
−20

0

20

 u
I(k

)

0 5 10 15 20 25
−20

0

20

 u
(k

)

0 5 10 15 20 25
0

10

20

 y
(k

)

 k

Fig. 9.13 PI control of the IBM Lotus Domino Server with KP = 0.6, KI = 0.9. The reference is
10 and there is a disturbance of 20. The proportional and integral contributions to the controller
are shown separately, along with their sum: u(k) = uP (k) + uI (k). Compare these results to
those in Figure 9.10. Here the proportional gain is larger, and this larger proportional gain drives
the error to zero faster.

Our focus is the CHR controller design method developed by Hrones and
others [14]. (A good description of this method can also be found in [8].) This
method assumes that system dynamics can be approximated by a first-order model
with a delay of n sample times. That is, y(k + n) = ay(k) + bu(k). These
parameters are determined from a plot of the results of the bump test. However,
instead of using a, b, and n, it is more common to use an alternative set of three
parameters: L, R, and T . The definitions of these three parameters are shown

TLFeBOOK

312 PID CONTROLLERS

0
0

 k

 y
(k

)

 yss

0.63yss

 L L+T

slope = R

Fig. 9.14 Step response curve for the CHR design method. The tangent line to the output
has maximum slope R and intersects the time axis at L. The system reaches approximately
two-thirds of its final value at time T + L.

in Figure 9.14. A tangent line with maximum slope is drawn at the inflection
point of the system response curve. The slope of the tangent line is R, and
the intersection of the tangent line with the time axis is L, or the time lag
of the system. The time constant T is the time needed by the system to reach
1 − e−1 ≈ 0.63 of its final value after it starts to react. The system reaches this
point at time T + L. Note that T and L are expressed in terms of samples and
that R has the same units as the output.

The parameters of the PI controller are computed directly from R,L, and T for
a specific control objective and design goal using the formulas in Table 9.3. The
approach taken is to minimize settling time subject to constraints on overshoot for

TABLE 9.3 CHR Rules for Designing a PI Controller

Overshoot
Controller Gains

Design Goal Specification KP KI

Disturbance rejection 0%
0.6

RL

0.15

RL2

Disturbance rejection 20%
0.7

RL

0.3

RL2

Reference tracking 0%
0.35

RL

0.3

RLT

Reference tracking 20%
0.6

RL

0.6

RLT

Source: [27].

TLFeBOOK

PROPORTIONAL–INTEGRAL CONTROL 313

a change in either the reference or disturbance inputs.1 The table considers two
control objectives: disturbance rejection and reference tracking. The design goal is
expressed in terms of maximum overshoot, which is either 0% or 20%. KP and KI

are chosen so that the closed-loop system has the shortest settling time within the
overshoot constraints. Note that the controller gains are larger if a 20% overshoot
is permitted, which will result shorter settling times. Since all of the integral
control gains are nonzero, there is a zero steady-state error in response to a step
change in either the disturbance or reference inputs. The closed-loop system
will be stable if the first-order system with delay is a reasonable approximation
to the actual system. If the open-loop response is qualitatively different than that
shown in Table 9.3, a stability analysis should be performed before an empirically
designed controller is implemented.

Example 9.7: Controller design using the CHR rules Figure 9.15 displays
the results of an experiment conducted on a fourth-order system in open loop by
applying a unit step to the control input u(k). From the data plotted, it appears that
the steady-state output is approximately 15, and the line of steepest slope (which
is drawn on the plot) is approximately R = 15/9 = 1.7. This line intersects the
time axis at L = 4. Since the final value is 15 and the initial value is 0, the
time constant is found at the time when the response reaches 0.63(15) = 10.

0 10 20 30 40
0

2

4

6

8

12

14

16

 k

 y
(k

)

 yss = 15

 0.63yss = 10

 L=4 L+T=9

Fig. 9.15 Open-loop response of a fourth-order system to a unit step input u(k). The estimates
of the parameters L, T are shown on the plot. R is estimated as the slope of the line,
approximately 15/9.

1[14] extends the definition of overshoot to apply to changes in either the reference or the disturbance
inputs.

TLFeBOOK

314 PID CONTROLLERS

This happens at approximately k = 9. Thus, L + T = 9 and the time constant is
estimated to be T = 5.

Using these estimates of R, L, and T , we can compute the control gains for a
PI controller from Table 9.3. The results are shown in Table 9.4. Figure 9.16 dis-
plays the closed-loop response to a five-unit-step change in the reference input.
Observe that the reference tracking controllers RT:00 and RT:20 have shorter

TABLE 9.4 PI Controller Gains Obtained by Applying the Example of Table 9.3 to
Figure 9.15

Overshoot
Controller Gains

Symbol Design Goal Specification (%) KP KI

DR:00 Disturbance rejection 0 0.09 0.0056
DR:20 Disturbance rejection 20 0.11 0.011
RT:00 Reference tracking 0 0.053 0.009
RT:20 Reference tracking 20 0.09 0.018

0 10 20 30 40 50
0

5

10

 y
(k

)

DR:00

0 10 20 30 40 50
0

5

10

 y
(k

)

DR:20

0 10 20 30 40 50
0

5

10

 y
(k

)

RT:00

0 10 20 30 40 50
0

5

10

 k

 y
(k

)

RT:20

Fig. 9.16 Closed-loop response of PI controllers to a five-unit-step increase in the reference
input. The controller designs are given in Table 9.4. The design goals are disturbance rejection
with 0% overshoot (DR:00), disturbance rejection with 20% overshoot (DR:20), reference
tracking with 0% overshoot (RT:00), and reference tracking with 20% overshoot (RT:20).

TLFeBOOK

PROPORTIONAL–DERIVATIVE CONTROL 315

0 10 20 30 40 50
−10

0

10

 y
(k

)
DR:00

0 10 20 30 40 50
−10

0

10

 y
(k

)

DR:20

0 10 20 30 40 50
−10

0

10

 y
(k

)

RT:00

0 10 20 30 40 50
−10

0

10

 k

 y
(k

)

RT:20

Fig. 9.17 Closed-loop response of PI controllers to a 50-unit-step increase in the disturbance
input. The controller designs are specified in Table 9.4. The design goals are disturbance rejec-
tion with 0% overshoot (DR:00), disturbance rejection with 20% overshoot (DR:20), reference
tracking with 0% overshoot (RT:00), and reference tracking with 20% overshoot (RT:20).

settling times and smaller overshoot than the disturbance rejection controllers
DR:00 and DR:20. Also observe that the effect of permitting a larger overshoot
is to reach the steady-state value faster. This is the case in part because the true
system is a fourth-order system as opposed to the first-order system that is
assumed by the CHR method. Figure 9.17 plots the closed-loop response to a
50-unit-step change in the disturbance input. Here, controllers DR:00 and DR:20,
which designed for disturbance rejection, have shorter settling times and smaller
overshoot than RT:00 and RT:20. As before, the effect of permitting a larger max-
imum overshoot is that the system reaches its steady-state value faster, although
this does not necessarily mean that settling times are shorter.

9.3 PROPORTIONAL–DERIVATIVE CONTROL

The control actions of the proportional or integral controllers are based on the
current error or past errors. In derivative control the controller output is propor-
tional to the rate of change of the error. The idea behind derivative control is that

TLFeBOOK

316 PID CONTROLLERS

the controller should react immediately to a large change in the control error;
in essence, predicting that the error will continue to increase (or decrease) and
act accordingly. Although this quick reaction can result in fast response times,
it can also result in undesirable overreaction, especially if the system output has
significant stochastics.

The derivative control law has the form

uD(k) = KD[e(k) − e(k − 1)] (9.14)

where the derivative control gain KD defines the ratio of the input magnitude
to the change in the error (Figure 9.18). Since the derivative controller adjusts
the control input according to the speed of error variation, it is able to make an
adjustment prior to the appearance of even larger errors. Practically, the derivative
controller is never used by itself since if the error remains constant, the output
of the derivative controller would be zero.

The transfer function of a derivative controller can be found by taking the
Z-transform of Equation (9.14) with zero initial conditions to get

UD(z) = KDE(z) − KDz
−1E(z)

UD(z)

E(z)
= KD(1 − z−1) = KD(z − 1)

z

Note that the steady-state gain of a derivative controller is equal to zero. As noted
above, a derivative controller cannot react to a constant error. Thus, derivative
control is always used in conjunction with proportional control and sometimes
also with integral control.

The proportional–derivative (PD) control law has two terms: one proportional
to the current error, and the other proportional to the change in error:

u(k) = KPe(k) + KD(e(k) − e(k − 1)) (9.15)

z −1KD

KP

R(z)
G(z)

E(z) U(z) Y(z)
+

+

−

z

+

PD Controller

Fig. 9.18 Feedback loop with PD control. The error E(z) = R − Y (z) is the input to the
controller. The control input U(z) is a sum of the proportional term KP E(z) and the derivative
term KD[(z − 1)/z].

TLFeBOOK

PROPORTIONAL–DERIVATIVE CONTROL 317

Its transfer function can be found by taking the Z-transform with zero initial
conditions and rearranging terms to get

U(z)

E(z)
= KP + KD(z − 1)

z
= (KP + KD)z − KD

z
(9.16)

The controller has a pole at z = 0; this pole is fast and hence does not slow
down the transient response like the pole at z = 1 does in integral control. The
control transfer function also has a finite zero at z = KD/(KP + KD). If KP and
KD > 0 have the same sign, the zero is always on the real line between 0 and 1.
When the zero is exactly at 0, it cancels the pole at 0 and PD control reduces to
the pure proportional control case. When the zero is exactly at 1, it reduces to
the pure derivative control case.

PD controllers can be designed using the root locus method as in Section 9.2.3.
However, PD controllers are not appropriate for first-order systems because pole
placement is quite limited. For example, Figure 9.19 shows the root locus plots
of a first-order system with PD control with two different zero locations. Observe
that the poles are restricted to a limited section of the real axis. Compare these
plots with the root locus of a first-order system and P control, as shown in
Figure 8.12. Note that P control allows the closed-loop pole to be placed any-
where on the real axis to the left of the open-loop pole.

With their predictive ability, PD controllers can be used effectively to reduce
the overshoot for a system that exhibits a significant amount of oscillation with
P control. For example, consider a second-order system with transfer function

G(z) = 1

z2 − 1.3z + 0.49

The root locus of this system is shown in Figure 9.20. As the proportional gain
increases, the closed-loop poles move farther away from the origin. Both the
settling time and overshoot increase as KP increases.

−1 0 1

−1

−0.5

0

0.5

1

−1 0

(a) Zero left of pole (b) Zero right of pole

1

−1

−0.5

0

0.5

1

Fig. 9.19 Root locus of PD control for a first-order system.

TLFeBOOK

318 PID CONTROLLERS

−1 0 1

−1

−0.5

0

0.5

1

Fig. 9.20 Root locus of G(z) = 1

z2 − 1.3z + 0.49
considering only proportional control.

−1 0 1

−1

−0.5

0

0.5

1

−1 0

(a) Zero at 0.5 (b) Zero at 0.8

1

−1

−0.5

0

0.5

1

Fig. 9.21 Root locus of G(z) = 1

z2 − 1.3z + 0.49
and PD control for two different zero locations.

If we add a PD controller to this system, we add a zero and a pole to the
open-loop system. The pole is at z = 0, and the zero can be placed anywhere
along the positive real axis. Figure 9.21 shows the root locus for two different
zero locations. When the zero is farther to the right, the root locus moves farther
to the left.

For each of these two choices of zero location, settling time and overshoot are
a function of overall gain (KP + KD), as shown in Figure 9.22. When the zero is
at 0.8, the root locus is pulled farther toward the origin, and thus the expected
overshoot and settling time are lower. However, the actual overshoot is greater.
This difference between the estimated and actual overshoot is due to the effect
of the zero. The zero has the largest effect on the actual overshoot when it is to
the right of the closed-loop poles.

Choosing the zero at 0.5 and the overall gain at 0.18, we solve for the gains
KP and KD as follows:

KD

KP + KD

= 0.5

KP + KD = 0.18


 �⇒

{
KP = 0.09

KD = 0.09

TLFeBOOK

PROPORTIONAL–DERIVATIVE CONTROL 319

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40
 k

s
zero at 0.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

 M
p

Overall gain (K
P
 + K

D
)

Estimated
Actual

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

 k
s

zero at 0.8

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

 M
p

Overall gain (K
P
 + K

D
)

Estimated
Actual

Fig. 9.22 PD control of G(z) = 1

z2 − 1.3z + 0.49
for two different zero locations. Predicted

settling times and overshoots are computed from the dominant closed loop poles. Actual
overshoots are computed by simulation. The stability limit is shown by the solid vertical line.
Overshoot is shown as a fraction.

TLFeBOOK

320 PID CONTROLLERS

The closed-loop transfer function from the reference input to the output can be
found as

FR(z) = {[(KP + KD)z − KD]/z}[1/(z2 − 1.3z + 0.49)]

1 + {[(KP + KD)z − KD]/z}[1/(z2 − 1.3z + 0.49)]

= 0.18z − 0.09

z3 − 1.3z2 + 0.67z − 0.09

the closed-loop poles are located at 0.55 ± 0.39j and 0.20. Using the dominant
poles of 0.55 ± 0.39j = 0.67e±jπ/5, the expected settling time is ks = 10 and
the estimated overshoot is MP = 0.13. The steady-state gain of the closed-loop
system is

FR(1) = 0.18 − 0.09

1 − 1.29 + 0.67 − 0.09
= 0.31

which gives a steady-state error of almost 70% (1 − 0.31/100). The response
of the system to a step reference of magnitude 10 is shown in Figure 9.23. PD
control cannot eliminate the steady-state error.

9.4 PID CONTROL

Proportional–integral–differential control (PID control) combines the three con-
trol actions that we have studied thus far. Figure 9.24 contains a block diagram
of the PID controller. There is one parameter for each control action: KP, KI,

and KD. Since PID controllers have more parameters, there is more flexibility in
design. However, there is more complexity as well.

Before continuing, we want to underscore the generality provided by the PID
controller. In Figure 9.24 the three control actions correspond to the three rows
of boxes in the PID controller. Observe that a proportional controller is a special
case of a PID controller in which KI = KD = 0. This is equivalent to deleting the
first and third rows of boxes inside the PID controller. Similarly, the PI controller
is constructed by having KD = 0, which corresponds to deleting the third row in
the PID controller, and the PD controller is constructed by having KI = 0, which
is obtained by deleting the first row of boxes in the PID controller.

The difference equation for a PID controller is

u(k) = uP (k) + uI (k) + uD(k)

= KPe(k) + KI

k−1∑
i=0

e(i) + KIe(k) + KD [e(k) − e(k − 1)] (9.17)

TLFeBOOK

PID CONTROL 321

0 5 10 15
0

5

10

 r
(k

)

0 5 10 15
−1

0

1

 u
P
(k

)

0 5 10 15
−1

0

1

 u
D
(k

)

0 5 10 15
−2

0

2

 u
(k

)

0 5 10 15
0

5

 y
(k

)

 k

Fig. 9.23 Transient response of G(z) = 1

z2 − 1.3z + 0.49
with PD control to a step reference

of magnitude 10. The contributions of the proportional and derivative parts of the control are
shown separately, along with their sum. The derivative control uD(k) is only active initially, when
the change in the error is large. Because the system G(z) is second order, it takes two time
steps before the control input u(k) affects the output y(k).

z −1KD

KP

R(z)
G(z)

E(z) U(z) Y(z)
++

+

−

z

+

KI
z

z −1

PID Controller

Fig. 9.24 Feedback loop with PID control. The error E(z) = R − Y (z) is the input to the
controller. The control input U(z) is a sum of the proportional term KP E(z), the integral term
KI[z/(z − 1)] and the derivative term KD[(z − 1)/z].

TLFeBOOK

322 PID CONTROLLERS

To find the transfer function of the PID controller, we first compute the difference
u(k) − u(k − 1), then take the Z-transform with zero initial conditions, to get

u(k) − u(k − 1) = KPe(k) − KPe(k − 1) + KIe(k) + KDe(k) − KDe(k − 1)

− KDe(k − 1) + KDe(k − 2)

u(k) − u(k − 1) = (KP + KI + KD) e(k) − (KP + 2KD) e(k − 1) + KDe(k − 2)

U(z)

E(z)
= (KP + KI + KD) z2 − (KP + 2KD) z + KD

z(z − 1)

= KP + KI

z

z − 1
+ KD

z − 1

z
(9.18)

Similar to the PI and PD controllers, the PID controller can be written either in
a single transfer function form, highlighting the two zeros and two poles, or as
the sum of the three transfer functions for the P, I, and D controllers.

The poles added by the PID controller are at 0 and 1, as expected by the
integral and derivative terms. The two zeros are at the roots of the numerator
polynomial,

KP + 2KD ±
√

K2
P − 4KIKD

2(KP + KI + KD)

Depending on the relative magnitudes of KP , KI , and KD , the zeros could be
either real or complex.

As expected by the presence of the integral term, a PID controller results in
zero steady-state error to both a constant reference and a constant disturbance
input, as long as the system is stable in closed loop. The calculations of these
errors are left as exercises for the reader.

Because there are three parameters in the PID controller, controller design
is more complicated. For a first-order system with PID control, there are three
closed-loop poles: one from the system and two added by the PID controller.
These three poles can be placed using the method of Section 9.2.2, abbreviated
here:

1. Compute the dominant poles based on the design goals.
2. Compute and expand the desired characteristic polynomial of the closed-

loop system based on using the dominant poles.
3. Compute and expand the modeled characteristic polynomial of the closed-

loop system, which will be a function of KP, KI, and KD.

4. Solve for KP , KI , and KD by matching coefficients between the desired
and modeled characteristic polynomials.

5. Verify the result (e.g., by simulation).

TLFeBOOK

PID CONTROL 323

Typically, the two dominant poles can be chosen based on the design goals;
the third pole must be chosen smaller than the dominant one(s). For a second-
order system with PID control, there are four closed-loop poles. Only three of
these can be arbitrarily placed using the three parameters in a PID controller.
Similarly, for higher-order systems, the method does not always yield a feasible
solution. There are also empirical design methods for PID controllers similar to
those discussed in Section 9.2.4; a good reference for these methods is [8].

It is worth mentioning that even if the derivative control law can help to add
certain predictability to the controller, it may also be sensitive to the stochastic
variations in the system output. This may become a serious problem for com-
puting systems because they typically have a significant stochastic component.
One way to solve this problem is to apply a low-pass filter to smooth the sys-
tem output so that the derivative control term will respond only to large system
changes, not to small stochastic variations. However, this additional filter may
slow down the system response, which is contrary to the purpose of introducing
the derivative control term. Hence, in practice, PI controllers are preferred over
PID controllers.

Example 9.8: PID control design by pole placement Consider the IBM Lotus
Domino Server, as in Example 9.5, with the same design goals. For a PID control
design, we must choose three closed-loop poles. We choose the dominant poles
p1 and p2 = 0.6e±j0.6 = 0.5 ± 0.34j. The third pole is chosen to have a smaller
magnitude than the dominant ones, p3 = −0.3. As shown by the algebra, this
last pole must be chosen to be negative if all of the control gains are to be
positive. The desired characteristic polynomial is (z − p1)(z − p2)(z − p3) =
(z2 − z + 0.36)(z + 0.3) = z3 − 0.70z2 + 0.063z + 0.11.

With PID control (as in Figure 9.24), the closed-loop transfer function from
the reference to the output is

FR(z) = Y (z)

R(z)

=
(KP + KI + KD) z2 − (KP + 2KD) z + KD

z(z − 1)

(
0.47

z − 0.43

)

1 + (KP + KI + KD) z2 − (KP + 2KD) z + KD

z(z − 1)

(
0.47

z − 0.43

)

= (0.47)
(
(KP + KI + KD)z

2 − (KP + 2KD)z + KD

)
D(z)

(9.19)

where

D(z) = z3 + (0.47(KP + KI + KD) − 1.43) z2

+ (0.43 − 0.47(KP + 2KD)) z + 0.47KD

Note that this closed-loop transfer function depends on KP , KI , and KD .
To find the values of KP , KI , and KD that result in this characteristic polyno-

mial, we match terms with the closed-loop transfer function of Equation (9.19),

TLFeBOOK

324 PID CONTROLLERS

to get three equations in three unknowns:

z3 − 0.70z2 + 0.063z + 0.11

= z3 + (0.47(KP + KI + KD) − 1.43) z2

+ (0.43 − 0.47(KP + 2KD)) + 0.47KD

0.47KD = 0.11
0.43 − 0.47(KP + 2KD) = 0.063

0.47(KP + KI + KD) − 1.43 = −0.7


 �⇒




KP = 0.31
KI = 1.01
KD = 0.23

If the third pole p3 had been chosen to be positive and real, the derivative gain
KD would necessarily be negative. Negative gains are undesirable (except in the
case when the system transfer function has a negative gain—and then all control
gains should be negative).

Since the system model is only first order, there are no extra pole locations
to solve for. Simulation results in Figure 9.25 for a step reference of 10 show
that with this choice of gains, the design criteria are satisfied. The response to
a disturbance of magnitude 20 is also shown. The proportional, integral, and
derivative components of the control signal u(k) are shown individually, along
with their sum u(k) = uP (k) + uI (k) + uD(k). Since the proportional gain is
small, the proportional control does not contribute very much to the response.
Also note that the derivative term is active only when the error changes abruptly,
but it does serve to speed up the response (comparing to Figure 9.10).

9.5 SUMMARY

1. Integral controllers adjust the control input based on KI times the sum of
the control errors. Integral control can eliminate steady-state error but can
also increase settling times.

2. Derivative controllers adjust the control input based on KD times the change
in control error. Derivative control can decrease settling times, but this
technique is quite sensitive to noise.

3. Proportional, integral, and derivative control can be used in combination.
Examples are proportional–integral (PI) controllers, proportional–derivative
controllers (PD), and proportional–integral–derivative (PID) controllers.

4. Pole placement design provides a way to find the values of control parame-
ters based on a specification of desired closed-loop properties (e.g., settling
time, maximum overshoot).

5. Root locus design proceeds by observing how closed-loop poles change as
controller parameters are adjusted.

6. The values of the controller parameters (e.g., KP, KI) can be determined
by empirical methods based on the step response of the open-loop
system.

TLFeBOOK

EXTENDED EXAMPLES 325

0 5 10 15 20 25
0

5

10
 r

(k
)

0 5 10 15 20 25
0

10

20

 d
(k

)

0 5 10 15 20 25
−5

0

5

 u
P
(k

)

0 5 10 15 20 25
−20

0

20

 u
I(k

)

0 5 10 15 20 25
−5

0

5

 u
D
(k

)

0 5 10 15 20 25
−20

0

20

 u
(k

)

0 5 10 15 20 25
0

10

20

 y
(k

)

 k

Fig. 9.25 PID control of the IBM Lotus Domino Server with KP = 0.31, KI = 1.01, and
KD = 0.23. The reference is 10 and there is a disturbance of 20. The design goals of a settling
time less than k = 10 and an overshoot less than 0.1 (10%) are satisfied. The proportional,
integral, and derivative contributions to the controller are shown separately, along with their
sum: u(k) = uP (k) + uI (k) + uD(k).

9.6 EXTENDED EXAMPLES

9.6.1 PI Control of the Apache HTTP Server Using
Empirical Methods

This example extends Section 8.7.2 in which proportional control is used to man-
age the Apache HTTP Server. As before, KeepAlive (the time that idle HTTP

TLFeBOOK

326 PID CONTROLLERS

connections are held) is manipulated so as to regulate CPU (CPU utilizations).
This example describes the use of a PI controller instead of the proportional
controller of Example 8.7.2.

Figure 9.26 displays a block diagram of the Apache HTTP Server with
noise that is modeled as an additive effect on CPU. The operating point is
(CPU,KA) = (0.58, 11). The input and output offsets are u(k) = KA(k) − KA
and y(k) = CPU(k) −CPU, respectively. The controller has the transfer function
KP + zKI /(z − 1), and the transfer function of the target system is G(z) =
−0.014/(z − 0.59). Our focus is on noise rejection. The transfer function from
the noise to the output is

FN(z) = T (z)

N(z)

= 1

1 + [KP + zKI/(z − 1)][−0.014/(z − 0.6)]
(9.20)

= (z − 1)(z − 0.6)

z2 − (1.6 + 0.014KI + 0.014KP)z + 0.014KP + 0.6
(9.21)

Note that FN(1) = 0, so this system should have no steady-state error in response
to a step noise as long as KP and KI are chosen so that the system is stable in
closed loop.

Figure 9.27 explores how the gains KP and KI affect steady-state error, settling
time, and maximum overshoot. Since the noise directly affects the output, as
shown in Figure 9.26, the maximum change in the output value is always 100%
of the noise value. Also, the final value of the measured output is zero. That
is, yss = 0; or in the original system, CPUss = CPU = 0.58. We also plot
the maximum overshoot to a reference input, as computed by simulation and as
estimated by the closed-loop poles. As already noted, ess = 0 as long as KI �= 0
and the closed-loop system is stable. For settling time, this analysis predicts
that ks is smallest when KP = −43, although KI influences when this minimum
occurs. We note that these estimates of settling time are approximate since FN(z)

has two finite zeros, a situation not considered in Equation (8.7). The maximum
overshoot is smaller if KI has a smaller magnitude.

Figure 9.28 displays the transient response of FN(z) to a noise input of
magnitude 0.2. When the noise occurs, the output immediately increases by the

R(z) T(z)

N(z)

E(z) U(z)
++

+

−
KIz
z −1

KP + z −0.6
−0.014

Y(z)

Fig. 9.26 Block diagram of the Apache HTTP Server using PI control. The control input is
KeepAlive, and the output is CPU. The noise has an additive effect on CPU.

TLFeBOOK

EXTENDED EXAMPLES 327

−100 −50 0
−1

0

1

 K
P
 = −50

 e
ss

−100 −50 0
0

10

20

 k
s

−100 −50 0
0

0.5

1

 M
P

 K
I

−100 −50 0
−1

0

1

 K
P
 = −43

−100 −50 0
0

10

20

−100 −50 0
0

0.5

1

 K
I

−100 −50 0
−1

0

1

 K
P
 = −20

−100 −50 0
0

10

20

−100 −50 0
0

0.5

1

 K
I

Act.
Est.

Fig. 9.27 Effect of KP and KI in Figure 9.26 on steady-state error, settling time, and maximum
overshoot. The actual overshoot is computed for a step reference change, and the estimated
overshoot is based on the closed-loop pole locations.

0 5 10
0

0.5

1
 K

P
=−43 K

I
=−75

0 5 10
0

0.5

1
 K

P
=−20 K

I
=−75

0 5 10
0

0.5

1

 k

C
P

U
(k

) K
P
=−43 K

I
=−25

0 5 10
0

0.5

1

 k

 K
P
=−20 K

I
=−25

Fig. 9.28 Effect of Kp and KI in Figure 9.26 on transient response to a noise input. n(k) = 0.2.

The dashed line is the reference value.

magnitude of the noise. The PI controller then adjusts the control input (here, KA)
based on the difference between the output and the reference. The dashed line is
the reference value. As predicted by analysis, there is no steady-state error.

9.6.2 Designing a PI Controller for the Apache HTTP Server
Using Pole Placement Design

This example applies the analytic techniques developed in Section 9.2.4 to the
Apache HTTP Server of Section 9.6.1. We proceed from the perspective of design

TLFeBOOK

328 PID CONTROLLERS

using a PI controller. Suppose that the desired settling time ks of the closed-loop
system is 2 and the desired maximum overshoot is zero. Let p1 denote the largest
closed-loop pole. Thus, from Equation (8.7) we know that |p1| ≤ e−4/ks = 0.14.
For zero overshoot, the dominant pole should be real. The other poles should be
much smaller than the dominant pole, so that the desired settling time is reached.
Thus, we specify that for i �= 1, |pi | ≤ 0.07. The Apache HTTP Server has one
open-loop pole (at z = 0.59), and the PI controller also has an open-loop pole
(at z = 1). Thus, in closed loop, there are two poles, and we choose p2 = 0.07.

The desired characteristic polynomial can be written as

(z − p1)(z − p2) = (z − 0.14)(z − 0.07) = z2 − 0.21z + 0.0098

From Equation (9.21), we can find the closed-loop transfer function as

FR(z) = Y (z)

R(z)

=
(KP + KI)z − KP

z − 1

(−0.014

z − 0.59

)

1 + (KP + KI)z − KP

z − 1

(−0.014

z − 0.59

)

= −0.014(KP + KI)z + 0.014KP

z2 − (0.014(KP + KI) + 1.59) z + (0.59 − 0.014KP)

To find the control gains KP and KI , we match terms between the denominator
of the closed-loop transfer function and the desired characteristic polynomial, to
get

z2 − 0.21z + 0.0098 = z2 − [0.014(KP + KI) + 1.59] z + (0.59 − 0.014KP)

−0.014(KP + KI) − 1.59 = −0.21
0.59 − 0.014KP = 0.0098

}
�⇒

{
KP = −41
KI = −58

Both control gains are negative. This is expected and desired, since the gain of
the system is also negative. If the gain of the system is positive, the control gains
should also be positive.

These results are consistent with Figure 9.27 in that when KP = −43 and
KI = −57, ks ≈ 2. Indeed, we could use plots such as those in Section 9.6.1
for design. However, pole placement design provides a way to obtain controller
parameters that achieve a variety of design goals.

9.6.3 IBM Lotus Domino Server with a Sensor Delay

This example studies integral control of the IBM Lotus Domino Server. The
objective is to regulate RIS, the number of RPCs waiting for or receiving service
(which is approximately the same as the number of active users). This is done
by adjusting the tuning parameter MaxUsers. Presented below is a summary

TLFeBOOK

EXTENDED EXAMPLES 329

and refinement of results reported in [53] in which integral control is used for a
product-level server.

Reference [53] models the IBM Lotus Domino Server in terms of the server
itself and a measurement sensor. In particular, this analysis concludes that it
is important to consider the manner in which measurements are collected (the
sensor) since this affects their accuracy and can introduce delays. The transfer
functions of the controller, the IBM Lotus Domino Server, and the sensor are
shown in the block diagram in Figure 9.29. The operating point is MaxUsers =
375, RIS = 325, and u(k) = MaxUsers(k)−MaxUsers, y(k) = RIS(k)−RIS.

Note that the closed-loop transfer function from the reference to the output is

FR(z) = Y (z)

R(z)

= zKI(0.47)(0.17z − 0.11)

(z − 1)(z − 0.43)(z − 0.64) + zKI(0.47)(0.17z − 0.11)
(9.22)

Figure 9.30 studies the effect of the integral control parameter KI. Each subfig-
ure contains two plots, one for RIS(k) (which also displays the reference value)
and a second plot that shows the associated value of MaxUsers(k). Consider
KI = 0.1. We see that there is a slow convergence to the reference value. If
KI = 1, the convergence is faster. If KI = 5, there are substantial oscillations.

First consider steady-state error. Observe that for all three values of KI con-
sidered in Figure 9.30, the controller is accurate in that RIS(k) is centered around
the reference value. This suggests that ess = 0. Such a conclusion is consistent
with Equation (9.22) in that FR(1) = 1.

Figure 9.31 provides insights into the transient behavior displayed in Fig-
ure 9.30. The figure plots the magnitude and angle of the poles of Equation (9.22)
as KI is varied. Note that there are three poles because the power of z in the
denominator of FR(z) is 3. We see that when KI ≈ 0, the dominant closed-
loop pole is close to 1, which explains the long settling time for KI = 0.1 in
Figure 9.30(a). As KI increases, the magnitude of the dominant pole is reduced.
For example, at KI = 1, this magnitude is approximately 0.75. This is why
Figure 9.30(b) has a much shorter settling time than Figure 9.30(a). However,
for KI > 1.5, we have a pair of complex poles. These poles result in controller-
induced oscillations, as is evident in Figure 9.30(c).

R(z) Y(z)zKI
z −1

E(z) U(z)

Notes

+

−

Server
Notes
Sensor

0.47
z −0.43

0.17z-0.11
z −0.64

Fig. 9.29 Block diagram for integral control of the IBM Lotus Domino Server. The measurement
sensor is modeled explicitly.

TLFeBOOK

330 PID CONTROLLERS

0 2000 4000 6000 8000 10000
0

50

100
R

IS
(k

),
 r

(k
)

0 2000 4000 6000 8000 10000
0

100

200

k

 M
ax

U
se

rs
(k

)

0 2000 4000 6000 8000 10000
0

50

100

R
IS

(k
),

 r
(k

)

0 2000 4000 6000 8000 10000
0

100

200

k

 M
ax

U
se

rs
(k

)

0 2000 4000 6000 8000 10000
0

50

100

R
IS

(k
),

 r
(k

)

0 2000 4000 6000 8000 10000
0

100

200

k

(a) KI = 0.1

(b) KI = 1

(c) KI = 5

 M
ax

U
se

rs
(k

)

Fig. 9.30 Transient response of a control system incorporating a product-level Lotus Notes
Server with an external integral controller to a synthetic workload for different values of KI .
There is a step increase in the reference value r(k), as shown in the first of each paired subfigure.

9.6.4 Caching with Feedback Control

Caching is widely used in high-performance computing systems because it pro-
vides a cost-effective way to reduce access times by providing a small amount of
low-latency storage in which data are kept that will be accessed in the near future.
Low-latency storage is relatively expensive and is therefore a scarce resource.
As such, controlling the allocation of this storage is of concern.

TLFeBOOK

EXTENDED EXAMPLES 331

1 2 3 4 5
0

0.5

1

1 2 3 4 5
−50

0

50

 K
I

θ
r

Fig. 9.31 Magnitude and angle of the poles for the closed-loop system for the IBM Lotus
Domino Server in Figure 9.29. The integral control parameter is KI , and the angle is plotted in
degrees.

One way to allocate cache storage is based on business-oriented policies (e.g.,
as in [44]). For example, gold class service might ensure a 1-second response
time, whereas silver class might only guarantee a 3-second response time for the
same type of request. One element of enforcing such service differentiation is for
preferred classes (e.g., gold) to have a higher hit rate. (Hit rate is the probability
that the data requested are in low-latency storage.) The hit rate for a service class
can be increased (decreased) by allocating more (less) low-latency storage for
that service class.

Figure 9.32 displays the block diagram of a system that regulates hit rate for
a service class using proportional control. R(z) specifies the reference (desired)
hit rate, which may vary over time. The actual (measured) hit rate is Y (z), which
is the output of the system. The operation of the cache (as perceived by the
service class under consideration) is modeled as an integrator that front-ends a
first-order system. The integrator models the fact that the control input is the
change in cache allocation, not the absolute amount of cache space allocated.
Thus, the cache transfer function is

z

z − 1

b

z − a

The control input U(z) is the change in low-latency storage allocated for the
service class. We want the measured hit rate to be very close to the reference hit

R(z) Y(z)E(z) U(z)+

−

Cache

KP
zb

(z−1)(z−a)

Controller

Fig. 9.32 Block diagram for control of a cache using proportional control.

TLFeBOOK

332 PID CONTROLLERS

rate. This is quantified by the control error e(k) = r(k) − y(k). If e(k) < 0, then
y(k) > r(k), so we need to decrease the storage allocated to the service class.
Conversely, if e(k) > 0, the allocated storage should be increased. The amount by
which storage is increased or decreased is determined by a proportional controller.
That is, u(k) = KPe(k). Implicit here is the simplifying assumption that storage
is continuous rather than discrete.

From Figure 9.32, it is straightforward to obtain the transfer function from the
reference input to the output:

FR(z) = Y (z)

R(z)
= KPbz

(z − 1)(z − a) + KPbz

Observe that the steady gain of this system is FR(1) = 1, so there is no steady-
state error. At first glance, this may seem surprising since we use proportional
control, and we know that proportional control has |ess| > 0 unless KP is very
large. Further, there is no precompensation. Rather, the reason why ess = 0 is
that the cache system itself includes an integrator.

*9.7 DESIGNING PI CONTROLLERS IN MATLAB

In this section we describe ways to use MATLAB in controller design. In
Section 8.8 we introduce the MATLAB functions feedback, pole, zero,
dcgain, and rlocus. Here we show how to construct transfer functions for
sets of controller parameters and how to estimate the settling time and overshoot
from the closed-loop transfer function.

Our starting point is Figure 9.27 in which we plot ess, k∗
s , and MP for many

combinations of KP and KI. In MATLAB, each KP, KI pair results in a differ-
ent transfer function. Thus, we must construct a matrix of transfer functions to
produce Figure 9.27.

Our approach is as follows. We first define vectors for the set of KI and KP

values to consider.

KIV =(-150:-10)’;
KPV = [-50; -43; -30];

Next, we define the transfer function for the Apache HTTP Server.

apache = tf(-.014, [1 -.59],-1);

Now we construct the transfer functions and place the results into the variable
sys m. The rows of this variable correspond to the values of KP and the columns
to KI.

sys_matrix = [];
for i=1:length(KPV)
sys_vector = [];
for k = 1:length(KIV)

TLFeBOOK

EXERCISES 333

control = tf([KIV(k) 0], [1 -1], -1) + KPV(i);
sys_vector = [sys_vector feedback(apache*control,1)];
end
sys_matrix = [sys_matrix; sys_vector];
end

The outer loop varies KP, and the inner loop changes KI. sys matrix is
initialized to the empty vector. Each iteration of the outer loop constructs a row
vector of transfer functions for the values of KI. These are then appended to
sys matrix.

To estimate the settling time and overshoot, we need the dominant poles of
the closed-loop transfer function. These are the ones with the largest magnitude.

cl = feedback(apache*control,1);
clpoles = poles(cl);
[r,index] = max(abs(clpoles));

The system is stable in closed loop if the magnitude of the dominant pole is less
than 1. In this case, we can estimate the settling time and maximum overshoot,
and compute the actual overshoot using the step command.

if r < 1
ks(i) = -4/log(r);
theta = angle(clpoles(index));

% check pole too close to zero
if abs(theta)< 0.00 mp(i) =0;

% check for negative pole
elseif abs(theta - pi)< 0.001 mp(i) = r;

% largest pole is complex
else mp(i) = r^(pi/theta);
end

[y,t] = step(cl);
mp_actual(i) = (max(y) - dcgain(cl))/dcgain(cl);

end % if

Inside a loop, this set of commands creates a vector of values for ks and MP

(actual and estimated), which can then be plotted.

9.8 EXERCISES

1. Compute the steady-state error to a step reference and a constant (step) distur-
bance for a system G(z) with the following controllers. Refer to Figure 9.24,

TLFeBOOK

334 PID CONTROLLERS

and let the disturbance enter at the same place as the reference input. For
what values of KP , KI , and KD do your results hold?

(a) PI control, Equation (9.6).
(b) PD control, Equation (9.14).
(c) PID control, Equation (9.17).

2. Consider the IBM Lotus Domino Server

G(z) = Y (z)

U(z)
= 0.47

z − 0.43

with a PI controller, as shown in Figure 9.9. Let KP = 2,KI = 1.

(a) Find the closed-loop transfer function FR(z) = Y (z)/R(z).

(b) From the dominant closed-loop poles, estimate the settling time ks and
maximum overshoot MP .

(c) Simulate the system to find the maximum overshoot to a step reference
of magnitude 10. Does this agree with your previous estimate?

(d) Simulate the response of the system to a disturbance of magnitude 20.

3. Repeat Exercise 2 with KP = 0.5,KI = 1.

4. Consider the Apache HTTP Server with transfer function

G(z) = Y (z)

U(z)
= −0.014

z − 0.59

with a PI controller, as shown in Figure 9.26. Design a PI controller so that
the closed-loop poles are at 0.5e±j (π/4). Simulate the closed-loop system to
a step reference of magnitude 0.2, and a step disturbance of 0.3.

0 10 20 30 40
0

1

2

3

4

5

6

7

Fig. 9.33 Output response to a unit step input.

TLFeBOOK

EXERCISES 335

5. When using empirical methods for tuning, the output does not always exactly
match the form of Table 9.3. Consider the system response (to a unit step
input) shown in Figure 9.33. Estimate (as best as possible) the parameters
L, R, and T for this system, and use these to design a PI controller. Simulate
the resulting PI controller on the following system:

G(z) = Y (z)

U(z)
= 1

z5 − 0.47z4 − 0.85z3 + 0.33z2 + 0.15z

6. Consider the feedback loop with integral control in Figure 9.1 in which the
target system has the transfer function G(z) = G. How should Figure 9.2.2 be
modified to do pole placement design? What difficulties will arise if instead
we wanted to do PI control (i.e., Figure 9.9) and the target system has the
transfer function G(z) = G?

TLFeBOOK

TLFeBOOK

10
State-Space Feedback

Control

State-space models such as those described in Chapter 7 arise in many settings,
especially multiple-input, multiple-output (MIMO) systems. In this chapter we
describe several approaches to the design of feedback controllers for systems
modeled in state space. Three architectures are considered. The first, static state
feedback, is a multidimensional extension of proportional control in which the
reference input is fixed at the system’s operating point. A second architecture,
precompensated static control, extends the first architecture by including a pre-
compensator to accomplish reference tracking. The third architecture, dynamic
state feedback, can be viewed as the state-space analog to PI (proportional inte-
gral) control and hence has good disturbance rejection properties (although
settling times may be longer). For all three architectures, the design problem is
to select feedback gains that yield the desired controller properties, especially
settling times and maximum overshoot. Two design techniques are discussed.
The first, pole placement design, determines the poles needed to achieve the
desired closed-loop properties and then computes the feedback gains required.
The second approach, linear quadratic regulation (LQR), employs an optimiza-
tion technique that parameterizes the trade-off between control errors and control
effort (i.e., how big an adjustment must be made).

10.1 STATE-SPACE ANALYSIS

In this section we review the basics of state-space models using the tandem queue
example. (See Chapter 7 for more details on both topics.)

Feedback Control of Computing Systems, by Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury
ISBN 0-471-26637-X Copyright c© 2004 John Wiley & Sons, Inc.

337

TLFeBOOK

338 STATE-SPACE FEEDBACK CONTROL

State-space models employ state variables to describe system dynamics. These

variables are typically denoted by the vector x(k) = [x1, . . . , xn]� =




x1
...

xn


.

This is illustrated in the following example.

Example 10.1: Tandem queue Figure 10.1 displays the tandem queue system
that consists of two queueing systems connected in series. Requests that complete
processing in the first queue flow into the second queue. Recall that the buffer
size of the first queueing system is used as the actuator, and the sum of the
response times of the two queues is the measured output. Although this is a
SISO system, it is useful to employ the response times of the individual queues

as state variables. Thus, the state x(k) is

[
x1(k)

x2(k)

]
=

[
R1(k) − R1

R2(k) − R2

]
, where

Ri(k) is the response time of queueing system i at time k, and Ri is the operating
point of queue i. In this example, R1 = 2.5 and R2 = 6.5.

Typically, state-space descriptions are multidimensional, such as the use of the
response times of the individual queueing systems in Example 10.1. This leads
to a vector and matrix representation of models. In particular,

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) (10.1)

where x(k) is an n× 1 vector to represent n system states, u(k) is a scalar input,
and y(k) is a scalar output. A is an n × n matrix, B is an n × 1 vector, and C
is a 1 × n vector. The first equation describes the dynamics of the state vector.
The second equation shows how measured outputs are computed from the state
vector. In MIMO systems, u(k) and y(k) are vectors [which are denoted by u(k)

and y(k)], and B and C are matrices.

Incoming
Requests

Outgoing
Requests

Queueing System 2Queueing System 1

Buffer Size (K)

Response Time
for System 1 (R1)

Total Response Time (R)

Response Time
for System 2 (R2)

Fig. 10.1 Architecture diagram of a tandem queue as shown in Figure 7.1.

TLFeBOOK

STATE FEEDBACK CONTROL SYSTEMS 339

Example 10.2: State-space model of a tandem queue Define the state vector

x(k) =
[

x1(k)

x2(k)

]
=

[
R1(k) − R1(k)

R2(k) − R2(k)

]

From Chapter 7 we have

A =
[

a11 0
a21 a22

]
=

[
0.13 0
0.46 0.63

]

B =
[

b

0

]
=

[
0.069
0

]

C = [
c1 c2

] = [
1 1

]
Then we see from Equation (10.1) that x(k +1) = Ax(k)+Bu(k) and y(k) =

Cx(k).

Last, recall from Chapter 7 that the settling time of a system is determined
by its poles, and the poles of a state-space model are the eigenvalues of A in
Equation (10.1). As in Chapter 6, we focus on the dominant pole.

Example 10.3: Open-loop settling time of a tandem queue The poles of
Equation (10.1) are the solutions to its characteristic equation, which is obtained
by setting the characteristic polynomial to 0. That is,

0 = det (zI − A)

= det

[
z − 0.13 0

− 0.46 z − 0.63

]

= (z − 0.13)(z − 0.63)

Clearly, the poles are 0.13 and 0.63, and the latter is the dominant pole. So the
settling time of the system is

ks ≈ −4

log 0.63
= 9

Figure 10.2 plots the open-loop step response of the tandem queue example. We
see that the estimated value of ks closely approximates the observed settling time.

10.2 STATE FEEDBACK CONTROL SYSTEMS

In this section we present three architectures for feedback control: static state
feedback, which is similar to proportional control; precompensated static feed-
back, which provides a way to change the reference value; and dynamic state
feedback, which is similar to PI control.

TLFeBOOK

340 STATE-SPACE FEEDBACK CONTROL

0 5 10 15
0

0.05

0.1

0.15

0.2

 y
(k

)

 k

Fig. 10.2 Step response of the tandem queue.

10.2.1 Static State Feedback

A simple approach to controller design is to employ static state feedback . The
intuition is that the control input u(k) should be proportional to the state but with
an opposite sign. Thus, as the closed-loop system moves away from its operating
point x(k) = 0, the control action pushes it back.

Static state feedback uses the control law

u(k) = −Kx(k). (10.2)

The K are the controller gains for static state feedback. In general, the K are
chosen so that −Kx(k) drives x(k) to 0.

Figure 10.3 displays a block diagram of static state feedback. The target system
has scalar control input u(k). Based on this and the values of the state variables
x(k), the (scalar) measured output y(k) is determined. The double lines labeled
x(k) indicate that a vector is output from the target system and input to the
controller block labeled K. Also, there is a disturbance input d(k) that affects
the control input.

K

x(k+1)=Ax(k)+Bu(k)
y(k)=Cx(k)

u(k)

x(k)

y(k)
Target System

Feedback Gain

−
+

d(k)

Fig. 10.3 Block diagram of a static state feedback controller. The control input u(k), dis-
turbance input d(k), and the measured output y(k) are scalars. The state vector x(k) is a
vector.

TLFeBOOK

STATE FEEDBACK CONTROL SYSTEMS 341

We describe the behavior of static state feedback by substituting Equa-
tion (10.2) into Equation (10.1):

x(k + 1) = Ax(k) − BKx(k)

= (A − BK)x(k)

So the characteristic polynomial of the closed-loop system is

det (zI − (A − BK)) (10.3)

and the closed-loop poles are the solution to det {zI − (A − BK)} = 0. Hence,
we can place the poles of the closed-loop system by properly selecting the
feedback gains in K (as discussed in Sections 10.3.1 and 10.3.2).

Example 10.4: Static state feedback for a tandem queue This example illus-
trates how properly selected feedback gains can result in a static feedback con-
troller with good transient response. Our control objective is to regulate response
times of both queueing systems at the operating point R1 = 2.5, R2 = 6.5 (and
hence R = 9). We use the feedback gains

K = [K1 K2] = [2.3 6.9]

Figure 10.4 displays a block diagram of this system.
Now consider a situation in which the initial conditions are x(0) = [1, 1]�;

that is, R1(0) = 3.5 and R2(0) = 7.5. Figure 10.5 displays the simulation results.
Note that both state variables converge quickly to their operating point. Also, the
buffer size K(k) initially decreases in order to lower the response time, and then
there is some overshoot of R1(k) in order to facilitate fast convergence.

Although static state feedback is a simple scheme, it suffers from a major
drawback—it cannot be used for tracking a reference input. Indeed, the archi-
tecture does not include a reference input. Further, it turns out that static state
feedback also has poor disturbance rejection characteristics.

u(k)

x(k)

y(k)

Tandem Queue

Feedback Gain

x1(k+1)=0.13x1(k)+0.069u(k)
x2(k+1)=0.46x1(k)+0.63x2(k)

K1=2.3
K2=6.9

y(k)=x1(k)+x2(k)
−
+

d(k)

Fig. 10.4 Block diagram of a static state feedback controller for a tandem queue. x1(k) =
R1(k) − 2.5, x2(k) = R2(k) − 6.5, u(k) = K(k) − 25, y(k) = R(k) − 9.

TLFeBOOK

342 STATE-SPACE FEEDBACK CONTROL

0 5 10 15 20
−1

0

1

 d
(k

)

0 5 10 15 20
0

20

40

 K
(k

)

0 5 10 15 20
0

2

4

 R
1(k

)

0 5 10 15 20
0

5

10

 R
2(k

)

0 5 10 15 20
0

10

20

 R
(k

)

k

Fig. 10.5 Response of a system with static state feedback control to initial conditions. The
objective is to regulate the system at its operating point for response time, where R1(0) = 2.5
seconds and R2(0) = 6.5 seconds. The operating point of all variables is indicated by the
dashed lines. The disturbance input is zero.

10.2.2 Precompensated Static State Feedback

In this section we describe a variation of static state feedback that can track
a reference input. The approach taken is to adjust the operating point of the
control system. Let r be the reference input, so e(k) = r − y(k) is the control
error. Further, let xss be the steady-state value of the state vector when e(k) = 0,
and let uss be the associated control input. Our approach is to adjust the static
state feedback control law u(k) = −Kx(k) to achieve the desired steady-state
value of the measured output. This is done by using a state vector offset in the
control law. That is,

u(k) = −K(x(k) − xss) + uss (10.4)

In essence, we reset the operating point so that it yields a measured output that
is equal to the reference input.

TLFeBOOK

STATE FEEDBACK CONTROL SYSTEMS 343

K

x(k+1)=Ax(k)+Bu(k)
y(k)=Cx(k)

u(k)

x(k)

y(k)
Target System

Feedback Gain

r(k)
Precompensator

 N

d(k)

+

−

+

Fig. 10.6 Block diagram of a precompensated static state feedback control system. N is
computed from Equation (10.6).

Figure 10.6 displays the architecture for precompensated state feedback. Ob-
serve that this diagram includes a new block labeled N whose input is r and
whose output is used to compute the control input.

We proceed as follows. From Equations (10.1) and 10.4 we know that

x(k + 1) = Ax(k) + Bu(k)

= Ax(k) − BK(x(k) − xss) + Buss

Further, in steady state, xss = Axss + Buss, or Buss = xss − Axss. So

x(k + 1) = Ax(k) − BK(x(k) − xss) + xss − Axss

That is,

x(k + 1) − xss = (A − BK)(x(k) − xss)

This equation can be interpreted as applying static state feedback to the state
vector x(k) − xss. Hence, if x(k) = xss, then r = y(k). Thus, properly selecting
the precompensator N causes the control system to converge to 0. We note in
passing that including a precompensator does not affect the poles of the system
in that the characteristic polynomial is still Equation (10.3).

We compute N by observing that the following should hold in steady state:

xss = Axss + Buss

yss = Cxss

yss = r

Substituting the second equation into the third equation and rearranging terms,
we have

(A − I)xss + Buss = 0

Cxss = r (10.5)

TLFeBOOK

344 STATE-SPACE FEEDBACK CONTROL

Using the augmented state vector above, Equation (10.5) can be rewritten as

[
A − I B

C 0

] [
xss
uss

]
=

[
0
r

]

Assuming that the matrix on the left is nonsingular, we have

[
xss
uss

]
=

[
A − I B

C 0

]−1 [
0
r

]

(The superscript −1 denotes a matrix inverse, which is meaningful only if the
matrix is nonsingular.) Substituting the foregoing equation into Equation (10.4),
we obtain the following for the feedback control law:

u(k) = −Kx(k) + Kxss + uss

= −Kx(k) + [
K 1

] [
xss
uss

]

= −Kx(k) + [
K 1

] [
A − I B

C 0

]−1 [
0
r

]

This complicated expression can be simplified by making the substitution

N = [
K 1

] [
A − I B

C 0

]−1 [
0
1

]
(10.6)

This leads to the following control law for precompensated static feedback:

u(k) = −Kx(k) + Nr (10.7)

Thus, N in Figure 10.6 is obtained from Equation (10.6).

Example 10.5: Static state feedback with precompensation for a tandem queue
This example extends Example 10.4 by including the precompensation compo-
nent N in Figure 10.6.

Figure 10.7 displays a block diagram of the feedback control system we con-
sider. We see that

A =
[

0.13 0
0.46 0.63

]

B =
[

0.069
0

]

C = [
1 1

]

K = [2.31 6.95]

TLFeBOOK

STATE FEEDBACK CONTROL SYSTEMS 345

u(k)

x(k)

y(k)

Tandem Queue

Feedback Gain

K1=2.3
K2=6.9

x1(k+1)=0.13x1(k)+0.069u(k)
x2(k+1)=0.46x1(k)+0.63x2(k)
y(k)=x1(k)+x2(k)

r(k)
 N

Precompensator
d(k)

+

−

+

Fig. 10.7 Block diagram of a static state feedback controller with precompensation for a
tandem queue.

So

A − I =
[−0.87 0

0.46 −0.37

]

Thus,

[
A − I B

C 0

]−1

=

 −0.87 0 0.069

0.46 −0.37 0
1 1 0




−1

Hence, from Equation (10.6),

N = [
K 1

] [
A − I B

C 0

]−1 [
0
1

]

= [
2.31 6.95 1

] 
 −0.87 0 0.069

0.46 −0.37 0
1 1 0




−1 
 0

0
1




= 0.16

Figure 10.8 displays the results of a simulation of the system in Figure 10.7
with the values of N , A, B, C, and K described above in which the reference
value is changed from 9 seconds to 19 seconds and there is no disturbance. We
see that the system performs well in that the measured output quickly converges
to the reference input.

Now consider what happens when a disturbance is present. Figure 10.9 sim-
ulates the same system in the presence of a disturbance d(k) = 1, k ≥ 1 with
the reference value at the operating point. Once again, the system settles quickly.
However, the steady-state value is not equal to the reference input.

From this example we see that static state feedback with precompensation
does well with tracking a reference input if there is no disturbance. However, if
a disturbance is present, tracking performance is poor.

TLFeBOOK

346 STATE-SPACE FEEDBACK CONTROL

0 5 10 15 20
−1

0

1

 d
(k

)

0 5 10 15 20
0

100

200

 K
(k

)

0 5 10 15 20
0

5

10

 R
1(k

)

0 5 10 15 20
0

10

20

 R
2(k

)

0 5 10 15 20
0

10

20

 R
(k

)

k

Fig. 10.8 Response of a system with static state feedback control and a precompensator to
a step increase in the reference input. The dashed lines in the plots of K(k), R1(k), R2(k), and
R(k) indicate the operating points. The system quickly converges to the reference input R(k)

(denoted by the dashed-dotted line). The disturbance input is zero.

10.2.3 Dynamic State Feedback

In this section we describe a state-space architecture that both tracks the reference
input and rejects disturbances. The approach can be viewed as a generalization
of proportional integral (PI) control as described for SISO systems in Chapter 9.

Our starting point is to augment the state vector to include the control error
e(k) = r−y(k). Specifically, we use the integrated control error , which describes
the accumulated control error. Denoted by xI (k), the integrated control error is
computed as

xI (k + 1) = xI (k) + e(k) (10.8)

The augmented state vector is

[
x(k)

xI (k)

]
. The control law becomes

u(k) = − [
KP KI

] [
x(k)

xI (k)

]
(10.9)

TLFeBOOK

STATE FEEDBACK CONTROL SYSTEMS 347

0 5 10 15 20
0

5

10
 d

(k
)

0 5 10 15 20
0

20

40

 K
(k

)

0 5 10 15 20
0

2

4

 R
1(k

)

0 5 10 15 20
0

5

10

 R
2(k

)

0 5 10 15 20
0

5

10

 R
(k

)

k

Fig. 10.9 Response of a system with static state feedback control and precompensator to a
step increase in the disturbance input. The dashed lines in the plots of K(k), R1(k), R2(k), and
R(k) indicate the operating points. The system cannot reject the disturbance, as indicated by
R(k) deviating from the reference input (dashed-dotted line).

where KP denotes the feedback gain for x(k) and KI is the gain associated with
xI (k).

Figure 10.10 displays a block diagram of a system that uses the dynamic feed-
back control law in Equation (10.9). This system differs from the precompensated
state feedback in that (1) the N component is removed, and (2) blocks are added
for the xI (k) dynamics and the integral feedback gain KI.

To understand the characteristics of dynamic state feedback control, we pro-
ceed as follows. The augmented state-space model is

[
x(k + 1)

xI (k + 1)

]
=

[
A 0

−C 1

] [
x(k)

xI (k)

]
+

[
B
0

]
u(k) +

[
0
1

]
r (10.10)

TLFeBOOK

348 STATE-SPACE FEEDBACK CONTROL

r(k)
x(k+1)=Ax(k)+Bu(k)
y(k)=Cx(k)

u(k) y(k)

−−−+

Target System

Feedback Gain

Feedback Gain

 KxI(k+1)=xI(k)+e(k)
x (k)

 Integrated

Ie(k)
I

KP

x(k)

Control Error

Fig. 10.10 Block diagram of a dynamic state feedback control system. The state xI computes
the integral of the control error. It dynamics are used in adjusting the control input u(k) in
response to changes in the reference input r .

We obtain the closed-loop model by substituting the control law Equation (10.9)
into this equation:

[
x(k + 1)

xI (k + 1)

]
=

([
A 0

−C 1

]
−

[
B
0

] [
KP KI

])

×
[

x(k)

xI (k)

]
+

[
0
1

]
r (10.11)

The expression in parentheses corresponds to A in Equation (10.1). Thus, the
characteristic polynomial is

det

{
zI −

([
A 0

−C 1

]
−

[
B
0

] [
KP KI

])}
(10.12)

Hence, by properly choosing KP and KI, we can determine the dynamics of the
closed-loop system.

It turns out that with dynamic state feedback the measured output converges
to the reference input. This can be shown as follows. From Equation (10.8) we
know that at steady state xI,ss = xI,ss + ess. That is, 0 = ess. This property holds
regardless of the feedback gains KP and KI (as long as the closed-loop system
is stable).

Example 10.6: Dynamic state feedback for a tandem queue This example
uses dynamic state feedback control to regulate end-to-end response time in the
tandem queue example in Example 10.1.

The states used in the tandem queue example are x1(k) = R1(k) − R1 and
x2(k) = R2(k)−R2. The augmented state vector includes the integrated (summed)

control error as specified in Equation (10.8). That is,


 x1(k)

x2(k)

xI (k)


.

TLFeBOOK

STATE FEEDBACK CONTROL SYSTEMS 349

Recall that

A =
[

0.13 0
0.46 0.63

]

B =
[

0.069
0

]

C = [
1 1

]
Substituting into Equation (10.10), the augmented state-space model is

[
x(k + 1)

xI (k + 1)

]
=

[
A 0

−C 1

] [
x(k)

xI (k)

]
+

[
B
0

]
u(k)

+
[

0
−1

]
r


 x1(k + 1)

x2(k + 1)

xI (k + 1)


 =


 0.13 0 0

0.46 0.63 0
−1 −1 1





 x1(k)

x2(k)

xI (k)


 +


 0.069

0
0


u(k)

+

 0

0
−1


 r

The closed loop model is obtained by substituting into Equation (10.11).
[

x(k + 1)

xI (k + 1)

]
=

([
A 0

−C 1

]
−

[
B
0

] [
KP KI

]) [
x(k)

xI (k)

]

+
[

0
−1

]
r


 x1(k + 1)

x2(k + 1)

xI (k + 1)


 =





 0.13 0 0

0.46 0.63 0
−1 −1 1


 −


 0.069

0
0


[

K1
P

K2
P

KI

]




 x1(k)

x2(k)

xI (k)


 +


 0

0
−1


 r

where KP = [K1
P
, K2

P
]. Simplifying, we have


 x1(k + 1)

x2(k + 1)

xI (k + 1)


 =


 0.13 − 0.069K1

P −0.069K2
P −0.069KI

0.46 0.63 0
−1 −1 1





 x1(k)

x2(k)

xI (k)




+

 0

0
−1


 r

TLFeBOOK

350 STATE-SPACE FEEDBACK CONTROL

r(k) u(k) y(k)

−−−+

Feedback Gain

xI(k+1)=x(k)+e(k)

x (k)

 Integrated

Ie(k)

x(k)

Control Error

Tandem Queue

x1(k+1)=0.13x1(k)
 +0.069u(k)
x2(k+1)=0.46x1(k)
 +0.63x2(k)
y(k)=x1(k)+x2(k)

Feedback Gain

KP =15.31

KP =15.52

KI = −9.43

Fig. 10.11 Block diagram of a dynamic state feedback control system for the tandem queue
example.

0 5 10 15 20
1

0

1

 d
(k

)

0 5 10 15 20
0

100

200

 K
(k

)

0 5 10 15 20
0

5

10

 R
1(k

)

0 5 10 15 20
0

10

20

 R
2(k

)

0 5 10 15 20
0

10

20

 R
(k

)

k

Fig. 10.12 Response of a system with dynamic state feedback controller to a step increase
in the reference input. The system is designed using pole placement with k∗

s = 5 and M∗
P

=
0.05. The dashed lines indicate the operating points. The system operates within its k∗

s , M∗
P

specifications. The disturbance input is zero.

TLFeBOOK

STATE FEEDBACK CONTROL SYSTEMS 351

Now consider the dynamic feedback controller with K = [K1
P

K2
P

KI] =
[15.3 15.5 −9.43]. Figure 10.11 contains a block diagram of dynamic state
feedback for the tandem queue. Figure 10.12 shows the step response with no
disturbance, and Figure 10.13 simulates the controller’s response to a disturbance.
We observe that dynamic state feedback not only tracks the reference input, it
also does a good job of tracking in the presence of a disturbance.

10.2.4 Comparison of Control Architectures

Figure 10.14 summarizes the results of simulations done on the three architec-
tures. Note that static feedback cannot track the reference input, but precompen-
sated state and dynamic state feedback can. Both static architectures have poor
disturbance rejection. Dynamic state feedback has good disturbance rejection, but
it has longer settling times.

0 5 10 15 20
0

5

10

 d
(k

)

0 5 10 15 20
0

20

40

 K
(k

)

0 5 10 15 20
0

2

4

 R
1(k

)

0 5 10 15 20
0

5

10

 R
2(k

)

0 5 10 15 20
0

5

10

 R
(k

)

k

Fig. 10.13 Response of a system with dynamic state feedback controller to a step increase in
the disturbance. The system is designed using pole placement with k∗

s = 5 and M∗
P

= 0.05. The
dashed lines indicate the operating points. The system has good disturbance rejection.

TLFeBOOK

352 STATE-SPACE FEEDBACK CONTROL

0 10 20
0

5

10

15

20
Reference tracking

S
ta

tic

0 10 20
0

5

10

15

20
Disturbance rejection

0 10 20
0

5

10

15

20

P
re

co
m

pe
ns

at
ed

0 10 20
0

5

10

15

20

0 10 20
0

5

10

15

20

D
yn

am
ic

 k

0 10 20
0

5

10

15

20

 k

Fig. 10.14 Summary of reference tracking and disturbance rejection results of state feedback
controllers for the tandem queue. The dashed line is the reference input. Static state feedback
cannot track the reference input. Precompensated and dynamic state feedback can. The static
schemes have poor disturbance rejection. Dynamic state feedback has good disturbance
rejection, but it has longer settling times.

TABLE 10.1 Comparison of the Characteristics of the Three State Feedback
Architectures

Control Controller Reference Disturbance Settling
Architecture Complexity Tracking Rejection Time

Static Low No No Short
Precompensation Moderate Yes No Short
Dynamic Moderate Yes Yes Moderate

Table 10.1 summarizes the characteristics of the three feedback control archi-
tectures. The complexity of implementing static state feedback control is quite
low in that it is essentially proportional control. Hence, the only consideration
is selecting the feedback gains. Static state feedback with precompensation is
more complicated to implement because of the precompensator. Dynamic state

TLFeBOOK

DESIGN TECHNIQUES 353

feedback requires that the state vector be augmented with the integrated control
error xI .

10.3 DESIGN TECHNIQUES

Having presented three architectures for state-space feedback control, we now
describe approaches to their design. By design, we mean choosing the feedback
gains. For static state feedback (with and without precompensation), the gains
are given in the vector K. For dynamic state feedback, we must select KI as
well. In Section 10.3.1 we describe pole placement design, and in Section 10.3.2
we describe an optimization based approach called linear quadratic regulation.

10.3.1 Pole Placement Design

In this section we detail an approach to the design of state-space feedback control
based on properly placing all poles of the closed-loop system. The approach
taken is an extension of pole placement design for transfer functions as detailed
in Table 9.2.

Our approach to pole placement design starts with a specification of the desired
settling time k∗

s and the desired maximum overshoot M∗
P

of the closed-loop
system. The first step computes the desired poles of the closed-loop system
based on k∗

s and M∗
P

. To do this, we assume that the dominant poles are complex
conjugates re±jθ . We proceed as in Chapter 9 using Equation (9.9) to set r to
its upper bound r = e−4/k∗

s . Similarly, θ is obtained using Equation (9.10) to set
θ to its upper bound θ = π[log(r)/ log(M∗

P
)]. The remaining n − 2 poles should

have sufficiently small magnitudes so that the closed-loop system has the desired
settling time and maximum overshoot. We use 0.25r .

The second step constructs and expands the desired characteristic polyno-
mial. From step 1 we know that this polynomial is

(
z2 − 2r cos θz + r2

)
(z −

0.25r)n−2. The expanded polynomial has n + 1 terms. Note that the number of
poles is equal to the number of states in the state vector, and the latter is the
same as the number of terms in the (expanded) desired characteristic polynomial
(excluding zn).

In the third step we obtain the modeled characteristic polynomial, which is
the characteristic polynomial expressed in terms of the feedback gain variables
K (and KI in the case of dynamic state feedback). To relate the feedback gains to
the desired closed-loop poles, we expand the modeled characteristic polynomial.
For the static state architectures, the modeled characteristic polynomial is

det[zI − (A − BK)] (10.13)

This polynomial can be expanded to obtain the coefficients of each power of z,
and these coefficients will contain the unknown feedback gains.

The fourth step is to solve for the control gains. The fifth step is to verify the
resulting design. Since n − 2 poles are chosen arbitrarily, we need to make sure
that the closed-loop system achieves the design goals specified by k∗

s and M∗
P

.

TLFeBOOK

354 STATE-SPACE FEEDBACK CONTROL

Example 10.7: Expanding the modeled characteristic polynomial Using A
and B in Example 10.4, we have

zI−(A − BK) = z

[
1 0
0 1

]

−
([

0.13 0
0.46 0.63

]
−

[
0.069
0

] [
K1

P
K2

P

])

=
[

z 0
0 z

]
−

[
0.13 − 0.069K1

P −0.069K2
P

0.46 0.63

]

=
[

z − 0.13 + 0.069K1
P

0.069K2
P

−0.46 z − 0.63

]

So

det [zI−(A − BK)] = z2 + (0.069K1
P

− 0.76)z − 0.043K1
P

+ 0.032K2
P

+ 0.082 (10.14)

The coefficient of z2 is 1, the coefficient of z1 is 0.069K1
P − 0.76, and the

coefficient of z0 is −0.043K1
P

+ 0.032K2
P

+ 0.082.

For dynamic state feedback in Equation (10.11), the modeled characteristic
polynomial is

det

{
zI −

([
A 0

−C 1

]
−

[
B
0

] [
KP KI

])}

Here too, the characteristic polynomial can be expanded (although doing so can
be tedious). Note that the degree of this polynomial is n + 1 since we add the
state variable xI and must solve for KI.

Solving for the feedback gains requires equating the coefficients of the desired
characteristic polynomial to the coefficients of the modeled characteristic poly-
nomial. The former are constants, and the latter include the feedback gains.

A complete example of pole placement design is described below.

Example 10.8: Pole placement design for static state feedback of a tandem
queue This example designs a static state feedback controller for Example 10.4
(tandem queue) using pole placement design. The control objective is to maintain
response times at their operating points, where R1 = 2.5, R2 = 6.5, and R =
R1 +R2 = 9. The specifications for this system are that settling time is no greater
than 5 minutes and the maximum overshoot does not exceed 5%. So k∗

s = 5 and
M∗

P = 0.05.
We begin by determining the desired location of the poles based on k∗

s and M∗
P

.
Since this system has two states (i.e., response time offset of the two queues),
there are two poles. We assume that these poles are complex conjugates of the

TLFeBOOK

DESIGN TECHNIQUES 355

form re±jθ . From Equation (9.9) we have that r = e−4/k∗
s = e−4/5 = 0.45, and

from Equation (9.10), we use

θ = π
log(r)

log(MP)
= π

log(0.45)

log(0.05)
= 0.84

Hence, the desired characteristic polynomial is

z2 − 2r cos θz + r2 = z2 − 0.6z + 0.2 (10.15)

Next, we construct the modeled characteristic polynomial. Since this is static
state feedback, we use Equation (10.13) as follows:

det[zI − (A − BK)]

= det

{[
z 0
0 z

]
−

[
0.13 0
0.46 0.63

]
+

[
0.069
0

] [
K1

P
K2

P

]}

= det

[
z − 0.13 + 0.069K1

P
0.069K2

P

−0.46 z − 0.63

]

= z2 + (0.069K1
P

− 0.76)z + 0.082 − 0.0435K1
P

+ 0.0317K2
P

(10.16)

To determine the values of K1
P

and K2
P

, we equate the coefficients of the
powers of z in Equation (10.15) with those in Equation (10.16). This results in
the following two equations:

0.069K1
P

− 0.76 = −0.6

0.082 − 0.0435K1
P

+ 0.0317K2
P

= 0.2

Solving these, we determine that the feedback gains are

K = [K1
P

K2
P

] = [2.31 6.95]

These are the same gains that are used in Example 10.4.

Table 10.2 summarizes our approach to pole placement design for state-space
feedback. Comparing this with the design of PI controllers for SISO systems
(as described in Figure 9.2), we see that the state-space approach allows us to
address high-order target systems directly. That is, for SISO PI control, we had to
use a first-order approximation of higher-order target systems so that the closed-
loop system is second order. By so doing, we end up with two equations in two
unknowns in step 4 of Table 9.2. In contrast, the state-space approach allows us
to deal with higher-order target systems without a first-order approximation. This
is accomplished by having K be of dimension 1 × n so that there are sufficient
controller parameters to solve the set of linear equations in step 4 of Table 10.2.

Intuitively, the magnitude of the feedback gains reflects the control effort
required. This effort typically relates to how far the closed-loop poles are from

TLFeBOOK

356 STATE-SPACE FEEDBACK CONTROL

TABLE 10.2 Procedure for Pole Placement Design for State-Space Feedback

The design goals are that settling time does not exceed k∗
s and that the maximum overshoot

does not exceed M∗
P .

1. Compute the closed-loop poles re±jθ .

• Compute r based on k∗
s using Equation (9.9).

• Compute θ based on M∗
P using Equation (9.10).

2. Construct the desired characteristic polynomial.

• The desired characteristic polynomial is
(
z2 − 2r cos θz + r2

)
(z − 0.25r)n−2, where

n is the dimension of the state space.

3. Construct and expand the modeled characteristic polynomial for x(k + 1) = Ax(k) −
BKx(k).

• K = [K1, . . . , Kn].

• The modeled characteristic polynomial is det[zI − (A − BK)].

4. Solve for the Ki in K.

• Equate the coefficients of the desired characteristic polynomial with the coefficient
of the modeled characteristic polynomial of the same degree.

• Solve the system of equations.

5. Verify the result.

• Check that the closed-loop poles lie within the unit circle.

• Simulate transient response to assess if the design goals are met.

the open-loop poles. Large control gains are a concern in computing systems in
that large gains will cause the system to overreact, resulting in controller-induced
variability and possibly limit cycles.

The following is a second example of pole placement design.

Example 10.9: Pole placement design for static state feedback with short set-
tling times This example modifies the specification used in Example 10.8 to
show the implications of having a small settling time. Specifically, k∗

s = 1. We
keep M∗

P
= 0.05. We note in passing that the open-loop poles of the tandem

queue suggest a settling time of 9. Hence, the closed-loop poles will need to be
far from the open-loop poles.

The magnitude of the desired closed-loop poles is obtained from Equation (9.9)
as r = e−4/k∗

s = e−4/1 = 0.018, and the angle of the desired closed-loop poles is
obtained from Equation (9.10) as

θ = π
log(r)

log(M∗
P
)

= π
log(0.018)

log(0.05)
= 4.19

Hence, the desired pole location is −0.0091±0.016i and the desired characteristic
polynomial is

(z + 0.0091 − 0.016i)(z + 0.0091 + 0.016i) = z2 + 0.018z + 0.0003

TLFeBOOK

DESIGN TECHNIQUES 357

0 5 10 15 20
−1

0

1

 d
(k

)

0 5 10 15 20
0

20

40

 K
(k

)

0 5 10 15 20
0

2

4

 R
1(k

)

0 5 10 15 20
0

5

10

 R
2(k

)

0 5 10 15 20
0

10

20

 R
(k

)

k

Fig. 10.15 Transient response of static state feedback control with short settling times and no
disturbance. The initial conditions are 1 second above the operating point (which are indicated
by dashed lines).

By equating the coefficients in this desired characteristic polynomial with those
in Equation (10.16), we have

K = [K1
P

K2
P

] = [11.28 12.88]

Figure 10.15 displays the response to initial conditions of this controller.
Clearly, this system settles much faster than the system in Example 10.8, whose
response to initial conditions is shown in Figure 10.5. Note, however, having
large feedback gains causes large changes in the buffer size K(k). A concern here
is that if the system has noise or other stochastics, the controller may overreact
and enter a limit cycle.

Example 10.10: Pole placement design for dynamic state feedback control of a
tandem queue This example designs a dynamic state feedback controller for
the tandem queue. Example 10.6 describes the structure of the control system.
The specifications of the control system are that k∗

s = 5 and M∗
P

= 0.05. Thus,

TLFeBOOK

358 STATE-SPACE FEEDBACK CONTROL

the dominant poles are 0.3±0.33i (as before). Since there are three states in this
system (due to the inclusion of xI), we need a third pole, which we place at 0.1
(since this has less than one-fourth the magnitude of the dominant pole). Thus,
the desired characteristic polynomial is

(z − 0.3 − 0.33i)(z − 0.3 + 0.33i)(z − 0.1) = z3 − 0.7z2 + 0.26z − 0.02

Next, we compute the modeled characteristic polynomial. Again referring to
Example 10.6, we have

zI −
([

A 0
−C 1

]
−

[
B
0

] [
KP KI

])

=

 z − 0.13 + 0.069K1

P
0.069K2

P
0.069K3

P

−0.46 z − 0.63 0
1 1 z − 1




det

{
zI −

([
A 0

−C 1

]
−

[
B
0

] [
KP KI

])}

= z3 + (0.069K1
P

− 1.76)z2 + (−0.1125K1
P

+ 0.03177K2
P

− 0.069K3
P

+ 0.8419)z

+ 0.04347K1
P

− 0.03174K2
P

+ 0.01173K3
P

− 0.0819

Matching the coefficients of the desired and modeled characteristic polynomi-
als, we have the following equations:

0.069K1
P

− 1.76 = −0.7

−0.1125K1
P

+ 0.03177K2
P

− 0.069K3
P

+ 0.8419 = 0.26

0.04347K1
P

− 0.03174K2
P

+ 0.01173K3
P

− 0.0819 = −0.02

Solving these equations yields the feedback gains

K = [15.3 15.5 −9.43]

10.3.2 LQR Optimal Control Design

Pole placement design constructs a controller with desired poles. However, we
must still consider the resulting control gains since higher gains can increase
variability, possibly resulting in limit cycles. An alternative approach to controller
design is to focus on the trade-off between control effort and control errors.
Control errors are quantified by the squared values of state variables, which
are typically offsets from the operating point. Control effort is quantified by
the square of u(k), the offset of the control input from its operating point. By

TLFeBOOK

DESIGN TECHNIQUES 359

minimizing control errors, we improve accuracy and reduce both settling times
and overshoot. By minimizing control effort, we reduce the system’s sensitivity
to noise since we do not take large control actions (e.g., MaxClients does
not change much). In general, there is a trade-off between control effort and
control error. Specifically, reducing control errors requires more control effort,
and reducing control effort means that control errors will be larger.

The LQR design problem is specified in terms of the relative “cost” of control
errors and control effort. This is quantified by two input parameters, a matrix Q
and a second matrix R. Q quantifies the cost of individual (and combinations of)
state variables diverging from their operating point, and R specifies the cost of
control effort.

Our formulation of LQR is more general than for pole placement in that we
consider MIMO systems. This has two implications. First, the control input is
a vector, which we denote by u(k). Hence, the state dynamics are x(k + 1) =
Ax(k) + Bu(k). Second, the feedback gains K are a matrix instead of a vector.
For the static feedback controller (with and without precompensation) the control
law is u(k) = −Kx(k). For dynamic state feedback, the terms in Equation (10.11)
should be substituted for A and B in the analysis below.

The technical details of LQR are as follows. The objective function to mini-
mize is J , where

J = 1

2

∞∑
k=0

[
x�(k)Qx(k) + u�(k)Ru(k)

]
(10.17)

It is required that Q be positive semidefinite and that R be positive definite.
These conditions ensure that J ≥ 0. The positive semidefinite condition holds
for a matrix F if the eigenvalues of F are nonnegative. F is positive definite if
all of its eigenvalues are positive.

The details of computing K using LQR are somewhat involved. Typically,
analysts employ tools such as the MATLAB command dlqr. However, for com-
pleteness, we describe how to do the LQR computations.

Assume that the system [A, B] is stabilizable (i.e., [A, B] is either controllable
or its uncontrollable subsystem is stable) and [A, D] is observable where D�D =
Q. The optimal feedback gains can be obtained following the steps shown in
Table 10.3. (The derivation of this optimal law can be found in books such as
[21].)

The steps in LQR design are summarized as follows:

1. Select the weighting matrices Q and R.
2. Compute the feedback gain K using the algorithm shown in Table 10.3 or

using MATLAB command dlqr.
3. Predict control system performance based on the closed-loop system model,

or run a computer simulation to verify the closed-loop performance.
4. Choose new Q and R and repeat the steps above if the performance is not

suitable.

TLFeBOOK

360 STATE-SPACE FEEDBACK CONTROL

TABLE 10.3 Algorithm for LQR Design

1. Initialization:

• Define the state-space model of the open-loop system by matrices A and B. For a
system with n system states and m control inputs, A is an n × n matrix and B is an
n × m matrix.

• Define the weighting matrices Q and R, where Q is an n×n matrix and R is an m×m

matrix. The eigenvalues of matrix Q must be nonnegative and the eigenvalues of
matrix R must be positive.

• The optimal feedback gain K is an m × n matrix. It is computed iteratively. Define
the optimal feedback gain at step k as K(k).

• Define an n × n auxiliary matrix S. The value of S is computed iteratively, so that its
value is further defined at step k as S(k).

2. Iteration:

(a) Initially, i = 0. Set S(0) and K(0) as zero matrices.

(b) Compute an m × m temporary matrix M1 =
[
B�S(i)B + R

]−1
.

(c) Compute another n × n temporary matrix M2 = S(i) − S(i)BM1B�S(i).

(d) Compute the auxiliary matrix for the next step, S(i + 1) = A�M2A + Q.

(e) Compute the feedback gain for the next step, K(i + 1) = M1B�S(i + 1)A.

(f) If |K(i + 1) − K(i)| is small enough, stop the iteration; otherwise, i = i + 1 and go to
step 2b.

Example 10.11: LQR design for dynamic state feedback control of a tandem
queue We follow the steps in Table 10.3 to do LQR design for dynamic state
feedback control of the tandem queue example. (An alternative approach using
the MATLAB command dlqr is described in a later MATLAB section.)

Recall that for dynamic state feedback, the state vector is augmented to include

the integrated error xI . That is, x(k) =

 x1(k)

x2(k)

xI (k)


. Further, for dynamic state

feedback,

A =

 0.13 0 0

0.46 0.63 0
1 1 1




B =

 0.069

0
0




We begin by specifying the LQR inputs Q and R. We choose

Q =

 1 0 0

0 1 0
0 0 100




TLFeBOOK

DESIGN TECHNIQUES 361

and

R = 1

The eigenvalues of matrix Q are 1,100 > 0, and eigenvalue of R is 1 > 0.
So these matrices satisfy the LQR assumptions. Q is structured so that inter-
actions between elements of the state vector are ignored (in that the corre-
sponding elements of Q are 0). q1,1 and q2,2 are the weights for x1 and x2
(the offsets of the response times for the queueing systems). Since q1,1 =
1 = q2,2, these states are weighted equally. q3,3 corresponds to xI , the inte-
grated control error. This has a large weight (100), so will strongly influence the
choice of K. That R = 1 implies that control effort is as important as control
error.

From Figure 10.3, we initialize S and K as follows:

S(0) =

 0 0 0

0 0 0
0 0 0




K(0) = [
0 0 0

]

We first compute two temporary matrices:

M1 =
(

B�S(0)B + R
)−1

=

[

0.069 0 0
] 
 0 0 0

0 0 0
0 0 0





 0.069

0
0


 + 1




−1

= 1

and

M2 = S(0) − S(0)BM1B�S(0)

=

 0 0 0

0 0 0
0 0 0


 −


 0 0 0

0 0 0
0 0 0





 0.069

0
0


 · 1

· [0.069 0 0
]

 0 0 0

0 0 0
0 0 0




=

 0 0 0

0 0 0
0 0 0




TLFeBOOK

362 STATE-SPACE FEEDBACK CONTROL

Thus, the auxiliary matrix S(1) is computed as

S(1) = A�M2A + Q

=

 0.13 0.46 1

0 0.63 1
0 0 1





 0 0 0

0 0 0
0 0 0





 0.13 0 0

0.46 0.63 0
−1 −1 1




+

 1 0 0

0 1 0
0 0 100




=

 1 0 0

0 1 0
0 0 100




and the feedback gain for the next step is

K(1) = M1B�S(1)A

= 1 · [0.069 0 0
]

 1 0 0

0 1 0
0 0 100





 0.13 0 0

0.46 0.63 0
1 1 1




= [
0.009 0 0

]
The steps above are repeated until the feedback gains converge as shown in
Figure 10.16. This gives the optimal feedback gains

K = [K1 K2 K3] = [11.54 11.92 −6.21] (10.18)

Substituting K in Equation (10.18) into Equation (10.12), we determine that
the poles of the closed-loop system are 0.42 ± 0.26i and 0.13, which makes
the former dominant poles. Thus, the estimated settling time of this system
is ks = 6, and its estimated maximum overshoot is MP = 2%. Figure 10.17
assesses the controller’s tracking performance for a step change in the reference
input, and Figure 10.18 assesses the controller’s performance for disturbance
rejection. Note that the controller provides both good tracking and disturbance
rejection.

10.4 SUMMARY

1. The state feedback control law is u(k) = −Kx(k), where u(k) is the (scalar)
control input, x(k) is the state vector, and K is the vector of feedback gains.
The design problem is to choose the vector K of feedback gains. For MIMO
systems, u(k) is a vector and K is a matrix.

2. Three architectures are described for state feedback: static state feedback,
static state feedback with precompensation, and dynamic state feedback.

TLFeBOOK

SUMMARY 363

0 2 4 6 8 10
−10

−5

0

5

10

15

20

Iteration i

F
ee

db
ac

k
G

ai
ns

 K
(i)

Fig. 10.16 Convergence of feedback gains that are iteratively computed using LQR design for
a dynamic state feedback controller. K1(i), K2(i), and K3(i) are indicated by the solid, dotted,
and dashed-dotted lines. Note that the difference between successive estimates of the gains
becomes quite small after iteration 5.

3. Static state feedback is similar to proportional control. It is used to regulate
measured outputs at their operating point. This architecture does not include
a reference input.

4. Precompensated static state feedback can be used to track reference inputs.
However, this architecture has poor disturbance rejection.

5. Dynamic state feedback augments the state vector with the variable xI , the
integrated control error. The approach taken is similar to that used in PI
controllers of SISO systems. Dynamic state feedback can track reference
inputs and reject disturbances. However, settling times may be longer than
the static architectures because of the slower dynamics introduced by xI .

6. Two approaches to designing state feedback controllers are presented: pole
placement and linear quadratic regulation (LQR).

7. Our approach to pole placement design starts with a specification of the
maximum settling time and overshoot of the closed-loop system. This spec-
ification is used to obtain the desired dominant poles of the closed-loop
system. (The remaining poles are chosen to be sufficiently small.) Feed-
back gains are obtained by equating the coefficients of the desired and
modeled characteristic polynomials.

8. Linear quadratic regulator (LQR) design chooses feedback gains that mini-
mize a weighted sum of the control error and control effort. This approach
minimizes the combined “cost” of control errors and control effort.

TLFeBOOK

364 STATE-SPACE FEEDBACK CONTROL

0 5 10 15 20
−1

0

1

 d
(k

)

0 5 10 15 20
0

50

100

 K
(k

)

0 5 10 15 20
0

5

10

 R
1(k

)

0 5 10 15 20
0

10

20

 R
2(k

)

0 5 10 15 20
0

10

20

 R
(k

)

k

Fig. 10.17 Response of a system with dynamic state feedback control designed using LQR
to a step increase in the reference input (and no disturbance input). The operating point is
indicated by the dashed lines in the plots of K(k), R1(k), R2(k), and R(k). The reference value
is indicated by the dashed-dotted line in the R(k) plot.

10.5 EXTENDED EXAMPLES

In this section we present more detailed examples of designing state feedback
controllers. The first designs a dynamic state feedback system for the Apache
HTTP Server. The second example studies the effect of the LQR specification
parameters Q and R on the transient performance of a feedback system for the
tandem queue example.

10.5.1 MIMO Control of the Apache HTTP Server

This example designs a dynamic state feedback controller for the Apache HTTP
Server. We consider a MIMO system in which the goal is to regulate CPU utiliza-
tion (CPU) and memory utilization (MEM) using the control inputs MaxClients
(MC) and KeepAlive(KA).

TLFeBOOK

EXTENDED EXAMPLES 365

0 5 10 15 20
0

5

10

 d
(k

)

0 5 10 15 20
0

20

40

 K
(k

)

0 5 10 15 20
0

2

4

 R
1(k

)

0 5 10 15 20
0

5

10

 R
2(k

)

0 5 10 15 20
0

5

10

 R
(k

)

k

Fig. 10.18 Response of a system with dynamic state feedback control designed using LQR to
a step increase in the disturbance input. The dashed lines in the plots of K(k), R1(k), R2(k),
and R(k) indicate the operating point values. The dashed-dotted line in the R(k) plot shows the
reference value for total response time.

We consider the Apache HTTP Server at the operating point CPU = 0.52,
MEM = 0.53, KA = 11, and MC = 600. We want to construct a control system
with reference input r = [r1, r2]�, where r1 = CPU∗ − CPU, r2 = MEM∗ − MEM,
and CPU∗, MEM∗ are the desired outputs. The state vector is

x(k) =
[

x1(k)

x2(k)

]
=

[
CPU− CPU
MEM− MEM

]

and the control input is

u(k) =
[

u1(k)

u2(k)

]
=

[
KA− KA
MC− MC

]

The state-space model is

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k).

TLFeBOOK

366 STATE-SPACE FEEDBACK CONTROL

(Note that the measured output is a vector.) Since state variables are the same as
the outputs, we have

C = I =
[

1 0
0 1

]

Using MIMO system identification as described in Chapter 7 yields

A =
[

0.54 −0.11
−0.026 0.63

]

B =
[−85 4.4

−2.5 2.8

]
× 10−4

We use a dynamic state feedback control architecture. However, this is done
a bit differently than described in Section 10.2.3 in that the state vector of the
control system is not an augmented version of the state vector of the target system.
Rather, the control error vector e(k) is used, where e(k) = r − y(k) = r − x(k).
The dynamics of the control error are

e(k + 1) = r − x(k + 1)

= r − Ax(k) − Bu(k)

= Ae(k) − Bu(k) + (I − A)r (10.19)

We also define the integrated control error:

xI (k + 1) = xI (k) + e(k) (10.20)

The augmented state-space model can be written as

[
e(k)

xI(k)

]
=




e1(k)

e2(k)

xI,1(k)

xI,2(k)




r(k)
x(k+1)=Ax(k)+Bu(k)
y(k)=Cx(k)

u(k) y(k)

−−+

−

Apache SystemFeedback

xI(k)
x

I
(k+1)=x

I
(k)+e(k)

e(k)
KI

KP

Gain
Integrated Control

Error

Fig. 10.19 Block diagram of a dynamic state feedback control system that regulates CPU and
MEM in the Apache HTTP Server.

TLFeBOOK

EXTENDED EXAMPLES 367

From Equations (10.19) and (10.20), we can construct the augmented state
model for the control system.[

e(k + 1)

eI (k + 1)

]
=

[
A 0
I I

] [
e(k)

eI (k)

]
+

[−B
0

]
u(k) +

[
I − A

0

]
r

That is, 


e1(k + 1)

e2(k + 1)

xI,1(k + 1)

xI,2(k + 1)


 =




0.54 −0.11 0 0
−0.026 0.63 0 0

1 0 1 0
0 1 0 1







e1(k)

e2(k)

xI,1(k)

xI,2(k)




+




0.0085 −0.00044
0.00025 −0.00028
0 0
0 0




[
u1(k)

u2(k)

]

+




0.46 0.11
0.026 0.37
0 0
0 0




[
r1
r2

]

Figure 10.19 displays a block diagram of the dynamic state feedback control
system for the Apache HTTP Server. This system uses the control law

u(k) = −K
[

e(k)

eI (k)

]
= − [

KP KI

] [
e(k)

xI(k)

]

where KP and KI are 2 × 2 matrices and hence K is a 2 × 4 matrix. With this,
the closed-loop model is[

e(k + 1)

xI(k + 1)

]
=

([
A 0
I I

]
−

[−B
0

] [
KP KI

]) [
e(k)

xI(k)

]

+
[

I − A
0

]
r

Now, we consider the design problem—how to choose the eight feedback
gains in KP and KI. We begin with a pole placement design. Our specifications
for transient performance are that (a) settling time be no more than 60 seconds and
(b) maximum overshoot be no more than 5%. That is, M∗

P
= 0.05 and k∗

s = 12
(since the sampling time is 5 seconds). The magnitude v of the dominant poles is

v = e−4/k∗
s = e−4/12 = 0.72

and the angle is

θ = π
log(v)

log(M∗
P
)

= π
log(0.72)

log(0.05)
= 0.35

TLFeBOOK

368 STATE-SPACE FEEDBACK CONTROL

Thus, the two dominant poles are 0.67 ± 0.25j . There are a total of four poles in
the closed-loop system since there are four state variables (and hence the charac-
teristic polynomial has degree four). We choose the two nondominant poles to be
0.53±0.3j . Thus, the desired characteristic polynomial is (z−0.67−0.25j)(z−
0.67 + 0.25j)(z − 0.53 − 0.3j)(z − 0.53 + 0.3j). The modeled characteristic
polynomial is found by expanding

det

(
zI −

[
A 0
I I

]
+

[−B
0

] [
KP KI

])

Equating the coefficients of the desired and modeled characteristics polynomials
results in four equations (the degree of these polynomials) in eight unknowns.
Solving such an underconstrained system requires that additional assumptions be
made. Rather than going through these technical details, we use the MATLAB
place command, which yields the following gains:

KP =
[

31 −114
106 −2121

]

KI =
[

22 −44
14 −921

]

Figure 10.20 shows the tracking performance of the controller designed using
pole placement. The dashed lines are the desired values of the output metrics,
dashed-dotted lines are what the model predicts, and the solid lines are exper-
imental results from a testbed with an Apache HTTP Server. We see that for
MEM, the experimental and simulation results are in good correspondence. How-
ever, this is not the case for CPU. Specifically, both settling times and maximum
overshoot violate the specifications for CPU.

Why does the controller perform poorly for CPU? One possibility is that the
nondominant poles are too close to the dominant poles and hence the former
have a significant effect on performance. Rather than iteratively refining the pole
placement model, we explore the use of LQR.

Before beginning an LQR design, we must specify the matrices Q and R. A
common approach is first to normalize the terms in the Equation (10.17) cost
function. Note that CPU and MEM both have a range of [0, 1]. However, the
range of values for KeepAlive is 1 to 50, which differs from the range for
MaxClients, which is 1 to 1024. We normalize for this difference in value
ranges by using

R =
[

1/502 0
0 1/10002

]

where r1,1 is the cost associated with KeepAlive control effort and r2,2 the
cost for MaxClients. For Q, we focus on the diagonal entries. These entries
correspond to the state variables e1(k), e2(k), xI,1(k), xI,2, where the subscript
1 refers to CPU and the subscript 2 refers to MEM. We choose q1,1 = 1 = q2,2 to

TLFeBOOK

EXTENDED EXAMPLES 369

0

0.5

1
C

P
U

0

0.5

1

M
E

M

0

50

K
A

0 200 400 600 800 1000 1200
0

500

1000

Time (seconds)

M
C

Fig. 10.20 Tracking performance of a dynamic state feedback controller for the Apache HTTP
Server designed using the pole placement method. The dashed lines are the desired values of
the output metrics, the dashed-dotted lines are what the model predicts, and the solid lines
are experimental results from a testbed with an Apache HTTP Server. Tracking performance is
good for MEM and poor for CPU.

provide equal costs for the control errors (e1(k), e2(k)). A smaller cost is placed
on the integrated control errors xI,1(k) and xI,2(k), as indicated by the elements
q3,3 and q4,4:

Q =




1 0 0 0
0 1 0 0
0 0 0.1 0
0 0 0 0.2




The mechanics of LQR design can be done using the algorithm in Table 10.3 or
the MATLAB command dlqr. The resulting feedback gains are

KP =
[

32 −31
−193 −890

]

KI =
[

12 −9
−75 −335

]

Figure 10.21 displays the results of simulation and empirical studies of the
LQR controller. The dashed lines are the desired values of the output metrics,
dashed-dotted lines are what the model predicts, and the solid lines are experi-
mental results from a testbed with an Apache HTTP Server. We see that much

TLFeBOOK

370 STATE-SPACE FEEDBACK CONTROL

0

0.5

1
C

P
U

0

0.5

1

M
E

M

0

50

K
A

0 200 400 600 800 1000 1200

0

500

1000

Time (seconds)

M
C

Fig. 10.21 Tracking performance of a dynamic state feedback controller for the Apache HTTP
Server server designed using LQR. The dashed lines are the desired values of the output metrics,
the dashed-dotted lines are what the model predicts, and the solid lines are experimental results
from a testbed with an Apache HTTP Server. Tracking performance is good for both MEM and
CPU.

better tracking performance is achieved. In part, this is due to reducing the con-
trol effort for KeepAlive, whose value changes much less in the LQR design
than in the pole placement design. The insight here is that LQR provides a fairly
easy way to limit control effort through the R matrix, something that is difficult
to do with a pole placement design.

10.5.2 Effect of the LQR Design Parameters in a Dynamic State
Feedback System

In this section we investigate how the LQR parameters Q and R affect transient
response. We do this in the context of Example 10.11, the LQR design for the
tandem queue. In that system, the control input is K(k), the size of the buffer
of the first queueing system, and the measured output is R(k), the sum of the
response times of the two queueing systems. Further, we use

Q =

 q1,1 0 0

0 q2,2 0
0 0 q3,3


 =


 1 0 0

0 1 0
0 0 100




and R = 1.

TLFeBOOK

EXTENDED EXAMPLES 371

0 10 20
0

50

100

150

 K
(k

)

0 10 20
0

5

10

15

20

 R
(k

)

k

0 10 20
0

20

40

60

80

100

0 10 20
0

5

10

15

20

k

0 10 20
0

20

40

60

80

100

0 10 20
0

5

10

15

20

k

R=0.2 R=1 R=3

Fig. 10.22 Effects of the LQR parameter R on transient response in the tandem queue example
of Example 10.11 with q3,3 = 100. Note that overshoot decreases rapidly as R increases.

First, we consider the effect of R on transient response. Figure 10.22 displays
the step response of the control input K(k) and the measured output R(k) as
the LQR parameter R increases from 0.2 to 3. We see that overshoot decreases
dramatically as R increases. This is a consequence of feedback gains decreasing
as R increases because a larger R makes control effort more costly.

Next, we consider the effect of Q on transient response. We focus on q3,3,
the cost associated with the integrated control error xI . Figure 10.23 displays the
transient response as q3,3 increases from 10 to 300. Here we see that oscillations
increase as q3,3 increases. This too can be explained in terms of the effect on
feedback gains. As q3,3 increases, the cost of the control error increases as well,
so feedback gains increase. While increasing feedback gains causes an overall
decrease in xI , the larger gains introduce oscillations.

TLFeBOOK

372 STATE-SPACE FEEDBACK CONTROL

0 10 20
0

20

40

60

80

100
 K

(k
)

0 10 20
0

5

10

15

20

 R
(k

)

k

0 10 20
0

20

40

60

80

100

0 10 20
0

5

10

15

20

k

0 10 20
0

20

40

60

80

100

120

0 10 20
0

5

10

15

20

k

q3,3 =10 q3,3 =100 q3,3 =300

Fig. 10.23 Effects of the LQR parameter q3,3 on transient response in the tandem queue
example of Example 10.11 with R = 1. Note that oscillations increase as q3,3 increases.

*10.6 DESIGNING STATE-SPACE CONTROLLERS USING MATLAB

In this section we illustrate how to use MATLAB for pole placement and LQR
design.

We begin with pole placement design. What follows is a MATLAB approach to
Example 10.8. Recall that the state-space model has A and B. This is expressed
in MATLAB as

>> A = [0.13 0; 0.46 0.63];
>> B = [0.069; 0];

Further, recall that the desired poles are −0.0091 ± 0.016j . That is, the vector
of poles, P, is

>> P=[-.0091+.016j -.0091-.016j]

We use the MATLAB place command to compute the feedback gains for a pole
placement design.

TLFeBOOK

EXERCISES 373

>> K = place(A,B,P)

K =

11.2783 12.8766

which is an unrounded version of the result obtained in Example 10.9.
Now consider the LQR design of the dynamic state feedback controller in

Example 10.11. Recall that the dynamic state feedback system uses the state-
space model parameters

>> A = [0.13 0 0; 0.46 0.63 0; 1 1 1];
>> B = [0.069; 0; 0];

We construct the LQR parameters Q and R using the MATLAB commands

>> Q = diag([1 1 100]);
>> R = 1;

Using the MATLAB command dlqr (discrete time LQR), we compute the feed-
back gains.

>> K = dlqr(A,B,Q,R)

K =

11.5403 11.9249 6.2095

10.7 EXERCISES

1. Consider the system with state-space dynamics x(k + 1) = Ax(k) + Bu(k),

where A =
[

0.4 0
0.7 0.2

]
, B =

[
0.1
0

]
, and C = [

1 3
]
. We want

to construct a controller whose settling time is no larger than 6 and whose
maximum overshoot is no greater than 2%.

(a) What are the desired poles for the closed-loop system and the desired
characteristic polynomial?

(b) Consider the static feedback control architecture with the control law
u(k) = [K1K2]x(k). What is the modeled characteristic polynomial?

(c) Write the set of equations for K1 and K2 based on equating the coeffi-
cients of the desired and modeled characteristic polynomials.

(d) Find K1 and K2 using pole placement.

2. Modify the system in Exercise 1 to a precompensated static feedback con-
troller by computing N .

TLFeBOOK

374 STATE-SPACE FEEDBACK CONTROL

3. Consider the system with A =
[

0.8 0
0.3 0.2

]
and B and C as in Exercise 1.

Construct a static state feedback control system with the same settling times
and overshoot as in Exercise 1. Why are the feedback gains larger? What is
one undesirable implication of larger feedback gains in a computing system?

4. Consider the system in Exercise 1 for which we want to construct a controller
whose settling time is no larger than 10 and whose maximum overshoot is no
greater than 5%. What are the feedback gains? Why do these feedback gains
have a larger magnitude than those in Exercise 1, even though the desired
closed-loop system is slower?

5. For the system in Exercise 1, do an LQR design with Q =
[

1 0
0 10

]
and

R = 0.5. Also, compute the pole locations, settling time, and maximum

overshoot. Repeat this exercise with Q =
[

1 0
0 1

]
. What is the effect of

Q?

6. Consider the system with A =
[

0.8 0
0.3 0.2

]
, B =

[
0.5
0

]
, C = [

1 1
]

for which we want to construct a dynamic state feedback controller whose
settling time is no larger than 10 and whose maximum overshoot is no greater
than 5%.

(a) What are the desired poles for the closed-loop system? What is the desired
characteristic polynomial?

(b) Consider the dynamic state feedback control architecture with the addi-
tional state variable xI (k + 1) = xI (k) + e(k) and the control law

u(k) = [
KP,1 KP,2 KI

] 
 x1(k)

x2(k)

xI (k)


. Write the equations for the

dynamics of the augmented state vector.
(c) Compute the feedback gains using pole placement.
(d) Design the feedback control system again using LQR with R = 0.5 and

Q =
[

1 0
0 1

]
. How do the poles obtained compare with those for pole

placement design?

TLFeBOOK

11
Advanced Topics

Almost all real-world systems are nonlinear, stochastic, and time varying. Yet
linear, deterministic, time-invariant models have met with widespread success in
the process control, manufacturing, and aerospace industries. We believe that this
confirms the principle we articulated in Chapter 2: “All models are wrong—but
some models are useful.” Indeed, throughout the book we have demonstrated
that many controller design and analysis problems in computing systems can
be addressed by relatively simple techniques that assume linear, deterministic,
time-invariant systems.

Unfortunately, simple approaches do not always work. In this chapter we
provide a brief introduction to several techniques that address nonlinearities,
stochastics, and time-varying characteristics such as those encountered in com-
puting systems. The first technique, gain scheduling, addresses nonlinear and/or
time-varying systems by using auxiliary measurements (referred to as scheduling
variables) to switch between controllers; doing so provides a way to use mul-
tiple linear controllers for a nonlinear system. Self-tuning regulators, the second
technique, make ongoing adjustments to controller parameters based on revised
estimates of the model of the target system. Minimum-variance controllers, a
third technique, address systems with stochastics. Considered next is fluid flow
analysis, an approach to constructing models from first principles. Finally, we
describe fuzzy control, an approach to controller construction that uses qualitative
rules to describe controller actions.

Feedback Control of Computing Systems, by Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury
ISBN 0-471-26637-X Copyright c© 2004 John Wiley & Sons, Inc.

375

TLFeBOOK

376 ADVANCED TOPICS

11.1 MOTIVATING EXAMPLE

In this section we illustrate some shortcomings of linear, deterministic models by
introducing an example that is used in the remainder of this chapter. Figure 11.1
displays a block diagram of a closed-loop system for controlling an M/M/1/K

queueing system using a PI (proportional–integral) controller. The reference input
is desired response time, the output is measured response time, and the control
input is buffer size. R(z), Y (z), and U(z) are the Z-transforms of the offsets from
the operating point. The disturbance input reflects time-varying changes in the
arrival rate at the queueing system, a common situation in computing systems.

Figure 11.2 displays the dynamics considered in the example. Figure 11.2(a)
depicts how arrival rates change with time. The system begins with an arrival

R(z)

Disturbance

E(z) U(z) Y(z)

z – 1
(KP + KI)z–KP+

− M/M/1/K

Fig. 11.1 Closed-loop system used in motivating example. The target system is M/M/1/K,
which is stochastic and nonlinear. The reference input is desired response time, the measured
output is measured response time, and the control input is buffer size. R(z), Y (z), and U(z) are
offsets from the operating point. The disturbance is time varying.

A
rr

iv
al

 R
at

e
(l

)

3.5

4.0

0 2 4 6 8 10

Time (hours)

(a) Arrival rate

0 2 4 6 8 10

Time (hours)

(b) Reference input

3.0

0.5

1.0

R
ef

er
en

ce
 In

pu
t (

r)

0

Fig. 11.2 Summary of input dynamics used in running example. Both the arrival rate and the
reference input (R) change.

TLFeBOOK

MOTIVATING EXAMPLE 377

rate of λ = 3.2, which results in a utilization of 0.80. After 4 hours there is a
disturbance that causes the arrival rate to jump to 3.96, which corresponds to
a utilization of 0.99. Figure 11.2(b) indicates how the reference input changes
with time. From hours 2 to 6, the reference input is 0.5 second, at which point
the reference is changed to 1.0 second. (Hours 0 to 2 are a “warm-up” period.)

We now consider how to design a controller that can accommodate the changes
displayed in Figure 11.2. Intuitively, it seems that a worst-case design might be
a good approach. By worst case, we mean that the design is done for the high-
arrival-rate case. Employing the CHR techniques described in Chapter 9 to this
case, we obtain KP = 31 and KI = 0.81. Figure 11.3 displays the results
of operating the system in Figure 11.1 with these controller parameters for a
simulated M/M/1/K queueing system and applying the dynamics in Figure 11.2.
The top plot shows the measured arrival rate in each interval, the middle plot
displays the buffer size (which is held constant during the warm-up period), and
the bottom plot contains the measured response times with dashed lines indicating
the reference input. Observe that settling times are quite long when the arrival
rate is lower, and settling times are shorter when the arrival rate is high.

0 2 4 6 8 10
3

3.5

4

E
st

im
at

ed
l

0 2 4 6 8 10
0

10

20

30

40

50

B
uf

fe
r

S
iz

e

0 2 4 6 8 10
0

0.5

1

1.5

2

R
es

po
ns

e
T

im
e

Time (hours)

Fig. 11.3 System designed for high arrival rates. Response to the input dynamics in Figure 11.2
of the system in Figure 11.1 with controller parameters obtained under high arrival rates. The
results are obtained using an M/M/1/K simulator as the target system.

TLFeBOOK

378 ADVANCED TOPICS

0 2 4 6 8 10
3

3.5

4
E

st
im

at
ed

λ

0 2 4 6 8 10
0

10

20

30

40

50

B
uf

fe
r

S
iz

e

0 2 4 6 8 10
0

0.5

1

1.5

2

R
es

po
ns

e
T

im
e

Time (hours)

Fig. 11.4 System designed for low arrival rates: response to the input dynamics in Figure 11.2
of the system in Figure 11.1 with controller parameters obtained under lower arrival rates. The
results are obtained using an M/M/1/K simulator for the target system.

Next we investigate the characteristics of the control system designed using
data collected with λ = 3.2. Once again employing CHR, we determine that
KP = 143 and KI = 6.0. Figure 11.4, which is organized in the same way as
Figure 11.3, displays how the system responds to the dynamics in Figure 11.2.
Note that settling times are much shorter than before since the controller parame-
ters are larger. However, there is considerable oscillation in the buffer size when
the reference input is 1.0 second and the arrival rate is high. Such oscillations
can be problematic in production systems since excessive control actions increase
overheads and hence can reduce throughputs.

11.2 GAIN SCHEDULING

One approach to dealing with the dynamics of Figure 11.2 is to employ gain
scheduling , a technique that chooses the controller to use dynamically by employ-
ing rules that distinguish between operating regimes. Operating regimes are

TLFeBOOK

GAIN SCHEDULING 379

described in terms of scheduling variables (e.g., measured arrival rate) that are
obtained from the target system. A gain scheduler can be constructed by (1)
characterizing the operating regimes in terms of scheduling variables, and (2)
doing separate controller designs for each regime.

Figure 11.5 displays a block diagram of a gain scheduling system. The lower
part of the diagram contains blocks for the controller and target system. To support
gain scheduling, these components differ from those in Figure 11.1 in that (1)
the target system must expose the scheduling variables, and (2) the controller
must have a means to accept new parameters dynamically. The gain scheduler
takes the scheduling variables as input, and it outputs the controller parameters.

Figure 11.6 contains a block diagram of a gain scheduling system for the
M/M/1/K queueing system. As before, a PI controller is used. A first-order

Scheduling
 Variables

 Controller
Parameters

Reference
 Input

Control
 Input

Measured
 Output

Controller

Gain Scheduler

Target System

Fig. 11.5 Block diagram of gain scheduling. Scheduling variables measured on the target
system are used to adjust controller parameters.

KP , KI

Buffer
 Size

otherwise, KP = 31, KI = 0.81
if l(k) < 3.2, KP = 143, KI = 6.0

Reference
Response

Time

z − 1
(KP + KI)z − KP

Measured
Response

Time

M/M/1/K

b
z − a

 Controller

+

−

Gain Scheduler

l(k)

Fig. 11.6 Block diagram of gain scheduling for M/M/1/K. The measured arrival rate of the
queueing system is used to adjust KP and KI .

TLFeBOOK

380 ADVANCED TOPICS

model is used for the target system. The scheduling variable is λ(k), the measured
arrival rate of the M/M/1/K system at time k, which is monitored by the gain
scheduler. The gain scheduler contains two scheduling rules that determine the
controller parameters based on measured arrival rates. In essence, this is a way
of combining the best characteristics of the controllers presented in Section 11.1.

Figure 11.7 displays the response of the gain scheduling system in Figure 11.6
to the dynamics in Figure 11.2. (As before, an M/M/1/K simulator is used for
the target system.) Observe that the gain scheduling system has the desirable
characteristics of both of the designs done in Section 11.1, in that (1) there is
little or no oscillation in buffer size (as is the case in the design done for high
arrival rates), and (2) settling times are short (as is the case in the design done
for lower arrival rates).

In principle, the gain scheduler is a meta-controller that chooses a set of con-
troller parameters based on the operating regime. However, there are several
challenges with realizing this in practice. Foremost, gain scheduling requires that
multiple controllers be designed for the different operating regimes considered,
which could be time consuming. Further, the scheduling rules must be determined

0 2 4 6 8 10
3

3.5

4

E
st

im
at

ed
λ

0 2 4 6 8 10
0

10

20

30

40

50

B
uf

fe
r

S
iz

e

0 2 4 6 8 10
0

0.5

1

1.5

2

R
es

po
ns

e
T

im
e

Time (hours)

Fig. 11.7 Response of gain scheduling to the input dynamics in Figure 11.2. The results are
obtained using an M/M/1/K simulator for the target system.

TLFeBOOK

SELF-TUNING REGULATORS 381

and appropriate interfaces to the target system must be present (or constructed) to
obtain the requisite scheduling variables. Care should be taken in the design of the
scheduling rules to avoid abrupt shifts in operating regimes (which would prob-
ably happen in the system in Figure 11.7). Of particular concern here are unde-
sirable end-user characteristics, such as much larger or more variable response
times. Another concern is stability. Specifically, gain scheduling a set of stable
controllers may not ensure that the combination of controllers is stable. More
details on gain scheduling can be found in [9] and [59].

11.3 SELF-TUNING REGULATORS

In this section we describe self-tuning regulators , an approach to adaptation
that updates controller parameters at each sample time. There are many different
types of self-tuning regulators. One type provides a kind of online pole placement
design. This is done by recomputing the controller parameters needed to maintain
the desired poles based on updated estimates of the parameters of the target
system that are obtained at each sample time.

Figure 11.8 displays a block diagram in which a self-tuning regulator is used
for regulatory control. As in gain scheduling, the controller must be capable of
dynamically updating its parameters. However, unlike in gain scheduling, there
is no need to modify the target system to expose scheduling variables. This is of
particular benefit to independent software vendors and customers who assemble
end-to-end solutions from commercially available products (e.g., e-commerce
systems) since they do not have access to product internals and so cannot modify
products to expose additional measurement data.

To better appreciate the foregoing, consider the self-tuning regulator system
in Figure 11.9. As before, there is a first-order target system so that

G(z) = b

z − a

 Controller
Parameters

Reference
 Input

Control
 Input

Measured
 Output

Controller

Self-Tuning Regulator

Target System

Fig. 11.8 Block diagram of a system employing a self-tuning regulator. The measured output
and control inputs are used to adjust the model of the target system and the controller
parameters.

TLFeBOOK

382 ADVANCED TOPICS

Update estimates of a, b

M/M/1/K

z − 1
(KP + KI)z − KP

Buffer
 Size

Measured
Response

Time

Calculate new KP, KI

 Controller

b
z − a

KP , KI

Reference
Response

Time +

−

 Self-Tuning Regulator

Fig. 11.9 Block diagram of a self-tuning regulator for the M/M/1/K running example. Param-
eters a and b of the system model are updated at each sample time based on the measured
response time and the buffer size. KP and KI are obtained using Equations (11.2) and (11.3),
respectively.

and a PI controller

K(z) = KP + KIz

z − 1

Suppose that we want the closed-loop system to have the poles p1 and p2. So
the characteristic polynomial is

(z − p1)(z − p2) = z2 − (p1 + p2)z + p1p2 (11.1)

From Figure 11.9, the transfer function from the reference response time to the
measured response time is

FR(z) = K(z)G(z)

1 + K(z)G(z)

= bKI z + bKP (z − 1)

z2 + (bKI + bKP − 1 − a)z + a − bKP

[We ignore the self-tuning regulator in the derivation of FR(z) since at steady
state the transfer function of the target system should not change.] We want the
denominator of FR(z) to equal Equation (11.1). This means that

bKI + bKP − 1 − a = p1 + p2

a − bKP = p1p2

or

KP = a − p1p2

b
(11.2)

KI = 1 − p1 − p2 + p1p2

b
(11.3)

So if we are given estimates for a and b, we can calculate KP,KI .

TLFeBOOK

SELF-TUNING REGULATORS 383

0 2 4 6 8 10
3

3.5

4

0 2 4 6 8 10
0

10

20

30

40

50

0 2 4 6 8 10
0

0.5

1

1.5

2

R
es

po
ns

e
T

im
e

B
uf

fe
r

S
iz

e
E

st
im

at
ed

 l

Time (hours)

Fig. 11.10 Response of the self-tuning regulator in Figure 11.9 to the input dynamics in
Figure 11.2. The results are obtained using an M/M/1/K simulator for the target system.

Consider the closed-loop poles 0.88 and 0.51 (which are chosen to provide
a middle ground between the closed-loop systems constructed in Section 11.1).
Figure 11.10 displays the results of using the system in Figure 11.9 in the presence
of the dynamics in Figure 11.2. The results are obtained using an M/M/1/K

simulator for the target system. Although this control system avoids significant
oscillations, we see that its settling times are long compared with what is obtained
for gain scheduling. On the other hand, the self-tuning regulator system can greatly
simplify controller design since no CHR tuning is required (because the controller
parameters are “learned” online).

Self-tuning regulators require a way to do online estimation of the parameters
of the target system. For the target system in Figure 11.9, this means that at the
kth sample time, we construct the estimates of the parameters a(k) and b(k). (The
parameters are indexed by time since they are assumed to be dynamic.) Typically,
this is done using recursive least squares, an online version of the least-squares
estimation procedure described in Chapter 2. More details on recursive least
squares can be found in [9].

TLFeBOOK

384 ADVANCED TOPICS

Self-tuning regulators can reduce the complexity of controller design by reduc-
ing manual tuning, a process that can be complex (as seen in Chapter 9) and is
even more burdensome with gain scheduling since multiple controller designs
must be done. However, there are some drawbacks to self-tuning regulators.
First, control performance is generally not as good as for a handcrafted gain
scheduling system. Second, adjusting controller parameters at each sample time
may not be effective for computing systems since it is difficult to determine if the
environment has changed (e.g., load has increased) in the presence of stochastics.
Further, many of the changes that take place in computing systems are abrupt,
such as rapid changes in workloads or changes in configuration. Self-tuning
regulators tend to be slow in adapting to such changes.

11.4 MINIMUM-VARIANCE CONTROL

Computing systems have significant stochastics, especially in the interarrival and
service-time processes. In this section we describe minimum-variance control, an
approach to regulating the variability of the measured output.

Building on the state-space approach described in Chapter 7, we revise the
dynamic model to include a stochastic term:

x(k + 1) = Ax(k) + Bu(k) + w(k) (11.4)

y(k) = Cx(k) (11.5)

x(k), u(k), A, B, and C are defined in the same way as in Equations (7.3) and 7.4.
The term w(k) is a vector of stochastic variables. Observe that by introducing
w(k), x(k), and y(k) become stochastic variables. To simplify the following
discussion, we assume that w(k) is a scalar. Further, w(1), w(2), . . . , w(k) are
independent and identically distributed. The expected value of w(k) is denoted
by E[w(k)]. We assume that E[w(k)] = 0. The variance is var[w(k)] = σ 2.

Figure 11.11 displays a block diagram of a system in which the disturbance
is stochastic. Observe that the controller takes as input both the reference input
and the measured output instead of just the control error.

Figure 11.12 displays an instantiation of Figure 11.11 for a first-order tar-
get system. For this target system, C = 1, so y(k) = x(k). Substituting into

Disturbance

Reference
 Input

Control
 Input

Measured
 Output

Controller Target System

+ +

Stochastic

Fig. 11.11 Block diagram of a stochastic controller. The disturbance is stochastic.

TLFeBOOK

MINIMUM-VARIANCE CONTROL 385

w(k)

x(k +1) = ax(k) + bu(k)+w(k)

Controller M/M/1/K

x(k) = y(k)u(k)rss
u(k) =

a
b

− y(k)
 r
b

+

Disturbance
Stochastic

Fig. 11.12 Block diagram of a simplified stochastic control system. The target system is first
order, and all variables are scalars. The controller compensates for the nonstochastic part of
the control error.

Equation (11.4), we obtain

y(k + 1) = ay(k) + bu(k) + w(k) (11.6)

Ideally, we want E[y(k + 1)] = rss. If this is the case, then

var(y(k + 1)) = E(y(k + 1) − E[y(k + 1)])2

= E[ay(k) + bu(k) + w(k) − rss]
2

= E[ay(k) + bu(k) − rss]
2 + σ 2 (11.7)

Clearly, u(k) affects only the first term in Equation (11.7). So the variance
var(y(k + 1)) is minimized if r = ay(k) + bu(k). This motivates the following
control law:

u(k) = −a

b
y(k) + rss

b
(11.8)

Substituting Equation (11.8) into Equation (11.6), we have

y(k + 1) = ay(k) + bu(k) + w(k)

= ay(k) + b
(
−a

b
y(k) + rss

b

)
+ w(k)

= rss + w(k) (11.9)

That is, the measured output equals the reference input plus a random variable
with a zero mean.

There are several observations of interest about the foregoing. First, the control
law in Equation (11.8) is expressed in terms of both the reference input rss and
the measured output y(k) rather than just the control error rss − y(k). This is
why there are two inputs to the controller in Figure 11.11. Second, the settling
time of the minimum variance controller is quite short, just one sample time.
Exploring this further, we take the expectation of both sides of Equation (11.9),
which yields E[y(k + 1)] = rss. The transfer function from the reference input

TLFeBOOK

386 ADVANCED TOPICS

0 2 4 6 8 10
3

3.5

4

0 2 4 6 8 10
0

10

20

30

40

50

0 2 4 6 8 10
0

0.5

1

1.5

2

R
es

po
ns

e
T

im
e

B
uf

fe
r

S
iz

e
E

st
im

at
ed

 l

Time (hours)

Fig. 11.13 Response of a stochastic controller to the input dynamics in Figure 11.2.

to the mean of the measured output is 1/z. That is, there is a single pole at 0,
which is consistent with the very short settling time.

Figure 11.13 displays the response of the controller in Figure 11.12 (with an
M/M/1/K simulator as the target system) to the input dynamics in Figure 11.2.
We see that settling times are very short, which is consistent with having a
pole at 0. However, there still is steady-state variability, especially after hour 6.
Also, even though the controller reduces output variability, there is considerable
variability in buffer sizes.

11.5 FLUID FLOW ANALYSIS

Successful application of control theory requires a reasonably accurate model of
the target system, at least over its operating region. In Chapter 2 we emphasize a
black-box approach in which the parameters of ARX models are estimated using
empirical techniques. In this section we describe how fluid flow analysis can

TLFeBOOK

FLUID FLOW ANALYSIS 387

be used to determine the order of the model of a target system and the factors
affecting the parameters of the model.

Fluid flow analysis constructs deterministic, time-varying models based on an
analogy to the flow of fluids between containers. Typically, fluid flow analysis
is done in continuous time, an approach that involves different mathematical
techniques than those used in the book (e.g., systems of differential equations,
Laplace transforms). To avoid the need for additional mathematical background,
we adapt fluid flow to discrete time.

In a fluid flow analysis, there are one or more containers, each with a finite
capacity. Containers are connected by a network of pipes through which fluid
flows. One or more containers have an ingress flow in which fluid is delivered
from outside the fluid flow network, and some containers have an egress flow
in which fluid leaves the fluid flow network. If the capacity of a container is
exceeded, fluid spills out. The system is controlled by changing the capacity
of the containers and/or the pipes. Doing so affects egress flows, the spill rate,
and the volume of fluid in containers. Fluid flow analysis provides a means to
calculate the following as a function of time: (1) egress flows, (2) fluid volume
in containers, and (3) spill rates.

The analogy to computing systems is as follows. The fluids are types of
requests, such as browse and buy requests at an e-commerce site. The containers
are computing resources such as CPU and memory. The volume of fluid in a con-
tainer corresponds to number in system, and an egress flow is a throughput (work
completion rate). Spilled fluid corresponds to discarded requests such as dropped
packets in network routers. Adjusting the capacity of a pipe is the same as admis-
sion control. Limiting container capacity is similar to varying a buffer size. Thus,
in fluid flow models, the control inputs are the capacities of pipes and containers;
the measured outputs are egress flow, container volume, and spill rates.

We illustrate fluid flow analysis with a simple example. Figure 11.14 displays
a cross section of a single container with a single fluid. There is one input and
one output pipe. The input pipe can accommodate a capacity of FI (k) volume
per second of fluid, and the capacity of the output pipe is FO(k). The capacity of
the container is denoted by V (k). At time k, the ingress rate is fI (k), the egress
rate is fO(k), the spill rate is fS(k), and the volume of fluid in the container is
v(k). Throughout, it is assumed that changes made to FI (k), FO(k), and V (k)

take effect immediately after values are measured for fO(k), fS(k), and v(k).
We show how to compute fO(k + 1), fS(k + 1), and v(k + 1). This is done

by describing the states of a container.

• Empty: 0 = v(k). No fluid has accumulated. So the output rate is the lesser
of the input rate and the output capacity, or fO(k) = min{fI (k), FO(k)}. If
the container volume is nonzero, V (k) > 0, there is no spillage, fS(k) = 0.
Otherwise, fS(k) = max{fI (k) − FO(k), 0}.

• Partially full: 0 < v(k) < V (k). Fluid has accumulated, so the output rate
is the maximum rate. That is, fO(k) = FO(k). Also, there is no spillage
fS(k) = 0.

TLFeBOOK

388 ADVANCED TOPICS

FI(k)

Container

Outflow

Inflow

V(k)

fI(k)

fO(k) = FO(k)

v(k)
Fluid Level

Fig. 11.14 Cross section of an element in a fluid flow network. The top rectangle is the input
pipe, the middle is the container, and the bottom is the output pipe. The ingress rate fI (k)

cannot exceed the capacity of the input pipe FI (k). The container (single-hatched area) has
capacity V (k) and contains a fluid (double-hatched area within the hatched area) with volume
v(k) < V [which implies that the spill rate fS(k) = 0]. The egress rate fO(k) cannot exceed the
capacity of the output pipe FO(k). For the situation depicted, the egress rate is at its maximum
since the fluid volume is nonzero.

• Full: v(k) = V (k). As with the partially full state, the output rate is
the maximum rate. That is, fO(k) = FO(k). Fluid spills out at a rate of
max{fI (k) − FO(k), 0}.

Clearly, the input and output flow rates are bounded by the pipe capacities;
that is, fI (k) ≤ FI (k) and fO(k) ≤ FO(k). Assuming that sample times and/or
dynamics are sufficiently small so that state changes occur only at multiples of
the sample time TS , the volume of fluid at time k + 1 is

v(k + 1) = min{max{v(k) + (fI (k) − FO(k)) TS, 0}, V (k)} (11.10)

We can apply Equation (11.10) as follows. Suppose that we want to use admis-
sion control to regulate the number of concurrent requests in a computing system.
This means that we are adjusting FI (k) to control v(k) and that the output capacity
does not change [i.e., FO(k) = FO]. Assume that:

1. There is ample buffer space, so that there is no buffer overflow. That is,
V (k) >> v(k).

2. There is always sufficient in-flow so that fI (k) = FI (k).

TLFeBOOK

FUZZY CONTROL 389

Under these conditions, the container is always in the partially full state. So
Equation (11.10) becomes

v(k + 1) = v(k) + TS [FI (k) − FO] (11.11)

This is a first-order model in which v(k) corresponds to y(k), FI (k) − FO cor-
responds to u(k), and TS corresponds to b.

Unfortunately, we cannot translate this immediately into a model of the target
system since fluid flow analysis only approximates the true input–output behavior
of the target system. However, Equation (11.11) does indicate that the functional
form of the model of the target system is y(k + 1) = ay(k) + bu(k), where
y is the offset value of the measured output and u is the offset value of the
control input. Knowing this, we could construct a self-tuning regulator that esti-
mates a and b and then determines the parameters of the controller. In some
circumstances, Equation (11.11) provides still more insights. Suppose that TS is
adjusted dynamically (e.g., to reduce measurement overheads during stationary
periods). Equation (11.11) indicates that doing so requires a new estimate of b.
This suggests that a kind of gain scheduling might be valuable in which a and b

are set to values discovered during similar settings of TS .
An excellent example of fluid flow analysis for control purposes has been

done for TCP/IP (Transmission Control Protocol/Internet Protocol). Among other
things, TCP/IP controls the flow of packets between senders to receivers across
the Internet. The sender has a “window” of bytes that controls what is sent
to the receiver. The window is increased at a rate that is inversely proportional
to the round-trip time (message transmission plus its acknowledgment), and the
window is decreased at a rate proportional to the window size at the time that
packets are lost. In fluid terms, the window is a leaky container, where the leaks
correspond to packets being discarded by congested routers. The egress rate is
the throughput of packets accepted by the receiver. TCP/IP tries to adjust the
size of the container so that an appropriate trade-off is achieved between the rate
of egress and fluid spill. More details can be found in [48].

Still another example of fluid flow analysis is described in [27]. This work
shows how to estimate the parameters of a first-order model from the parameters
of an M/M/1/K queueing system. Doing so provides insights into the effects
of changes in workload on system dynamics (especially settling times).

Fluid flow analysis can be generalized in many ways. The single-container
analysis presented here can be generalized to multiple containers in which a
network of pipes connect the containers. Also, there may be multiple types of
fluids with different pipe and container capacities, an approach to that is useful
in modeling systems with different types of requests. Other examples of fluid
flow analysis can be found in [3].

11.6 FUZZY CONTROL

In this section we provide a brief summary of fuzzy control. Our intent is twofold.
The first is to expand the scope of techniques used for feedback control to

TLFeBOOK

390 ADVANCED TOPICS

Control
 Input

Measured
 Output

 Fuzzy
Controller

Target

D
ef

uz
zi

fic
at

io
n

F
uz

zi
fic

at
io

n Inference
Mechanism

Fuzzy RulesD
iff

er
en

ce

In
te

gr
at

e

System

dy(k)
du(k +1)

du(k)

Fig. 11.15 Block diagram of fuzzy control for optimizing the measured output (e.g., finding
the lowest response time). The fuzzy controller is driven by the fuzzy rules that use linguistic
variables.

include heuristic methods. The second is to address a different control objec-
tive—optimization (which is in contrast to the regulation problems that have
been the focus of the book).

Figure 11.15 displays a block diagram of the fuzzy control system we consider.
As before, there is a controller and a target system. However, there is no reference
input since the objective is optimization, not regulation. Second, the feedback
consists of both the measured output and the control input.

Before continuing, some background is required. Fuzzy control employs qual-
itative descriptions of systems so as to make it easier to specify controller
actions. Typically, these qualitative descriptions are in the form of directional
effects such as change-in-MaxClients, change-in-response-time, and next-change-
in-MaxClients. Each of these is an example of a linguistic variable. Linguis-
tic variables exist in one-to-one correspondence with numeric variables. For
example, change-in-MaxClients is a linguistic variable corresponding to the
numeric variable for the change in MaxClients. A linguistic variable takes on
linguistic values such as positive-large (hereafter, poslarge) and negative-large
(hereafter, neglarge). Such variables indicate, among other things, the direction
and magnitude of a change.

The fuzzy controller in Figure 11.15 operates as follows. The system com-
putes the differenced control input du(k) = u(k) − u(k − 1) and the differenced
measured output dy(k) = y(k) − y(k − 1). The differences are input to the
fuzzification component that translates quantitative values into linguistic values.
Fuzzy rules are expressed in terms of linguistic variables. These rules, which are
interpreted by the inference mechanism, guide the selection of controller actions
(which are themselves expressed in the form of directional changes). The defuzzi-
fication component translates the linguistic variable for the controller action into
a quantitative variable. Typically, these actions are incremental changes in the
control input. Thus, the integrator component translates this into an absolute
setting. More details on fuzzy control can be found in [55].

TLFeBOOK

FUZZY CONTROL 391

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

70

80

90

100

MaxClients

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Fig. 11.16 Effect of MaxClients on response times of the Apache HTTP Server for a fixed
workload. The circles represent mean values, and the vertical lines indicate standard deviations.
Delays for low values of MaxClients are due to waits in the TCP accept queue. Delays at high
values of MaxClients are due to contention for operating system resources.

We now consider how to optimize the setting of MaxClients in the Apache
HTTP Server. Figure 11.16 displays the results of experiments conducted on
a testbed for the Apache HTTP Server in which MaxClients is varied for a
stationary workload of dynamic pages. We see that response times are quite large
if MaxClients is either too small or too large. The former is a consequence of
long waits in the TCP accept queue; the latter results from contention between
Apache clients for operating system resources (e.g., CPU, memory). We see that
setting MaxClients to an intermediate value results in much lower response
times.

We illustrate fuzzy control by developing rules that adjust MaxClients to
minimize response times in the Apache HTTP Server. In essence, we are seeking
the minimum of a concave-upward curve. This could be done using gradient
techniques (e.g., [22]). We show that it can also be accomplished using a simple
set of fuzzy rules.

Fuzzy rules are if-then statements expressed in terms of linguistic variables
and linguistic values. In our case, the if-part of the rule determines what was
done last and its effect. For example, “if change-in-MaxClients is poslarge and
change-in-response-time is neglarge.” The then-part specifies the action to take.

TLFeBOOK

392 ADVANCED TOPICS

For example, suppose that MaxClients is increased at time k and this causes
response time to decrease. An intuitive approach at time k + 1 is to increase
MaxClients some more. Putting this together in a fuzzy rule, we have: “If
change-in-MaxClients is poslarge and change-in-response-time is neglarge, then
next-change-in-MaxClients is poslarge.”

Table 11.1 displays the fuzzy rules we propose for a controller that adjusts
MaxClients so as to minimize response times. The if-part provides a way to
determine if the minimal value of response time is to the left or the right of the
current setting of MaxClients. The then-part prescribes the appropriate action.

Figure 11.17 displays the results of using a fuzzy controller employing the
rules in Table 11.1 to minimize response times of the Apache HTTP Server in
a testbed with the same workload as in Figure 11.16. The system begins with
MaxClients set to the default value of 200. The system applies the rules
in Table 11.1. This results in a progressive increase in MaxClients and a

TABLE 11.1 Fuzzy Rules Used in a Controller That Minimizes Response Times

If Then

Rule change-in-MaxClients AND change-in-response-time next-change-in-MaxClients

1 neglarge AND neglarge neglarge
2 neglarge AND poslarge poslarge
3 poslarge AND neglarge poslarge
4 poslarge AND poslarge neglarge

0 500 1000 1500 2000 2500

0 500 1000 1500 2000 2500

200

400

600

800

M
ax

C
lie

nt
s

0

10

20

30

40

50

Time (sec)

R
es

po
ns

e
T

im
e

(s
ec

)

Fig. 11.17 Operation of the fuzzy controller for the Apache HTTP Server for a fixed workload.
The initial setting of MaxClients is 200, one of the Apache HTTP Server defaults.

TLFeBOOK

SUMMARY 393

corresponding decrease in response time. We see that the ending response time
is considerably smaller than the starting value.

One interpretation of the foregoing is that the Apache HTTP Server uses the
wrong default setting for MaxClients. That is, the default should be 650 instead
of 200, at least for our testbed system. Proceeding in this manner, we compare
two control schemes. The first is static control in which MaxClients = 650
throughout the experiment. The second scheme employs fuzzy control with the
rules contained in Table 11.1. In both cases, we increase the intensity of the
workload at time 600 by adding a large number of requests for static HTML
pages. Figure 11.18(a) displays the results for static control and Figure 11.18(b)
that for fuzzy control. We see that fuzzy control achieves a substantial reduction
in response times compared to static control. More details can be found in [18].

Fuzzy control has the appeal of directly incorporating human intuition in the
form of fuzzy rules. Although we have obtained good results using fuzzy control
on testbed systems, some caution is advised. In particular, care must be taken
in the choice of the increments by which control inputs are increased and/or
decreased. Indeed, we use an adaptive scheme whereby the magnitude of the
increment changes as the system approaches convergence.

11.7 SUMMARY

1. Although controller designs based on linear, deterministic models often
work well in computing systems, sometimes more sophisticated techniques
are required. Control theory provides a wealth of such techniques, although
their application can require more mathematical sophistication.

2. Gain scheduling provides a way to switch dynamically between controllers
using scheduling rules based on scheduling variables that are obtained from
the target system. Such an approach provides a framework for using col-
lections of linear controllers to adapt to nonlinearities and stochastics.

3. Self-tuning regulators change controller parameters at each sample time
based on updated estimates of the model of the target system. Such regu-
lators can be easier to build than gain schedulers, since they adapt dynam-
ically to the characteristics of the target system. However, the control
performance of self-tuning regulators tends to be worse than that for care-
fully constructed gain schedulers. For example, our studies describe a
situation in which self-tuning regulators may have longer settling times.

4. Minimum variance control addresses the variability of the measured out-
put. The underlying model of the target system assumes that state-space
dynamics include a random variable, which makes the state variables and
measured output stochastic as well. It turns out that minimizing the variance
of the measured output also results in very short settling times.

5. Fuzzy control employs heuristic rules to describe when the controller
should take what action. The if-part of the rules describes the situa-
tion considered in terms of linguistic variables and linguistic values (e.g.,

TLFeBOOK

394 ADVANCED TOPICS

0 500 1000 1500 2000 2500

0 500 1000 1500 2000 2500

0 500 1000 1500 2000 2500

600

700

800

900

1000

M
ax

C
lie

nt
s

0

10

20

30

40

50

Time (sec)

(a) Static control

0 500 1000 1500 2000 2500

Time (sec)

(b) Fuzzy control

R
es

po
ns

e
T

im
e

(s
ec

)

600

700

800

900

1000

M
ax

C
lie

nt
s

10

20

30

40

50

R
es

po
ns

e
T

im
e

(s
ec

)

Fig. 11.18 Operation of static and fuzzy controllers for a second workload. The static controller
sets MaxClients to the steady-state value obtained for the workload in Figure 11.17. The
results suggest that fuzzy control is preferred to static control.

TLFeBOOK

EXERCISES 395

change-in-MaxClients is poslarge). The then-part specifies how control
variables should be adjusted (e.g., next-change-in-MaxClients is poslarge).
One application of fuzzy control is to optimization, such as finding the
value of MaxClients that minimizes the response time of the Apache
HTTP Server.

11.8 EXERCISES

1. The gain scheduler developed in Section 11.2 switches between two PI con-
trollers (as specified by their KP and KI). What are the advantages and
disadvantages of switching among three or more controllers? How should
the operating regimes be chosen for the controllers? What scheduling rules
should be used?

2. One issue with using self-tuning regulators (as described in Section 11.3)
in computing systems is adapting to sudden shifts in workloads. Consider
a target system whose control input is buffer size and the measured output
is response time. The system is observed online with the input–output data
displayed in Table 11.2, in which there is a sudden increase in workload
at time k = 6. Using the first-order model y(k + 1) = ay(k) + bu(k) to
fit the data, estimate a and b for the following: (1) all 10 observations, (2)
the first five observations, and (3) the last five observations. Explain why
R2 increases so dramatically from case 1 to cases 2 and 3. What does this
suggest in terms of how to manage historical data for self-tuning regulators
applied to computing systems?

3. Both minimum-variance control described in Section 11.4 and linear quadratic
regulators described in Section 10.3.2 design controllers based on an optimiza-
tion criteria. Compare and contrast these approaches.

TABLE 11.2 Data Used for Computing Least Squares
in Exercise 2

k Buffer Size Response Time

1 12 1.3
2 16 1.5
3 10 1.1
4 14 1.4
5 18 1.6
6 12 1.5
7 10 1.3
8 14 1.7
9 18 2.2

10 16 1.9

TLFeBOOK

396 ADVANCED TOPICS

4. The fluid flow analysis described in Section 11.5 considers only a single
container. Extend this to two containers in tandem so that the control input
is the volume of the first container and the measured output is the egress rate
from the second container.

5. Consider the fuzzy rules in Table 11.1. These rules consider only the linguistic
values poslarge and neglarge. Suppose that we include the linguistic value
nochange with the interpretation that the underlying quantitative value does
not change. Augment the rules in Table 11.1 to consider this linguistic value.
How would you expect the behavior of the control system to change as a
result of including these additional rules?

TLFeBOOK

Appendix A

Mathematical Notation

Rules

• Boldface lowercase is a vector such as

x =
[
x1
x2

]

• Boldface uppercase is a matrix such as

A =
[
a11 a12
a21 a22

]

• Bar over a signal gives its operating point, such as CPU.
• A signal in the time domain is denoted as {x(k)} = {x(0), x(1), . . . }, where

x(k) is the value of the signal at time k.

Symbols

• a = pole in first-order model
• A = state-space matrix
• b = coeficient of input signal in first-order model
• B = state-space input matrix

Feedback Control of Computing Systems, by Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury
ISBN 0-471-26637-X Copyright c© 2004 John Wiley & Sons, Inc.

397

TLFeBOOK

398 MATHEMATICAL NOTATION

• C = state-space output matrix
• D(z), d(k) = disturbance input
• det(A) = determinant of the matrix A
• E(z), e(k) = control error
• F(z) = transfer function, typically closed-loop transfer function
• FD(z) = transfer function from the disturbance input to measured output
• FDE(z) = transfer function from the disturbance input to control error
• FN(z) = transfer function from the noise input to the measured output that

includes noise
• FNE(z) = transfer function from the noise input to control error
• FR(z) = transfer function from the reference input to the measured output
• FRE(z) = transfer function from the reference input to control error
• G(z) = transfer function, typically the open-loop plant
• H(z) = transfer function, typically the sensor or filter transfer function
• j = √−1
• k = discrete-time index
• ks = settling time
• k∗

s = desired settling time used in controller design
• K = buffer size in M/M/1/K queueing system
• KP, KI, KD = P, I,D constants
• K(z) = controller transfer function
• mI = number of inputs in state space framework
• mO = number of outputs in state-space framework (if mi = mo, m is used)
• MP = maximum overshoot
• M∗

P
= desired maximum overshoot used in controller design

• N(z), n(k) = noise input
• n = order of state vector
• n(k), n(t) = number in system as a signal
• N = steady-state number in system
• p, pi = pole
• q, qi = zeros
• r = magnitude of complex pole
• r(k) = reference input
• R = steady-state response time
• R(z), r(k) = reference input
• Ts = sample time
• T (z) = Y (z) + N(z) = output of the target system that includes measure-

ment noise
• u = operating point of control input

TLFeBOOK

MATHEMATICAL NOTATION 399

• ũ(k) = (unnormalized) control input
• u(k) = offset value of control input
• U(z) = Z-transform of the control input
• V (z), v(k) = output of plant (before sensor)
• W(z), w(k) = output of filter
• X(z), x(k) = state vector
• y = operating point of measured output
• ỹ(k) = (unnormalized) measured output
• y(k) = offset value of measured output
• Y (z) = Z-transform of the measured output
• θ = angle of complex pole; also, frequency of oscillation
• λ = eigenvalue
• λ = arrival rate to M/M/1/K queueing system
• µ = service rate for M/M/1/K queueing system
• ρ = utilization for M/M/1/K queueing system (note that this ρ < λ/µ

unless K = ∞)
• ρ(k) = utilization at time k

TLFeBOOK

TLFeBOOK

Appendix B

Acronyms

ARX autoregressive model with a forced input
BFL buffer fill level
BIBO bounded input, bounded output
CPU central processing unit and/or its utilization
HTTP hypertext transfer protocol
I control integral control
IT information technology
KA KeepAlive
LQR linear quadratic regulator
MC MaxClients
MEM utilization of memory
MIMO multiple input, multiple output
M/M/1/K single-server queueing system with exponential interarrivals,

exponential service times, and a buffer size of K

P control proportional control
PI control proportional–integral control
PID control proportional–integral–derivative control
RED random early detection of buffer overflow
RIS number of RPCs in the system
RMSE root-mean-square error
RPC remote procedure call

Feedback Control of Computing Systems, by Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury
ISBN 0-471-26637-X Copyright c© 2004 John Wiley & Sons, Inc.

401

TLFeBOOK

402 ACRONYMS

SASO stability, accuracy, settling times, overshoot properties used
in the analysis of closed-loop systems

SISO single input, single output
SLA service-level agreement
SLO service-level objective
TCP/IP transmission control protocol/Internet protocol

TLFeBOOK

Appendix C

Key Results

C.1 MODELING

C.1.1 Dominant Pole Approximation

Consider

G(z) = b(z − q1) · · · (z − qm)

(z − p1) · · · (z − pn)
, where m ≤ n

Suppose that p′ is the dominant pole. Then, G(z) can be approximated by G′(z),
given as

G′(z) = G(1)(1 − p′)
z − p′ , if p′ is real [Equation (3.30)]

C.1.2 Closed-Loop Transfer Functions

For the closed-loop system shown in Figure 4.1, and repeated in Figure C.1, the
various transfer functions are given in Table C.1. Note that Y (z) is used as the
output if N(z) = 0.

Feedback Control of Computing Systems, by Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury
ISBN 0-471-26637-X Copyright c© 2004 John Wiley & Sons, Inc.

403

TLFeBOOK

404 KEY RESULTS

+
−

R(z)
K(z)

++ G(z)
T(z)

H(z)

D(z)

++

N(z)

Y(z)U(z)

W(z)

E(z)
Controller

Target
System

Transducer

V(z)

Fig. C.1 Block diagram of a closed-loop system (repeated from Figure 4.5). R(z) is the
reference input, D(z) is the disturbance input, N(z) is the noise input, E(z) is the control error,
U(z) is the control input, and Y (z) is the system output..

TABLE C.1 Closed-Loop Transfer Functions

Output

Input Y (z) or T (z) E(z)

R(z) Equation (4.1) Equation (4.3)

FR(z) = Y (z)

R(z)

= G(z)K(z)

1 + K(z)G(z)H(z)

FRE(z) = E(z)

R(z)

= 1

1 + K(z)G(z)H(z)

D(z) Equation (4.4) Equation (4.5)

FD(z) = Y (z)

D(z)

= G(z)

1 + K(z)G(z)H(z)

FDE(z) = E(z)

D(z)

= −G(z)H(z)

1 + K(z)G(z)H(z)

N(z) Equation (4.6) Equation (4.7)

FN(z) = T (z)

N(z)

= 1

1 + K(z)G(z)H(z)

FNE(z) = E(z)

N(z)

= −H(z)

1 + K(z)G(z)H(z)

C.2 ANALYSIS

C.2.1 Stability

Theorem 3.2 gives the condition for stability as:

Theorem C.1 (BIBO stability). A system represented by a transfer function
G(z) is BIBO stable if and only if all the poles pi of G(z) are inside the unit circle.

TLFeBOOK

KEY RESULTS 405

The results in the subsequent sections only apply to systems that are known
to be BIBO stable, i.e., |pi | < 1.

C.2.2 Settling Time

The settling time ks of the system response to a unit step can be approximated
by studying its first-order approximation (as in Section C.1.1). The time to settle
within 2% of the steady-state value is

ks ≈ −4

log r
[Equation (5.12)]

where r = maxi |pi | is the magnitude of the largest closed-loop pole.
In Section 3.3.4 we stated that the approximation is reasonably good if the

largest pole (or pair of complex poles) is at least twice as large as the next largest
pole(s).

C.2.3 Maximum Overshoot

From Equation (8.8)

MP ≈



0 real dominant pole p1 ≥ 0
|p1| real dominant pole p1 < 0
rπ/|θ | dominant poles p1, p2 = re±jθ

C.2.4 Steady-State Gain

Consider a system with transfer function G(z). For a unit step input, the steady-
state output of the system is yss = G(1) [Equation (3.29)].

C.3 CONTROLLER DESIGN

C.3.1 Control Laws

Consider the feedback system in Figure C.1. Below are the basic control laws
and controller transfer functions.

• Proportional control:

u(k) = KPe(k) [Equation (8.1)]

K(z) = U(z)

E(z)
= KP [Equation (8.2)]

TLFeBOOK

406 KEY RESULTS

Let r(k) be the reference input with steady-state value rss. As shown in
Section 8.3.3, this system has ess = 0 if, and only if, FR(1) = 1. In general,

ess = rss[1 − FR(1)] [Equation (8.5)]

= rss

[
1 − KPG(1)

1 + H(1)KPG(1)

]

• Integral control:

u(k) = u(k − 1) + KIe(k) [Equation (9.1)]

K(z) = U(z)

E(z)
= KIz

z − 1
[Equation (9.5)]

Integral control can eliminate steady-state error from step changes in
either reference or disturbance inputs.

• Proportional–integral (PI) control:

u(k) = u(k − 1) + (KP + KI)e(k) − KPe(k − 1) [Equation (9.6)]

K(z) = U(z)

E(z)
= KP + KIz

z − 1
[Equation (9.7)]

• Proportional–derivative (PD) control:

u(k) = KPe(k) + KD(e(k) − e(k − 1)) [Equation (9.15)]

K(z) = U(z)

E(z)
= KP + KD(z − 1)

z
[Equation (9.16)]

• Proportional–integral–derivative (PID) control:

u(k) = KPe(k) + uI (k − 1) + KIe(k) + KD [e(k) − e(k − 1)]

[Equation (9.17)]

K(z) = U(z)

E(z)
= KP + KI

z

z − 1
+ KD

z − 1

z
[Equation (9.18)]

C.3.2 Pole Placement Design

In pole placement design, we are given the desired settling time k∗
s and overshoot

M∗
P
. This information is used to determine values of controller parameters that

permit the system to meet these constraints.

PI Controller Below are the key equations involved in designing a PI con-
troller using the pole placement method from Section 9.2.2, summarized in
Table 9.2.

TLFeBOOK

KEY RESULTS 407

r = e
−4
k∗s [Equation (9.9)]

θ = π
log r

log M∗
P

[Equation (9.10)]

The desired characteristic polynomial is

(z − p1)(z − p2) = z2 − (p1 + p2)z + p1p2 [Equation (9.11)]

where p1 = r cos θ + jr sin θ , p2 = r cos θ − jr sin θ [Equation (3.19)].
The modeled characteristic polynomial is

[KPKIz/(z − 1)]G(z)

1 + [KPKIz/(z − 1)]G(z)

The KP and KI are determined by equating the desired and modeled charac-
teristics polynomials.

State Space The procedure is similar to that for the PI controller, and it is
discussed in detail in Section 10.3.1. The first two poles are set as noted above;
the remaining n − 2 poles should have much smaller magnitudes, for example,
0.25r .

The desired characteristic polynomial is[
z2 − (p1 + p2)z + p1p2

]
(z − 0.25r)n−2

The modeled characteristic polynomial for static state feedback is

det[zI − (A − BK)] [Equation (10.13)]

where K = [K1, . . . , Kn].
For dynamic state feedback as given in Equation (10.11), the modeled char-

acteristic polynomial is

det

{
zI −

([
A 0

−C 1

]
−

[
B
0

] [
KP KI

])}

The full procedure is shown in Table 10.2.

C.3.3 LQR Design

The objective function to minimize is J , given as

J = 1

2

∞∑
k=0

(
x�(k)Qx(k) + u�(k)Ru(k)

)
[Equation (10.17)]

where Q is positive semidefinite and R is positive definite. Q quantifies the cost
of individual (and combinations) of state variables diverge from their operating
point. R specifies the cost of control effort.

The iterative procedure to compute the gain matrix K manually is given in
Figure 10.3.

TLFeBOOK

TLFeBOOK

Appendix D

Essentials of Linear
Algebra

In this appendix we provide a brief review of results from linear algebra that
are needed for state-space analysis. We state some definitions related to matrices
and some properties of matrices without proof. For a deeper understanding, the
reader is encouraged to refer to a linear algebra text (e.g., [37]).

D.1 MATRIX INVERSE, SINGULARITY

An n × n matrix A is an invertible matrix if there exists another n × n matrix
P such that AP = PA = I. If the inverse exists, it is unique and is typically
denoted as A−1. Further, it is easy to see that (A−1)−1 = A.

If A does not have an inverse, it is called singular .

Theorem D.1 A is singular if and only if there is a vector v �= 0 such that
Av = 0.

D.2 MATRIX MINOR, DETERMINANT, AND ADJOINT

The minor of an element aij of an m × n matrix A is the matrix, denoted Aij ,
of size (m − 1) × (n − 1) formed by deleting row i and column j of A.

The determinant of an n × n matrix A, denoted det(A) or |A| is defined
recursively as follows, where a, b, c, and d are scalars:

Feedback Control of Computing Systems, by Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury
ISBN 0-471-26637-X Copyright c© 2004 John Wiley & Sons, Inc.

409

TLFeBOOK

410 ESSENTIALS OF LINEAR ALGEBRA

• n = 1:

|a| = a (D.1)

• n = 2: ∣∣∣∣ a b

c d

∣∣∣∣ = ad − bc (D.2)

• n > 2:

det(A) =
n∑

j=1

a1j (−1)1+j det A1,j (D.3)

Theorem D.2 det(A−1) = 1/det(A).

Theorem D.3 If A is invertible, det(A) �= 0.

The adjoint of a matrix A with dimensions n×n is denoted by adj(A), which
is the matrix whose (i, j)th entry is (−1)i+j det(Aj,i). The determinant and
adjoint of a matrix are important, since they can be used to compute the matrix
inverse, as follows.

Theorem D.4 (Cramer’s rule). For a nonsingular matrix A, its inverse A−1

can be computed as

A−1 = 1

det(A)
adj(A)

D.3 VECTOR SPACES

A set of nonzero vectors V = {x1, . . . , xn} is said to be linearly dependent if
and only if there exist scalars a1, . . . , an such that at least two ai �= 0 and

a1x1 + · · · + anxn = 0

In other words, one of the xi can be expressed as a linear combination of the
remaining vectors in V . Otherwise, the set of vectors is said to be linearly
independent .

The set of vectors S = {a1x1 + · · · + anxn|ai ∈ R} is known as the span of
V . S is known as the vector space which is spanned by V . If the members of
V are linearly independent, they form a basis for S. The basis of a vector space
is not unique—in fact, there are infinitely many bases of any given vector space.
However, the following property always holds.

Theorem D.5 For any vector space, the number of vectors in any of its bases
is the same.

The vector space dimension is defined as the number of vectors in a basis.

TLFeBOOK

ESSENTIALS OF LINEAR ALGEBRA 411

D.4 MATRIX RANK

For any matrix, we can consider the rows (or columns) as vectors. The row rank
of a m × n matrix A is defined as the maximum number of rows which are
linearly independent. The column rank is defined similarly for the columns of
A. Thus, the row (column) rank is also the dimension of the space spanned by
the row (column) vectors.

Theorem D.6 For any matrix, the row rank is the same as the column rank.

Hence, we do not distinguish between the row and column ranks, and refer
to it simply as the matrix rank . If rank(A) = min(m, n), A is called full rank.

The determinant and rank are related in that:

Theorem D.7 If A is a square matrix, det(A) �= 0 ⇐⇒ A has full rank.

Thus, the determinant, rank and existence of matrix inverse are all interrelated
concepts.

D.5 EIGENVALUES

The eigenvalues of a matrix is a scalar value λ for which there exists a nonzero
vector v such that

Av = λv (D.4)

That is, the product of the matrix A and the vector v is the same as the product of
the scalar λ and the vector v (such a vector v is called an eigenvector associated
with the eigenvalue λ). We rewrite this equation as follows:

(λI − A)v = 0

Since v must be nonzero (from the definition of an eigenvalue), it follows that
the matrix (λI − A) must be singular, or equivalently, that its determinant must
be zero. Thus, an eigenvalue of A is any scalar λ such that

det(λI − A) = 0 (D.5)

The characteristic polynomial of A is the polynomial of λ formed by det(λI−
A). The eigenvalues of A are the roots of the characteristic polynomial. If A is an
n×n matrix, the polynomial det(λI−A) is nth order and there will be n solutions
to the equation and hence n eigenvalues (although some of the eigenvalues may
be repeated). Note that if the matrix A itself is singular, it must have at least one
zero eigenvalue.

TLFeBOOK

412 ESSENTIALS OF LINEAR ALGEBRA

Let A be a diagnosable matrix , that is, a matrix that can be expressed as
A = P�P−1, where P is nonsingular and � has all nondiagonal entries set to 0.
Then the diagonal entries are the eigenvalues of A. This means that

Am =
[
P�P−1

]m

= P�P−1P�P−1 · · · P�P−1

= P�mP−1

TLFeBOOK

Appendix E

MATLAB Basics

In this appendix we provide a brief introduction to the features and use of
MATLAB. Parts of this tutorial are borrowed with permission from [47]. Recent
versions of MATLAB have excellent online tutorials and documentation—please
refer to those for more details. At the end of the appendix we list some MATLAB
tutorials that are available on the Web. Readers are encouraged to follow along
by typing the examples into a MATLAB interpreter as they are presented.

In the following, user input to MATLAB follows the MATLAB prompt (“>>”).
The system response is given in this font.

E.1 VARIABLES AND VALUES

In MATLAB, basic values such as integers and floating-point numbers are entered
directly (e.g., -10, 0.579). Strings are formed by enclosing the characters
in single quotes (e.g., ’A sample string’). Complex numbers can also be
entered directly (e.g., 9.34+7.2j).

Variables can be given any names that are not already reserved or given to
functions. Values are assigned using the “=” sign.

>> a = 10
a =

10

Feedback Control of Computing Systems, by Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury
ISBN 0-471-26637-X Copyright c© 2004 John Wiley & Sons, Inc.

413

TLFeBOOK

414 MATLAB BASICS

Values of variables are accessed by using them in an expression.

>> b = a + 5
b =

15

Variables may be removed from memory by using the clear command.

E.1.1 Vectors

Vectors in MATLAB consist of elements enclosed within square brackets. Row
vectors are created by separating the elements with spaces.

>> a = [1 2 3 4 5]

a =
1 2 3 4 5

To make it easy to specify sequences, MATLAB provides a convenient syntax of
start:increment:end. This generates numbers between start and end,
evenly spaced by increment.

>> s = 2:3:13
s =

2 5 8 11

The increment value is optional, so the value of a above could also be assigned
using a = 1:5.
MATLAB generates row vectors by default, but column vectors may be created

directly or converted from row vectors.

>> c = [1;2;3;4;5]
c =

1
2
3
4
5

>> d = a’
d =

1
2
3
4
5

where the tick mark (’) is the vector (or matrix) transpose operation.

TLFeBOOK

MATLAB BASICS 415

Vector operations are analogous to the operations on scalars as long as the
dimensions make sense.

>> b = a * 2
b =

2 4 6 8 10

>> c = a + b
c =

3 6 9 12 15

Vector elements can be accessed by specifying an array of indices of the
elements to be accessed. For example, to retrieve the even-numbered entries of
the vector c, one would use

>> c([2 4])
ans =

6 12

The special index end refers to the last element of the vector. Thus, accessing
the even-numbered entries of any vector can be written as

>> c(2:2:end)
ans =

6 12

E.1.2 Matrices

The matrix syntax is an extension of the vector syntax, where rows are separated
by semicolons. Thus, a 3 × 3 matrix is defined as

>> m = [1 2 3 ; 4 5 6 ; 7 8 9]
m =

1 2 3
4 5 6
7 8 9

by inserting a “;” between each row.
Matrix operations are also defined using the same operators as on scalars and

vectors (as long as the dimensions make sense, of course).

>> n = [1 2 3] ;
>> n * m
ans =

30 36 42

Here we see that by adding a “;” at the end of the first expression, the normal
MATLAB output is suppressed. Further, when the expression result is not assigned
to a variable, MATLAB assigns it to a default variable called ans, which may be
used in subsequent calculations.

TLFeBOOK

416 MATLAB BASICS

E.2 FUNCTIONS

Beyond the basic unary and binary operations, MATLAB also supports program-
ming-language style procedure calls and functions. These can be built in, provided
by add-ons (called Toolboxes) or may even be user defined.

>> sin(pi/4)
ans =

0.7071

where we have used the built-in constant pi (= 3.14159 . . .).
Thus, functions can take arguments, and these are enclosed in parentheses. In

the case of multiple arguments, they are separated by commas.

>> m = round(rand(3) * 1000)
m =

604 15 932
272 747 466
199 445 419

To sort the columns of m (its first dimension), use

>> sort(m, 1)
ans =

199 15 419
272 445 466
604 747 932

Functions can have some arguments be optional as well. Indeed, in the case of
sort, the second argument can be omitted, in which case it defaults to 1.

Like many other functions, sort can actually return multiple values. In MAT-
LAB, multiple values are received by the caller using a vector of variable names
to the left of the “=.”

>> [sorted, index] = sort(m, 1)
sorted =

199 15 419
272 445 466
604 747 932

index =
3 1 3
2 3 2
1 2 1

TLFeBOOK

MATLAB BASICS 417

All built-in and Toolbox functions have detailed documentation that can be
accessed using the help facility. Just type help followed by the function name.
For example:

>> help inv

INV Matrix inverse.
INV(X) is the inverse of the square matrix X.
A warning message is printed if X is badly scaled or
nearly singular.

See also SLASH, PINV, COND, CONDEST, LSQNONNEG, LSCOV.

E.3 PLOTTING

MATLAB provides a nice facility for generating plots and graphs. Here we describe
the most basic command, called simply plot. It is best illustrated by an example.

>> t = 0:360 ;
>> y = sin((pi/180)*x) ;
>> plot(t, y) ;
>> xlabel(’Theta (deg)’) ;
>> ylabel(’Sin(Theta)’) ;
>> title(’Sine wave’) ;

This generates the plot shown in Figure E.1. Here we provide the data for the X

and Y dimensions of the plot as vectors. The vectors for X and Y must be the
same length (see length). The other dimension can vary. MATLAB can plot a

0 100 200 300 400
−1

−0.5

0

0.5

1

q (deg)

S
in

 (
q)

Sine wave

Fig. E.1 Basic plot example.

TLFeBOOK

418 MATLAB BASICS

1 × n vector versus a n × 1 vector, or a 1 × n vector versus a 2 × n matrix (you
will get two lines) as long as n is the same for both vectors.

The plot command has many extensions and variants, including customizing
the line style and color, plotting multiple functions on one plot, three-dimensional
plots, and bar charts. Refer to the online help for more information.

E.4 M-FILES

To avoid repetitive typing of frequently used sequences of commands and func-
tion calls, MATLAB provides a way to store these commands in m-files . These
m-files can then be invoked and the result is equivalent to typing in each of
the lines in the m-file at the command prompt. Thus, we could create a file,
called, say, ’sineplot.m’, as given in Figure E.2. Then, to recreate the plot
in Figure E.1, we just type sineplot at the MATLAB prompt. Note that the
filename must have the suffix ’.m’, but this suffix is not used when invoking the
m-file. Also, in order that MATLAB is able to locate the right m-file, it must be
placed in the MATLAB search path (type help matlabpath).

Another use of m-files is to allow users to define their own functions and
subroutines. In fact, many of the Matlab and Toolbox functions are implemented
using m-files. The MATLAB code that implements a function is placed in an m-file
with the same name as the function (e.g., a function named myfunc would be
in a file named myfunc.m). In this m-file, the custom function is then defined
using the keyword function. A function taking three arguments and producing
two values could be defined as follows:

function [output1,output2]= myfunc(input1,input2,input3)

%

% Script to plot y = sin(x)

%

t = 0:360; % Theta values -- from 0 to 360

y = sin((pi/180)*x);

plot(t,y);

xlabel(’Theta (deg)’);

ylabel(’Sin(Theta)’);

title(’Sine wave’);

This is a comment line.Comments begin with a ’%’.

for angles from 0 to 360 degrees.

Fig. E.2 sineplot.m: script to plot a sine wave.

TLFeBOOK

MATLAB BASICS 419

This function would be invoked, for example, as follows:

>> [x,y] = myfunc(v1,v2,v3)

Following the function declaration in the m-file are the MATLAB commands that
form the function.

A very simple example of a function that adds two quantities is given in
Figure E.3. If this file is saved as add.m, we could add numbers using

>> y = add(3, 8)
y =

11

During this execution of add.m, the argument variables (num1, num2) are
assigned the values passed as arguments. For example, num1=3 and num2=8.
The return value (result) is generated by assigning a value to it, as if it
were an ordinary variable. For a function with multiple return values, each return
variable must be assigned a value before the end of the function. At the command
prompt, this return value is then assigned to the designated variable (in this
case y).

The function add.m is an overly simplistic function, given for illustrative
purposes; typically, functions will be more complex. The best way to learn the
intricacies of writing functions is to follow the MATLAB tutorial and study some
of the simpler built-in and Toolbox m-files.

We have seen two main types of m-files. The first type is of the form shown
in sineplot.m. This type of m-file is called a MATLAB script . A script does
not define any function; rather, it can be considered to be a macro—or short-
hand—for the commands contained within the script. The second type of m-file
is given by add.m and is called a MATLAB function, since it always contains
a function definition. Two key differences between scripts and functions are that
(1) scripts do not take arguments, and (2) the variable names used in function
m-files are local to that m-file. In other words, even after invoking add.m, the
variables num1, num2, and result used in that file are not subsequently avail-
able to be used at the command prompt. For a script file, however, the variables
(such as t and y in sineplot.m) are available after the script executes. Both
types of m-files have their uses, and they can be mixed freely.

function [result]= add(num1,num2)

% ADD - Add two numbers

result = num1 + num2;

Fig. E.3 add.m: A simple MATLAB function that adds its input arguments.

TLFeBOOK

420 MATLAB BASICS

E.5 SUMMARY OF MATLAB FUNCTIONS AND COMMANDS

Type Function/Command Description

Basic ’ Matrix transpose
n = inv(m) Matrix inverse
mean(m) Compute mean values
sum(m) Cumulative sum
diff(m) Pairwise difference
zeros(n1, n2) Create an n1 × n2 matrix of

zeros
ones(n1, n2) Create an n1 × n2 matrix of

ones
eye(n1, n2) Create an identity matrix of

size n1 × n2
abs(c), angle(c) Magnitude (abscissa) and angle

(phase) of a complex
number

real(c), imag(c) Real and imaginary parts of a
complex number

residue(p1, p2) Partial fraction expansion of
polynomial division p1/p2

Control
Toolbox

tf(np, dp, ts) Transfer function with
numerator np, denominator
dp, and sample time ts

G = feedback(G1, G2) Transfer function for a
feedback loop consisting of
feedforward system G1 and
with G2 on the feedback
path

dcgain(G) Gain of transfer function G
poles(G) Poles of G
impulse(G) Impulse response of system

with transfer function G
step(G) Step response of system with

transfer function G
rlocus(G) Plot the root locus of transfer

function G
K = dlqr(F,G,Q,R) Gains from LQR design for

system F,G with LQR
criteria Q,R

TLFeBOOK

References

1. T. Abdelzaher and K. G. Shin. QoS provisioning with qContracts in Web and multi-
media servers. Real-Time Systems Symposium, pp. 44–53, 1999.

2. T. F. Abdelzaher and N. Bhatti. Adaptive content delivery for Web server QoS. Inter-
national Workshop on Quality of Service, London, June 1999.

3. M. Agapie and K. Sohraby. Algorithmic solution to second-order fluid flow. Proceed-
ings of IEEE INFOCOM ’01, pp. 1–10, Anchorage, AK, April 2001.

4. A. O. Allen. Probability, Statistics, and Queueing Theory, 2nd ed. Academic Press,
San Diego, CA, 1990.

5. E. Altman, T. Basar, and R. Srikant. Congestion control as a stochastic control problem
with action delays. Automatica, 35:1936–1950, 1999.

6. J. Aman, C. K. Eilert, D. Emmes, P. Yocom, and D. Dillenberger. Adaptive algorithms
for managing a distributed data processing workload. IBM Systems Journal, 36(2),
1997.

7. K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar, S. Krishnakumar,
D. P. Pazel, J. Pershing, and B. Rochwerger. Oceano—SLA based management of
a computing utility. IEEE/IFIP Integrated Network Management, pp. 855–868, May
2001.

8. K. J. Astrom and T. Hagglund. PID Controllers: Theory, Design, and Tuning, 2nd ed.
Instrumentation, Systems, and Automation Society, Research Triangle Park, NC, 1995.

9. K. J. Astrom and B. Wittenmark. Adaptive Control, 2nd ed. Addison-Wesley, Reading,
MA, 1995.

Feedback Control of Computing Systems, by Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury
ISBN 0-471-26637-X Copyright c© 2004 John Wiley & Sons, Inc.

421

TLFeBOOK

422 REFERENCES

10. L. Benmohamed and S. M. Meerkov. Feedback control of congestion in packet switch-
ing networks: the case of a single congested node. IEEE Transactions on Networking,
1(6), December 1993.

11. J. P. Bigus. Applying neural networks to computer system performance tuning. In
IEEE International Conference on Neural Networks, pp. 2442–2447, 1994.

12. G. E. P. Box. In Robustness in the Strategy of Scientific Model Building (R. L. Launer
and G. N. Wilkinson, eds.). Academic Press, San Diego, CA, 1979.

13. V. Cardellini, M. Colajanni, and P. S. Yu. Request redirection algorithms for distributed
web systems. IEEE Transactions on Parallel and Distributed Systems, 14(4):355–368,
2003.

14. K. Chien, J. A. Hrones, and J. B. Reswick. On the automatic control of generalized
passive systems. Transactions of the American Society of Mechanical Engineers, pages
175–182, February 1952.

15. E. Chung, L. Benini, A. Bogliolo, Y. Lu, and G. De Micheli. Dynamic power
management for nonstationary service requests. IEEE Transactions on Computers,
51(11):1345–1361, 2002.

16. D. Cuthbert and F. Wood. Fitting Equations to Data. Wiley-Interscience, New York,
1971.

17. Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D. Tilbury. Using MIMO feed-
back control to enforce policies for interrelated metrics with application to the Apache
Web server. IEEE/IFIP Network Operations and Management, April 2002.

18. Y. Diao, J. L. Hellerstein, and S. Parekh. Optimizing quality of service using fuzzy
control. Distributed Systems Operations and Management, 2002.

19. N. R. Draper and H. Smith. Applied Regression Analysis. Wiley, New York, 1968.

20. D. Ferrari, G. Serazzi, and A. Zeigner. Measurement and Tuning of Computer Systems.
Prentice Hall, Upper Saddle River, NJ, 1983.

21. W. H. Fleming and R. W. Rishel. Deterministic and Stochastic Optimal Control.
Springer-Verlag, New York, 1996.

22. R. Fletcher. Practical Methods of Optimization. Wiley, New York, 2000.

23. S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance.
IEEE and ACM Transactions on Networking, 1(4):397–413, August 1993.

24. Apache Software Foundation. http://www.apache.org.

25. G. F. Franklin, J. D. Powell, and A. Emani-Naeini. Feedback Control of Dynamic
Systems 3rd ed. Addison-Wesley, Reading, MA, 1994.

26. A. Goel, M. H. Shor, J. Walpole, D. Steere, and C. Pu. Using feedback control for a
network and CPU resource management application. American Control Conference,
pp. 2974–2980, June 2001.

27. J. L. Hellerstein, Y. Diao, and S. Parekh. A first-principles approach to constructing
transfer functions for admission control in computing systems. Proceedings of the 41st
Conference on Decision and Control, December 2002.

28. C. V. Hollot, V. Misra, D. Towsley, and W. B. Gong. A control theoretic analysis of
RED. In Proceedings of IEEE INFOCOM ’01, Anchorage, AK, April 2001.

TLFeBOOK

REFERENCES 423

29. C. V. Hollot, V. Misra, D. Towsley, and W. B. Gong. On designing improved con-
trollers for AQM routers supporting TCP flows. Proceedings of IEEE INFOCOM ’01,
Anchorage, AK, April 2001.

30. J. Hyun, I. Jung, J. Lee, and S. Maeng. Content sniffer based load distribution in a
web server cluster. IEICE Transactions on Information and Systems, E86-D(7), 2003.

31. A. Iyengar, J. Challenger, D. Dias, and P. Dantzig. High-performance Web site design
techniques. IEEE Internet Computing, 4(2):17–26, February 2000.

32. P. Johansson and A. A. Nilsson. Discrete time stability analysis of an explicit rate
algorithm for the abr service. In IEEE ATM Workshop, pages 229–350, 1997.

33. H. Kameda, E. S. Fathy, I. Ryu, and J. Li. A performance comparison of dynamic vs.
static load balancing policies in a mainframe—personal computer network model. In
Proceedings of the 39th IEEE Conference on Decision and Control. IEEE, 2000.

34. Srinivasan Keshav. A control-theoretic approach to flow control. In Proceedings of
ACM SIGCOMM ’91, September 1991.

35. L. Kleinrock. Queueing Systems. 2nd ed. Wiley-Interscience, New York, 1975.

36. L. Kleinrock. Queueing Systems, Vol. II, 2nd ed. Wiley-Interscience, New York, 1976.

37. S. J. Leon. Linear Algebra with Applications. 6th ed. Prentice Hall, Upper Saddle
River, NJ, 2000.

38. P. H. Lewis. A proposed z-plane criterion to expedite transient-performance analyses.
IEEE Transactions on Education, 43(3):324–329, August 2000.

39. Baochun Li and Klara Nahrstedt. Control-based middleware framework for quality of
service applications. IEEE Journal on Selected Areas in Communication, 1999.

40. K. Li, M. H. Shor, J. Walpole, C. Pu, and D. C. Steere. Modeling the effect of short-
term rate variations on tcp-friendly congestion control behavior. In Proceedings of the
American Control Conference, pp. 3006–3012, 2001.

41. L. Ljung. System Identification: Theory for the User. 2nd ed. Prentice Hall, Upper
Saddle River, NJ, 1999.

42. C. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son. A feedback control architec-
ture and design methodology for service delay guarantees in Web servers. Technical
Report CS-2001-06. University of Virginia, Department of Computer Science, Char-
lottesville, VA, 2001.

43. C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao, S. H. Son, and M. Markley. Perfor-
mance specifications and metrics for adaptive real-time systems. In Proceedings of the
IEEE Real Time Systems Symposium, Orlando, 2000.

44. Y. Lu, A. Saxena, and T. F. Abdelzaher. Differentiated caching services: a control-
theoretic approach. International Conference on Distributed Computing Systems, April
2001.

45. H. Marteins, E. Rahm, and T. Stohr. Dynamic query scheduling in parallel data ware-
houses. Concurrency Computation Practice and Experience, 15(11–12), 2003.

46. S. Mascolo, D. Cavendish, and M. Gerla. ATM rate based congestion control using a
smith predictor: an EPRCA implementation. In Proceedings of IEEE INFOCOM ’96,
1996.

47. W. C. Messner and D. M. Tilbury. Control Tutorials for Matlab and Simulink: A Web-
Based Approach. Addison-Wesley, Reading, MA, 1999.

TLFeBOOK

424 REFERENCES

48. V. Misra, W. B. Gong, and D. Towsley. Fluid-based analysis of a network of AQM
routers supporting TCP flows with an application to RED. Proceedings of ACM SIG-
COMM ’00, 2000.

49. T. M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

50. K. Ogata. Modern Control Engineering. 3rd ed. Prentice Hall, Upper Saddle River,
NJ, 1997.

51. A. V. Oppenheim, A. S. Willsky, and S. H. Nawab. Signals and Systems. 2nd ed.
Prentice Hall, London, 1997.

52. M. Parameswaran, A. Susarla, and A. B. Whinston. P2P networking: an information
sharing alternative. IEEE Computer, 34(7), July 2001.

53. S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, J. Bigus, and T. S. Jayram. Using
control theory to achieve service level objectives in performance management. Real-
Time Systems Journal, 23:127–141, 2002.

54. S. Parekh, K. Rose, J. L. Hellerstein, S. Lightstone, M. Huras, and V. Chang. Man-
aging the performance impact of administrative utilities. In IFIP Conference on
Distributed Systems Operations and Management, 2003.

55. K. M. Passino and S. Yurkovich. Fuzzy Control. Addison Wesley Longman, Menlo
Park, CA, 1998.

56. A. Pitsillides, Y. A. Sekercioglu, and G. Ramamurthy. Effective control of traffic flow
in atm networks using fuzzy explicit rate marking (ferm). Journal on Selected Areas
in Communications, 15(2):209–225, 1997.

57. A. Robertsson, B. Wittenmark, and M. Kihl. Analysis and design of admission control
in Web-server systems. American Control Conference, pp. 254–259, June 2003.

58. C. E. Rohrs, R. A. Berry, and S. J. O’Halek. A control engineer’s look at ATM con-
gestion avoidance. In GLOBECOM, pp. 1089–1094, 1995.

59. W. J. Rugh and J. S. Shamma. Research on gain scheduling. Automatica, 36:
1401–1425, 2000.

60. R. Sanz and K. Arzen. Trends in software and control. IEEE Control Systems Magazine,
June:12–15, 2003.

61. S. Selvakumar and S. V. Raghavan. Differential priority-based adaptive rate ser-
vice discipline for qos guarantee of video stream. Computer Communications,
20(13):1160–1174, 1997.

62. L. Sha, X. Liu, Y. Lu, and T. Abdelzaher. Queueing model based network server
performance control. In IEEE RealTime Systems Symposium, 2002.

63. N. Sai Shankar and A. P. Shivaprasad. An Instantaneous Control model for Flow Con-
trol in an ATM Network. In International Conference on Information, Communications
and Signal Processing, pp. 878–882, 1997.

64. J.-J. E. Slotine and W. Li. Applied Nonlinear Control. Prentice Hall, Upper Saddle
River, NJ, 1991.

65. M. R. Stan and K. Skadron. Power-aware computing. IEEE Computer, Decem-
ber:35–38, 2003.

66. A. S. Tannenbaum. Operating Systems: Design and Implementation. Prentice Hall,
Upper Saddle River, NJ, 1987.

TLFeBOOK

REFERENCES 425

67. The Math Works. MATLAB, The Language of Technical Computing. The Math Works,
Inc., Natick, MA, 1984–2003.

68. L. Zhang, Z. Zhao, Y. Shu, L. Wang, and O. Yang. Load balancing of multipath source
routing in ad hoc networks. In International Conference on Communications, 2002.

69. R. E. Ziemer, W. H. Tranter, and D. R. Fannin. Signals and Systems: Continuous and
Discrete, 4th ed. Prentice Hall, Upper Saddle River, NJ, 1998.

TLFeBOOK

TLFeBOOK

Index

A, 254
accuracy of a closed loop, 253
adjoint of a matrix, 410
administrative job, 139
administrative tasks, 6
administrators, 4
angle of a complex number, 82
arrival rate, 33
ARX model, 39

BIBO stable, 93
black-box model, 44
block, 111
bounded signal, 92
branching point, 112
bump test, 310

CC, 54
cascaded control, 114
characteristic equation, 83, 217
characteristic polynomial, 83, 217, 411
CHR controller design method, 311
closed-loop system, 6
column rank, 411

Feedback Control of Computing Systems, by Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury
ISBN 0-471-26637-X Copyright c© 2004 John Wiley & Sons, Inc.

complete signal, 36
complex exponential, 82
constrained, 94
constrained metric, 40
continuous signals, 36
control error, 5
control input, 5
control law, 248
control objective, 6
controllability, 222
controllability matrix, 222
controllable, 222
controller, 5
controller gain, 159, 248
controller gains, 192, 340

decaying exponential, 71
design goals, 10
desired characteristic polynomial, 304
desired output, 5
determinant, 409
determinant function, 210
diagnosable matrix, 412
difference equation, 39
discrete signal, 36

427

TLFeBOOK

428 INDEX

disturbance input, 5
disturbance rejection, 7
dominant pole, 98
dominant pole analysis, 168

eigenvalues, 217, 411

feedback control system, 5
feedforward control, 10
feedforward transfer function, 115
filter, 39, 268
final value theorem, 87
first-order model, 39

gain scheduling, 46, 378

heteroschedasticity, 55
higher-order systems, 165
HTTP, 16

impulse signal, 68
initial condition response, 135, 168
integrated control error, 346
interarrival time, 33
invertible matrix, 409

largest pole, 98
least squares, 49
limit cycle, 94, 252
linearly dependent, 410
linearly independent, 410
linguistic values, 390
linguistic variable, 390
loop transfer function, 115

M/M/1/K , 33
m-files, 418
magnitude of a complex number, 82
MATLAB function, 419
MATLAB script, 419
matrix rank, 411
maximum overshoot, 98, 132, 145, 254,

260
measured output, 5, 35
MIMO, 5
MIMO model, 40
model order, 96
model parameters, 40

model structure, 40
modeled characteristic polynomial, 304
moving-average filter, 191, 268
multistep prediction, 55

noise input, 5
non-minimum-phase systems, 178
nonsingular matrix, 209
number in system, 32

O, 254
observability matrix, 226
observable, 225, 226
offset value, 41
one-step prediction, 55
open-loop control, 10
operating point, 41
operating region, 41, 94
optimization, 7
overall gain, 308
overfitting, 45

partial fraction expansion, 75
partial signal, 36
PID control, 320
polar coordinates, 82
pole zero cancellation, 177
poles, 83
poles of a state-space model, 217
prediction error, 50
proportional control, 190, 193, 248
proportional–integral controller, 191

R2, 54
ramp signal, 69
rectangular coordinates, 81
reference feedback transfer function, 117
reference input, 5
regulatory control, 6
residual, 50
RIS, 14
rising exponential, 71
RMSE, 53
robust, 264
root locus, 257, 263

S, 254
sample time, 37

TLFeBOOK

INDEX 429

SASO, 8, 254
scheduling rules, 380
scheduling variables, 379
self-tuning regulators, 381
service differentiation, 12
service-level agreements, 7
service-level objectives, 7
service time, 33
setpoint, 5
settling time, 97, 132, 253
signal, 36
singular, 409
SISO, 5
SISO model, 39
SLAs, 7
SLOs, 7
state-space model, 40
state variables, 35, 201
static state feedback, 340
steady-state error, 8
steady-state gain, 95
steady-state gain for state-space models,

219
steady-state output, 131
steady-state value, 86
step signal, 68
summation point, 112

superposition property, 134
system identification, 31
system model, 6
system order, 96

target system, 5
throughput, 33
time-domain representation, 65
tracking control, 7
training data, 47
transducer, 6
transfer function, 89
transfer function matrix, 216
transient response, 132

utilization, 33

vector space dimension, 410

waiting time, 33
workload, 4, 45

Z-domain representation, 66
Z-transform, 66
zeros, 86
zeros at infinity, 257

TLFeBOOK

	John.Wiley.And.Sons.Feedback.Control.Of.Computing.System
	Cover

	Contents
	Preface
	Part I: Background
	1:

Introduction and Overview

	Part II:

System Modeling
	2:

Model Construction
	3:

Z-Transforms and
Transfer Functions
	4:
 System Modeling with Block Diagrams
	5:

First-Order Systems
	6:

Higher-Order Systems
	7:

State-Space Models

	Part III:

Control Analysis
and Design
	8:

Proportional Control
	9:

PID Controllers
	10:

State-Space Feedback
Control
	11:

Advanced Topics

	Appendix A:

Mathematical Notation
	Appendix B:

Acronyms
	Appendix C:

Key Results
	Appendix D:

Essentials of Linear
Algebra
	Appendix E:

MATLAB Basics
	References
	Index

