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INTRODUCTION

The goal of this edition is the same as that of the first: to present the con-
ceptual framework used for the pricing and hedging of fixed income se-

curities in an intuitive and mathematically simple manner. But, in striving
to fulfil this goal, this edition substantially revises and expands the first.

Many concepts developed by expert practitioners and academics re-
main mysterious or only partially understood by many. Examples include
convexity, risk-neutral pricing, risk premium, mean reversion, the futures-
forward effect, and the financing tail. While many books explain these and
other concepts quite elegantly, the largely mathematical presentations are
beyond the reach of much of the interested audience. This state of affairs is
particularly regrettable because the essential ideas developed in industry
and academics can be conveyed intuitively and by example. While this
book is quantitatively demanding, like the field of fixed income itself, the
level of mathematics has been confined mostly to simple algebra. On the
occasions when the calculus is invoked, the reader is escorted through the
equations, a term at a time, toward an understanding of the underlying
concepts.

The book is full of examples. These range from simple examples that
introduce ideas to the 15 detailed applications and trading case studies
showing how these ideas are applied in practice. This “spoonful of sugar”
approach makes the material easier to understand and more fun to study.
Equally important, it gives readers a sense of orders of magnitude. After
working to understand the coupon effect, for example, one should also
have a good idea of when the effect is large and when it is insignificant. In
a complex, competitive, and fast-moving field like fixed income, it is cru-
cial to develop the ability to distinguish between issues that require imme-
diate attention and those that may be reflected upon at leisure.

Part One of the book presents the relationships among bond prices,
spot rates, forward rates, and yields. The fundamental notion of arbitrage
pricing is introduced in the context of securities with fixed cash flows.

Part Two describes various ways to measure interest rate risks for the



purpose of quantifying and hedging these risks. The chapters cover basic
and commonly used measures, like DV01, duration, and simple regression-
based measures, as well as several more sophisticated measures. These in-
clude measures based on pricing models, multi-factor measures, and
two-factor regression-based measures.

Part Three introduces the arbitrage-based, term structure models used
to price fixed income derivatives, that is, securities whose cash flows de-
pend on the level of interest rates. Many well-known models are discussed,
like the Vasicek or Black-Karasinski models, but since there are many mod-
els in use and many more potential models, the chapters in this part have
two broader aims: First, to explain the roles of expectations, volatility, and
risk premium in the determination of the term structure and in the con-
struction of term structure models; Second, to explain how the fundamen-
tal building blocks of term structure models, namely, drift, volatility
structure, and distribution, are assembled to create models with different
characteristics. Some multi-factor models are also discussed. Finally, this
part describes how term structure models are applied to trading and invest-
ment decisions.

Part Four uses the concepts of the first three parts to analyze several
major securities in fixed income markets. These are important subjects in
their own right: repurchase agreements, forwards, futures, options, swaps,
and mortgages. In addition, however, the exercise of using the fixed income
tool kit to analyze these securities in detail develops the skills required to
attack unfamiliar and challenging problems.

This book is meant to help current practitioners deepen their under-
standing of various subjects; to introduce newcomers to this complex field;
and to serve as a useful reference after an initial reading. As a result of
these multiple objectives, the book does mention certain subjects before
they are formally treated. For example, a relevant point about swaps may
be made in an early chapter even though swaps are not discussed in detail
until Chapter 18. Current practitioners and readers using the book as a ref-
erence will not find this a problem. Hopefully, with a willingness to take
some points on faith during a first reading or with the enterprise to use the
index, newcomers to the field will eventually appreciate this organization.

xiv INTRODUCTION



xv

ACKNOWLEDGMENTS

I thank Guillaume Gimonet, Andrew Kalotay, Vinay Pande, Fidelio Tata,
and especially Jeffrey Rosenbluth for extremely helpful discussions on

the subject matter of this book, and I thank Helen Edersheim for carefully
reviewing the manuscript. All errors are, of course, my own. I am indebted
to Bill Falloon at John Wiley & Sons for his support throughout the plan-
ning, writing, and production stages. Finally, I thank my wife Katherine
and my two boys, Teddy and P.J., for the sacrifices they made in allowing
me the time to write this book and for reminding me that the field of fixed
income is, after all, a very small part of life.





PART

ONE
The Relative Pricing of

Fixed Income Securities
with Fixed Cash Flows





3

CHAPTER 1
Bond Prices, Discount 

Factors, and Arbitrage

THE TIME VALUE OF MONEY

How much are people willing to pay today in order to receive $1,000 one
year from today? One person might be willing to pay up to $960 because
throwing a $960 party today would be as pleasurable as having to wait a
year before throwing a $1,000 party. Another person might be willing to
pay up to $950 because the enjoyment of a $950 stereo system starting
today is worth as much as enjoying a $1,000 stereo system starting one
year from today. Finally, a third person might be willing to pay up to
$940 because $940 invested in a business would generate $1,000 at the
end of a year. In all these cases people are willing to pay less than $1,000
today in order to receive $1,000 in a year. This is the principle of the time
value of money: Receiving a dollar in the future is not so good as receiv-
ing a dollar today. Similarly, paying a dollar in the future is better than
paying a dollar today.

While the three people in the examples are willing to pay different
amounts for $1,000 next year, there exists only one market price for this
$1,000. If that price turns out to be $950 then the first person will pay
$950 today to fund a $1,000 party in a year. The second person would be
indifferent between buying the $950 stereo system today and putting away
$950 to purchase the $1,000 stereo system next year. Finally, the third per-
son would refuse to pay $950 for $1,000 in a year because the business can
transform $940 today into $1,000 over the year. In fact, it is the collection
of these individual decisions that determines the market price for $1,000
next year in the first place.

Quantifying the time value of money is certainly not restricted to the



pricing of $1,000 to be received in one year. What is the price of $500 to
be received in 10 years? What is the price of $50 a year for the next 30
years? More generally, what is the price of a fixed income security that pro-
vides a particular set of cash flows?

This chapter demonstrates how to extract the time value of money im-
plicit in U.S. Treasury bond prices. While investors may ultimately choose
to disagree with these market prices, viewing some securities as underval-
ued and some as overvalued, they should first process and understand all
of the information contained in market prices. It should be noted that mea-
sures of the time value of money are often extracted from securities other
than U.S. Treasuries (e.g., U.S. agency debt, government debt outside the
United States, and interest rate swaps in a variety of currencies). Since the
financial principles and calculations employed are similar across all these
markets, there is little lost in considering U.S. Treasuries alone in Part One.

The discussion to follow assumes that securities are default-free, mean-
ing that any and all promised payments will certainly be made. This is
quite a good assumption with respect to bonds sold by the U.S. Treasury
but is far less reasonable an assumption with respect to financially weak
corporations that may very well default on their obligations to pay. In any
case, investors interested in pricing corporate debt must first understand
how to value certain or default-free payments. The value of $50 promised
by a corporation can be thought of as the value of a certain payment of
$50 minus a default penalty. In this sense, the time value of money implied
by default-free obligations is a foundation for pricing securities with credit
risk, that is, with a reasonable likelihood of default.

TREASURY BOND QUOTATIONS

The cash flows from most Treasury bonds are completely defined by face
value or par value, coupon rate, and maturity date. For example, buying a
Treasury bond with a $10,000 face value, a coupon rate of 51/4%, and a
maturity date of August 15, 2003, entitles the owner to an interest pay-
ment of $10,000×51/4% or $525 every year until August 15, 2003, and a
$10,000 principal payment on that date. By convention, however, the $525
due each year is paid semiannually, that is, in installments of $262.50
every six months. In fact, in August 1998 the Treasury did sell a bond with
this coupon and maturity; Figure 1.1 illustrates the cash paid in the past
and to be paid in the future on $10,000 face amount of this bond.

4 BOND PRICES, DISCOUNT FACTORS, AND ARBITRAGE



An investor purchasing a Treasury bond on a particular date must usu-
ally pay for the bond on the following business day. Similarly, the investor
selling the bond on that date must usually deliver the bond on the follow-
ing business day. The practice of delivery or settlement one day after a
transaction is known as T+1 settle. Table 1.1 reports the prices of several
Treasury bonds at the close of business on February 14, 2001, for settle-
ment on February 15, 2001.

The bonds in Table 1.1 were chosen because they pay coupons in even
six-month intervals from the settlement date.1 The columns of the table
give the coupon rate, the maturity date, and the price. Note that prices are
expressed as a percent of face value and that numbers after the hyphens de-
note 32nds, often called ticks. In fact, by convention, whenever a dollar or
other currency symbol does not appear, a price should be interpreted as a

Treasury Bond Quotations 5

FIGURE 1.1 The Cash Flows of the 5.25s of August 15, 2003

$10,262.50

$262.50 $262.50 $262.50 $262.50 $262.50 $262.50 $262.50 $262.50 $262.50

8/15/98 2/15/99 8/15/99 2/15/00 8/15/00 2/15/01 8/15/01 2/15/02 8/15/02 2/15/03 8/15/03

TABLE 1.1 Selected Treasury Bond Prices for Settlement
on February 15, 2001

Coupon Maturity Price

7.875% 8/15/01 101-123/4
14.250% 2/15/02 108-31+
6.375% 8/15/02 102-5
6.250% 2/15/03 102-181/8
5.250% 8/15/03 100-27

1Chapter 4 will generalize the discussion of Chapters 1 to 3 to bonds that pay
coupons and principal on any set of dates.



percent of face value. Hence, for the 77/8s of August 15, 2001, the price of
101-123/4 means 101+12.75/32% of face value or approximately 101.3984%.
Selling $10,000 face of this bond would generate $10,000×1.013984 or
$10,139.84. For the 141/4s of February 15, 2002, the symbol “+” denotes
half a tick. Thus the quote of 108-31+ would mean 108+31.5/32.

DISCOUNT FACTORS

The discount factor for a particular term gives the value today, or the pre-
sent value of one unit of currency to be received at the end of that term.
The discount factor for t years is written d(t). So, for example, if
d(.5)=.97557, the present value of $1 to be received in six months is
97.557 cents. Continuing with this example, one can price a security that
pays $105 six months from now. Since $1 to be received in six months is
worth $.97557 today, $105 to be received in six months is worth
.97557×$105 or $102.43.2

Discount factors can be used to compute future values as well as pre-
sent values. Since $.97557 invested today grows to $1 in six months, $1 in-
vested today grows to $1/d(.5) or $1/.97557 or $1.025 in six months.
Therefore $1/d(.5) is the future value of $1 invested for six months.

Since Treasury bonds promise future cash flows, discount factors can
be extracted from Treasury bond prices. According to the first row of
Table 1.1, the value of the 77/8s due August 15, 2001, is 101-123/4. Fur-
thermore, since the bond matures in six months, on August 15, 2001, it
will make the last interest payment of half of 77/8 or 3.9375 plus the prin-
cipal payment of 100 for a total of 103.9375 on that date. Therefore, the
present value of this 103.9375 is 101-123/4. Mathematically expressed in
terms of discount factors,

(1.1)

Solving reveals that d(.5) = .97557.

101 12 32 103 9375 53
4+ =/ . (. )d

6 BOND PRICES, DISCOUNT FACTORS, AND ARBITRAGE

2For easy reading prices throughout this book are often rounded. Calculations,
however, are usually carried to greater precision.



The discount factor for cash flows to be received in one year can be
found from the next bond in Table 1.1, the 141/4s due February 15, 2002.
Payments from this bond are an interest payment of half of 141/4 or 7.125
in six months, and an interest and principal payment of 7.125+100 or
107.125 in one year. The present value of these payments may be obtained
by multiplying the six-month payment by d(.5) and the one-year payment
by d(1). Finally, since the present value of the bond’s payments should
equal the bond’s price of 108-31+, it must be that

(1.2)

Knowing that d(.5) = .97557 from equation (1.1), equation (1.2) can be
solved for d(1) to reveal that d(1) = .95247.

Continuing in this fashion, the prices in Table 1.1 can be used to solve
for discount factors, in six-month intervals, out to two and one-half years.
The resulting values are given in Table 1.2. Because of the time value of
money, discount factors fall with maturity. The longer the payment of $1 is
delayed, the less it is worth today.

Applying techniques to be described in Chapter 4, Figure 1.2 graphs
the collection of discount factors, or the discount function for settlement
on February 15, 2001. It is clear from this figure as well that discount fac-
tors fall with maturity. Note how substantially discounting lowers the
value of $1 to be received in the distant future. According to the graph, $1
to be received in 30 years is worth about 19 cents today.

108 31 5 32 7 125 5 107 125 1+ = +. / . (. ) . ( )d d

Discount Factors 7

TABLE 1.2 Discount Factors
Derived from Bond Prices
Given in Table 1.1

Time to Discount
Maturity Factor

0.5 0.97557
1 0.95247
1.5 0.93045
2 0.90796
2.5 0.88630



THE LAW OF ONE PRICE

In the previous section the value of d(.5) derived from the 77/8s of August
15, 2001, is used to discount the first coupon payment of the 141/4s of Feb-
ruary 15, 2002. This procedure implicitly assumes that d(.5) is the same
for these two securities or, in other words, that the value of $1 to be re-
ceived in six months does not depend on where that dollar comes from.
This assumption is a special case of the law of one price which states that,
absent confounding factors (e.g., liquidity, special financing rates,3 taxes,
credit risk), two securities (or portfolios of securities) with exactly the same
cash flows should sell for the same price.

The law of one price certainly makes economic sense. An investor
should not care whether $1 on a particular date comes from one bond or
another. More generally, fixing a set of cash flows to be received on any set
of dates, an investor should not care about how those cash flows were as-
sembled from traded securities. Therefore, it is reasonable to assume that

8 BOND PRICES, DISCOUNT FACTORS, AND ARBITRAGE

FIGURE 1.2 The Discount Function in the Treasury Market on February 15, 2001
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discount factors extracted from one set of bonds may be used to price any
other bond with cash flows on the same set of dates.

How well does the law of one price describe prices in the Treasury
market for settlement on February 15, 2001? Consider the four bonds
listed in Table 1.3. Like the bonds listed in Table 1.1, these four bonds
make payments on one or more of the dates August 15, 2001, February 15,
2002, August 15, 2002, February 15, 2003, and August 15, 2003. But, un-
like the bonds listed in Table 1.1, these four bonds are not used to derive
the discount factors in Table 1.2. Therefore, to test the law of one price,
compare the market prices of these four bonds to their present values com-
puted with the discount factors of Table 1.2.

Table 1.3 lists the cash flows of the four new bonds and the present
value of each cash flow. For example, on February 15, 2003, the 53/4s of
August 15, 2003, make a coupon payment of 2.875. The present value of
this payment to be received in two years is 2.875×d(2) or 2.875×.90796 or
2.610, where d(2) is taken from Table 1.2. Table 1.3 then sums the present
value of each bond’s cash flows to obtain the value or predicted price of
each bond. Finally, Table 1.3 gives the market price of each bond.

According to Table 1.3, the law of one price predicts the price of the
133/8s of August 15, 2001, and the price of the 53/4s of August 15, 2003,
very well. The prices of the other two bonds, the 103/4s of February 15,
2003, and the 111/8s of August 15, 2003, are about .10 and .13 lower, re-
spectively, than their predicted prices. In trader jargon, these two bonds are
or trade cheap relative to the pricing framework being used. (Were their
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TABLE 1.3 Testing the Law of One Price Using the Discount Factors of Table 1.2

13.375s 10.75s 5.75s 11.125s
8/15/01 2/15/03 8/15/03 8/15/03

Cash Present Cash Present Cash Present Cash Present 
Date Flow Value Flow Value Flow Value Flow Value

8/15/01 106.688 104.081 5.375 5.244 2.875 2.805 5.563 5.427
2/15/02 0.000 0.000 5.375 5.120 2.875 2.738 5.563 5.298
8/15/02 0.000 0.000 5.375 5.001 2.875 2.675 5.563 5.176
2/15/03 0.000 0.000 105.375 95.677 2.875 2.610 5.563 5.051
8/15/03 0.000 0.000 0.000 0.000 102.875 91.178 105.563 93.560
Predicted price 104.081 111.041 102.007 114.511
Market price 104.080 110.938 102.020 114.375



prices higher than expected, it would be said that they trade rich.) The em-
pirical deviations of the prices of high coupon bonds from the law of one
price will be revisited in Appendix 1B. Now, to introduce the notion of ar-
bitrage, the discussion turns to how an arbitrageur might attempt to profit
from a violation of the law of one price—in particular, from the cheapness
of the 103/4s of February 15, 2003.

ARBITRAGE AND THE LAW OF ONE PRICE

The law of one price can be defended on stronger grounds than the argu-
ment that investors should not care about the source of $1. As it turns out,
a violation of the law of one price implies the existence of an arbitrage op-
portunity, that is, a trade that generates or that might generate profits
without any risk.4 But, for reasons to be made explicit, such arbitrage op-
portunities rarely exist. Therefore, the law of one price usually describes
security prices quite well.

Table 1.4 describes an arbitrage trade in which one buys the cheap
103/4s of February 15, 2003, while simultaneously shorting5 or selling its
replicating portfolio, a specially designed portfolio of four of the bonds
listed in Table 1.1. The reason for the name “replicating portfolio” will
soon become clear.

The row labeled “Face amount” gives the face value of each bond
bought or sold in the arbitrage. The trade shorts about 2 face of the 77/8s of
August 15, 2001, the 141/4s of February 15, 2002, and the 63/8s of August
15, 2002; shorts about 102 face of the 61/4s of February 15, 2003; and
buys 100 face of the 103/4s of February 15, 2003.

The first four columns of the “Cash Flows” section of Table 1.4 show
the cash flows that result from each bond position. For example, a short of
2.114 of the 63/8s of August 15, 2002, incurs an obligation of 2.114×63/8%/2
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4Market participants often use the term “arbitrage” more broadly to encompass
trades that, while they can lose money, seem to promise large profits relative to the
risk borne.
5To “short” a security means to sell a security one does not own. The mechanics of
short selling bonds will be discussed in Chapter 15. For now, assume that when a
trader shorts a bond he receives the price of the bond and is obliged to pay all
coupon flows. In other words, assume that the cash flows from shorting a bond are
the negatives of the cash flows from buying a bond.



or .067 on November 15, 2001, and May 15, 2002, and an obligation of
2.114×(100%+63/8%/2) or 2.182 on November 15, 2002.

The fifth column sums the cash flows across bonds for each date to ob-
tain the cash flow from the sale of the portfolio as a whole. Note that the
portfolio’s cash flows exactly offset the cash flows of the 103/4s of February
15, 2003. This explains why the special portfolio sold in the arbitrage
trade is called the replicating portfolio of the 103/4s. Appendix 1A shows
how to derive the bond holdings that make up this replicating portfolio.
The important point here, however, is that the arbitrage trade does not
generate any cash flows, positive or negative, in the future.

The “Proceeds” row of Table 1.4 shows how much cash is raised or
spent in establishing the arbitrage trade. For example, the sale of 1.974
face amount of the 141/4s of February 15, 2002, generates 1.974 times the
price of the bond per dollar face value, that is, 1.974×(108+31.5/32)% or
2.151. However, the purchase of 100 face value of the 103/4s costs 110.938
and is, therefore, recorded as a negative number.

The total proceeds raised from selling the replicating portfolio are
111.041, exactly the present value of the 103/4s reported in Table 1.3. This
is not a coincidence. One way to value the 103/4s is to derive discount fac-
tors from four bond prices and then compute a present value. Another way
is to price the portfolio of four bonds that replicates the cash flows of the
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TABLE 1.4 An Arbitrage Trade: Buy the 10.75s of February 15, 2003, and Sell
Their Replicating Portfolio

7.875s 14.25s 6.375s 6.25s –Replicating 10.75s
8/15/01 2/15/02 8/15/02 2/15/03 Portfolio 2/15/03

Face amount –1.899 –1.974 –2.114 –102.182 100.000

Date Cash Flows

8/15/01 –1.974 –0.141 –0.067 –3.193 –5.375 5.375
2/15/02 0.000 –2.114 –0.067 –3.193 –5.375 5.375
8/15/02 0.000 0.000 –2.182 –3.193 –5.375 5.375
2/15/03 0.000 0.000 0.000 –105.375 –105.375 105.375

Price 101-123/4 108-31+ 102-5 102-181/8 110-30
Proceeds 1.926 2.151 2.160 104.804 111.041 –110.938

Net proceeds 0.103



103/4s. So long as both methods use the same four bonds, both methods
will assign the same value to the 103/4s.

The net proceeds from the arbitrage trade are the amount received
from selling the replicating portfolio minus the amount paid when pur-
chasing the 103/4s. As shown in Table 1.4, these net proceeds equal .103. In
summary, then, one can buy 100 face of the 103/4s, sell the replicating port-
folio, collect .103 today, and incur no net obligations at any future date.
This profit might sound small, but the trade can be scaled up. For $500
million face of the 103/4s, which is not an abnormally large block, the profit
rises to $515,000.

Absent any confounding factors, arbitrageurs would do as much of
this trade as possible or, in trader jargon, they would do the trade all day.
But since so many arbitrageurs would wish to buy the 103/4s and sell the
replicating portfolio at the prices of Table 1.4, the price of the 103/4s would
be driven up and/or the price of the replicating portfolio would be driven
down. Furthermore, this process would continue until the arbitrage oppor-
tunity disappeared and the law of one price obtained. In fact, as many ar-
bitrageurs would relate, prices would probably gap, or jump directly, to
levels consistent with the law of one price. As a result, very few arbi-
trageurs, or possibly none at all, would be able to execute, or, more collo-
quially, put on the trade described.

The fact that the market price of the 103/4s remains below that of the
replicating portfolio strongly indicates that some set of confounding fac-
tors inhibits arbitrage activity. The financing costs of this type of arbitrage
will be discussed in Chapter 15. Also, the 103/4s, like many other high
coupon bonds, were issued as 20-year bonds quite a while ago and, as a re-
sult, have become relatively illiquid. In any case, Appendix 1B uses another
type of replicating portfolio to examine the magnitude and persistence of
the deviations of high coupon bond prices from the law of one price.

TREASURY STRIPS

In contrast to coupon bonds that make payments every six months, zero
coupon bonds make no payments until maturity. Zero coupon bonds is-
sued by the U.S. Treasury are called STRIPS (separate trading of registered
interest and principal securities). For example, $1,000 face value of a
STRIPS maturing on August 15, 2003, promises only one payment: $1,000
on August 15, 2003. STRIPS are created when someone delivers a particu-
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lar coupon bond to the Treasury and asks for it to be “stripped” into its
principal and coupon components. Figure 1.3 illustrates the stripping of
$10,000 face value of the 53/4s of August 15, 2003, as of February 15,
2001, to create five coupon or interest STRIPS, called TINTs, INTs, or C-
STRIPS, and one principal STRIPS, called a TP, a P, or a P-STRIPS.

The Treasury not only creates STRIPS but also retires them. For ex-
ample, an investor can deliver the set of STRIPS in Figure 1.3 and ask the
Treasury to reconstitute the $10,000 face amount of the 53/4s of August
15, 2003. It is important to note that C-STRIPS are fungible, while P-
STRIPS are not. In particular, when reconstituting a bond, any C-STRIPS
maturing on a particular coupon payment date may be used as that
bond’s coupon payment. P-STRIPS, however, are identified with particu-
lar bonds: P-STRIPS created from the stripping of a particular bond may
be used to reconstitute only that bond. This difference implies that P-
STRIPS inherit the cheapness or richness of the bonds from which they
are derived.

Investors like zero coupon bonds for at least two reasons. First, they
make it easy to construct any required sequence of cash flows. One simple
and important example is the case of a family saving for the expense of a
college education. If the family invested in a coupon bond, the coupons
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FIGURE 1.3 Stripping the 5.75s of August 15, 2003
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would have to be reinvested, at uncertain rates, until the funds are re-
quired. By contrast, investing in zeros that mature when a child is expected
to begin college eliminates the hassle and risk of reinvestment. Another ex-
ample would be the case of a property and casualty insurance company
that knows with reasonable certainty how much it will have to pay out in
claims each quarter over the next few years. With the funds it has collected
in premiums the insurance company can buy a sequence of zeros that
match these future liabilities. This practice is called immunization. Any al-
ternative investment strategy, as will be seen in Part Two, exposes the in-
surance company to interest rate risk.

The second main attraction of zeros, particularly long-term zeros, is
that per dollar invested they have much greater sensitivity to interest rates
than coupon bonds. In fact, an insurance company with very long-term lia-
bilities, like obligations to pay life insurance claims, might find it difficult
to find any coupon bond that would hedge these long-term liabilities.6

Once again, these hedging issues will be discussed in Part Two.
Table 1.5 lists the prices of five short-term C- and P-STRIPS as of Febru-

ary 15, 2001, along with the discount factors derived in Table 1.2. Since 100
face value of a STRIPS pays 100 at maturity, dividing the price of that
STRIPS by 100 gives the value of one unit of currency payable at that matu-
rity (i.e., the discount factor of that maturity). Table 1.5, therefore, essen-
tially shows three sets of discount factors: one implied from the coupon
bonds listed in Table 1.1, one implied from C-STRIPS, and one implied from
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TABLE 1.5 STRIPS Prices for February 15, 2001,
Settlement and the Discount Factors from Table 1.2

C-STRIPS P-STRIPS Discount
Maturity Price Price Factor

8/15/01 97.577 97.550 0.97557
2/15/02 95.865 95.532 0.95247
8/15/02 93.252 93.015 0.93045
2/15/03 90.810 90.775 0.90796
8/15/03 88.798 88.594 0.88630

6Asset-liability managers requiring very long-term assets may very well turn to eq-
uity markets.



P-STRIPS. According to the law of one price, these columns of discount fac-
tors should be identical: why should an investor care whether $1 comes from
a portfolio of bonds, a coupon payment, or a principal payment?7

Since STRIPS can be very illiquid, so that quoted prices may not ac-
curately reflect executable prices, only broad conclusions can be drawn
from the prices in Table 1.5. First, with the exception of the February 15,
2002, maturity, the P-STRIPS prices are reasonably consistent with the
discount factors extracted from coupon bonds. Second, the C-STRIPS
prices in Table 1.5 all exceed the matched-maturity P-STRIPS prices. To
examine these observations in the STRIPS market for February 15, 2001,
settlement, Figure 1.4 shows the difference between discount factors
from Figure 1.2 (which were extracted from coupon bond prices) and
discount factors implied from C- and P-STRIPS prices. A value of 25
means that a $100 STRIPS payment synthetically created by coupon pay-
ments costs 25 cents more than $100 face value of the STRIPS. In other
words, that STRIPS is 25 cents cheap relative to coupon bonds. Again,
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FIGURE 1.4 Discount Factors Implied by Coupon Bonds Minus Those Implied by
STRIPS on February 15, 2001
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7C-STRIPS and P-STRIPS are taxed alike.



while recognizing the limitations of some price quotations in the STRIPS
market, Figure 1.4 does suggest that shorter-term C-STRIPS traded rich,
longer-term C-STRIPS traded cheap, and P-STRIPS traded closer to fair.
Some P-STRIPS, like the longest three shown in Figure 1.4, traded rich
because the bonds associated with those STRIPS traded rich (that these
particular bonds trade rich will be discussed in Chapter 4). The 10- and
30-year P-STRIPS, cut off by the scale of the vertical axis in Figure 1.4,
traded extremely rich because the associated bonds enjoyed financing ad-
vantages and were particularly liquid. These factors will be discussed in
Chapter 15.

The previous section shows how to construct a replicating portfolio
and price a bond by arbitrage. The construction of a portfolio of STRIPS
that replicates a coupon bond is a particularly simple example of this pro-
cedure. To replicate 100 face value of the 53/4s of August 15, 2003, for ex-
ample, buy 5.75/2 or 2.875 face value of each STRIPS in Table 1.5 to
replicate the coupon payments and buy an additional 100 face value of Au-
gust 15, 2003, STRIPS to replicate the principal payment. Since one may
choose between a C- and a P-STRIPS on each cash flow date, there are
many ways to replicate the 53/4s of August 15, 2003, and, therefore, to
compute its arbitrage price. Using only P-STRIPS, for example, the arbi-
trage price is

(1.3)

This is below the 102.020 market price of the 53/4s of August 15, 2003. So,
in theory, if the prices in Table 1.5 were executable and if transaction costs
were small enough, one could profitably arbitrage this price difference by
buying the P-STRIPS and selling the 53/4s of August 15, 2003.

While most market players cannot profit from the price differences be-
tween P-STRIPS, C-STRIPS, and coupon bonds, some make a business of
it. At times these professionals find it profitable to buy coupon bonds, strip
them, and then sell the STRIPS. At other times these professionals find it
profitable to buy the STRIPS, reconstitute them, and then sell the bonds.
On the other hand, a small investor wanting a STRIPS of a particular ma-
turity would never find it profitable to buy a coupon bond and have it
stripped, for the investor would then have to sell the rest of the newly cre-
ated STRIPS. Similarly, a small investor wanting to sell a particular STRIPS
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would never find it profitable to buy the remaining set of required STRIPS,
reconstitute a coupon bond, and then sell the whole bond.

Given that investors find zeros useful relative to coupon bonds, it is
not surprising some professionals can profit from differences between the
two. Since most investors cannot cost-effectively strip and reconstitute by
themselves, they are presumably willing to pay something for having it
done for them. Therefore, when investors want more zeros they are willing
to pay a premium for zeros over coupon bonds, and professionals will find
it profitable to strip bonds. Similarly, when investors want fewer zeros,
they are willing to pay a premium for coupon bonds over zeros and profes-
sionals will find it profitable to reconstitute bonds.

APPENDIX 1A
DERIVING THE REPLICATING PORTFOLIO

Four bonds are required to replicate the cash flows of the 103/4s of Febru-
ary 15, 2003. Let Fi be the face amount of bond i used in the replicating
portfolio where the bonds are ordered as in Table 1.4. In problems of this
structure, it is most convenient to start from the last date. In order for the
portfolio to replicate the payment of 105.375 made on February 15, 2003,
by the 103/4s, it must be the case that

(1.4)

The face amounts of the first three bonds are multiplied by zero because
these bonds make no payments on February 15, 2003. The advantage of
starting from the end becomes apparent as equation (1.4) is easily solved:

(1.5)

Intuitively, one needs to buy more than 100 face value of the 61/4s of Feb-
ruary 15, 2003, to replicate 100 face of the 103/4s of February 15, 2003,
because the coupon of the 61/4s is smaller. But, since equation (1.4) matches
the principal plus coupon payments of the two bonds, the coupon pay-
ments alone do not match. On any date before maturity, 100 of the 103/4s
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makes a payment of 5.375, while the 102.182 face of the 61/4s makes a
payment of 102.182×61/4%/2 or 3.193. Therefore, the other bonds listed in
Table 1.4 are required to raise the intermediate payments of the replicating
portfolio to the required 5.375. And, of course, the only way to raise these
intermediate payments is to buy other bonds.

Having matched the February 15, 2003, cash flow of the replicating
portfolio, proceed to the August 15, 2002, cash flow. The governing equa-
tion here is

(1.6)

Since F4 is already known, equation (1.6) can be solved showing that
F3=–2.114. Continuing in this fashion, the next equations, for the cash
flows on February 15, 2002, and August 15, 2001, respectively, are

(1.7)

(1.8)

When solving equation (1.7), F3 and F4 are already known. When solving
equation (1.8), F2 is also known.

Note that if the derivation had started by matching the first cash pay-
ment on August 15, 2001, the first equation to be solved would have been
(1.8). This is not possible, of course, since there are four unknowns. There-
fore, one would have to solve equations (1.4), (1.6), (1.7), and (1.8) as a
system of four equations and four unknowns. There is nothing wrong with
proceeding in this way, but, if solving for the replicating portfolio by hand,
starting from the end proves simpler.

APPENDIX 1B
APPLICATION: Treasury Triplets and 
High Coupon Bonds

On February 15, 2001, there were six sets of “triplets” in the Treasury market where each
triplet consists of three bonds maturing on the same day. Table 1.6 lists these bonds along

F F F F1

7
8

2

1
4

3

3
8

4

1
4100

7
2

14
2

6
2

6
2

5 375× +






+ × + × +












=%
% % %

.

F F F F1 2

1
4

3

3
8

4

1
40 100

14
2

6
2

6
2

5 375× + × +






+ × +












=%
% %

.

F F F F1 2 3

3
8

4

1
40 0 100

6
2

6
2

5 375× + × + × +






+












=%
%

.

18 BOND PRICES, DISCOUNT FACTORS, AND ARBITRAGE



with their terms at issue. For example, the Treasury sale of a 20-year bond on July 5, 1983
(maturing August 15, 2003), a 10-year bond on August 16, 1993 (maturing August 15,
2003), and a five-year bond on August 17, 1998 (maturing August 15, 2003), resulted in
three bonds maturing on one date.

The text of this chapter shows that to replicate a bond with cash flows on a given set
of dates requires a portfolio of other bonds with cash flows on the same set of dates.
Replicating a bond with 10 remaining cash flows, for example, requires a portfolio of 10
bonds with cash flows on the same set of dates. In the special case of a triplet of any ma-
turity, however, a portfolio of two of the bonds in the triplet can replicate the cash flows of
the third.

Let c1, c2, and c3 be the coupon rates of the three bonds in the triplet. Consider con-
structing a portfolio of F1 face amount of the first bond and F3 face amount of the third
bond to replicate one unit face amount of the second bond. For the principal payment of
the replicating portfolio to equal the principal payment of the second bond, it must be the
case that

(1.9)F F1 3 1+ =
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TABLE 1.6 Treasury Triplets as of February 15, 2001

Triplet Coupon Maturity Original Term

5.625% 5/15/01 3
May-01 8.000% 5/15/01 10

13.125% 5/15/01 20
5.250% 8/15/03 5

Aug-03 5.750% 8/15/03 10
11.125% 8/15/03 20
5.250% 5/15/04 5

May-04 7.250% 5/15/04 10
12.375% 5/15/04 20
6.000% 8/15/04 5

Aug-04 7.250% 8/15/04 10
13.750% 8/15/04 20
5.875% 11/15/04 5

Nov-04 7.875% 11/15/04 10
11.625% 11/15/04 20
6.500% 5/15/05 5

May-05 6.750% 5/15/05 10
12.000% 5/15/05 20



For the interest payments of the replicating portfolio to match the coupon payments of the
second bond, it must be the case that

(1.10)

Solving equations (1.9) and (1.10) shows that

(1.11)

Applying (1.11) to the Aug-03 triplet by letting c1=11.125%, c2=5.75%, and
c3=5.25% shows that F1=8.51% and F3=91.49%. In words, a portfolio with 8.51% of its
face value in the 11.125s and 91.49% of its value in the 5.25s will replicate one unit face
value of the 5.75s.

Now, let P1, P2, and P3 be the prices of the three bonds in the triplet. Since the portfo-
lio described by (1.11) replicates the second bond, the arbitrage price of the second bond is
given by the following equation:

(1.12)

Continuing with the example of the Aug-03 triplet, if the prices of the bonds in de-
scending coupon order are 114-12, 102.020, and 100-27, then the arbitrage equation pre-
dicts that

(1.13)

In this example, then, the market price of the middle bond is .025 greater than predicted by
the arbitrage relationship (1.12).

Like all arbitrage relationships, equation (1.12) gives the prices of bonds relative to
one another. Therefore, in this example it is as meaningful to say that the high coupon bond
is cheap relative to the other two bonds as it is to say that the middle bond is rich relative to
the other two bonds. This observation, then, allows for the investigation of the pricing of
high coupon bonds. Figures 1.5 and 1.6 chart the price of the replicating portfolio minus
the price of the middle bond for the May-01, Aug-03, May-04, Aug-04, and Nov-04 triplets
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from January 2000 to June 2001. The May-05 triplet was omitted because, over that time
period, its middle bond was the most recently issued five-year Treasury bond. As such, this
bond enjoyed financing advantages and commanded a liquidity premium. (See Chapter 15.)

A positive value in the figures means that the middle bond is cheap relative to the oth-
ers, or, equivalently, that the high coupon bond is rich relative to the others. The charts
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FIGURE 1.5 The Mispricing of May-01 and Aug-03 Treasury Triplets
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FIGURE 1.6 The Mispricing of May-04, Aug-04, and Nov-04 Treasury Triplets
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show that the high coupon bonds can be both rich and cheap, although the extremes of
deviations from the law of one price occur when the high coupon bonds are rich. The
charts also indicate that triplets of shorter maturity tend to deviate by less than do
triplets of longer maturity. The May-01 triplet, in particular, deviates very little from the
law of one price. The longer the horizon of a trade, the more risky and costly it is to take
advantage of deviations from fair value. Therefore, market forces do not eradicate the
deviations of longer-maturity triplets from fair value so efficiently as those of the
shorter-maturity triplets.
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CHAPTER 2
Bond Prices, Spot Rates, 

and Forward Rates

While discount factors can be used to describe bond prices, investors
often find it more intuitive to quantify the time value of money with

rates of interest. This chapter defines spot and forward rates, shows how
they can be derived from bond prices, and explains why they are useful
to investors.

SEMIANNUAL COMPOUNDING

An investment of $100 at an annual rate of 5% earns $5 over the year, but
when is the $5 paid? The investment is worth less if the $5 is paid at the
end of the year than if $2.50 is paid after six months and another $2.50 is
paid at the end of the year. In the latter case, the $2.50 paid after six
months can be reinvested for six months so that the investor accumulates
more than $105 by year’s end.

A complete description of a fixed income investment includes the an-
nual rate and how often that rate will be compounded during the year. An
annual rate of 5%, compounded semiannually, means that the investor re-
ceives .05/2 or 2.50% every six months, which interest is reinvested at the
same rate to compound the interest—that is, to earn interest on interest.
An annual rate of 5% compounded quarterly means that the investor re-
ceives .05/4 or 1.25% every quarter while the same 5% compounded
monthly means that the investor receives .05/12, or approximately .42%,
every month. Because most U.S. bonds pay one-half of their annual
coupons every six months, bond investors in the United States focus partic-
ularly on the case of semiannual compounding.



Investing $100 at an annual rate of 5% compounded semiannually for
six months generates

(2.1)

The term (1+.05/2) represents the per-dollar payment of principal and
semiannual interest. Investing $100 at the same rate for one year instead
generates

(2.2)

at the end of the year. The squared term results from taking the principal
amount available at the end of six months per-dollar invested, namely
(1+.05/2), and reinvesting it for another six months, that is, multiplying
again by (1+.05/2). Note that total funds at the end of the year are
$105.0625, 6.25 cents greater than the proceeds from 5% paid annually.
This 6.25 cents is compounded interest, or interest on interest.

In general, investing x at an annual rate of r compounded semiannu-
ally for T years generates

(2.3)

at the end of those T years. Note that the power in this expression is 2T since
an investment for T years compounded semiannually is, in fact, an investment
for 2T six-month periods. For example, investing $100 for 10 years at an an-
nual rate of 5% compounded semiannually will, after 10 years, be worth

(2.4)

Equation (2.3) can also be used to calculate a semiannually com-
pounded holding period return. What is the semiannually compounded re-
turn from investing x for T years and having w at the end? Letting r be the
answer, one needs to solve the following equation:
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Solving shows that

(2.6)

So, for example, an initial investment of $100 that grew to $250 after 15
years earned

(2.7)

SPOT RATES

The spot rate is the rate on a spot loan, a loan agreement in which the
lender gives money to the borrower at the time of the agreement. The t-year
spot rate is denoted r̂(t). While spot rates may be defined with respect to
any compounding frequency, this discussion will assume that rates are
compounded semiannually.

The rate r̂(t) may be thought of as the semiannually compounded re-
turn from investing in a zero coupon bond that matures t years from now.
For example, the C-STRIPS maturing on February 15, 2011, was quoted at
58.779 on February 15, 2001. Using equation (2.6), this implies a semian-
nually compounded rate of return of

(2.8)

Hence, the price of this particular STRIPS implies that r̂(10)=5.385%.
Since the price of one unit of currency maturing in t years is given by

d(t),
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Rearranging terms,

(2.10)

In words, equation (2.10) says that d(t) equals the value of one unit of cur-
rency discounted for t years at the semiannually compounded rate r̂(t).

Table 2.1 calculates spot rates based on the discount factors reported
in Table 1.2. The resulting spot rates start at about 5%, decrease to
4.886% at a maturity of two years, and then increase slowly. The relation-
ship between spot rates and maturity, or term, is called the term structure
of spot rates. When spot rates decrease with maturity, as in most of Table
2.1, the term structure is said to be downward-sloping or inverted. Con-
versely, when spot rates increase with maturity, the term structure is said to
be upward-sloping.

Figure 2.1 graphs the spot rate curve, which is the collection of spot
rates of all available terms, for settlement on February 15, 2001. (The con-
struction of this graph will be discussed in Chapter 4.) Table 2.1 shows
that the very start of the spot rate curve is downward-sloping. Figure 2.1
shows that the curve is upward-sloping from then until a bit past 20 years,
at which point the curve slopes downward.

It is important to emphasize that spot rates of different terms are in-
deed different. Alternatively, the market provides different holding period
returns from investments in five-year zero coupon bonds and from invest-
ments in 10-year zero coupon bonds. Furthermore, since a coupon bond
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TABLE 2.1 Spot Rates Derived
from the Discount Factors of Table
1.2

Time to Discount Spot
Maturity Factor Rate

0.5 0.97557 5.008%
1 0.95247 4.929%
1.5 0.93045 4.864%
2 0.90796 4.886%
2.5 0.88630 4.887%



may be viewed as a particular portfolio of zeros, the existence of a term
structure of spot rates implies that each of a bond’s payments must be dis-
counted at a different rate.

To elaborate on this point, recall from Chapter 1 and equation (1.2)
that the price of the 141/4s of February 15, 2002, could be expressed as
follows:

(2.11)

Using the relationship between discount factors and spot rates given in
equation (2.10), the price equation can also be written as

(2.12)

Writing a bond price in this way clearly shows that each cash flow is dis-
counted at a rate appropriate for that cash flow’s payment date. Alterna-
tively, an investor earns a different rate of return on bond cash flows
received on different dates.
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FIGURE 2.1 The Spot Rate Curve in the Treasury Market on February 15, 2001
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FORWARD RATES

Table 2.1 shows that the six-month spot rate was about 5.01% and the
one-year spot rate was about 4.93%. This means that an investor in a six-
month zero would earn one-half of 5.01% over the coming six months.
Similarly, an investor in a one-year zero would earn one-half of 4.93%
over the coming six months. But why do two investors earn different rates
of interest over the same six months?

The answer is that the one-year zero earns a different rate because
the investor and the issuer of the bond have committed to roll over the
principal balance at the end of six months for another six months. This
type of commitment is an example of a forward loan. More generally, a
forward loan is an agreement made to lend money at some future date.
The rate of interest on a forward loan, specified at the time of the agree-
ment as opposed to the time of the loan, is called a forward rate. An 
investor in a one-year zero can be said to have simultaneously made a
spot loan for six months and a loan, six months forward, with a term of
six months.

Define r(t) to be the semiannually compounded rate earned on a six-
month loan t–.5 years forward. For example, r(4.5) is the semiannually
compounded rate on a six-month loan, four years forward (i.e., the rate is
agreed upon today, the loan is made in four years, and the loan is repaid
in four years and six months). The following diagram illustrates the differ-
ence between spot rates and forward rates over the next one and one-half
years: Spot rates are applicable from now to some future date, while for-
ward rates are applicable from some future date to six months beyond
that future date. For the purposes of this chapter, all forward rates are
taken to be six-month rates some number of semiannual periods forward.
Forward rates, however, can be defined with any term and any forward
start—for example, a three-month rate two years forward, or a five-year
rate 10 years forward.
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The discussion now turns to the computation of forward rates given
spot rates. As shown in the preceding diagram, a six-month loan zero years
forward is simply a six-month spot loan. Therefore,

(2.13)

The second equality simply reports a result of Table 2.1. The next forward
rate, r(1), is computed as follows: Since the one-year spot rate is r̂(1), a one-
year investment of $1 grows to [1+r̂(1)/2]2 dollars at the end of the year. Al-
ternatively, this investment can be viewed as a combination of a six-month
loan zero years forward at an annual rate of r(.5) and a six-month loan six
months forward at an annual rate of r(1). Viewed this way, a one-year in-
vestment of one unit of currency grows to [1+r(.5)/2]×[1+r(1)/2]. Spot rates
and forward rates will be consistent measures of return only if the unit in-
vestment grows to the same amount regardless of which measure is used.
Therefore, r(1) is determined by the following equation:

(2.14)

Since r(.5) and r̂(1) are known, equation (2.14) can be solved to show that
r(1) is about 4.851%.

Before proceeding with these calculations, the rates of return on six-
month and one-year zeros can now be reinterpreted. According to the spot
rate interpretation of the previous section, six-month zeros earn an annual
5.008% over the next six months and one-year zeros earn an annual
4.949% over the next year. The forward rate interpretation is that both
six-month and one-year zeros earn an annual 5.008% over the next six
months. One-year zeros, however, go on to earn an annual 4.851% over
the following six months. The one-year spot rate of 4.949%, therefore, is a
blend of its two forward rate components, as shown in equation (2.14).

The same procedure used to calculate r(1) may be used to calculate
r(1.5). Investing one unit of currency for 1.5 years at the spot rate r̂ (1.5)
must result in the same final payment as investing for six months at r(.5),
for six months, six months forward at r(1), and for six months, one year
forward at r(1.5). Mathematically,
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(2.15)

Since r(.5), r(1), and r̂(1.5) are known, this equation can be solved to re-
veal that r(1.5)=4.734%.

Generalizing this reasoning to any term t, the algebraic relationship be-
tween forward and spot rates is

(2.16)

Table 2.2 reports the values of the first five six-month forward rates based
on equation (2.16) and the spot rates in Table 2.1. Figure 2.2, created us-
ing the techniques of Chapter 4, graphs the spot and forward rate curves
from the Treasury market for settle on February 15, 2001. Note that when
the forward rate curve is above the spot rate curve, the spot rate curve is
rising or sloping upward. But, when the forward rate curve is below the
spot rate curve, the spot rate curve slopes downward or is falling. An alge-
braic proof of these propositions can be found in Appendix 2A. The text,
however, continues with a more intuitive explanation.

Equation (2.16) can be rewritten in the following form:
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TABLE 2.2 Forward Rates Derived
from the Spot Rates of Table 2.1

Time to Spot Forward
Maturity Rate Rate

0.5 5.008% 5.008%
1 4.929% 4.851%
1.5 4.864% 4.734%
2 4.886% 4.953%
2.5 4.887% 4.888%



For expositional ease, let t=2.5 so that equation (2.17) becomes

(2.18)

The intuition behind equation (2.18) is that the proceeds from a unit
investment over the next 2.5 years (the right-hand side) must equal the
proceeds from a spot loan over the next two years combined with a six-
month loan two years forward (the left-hand side). Thus, the 2.5-year spot
rate is a blend of the two-year spot rate and the six-month rate two years
forward.

If r(2.5) is above r̂ (2), any blend of the two will be above r̂ (2), and,
therefore, r̂ (2.5)>rr̂ (2). In words, if the forward rate is above the spot rate,
the spot rate curve is increasing. Similarly, if r(2.5) is below r̂ (2), any blend
will be below r̂ (2), and, therefore, r̂ (2.5)< r̂ (2). In words, if the forward
rate is below the spot rate, the spot rate curve is decreasing.

This section concludes by returning to bond pricing equations. In pre-
vious sections, bond prices have been expressed in terms of discount fac-
tors and in terms of spot rates. Since forward rates are just another
measure of the time value of money, bond prices can be expressed in terms
of forward rates as well. To review, the price of the 141/4s of February 15,
2002, may be written in either of these two ways:
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FIGURE 2.2 Spot and Forward Rate Curves in the Treasury Market on February
15, 2001
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(2.19)

(2.20)

Using equation (2.16) that relates forward rates to spot rates, the forward
rate analog of these two pricing equations is

(2.21)

These three bond pricing equations have slightly different interpretations,
but they all serve the purpose of transforming future cash flows into a price
to be paid or received today. And, by construction, all three discounting
procedures produce the same market price.

MATURITY AND BOND PRICE

When are bonds of longer maturity worth more than bonds of shorter ma-
turity, and when is the reverse true?

To gain insight into the relationship between maturity and bond price,
first focus on the following more structured question. Consider five imagi-
nary 47/8% coupon bonds with terms from six months to two and one-half
years. As of February 15, 2001, which bond would have the greatest price?

This question can be answered, of course, by calculating the price of
each of the five bonds using the discount factors in Table 1.2. Doing so
produces Table 2.3 and reveals that the one and one-half year bond (Au-
gust 15, 2002) has the greatest price. But why is that the case? (The for-
ward rates, copied from Table 2.2, will be referenced shortly.)

To begin, why do the 47/8s of August 15, 2001, have a price less than
100? Since the forward rate for the first six-month period is 5.008%, a
bond with a 5.008% coupon would sell for exactly 100:

(2.22)
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Intuitively, when a bond pays exactly the market rate of interest, an in-
vestor will not require a principal payment greater than the initial invest-
ment and will not accept any principal payment less than the initial
investment.

The bond being priced, however, earns only 47/8% in interest. An in-
vestor buying this bond will accept this below-market rate of interest only
in exchange for a principal payment greater than the initial investment. In
other words, the 47/8s of August 15, 2001, will have a price less than face
value. In particular, an investor buys 100 of the bond for 99.935, accepting
a below-market rate of interest, but then receives a 100 principal payment
at maturity.

Extending maturity from six months to one year, the coupon rate
earned over the additional six-month period is 47/8%, but the forward rate
for six-month loans, six months forward, is only 4.851%. So by extending
maturity from six months to one year investors earn an above-market re-
turn on that forward loan. This makes the one-year bond more desirable
than the six-month bond and, equivalently, makes the one-year bond price
of 99.947 greater than the six-month bond price of 99.935.

The same argument holds for extending maturity from one year to one
and one-half years. The coupon rate of 47/8% exceeds the rate on a six-
month loan one year forward, at 4.734%. As a result the August 15, 2002,
bond has a higher price than the February 15, 2002, bond.

This argument works in reverse, however, when extending maturity
for yet another six months. The rate on a six-month loan one and one-half
years forward is 4.953%, which is greater than the 47/8% coupon rate.
Therefore, extending maturity from August 15, 2002, to February 15,
2003, implicitly makes a forward loan at below-market rates. As a result,

Maturity and Bond Price 33

TABLE 2.3 Prices of 4.875s of Various Maturities
Using the Discount Factors of Table 1.2

Maturity Price Forward

8/15/01 99.935 5.008%
2/15/02 99.947 4.851%
8/15/02 100.012 4.734%
2/15/03 99.977 4.953%
8/15/03 99.971 4.888%



the price of the February 15, 2003, bonds is less than the price of the Au-
gust 15, 2002, bonds.

More generally, price increases with maturity whenever the coupon
rate exceeds the forward rate over the period of maturity extension. Price
decreases as maturity increases whenever the coupon rate is less than the
relevant forward rate.

MATURITY AND BOND RETURN

When do short-term bonds prove a better investment than long-term
bonds, and when is the reverse true?

Consider the following more structured problem. Investor A decides to
invest $10,000 by rolling six-month STRIPS for two and one-half years.
Investor B decides to invest $10,000 in the 51/4s of August 15, 2003, and to
roll coupon receipts into six-month STRIPS. Starting these investments on
February 15, 2001, under which scenarios will investor A have more
money in two and one-half years, and under which scenarios will investor
B have more money?

Refer to Table 2.2 for forward rates as of February 15, 2001. The
six-month rate is known and is equal to 5.008%. Now assume for the
moment that the forward rates as of February 15, 2001, are realized;
that is, future six-month rates happen to match these forward rates. For
example, assume that the six-month rate on February 15, 2003, will
equal the six-month rate two years forward as of February 15, 2001, or
4.886%.

Under this very particular interest rate scenario, the text computes the
investment results of investors A and B after two and one-half years.

Since the six-month rate at the start of the contest is 5.008%, on Au-
gust 15, 2001, investor A will have

(2.23)

Under the assumption that forward rates are realized, the six-month rate
on August 15, 2001, will have changed to 4.851%. Rolling the proceeds
for the next six months at this rate, on February 15, 2002, investor A
will have
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(2.24)

Applying this logic over the full two and one-half years, on August 15,
2003, investor A will have

(2.25)

The discussion now turns to investor B, who, on February 15, 2001,
buys the 51/4s of August 15, 2003. At 100-27, the price reported in Table
1.1, $10,000 buys $9,916.33 face value of the bond. August 15, 2001,
brings a coupon payment of

(2.26)

Investor B will reinvest this interest payment, reinvest the proceeds on Feb-
ruary 15, 2002, reinvest those proceeds on August 15, 2002, and so on,
until August 15, 2003. Under the assumption that the original forward
rates are realized, investor B’s total income from the $260.30 received on
August 15, 2001, is

(2.27)

Investor B will receive another coupon payment of $260.30 on February
15, 2002. This payment will also be reinvested to August 15, 2003, grow-
ing to

(2.28)

Proceeding in this fashion, the coupon payments received on August
15, 2002, and February 15, 2003, grow to $273.27 and $266.67, respec-
tively. The coupon payment of $260.30 received on August 15, 2003, of
course, has no time to earn interest on interest.

On August 15, 2003, investor B will receive a principal payment of
$9,916.33 from the 51/4s of August 15, 2003, and collect the accumulated
proceeds from coupon income of $286.52+$279.74+$273.27+$266.67+
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$260.30 or $1,366.50. In total, then, investor B will receive $9,916.33+
$1,366.50 or $11,282.83. As shown in equation (2.25), investor A will ac-
cumulate exactly the same amount.

It is no coincidence that when the six-month rate evolves according to
the initial forward rate curve investors rolling short-term bonds and in-
vestors buying long-term bonds perform equally well. Recall that an in-
vestment in a bond is equivalent to a series of forward loans at rates given
by the forward rate curve. In the preceding example, the 51/4s of August
15, 2003, lock in a six-month rate of 5.008% on February 15, 2001, a six-
month rate of 4.851% on August 15, 2001, and so on. Therefore, if the
six-month rate does turn out to be 4.851% on August 15, 2001, and so on,
the 51/4s of August 15, 2003, lock in the actual succession of six-month
rates. Equivalently, investors in this bond do exactly as well as investors
who roll over short-term bonds.

When does investor A, the investor who rolls over six-month invest-
ments, do better than B, the bond investor? Say, for example, that the six-
month rate remains at its initial value of 5.008% through August 15,
2003. Then investor A earns a semiannual rate of 5.008% every six
months while investor B locked in the forward rates of Table 2.2, all at or
below 5.008%. Investor B does get to reinvest coupon payments at
5.008%, but still winds up behind investor A.

When does investor B do better than investor A? Say, for example, that
on the day after the initial investments (i.e., February 16, 2001) the six-
month rate fell to 4.75% and stayed there through August 15, 2003. Then
investor B, who has locked in the now relatively high forward rates of
Table 2.2, will do better than investor A, who must roll over the invest-
ment at 4.75%.

In general, investors who roll over short-term investments do better
than investors in longer-term bonds when the realized short-term rates ex-
ceed the forward rates built into bond prices. Investors in bonds do better
when the realized short-term rates fall below these forward rates. There
are, of course, intermediate situations in which some of the realized rates
are higher than the respective forward rates and some are lower. In these
cases more detailed calculations are required to determine which investor
class does better.

Investors with a view on short-term rates—that is, with an opinion on
the direction of future short-term rates—may use the insight of this section
to choose among bonds with different maturity dates. Comparing the for-
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ward rate curve with views on rates by inspection or by more careful com-
putations will reveal which bonds are cheap and which bonds are rich with
respect to forecasts. It should be noted that the interest rate risk of long-
term bonds differs from that of short-term bonds. This point will be stud-
ied extensively in Part Two.

TREASURY STRIPS, CONTINUED

In the context of the law of one price, Chapter 1 compared the discount fac-
tors implied by C-STRIPS, P-STRIPS, and coupon bonds. With the defini-
tions of this chapter, spot rates can be compared. Figure 2.3 graphs the spot
rates implied from C- and P-STRIPS prices for settlement on February 15,
2001. The graph shows in terms of rate what Figure 1.4 showed in terms of
price. The shorter-maturity C-STRIPS are a bit rich (lower spot rates) while
the longer-maturity C-STRIPS are very slightly cheap (higher spot rates).
Notice that the longer C-STRIPS appear at first to be cheaper in Figure 1.4
than in Figure 2.3. As will become clear in Part Two, small changes in the
spot rates of longer-maturity zeros result in large price differences. Hence
the relatively small rate cheapness of the longer-maturity C-STRIPS in Fig-
ure 2.3 is magnified into large price cheapness in Figure 1.4.
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FIGURE 2.3 Spot Curves Implied by C-STRIPS and P-STRIPS Prices on February
15, 2001
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The two very rich P-STRIPS in Figure 2.3, one with 10 and one with
30 years to maturity, derive from the most recently issued bonds in their re-
spective maturity ranges. As mentioned in Chapter 1 and as to be discussed
in Chapter 15, the richness of these bonds and their underlying P-STRIPS
is due to liquidity and financing advantages.

Chapter 4 will show a spot rate curve derived from coupon bonds
(shown earlier as Figure 2.1) that very much resembles the spot rate curve
derived from C-STRIPS. This evidence for the law of one price is deferred
to that chapter, which also discusses curve fitting and smoothness: As can
be seen by comparing Figures 2.1 and 2.3, the curve implied from the raw
C-STRIPS data is much less smooth than the curve constructed using the
techniques of Chapter 4.

APPENDIX 2A
THE RELATION BETWEEN SPOT AND FORWARD
RATES AND THE SLOPE OF THE TERM STRUCTURE

The following proposition formalizes the notion that the term structure of
spot rates slopes upward when forward rates are above spot rates. Simi-
larly, the term structure of spot rates slopes downward when forward rates
are below spot rates.

Proposition 1: If the forward rate from time t to time t+.5 exceeds the
spot rate to time t, then the spot rate to time t+.5 exceeds the spot rate to
time t.

Proof: Since r(t+.5)>r̂(t),

(2.29)

Multiplying both sides by (1+r̂(t)/2)2t,

(2.30)

Using the relationship between spot and forward rates given in equation
(2.17), the left-hand side of (2.30) can be written in terms of r̂(t+.5):
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(2.31)

But this implies, as was to be proved, that

(2.32)

Proposition 2: If the forward rate from time t to time t+.5 is less than
the spot rate to time t, then the spot rate to time t+.5 is less than the spot
rate to time t.

Proof: Reverse the inequalities in the proof of proposition 1.
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CHAPTER 3
Yield-to-Maturity

Chapters 1 and 2 showed that the time value of money can be de-
scribed by discount factors, spot rates, or forward rates. Further-

more, these chapters showed that each cash flow of a fixed income
security must be discounted at the factor or rate appropriate for the term
of that cash flow.

In practice, investors and traders find it useful to refer to a bond’s
yield-to-maturity, or yield, the single rate that when used to discount a
bond’s cash flows produces the bond’s market price. While indeed useful as
a summary measure of bond pricing, yield-to-maturity can be misleading
as well. Contrary to the beliefs of some market participants, yield is not a
good measure of relative value or of realized return to maturity. In particu-
lar, if two securities with the same maturity have different yields, it is not
necessarily true that the higher-yielding security represents better value.
Furthermore, a bond purchased at a particular yield and held to maturity
will not necessarily earn that initial yield.

Perhaps the most appealing interpretation of yield-to-maturity is not
recognized as widely as it should be. If a bond’s yield-to-maturity remains
unchanged over a short time period, that bond’s realized total rate of re-
turn equals its yield.

This chapter aims to define and interpret yield-to-maturity while high-
lighting its weaknesses. The presentation will show when yields are conve-
nient and safe to use and when their use is misleading.

DEFINITION AND INTERPRETATION

Yield-to-maturity is the single rate such that discounting a security’s cash
flows at that rate produces the security’s market price. For example, Table



1.1 reported the 61/4s of February 15, 2003, at a price of 102-181/8 on Feb-
ruary 15, 2001. The yield-to-maturity of the 61/4s, y, is defined such that

(3.1)

Solving for y by trial and error or some numerical method shows that the
yield-to-maturity of this bond is about 4.8875%.1 Note that given yield in-
stead of price, it is easy to solve for price. As it is so easy to move from
price to yield and back, yield-to-maturity is often used as an alternate way
to quote price. In the example of the 61/4s, a trader could just as easily bid
to buy the bonds at a yield of 4.8875% as at a price of 102-181/8.

While calculators and computers make price and yield calculations
quite painless, there is a simple and instructive formula with which to re-
late price and yield. The definition of yield-to-maturity implies that the
price of a T-year security making semiannual payments of c/2 and a final
principal payment of F is2

(3.2)

Note that there are 2T terms being added together through the summation
sign since a T-year bond makes 2T semiannual coupon payments. This
sum equals the present value of all the coupon payments, while the final
term equals the present value of the principal payment. Using the case of
the 61/4s of February 15, 2003, as an example of equation (3.2), T=2,
c=6.25, y=4.8875%, F=100, and P=102.5665.

Using the fact that3
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1Many calculators, spreadsheets, and other computer programs are available to
compute yield-to-maturity given bond price and vice versa.
2A more general formula, valid when the next coupon is due in less than six
months, is given in Chapter 5.
3The proof of this fact is as follows. Let . Then, and
S–zS=za–zb+1. Finally, dividing both sides of this equation by 1–z gives equation (3.3).

S z t

t a

b
=

=∑ zS zt

t a

b

=
= +

+∑ 1

1



with z=1/(1+y/2), a=1, and b=2T, equation (3.2) becomes

(3.4)

Several conclusions about the price-yield relationship can be drawn
from equation (3.4). First, when c=100y and F=100, P=100. In words,
when the coupon rate equals the yield-to-maturity, bond price equals
face value, or par. Intuitively, if it is appropriate to discount all of a
bond’s cash flows at the rate y, then a bond paying a coupon rate of c is
paying the market rate of interest. Investors will not demand to receive
more than their initial investment at maturity nor will they accept less
than their initial investment at maturity. Hence, the bond will sell for its
face value.

Second, when c>100y and F=100, P>100. If the coupon rate exceeds
the yield, then the bond sells at a premium to par, that is, for more than
face value. Intuitively, if it is appropriate to discount all cash flows at the
yield, then, in exchange for an above-market coupon, investors will de-
mand less than their initial investment at maturity. Equivalently, investors
will pay more than face value for the bond.

Third, when c<100y, P<100. If the coupon rate is less than the yield,
then the bond sells at a discount to par, that is, for less than face value.
Since the coupon rate is below market, investors will demand more than
their initial investment at maturity. Equivalently, investors will pay less
than face value for the bond.

Figure 3.1 illustrates these first three implications of equation (3.4).
Assuming that all yields are 5.50%, each curve gives the price of a bond
with a particular coupon as a function of years remaining to maturity. The
bond with a coupon rate of 5.50% has a price of 100 at all terms. With 30
years to maturity, the 7.50% and 6.50% coupon bonds sell at substantial
premiums to par, about 129 and 115, respectively. As these bonds mature,
however, the value of above-market coupons falls: receiving a coupon 1%
or 2% above market for 20 years is not as valuable as receiving those
above-market coupons for 30 years. Hence, the prices of these premium
bonds fall over time until they are worth par at maturity. This effect of
time on bond prices is known as the pull to par.

Conversely, the 4.50% and 3.50% coupon bonds sell at substantial
discounts to par, at about 85 and 71, respectively. As these bonds mature,
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the disadvantage of below-market coupons falls. Hence, the prices of these
bonds rise to par as they mature.

It is important to emphasize that to illustrate simply the pull to par
Figure 3.1 assumes that the bonds yield 5.50% at all times. The actual
price paths of these bonds over time will differ dramatically from those in
the figure depending on the realization of yields.

The fourth implication of equation (3.4) is the annuity formula. An
annuity with semiannual payments is a security that makes a payment c/2
every six months for T years but never makes a final “principal” payment.
In terms of equation (3.4), F=0, so that the price of an annuity, A(T) is

(3.5)

For example, the value of a payment of 6.50/2 every six months for 10 years
at a yield of 5.50% is about 46.06.

The fifth implication of equation (3.4) is that as T gets very large,
P=c/y. In words, the price of a perpetuity, a bond that pays coupons for-
ever, equals the coupon divided by the yield. For example, at a yield of
5.50%, a 6.50 coupon in perpetuity will sell for 6.50/5.50% or approximately
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FIGURE 3.1 Prices of Bonds Yielding 5.5% with Various Coupons and Years to
Maturity
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118.18. While perpetuities are not common, the equation P=c/y provides a
fast, order-of-magnitude approximation for any coupon bond with a long
maturity. For example, at a yield of 5.50% the price of a 6.50% 30-year
bond is about 115 while the price of a 6.50 coupon in perpetuity is about
118. Note, by the way, that an annuity paying its coupon forever is also a
perpetuity. For this reason the perpetuity formula may also be derived
from (3.5) with T very large.

The sixth and final implication of equation (3.4) is the following. If a
bond’s yield-to-maturity over a six-month period remains unchanged, then
the annual total return of the bond over that period equals its yield-to-ma-
turity. This statement can be proved as follows. Let P0 and P1/2 be the price
of a T-year bond today and the price4 just before the next coupon pay-
ment, respectively, assuming that the yield remains unchanged over the six-
month period. By the definition of yield to maturity,

(3.6)

and

(3.7)

Note that after six months have passed, the first coupon payment is not
discounted at all since it will be paid in the next instant, the second coupon
payment is discounted over one six-month period, and so forth, until the
principal plus last coupon payment are discounted over 2T–1 six-month
periods. Inspection of (3.6) and (3.7) reveals that

(3.8)

Rearranging terms,
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4In this context, price is the full price. The distinction between flat and full price
will be presented in Chapter 4.



The term in parentheses is the return on the bond over the six-month pe-
riod, and twice that return is the bond’s annual return. Therefore, if yield
remains unchanged over a six-month period, the yield equals the annual re-
turn, as was to be shown.

YIELD-TO-MATURITY AND SPOT RATES

Previous chapters showed that each of a bond’s cash flows must be dis-
counted at a rate corresponding to the timing of that particular cash flow.
Taking the 61/4s of February 15, 2003, as an example, the present value of
the bond’s cash flows can be written as a function of its yield-to-maturity,
as in equation (3.1), or as a function of spot rates. Mathematically,

(3.10)

Equations (3.10) clearly demonstrate that yield-to-maturity is a summary
of all the spot rates that enter into the bond pricing equation. Recall from
Table 2.1 that the first four spot rates have values of 5.008%, 4.929%,
4.864%, and 4.886%. Thus, the bond’s yield of 4.8875% is a blend of
these four rates. Furthermore, this blend is closest to the two-year spot rate
of 4.886% because most of this bond’s value comes from its principal pay-
ment to be made in two years.

Equations (3.10) can be used to be more precise about certain relation-
ships between the spot rate curve and the yield of coupon bonds.

First, consider the case of a flat term structure of spot rates; that is, all
of the spot rates are equal. Inspection of equations (3.10) reveals that the
yield must equal that one spot rate level as well.

Second, assume that the term structure of spot rates is upward-sloping;
that is,

(3.11)

In that case, any blend of these four rates will be below r̂2. Hence, the yield
of the two-year bond will be below the two-year spot rate.
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Third, assume that the term structure of spot rates is downward-slop-
ing. In that case, any blend of the four spot rates will be above r̂2. Hence,
the yield of the two-year bond will be above the two-year spot rate. To
summarize,

Spot rates downward-sloping: Two-year bond yield above two-year 
spot rate

Spot rates flat: Two-year bond yield equal to two-year
spot rate

Spot rates upward-sloping: Two-year bond yield below two-year 
spot rate

To understand more fully the relationships among the yield of a secu-
rity, its cash flow structure, and spot rates, consider three types of securi-
ties: zero coupon bonds, coupon bonds selling at par (par coupon bonds),
and par nonprepayable mortgages. Mortgages will be discussed in Chapter
21. For now, suffice it to say that the cash flows of a traditional, nonpre-
payable mortgage are level; that is, the cash flow on each date is the same.
Put another way, a traditional, nonprepayable mortgage is just an annuity.

Figure 3.2 graphs the yields of the three security types with varying
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FIGURE 3.2 Yields of Fairly Priced Zero Coupon Bonds, Par Coupon Bonds, and
Par Nonprepayable Mortgages
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terms to maturity on February 15, 2001. Before interpreting the graph, the
text will describe how each curve is generated.

The yield of a zero coupon bond of a particular maturity equals the
spot rate of that maturity. Therefore, the curve labeled “Zero Coupon
Bonds” is simply the spot rate curve to be derived in Chapter 4.

This chapter shows that, for a bond selling at its face value, the yield
equals the coupon rate. Therefore, to generate the curve labeled “Par
Coupon Bonds,” the coupon rate is such that the present value of the re-
sulting bond’s cash flows equals its face value. Mathematically, given dis-
count factors and a term to maturity of T years, this coupon rate c satisfies

(3.12)

Solving for c,

(3.13)

Given the discount factors to be derived in Chapter 4, equation (3.13) can
be solved for each value of T to obtain the par bond yield curve.

Finally, the “Par Nonprepayable Mortgages” curve is created as fol-
lows. For comparability with the other two curves, assume that mortgage
payments are made every six months instead of every month. Let X be the
semiannual mortgage payment. Then, with a face value of 100, the present
value of mortgage payments for T years equals par only if

(3.14)

Or, equivalently, only if

(3.15)

Furthermore, the yield of a par nonprepayable T-year mortgage is defined
such that
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(3.16)

Given a set of discount factors, equations (3.15) and (3.16) may be solved
for yT using a spreadsheet function or a financial calculator. The “Par Non-
prepayable Mortgages” curve of Figure 3.2 graphs the results.

The text now turns to a discussion of Figure 3.2. At a term of .5 years,
all of the securities under consideration have only one cash flow, which, of
course, must be discounted at the .5-year spot rate. Hence, the yields of all
the securities at .5 years are equal. At longer terms to maturity, the behav-
ior of the various curves becomes more complex.

Consistent with the discussion following equations (3.10), the down-
ward-sloping term structure at the short end produces par yields that ex-
ceed zero yields, but the effect is negligible. Since almost all of the value of
short-term bonds comes from the principal payment, the yields of these
bonds will mostly reflect the spot rate used to discount those final pay-
ments. Hence, short-term bond yields will approximately equal zero
coupon yields.

As term increases, however, the number of coupon payments increases
and discounting reduces the relative importance of the final principal pay-
ment. In other words, as term increases, intermediate spot rates have a
larger impact on coupon bond yields. Hence, the shape of the term struc-
ture can have more of an impact on the difference between zero and par
yields. Indeed, as can be seen in Figure 3.2, the upward-sloping term struc-
ture of spot rates at intermediate terms eventually leads to zero yields ex-
ceeding par yields. Note, however, that the term structure of spot rates
becomes downward-sloping after about 21 years. This shape can be related
to the narrowing of the difference between zero and par yields. Further-
more, extrapolating this downward-sloping structure past the 30 years
recorded on the graph, the zero yield curve will cut through and find itself
below the par yield curve.

The qualitative behavior of mortgage yields relative to zero yields is
the same as that of par yields, but more pronounced. Since the cash flows
of a mortgage are level, mortgage yields are more balanced averages of
spot rates than are par yields. Put another way, mortgage yields will be
more influenced than par bonds by intermediate spot rates. Conse-
quently, if the term structure is downward-sloping everywhere, mortgage
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yields will be higher than par bond yields. And if the term structure is up-
ward-sloping everywhere, mortgage yields will be lower than par bond
yields. Figure 3.2 shows both these effects. At short terms, the term struc-
ture is downward-sloping and mortgage yields are above par bond yields.
Mortgage yields then fall below par yields as the term structure slopes
upward. As the term structure again becomes downward-sloping, how-
ever, mortgage yields are poised to rise above par yields to the right of the
displayed graph.

YIELD-TO-MATURITY AND RELATIVE VALUE: 
THE COUPON EFFECT

All securities depicted in Figure 3.2 are fairly priced. In other words, their
present values are properly computed using a single discount function or
term structure of spot or forward rates. Nevertheless, as explained in the
previous section, zero coupon bonds, par coupon bonds, and mortgages of
the same maturity have different yields to maturity. Therefore, it is incor-
rect to say, for example, that a 15-year zero is a better investment than a
15-year par bond or a 15-year mortgage because the zero has the highest
yield. The impact of coupon level on the yield-to-maturity of coupon
bonds with the same maturity is called the coupon effect. More generally,
yields across fairly priced securities of the same maturity vary with the cash
flow structure of the securities.

The size of the coupon effect on February 15, 2001, can be seen in Fig-
ure 3.2. The difference between the zero and par rates is about 1.3 basis
points5 at a term of 5 years, 6.1 at 10 years, and 14.1 at 20 years. After
that the difference falls to 10.5 basis points at 25 years and to 2.8 at 30
years. Unfortunately, these quantities cannot be easily extrapolated to
other yield curves. As the discussions in this chapter reveal, the size of the
coupon effect depends very much on the shape of the term structure of in-
terest rates.
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5A basis point is 1% of .01, or .0001. The difference between a rate of 5.00% and
5.01%, for example, is one basis point.



YIELD-TO-MATURITY AND REALIZED RETURN

Yield-to-maturity is sometimes described as a measure of a bond’s return if
held to maturity. The argument is made as follows. Repeating equation
(3.1), the yield-to-maturity of the 61/4s of February 15, 2003, is defined
such that

(3.17)

Multiplying both sides by (1+y/2)4 gives

(3.18)

The interpretation of the left-hand side of equation (3.18) is as follows. On
August 15, 2001, the bond makes its next coupon payment of 3.125. Semi-
annually reinvesting that payment at rate y through the bond’s maturity of
February 15, 2003, will produce 3.125(1+y/2)3. Similarly, reinvesting the
coupon payment paid on February 15, 2002, through the maturity date at
the same rate will produce 3.125(1+y/2)2. Continuing with this reasoning,
the left-hand side of equation (3.18) equals the sum one would have on Feb-
ruary 15, 2003, assuming a semiannually compounded coupon reinvest-
ment rate of y. Equation (3.18) says that this sum equals 102.5664(1+y/2)4,
the purchase price of the bond invested at a semiannually compounded rate
of y for two years. Hence it is claimed that yield-to-maturity is a measure of
the realized return to maturity.

Unfortunately, there is a serious flaw in this argument. There is ab-
solutely no reason to assume that coupons will be reinvested at the initial
yield-to-maturity of the bond. The reinvestment rate of the coupon paid
on August 15, 2001, will be the 1.5-year rate that prevails six months
from the purchase date. The reinvestment rate of the following coupon
will be the one-year rate that prevails one year from the purchase date,
and so forth. The realized return from holding the bond and reinvesting
coupons depends critically on these unknown future rates. If, for example,
all of the reinvestment rates turn out to be higher than the original yield,
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then the realized yield-to-maturity will be higher than the original yield-
to-maturity. If, at the other extreme, all of the reinvestment rates turn out
to be lower than the original yield, then the realized yield will be lower
than the original yield. In any case, it is extremely unlikely that the real-
ized yield of a coupon bond held to maturity will equal its original yield-
to-maturity. The uncertainty of the realized yield relative to the original
yield because coupons are invested at uncertain future rates is often called
reinvestment risk.
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CHAPTER 4
Generalizations and Curve Fitting

While introducing discount factors, bond pricing, spot rates, forward
rates, and yield, the first three chapters simplified matters by assuming

that cash flows appear in even six-month intervals. This chapter general-
izes the discussion of these chapters to accommodate the reality of cash
flows paid at any time. These generalizations include accrued interest built
into a bond’s total transaction price, compounding conventions other than
semiannual, and curve fitting techniques to estimate discount factors for
any time horizon. The chapter ends with a trading case study that shows
how curve fitting may lead to profitable trade ideas.

ACCRUED INTEREST

To ensure that cash flows occur every six months from a settlement date of
February 15, 2001, the bonds included in the examples of Chapters 1
through 3 all matured on either August 15 or on February 15 of a given
year. Consider now the 51/2s of January 31, 2003. Since this bond matures
on January 31, its semiannual coupon payments all fall on July 31 or Janu-
ary 31. Therefore, as of February 15, 2001, the latest coupon payment of
the 51/2s had been on January 31, 2001, and the next coupon payment was
to be paid on July 31, 2001.

Say that investor B buys $10,000 face value of the 51/2s from in-
vestor S for settlement on February 15, 2001. It can be argued that in-
vestor B is not entitled to the full semiannual coupon payment of
$10,000×5.50%/2 or $275 on July 31, 2001, because, as of that time, in-



vestor B will have held the bond for only about five and a half months.
More precisely, since there are 166 days between February 15, 2001,
and July 31, 2001, while there are 181 days between January 31, 2001,
and July 31, 2001, investor B should receive only (166/181)×$275 or
$252.21 of the coupon payment. Investor S, who held the bond from the
latest coupon date of January 31, 2001, to February 15, 2001, should
collect the rest of the $275 coupon or $22.79. To allow investors B and
S to go their separate ways after settlement, market convention dictates
that investor B pay $22.79 of accrued interest to investor S on the settle-
ment date of February 15, 2001. Furthermore, having paid this $22.79
of accrued interest, investor B may keep the entire $275 coupon pay-
ment of July 31, 2001. This market convention achieves the desired split
of that coupon payment: $22.79 for investor S on February 15, 2001,
and $275–$22.79 or $252.21 for investor B on July 31, 2001. The fol-
lowing diagram illustrates the working of the accrued interest conven-
tion from the point of view of the buyer.

Say that the quoted or flat price of the 51/2s of January 31, 2003 on
February 15, 2001, is 101-45/8. Since the accrued interest is $22.79 per
$10,000 face or .2279%, the full price of the bond is defined to be
101+4.625/32+.2279 or 101.3724. Therefore, on $10,000 face amount, the
invoice price—that is, the money paid by the buyer and received by the
seller—is $10,137.24.

The bond pricing equations of the previous chapters have to be gener-
alized to take account of accrued interest. When the accrued interest of a
bond is zero—that is, when the settlement date is a coupon payment
date—the flat and full prices of the bond are equal. Therefore, the previous
chapters could, without ambiguity, make the statement that the price of a
bond equals the present value of its cash flows. When accrued interest is
not zero the statement must be generalized to say that the amount paid or
received for a bond (i.e., its full price) equals the present value of its cash

Last Coupon  Purchase                            Next Coupon
           1/ 31 / 01      2 /15 / 01                                    7 / 31/ 01

               Pay interest
             for this period.

                Receive interest for the full coupon period.

− − − − − − − − − − − − − − − − − − →| | |
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flows. Letting P be the bond’s flat price, AI its accrued interest, and PV the
present value function,

(4.1)

Equation (4.1) reveals an important principle about accrued inter-
est. The particular market convention used in calculating accrued inter-
est does not really matter. Say, for example, that everyone believes that
the accrued interest convention in place is too generous to the seller 
because instead of being made to wait for a share of the interest until the
next coupon date the seller receives that share at settlement. In that case,
equation (4.1) shows that the flat price adjusts downward to mitigate
this seller’s advantage. Put another way, the only quantity that matters is
the invoice price (i.e., the money that changes hands), and it is this
quantity that the market sets equal to the present value of the future
cash flows.

With an accrued interest convention, if yield does not change then the
quoted price of a bond does not fall as a result of a coupon payment. To
see this, let Pb and Pa be the quoted prices of a bond right before and right
after a coupon payment of c/2, respectively. Right before a coupon date the
accrued interest equals the full coupon payment and the present value of
the next coupon equals that same full coupon payment. Therefore, invok-
ing equation (4.1),

(4.2)

Simplifying,

(4.3)

Right after the next coupon payment, accrued interest equals zero. There-
fore, invoking equation (4.1) again,

(4.4)P PVa + = ( )0 cash flows after the next coupon

P PVb = ( )cash flows after the next coupon

P c c PVb + = + ( )2 2 cash flows after the next coupon

P AI PV+ = (future cash flows)
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Clearly Pa=Pb so that the flat price does not fall as a result of the coupon
payment. By contrast, the full price does fall from Pb+c/2 before the
coupon payment to Pa=Pb after the coupon payment.1

COMPOUNDING CONVENTIONS

Since the previous chapters assumed that cash flows arrive every six months,
the text there could focus on semiannually compounded rates. Allowing for
the possibility that cash flows arrive at any time requires the consideration of
other compounding conventions. After elaborating on this point, this section
argues that the choice of convention does not really matter. Discount factors
are traded, directly through zero coupon bonds or indirectly through coupon
bonds. Therefore, it is really discount factors that summarize market prices
for money on future dates while interest rates simply quote those prices with
the convention deemed most convenient for the application at hand.

When cash flows occur in intervals other than six months, semiannual
compounding is awkward. Say that an investment of one unit of currency
at a semiannual rate of 5% grows to 1+.05/2 after six months. What hap-
pens to an investment for three months at that semiannual rate? The an-
swer cannot be 1+.05/4, for then a six-month investment would grow to
(1+.05/4)2 and not 1+.05/2. In other words, the answer 1+.05/4 implies quar-
terly compounding. Another answer might be (1+.05/2)1/2. While having the
virtue that a six-month investment does indeed grow to 1+.05/2, this solu-
tion essentially implies interest on interest within the six-month period.
More precisely, since (1+.05/2)1/2 equals (1+.0497/4), this second solution im-
plies quarterly compounding at a different rate. Therefore, if cash flows do
arrive on a quarterly basis it is more intuitive to discard semiannual com-
pounding and use quarterly compounding instead. More generally, it is
most intuitive to use the compounding convention corresponding to the
smallest cash flow frequency—monthly compounding for payments that
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1Note that the behavior of quoted bond prices differs from that of stocks that do
not have an accrued dividend convention. Stock prices fall by approximately the
amount of the dividend on the day ownership of the dividend payment is estab-
lished. The accrued convention does make more sense in bond markets than in
stock markets because dividend payment amounts are generally much less certain
than coupon payments.



may arrive any month, daily compounding for payments that may arrive
any day, and so on. Taking this argument to the extreme and allowing cash
flows to arrive at any time results in continuous compounding. Because of
its usefulness in the last section of this chapter and in the models to be pre-
sented in Part Three, Appendix 4A describes this convention.

Having made the point that semiannual compounding does not suit
every context, it must also be noted that the very notion of compounding
does not suit every context. For coupon bonds, compounding seems nat-
ural because coupons are received every six months and can be reinvested
over the horizon of the original bond investment to earn interest on inter-
est. In the money market, however (i.e., the market to borrow and lend for
usually one year or less), investors commit to a fixed term and interest is
paid at the end of that term. Since there is no interest on interest in the
sense of reinvestment over the life of the original security, the money mar-
ket uses the more suitable choice of simple interest rates.2

One common simple interest convention in the money market is called
the actual/360 convention.3 In that convention, lending $1 for d days at a
rate of r will earn the lender an interest payment of

(4.5)

dollars at the end of the d days.
It can now be argued that compounding conventions do not really

matter so long as cash flows are properly computed. Consider a loan from
February 15, 2001, to August 15, 2001, at 5%. Since the number of days
from February 15, 2001, to August 15, 2001, is 181, if the 5% were an ac-
tual/360 rate, the interest payment would be

rd
360
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2Contrary to the discussion in the text, personal, short-term time deposits often
quote compound interest rates. This practice is a vestige of Regulation Q that lim-
ited the rate of interest banks could pay on deposits. When unregulated mutual
funds began to offer higher rates, banks competed by increasing compounding fre-
quency. This expedient raised interest payments while not technically violating the
legal rate limits.
3The accrued interest convention in the Treasury market, described in the previous
section, uses the actual/actual convention: The denominator is set to the actual
number of days between coupon payments.



(4.6)

If the compounding convention were different, however, the interest pay-
ment would be different. Equations (4.7) through (4.9) give interest pay-
ments corresponding to 5% loans from February 15, 2001, to August 15,
2001, under semiannual, monthly, and daily compounding, respectively:

(4.7)

(4.8)

(4.9)

Clearly the market cannot quote a rate of 5% under each of these
compounding conventions at the same time: Everyone would try to borrow
using the convention that generated the lowest interest payment and try to
lend using the convention that generated the highest interest payment.
There can be only one market-clearing interest payment for money from
February 15, 2001, to August 15, 2001.

The most straightforward way to think about this single clearing inter-
est payment is in terms of discount factors. If today is February 15, 2001,
and if August 15, 2001, is considered to be 181/365 or .4959 years away, then
in the notation of Chapter 1 the fair market interest payment is

(4.10)

If, for example, d(.4959)=.97561, then the market interest payment is
2.50%. Using equations (4.6) through (4.9) as a model, one can immedi-
ately solve for the simple, as well as the semiannual, monthly, and daily
compounded rates that produce this market interest payment:
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(4.11)

In summary, compounding conventions must be understood in order
to determine cash flows. But with respect to valuation, compounding con-
ventions do not matter: The market-clearing prices for cash flows on par-
ticular dates are the fundamental quantities.

YIELD AND COMPOUNDING CONVENTIONS

Consider again the 51/2s of January 31, 2003, on February 15, 2001. While
the coupon payments from July 31, 2001, to maturity are six months apart,
the coupon payment on July 31, 2001, is only five and a half months or, more
precisely, 166 days away. How does the market calculate yield in this case?

The convention is to discount the next coupon payment by the factor

(4.12)

where y is the yield of the bond and 181 is the total number of days in the
current coupon period. Despite the interpretive difficulties mentioned in
the previous section, this convention aims to quote yield as a semiannually
compounded rate even though payments do not occur in six-month inter-
vals. In any case, coupon payments after the first are six months apart and
can be discounted by powers of 1/(1+ y/2). In the example of the 51/2s of
January 31, 2003, the price-yield formula becomes

(4.13)
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Or, simplifying slightly,

(4.14)

(With the full price given earlier as 101.3724, y=4.879%.)
More generally, if a bond’s first coupon payment is paid in a fraction τ

of the next coupon period and if there are N semiannual coupon payments
after that, then the price-yield relationship is

(4.15)

BAD DAYS

The phenomenon of bad days is an example of how confusing yields can be
when cash flows are not exactly six months apart. On August 31, 2001,
the Treasury sold a new two-year note with a coupon of 35/8% and a matu-
rity date of August 31, 2003. The price of the note for settlement on Sep-
tember 10, 2001, was 100-71/4 with accrued interest of .100138 for a full
price of 100.32670. According to convention, the cash flow dates of the
bond are assumed to be February 28, 2002, August 31, 2002, February 28,
2003, and August 31, 2003. In actuality, August 31, 2002, is a Saturday so
that cash flow is made on the next business day, September 3, 2002. Also,
the maturity date August 31, 2003, is a Sunday so that cash flow is made
on the next business day, September 2, 2003. Table 4.1 lists the conven-
tional and true cash flow dates.

Reading from the conventional side of the table, the first coupon is 171
days away out of a 181-day coupon period. As discussed in the previous
section, the first exponent is set to 171/181 or .94475. After that, exponents
are increased by one. Hence the conventional yield of the note is defined by
the equation
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Solving, the conventional yield equals 3.505%.
Unfortunately, this calculation overstates yield by assuming that the

cash flows arrive sooner than they actually do. To correct for this effect,
the market uses a true yield. Reading from the true side of Table 4.1, the
first cash flow date is unchanged and so is the first exponent. The cash flow
date on September 3, 2002, however, is 187 days from the previous
coupon payment. Defining the number of semiannual periods between
these dates to be 187/(365/2) or 1.02466, the exponent for the second cash
flow date is .94475+1.02466 or 1.96941. Proceeding in this way to calcu-
late the rest of the exponents, the true yield is defined to satisfy the follow-
ing equation:

(4.17)

Solving, the true yield is 3.488%, or 1.7 basis points below the conven-
tional yield.

Professional investors do care about this difference. The lesson for this
section, however, is that forcing semiannual compounding onto dates that
are not six months apart can cause confusion. This confusion, the coupon
effect, and the other interpretive difficulties of yield might suggest avoiding
yield when valuing one bond relative to another.

INTRODUCTION TO CURVE FITTING

Sensible and smooth discount functions and rate curves are useful in a vari-
ety of fixed income contexts.
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TABLE 4.1 Dates for Conventional and True Yield Calculations

Conventional Days to Next Conventional True Days to Next True
Dates Cash Flow Date Exponents Dates Cash Flow Date Exponents

8/31/01 181 8/31/01 181
9/10/01 171 9/10/01 171
2/28/02 184 0.94475 2/28/02 187 0.94475
8/31/02 181 1.94475 9/3/02 178 1.96941
2/28/03 184 2.94475 2/28/03 186 2.94475
8/31/03 3.94475 9/2/03 3.96393



First, equipped with a discount function derived from Treasury bond
prices and the techniques discussed in this section, one can value any
particular Treasury bond and compare this predicted value with the
bond’s market price. If the market price is below the prediction, the
bond might be said to be trading cheap, while if the market price ex-
ceeds the predicted price, the bond might be said to be trading rich. The
trading case study at the end of this chapter describes a trade generated
by this use of a discount function. Despite the U.S. Treasury market con-
text of Part One, this kind of rich-cheap analysis may be applied to any
bond market.

Second, in some markets not all market prices are known, and dis-
count functions may be used to fill in the missing prices. In the swap mar-
ket, for example (see Chapter 18), swaps of certain maturities are widely
traded while swaps of other maturities hardly trade at all. As market par-
ticipants need to know the values of their existing positions, and as they do
occasionally trade those illiquid swaps, discount functions derived from
traded swaps are commonly used to value illiquid swaps.

Third, a discount function from one market might be used to value se-
curities in another market or to value cash flows from private transactions.
Part Three, which uses discount factors to price derivatives like options, is
an example of the former use. Another example, discussed in Chapter 18,
is an asset swap spread, which measures the cheapness or richness of a se-
curity relative to, typically, the swap curve. An investor might have a view
on the fair level of asset swap spreads or may compare the asset swap
spreads of several securities as part of a rich-cheap analysis.

Chapters 1 through 3 extracted discount factors at six-month inter-
vals from the prices of bonds that mature at six-month intervals. This
procedure is of limited usefulness because discount factors of terms sepa-
rated by more or less than six-month intervals are often required. In ad-
dition, on most pricing dates there may not be a single bond maturing in
an exact multiple of six months, let alone enough bonds to allow for the
computation of a set of discount factors. Therefore, this section intro-
duces methods of extracting an entire discount function from the set of
traded bond prices.

To illustrate the role of discount factors at intervals other than six
months, consider, for example, the pricing equation for the 51/2s of July 31,
2003, as of February 15, 2001. Noting that the cash flows of this bond oc-
cur in 166, 350, 531, and 715 days, the pricing equation is
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(4.18)

Writing the arguments of the discount function in years,

(4.19)

The collection of discount factors for .5 years, 1 year, 1.5 years, and so on,
cannot be used directly to price this bond, nor can this bond be used di-
rectly to derive those discount factors.

A common but unsatisfactory technique of estimating an entire dis-
count function from market data is called linear yield interpolation. This
technique begins with a short list of bonds spanning the maturity range of
interest. For reasons to become apparent shortly, bonds best suited for this
purpose are those that sell near par and those liquid enough to generate ac-
curate price quotations. Bonds selected with these criteria in mind are
listed along with their yields and prices in Table 4.2. While an effort has
been made to select bonds with prices near par, in some maturity ranges
there simply are no bonds with prices near par. Thus, the inclusion of
bonds with prices somewhat far from par is the result of a compromise
among wanting liquid bonds, bonds from each maturity range, and prices
close to par.

The next step is to construct a yield curve by connecting these few data
points with straight lines, as illustrated in Figure 4.1. This linear interpola-
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TABLE 4.2 Bonds Selected for Linear Yield Interpolation

Coupon Maturity Yield Price

5.500% 07/31/01 5.001% 100.219
5.875% 11/30/01 4.964% 100.688
5.625% 11/30/02 4.885% 101.244
5.250% 08/15/03 4.887% 100.844
5.875% 11/15/04 4.988% 102.988
6.500% 10/15/06 5.107% 106.766
5.500% 02/15/08 5.157% 101.996
6.500% 02/15/10 5.251% 108.871

11.250% 02/15/15 5.483% 155.855
6.125% 08/15/29 5.592% 107.551



tion does provide an estimate of yield at any maturity, but, since yield de-
pends on coupon (see Chapter 3), this complete yield curve still does not
contain enough information from which to derive discount factors. To get
around this difficulty, it is common practice to assume that the yield curve
in Figure 4.1 represents yields on par bonds or a par yield curve. Under
that assumption each point on the yield curve gives a bond’s coupon,
which is its yield, and that bond’s price, which is par. Then, equations like
(4.19) may be combined to describe the relationship between traded bond
prices and discount factors. Returning to an earlier point, the necessity of
assuming that the interpolated curve represents yields of par bonds is why
it is best, in the first place, to select bonds that do sell near par.

Figure 4.1 looks innocuous enough, and the discount function implied
by these yields, shown in Figure 4.2, also looks innocuous enough. The im-
plications of linear yield interpolation for spot and forward rates, however,
shown in Figure 4.3, are quite disappointing. The spot rate curve is a bit
bumpy, but this problem tends to arise from any technique that forces a
discount function to price all given bond prices exactly. This issue will be
discussed further. But two other problems with the spot rate curve in Fig-
ure 4.3 are caused by linear yield interpolation itself.
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FIGURE 4.1 Linear Yield Interpolation in the Treasury Market on February 15,
2001
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FIGURE 4.2 The Discount Function from the Linear Yield Interpolation of
Figure 4.1
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FIGURE 4.3 Spot and Forward Rates from the Linear Yield Interpolation of
Figure 4.1
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First, there is an unrealistic kink in the curve at all the yield data
points, although the effect is most noticeable at about 14 years. This kink
is caused by linear interpolation because the slope of the line drawn to the
left of a given data point may be quite different from the slope of the line
drawn to the right of that data point.

To describe the second problem with the spot rate curve in Figure 4.3,
it is necessary to define concave and convex regions of a curve. If a line
connecting two points on a curve is below the curve, the curve is said to be
concave. On the other hand, if a line connecting two points on the curve is
above the curve, the curve is said to be convex. See Figure 4.4.

Returning to the spot rate curve of Figure 4.3, the segments from
about 5.5 years to about 14 years and from about 14 years to 30 years are
convex. These convex segments are mathematical artifacts of linear yield
interpolation. They are problematic because, as argued in Chapter 10, be-
yond a certain point, like five years, rate curves should be concave. Fur-
thermore, simple plots of spot rates (see Figures 2.3 and 4.5) and more
sophisticated smoothing techniques (see Figure 4.9) usually produce con-
cave spot rate curves beyond five years.

The shortcomings of the spot rate curve in Figure 4.3 pale in compar-
ison with the shortcomings of the forward rate curve in that figure. While
the discussion of Chapter 10 formalizes why the bumpiness of the for-
ward rate curve is unreasonable, particularly at longer maturities, the
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FIGURE 4.4 Convex and Concave Regions of a Curve

4.50%

5.00%

5.50%

6.00%

6.50%

0 5 10 15 20 25 30

Term

R
at

e

Convex
Region

Concave
Region



large jump in the forward rate at 14 years clearly defies economic sense.
The graph says that investors demand 6.44% to lend money for six
months, 14 years forward while they require only 5.65% to lend money
for six months, 14.5 years forward. The jump in the forward rate curve is,
of course, a direct consequence of the pronounced kink in the yield and
spot rate curves at that point. Along the lines of the discussion in Chapter
2 relating forward rates to changes in spot rates, a rapidly rising spot rate
curve implies an even more rapidly rising forward curve. Similarly, if the
spot rate curve suddenly rises at a much slower rate, the forward rate
curve must drop precipitously.

It is generally true that the shortcomings of a curve fitting technique
are least noticeable in the discount function, more noticeable in the spot
rate curve, and particularly noticeable in the forward rate curve. To illus-
trate why this is true, consider the following simple example. On Febru-
ary 15, 2001, the yields or spot rates on 9.5-year and 10-year C-STRIPS
were 5.337% and 5.385%, respectively. These rates imply prices of
60.6307 and 58.7794, respectively, and a six-month rate 9.5 years for-
ward of 6.299%. Were the yield on the 10-year C-STRIPS to be one basis
point lower, at 5.375%, a change of less than .2%, the price of the 10-
year C-STRIPS would rise by less than .1%. The forward rate, however,
would fall by 20.1 basis points to 6.098%, a change of about 3.2%. This
magnification of the change in the spot rate may be understood by recall-
ing from Chapter 2 that a spot rate is a geometric average of all previous
forwards. Therefore, it takes a relatively large move in one of the for-
ward rates to move the average by one basis point, particularly at long
maturities when many forwards make up the average. In any case, for the
purposes of this section, these observations imply that any problem with
the spot rate curve, due to the fitting technique or to the underlying data,
will hardly be noticed in the discount function but will be magnified in
the forward rate curve.

The failure of linear yield interpolation to produce smooth rate curves
is caused by the technique itself. However, smooth curves are difficult to
achieve with any technique that forces the discount function to price many
bonds exactly. To illustrate this point and to motivate the reasons for occa-
sionally allowing fitted discount functions to miss market data, return to
the STRIPS market discussed in previous chapters.

Chapter 2 showed the spot rate curve on February 15, 2001, derived
from the prices of C-STRIPS. Using the tools of Chapter 2, this spot
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curve, by definition, correctly prices all C-STRIPS maturing in six-month
increments out to 30 years. Figure 4.5 reproduces this spot rate curve
(originally shown in Figure 2.3) along with the smooth spot rate curve
derived later in this chapter from coupon bond prices and presented in
Figure 4.9.

The two curves are in many ways very similar. The main problem with
the C-STRIPS curve is that the raw data do not produce an economically
sensible, smooth curve. In other words, there are two possibilities. One, the
smooth curve better represents spot rates and the price quotes making up
the C-STRIPS curve are slightly unreliable or include excessively rich and
cheap bonds. Two, the underlying spot rate curve is better represented by
the C-STRIPS curve of Figure 4.5. The first possibility seems more likely.
As the trading case study at the end of this chapter shows, however, this
conclusion absolutely does not imply that deviations of data from the
smooth curve should be ignored. Quite the contrary: deviations from a
smooth curve might indicate trading and investing opportunities.

The shortcomings of the C-STRIPS spot curve are, as expected, magni-
fied in the forward curve. Figure 4.6 shows the forward rate curve from the
raw C-STRIPS data along with the smooth forward curve derived below
and presented in Figure 4.9.
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FIGURE 4.5 Spot Curves from Raw C-STRIPS Data and from a Curve Fitting
Procedure
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PIECEWISE CUBICS

The first step in building a smooth curve is to assume a functional form for
the discount function, for spot rates, or for forward rates. For example, an
extremely simple functional form for the discount function might be a cu-
bic polynomial:

(4.20)

Given constants a, b, and c, equation (4.20) provides the discount factor
for any term t. (Note that the intercept is one so that d(0)=1.) The goal,
therefore, is to find a set of constants such that the discount function (4.20)
reasonably approximates the discount function in the market, that is, such
that bond values computed with (4.20) reasonably approximate market
prices. Substituting (4.20) into a set of bond pricing equations like (4.19)
produces a system of equations that link the constants a, b, and c to bond
prices. Some optimization method can then be used to find the constants
that best match market bond prices.

Alternatively, one could assume that the spot rate or forward rate
function is a single cubic polynomial. In the case of the spot rate,

d t at bt ct( ) = + + +1 2 3
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FIGURE 4.6 Forward Curves from Raw C-STRIPS Data and from a Curve Fitting
Procedure
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(4.21)

As discussed in the previous section, when cash flows arrive at arbitrary
dates, the continuous compounding convention is most convenient. In that
case equation (4.21) describes the continuously compounded spot rate of
any term, and r0 is the instantaneous spot rate, that is, the spot rate appro-
priate for discounting over the next instant.

As it turns out, a single cubic polynomial is too simple a function to
capture the complexity of many empirically observed term structures.
The spot curve of Figure 2.1, for example, cannot be reproduced ade-
quately by a single cubic. A common solution is to use a piecewise cubic
polynomial, that is, a single function built by joining several cubic poly-
nomials together at some set of knot points. For example, a spot rate
curve from 0 to 30 years might be built from three cubic polynomials
with knot points at 10 and 20 years. The first cubic segment would apply
for terms less than 10 years, the next for terms between 10 and 20 years,
and the last for terms from 20 to 30 years. Mathematically the spot func-
tion may be written as:

(4.22)

with r̂(10) and r̂(20) as shorthand for the value of the first segment at 10
years and the second segment at 20 years, respectively. This specification
clearly allows for many more shapes than does a single cubic over the en-
tire maturity range.

Note that the three cubic polynomials in (4.22) are structured so that
the first two are equal at a term of 10 years while the second two are equal
at a term of 20 years. This means that the resulting spot rate curve is con-
tinuous, that is, it doesn’t jump when the function switches from one cubic
to the next. But, as linear yield interpolation showed, it is also desirable to
avoid places in which the slope of the spot rate curve jumps. A function
that knits cubic polynomials together in a way that ensures continuity of
the function, of its slope, and even of the slope of the slope, is called a
piecewise cubic spline. While a general discussion of this method is beyond
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the scope of this book, Appendix 4B shows how to create a spline for the
system (4.22).

APPLICATION: Fitting the Term Structure in the U.S. Treasury Market 
on February 15, 2001

This section fits a piecewise cubic spline to the Treasury market on February 15, 2001, and,
in the process, discusses the considerations that go into fitting term structures. No claim is
made that the particular fit presented here is perfect or that the particular fitting procedure
used here is the best for all markets on all dates. In fact, an important theme of this section
is that term structure fitting is a good part art.

The fitting process begins by gathering the sample of bonds and bond prices to be
used. The objective is to collect a sample that can sensibly belong to the same term struc-
ture. In bond markets this is not as easy as it sounds. In the Treasury market there are sev-
eral categories of bonds that require special attention. First, some bonds have call
provisions. Second, the most recently issued bonds in each maturity range are particularly
liquid and may command a liquidity premium. Third, some bonds trade special in the fi-
nancing market (see Chapter 15) and command a premium because of their financing ad-
vantages. These bonds usually include, but are not limited to, the most recently issued
bonds. Fourth, bonds issued a relatively long time ago, or very seasoned bonds, tend to
trade differently from more recently issued bonds in the same maturity range. In February
2001, this category included the relatively high coupon bonds maturing in about five years
or less (see Chapter 1).

There are three ways to handle this sample construction problem. The first and per-
haps most common solution is to discard all of the bonds in the previously mentioned cat-
egories. The downside to this solution, of course, is that valuable price information is lost in
the process. This cost is particularly acute in the case of the most liquid bonds since these
bonds comprise the vast majority of trading in the Treasury market. The second relatively
common but not particularly useful solution is to weight the noncomparable bonds less
than the rest of the bonds during the fitting process. The problem with this approach is that
the categories of difficult bonds tend to trade persistently rich or persistently cheap to other
bonds. Therefore, while lower weights do lower the distortions that result from including
these bonds, they leave the bias intact. The third solution is the most difficult and least
common but potentially the best: to adjust the prices or yields of the noncomparable bonds
to make them comparable. Chapter 15, for example, illustrates how to adjust the yields of
bonds that trade special in the financing markets. The models of Part Three, as another ex-
ample, could be used to remove the option component of callable bond yields. In any case,
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the benefits of this solution are proportional to the quality of the models used to make the
adjustments.

In practice, the best way to deal with the sample construction problem is probably a
mix of the first and third solutions. Discard the problematic bonds whose prices contain rel-
atively little information because they are illiquid or because they trade in the same maturity
range as bonds of better liquidity; discard other problematic bonds for which no sensible
price adjustment can be discovered; adjust the prices of the rest.

Despite this recommendation for best practice, the fitting example of this section takes
the easy path of discarding all the problematic bonds. In particular: (1) Bonds with ex-
tremely short maturities are discarded. (2) Among bonds with exactly the same maturity,
only the bond with the lowest coupon is selected. Given the secular decline of interest rates
in the recent past, this rule tends to discard very seasoned bonds. (3) Bonds with financing
advantages are discarded. (4) For reasons to be explained more fully, of the remaining
bonds the three with the longest maturities are also discarded. For expositional purposes,
however, these three bonds appear in the graphs to follow.

To give an idea of the shape of the term structure, Figure 4.7 plots the yields of the se-
lected bonds. (The gap between the 10- and 15-year maturity sectors is due to the absence
of any but callable bonds in that region.) The sharp turns of the yields in the maturity region
less than about 4.5 years make this region the most challenging to fit well. Therefore, the
knot points of the spot rate function are placed more densely in this region than in any
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FIGURE 4.7 Treasury Coupon Bond Yields on February 15, 2001
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other. For this example, the knot points are placed at .75, 1.5, 2.25, 5.18, 16.25, 25, and 30
years, making a total of seven cubic segments.

The next step is to choose the constants of the cubic segments so that the resulting
spot rate function describes the data well. To describe one way to do this, let yi be the mar-
ket yield of bond i, let ŷ i be the predicted yield of bond i using the fitted spot rate function,
and let N be the number of bonds in the sample. Then, define the root mean square error
(RMSE) of the fit to be

(4.23)

Since yi–ŷ i is the error of the assumed function in fitting the market data, RMSE may
be interpreted like a standard deviation of these errors. Thus, a RMSE of 3 basis points
means that ±3 basis points correspond to a 1-standard deviation error of the fit, ±6 basis
points correspond to a 2-standard deviation error, and so on. In any case, choosing the pa-
rameters of the cubic segments to minimize the RMSE, which is the equivalent of the re-
gression criterion of least squares, is one way to fit the spot rate function.

RMSE could have been defined in terms of price rather than yield error. The problem
with minimizing price errors is that prices of short-term bonds are much less sensitive to
yield errors than those of long-term bonds (see Chapter 6). As a result, weighting price er-
rors equally actually weights the yield errors of short-term bonds much less than the yield
errors of long-term bonds. To the extent that the goal is to produce a realistic rate function
across all maturities, minimizing price errors is not so useful as minimizing yield errors.

Minimizing (4.23) in this example produces a RMSE of 1.2 basis points; more detailed re-
sults are given in the next two figures. Figure 4.8 graphs the error of each bond. The greatest
errors are in the shorter-term bonds. Note that the errors of the last three bonds are shown in
the figure, but, as mentioned earlier and discussed shortly, these bonds are not included in the
RMSE. Finally, the greatest error of –3.5 basis points comes from the 43/4s of November 15,
2008. Since errors are defined as the market yield minus the model yield, a negative error may
be interpreted to mean that the market yield is low or that the security is rich. The trading case
study at the end of this chapter shows that one could have profited from the results of this fit-
ting analysis by shorting the 11/08s and simultaneously buying neighboring bonds.

Figure 4.9, which is the same as Figure 2.2, graphs the spot and forward rates that
emerge from the fit. The economic meaning of the dip and rise in the early years is de-
scribed in Chapters 10 and 17. Both spot and forward rates are smooth. At the longer end
of the curve, spot rates are concave. One criticism of the fit is that the longer end of the for-
ward rate curve looks a bit convex.

Each stage of curve fitting is part art and requires a good deal of experimentation. The

RMSE ≡ −( )
=

∑1 2

1
N

y yi i

i
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ˆ
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FIGURE 4.8 Pricing Errors of Chosen Curve Fit
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FIGURE 4.9 Fitted Spot and Forward Rate Curves in the Treasury Market on February 15,
2001
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choice of bonds to be included, the number of cubic segments, and the placement of the
knot points must be varied according to the contexts of time and market. A spot rate function
that works well for the U.S. Treasury market will not necessarily work for the Japanese gov-
ernment bond market. A function that worked well for the U.S. Treasury market in 1998 will
not necessarily work today. To illustrate several things that can go wrong when fitting a term
structure, a poor fit of the U.S. Treasury market on February 15, 2001, is now presented.

The data selected for this purpose are the same as before except that the three longest
bonds are included. The number of cubic segments is seven, as before, but the knot points
are unsuitably placed at 5, 6, 7, 8, 9, 10, and 30 years. The RMSE of the resulting fit is 1.35
basis points, only .1 worse than before. But, as shown in Figures 4.10 and 4.11, this poor
fit is substantially inferior to the previous, good fit.

Comparing Figure 4.10 with Figure 4.8, the errors of the poor fit are a bit worse than
those of the good fit, particularly in the short end. Figure 4.11 shows that the spot and for-
ward rate curves of the poor fit wiggle too much to be believable. Also, the forward rate
curve seems to drop a bit too precipitously at the long end. What went wrong?

In the good fit, many knot points were placed in the shorter end to capture the curva-
ture of market yields in that region. The poor fit, with only one segment out to five years,
cannot capture this curvature as well. As a result, data in the shorter end are matched par-
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FIGURE 4.10 Pricing Errors of Alternate Curve Fit

–5.0

–4.0

–3.0

–2.0

–1.0

0.0

1.0

2.0

3.0

4.0

02/15/06 02/15/11 02/15/16 02/14/21 02/14/26

Maturity

E
rr

o
r 

(b
as

is
 p

o
in

ts
)



ticularly poorly. This illustrates the problem of under fitting: the functional form does not
have enough flexibility to mimic the data.

In the good fit, the knot points were not placed very densely between 5 and 10 years
because the curvature of market yields in that region did not require it. In the poor fit, five
out of seven of the cubic segments are placed there. The result is that the rate functions
have the flexibility to match the data too closely. This illustrates the problem of over fitting:
the wiggles fit the data well at the expense of financial realism. In fact, the 43/4s of Novem-
ber 15, 2008, with an error of .5 basis points, do not stand out in the poor fit as particularly
rich. Hence the close match to the data in this region actually performs a disservice by hid-
ing a potentially profitable trade.

The good fit recognized the existence of some curvature in the long end and therefore
used two cubic segments there, one from 16.25 to 25 years and one from 25 to 30 years.
The poor fit uses only one segment from 10 to 30 years. Some under fitting results. But,
examining the error graphs carefully, the poor fit matches the three longest-maturity bonds
better than the good fit. Since these yields slope steeply downward (see Figure 4.7), fitting
these bonds more closely results in a dramatically descending forward rate curve. The
good fit chose not to use these bonds for precisely this reason. The financial justification
for discarding these bonds is that their yields have been artificially dragged down by the liq-
uidity advantages of even longer bonds (that had also been discarded). In other words, be-
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FIGURE 4.11 Alternate Fitted Spot and Forward Curves in the Treasury Market on
February 15, 2001
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cause these longer bonds sell at a premium justified by their liquidity advantages, and be-
cause investors are reluctant to price neighboring bonds too differently, the yields of the
three bonds in question are artificially low. There is not necessarily a right answer here. The
choice is between the following two stories. According to the good fit, the three bonds are
slightly rich, between .7 and 1.7 basis points, and the forward curve falls 110 basis points
from 20 to 30 years. According to the poor fit, the three bonds are from fair to –.6 basis
points cheap, and the forward curve falls 175 basis points from 20 to 30 years.4 One piece
of evidence supporting the choice to drop the three bonds is that the C-STRIPS curve in
Figure 4.5 closely corresponds to the long end of the good fit.

This section uses the U.S. Treasury market to discuss curve fitting. In principle, dis-
count functions from other bond markets are extracted using the same set of considera-
tions. In particular, a thorough knowledge of the market in question is required in order to
obtain reasonable results.
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4Experience with the magnitude of the convexity effect on forward rates helps guide choices like these.
See Chapter 10.

TRADING CASE STUDY: A 7s-8s-9s Butterfly

The application of the previous section indicates that the 43/4s of No-
vember 15, 2008, are rich relative to the fitted term structure as of
February 15, 2001. This application investigates whether or not one
could profit from this observation.

If the 11/08s are indeed rich relative to other bonds, a trader
could short them in the hope that they would cheapen, that is, in the
hope that their prices would fall relative to other bonds. To be more
precise, the hope would be that a repeat of the fitting exercise at some
point in the future would show that the 11/08s were less rich, fair, or
even cheap relative to the fitted term structure.

The trader probably wouldn’t short the 11/08s outright (i.e.,
without buying some other bonds), because that would create too
much market risk. If interest rates fall, an outright short position in
the 11/08s would probably lose money even if the trader had been
right and the 11/08s did cheapen relative to other bonds.
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One way the trader might protect a short 11/08 position from
market risk would be to buy a nearby issue, like the 61/8s of August
15, 2007. In that case, if bond prices rise across the board the trader
would lose money on the 11/08s but make money on the 8/07s. Simi-
larly, if bond prices fall across the board the trader would make
money on the 11/08s but lose money on the 8/07s. Therefore, if the
11/08s did cheapen relative to other bonds, the trader would make
money regardless of the direction of the market.

The problem with buying the 8/07s against the 11/08 short posi-
tion is that the yield curve might flatten; that is, yields of shorter ma-
turities might rise relative to yields of longer maturities. For example,
if yields in the seven-year sector rise while yields in the eight-year sec-
tor remain unchanged, the trade could lose money even if the 11/08s
did cheapen relative to other bonds.

For protection against curve risk, the trader could, instead of
buying only 8/07s to hedge market risk, buy some 8/07s and some 6s
of 8/09. Then, assume that the yield curve flattens in that yields in the
seven-year sector rise, yields in the eight-year sector stay the same,
and yields in the nine-year sector fall. The 8/07 position would lose
money, the 11/08 position would be flat, but the 8/09s would make
money. Similarly, if the yield curve steepens (i.e., if yields of short ma-
turities fall relative to yields of long maturities), the opposite would
happen and the trade would probably not make or lose money. There-
fore, if the 11/08s cheapen relative to other bonds, the trade will
make money regardless of whether the curve flattens or steepens.

This type of three-security trade is called a butterfly. The security
in the middle of the maturity range, in this case the 11/08s, might be
called the center, middle, or body, while the outer securities are called
the wings. In general, butterfly trades are designed to profit from a
perceived mispricing while protecting against market and curve risk.

Bloomberg, an information and analytic system used widely in
the financial industry, has several tools with which to analyze butter-
fly trades. Figure 4.12 reproduces Bloomberg’s BBA or Butterfly/Bar-
bell Arbitrage page for this trade. The dark blocks have to be filled in
by the trader. The settle date is set to February 15, 2001, for all secu-
rities, the security section indicates that the trader is selling 11/08s
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and buying a combination of 8/07s and 8/09s, and the prices and
yields are those used in the fitting exercise. The column labeled
“Risk” shows the sensitivity of each bond’s price to changes in its
yield.5 The 11/08s’ risk of 6.21, for example, means that a one-basis
point increase in yield lowers the price of $100 face value of 11/08s
by 6.21 cents. Under the “Par ($1M)” column, the trader types in the
face value of 11/08s in the trade, in thousands of dollars. So, in Figure
4.12, the entry of 1,000 indicates a trade with $1 million face value of
11/08s. The BBA screen calculates the face amount of the 8/07s and
8/09s the trader should hold to hedge one-half of the 11/08 risk with
each wing. In this case, the short of $1 million face amount of the
11/08s requires the purchase of $551,000 8/07s and $444,000 8/09s.

5This definition of risk is identical to yield-based DV01. See Chapter 6.

FIGURE 4.12 Bloomberg’s Butterfly/Barbell Arbitrage Page
Source: Copyright 2002 Bloomberg L.P.
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The “Risk Weight” column then gives the risk of the bond position
(as opposed to the risk of $100 face value of the bond). For example,
since the risk of the 8/07s is 5.64 cents per $100 face value, or .0564
dollars, the risk weight of the $551,000 8/07 position is

(4.24)

Using the risk weight column to summarize the trade, a position with
$1 million 11/08s as the body will win $621 for every basis point in-
crease in yield of the 11/08s and lose $311 for every basis point in-
crease in yield of the 8/07s or 8/09s.

The “Butterfly Spread” in Figure 4.10 has two definitions. The
one to the right, labeled “AVG,” is here defined as the average yield of
the wings minus the yield of the body. In this case,

(4.25)

As it turns out, the change in the average butterfly spread over short
horizons is a good approximation for the profit or loss of the butterfly
trade measured in basis points of the center bond. To see this, note
that the profit and loss (P&L) of this trade may be written as

(4.26)

where the RWs are the risk weights and the ∆y terms are the realized
changes in bond yields. Notice the signs of (4.26): If the yield of the
11/08s increases and its price falls the position makes money, while if
the yields of the other bonds increase and their prices fall the position
loses money. Since the risk weights were set so as to allocate half of
the risk to each wing,
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Substituting these equalities into (4.26),

(4.28)

From the definition of the average butterfly spread, illustrated by
(4.25), the term in brackets of equation (4.28) is simply the negative
of the change in the average butterfly spread:

(4.29)

To summarize, if the average butterfly spread falls by one basis point,
the trade will make the risk weight of the 11/08s or $621.

How much should the trader expect to make on this butterfly?
According to the fitting exercise, the 11/08s are 3.5 basis points rich,
the 8/07s are 1.2 basis points cheap, and the 8/09s are 2 basis points
rich. If these deviations from fair value all disappear, the average but-
terfly spread will fall by 3.5+1/2×1.2–1/2×2 or 3.1 basis points. Note
that the trade is expected to make money by being short the rich
11/08s, make money by being long6 the cheap 8/07s, but lose money
by being long the rich 8/09s. If there were a cheap issue of slightly
longer maturity than the 11/08s, the trader would prefer to buy that
to hedge curve risk. But in this case the 8/09s are the only possibility.
In any case, if the average butterfly spread can be expected to fall 3.1
basis points, the trade might be expected to make $621×3.1 or
$1,925 for each $1 million of 11/08s. A not unreasonable position
size of $100 million might be expected to make about $192,500.

Bloomberg allows for the tracking of an average butterfly spread
over time. Defining the index N08 to be the average butterfly spread
of this trade, Figure 4.13 shows the path of the spread from February
1, 2001, to August 15, 2001. Over this sample period, the spread did
happen to fall between 3.5 and 4.5 basis points, depending on when
exactly the trade was initiated and unwound and on the costs of exe-
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6Being long a security is trader jargon for owning a security or, more generally, for hav-
ing an exposure to a particular security, interest rate, or other market factor. The term
“long” is used to distinguish such a position from a short position.
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cuting the trade. (The y-axis labels –0.01, –0.02, etc. mean that the
spread fell one basis point, two basis points, etc.)

The calculations so far have not included the financing frictions of
putting on a butterfly trade. The costs of these frictions will be discussed
in Chapter 15. For now, suffice it to say that none of the bonds in this
butterfly had any particular financing advantages over the relevant time
period. Assuming that the trader times things relatively well and exits
the trade sometime in April, a financing friction of 10 to 20 basis points
for four months on a $100 million position would cost from about
$33,000 to $67,000. This cost is small relative to the 3.5 to 4.5 basis
points of profit amounting to between $217,350 and $279,450.

Before concluding this case study, it should be mentioned that equal
risk weights on each wing are not necessarily the best weights for immu-
nizing against curve shifts. The empirical determination of optimal
weights will be discussed in Chapter 8. The theoretical issues surround-
ing the determination of optimal weights are discussed throughout Parts
Two and Three.

FIGURE 4.13 Butterfly Spread from February 1, 2001 to August 15, 2001
Source: Copyright 2002 Bloomberg L.P.



APPENDIX 4A
CONTINUOUS COMPOUNDING

Under annual, semiannual, monthly, and daily compounding, one unit of
currency invested at the rate r for t years grows to, respectively,

(4.30)

More generally, if interest is paid n times per year the investment will
grow to

(4.31)

Taking the logarithm of (4.31) gives

(4.32)

By l’Hôpital’s rule the limit of the right-hand side of (4.32) as n gets very
large is rT. But since the right-hand side of (4.32) is the logarithm of
(4.31), it must be the case that the limit of (4.31) as n gets very large is erT

where e=2.71828 . . . is the base of the natural logarithm. Therefore, if n
gets very large so that interest is paid every instant (i.e., if the rate is con-
tinuously compounded), an investment of one unit of currency will grow to

(4.33)

Equivalently, the present value of $1 to be received in T years is e–rT dollars.
Therefore, under continuous compounding the spot rate is defined such
that
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(4.34)

Defining the forward rate requires a bit of development. In the case of
semiannual compounding, spot and forward rates are related by the fol-
lowing equation:

(4.35)

Using the relationship between spot rates and discount factors, equation
(4.35) becomes

(4.36)

Analogously, in the case of compounding n times per year,

(4.37)

Solving (4.37) for the forward rate,

(4.38)

In the case of continuous compounding, n gets very large and the first
fraction of equation (4.38) is recognized as the derivative of the discount
function. Taking limits of all the terms of (4.38) as n gets very large,

(4.39)

Finally, to derive the relationship between forward rates and spot rates
under continuous compounding, take the derivative of (4.34) and substi-
tute the result into (4.39):
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(Inspection of equation (4.40) proves the relationship between spot and for-
ward curves described in Chapter 2: r(t)≥r̂(t)⇔r̂'(t)≥0 and r(t)≤r̂(t)⇔r̂'(t)≤0.
In words, the forward rate exceeds the spot rate if and only if spot rates are
increasing. Also, the forward rate is less than the spot rate if and only if spot
rates are decreasing.)

The text of this chapter points out that continuous compounding allows
for a mathematically consistent way of defining spot and forward rates when
cash flows may occur at any term. This appendix shows the relationships
among discount factors, continuously compounded spot rates, and continu-
ously compounded forward rates. With these relationships the family of con-
tinuously compounded spot rate functions discussed in this chapter can be
converted into discount functions. These functions can, in turn, be used to
price cash flows maturing at any set of terms. In addition, using the values of
these discount functions at evenly spaced intervals allows the underlying
term structure to be quoted in terms of rates of any compounding frequency.

APPENDIX 4B
A SIMPLE CUBIC SPLINE

The system (4.22) is written to ensure that the spot rate curve does not
jump at the knot points. To ensure that the slope does not jump, either, be-
gin by writing the derivative of the spot rate function:

(4.41)

For the derivatives at a term of 10 years to be the same for the first and sec-
ond cubic segments, it must be the case that

(4.42)

Similarly, for the derivatives at 20 years to be equal for the second and
third segments, it must be the case that
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To ensure that the second derivative does not jump, either, write down
the second derivative of the spot rate function:

(4.44)

From (4.44), the conditions for continuity of the second derivative are:

(4.45)

There are 10 unknown constants in the system (4.33), four for the first
segment and three for each of the other two. (In the first segment r̂0 has a
special interpretation but is nevertheless an unknown constant.) Equations
(4.42), (4.43), and (4.45) give four constraints on these parameters. Thus,
in this relatively simple piecewise cubic, six degrees of freedom are left to
obtain a reasonable fit of market data.
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CHAPTER 5
One-Factor Measures 

of Price Sensitivity

The interest rate risk of a security may be measured by how much its
price changes as interest rates change. Measures of price sensitivity are

used in many ways, four of which will be listed here. First, traders hedging
a position in one bond with another bond or with a portfolio of other
bonds must be able to compute how each of the bond prices responds to
changes in rates. Second, investors with a view about future changes in in-
terest rates work to determine which securities will perform best if their
view does, in fact, obtain. Third, investors and risk managers need to
know the volatility of fixed income portfolios. If, for example, a risk man-
ager concludes that the volatility of interest rates is 100 basis points per
year and computes that the value of a portfolio changes by $10,000 dollars
per basis point, then the annual volatility of the portfolio is $1 million.
Fourth, asset-liability managers compare the interest rate risk of their as-
sets with the interest rate risk of their liabilities. Banks, for example, raise
money through deposits and other short-term borrowings to lend to corpo-
rations. Insurance companies incur liabilities in exchange for premiums
that they then invest in a broad range of fixed income securities. And, as a
final example, defined benefit plans invest funds in financial markets to
meet obligations to retirees.

Computing the price change of a security given a change in interest
rates is straightforward. Given an initial and a shifted spot rate curve, for
example, the tools of Part One can be used to calculate the price change of
any security with fixed cash flows. Similarly, given two spot rate curves the
models in Part Three can be used to calculate the price change of any de-
rivative security whose cash flows depend on the level of rates. Therefore,
the challenge of measuring price sensitivity comes not so much from the



computation of price changes given changes in interest rates but in defining
what is meant by changes in interest rates.

One commonly used measure of price sensitivity assumes that all bond
yields shift in parallel; that is, they move up or down by the same number
of basis points. Other assumptions are a parallel shift in spot rates or a
parallel shift in forward rates. Yet another reasonable assumption is that
each spot rate moves in some proportion to its maturity. This last assump-
tion is supported by the observation that short-term rates are more volatile
than long-term rates.1 In any case, there are very many possible definitions
of changes in interest rates.

An interest rate factor is a random variable that impacts interest rates
in some way. The simplest formulations assume that there is only one fac-
tor driving all interest rates and that the factor is itself an interest rate. For
example, in some applications it might be convenient to assume that the
10-year par rate is that single factor. If parallel shifts are assumed as well,
then the change in every other par rate is assumed to equal the change in
the factor, that is, in the 10-year par rate.

In more complex formulations there are two or more factors driving
changes in interest rates. It might be assumed, for example, that the
change in any spot rate is the linearly interpolated change in the two-year
and 10-year spot rates. In that case, knowing the change in the two-year
spot rate alone, or knowing the change in the 10-year spot rate alone,
would not allow for the determination of changes in other spot rates. But
if, for example, the two-year spot rate were known to increase by three
basis points and the 10-year spot rate by one basis point, then the six-year
rate, just between the two- and 10-year rates, would be assumed to in-
crease by two basis points.

There are yet other complex formulations in which the factors are
not themselves interest rates. These models, however, are deferred to
Part Three.

This chapter describes one-factor measures of price sensitivity in full
generality, in particular, without reference to any definition of a change in
rates. Chapter 6 presents the commonly invoked special case of parallel
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1In countries with a central bank that targets the overnight interest rate, like the
United States, this observation does not apply to the very short end of the curve.



yield shifts. Chapter 7 discusses multi-factor formulations. Chapter 8 shows
how to model interest rate changes empirically.

The assumptions about interest rate changes and the resulting mea-
sures of price sensitivity appearing in Part Two have the advantage of sim-
plicity but the disadvantage of not being connected to any particular
pricing model. This means, for example, that the hedging rules developed
here are independent of the pricing or valuation rules used to determine the
quality of the investment or trade that necessitated hedging in the first
place. At the cost of some complexity, the assumptions invoked in Part
Three consistently price securities and measure their price sensitivities.

DV01

Denote the price-rate function of a fixed income security by P(y), where y
is an interest rate factor. Despite the usual use of y to denote a yield, this
factor might be a yield, a spot rate, a forward rate, or a factor in one of the
models of Part Three. In any case, since this chapter describes one-factor
measures of price sensitivity, the single number y completely describes the
term structure of interest rates and, holding everything but interest rates
constant, allows for the unique determination of the price of any fixed in-
come security.

As mentioned above, the concepts and derivations in this chapter ap-
ply to any term structure shape and to any one-factor description of term
structure movements. But, to simplify the presentation, the numerical ex-
amples assume that the term structure of interest rates is flat at 5% and
that rates move up and down in parallel. Under these assumptions, all
yields, spot rates, and forward rates are equal to 5%. Therefore, with re-
spect to the numerical examples, the precise definition of y does not matter.

This chapter uses two securities to illustrate price sensitivity. The first
is the U.S. Treasury 5s of February 15, 2011. As of February 15, 2001, Fig-
ure 5.1 graphs the price-rate function of this bond. The shape of the graph
is typical of coupon bonds: Price falls as rate increases, and the curve is
very slightly convex.2

The other security used as an example in this chapter is a one-year
European call option struck at par on the 5s of February 15, 2011. This

DV01 91

2The discussion of Figure 4.4 defines a convex curve.



option gives its owner the right to purchase some face amount of the bond
after exactly one year at par. (Options and option pricing will be discussed
further in Part Three and in Chapter 19.) If the call gives the right to pur-
chase $10 million face amount of the bond then the option is said to have
a face amount of $10 million as well. Figure 5.2 graphs the price-rate
function. As in the case of bonds, option price is expressed as a percent of
face value.

In Figure 5.2, if rates rise 100 basis points from 3.50% to 4.50%, the
price of the option falls from 11.61 to 5.26. Expressed differently, the
change in the value of the option is (5.26–11.61)/100 or –.0635 per basis
point. At higher rate levels, option price does not fall as much for the same
increase in rate. Changing rates from 5.50% to 6.50%, for example, low-
ers the option price from 1.56 to .26 or by only .013 per basis point.

More generally, letting ∆P and ∆y denote the changes in price and rate
and noting that the change measured in basis points is 10,000×∆y, define
the following measure of price sensitivity:

(5.1)

DV01 is an acronym for dollar value of an ’01 (i.e., .01%) and gives the
change in the value of a fixed income security for a one-basis point decline

DV01 ≡ −
×

∆
∆

P
y10 000,
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FIGURE 5.1 The Price-Rate Function of the 5s of February 15, 2011
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in rates. The negative sign defines DV01 to be positive if price increases
when rates decline and negative if price decreases when rates decline. This
convention has been adopted so that DV01 is positive most of the time: All
fixed coupon bonds and most other fixed income securities do rise in price
when rates decline.

The quantity ∆P/∆y is simply the slope of the line connecting the two
points used to measure that change.3 Continuing with the option example,
∆P/∆y for the call at 4% might be graphically illustrated by the slope of a line
connecting the points (3.50%, 11.61) and (4.50%, 5.26) in Figure 5.2. It
follows from equation (5.1) that DV01 at 4% is proportional to that slope.

Since the price sensitivity of the option can change dramatically with
the level of rates, DV01 should be measured using points relatively close to
the rate level in question. Rather than using prices at 3.50% and 4.50% to
measure DV01 at 4%, for example, one might use prices at 3.90% and
4.10% or even prices at 3.99% and 4.01%. In the limit, one would use the
slope of the line tangent to the price-rate curve at the desired rate level. Fig-
ure 5.3 graphs the tangent lines at 4% and 6%. That the line AA in this fig-
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FIGURE 5.2 The Price-Rate Function of a One-Year European Call Option Struck
at Par on the 5s of February 15, 2011

–5

0

5

10

15

20

25

3.00% 4.00% 5.00% 6.00% 7.00%

Yield

P
ri

ce

3The slope of a line equals the change in the vertical coordinate divided by the
change in the horizontal coordinate. In the price-rate context, the slope of the line
is the change in price divided by the change in rate.



ure is steeper than the line BB indicates that the option is more sensitive to
rates at 4% than it is at 6%.

The slope of a tangent line at a particular rate level is equal to the
derivative of the price-rate function at that rate level. The derivative is
written dP(y)/dy or simply dP/dy. (The first notation of the derivative empha-
sizes its dependence on the level of rates, while the second assumes
awareness of this dependence.) For readers not familiar with the calcu-
lus, “d” may be taken as indicating a small change and the derivative
may be thought of as the change in price divided by the change in rate.
More precisely, the derivative is the limit of this ratio as the change in
rate approaches zero.

In some special cases to be discussed later, dP/dy can be calculated ex-
plicitly. In these cases, DV01 is defined using this derivative and

(5.2)

In other cases DV01 must be estimated by choosing two rate levels, com-
puting prices at each of the rates, and applying equation (5.1).

As mentioned, since DV01 can change dramatically with the level of

DV01 = −
( )1

10 000,

dP y

dy
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FIGURE 5.3 A Graphical Representation of DV01 for the One-Year Call on the 5s
of February 15, 2011
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rates it should be measured over relatively narrow ranges of rate.4 The first
three columns of Table 5.1 list selected rate levels, option prices, and DV01
estimates from Figure 5.2. Given the values of the option at rates of 4.01%
and 3.99%, for example, DV01 equals

(5.3)

In words, with rates at 4% the price of the option falls by about 6.41 cents
for a one-basis point rise in rate. Notice that the DV01 estimate at 4%
does not make use of the option price at 4%: The most stable numerical es-
timate chooses rates that are equally spaced above and below 4%.

Before closing this section, a note on terminology is in order. Most
market participants use DV01 to mean yield-based DV01, discussed in
Chapter 6. Yield-based DV01 assumes that the yield-to-maturity changes
by one basis point while the general definition of DV01 in this chapter al-
lows for any measure of rates to change by one basis point. To avoid con-
fusion, some market participants have different names for DV01 measures
according to the assumed measure of changes in rates. For example, the
change in price after a parallel shift in forward rates might be called DVDF
or DPDF while the change in price after a parallel shift in spot or zero rates
might be called DVDZ or DPDZ.

A HEDGING EXAMPLE, PART I:  
HEDGING A CALL OPTION

Since it is usual to regard a call option as depending on the price of a bond,
rather than the reverse, the call is referred to as the derivative security and
the bond as the underlying security. The rightmost columns of Table 5.1

−
×

= − −
× −( ) =∆

∆
P

y10 000
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.
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4Were prices available without error, it would be desirable to choose a very small
difference between the two rates and estimate DV01 at a particular rate as accu-
rately as possible. Unfortunately, however, prices are usually not available without
error. The models developed in Part Three, for example, perform so many calcula-
tions that the resulting prices are subject to numerical error. In these situations it is
not a good idea to magnify these price errors by dividing by too small a rate differ-
ence. In short, the greater the pricing accuracy, the smaller the optimal rate differ-
ence for computing DV01.



list the prices and DV01 values of the underlying bond, namely the 5s of
February 15, 2011, at various rates.

If, in the course of business, a market maker sells $100 million face
value of the call option and rates are at 5%, how might the market maker
hedge interest rate exposure by trading in the underlying bond? Since the
market maker has sold the option and stands to lose money if rates fall,
bonds must be purchased as a hedge. The DV01 of the two securities may
be used to figure out exactly how many bonds should be bought against
the short option position.

According to Table 5.1, the DV01 of the option with rates at 5% is
.0369, while the DV01 of the bond is .0779. Letting F be the face amount
of bonds the market maker purchases as a hedge, F should be set such that
the price change of the hedge position as a result of a one-basis point
change in rates equals the price change of the option position as a result of
the same one-basis point change. Mathematically,

(5.4)

(Note that the DV01 values, quoted per 100 face value, must be divided by
100 before being multiplied by the face amount of the option or of the
bond.) Solving for F, the market maker should purchase approximately
$47.37 million face amount of the underlying bonds. To summarize this
hedging strategy, the sale of $100 million face value of options risks

F

F

× = ×

= ×

.
, ,

.

, ,
.
.

0779
100

100 000 000
0369
100

100 000 000
0369
0779

96 ONE-FACTOR MEASURES OF PRICE SENSITIVITY

TABLE 5.1 Selected Option Prices, Underlying Bond Prices, and DV01s at
Various Rate Levels

Rate Option Option Bond Bond
Level Price DV01 Price DV01

3.99% 8.2148 108.2615
4.00% 8.1506 0.0641 108.1757 0.0857
4.01% 8.0866 108.0901
4.99% 3.0871 100.0780
5.00% 3.0501 0.0369 100.0000 0.0779
5.01% 3.0134 99.9221
5.99% 0.7003 92.6322
6.00% 0.6879 0.0124 92.5613 0.0709
6.01% 0.6756 92.4903



(5.5)

for each basis point decline in rates, while the purchase of $47.37 million
bonds gains

(5.6)

per basis point decline in rates.
Generally, if DV01 is expressed in terms of a fixed face amount, hedg-

ing a position of FA face amount of security A requires a position of FB face
amount of security B where

(5.7)

To avoid careless trading mistakes, it is worth emphasizing the simple
implications of equation (5.7), assuming that, as usually is the case, each
DV01 is positive. First, hedging a long position in security A requires a
short position in security B and hedging a short position in security A re-
quires a long position in security B. In the example, the market maker sells
options and buys bonds. Mathematically, if FA>0 then FB<0 and vice versa.
Second, the security with the higher DV01 is traded in smaller quantity
than the security with the lower DV01. In the example, the market maker
buys only $47.37 million bonds against the sale of $100 million options.
Mathematically, if DV01A>DV01B then FB>–FA, while if DV01A<DV01B

then –FA>FB.
(There are occasions in which one DV01 is negative.5 In these cases

equation (5.7) shows that a hedged position consists of simultaneous longs
or shorts in both securities. Also, the security with the higher DV01 in ab-
solute value is traded in smaller quantity.)

Assume that the market maker does sell $100 million options and does
buy $47.37 million bonds when rates are 5%. Using the prices in Table

F
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B
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5For an example in the mortgage context see Chapter 21.



5.1, the cost of establishing this position and, equivalently, the value of the
position after the trades is

(5.8)

Now say that rates fall by one basis point to 4.99%. Using the prices
in Table 5.1 for the new rate level, the value of the position becomes

(5.9)

The hedge has succeeded in that the value of the position has hardly
changed even though rates have changed.

To avoid misconceptions about market making, note that the market
maker in this example makes no money. In reality, the market maker
would purchase the option at its midmarket price minus some spread. Tak-
ing half a tick, for example, the market maker would pay half of 1/32 or
.015625 less than the market price of 3.0501 on the $100 million for a to-
tal of $15,625. This spread compensates the market maker for effort ex-
pended in the original trade and for hedging the option over its life. Some
of the work involved in hedging after the initial trade will become clear in
the sections continuing this hedging example.

DURATION

DV01 measures the dollar change in the value of a security for a basis
point change in interest rates. Another measure of interest rate sensitivity,
duration, measures the percentage change in the value of a security for a
unit change in rates.6 Mathematically, letting D denote duration,

(5.10)D
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6A unit change means a change of one. In the rate context, a change of one is a
change of 10,000 basis points.



As in the case of DV01, when an explicit formula for the price-rate
function is available, the derivative of the price-rate function may be used
for the change in price divided by the change in rate:

(5.11)

Otherwise, prices at various rates must be substituted into (5.10) to esti-
mate duration.

Table 5.2 gives the same rate levels, option prices, and bond prices as
Table 5.1 but computes duration instead of DV01. Once again, rates a ba-
sis point above and a basis point below the rate level in question are used
to compute changes. For example, the duration of the underlying bond at a
rate of 4% is given by

(5.12)

One way to interpret the duration number of 7.92 is to multiply both
sides of equation (5.10) by ∆y:

(5.13)
∆ ∆P
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TABLE 5.2 Selected Option Prices, Underlying Bond Prices, and Durations at
Various Rate Levels

Rate Option Option Bond Bond
Level Price Duration Price Duration

3.99% 8.2148 108.2615
4.00% 8.1506 78.60 108.1757 7.92
4.01% 8.0866 108.0901
4.99% 3.0871 100.0780
5.00% 3.0501 120.82 100.0000 7.79
5.01% 3.0134 99.9221
5.99% 0.7003 92.6322
6.00% 0.6879 179.70 92.5613 7.67
6.01% 0.6756 92.4903



In the case of the underlying bond, equation (5.13) says that the percentage
change in price equals minus 7.92 times the change in rate. Therefore, a
one-basis point increase in rate will result in a percentage price change of
–7.92×.0001 or –.0792%. Since the price of the bond at a rate of 4% is
108.1757, this percentage change translates into an absolute change of
–.0792%×108.1757 or –.0857. In words, a one-basis point increase in rate
lowers the bond price by .0857. Noting that the DV01 of the bond at a
rate of 4% is .0857 highlights the point that duration and DV01 express
the same interest rate sensitivity of a security in different ways.

Duration tends to be more convenient than DV01 in the investing con-
text. If an institutional investor has $10 million to invest when rates are
5%, the fact that the duration of the option vastly exceeds that of the bond
alerts the investor to the far greater risk of investing money in options.
With a duration of 7.79, a $10 million investment in the bonds will change
by about .78% for a 10-basis point change in rates. However, with a dura-
tion of 120.82, the same $10 million investment will change by about
12.1% for the same 10-basis point change in rates!

In contrast to the investing context, in a hedging problem the dollar
amounts of the two securities involved are not the same. In the example
of the previous section, for instance, the market maker sells options
worth about $3.05 million and buys bonds worth $47.37 million.7 The
fact that the DV01 of an option is so much less than the DV01 of a bond
tells the market maker that a hedged position must be long much less
face amount of bonds than it is short face amount of options. In the
hedging context, therefore, the dollar sensitivity to a change in rates
(i.e., DV01) is more convenient a measure than the percentage change in
price (i.e., duration).

Tables 5.1 and 5.2 illustrate the difference in emphasis of DV01 and
duration in another way. Table 5.1 shows that the DV01 of the option de-
clines with rates, while Table 5.2 shows that the duration of the option in-
creases with rates. The DV01 numbers show that for a fixed face amount
of option the dollar sensitivity declines with rates. Since, however, declin-
ing rates also lower the price of the option, percentage price sensitivity, or
duration, actually increases.
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7To finance this position the market maker will borrow the difference between
these dollar amounts. See Chapter 15 for a discussion about financing positions.



Like the section on DV01, this section closes with a note on terminol-
ogy. As defined in this chapter, duration may be computed for any assumed
change in the term structure of interest rates. This general definition is also
called effective duration. Many market participants, however, use the term
duration to mean Macaulay duration or modified duration, discussed in
Chapter 6. These measures of interest rate sensitivity explicitly assume a
change in yield-to-maturity.

CONVEXITY

As mentioned in the discussion of Figure 5.3 and as seen in Tables 5.1
and 5.2, interest rate sensitivity changes with the level of rates. To illus-
trate this point more clearly, Figure 5.4 graphs the DV01 of the option
and underlying bond as a function of the level of rates. The DV01 of the
bond declines relatively gently as rates rise, while the DV01 of the op-
tion declines sometimes gently and sometimes violently depending on
the level of rates. Convexity measures how interest rate sensitivity
changes with rates.
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FIGURE 5.4 DV01 of the 5s of February 15, 2011, and of the Call Option as a
Function of Rates
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Mathematically, convexity is defined as

(5.14)

where d2P/dy2 is the second derivative of the price-rate function. Just as the
first derivative measures how price changes with rates, the second deriva-
tive measures how the first derivative changes with rates. As with DV01
and duration, if there is an explicit formula for the price-rate function then
(5.14) may be used to compute convexity. Without such a formula, con-
vexity must be estimated numerically.

Table 5.3 shows how to estimate the convexity of the bond and the op-
tion at various rate levels. The convexity of the bond at 5%, for example,
is estimated as follows. Estimate the first derivative between 4.99% and
5% (i.e., at 4.995%) by dividing the change in price by the change in rate:

(5.15)

Table 5.3 displays price to four digits but more precision is used to calcu-
late the derivative estimate of –779.8264. This extra precision is often nec-
essary when calculating second derivatives.

Similarly, estimate the first derivative between 5% and 5.01% (i.e., at
5.005%) by dividing the change in the corresponding prices by the change
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TABLE 5.3 Convexity Calculations for the Bond and Option at Various Rates

Rate Bond First Option First
Level Price Derivative Convexity Price Derivative Convexity

3.99% 108.2615 8.2148
4.00% 108.1757 –857.4290 75.4725 8.1506 –641.8096 2,800.9970
4.01% 108.0901 –856.6126 8.0866 –639.5266
4.99% 100.0780 3.0871
5.00% 100.0000 –779.8264 73.6287 3.0501 –369.9550 9,503.3302
5.01% 99.9221 –779.0901 3.0134 –367.0564
5.99% 92.6322 0.7003
6.00% 92.5613 –709.8187 71.7854 0.6879 –124.4984 25,627.6335
6.01% 92.4903 –709.1542 0.6756 –122.7355



in rate to get –779.0901. Then estimate the second derivative at 5% by di-
viding the change in the first derivative by the change in rate:

(5.16)

Finally, to estimate convexity, divide the estimate of the second derivative
by the bond price:

(5.17)

Both the bond and the option exhibit positive convexity. Mathemati-
cally positive convexity simply means that the second derivative is positive
and, therefore, that C >0. Graphically this means that the price-rate curve
is convex. Figures 5.1 and 5.2 do show that the price-rate curves of both
bond and option are, indeed, convex. Finally, the property of positive con-
vexity may also be thought of as the property that DV01 falls as rates in-
crease (see Figure 5.4).

Fixed income securities need not be positively convex at all rate levels.
Some important examples of negative convexity are callable bonds (see the
last section of this chapter and Chapter 19) and mortgage-backed securi-
ties (see Chapter 21).

Understanding the convexity properties of securities is useful for both
hedging and investing. This is the topic of the next few sections.

A HEDGING EXAMPLE, PART I I :  
A SHORT CONVEXITY POSITION

In the first section of this hedging example the market maker buys $47.37
million of the 5s of February 15, 2011, against a short of $100 million op-
tions. Figure 5.5 shows the profit and loss, or P&L, of a long position of
$47.37 million bonds and of a long position of $100 million options as
rates change. Since the market maker is actually short the options, the
P&L of the position at any rate level is the P&L of the long bond position
minus the P&L of the long option position.

By construction, the DV01 of the long bond and option positions are
the same at a rate level of 5%. In other words, for small rate changes, the
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change in the value of one position equals the change in the value of the
other. Graphically, the P&L curves are tangent at 5%.

The previous section of this example shows that the hedge performs
well in that the market maker neither makes nor loses money after a one-
basis point change in rates. At first glance it may appear from Figure 5.5
that the hedge works well even after moves of 50 basis points. The values
on the vertical axis, however, are measured in millions. After a move of
only 25 basis points, the hedge is off by about $80,000. This is a very large
number in light of the approximately $15,625 the market maker collected
in spread. Worse yet, since the P&L of the long option position is always
above that of the long bond position, the market maker loses this $80,000
whether rates rise or fall by 25 basis points.

The hedged position loses whether rates rise or fall because the option
is more convex than the bond. In market jargon, the hedged position is
short convexity. For small rate changes away from 5% the values of the
bond and option positions change by the same amount. Due to its greater
convexity, however, the sensitivity of the option changes by more than the
sensitivity of the bond. When rates increase, the DV01 of both the bond
and the option fall but the DV01 of the option falls by more. Hence, after
further rate increases, the option falls in value less than the bond, and the
P&L of the option position stays above that of the bond position. Simi-
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FIGURE 5.5 P&L of Long Positions in the 5s of February 15, 2011, and in the
Call Option
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larly, when rates decline below 5%, the DV01 of both the bond and option
rise but the DV01 of the option rises by more. Hence, after further rate de-
clines the option rises in value more than the bond, and the P&L of the op-
tion position again stays above that of the bond position.

This discussion reveals that DV01 hedging is local, that is, valid in a
particular neighborhood of rates. As rates move, the quality of the hedge
deteriorates. As a result, the market maker will need to rehedge the posi-
tion. If rates rise above 5% so that the DV01 of the option position falls by
more than the DV01 of the bond position, the market maker will have to
sell bonds to reequate DV01 at the higher level of rates. If, on the other
hand, rates fall below 5% so that the DV01 of the option position rises by
more than the DV01 of the bond position, the market maker will have to
buy bonds to reequate DV01 at the lower level of rates.

An erroneous conclusion might be drawn at this point. Figure 5.5
shows that the value of the option position exceeds the value of the bond
position at any rate level. Nevertheless, it is not correct to conclude that
the option position is a superior holding to the bond position. In brief, if
market prices are correct, the price of the option is high enough relative to
the price of the bond to reflect its convexity advantages. In particular,
holding rates constant, the bond will perform better than the option over
time, a disadvantage of a long option position not captured in Figure 5.5.
In summary, the long option position will outperform the long bond posi-
tion if rates move a lot, while the long bond position will outperform if
rates stay about the same. It is in this sense, by the way, that a long con-
vexity position is long volatility while a short convexity position is short
volatility. In any case, Chapter 10 explains the pricing of convexity in
greater detail.

ESTIMATING PRICE CHANGES AND RETURNS 
WITH DV01, DURATION, AND CONVEXITY

Price changes and returns as a result of changes in rates can be estimated
with the measures of price sensitivity used in previous sections. Despite the
abundance of calculating machines that, strictly speaking, makes these ap-
proximations unnecessary, an understanding of these estimation tech-
niques builds intuition about the behavior of fixed income securities and,
with practice, allows for some rapid mental calculations.

A second-order Taylor approximation of the price-rate function with
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respect to rate gives the following approximation for the price of a security
after a small change in rate:

(5.18)

Subtracting P from both sides and then dividing both sides by P gives

(5.19)

Then, using the definitions of duration and convexity in equations (5.11)
and (5.14),

(5.20)

In words, equation (5.20) says that the percentage change in the
price of a security (i.e., its return) is approximately equal to minus the
duration multiplied by the change in rate plus half the convexity multi-
plied by the change in rate squared. As an example, take the price, dura-
tion, and convexity of the call option on the 5s of February 15, 2011,
from Tables 5.2 and 5.3. Equation (5.20) then says that for a 25-basis
point increase in rates

(5.21)

At a starting price of 3.0501, the approximation to the new price is 3.0501
minus .27235×3.0501 or .83070, leaving 2.2194. Since the option price
when rates are 5.25% is 2.2185, the approximation of equation (5.20) is
relatively accurate.

In the example applying (5.20), namely equation (5.21), the duration
term of about 30% is much larger than the convexity term of about 3%.
This is generally true. While convexity is usually a larger number than
duration, for relatively small changes in rate the change in rate is so
much larger than the change in rate squared that the duration effect dom-
inates. This fact suggests that it may sometimes be safe to drop the con-
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vexity term completely and to use the first-order approximation for the
change in price:

(5.22)

This approximation follows directly from the definition of duration and,
therefore, basically repeats equation (5.13).

Figure 5.6 graphs the option price, the first-order approximation 
of (5.22), and the second-order approximation of (5.20). Both approxi-
mations work well for very small changes in rate. For larger changes 
the second-order approximation still works well, but for very large
changes it, too, fails. In any case, the figure makes clear that approxi-
mating price changes with duration ignores the curvature or convexity
of the price-rate function. Adding a convexity term captures a good deal
of this curvature.

In the case of the bond price, both approximations work so well that
displaying a price graph over the same range of rates as Figure 5.6 would
make it difficult to distinguish the three curves. Figure 5.7, therefore,
graphs the bond price and the two approximations for rates greater than
5%. Since the option is much more convex than the bond, it is harder to
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FIGURE 5.6 First and Second Order Approximations to Call Option Price
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capture its curvature with the one-term approximation (5.22) or even with
the two-term approximation (5.20).

CONVEXITY IN THE INVESTMENT AND 
ASSET-LIABILITY MANAGEMENT CONTEXTS

For very convex securities duration may not be a safe measure of return. In
the example of approximating the return on the option after a 25-basis
point increase in rates, duration used alone overstated the loss by about
3%. Similarly, since the duration of very convex securities can change dra-
matically as rate changes, an investor needs to monitor the duration of in-
vestments. Setting up an investment with a particular exposure to interest
rates may, unattended, turn into a portfolio with a very different exposure
to interest rates.

Another implication of equation (5.20), mentioned briefly earlier, is
that an exposure to convexity is an exposure to volatility. Since ∆y2 is al-
ways positive, positive convexity increases return so long as interest
rates move. The bigger the move in either direction, the greater the gains
from positive convexity. Negative convexity works in the reverse. If C is
negative, then rate moves in either direction reduce returns. This is an-
other way to understand why a short option position DV01-hedged with
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FIGURE 5.7 First and Second Order Approximations to Price of 5s of 
February 15, 2011
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bonds loses money whether rates gap up or down (see Figure 5.5). In the
investment context, choosing among securities with the same duration
expresses a view on interest rate volatility. Choosing a very positively
convex security would essentially be choosing to be long volatility, while
choosing a negatively convex security would essentially be choosing to
be short volatility.

Figures 5.6 and 5.7 suggest that asset-liability managers (and hedgers,
where possible) can achieve greater protection against interest rate changes
by hedging duration and convexity instead of duration alone. Consider an
asset-liability manager who sets both the duration and convexity of assets
equal to those of liabilities. For any interest rate change, the change in the
value of assets will more closely resemble the change in the value of liabili-
ties than had duration alone been matched. Furthermore, since matching
convexity sets the change in interest rate sensitivity of the assets equal to
that of the liabilities, after a small change in rates the sensitivity of the as-
sets will still be very close to the sensitivity of the liabilities. In other words,
the asset-liability manager need not rebalance as often as in the case of
matching duration alone.

MEASURING THE PRICE SENSITIVITY 
OF PORTFOLIOS

This section shows how measures of portfolio price sensitivity are related
to the measures of its component securities. Computing price sensitivities
can be a time-consuming process, especially when using the term structure
models of Part Three. Since a typical investor or trader focuses on a partic-
ular set of securities at one time and constantly searches for desirable port-
folios from that set, it is often inefficient to compute the sensitivity of every
portfolio from scratch. A better solution is to compute sensitivity measures
for all the individual securities and then to use the rules of this section to
compute portfolio sensitivity measures.

A price or measure of sensitivity for security i is indicated by the sub-
script i, while quantities without subscripts denote portfolio quantities. By
definition, the value of a portfolio equals the sum of the value of the indi-
vidual securities in the portfolio:

(5.23)P Pi= ∑
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Recall from the introduction to this chapter that y is a single rate or factor
sufficient to determine the prices of all securities. Therefore, one can com-
pute the derivative of price with respect to this rate or factor for all securi-
ties in the portfolio and, from (5.23),

(5.24)

Dividing both sides of by 10,000,

(5.25)

Finally, using the definition of DV01 in equation (5.2),

(5.26)

In words, the DV01 of a portfolio is the sum of the individual DV01 val-
ues.

The rule for duration is only a bit more complex. Starting from equa-
tion (5.24), divide both sides by –P.

(5.27)

Multiplying each term in the summation by one in the form Pi /Pi,

(5.28)

Finally, using the definition of duration from (5.11),

(5.29)

In words, the duration of a portfolio equals a weighted sum of individual
durations where each security’s weight is its value as a percentage of port-
folio value.
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The formula for the convexity of a portfolio can be derived along the
same lines as the duration of a portfolio, so the convexity result is given
without proof:

(5.30)

The next section applies these portfolio results to the case of a callable
bond.

A HEDGING EXAMPLE, PART I I I :  
THE NEGATIVE CONVEXITY OF CALLABLE BONDS

A callable bond is a bond that the issuer may repurchase or call at some
fixed set of prices on some fixed set of dates. Chapter 19 will discuss
callable bonds in detail and will demonstrate that the value of a callable
bond to an investor equals the value of the underlying noncallable bond
minus the value of the issuer’s embedded option. Continuing with the ex-
ample of this chapter, assume for pedagogical reasons that there exists a
5% Treasury bond maturing on February 15, 2011, and callable in one
year by the U.S. Treasury at par. Then the underlying noncallable bond is
the 5s of February 15, 2011, and the embedded option is the option intro-
duced in this chapter, namely the right to buy the 5s of February 15, 2011,
at par in one year. Furthermore, the value of this callable bond equals the
difference between the value of the underlying bond and the value of the
option.

Figure 5.8 graphs the price of the callable bond and, for comparison,
the price of the 5s of February 15, 2011. Chapter 19 will discuss why the
callable bond price curve has the shape that it does. For the purposes of
this chapter, however, notice that for all but the highest rates in the graph
the callable bond price curve is concave. This implies that the callable bond
is negatively convex in these rate environments.

Table 5.4 uses the portfolio results of the previous section and the re-
sults of Tables 5.1 through 5.3 to compute the DV01, duration, and con-
vexity of the callable bond at three rate levels. At 5%, for example, the
callable bond price is the difference between the bond price and the option
price: 100–3.0501 or 96.9499. The DV01 of the callable bond price is the
difference between the DV01 values listed in Table 5.1: .0779–.0369 or
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.0410. The convexity of the callable bond is the weighted sum of the indi-
vidual convexities listed in Table 5.3:

(5.31)

A market maker wanting to hedge the sale of $100 million callable
bonds with the 5s of February 15, 2011, would have to buy $100 million
times the ratio of the DV01 measures or, in millions of dollars,
100×.0411/.0779 or 52.76. Figure 5.9 graphs the P&L from a long position in
the callable bonds and from a long position in this hedge.

The striking aspect of Figure 5.9 is that the positive convexity of the
bond and the negative convexity of the callable bond combine to make the

103 15 73 63 3 15 9 503 33 223. % . . % , .× − × = −
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TABLE 5.4 Price, DV01, Duration, and Convexity of Callable Bond

Rate Callable Bond Fraction Option Fraction Callable Callable Callable
Level Price Price of Value Price of Value DV01 Duration Convexity

4.00% 100.0251 108.1757 108.15% 8.1506 –8.15% 0.0216 2.162983 –146.618
5.00% 96.9499 100.0000 103.15% 3.0501 –3.15% 0.0411 4.238815 –223.039
6.00% 91.8734 92.5613 100.75% 0.6879 –0.75% 0.0586 6.376924 –119.563

FIGURE 5.8 Price of Callable Bond and of 5s of February 15, 2011
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DV01 hedge quite unstable away from 5%. Not only do the values of the
two securities increase or decrease away from 5% at different rates, as is
also the case in Figure 5.5, but in Figure 5.9 the values are driven even fur-
ther apart by opposite curvatures. In summary, care must be exercised
when mixing securities of positive and negative convexity because the re-
sulting hedges or comparative return estimates are inherently unstable.
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FIGURE 5.9 P&L from Callable Bond and from 5s of February 15, 2011, Hedge
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CHAPTER 6
Measures of Price Sensitivity
Based on Parallel Yield Shifts

Chapter 5 defined various measures of price sensitivity in a general, one-fac-
tor framework. This chapter defines measures of price sensitivity in a more

restricted setting, namely, that of parallel shifts in yield. These measures have
two important weaknesses. First, they can be reasonably used only for securi-
ties with fixed cash flows. Second, the assumption of parallel yield shifts is not
a particularly good one and, at times, is internally inconsistent. Despite these
weaknesses, however, there are several reasons fixed income professionals
must understand these measures. First, these measures of price sensitivity are
simple to compute, easy to understand, and, in many situations, perfectly rea-
sonable to use. Second, these measures are widely used in the financial indus-
try. Third, much of the intuition gained from a full understanding of these
measures carries over to more general measures of price sensitivity.

YIELD-BASED DV01

Yield-based DV01 is a special case of DV01 introduced in Chapter 5. In par-
ticular, yield-based DV01 assumes that the yield of a security is the interest
rate factor and that the pricing function P(y) is the price-yield relationship
introduced in Chapter 3 as equation (3.2) or equation (3.4).1 For conve-
nience, these equations are reproduced here2 with the face value set at 100:

1For expositional ease, the derivations in this chapter assume that coupon flows are
in six-month intervals from the settlement date. The derivations in the more general
case are very similar.
2In Chapter 3 the pricing function was written as a function of years to maturity.
Since the emphasis of this chapter is price sensitivity to rate changes, the pricing
function is written as a function of yield.



(6.1)

(6.2)

Both these equations give the price of a bond with annual coupon payment
c per 100 face value, yield to maturity y, and years to maturity T.

DV01, as defined in equation (5.2), equals the derivative of the price
function with respect to the rate factor divided by 10,000. In the special
case of this chapter, the rate factor is the yield of the bond under consider-
ation. Hence,

(6.3)

It is important to emphasize that while equation (6.3) looks very much like
equation (5.2), the derivative means something different here from what it
meant there. Here the derivative is the change in the price given by equa-
tion (6.1) or (6.2) with respect to yield: The one rate that discounts all cash
flows is perturbed. In Chapter 5 the derivative is the change in the price, as
determined by some pricing model, with respect to any specified interest
rate shift (e.g., a parallel shift in forward rates, a volatility-weighted shift
in spot rates, etc.).

Yield-based DV01 is one of the special cases mentioned in Chapter 5
for which the derivative of the price-rate function can be computed explic-
itly. Differentiating equation (6.1),

(6.4)

Then, according to equation (6.3), dividing both sides of (6.4) by –10,000
gives yield-based DV01. For expositional simplicity, the rest of this chapter
usually refers to yield-based DV01 simply as DV01.
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Equation (6.5) may look messy, but its terms can be interpreted for
easy memorization. The first term inside the summation, namely,

(6.6)

may be described as follows. The first factor, t/2, is the number of years to the
receipt of a particular cash flow. For example, the first coupon is indexed by
t=1 so the cash flow arrives in t/2=.5 years, while the last coupon is indexed
by t=2T so the cash flow arrives in T years. The second factor denotes the
present value of the coupon payment paid in t/2 years. Hence, in words, the
term recorded in (6.6) is the time-weighted present value of the tth coupon
payment. Similarly, the second term in the brackets of equation (6.5), namely

(6.7)

is the time-weighted present value of the principal payment. To summarize,
then, equation (6.5) says the following: DV01 is the sum of the time-
weighted present values of a bond’s cash flows divided by 10,000 multi-
plied by one plus half the yield.

Table 6.1 illustrates the computation of DV01 for the U.S. Treasury
5.625s of February 15, 2006, as of February 15, 2001. The cash flow on
August 15, 2003, for example, equals half the coupon or 2.8125 and is
paid in 2.5 years. Since the yield of the bond is 5.0441%, the time-
weighted present value of this cash flow is

(6.8)

Finally, since the sum of all the time-weighted present values is 454.8511,
the DV01 is

(6.9)

The DV01 of the 5.625s of February 15, 2006, says that a one-basis point
decline in the bond’s yield increases its price by about 4.4 cents per $100
face value.
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An equation for DV01 more compact than (6.5) may be derived by dif-
ferentiating equation (6.2) instead of (6.1). Doing this shows that

(6.10)

Dividing by –10,000, it follows immediately that

(6.11)

Substituting c=5.625, y=5.0441%, and T=5 into (6.11) gives .044366, as
before. Equation (6.10) will prove particularly useful in deriving simple ex-
pressions for several special cases.

Having defined yield-based DV01, its most important limitation be-
comes clear. A market maker might buy $1 million face amount of a secu-
rity with a DV01 of .05 and hedge it by selling $1 million times
.05/.044366 of the 5.625s of February 15, 2006, or about $1.127 million
face amount. Given the assumptions in computing DV01, however, this
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TABLE 6.1 Calculating the DV01 of the 5.625s of
2/15/2006

Yield: 5.0441%
Time-

Cash Present Weighted
Date Term Flow Value PV

8/15/01 0.5 2.8125 2.7433 1.3717
2/15/02 1 2.8125 2.6758 2.6758
8/15/02 1.5 2.8125 2.6100 3.9150
2/15/03 2 2.8125 2.5458 5.0916
8/15/03 2.5 2.8125 2.4832 6.2079
2/15/04 3 2.8125 2.4221 7.2662
8/15/04 3.5 2.8125 2.3625 8.2687
2/15/05 4 2.8125 2.3044 9.2175
8/15/05 4.5 2.8125 2.2477 10.1146
2/15/06 5 102.8125 80.1444 400.7219

Sums: 102.5391 454.8511

DV01: 0.044366



hedge will work as intended only if the yield of the bond bought changes
by the same amount as the yield of the 5.625s of February 15, 2006. It is in
this sense that DV01 (along with the other measures of price sensitivity in
this chapter) requires parallel yield shifts.

MODIFIED AND MACAULAY DURATION

Chapter 5 defined duration as

(6.12)

Modified duration, written DMod, is the special case of duration when a
bond is priced using its yield, that is, when the pricing function is given by
(6.1) or (6.2) and the derivative is given by (6.4) or (6.10). Substituting
(6.4) into (6.12),

(6.13)

In words, modified duration equals the time-weighted present value of the
cash flows divided by price3 times one plus half the yield. Since the price of
a bond is just the sum of the present values of its cash flows, Table 6.1 con-
tains all the required data to compute the modified duration of the 5.625s
of February 15, 2006:

(6.14)

Substituting (6.10) into (6.12) gives a more compact expression for DMod:
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3For the pricing dates and bonds used in the examples of this chapter, accrued inter-
est is zero. When this is not the case, the price appearing in the duration definitions
is the full or invoice price.



Macaulay duration, denoted by DMac, is not very popular today but has
one useful interpretation that is described in the next section. This measure
of price sensitivity is a simple transformation of modified duration:

(6.16)

Using the definitions of DMod in (6.13) and (6.15) gives two expressions for
DMac:

(6.17)

(6.18)

Equation (6.17) says that Macaulay duration equals the time-weighted
present value of cash flows divided by price. From the numbers in Table
6.1, the Macaulay duration of the 5.625s of February 15, 2006, is
454.8511/102.5391 or 4.4359.

Despite the fact that modified and Macaulay duration are very special
cases of duration as defined in Chapter 5, in this chapter, for ease of expo-
sition, these measures are sometimes referred to simply as duration.

ZERO COUPON BONDS AND A REINTERPRETATION 
OF DURATION

A convenient property of Macaulay duration is that the Macaulay dura-
tion of a T-year zero coupon bond equals T. This relationship is written as
follows, where the vertical line and subscript indicate that DMac is evalu-
ated for the case c=0:

(6.19)

Hence the Macaulay duration of a six-month zero is simply .5 while that of
a 10-year zero is simply 10. To derive this property, set the coupon to zero
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in equation (6.17) or (6.18) and note that the price of a zero coupon bond
equals 100/(1+y/2)2T.

Longer-maturity zeros have larger durations and, therefore, greater
price sensitivity than shorter-maturity zeros. This makes intuitive sense. A
change in yield will affect the price of a six-month zero through one period
of discounting. The same change in yield, however, affects the price of a
10-year zero through 20 periods of discounting.

The fact that the Macaulay duration of zeros equals years to maturity
allows for a convenient interpretation of the Macaulay duration of any
other bond. The previous section calculates that the Macaulay duration of
the 5.625s due February 15, 2006, is 4.4359. But the DMac of a zero
coupon bond maturing in 4.4359 years is also 4.4359. Therefore, the first
order price sensitivity of the 5.625s of February 15, 2006, equals that of a
zero maturing in 4.4359 years. In other words, the price sensitivity of zeros
can be taken as a benchmark against which to judge the sensitivity of other
bonds. Furthermore, the equivalence between Macaulay duration and zero
coupon maturity helps explain the industry practice of quoting duration in
years, that is, saying that the duration of the 5.625s of February 15, 2006,
is 4.4359 years.

The special case of the Macaulay duration of zeros can also be used to
reinterpret the mathematical expression for the Macaulay duration of any
bond. In particular, the special case of zeros is useful for understanding
why the present value of each cash flow in (6.17) is multiplied by the years
to the receipt of that cash flow. To explain, rewrite equation (6.17) slightly:

(6.20)

Recall from Part One that a coupon bond may be viewed as a portfolio
of zero coupon bonds, in particular a portfolio with c/2 face value of zeros
that mature on each coupon payment date and an additional 100 face
value of zeros maturing on the principal payment date. Continuing with
this perspective, the term
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in (6.20) denotes the value of the zeros in the portfolio that replicate the
tth coupon payment as a fraction of total portfolio value (i.e., of bond
price). Similarly, the term

(6.22)

denotes the value of the zeros in the portfolio that replicate the principal
payment as a fraction of total portfolio value. But since the Macaulay du-
ration of a zero equals its years to maturity, the right-hand side of (6.20) is
the weighted sum of durations of the replicating zeros where the weights
are the value of each zero as a fraction of total portfolio value, that is, of
the coupon bond price. This means that (6.20) may be interpreted as say-
ing that the Macaulay duration of a coupon bond equals the duration of its
replicating portfolio of zeros. Therefore, in conclusion, the present value of
each cash flow in the calculation of Macaulay duration is weighted by its
years to receipt because years to receipt is the duration of the correspond-
ing zero in the replicating portfolio.

While the special case of a zero coupon bond is cleanest for Macaulay
duration, it may also be derived for DV01 and modified duration. In par-
ticular,

(6.23)

(6.24)

PAR BONDS AND PERPETUITIES

Two other special cases of DV01 and duration prove useful. As discussed
in Chapter 3, for bonds selling at par P=100 and c=100y. Substituting
these values into (6.11), (6.15), and (6.18) gives the following expressions:
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(6.26)

(6.27)

Perpetuities make coupon payments forever. Mathematically, T=∞,
where ∞ is the symbol for infinity. Taking the limit as maturity ap-
proaches infinity in equations (6.2), (6.11), (6.15), and (6.18) gives the
following expressions4:

(6.28)

(6.29)

(6.30)

(6.31)

Note that the derivation of the perpetuity values did not have to assume
that the perpetuity never makes its principal payment. Letting maturity ex-
tend to infinity lowers the value of any principal to zero; There is no differ-
ence in value between a bond that pays only coupons forever and a bond
that pays coupons forever and then pays principal. This observation implies
that the DV01 and duration expressions given earlier provide a limiting
case for any coupon bond. In other words, if the maturity of a coupon bond
is extended long enough, its DV01 and duration will approximately equal
the DV01 and duration of a perpetuity with the same coupon.
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4When taking the limit of a term like T/(1+y/2)2T, note that the numerator increases
linearly in T while the denominator increases exponentially. Consequently, the limit
of this term is 0.



DURATION, DV01, MATURITY, AND COUPON: 
A GRAPHICAL ANALYSIS

Figure 6.1 uses the equations of this chapter to show how Macaulay dura-
tion varies across bonds. For the purposes of this figure all yields are fixed
at 5%. At this yield, the Macaulay duration of a perpetuity is 20.5. Since a
perpetuity has no maturity, this duration is shown in Figure 6.1 as a hori-
zontal line. Also, since, by equation (6.31), the Macaulay duration of a
perpetuity does not depend on coupon, this line is a benchmark for the du-
ration of any coupon bond with a sufficiently long maturity.

Since the Macaulay duration of a zero coupon bond equals its years to
maturity, the 45° line in the figure gives zero coupon duration.

From equations (6.26) and (6.27) it is clear that the duration of a par
bond always increases with maturity. As in the context of zeros, the longer
the term, the greater impact changes in yield have on value. The duration
of par bonds rises from zero at a maturity of zero and steadily approaches
the duration of a perpetuity.

The premium curve in Figure 6.1 is constructed assuming a coupon of
9%, while the discount curve is constructed assuming a coupon of 1%. Ac-
cording to the figure, for any given maturity, duration falls as coupon in-
creases: Zeros have the highest duration and premium bonds the lowest.
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FIGURE 6.1 Macaulay Duration across Bonds Yielding 5%
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The intuition behind this fact is that higher-coupon bonds have a greater
fraction of their value paid earlier. The higher the coupon, the larger the
weights on the duration terms of early years relative to those of later years.
Alternatively, the portfolio of zeros replicating relatively high coupon
bonds contains a relatively large fraction of its value in shorter-term zeros.
From either of these perspectives, higher-coupon bonds are effectively
shorter-term bonds and therefore have lower duration.

A little-known fact about duration can be extracted from Figure 6.1. If
the discount is deep enough—that is, if the coupon is low enough relative
to yield, as it is in this figure—the duration of a discount bond rises above
the duration of a perpetuity. But since at some large maturity the duration
of a discount bond must approach the duration of a perpetuity, the dura-
tion of the discount bond must eventually fall as maturity increases. This
phenomenon is not common, but relatively recently bonds have been is-
sued with 50 and 100 years to maturity. Should these sell at a substantial
discount at some time in their lives, portfolio managers may find them-
selves holding bonds that become more sensitive to rates as they mature.

The major difference between DV01 and duration is that DV01 mea-
sures an absolute change in price while duration measures a percentage
change. To understand how this difference impacts the behavior of DV01
with maturity, rewrite equations (6.3), (6.12), and (6.16) to express DV01
in terms of duration:

(6.32)

Not surprisingly, for a given duration, bonds with higher prices tend
to have higher absolute price sensitivities. So while duration almost al-
ways increases with maturity, (6.32) shows that the behavior of DV01
with maturity also depends on how price changes with maturity. What
will be called the duration effect tends to increase DV01 with maturity
while what will be called the price effect can either increase or decrease
DV01 with maturity.

Figure 6.2 graphs DV01 as a function of maturity under the same as-
sumptions used in Figure 6.1. Since the DV01 of a perpetuity, unlike its
Macaulay or modified duration, depends on the coupon rate, the perpetu-
ity line is removed.
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Inspection of equation (6.25) reveals that the DV01 of par bonds al-
ways increases with maturity. Since the price of par bonds is always 100,
the price effect does not come into play, and, as in the case of duration,
longer par bonds have greater price sensitivity. The curve approaches .2,
the DV01 of a par perpetuity at a yield of 5%.

As discussed in Chapter 3, extending the maturity of a premium bond
increases its price. As a result, the price and duration effects combine so
that the DV01 of a premium bond increases with maturity faster than the
DV01 of a par bond. Of course, at some maturity beyond the graph, the
price of the bond increases very slowly and the price effect becomes less
important. The DV01 eventually approaches that of a perpetuity with a
coupon of 9% (i.e., .36).

As discussed in Chapter 3, extending the maturity of a discount bond
lowers its price. For a relatively short-maturity discount bond, the duration
effect dominates and the DV01 of the discount bond increases with matu-
rity. Then the price effect catches up and the DV01 of the discount bond
declines with maturity. At some maturity the DV01 approaches .04, that of
a perpetuity with a 1% coupon.

The DV01 of a zero behaves like that of a discount bond except that
it eventually falls to zero. With no coupon payments, the present value
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FIGURE 6.2 DV01 across Bonds Yielding 5%
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of a zero with a longer and longer maturity approaches zero, and so
does its DV01.

Figure 6.2 also shows that, unlike duration, DV01 rises with coupon.
This fact is immediately evident from equation (6.5). For a given yield and
maturity, higher coupons imply higher dollar prices and higher absolute
price sensitivity.

DURATION, DV01, AND YIELD

Inspection of equation (6.5) reveals that increasing yield lowers DV01.
This fact has already been introduced: Chapter 5 discussed how bonds
with fixed coupons display positive convexity, another way of saying that
the derivative and DV01 fall as yield increases. As it turns out, increasing
yield also lowers duration. The intuition behind this fact is that increasing
yield lowers the present value of all payments but lowers the present value
of the longer payments most. This implies that the value of the longer pay-
ments falls relative to the value of the whole bond. But since the duration
of these longer payments is greatest, lowering their corresponding weights
in the duration equation must lower the duration of the whole bond. Con-
versely, decreasing yield increases DV01 and duration.

Table 6.2 illustrates the effect of yield on modified duration for the
5.625s of February 15, 2006. The longest payment constitutes 77.3% of
the bond price at a yield of 7% but 79% at a yield of 3%. By contrast, the
shortest payment constitutes only 2.9% of price at a yield of 7% but 2.5%
at a yield of 3%. This increase in percentage value of the longer payments
relative to the shorter payments as yields fall raises modified duration in
this example from 4.26 to 4.40.

YIELD-BASED CONVEXITY

Chapter 5 defined convexity as

(6.33)

In the special case of the pricing function taken in this chapter, yield-based
convexity may be derived by taking the second derivative of the price-yield
function or by differentiating equation (6.4):
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(6.34)

So yield-based convexity, sometimes referred to as simply convexity, is de-
fined as

(6.35)

In words, the present values of the cash flows are weighted by time multi-
plied by time plus one half, summed up, and divided by price multiplied by
one plus half the yield squared. For the 5.625s of February 15, 2006, Table
6.3 gives the weights for the calculation of convexity along with the other
necessary information to compute the convexity value of 22.2599.

YIELD-BASED CONVEXITY OF ZERO COUPON BONDS

Setting c=0 and P=100/(1+y/2)2T in equation (6.35) gives the convexity of a
zero coupon bond:
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TABLE 6.2 The Modified Duration of the 5.625s of 2/15/2006 at Different Yields

Yield: 7% Yield: 3%

Cash Present Present
Term Flow Value PV/Price Value PV/Price

0.5 2.8125 2.7174 2.9% 2.7709 2.5%
1 2.8125 2.6255 2.8% 2.7300 2.4%
1.5 2.8125 2.5367 2.7% 2.6896 2.4%
2 2.8125 2.4509 2.6% 2.6499 2.4%
2.5 2.8125 2.3680 2.5% 2.6107 2.3%
3 2.8125 2.2880 2.4% 2.5721 2.3%
3.5 2.8125 2.2106 2.3% 2.5341 2.3%
4 2.8125 2.1358 2.3% 2.4967 2.2%
4.5 2.8125 2.0636 2.2% 2.4598 2.2%
5 102.8125 72.8857 77.3% 88.5902 79.0%

Price 94.2823 112.1041
Modified Duration 4.2576 4.3992



(6.36)

From (6.36) it is clear that longer-maturity zeros have greater convex-
ity. In fact, convexity increases with the square of maturity. In any case, the
price-yield curve of a longer-maturity zero will be more curved than that of
a shorter-maturity zero. Furthermore, since a coupon bond is a portfolio of
zeros, longer-maturity coupon bonds usually have greater convexity than
shorter-maturity coupon bonds.

Just as in the cases of DV01 and duration, equation (6.36) may be used
to reinterpret the convexity formula in (6.35). Given the convexity of a zero
coupon bond and the fact that the convexity of a portfolio equals the
weighted convexity of its components, the convexity formula may be viewed
as the convexity of the portfolio of zeros making up the coupon bond.

THE BARBELL VERSUS THE BULLET

In the asset-liability context, barbelling refers to the use of a portfolio of
short- and long-maturity bonds rather than intermediate-maturity bonds.
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TABLE 6.3 Calculating the Convexity of the 5.625s of
2/15/2006

Yield: 5.0441%
Cash Present Weighted

Date Term Flow Value PV

8/15/01 0.5 2.8125 2.7433 1.3717
2/15/02 1 2.8125 2.6758 4.0137
8/15/02 1.5 2.8125 2.6100 7.8300
2/15/03 2 2.8125 2.5458 12.7290
8/15/03 2.5 2.8125 2.4832 18.6238
2/15/04 3 2.8125 2.4221 25.4319
8/15/04 3.5 2.8125 2.3625 33.0750
2/15/05 4 2.8125 2.3044 41.4789
8/15/05 4.5 2.8125 2.2477 50.5731
2/15/06 5 102.8125 80.1444 2,203.9706

Sums: 102.5391 2,399.0975

Convexity: 22.2599



An asset-liability manager might have liabilities each with duration equal
to nine years and, as a result, with portfolio duration equal to nine years.
The proceeds gained from incurring those liabilities could be used to pur-
chase several assets with duration equal to nine years, or alternatively, to
purchase 2- and 30-year securities that, as a portfolio, have a duration
equal to nine years. The former set of assets is called a bullet portfolio and
the latter a barbell portfolio.

The simple expressions for the Macaulay duration and convexity of ze-
ros derived in the previous sections may be used to begin an analysis of
barbelling. For this simple example, assume that the yield curve is flat at
5%. A nine-year zero coupon bond has a Macaulay duration of nine years
and a convexity of 9×9.5/(1+.05/2)2 or 81.38. A barbell portfolio with 75%
of its value in two-year zeros and 25% in 30-year zeros will have
Macaulay duration equal to .75×2+.25×30 or 9, matching the duration of
the liabilities. The convexity of the barbell portfolio, however, is

(6.37)

which is substantially greater than the convexity of the liabilities.
A barbell has greater convexity than a bullet because duration in-

creases linearly with maturity while convexity increases with the square of
maturity. If a combination of short and long durations, essentially maturi-
ties, equals the duration of the bullet, that same combination of the two
convexities, essentially maturities squared, must be greater than the con-
vexity of the bullet. In the example, the particularly high convexity of the
30-year zero, on the order of the square of 30, more than compensates for
the lower convexity of the two-year zero. As a result, the convexity of the
portfolio exceeds the convexity of the nine-year zero.

Figure 6.3 graphs the price-yield curve of the barbell and bullet portfo-
lios in this example. Note that the values of the two portfolios are assumed
to be equal at 5%. This corresponds to the problem of an asset-liability
manager who needs to invest a fixed sum with duration equal to 9 at a
yield of 5%. As Chapter 5 discussed in the example of hedging an option,
the portfolio of greater convexity does better whether rates rise or fall. As
noted there, however, this does not imply that the barbell portfolio is supe-
rior to the bullet. Chapter 10 will show how bonds are priced to reflect
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their convexity advantage. In fact, the bullet outperforms if rates move by
a relatively small amount, up or down, while the barbell outperforms if
rates move by a relatively large amount.

The intuition gained from the barbell-bullet example can be used to
understand the convexity properties of other portfolios. In general, spread-
ing out the cash flows of a portfolio (without changing its duration) raises
its convexity.
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FIGURE 6.3 Price-Yield Curves of Barbell and Bullet
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CHAPTER 7
Key Rate and Bucket Exposures

A major weakness of the approach taken in Chapters 5 and 6, as well as
in some of the term structure models in Part Three, is the assumption

that movements in the entire term structure can be described by one inter-
est rate factor. To put it bluntly, the change in the six-month rate is as-
sumed to predict perfectly the change in the 10-year and 30-year rates. So,
for example, a (naive) DV01 analysis would allow for the hedging of a po-
sition in 10- or 30-year bonds with six-month securities.

One-factor approaches, particularly when used carelessly, present a
danger for hedging and asset-liability management. Consider the case of an
asset-liability manager who hedges the yield-based duration of a nine-year
liability with a barbell of two- and 30-year assets. If two-, nine-, and 30-
year yields change in parallel by some small amount, then, by the definition
of duration matching, the total value of the portfolio will be approximately
unchanged. But what if the 30-year rate increases and the rest of the curve
stays the same? Or what if the nine-year rate decreases and the rest of the
curve stays the same? In these cases the value of assets will fall below the
value of liabilities. In short, hedging with a model that assumes parallel
shifts or any other strong relationship between yields of different maturi-
ties will fail to protect against changes in the shape of the yield curve,
whether against flattening, steepening, or some other twist.

One approach toward solving this problem is to construct a model
with more than one factor. Say, for example, a short-term rate and a
long-term rate were taken as factors. One would then compute a sensitiv-
ity or duration with respect to each of the two factors. Hedging and as-
set-liability management would be implemented with respect to both
durations. In other words, total portfolio duration with respect to each
factor would be set to zero. The procedure in this particular example



would protect a portfolio against movements in either end of the curve
whether or not these movements occur simultaneously. Of course, the
portfolio would be subject to gains or losses from changes in intermedi-
ate rates that are not perfectly predicted by changes in the short- and
long-term rates selected as factors.

Chapter 13 will discuss two-factor models for the purpose of simulta-
neous pricing and hedging. This chapter presents two commonly used tech-
niques for the purpose of multi-factor hedging, that is, for measuring
exposures to several regions of the yield curve and for protecting against a
relatively wide variety of yield curve movements.

KEY RATE SHIFTS

In this technique a set of key rates is assumed to describe the movements of
the entire term structure. Put another way, the technique assumes that
given the key rates any other rate may be determined. The following
choices must be made to apply the technique: the number of key rates, the
type of rate to be used (usually spot rates or par yields), the terms of the
key rates, and the rule for computing all other rates given the key rates.
These choices are examined in the next several sections.

Assume for now that there are four key rates, the two-, five-, 10-, and
30-year par yields. The change in the term structure of par yields accompa-
nying a one-basis point change in each of the key rates is assumed to be as
shown in Figure 7.1. Each of these shapes is called a key rate shift. Each
key rate affects par yields from the term of the previous key rate (or zero)
to the term of the next key rate (or the last term). Specifically, the two-year

134 KEY RATE AND BUCKET EXPOSURES

FIGURE 7.1 Key Rate Shifts
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key rate affects all par yields of term zero to five, the five-year affects par
yields of term two to 10, the 10-year affects par yields of term five to 30,
and the 30-year affects par yields from 10 on. The impact of each key rate
is one basis point at its own maturity and declines linearly to zero at the
term of the adjacent key rate. To the left of the two-year key rate and to the
right of the 30-year key rate, the effect remains at one basis point.

There are several appealing features about the impacts of the key rates
described in Figure 7.1. First, consistent with the spirit of key rate expo-
sures, each region of the par yield curve is affected by a combination of the
key rates closest to it. The seven-year rate, for example, is affected by
changes in the five-year and 10-year rates while the 15-year rate is affected
by changes in the 10-year and 30-year rates. Second, each rate is most af-
fected by the key rate closest to it. The nine-year rate is strongly impacted
by the 10-year rate and slightly impacted by the five-year rate. Third, the
impacts of the key rates change smoothly. The five-year key rate affects the
seven-year rate only a bit more than it affects the eight-year rate, while the
10-year key rate affects the seven-year rate only a bit less than it affects the
eight-year rate. Fourth, the sum of the key rate shifts equals a parallel shift
in the par yield curve. The appeal of this property will be discussed in the
next section.

The fact that the shifts are linear between key rates is not essential.
Quite the contrary: The arbitrary shape of the shifts is a theoretical weak-
ness of the key rate approach. One might easily argue, for example, that
the shifts should at least be smooth curves rather than piecewise linear seg-
ments. However, in practice, the advantage of extra smoothness may not
justify the increased complexity caused by abandoning the simplicity of
straight lines.

KEY RATE 01s AND KEY RATE DURATIONS

Table 7.1 summarizes the calculation of key rate 01s, the key rate equiva-
lent of DV01, and of key rate durations, the key rate equivalent of dura-
tion. The security used in the example is a nonprepayable mortgage
requiring a payment of $3,250 every six months for 30 years. So that the
the numbers are easily reproduced, it is assumed that the par yield curve is
flat at 5%, but no such restrictive assumption is necessary. Like DV01 and
duration, key rate exposures can be calculated assuming any initial term
structure so long as the security can be priced at that term structure and at
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the term structure after applying the required shift. In this simple case,
pricing is done by discounting,1 but for more complicated securities, like
real mortgages that are prepayable, the models of Part Three must be used.

Table 7.1 reports that the value of the mortgage at the initial term
structure is $100,453.13 and that the value after a five-year key rate shift
of 1 basis point is $100,449.36. Therefore, the five-year key rate 01 is

(7.1)

and, multiplying by 10,000 and dividing by price, the five-year key rate
duration is

(7.2)

The last row of the table adds the key rate 01s and durations. Since the
sum of the key rate shifts is a parallel shift in the par yield curve, the sums
of the key rate 01s and durations closely match the DV01 and duration, re-
spectively, under the assumption of a parallel shift in the par yield curve.

10 000 3 77 100 453 13 38, $ . $ , . .× =

− −( ) =$ , . $ , . $ .100 449 36 100 453 13 3 77
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TABLE 7.1 Key Rate Exposures of a 30-Year Nonprepayable Mortgage

Monthly payment: $3,250
Par yields flat at: 5%

Key Rate Key Rate Percent 
($) 01($) Duration of Total

Initial value 100,453.13
After 2-year shift 100,452.15 0.98 0.10 0.9%
After 5-year shift 100,449.36 3.77 0.38 3.3%
After 10-year shift 100,410.77 42.37 4.22 37.0%
After 30-year shift 100,385.88 67.26 6.70 58.8%

Total: 114.38 11.39

1More specifically, given the original par yield curve or any shifted par yield curve,
the definitions of Part One may be used to compute discount factors. These, in
turn, can be used to price any set of fixed cash flows.



Therefore, key rate exposures essentially decompose a sensitivity measure
like DV01 or duration into component sensitivities. The last column of
Table 7.1 gives the percent of the total sensitivity attributable to movement
in different segments of the term structure.

The pattern of key rate sensitivities across key rate depends on several
factors. First, this pattern reflects the distribution of cash flows. A 10-year
par bond, on the one hand, has no exposure to the two-, five-, and 30-year
key rates but 100% exposure to the 10-year key rate. (The next section
elaborates on this point.) The nonprepayable mortgage, on the other hand,
with cash flows spread evenly over the entire maturity spectrum, will have
exposure to all the key rates. Second, the sensitivity to short-term key rates
is likely to be relatively low since the DV01 or duration of short-term cash
flows is relatively low. Third, the sensitivity to longer-term key rates is de-
pressed by the fact that longer-term cash flows are worth less than shorter-
term cash flows. The duration of a cash flow due in 30 years is relatively
high, but the value of that cash flow as a percentage of the value of the se-
curity is relatively small. As a result, the change in value of that cash flow
has a smaller effect on the value of the security than its duration might in-
dicate. Fourth, the pattern of key rate exposures is affected by the choice of
key rates. If key rates were oddly chosen to be nine-, 10-, 11-, and 30-year
par yields, the 10-year key rate would affect only cash flows between nine
and 11 years to maturity. In that case, except for coupon bonds maturing
in about 10 years, key rate exposures would not show much sensitivity to
the 10-year rate. By contrast, with the common choice of two-, five-, 10-,
and 30-year par yields, the 10-year key rate has the largest span of all the
key rates, covering 25 years of the term structure.

HEDGING WITH KEY RATE EXPOSURES

As discussed in the next section, the choice of two-, five-, 10-, and 30-year
par yields as key rates indicates a desire to hedge with two-, five-, 10-, and
30-year par bonds. In that case, hedging the nonprepayable mortgage ana-
lyzed in the previous section is accomplished by selling the portfolio of
these hedging securities that matches each key rate exposure computed in
Table 7.1. Table 7.2 begins computing the composition of this portfolio by
computing the key rate 01s of the hedging securities. To make the example
realistic without complicating it too much, it is assumed that the liquid
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two-, five-, and 30-year bonds sell for par but that the liquid 10-year secu-
rity has a coupon of 8% and sells at a premium.

Since the two-year par yield is a key rate, changing any other key rate
does not, by definition, change the two-year par rate. Consequently, two-
year par bonds have no exposure to any key rate except the two-year key
rate. Similarly, five-, 10-, and 30-year par bonds have no exposure to any
key rate but that of the corresponding maturity. Since three of the hedging
securities in Table 7.2 are par bonds at maturities corresponding to key
rates, they have sensitivities to one key rate each. By contrast, since the 10-
year hedging bond is not a par bond, its price is not completely determined
by the 10-year par yield.2 In particular, its price is sensitive to changes in
the two- and five-year key rates.

Let F2, F5, F10, and F30 be the face amounts of the bonds in the hedging
portfolio to be sold against the nonprepayable mortgage. Only two of the
bonds, namely the two-year and 10-year, have an exposure to the two-year
key rate. Therefore, for the two-year key rate exposure of the hedging
portfolio to equal that of the mortgage it must be the case that

(7.3)
. .

.
01881
100

00122
100

981292 10F F+ =
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TABLE 7.2 Key Rate Exposures of Four Hedging Securities

Par yields flat at: 5%
Key Rate 01s (100 Face)

Coupon Term 2-Year 5-Year 10-Year 30-Year

5% 2 0.01881 0 0 0
5% 5 0 0.04375 0 0
8% 10 0.00122 0.00468 0.08308 0
5% 30 0 0 0 0.15444
Nonprepayable
mortage: 0.98129 3.77314 42.36832 67.25637

2Consider the following simple example. One par yield curve slopes upward every-
where and one slopes downward everywhere, but both have 10-year par yields
equal to 5%. A 10-year bond with an 8% coupon certainly does not have the same
price under both yield curves.



Note that since the key rate 01s of the bonds are reported per 100 face,
they need to be divided by 100 in equation (7.3). The key rate 01 of the
mortgage is reported for the face amount to be hedged, so it stands as is.

Two bonds have exposures to the five-year key rate, namely the five-
year and 10-year bonds. To hedge against changes in the five-year key rate,
it must be the case that

(7.4)

Only one bond has an exposure to each of the 10- and 30-year key
rates, namely the 10- and 30-year bonds, respectively. Hedging against
changes in these key rates requires that

(7.5)

and

(7.6)

Solving equations (7.3) through (7.6) simultaneously gives the fol-
lowing solution for the face value of the hedging bonds in the hedging
portfolio:

(7.7)

A portfolio of the nonprepayable mortgage and a short position in
these quantities of hedging bonds has no exposure to any of the four key
rates. In other words, this hedged portfolio will be approximately immune
to any combination of key rate movements. Possible combinations include
the 10-year key rate moving up by five basis points and all other key rates
staying the same, the two- and 30-year key rates moving down by three ba-
sis points and other key rates staying the same, and so forth. The hedged
portfolio is only approximately immune for two reasons. First, as usual
with derivative-based hedging, the quality of hedge deteriorates as the size
of the interest rate change increases. Second and more important, the
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hedge will work as intended only if the par yields between key rates move
as assumed. If the 20-year rate does something very different from what
was assumed in Figure 7.1, the supposedly hedged portfolio will suffer
losses or experience gains.

The hedging method described in this section makes full use of a secu-
rity’s key rate profile. But key rate analysis may be used in a less formal way.
If a hedger wanted to use only one bond to hedge the mortgage (and was
willing to assume any accompanying curve risk), the key rate profile in
Table 7.1 indicates that a par security maturing between 10 and 30 years
might be the best choice. If the hedger were willing to purchase two of the
hedging securities listed, Table 7.1 certainly points to the 10- and 30-year
securities. More generally, if a hedger chooses to hedge with a relatively
small number of securities, a key rate profile can guide the selection of those
securities. In fact, since many practitioners rely on DV01 hedging, particu-
larly to mange risk over a short time, they might use key rates to select their
single hedging security. The extreme example in the chapter introduction, of
hedging a position in 10- and 30-year bonds with six-month securities,
would be avoided by a key rate analysis (if not by common sense).

CHOOSING KEY RATES

The greater the number of key rates, the better the quality of the resulting
hedge. Using four key rates and, therefore, four securities to hedge a port-
folio can protect against a wider variety of yield curve changes than DV01-
hedging. Then why not use very many key rates? Using 20 key rates and 20
securities to hedge a portfolio might very well be feasible if the portfolio’s
composition were relatively constant over time and if the portfolio’s key
rate durations were relatively stable. A portfolio with these characteristics
would also benefit from bucket exposures and perhaps even immunization,
described in the next sections. On the other hand, for a portfolio with a
changing composition or with key rate durations that change significantly
with the level of rates, trading 20 securities every time the portfolio or its
sensitivities change would probably prove too costly and onerous.

Key rates are usually defined as par yields or spot rates. If par bonds
are used as hedging securities, par yields are a particularly convenient
choice. First, as mentioned previously, each hedging security has an expo-
sure to one and only one key rate. Second, computing the sensitivity of a
par bond of a given maturity with respect to the par yield of the same ma-
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turity is the same as computing DV01. In other words, the key rate expo-
sures of the hedging securities equal their DV01s. To illustrate the conve-
nience of par yield key rates with par hedging bonds, suppose in the
example of the previous section that the 10-year bond sold at par like the
other three hedging bonds. In that case, the hedging equations (7.3)
through (7.6) reduce to the following simpler form:

(7.8)

(7.9)

(7.10)

(7.11)

To compute the hedge amount in this case, simply divide each key rate ex-
posure by the DV01 (per unit face value) of the hedging bond of corre-
sponding maturity.

The disadvantage of using par yields, particularly when combined with
the assumption that intermediate yields are found by the lines drawn in
Figure 7.1, is that the changes in the forward rate curve implied by these
yields changes have a bizarre shape. The problem is similar to that of the
forward curve emerging from linear yield interpolation in Figure 4.3:
Kinks in the yield curve translate into sizable jumps in the forward curve.
Changing key rates to spot rates has the same disadvantage.

Setting key rates to forward rates naturally solves this problem: The
shifted forward curve is only as odd as the shapes in Figure 7.1. The prob-
lem with shifting forward rates is that spot rate changes are no longer local.
Changing the forward rates from two to five years while keeping all other
forward rates constant, for example, changes all the spot rates from two
years and beyond. True, the effect on a 30-year rate is much less than the ef-
fect on a five-year rate, but the key rate interpretation of shocking one part
of the term structure at a time is lost. Forward shifts will, however, be the
more natural set of shifts in bucket analysis, described in the next section.

.
.

15444
100

67 2563730F =

.
.

08308
100

42 3683210F =

.
.

04375
100

3 773145F =

.
.

01881
100

981292F =

Choosing Key Rates 141



With respect to the terms of the key rates, it is clearly desirable to
spread them out over the maturity range of interest. More subtly, well-cho-
sen terms make it possible to hedge the resulting exposures with securities
that are traded and, even better, with liquid securities. As an example, con-
sider a swap market in an emerging market currency. A dealer might make
markets in long-term swaps of any maturity but might observe prices and
hedge easily only in, for example, 10- and 30-year swaps. In that case there
would not be much point in using 10-, 20-, and 30-year par swap yields as
key rates. If all maturities between 10 and 30 years were of extremely lim-
ited liquidity, it would be virtually impossible to hedge against changes in
those three ill-chosen key rates. If a 20-year security did trade with limited
liquidity the decision would be more difficult. Including a 20-year key rate
would allow for better hedging of privately transacted, intermediate-matu-
rity swaps but would substantially raise the cost of hedging.

BUCKET SHIFTS AND EXPOSURES

A bucket is jargon for a region of some curve, like a term structure of interest
rates. Bucket shifts are similar to key rate shifts but differ in two respects.
First, bucket analysis usually uses very many buckets while key rate analysis
tends to use a relatively small number of key rates. Second, each bucket shift
is a parallel shift of forward rates as opposed to the shapes of the key rate
shifts described previously. The reasons for these differences can be ex-
plained in the context for which bucket analysis is particularly well suited,
namely, managing the interest rate risk of a large swap portfolio.

Swaps are treated in detail in Chapter 18, but a few notes are neces-
sary for the discussion here. Since this section focuses on the risk of the
fixed side of swaps, the reader may, for now, think of swap cash flows as if
they come from coupon bonds. Given the characteristics of the swap mar-
ket, agreements to receive or pay those fixed cash flows for a particular set
of terms (e.g., 2, 5, and 10 years) may be executed at very low bid-ask
spreads. Unwinding those agreements after some time, however, or enter-
ing into new agreements for different terms to maturity, can be costly. As a
result, market making desks and other types of trading accounts tend to re-
main in swap agreements until maturity. A common problem in the indus-
try, therefore, is how to hedge extremely large books of swaps.

The practice of accumulating swaps leads to large portfolios that
change in composition only slowly. As mentioned, this characteristic
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makes it reasonable to hedge against possible changes in many small seg-
ments of the term structure. While hedging against these many possible
shifts requires many initial trades, the stability of the underlying portfolio
composition assures that these hedges need not be adjusted very frequently.
Therefore, in this context, risk can be reduced at little expense relative to
the holding period of the underlying portfolio.

As discussed in previous sections, liquid coupon bonds are the most
convenient securities with which to hedge portfolios of U.S. Treasury
bonds. While, analogously, liquid swaps are convenient for hedging portfo-
lios of less liquid swaps, it turns out that Eurodollar futures contracts play
an important role as well. These futures will be treated in detail in Chapter
17, but the important point for this section is that Eurodollar futures may
be used to hedge directly the risk of changes in forward rates. Furthermore,
they are relatively liquid, particularly in the shorter terms. The relative ease
of hedging forward rates makes it worthwhile to compute exposures of
portfolios to changes in forward rates.

Figure 7.2 graphs the bucket exposures of receiving the fixed side of
$100 million of a 6% par swap assuming, for simplicity, that swap rates
are flat at 6%. (It should be emphasized, and it should become clear
shortly, that the assumption of a flat term structure is not at all necessary
for the computation of bucket exposures.) The graph shows, for example,
that the exposure to the six-month rate 2.5 years forward is about $4,200.
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FIGURE 7.2 Bucket Exposures of a Six-Year Par Swap
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In other words, a one-basis point increase in the six-month rate 2.5 years
forward lowers the value of a $100 million swap by $4,200. The sum of
the bucket exposures, in this case $49,768, is the exposure of the swap to a
simultaneous one-basis point change to all the forwards. If the swap rate
curve is flat, as in this simple example, this sum exactly equals the DV01 of
the fixed side of the swap. In more general cases, when the swap rate curve
is not flat, the sum of the forward exposures is usually close to the DV01.
In any case, Figure 7.2 and this discussion reveal that this swap can be
hedged by paying fixed cash flows in a swap agreement of similar coupon
and maturity or by hedging exposures to the forward rates directly with
Eurodollar futures.

Table 7.3 shows the computation of the particular bucket exposure
mentioned in the previous paragraph. The original forward rate curve is
flat at 6%, and the par swap, by definition, is priced at 100% of face
amount. For the perturbed forward curve, the six-month rate 2.5 years for-
ward is raised to 6.01%, and all other forwards are kept the same. The
new spot rate curve and discount factors are then computed using the rela-
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TABLE 7.3 Exposure of a $100 million 6% Par Swap to the Six-Month Rate 2.5
Years Forward

Initial forward curve flat at 6%

Bucket exposure: $4,187

Years Cash Flow Perturbed Perturbed Discount
Forward ($millions) Forward Spot Factor

0 3 6.00% 6.0000% 0.970874
0.5 3 6.00% 6.0000% 0.942596
1 3 6.00% 6.0000% 0.915142
1.5 3 6.00% 6.0000% 0.888487
2 3 6.00% 6.0000% 0.862609
2.5 3 6.01% 6.0017% 0.837444
3 3 6.00% 6.0014% 0.813052
3.5 3 6.00% 6.0012% 0.789371
4 3 6.00% 6.0011% 0.766380
4.5 3 6.00% 6.0010% 0.744058
5 3 6.00% 6.0009% 0.722386
5.5 103 6.00% 6.0008% 0.701346

Perturbed value ($millions): 99.995813



tionships of Part One. Next, the fixed side of the swap is valued at
99.995813% of face value by discounting its cash flows. Finally, the
bucket exposure for $100 million of the swap is

(7.12)

Say that a market maker receives fixed cash flows from a customer in a
$100 million, six-year par swap and pays fixed cash flows to another cus-
tomer in a $141.8 million, four-year par swap. The cash flows of the result-
ing portfolio and the bucket exposures are given in Table 7.4. A negative
exposure means that an increase in that particular forward rate raises the
value of the portfolio. The bucket exposures sum to zero so that the portfo-
lio is neutral with respect to parallel shifts of the forward rate curve. This
discussion, therefore, is a very simple example of a growing swap book that
is managed so as to have, in some sense, no outright interest rate exposure.

− × −( ) =$ , , . % % $ ,100 000 000 99 995813 100 4 187
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TABLE 7.4 Bucket Exposures for a Position Hedged for Parallel
Shifts

Initial forward curve flat at 6%

Coupon 6.00% 6.00%
Maturity 6.0 4.0
Face ($mm) 100.000 –141.801

Portfolio Bucket
Years Cash Flow Flows Exposure
Forward ($millions) ($millions) ($)

0.00 3.000 –4.254 –1.254 –2,029
0.50 3.000 –4.254 –1.254 –1,970
1.00 3.000 –4.254 –1.254 –1,913
1.50 3.000 –4.254 –1.254 –1,857
2.00 3.000 –4.254 –1.254 –1,803
2.50 3.000 –4.254 –1.254 –1,750
3.00 3.000 –4.254 -–1.254 –1,699
3.50 3.000 –146.055 –143.055 –1,650
4.00 3.000 0.000 3.000 3,832
4.50 3.000 0.000 3.000 3,720
5.00 3.000 0.000 3.000 3,612
5.50 103.000 0.000 103.000 3,507
Total: 0



Figure 7.3 graphs the bucket exposures of this simple portfolio. Since a
six-year swap has been hedged by a four-year swap, interest rate risk re-
mains from six-month rates 4 to 5.5 years forward. The total of this risk is
exactly offset by negative exposures to six-month rates from 0 to 3.5 years
forward. So while the portfolio has no risk with respect to parallel shifts of
the forward curve, it can hardly be said that the portfolio has no interest
rate risk. The portfolio will make money in a flattening of the forward
curve, that is, when rates 0 to 3.5 years forward rise relative to rates 4 to
5.5 years forward. Conversely, the portfolio will lose money in a steepen-
ing of the forward curve, that is, when rates 0 to 3.5 years forward fall rel-
ative to rates 4 to 5.5 years forward.

A market maker with a portfolio characterized by Figure 7.3 may very
well decide to eliminate this curve exposure by trading the relevant for-
ward rates through Eurodollar futures. The market maker could certainly
reduce this curve exposure by trading par swaps and could neutralize this
exposure completely by entering into a sufficient number of swap agree-
ments. But hedging directly with Eurodollar futures has the advantages of
simplicity and, often, of liquidity. Also, should the forward exposure pro-
file change with the level of rates and the shape of the curve, adjustments
to a portfolio of Eurodollar futures are preferable to adding even more
swaps to the market maker’s growing book.
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FIGURE 7.3 Bucket Exposures of a Six-Year Swap Hedged with a Four-Year Swap
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As each Eurodollar futures contract is related to a particular three-
month forward rate and as 10 years of these futures trade at all times,3 it is
common to divide the first 10 years of exposure into three-month buckets.
In this way any bucket exposure may, if desired, be hedged directly with
Eurodollar futures. Beyond 10 years the exposures are divided according
to the same considerations as when choosing the terms of key rates.

IMMUNIZATION

The principles underlying hedging with key rate or bucket exposures can
be extrapolated to a process known as immunization. No matter how
many sources of interest rate risk are hedged, some interest rate risk re-
mains unless the exposure to each and every cash flow has been perfectly
hedged. For example, an insurance company may, by using actuarial ta-
bles, be able to predict its future liabilities relatively accurately. It can then
immunize itself to interest rate risk by holding a portfolio of assets with
cash flows that exactly offset the company’s future expected liabilities.

The feasibility of immunization depends on the circumstances, but it is
worth pointing out the spectrum of tolerances for interest rate risk as re-
vealed by hedging techniques. On the one extreme are hedges that protect
against parallel shifts and other single-factor specifications described in
Part Three. Away from that extreme are models with relatively few factors
like the two- and multi-factor models of Chapter 13, like the empirical ap-
proach discussed in Chapter 8, and like most practical applications of key
rates. Toward the other extreme are bucket exposures and, at that other
extreme, immunization.

MULTI-FACTOR EXPOSURES AND RISK MANAGEMENT

While this chapter focuses on how to quantify the risk of particular changes
in the term structure and on how to hedge that risk, key rate and bucket ex-
posures may also be applied to problems in the realm of risk management.

The introduction to Chapter 5 mentioned that a risk manager could
combine an assumption that the annual volatility of interest rates is 100
basis points with a computed DV01 of $10,000 per basis point to conclude
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3The longer-maturity Eurodollar futures are not nearly so liquid as the earlier ones.



that the annual volatility of a portfolio is $1 million. But this measure of
portfolio volatility has the same drawback as one-factor measures of price
sensitivity: The volatility of the entire term structure cannot be adequately
summarized with just one number. As to be discussed in Part Three, just as
there is a term structure of interest rates, there is a term structure of volatil-
ity. The 10-year par rate, for example, is usually more volatile than the 30-
year par rate.

Key rate and bucket analysis may be used to generalize a one-factor es-
timation of portfolio volatility. In the case of key rates, the steps are as fol-
lows: (1) Estimate a volatility for each of the key rates and estimate a
correlation for each pair of key rates. (2) Compute the key rate 01s of the
portfolio. (3) Compute the variance and volatility of the portfolio. The
computation of variance is quite straightforward given the required inputs.
For example, if there are only two key rates, R1 and R2, if the key rate 01s
of the portfolio are KR011 and KR012, and if the portfolio value is P, then
the change in the value of the portfolio is

(7.13)

where ∆ denotes a change. Furthermore, letting σ 2 with the appropriate
subscript denote a particular variance and letting ρ denote the correla-
tion between changes in the two key rates, the variance of the portfolio
is simply

(7.14)

The standard deviation or volatility of the portfolio is simply, of course,
the square root of this variance. Bucket analysis may be used in the same
way, but a volatility must be assigned to each forward rate and many more
correlation pairs must be estimated.
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CHAPTER 8
Regression-Based Hedging

DV01 and duration measure price sensitivity under any given assump-
tions about term structure movement. Yield-based DV01 and modified

duration assume parallel yield shifts, key rates assume the particular local
perturbations described in Chapter 7, and the models of Part Three make
more complex assumptions. The goal of all these choices is to approxi-
mate the empirical reality of how interest rates behave. When practition-
ers hedge with DV01, for example, they express the view that a large part
of the variation of nearby yields may be explained by parallel shifts. The
general approach may be summarized as empirically analyzing term
structure behavior, capturing the important features of that behavior in a
relatively simple model, and then calculating price sensitivities based on
that model.

An alternative approach is to use empirical analysis directly as the
model of interest rate behavior. This chapter shows how regression analy-
sis is used for hedging. The first section, on volatility-weighted hedges,
maintains the assumption of a single driving interest rate factor and, there-
fore, of perfect correlation across bond yields, but allows changes to be
other than parallel. The second section, on single-variable regression hedg-
ing, continues to assume that only one bond is used to hedge any other
bond, but allows bond yields to be less than perfectly correlated. The third
section, on two-variable regression hedging, assumes that two bonds are
used to hedge any other bond, implicitly recognizing that even two bonds
cannot perfectly hedge a given bond. To conclude the chapter, the fourth
section presents a trading case study about how 20-year Treasury bonds
might be hedged and, at the same time, asks if those bonds were fairly
priced in the third quarter of 2001.



VOLATILITY-WEIGHTED HEDGING

Consider the following fairly typical market maker problem. A client sells
the market maker a 20-year bond. In the best of circumstances the market
maker would immediately sell that same bond to another client and pocket
the bid-ask spread. More likely, the market maker will immediately sell the
most correlated liquid security, in this case a 30-year bond,1 to hedge inter-
est rate risk. When another client does appear to buy the 20-year bond, the
market maker will sell that bond and lift the hedge—that is, buy back the
30-year bond sold as the hedge.

A market maker who believes that the 20- and 30-year yields move in
parallel would hedge with DV01, as described in Chapter 6. But what if a
1.1-basis point increase in the 20-year yield is expected to accompany a
one-basis point increase in the 30-year yield? In that case the market maker
would trade F30 face amount of the 30-year bond to hedge F20 face amount
of the 20-year bond such that the P&L of the resulting position is zero.
Mathematically,

(8.1)

where DV0120 and DV0130 are, as usual, per 100 face value. Note the role
of the negative signs in the P&L on the left-hand side of equation (8.1). If
the 20-year yield increases by 1.1 basis points then a position of F20 face
amount of 20-year bonds experiences a P&L of –F20×1.1×DV0120/100.
This number is negative for a long position in 20-year bonds (i.e., F20>0)
and positive for a short position in 20-year bonds (i.e., F20<0).

The hedge described in equation (8.1) is called a volatility-weighted
hedge because, unlike simple DV01 hedging, it recognizes that the 20-year
yield tends to fluctuate more than the 30-year yield. The effectiveness of
this hedge is, of course, completely dependent on the predictive power of
the volatility ratio. To illustrate, say that both yields are 5.70% and that
the 20- and 30-year bonds in question sell for par. In that case, using the

− × × − × =F F20
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100 100
0.
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1The text purposely ignores bond futures contracts, discussed in Chapter 20. Since
the cheapest-to-deliver security of the bond futures contract may very well have a
maturity of approximately 20 years, a market maker might very well choose to sell
the bond futures contract to hedge the purchase of a 20-year bond.



equations of Chapter 6, the DV01s are .118428 and .142940, respectively.
With a volatility ratio equal to 1.1, solving equation (8.1) for F30 shows
that the purchase of $10 million face amount 20-year bonds should be
hedged with a position of

(8.2)

or a short of about $9.1 million face amount of 30-year bonds. (Note that
a strict DV01 hedge would entail selling only about $8.3 million 30-year
bonds. Since, however, the 20-year yield is now assumed more volatile than
the 30-year yield, more 30-year bonds must be sold to hedge anticipated
price changes in the 20-year bonds.)

The number 1.1 in equations (8.1) and (8.2) is called the risk weight2

of the hedging security, in this case of the 30-year bond. To understand this
usage, rearrange the terms of equation (8.1) as follows:

(8.3)

In words, the quantity 1.1 gives the total DV01 risk of the hedging position
as a fraction of the DV01 risk of the underlying position.

If a long position of $10 million 20-year bonds is hedged according to
equation (8.2) and it turns out that the 20-year yield increases not by 1.1
but by 1.3 basis points when the 30-year yield increases by 1 basis point,
the position will change in value by

(8.4)

Similarly, if the ratio turns out to be 1.3 and the 30-year rate increases by 5
basis points, the supposedly hedged position will lose five times the amount
indicated by equation (8.4) or about $12,000.

The simplest way to estimate the volatility ratio is to compute the two
volatilities from recent data. Collect a time series on 20-year yields and on
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2The definition of the term risk weight here is not the same as that used by
Bloomberg in the trading case study of Chapter 4.



30-year yields, compute changes of these yields from one day to the next or
from one week to the next, and then calculate the standard deviation of
these changes. This procedure requires a bit of work and a few important
decisions. First, in bond markets, data usually exist for particular issues and
not for particular maturities. So, to obtain a time series on 20- or 30-year
yields requires some splicing of data from different bond issues. Of course,
if an investigator is content to use a relatively short history, yields of indi-
vidual issues may be used. In swap markets this problem does not arise be-
cause data series are usually for new par swaps of fixed maturities. Second,
in bond markets, it is important to avoid estimating the volatility of a par-
ticular bond over a period in which it sometimes had, and sometimes did
not have, particular liquidity or financing advantages. (See Chapter 15.)
Third, choosing a time period to analyze is crucial to the applicability of the
results. Since the goal is to predict the volatility ratio in the future as accu-
rately as possible, it is enormously important to perform a study using rele-
vant observations. Sometimes these relevant observations are exclusively
from the recent past and sometimes they are from disjoint, past periods that
were characterized by economic and market conditions similar to those of
the present. The thinking behind these choices, rather than the technicalities
of computing hedge ratios, is what makes hedging a challenge. Fourth, yield
changes may be computed over each day, each week, each month, and so
on. It can be shown that the smaller the time interval, the more accurate the
estimate of volatility. If, however, the data series has many small errors, it
may be better to use changes over longer time intervals. For example, a se-
ries that repeats the same yield observation for two or three consecutive
days probably suffers from stale data. Using daily changes on such a series
will clearly underestimate volatility. Hence, in that case, computing weekly
changes would probably produce more accurate results.

Using data from January 1995 to September 2001 on one-day changes
in 20- and double-old 30-year yields3 in the U.S. Treasury market produces

152 REGRESSION-BASED HEDGING

3A double-old bond is not the most recently issued bond in a particular maturity
range, nor the second most recently issued bond in that maturity range, but the
third most recently issued. Double-old bonds tend to be relatively liquid but tend
not to have the financing advantages and liquidity premium associated with more
recently issued bonds. Therefore, double-old bonds are particularly suitable for em-
pirical study. Chapter 15 will discuss the impact of the issuance cycle on bond pric-
ing in more detail.



volatilities of 5.27 and 4.94 basis points per day, respectively. The ratio of
these volatilities is about 1.066. If it were felt that this time period were ap-
plicable to the present, 1.066 might be used instead of 1.1 as the risk
weight of 30-year bonds for hedging 20-year bonds.

One way to assess the safety or danger of using an estimate like that
described in the previous paragraph is to see how the volatility ratio
changes over time. Figure 8.1 graphs the volatility ratio over the time pe-
riod mentioned. The volatility on a particular day is computed from yield
changes over the previous 30 days. The volatility ratio over these many
smaller time periods ranges from .95 to 1.2. Perhaps more troubling is that
the ratio fluctuates dramatically over relatively short periods of time. Fur-
thermore, the most recent time period displays the greatest fluctuations. In
practice, volatility-weighted hedging works well for securities that are sim-
ilar in cash flow (e.g., coupon bonds with comparable terms). As this ex-
ample shows, 20- and 30-year coupon bonds may not be similar enough
for this kind of hedging.

ONE-VARIABLE REGRESSION-BASED HEDGING

Another popular hedge is based on a regression of changes in one yield on
changes in the other yield. Let ∆yt

20 and ∆yt
30 be the changes in the 20- and
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FIGURE 8.1 Ratio of 20-Year Yield Volatility to 30-Year Yield Volatility
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30-year yields from dates t–∆t to date t. Regression analysis often begins
with the following model of the behavior of these changes4:

(8.5)

Changes in the 30-year yield, called the independent variable, are used to
predict changes in the 20-year yield, called the dependent variable. The in-
tercept, α, and slope, β, need to be estimated from the data. The error
term, εt, reflects how much the actual 20-year yield change on a particular
day differs from the change predicted by the constants α and β and by the
change in the 30-year yield. The regression model assumes that the error,
on average, equals zero and that it is uncorrelated with changes in the in-
dependent variable.

In words, equation (8.5) says that changes in the 20-year yield are lin-
early related to changes in the 30-year yield. Assume, for example, that the
data give estimates of α=0 and β=1.06. If on a particular day ∆yt

30=3 basis
points, then the predicted change in the 20-year yield, written ∆ŷt

20, is

(8.6)

If ∆yt
20=4 basis points, then the error that day, according to equation (8.5) is

(8.7)

The estimates of α and β are usually obtained by minimizing the sum
of the squares of the error terms over the observation period—that is, by
minimizing

(8.8)

This estimation criterion is also known as least squares.
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4Sometimes the percentage changes in yields are used instead of changes. It is a sep-
arate empirical question to determine which specification better describes empirical
reality.



Figure 8.2 graphs the changes in the 20-year yield against changes in
the 30-year yield over the sample period mentioned in the previous section.
The data do for the most part fall along a line, supporting the empirical
model specified in equation (8.5).

Estimating the constants of the equation by least squares can be done
in many computer programs, statistical packages, and spreadsheets. A typ-
ical regression output for this application is summarized in Table 8.1. Ac-
cording to the table, α, the constant of the regression, is estimated at
.0007. It is typically the case in regressions of changes in yields on other
changes in yields that this constant is close to zero. In this case, for exam-
ple, the 20-year yield does not tend to drift consistently up or down when
the 30-year yield is not moving. This intuition is supported not only by the
very small estimate of α but by its t-statistic as well. The t-statistic mea-
sures the statistical significance of the estimated coefficient. With enough
data, a common rule of thumb regards a t-statistic less than two as indicat-
ing that the data cannot distinguish between the estimated coefficient and a
coefficient of zero. In this example, the estimate of .0007 is not statistically
distinguishable from zero.

According to Table 8.1 the estimated value of β is about 1.057, indi-
cating that this value should be used as the risk weight for computing the
quantity of 30-year bonds to hedge 20-year bonds. Applying equation
(8.3) with this risk weight calls for a sale of about $8.76 million face
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FIGURE 8.2 20-Year Yield Changes versus 30-Year Yield Changes
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amount of 30-year bonds to hedge a $10 million long face amount position
of 20-year bonds. The t-statistic of the risk weight is, not surprisingly,
vastly greater than 2: It would be inconceivable for changes in the 20-year
yield to be uncorrelated with changes in the 30-year yield.

The standard error of the regression equals the standard deviation
of the error terms. In this example, a standard error of .6973 means that
a one-standard-deviation error in the prediction of the change in 20-year
yields based on 30-year yields is about .7 basis points per day. At a 20-
year DV01 of .118428, the hedged $10 million face position in 20-year
bonds hedged would be subject to a daily one-standard-deviation profit
or loss of

(8.9)

This hedging risk is large relative to a market maker’s bid-ask spread. 
If a market maker is able to collect a spread of .25 or even .5 basis
points, equation (8.9) shows that this spread can easily be wiped out by
the unpredictable behavior of 20-year yields relative to 30-year yields.
Like the conclusion about the volatility-weighted approach, the one-
variable regression hedge of a 20-year bond with a 30-year bond does
not seem adequate.

The “R-squared” of the regression is 98.25%. This means that
98.25% of the variance of changes in the 20-year yield can be explained by
changes in the 30-year yield. In the one-factor case, the R-squared is actu-
ally the square of the correlation between the two changes. Here, the corre-
lation between changes in the 20- and 30-year yields is √.9825

——–
=.9912.

.
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TABLE 8.1 Regression Analysis of Changes in
20-Year Yields on 30-Year Yields

Number of observations 1,680
R-squared 98.25%
Standard error 0.6973

Regression Coefficients Value t-Statistic

Constant 0.0007 0.0438
Change in 30-year yield 1.0570 306.9951



Some additional insight into regression hedging can be gained by fo-
cusing on the following fact about the regression-based risk weight:

(8.10)

The symbols σ20 and σ30 denote the volatilities of the dependent and inde-
pendent variables, respectively, and ρ denotes the correlation between
them. In the case of the 20- and 30-year yields, the previous section re-
ported that σ20=5.27 and σ30=4.94. The R-squared of the regression gives
ρ=.9912. Substituting these values into equation (8.10) produces β=1.057
as reported in Table 8.1.

According to equation (8.10), the higher the volatility ratio of 20-year
yield changes to 30-year yield changes, the larger the 30-year risk weight.
(A similar result is discussed in the previous section.) Also, the larger the
correlation between the yield changes, the larger the 30-year risk weight.
Intuitively, the greater this correlation, the greater the usefulness of the 30-
year bond in hedging the 20-year bond. At the opposite extreme, for exam-
ple, when ρ=0, the 30-year bond is not helpful at all in hedging the 20-year
bond. In that (unlikely) case, the regression-based risk weight is zero for
any volatility ratio.

Equation (8.10) also reveals the difference between the volatility-
weighted hedge and the regression-based hedge. The risk weight of the for-
mer equals the ratio of volatilities while the risk weight of the latter is the
correlation times this ratio. In this sense, a volatility-weighted hedge as-
sumes that changes in the two bond yields are perfectly correlated (i.e.,
that ρ=1.0), while the regression approach recognizes the imperfect corre-
lation between changes in the two yields.

This section concludes by revisiting least squares as a criterion for esti-
mating equation (8.5). Since β is used as the risk weight on the 30-year bond,

(8.11)

Substituting this expression into the error term of the regression, given
in the first line of (8.7),
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Rearranging terms and dropping α, since it is usually quite small,

(8.13)

The term in brackets is the P&L of a short position in 20-year bonds
hedged with a long position in 30-year bonds, so εt equals this P&L per
unit of risk in 20-year bonds. Similarly, the standard deviation and vari-
ance of εt equals the standard deviation and variance of this P&L per unit
of risk in 20-year bonds. Since, in this context, minimizing the sum of the
squared errors is equivalent to minimizing the variance or standard devia-
tion of the errors,5 the least squares criterion is equivalent to minimizing
the standard deviation of the P&L of a regression-based hedged position.

TWO-VARIABLE REGRESSION-BASED HEDGING

The change in the 20-year yield is probably better predicted by changes in
both 10- and 30-year yields than by changes in 30-year yields alone. Con-
sequently, a market maker hedging a long position in 20-year bonds may
very well consider selling a combination of 10- and 30-year bonds rather
than 30-year bonds alone. Appropriate risk weights for the 10- and 30-
year bonds may be found by estimating the following regression model:

(8.14)

The coefficients β10 and β30 give the risk weights of the two-variable re-
gression hedge. More precisely, the face amount of the 10-year and 30-year
bonds used to hedge a particular face amount of 20-year bonds is deter-
mined by the following equations:
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5When a constant is included in the regression equation, it is a property of least
squares that the average error equals zero.



and

(8.16)

Once again, these regression coefficients are called risk weights be-
cause they give the DV01 risk in each hedging bond as a fraction of the
DV01 of the security or portfolio being hedged. To understand why this
hedge works, note that the P&L of the hedged position is

(8.17)

Rearranging slightly and using equations (8.15) and (8.16),

(8.18)

But, according to the regression model (8.14), the term in brackets, on av-
erage, equals –α. Usually α is approximately equal to zero, but, in any
case, according to the regression model, the term in brackets does not de-
pend on changes in yields. In other words, so long as the regression model
may be relied on to describe changes in yields, the hedge described by
equations (8.15) and (8.16) does create a portfolio that is, on average, im-
mune to interest rate changes.

Table 8.2 gives the results of estimating the regression model in
(8.14). For the same reasons that double-old 30-year bonds are used in the
one-variable regression, double-old 10-year and double-old 30-year bonds
are used here. The value of the constant and its associated t-statistic show
that α may be taken as approximately equal to zero. The coefficients on
the 10- and 30-year yield changes indicate that about 16.1% of the DV01
of the 20-year holding should be offset with 10-year DV01, and about
87.7% should be offset with 30-year DV01. The t-statistics on both these
coefficients confirm that both risk weights are statistically distinguishable
from zero.

In the one-variable regression of the previous section the 30-year risk
weight is 1.057 or 105.7%. In the two-factor regression the risk weight on
the 30-year falls to 87.7% because some of the DV01 risk is transferred to
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the 10-year. So long as changes in the 10-year yield are positively corre-
lated with changes in the 20-year yield, it is to be expected that the hedge
will allocate some risk to the 10-year. Since the 30-year had all the risk in
the one-variable case, it follows that the 30-year should lose some risk allo-
cation when the 10-year is added to the analysis.

In the one-variable case the risk weight of the 30-year is greater than
one because the correlation between the yields is quite close to one and be-
cause the volatility of the 20-year yield exceeds that of the 30-year. See
equation (8.10). In the two-variable case, since most of the hedging risk is
still allocated to the 30-year, the sum of the two risk weights still exceeds
one. If it had happened that the two-variable analysis gave a much higher
risk weight on the 10-year than on the 30-year, the sum of the two risk
weights might have been less than one. The correlation between each of the
independent variables and the dependent variable is quite close to one and
the volatility of changes in the 10-year yield in the sample, at about 5.9 ba-
sis points per day, is greater than the volatility of the 30-year yield in the
sample, at about 4.9 basis points per day.

While the regression results of Table 8.2 strongly support the inclusion
of a 10-year security in the hedge portfolio, the overall quality of the hedge
has not improved dramatically from the one-variable case. The R-squared
increased by only about .4%, and the standard error is still relatively high
at about .62 basis points.

This and the previous section presented the science of regression hedg-
ing. The following section shows that a proper hedging program requires
an understanding of the relevant markets in addition to the ability to run
and understand regression analysis.
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TABLE 8.2 Regression Analysis of Changes in
20-Year Yields on 10- and 30-Year Yields

Number of observations 1,680
R-squared 98.63%
Standard error 0.6170

Regression Coefficients Value t-Statistic

Constant 0.0067 0.4441
Change in 10-year yield 0.1613 21.5978
Change in 30-year yield 0.8774 99.0826
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TRADING CASE STUDY: The Pricing of the 20-Year
U.S. Treasury Sector

In September 2001 many market participants claimed that the 20-
year sector was cheap. These claims were backed up by a wide variety
of analyses and arguments. The one common thread across these
claims, however, was the recommendation that the purchase of 20-
year bonds should be hedged with a 10-year risk weight of over 40%
and a 30-year risk below 70%.6 These weights differ qualitatively
from the regression-based weights derived in the previous section: ap-
proximately 16% for the 10-year and 88% for the 30-year.

For any given risk weights β10 and β30, whether they derive from a
regression model or not, an index of the relative value of the 20-year
sector, I, may be defined as follows:

(8.19)

Equation (8.18) reveals that the change in I is proportional to the
P&L from a long position in the 20-year bond hedged with the given
risk weights. It follows that I is an index of the cumulative profit from
this hedged position. High values of I, with the 20-year yield low rel-
ative to 10- and 30-year yields, indicate that the 20-year bond is rela-
tively rich. Low values of I, with the 20-year yield high relative to the
others, indicate that the 20-year bond is relatively cheap.

Figure 8.3 graphs the index I over the sample period studied in
this chapter for the case of equal risk weights, that is, β10=.5 and
β30=.5. While these weights do not necessarily match those suggested
by market participants who advocated buying the 20-year sector, they
do capture the common thread of having a much greater 10-year risk
weight and a much lower 30-year risk weight than the weights esti-
mated in the previous section.

According to the figure, the index fluctuated between approxi-
mately –.1 and –.24 from the beginning of the sample until August
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6Several of the more sophisticated approaches included an additional risk
weight on bonds of shorter maturity (e.g., two- or five-year bonds).
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1998. Then, Long Term Capital Management (LTCM) suffered its
losses, and, in the ensuing market action, many traders were forced to
liquidate basis positions in the futures market (see Chapter 20) by
covering short futures positions and selling longs in the 20-year sec-
tor. These forced sales of 20-year bonds cheapened the sector dramat-
ically, as shown in the figure. After that episode the sector fitfully
recovered and fell again. A dramatic recovery took place, however,
when in early 2000 the U.S. Treasury announced that it would begin
to buy back its bonds in this and nearby sectors to deal with the new
reality of budget surpluses. The market soon came to believe that this
buyback program would not, in the end, be sufficient to prop up val-
ues in the sector. Despite that disillusionment, the dramatic cheapening
of the 20-year sector starting in March 2000 is remarkable. Falling
from a value of about 0 at the height of buyback optimism to a value
of about –.43 at the end of the sample implies an enormous cheapen-
ing of 43 basis points.

When examining indexes of value it is often a good idea to deter-
mine whether a risk factor has been omitted. In other words, is there

FIGURE 8.3 Index of 20-Year Bonds versus 10- and 30-Year Bonds; Equal
Risk Weights
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a variable other than the cheapness of the 20-year sector that can ex-
plain Figure 8.3? Figure 8.4 shows that there is.

Figure 8.4 superimposes the slope of the 10s–30s curve (i.e., 
y30

t – y10
t ) on Figure 8.3. The explanatory power of the curve variable is

remarkable: Whenever the curve steepens the 20-year bond cheapens,
at least as measured by the index I. As might be expected, the magni-
tude of the curve change does not seem to explain the full magnitude
of the reaction of I to the idiosyncratic effects of the fall of LTCM or
of the buyback announcement. The magnitude of the curve change
does, however, seem to explain the magnitude of the apparent cheap-
ening of the 20-year bond from the height of buyback optimism to the
end of the sample period.

The evidence of Figure 8.4 does not necessarily mean that the
20-year sector is not cheap. It does strongly imply, however, that
whatever cheapness characterizes the 20-year sector is highly corre-
lated with the slope of the yield curve from 10 to 30 years. Put an-
other way, purchasing the allegedly cheap 20-year bond and selling
10- and 30-year bonds with equal risk weights will exhibit a P&L

FIGURE 8.4 Evenly Weighted 20-Year Index and 10s–30s Curve
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profile similar to that of a simple curve trade that has nothing to do
with the 20-year bond, namely, selling 10-year bonds and buying 30-
year bonds. Both positions make money when the yield curve be-
tween 10 and 30 years flattens.

The regression hedge presented in the previous section does not
suffer from this problem. Define an index, Ĩ, based on the risk
weights from the two-variable regression. Specifically,

(8.20)

Figure 8.5 graphs this index over the sample period.
The LTCM dislocation and the buyback program are evident in

this figure as they were in Figures 8.3 and 8.4. However, unlike those
figures, Figure 8.5 shows an index that has not cheapened at all since
March 2000. It seems that the risk weights used to Ĩ construct ade-
quately hedge against curve risk.

It is no surprise that the regression methodology outlined in the
previous section does control for curve risk. The estimated regression
relationship can be written as a function of the change in the 10- and
30-year yields:

(8.21)

But this relationship can also be written as a function of the 10-year
yield and of the curve:

(8.22)

Equation (8.22) says that the 20-year yield will change by about 1.04
basis points for every basis point change in the 10-year with a fixed
curve. Also, the 20-year yield will change by about .88 basis points

∆ ∆ ∆ ∆y y y yt t t t
20 10 30 101 0387 8774≈ + −( ). .

∆ ∆ ∆y y yt t t
20 10 301613 8774≈ +. .

˜ . .I y y y= × + × −161 87710 30 20
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for every basis point change in the curve with a fixed 10-year yield. In
short, the regression-based hedge can be thought of as hedging
against changes in 10- and 30-year yields or as hedging against
changes in the level of yield and the curve.

To complete the discussion, Figure 8.6 tests the index Ĩ as Figure
8.4 tests the index I, namely by superimposing the curve on the index.
Figure 8.6 shows that, LTCM and buybacks aside, Ĩ is not very much
related to the curve. As a result, a trade based on Ĩ is a pure play on
the 20-year sector relative to the 10- and 30-year sectors. Unfortu-
nately for the trade’s prospects, however, the 20-year sector does not
appear particularly rich or cheap by recent historical experience as
measured by the index Ĩ.

FIGURE 8.5 Index of 20-Year Bonds versus 10- and 30-Year Bonds;
Regression Risk Weights
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A COMMENT ON LEVEL REGRESSIONS

When computing risk weights for hedging, some practitioners regress
yields on yields instead of changes in yields on changes in yields. Mathe-
matically, in the one-variable case, instead of using equation (8.5), repeated
here for easy reference,

(8.23)

they use the following empirical model:

(8.24)

The interest rate behavior implied by equation (8.24) is odd in the fol-
lowing way. Say that α=0 and β=1 so that if the 30-year yield is 5%, then
(8.24) predicts that the 20-year yield is 5%. This prediction is implied by
(8.24) whether the 20-year yield is currently 5%, 10%, or 3%. But if the
20-year yield is mispriced at 10% on a particular day, surely it is likely that

y yt t t
20 30= + × +α β ε

∆ ∆y yt t t
20 30= + × +α β ε
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FIGURE 8.6 Regression-Weighted 20-Year Index and 10s–30s Curve
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it will be somewhat mispriced on the next day. In other words, surely 5%
cannot be the best guess for the 20-year yield on the next day.7

Continuing with the assumption that α=0 and β=1, the regression of
changes assumes that the 20- and 30-year yields change by the same
amount. If the 30-year yield is 5% and the 20-year yield is 10% on a par-
ticular day, the change model predicts that the spread between the yields
on the next day will remain at 5%. If it is believed that the 20-year bond is
mispriced relative to the 30-year bond and that the market will correct this
mispricing, then this change model is not precisely the right model, either.
But predicting that the spread will be 5% the next day is probably better
than predicting that it will immediately drop to zero.

A Comment on Level Regressions 167

7Technically, the error terms of equation (8.24) are most probably serially corre-
lated, that is, correlated across time. This is a violation of one of the assumptions of
least squares that impairs the efficiency of that estimation procedure.
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CHAPTER 9
The Science of Term

Structure Models

Part One described how to price fixed income securities with fixed cash
flows relative to other securities with fixed cash flows. While many

such securities do trade in fixed income markets, there are also many secu-
rities whose cash flows are not fixed. Consider a European call option on
$1,000 face value of a particular bond with a strike at par. This security
gives the holder the right to buy $1,000 face value of the bond for $1,000
on the maturity date of the option. If the price of the bond on that matu-
rity date turns out to be $1,050, the holder will choose to exercise the call
by paying $1,000 for a security worth $1,050. In that case the cash flow
from the option is $50. But if the price of the bond on that maturity date
turns out to be $950, the holder will choose not to exercise the call and
the cash flow from the option is $0. Thus, the cash flow from an option
depends on the value of an underlying security or, equivalently, on the
level of interest rates.

Any security whose cash flows depend on the level of bond prices is
called an interest rate derivative or an interest rate contingent claim. This
chapter uses a very simple setting to show how to price derivative securities
relative to a set of underlying securities by arbitrage arguments. Unlike the
arbitrage pricing of securities with fixed cash flows introduced in Part One,
the techniques of this chapter require strong assumptions about how inter-
est rates may evolve in the future.

RATE AND PRICE TREES

Assume that the market six-month and one-year spot rates are 5% and
5.15%, respectively. Taking these market rates as given is equivalent 



to taking the prices of a six-month bond and a one-year bond as 
given. Securities with assumed prices are called underlying securities 
to distinguish them from the derivative securities priced by arbitrage 
arguments.

Next, assume that six months from now the six-month rate will be ei-
ther 4.50% or 5.50% with equal probability. This very strong assumption
is depicted by means of a binomial tree, where “binomial” means that only
two future values are possible:

Note that the columns in the tree represent dates. The six-month rate
is 5% today, which will be called date 0. On the next date six months from
now, which will be called date 1, there are two possible outcomes or states
of the world. The 5.50% state will be called the up state while the 4.50%
state will be called the down state.

Given the current term structure of spot rates (i.e., the current six-
month and one-year rates), trees for the prices of six-month and one-year
zero-coupon bonds may be computed. The price tree for $1,000 face value
of the six-month zero is

since $1,000/(1+.05/2)=$975.61. (For easy readability, dollar signs are not
included in price trees.)

Note that in a tree for the value of a particular security, the maturity
of the security falls with the date. On date 0 of the preceding tree the 
security is a six-month zero, while on date 1 the security is a matur-
ing zero.

The price tree for $1,000 face value of a one-year zero is the 
following:
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The three date 2 prices of $1,000 are, of course, the maturity values of the
one-year zero. The two date 1 prices come from discounting this certain
$1,000 at the then-prevailing six-month rate. Hence, the date 1 up state
price is $1,000/(1+.055/2) or $973.2360, and the date 1 down state price is
$1,000/(1+.045/2) or 977.9951. Finally, the date 0 price is computed using
the given date 0 one-year rate of 5.15%: $1,000/(1+.0515/2)2 or 950.4230.

The probabilities of moving up or down the tree may be used to com-
pute average or expected values. The expected value of the one-year zero’s
price on date 1 is

(9.1)

Discounting this expected value to date 0 at the date 0 six-month rate gives
an expected discounted value1 of

(9.2)

Note that the one-year zero’s expected discounted value of $951.82 does
not equal its given market price of $950.42. These two numbers need not be
equal because investors do not price securities by expected discounted value.
Over the next six months the one-year zero is a risky security, worth
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1Over one period, discounting the expected value and taking the expectation of dis-
counted values are the same. But, as shown in Chapter 17, over many periods the
two are different and, with the approach taken throughout Part Three, taking the
expectation of discounted values is correct—hence the choice of the term expected
discounted value.



$973.24 half the time and $978.00 the other half of the time for an average
or expected value of $975.62. If investors do not like this price uncertainty
they would prefer a security worth $975.62 on date 1 with certainty. More
specifically, a security worth $975.62 with certainty after six months would,
by the arguments of Part One, sell for $975.62/(1+.05/2) or 951.82 as of date
0. By contrast, investors penalize the risky one-year zero coupon bond with
an average price of $975.62 after six months by pricing it at $950.42. The
next chapter elaborates further on investor risk aversion and how large an
impact it might be expected to have on bond prices.

ARBITRAGE PRICING OF DERIVATIVES

The text now turns to the pricing of a derivative security. What is the price
of a call option, maturing in six months, to purchase $1,000 face value of a
then six-month zero at $975? Begin with the price tree for this call option.

If on date 1 the six-month rate is 5.50% and a six-month zero sells for
$973.23, the right to buy that zero at $975 is worthless. On the other
hand, if the six-month rate turns out to be 4.50% and the price of a six-
month zero is $978, then the right to buy the zero at $975 is worth
$978–$975 or $3. This description of the option’s terminal payoffs empha-
sizes the derivative nature of the option: Its value depends on the values of
some underlying set of securities.

As discussed in Chapter 1, a security is priced by arbitrage by finding
and pricing its replicating portfolio. When, as in that context, cash flows
do not depend on the levels of rates, the construction of the replicating
portfolio is relatively simple. The derivative context is more difficult be-
cause cash flows do depend on the levels of rates, and the replicating
portfolio must replicate the derivative security for any possible interest
rate scenario.

To price the option by arbitrage, construct a portfolio on date 0 of un-
derlying securities, namely six-month and one-year zero coupon bonds,
that will be worth $0 in the up state on date 1 and $3 in the down state. To
solve this problem, let F.5 and F1 be the face values of six-month and one-
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year zeros in the replicating portfolio, respectively. Then, these values must
satisfy the following two equations:

(9.3)

(9.4)

Equation (9.3) may be interpreted as follows. In the up state, the value
of the replicating portfolio’s now maturing six-month zero is its face value.
The value of the once one-year zeros, now six-month zeros, is .97324 per
dollar face value. Hence, the left-hand side of equation (9.3) denotes the
value of the replicating portfolio in the up state. This value must equal $0,
the value of the option in the up state. Similarly, equation (9.4) requires
that the value of the replicating portfolio in the down state equal the value
of the option in the down state.

Solving equations (9.3) and (9.4), F.5=–$613.3866 and F1=$630.2521.
In words, on date 0 the option can be replicated by buying about $630.25
face value of one-year zeros and simultaneously shorting about $613.39
face amount of six-month zeros. Since this is the case, the law of one price
requires that the price of the option equal the price of the replicating port-
folio. But this portfolio’s price is known and is equal to

(9.5)

Therefore, the price of the option must be $.58.
Recall that pricing based on the law of one price may be enforced by

arbitrage. If the price of the option were less than $.58, arbitrageurs could
buy the option, short the replicating portfolio, keep the difference, and
have no future liabilities. Similarly, if the price of the option were greater
than $.58, arbitrageurs could short the option, buy the replicating portfo-
lio, keep the difference, and, once again, have no future liabilities. Thus,
ruling out profits from riskless arbitrage implies an option price of $.58.

It is important to emphasize that the option cannot be priced by ex-
pected discounted value. Under that method, the option price would ap-
pear to be

. . . $ . . $ .

$.
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(9.6)

The true option price is less than this value because investors dislike the
risk of the call option and, as a result, will not pay as much as its expected
discounted value. Put another way, the risk penalty implicit in the call op-
tion price is inherited from the risk penalty of the one-year zero, that is,
from the property that the price of the one-year zero is less than its ex-
pected discounted value. Once again, the magnitude of this effect is dis-
cussed in Chapter 10.

This section illustrates arbitrage pricing with a call option, but it
should be clear that arbitrage can be used to price any security with cash
flows that depend on the six-month rate. Consider, for example, a security
that, in six months, requires a payment of $200 in the up state but gener-
ates a payment of $1,000 in the down state. Proceeding as in the option ex-
ample, find the portfolio of six-month and one-year zeros that replicates
these two terminal payoffs, price this replicating portfolio as of date 0, and
conclude that the price of the hypothetical security equals the price of the
replicating portfolio.

A remarkable feature of arbitrage pricing is that the probabilities of up
and down moves never enter into the calculation of the arbitrage price. See
equations (9.3) through (9.5). The explanation for this somewhat surpris-
ing observation follows from the principles of arbitrage. Arbitrage pricing
requires that the value of the replicating portfolio match the value of the
option in both the up and the down states. Therefore, the composition of
the replicating portfolio is the same whether the probability of the up state
is 20%, 50%, or 80%. But if the composition of the portfolio does not de-
pend directly on the probabilities, and if the prices of the securities in the
portfolio are given, then the price of the replicating portfolio and hence the
price of the option cannot depend directly on the probabilities, either.

Despite the fact that the option price does not depend directly on the
probabilities, these probabilities must have some impact on the option
price. After all, as it becomes more and more likely that rates will rise to
5.50% and that bond prices will be low, the value of options to purchase
bonds must fall. The resolution of this apparent paradox is that the option
price depends indirectly on the probabilities through the price of the one-
year zero. Were the probability of an up move to increase suddenly, the
current value of a one-year zero would decline. And since the replicating
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portfolio is long one-year zeros, the value of the option would decline as
well. In summary, a derivative like an option depends on the probabilities
only through current bond prices. Given bond prices, however, probabili-
ties are not needed to derive arbitrage-free prices.

RISK-NEUTRAL PRICING

Risk-neutral pricing is a technique that modifies an assumed interest rate
process, like the one assumed at the start of this chapter, so that any con-
tingent claim can be priced without having to construct and price its repli-
cating portfolio. Since the original interest rate process has to be modified
only once, and since this modification requires no more effort than pricing
a single contingent claim by arbitrage, risk-neutral pricing is an extremely
efficient way to price many contingent claims under the same assumed
rate process.

In the example of this chapter, the price of a one-year zero does not
equal its expected discounted value. The price of the one-year zero is
$950.42, computed from the given one-year spot rate of 5.15%. At the
same time, the expected discounted value of the one-year zero is $951.82,
as derived in equation (9.2) and reproduced here:

(9.7)

The probabilities of 1/2 for the up and down states are the assumed true
or real-world probabilities. But there are some other probabilities, called
risk-neutral probabilities, that do cause the expected discounted value to
equal the market price. To find these probabilities, let the risk-neutral
probability in the up and down states be p and 1–p, respectively. Then,
solve the following equation:

(9.8)

The solution is p=.8024. In words, under the risk-neutral probabilities of
.8024 and .1976 the expected discounted value equals the market price.

In later chapters the difference between true and risk-neutral probabil-
ities is described in terms of the drift in interest rates. Under the true prob-

$ . $ . . $ .973 24 978 00 1 1 05 2 950 42p p+ −( )[ ] +( ) =

1
2

973 24
1
2

978 00 1 05 2 951 82$ . $ . . $ .+








 +( ) =

Risk-Neutral Pricing 177



abilities there is a 50% chance that the six-month rate rises from 5% to
5.50% and a 50% chance that it falls from 5% to 4.50%. Hence the ex-
pected change in the six-month rate, or the drift of the six-month rate, is
zero. Under the risk-neutral probabilities there is an 80.24% chance of a
50 basis point increase in the six-month rate and a 19.76% chance of a 50
basis point decline. Hence the drift of the six-month rate under these prob-
abilities is 30.24 basis points.

As pointed out in the previous section, the expected discounted value
of the option payoffs is $1.46, while the arbitrage price is $.58. But what if
expected discounted value is computed using the risk-neutral probabilities?
The resulting option value would be

(9.9)

The fact that the arbitrage price of the option equals its expected
discounted value under the risk-neutral probabilities is not a coinci-
dence. In general, to value contingent claims by risk-neutral pricing,
proceed as follows. First, find the risk-neutral probabilities that equate
the prices of the underlying securities with their expected discounted
values. (In the simple example of this chapter the only risky, underlying
security is the one-year zero.) Second, price the contingent claim by 
expected discounted value under these risk-neutral probabilities. The 
remainder of this section will describe intuitively why risk-neutral 
pricing works. Since the argument is a bit complex, it is broken up into 
four steps.

Step 1: Given trees for the underlying securities, the price of a security
that is priced by arbitrage does not depend on investors’ risk preferences.
This assertion can be supported as follows.

A security is priced by arbitrage if one can construct a portfolio that
replicates its cash flows. Under the assumed process for interest rates in
this chapter, for example, the sample bond option is priced by arbitrage. By
contrast, it is unlikely that a specific common stock can be priced by arbi-
trage because no portfolio of underlying securities can mimic the idiosyn-
cratic fluctuations in a single common stock’s market value.

If a security is priced by arbitrage and everyone agrees on the price
evolution of the underlying securities, then everyone will agree on the repli-

. $ . $
.

$.
8024 0 1976 3

1 05 2
58

× + ×
+

=

178 THE SCIENCE OF TERM STRUCTURE MODELS



cating portfolio. In the option example, both an extremely risk-averse, re-
tired investor and a professional gambler would agree that a portfolio of
about $630.25 face of one-year zeros and –$613.39 face of six-month ze-
ros replicates the option. And since they agree on the composition of the
replicating portfolio and on the prices of the underlying securities, they
must also agree on the price of the derivative.

Step 2: Imagine an economy identical to the true economy with re-
spect to current bond prices and the possible values of the six-month
rate over time but different in that the investors in the imaginary econ-
omy are risk neutral. Unlike investors in the true economy, investors in
the imaginary economy do not penalize securities for risk and, therefore,
price securities by expected discounted value. It follows that, under the
probability of the up state in the imaginary economy, the expected dis-
counted value of the one-year zero equals its market price. But this is the
probability that satisfies equation (9.8), namely the risk-neutral proba-
bility of .8024.

Step 3: The price of the option in the imaginary economy, like any
other security in that economy, is computed by expected discounted
value. Since the probability of the up state in that economy is .8024, the
price of the option in that economy is given by equation (9.9) and is,
therefore, $.58.

Step 4: Step 1 implies that given the prices of the six-month and 
one-year zeros, as well as possible values of the six-month rate, the price
of an option does not depend on investor risk preferences. It follows
that since the real and imaginary economies have the same bond prices
and the same possible values for the six-month rate, the option price
must be the same in both economies. In particular, the option price in
the real economy must equal $.58, the option price in the imaginary
economy. More generally, the price of a derivative in the real economy
may be computed by expected discounted value under the risk-neutral
probabilities.

ARBITRAGE PRICING IN A MULTI-PERIOD SETTING

Maintaining the binomial assumption, the tree of the previous chapter
might be extended for another six months as follows:
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When, as in this tree, an up move followed by a down move does not
give the same rate as a down move followed by an up move, the tree is
said to be nonrecombining. From an economic perspective, there is
nothing wrong with this kind of tree. To justify this particular tree, for
example, one might argue that when short rates are 5% or higher they
tend to change in increments of 50 basis points. But when rates fall be-
low 5%, the size of the change starts to decrease. In particular, at a rate
of 4.50% the short rate may change by only 45 basis points. A volatility
process that depends on the level of rates exhibits state-dependent
volatility.

Despite the economic reasonableness of nonrecombining trees, practi-
tioners tend to avoid them because such trees are difficult or even impossi-
ble to implement. After six months there are two possible rates, after one
year there are four, and after N semiannual periods there are 2N possibili-
ties. So, for example, a tree with semiannual steps large enough to price
10-year securities will, in its rightmost column alone, have over 500,000
nodes, while a tree used to price 20-year securities will in its rightmost col-
umn have over 500 billion nodes. Furthermore, as discussed later in the
chapter, it is often desirable to reduce substantially the time interval be-
tween dates. In short, even with modern computers, trees that grow this
quickly are computationally unwieldy. This doesn’t mean, by the way, that
the effects that give rise to nonrecombining trees, like state-dependent
volatility, have to be abandoned. It simply means that these effects must be
implemented in a more efficient way.

Trees in which the up-down and down-up states have the same value
are called recombining trees. An example of this type of tree that builds on
the two-date tree of the previous sections is
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Note that there are two nodes after six months, three after one year, and so
on. A tree with weekly rather than semiannual steps capable of pricing a
30-year security would have only 52×30+1 or 1,561 nodes in its rightmost
column. Evidently, recombining trees are much more manageable than
nonrecombining trees from a computational viewpoint.

As trees grow it becomes convenient to develop a notation with which
to refer to particular nodes. One convention is as follows. The dates, repre-
sented by columns of the tree, are numbered from left to right starting with
0. The states, represented by rows of the tree, are numbered from bottom
to top, starting from 0 as well. For example, in the preceding tree the six-
month rate on date 2, state 0 is 4%. The six-month rate on state 1 of date
1 is 5.50%.

Continuing where the option example left off, having derived the risk-
neutral tree for the pricing of a one-year zero, the goal is to extend the tree
for the pricing of a 1.5-year zero assuming that the 1.5-year spot rate is
5.25%. Ignoring the probabilities for a moment, several nodes of the 1.5-
year zero price tree can be written down immediately:
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On date 3 the zero with an original term of 1.5 years matures and is
worth its face value of $1,000. On date 2 the value of the then six-month
zero equals its face value discounted for six months at the then-prevailing
spot rates of 6%, 5%, and 4% in states 2, 1, and 0, respectively:

(9.10)

Finally, on date 0 the 1.5-year zero equals its face value discounted at the
given 1.5-year spot rate: $1,000/(1+.0525/2)3 or $925.21.

The prices of the zero on date 1 in states 1 and 0 are denoted P1,1 and
P1,0, respectively. The then one-year zero prices are not known because, at
this point in the development, possible values of the one-year rate in six
months are not available.

The previous section showed that the risk-neutral probability of an up
move on date 0 is .8024. Letting q be the risk-neutral probability of an up
move on date 1,2 the tree becomes
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2For simplicity alone this example assumes that the probability of moving up from
state 0 equals the probability of moving up from state 1. Choosing among the
many possible interest rate processes is discussed in Chapters 11 through 13.



By the definition of risk-neutral probabilities, expected discounted
value under these probabilities must produce market prices. With respect
to the 1.5-year zero price on date 0, this requires that

(9.11)

With respect to the prices of a then one-year zero on date 1,

(9.12)

While equations (9.11) and (9.12) may appear complicated, substi-
tuting (9.12) into (9.11) results in a linear equation in the one unknown,
q. Solving this resulting equation reveals that q=.6489. Therefore, the
risk-neutral interest rate process may be summarized by the follow-
ing tree:

Furthermore, any derivative security that depends on the six-month rate in
6 months and in one year may be priced by computing its discounted ex-
pected value along this tree. An example appears in the next section.

The difference between the true and the risk-neutral probabilities
may once again be described in terms of drift. From dates 1 to 2, the
drift under the true probabilities is zero. Under the risk-neutral proba-
bilities the drift is computed from a 64.89% chance of a 50-basis point
increase in the six-month rate and a 35.11% chance of a 50-basis point
decline in the rate. These numbers give a drift or expected change of
14.89 basis points.
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Substituting q=.6489 back into equations (9.12) completes the tree for
the price of the 1.5-year zero:

It follows immediately from this tree that the one-year spot rate six
months from now may be either 5.5736% or 4.5743% since

(9.13)

The fact that the possible values of the one-year spot rate can be extracted
from the tree is, at first, surprising. The starting point of the example is the
date 0 values of the .5-, 1-, and 1.5-year spot rates as well as an assump-
tion about the evolution of the six-month rate over the next year. But since
this information in combination with arbitrage or risk-neutral arguments is
sufficient to determine the price tree for the 1.5-year zero, it is sufficient to
determine the possible values of the one-year spot rate in six months. Con-
sidering this fact from another point of view, having specified initial spot
rates and the evolution of the six-month rate, a modeler may not make any
further assumptions about the behavior of the one-year rate.

The six-month rate process completely determines the one-year rate
process because the model presented here has only one factor. Writing
down a tree for the evolution of the six-month rate alone implicitly as-
sumes that prices of all fixed income securities can be determined by the
evolution of that rate. Multi-factor models for which this is not the case
will be introduced in Chapter 13.
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Just as some replicating portfolio can reproduce the cash flows of a se-
curity from date 0 to date 1, some other replicating portfolios can repro-
duce the cash flows of a security from date 1 to date 2. The composition of
these replicating portfolios depends on the date and state. More specifi-
cally, the replicating portfolios held on date 0, on state 0 of date 1, and on
state 1 of date 1 are usually different. From the trading perspective, the
replicating portfolio must be adjusted as time passes and as interest rates
change. This process is known as dynamic replication, in contrast to the
static replication strategies of Part One. As an example of static replica-
tion, the portfolio of zero coupon bonds that replicates a coupon bond
does not change over time nor with the level of rates.

Having built a tree out to date 2 it should be clear how to extend the
tree to any number of dates. Assumptions about the future possible values
of the short-term rate have to be extrapolated even further into the future
and risk-neutral probabilities have to be calculated to produce a given set
of bond prices.

EXAMPLE: PRICING A CMT SWAP

Equipped with the tree built in the previous section, this section prices a
particular derivative security, namely $1,000,000 face value of a stylized
constant maturity Treasury (CMT) swap. This swap pays

(9.14)

every six months until it matures, where yCMT is a semiannually com-
pounded yield, of a predetermined maturity, at the time of payment. The
text prices a one-year CMT swap on the six-month yield.

Since six-month semiannually compounded yields equal six-month
spot rates, rates in the tree of the previous section can be substituted into
(9.14) to calculate the payoffs of the CMT swap. On date 1, the state 1 and
state 0 payoffs are, respectively,

(9.15)
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Similarly on date 2, the state 2, 1, and 0 payoffs are, respectively,

(9.16)

The possible values of the CMT swap at maturity, on date 2, are given
by (9.16). The possible values on date 1 are given by the expected dis-
counted value of the date 2 payoffs under the risk-neutral probabilities
plus the date 1 payoffs given by (9.15). The resulting date 1 values in states
1 and 0, respectively, are

(9.17)

Finally, the value of the swap on date 0 is the expected discounted value
of the date 1 payoffs, given by (9.17), under the risk neutral probabilities:

(9.18)

The following tree summarizes the value of the stylized CMT swap over
dates and states:

A value of $3,616.05 for the CMT swap might seem surprising at first.
After all, the cash flows of the CMT swap are zero at a rate of 5%, and 5%
is, under the real probabilities, the average rate on each date. The explana-
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tion, of course, is that the risk-neutral probabilities, not the real probabili-
ties, determine the arbitrage price of the swap. The expected discounted
value of the swap can be computed by following the steps leading to (9.17)
and (9.18) but using the real probabilities of .5 for all up and down moves.
The result of these calculations does give a value close to zero, namely
–$5.80.

The expected cash flow of the CMT swap on both dates 1 and 2, under
the real probabilities, is zero. It follows immediately that the discounted
value of these expected cash flows is zero. At the same time, the expected
discounted value of the CMT swap is –$5.80. Why are these values differ-
ent? The answer to this question is deferred to Chapter 17.

REDUCING THE TIME STEP

To this point this chapter has assumed that the time elapsed between dates
of the tree is six months. The methodology outlined previously, however,
can be easily adapted to any time step of ∆t years. For monthly time steps,
for example, ∆t=1/12 or .0833, and one-month rather than six-month inter-
est rates appear on the tree. Furthermore, discounting must be done over
the appropriate time interval. If the rate of term ∆t is r, then discounting
means dividing by 1+r∆t. In the case of monthly time steps, discounting
with a one-month rate of 5% means dividing by 1+.05/12.

In practice there are two reasons to choose time steps smaller than six
months. First, securities rarely make all of their payments in even six-
month intervals from the starting date. Reducing the time step to a month,
a week, or even a day can ensure that all of a security’s cash flows are suffi-
ciently close in time to some date in the tree. Second, assuming that the six-
month rate can take on only two values in six months, three values in one
year, and so on, produces a tree that is too coarse for many practical pric-
ing problems. Reducing the step size can fill the tree with enough rates to
price contingent claims with sufficient accuracy.

Figures 9.1 through 9.4 illustrate the effect of step size on the assumed
distribution of the six-month rate in six months. The horizontal axes show
the interest rate and the vertical axes the probability that corresponding
rates are realized. The binomial trees underlying each figure assume that
the initial rate is 5% and that the standard deviation of the six-month rate
in six months is 65 basis points. Finally, each graph restricts the range of
rates to between 3% and 7% so as to cover a bit more than three standard
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FIGURE 9.2 Probability Distribution of the Six-Month Rate in Six Months;
Monthly Time Steps
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FIGURE 9.1 Probability Distribution of the Six-Month Rate in Six Months;
Quarterly Time Steps
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FIGURE 9.3 Probability Distribution of the Six-Month Rate in Six Months;
Weekly Time Steps
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FIGURE 9.4 Probability Distribution of the Six-Month Rate in Six Months; Daily
Time Steps
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deviations of possible rates. With quarterly steps (Figure 9.1) the probabil-
ity distribution is quite unrealistic because there are only three possible val-
ues for the six-month rate at the end of six months. Decreasing the time
step to monthly (Figure 9.2), weekly (Figure 9.3), and daily (Figure 9.4) in-
creases the number of possible values for the six-month rate in six months.
The distributions resulting from weekly and daily time steps are clearly
much more realistic than the first example introduced in this chapter.

While smaller time steps generate more realistic interest rate distribu-
tions, it is not the case that smaller time steps are always desirable. First,
the greater the number of computations in pricing a security, the more at-
tention must be paid to numerical issues like round-off error. Second, since
decreasing the time step increases computation time, practitioners requir-
ing quick answers cannot make the time step arbitrarily small. Customers
calling market makers in options on swaps, or swaptions, for example, ex-
pect price quotations within minutes if not sooner. Time step in a model
used to price swaptions must be consistent with the market maker’s re-
quired response time.

The best choice of step size ultimately depends on the problem at
hand. When pricing a 30-year callable bond, for example, a model with
monthly time steps may provide a realistic enough interest rate distribution
to generate reliable prices. The same monthly steps, however, will certainly
be inadequate to price a one-month bond option: That tree would imply
only two possible rates on the option expiration date.

While the trees in this chapter assume that the step size is the same
throughout the tree, this need not be the case. Sophisticated implementa-
tions of trees allow step size to vary across dates in order to achieve a bal-
ance between realism and computational concerns.

FIXED INCOME VERSUS EQUITY DERIVATIVES

While the ideas behind pricing fixed income and equity derivatives are sim-
ilar in many ways, there are important differences as well. In particular, it
is worth describing why models created for the stock market cannot be
adopted without modification for use in fixed income markets.

The famous Black-Scholes pricing analysis of stock options can be
summarized as follows. Under the assumption that the stock price evolves
according to a particular random process and that the short-term interest
rate is constant, it is possible to form a portfolio of stocks and short-term
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bonds that replicates the payoffs of an option. Therefore, by arbitrage ar-
guments, the price of the option must equal the known price of the repli-
cating portfolio.

Say that an investor wants to price an option on a five-year bond by a
direct application of the Black-Scholes logic. The investor would have to
begin by making an assumption about how the price of the five-year bond
evolves over time. But this is considerably more complicated than making
assumptions about how the price of a stock evolves over time. First, the
price of a bond must converge to its face value at maturity while the ran-
dom process describing the stock price need not be constrained in any sim-
ilar way. Second, because of the maturity constraint, the volatility of a
bond’s price must eventually get smaller as the bond approaches maturity.
The Black-Scholes stock analysis, making the simpler assumption that the
stock volatility is constant, is not as appropriate for bonds. Third, in the
stock option context, where stock volatility is very large relative to short-
term rate volatility, it may be relatively harmless to assume that the short-
term rate is constant. However, simultaneously assuming that the bond
price follows some random process and that the short-term interest rate is
constant makes little economic sense.3

These objections led researchers to make assumptions about the ran-
dom evolution of the interest rate rather than of the bond price. In that
way bond prices would naturally approach par, price volatilities would
naturally approach zero, and the interest rate would no longer be assumed
constant. But this approach raises another set of questions. Which interest
rate is assumed to evolve in a certain way? Making assumptions about the
five-year rate over time is not particularly helpful for two reasons. First,
five-year coupon bond prices depend on shorter rates as well. Second, pric-
ing an option on a five-year bond requires assumptions about the bond’s
future possible prices. But, knowing how the five-year rate evolves over
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3These three objections are less important in the case of short-term options on long-
term bonds. In that case, since the underlying security is far from maturity, the pull
of price to par and volatility to zero are relatively small effects. Also, since short-
term rates (especially when a central bank pegs the overnight rate) are not very
volatile and are substantially less than perfectly correlated with long-term rates, the
assumption of a constant short-term rate is comparable to the parallel assumption
in the case of stock options. In light of these considerations, some practitioners do
apply the Black-Scholes analysis in this particular fixed income context.



time does not meet this requirement because, in a very short time, the op-
tion’s underlying security will no longer be a five-year bond. Therefore, one
must make assumptions about the evolution of the entire term structure of
interest rates to price bond options and other derivatives. In the one-factor
case described in this chapter it has been shown that modeling the evolu-
tion of the short-term rate is sufficient, combined with arbitrage argu-
ments, to build a model of the entire term structure. In short, despite the
enormous importance of the Black-Scholes analysis, the fixed income con-
text demands special attention.
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CHAPTER 10
The Short-Rate Process and the

Shape of the Term Structure

G iven the initial term structure and assumptions about the true interest
rate process for the short-term rate, Chapter 9 showed how to derive

the risk-neutral process used to determine arbitrage prices for all fixed in-
come securities. Models that follow this approach and take the initial term
structure as given are called arbitrage-free models of the term structure.
Another approach, to be described in this and subsequent chapters, is to
derive the risk-neutral process from assumptions about the true interest
rate process and about the risk premium demanded by the market for bear-
ing interest rate risk. Models that follow this approach do not necessarily
match the initial term structure and are called equilibrium models. The
benefits and weaknesses of each class of models are discussed throughout
Chapters 11 to 13.

This chapter describes how assumptions about the true interest rate
process and about the risk premium determine the level and shape of the
term structure. For equilibrium models an understanding of the relation-
ships between the model assumptions and the shape of the term structure is
important in order to make reasonable assumptions in the first place. For
arbitrage-free models an understanding of these relationships reveals the
assumptions implied by the market through the observed term structure.

Many economists might find this chapter remarkably narrow. An
economist asked about the shape of the term structure would undoubtedly
make reference to macroeconomic factors such as the marginal productiv-
ity of capital, the propensity to save, and expected inflation. The more
modest goal of this chapter is to connect the dynamics of the short-term
rate of interest and the risk premium with the shape of the term structure.
While this goal does fall short of answers that an economist might provide,



it is more ambitious than the derivation of arbitrage restrictions on bond
and derivative prices given the prices of a set of underlying bonds.

The first sections of this chapter present simple examples to illustrate
the roles of interest rate expectations, volatility and convexity, and risk
premium in the determination of the term structure. A more general, math-
ematical description of these effects follows. Finally, an application illus-
trates the concepts and describes the magnitudes of the various effects in
the context of the U.S. Treasury market.

EXPECTATIONS

The word expectations implies uncertainty. Investors might expect the one-
year rate to be 10%, but know there is a good chance it will turn out to be
8% or 12%. For the purposes of this section alone the text assumes away
uncertainty so that the statement that investors expect or forecast a rate of
10% means that investors assume that the rate will be 10%. The sections
following this one reintroduce uncertainty.

To highlight the role of interest rate forecasts in determining the shape
of the term structure, consider the following simple example. The one-year
interest rate is currently 10%, and all investors forecast that the one-year
interest rate next year and the year after will also be 10%. In that case, in-
vestors will discount cash flows using forward rates of 10%. In particular,
the price of one-, two-, and three-year zero coupon bonds per dollar face
value (using annual compounding) will be

(10.1)

(10.2)

(10.3)

From inspection of equations (10.1) through (10.3), the term structure of
spot rates in this example is flat at 10%. Very simply, investors are willing
to lock in 10% for two or three years because they assume that the one-
year rate will always be 10%.
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Now assume that the one-year rate is still 10%, but that all investors
forecast the one-year rate next year to be 12% and the one-year rate in two
years to be 14%. In that case, the one-year spot rate is still 10%. The two-
year spot rate, r̂(2), is such that

(10.4)

Solving, r̂(2)=10.995%. Similarly, the three-year spot rate, r̂(3), is such that

(10.5)

Solving, r̂(3)=11.998%. Hence, the evolution of the one-year rate from 10%
to 12% to 14% generates an upward-sloping term structure of spot rates:
10%, 10.995%, and 11.988%. In this case investors require rates above 10%
when locking up their money for two or three years because they assume one-
year rates will be higher than 10%. No investor, for example, would buy a
two-year zero at a yield of 10% when it is possible to buy a one-year zero at
10% and, when it matures, buy another one-year zero at 12%.

Finally, assume that the one-year rate is 10%, but that investors fore-
cast it to fall to 8% in one year and to 6% in two years. In that case, it is
easy to show that the term structure of spot rates will be downward-slop-
ing. In particular, r̂(1)=10%, r̂(2)=8.995%, and r̂(3)=7.988%.

These simple examples reveal that expectations can cause the term
structure to take on any of a myriad of shapes. Over short horizons, one
can imagine that the financial community would have specific views about
the future of the short-term rate. The term structure in the U.S. Treasury
market on February 15, 2001, analyzed later in this chapter, implies that
the short-term rate would fall for about two years and then rise again.1 At
the time this was known as the “V-shaped” recovery. At first, the economy
would continue to weaken and the Federal Reserve would continue to re-
duce the federal funds target rate in an attempt to spur growth. Then the
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1Strangely enough, Eurodollar futures at the same time implied that rates would
fall for less than one year before rising again. (Chapter 17 will describe Eurodol-
lar futures.)



economy would rebound sharply and the Federal Reserve would be forced
to increase the target rate to keep inflation in check.2

Over long horizons the path of expectations cannot be as specific as
those mentioned in the previous paragraph. For example, it would be diffi-
cult to defend the position that the one-year rate 29 years from now will be
substantially different from the one-year rate 30 years from now. On the
other hand, one might make an argument that the long-run expectation of
the short-term rate is, for example, 5% (2.50% due to the long-run real rate
of interest and 2.50% due to long-run inflation). Hence, forecasts can be
very useful in describing the level and shape of the term structure over short
time horizons and the level of rates over very long horizons. This conclusion
has important implications for extracting expectations from observed inter-
est rates (see the application at the end of this chapter), for curve fitting tech-
niques not based on term structure models (see Chapter 4), and for the use of
arbitrage-free models of the term structure (see Chapters 11 to 13).

VOLATILITY AND CONVEXITY

This section drops the assumption that investors believe their forecasts are
realized and assumes instead that investors understand the volatility
around their expectations. To isolate the implications of volatility on the
shape of the term structure, this section assumes that investors are risk
neutral so that they price securities by expected discounted value. The next
section drops this assumption.

Assume that the following tree gives the true process for the one-year
rate:
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2Those who thought the economy would take some time to recover predicted a “U-
shaped” recovery. Those even more pessimistic expected an “L-shaped” recovery.



Note that the expected interest rate on date 1 is .5×8%+.5×12% or 10%
and that the expected rate on date 2 is .25×14%+.5×10%+.25×6% or
10%. In the previous section, with no volatility around expectations, flat
expectations of 10% imply a flat term structure of spot rates. That is not
the case in the presence of volatility.

The price of a one-year zero is, by definition, 1/1.10 or .909091, imply-
ing a one-year spot rate of 10%. Under the assumption of risk neutrality,
the price of a two-year zero may be calculated by discounting the terminal
cash flow using the preceding interest rate tree:

Hence, the two-year spot rate is such that .82672=1/(1+r̂(2))2, implying
that r̂ (2)=9.982%.

Even though the one-year rate is 10% and the expected one-year rate
in one year is 10%, the two-year spot rate is 9.982%. The 1.8-basis point
difference between the spot rate that would obtain in the absence of uncer-
tainty, 10%, and the spot rate in the presence of volatility, 9.982%, is the
effect of convexity on that spot rate. This convexity effect arises from the
mathematical fact, a special case of Jensen’s Inequality, that

(10.6)

Figure 10.1 graphically illustrates this equation. The figure assumes that
there are two possible values for r, rLow and rHigh. The curve gives values of
1/(1+r) for the various values of r. The midpoint of the straight line connect-
ing 1/(1+rLow) to 1/(1+rHigh) equals the average of those two values. Under the
assumption that the two rates occur with equal probability, this average
equals the point labeled E[1/(1+r)] in the figure. Under the same assumption,
the point on the abscissa labeled E[1+r] equals the expected value of 1+r and
the corresponding point on the curve equals 1/E[1+r]. Clearly, E[1/(1+r)] is
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greater than 1/E(1+r). To summarize, equation (10.6) is true because the
pricing function of a zero, 1/(1+r), is convex rather than concave.

Returning to the example of this section, equation (10.6) may be used
to show why the one-year spot rate is less than 10%. The spot rate one
year from now may be 12% or 8%. According to (10.6),

(10.7)

Dividing both sides by 1.10,

(10.8)

The left-hand side of (10.8) is the price of the two-year zero coupon bond
today. In words, then, equation (10.8) says that the price of the two-year
zero is greater than the result of discounting the terminal cash flow by 10%
over the first period and by the expected rate of 10% over the second pe-
riod. It follows immediately that the yield of the two-year zero, or the two-
year spot rate, is less than 10%.
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FIGURE 10.1 An Illustration of Convexity
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The tree presented at the start of this section may also be used to price
a three-year zero. The resulting price tree is

The three-year spot rate, such that .752309=1/(1+r̂(3))3, is 9.952%. There-
fore, the value of convexity in this spot rate is 10%–9.952% or 4.8 basis
points, whereas the value of convexity in the two-year spot rate was only
1.8 basis points.

It is generally true that, all else equal, the value of convexity increases
with maturity. This will be proved shortly. For now, suffice it to say that
the convexity of the price of a zero maturing in N years, 1/(1+r)N, in-
creases with N. In other words, if Figure 10.1 were redrawn for the func-
tion 1/(1+r)3, for example, instead of 1/(1+r), the resulting curve would be
more convex.

Chapters 5 and 6 show that bonds with greater convexity perform bet-
ter when yields change a lot but mentioned that this greater convexity is
paid for at times that yields do not change very much. The discussion in
this section shows that convexity does, in fact, lower bond yields. The
mathematical development in a later section ties these observations to-
gether by showing exactly how the advantages of convexity are offset by
lower yields.

The previous section assumes no interest rate volatility and, conse-
quently, yields are completely determined by forecasts. In this section, with
the introduction of volatility, yield is reduced by the value of convexity. So
it may be said that the value of convexity arises from volatility. Further-
more, the value of convexity increases with volatility. In the tree intro-
duced at the start of the section, the standard deviation of rates is 200 basis
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points a year.3 Now consider a tree with a standard deviation of 400 basis
points a year:

The expected one-year rate in one year and in two years is still 10%. Spot
rates and convexity values for this case may be derived along the same lines
as before. Figure 10.2 graphs three term structures of spot rates: one with
no volatility around the expectation of 10%, one with a volatility of 200
basis points a year (the tree of the first example), and one with a volatility
of 400 basis points per year (the tree preceding this paragraph). Note that
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FIGURE 10.2 Volatility and the Shape of the Term Structure
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the value of convexity, measured by the distance between the rates assum-
ing no volatility and the rates assuming volatility, increases with volatility.
Figure 10.2 also shows that the value of convexity increases with maturity.

For very short terms and realistic volatility, the value of convexity is
quite small. Simple examples, however, must use short terms, so convexity
effects would hardly be discernible without raising volatility to unrealistic
levels. Therefore, this section is forced to choose unrealistically large
volatility values. The application at the end of this chapter uses realistic
volatility to present typical convexity values.

RISK PREMIUM

To illustrate the effect of risk premium on the term structure, consider
again the second interest rate tree presented in the preceding section, with
a volatility of 400 basis point per year. Risk-neutral investors would price a
two-year zero by the following calculation:

(10.9)

By discounting the expected future price by 10%, equation (10.9) implies
that the expected return from owning the two-year zero over the next year
is 10%. To verify this statement, calculate this expected return directly:

(10.10)

Would investors really invest in this two-year zero offering an ex-
pected return of 10% over the next year? The return will, in fact, be ei-
ther 6% or 14%. While these two returns do average to 10%, an investor
could, instead, buy a one-year zero with a certain return of 10%. Pre-
sented with this choice, any risk-averse investor will prefer an investment
with a certain return of 10% to an investment with a risky return that av-
erages 10%. In other words, investors require compensation for bearing
interest rate risk.4
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Risk-averse investors demand a return higher than 10% for the two-
year zero over the next year. This return can be effected by pricing the
zero coupon bond one year from now at less than the prices of 1/1.14 or
.877193 and 1/1.06 or .943396. Equivalently, future cash flows could be
discounted at rates higher than the possible rates of 14% and 6%. The
next section shows that adding, for example, 20 basis points to each of
these rates is equivalent to assuming that investors demand an extra 20
basis points for each year of modified duration risk. Assuming this is in-
deed the fair market risk premium, the price of the two-year zero would
be computed as follows:

(10.11)

First, this is below the price of .827541 obtained in equation (10.9) by as-
suming that investors are risk-neutral. Second, the increase in the discount-
ing rates has increased the expected return of the two-year zero. In one
year, if the interest rate is 14% then the price of a one-year zero will be
1/1.14 or .877193. If the interest is 6%, then the price of a one-year zero will
be 1/1.06 or .943396. Therefore, the expected return of the two-year zero
priced at .826035 is

(10.12)

Hence, recalling that the one-year zero has a certain return of 10%, the
risk-averse investors in this example demand 20 basis points in expected
return to compensate them for the one year of modified duration risk in-
herent in the two-year zero.5

Continuing with the assumption that investors require 20 basis points
for each year of modified duration risk, the three-year zero, with its ap-
proximately two years of modified duration risk,6 needs to offer an ex-
pected return of 40 basis points. The next section shows that this return
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5The reader should keep in mind that a two-year zero has one year of interest rate
risk only in this stylized example: It has been assumed that rates can move only
once a year. In reality rates can move at any time, so a two-year zero has two years
of interest rate risk.
6See the previous footnote.



can be effected by pricing the three-year zero as if rates next year are 20
basis points above their true values and as if rates the year after next are 40
basis points above their true values. To summarize, consider the following
two trees. If the tree to the left depicts the actual or true interest rate
process, then pricing with the tree to the right provides investors with a
risk premium of 20 basis points for each year of modified duration risk. If
this risk premium is, in fact, embedded in market prices, then by definition,
the tree to the right is the risk-neutral interest rate process.

True Process Risk-Neutral Process

The text now verifies that pricing the three-year zero with the risk-neu-
tral process does offer an expected return of 10.4%, assuming that rates
actually move according to the true process.

The price of the three-year zero can be computed by discounting using
the risk-neutral tree:

To find the expected return of the three-year zero over the next year,
proceed as follows. Two years from now the three-year zero will be a one-
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year zero with no interest rate risk.7 Therefore, its price will be determined
by discounting at the actual interest rate at that time: 1/1.18 or .847458, 1/1.10

or .909091, and 1/1.02 or .980392. One year from now, however, the three-
year zero will be a two-year zero with one year of modified duration risk.
Therefore, its price at that time will be determined by using the risk-neutral
rates of 14.20% and 6.20%. In particular, the two possible prices of the
three-year zero in one year are

(10.13)

and

(10.14)

Finally, then, the expected return of the three-year zero over the next year
is

(10.15)

To summarize, in order to compensate investors for about two years of
modified duration risk, the return on the three-year zero is about 40 basis
points above the 10% certain return of a one-year zero.

Continuing with the assumption of 400 basis point volatility, Figure
10.3 graphs the term structure of spot rates for three cases: no risk pre-
mium, a risk premium of 20 basis points per year of modified duration
risk, and a risk premium of 40 basis points. In the case of no risk premium,
the term structure of spot rates is downward-sloping due to convexity. A
risk premium of 20 basis points pushes up spot rates of longer maturity
while convexity pulls them down. In the short end the risk premium effect
dominates and the term structure is mildly upward-sloping. In the long end
the convexity effect dominates and the term structure is mildly downward-
sloping. The next section clarifies why risk premium tends to dominate in
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7This is an artifact of this example in which rates change only once a year.



the short end while convexity tends to dominate in the long end. Finally, a
risk premium as large as 40 basis points dominates the convexity effect,
and the term structure of spot rates is upward-sloping. The convexity effect
is still evident, however, from the fact that the curve increases more rapidly
from one to two years than from two to three years.

Just as the section on volatility uses unrealistically high levels of
volatility to illustrate its effects, this section uses unrealistically high levels
of the risk premium to illustrate its effects. The application at the end of
this section focuses on reasonable magnitudes for the various effects in the
context of the U.S. Treasury market.

Before closing this section, a few remarks on the sources of an interest
rate risk premium are in order. Asset pricing theory (e.g., the Capital Asset
Pricing Model, or CAPM) teaches that assets whose returns are positively
correlated with aggregate wealth or consumption will earn a risk premium.
Consider, for example, a traded stock index. That asset will almost cer-
tainly do well if the economy is doing well and poorly if the economy is do-
ing poorly. But investors, as a group, already have a lot of exposure to the
economy. To entice them to hold a little more of the economy in the form
of a traded stock index requires the payment of a risk premium; that is, the
index must offer an expected return greater than the risk-free rate of re-
turn. On the other hand, say that there exists an asset that is negatively
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correlated with the economy. Holdings in that asset allow investors to re-
duce their exposure to the economy. As a result, investors would accept an
expected return on that asset below the risk-free rate of return. That asset,
in other words, would have a negative risk premium.

This section assumes that bonds with interest rate risk earn a risk
premium. In terms of asset pricing theory, this is equivalent to assuming
that bond returns are positively correlated with the economy or, equiva-
lently, that falling interest rates are associated with good times. One ar-
gument supporting this assumption is that interest rates fall when
inflation and expected inflation fall and that low inflation is correlated
with good times.

The concept of a risk premium in fixed income markets has probably
gained favor more for its empirical usefulness than for its theoretical solid-
ity. On average, over the past 70 years, the term structure of interest rates
has sloped upward.8 While the market may from time to time expect that
interest rates will rise, it is hard to believe that the market expects interest
rates to rise on average. Therefore, expectations cannot explain a term
structure of interest rates that, on average, slopes upward. Convexity, of
course, leads to a downward-sloping term structure. Hence, of the three ef-
fects described in this chapter, only a positive risk premium can explain a
term structure that, on average, slopes upward.

An uncomfortable fact, however, is that over earlier time periods the
term structure has, on average, been flat.9 Whether this means that an in-
terest rate risk premium is a relatively recent phenomenon that is here to
stay or that the experience of persistently upward-sloping curves is only
partially due to a risk premium is a question beyond the scope of this
book. In short, the theoretical and empirical questions with respect to the
existence of an interest rate risk premium have not been settled.

A MATHEMATICAL DESCRIPTION OF EXPECTATIONS,
CONVEXITY, AND RISK PREMIUM

This section presents an approach to understanding the components of re-
turn in fixed income markets. While the treatment is mathematical, the aim
is intuition rather than mathematical rigor.
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Let P(y, t; c) be the price of a bond at time t with a yield y and a con-
tinuously paid coupon rate of c. A continuously paid coupon means that
over a small time interval, dt, the bond makes a coupon payment of cdt.
No real bonds pay continuous coupons, but the assumption will make the
mathematical development of this section simpler without any loss of intu-
ition. Note, by the way, that the coupon rate is written after the semicolon
to indicate that the coupon rate is fixed.

By Ito’s Lemma (a discussion of which is beyond the mathematical
scope of this book),

(10.16)

where dP, dy, and dt are the changes in price, yield, and time, respectively
over the next instant and σ is the volatility of yield measured in basis point
per year. The two first-order partial derivatives, ∂P/∂y and ∂P/∂t, denote the
change in the bond price for a unit change in yield (with time unchanged)
and the change in the bond price for a unit change in time (with yield un-
changed), respectively, over the next instant. Finally, the second-order par-
tial derivative, ∂2P/∂y2, gives the change in ∂P/∂y for a unit change in yield
(with time unchanged) over the next instant. Dividing both sides of (10.16)
by price,

(10.17)

Thus, equation (10.17) breaks down the return from bond price changes over
the next instant, dP/P, into three components. This equation can be written in a
more intuitive form by invoking several facts from throughout this book.

First, recall from Chapter 3 that, with an unchanged yield, the total
return of a bond over a coupon interval equals its yield multiplied by the
time interval. Appendix 10A proves the continuous time equivalent of
that statement:

(10.18)

In words, the yield equals the return of the bond in the form of price ap-
preciation plus the return in the form of coupon income. Rearranging
(10.18) slightly,
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(10.19)

Second, Chapter 6 shows that modified duration and yield-based con-
vexity, written here as D and C, respectively, may be written as

(10.20)

(10.21)

Substituting equations (10.19), (10.20), and (10.21) into (10.17),

(10.22)

The left-hand side of this equation is the total return of the bond—that
is, its capital gain, dP, plus its coupon payment, cdt, divided by the initial
price. The right-hand side of (10.22) gives the three components of total
return. The first component equals the return due to the passage of time—
that is, the return to the bondholder over some short time horizon if yields
remain unchanged. The second and third components equal the return due
to change in yield. The second term says that increases in yield reduce bond
return and that the greater the duration of the bond, the greater this effect.
This term is perfectly consistent with the discussion of interest rate sensitiv-
ity in Part Two of the book.

The third term on the right-hand side of equation (10.22) is consistent
with the related discussions in Chapters 5 and 6. Equation (5.20) showed
that bond return increases with convexity multiplied by the change in yield
squared. Here, in equation (10.22), C is multiplied by the volatility of yield
instead of the yield squared. By the definition of volatility and variance, of
course, these quantities are very closely related: Variance equals the ex-
pected value of the yield squared minus the square of the expected yield.

Equation (5.20) implied that positive convexity increases return
whether rates rise or fall. Equation (10.22) implies the same thing. Also,
Chapters 5 and 6 concluded that the greater the change in yield, the greater
the performance of bonds with high convexity relative to bonds with low
convexity. Similarly, equation (10.22) shows that the greater the volatility
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of yield, the greater this convexity-induced advantage. The text soon dis-
cusses the cost of this increased return.

To draw conclusions about the expected returns of bonds with differ-
ent duration and convexity characteristics, it will prove useful to take the
expectation of each side of (10.22), obtaining

(10.23)

Equation (10.23) divides expected return into its mathematical compo-
nents. These components are analogous to those in equation (10.22): a re-
turn due to the passage of time, a return due to expected changes in yield,
and a return due to volatility and convexity. To develop equation (10.23)
further, the analysis must incorporate the economics of expected return.

Risk-neutral investors demand that each bond offer an expected return
equal to the short-term rate of interest. The interest rate risk of one bond
relative to another would not affect the required expected returns. Mathe-
matically,

(10.24)

Risk-averse investors demand higher expected returns for bonds with more
interest rate risk. Appendix 10A shows that the interest rate risk of a bond
over the next instant may be measured by its duration and that risk-averse
investors demand a risk premium proportional to duration. In the context
of this section, where yield is the interest rate factor, risk may be measured
by modified duration. Letting the risk premium parameter be λ, the ex-
pected return equation becomes

(10.25)

Say, for example, that the short-term interest rate is 4%, that the modi-
fied duration of a particular bond is five years, and that the risk premium
is 10 basis points per year of duration risk. Then, according to equation
(10.25), the total expected return of that bond equals 4%+5×.1% or
4.5% per year.

Another useful way to think of the risk premium is in terms of the Sharpe
ratio of a security, defined as its expected excess return (i.e., its expected
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return above the short-term interest rate), divided by the standard deviation
of the return. Since the random part of a bond’s return comes from its dura-
tion times the change in yield, the standard deviation of the return equals the
duration times the standard deviation of the yield. Therefore, the Sharpe ratio
of a bond, S, may be written as

(10.26)

Comparing equations (10.26) and (10.25), one can see that S=λ/σ. So, con-
tinuing with the numerical example, if the risk premium is 10 basis points
per year and if the standard deviation of yield is assumed to be 100 basis
points per year, then the Sharpe ratio of a bond investment is 10/100 or 10%.

Equipped with an economic description of expected returns, the text
can now draw conclusions about the determination of yield. Substitute the
expected return equation (10.25) into the breakdown of expected return
given by equation (10.23) to see that

(10.27)

Equation (10.27) mathematically describes the determinants of yield
presented in this section. The effect of expectations is given by the terms of
r and E[dy]. For intuition, let y' denote the yield of the bond one instant
from now, let ∆y�y'–y, and let ∆t denote the time interval. Then, the ex-
pectations terms of (10.27) alone say that

(10.28)

Solving for y,

(10.29)

In words, due to expectations alone, the yield of a bond is a weighted aver-
age of the current short-term rate and the expected yield of the bond an in-
stant from now. The greater the short-term rate and the greater the expected
yield, the greater is the current bond yield. Furthermore, extrapolating this
reasoning, the expected yield, in turn, is determined by expectations about
the short-term rate of interest from the next instant to the maturity of the
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bond. Finally, the greater a bond’s duration, the more its yield is determined
by expected future rates relative to the current short-term rate.

The risk premium term of equation (10.27) shows an effect on yield of
Dλ. As illustrated by the examples of this chapter, yield increases with the
size of the required risk premium and with the interest rate risk (i.e., dura-
tion) of the bond.

The discussion of the risk premium in the previous section and the
construction of the risk-neutral trees in Chapter 9 show that pricing bonds
as if the short-term rate drifted up by a certain amount each year has the
same effect as a risk premium. Inspection of equation (10.27) more for-
mally reveals this equivalence. As mentioned in the context of equation
(10.29), the expected change in yield is driven by expected changes in the
short-term rate. Increasing the expected yield by 10 basis points per year
implies increasing the expected short-term rate by 10 basis points per year.
Hence, equation (10.27) says that increasing the risk premium, λ, by a
fixed number of basis points is empirically indistinguishable from increas-
ing the expected short-term rate by the same number of basis points per
year. From a data perspective this means that the term structure at any
given time cannot be used to distinguish between market expectations of
rate changes and risk premium. From a modeling perspective this means
that only the risk-neutral process is relevant for pricing. Dividing the drift
into expectations and risk premium might be very useful in determining
whether the model seems reasonable from an economic point of view, but
this division has no pricing implications.

The term –(1/2 )Cσ 2 in equation (10.27) gives the effect of convexity on
yield. Recalling from Chapter 6 that a bond’s convexity increases with ma-
turity, this term shows that the convexity effect on yield increases with ma-
turity and with interest rate volatility, as illustrated in the simple examples
given earlier.

Recall from Part Two that duration increases more or less linearly with
maturity while convexity increases more or less with maturity squared.
This observation, combined with equation (10.27), implies that, holding
everything else equal, as maturity increases, the convexity effect eventually
dominates the risk premium effect. However, as will be discussed in the
next section and in next few chapters, the volatility of yields tends to de-
cline with maturity. The 10-year yield, for example, is more volatile than
the 30-year yield. Therefore, as maturity increases, the increase in the con-
vexity effect in (10.27) may be muted by falling volatility.
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Equation (10.23) shows that the expected return of a bond is enhanced
by its convexity in the quantity (1/2)Cσ 2 per unit time. But the convexity
term in equation (10.27) shows that the yield and, therefore, the return due
to the passage of time are reduced by exactly that amount. Hence, as
claimed in Chapters 5 and 6 and as mentioned earlier in this chapter, a bond
priced by arbitrage offers no advantage in expected return due to its con-
vexity. In fact, the expected return condition (10.25) ensured that this had
to be so. None of this means, of course, that the return profile of bonds
with different convexity measures will be the same. Bonds with higher con-
vexity will perform better when yields change a lot, while bonds with lower
convexity will perform better when yields do not change by much.

APPLICATION: Expectations, Convexity, and Risk Premium in the U.S. Treasury Market
on February 15, 2001

Figure 10.4 shows four curves. The uppermost curve is the par yield curve on February 15,
2001. These par yields are computed from the spot rates constructed in Chapter 4. The
other three curves break down the par yields into the components discussed in this section:
expectations, risk premium, and convexity.

As shown in the previous section, convexity impacts the yield of a bond by –(1/2)Cσ 2.
The convexity of a particular par bond may be computed using the formulas given in Chapter 6.
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FIGURE 10.4 Expectations, Convexity, and Risk Premium Estimates in the Treasury
Market, February 15, 2001
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Choosing the level of volatility to input into the convexity effect, however, requires some
comment. The desired quantity, the volatility of the yield in question, is unknown. The most
common substitute choices are one’s best guess, recent historical volatility, or implied
volatility. The relative merits of these choices will be discussed in Chapter 12, but Figure 10.4
uses implied volatilities from the relatively liquid short-term options on 2-, 5-, 10-, and 30-
year Treasury securities. Table 10.1 lists these implied volatilities as of February 15, 2001.

Notice that the term structure of volatilities slopes upward and then downward. For
the purposes of Figure 10.4, implied volatilities on bonds of intermediate maturities were
assumed to be linear in the given volatilities. For maturities less than two years, the two-
year volatility was used. So, for example, the convexity effect on a 20-year security is
computed as follows. The convexity of a 20-year par bond at a yield of 5.67% is about
194.5. Interpolating 91.5 basis points per year for a 10-year yield and 68.6 basis points
per year for a 30-year yield gives an approximation for 20-year volatility of about 80 basis
points per year. Therefore, the magnitude of the convexity effect is estimated at about 62
basis points:

(10.30)

Figure 10.4 illustrates that the magnitude of the convexity effect increases with maturity.
When increasing maturity, the increase in bond convexity offsets the decrease in volatility.

Adding the convexity effect to the par yields leaves expectations and risk premium.
Given the observational equivalence of these two effects (see the previous section and
Chapter 11), there is no scientific way to separate them by observing a given term struc-
ture of yields. Therefore, for the purposes of drawing Figure 10.4, several strong as-
sumptions were made.10 First, the long-run expectation of the short-term rate is about

1
2

194 5 80 62
2× × ( ) =. . % . %
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TABLE 10.1 Volatilities Implied
from Short-Dated Bond Options

Term Basis Point Volatility

2 92.6
5 95.4

10 91.5
30 68.6

10The reader is very much encouraged to critique these assumptions and postulate a different decom-
position of yields.



5%, corresponding to a long-run real rate of 2.50% and a long-run inflation rate of
2.50%. Second, the expectation curve is relatively linear at longer maturities. As men-
tioned in the discussion of expectations in this chapter, while the market might expect
the short-term rate to move toward some long-term level, it is hard to defend any ex-
pected fluctuations in the short-term rate 20 or 30 years in the future. Third, the risk
premium is a constant. While the risk premium may, in theory, depend on calendar time
and on the level of rates, very little theoretical work has been done to justify these rela-
tively complex specifications. Fourth, the Sharpe ratio of bonds is not too far from his-
torical norms.

As it turns out, a risk premium of 9 basis points per year satisfies these objectives
relatively well, although not perfectly well. The resulting expectations curve exhibits a
dip and then a gradual increase to a long-run level. The dip is perfectly acceptable, cor-
responding to beliefs about near-term economic activity and the Federal Reserve’s likely
responses to that activity. On the other hand, that the expectation curve rises above 5%,
to a maximum of about 5.23%, before falling back to 5% violates, at least to some ex-
tent, the second objective of the previous paragraph. Lastly, using the volatilities given
in Table 10.1, the magnitude of the risk premium gives Sharpe ratios ranging from 9.4%
for 5-year bonds to 13.1% for 30-year bonds. These values are in the range of historical
plausibility.

Decompositions of the sort described here are useful in forming opinions about which
sectors of a bond market are rich or cheap. Say, for example, that one accepts the decom-
position presented here but does not accept that the expected short-term rate 20 years
from now can be so far above the expected short rate 10 and 30 years from now. In that
case, one must conclude that 20-year yields are too high relative to 10-year and 30-year
yields, or, equivalently, that the 20-year sector is cheap. This conclusion suggests purchas-
ing 20-year Treasury bonds rather than 10- and 30-year bonds or, more aggressively, buy-
ing 20-year bonds and shorting 10- and 30-year bonds. This, in fact, is the trade suggested
in the trading case study in Chapter 8. (The trade is rejected there because the 20-year sec-
tor did not seem cheap relative to recent history.)

APPENDIX 10A
PROOFS OF EQUATIONS (10.19) AND (10.25)

Proof of Equation (10.19)

Under continuous compounding, the present value of the continuously
paid coupon payments from time t to the maturity of the bond at time T is
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(10.31)

Adding the present value of the final principal payment to the value of the
coupon flow, the price of the bond is

(10.32)

Note that this is the continuous time equivalent of equation (3.4).
Taking the derivative of (10.32) with respect to t,

(10.33)

But, rearranging (10.32) shows that

(10.34)

Finally, combining equations (10.33) and (10.34),

(10.35)

or

(10.36)

as was to be proved.

Proof of Equation (10.25)

This proof follows that of Ingersoll (1987) and assumes some knowledge
of stochastic processes and their associated notation. The notation will be
described in Chapter 11.

Let x be some interest rate factor that follows the process

(10.37)dx dt dw= +µ σ
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Let P be the full price of some security that depends on x and time. Then,
by Ito’s Lemma,

(10.38)

Dividing both sides by P, taking expectations, and defining αP to be the ex-
pected return of the security,

(10.39)

Combining (10.38) and (10.39),

(10.40)

Since equation (10.40) is valid for any security, it is also valid for secu-
rity Q:

(10.41)

Now consider the strategy of investing $1 in security P and

(10.42)

dollars in security Q. Using equations (10.40) and (10.41), the return on
this portfolio is

(10.43)

Notice that there is no random variable on the right-hand side of
(10.43). This particular portfolio was, in fact, chosen so as to hedge com-
pletely the risk of P with Q. In any case, since the portfolio has no risk it
must earn the short-term rate r:
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Rearranging (10.44),

(10.45)

Equation (10.45) says that the expected return of any security above
the short-term rate divided by its duration with respect to the factor x must
equal some function λ. This function cannot depend on any characteristic
of the security because (10.45) is true for all securities. The function may
depend on the factor and time, although this book, for simplicity, assumes
that λ is a constant. Rewriting (10.45), for each security it must be true that

(10.46)

The derivation here assumes there are no coupon payments, while the
discussion in the text accounts for a coupon payment. Also, the derivation
here uses an arbitrary interest rate factor, while the discussion in the text takes
the yield of a particular bond as the factor. This is somewhat inconsistent
since this derivation requires every security to have the same factor while the
text implies a result simultaneously valid for every bond at its own yield.
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CHAPTER 11
The Art of Term 

Structure Models: Drift

Chapters 9 and 10 show that assumptions about the true and risk-neu-
tral short-term rate processes determine the term structure of interest

rates and the prices of fixed income derivatives. The goal of this chapter
and Chapter 12 is to describe the most common building blocks of term
structure models. Selecting and rearranging these building blocks to 
create suitable models for the purpose at hand is the art of term struc-
ture modeling.

This chapter begins with an extremely simple model and then discusses
the implications of adding a constant drift, a time-deterministic drift, and a
mean-reverting drift. Chapter 12 discusses the implications of varying the
assumptions about the volatility of the short rate and about its probability
distribution.

NORMALLY DISTRIBUTED RATES, ZERO DRIFT:
MODEL 1

The discussion begins with a particularly simple model to be called Model
1. The continuously compounded, instantaneous rate r(t) is assumed to
evolve in the following way:

(11.1)

The quantity dr denotes the change in the rate over a small time interval,
dt, measured in years; σ denotes the annual basis point volatility of rate

dr dw= σ



changes; and dw denotes a normally distributed random variable with a
mean of zero and a standard deviation of √dt

—
.1

Say, for example, that the current value of the short-term rate is
6.18%, that volatility equals 113 basis points per year, and that the time
interval under consideration is one month or 1/12 years. Mathematically,
r(0)≡r0=6.18%, σ=.0113, and dt=1/12. A month passes and the random vari-
able dw, with a mean of zero and a standard deviation of √1/12

—–
or .2887,

happens to take on a value of .15. With these values the change in the
short-term rate given by (11.1) is

(11.2)

or 17 basis points. Since the short-term rate started at 6.18%, the short-
term rate after a month is 6.35%.

Since the expected value of dw is zero, (11.1) says that the expected
change in the rate or the drift is zero. Since the standard deviation of dw is
√dt
—

, so that the standard deviation of σdw is σ√dt
—

, the standard deviation
of the change in the rate is also σ√dt

—
. For the sake of brevity the standard

deviation of the change in the rate will be referred to as simply the stan-
dard deviation of the rate. Continuing with the numerical example, the
process (11.1) says that the drift is zero and that the standard deviation of
the rate is σ√dt

—
=.0113×√1/12

—–
=.326% or 32.6 basis points per month.

A rate tree may be used to approximate the process (11.1). Dates 0 to
2 take the following form:
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1It is beyond the mathematical scope of the text to explain why the random vari-
able is denoted like a change, namely dw. But the text uses this notation since it is
the convention in the field.



In the case of the numerical example, substituting the sample values
into this tree gives the following:

To understand why these trees are representations of the process (11.1),
consider the transition from date 0 to date 1. The change in the interest rate
in the up state is σ√dt

—
and the change in the down state is –σ√dt

—
. There-

fore, with the probabilities given in the tree, the expected change in the
rate, often denoted E[dr], is

(11.3)

The variance of the rate, often denoted V[dr], from date 0 to date 1 is
computed as follows:

(11.4)

(The first equation follows from the definition of variance.) Since the vari-
ance is σ2dt, the standard deviation, which is the square root of the vari-
ance, is σ√dt

—
.

Equations (11.3) and (11.4) show that the drift and volatility implied
by the tree match the drift and volatility of the interest rate process (11.1).
The process and the tree are not identical because the random variable in
the process, having a normal distribution, can take on any value while a
single step in the tree leads to only two possible values. In the example,
when dw takes on a value of .15, the short rate changes from 6.18% to
6.35%. In the tree, however, the only two possible rates are 6.506% and
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5.854%. Nevertheless, as shown in Chapter 9, after a sufficient number of
time steps the branches of the tree used to approximate the process (11.1)
will be numerous enough to approximate a normal distribution. Figure
11.1 shows the distribution of short rates after one year, or the terminal
distribution after one year, as implied by the numerical example of the
process. The tick marks on the x-axis are one standard deviation apart
from one another.

Models in which the terminal distribution of interest rates has a nor-
mal distribution, like Model 1, are called normal models. One problem
with these models is that the short-term rate can become negative. A nega-
tive short-term rate does not make much economic sense because people
would never lend money at a negative rate when they could hold cash and
earn a zero rate instead.2 The distribution in Figure 11.1, drawn to encom-
pass three standard deviations above and below the mean, shows that over
a horizon of one year the interest rate process will almost certainly not ex-
hibit negative interest rates. The probability that the short-term rate in
process (11.1) becomes negative, however, increases with the horizon.
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FIGURE 11.1 Distribution of Short Rates after One Year, Model 1
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Over 10 years, for example, the standard deviation of the terminal distrib-
ution in the numerical example is .0113×√10

—
or 3.573%. Starting with a

short-term rate of 6.18%, reaching a rate of zero requires a random shock
of only 6.18%/3.575% or 1.73 standard deviations.

The extent to which the possibility of negative rates makes a model un-
usable depends on the application. For securities whose value depends
mostly on the average path of the interest rate, like coupon bonds, the pos-
sibility of negative rates typically does not rule out an otherwise desirable
model. For securities that are asymmetrically sensitive to the probability of
low interest rates, however, using a normal model could be dangerous.
Consider the extreme example of a 10-year option to buy a long-term
coupon bond at a yield of 0%. The model of this section would assign that
option much too high a value because the model assigns too much proba-
bility to negative rates.

The techniques of Chapter 9 may be used to price fixed coupon bonds
under Model 1. Figure 11.2 graphs the semiannually compounded par,
spot, and forward rate curves for the numerical example along with data
from U.S. dollar swap par rates as of February 16, 2001.3 The initial value
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FIGURE 11.2 Rate Curves from Model 1 and Selected Market Swap Rates,
February 16, 2001
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3Swaps will be discussed in Chapter 18. For now, the reader may think of swap
rates as par rates on fixed coupon bonds.



of the short-term rate in the example, 6.18%, is set so that the model and
market 10-year, semiannually compounded par rates are equal at 6.086%.
All of the other data points shown are quite different from their model val-
ues. The desirability of fitting market data exactly is discussed in its own
section, but Figure 11.2 clearly demonstrates that the simple model of this
section does not have enough flexibility to capture the shape of even rela-
tively simple term structures.

The model term structure is downward-sloping. As the model has no
drift, rates decline with term solely because of convexity. Table 11.1
shows the magnitudes of convexity effects on par rates of selected terms.4

The numbers are realistic in the sense that a volatility of 113 basis points
a year is reasonable. In fact, the volatility of the 10-year swap rate on Feb-
ruary 16, 2001, as implied by options markets,5 was 113 basis points. The
convexity numbers are not necessarily realistic, however, because, as this
chapter demonstrates, the magnitude of the convexity effect depends on
the model, and Model 1 is almost certainly not the best model of interest
rate behavior.

The term structure of volatility in Model 1 is constant at 113 basis
points per year. In other words, the standard deviation of changes in the
par rate of any maturity is 113 basis points per year. As shown in Figure
11.3, this implication of the model fails to capture the implied volatility
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4The convexity effect is the difference between the par yield in the model with the
assumed volatility and the par yield in the same structural model but with volatility
set to zero.
5Chapter 19 will discuss implied volatility.

TABLE 11.1 Convexity
Effects on Par Rates,
Model 1

Convexity
Term Effect

2 –0.8
5 –5.1

10 –18.8
30 –135.3



structure in the market. The volatility data in Figure 11.3 show that the
term structure of volatility is humped—that is, that volatility initially rises
with term but eventually declines. As this shape is quite common it will be
revisited in Chapter 13, in the context of a model that attempts to capture
this feature.

The last aspect of this model to be analyzed is its factor structure. The
model’s only factor is the short-term rate. If this rate increases by 10 semi-
annually compounded basis points, how would the term structure change?
In this simple model the answer is that all rates would increase by 10 basis
points. While not a particularly interesting-looking graph, for comparison
with other models Figure 11.4 graphs the effect of a 10-basis point shift of
the factor on spot rates of all terms. Clearly, the model of this section is a
model of parallel shifts.

DRIFT AND RISK PREMIUM: MODEL 2

The term structures implied by Model 1 always look like Figure 11.2: rel-
atively flat for early terms and then downward sloping. Chapter 10
pointed out that the term structure tends to slope upward and that this be-
havior might be explained by the existence of a risk premium. The model
of this section, to be called Model 2, adds a drift to Model 1, interpreted
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FIGURE 11.3 Par Rate Volatility from Model 1 and Selected Implied Volatilities,
February 16, 2001
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as a risk premium, in order to obtain a richer model in an economically
coherent way.

The dynamics of the risk-neutral process in Model 2 are written as

(11.5)

The process (11.5) differs from that of Model 1 by adding a drift to the
short-term rate equal to λdt. For this section, consider the values
r0=5.138%, λ=.229%, and σ=1.10%. If the realization of the random vari-
able, dw, is again .15 over a month, then the change in rate is

(11.6)

Starting from 5.138%, the new rate is 5.322%.
The drift of the rate is .229%×(1/12)=.019%, or 1.9 basis points per

month, and the standard deviation is 1.10%×√1/12
—

=.3175%, or 31.75 basis
points per month. As discussed in Chapter 10, the drift in the risk-neutral
process is a combination of the true expected change in the interest rate
and of a risk premium. A drift of 1.9 basis points per month may arise be-
cause the market expects the short-term rate to increase by 1.9 basis points

dr = × ( ) + × =. % . % . . %229 1 12 1 10 15 1841

dr dt dw= +λ σ
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FIGURE 11.4 Sensitivity of Spot Rates to a 10 Basis Point Change in the Factor,
Model 1
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a month. The same drift might also arise because the short-term rate is ex-
pected to increase by one basis point with a risk premium of .9 basis points
or because the short-term rate is expected to fall by .1 basis points with a
risk premium of two basis points.

The tree approximating this model is

It is easy to verify that the drift and standard deviation of the tree match
those of the process (11.6).

The terminal distribution of the numerical example of this process af-
ter one year is normal with a mean of 5.138%+1×.229% or 5.367% and a
standard deviation of 110 basis points. After 10 years, the terminal distrib-
ution is normal with a mean of 5.138%+10×.229% or 7.428% and a stan-
dard deviation of 1.10%×√10

—
=3.479% or 347.9 basis points. Note that

the constant drift, by raising the mean of the terminal distribution, makes
it less likely that the risk-neutral process will exhibit negative rates.

Figure 11.5 shows the rate curves in this example along with the par
swap rate data. The values of r0 and λ are calibrated to match the two- and
10-year par swap rates, while the value of σ is chosen to be the average im-
plied volatility of the two- and 10-year par rates. The results are satisfying
in that the resulting curve can match the data much more closely than did
the curve of Model 1 shown in Figure 11.2. Slightly unsatisfying is the rel-
atively high value of λ required. Interpreted as a risk premium alone, a
value of .229% with a volatility of 110 basis points implies a relatively
high Sharpe ratio of about .21. On the other hand, interpreting λ as a com-
bination of true drift and risk premium is difficult in the long end where, as
argued in Chapter 10, it is difficult to make a case for rising expected rates.
These interpretive difficulties arise because Model 2 is still not flexible
enough to explain the shape of the term structure in an economically
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meaningful way. In fact, the use of r0 and λ to match the two- and 10-year
rates in this relatively inflexible model may be the reason that the model
curve overshoots the 30-year par yield by about 25 basis points.

Moving from Model 1 with zero drift to Model 2 with a constant drift
does not qualitatively change the term structure of volatility, the magnitude
of convexity effects, or the parallel shift nature of the model.

Model 2 is an equilibrium model because no effort has been made to
match the observed term structure closely. The next section presents an ar-
bitrage-free version of Model 2.

TIME-DEPENDENT DRIFT: THE HO-LEE MODEL

The dynamics of the risk-neutral process in the Ho-Lee model are written as

(11.7)

In contrast to Model 2, the drift here depends on time. In other words, the
drift of the process may change from date to date. It might be an annual-
ized drift of –20 basis points over the first month, of 10 basis points over
the second month, of 20 basis points over the third month, and so on. A
drift that varies with time is called a time-dependent drift. Just as with a

dr t dt dw= ( ) +λ σ
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FIGURE 11.5 Rate Curves from Model 2 and Selected Market Swap Rates,
February 16, 2001

4.00%

4.50%

5.00%

5.50%

6.00%

6.50%

7.00%

7.50%

8.00%

0 5 10 15 20 25 30

Term

R
at

e Par

Spot

Forward



constant drift, the time-dependent drift over each time period represents
some combination of the risk premium and of expected changes in the
short-term rate.

The flexibility of the Ho-Lee model is easily seen from its correspond-
ing tree:

The free parameters λ1 and λ2 may be used to match the prices of
bonds with fixed cash flows. The procedure may be described as follows.
With dt = 1/12, set r0 equal to the one-month rate. Next, obtain a monthly
spot rate curve from traded bond prices using the techniques of Chapter 4.
Then find λ1 such that the model produces a two-month spot rate equal to
that of the initial spot rate curve. Then find λ2 such that the model pro-
duces a three-month spot rate equal to that of the initial spot rate curve.
Continue in this fashion until the tree ends. The procedure is very much
like that used to construct the trees in Chapter 9. The only difference is
that Chapter 9 adjusts the probabilities to match the spot rate curve while
this section adjusts the rates. As it turns out, the two procedures are equiv-
alent so long as the step size is small enough.

The rate curves resulting from this model match all the rates that are
input into the model. Just as adding a constant drift to Model 1 to obtain
Model 2 does not affect the shape of the term structure of volatility nor the
parallel shift characteristic of the model, making the drift time-dependent
also does not change these features.

DESIRABILITY OF FITTING TO THE TERM STRUCTURE

The desirability of matching market prices is the central issue in deciding
between arbitrage-free and equilibrium models. Not surprisingly, the
choice depends on the purpose of building the model in the first place.
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One important use of arbitrage-free models is for quoting the prices of
securities not actively traded based on the prices of more liquid securities.
A customer might ask a swap desk to quote a rate on a swap to a particu-
lar date, say three years and four months away, while liquid market prices
may be observed only for three- and four-year swaps, or sometimes only
for two- and five-year swaps. In this situation the swap desk may price the
odd-maturity swap using an arbitrage-free model essentially as a means of
interpolating between observed market prices.

Interpolating by means of arbitrage-free models may very well be supe-
rior to other curve fitting methods, from linear interpolation to more so-
phisticated approaches like piecewise cubic splines (see Chapter 4). The
potential superiority of arbitrage-free models arises from their being based
on economic and financial reasoning. In an arbitrage-free model the expec-
tations and risk premium built into neighboring swap rates and the con-
vexity implied by the model’s volatility assumptions are used to compute,
for example, the three-year and four-month swap rate. In a purely mathe-
matical curve fitting technique, by contrast, the chosen functional form
heavily determines the intermediate swap rate. Selecting linear, quadratic,
or cubic interpolation results in different intermediate swap rates for no
obvious economic or financial reason. This potential superiority of arbi-
trage-free models depends crucially on the validity of the assumptions built
into the models. A poor volatility assumption, for example, resulting in a
poor estimate of the convexity effect, might make an arbitrage-free model
perform worse than a less financially sophisticated technique.

Another important use of arbitrage-free models is to value and hedge
derivative securities for the purpose of making markets or for proprietary
trading. For these purposes many practitioners wish to assume that some
set of underlying securities is priced fairly. For example, when trading an
option on a 10-year Treasury, many practitioners assume that the 10-year
Treasury is itself priced fairly. (An analysis of the fairness of the 10-year
Treasury can always be done separately.) Since arbitrage-free models
match the prices of many traded securities by construction, these models
are ideal for the purpose of pricing derivatives given the prices of underly-
ing securities.

That a model matches market prices does not necessarily imply that it
provides fair values and accurate hedges for derivative securities. The argu-
ment for fitting models to market prices is that a good deal of information
about the future behavior of interest rates is incorporated into market
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prices, and, therefore, a model fitted to those prices captures that interest
rate behavior. While this is a perfectly reasonable argument, two warnings
are appropriate. First, a mediocre or bad model cannot be rescued by cali-
brating it to match market prices. If, for example, the parallel shift as-
sumption is not a good enough description of reality for the application at
hand, adding a time-dependent drift to a parallel shift model so as to
match a set of bond prices will not make the model suitable for that appli-
cation. Second, the argument for fitting to market prices assumes that
those market prices are fair in the context of the model. There are, how-
ever, many situations in which particular securities, particular classes of se-
curities, or particular maturity ranges of securities have been distorted due
to supply and demand imbalances, taxes, liquidity differences, and other
factors unrelated to interest rate models. In these cases fitting to market
prices will make a model worse by attributing these outside factors to the
interest rate process. If, for example, a large bank liquidates its portfolio of
bonds or swaps with approximately seven years to maturity and, in the
process, depresses prices and raises rates around that maturity, it would be
incorrect to assume that expectations of rates seven years in the future
have risen. Being careful about the word fair, the seven-year securities in
this example are fair in the sense that liquidity considerations at a particu-
lar time require their prices to be relatively low. The seven-year securities
are not fair, however, with respect to the expected evolution of interest
rates and the market risk premium. For this reason, in fact, investors and
traders might buy these relatively cheap bonds or swaps and hold them
past the liquidity event in the hope of selling at a profit.

Another way to express the problem of fitting the drift to the term
structure is to recognize that the drift of a risk-neutral process arises only
from expectations and risk premium. A model that assumes one drift from
years 15 to 16 and another drift from years 16 to 17 implicitly assumes
one of two things. First, the expectation today of the one-year rate in 15
years differs from the expectation today of the one-year rate in 16 years.
Second, the risk premium in 15 years differs in a particular way from the
risk premium in 16 years. Since neither of these assumptions is particularly
palatable, a fitted drift that changes dramatically from one year to the next
is likely to be erroneously attributing non-interest rate effects to the inter-
est rate process.

If the purpose of a model is to value bonds or swaps relative to one an-
other, then taking a large number of bond or swap prices as given is clearly
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inappropriate: Arbitrage-free models, by construction, conclude that all of
these bond or swap prices are fair relative to one another. Investors want-
ing to choose among securities, market makers looking to pick up value by
strategically selecting hedging securities, or traders looking to profit from
temporary mispricings must, therefore, rely on equilibrium models.

Having starkly contrasted arbitrage-free and equilibrium models, it
should be noted that, in practice, there need not be a clear line between the
two approaches. A model might posit a deterministic drift for a few years
to reflect relatively short-term interest rate forecasts and posit a constant
drift from then on. Another model might take the prices of two-, five-, 10-,
and 30-year bond or swap rates as given so as to assume that the most liq-
uid securities are fair while allowing the model to value other securities.
The proper blending of the arbitrage-free and equilibrium approaches is an
important part of the art of term structure modeling.

MEAN REVERSION: THE VASICEK (1977) MODEL

Assuming that the economy tends toward some equilibrium based on such
fundamental factors as the productivity of capital, long-term monetary
policy, and so on, short-term rates will be characterized by mean reversion.
When the short-term rate is above its long-run equilibrium value, the drift
is negative, driving the rate down toward this long-run value. When the
rate is below its equilibrium value, the drift is positive, driving the rate up
toward this value. In addition to being a reasonable assumption about
short rates,6 mean reversion enables a model to capture features of term
structure behavior in an economically intuitive way.

The risk-neutral dynamics of the Vasicek model are written as

(11.8)dr k r dt dw= −( ) +θ σ
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6While reasonable, mean reversion is a strong assumption. Long time series of in-
terest rates from relatively stable markets might display mean reversion because
there happened to be no catastrophe over the time period, that is, precisely because
a long time series exists. Hyperinflation, for example, is not consistent with mean
reversion and results in the destruction of a currency and its associated interest
rates. When mean reversion ends, the time series ends. In short, the most severe
critics of mean reversion would say that interest rates mean revert until they don’t.



The constant θ denotes the long-run value or central tendency of the short-
term rate in the risk-neutral process and the positive constant k denotes the
speed of mean reversion. Note that in this specification the greater the dif-
ference between r and θ the greater the expected change in the short-term
rate toward θ.

Because the process (11.8) is the risk-neutral process, the drift com-
bines both interest rate expectations and risk premium. Furthermore,
market prices do not depend on how the risk-neutral drift is divided
across its two sources. Nevertheless, in order to understand whether or
not the parameters of a model make sense, it is useful to make assump-
tions sufficient to separate the drift and the risk premium. Assuming, for
example, that the true interest rate process exhibits mean reversion to a
long-term value r∞ and, as assumed previously, that the risk premium en-
ters into the risk-neutral process as a constant drift, the Vasicek model
takes the following form:

(11.9)

The process in (11.8) is identical to that in (11.9) so long as

(11.10)

Note that very many combinations of r∞ and λ produce the same θ and,
through the risk-neutral process (11.8), the same market prices.

For the purposes of this section, let k=.025, σ=126 basis points per
year, r0=5.121%, r∞=6.179%, and λ=.229%. According to (11.10), then,
θ=15.339%. With these parameters, the process (11.8) says that over the
next month the expected change in the short rate is

(11.11)

or 2.13 basis points. The volatility over the next month is 126×√1/12
—––

or
36.4 basis points.

Representing this process with a tree is not quite so straightforward as
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the simpler processes described previously because the most obvious repre-
sentation leads to a nonrecombining tree. Over the first time step,

To extend the tree from date 1 to date 2, start from the up state of
5.5060%. The tree branching from there is

while the tree branching from the date 1 down state of 4.7786% is

To summarize, the most straightforward tree representation of (11.8) takes
the following form:

This tree does not recombine since the drift increases with the differ-
ence between the short rate and θ. Since 4.7786% is further from θ than
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5.5060%, the drift from 4.7786% is greater than the drift from 5.5060%.
In this model, the volatility component of an up move followed by a down
move does perfectly cancel the volatility component of a down move fol-
lowed by an up move. But since the drift from 4.7786% is greater, the
move up from 4.7786% produces a larger short-term rate than a move
down from 5.5060%.

There are many ways to represent the Vasicek model with a recombin-
ing tree. One method is presented here, but it is beyond the scope of this
book to discuss the numerical efficiency of the various possibilities.7

The first time step of the tree may be taken as shown previously:

Next, fix the center node of the tree on date 2. Since the expected per-
turbation due to volatility over each time step is zero, the drift alone deter-
mines the expected value of the process after each time step. After the first
time step the expected value is

(11.12)

After the second time step the expected value is

(11.13)

Take this value as the center node on date 2 of the recombining tree:
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rio (2001), Heston and Zhou (2000), and Hull (2000).



The parts of the tree to be solved for, namely, the missing probabilities and
interest rate values, are given variable names.

According to the process (11.8) and the parameters set in this section,
the expected rate and standard deviation of the rate from 5.5060% are, re-
spectively,

(11.14)

and

(11.15)

For the recombining tree to match this expectation and standard deviation,
it must be the case that

(11.16)

and, by the definition of standard deviation,

(11.17)

Solving equations (11.16) and (11.17), ruu=5.8909% and p=.4990.
The same procedure may be followed to compute rdd and q. The ex-

pected rate from 4.7786% is
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(11.18)

and the standard deviation is again 36.37 basis points. From 4.7786%,
then, it must be the case that

(11.19)

and

(11.20)

Solving equations (11.19) and (11.20), rdd=4.4361% and q=.5011.
Putting the results from the up and down states together, a recom-

bining tree approximating the process (11.8) for the parameters of this
section is

To extend the tree to the next date, begin again at the center. From the
center node of date 2, the expected rate of the process is

(11.21)

As in constructing the tree for date 1, adding and subtracting the standard
deviation of .3637% to the average value 5.1847% (obtaining 5.5484%
and 4.8210%) and using probabilities of 50% for up and down move-
ments satisfy the requirements of the process at the center of the tree:
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The unknown parameters can be solved for in the same manner as de-
scribed in building the tree on date 2.

The text now turns to the effects of mean reversion on the term struc-
ture. Figure 11.6 illustrates the impact of mean reversion on the terminal,
risk-neutral distributions of the short rate at different horizons. The expec-
tation of the short-term rate as a function of horizon gradually rises from
its current value of 5.121% toward its limiting value of θ=15.339%. Be-
cause the mean reverting parameter k=.025 is relatively small, the horizon
expectation rises very slowly toward 15.339%. While mathematically be-
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FIGURE 11.6 Mean Reversion and the Terminal Distributions of Short Rates
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yond the scope of this book, it can be shown that the distance between the
current value of a factor and its goal decays exponentially at the mean re-
verting rate. Since the interest rate is currently 15.339%–5.121% or
10.218% away from its goal, the distance between the expected rate at a
10-year horizon and the goal is

(11.22)

Therefore, the expectation of the rate in 10 years is 15.3390%–7.9578%
or 7.3812%.

For completeness, the expectation of the rate in the Vasicek model af-
ter T years is

(11.23)

In words, the expectation is a weighted average of the current short rate
and its long-run value, where the weight on the current short rate decays
exponentially at a speed determined by the mean reverting parameter.

The mean reverting parameter is not a particularly intuitive way of
describing how long it takes a factor to revert to its long-term goal. A
more intuitive quantity is the factor’s half-life, defined as the time it
takes the factor to progress half the distance toward its goal. In the ex-
ample of this section, the half-life of the interest rate, HL, is given by the
following equation:

(11.24)

Solving,

(11.25)

where ln is the natural logarithm function. In words, the interest rate fac-
tor takes 27.73 years to cover half the distance between its starting value
and its goal. This can be seen visually in Figure 11.6 where the expected
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rate 30 years from now is about halfway between the current value and θ.
Larger mean reverting parameters produce shorter half-lives.

Figure 11.6 also shows one-standard deviation intervals around expec-
tations both for the mean reverting process of this section and for a process
with the same expectation and the same σ but without mean reversion.
The standard deviation of the terminal distribution of the short rate after T
years in the Vasicek model is

(11.26)

In the numerical example, with a mean reverting parameter of .025 and a
volatility of 126 basis point, the short rate in 10 years is normally distrib-
uted with an expected value of 7.3812%, derived earlier, and a standard
deviation of

(11.27)

or 353 basis points. Using the same expected value and σ but no mean re-
version, the standard deviation is σ√T

—
=.0126√10

—
or 398 basis points.

Pulling the interest rate toward a long-term goal dampens volatility relative
to processes without mean reversion, particularly at long horizons.

To avoid confusion in terminology, note that the mean reverting model
in this section set volatility equal to 126 basis points “per year.” Because of
mean reversion, however, this does not mean that the standard deviation of
the terminal distribution after T years increases with the square root of
time. Without mean reversion, this is the case, as reported in the previous
paragraph. With mean reversion, the standard deviation increases with
horizon more slowly than that, producing a standard deviation of only 353
basis points after 10 years.

Figure 11.7 graphs the rate curves in this parameterization of the Va-
sicek model. The values of r0 and θ were calibrated to match the two- and
10-year par rates in the market. As a result, Figure 11.7 qualitatively re-
sembles Figure 11.5. The mean reversion parameter might have been used
to make the model fit the observed term structure more closely, but, as dis-
cussed in the next paragraph, this parameter was used to produce a partic-
ular term structure of volatility. In conclusion, Figure 11.7 shows that the
model as calibrated in this section is probably not flexible enough to pro-
duce the range of term structures observed in practice.
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The term structure of volatility in a model with mean reversion differs
dramatically from that in a model without mean reversion. Figure 11.8
shows that the volatility of par rates declines with term in the Vasicek
model. In this example the mean reversion and volatility parameters are
chosen to fit the implied 10- and 30-year volatilities. As a result, the model
matches the market at those two terms but overstates the volatility for
shorter terms. While Figure 11.8 certainly shows an improvement relative
to the flat term structure of volatility shown in Figure 11.3, mean reversion
in this model generates a term structure of volatility that slopes downward
everywhere. Chapter 13 shows that a second factor can produce the
humped volatility structure evident in the market.

Since mean reversion lowers the volatility of longer-term par rates, it
must also lower the impact of convexity on these rates. Table 11.2 re-
ports the convexity effect at several terms. Recall that the convexity ef-
fects listed in Table 11.1 are generated from a model with no mean
reversion and a volatility of 113 basis points per year. Since this section
set volatility equal to 126 basis points per year and since the mean rever-
sion parameter is relatively slow, the convexity effects for terms up to 10
years are slightly larger in Table 11.2 than in Table 11.1. But by a term of
30 years the dampening effect of mean reversion on volatility manifests
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FIGURE 11.7 Rate Curves from the Vasicek Model and Selected Market Swap
Rates, February 16, 2001
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itself, and the convexity effect in the Vasicek model of about 75 basis
points is substantially below the 135 basis-point effect in the model with-
out mean reversion.

Figure 11.9 shows the shape of the interest rate factor in a mean re-
verting model, that is, how the spot rate curve is affected by a 10-basis
point increase in the short-term rate. Short-term rates rise by about 10 ba-
sis points but longer-term rates are impacted less. The 30-year spot rate,
for example, falls by only seven basis points. Hence a model with mean re-
version is not a parallel shift model.

The implications of mean reversion for the term structure of volatility
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FIGURE 11.8 Par Rate Volatility from the Vasicek Model and Selected Implied
Volatilities, February 16, 2001
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TABLE 11.2 Convexity
Effects on Par Rates, the
Vasicek Model

Convexity
Term Effect

2 –1.0
5 –5.8

10 –19.1
30 –74.7



and factor shape may be better understood by reinterpreting the assump-
tion that short rates tend toward a long-term goal. Assuming that short
rates move as a result of some news or shock to the economic system,
mean reversion implies that the effect of this shock eventually dissipates.
After all, regardless of the shock, the short rate is assumed to arrive ulti-
mately at the same long-term goal.

Economic news is said to be long-lived if it changes the market’s view
of the economy many years in the future. For example, news of a techno-
logical innovation that raises productivity would be a relatively long-lived
shock to the system. Economic news is said to be short-lived if it changes
the market’s view of the economy in the near but not far future. An exam-
ple of this kind of shock might be news that retail sales were lower than ex-
pected due to excessively cold weather over the holiday season. In this
interpretation, mean reversion measures the length of economic news in a
term structure model. A very low mean reversion parameter—that is, a
very long half-life—implies that news is long-lived and that it will affect
the short rate for many years to come. On the other hand, a very high
mean reversion parameter—that is, a very short half-life—implies that
news is short-lived and that it affects the short rate for a relatively short pe-
riod of time.
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FIGURE 11.9 Sensitivity of Spot Rates to a 10 Basis Point Change in the Factor,
the Vasicek Model
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Interpreting mean reversion as the length of economic news explains
the factor structure and the downward-sloping term structure of volatility
in the Vasicek model. Rates of every term are combinations of current eco-
nomic conditions, as measured by the short-term rate, and of long-term
economic conditions, as measured by the long-term value of the short rate
(i.e., θ). In a model with no mean reversion, rates are determined exclu-
sively by current economic conditions. Shocks to the short-term rate affect
all rates equally, giving rise to parallel shifts and a flat term structure of
volatility. In a model with mean reversion, shorter-term rates are deter-
mined mostly by current economic conditions while longer-term rates are
determined mostly by long-term economic conditions. As a result, shocks
to the short rate affect shorter-term rates more than longer-term rates and
give rise to a downward-sloping term structure of volatility and a down-
ward-sloping factor structure.
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CHAPTER 12
The Art of Term 

Structure Models: 
Volatility and Distribution

This chapter continues the presentation of the building blocks of term
structure models by introducing different specifications of volatility and

different interest rate distributions. The chapter concludes with a list of
commonly used interest rate models to show the many ways in which the
building blocks of Chapters 11 and 12 have been assembled in practice.

TIME-DEPENDENT VOLATILITY: MODEL 3

Just as a time-dependent drift may be used to fit very many bond or swap
rates, a time-dependent volatility function may be used to fit very many op-
tion prices. A particularly simple model with a time-dependent volatility
function might be written as follows:

(12.1)

Unlike the Ho-Lee model presented in Chapter 11, the volatility of the
short rate in equation (12.1) depends on time. If, for example, the function
σ(t) were such that σ(1)=.0126 and σ(2)=.0120, then the volatility of the
short rate in one year is 126 basis points per year while the volatility of the
short rate in two years is 120 basis points per year.

To illustrate the features of time-dependent volatility, consider the fol-
lowing special case of (12.1) that will be called Model 3:

(12.2)dr t dt e dwt= ( ) + −λ σ α

dr t dt t dw= ( ) + ( )λ σ



In (12.2) the volatility of the short rate starts at the constant σ and
then exponentially declines to zero. (Volatility could have easily been de-
signed to decline to another constant instead of zero, but Model 3 serves its
pedagogical purpose well enough.)

Setting σ=126 basis points and α=.025, Figure 12.1 graphs the stan-
dard deviation of the terminal distribution of the short rate at various hori-
zons.1 Note that the standard deviation rises rapidly with horizon at first
but then rises more slowly. The particular shape of the curve depends, of
course, on the volatility function chosen for (12.2), but very many shapes
are possible with the more general volatility specification in (12.1).

Deterministic volatility functions are popular, particularly among
market makers in interest rate options. Consider the example of caplets.
At expiration, a caplet pays the difference between the short rate and a
strike, if positive, on some notional amount. Furthermore, the value of a
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FIGURE 12.1 Standard Deviation of Terminal Distributions of Short Rates,
Model 3
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1The mathematics necessary for these computations are beyond the scope of this
book. Furthermore, since Model 3 is invoked more to make a point about time-de-
pendent volatility than to present a popular term structure model, the correspond-
ing tree has also been omitted.



caplet depends on the distribution of the short rate at the caplet’s expira-
tion. Therefore, the flexibility of the deterministic functions λ(t) and σ(t)
may be used to match the market prices of caplets expiring on many dif-
ferent dates.

The behavior of standard deviation as a function of horizon in Figure
12.1 resembles the impact of mean reversion on horizon standard devia-
tion in Figure 11.6. In fact, setting the initial volatility and decay rate in
Model 3 equal to the volatility and mean reversion rate of the numerical
example of the Vasicek model, the standard deviations of the terminal dis-
tributions from the two models turn out to be identical. Furthermore, if the
time-dependent drift in Model 3 matches the average path of rates in the
numerical example of the Vasicek model, then the two models produce ex-
actly the same terminal distributions.

While the two models are equivalent with respect to terminal distribu-
tions, they are very different in other ways. Just as the models in Chapter
11 without mean reversion are parallel shift models, Model 3 is a parallel
shift model. Also, the term structure of volatility in Model 3 (i.e., the
volatility of rates of different terms) is flat. Since the volatility in Model 3
changes over time, the term structure of volatility is flat at levels of volatil-
ity that change over time, but it is still always flat.

The arguments for and against using time-dependent volatility resem-
ble those for and against using a time-dependent drift. If the purpose of the
model is to quote fixed income option prices that are not easily observable,
then a model with time-dependent volatility provides a means of interpo-
lating from known to unknown option prices. If, however, the purpose of
the model is to value and hedge fixed income securities, including options,
then a model with mean reversion might be preferred. First, while mean re-
version is based on the economic intuitions outlined in Chapter 11, time-
dependent volatility relies on the difficult argument that the market has a
forecast of short-rate volatility in, for example, 10 years that differs from
its forecast of volatility in 11 years. Second, the downward-sloping factor
structure and term structure of volatility in the mean reverting models cap-
ture the behavior of interest rate movements better than parallel shifts and
a flat term structure of volatility. (See Chapter 13.) It may very well be that
the Vasicek model does not capture the behavior of interest rates suffi-
ciently well to be used for a particular valuation or hedging purpose. But in
that case it is unlikely that a parallel shift model calibrated to match caplet
prices will be better suited for that purpose.

Time-Dependent Volatility: Model 3 247



VOLATILITY AS A FUNCTION OF THE SHORT RATE:
THE COX-INGERSOLL-ROSS AND 
LOGNORMAL MODELS

The models in Chapter 11 along with Model 3 assume that the basis point
volatility of the short rate is independent of the level of the short rate. This
is almost certainly not true at extreme levels of the short rate. Periods of
high inflation and high short-term interest rates are inherently unstable
and, as a result, the basis point volatility of the short rate tends to be high.
Also, when the short-term rate is very low, its basis point volatility is lim-
ited by the fact that interest rates cannot decline much below zero.

Economic arguments of this sort have led to specifying the volatility of
the short rate as an increasing function of the short rate. The risk-neutral
dynamics of the Cox-Ingersoll-Ross (CIR) model are

(12.3)

Since the first term on the right-hand side of (12.3) is not a random vari-
able and since the standard deviation of dw equals √dt

—
by definition, the

annualized standard deviation of dr (i.e., the basis point volatility) is pro-
portional to the square root of the rate. Put another way, in the CIR model
the parameter σ is constant, but basis point volatility is not: annualized ba-
sis point volatility equals σ√r

–
and, therefore, increases with the level of the

short rate.
Another popular specification is that the basis point volatility is pro-

portional to rate. In this case the parameter σ is often called yield volatility.
Two examples of this volatility specification are the Courtadon model:

(12.4)

and the simplest lognormal model,2 to be called Model 4:

(12.5)dr ardt rdw= + σ

dr k r dt rdw= −( ) +θ σ

dr k r dt rdw= −( ) +θ σ
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2There are some technical problems with the lognormal model. See Brigo and Mer-
curio (2001).



(The next section explains why this is called a lognormal model.) In these
two specifications the yield volatility is constant but the basis point volatil-
ity equals σ r and, therefore, increases with the level of the rate.

Figure 12.2 graphs the basis point volatility as a function of rate for
the cases of the constant, square root, and proportional specifications.
For comparison purposes, the values of σ in the three cases are set so
that basis point volatility equals 100 at a short rate of 8% in all cases.
Mathematically,

(12.6)

Note that the units of these volatility measures are somewhat different.
Basis point volatility is in the units of an interest rate (e.g., 100 basis
points), while yield volatility is expressed as a percentage of the short rate
(e.g., 12.5%).

As shown in Figure 12.2, the CIR and proportional volatility specifica-
tions have basis point volatility increasing with rate but at different speeds.
Both models have the basis point volatility equal to zero at a rate of zero.

The property that basis point volatility equals zero when the short rate
is zero, combined with the condition that the drift is positive when the rate
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is zero, guarantees that the short rate cannot become negative. This is cer-
tainly an improvement over models with constant basis point volatility
that allow interest rates to become negative. It should be noted, however,
that choosing a model depends on the purpose at hand. Say, for example,
that a trader believes the following: One, the assumption of constant
volatility is best in the current economic environment. Two, the possibility
of negative rates has a small impact on the pricing of the securities under
consideration. And three, the computational simplicity of constant volatil-
ity models has great value. In that case the trader might very well prefer a
model that allows some probability of negative rates.

Figure 12.3 graphs terminal distributions of the short rate after 10
years under the CIR, normal, and lognormal volatility specifications. In or-
der to emphasize the difference in the shape of the three distributions, the
parameters have been chosen so that all of the distributions have an ex-
pected value of 5% and a standard deviation of 2.32%. The figure illus-
trates the advantage of the CIR and lognormal models in not allowing
negative rates. The figure also indicates that out-of-the-money option
prices could differ significantly under the three models. Even if, as in this
case, the central tendency and volatility of the three distributions are the
same, the probability of outcomes away from the means are different
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FIGURE 12.3 Terminal Distributions of the Short Rate after 10 Years in Cox-
Ingersoll-Ross, Normal, and Lognormal Models
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enough to generate significantly different option prices. (See Chapter 19.)
More generally, the shape of the distribution used in an interest rate model
can be an important determinant of that model’s performance.

TREE FOR THE ORIGINAL SALOMON 
BROTHERS MODEL3

This section shows how to construct a binomial tree to approximate the
dynamics for a lognormal model with a deterministic drift. Describe the
model as follows:

(12.7)

By Ito’s Lemma (which is beyond the mathematical scope of this book),

(12.8)

Substituting (12.7) into (12.8),

(12.9)

Redefining the notation of the time-dependent drift so that a(t)≡ã(t)–σ 2/2,
equation (12.9) becomes

(12.10)

Recalling the models of Chapter 11, equation (12.10) says that the natural
logarithm of the short rate is normally distributed. Furthermore, by defini-
tion, a random variable has a lognormal distribution if its natural loga-
rithm has a normal distribution. Therefore, (12.10) implies that the short
rate has a lognormal distribution.

Equation (12.10) may be described as the Ho-Lee model (see Chapter
11) based on the natural logarithm of the short rate instead of on the short

d r a t dt dwln ( )( )[ ] = + σ

d r a t dt dwln ˜( )( )[ ] = −{ } +σ σ2 2

d r
dr
r

dtln( )[ ] = − 1
2

2σ

dr a t rdt rdw= ( ) +˜ σ
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3A description of this model appeared in a Salomon Brothers publication in 1987.
It is not to be inferred that this model is presently in use by any particular entity.



rate itself. Adapting the tree for the Ho-Lee model accordingly easily gives
the tree for the first three dates:

To express this tree in rate, as opposed to the natural logarithm of the rate,
exponentiate each node:

This tree shows that the perturbations to the short rate in a lognor-
mal model are multiplicative as opposed to the additive perturbations in
normal models. This observation, in turn, reveals why the short rate in
this model cannot become negative. Since ex is positive for any value of
x, so long as r0 is positive every node of the lognormal tree produces a
positive rate.

The tree also reveals why volatility in a lognormal model is expressed
as a percentage of the rate. Recall the mathematical fact that, for small val-
ues of x,

(12.11)e xx ≈ +1
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Setting a1=0 and dt=1, for example, the top node of date 1 may be approx-
imated as

(12.12)

Volatility is clearly a percentage of the rate in equation (12.12). If, for ex-
ample, σ=12.5%, then the short rate in the up state is 12.5% above the ini-
tial short rate.

As in the Ho-Lee model, the constants that determine the drift (i.e., a1

and a2) may be used to match market bond prices.

A LOGNORMAL MODEL WITH MEAN REVERSION: 
THE BLACK-KARASINSKI MODEL

The Vasicek model, a normal model with mean reversion, was the last
model presented in Chapter 11. The last model presented in this chapter is
a lognormal model with mean reversion called the Black-Karasinski model.
The model allows the mean reverting parameter, the central tendency of
the short rate, and volatility to depend on time, firmly placing the model in
the arbitrage-free class. A user may, of course, use or remove as much time
dependence as desired.

The dynamics of the model are written as

(12.13)

or, equivalently,4 as

(12.14)

In words, equation (12.14) says that the natural logarithm of the short rate
is normally distributed. It reverts to lnθ(t) at a speed of k(t) with a volatil-
ity of σ(t). Viewed another way, the natural logarithm of the short rate fol-
lows a time-dependent version of the Vasicek model.

d r k t t r dt t dtln ln ln[ ] = ( ) ( ) −( ) + ( )θ σ

dr k t t r rdt t rdt= ( ) ( ) −( ) + ( )ln ˜ lnθ σ

r e r0 0 1σ σ≈ +( )
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4Note that the drift function has been redefined from (12.13) to (12.14), analogous
to the drift transformation from (12.7) to (12.10).



As in the previous section, the corresponding tree may be written in
terms of the rate or the natural logarithm of the rate. Choosing the former,
the process over the first date is

The variable r1 is introduced for readability. The natural logarithms of the
rates in the up and down states are

(12.15)

and

(12.16)

respectively. It follows that the step down from the up state requires a rate
of

(12.17)

while the step up from the down state requires a rate of

(12.18)

A little algebra shows that the tree recombines only if

(12.19)

Imposing the restriction (12.19) would require that the mean reversion
speed be completely determined by the time-dependent volatility function.
But these parts of a term structure model serve two distinct purposes.
Chapter 11 showed that the mean reversion function controls the term
structure of volatility, that is, the current volatility of rates of different

k
dt

2
1 2

1
( ) =

( ) − ( )
( )

σ σ

σ

r e e
dt k r dt dt dt

1

1 2 2 1 21− ( ) ( ) ( )− − ( ){ }





+ ( )σ θ σ σln ln

r e e
dt k r dt dt dt

1

1 2 2 1 21σ θ σ σ( ) ( ) ( )− + ( ){ }





− ( )ln ln

lnr dt1 1− ( )σ

lnr dt1 1+ ( )σ

r e r e

r

r e r e

k r dt dt dt

k r dt dt dt

0

1 1 1

1

1

1
2

0
1

2

0

1 1 1

1

1

0

0

( ) ( )−( ) + ( ) ( )

( ) ( )−( ) − ( ) − ( )

≡

≡

ln ln

ln ln

θ σ σ

θ σ σ

←

←

254 THE ART OF TERM STRUCTURE MODELS: VOLATILITY AND DISTRIBUTION



terms. The first section of this chapter discusses how time-dependent
volatility controls the future volatility of the short-term rate, that is, the
prices of options that expire at different times. To create a model flexible
enough to control mean reversion and time-dependent volatility separately,
Black and Karasinski had to construct a recombining tree without impos-
ing (12.19). To do so they allow the time step, dt, to change over time.

Rewriting equations (12.17) and (12.18) with the time steps labeled
dt1 and dt2 gives the following values for the up-down and down-up rates:

(12.20)

(12.21)

A little algebra now shows that the tree recombines if

(12.22)

The length of the first time step can be set arbitrarily. The length of the sec-
ond time step is set to satisfy (12.22), allowing the user freedom in choos-
ing the mean reversion and volatility functions independently.

SELECTED LIST OF ONE-FACTOR TERM 
STRUCTURE MODELS

Several models, some discussed in the text and others not, are listed to-
gether in this section for easy reference. For a more detailed discussion
of individual models see Brigo and Mercurio (2001), Chan, Karolyi,
Longstaff, and Sanders (1992), Hull (2000), Rebonato (1996), and Va-
sicek (1977).

Normal Models
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Hull and White:

Vasicek:

Lognormal Models

Black-Derman-Toy5:

Black-Karasinski:

Dothan/Rendleman and Bartter:

Original Salomon Brothers:

Other Distributions

Chan, Karolyi, Longstaff, and Sanders:

dr k r dt r dw= −( ) +θ σ γ

dr a t rdt rdw= ( ) + σ

dr ardt rdw= + σ

dr k t t r rdt t rdw= ( ) ( ) −( ) + ( )ln lnθ σ

dr
d t

dt
t r rdt t rdw= −

( )[ ] ( ) −( ) + ( )ln
ln ln

σ
θ σ

dr k r dt dw= −( ) +θ σ

dr k t r dt t dw= ( ) −( ) + ( )θ σ
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5Note that the speed of mean reversion depends entirely on the volatility function.
The Black-Karasinski model avoids this by allowing the length of the time step to
change.



Courtadon:

Cox-Ingersoll-Ross:

APPENDIX 12A
CLOSED-FORM SOLUTIONS FOR SPOT RATES

This appendix lists formulas for spot rates in various models mentioned in
Chapters 11 and 12. These allow one to understand and experiment with
the relationships between the parameters of a model and the resulting term
structure. The spot rates of term T, r̂ (T), are continuously compounded
rates. The discount factors of term T are, therefore, given by d(t)=e–r̂(T )T.

Model 1

(12.23)

Model 2

(12.24)

Vasicek

(12.25)

Model 3 with �(t)=�
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Cox-Ingersoll-Ross

Let P(T) be the price of a zero coupon bond maturing at time T. In the CIR
model,

(12.27)

where

(12.28)

(12.29)

and

(12.30)

The spot rate then, by definition, is
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CHAPTER 13
Multi-Factor Term
Structure Models

The models of Chapters 9 through 12 assume that changes in the entire
term structure of interest rates can be explained by changes in a single

rate. The models differ in how that single rate impacts the term structure,
whether through a parallel shift or through a shorter-lived shock, but in all
of the models, rates of all terms are perfectly correlated. According to these
models, knowing the change in any rate is sufficient to predict perfectly the
change in any other rate.

For some purposes a one-factor analysis might be appropriate. Corpo-
rations planning to issue long-term debt, for example, might not find it
worthwhile to study how the two-year rate moves relative to the 30-year
rate. But for fixed income professionals exposed to the risk of the term
structure reshaping, one-factor models usually prove inadequate.

The first section of this chapter motivates the need for multi-factor
models through an empirical analysis of the behavior of the swap curve.1

As an introduction to multi-factor models, the next sections present a two-
factor model, its properties, and its tree implementation. The concluding
section briefly surveys other two-factor and multi-factor approaches.

MOTIVATION FROM PRINCIPAL COMPONENTS

Applied to a term structure of interest rates, principal components are a
mathematical expression of typical changes in term structure shape as ex-

1Interest rate swaps are discussed in Chapter 18. For now the reader should think
of swaps as fixed coupon bonds selling at par.



tracted from data on changes in rates. A full explanation of the technique
is beyond the scope of this text,2 but much can be learned by studying the
results of such an analysis. Figure 13.1 graphs the first three principal com-
ponents of term structure changes using data on the three-month London
Interbank Offer Rate (LIBOR)3 and on two-, five-, 10-, and 30-year U.S.
dollar swap rates from the early 1990s through 2001.

The first component is, by industry convention, labeled parallel. The
interpretation of this component is as follows. When par yields move ap-
proximately in parallel, the three-month rate rises by .9 basis points, the
two-year rate by 9.6 basis points, the five-year rate by 10.4 basis points,
the 10-year rate by 10 basis points, and the 30-year rate by 8.1 basis
points. Furthermore, principal component analysis reveals that this first
component explains about 85.6% of the total variance of term structure
changes.

The magnitude and sign of all the principal components are arbitrary.
For Figure 13.1 the first component is scaled so that the 10-year rate in-
creases by 10 basis points. The figure could just as well have been drawn
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2For a detailed, applied treatment, see Baygun, Showers, and Cherpelis (2000).
3See Chapter 17.

FIGURE 13.1 The First Three Principal Components from Changes in U.S. Dollar
Swap Rates
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with the 10-year rate decreasing by one basis point. The only information
to be extracted from the figure is the shape of the components (i.e., how a
change in each component affects par rates of different terms).

The first component is not exactly a parallel shift, but it is close
enough, particularly if the three-month point is ignored, to justify the con-
vention of calling the first component a parallel shift. Furthermore, this
empirical analysis supports the contention that a one-factor parallel shift
model might be perfectly suitable for some purposes: The first component
is pretty close to parallel, and it explains 85.6% of the variance of term
structure changes. The empirical analysis also supports the contention that
a one-factor mean-reverting model, with its downward-sloping factor
structure (see Figure 11.9), would be even better at capturing the 85.6% of
the variance described by the first component.

The shape of the first principal component is very much related to the
humped term structure of volatility mentioned in Chapter 11. Since this
first component explains most of the variation in term structure changes,
the overall term structure of volatility is likely to have a similar shape.
And, indeed, this is the case. Using the same data sample, the annualized
basis point volatilities4 of the rates are 55.9 for the three-month rate, 94.2
for the two-year rate, 97.4 for the five-year rate, 94.5 for the 10-year rate,
and 81.3 for the 30-year rate.

The second component is usually called slope and accounts for about
8.7% of the total variance of term structure changes. By construction, each
component is not correlated with any other. According to the data then, a
parallel shift shaped like the first component and a slope shift shaped like
the second component are not correlated. The second component does not
exactly describe the slope of the term structure as that word is commonly
used: This term structure shift is not a straight line from one term to the
next. Rather, this second component seems to be dominated by the move-
ment of the very short end of the curve relative to the longer terms. In Fig-
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4The annualized volatility is computed by multiplying the standard deviation of
daily changes by the square root of the number of days in a year. Since there is less
information and, therefore, less of a source of volatility on nonbusiness days, it is
probably a good idea to weight business days more than nonbusiness days when
annualizing volatility. A common convention is to use √260

—–
or about 16.12 as an

annualizing factor since there are approximately 260 business days in a year.



ure 13.1 this component is normalized so that the three-month rate in-
creases by 10 basis points.

The third component is typically called curvature and accounts for
about 4.5% of the total variance. Again, by construction, a shift of this
shape is not correlated with the other components. Curvature is not a bad
name for the third component. The described move is a bowing of the two-
and five-year rates relative to a close-to-parallel move of the three-month
and 10-year rates. The 30-year rate moves in the opposite direction of the
bowing of the two- and five-year rates. In Figure 13.1 this component is
normalized so that the two-year rate decreases by 10 basis points.

In principal component analysis there are as many components as data
series, in this case five. The fourth and fifth components are omitted from
Figure 13.1 as they account for less than 1% each of the total variance.
Conversely, the focus is on the first three components that together con-
tribute 98.8% of the total variance.

The decision to focus exclusively on the first three components ex-
presses the following view: changes in the three-month and two-, five-, 10-,
and 30-year rates can be very well described by linear combinations of the
first three components. Linear combinations of the components are ob-
tained by scaling each component up or down and then adding them to-
gether. For example, a term structure move on a particular day might be
best described as one unit of the first component plus one-half unit of the
second component minus one-quarter unit of the third component.

These empirical results show that while one factor might be sufficient
for some purposes, fixed income professionals are likely to require mod-
els with more than one factor. More precisely, the percentage of total
variance explained by each factor may be considered when choosing the
number of factors. In addition, the shape of the principal components
provides some guidance with respect to desirable factor structures in
term structure models.

Before concluding this section it should be noted that principal compo-
nent analysis paints an overall picture of typical term structure movements.
While the analysis may be a good starting point for model building, it need
not accurately describe rate changes for any particular day or for any par-
ticular trade. First, the current economic environment might not resemble
that over which the principal components were derived. A period in which
the Federal Reserve is very active, for example, might produce very differ-
ent principal components than one over which the Fed is not active. (If par-
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ticularly relevant historical periods do exist, possibly including the very re-
cent past, then this problem might be at least partially avoided by estimat-
ing principal components over these relevant periods.) Second, shape
changes from one day to the next might differ considerably from a typical
move over a sample period. Third, idiosyncratic moves of particular bond
or swap rates (i.e., moves due to non-interest-rate-related factors) cannot
typically be captured by principal component analysis. Since these moves
are idiosyncratic, an analysis of average behavior discards them as noise.

A TWO-FACTOR MODEL

To balance usefulness, tractability, pedagogical value, and industry prac-
tice, a model with two normally distributed mean reverting factors is pre-
sented in this section. For convenience, the model will be called the V2 or
two-factor Vasicek model. Mathematically, the risk-neutral dynamics of
the model are written as

(13.1)

(13.2)

(13.3)

(13.4)

Equations (13.1) and (13.2) are recognizable from the discussions in
Chapters 11 and 12 as mean reverting processes. But here x and y are fac-
tors; neither is an interest rate by itself. As stated in equation (13.4), the
short-term rate in the model is the sum of these two factors.

For the model to have explanatory power above and beyond that of
the Vasicek model, the two factors have to be materially different from one
another. Typically the first factor is assigned a relatively low mean rever-
sion speed, making it a long-lived factor, and the second factor is assigned
a relatively high mean reversion speed, making it a short-lived factor. This
framework is motivated by intuition about different kinds of economic
news, outlined in Chapter 11. Furthermore, ignoring the very short end for
a moment, the first principal component has the appearance of a long-lived
factor, while the second has the appearance of a short-lived factor.

r x y= +

E dxdy dtx y[ ] = ρσ σ

dy k y dt dwy y y y= −( ) +θ σ

dx k x dt dwx x x x= −( ) +θ σ
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As posited in Chapter 11, the random variables dwx and dwy each
have a normal distribution with a mean of zero and a standard deviation
of √dt

—
. Now that there are two such random variables in the model, the

correlation between them has to be specified. Equation (13.3) says that the
effect of this correlation is to make the covariance between the change in x
and the change in y equal to ρσxσydt.5 Since correlation equals covariance
divided by the product of standard deviations, (13.3) implies that the cor-
relation between the factor changes is ρ.

As discussed in Chapter 11, the economic reasonableness of a model
may be checked by determining whether drift can sensibly be broken down
into expectations and risk premium. Somewhat arbitrarily assigning the
entire risk premium to the long-lived factor, θx may be divided along the
lines of Chapter 11 as follows:

(13.5)

For the purposes of this chapter, the following parameter values will be
used:

(13.6)

Furthermore, for building trees, dt=1/12.
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In words, this parameterization may be described as follows. Changes
in the short-term interest rate are generated by the sum of a long-lived fac-
tor, with a half-life of about 25 years, and a short-lived factor, with a half-
life of about four months. The long factor has a current value of 5.413%
and is expected to rise gradually to 6.50%. The short-term interest rate is
well below 5.413%, however, because the short factor has a value of about
–87 basis points. This factor is expected to rise relatively rapidly to zero.
With respect to pricing, there is a risk premium of about 17 basis points
per year on the long factor that corresponds to a Sharpe ratio of 17/134 or
12.7%. The role of the volatility and correlation values requires a more de-
tailed treatment and is discussed later in the chapter.

TREE IMPLEMENTATION

The first step in constructing the two-dimensional tree is to construct the
one-dimensional tree for each factor. The method is explained in Chapter
11, in the context of the Vasicek model. Therefore, only the results are pre-
sented here. For the x factor,

And, for the y factor,

Assume for the moment that the drift of both factors is zero. In that
case the following two-dimensional tree or grid depicts the process from
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dates 0 to 2. The starting point of the process is the center, (x0, y0). On date
1 there are four possible outcomes since each of the two factors might rise
or fall. These outcomes are enclosed in square brackets. On date 2 each of
the two factors might rise or fall again. This process leads to one of eight
new states of the world, enclosed in curly brackets, or a return to the origi-
nal state in the center.

To avoid clutter, the probabilities of moving from one state of the world to
another are not shown in this diagram but will, of course, appear in the
discussion to follow.

The diagram assumes that the factors have zero drift. Since the factors
do drift, the diagram must be adjusted in the following sense. An up move
followed by a down move does not return to the original factor value but to
that original value plus two dates of drift. So, for example, a return on date
2 to (x0, y0) should be thought of as a return of each factor to its center node
as of date 2 rather than a return of each factor to its original value.

As mentioned, over the first date the two-dimensional tree has four
possible outcomes. Using the values from the one-factor trees, these four
outcomes are enumerated as follows, with the variables denoting their
probabilities of occurrence:

The unknown probabilities must satisfy the following conditions.
First, the tree for x has the probability of moving up to 5.817% equal to
1/2. Therefore, the probability of moving to either the “uu” or “ud” states
of the two-dimensional tree must also be 1/2. Mathematically,
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(13.7)

Second, since the probability of y moving up to –.401% is 1/2, the probabil-
ity of moving to either the “uu” or “du” states must also be 1/2:

(13.8)

Third, the sum of the four probabilities must equal 1:

(13.9)

Fourth, the probabilities must impose the covariance condition (13.3). To
calculate the left-hand side of (13.3), compute the product of the change in
x and the change in y for each of the four possible outcomes, multiply each
product by its probability of occurrence, and then sum across outcomes.
The covariance condition, therefore, is

(13.10)

Despite its appearance, the system of equations (13.7) through (13.10)
is quite easy to solve:

(13.11)

Having solved for the probabilities, the final step is to sum the two factors
in each node to obtain the short-term interest rate. The following two-di-
mensional tree summarizes the process from date 0 to date 1:
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Note that the high negative correlation between the factors manifests itself
as a very low probability that both factors rise and a very low probability
that both factors fall.

To complete the two-dimensional tree from date 1 to date 2, a set of
four probabilities must be computed from each of the four states of the
world on date 1, that is, from each state enclosed in square brackets in the
original diagram. Solving for these probabilities is done the same way as
solving for the probabilities from date 0 to date 1. The solution for the
transition from the four states on date 1 to the nine possible states on date
2 is as follows:

The tree-building procedure described here does not guarantee that the
probabilities will always be between 0 and 1. In this example, in fact, a
strict application of the method does give some slightly negative probabili-
ties for the “uu” and “dd” states. The problem has been patched here by
reducing the correlation slightly, from –.85 to about –.83. An alternative
solution is to reduce the step size until all the probabilities are in the allow-
able range.
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PROPERTIES OF THE TWO-FACTOR MODEL

Figure 13.2 graphs the rate curves generated by the V2 model along with
the swap rate data on February 16, 2001. Apart from the three-month
rate, the model is flexible enough to fit the shape of the term structure. The
long-lived factor’s true process and the risk premium give enough flexibility
to capture the intermediate terms and long end of the curves while the
short-lived factor process gives enough flexibility to capture the shorter to
intermediate terms.

As mentioned in Part One, the shape of the very short end of the curve
in early 2001 was dictated by specific expectations about how the Fed
would lower short-term rates and then, as the economy regained strength,
how it would be forced to raise short-term rates. The model of this chap-
ter clearly does not have enough flexibility to capture these detailed short-
end views. If a particular application requires a model to reflect the very
short end accurately, several solutions are possible. One, allow the model
to miss the very long end of the curve and use all of the model’s flexibility
to capture the very short end to 10 years. Two, add a time-dependent drift
to capture the detailed short-end rate expectations that prevail at the
time. After a relatively short time this drift function should turn into the
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FIGURE 13.2 Rate Curves from the Two-Factor Model and Selected Market
Swap Rates, February 16, 2001
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constant drift parameters of the model. This compromise between time-
dependent and constant drifts is consistent with the view that the market
can have detailed expectations about rates for only the very near future.
Three, an additional factor may be added to capture the very short end
more accurately.

Figure 13.3 graphs the decomposition of the par rate curve implied by
the model into expectations, risk premium, and convexity. Graphs of this
sort are useful to check the reasonableness of the economic assumptions
underlying a term structure model.

One-factor models without time-dependent parameters cannot gener-
ate a humped term structure of volatility. Time-dependent parameters can
generate such shapes at the cost of making detailed assumptions about the
behavior of mean reversion and volatility in the distant future. By contrast,
the two-factor model of this section generates a humped term structure of
volatility that closely corresponds to market data through the negative cor-
relation of the short- and long-lived factors. Figure 13.4 graphs the term
structure of volatility implied by the model of this chapter along with mar-
ket data of implied par rate volatility.

The negative correlation between the factors causes the humped shape
in the following manner. Negative correlation means that shocks to the
long-lived factor (or long-factor) are partially offset by shocks of the oppo-
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FIGURE 13.3 Expectations, Convexity, and Risk Premium Estimates in the Two-
Factor Model, February 16, 2001
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site sign to the short-lived factor (or short-factor). This behavior dampens
the volatility of short-term rates. But, since the long-factor is, by definition,
longer-lived than the short-factor, the dampening effect of the opposing
short-factor shocks has little impact on longer-term rates. In other words,
the long-factor shock impacts rates of all terms while the offsetting short-
factor shock primarily affects shorter-term rates.

Negative correlation may seem like a mathematical trick to create the
desired term structure of volatility, but there is an economic rationale be-
hind the assumption. Particularly low short-end rate volatility is a result of
central banks pegging the short-term rate for policy reasons. As a result,
economic news or shocks affect short-term rates only after policy makers
allow the shocks to pass into the short-term rate. In this light, part of the
shock to the short-factor may be viewed as the Federal Reserve’s canceling
out the shock to the long-factor (i.e., pegging the short-term rate). In the
model, this part of the shock to the short-factor must be very negatively
correlated with the long-factor. The rest of the shock to the short-factor,
however, may reflect short-lived economic news and need not be correlated
with the long-factor.

Figure 13.5 graphs the factor structure of the two-factor model. Each
line shows the effect of a 10 basis point increase in the value of a factor on
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FIGURE 13.4 Par Rate Volatility from the Two-Factor Model and Selected
Implied Volatilities, February 16, 2001
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par rates of different terms. Both factors are clearly characterized by mean
reversion, and the x factor is clearly more long-lived than the y factor. Fig-
ure 13.5 is slightly misleading because the factors are negatively correlated.
The graph visually implies that the factors move independently, whereas, in
the model, a shift of one factor is likely to accompany an opposite shift of
the other factor. Figure 13.6 graphs a combination shift: a shift down of
the y factor combined with the expected accompanying shift up of the x
factor.6 The combination shift has the same shape as the first principal
component shown in Figure 13.1. The negative correlation allowing the
model to capture the observed term structure of volatility also generates a
shift resembling the primary principal component.

A major weakness of the parameterization of the two-factor model
presented in this chapter is that the correlation of any pair of the two-, five-,
10-, and 30-year rates is about 99%. Because the half-life of the y factor is
assumed to be only four months, the model does act like a two-factor
model for relatively short-term rates. In fact, the correlation of the three-
month rate with each of these longer rates is between 79% and 86%. But
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6For a given dy, the expected dx is (ρσx/σy)dy.

FIGURE 13.5 Sensitivity of Spot Rates to a 10 Basis Point Change in the Factors,
the Two-Factor Model
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since shocks to the y factor dissipate very rapidly (see Figure 13.5), they
contribute very little to the total volatility of longer-term rates. As a result,
changes in longer-term rates are driven almost exclusively by changes in
the long-lived factor. This in turn implies that these longer-term rates are
very highly correlated or, equivalently, that with respect to these rates the
model is essentially a one-factor model.

The parameters given in (13.6) might be adjusted in several ways to
lower the correlation between pairs of the short-, intermediate-, and long-
term rates. Possibilities include increasing the half-life of the short-lived
factor and increasing the volatility of the short-lived factor relative to that
of the long-term factor. The user of the model must, of course, check the
impact of these changes on other model properties and determine whether
the new parameters are more or less suitable for the purpose at hand.

While parameterizations of two-factor models can be adjusted to re-
duce the correlation between particular rates, these models cannot typi-
cally achieve levels of correlation across the curve that are as low as
implied by market data. This is not very surprising because only two ran-
dom variables generate changes for the entire yield curve. If the application
at hand depends crucially on the correlation structure, models with a
greater number of factors might be required.
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FIGURE 13.6 A Combination of x- and y-Factor Shifts
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OTHER TWO-FACTOR AND MULTI-FACTOR 
MODELING APPROACHES

The building blocks of drift and volatility described in Chapters 11 and 12
may be assembled in many permutations to model individual factors. In
full generality, the drift and volatility of each factor may depend on the
level of that factor as well as on the level of the other factors. Then, setting
the short-term rate equal to the sum of the factors completes the model
specification. Since the possibilities are limitless, many such models have
been suggested. The most appropriate choice depends, as usual, on the
needs of the application.

Some two- and multi-factor models have particularly interesting motiva-
tions. Longstaff and Schwartz (1992) suggested a model in which the factors
are the short-term rate and the volatility of the short-term rate. Balduzzi, Das,
Foresi, and Sundaram (2000) propose models in which the factors are the
short-term rate and the central tendency of the short-term rate. While models
with these different emphases can sometimes be recast into factor models of
more recognizable form, they are valuable for connecting the factors and pa-
rameters of the model with economic quantities. Since all models are simplifi-
cations of reality, the more intuition that can be used to parameterize a model
and to check its reasonableness, the more useful the model is likely to be.

Some modeling approaches do not begin and end with the short-term
rate process. Duffie and Kan (1996), for example, show how to use yields
as factors. Rather than posit a multi-factor model for short rates and then
find a parameterization that generates desired yield behavior, Duffie and
Kan (1996) allow users to make assumptions about yield behavior directly.
The cost of the approach is that working out the arbitrage pricing of other
contingent claims is not so simple as having the risk-neutral short-rate
process immediately available.

Some models with relatively many factors are gaining popularity as a
way to capture the true correlation between rates across the term structure.
String models, for example, directly model the evolution of many forward
rates, including their volatility and correlation structure. Along with the
benefits of many factors, these models are typically much more flexible
than the models described in this Part with respect to matching market
prices of traded options. See, for example, Longstaff, Santa-Clara, and
Schwartz (2001). Recent market models, like Brace, Gatarek, and Musiela
(1997), model forward rates in a way that allows many options to be priced
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in an internally consistent manner and, at the same time, in a manner con-
sistent with simpler and popular models used to price individual options.

Models need enough flexibility so that they can be calibrated to cap-
ture the essence of market behavior. At the same time, models need enough
structure to be useful for valuation and hedging. Model 1, a one-factor
model without drift, says that almost all bonds and swaps are vastly mis-
priced and that any security can be perfectly hedged with one other secu-
rity by calculating the impact of parallel shifts. At the other extreme, a
model with very many factors used to fit all observed rates and volatilities
says that all securities are fairly priced. In this extreme case, since each ob-
served rate is a factor the only true hedge of a bond or swap position is to
sell the position. Also, hedging derivatives in this extreme framework
might require simultaneous purchases and sales of very many different se-
curities. In summary, the most useful models reflect users’ views about the
future behavior of the term structure and about the set of security prices
that fairly reflect that future behavior. An appropriate model matches its
complexity and the complexity of its hedging strategies to the needs of the
application at hand. To the extent the user is wrong in these judgements
the model provides less than optimal results, but therein lies the challenge.

APPENDIX 13A
CLOSED-FORM SOLUTION FOR SPOT RATES 
IN THE TWO-FACTOR MODEL

A formula for spot rates from the two-factor model described in this chap-
ter may be used to understand the relationships between model parameters
and the shape of the term structure. The spot rate of term T, r̂(T), implied
by the equations (13.1) through (13.4), is given by the following expression:

(13.12)
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CHAPTER 14
Trading with Term
Structure Models

This chapter describes how term structure models may be used to identify
potentially rich and cheap securities and how they may be used to con-

struct trades to take advantage of perceived mispricings. While it is impor-
tant to understand the relationships among a model, measures of relative
value, factor hedges, and realized profit or loss, these matters make up only
a small part of a successful trading or investment operation. Other crucial
elements of success have little to do with the particular features of a model.
Experience with models in general signals when a model’s results are likely
to be reliable and when they are not. Knowledge of supply and demand
forces for particular securities indicates when these securities will converge
to model value and when they will stay cheap or rich for a long time. Dis-
cipline to bear reasonable amounts of risk given the extent of the mispric-
ing and the risks involved protects a trading or investment account from
disaster in the event of adverse surprises. In short, despite the scientific
look of this chapter, term structure models are not black boxes that offer
trading or investment success.

After reviewing the CMT swap example introduced in Chapter 9 and
used in this chapter, the text discusses a popular measure of relative value,
namely option-adjusted spread. The presentation then relates the profit
and loss from a trade to various model quantities and this relative value
measure. A trading case study follows to illustrate concepts and to describe
by example how term structure models are used to derive hedge ratios. The
final sections of this chapter present certain debates regarding the proper
use of term structure models in trading contexts.



EXAMPLE REVISITED: PRICING A CMT SWAP

For expositional purposes this chapter continues with the example of a
stylized constant maturity Treasury (CMT) swap introduced in Chapter 9.
To review, the risk-neutral tree for the six-month rate is:

Under this tree the cash flows of $1,000,000 of the stylized CMT swap are

(As in previous chapters, dollar signs are omitted from trees for readabil-
ity.) Then, discounting the cash flows using the risk-neutral rates, the tree
for the model values of the CMT swap is

OPTION-ADJUSTED SPREAD

Option-adjusted spread (OAS) is a measure of the market price of a secu-
rity relative to its model value. Say that the market price of the CMT swap
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is $3,613.25, $2.80 less than the model price. The OAS of the CMT swap
is the spread that when added to all the short rates in the risk-neutral tree
for discounting purposes produces a model price equal to the market price.
In this example, the OAS is 10 basis points. To see this, note that the per-
turbed rate tree for discounting purposes is

Since this tree is for discounting only, the cash flows stay the same. The
new valuation tree, using the perturbed rate tree for discounting, is

The resulting value is the market price of $3,613.25. Hence the OAS of the
CMT swap is 10 basis points, or the CMT swap is 10 basis points cheap.
Were the OAS negative, the CMT swap would be rich.

The sensitivity of model price to a one-basis point decrease in OAS will
be called DVOAS. In this example, DVOAS of the CMT swap equals
about 28 cents. This can be calculated analogously to DV01 (see Chapter
5): Set the OAS first to one and then to minus one basis point and divide
the resulting price change by two. In this example, DVOAS is not particu-
larly sensitive to the level of OAS, so the DVOAS approximately equals the
difference between the model and market price, or $2.80, divided by the
OAS of 10 basis points.

Discussion of OAS as a measure of value continues in the next section.
This section closes with a note on the name option-adjusted spread. This
term arose because the concept of OAS was first developed to analyze the
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embedded call options in mortgage-backed securities and callable bonds.
The name is now a misnomer, however, because OAS can be and is calcu-
lated for securities that, like the CMT swap, have no option features. Nev-
ertheless, because the term is so widely used, it is used here as well.

PROFIT AND LOSS (P&L) ATTRIBUTION

Term structure models are important not only for valuation and hedging
but also for analyzing the performance of trades and trading strategies. In
particular, it is good practice to compare the actual performance of a trade
with its performance predicted by the model being used for valuation and
hedging. Aside from occasionally revealing errors in reported market
prices, calculated P&L, or even hedge ratios, this comparison allows an in-
vestment or trading operation to assess its valuation and hedging frame-
work on a regular basis.

P&L attribution is the process by which total realized P&L is broken
down and separated into meaningful components. The starting point of the
process is the price function of any security. In the case of a model with one
factor, x, the price of a security may be denoted P(x, t, OAS). In fact, by
the definition of OAS, P(x, t, OAS) is identical to the market price of the
security. Using a first-order Taylor approximation, the change in the price
of the security is

(14.1)

Dividing by the price and taking expectations,

(14.2)

Since OAS is assumed to be a constant spread over the life of the security,
equation (14.2) assumes that the expected change in the OAS is zero.

As discussed in Chapter 10, if expectations are taken with respect to
the risk-neutral process, then, for any security priced according to the
model,
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(Taking expected values with respect to the true probabilities would add a
risk premium term to the right-hand side of the equation.) But equation
(14.3) does not apply to securities that are not priced according to the
model, that is, to securities with an OAS that is not equal to zero. For these
securities, by definition, the cash flows are discounted not at the short-term
rate but at the short-term rate plus the OAS. Equivalently, the expected re-
turn under the risk-neutral probabilities is not the short-term rate but the
short-term rate plus the OAS. Hence, the more general form of (14.3) is

(14.4)

Finally, substituting (14.2) and (14.4) into (14.1) and rearranging
terms gives a breakdown of the return of a security into its component
parts:

(14.5)

Defining DV01x to be the derivative of the price with respect to the factor
and using the definition of DVOAS, (14.5) may be written to give the com-
ponents of the change in price (i.e., of the P&L):

(14.6)

In words, the return of a security or its P&L may be divided into a
component due to the passage of time, a component due to changes in the
factor, and a component due to the change in the OAS. These components
are often called carry, factor exposure, and convergence. The term conver-
gence is used since, for models with predictive power, the OAS tends to
zero or, equivalently, the security price tends toward its fair value accord-
ing to the model.

The two decompositions (14.5) and (14.6) highlight the usefulness of
OAS as a measure of the value of a security with respect to a particular
model. According to the model, a long position in a cheap security earns
superior returns in two ways. First, it earns the OAS over time intervals in
which the security does not converge to its fair value. Second, it earns the
DVOAS times the extent of any convergence.
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To further highlight the role of OAS, consider the implications of
equation (14.6) for a hedged position financed with short-term borrowing.
A hedged position means that the portfolio has no factor risk (i.e., ∂P/∂x=0).
A position financed with short-term borrowing means that the value of the
position is borrowed at the short-term rate at a cost rPdt. Substituting the
hedging condition into (14.6) and subtracting the financing cost, the P&L
of a financed and hedged position is1

(14.7)

In words, the P&L is simply the carry due to OAS plus any profits from
convergence to fair value.

One subtlety in the analysis of this section needs to be addressed. Writ-
ing the derivative with respect to the factor in equations (14.5) and (14.6)
more fully,

(14.8)

In words, this derivative is the change in the market price of the security
for a change in the factor assuming the current OAS. When hedging, how-
ever, it might be better to hedge changes in the model price. This would
mean using the derivative

(14.9)

instead of (14.8) for hedging purposes. The pros and cons of hedging to
the market and hedging to the model will be discussed in the last section
of this chapter.
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1This development assumes that the short-term rate in the market (i.e., the rate at
which borrowing is effected) equals the short-term rate in the model (i.e., the rate
in the equations of the text). If these two rates are not equal, as may very well be
the case for equilibrium models, equation (14.7) would require an additional term
to account for the difference.



P&L ATTRIBUTIONS FOR A POSITION 
IN THE CMT SWAP

To illustrate the results of the previous section, return to a $1,000,000 face
amount position in the CMT swap. To begin, verify that if the CMT swap
trades at an OAS of 10 basis points when the short rate is 5%, it earns an
expected return under the risk-neutral probabilities of 5.10%; that is, ver-
ify equation (14.4). Using the risk-neutral probabilities and the OAS-ad-
justed tree of CMT values, the annualized expected return of the CMT
swap is

(14.10)

Next, verify that a hedged position in the CMT swap earns 5.10%
without any risk. This is a much stronger statement than (14.10), which
says that the expected return of the CMT swap is 5.10%. Note that the re-
turn of the CMT swap in the up state is

(14.11)

while the return in the down state is

(14.12)

While an expected return of 5.10% is more attractive than the six-month
rate of 5%, few investors would be willing to take an outright long posi-
tion in the CMT swap that may return 113.1% or –433.4%. Many
traders, however, would take a hedged position in the CMT swap that
earns 5.10% for certain. (It should not be forgotten, of course, that the
CMT swap exists because some market participants find that its purchase
conveniently reduces the existing interest risk of their portfolios.)

A hedged position may be constructed using the techniques of Chapter
9. First, the tree for $1,000 face of a 1.5-year zero constructed in Chapter
9 is repeated here:
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Second, the tree for $1,000 face of a six-month zero is simply

Third, to solve for the portfolio of six-month and 1.5-year zeros that
replicates the CMT swap trading at an OAS of 10 basis points, define F.5

and F1.5 as the required face amounts. Then write the two conditions of
replication:

(14.13)

Solving these equations, F.5=$1,012,984.30 and F1.5=–$1,064,257.85. Note
that the replicating portfolio is short 1.5-year zeros because the CMT swap
gains value when rates rise and loses value when rates fall.

Fourth, consider the following hedged strategy. Buy $1,000,000 face
of the CMT swap. Hedge the interest rate exposure by invoking the result
of the previous paragraph and buying $1,064,257.85 face of the 1.5-year
zeros for $1,064,257.85×.92521 or $984,662.35. Finally, borrow the cost
of the hedging securities for six months at the market rate of 5%.2 Since
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2Equivalently, sell six-month zeros to raise the necessary funds.



the cost of the hedging securities has been borrowed, the outlay for this
portfolio on date 0 is just the price of the CMT swap or $3,613.25. The
payoff of the hedged portfolio in the up state of date 1 is3

(14.14)

while the payoff in the down state is

(14.15)

The values in the up and down states are, of course, the same since
$1,064,257.85 face of 1.5-year zeros, by construction, hedges the interest
rate risk of the CMT swap.4 Since these values are the same, the certain re-
turn on the hedge portfolio is

(14.16)

In conclusion, the hedged portfolio does earn the short-term rate plus the
OAS with certainty.

As a final illustration of the results of the previous section, verify that a
hedged and financed position in the CMT swap obeys equation (14.7) so
that it earns a P&L equal to .001×$3,613.25×1/2 or $1.81. The position de-
scribed in the previous paragraphs is a hedged position. To finance the po-
sition, borrow the outlay of $3,613.25 at 5%. Subtracting the repayment
of the loan from the date 1 payoff of $3,705.39 leaves

(14.17)

So a hedged and financed position does obey equation (14.7).

$ , . $ , . . $ .3 705 39 3 613 25 1 05 2 1 81− × +( ) =

2
3 705 39
3 613 25

1 5 10
$ , .
$ , .

. %−








 =

− + × − +( ) =$ , . $ , , . . $ , . . $ , .4 216 03 1 064 257 85 95578 984 662 35 1 05 2 3 705 39

$ , . $ , , . . $ , . . $ , .5 656 13 1 064 257 85 94651 984 662 35 1 05 2 3 705 39+ × − +( ) =

P&L Attributions for a Position in the CMT Swap 285

3Given the large face amounts involved, to replicate this result the 1.5-year zero
coupon prices must be taken to more places. The value in the up state is .94650763
while the value in the down state is .95578372.
4With a time step of six months, a six-month zero has no interest rate risk. There-
fore, the quantity of six-month zeros in the replicating portfolio serves only to bor-
row or lend cash. The six-month zeros play no role in hedging interest rate risk.



286 TRADING WITH TERM STRUCTURE MODELS

TRADING CASE STUDY: Trading 2s-5s-10s in Swaps
with a Two-Factor Model

This case study uses the V2 model of Chapter 13 to illustrate how a
term structure model might be used in a particular trade, namely a
butterfly in swaps.5

The V2 model, like any term structure model, has parameters and
factors. The parameters of this model are the coefficients of mean re-
version, the target levels of the factors, the risk premium, the volatil-
ity of the factors, and the correlation of the two factors. These are
parameters in the sense that the model assumes that these values are
constant. By contrast, the model assumes that the factors x and y
change constantly according to the assumed processes.

To be consistent with these model assumptions, only the factors
may be changed regularly by the user of the model. In this section, for
example, the values x0 and y0 are changed each day so that the two-
and 10-year rates in the model fit or match those in the market. In 
other words, the unobservable factors are inferred from market
prices. This does not mean that, in practice, the parameters of the
model should never be changed. If the financial markets change in a
way that makes the existing parameters stale (e.g., if the Federal Re-
serve becomes active after a period of dormancy or if the term struc-
ture of volatility reshapes), the parameters may have to be changed to
maintain reasonable model performance. Some practitioners take this
logic a step further and change parameters to fit market quantities on
a daily basis. The pros and cons of this practice are discussed in the
next section.

Figure 14.1 graphs the market and model swap rate curves from
two to 10 years on February 14, 2001, and May 15, 2001. Since the
factors are used each day to fit the two- and 10-year rates, these rates
are fair by construction. The figure shows that, according to the 

5Swaps are discussed in detail in Chapter 18. For the purposes of this chapter
the reader should think of swaps as fixed coupon par bonds. To “receive in” a
swap should, for now, be interpreted as buying a fixed coupon par bond and
to “pay in” a swap should, for now, be interpreted as selling a fixed coupon
par bond.
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model, the entire swap curve is essentially fair on February 14, 2001.
On May 15, 2001, however, intermediate market yields are low rela-
tive to the model, implying that intermediate market swap prices are
too high. Table 14.1 reports the OAS, in basis points, for each swap on
the two dates. A positive number means the market swap price is too
low (the swap is cheap), while a negative number means that the mar-
ket swap price is too high (the swap is rich). Table 14.1 repeats the
message of Figure 14.1: Intermediate swaps are rich. If the model is
correct, the OAS magnitudes on May 15, 2001, indicate the presence
of substantial trading opportunities. For example, the (yield-based)
DV01 of a five-year swap on May 15, 2001, was about 4.29 cents per
$100 face value. A trader capturing 8 basis points of OAS in the five-
year swap on $100,000,000 face amount would make $343,200.

Figure 14.1 and Table 14.1 highlight the effect of choosing to fit
the factors to the two- and 10-year rates. Since these rates are fair by
construction, the OAS of all other rates must be interpreted as values
relative to the two- and 10-year rates. The statement that the five-year
rate is 8.8 basis points rich really means that if a trader pays in the
five-year and hedges with the two- and 10-year, then the trader will

FIGURE 14.1 Market and Model Swap Rates on February 14, 2001 and
May 15, 2001
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earn 8.8 basis points. If, however, the hedge is long securities that are
not fair but rich or cheap, the trader will not earn those 8.8 basis
points. Consider, for example, paying in the five-year, receiving in
three-year swaps with an OAS of –8.6 basis points, and receiving in
nine-year swaps with an OAS of –1.6 basis points. Since the model 
predicts that long positions in these rich hedging securities will lose
money, the total position is expected to earn substantially less than
the 8.8 basis points of cheapness in the 5-year.

Before continuing with the case, it is worth examining the import
of the assumption that the two- and 10-year rates are fair. Say that the
correctly calibrated and fitted true model of the term structure shows
that the two- and 10-year rates are each four basis points rich and
that the five-year is 12.8 basis points rich. This means that the V2 is
wrong in the sense that a long position in the five-year earns an ex-
pected return of 12.8 basis points above its risk-adjusted fair return
rather than 8.8 basis points. The V2 model is not wrong, however,
with respect to the richness of the five-year relative to the two- and
10-year: Both V2 and the true model show the five-year as 8.8 basis
points rich relative to the two- and 10-year. Changing the example
slightly, however, shows the full risk of assuming that the two- and

TABLE 14.1 Option-Adjusted
Spread of Swap Rates on February
14, 2001, and May 15, 2001

OAS (bps)

Term 2/14/01 5/15/01

2 0.0 0.0
3 0.9 –8.6
4 1.7 –9.9
5 1.7 –8.8
6 1.5 –7.4
7 1.0 –5.7
8 0.7 –3.7
9 0.4 –1.6

10 0.0 0.0
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10-year rates are fair. Say the true model reveals that the two-year
rate is fair but that the 10-year rate is four basis points rich. In this
case the V2 model will be misleading. It concludes that there is noth-
ing to be gained by paying in the 10-year and receiving in the two-
year, while that trade is actually expected to earn four basis points.
Furthermore, the V2 model is likely to value intermediate swaps rela-
tive to the two- and 10-year differently from the true model. In short,
the choice of how to fit the model factors to market quantities can
have a significant impact on model performance.

Presented with the OAS results of the V2 model on May 15,
2001, a trader has to decide whether or not to believe the results and
whether or not to act upon them. Given the activity of the Federal Re-
serve at that time, a trader might feel that the fair level of the five-year
depends on the slope of the curve from three months to two years as
well as on the two- and 10-year rates. In other words, the trader
might feel that with an active Federal Reserve another factor is re-
quired for proper hedging. Alternatively the trader might feel that
mortgage-related accounts have needed and will continue to need to
pay in five-year swaps. In that case, the trader might postpone any
contemplated trade until the payers seem to be done or might execute
the trade in relatively small size. Similarly, the trader might feel
that the five-year sector is under pressure because other players have
losing positions in similar trades and are being forced by internal risk
controls to liquidate these positions. Once again, the trader might post-
pone a trade until the liquidation seems done or else trade in small size.

Assuming that the trader believes the model and fitting choices
adequate and the time ripe, the richness of the intermediate swaps
suggests several trades. If a trader thinks that the curve from two to
10 years will steepen, meaning that shorter swaps will outperform
longer swaps, a good trade is to receive in the two-year swap and pay
in the five-year swap. This picks up 8.8 basis points of relative value
in addition to any profit from having correctly predicted the steep-
ener. By contrast, receiving in the five-year swap and paying in a 10-
year swap also profits from a steepener but gives up 8.8 basis points
of relative value. If, on the other hand, the trader thinks that the curve
will flatten, meaning that longer swaps will outperform shorter swaps, 
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a good trade is to pay in the five-year and receive in the 10-year, again
picking up 8.8 basis points in relative value above any profit from the
expected flattening.

For the purposes of this case it is assumed that the trader has no
view on the curve and, therefore, wants to lock in the 8.8 basis point
richness of the five-year under any yield curve scenario. Since the
model being used is a two-factor model, a comprehensive hedge re-
quires two swaps to trade against the five-year. In theory, any two
swaps can serve this purpose: a one-year and a three-year, a two-year
and a 10-year, or a two-year and a 30-year. The first choice is a partic-
ularly bad idea. While the model does say that any two swaps can
perfectly hedge the interest rate risk of the five-year swap, there is no
reason to test the model that severely. A portfolio with a swap matur-
ing in less than five years and a swap maturing in more than five years
will probably be less exposed to model imperfections than portfolios
in which both swaps mature in either more or less than five years. The
choice of hedging with the two- and 30-year swaps often offers more
relative value than a narrower butterfly but is more subject to model
imperfections. A two-factor model is more likely to perform badly, for
example, in predicting relative movements of the two-, five-, and 30-
year rates than of the four-, five-, and six-year rates. As a compromise
among these various considerations, the trader chooses to hedge by
receiving in two- and 10-year swaps.

The next step is to find the specific portfolio of two- and 10-year
swaps that hedges the five-year swap. The exposure of this portfolio
to changes in the x factor must equal the exposure of the five-year to
changes in the x factor, and the exposure of this portfolio to changes
in the y factor must equal the exposure of the five-year to changes in
the y factor. Table 14.2 gives the derivative of each swap price with
respect to changes in the factors.6 As conventional for dollar sensitivi-
ties, these derivatives are quoted in cents per 100 face of swaps. For
comparison purposes, the (yield-based) DV01 of each swap7 is also

6Note that the derivatives are calculated at model prices (i.e., at an OAS of
zero), and not at market prices. This issue will be discussed in the last section
of this chapter.
7This is the DV01 of the fixed side of the swap only. See Chapter 18.
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recorded. While certainly not equivalent to a parallel shift, a change in
the x factor is comparable to a parallel shift. As a result, the deriva-
tives with respect to the x factor are of the same order of magnitude as
DV01. Letting F2 and F10 denote the required face amount of two- and
10-year swaps, the hedging condition with respect to the x factor is

(14.18)

and with respect to the y factor risk is

(14.19)

Solving (14.18) and (14.19), F2 = 54.10 and F10 = 46.72.
As mentioned in Chapter 8, butterflies are often quoted with risk

weights where the weights are percentages of the DV01 of the center
position. With the weights just computed, the DV01 of the two-year,
as a fraction of the DV01 of the 5-year, is

(14.20)

while the risk weight of the 10-year is
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TABLE 14.2 Swap Sensitivities to Factors
and Swap DV01s

Term dP/dx dP/dy DV01

2 1.8646 0.4808 1.8853
5 4.0689 0.4864 4.2853

10 6.5495 0.4843 7.3384
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A term structure model implies risk weights from the assump-
tions made about the possible future shapes of the term structure. In
this case the risk weights sum to 103.8%, meaning that paying on
100 face of the five-year and receiving on the hedging portfolio re-
sults in an excess DV01 of 3.8% of 4.2853 or .16 cents. This finding
might be interpreted as showing that the total position is not market
neutral. But that interpretation runs counter to the purpose of the
term structure model. No position in two securities hedges a third
security under all possible yield curve moves. The V2 model incor-
porates a particular set of shifts and there is no reason to expect that
hedging against these shifts will also hedge against a parallel shift.
Therefore, the fact that the DV01 of a position hedged according to
the model differs from zero does not imply that the position bears
market risk.

As described in the previous sections, once a hedged position has
been established there will be P&L due to carry and due to changes
in OAS. But, by the definition of a hedged position, there will be no
P&L due to changes in the factors. This by no means implies, how-
ever, that all models perfectly hedge against changes in the term
structure. The OAS values of a poor model will experience high
volatility relative to the volatility of the factors as the model’s inabil-
ity to capture yield curve changes is erroneously attributed to
changes in OAS. Consequently, the OAS values from a poor model
will not be good indicators of cheapness or richness. The OAS values
of a good model, by contrast, will experience low volatility relative
to the volatility of the factors as most yield curve changes are ex-
plained by changes in the factors.

An analysis of the performance of the model from this perspective
is beyond the scope of this case. To give a flavor for the judgment re-
quired in this type of analysis, however, Figure 14.2 plots several one-
day changes in the swap curve against the corresponding model
predicted changes. (It is a coincidence that all three examples are es-
sentially sell-offs, that is, increases in yield.)

For the relatively small change in the slope of the yield curve from
February 13 to 14, the model predicts a close to linear change in
yields. The actual change, however, saw the intermediate sector selling
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off more than indicated by that linear prediction. The change from
May 14 to 15 is a steepening sell-off, while the change from August
14 to August 15 is a flattening sell-off. In both cases, however, the ac-
tual yield moves are closer to linear than predicted by the model. In
other words, the model erroneously predicts that a large change in the
slope of the curve manifests itself predominantly in the shorter end of
the intermediate terms. The characteristics of the model’s predictions
may be traced back to the assumed factor structures discussed in
Chapter 13.

The fact that the model does not accurately describe changes in
the yield curve may be due to several causes. First, the factor struc-
ture of the existing model might be inaccurate. Second, the model
might be missing a factor. As mentioned earlier, when the Federal
Reserve is active, it could very well be that predicting changes in the
five-year rate requires changes not only in the two- and 10-year rates,
but in the three-month rate as well. Third, the market prices in the
intermediate terms might be moving too much. If this is the case, the
difference between market and model changes along with the result-
ing OAS changes represent trading opportunities. An understanding

FIGURE 14.2 Basis Point Changes in Market and Model Yields over
Selected Dates
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of the economic environment, of the relative supply and demand in
various sectors, and of the model being used are all necessary to de-
cide on the combination of these three factors that best suits the facts.

Returning to the butterfly trade, the composition of the hedging
portfolio will change over time and with the level of rates. The trader
has to weigh the advantages of rehedging against the accompanying
transaction costs. Since the composition of a hedged butterfly typi-
cally changes slowly, this section assumes for simplicity that the but-
terfly portfolio remains unchanged until August 15, 2001.

On August 15, the OAS of the five-year according to the model
was .7. Since the 5-year moved from 8.8 basis points rich to .7 basis
points cheap, the butterfly trade should have made a substantial
profit. Table 14.3 shows that this is indeed the case and describes the
P&L of the trade from May 15 to August 15. The column listing rates
on May 15 gives the two-, five-, and 10-year rates on May 15. Since
by August 15 the swaps have matured for a quarter of a year, the col-
umn listing rates on August 15 gives the 1.75-, 4.75-, and 9.75-year
rates.8 Price changes then emerge from straightforward yield calcula-
tions. For an order of magnitude approximation, the reader might
simply multiply the original DV01 by the change in yield, in basis
points. For the five-year, for example, this rough approximation for
the price change per 100 face is

8Since these rates are not directly observable in the market, they are calcu-
lated by quadratic interpolation of the nearest three observable rates. So, for
example, the 4.75-year rate was calculated by quadratic interpolation of the
four-, five-, and six-year rates.

TABLE 14.3 Profit and Loss from 2s-5s-10s from May15 to August 15

Face 100 Face 100 Face
($millions) 5/15 Rate 8/15 Rate Price Change Interest P&L ($)

2-Year leg 54.10 4.809% 4.204% 1.00387 1.20224 1,193,470
5-Year leg –100.00 5.727% 5.290% 1.80788 1.43181 –3,239,689
10-Year leg 46.72 6.295% 5.815% 3.52030 1.57375 2,380,123

Position P&L: 333,904



FITTING MODEL PARAMETERS

This section examines an issue raised in the case study, namely the practice
of fitting model parameters to market quantities. Most market participants
would agree that parameters have to be changed from time to time to re-
flect changes in market conditions. The real debate is about whether the
model should reflect observable market quantities as closely as possible at
all times and, consequently, whether or not parameters should be changed
frequently, perhaps even daily, to achieve this close match. In the V2
model, for example, some might advocate changing the parameter θx each
day to match the 30-year rate or changing the volatility of the y factor each
day to match a short-expiry option price.

Consider the following sequence of events. On day 0 a quantitative re-
searcher sets a volatility parameter in a model equal to 100 basis points per
year. A trader using the output of the model notices that a particular but-
terfly is 10 basis points cheap and decides to purchase that butterfly, that
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(14.22)

Since the position has been held for three months, the interest compo-
nent of P&L is simply one-fourth of the coupon of the par swap on
May 15 (i.e., of its yield on May 15). For the five-year, for example,
the interest per 100 face is 4.809/4 or 1.202. Finally, the P&L column
scales the preceding columns for position size.9

Since the average DV01 of the five-year over the life of the trade is
about 4.22, a profit of $333,904 on $100,000,000 face represents a
gain of about 8 basis points. This is approximately equal to but
smaller than the calculated OAS change of .7–(–8.8) or 9.5 basis
points. Discrepancies of this sort should be explored to understand the
behavior of the model and, if necessary, make changes to improve it.

4 2853
100

10 000 5 290 5 727 1 87
.

, . % . % .× × −( ) = −

9Since the total proceeds from the trade are relatively small, financing is a
very small part of the P&L of the trade. For expositional simplicity the de-
tails are omitted.



is, go long the center and short the wings. On day 1 the center cheapens
relative to the wings and the trade loses money. In addition, the quantita-
tive researcher decides to change the volatility parameter to 110 basis
points per year. It so happens that the increased convexity advantage of the
wings is worth exactly the cheapening of the center so that the model re-
ports again that the butterfly is 10 basis points cheap. The trader has not
only lost money, but the OAS of the trade has stayed the same. This is bad
news: One source of consolation when losing money is that an even better
trading opportunity is available. If OAS is unchanged, however, the loss is
not accompanied by an improvement in the opportunity set.

It is easy to describe what happened in this story from a technical
point of view. The P&L attribution described earlier in this chapter is not
valid if the parameters change. In that situation there will be P&L terms
due to changes in parameters in addition to terms due to changes in factors
and changes in the OAS.

Assume that the researcher and trader agree that volatility has in fact
changed—that is, that 100 basis points per year was the best estimate of
future realized volatility on day 0, and that 110 basis points per year is the
best estimate of future realized volatility on day 1. In this case changing the
parameter is appropriate and, in retrospect, the trader should have hedged
the trade’s exposure to the volatility parameter. This is analogous to the
practice of pricing stock options with the Black-Scholes model (that as-
sumes constant volatility) but hedging against changes in volatility
nonetheless. In any case, the P&L attribution system should indicate that
the trader lost money not due to factor or OAS changes but due to changes
in the volatility parameter.

Now assume instead that the trader does not believe that true volatility
has changed but that small, random price movements or temporary supply
and demand disturbances have led to the change in model parameteriza-
tion. In this case it is probably not appropriate to change the volatility pa-
rameter, and it is probably appropriate to signal that the OAS of the
butterfly has increased. The trader may very well choose to hedge volatility
in a model with constant volatility, but might not want that volatility para-
meter changing frequently. Put another way, the trader might believe that
the P&L should be attributed to OAS.

Changing volatility is a particularly good example of the need to fit pa-
rameters because many practitioners have not found it worthwhile in the
term structure context to use models with stochastic volatility (i.e., models
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that assume volatility follows a process of their own). A less convincing ex-
ample of the need to fit parameters might be a parameter of mean rever-
sion. First, since it would be hard to find an economic rationale for
frequent changes to this parameter, changes to this parameter might be
covering up serious model deficiencies. Second, since mean reversion para-
meters are so intimately connected with term structure movements, it is not
clear why changing a mean reversion parameter frequently is better than
adding another factor. Adding another factor has the advantage of internal
consistency, and changes in that factor are probably easier to interpret than
changes in a mean reversion coefficient.

While some argument can probably be advanced for fitting any para-
meter, the cumulative effect of fitting many parameters makes a model dif-
ficult to use. Hedging a portfolio becomes much more complicated as
changes to many parameters have to be hedged at the same time. P&L at-
tribution also becomes more complicated as there is an additional term for
each parameter. These complexity issues grow particularly fast with time-
dependent parameters. A user who feels that the problem at hand demands
the flexibility of fitting many parameters might be advised to switch to one
of the multi-factor approaches mentioned in Chapter 13 rather than trying
to force multi-factor behavior onto a low-dimensional model.

HEDGING TO THE MODEL VERSUS HEDGING 
TO THE MARKET

As mentioned several times in this chapter, when using a term structure
model one can calculate factor exposures either at model values (i.e., at
an OAS of zero), or at market values (i.e., at the prevailing OAS). As
usual, the choice depends on the application at hand and is explored in
this section.

The important issues can be easily explained with the following very
simple example. Consider two zero coupon bonds maturing in 10 years
that are identical in every respect but trade separately. Furthermore, as-
sume that for some reason, presumably temporary, one bond yields 5%
while the other yields 5.10%. To take advantage of this obvious mispricing
a trader decides to buy the bond yielding 5.10% and sell the bond yielding
5%. What hedge ratio should be used?

The model hedge ratio is equal face amounts. The two securities are
identical, and, therefore, their model prices respond to any change in the
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environment in the same way. An arbitrage argument is equivalent. Buy-
ing the zero yielding 5.10% and selling an equal face amount of the zero
yielding 5% will generate cash today without generating any future cash
payments. A third equivalent argument is to find the face amounts that set
the portfolio DV01 to zero, calculating DV01 at the model yield. What-
ever the model yield is, it is the same for both securities. Therefore, the
two DV01 values are the same and the hedged portfolio consists of equal
face amounts.

The market hedge ratio sets the portfolio DV01 to zero, with calcula-
tions at market yields. Using equation (6.23), the DV01 values of the two
bonds are

(14.23)

and

(14.24)

Consequently, the market hedge is to sell .058932/.059539 or .9898 of the
bonds yielding 5% against the purchase of every unit of bond yielding
5.10%.

If an investor or trader plans to hold the zeros until they sell at the
same yield or until they mature, the model hedge ratio is best. This
hedge ratio guarantees that at the horizon of the trade the P&L will be
independent of the level of interest rates. In fact, at the horizon of the
trade the positions cancel and there is no cash flow at all. By contrast,
the P&L of the market hedge depends on the interest rate at the horizon.
If, for example, both yields suddenly equalize at 6%, the price of both
zeros is 55.3676 and the liquidation of the position generates
(1–.9898)×55.3676 or .5648. But if yields suddenly equalize at 4%, the
price of both zeros is 67.2971 and the liquidation of the position gener-
ates (1–.9898)×67.2971 or .6864.

A market maker, on the other hand, might not plan to hold the zeros
for very long. The trade has no risk if held to maturity, but many market
makers cannot hold a trade for that long. Furthermore, at times before ma-
turity the trade might very well lose money, as the spread between the yield
could increase well beyond the original 10 basis points. For this trader the
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market hedge might be best. If both yields rise or fall by the same number
of basis points, the P&L is, by construction, zero. With the model hedge, if
both yields fall by the same amount the trade records a loss: The DV01 of
the short position is greater than the DV01 of the long position. For 100
face of each, for example, a sudden (admittedly unrealistic) fall of 100 ba-
sis points would result in a loss of 6.4 cents:

(14.25)

In summary, hedging to the model ensures that P&L at convergence or
at maturity is independent of rates but exposes the position to P&L fluctu-
ations before then. Hedging to the market immunizes P&L to market
moves without any convergence but exposes the position to P&L variance
if there is any convergence. In the context of relative value trades, like the
butterfly analyzed in the case study, the point of the trade is to hold until
convergence. Therefore, as assumed in the case, the trade should be hedged
to model.

This discussion suggests yet another possibility for hedging, some-
where between the market and model hedges. Say that a trader decides to
put on a trade and hold it until the OAS falls to 5 basis points. In that case
the P&L can be immunized against rate changes by hedging using deriva-
tives that assume an OAS of 5 basis points. This reasoning is particularly
appropriate for securities, like mortgages, that tend to trade cheap relative
to most model specifications.
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CHAPTER 15
Repo

REPURCHASE AGREEMENTS AND 
CASH MANAGEMENT

Suppose that a corporation has accumulated cash to spend on constructing
a new facility. While not wanting to leave the cash in a non-interest-bear-
ing account, the corporation would also not want to risk these earmarked
funds on an investment that might turn out poorly. Balancing the goals of
revenue and safety, the corporation may very well decide to extend a short-
term loan and simultaneously take collateral to protect its cash. Holding
collateral makes it less important to keep up-to-the-minute information on
the creditworthiness of the borrower. If the borrower does fail to repay the
loan, the corporation can sell the collateral and keep the proceeds.

Municipalities are another example of entities with cash to lend for
short terms. A municipality collects taxes a few times a year but pays
money out over the whole year. Tax revenues cannot, of course, be in-
vested in risky securities, but the cash collected should not lie idle, either.
Short-term loans backed by collateral again satisfy both revenue and
safety considerations.

Repurchase agreements, or repos, allow entities to effect this type of
loan. Say that a corporation has $100 million to invest. In an overnight re-
purchase agreement the corporation would purchase $100 million worth
of securities from the borrower and agree to sell them back the next day
for a higher price. If the repo rate were 5.45%, the agreement would spec-
ify a repurchase price of

(15.1)$ , ,
.
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Since the corporation pays $100 million on one day and receives that sum
plus another $15,139 the next day, the corporation has effectively made a
loan at an actual/360 rate of 5.45%.

If the corporation were willing to commit the funds for a week, it
might enter into a term repurchase agreement in which it would agree to
repurchase the securities after seven days. In that case, if the seven-day rate
were also 5.45%, the repurchase price would be

(15.2)

Once again, the corporation has effectively made a loan at 5.45%, this
time for seven days, collecting interest of $105,972.

The legal status of a repurchase agreement has not been definitively
settled as a securities trade or as collateralized borrowing. Were repo de-
clared to be collateralized borrowing, the right to sell a borrower’s collat-
eral immediately in the event of a default might be restricted in order to
protect the borrower’s other creditors.1 It is for this reason that partici-
pants in the repo market are usually careful to avoid the terms borrowing
or lending. This chapter, however, neglects the legal treatment of repur-
chase agreements in the event of insolvency and does not differentiate be-
tween a repurchase agreement and a secured loan.

Before concluding this section, the discussion focuses on repo collat-
eral. First, because the typical lender of cash in the repo market values
safety highly, only securities of great creditworthiness and liquidity are ac-
cepted as collateral. The most common choices are U.S. Treasury securi-
ties and, more recently, mortgages guaranteed by the U.S. government.
Second, even holding U.S. Treasuries as collateral, a lender faces the risk
that the borrower defaults at the same time U.S. Treasury prices decline in
value. In that eventuality, selling the collateral might not fully cover the
loss of the loan amount. Therefore, repo agreements include haircuts re-
quiring the borrower of cash to deliver securities worth more than the
amount of the loan. Furthermore, repo agreements often include repricing
provisions requiring the borrower of cash to supply extra collateral in de-
clining markets and allowing the borrower of cash to withdraw collateral

$ , ,
.

$ , ,100 000 000 1
7 0545

360
100 105 972× + ×





=

304 REPO

1See Stigum (1989).



in advancing markets. For simplicity, this chapter ignores haircuts and
repricing provisions.

REPURCHASE AGREEMENTS AND FINANCING 
LONG POSITIONS

The previous section describes typical lenders of cash in the repo market;
This section describes the typical borrowers of cash, namely, financial insti-
tutions in the business of making markets in U.S. government securities.
Say that a mutual fund client wants to sell $100 million face amount of the
U.S. Treasury’s 57/8s of November 15, 2005, to a trading desk. The trading
desk will buy the bonds and eventually sell them to another client. Until
that other buyer is found, however, the trading desk needs to raise money
to pay the mutual fund. Rather than draw on the scarce capital of its finan-
cial institution for this purpose, the trading desk will repo or repo out the
securities, or sell the repo. This means it will borrow the purchase amount
from someone, like the corporation described in the previous section, and
use the 57/8s of November 15, 2005, that it just bought as collateral. As-
sume for now that the repo rate for this transaction is 5.10%. (A later sec-
tion discusses the determination of repo rates.)

To be more precise, assume that the trade just described takes place on
February 14, 2001, for settle on February 15, 2001. The bid price of the 57/8s
of November 15, 2005, is 103-18, and the accrued interest is 1.493094.2

Hence, the amount due the mutual fund on February 15, 2001, is

(15.3)

The trading desk will borrow this amount3 from the corporation on Febru-
ary 15, 2001, overnight (i.e., for one day) at the market repo rate of 5.10%.
On the same day, the desk will deliver the $100 million face amount of the
bonds as collateral. Figure 15.1 charts these cash and repo trades.
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2In a coupon period of 181 days, 92 days have passed.
3In this simple example, the corporation is willing to lend exactly the amount re-
quired by the trading desk. In reality, a financial institution’s repo desk will make
sure that the institution as a whole has borrowed the right amount of money to fi-
nance its security holdings.



On February 16, 2001, when the repo matures, the desk will owe the
corporation the principal of the loan, $105,055,594, plus interest of

(15.4)

After making this total payment of $105,070,477, the desk will take back
the 57/8s it had used as collateral. Put another way, the cost of financing the
overnight position in the bonds is $14,883.

Suppose that on February 16, 2001, another client, a pension fund, de-
cides to buy the 57/8s. To keep the example relatively simple, assume that
the bid price of the 57/8s is still 103-18. Assume that the bid-ask spread for
these bonds is one tick so that the asking price is 103-19. Finally, note that
the accrued interest has increased by one day of interest to 1.509323. The
trading desk will then unwind its position as follows.

$ , ,
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051
360

14 883× =
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FIGURE 15.1 A Trading Desk Selling the Repo to Finance a Customer Bond Sale
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For $100 million of the 57/8s the pension fund will pay

(15.5)

The desk will use $105,070,477 of these proceeds to pay off its debt to
the corporation, take back the $100 million face of the 57/8s it had used
as collateral, and deliver these bonds to the pension fund. Figure 15.2
charts this sequence of trades. Note that the trading desk makes $32,596
on these trades, the difference between the proceeds from the sale to the
pension fund ($105,103,073) and the loan repayment to the corporation
($105,070,477). The sources of this profit are examined in the section
on carry.

If a client does not emerge to purchase the $100 million bonds, the
trading desk will have to finance its position again. In other words, the
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FIGURE 15.2 A Trading Desk Unwinding the Trade of Figure 15.1
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desk will have to sell the repo again. It might simply extend the term of the
original agreement with the corporation or sell the repo to another repo
player, like a municipality.

REVERSE REPURCHASE AGREEMENTS AND 
SHORT POSITIONS

Rather than wanting to sell the 57/8s of November 15, 2005, as in the pre-
vious section, assume that the mutual fund wants to buy the bonds from a
trading desk. Also assume that the trading desk doesn’t happen to have
that bond in inventory. The trading desk may very well sell the bonds any-
way (i.e., go short the bonds), planning to buy them from another client at
a later time. When the trade settles and the mutual fund pays for the
bonds, the trading desk is obliged to deliver the 57/8s. But since the desk
never had the 57/8s in the first place, it will have to borrow them from
somewhere. The usual solution is to do a reverse repurchase agreement, to
reverse or reverse in the securities, or to buy the repo. The trading desk
finds some party that owns the 57/8s, perhaps another investment bank;
lends that bank the cash received from the mutual fund; takes the 57/8s as
collateral; and, finally, delivers that collateral to the mutual fund.

To be more precise, assume again that the trade takes place on Febru-
ary 14, 2001, for settlement on February 15, 2001, and that prices and
bid-ask spreads are as assumed in the previous section. The mutual fund
buys $100 million face amount of the bonds for

(15.6)

On the settlement date, the trading desk receives this from the mutual
fund; lends it to the other investment bank;4 takes $100 million face
amount of the 57/8s as collateral; and delivers that collateral to the mutual
fund. Figure 15.3 charts this transaction.
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4Since this section ignores haircuts and other transaction costs, the text is not care-
ful about the exact amount borrowed or lent against a fixed amount of collateral.
For example, the text is inconsistent about whether the bid or ask price is used in
determining the loan amount because the haircut arrangement will have a large im-
pact on this determination.



Note that there is no difference between a reverse repurchase agree-
ment from the point of view of the trading desk and a repurchase agree-
ment from the point of view of the other investment bank. Nevertheless,
the term reverse repo is useful to emphasize that the lender of cash is moti-
vated by the need to borrow particular bonds.

Suppose that on February 15, 2001, a pension fund wants to sell $100
million face amount of the 57/8s to the trading desk at the bid price of 103-
18 and accrued interest of 1.509323 for total proceeds of $105,071,823.
Upon settlement the next day, the trading desk pays this amount to the
pension fund; takes delivery of the bonds; and hands over the bonds to the
other investment bank in exchange for the loan repayment of
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FIGURE 15.3 A Trading Desk Buying the Repo to Short a Bond to a Customer

$100mm face of
5.875s of 11/15/2005

Mutual Fund

Trading Desk

Investment Bank

$105,086,844

$100mm face of
5.875s of 11/15/2005 $105,086,844



Figure 15.4 illustrates this unwinding of the original cash and reverse repo
trade. Note that the trading desk made $29,908 in this trade: It collected
$105,101,731 from the investment bank and paid $105,071,823 to the
pension fund. The next section discusses why the desk made less in this
trade than in the trade of the previous section.

The purchase and delivery of securities that had been sold and bor-
rowed is called covering a short. Had the trading desk not found a client
on February 15, 2001, wishing to sell the bonds, the desk would have had
to roll its short position. The desk can roll its short either by extending its
repo with the other investment bank or by finding another entity, like a
commercial bank, willing to lend the 57/8s.

While this and the previous section describe how trading desks may
find themselves both borrowing and lending cash in the repo market, on
average across the money market, brokers and dealers are net borrowers of
cash to finance their inventories.
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FIGURE 15.4 A Trading Desk Unwinding the Trade of Figure 15.3
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CARRY

Practitioners like to divide the profit or loss of a trade into a component
due to price changes and a component due to carry. Carry is defined as the
interest earned on a position minus the cost of financing the position. To be
more precise, define the following variables:

P(0),P(d): Flat prices per dollar principal on the trade date and d days
later

AI(0),AI(d): Accrued interest on the trade date and d days later
r: Repo rate
c: Coupon rate
D: Actual days between last and next coupon payments

Then, the P&L from purchasing the bond and selling it d days later is

(15.8)

To illustrate, return to the trade described in Figures 15.1 and 15.2.
The P&L from the trade may be broken down as follows. The market for
the bond did not change over the day, but because of the bid-ask spread the
price change contribution to P&L is

(15.9)

The interest income from the position over the day is

(15.10)

Finally, the cost of financing the position is given in equation (15.4) as
$14,883. Hence, the carry is $16,229–$14,883 or $1,346, and the total
profit is $31,250+$1,346 or $32,596.
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Intuitively, the carry in this trade is positive because the coupon rate of
the bond, 5.875%, is greater than the repo rate, 5.10%. The difference be-
tween the two rates is not perfectly indicative of carry, however, as can be
seen from the third equation line of (15.8). First, interest income is earned
on the face value, while the repo rate is applied to the full price. Second, in-
terest income is calculated using an actual/actual day count, while repo in-
terest is calculated using a 30/360 day count.

The trade just described makes more money for the desk than the
trade described in Figures 15.3 and 15.4 because carry hurts the latter
trade. In that trade, since the desk shorts the bond, it pays the coupon
rate and receives the repo rate. The breakdown of the P&L is the
$31,250 from the bid-ask spread minus a carry of $1,342 for a total
profit of $29,908.

Carry is particularly useful for computing breakeven price changes.
For example, an investor might plan to purchase the 57/8s of November
15, 2005, for an invoice price of 105.103073 and hold them for 30 days.
If the 30-day term rate for financing the bonds is 5.10%, how big a price
decline can occur before the investment shows a loss? Since the relevant
coupon period has 181 days, the accrued interest per $100 million face
amount is

(15.11)

and the financing cost is

(15.12)

for a carry of $40,190. Therefore, so long as the price of the bond does not
fall by more than about 4 cents per 100 face value over the 30-day period,
the investment will prove profitable.

Similarly, carry is useful for calculating breakeven holding periods. For
example, a trader might plan to short the 57/8s of November 15, 2005, at
an invoice price of 105.055594 in the expectation that the price will even-
tually fall to 105. If the financing rate is certain to stay at 5.10%, how
quickly does the price have to fall to 105 before the trade loses money? To
answer this question, assume that the answer is d days. Then the carry of
the position, which will be negative, is

$ , , . % . % $ ,100 000 000 105 103073 5 10 446 68830
360× × × =

$ , , % $ ,100 000 000 5 486 8781
2

7
8

30
181× × × =
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(15.13)

If the price does fall to 105, the price change component of the profit from
the short position will be

(15.14)

The negative carry will just offset this profit if

(15.15)

that is, if d is about 41 days. If the target price is realized before 41 days
have elapsed the trade makes money. If the target price is realized after 41
days, then, despite the correct prediction that the price would fall to 105,
the trade loses money.

Positive carry trades have the desirable property that they earn money
as they go. But this by no means implies that the expected return of a posi-
tive carry trade is greater than that of a negative carry trade. Consider the
choice between investing in a premium bond or in a discount bond where
the repo rate for both is between the coupon rates. The premium bond of-
fers positive carry, but its price will be pulled down toward par. The dis-
count bond suffers from negative carry, but its price will be pulled up
toward par. Clearly, carry considerations alone are not sufficient to deter-
mine which bond earns the higher expected return nor which furnishes the
better return per unit of risk borne. In the examples of this chapter, the
trading desk made more money on its positive carry trade, Figures 15.1
and 15.2, than on its negative carry trade, Figures 15.3 and 15.4, because
of the arbitrary assumption that the bond price did not change from one
day to the next. A more complete analysis would be required to reveal the
full risk and return characteristics of each trade.

Viewing carry from a theoretical standpoint, Part Three showed that
the expected return of any fairly priced portfolio equals the short-term rate
plus an appropriate risk premium. This required expected return is the
same whether it comes in the form of positive carry and a relatively small
or negative expected price change or in the form of negative carry and a
relatively large expected price change.

− × × × + × × = −$ , , % $ , , . % $ ,100 000 000 5 105 055 594 5 10 55 5941
2

7
8 181 360

d d

$ , , . % $ ,100 000 000 105 055594 105 55 594× −( ) =

− × × × + × ×$ , , % $ , , . %100 000 000 5 105 055 594 5 101
2

7
8 181 360

d d
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GENERAL COLLATERAL AND SPECIALS

Investors using the repo market to earn interest on cash balances with the
security of U.S. Treasury collateral do not usually care about which partic-
ular Treasury securities they take as collateral. These investors are said to
accept general collateral (GC). Other participants in the market, however,
do care about the specific issues used as collateral. Commercial and invest-
ment banks engaging in repurchase agreements to finance particular secu-
rity holdings have to deliver those particular securities as collateral. Also,
trading operations that are short particular securities need to take those
particular securities as collateral. These parties require special collateral.

The collection of these needs and interests constitutes supply and de-
mand for general collateral and for individual issues. The repo market
equilibrates the supply and demand for general collateral to emerge with a
GC interest rate for repurchase agreements in which the lender of cash will
accept any Treasury security as collateral. The repo market also equili-
brates the supply and demand for individual securities or specials to
emerge with a set of special rates for repurchase agreements in which the
lender of cash must take particular Treasury securities as collateral. Table
15.1 lists the GC rate and a set of special rates for repurchase agreements
settling on February 15, 2001.5

The general collateral rate on February 15, 2001, was 5.44%, 6 basis
points below the fed funds target rate6 of 5.50%. The GC rate is typically
below the fed funds target rate because loans through repurchase agree-
ment are effectively secured by collateral, while loans in the fed funds mar-
ket are not. The spread between the fed funds target rate and the GC rate
varies with the supply and demand for U.S. Treasury collateral.

Typically, and as shown in Table 15.1, the most recently issued Trea-
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5Purchases and sales of the 5s of February 15, 2011, did not settle until February
15, 2001. Therefore, there is no overnight repo for these bonds from February 14,
2001, to February 15, 2001, and these bonds are not included in Table 15.1. Start-
ing from the next day, however, this bond issue did trade in the overnight repo mar-
ket as the new 10-year bond. The same is true for the 5.375s of February 15, 2031,
the new 30-year settling on February 15, 2001.
6The fed funds rate is the rate at which banks lend money to one another. The Fed-
eral Reserve sets a fed funds target rate and keeps the fed funds rate close to that
target. See Chapter 17.



sury securities trade special in the repo market. On-the-run (OTR) refers to
the most recently issued security of a particular maturity, old refers to the
next most recent, and double-old to the issue before that. That these issues
typically trade special indicates that there is usually a strong demand to
short these issues and, therefore, a need to borrow them through the repo
market. Someone taking the OTR five-year as collateral is willing to lend
money overnight at 3.85%, 159 basis points below the GC rate, in order to
cover or initiate a short sale. (No investor without a particular interest in
the OTR five-year would take it as collateral and earn 3.85% instead of
taking general collateral and earning 5.44%.) Conversely, the owner of the
OTR five-year enjoys the advantage of borrowing money at 159 basis
points below GC by lending this bond. The next section discusses current
issues and their special rates in more detail.

Some issues trade special because they are close substitutes for on-the-
run issues. The 6.50s of May 15, 2005, and the 5.875s of November 15,
2005, mature on the same day as the old five-year and the OTR five-year,
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TABLE 15.1 Selected Repo Rates for Settlement on February 15,
2001

General collateral rate: 5.440%

Treasury Issue
Special

Coupon Maturity Comment Repo Rate

6.000% 07/31/02 5.150%
5.750% 10/31/02 5.200%
5.625% 11/30/02 Double-old 2-year 5.350%
5.125% 12/31/02 Old 2-year 4.750%
4.750% 01/31/03 On-the-run 2-year 4.880%
5.500% 02/28/03 5.150%
6.500% 05/15/05 5.200%
6.750% 05/15/05 Old 5-year 5.350%
6.500% 08/15/05 5.200%
5.750% 11/15/05 On-the-run 5-year 3.850%
5.875% 11/15/05 5.100%
5.625% 02/15/06 5.300%
6.500% 02/15/10 Old 10-year 5.350%
5.750% 08/15/10 On-the-run 10-year 4.250%
6.125% 08/15/29 Old 30-year 5.350%
6.250% 05/15/30 On-the-run 30-year 5.350%



respectively. These issues trade somewhat special because some traders
short these issues instead of the most recent issues. The extent to which
special repo rates are below GC is entirely a question of supply and de-
mand for collateral of specific issues. For example, the 6.50s of May 15,
2005, trade 15 basis points more special than the old five-year, while the
5.875s of November 15, 2005, trade 125 basis points less special than the
OTR five-year.

Other issues trade special for reasons not apparent without under-
standing who owns and who has shorted particular issues. Arbitrage
traders deciding that a particular sector of the Treasury market is rich rela-
tive to swaps7 might form a large short base (i.e., a constituency that shorts
a particular bond or set of bonds) in that sector and cause the issues in that
sector to trade special. A large sale of a particular security from the dealer
community to an investor that does not participate in the repo market
might suddenly make it difficult for shorts to borrow that security and,
therefore, might cause that security to trade special.

While not shown in Table 15.1, there is also a market for term GC
and special rates. This market allows borrowers and lenders of cash to
lock in a fixed rate over longer time periods, though typically less than a
few months. With respect to GC, the term market allows participants to
avoid overnight interest rate risk and the risk arising from changes in the
supply and demand for U.S. Treasury collateral. The term market for spe-
cials also allows participants to avoid these risks and, in addition, to re-
duce risks arising from the fluctuating supply and demand of collateral in
particular securities.

SPECIAL REPO RATES AND THE AUCTION CYCLE

Current issues tend to be more liquid. This means that their bid-ask spreads
are particularly low and that trades of large size can be conducted rela-
tively quickly. This phenomenon is partly self-fulfilling. Since everyone ex-
pects a recent issue to be liquid, investors and traders who demand
liquidity and who trade frequently flock to that issue and thus endow it
with the anticipated liquidity. Also, the dealer community, which trades as
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7See Chapter 18.



part of its business, tends to own a lot of a new issue until it seasons and is
distributed to buy-and-hold investors.

The extra liquidity of newly issued Treasuries makes them ideal candi-
dates not only for long positions but for short positions as well. Most
shorts in Treasuries are for relatively brief holding periods: a trading desk
hedging the interest rate risk of its current position, a corporation or its un-
derwriter hedging an upcoming sale of its own bonds, or an investor bet-
ting that interest rates will rise. All else being equal, holders of these
relatively brief short positions prefer to sell particularly liquid Treasuries
so that, when necessary, they can cover their short positions quickly and at
relatively low transaction costs.

Investors and traders long an on-the-run security for liquidity reasons
require compensation to sacrifice liquidity by lending those securities in the
repo market. At the same time, investors and traders wanting to short the
on-the-run securities are willing to pay for the liquidity of shorting these
securities when borrowing them in the repo market. As a result, the on-the-
run securities tend to trade special in the repo market.

Figures 15.5, 15.6, and 15.7 graph the special spread of the five-, 10-,
and 30-year on-the-run security over time. This special spread is defined as
the overnight general collateral rate minus the overnight special rate of the
then on-the-run security. The vertical lines indicate Treasury auctions in
that maturity. These are either auctions of new on-the-run securities, in
which case the on-the-run security changes over the vertical line, or re-
openings of existing on-the-run securities (i.e., auctions that increase the
size of an already existing issue), in which case the same security is featured
on both sides of the vertical line.
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FIGURE 15.5 Special Spreads for the On-the-Run Five-Year
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Several lessons may be drawn from these graphs. First, the special
spreads are quite volatile on a daily basis, reflecting supply and demand for
special collateral on that day. Second, special spreads can be quite large:
Spreads of 200 to 400 basis points are quite common.

Third, while the cycle of on-the-run special spreads is far from regular,
these spreads tend to be small immediately after auctions and to peak be-
fore auctions. It takes some time for a short base to develop. Immediately
after an auction of a new on-the-run security, shorts can stay in the previ-
ous on-the-run security or shift to the new on-the-run. This substitutability
tends to depress special spreads. Also, immediately after a reopening auc-
tion the extra supply of the on-the-run security tends to depress special
spreads. In fact, a more careful examination of data on special spreads in-
dicates that special spreads for reopened issues do not get as wide as spe-
cial spreads of new issues. In any case, as time passes after an auction,
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FIGURE 15.6 Special Spreads for the On-the-Run 10-Year
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FIGURE 15.7 Special Spreads for the On-the-Run 30-Year
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shorts tend to migrate toward the on-the-run security and its special spread
tends to rise.

Fourth, the OTR 30-year seems to have stopped trading special in the
repo market. This process began as government surpluses made it seem
likely that the Treasury would eventually cancel the issuance of new 30-
year bonds. The market anticipated that as a result the sector as a whole
would become less liquid, and, perhaps in a self-fulfilling manner, so it did.
Interest in shorting the 30-year fell concurrently with this fall in liquidity,
and special spreads shrank. To finish the story, in the fall of 2001, despite
the possible disappearance of government surpluses, the Treasury did can-
cel the sale of new 30-year bonds.

By graphing special spreads rather than rates, Figures 15.5 through
15.7 do hide one factor that limits special spreads. Consider a trader who
is short the OTR 10-year and needs to borrow it through a repurchase
agreement. If for some reason the bond cannot be borrowed, the trader
will fail to deliver it and, consequently, not receive the proceeds from the
sale. In effect, the trader will lose one day of interest on the proceeds. On
the other hand, if the bond can be borrowed, the trader will deliver the
bond, receive the proceeds, and lend them at the special repo rate. But if
the repo rate is 0%, there is no point in bothering with the repo agreement:
Earning 0% on the proceeds is the equivalent of having failed to deliver the
bond. And certainly the trader will prefer to fail rather than accept a spe-
cial rate less than 0%. Therefore, the special rate cannot fall below 0%,
and, equivalently, the special spread cannot be greater than the GC rate. In
the fall of 2001, for example, with the GC rate near 2%, the maximum
special spread was about 200 basis points. In short, Figures 15.5 through
15.7 are slightly misleading since special spreads are not completely com-
parable over time when the level of rates is changing.

LIQUIDITY PREMIUMS OF RECENT ISSUES

Recent issues tend to trade at higher prices than otherwise similar issues.
Some of this premium is due to the demand for shorts and the resulting fi-
nancing advantage, that is, the ability to borrow money at less than GC
rates when using these bonds as collateral. Any additional premium, which
might be called a pure liquidity premium, is due to the liquidity demands
from long positions. Market participants often refer to the sum of the fi-
nancing advantage and the pure liquidity premium—that is, to the entire
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premium of a recent issue relative to an otherwise similar issue—as the liq-
uidity premium. Table 15.2 illustrates the magnitude of these premiums
with pairs of bonds in each of the two-, five-, 10-, and 30-year sectors for
February 15, 2001, settle.

The table illustrates the liquidity premiums in the two- and five-year
sectors by comparing the yield of the on-the-run Treasury with that 
of another bond maturing on the same date. The yield of the two-year
was almost six basis points below that of the otherwise comparable
bond, and the yield of the five-year was five basis points below its com-
parable bond.8

The table illustrates the liquidity premiums in the 10- and 30-year sec-
tors by comparing the yields on when-issued9 (WI) securities, those about
to become the new on-the-run securities, with the yields on existing on-
the-run securities, those about to become old bonds. The WI 10- and 30-
year bonds traded at about a 12-basis point premium to the OTR 10- and
30-year bonds. These numbers actually understate liquidity premiums be-
cause the OTR issues command a premium themselves relative to sur-
rounding issues.
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TABLE 15.2 Examples of Liquidity Premium for
Settlement on February 15, 2001

Coupon Maturity Comment Yield

4.750% 01/31/03 On-the-run 2-year 4.821%
5.500% 01/31/03 4.878%
5.750% 11/15/05 On-the-run 5-year 4.970%
5.875% 11/15/05 5.020%
5.750% 08/15/10 On-the-run 10-year 5.238%
5.000% 02/15/11 When-issued 10-year 5.121%
6.250% 05/15/30 On-the-run 30-year 5.553%
5.375% 02/15/31 When-issued 30-year 5.433%

8These yields are not perfectly comparable because of the coupon effect described
in Chapter 3. This effect is very small, however, relative to the liquidity premium.
9Bonds to be sold by the Treasury trade on a when-issued basis for a short time be-
fore they are actually issued. The 5s of February 15, 2011, for example, although
not issued until February 15, 2001, traded some time before then for settlement on
February 15, 2001.



To appreciate the interplay between pure liquidity premiums and spe-
cial repo rates, it is important to differentiate the sources of these two ef-
fects. A pure liquidity premium arises because of a large demand to hold a
particular bond relative to the supply of that bond available for trading. A
bond trades special because of a large demand to short the bond relative to
the supply of bonds available in the repo market, that is, relative to the
number of bonds in the hands of those willing to lend bonds. Since the
sources of pure liquidity premium and special repo rates are different, these
effects can surface in various permutations. A typical on-the-run issue,
highly valued for its liquidity and attracting a large short base, commands
a pure liquidity premium and trades special. Recently, however, the 30-year
on-the-run issue is valued for liquidity but few market participants seem
interested in shorting it. As a result, the OTR 30-year does command a
pure liquidity premium but does not trade special. Yet another permuta-
tion arises for seasoned issues that just happen to attract a large short base
relative to their supply in the repo market. These bonds do not command a
liquidity premium but do trade special.

APPLICATION: Valuing a Bond Trading Special in Repo

The financing advantage of a bond that trades special comprises an important part of the
return from buying or shorting that bond. Say that a money manager is considering pur-
chasing one of the two five-year bonds listed in Table 15.2, either the 5.75s or the 5.875s of
November 15, 2005. The (yield-based) DV01 of the two bonds is quite similar, but the 5.75s
are five basis points more expensive. Is it worth paying a five-basis point premium for the
on-the-run issue? First, the manager must make a subjective decision about how much to
value liquidity. A manager who plans on trading the security frequently or who wants to be
able to turn the position back into cash with minimum effort, even in a crisis, will value liq-
uidity relatively highly. On the other hand, a manager who plans to hold the security to ma-
turity will value liquidity hardly at all. For the sake of discussion, assume that the manager
values the extra liquidity of the OTR five-year at one basis point. The question then be-
comes whether the financing advantage of the OTR five-year bond justifies a premium of
four basis points.

The answer depends, of course, on how special the OTR five-year will trade over the
manager’s horizon and on how much of a yield premium the OTR five-year will command at
the end of that horizon. Say that the manager assumes that over the next 90 days the OTR
five-year will trade at an average of 100 basis points through the 5.875s in the repo market
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and that at the end of that time the yield spread between the two will decline from five to
three basis points.

Under these assumptions, a rough calculation of the advantage of the OTR five-year
might proceed as follows. The financing advantage of the OTR five-year bond is

(15.16)

of face value. The interest disadvantage of the OTR five-year bond, with a coupon 12.5 ba-
sis points below that of the 5.875s, is worth approximately

(15.17)

of face value. Finally, with a DV01 of 4.261, the anticipated loss of 2 basis points on the
OTR five-year relative to the 5.875s is worth

(15.18)

of face value. Putting these pieces together, the advantage of the OTR five-year is

(15.19)

At the DV01 of 4.261, the percentage of face value given by equation (15.19) is equiva-
lent to .134%/.04261% or about 3.1 basis points. But, putting aside the one basis point
of liquidity value to the manager, the OTR five-year is trading four basis points rich to
the 5.875s. So, using the preferences and assumptions of this money manager, the
5.875s are the preferred investment. By the same set of calculations, however, another
money manager with the same financing assumptions but a liquidity valuation of about
two basis points would find the OTR five-year and the 5.875s fairly priced relative to 
one another.

Any trade or hedge involving a security that is trading special requires the same set of
assumptions and calculations as in this example. How much is liquidity worth? How will
special spreads behave? How will the premium change over time? The case study in Ap-
pendix 18A will review a trade based on the conclusion that the premium commanded by
the OTR five-year bond was too high relative to the prices of other securities.
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APPLICATION: Disruption in the Specials Market after September 11, 2001

The terrorist attack on the World Trade Center disrupted the specials market in two ways.
First, the resulting confusion and the destruction of records caused many government bond
transactions to fail, meaning that bonds sold were not delivered. Second, heightened uncer-
tainty and credit concerns caused many participants in the repo markets to pull their secu-
rities from the repo market. The combination of these forces caused a severe shortage of
on-the-run collateral, particularly in the five- and 10-year sectors. Table 15.3 summarizes
the situation with average repo rates on September 20.

Note that the GC rate was 1.75% while the fed funds rate at the time was 3%. The
widespread shortage of Treasury collateral widened the spread between fed funds and GC
to 125 basis points. While on-the-run special rates do occasionally hit the low relative levels
of Table 15.3, it is rare for all of them to do so simultaneously and to stay there for an ex-
tended period of time.

In response to the shortage of collateral, the Treasury made a surprise announcement
on the morning of October 4, 2001. It would auction $6 billion of the OTR 10-year at 1:00
p.m. that day. This was unprecedented in two ways. First, the Treasury usually keeps to a
strict issuance calendar. Second, the Treasury almost always gives much more notice of
auctions. These policies are designed to foster market stability, but on October 4 the Trea-
sury judged that drastic action was required.

Figure 15.8 shows the price response of the 10-year futures contract10 to the surprise
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TABLE 15.3 Selected Repo Rates on September 20, 2001

General collateral rate: 1.750%

Treasury Issue
Special

Coupon Maturity Comment Repo Rate

3.875% 07/31/03 Old 2-year 0.750%
3.625% 08/31/03 On-the-run 2-year 0.650%
5.750% 11/15/05 Old 5-year 0.400%
4.625% 05/15/06 On-the-run 5-year 0.100%
5.000% 02/15/11 Old 10-year 0.600%
5.000% 08/15/11 On-the-run 10-year 0.350%
6.250% 05/15/30 Old 30-year 1.900%
5.375% 02/15/31 On-the-run 30-year 1.750%

10See Chapter 20 for a discussion of bond and note futures contracts.



announcement. Prices in that sector of the Treasury market fell dramatically to accom-
modate the coming supply. The spread between the OTR and old 10-year notes also ex-
perienced a large one-day move, falling from about 5.2 basis points to about 3.7 basis
points. Finally, the special spread of the OTR 10-year note fell about 100 basis points that
day. This is visible in Figure 15.6: The last vertical line of the graph represents this sur-
prise auction.
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FIGURE 15.8 Intraday Prices of TY21 on October 4, 2001
Source: Copyright 2002 Bloomberg L.P.
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CHAPTER 16
Forward Contracts

Spot trades or contracts are agreements to buy and sell some asset for
immediate delivery so that the cash and the asset change hands immedi-

ately. By contrast, forward and futures contracts are agreements to trade
an asset for delivery on some particular date in the future.1 The price at
which the asset will be traded is fixed today, but the exchange of cash and
the asset takes place in the future. While explicit forward contracts are not
so prevalent as futures contracts, an understanding of forward contracts is
essential in fixed income markets. First, the common practice of combining
a spot position with borrowing or lending creates the economic equivalent
of a forward contract. Second, futures contracts are more easily under-
stood after first understanding forward contracts. Third, option contracts
may usefully be viewed as derivatives of forward contracts. Consequently,
in many ways this chapter prepares for subsequent chapters in this part.

DEFINITIONS

A forward contract is an agreement to buy or sell a security in the future at
a price specified at the time of the agreement. The forward price refers to
that agreed-upon price. The terms forward date, expiration date, delivery
date, or maturity date refer to the date of that future purchase or sale. The
underlying security is the security that will be bought or sold on the expira-
tion date. Finally, the buyer of the contract, who is long the forward,

1Most trades in fixed income markets are for delivery in one or two days and, while
rarely referred to as forward trades, are technically forward trades. True spot trans-
actions (i.e., trades that settle the same day as the trade) are differentiated using the
term cash settle.



agrees to buy the underlying security on the expiration date from the seller
of the contract, who is short the forward.

When a forward contract is negotiated, the forward price is set such that
the buyer and seller are willing to enter into the agreement without any ex-
change of cash. This implies that at the initiation of the contract the value of
the forward contract is zero. Over time the value of a position in the forward
may rise or fall. Increases in the price of the underlying security tend to ben-
efit the buyer of the forward contract, who committed to purchase the secu-
rity when its price was relatively low. In this situation the value of the
forward contract tends to be positive, meaning that the short would have to
pay the long to exit the contract. Conversely, decreases in the price of the un-
derlying security tend to benefit the seller of the forward. In this situation the
value of the forward tends to be negative, meaning that the long would have
to pay the short to exit the contract. Note that the value of a forward con-
tract is not the same as the forward price: The forward price is the price at
which the underlying security will be traded on the delivery date.

FORWARD PRICE OF A DEPOSIT OR 
A ZERO COUPON BOND

Begin with the following example of a forward contract:

Forward contract transaction date: November 15, 2001
Underlying security: $1,000,000 face of a deposit maturing on June

18, 2002
Forward date: March 20, 2002
Forward price: 99.4347

This agreement requires that on March 20, 2002, the buyer of the for-
ward buy a $1,000,000 deposit maturing on June 18, 2002, for 99.4347%
of face value. Equivalently, the buyer will deposit $994,347 on March 20,
2002, and will receive $1,000,000 on June 18, 2002. Note that this is con-
ceptually the same as buying $1,000,000 face of a zero coupon bond ma-
turing on June 18, 2002, for a payment of $994,347 on March 20, 2002.

Some additional data are required for the example:

Price of a zero maturing on June 18, 2002, as of November 15, 2001:
98.7149
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Price of a zero maturing on March 20, 2002, as of November 15,
2001: 99.2761

Number of days from March 20, 2002, to June 18, 2002: 90

With this additional data the forward price of 99.4347 can be derived
by arbitrage arguments. Let the forward price be Pfwd and consider the fol-
lowing set of transactions:

On November 15, 2001:

Buy the forward contract at Pfwd.
Short the zero maturing on June 18, 2002, for 98.7149.
Invest the proceeds from the short sale in the zero maturing on March

20, 2002. More specifically, with the proceeds of 98.7149 pur-
chase 98.7149/.992761 or 99.4347 face of the zero maturing on
March 20, 2002.

⇒No net cash payment or receipt.

On March 20, 2002:

Buy the zero maturing on June 18, 2002, via the forward contract for
Pfwd.

Deliver the zero to cover the original short sale.
Collect 99.4347 from the investment in the zero maturing on March

20, 2002.
⇒Cash flow is 99.4347–Pfwd.

Since the cash flow on November 15, 2001, is zero, if the cash flow on
March 20, 2002, is positive then these transactions generate an arbitrage
profit. Similarly, if the cash flow on March 20, 2002, is negative then the
transactions can be reversed to generate an arbitrage profit (i.e., sell the
forward and buy the June 18, 2002, zero on November 15, 2001, etc.).
Therefore, the only forward price that does not admit an arbitrage oppor-
tunity is 99.4347.

Since investing in the shorter-maturity zero is the same as lending cash,
the preceding demonstration shows that a long forward position can be
hedged perfectly by selling the underlying zero and lending the proceeds. In
other words, a long forward position is equivalent to buying the zero and
borrowing the purchase amount. Intuitively, borrowing the purchase price
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to the forward date essentially locks in the cost of the bond as of the for-
ward date.

In general, the forward price of a zero or a deposit may be derived
as follows. Let T be the time to the forward date and let d(t,T) be the
discount factor or zero price as of time t to time T. Let P(t) denote the
price of the underlying security at time t, and let Pfwd(t,T) be the forward
price at time t for delivery at time T. According to the discussion in the
previous paragraphs, the forward price equals the cash flow from selling
the underlying security and investing the proceeds to the forward date.
Mathematically,

(16.1)

USING FORWARDS TO HEDGE BORROWING COSTS 
OR LOAN PROCEEDS

Buying the forward contract described in the previous section locks in the
price of a 90-day zero for delivery on March 20, 2002. Using an actual/360
convention to quote an interest rate (see Chapter 4), a forward price of
99.4347 corresponds to a forward rate r such that

(16.2)

or

(16.3)

Expressing the forward price in terms of a forward rate means that buying
the forward contract locks in a lending rate of 2.274%, while selling the
forward contract locks in a borrowing rate of 2.274%.

Institutions expecting a temporary cash surplus or deficiency often
wish to reduce the uncertainty of their ultimate loan proceeds or borrow-
ing costs. Consider the case of a corporation that finalizes its capital ex-
penditure program on November 15, 2001. It is scheduled to raise
$100,000,000 on March 20, 2002, but does not plan to spend the money
until June 18, 2002. If the corporation does not hedge, the rate it receives

r = 2 274. %

1
1

99 4347
90

360+
=

r
. %
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over the 90 days subsequent to March 20, 2002, depends on the prevail-
ing 90-day rate on March 20, 2002. If that rate happens to be 2.75% it
will have

(16.4)

on June 18, 2002, to spend on capital projects. But, if the rate happens to
be 1.75% it will have only

(16.5)

to spend. Rather than face this uncertainty, however, the corporation can
buy a forward contract on November 15, 2001, at 2.274%. In that case,
regardless of the rate on March 20, 2002, the corporation will have

(16.6)

for its capital expenditure program.

FORWARD PRICE OF A COUPON BOND

This section derives the forward price of a coupon bond and begins with
the following example:

Forward contract transaction date: November 26, 2001
Underlying security: 100 face amount of the 5.50s of May 15, 2009
Forward date: March 28, 2002
Price of 5.50s of May 15, 2009, for November 27, 2001, settle:

103.6844
Accrued interest for November 27, 2001, settle: .1823
Repo rate from November 27, 2001, to March 28, 2002: 1.80%
Accrued interest for March 28, 2002, settle: 2.0207
Number of days from November 27, 2001, to March 28, 2002: 121

Again denoting the forward price by Pfwd, it can be demonstrated that
Pfwd equals 102.4744, a drop of 1.21 relative to the spot price. Consider the
following set of transactions.

$ , , $ , ,.100 000 000 1 100 568 50002274 90
360+( ) =×

$ , , $ , ,.100 000 000 1 100 437 5000175 90
360+( ) =×

$ , , $ , ,.100 000 000 1 100 687 5000275 90
360+( ) =×
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On November 26, 2001 (repo and cash settle November 27, 2001):

Buy the forward contract at Pfwd.
Sell the bond for 103.6844+.1823 or 103.8667.
Buy the repo2 at 1.80%.
⇒No net cash payment or receipt.

On March 28, 2002:

Buy the bond via the forward for Pfwd+2.0207.
Return bond/collect repo loan proceeds of 103.8667(1+.018×121/360) or

104.4951.
⇒Cash flow is 104.4951–(Pfwd+2.0207) or 102.4744–Pfwd.

Note that, by convention, the forward price is quoted as a flat price: The
invoice price of the transaction on the delivery date equals the forward
price plus accrued interest.

The preceding transactions imply that an arbitrage opportunity does
not exist if and only if Pfwd=102.4744. Furthermore, they imply that a long
forward position in the bond can be replicated by buying the bond spot
and selling the repo. Once again, borrowing the purchase price to the for-
ward date essentially locks in the cost of the bond as of the forward date.

To derive a more general expression for the forward price of coupon
bonds, let P(0) denote the bond price at initiation of the forward con-
tract, let r denote the repo rate, and let d denote the number of days be-
tween the expiration and initiation dates of the forward agreement.
Furthermore, let AI(0) and AI(d) denote the accrued interest of the bond
at the initiation and expiration dates of the contract, respectively. Finally,
assume for the moment that there are no coupon payments over the term
of the forward contract. According to the arbitrage pricing argument, the
forward invoice price must equal the loan proceeds from the repo agree-
ment. Mathematically,

(16.7)P AI d P AI rdfwd + ( ) = ( ) + ( )( ) +( )0 0 1 360
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Rewriting (16.7),

(16.8)

Carry in (16.8) is defined as in Chapter 15, namely as interest income mi-
nus the financing cost.

The last equation of (16.8) says that when carry is positive the forward
price is less than the spot price. But, as discussed in Chapter 15, carry is
usually positive when the coupon rate exceeds the repo rate. Therefore,
equation (16.8) implies that when the coupon rate exceeds the repo rate
the forward price is usually below the spot price. This is certainly true in
the example of this section: The coupon rate is 5.50%, the repo rate is
1.80%, the spot price is 103.68, and the forward price is 102.47. Of
course, if the term structure of interest rates is inverted, so that short-term
rates exceed long-term rates, the repo rate of a bond may exceed its
coupon rate and the bond forward price may exceed its spot price.

For reasons that will become clear in subsequent chapters, it is conve-
nient to write the forward price of a deposit or zero coupon bond in a form
slightly different from the forward price of a coupon bond. But, equations
(16.1) and (16.8) are really the same. If the time to the delivery date corre-
sponds to d days, then the discount factor in equation (16.1) is 1/(1+rd/360)
and that equation may be rewritten as

(16.9)

This is the same as (16.8) when the coupon rate and, therefore, accrued in-
terest equal zero.

FORWARD YIELD AND FORWARD DV01

The forward yield of a bond is the one rate that when used to discount the
cash flows of a bond from the forward date to the maturity date gives the
forward invoice price of the bond. Put another way, the forward yield is
the yield-to-maturity as of the forward date that produces the forward in-
voice price.

P P rdfwd = ( ) +( )0 1 360

P P AI rd AI d

P AI d AI P AI rd

P

fwd = ( ) + ( )( ) +( ) − ( )
= ( ) − ( ) − ( ) − ( ) + ( )( )[ ]
= ( ) −

0 0 1 360

0 0 0 0 360

0 Carry
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In the example of the previous section, the spot yield of the 5.50s of
May 15, 2009, is 4.904% and the forward yield is 5.081%. Analogous
to the treatment of spot and forward rates in Chapter 2, it is useful to
think of the spot yield as a blend of the repo rate and the forward yield.
In the example, the spot yield of 4.904% from November 27, 2001, to
May 15, 2009, is a mix of the 1.80% repo rate from November 27,
2001, to the forward date March 28, 2002, and of the 5.081% forward
yield from March 28, 2002, to May 15, 2009. This intuition explains
why a repo rate below the spot yield leads to a forward yield above the
spot yield.

The forward DV01 is the DV01 as of the forward date using the for-
ward yield. Relative to the spot DV01, the forward DV01 is impacted
primarily by the shortening of maturity from the trade date to the for-
ward date and secondarily by the difference between the spot yield and
forward yield.

FORWARD PRICES WITH INTERMEDIATE 
COUPON PAYMENTS

The derivation of a forward price is more complicated if the underlying
bond pays a coupon over the term of the forward contract. To illustrate the
pricing of forwards in this situation, consider the following contract:

Forward contract transaction date: November 26, 2001
Underlying security: 100 face amount of the 6.50s of February 15,

2010
Forward date: March 28, 2002
Price of 6.50s of February 15, 2010, for November 27, 2001, settle:

110.0031
Accrued interest for November 27, 2001, settle: 1.8370
Repo rate from November 27, 2001, to March 28, 2002: 1.80%
Accrued interest for March 28, 2002, settle: .7362
Number of days from November 27, 2001, to February 15, 2002: 80
Number of days from February 15, 2002, to March 28, 2002: 41

The following set of transactions can be used to deduce the arbitrage-
free forward price.
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On November 26, 2001 (repo and cash settle November 27, 2001):

Buy the forward contract at Pfwd.
Sell the bond for 110.0031+1.8370=111.8401.
Buy the repo at 1.80%
⇒No net cash payment or receipt.

On February 15, 2002:

Repo proceeds have grown to 111.8401(1+.018×80/360) or 112.2875.
Pay the bond owner a coupon payment of 6.5/2 or 3.25 from the repo

proceeds, leaving 112.2875–3.25 or 109.0375. Continue to invest
these proceeds through repo at 1.80%.

⇒No net cash payment or receipt.

On March 28, 2002:

Buy the bond via the forward for Pfwd+.7362.
Return bond/collect repo loan proceeds of 109.0375(1+.018×41/360) or

109.2610.
⇒Cash flow is 109.2610–(Pfwd+.7362) or 108.5248–Pfwd .

Since these transactions generate no cash flows on November 26,
2001, or February 15, 2002, an arbitrage profit is available unless the cash
flow on March 29, 2002, also equals zero. This implies that the forward
price must be 108.5248.

The transactions on February 15, 2002, require some elaboration.
First, a bond owner who lends a bond through a repurchase agreement
continues to receive that bond’s coupon payments. The trader who bor-
rowed and sold the bond in this example must make the February 15,
2002, coupon payment to the lender of the bond. Second, as discussed in
Chapter 15, the amount of money lent on the collateral of a bond is
roughly equal to the value of that bond as measured by the invoice price.
Furthermore, a coupon payment reduces the invoice price by exactly the
coupon payment. Therefore, it is reasonable to reduce the loan balance ex-
tended on the collateral of the bond by the coupon payment on the coupon
payment date. For these two reasons, the trader short the bond pays the
original bond owner a coupon payment from the repo loan proceeds.
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To derive the forward price algebraically when there is an intermediate
coupon payment, let c be the annual coupon payment. Let d1 be the num-
ber of days between the initiation of the forward contract and the coupon
date, and let d2 be the number of days between the coupon payment and
the expiration of the forward contract as in the following diagram:

Then d=d1+d2 is, as before, the number of days from initiation to expira-
tion of the forward contract. The forward invoice price must equal the ter-
minal loan proceeds from the repurchase agreement:

(16.10)

Equation (16.10) may be expressed in two more convenient ways.
First,

(16.11)

Note that the coupon payment is discounted by the number of days from
the initiation of the agreement to the coupon payment date. The second
line of equation (16.11) ignores the relatively small terms of interest on in-
terest and concludes that the forward price equals the original proceeds mi-
nus the present value of the intermediate coupon payment, all future
valued to the delivery date, minus accrued interest as of the delivery date.
This interpretation shows more clearly how the case of an intermediate
coupon is a generalization of equation (16.7). Here, the present value of
the intermediate cash flow must be subtracted from original proceeds. In
fact, it can be shown that if there are many intermediate coupon payments
before the delivery date, the forward price equals the original proceeds mi-
nus the present value of all the intermediate payments, all future valued to
the delivery date, minus accrued interest as of the delivery date.

The second useful expression of equation (16.10) relates the forward
price to the spot price and carry with an intermediate coupon. As in
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(16.11), the second line of (16.12) ignores the relatively small interest on
interest terms:

(16.12)

Note that in the case of an intermediate coupon the interest income over
the period includes the actual coupon payment invested to the delivery
date. For example, in the case of the 6.50s of February 15, 2011, the inter-
est received is

(16.13)

VALUE OF A FORWARD CONTRACT

The value of a forward contract changes with the value of the underlying
security. Continuing with the example of the 6.50s of February 15, 2011,
the forward price on November 26, 2001, for delivery on March 28, 2002,
is 108.5248. Therefore, a trader buying a forward contract on November
26, 2001, locks in a purchase price of 108.5248 on March 28, 2002. If the
price of the bond on March 28, 2002, turns out to be 108, the trader will
suffer a loss on that day of .5248: The trader will pay 108.5248 through
the forward contract to purchase a bond worth only 108.3 In other words,
the value of the contract on the delivery date is –.5248. Alternatively, if the
price of the bond on the delivery date turns out to be 109, the trader will
reap a profit of .4752. In this case the value of the contract is .4752.

The value of the forward contract on dates before delivery can be as
easily determined. Continuing with the 6.50s of February 15, 2011, as-
sume that the forward price on January 15, 2002, for delivery on March
28, 2002, is 108. A trader who sold a forward contract on January 15,

.
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trader pays the accrued interest when buying the bond through the forward con-
tract but collects the accrued interest when selling the bond in the market.



2002, incurs the obligation to sell the bond for 108 on March 28, 2002.
Combined with a long position requiring the purchase of the bond for
108.5248 on March 28, 2002, the net position would be a certain payment
of .5248 on March 28, 2002. Hence, as of January 15, 2002, the value of
the long forward position can be described in one of two ways. First, as of
January 15, 2002, the future value of the long forward position to March
28, 2002, is .5248. Second, the present value of the long forward position
on January 15, 2002, is the present value of .5428 discounted from March
28, 2002, to January 15, 2002.

Mathematically, let Pfwd(t,T) be the forward price at time t for delivery
at time T. Then, as of time t, a contract initiated at time 0 has a time T fu-
ture value of

(16.14)

Equivalently, if the discount factor from time t to time T is d(t,T), then, as
of time t, the present value of the forward contract is

(16.15)

FORWARD PRICES IN A TERM STRUCTURE MODEL

Chapter 17 will compare the pricing of forward and futures contracts. In
preparation, this section returns to the risk-neutral trees of Part Three to
express forward prices in that context.

Assume that the risk neutral rate process from dates 0 to 2 is given by
the following tree:
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Also assume that the prices of a particular security in the three states of
date 2 have been computed using the later dates of the tree (not shown
here). These three prices depend, of course, on the different values of the
short-term rate on date 2 and are denoted P2

uu
, P2

ud
, and P2

dd
. For simplicity,

assume that the security makes no cash flows between dates 0 and 2.
To find the forward price of the security for delivery on date 2, find the

price of the security today, find the discount factor to date 2, and then in-
voke equation (16.1). Using the methods of Part Three, the price of the se-
curity today, P(0), may be computed backward along the tree starting from
date 2. Writing this out algebraically,

(16.16)

Or, rearranging terms,

(16.17)

Each term of equation (16.17) is the probability of reaching a particular
price times that price and discounted along the path to that price. In the first
term, for example, the probability of moving up and then up again to the
price of P2

uu
is .6×.5 or .3. Discounting P2

uu
along that path means discount-

ing using r0 and r1

u
. In general, the price of a security may be written as

(16.18)

where M is a fixed number of dates from today and the product notation
is standard:

(16.19)

In words, equation (16.18) says that the price today equals the expected
discounted value of its future value—in particular, of its value on date M.
This equation also reveals the reason for using the term expected dis-
counted value rather than discounted expected value.

The discount factor to date 2 implied by the tree is the same, of course,
as the price of a zero coupon bond maturing on date 2. But a zero coupon
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bond maturing on date 2 is one in every state; that is, P2

uu
=P2

ud
=P2

dd
=1. Sub-

stituting these values into equation (16.17), the discount factor as of date 0
may be written as

(16.20)

Or, more generally,

(16.21)

Finally, from equation (16.1), Pfwd=P(0)/d(0,M) where P(0) and d(0,M)
are given by equations (16.18) and (16.21), respectively.
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CHAPTER 17
Eurodollar and

Fed Funds Futures

Futures contracts on short-term rates are extremely useful for hedging
against risks arising from changes in short-term rates and for speculat-

ing on the direction of these rates. This usefulness stems from the great liq-
uidity of many interest rate futures contracts relative to that of the
underlying assets and from the relatively small amount of capital needed to
establish futures positions relative to spot positions of equivalent risk.

This chapter describes the pricing of Eurodollar and fed funds futures
and how these contracts are used for hedging exposures to short-term
rates. An important part of the discussion is the mark-to-market feature of
futures contracts which distinguishes them from the forward contracts de-
scribed in Chapter 16.

LIBOR AND EURODOLLAR FUTURES

LIBOR, the London Interbank Offered Rate, is the rate at which banks are
willing to lend to counterparties with credits comparable to those of strong
banks. The rate varies with term, is quoted on an actual/360 basis, and as-
sumes T+2 settlement (i.e., settlement two days after the trade). LIBOR
rates are particularly important in financial markets because many other
rates are keyed off LIBOR. For example, borrowing rates are often quoted
as a spread to LIBOR, so that one company might be allowed to borrow
money at LIBOR+150, that is, at 150 basis points above LIBOR. Also, Eu-
rodollar futures, discussed in this chapter, and the floating side of swaps,
discussed in Chapter 18, set off three-month LIBOR.

Eurodollar futures are extremely liquid securities that allow investors
and traders to manage exposure to short-term rates. The underlying security



of the oldest of these contracts is a $1,000,000 90-day LIBOR deposit.
While these contracts mature in March, June, September, and December
over the next 10 years, the most liquid mature in the next few years. Table
17.1 lists the first few contracts, their expiration dates, and their prices as of
November 30, 2001. The table also lists the futures rates, defined as 100 mi-
nus the corresponding prices. Notice that the symbols are a concatenation of
“ED” for a 90-day Eurodollar contract, a month (H for March, M for June,
U for September, and Z for December), and a year. Hence, EDH2 is a 90-day
Eurodollar futures contract expiring in March 2002.1

To describe how Eurodollar futures work, focus on EDH2. On its ex-
piration date of March 18, 2002, the contract price is set at 100 minus 100
times the futures exchange set of 90-day LIBOR. So, for example, if the set
is 1.75% on March 18, 2002, the final contract price is 100–100×1.75%
or 98.25. Note that, given T+2 settlement of deposits and the 90-day term,
this rate of 1.75% represents the deposit rate covering the term March 20,
2002, to June 18, 2002.

To avoid confusion it is important to note that the contract price is
meaningful only as the convention for quoting a 90-day rate: A price of

340 EURODOLLAR AND FED FUNDS FUTURES

TABLE 17.1 Eurodollar Futures as of November
30, 2001

Symbol Expiration Price Rate(%)

EDZ1 12/17/01 98.0825 1.9175
EDH2 03/18/02 97.9500 2.0500
EDM2 06/17/02 97.5000 2.5000
EDU2 09/16/02 96.9450 3.0550
EDZ2 12/16/02 96.3150 3.6850
EDH3 03/17/03 95.8400 4.1600
EDM3 06/16/03 95.4050 4.5950
EDU3 09/15/03 95.0850 4.9150
EDZ3 12/15/03 94.7750 5.2250
EDH4 03/15/04 94.6350 5.3650
EDM4 06/14/04 94.4650 5.5350
EDU4 09/13/04 94.3300 5.6700

1When a contract expires, a new contract with the same symbol is added to the end
of the contract list. For example, when EDZ1 expires in December, 2001, a new
EDZ1 is listed, this one maturing in December, 2011.



98.25 means that the 90-day rate is 1.75%. The contract price is not the
price of a 90-day zero at the contract rate. At a rate of 1.75%, the price of
a 90-day zero is not 98.25 but 1/(1+1.75%×90/360) or 99.5644%.

On any day before expiration, market forces determine the settle prices
of futures contracts. The second column of Table 17.2 records the settle-
ment price of EDH2 from November 15, 2001, to November 30, 2001.
The third and fourth columns record the corresponding futures rates and
rate changes, in basis points.

If EDH2 were a forward contract, a rate of 2.275% on November 15,
2001, would indicate the rate at which investors could commit to borrow or
lend money on March 20, 2002, for 90 days. An increase of the rate by 9.5
basis points to 2.37% on November 16, 2001, would constitute a loss to
lenders who, by buying contracts, committed to lend the previous day at
2.275%. Similarly, the increase in rate would constitute a gain to borrowers
who, by selling contracts, committed to borrow the previous day at 2.275%.
Since the notional amount of one contract is $1,000,000, the change in the
contract rate would indicate that the interest on the forward loan changed by

(17.1)
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TABLE 17.2 Settlement Prices of EDH2 and Mark-to-
Market from a Long of One Contract

Change Mark-to-
Date Price Rate(%) (bps) Market

11/15/01 97.7250 2.2750
11/16/01 97.6300 2.3700 –9.50 –$237.50
11/19/01 97.7400 2.2600 11.00 $275.00
11/20/01 97.7050 2.2950 –3.50 –$87.50
11/21/01 97.6400 2.3600 –6.50 –$162.50
11/23/01 97.6250 2.3750 –1.50 –$37.50
11/26/01 97.6150 2.3850 –1.00 –$25.00
11/27/01 97.7850 2.2150 17.00 $425.00
11/28/01 97.7900 2.2100 0.50 $12.50
11/29/01 97.9400 2.0600 15.00 $375.00
11/30/01 97.9500 2.0500 1.00 $25.00



According to the second line of equation (17.1), the change in the interest
payment equals $25 per basis point.

Once again, if EDH2 were a forward contract then the $237.50 would
represent the additional interest received on June 18, 2002, as a result of the
increase in the contract rate. With a futures contract, however, the $237.50
is paid immediately by the longs to the shorts as a mark-to-market pay-
ment.2 The fifth column of Table 17.2 shows the mark-to-market payment
each day resulting from a long position of one contract.

When a Eurodollar futures contract expires and the last mark-to-mar-
ket payment is made and received, the long and short have no further
obligations. In particular, the long does not have to buy a 90-day deposit
from the short at the rate implied by the final settlement price. Futures con-
tracts that do not require delivery of the underlying security at expiration
are said to be cash settled.3 Futures contracts that do require delivery of an
underlying security, like the note and bond futures discussed in Chapter
20, are said to be physically settled.

The mark-to-market feature reveals a critical difference between for-
ward and futures contracts. Because forward contracts are not marked-to-
market, any value, positive or negative, accumulates over time until final
settlement at expiration. Futures contracts, however, pay or collect value
changes as they occur. As a result, after each day’s mark-to-market a fu-
tures contract has zero value. In fact, a futures contract is essentially like
rolling over one-day forward contracts where each new forward price is
that day’s futures settlement price.

The fact that forward contracts can accumulate value over time while
futures contracts can accumulate only one day of value may very well ex-
plain the historical predominance of futures contracts over forward con-
tracts. Since gains in a forward contract can become quite substantial
before the losing party need make any payment, there is a relatively large
risk that a party with substantial accumulated losses will disappear or be-
come insolvent and fail to make the required payments. With at most one
day of value in a futures contract, however, the side with a gain will sacri-
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2These payments are also called variation margin to distinguish them from the ini-
tial and maintenance margins required by futures exchanges.
3Note that this usage of the phrase is different from the other usage, mentioned in
Chapter 16, meaning same-day settle.



fice a relatively small sum in the event the losing party fails to make a
mark-to-market payment. In modern times much of the credit risk of fu-
tures contracts even over a single day is alleviated by having the futures
exchange, with solid credit, stand as the counterparty for all contracts.
This arrangement not only minimizes the risk of default but also saves the
time and expense of examining the credit quality of many different poten-
tial counterparties.

HEDGING WITH EURODOLLAR FUTURES

Chapter 16 described how forward contracts on deposits can hedge the
rate risk of plans to lend or borrow on future dates. Futures contracts can
be used in the same way. Recall the example in Chapter 16 of a corpora-
tion scheduled to raise $100,000,000 on March 20, 2002, but planning to
spend that money on June 18, 2002. On November 15, 2001, that corpo-
ration might buy 100 EDH2 contracts, each with a face value of
$1,000,000, to hedge the interest on its future loan of $100,000,000. As-
sume that it buys these 100 contracts sometime during the day on Novem-
ber 15, 2001, for 97.726, corresponding to a rate of 2.274%. If the
contract expires at 97.25, corresponding to a rate of 2.75%, the corpora-
tion will be able to lend $100,000,000 from March 20,2002, to June 18,
2002, at 2.75% and collect interest on June 18, 2002, of $687,500. See
equation (16.4). However, the corporation loses 10,000×(2.75%–2.274%)
or 47.6 basis points on its 100 contracts. At $25 per basis point that loss,
realized as the sum of all mark-to-market receipts and payments, totals
100×$25×47.6 or $119,000. Subtracting this loss from the interest re-
ceived leaves $568,500: exactly the amount locked in by a forward con-
tract at 2.274%. See equation (16.6). Hence, the total cash collected by the
company from the initiation of its futures position at 2.274% to the matu-
rity of its loan equals the amount of cash locked in by a forward contract
at 2.274% as of the maturity of the loan.

The futures hedge also works if rates fall after November 15, 2001.
If the contract expires at a price of 98.25, corresponding to a rate of
1.75%, the corporation will lend its $100,000,000 at 1.75% and collect
interest of only $437,500. See equation (16.5). However, the corporation
gains10,000×(2.274%–1.75%) or 52.4 basis points on its 100 contracts
for a total of 100×$25×52.4 or $131,000. Adding this gain to the interest
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received gives $568,500. Again, the total cash collected by the company
equals the amount of cash locked in by a forward contract at 2.274%.

TAILS: A CLOSER LOOK AT HEDGING WITH FUTURES

While it is true that the corporation discussed in the previous section could
hedge its total cash flows by buying 100 EDH2 contracts, this hedge is con-
ceptually flawed. The cash flows received or paid from the futures con-
tracts occur between November 15, 2001, and March 18, 2002, while the
interest from the loan is received on June 18, 2002. So while the sum of the
cash flows always equals $568,500, the timing of the cash flows and, there-
fore, the value of the cash flows on any fixed date are not precisely hedged.
More concretely, any mark-to-market gains from the futures position may
be reinvested to June 18, 2002, and any mark-to-market losses from the
futures position must be financed to June 18, 2002, before being added or
subtracted from the interest on the loan.

The following extreme examples demonstrate that a long position of
100 EDH2 does not really hedge the lending risk faced by the corporation.
Assume that the term structure in the short end is flat and that the price of
EDH2 changes only once, on November 15, 2001. In the first scenario of
the previous section, the company purchases the contracts sometime dur-
ing the day of November 15, 2001, at 97.726, and the contract immedi-
ately and dramatically falls to and settles at 97.25. After that, short-term
rates remain at 2.75% to June 18, 2002. In this case, the total loss of
$119,000 from the EDH2 position is realized on November 15, 2001. To
finance this loss, the corporation must borrow $119,000 at 2.75% to June
18, 2002. Equivalently, to compare this loss with the interest on the loan,
the loss must be future valued to June 18, 2002. Therefore, noting that
there are 215 days between November 15, 2001, and June 18, 2002, the
loss in terms of dollars on June 18, 2002, is

(17.2)

Subtracting these losses from the interest of $687,500 on June 18, 2002,
leaves $566,546, $1,954 short of the $568,500 locked in by the for-
ward hedge.

In the second scenario of the previous section, after the corporation
purchases its contracts, EDH2 settles up to 98.25 on November 15, 2001.

$ , $ ,.119 000 1 120 9540275 215
360+( ) =×
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The mark-to-market gain of $131,000 is immediately realized and rein-
vested for 215 days:

(17.3)

Adding this to the loan proceeds of $437,500 gives a total of $569,869
as of June 18, 2002, $1,369 above the $568,500 locked in by the for-
ward hedge.

The discrepancies between the forward and futures hedge are not large
in this example for two reasons. First, the level of rates is low so that tim-
ing differences do not have the value implications they would have at
higher rate levels. Second, the time between the contract initiation and the
ultimate receipt of cash flows is relatively short. If the contract were
EDH6, for example, instead of EDH2, the difference between the two
hedges could be substantially larger.

Relative to the forward hedge in the example, the shortfall in the case
of rising rates (i.e., $1,954) exceeds in magnitude the surplus in the case
of falling rates (i.e., $1,369). This is not a coincidence. When rates rise
and the futures position suffers a loss, this loss has to be financed at rela-
tively high rates. On the other hand, when rates fall and the futures posi-
tion enjoys a gain, this gain is reinvested at relatively low rates. This
asymmetry working to the detriment of long futures positions is the key
to the pricing of futures versus the pricing of forwards explored in the
following sections.

Since the hedge of 100 contracts leaves something to be desired, indus-
try practice is to tail the hedge. Consider the P&L of the forward and fu-
ture contracts on November 15, 2001. As pointed out previously, a
decrease of one basis point in the forward rate generates P&L in a forward
contract as of June 18, 2002. Therefore, a forward contract on $1,000,000
of a 90-day deposit would gain $25 per basis point as of June 18, 2002.
On the other hand, a one basis point decrease in the futures rate generates
an immediate mark-to-market gain of $25 for each EDH2 contract. The
improved hedge ratio equates the present value of these two gains. Letting
Nfut be the number of futures contracts to replace each forward contract
and r the actual/360 rate from November 15, 2001, to June 18, 2002,

(17.4)
25

1 215 360
25

+
=

r
N fut

$ , $ ,.131 000 1 132 3690175 215
360+( ) =×
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or

(17.5)

In words, the number of futures contracts equals the number of forward
contracts discounted from the cash flow date to the present.4 With a flat
term structure at 2.274%, the number of futures contracts in the example
as of November 15, 2001, is

(17.6)

Since contracts have to be bought in whole numbers, the corporation
would buy 99 instead of 100 contracts. This hedge is said to have a tail of
one contract. As mentioned earlier, because of the low level of rates and the
short horizon of the trade, the tailed hedge is not very different from the
simpler hedge. Chapter 20 will present an example of a more significant
tail in the context of Treasury note futures.

Note that the hedge computation in equation (17.6) depends on the
time to the date of the cash flow. In general, as the cash flow date ap-
proaches the present value effect gets smaller and the tail is reduced. Put
another way, the calculated number of futures held to replicate each for-
ward contract increases every day toward one. Since contracts have to be
bought in whole numbers, however, the number of contracts actually
bought has to change less often. In the preceding example, where the tail is
particularly small, an actual hedge would jump at some point from 99 to
100 contracts and stay there to expiration.

A common approximation of the tail arises from the mathematical ap-
proximation 1/(1+x)≈1–x for small values of x. Applying this to equation
(17.5), the number of futures contracts equals a fraction 1–rd/360 of the

100
1 2 274 215 360

98 66
+ ×

=
. %

.

N
rfut =

+
1

1 215 360
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4Tailed hedges are only an approximation to a theoretically correct hedge since the
hedging equation (17.4) takes account of the risk that the forward or futures rate
changes but does not take account of the risk that the present value factor changes.
The latter effect on the hedge ratio, however, is quite small.



number of forward contracts where d is the number of days to the date of
the cash flow. In the preceding example, the approximation is 1–2.274%×215/360

or 98.64%.

FUTURES ON PRICES IN A TERM STRUCTURE MODEL

A futures contract that based its final settlement price on the then prevail-
ing price of a 90-day zero or deposit would be classified as a futures on a
price. The Treasury note and bond contracts to be discussed in Chapter 20,
for example, are futures on prices. But, as pointed out in the first section of
this chapter, the final settlement of Eurodollar futures contracts are based
on the rate of a 90-day deposit. Since 90-day deposits are of very short
term, it turns out that the difference between a futures on the deposit price
and a futures on the deposit rate is small. Nevertheless, it is conceptually
useful to handle each case separately. This section explains the difference
between the pricing of forward contracts and the pricing of futures con-
tracts on prices. The next (very brief) section describes the pricing of fu-
tures contracts on rates.

Chapter 16 described the pricing of forward contracts in term struc-
ture models. To review results, denoting the price of a security today by
P(0) and the forward price for delivery on date M by Pfwd , Chapter 16
showed that

(17.7)

(17.8)

and

(17.9)

To review the setup in Chapter 16, the risk-neutral process from dates
0 to 2 is assumed to be given by the following tree:
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The prices of a particular security in the three states of date 2 are denoted 
P2

uu, P2
ud, and P2

dd. And, for simplicity, it is assumed that the security makes
no cash flows between dates 0 and 2.

To derive the futures price of a security in this context, begin by noting
that the futures price for immediate delivery is, by definition, the same as
the spot price of the security. Hence, at expiration of a futures contract, the
futures price equals the spot price at that time. This reasoning may be ap-
plied to construct a tree for the futures price of a security at delivery (i.e.,
on date 2). Let Fm

i denote the futures price on date m, state i, immediately
after the mark-to-market payment due on date m, but, to be consistent
with previous notation, let F(0) denote the current futures price. Then,

As of the up state on date 1, the futures price is denoted F1
u. If the price

of the underlying moves to P2
uu on date 2, then that will be the date 2 fu-

tures price, and the mark-to-market on a long position of one contract will
be P2

uu–F1
u. Similarly, if the price moves to P2

ud on date 2, then the mark-to-
market will be P2

ud–F1
u. Since the tree has been assumed to be the risk-neu-

tral pricing tree, the value of the contract in the up state of date 1 must
equal the expected discounted value of its cash flows. But, by the definition
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of futures contracts, the value of a futures contract after its mark to market
payment must equal zero. Putting these two facts together,

(17.10)

Then, solving for the unknown futures price,

(17.11)

Since the same logic applies to the down state of date 1,

(17.12)

As of date 0, setting the expected discounted mark-to-market payment
equal to zero implies that

(17.13)

Or,

(17.14)

Substituting (17.11) and (17.12) into (17.14),

(17.15)

In words, under the risk-neutral process the futures price equals the 
expected price of the underlying security as of the delivery date. More
generally,

(17.16)

FUTURES ON RATES IN A TERM STRUCTURE MODEL

The final settlement price of a Eurodollar futures contract is 100 minus the
90-day rate. Therefore, the final contract prices are not P2

uu, P2
ud, and P2

dd, as
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in the previous section, but rather 100–r2
uu, 100–r2

ud, and 100–r2
dd. Follow-

ing the logic of the previous section after this substitution, the futures price
equals the expected value of these outcomes. Denoting the rate on date M
by r(M) and the futures price based on the rates as FR(0),

(17.17)

Defining the futures rate on date 0, rfut, to be 100 minus the futures
price,

(17.18)

THE FUTURES-FORWARD DIFFERENCE

This section brings together the results of Chapter 16 and of the two previ-
ous sections to be more explicit about the difference between forward and
futures prices and between futures and forward rates.

By the definition of covariance, for two random variables G and H,

(17.19)

Letting G=P(M) and H=1/∏(1+rm), equation (17.19) becomes

(17.20)

In words, this covariance equals the expected discounted value minus the
discounted expected value. Substituting (17.7), (17.8), and (17.16) into
equation (17.20) and rearranging terms,

(17.21)

Finally, substitute (17.9) into (17.21) to obtain
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Combining (17.22) with the meaning of the covariance term, the difference
between the forward price and the futures price is proportional to the dif-
ference between the expected discounted value and the discounted ex-
pected value.

Since the price of the security on date M is likely to be relatively low if
rates from now to date M are relatively high and the price is likely to be
relatively high if rates from now to date M are relatively low, the covari-
ance term in equation (17.22) is likely to be positive.5 If this is indeed the
case, it follows that

(17.23)

The intuition behind equations (17.22) and (17.23) was mentioned in
the section about tails. Assume for a moment that the futures and forward
price of a security are the same. Daily changes in the value of the forward
contract generate no cash flows while daily changes in the value of the fu-
tures contract generate mark-to-market payments. While mark-to-market
gains can be reinvested and mark-to-market losses must be financed, on av-
erage these effects do not cancel out. Rather, on average they make futures
contracts less desirable than forward contracts. As bond prices tend to fall
when short-term rates are high, when futures suffer a loss this loss has to
be financed at relatively high rates. But, when futures enjoy a gain, this
gain is reinvested at relatively low rates. On average then, if the futures and
forward prices are the same, a long futures position is not so valuable as a
long forward position. Therefore, the two contracts are priced properly
relative to one another only if the futures price is lower than the forward
price, as stated by (17.23).

The discussion to this point is sufficient for note and bond futures,
treated in detail in Chapter 20. For Eurodollar futures, however, it is more

F Pfwd0( ) <
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5This discussion does not necessary apply to forwards and futures on securities out-
side the fixed income context. Consider, for example, a forward and a future on oil.
In this case it is more difficult to determine the covariance between the discounting
factor and the underlying security. If this covariance happens to be positive, then
equation (17.23) holds for oil. But if the covariance is zero, then forward and fu-
tures prices are the same. Similarly, if the covariance is negative, then futures prices
exceed forward prices.



common to express the difference between futures and forward contracts
in terms of rates rather than prices.

Given forward prices of zero coupon bonds, forward rates are com-
puted as described in Chapter 2. If Pfwd denotes the forward price of a 90-
day zero, the simple interest forward, rfwd is such that

(17.24)

The Eurodollar futures rate is given by (17.18). To compare the futures
and forward rates, note that

(17.25)

where the first equality is (17.16) and the second follows from the defin-
itions of P(M), r(M), and simple interest. Using a special case of Jensen’s
Inequality,6

(17.26)

Finally, combining (17.18), (17.23), (17.24), (17.25), and (17.26),

(17.27)

This equation shows that the difference between forwards and futures
on rates has two separate effects. The first inequality represents the dif-
ference between the forward price and the futures on a price. This differ-
ence is properly called the futures-forward effect. The second inequality
represents the difference between a futures on a price and a futures on a
rate which, as evident from (17.26), is a convexity effect. The sum, ex-
pressed as the difference between the observed forward rates on deposits
and Eurodollar futures rates, will be referred to as the total 
futures-forward effect.
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It follows immediately from (17.27) that

(17.28)

According to (17.28), the futures rate exceeds the forward rate or, equiva-
lently, the total futures-forward difference is positive. But, since the futures-
forward effect depends on the covariance term in equation (17.22), the
magnitude of this effect depends on the particular term structure model be-
ing used. It is beyond the mathematical level of this book to compute the fu-
tures-forward effect for a given term structure model. However, to illustrate
orders of magnitude, results from a particularly simple model are invoked.
In a normal model with no mean reversion, continuous compounding, and
continuous mark-to-market payments, the difference between the futures
rate and the forward rate of a zero due to the pure futures-forward effect is

(17.29)

where σ 2 is the annual basis point volatility of the short-term rate and t is
the time to expiration, in years, of the forward or futures contract. In the
same model, the difference due to the convexity effect is

(17.30)

where β is the maturity, in years, of the underlying zero. The total differ-
ence between the futures and forward rates is the sum of (17.29) and
(17.30). In the case of Eurodollar futures on 90-day deposits, β is approxi-
mately .25 and the convexity effect is approximately σ 2t/8. Note that, ex-
cept for very small times to expiration, the difference due to the pure
futures-forward effect is larger than that due to the convexity effect and,
for long times to expiration, the contribution of the convexity effect to the
difference is negligible.

Figure 17.1 graphs the total futures-forward effect for each contract as
of November 30, 2001, in the simple model described assuming that
volatility is 100 basis points a year across the curve. The graph illustrates
that, as evident from equation (17.29), the effect increases with the square
of time to contract expiration.

EDH2 matures on December 20, 2002, about .3 years from the pricing
date. For this contract, the total futures-forward effect in basis points is
practically zero:

σ β2 2t

σ2 2 2t

r rfut fwd>
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(17.31)

The effect is not trivial, though, for later-maturing contracts. EDZ6 ma-
tures on December 20, 2006, about 5.05 years from the pricing date. In
this case the total futures-forward effect in basis points is

(17.32)

And, as can be seen from the graph, for the contracts with the longest ex-
piry the effect approaches 50 basis points.

The terms (17.29) and (17.30) explicitly show that the total futures-
forward effect increases with interest rate volatility. The pure futures-for-
ward effect arises because mark-to-market gains are invested at low rates
while mark-to-market losses are financed at high rates. With no interest
rate volatility there are no mark-to-market cash flows and no investment
or financing of those flows. The convexity effect also disappears without
volatility, as demonstrated in Chapter 10.
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FIGURE 17.1 Futures-Forward Effect in a Normal Model with No Mean
Reversion and an Annual Volatility of 100 Basis Points
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TED SPREADS

As discussed in Part Three, making judgments about the value of a security
relative to other securities requires that traders and investors select some
securities that they consider to be fairly priced. Eurodollar futures are of-
ten, although certainly not always, thought of as fairly priced for two
somewhat related reasons. First, they are quite liquid relative to many
other fixed income securities. Second, they are immune to many individual
security effects that complicate the determination of fair value for other se-
curities. Consider, for example, a two-year bond issued by the Federal Na-
tional Mortgage Association (FNMA), a government-sponsored enterprise
(GSE). The price of this bond relative to FNMA bonds of similar maturity
is determined by its supply outstanding, its special repo rate, and the distri-
bution of its ownership across investor classes. Hence, interest rates im-
plied by this FNMA bond might be different from rates implied by similar
FNMA bonds for reasons unrelated to the time value of money. With 90-
day Eurodollar futures, by contrast, there is only one contract reflecting the
time value of money over a particular three-month period. Also, there is no
limit to the supply of any Eurodollar futures contract: whenever a new
buyer and seller appear a new contract is created. In short, the prices of
Eurodollar contracts are much less subject to the idiosyncratic forces im-
pacting the prices of particular bonds.

TED spreads7 use rates implied by Eurodollar futures to assess the
value of a security relative to Eurodollar futures rates or to assess the value
of one security relative to another. The idea is to find the spread such that
discounting cash flows at Eurodollar futures rates minus that spread pro-
duces the security’s market price. Put another way, it is the negative of the
option-adjusted-spread (OAS) of a bond when Eurodollar futures rates are
used for discounting.

As an example, consider the FNMA 4s of August 15, 2003, priced as
of November 30, 2001, to settle on the next business day, December 3,
2001. The next cash flow of the bond is on February 15, 2002. Referring
to Table 17.1, EDZ1 indicates that the three-month futures rate starting
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7TED spreads were originally used to compare T-bill futures, which are no longer
actively traded, and Eurodollar futures. The name came from the combination of T
for Treasury and ED for Eurodollar.



from December 19, 2001, is 1.9175%. Assume that the rate on the stub—
the period of time from the settlement date to the beginning of the period
spanned by the first Eurodollar contract—is 2.085%. (This stub rate can
be calculated from various short-term LIBOR rates.) Since there are 16
days from December 3, 2001, to December 19, 2001, and 58 days from
December 19, 2001, to February 15, 2002, the discount factor applied to
the first coupon payment using futures rates is

(17.33)

Subtracting a spread s, this factor becomes

(17.34)

The next coupon payment is due on August 15, 2002. Table 17.3 shows
the relevant Eurodollar futures contracts and rates required to discount the
August 15, 2002, coupon. Adding a spread to these rates, this factor is

(17.35)

Proceeding in this way, using the Eurodollar futures rates from Table
17.1, the present value of each payment can be expressed in terms of the
TED spread.8 The next step is to find the spread such that the sum of these
present values equals the full price of the bond.

1

1 1 1 12 085 16
360

1 9175 91
360

2 05 91
360

2 50 57
360+( ) +( ) +( ) +( )−( )× −( )× −( )× −( )×. % . % . % . %s s s s

1

1 102085 16
360

019175 58
360+( ) +( )−( )× −( )×. % . %s s

1

1 102085 16
360

019175 58
360+( ) +( )× ×. % . %
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TABLE 17.3 Discounting the August 15, 2002,
Coupon Payment

From To Days Symbol Rate(%)

12/3/01 12/19/01 16 STUB 2.0850
12/19/01 03/20/01 91 EDZ1 1.9175
3/20/01 06/19/01 91 EDH2 2.0500
6/19/01 08/15/01 57 EDM2 2.5000

8Since February 15, 2003, falls on a weekend, the coupon payment due on that
date is deferred to the next business day, in this case February 17, 2003. This actual
payment date is used in the TED spread calculation.



The price of the FNMA 4s of August 15, 2003, on November 30,
2001, was 101.7975. The first coupon payment and the accrued interest
calculation differ from the examples of Chapter 4. First, these agency
bonds were issued with a short first coupon. The issue date, from which
coupon interest begins to accrue, was not August 15, 2001, but August 27,
2001. Put another way, the first coupon payment represents interest not
from August 15, 2001, to February 15, 2002, as is usually the case, but
from August 27, 2001, to February 15, 2002. Consequently, the first
coupon payment will be less than half of the annual 4%. Second, unlike
the U.S. Treasury market, the U.S. agency market uses a 30/360-day count
convention that assumes each month has 30 days. Table 17.4 illustrates
this convention by computing the number of days from August 27, 2001,
to February 15, 2002. Note the assumption that there are only three days
from August 27, 2001, to the end of August, that there are 30 days in Oc-
tober, and so on.

The coupon payment on February 15, 2001, is assumed to cover the
168 days computed in Table 17.4 out of a six-month coupon period of
180 days. At an annual rate of 4%, the semiannual coupon payment 
is, therefore,

(17.36)4
2

168
180

1 8667
%

. %=
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TABLE 17.4 Example of the
30/360 Convention: The
Number of Days from August
27, 2001, to February 15, 2002

From To Days

8/27/01 08/30/01 3
9/1/01 09/30/01 30
10/1/01 10/30/01 30
11/1/01 11/30/01 30
12/1/01 12/30/01 30
1/1/02 01/30/02 30
2/1/02 02/15/02 15

Total 168



All subsequent coupon payments are, as usual, 2% of face value.
To determine the accrued interest for settlement on December 3, 2001,

calculate the number of 30/360 days from August 27, 2001, to December
3, 2001. Since this comes to 96 days, the accrued interest is

(17.37)

To summarize, for settlement on December 3, 2001, the price of
101.7975 plus accrued interest of 1.0667 gives an invoice price of
102.8642. The first coupon payment of 1.8667, later coupon payments of
2, and the terminal principal payment are discounted using the discount
factors, described earlier, which depend on the TED spread s. Solving pro-
duces a TED spread of 15.6 basis points.

The interpretation of this TED spread is that the agency is 15.6 basis
points rich to LIBOR as measured by the futures rates. Whether these 15.6
basis points are justified or not requires more analysis. Most importantly, is
the superior credit quality of FNMA relative to that of the banks used to fix
LIBOR worth 15.6 basis points on a bond with approximately two years to
maturity? Chapter 18 will treat this type of question in more detail.

As mentioned earlier, a TED spread may be used not only to measure
the value of a bond relative to futures rates but also to measure the value of
one bond relative to another. The FNMA 4.75s of November 14, 2003, for
example, priced at 103.1276 as of November 30, 2001, had a TED spread
of 20.5 basis points. One might argue that it does not make sense for the
4.75s of November 14, 2003, to trade 20.5 basis points rich to LIBOR
while the 4s of August 15, 2003, maturing only three months earlier, trade
only 15.6 basis points rich.9 The following section describes how to trade
this difference in TED spreads.

Discounting a bond’s cash flows using futures rates has an obvious
theoretical flaw. According to the results of Part One, discounting should
be done at forward rates, not futures rates. But, as shown in the previous
section, the magnitude of the difference between forward and futures rates
is relatively small for futures expiring shortly. The longest futures rate re-
quired to discount the cash flows of the 4.75s of November 14, 2003, is

4
2

96
180

1 0667
%

. %=

358 EURODOLLAR AND FED FUNDS FUTURES

9The two bonds finance at equivalent rates in the repo market.



EDU3 expiring on September 15, 2003, that is, about 1.8 years from the
settlement date of December 3, 2001. Using the simple model mentioned
in the previous section with a volatility of 100 basis points in order to
record an order of magnitude, (17.29) and (17.30) combine to produce a
total futures-forward difference for EDU3 of about 1.8 basis points. In
addition, when using TED spreads to compare one bond to a similar
bond, discounting with futures rates instead of forward rates uses rates
too high for both bonds. This means that the relative valuation of the two
bonds is probably not very much affected by the theoretically incorrect
choice of discounting rates.

APPLICATION: Trading TED Spreads

A trader believes that the FNMA 4s of August 15, 2003, are too cheap to LIBOR at a TED
spread of 15.6 basis points, or, equivalently, that the TED spread should be higher. To take
advantage of this perceived mispricing the trader plans to buy $100,000,000 face of the
bonds and to sell Eurodollar futures. How many of each futures contract should be sold?
The procedure is as follows.

1. Decrease a futures rate by one basis point.
2. Keeping the TED spread unchanged, calculate the value of $100,000,000 of the

bond with this perturbed rate and subtract the market price of the position. In
other words, calculate the bucket risk of the position with respect to that futures
rate.

3. Divide the bucket risk by $25, the value of one basis point to a position of one Eu-
rodollar contract.

4. Repeat steps 1 to 3 for all pertinent futures rates.

For example, decreasing EDU2 from 3.055% to 3.045% while keeping the TED spread at
15.6 basis points raises the invoice price of the bond from 102.8642 to 102.866685. On a
position of $100,000,000 this price change is worth

(17.38)

Therefore, to hedge against a change in EDU2 of one basis point, sell $2,485/$25 or about 99
contracts. Repeating this exercise for each contract gives the results in Table 17.5.

Intuitively, since the value of the bonds is about $103,000,000, hedging a forward rate

$ , , . % . % $ ,100 000 000 102 866685 102 8642 2 485× −( ) =
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with a $1,000,000 futures contract requires about 103 contracts. Stub risk, of course, an
exposure of only 16 days, requires only 18 contracts: 103×16/91 equals 18. The full 103 con-
tracts of EDZ1 are required, but the tail reduces the required number of contracts with later
expirations. The tail on the EDH3, for example, reduces the hedge by six contracts. The re-
duced amount of EDM3 is mostly because the contract is required to cover only 57 days of
risk and partly because of the tail. (The relevant number of days for the stub and EDM3 cal-
culations appear in Table 17.3.)

Summing the number of contracts in Table 17.5, 681 contracts should be sold against
the bonds. Imagine that all Eurodollar rates increase by one basis point but that the price of
the 4s of August 15, 2003, stays the same. The short position in Eurodollar futures will
make 681×$25 or $17,025, while the bond position will, by assumption, not change in
value. At the same time, by the definition of a TED spread, the TED spread of the bond will
increase from 15.6 to 16.6 basis points. In this sense the trade described profits $17,025
for each TED spread basis point.

The same caveat with respect to valuing bonds using TED spreads must be made with
respect to hedging bonds with Eurodollar futures contracts. If volatility were to increase,
the futures-forward difference would increase. But if forward rates rise relative to futures
rates, a position long bonds and short futures will lose money. This is an unintended expo-
sure of the trade described arising from hedging bond prices or forwards with futures.
Again, however, for relatively short-term securities the effect is usually small.

The other trade suggested by the previous section is to buy the 4s of August 15, 2003,
at a TED of 15.6 basis points and sell the 4.75s of November 14, 2003, at a TED of 20.5 ba-
sis points. This trade is typically designed not to express an opinion about the absolute
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TABLE 17.5 Hedging
$100,000,000 of FNMA 4s of
August 15, 2003, with
Eurodollar Futures

Contract Number
Symbol to Sell

STUB 18
EDZ1 103
EDH2 102
EDM2 101
EDU2 99
EDZ2 99
EDH3 97
EDM3 62



level of TED spreads but, rather, to express the opinion that the TED of the 4.75s of Novem-
ber 15, 2003, is too high relative to that of the 4s of August 15,2003. In trader jargon, this
trade is usually intended to express an opinion about the spread of spreads.

To construct a spread of spreads trade, first calculate the DV01 values of the two
bonds. In this case the values are 1.67 for the 4s of August 15, 2003, and 1.91 for the
4.75s of November 15, 2003, implying a sale of $87,434,600 4.75s against a purchase of
$100,000,000 4s. Next, calculate the Eurodollar futures position required to put on a TED
spread trade for each leg of the position. Third, net out the Eurodollar futures positions.
Table 17.6 shows the results of these steps. Viewing the trade as a combination of two
TED spreads makes it clear that the trade will make money if the TED of the 4s of August
15, 2003, rises and if the TED of the 4.75s of November 15, 2003, falls. But it is the hedg-
ing of the DV01 of the bonds that makes the trade a pure bet on the spread of spreads. The
DV01 hedge forces the sum of the net Eurodollar futures contracts to equal approximately
zero.10 This means that if bond prices do not change but all futures rates increase or de-
crease by one basis point, so that both TED spreads increase or decrease by one basis
point, then the trade will not make or lose money. In other words, the trade makes or loses
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TABLE 17.6 Spread of Spreads Trade

Buy $100,000,000 FNMA 4s of August 15, 2003
Sell $87,434,600 FNMA 4.75s of November 15, 2003

Futures Futures
Contract to Sell vs. to Buy vs. Net
Symbol 8/03s 11/03s Purchase

STUB 18 16 –2
EDZ1 103 91 –12
EDH2 102 90 –12
EDM2 101 89 –12
EDU2 99 88 –11
EDZ2 99 87 –12
EDH3 97 86 –11
EDM3 62 84 22
EDU3 53 53

10The net futures position is not exactly zero because DV01 is based on the change of semiannually com-
pounded rates rather than 30/360 rates. If the bond holdings are set so that the net futures position is ex-
actly zero, then the trade will be exactly neutral with respect to parallel shifts in futures rates but not
exactly neutral with respect to equal changes in bond yields.



money only if the TED spreads change relative to one another, as intended. Without the
DV01 hedge, the net position in Eurodollar futures contracts would not be zero and the
trade would make or lose money if bond prices stayed the same while all futures rates
rose or fell by one basis point.

Chapter 18 will present asset swap spreads that measure the value of a bond relative
to the swap curve and asset swap trades that trade bonds against swaps. While asset swap
spreads are a more accurate way to value a bond relative to LIBOR, TED spreads are still
useful for two reasons. First, for bonds maturing within a few years, TED spreads are rela-
tively accurate. Second, for bonds of relatively short maturity, TED spread trades are easier
to execute than asset swap trades because Eurodollar futures of relatively short maturity
are more liquid than swaps of relatively short maturity.

FED FUNDS

In the course of doing business, banks often find that they have cash bal-
ances to invest or cash deficits to finance. The market in which banks trade
funds overnight to manage their cash balances is called the federal funds or
fed funds market. While only banks can borrow or lend in the fed funds
market, the importance of banks in the financial system causes other short-
term interest rates to move with the fed funds rate.

The Board of Governors of the Federal Reserve System (“the Fed”)
sets monetary policy in the United States. An important component of this
policy is the targeting or pegging of the fed funds rate at a level consistent
with price stability and economic well-being. Since banks trade freely in
the fed funds market, the Fed cannot directly set the fed funds rate. But, by
using the tools at its disposal, including buying and selling short-term secu-
rities or repo on short-term securities, the Fed has enormous power to in-
fluence the fed funds rate and to keep it close to the desired target.

The Federal Reserve calculates and publishes the weighted average
rate at which banks borrow and lend money in the fed funds market over
each business day. This rate is called the fed funds effective rate. Figure
17.2 shows the time series of the fed funds target rate against the effec-
tive rate from January 1994 to September 2001. For the most part, the
Fed succeeds in keeping the fed funds rate close to the target rate. The av-
erage difference between the two rates over the sample period is only 2.2
basis points.

While the fed funds rate is usually close to the target rate, Figure
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17.2 shows that the two rates are sometimes very far apart. Sometimes
this happens because temporary, sharp swings in the demand or supply of
funds are not, for one reason or another, counterbalanced by the Fed.
Other times, the Fed decides to abandon its target temporarily in pursuit
of some other policy objective. During times of financial upheaval, for
example, the value of liquidity or cash rises dramatically. Individuals
might rush to withdraw cash from their bank accounts. Banks, other fi-
nancial institutions, and corporations might be reluctant to lend cash,
even if it were secured by collateral. (See the application at the end of
Chapter 15.) As a result, otherwise sound and creditworthy institutions
might become insolvent as a consequence of not being able to raise funds.
At times like these the Fed “injects liquidity into the system” by lending
cash on acceptable collateral. As a result of this action, the fed funds ef-
fective rate might very well drop below the stated target rate. There are
two particularly recent and dramatic examples of this in Figure 17.2.
First, the Fed injected liquidity in anticipation of Y2K problems that
never, in fact, materialized. This resulted in the fed funds rate on Decem-
ber 31, 1999, being about 150 basis points below target. Second, to con-
tain the financial disruption following the events of September 11, 2001,
the Fed injected liquidity and the fed funds rate fell to about 180 basis
points below target.
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FIGURE 17.2 The Fed Funds Effective Rate versus the Fed Funds Target Rate
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FED FUNDS FUTURES

Like Eurodollar futures, fed funds futures provide another means by which
to hedge exposure to short-term interest rates. Table 17.7 lists the liquid
fed funds contracts as of December 4, 2001. Note that the symbol is a con-
catenation of “FF” for fed funds, a letter indicating the month of the con-
tract, and a digit for the year of the contract.

The fed funds futures contract is designed as a hedge to a $5,000,000
30-day deposit in fed funds. First, the final settlement price of a fed funds
contract in a particular month is set to 100 minus 100 times the average of
the effective fed funds rate over that month. In November 2001, for exam-
ple, the average rate was 2.087% so the contract settled at 97.913. Second,
since changing the rate of a $5,000,000 30-day loan by one basis point
changes the interest payment by

(17.39)

the mark-to-market payment of the contract is set at $41.67 per basis
point.

To see how the fed funds futures contract works as a hedge, consider
the case of a small regional bank that has surplus cash of $5,000,000 over
the month of November 2001. The bank plans to lend this $5,000,000
overnight in the fed funds market over the month but wants to hedge the
risk that a falling fed funds rate will reduce the interest earned in the fed
funds market. Therefore, the bank buys one November fed funds futures
contract at the close of business on October 31, 2001, for 97.79, implying
a rate of 2.21%.

$ , ,
.

$ .5 000 000
0001 30

360
41 67× × =
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TABLE 17.7 Fed Funds Futures as of December
4, 2001

Symbol Expiration Price Rate

FFZ1 12/31/01 98.155 1.845
FFF2 01/31/02 98.235 1.765
FFG2 02/28/02 98.290 1.710
FFH2 03/31/02 98.245 1.755
FFJ2 04/30/02 98.200 1.800
FFK2 05/30/02 98.100 1.900



Recalling that the average fed funds rate in November 2001 was
2.087, over the month the bank earns interest of11

(17.40)

Also, an average rate of 2.087% implies a final settlement price of 97.913, so
the bank gains 97.913–97.79 or 12.3 basis points on its fed funds contract.
At $41.67 per basis point, the total gain comes to 12.3×$41.67 or $512.54.
Together with the interest payment then, the bank earns $9,208.37. But this is
almost exactly the interest implied by the 2.21% rate of the fed funds futures
contract purchased on October 31, 2001:

(17.41)

Hence, by combining lending in the fed funds market and trading in fed
funds futures, the bank can lock in the lending rate implied by the fed
funds contracts.

Note that the hedge is easy to calculate for any other amount of sur-
plus cash. If the bank has $20,000,000 to invest, for example, the hedge
would be to buy four fed funds contracts: Since each contract has a no-
tional amount of $5,000,000, four contracts are required to hedge an in-
vestment of $20,000,000.

To hedge over a month with 28 or 31 days, the number of contracts has
to be adjusted very slightly. The contract value of $41.67 per basis point is
based on 30 days of interest. To hedge a loan with 28 days of interest re-
quires 28/30 times the amount of the investment. So, hedging a $100,000,000
investment over February requires 20×(28/30) or 19 contracts. Similarly,

$ , ,
. %

$ , .5 000 000
2 21 30

360
9 208 33× × =

$ , ,
. %

$ , .5 000 000
2 087 30

360
8 695 83× × =
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11This hedging example implicitly assumes that the bank does not earn interest on
interest on its fed funds lending. This is consistent with the assumption of the fed
funds contract that the relevant interest rate is the average of effective fed funds
over the month. To the extent that the bank does earn interest on interest, the fed
funds contract setting is not consistent with the lending context and the hedge
works less precisely. And, while discussing approximations, since fed funds futures
are usually liquid for only the next five months or so, tails are not usually big
enough to warrant attention.



hedging a $100,000,000 investment over December requires 20×(31/30) or
21 contracts.

This hedging example uses a bank because only banks can participate
in the fed funds market. But, as mentioned earlier, many short-term rates
are highly correlated with the fed funds rate. Therefore, other financial in-
stitutions, corporations, and investors can use fed funds futures to hedge
their individual short-term rate risk. For example, in October 2001 a cor-
poration discovers that it needs to borrow money over the month of De-
cember. To hedge against the risk that rates rise and increase the cost of
borrowing, the company can sell December fed funds futures. While this
hedge will protect the corporation from changes in the general level of in-
terest rates, fed funds futures will not protect against corporate borrowing
rates rising relative to fed funds nor, of course, against that particular cor-
poration’s borrowing rate rising relative to other rates. The difference be-
tween the actual risk (e.g., changes in a corporation’s borrowing rate) and
the risk reduced by the hedge (e.g., changes in the fed funds rate) is an ex-
ample of basis risk.

APPLICATION: Fed Funds Contracts and Predicted Fed Action

Under the chairmanship of Alan Greenspan the Fed has established informal and unofficial
rules under which it changes the fed funds target rate. In particular, the Fed usually changes
the target by some multiple of 25 basis points only after announcing the change at the con-
clusion of a regularly scheduled Federal Open Market Committee (FOMC) meeting. But this
rule is not always followed: On April 18, 2001, the Fed announced a surprise cut in the tar-
get rate from 5% to 4.5%. For the most part, however, the current policy of the Fed is to
take action on FOMC meeting dates.

The prices of fed funds futures imply a particular view about the future actions of the
Fed. Consider the following data as of December 4, 2001.

1. The fed funds target rate is 2%.
2. The average fed funds effective rate from December 1, 2001, to December 4,

2001, was 2.025%.
3. The next FOMC meeting is scheduled for December 11, 2001.
4. The December fed funds contract closed at an implied rate of 1.845%.

What is the fed funds futures market predicting about the result of the December FOMC
meeting?
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Assuming that the Fed will not change its target before the next FOMC meeting, a rea-
sonable estimate for the fed funds effective rate from December 5, 2001, to December 10,
2001, is 2%. (An expert in the money market might be able to refine this estimate by one or
two basis points by considering conditions in the banking system.) From December 11,
2001, to December 31, 2001, the rate will be whatever target is set at the FOMC meeting.
Let that new target rate be r. Then, the average December fed funds rate combines four
days (December 1, 2001, to December 4, 2001) at an average of 2.025%, six days (Decem-
ber 5, 2001, to December 10, 2001) at an average of 2%, and 21 days (December 11, 2001,
to December 31, 2001) at an average of r. Setting this average equal to the implied rate
from the December fed funds futures gives the following equation:

(17.42)

Solving, r=1.766%. This means that the market expects a cut in the target rate by about 25
basis points, from 2% to about 1.75%.12

The fact that 1.766% is slightly above 1.75% might mean that the market puts some
very small probability on the event that the Fed will not lower its target rate. Assume, for ex-
ample, that with probability p the Fed leaves the target rate at 2% and that with probability
1–p it lowers the target rate to 1.75%. Then an expected target rate of 1.766% implies that

(17.43)

Solving, p=6.4%. To summarize, one interpretation of the December fed funds contract
price is that the market puts a 6.4% probability on the target rate being left unchanged and
a 93.6% probability on the target rate being cut to 1.75%.

Another interpretation of the December contract price is that the market assumes that
the Fed will cut the target rate to 1.75% on December 11, 2001. But, for technical reasons,
the market expects that the effective funds will trade, on average, 1.6 basis points above the
target rate from December 11, 2001, to December 31, 2001. In any case, the analysis of the
December contract price reveals that the market puts a very high probability on a 25-basis
point cut on December 11, 2001.

This exercise can be extended to extract market opinion about subsequent meetings.
After the December meeting, the three scheduled FOMC meeting dates13 are for January 30,

p p× + −( ) × =2 1 1 75 1 766% . % . %

4 2 025 6 2 21
31

1 845
× + × + × =. % %

. %
r
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12This calculation ignores any risk premium or convexity in the price of the December fed funds contract.
Given the very short term of the rate in question, this simplification is harmless.
13When the FOMC meets for two days, the announcement about the target rate is expected on the sec-
ond day.



2002, March 19, 2002, and May 7, 2002. Table 17.7 lists the fed funds futures prices
through the May contract. Table 17.8 shows a scenario for changes in the target rate that
match the futures prices to within a basis point.14

Many fixed income strategists thought the expected changes in the target rate implied
by fed funds futures as of December 4, 2001, were not reasonable. As can be seen from
Table 17.8, the fed funds rate was expected to fall over the subsequent two meetings but
then rise over the next two meetings. (The same conclusion emerges from simply observing
that rates implied by futures declined through the February contract and then increased.) Ac-
cording to some this view represented a wildly optimistic prediction that by March 2002 the
U.S. economy would have rapidly emerged from a recession and that the Fed would then
raise rates to fight off inflation. According to others the view expressed by fed funds futures
ignored the reluctance of the Fed to switch rapidly from a policy of lowering rates to a policy
of raising rates.

Other commentators thought that the March, April, and May fed funds contracts at the
beginning of December were not reflecting the market’s view of future Fed actions at all.
The dramatic sell-off in the bond market at the time had caused large liquidations of long
positions, particularly in a popular speculative security, the March Eurodollar contract. The
selling of this security depressed its price relative to expectations of future rates and
dragged down the prices of the related fed funds futures contracts along with it. According
to these commentators, this was the cause of the relatively high rates implied by the March
through May contracts in Table 17.7.
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14Like the analysis of the December contract alone, this analysis ignores risk premium and convexity. The
simplification is still relatively harmless as the relevant time span is only six months.

TABLE 17.8 Scenario for Fed Target Rate Changes, in
Basis Points, Matching Fed Funds Futures as of December 4,
2001

Meeting Expected
Date Action

12/11/01 –23
01/30/02 –6
03/19/02 9
05/7/02 12



APPENDIX 17A
HEDGING TO DATES NOT MATCHING FED FUNDS 
AND EURODOLLAR FUTURES EXPIRATIONS

The examples showing how to hedge with fed funds and Eurodollar fu-
tures have all assumed that the deposit or security being hedged starts and
matures on the same dates as some futures contract. In practice, of course,
the hedging problem is usually more complicated. This section uses one ex-
ample to illustrate the relevant issues.

As part of a larger position established on November 10, 2001, a trader
will be lending $50,000,000 on an overnight basis from November 10, 2001,
to March 30, 2002. In addition, some combination of fed funds and Eurodol-
lar futures will be used to hedge the risk that rates may fall over that period.

To hedge the risk from November 10, 2001, through the end of Novem-
ber the trader will buy November fed funds futures. How many contracts
should be bought? Even though the trade is at risk in November for the re-
maining 20 days only, the correct hedge is to buy 10 fed funds futures con-
tracts against the $50,000,000 lending program. To see this, assume that the
overnight rate falls by 10 basis points on November 10, 2001, and remains at
that level for the rest of the month. Since fed funds futures settle based on an
average rate over the month, by close of business on November 10, 2001, the
average for the first 10 days of November has already been set. Equivalently,
only the average for the last 20 days is affected. Therefore, the average rate
for the November fed funds contract will fall not by 10 basis points but by
(20/30)×10 or 6.67 basis points. This implies a profit of $41.67×6.67 or about
$277.80 per contract and a profit of $2,778 on all 10 contracts. But that is
the cost of a 10-basis point drop in the lending rate on $50,000,000 over the
20 days from November 10, 2001, to November 30, 2001: $50,000,000×
(20×.001/360) or $2,778. In summary, since the interest rate sensitivity of both the
November contract and the November portion of the lending program falls
as November progresses, the correct hedge, even when put on in the middle
of the month, is to cover the face amount for the entire month.

Having covered the risk in November, the trader still needs to cover the
119 days of risk from December 1, 2001, to March 30, 2002.15 Since EDZ1
covers the 90 days from December 19, 2001, to March 19, 2002, one possi-
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15One-month LIBOR contracts also trade and they mesh with the three-month con-
tracts. This means that the trader could buy a November LIBOR contract and the 



ble hedge is to buy 50×119/90 or approximately 66 EDZ1. The problem with
this hedge is that, as mentioned earlier, there is a Fed meeting on December
11, 2001. If views about Fed action were to change, EDZ1 would fully re-
flect that, even though the lending program from December 1, 2001, to De-
cember 19, 2001, would be unaffected. This is the problem with stacking
the risk from December 1, 2001, to December 19, 2001, onto a Eurodollar
future covering the period December 19, 2001, to March 19, 2002.

Another solution is to buy 19 days’ worth of protection from December
fed funds futures—that is, (50/5)×(19/30) or about six contracts—and then
some EDZ1. The problem here is that both the December fed funds contract
and EDZ1 cover the period from December 19, 2001, to the end of Decem-
ber. Therefore, the hedge will again be too sensitive to the days after the Fed
meeting relative to the sensitivity of the lending program being hedged.

When implementing this second hedge, the trader will have to adjust
holdings of the December fed funds contract as December progresses. Con-
sider the situation on December 10, 2001. Only nine days of risk remain to
be covered by the fed funds futures, while the original hedge faced 19 days.
Hence, by December 10, 2001, the trader will have had to pare down the
number of December contracts from six to (50/5)×(9/30) or three contracts.

No matter which decision the trader makes—to buy 66 EDZ1 or a
combination of FFZ1 and EDZ1—the hedge will have to be adjusted when
EDZ1 expires on December 17, 2001. EDZ1 protected against changes in
forward rates from December 19, 2001, to March 19, 2002, but once the
contract expires, the protection expires with it. Therefore, on December
17, 2001, the trader will have to buy fed funds futures to hedge against
rates falling in December and subsequent months.

In light of the stacking and maintenance difficulties of hedging with
Eurodollar futures, the trader might consider buying December through
March fed funds futures. In this example the fed funds futures will proba-
bly be liquid enough for the purpose for two reasons. First, the last con-
tract expiration is not very far away. Second, when the Fed is actively
changing the fed funds target rate the liquidity of fed funds futures tends to
be high. Conveniently, this means that when stacking risk with Eurodollar
futures is particularly problematic the fed funds futures solution becomes
especially easy to implement.

370 EURODOLLAR AND FED FUNDS FUTURES

December Eurodollar contract to hedge December seamlessly. In the third week of
November, however, the LIBOR contract will expire and the trader will be left with
a problem analogous to the one described in the text.
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CHAPTER 18
Interest Rate Swaps

SWAP CASH FLOWS

From nonexistence in 1980, swaps have grown into a very large and liquid
market in which participants manage their interest rate risk. For discus-
sion, consider the following interest rate swap depicted in Figure 18.1. On
November 26, 2001, no cash is exchanged, but two parties make the fol-
lowing agreement. Party A agrees to pay 5.688% on $100,000,000 to
party B every six months for 10 years while party B agrees to pay three-
month LIBOR on $100,000,000 to party A every three months for 10
years. Since three-month LIBOR was set at 2.156% on November 26,
2001, the first of the LIBOR payments is based on a rate of 2.156%. Sub-
sequent payments, however, depend on the future realized values of three-
month LIBOR.

In the terminology of the swap market, 5.688% is the fixed rate, and
three-month LIBOR is the floating rate. Party A pays fixed and receives
floating, party B receives fixed and pays floating, and the $100,000,000 is
called the notional amount. The word notional is used rather than princi-
pal because the $100,000,000 is never exchanged: This amount is used
only to compute the interest payments of the swap. Finally, the last pay-
ment date is the maturity or termination date of the swap.

Panel I of Table 18.1 lists the current value of three-month LIBOR and

FIGURE 18.1 Example of an Interest Rate Swap

Party
A

Party
B

5.688%

3-month
LIBOR



assumed levels for the future. (These assumed levels are used only to illus-
trate the calculation of cash flows.) Panel II lists the first two years of cash
flows from the point of view of the fixed payer under the swap agreement.

As swaps typically settle T+2, this swap is assumed to settle two busi-
ness days after the trade, on November 28, 2001, meaning that the swap is
on from November 28, 2001, to November 28, 2011. Floating payment
dates, therefore, are on the 28th day of the month every three months, un-
less that day is a holiday. Similarly, fixed payment dates are on the 28th
day of the month every six months unless that day is a holiday. Short-term
LIBOR loans or deposits also settle two business days after the trade date.
For example, three-month LIBOR on May 26, 2002, covers the three-
month period starting from May 28, 2002.

Floating rate cash flows are determined using the actual/360 conven-
tion, so, for example, the floating cash flow due on May 28, 2002, is

(18.1)

Note that the interest rate used to set the May 28, 2002, cash flow is three-
month LIBOR on February 26, 2002. For this reason the dates in Panel I
are called set or reset dates.
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%
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TABLE 18.1 Two Years of Cash Flows from the Perspective of the Fixed Payer

Fixed rate: 5.688%
Notional amount ($): 100,000,000

Panel I Panel II

3-Month Actual Floating 30/360 Fixed
Date LIBOR Date Days Receipt($) Days Payment($)

11/26/01 2.156% 11/28/01
02/26/02 2.000% 02/28/02 92 550,883 90
05/26/02 1.900% 05/28/02 89 494,444 90 2,844,000
08/26/02 2.000% 08/28/02 92 485,556 90
11/26/02 2.100% 11/29/02 93 516,667 91 2,859,800
02/26/03 2.200% 02/28/03 91 530,833 89
05/28/03 2.300% 05/28/03 89 543,889 90 2,828,200
08/26/03 2.400% 08/28/03 92 587,778 90

11/28/03 92 613,333 90 2,844,000



Fixed rate cash flows are determined using the 30/360 convention, so,
for example, the fixed cash flow due on November 29, 2002, is

(18.2)

Unlike bonds, swap cash flows include interest over a holiday. A bond
scheduled to make a payment of $2,844,000 on Thanksgiving, November
28, 2002, would make that exact payment on November 29, 2002. A sim-
ilarly scheduled swap payment is postponed for a day as well, but increases
to $2,859,800 to account for the extra day of interest.

VALUATION OF SWAPS

Unlike the cash flows from U.S. Treasury bonds, the cash flows from swaps
are subject to default risk: A party to a swap agreement may fail to make a
promised payment. A discussion of this topic is deferred to the last section
of this chapter. For now, however, assume that parties will not default on
any swap obligation.

The valuation of swaps without default risk is made much simpler by
the following fiction. Treat the swap as if the fixed-rate payer pays the no-
tional amount to the floating-rate payer on the termination date and as if
the floating-rate payer pays the notional amount to the fixed-rate payer on
the termination date. This fiction does not alter the cash flows because the
payments of the notional amounts cancel. But this fiction does allow the
swap to be separated into the following recognizable fixed and floating
legs. Including the final notional amount, the fixed leg of the swap resem-
bles a bond: Its cash flows are six-month interest payments at the fixed rate
of the swap and a final principal payment. Similarly, including the final no-
tional amount, the floating leg of the swap resembles a floating rate note,
to be described in the next section.

By including the payment of a notional amount, the fixed leg of a swap
may be valued using the methods of Part One but with a swap curve in-
stead of a bond curve.1 Figure 18.2 graphs the par swap curve as of No-
vember 26, 2001. The par swap curve is analogous to a par yield curve in a
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$ , ,100 000 000
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=
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1This is market convention but requires further discussion. See the last section of
this chapter.



government bond market. Employing the methods of Part One, the collec-
tion of par swap rates may be used to extract discount factors, spot rates,
or forward rates. Then the fixed leg of any swap may be valued with those
discount factors or rates. Also, all the techniques of Part Two may be ap-
plied to measure the interest rate risk of a swap’s fixed leg.

To value and measure the sensitivity of the floating leg of a swap the
discussion turns to floating rate notes.

FLOATING RATE NOTES

A floating rate note or floater makes periodic payments that are keyed off
some rate index before returning principal at par. For example, 100 face of
a 10-year floating rate note keyed off three-month LIBOR and maturing on
November 28, 2011, would make payments for 10 years, computed in the
same way as those appearing in the floating column of Table 18.1, and
then return the 100 principal amount. For simplicity of exposition, how-
ever, this section assumes that set and payment dates all occur on the 28th
of the month. The results presented here do not change under a more pre-
cise development that differentiates between set and payment dates.

Since the cash flows of a floater depend on the level of interest rates
over time, it would seem that valuing a floater requires a term structure
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FIGURE 18.2 Par Swap Curve on November 26, 2001
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model. As it turns out, for many floating rate notes this is not the case and
their valuation is quite straightforward.

The key to valuing floaters is to start at the maturity date and work
backward. Continuing with the example, on November 28, 2011, the
floating rate note pays 100 in principal plus an interest payment of

(18.3)

where L[t] is three-month LIBOR as of date t and d is the number of days
from the previous payment date, August 28, 2011, to November 28, 2011.
To value this three-month cash flow as of August 28, 2011, discount by the
three-month rate as of the valuation date; that is, discount by
L[08/28/2011].2 It follows that the value of the total cash flow is

(18.4)

In words, on August 28, 2011, the ex-coupon value of the floating rate
note (i.e., the value not including the August 28, 2011, payment) must
equal par. This valuation does not depend on the value of LIBOR on that
date. Intuitively, as of the set date the floater earns the fair interest rate on
three-month money for three months. And the value of a note earning the
fair rate of interest over the single period of its life is simply par.

The exercise can be repeated to value the floater on the previous set
date, namely May 28, 2011. Since the floater is worth par on August 28,
2011, ex-coupon, its value on August 28, 2011 including the payment is

(18.5)

where d is now the number of days from May 28, 2011, to August 28,
2011. To value the cash flow in (18.5) as of May 28, 2011, discount by
three-month LIBOR as of May 28, 2011:
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2Again, this is market convention but is discussed further in the last section of this
chapter.



(18.6)

Continuing in this fashion, it can be shown that the value of the float-
ing rate note on all set dates is par. In particular, the value of the floating
rate note on the first set date—that is, at the time of issue—is par.

Having discovered the value of the floater on set dates, it is easy to
write down the value of the floater between set dates. For example, using
Table 18.1 the first payment on $100,000,000 of the floating rate note is
$550,883 on February 28, 2002. As of December 31, 2001, the first pay-
ment date is 59 days away, and on that date, ex-coupon, the note is worth
par. Therefore, if L� is the appropriate LIBOR discount rate as of December
31, 2001, the value of the floater on December 31, 2001, is

(18.7)

The duration properties of floating rate notes can be deduced from
(18.7). Despite the fact that the maturity of the floater is 10 years, the price
of the floating rate note depends only on the short-term rate and its effect
on the present value of the next payment date. Put another way, since the
floating rate note is always worth par on set dates, it behaves like a zero
coupon bond maturing on the next payment date. Hence, by the arguments
of Chapter 6, its duration is approximately equal to the time to the next
payment date, that is, .25 years. Unlike the case of a fixed coupon bond, a
change in interest rates does not affect the value of all the payments of a
floater. The provision resetting each floating payment to reflect a fair mar-
ket rate at the time of reset makes the value of later payments on the floater
immune to changes in interest rates. Only the first payment which has been
fixed and the par value at the next payment date have values that are sub-
ject to interest rate risk.

VALUATION OF SWAPS, CONTINUED

Under the fiction that the floating-rate payer pays the notional amount at
maturity, the floating leg of a swap is equivalent to a floating rate note.
And, as discussed earlier, under the fiction that the fixed-rate payer pays
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the notional amount at maturity, the fixed leg of a swap is equivalent to a
fixed coupon bond. Therefore, applying the results of Parts One and Two
for the fixed leg and of the previous section for the floating leg, both legs of
a swap can be valued.

Most swaps exchange the fixed rate against the floating rate flat (i.e.,
without any spread). Some swaps, however, provide for a spread off the
floating rate. For example, a swap might provide for a fixed rate of
5.698% against a floating rate of LIBOR plus 10 basis points for 10 years.
This swap is no harder to value than the swaps against LIBOR flat. Since
the 10-basis point spread to LIBOR is fixed over the life of the swap, it
must be valued like any other fixed stream of cash flows. Abstracting from
the differences between the fixed and floating payment conventions, the
spread to LIBOR can be subtracted from the fixed rate: receiving 5.698%
and paying LIBOR+10 basis points is approximately the same as receiving
5.688% and paying LIBOR flat. In any case, spreads to the floating rate do
not particularly complicate valuation.

Denote the values of the fixed and floating legs of the swap by VFixed

and VFloat. Then, the value of a swap to the fixed receiver/floating payer is
VFixed–VFloat, and the value of a swap to the floating receiver/fixed payer is
VFloat–VFixed. Since no payment is exchanged at the initiation of the swap,
the swap is only fair if its net value to each party equals zero, that is,
VFixed–VFloat equals zero. Also, the previous section showed that at the initi-
ation of a swap the floating leg at LIBOR flat is worth par: VFloat=100.
Putting these two observations together, it must be the case that at the initi-
ation of the swap the fixed leg is also worth par: VFixed=100. But, by defini-
tion, this can be true only if the fixed rate of the swap at initiation equals
the par swap rate. Hence, the par swap rate curve graphed in Figure 18.2 is
the fixed rate of swap agreements against LIBOR flat entered into on No-
vember 26, 2001.

As interest rates change and as time passes, the value of the swap may
become positive or negative. If VFixed–VFloat>0, then the value of the swap is
positive to the fixed receiver but negative to the fixed payer. This means
that if the parties wish to terminate the swap, so that neither party need
make any more payments to the other, the fixed payer will have to make a
positive payment of VFixed–VFloat to the fixed receiver. Conversely, if
VFloat–VFixed>0, then the value of the swap is positive to the fixed payer but
negative to the fixed receiver. If the swap were terminated, the fixed re-
ceiver would make a positive payment of VFloat–VFixed to the fixed payer.
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NOTE ON THE MEASUREMENT OF FIXED 
AND FLOATING INTEREST RATE RISK

Strictly speaking, it is correct to say that the DV01 of a swap from the per-
spective of the fixed receiver is the DV01 of the fixed leg minus the DV01
of the floating leg. But this observation is not used much in practice. The
DV01 of the fixed leg depends on the swap rate curve out to the maturity
of the swap, whereas the DV01 of the floating leg depends on LIBOR out
to the first payment date. Hence, adding these DV01 values for a 10-year
swap, for example, mixes 10-year risk with three-month risk. While this is
technically correct in the DV01 model of parallel shifts, this aggregation of
risk does not constitute good hedging practice. For this reason it is com-
mon in the industry to manage the interest rate risk of the fixed and float-
ing legs separately. The fixed side of a swap is hedged with other swaps or
bonds, and the floating side of a swap is hedged with Eurodollar or fed
funds futures, see Chapter 17, or other short-term securities.

Another measure of risk used in the swap markets is PV01, normally
meant to mean the change in the value of a swap for a one-basis point
change in its fixed rate. Writing a bond pricing equation in terms of dis-
count factors reveals that PV01 equals the sum of the discount factors used
to discount the fixed cash flows.

SWAP SPREADS

Chapter 2 describes the conditions under which it turns out better to have
rolled over investments in short-term securities rather than having made an
investment in a long-term security. The reasoning there may be used to de-
scribe the conditions under which it turns out better to have received float-
ing on a swap versus having received fixed. The par swap rate may be
thought of as composed of a series of three-month forward rates. If the re-
alised values of three-month LIBOR turn out to be above the forward
rates, then it will have been better to receive floating and pay fixed than to
pay floating and receive fixed. Conversely, if the realised values of three-
month LIBOR turn out to be below the forward rates, then it will have
been better to pay floating and receive fixed. In the intermediate cases,
when some realised values of three-month LIBOR turn out to be above and
some turn out to be below the forward rates, then a more detailed calcula-
tion is required to determine which side of the swap turns out better.
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The same considerations that relate long-term rates in government
bond markets to the evolution of short-term rates also apply to the swap
market. Expectations, risk premium, and convexity, as described in Chap-
ter 10, may be used to understand the shape of the swap curve with re-
spect to the evolution of three-month LIBOR. The critical difference
between the government bond and swap context is the credit component
of the short-term rate in the swap context. A three-month government
bond rate depends on general economic conditions while three-month LI-
BOR depends on both general economic conditions and on three-month
bank credit spreads.

While three-month LIBOR depends on the credit of the banking sector
and swap rates depend on the evolution of three-month LIBOR, it is not
true that the 10-year swap rate should equal the yield on a 10-year bond is-
sued by a financially solid bank. To understand this point requires a bit
more detail about how three-month LIBOR is set. The British Bankers’ As-
sociation (BBA), the body responsible for setting LIBOR, starts with a list
of banks with strong credit ratings. Every day it polls those banks about
the three-month rate, drops the highest and lowest responses, and averages
the rest. If a bank on the list has credit problems, it is supposed to be
dropped from the list and replaced with another bank. Given this proce-
dure for setting three-month LIBOR, the 10-year swap rate should be sub-
stantially below the 10-year obligation of a particular bank. The 10-year
swap rate reflects views on a rolling three-month credit (i.e., on the three-
month credit of banks that are on the polling list over time). Since banks
are supposed to be dropped from the list after some credit deterioration,
three-month LIBOR should never reflect the credit quality of banks with
very serious credit problems. The yield on a 10-year bank obligation, how-
ever, reflects the possibility that a particular bank might experience credit
problems, and perhaps severe credit problems, in the future. The more ag-
gressive the BBA is in dropping banks with financial problems, the lower
the swap rate relative to the yield of individual bank obligations. The less
aggressive, the closer the swap rate is to those individual bank yields. Fur-
thermore, the less correlated the credit of banks in the banking system, the
lower the swap rate relative to the yield of individual bank obligations as
substitutions of one bank for another on the LIBOR list are worth a lot in
terms of credit. The more correlated the credit of banks in the banking sys-
tem, the closer the swap rate to individual bank note yields as substitutions
of one bank for another are not worth very much in terms of credit.
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Since swap rates reflect three-month rolling bank credit, they should
certainly exceed government bond rates. Swap spreads are simply the dif-
ference between swap rates and government bond yields of a particular
maturity. One problem in defining swap spreads is that a 10-year swap, for
example, matures in exactly 10 years while, at most times, there is no gov-
ernment bond with exactly 10 years to maturity. By convention, therefore,
the 10-year swap spread is defined as the difference between the 10-year
swap rate and the 10-year on-the-run government bond. Swap spreads of
other maturities are defined analogously. Given the importance of both the
swap and government bond markets, swap spreads are closely watched in-
dicators of fixed income market pricing. Figure 18.3 graphs some history
of the 10-year swap spread.

The fall in swap spreads in the early 1990s reflected the recovery of the
banking sector from its problems in the 1980s. The rise in swap spreads in
the late 1990s, on the other hand, can be best explained by a perceived
scarcity in the supply of U.S. Treasury securities relative to demand. This
recent history illustrates the roles of both credit and the supply and de-
mand for Treasuries and swaps in the determination of swap spreads.

While quoted swap spreads are useful for investigating broad themes,
as in the brief discussion of Figure 18.3, in the small these data can be mis-
leading. The problem derives from quoting swap spreads using on-the-run
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FIGURE 18.3 Ten-Year Swap Spreads
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Treasury securities. As discussed in Chapter 15, liquidity premiums and
special financing have a large impact on the yield of on-the-run govern-
ment bonds. This means that the swap spread is not a clean measure of the
credit of the banking system and of demand and supply in the swap and
government bond markets. Possible solutions to this problem are measur-
ing swap spreads with respect to fitted yields from an off-the-run govern-
ment curve or explicitly adjusting on-the-run yield for financing and
liquidity. As both of these solutions require a good deal of subjective judge-
ment, adjusted swap spreads tend to be used by individual trading desks
and houses rather than being widely quoted in the marketplace.

MAJOR USES OF INTEREST RATE SWAPS

While many corporations prefer floating rate debt, the market for long-
term floating rate notes in the U.S. is very small. Corporations with very
strong credit ratings may effectively pay a floating rate by issuing and
rolling over short-term obligations, like commercial paper. Even among
these particularly creditworthy corporations, however, some wish to avoid
liquidity risk, that is, the risk that credit rating deteriorates and, sometimes
quite suddenly, short-term obligations can no longer be refinanced (i.e.,
rolled over). A solution for these corporations is to issue fixed rate debt
and then receive fixed and pay floating in a swap. The net effect of the
fixed debt and the swap is floating rate funding. This solution for creating
floating rate debt synthetically is also used by corporations who prefer
floating rate debt and do not possess the credit stature to issue short-term
obligations.

Perhaps the largest use of swaps is related to the mortgage market.
Agencies or Government-sponsored enterprises (GSEs) like the Federal Na-
tional Mortgage Association (FNMA) and the Federal Home Loan Mort-
gage Corporation (FHLMC), among other activities, sell fixed rate debt
and buy mortgages. As the net interest rate risk of the resulting portfolios
changes over time, with the level of rates, and with the shape of the curve,
these GSEs use swaps to control their interest rate risk. Mortgage servicers,
who collect fees for collecting and processing mortgage payments, are also
exposed to interest rate risk from their business activities and hedge with
swaps. Chapter 21 will describe the interest rate risk of mortgages and an
application in that chapter will discuss the effect of mortgage hedging on
the swap market.
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A last example of the use of swaps is that of a corporation hedging fu-
ture debt issuance. Once a corporation has decided to sell bonds to fund its
capital expenditures or operations, it may want to hedge against rising in-
terest rates from the time of its decision to the actual sale of the bonds. To
hedge the future issuance of 10-year debt, for example, it can pay fixed on
a 10-year swap at the time of its decision and unwind the swap at the time
of its bond sale.3 If rates have risen over that period, the corporation will
have to pay a higher coupon rate on its debt but will have gained from its
swap position. Of course, if rates have fallen then the corporation will not
benefit from selling debt at a lower rate because that gain will be offset by
losses from its swap position. An advantage of using swaps rather than
Treasuries for this purpose is that swaps hedge not only changes in the gen-
eral level of rates but also, at least to some extent, changes in credit spreads
(i.e., the differences between yields on corporate and on government debt).
The magnitude of the correlation between swap rates and credit spreads is
a matter of empirical debate, and this correlation is important in deciding
to hedge corporate debt with Treasuries or with swaps. Even if the correla-
tion is high, substantial basis risk remains when hedging changes in corpo-
rate rates with swaps. First, swap rates reflect banking credit specifically
rather than general corporate credits. Second, swap rates cannot possibly
hedge the risk that the credit spread of a particular corporation might
change relative to the general level of credit spreads.

ASSET SWAP SPREADS AND ASSET SWAPS

Chapter 17 discussed the convenience of measuring the value of bonds,
like agency securities, relative to rate curves that are not contaminated
by individual security effects. TED spreads, based on Eurodollar futures
rates, serve this function for relatively short-term bonds. For longer-term
bonds, market participants rely on asset swap spreads. The asset swap
spread of a bond is the spread such that discounting the bond’s cash
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3Rather than pay fixed on a swap, a corporation may sell Treasuries to hedge
changes in the level of rates and purchase a spread lock, which makes money if
swap spreads widen, to hedge credit spreads. While it seems that these transactions
skirt the swap market, the dealer selling the spread lock has to pay fixed in swaps
to hedge its own risk. The effective use of the swap market, therefore, is essentially
as described in the text.



flows by swap rates plus that spread gives the bond price. Asset swap
spreads are, for the most part, a measure of a bond’s credit risk relative
to the credit risk built into the swap curve. But security-specific pricing
effects, like special financing or supply and demand imbalances, are also
captured by asset swap spreads. The example of this section and the
agency case study in the next section focus on the credit risk component
of asset swap spreads while the appendix, a case study of OTR five-year
Treasuries compared with old five-year Treasuries, focuses on security-
specific effects.

Consider the following example. Assume that the swap curve is flat at
6.10% and that the yield of the FNMA 6.25s of May 15, 2029, is 6.25%.
By the definition of yield, discounting the bond’s cash flows by 6.25%
gives the bond price. Therefore, discounting at the flat swap rates of
6.10% plus a spread of 15 basis points also gives the bond price. Hence the
asset swap spread of the bond in this example is 15 basis points.4

The next section discusses the reasonableness of an asset swap spread
of 15 basis points for the FNMA security. For now, however, assume that
an investor believes that the bond is cheap relative to swaps and wants to
profit from the large spread. A common choice is an asset swap, a series of
transactions depicted in Figure 18.4.

The investor buys $100 million face of the FNMA 6.25s of May 15,
2029, at par and finances the position by selling the repo. The investor
then engages to pay 6.25% fixed on $100 million notional amount in
exchange for LIBOR plus 15 basis points. Note that this is a fair swap:
Since 6.10% is the par swap rate, paying 6.10% is fair against LIBOR
flat. But then paying 6.25% against LIBOR plus 15 basis points must
also be fair.5

The asset swap depicted in Figure 18.4 has the following conse-
quences. The coupon payments from the bond cancel the fixed payments to
the swap. The principal payment from the bond at maturity cancels the
repo indebtedness at that time. And the floating payments total LIBOR
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4Only in the very special case of a flat swap rate curve does the asset swap spread
equal the difference between the bond yield and the swap rate.
5Once again, the text simplifies by ignoring the difference in payment conventions
between the fixed and floating legs of the swap. The section continues to use this
simplification without further comment.



plus 15 basis points minus the repo rate.6 The investor receives this peri-
odic payment so long as the agency security does not default. If the agency
does default, then the coupon payments from the bond cease but the fixed
payments to the swap are still due. Intuitively, the asset swap spread is a
measure of the credit risk of the bond relative to the swap curve while LI-
BOR minus repo is a measure of the credit risk of the swap curve. There-
fore, an asset swap allows an investor to earn the full credit spread of a
bond so long as that bond does not default.

The example in Figure 18.4 is particularly simple because the bond is
assumed to sell at par. To explore the slightly more difficult case, change
the example slightly to assume that the swap rate curve is flat at 5.90%
and the yield of the FNMA 6.25s of May 15, 2029, is 6.05%. The asset
swap spread remains equal to 15 basis points but the price of the FNMA
bonds becomes 102.683. The problem with structuring the asset swap as
before is that the floating rates lose comparability. The $102.683 million
cost of the bond will have to be financed at the repo rate, while the LIBOR
plus 15 basis points will be earned on the notional amount of $100 mil-
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FIGURE 18.4 Asset Swap of the FNMA 6.25s of May 15, 2029
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6At the initiation of the asset swap this net rate is earned on $100 million. If bond
yields then fall, however, a higher bond value must be financed so the repo rate is
paid on a higher amount. Similarly, if swap rates fall, then, as explained in the last
section of this chapter, the investor must put up cash on which he earns approxi-
mately LIBOR. Therefore, if bond yields and swap rates fall together, the investor
continues to earn LIBOR plus 15 minus repo, but on an amount greater than $100
million. Conversely, if bond yields and swap rates increase together, the investor
earns LIBOR plus 15 minus repo on an amount less than $100 million.



lion. The solution is to execute a swap agreement that includes an up-front
payment of $2.683 million, as depicted in Figure 18.5.

Since the swap rate curve is now assumed to be flat at 5.90%, it is fair
to pay 5.90% against LIBOR flat. Also, at that swap rate, it is the case that
a flow of 19.7 basis points on $100 million notional is worth $2.683 mil-
lion.7 In other words, paying 5.90% plus 19.7 or 6.097% against LIBOR
flat and receiving an up-front payment of $2.683 million is a fair swap. But
then paying an additional 15.3 basis points on the fixed side and receiving
the same on the floating side is also fair and gives rise to the swap in Figure
18.5: Pay 6.25%, receive an up-front payment of $2.683 million, and re-
ceive LIBOR plus 15.3 basis points.

Apart from this swap the investor buys the FNMA 6.25s of May 15,
2029, for $102.683 million. He applies the $2.683 million received from
the swap to this purchase and finances the remaining $100 million at the
repo rate. The net cash flow from the asset swap trade, therefore, is LIBOR
plus 15.3 basis points minus repo on $100 million.

Note that the net flow is slightly bigger in the asset swap depicted in
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FIGURE 18.5 Asset Swap of the FNMA 6.25s of May 15, 2029. Bonds at a
Premium
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7The magnitudes make intuitive sense as follows. On the agency bond yielding
6.05%, a coupon rate of 6.25% (i.e., 20 basis points above the yield) is worth
2.683% of par. Since the swap rate is below the bond yield, the DV01 of the swap
is higher than that of the bond. Therefore, a fixed flow of slightly less than 20 basis
points produces the same 2.683% of par on the swap. The exact flow turns out to
be 19.7 basis points.



Figure 18.5 than in that depicted in Figure 18.4. When the bond is selling
at a premium, an event of default costs more. Put another way, the 6.25%
coupon stream at risk is worth more in the second case, when the swap
rate is 5.90%, than in the first case, when the swap rate is 6.10%.

Asset swaps are designed as buy-and-hold trades. The focus is on the
periodic payments over the life of the bond and swap rather than on the re-
turn to any particular horizon. But the trade does make or lose money as
rates and spreads move. First, since the bond yield differs from the swap
rate, the DV01 of the bond differs from the DV01 of the fixed leg of the
swap. Therefore, rising or falling rates before maturity will have a P&L
impact. Second, the trade experiences P&L as the asset swap spread
changes. If, in these examples, the yield of the bond increases and the swap
rate stays the same, then the asset swap spread increases and the trade
shows a loss. Similarly, if the asset swap spread narrows, the trade shows a
gain. While it is true that an investor could, in theory, plan to hold the
trade until maturity, collect the spread, and ignore interim P&L fluctua-
tion, almost all investors are, in reality, limited in the amount of interim
losses they can accumulate. This does not necessarily mean that the asset
swap is a poor way to set up the trade. It does mean that the issues raised
in Chapter 14 are relevant here. Hedging with current DV01 values, as in
the case study in Appendix 18A, minimizes current P&L fluctuation but
not interest rate risk at maturity. At the other extreme, by perfectly offset-
ting fixed cash flows, the asset swap minimizes interest rate risk at maturity
but not interim P&L fluctuation.
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TRADING CASE STUDY: 30-Year FNMA Asset 
Swap Spreads

The U.S. government created FNMA to facilitate the growth of the
U.S. mortgage market. This agency is now private but continues to
have close enough ties to the government to be called a government-
sponsored enterprise and continues to play an extremely important
role in the mortgage market. Most market participants believe that
debt issued by FNMA has minimal credit risk. This view is mostly due
to the size and value of its assets relative to its debt. But there is also a 
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widespread belief that, despite the absence of any explicit guarantee, 
the U.S. government would not allow such a crucial institution in the
U.S. economy to default on its obligations.

The examples of the previous section, with the asset swap
spread of the 6.25s of May 15, 2029, at 15 basis points, reflect
market conditions in late August 2001. But is a spread of 15 basis
points reasonable for an agency security? Since most market partic-
ipants believe that agency debt is extremely unlikely to default, the
periodic flows from asset swaps are extremely likely to be realized
over the life of the trade. The superior credit of FNMA relative to
that of strong banks also means that the repo rate on agencies
should be well below LIBOR. Therefore, the periodic flow from an
asset swap of the 6.25s of May 15, 2029, is 15 basis points plus the
positive difference between LIBOR and the repo rate. Many argued
that this was an excellent trading opportunity. In fact, given the so-
lidity of FNMA’s credit, many argued further that the fair asset
swap spread was negative. An asset swap spread equal to zero still
offers a positive periodic payment to the asset swap: LIBOR minus
the repo rate. Only a negative asset swap spread produces the mini-
mal return to the asset swap trade justified by the small probability
that FNMA might default.

Figure 18.6 graphs the recent history of the asset swap spread
of the FNMA 6.25s of May 15, 2029. The spread was negative un-
til early 2001. It then hovered around zero until July 2001, at
which time it widened dramatically. A convincing explanation of
this price action was not easily found. Almost no one made the ar-
gument that the cheapening of the bonds resulted from a perception
that FNMA’s credit had weakened. In any case, as the cheapening
persisted, positioning started to play an important role. Many in-
vestors and traders had reasoned along the lines of the previous
paragraph, had taken account of recent history, and had bought the
agency against swaps at asset swap spreads of 0, 10, 15, and so on.
As spreads continued to widen, these positions lost a good deal of
money and forced liquidations that, in turn, widened the spreads
even further.



ON THE CREDIT RISK OF SWAP AGREEMENTS

In discussing the determination of swap rates, this chapter has taken ac-
count of the credit risk built into three-month LIBOR but has assumed that
parties to the swap agreement will never default on their obligations to one
another. This section discusses the implications of default by parties to the
swap agreement.

It is not correct to view a swap as a position in a fixed rate note and an
opposite position in a floating rate note when considering the implications
of default. Default on either a fixed or a floating rate note may result in a
loss of principal. In a swap agreement, however, no principal payment is
ever made or received. Furthermore, interest rate swap agreements typi-
cally absolve one party from payments if the other party defaults on a pay-
ment. Therefore, in the event of default the loss in a swap agreement is
limited to the value of the swap, if positive. If VFixed–VFloat>0 the fixed re-
ceiver is subject to a loss of VFixed–VFloat, while if VFloat–VFixed>0 the floating
receiver is subject to a loss of VFloat–VFixed. For an order of magnitude ap-
proximation to these values at risk, multiply the net DV01 of the swap by
the change in rates since the initiation of the swap agreement. For example,
the fixed leg of the $100 million swap to November 15, 2005, in the previ-
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FIGURE 18.6 Asset Swap Spread for the FNMA 6.25s of May 15, 2029
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ous section had a DV01 of .04158 and any swap floating leg at LIBOR flat
has a DV01 of approximately .0025. This net DV01 of .04158–.0025 or
.03908 implies that a parallel shift in swap rates of as many as 50 basis
points puts at most

(18.8)

at risk. This value would, of course, be larger for a swap with a longer ma-
turity or for a bigger change in swap rates. But the order of magnitude of
the loss is very much below that of a default on a principal amount of
$100,000,000. Thus the default risk of a swap is in no way comparable to
the default risk of a note, and the notional amount of a swap is an order of
magnitude larger than the resulting value at risk.

In practice, the credit risk of swaps is even lower than that suggested
by the previous paragraph. Swap agreements usually require cash margin,
which earns interest at a short-term rate, to cover negative swap values. If
the value of a swap is –$X to party A and +$X to party B, party A will
have posted $X to party B as margin. If party A defaults, party B may keep
the margin and terminate the swap. (There is, of course, no reason for
party B to default on the swap. Whatever the financial situation of party B,
it should assign the swap to some third party8 and collect the value of the
swap rather than default.)

Given the relatively low credit risk of swaps, the market convention is
not to discriminate across credits with price. In other words, if party A
with an extremely strong credit rating and party B with an acceptable
credit rating both approach party C to do a particular swap, parties A and
B will usually be quoted about the same swap rate. Party C differentiates
between the credits by imposing stricter credit terminations and margin re-
quirements on party B than on party A. Also, party C will accept a lower
total swap exposure to party B than to party A; that is, party B will have a
smaller credit line than party A.

The market convention of achieving low default risk on swaps through
contractual provisions and credit allocation means that observable swap

$ , ,
.

$ , ,100 000 000
03908
100

50 1 954 000× × =

On the Credit Risk of Swap Agreements 389

8Party B can assign a swap to a new party C so long as party A and party C agree to
accept each other’s credit.



rates reflect the rates on swap agreements with little perceived risk of de-
fault. To some extent this justifies pricing swaps as if there were no risk of
counterparty default. To the extent that these contractual provisions do
not fully eliminate the risk of default, however, it is not strictly correct to
price swaps in this way. Similarly, to the extent that swap dealers do busi-
ness with equal and inferior credits, they are exposed to credit risk for
which they must be compensated by the profitability of the business.

Having discussed the credit issues of swap agreements, it becomes
clear that there is an internal inconsistency in the convention for pricing
swaps presented in the previous sections. On the one hand it is assumed
that there is no risk of counterparty default: The cash flows are assumed to
be as specified in the swap agreement and fictional notional amounts are
added to the fixed and floating sides. On the other hand, all cash flows are
discounted at LIBOR or swap rates (i.e., at rates containing the rolling
credit risk of strong banks). If counterparty default risk is significant, then
cash flows should be adjusted for the potential of default and be dis-
counted at a rate appropriate for that particular counterparty. If default
risk is insignificant, then the promised cash flows should be discounted at
default-free rates—that is, at government bond rates. In this light the mar-
ket convention must be viewed as a compromise. The default risk of a
swap agreement is perceived small enough to assume that promised cash
flows are received and to discount these cash flows at a rate appropriate for
a very strong credit, namely the rolling credit of financially sound banks.
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APPENDIX 18A
TRADING CASE STUDY: Five-Year On-the-Run/
Off-the-Run Spread of Spreads

On January 17, 2001, the OTR five-year Treasury bond seemed to
be priced rich relative to the old five-year Treasury bond. Table
18.2 gives details.

The yield on the OTR five-year, maturing November 15, 2005,
was 11.9 basis points below that of the old five-year, maturing May
15, 2005. This yield spread is a bit difficult to assess on its own be-
cause it does not control for the term structure of interest rates be-
tween the two maturity dates. If, for example, the term structure of
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interest rates in that maturity region was very downward-sloping,
then it may have made perfect sense for the bond with an extra six
months of maturity to trade at a yield lower by 11.9 basis points.

One way to control for curve is to look at the slope of the swap
curve. Table 18.2 reports that the par swap rate to November 15,
2005, was four basis points above the par swap rate to May 15,
2005. In other words, the swap curve sloped upward in that range of
maturity. Making the strong assumption that the slope of the Trea-
sury curve should approximately equal the slope of the swap curve
over this six-month maturity region, the OTR five-year of November
15, 2005, should have traded at a yield four basis points above that of
the old five-year of May 15, 2005. The fact that the yield of the OTR
five-year was 11.9 basis points below that of the old five-year then im-
plies that the yield of the OTR was 15.9 basis points too low.

The same argument can be made in terms of swap spreads. Using
the data in Table 18.2, the OTR was 91.3 basis points rich relative to
swaps. At the same time the old five-year was 75.4 basis points rich
relative to swaps.9 Note that these differences between bond and swap
yields do not measure value as precisely as asset swap spreads. But, as
will become apparent, the trade described in this appendix is more
closely related to yield spreads than to asset swap spreads. In any case,
did it make sense for bonds so close in maturity to trade 15.9 basis
points apart in spreads to the swap curve? After all, both bonds are

TABLE 18.2 Yields and Spreads of 5s and Old 5s as of January 17, 2001

Swap Rate Spread Bond Swap
Coupon Maturity Description Yield to Maturity (bps) DV01 DV01

5.750% 11/15/05 OTR 5-year 4.852% 5.765% –91.3 0.04352 0.04158
6.750% 05/15/05 Old 5-year 4.971% 5.725% –75.4 0.04005 0.03782

Spread (bps) –11.9 4.0

Spread of spreads (bps) –15.9

9Whether these spreads are reasonable in absolute magnitude given the rolling
credit risk of the banking sector is a question not discussed in this case.
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U.S. Treasuries and the swap curve over the six months in question re-
flects the same rolling bank credit risk over slightly different periods.
In other words, was a spread of spreads of 15.9 basis points too large?

Two factors that have not been accounted for in Table 18.2 are liq-
uidity premium and special financing. Both these effects can be incorpo-
rated by constructing the trade on a forward basis. Assume that an
experienced trader made the following argument in January, 2001. On
May 8, 2001, a new five-year bond will start to trade in the when-issued
market. Soon after that time the 5.75s of November 15, 2005, will be-
come the old five-year and the 6.75s of May 15, 2005, will become the
double-old five-year. From experience, the spread of spreads between an
old five-year and a double-old five-year, due to financing and liquidity
effects, should be about 3 basis points. Therefore, the question is really
whether the spread of spreads forward to May 8, 2001, is more than 3
basis points rich. Table 18.3 supplies the relevant data for this question.

Before proceeding with an analysis of the forward trade, it is impor-
tant to understand exactly how constructing the trade on a forward ba-
sis accounts for special financing from the trade date to the forward
date. According to Table 18.3, the repo rate from January 17, 2001, to
May 8, 2001, for the OTR five-year was substantially below that for the
old five-year. The resulting financing advantage explained, at least in
part, why the spot yield of the OTR five-year was so far below that of
the old five-year. But since this financing advantage was not expected to
be so large after some seasoning, that is, from May 8, 2001, on, as it had
been from January 17, 2001, to May 8, 2001, the forward yield spread

TABLE 18.3 Yields and Spreads for 5s and Old 5s as of January 17, 2001, Forward
to May 8, 2001

Swap
Repo Rate

to to Forward Forward Bond Swap
Forward Forward Forward Swap Spread Forward Forward

Coupon Maturity Description Date Yield Date Rate (bps) DV01 DV01

5.750% 11/15/05 OTR 5-year 3.814% 4.929% 5.522% 5.779% –85.0 0.04086 0.03927
6.750% 05/15/05 Old 5-year 5.006% 4.963% 5.522% 5.737% –77.4 0.03742 0.03544

Forward spread (bps) –3.4 4.2

Forward spread of spreads (bps) –7.6
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of the bonds was not so large as the spot yield spread. In other words,
the market priced the bonds from May 8, 2001, under the assumption
that the OTR and old five-year would not then trade so differently in the
special repo market. Table 18.3 quantifies this effect, showing that the
forward yield spread was only 3.4 basis points, 8.5 basis points below
the 11.9 spot yield spread reported in Table 18.2.

A direct calculation of the relative financing advantage of the
OTR five-year makes the same point as computing the difference
between the spot and forward yield spreads. The spread between
the OTR five-year and the old five-year term repo rates to May 8,
2001, is 5.006%-3.814% or 119.2 basis points. Therefore, the cost
of financing 100 worth of the OTR five-year relative to the cost of
financing 100 worth of the old five-year over the 111 days between
January 17, 2001, and May 8, 2001, is

(18.9)

Dividing by the DV01 of the OTR five-year, given in Table 18.2, mea-
sures this financing cost in terms of the yield of the OTR five-year:

(18.10)

As was to be shown, these 8.4 basis points essentially explain the dif-
ference between the spot yield spread of 11.9 basis points and the for-
ward yield spread of 3.4 basis points.

The relationship between the spot and forward spreads of the swaps
was quite different from that of the bonds. Since the swap rate to the
forward date is, by definition, the same for both the November 15,
2005, and the May 15, 2005, swaps,10 the 4.2-basis point difference be-
tween the forward swap rates in Table 18.3 was essentially the same as
the 4.0-basis point difference between the spot swap rates in Table 18.2.

Return now to the forward trade and Table 18.3. The forward
spread of spreads to May 8, 2001, equals –7.6 basis points. In other
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10Succinctly, all swaps finance at LIBOR. Including the fictional notional
amounts, receiving fixed and paying floating is analogous to buying a bond
and financing it at LIBOR every quarter.
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words, the OTR five-year was 7.6 basis points rich to the old five-year
on a forward spread basis. But since the trader believed that the OTR
five-year would be only 3 basis points rich to the old five-year on May
8, 2001, the OTR five-year was, on a forward basis, 4.6 basis points
too rich relative to the old five-year.

The following six trades can be executed in an attempt to capture
these 4.6 basis points.

1. Sell $100,000,000 of the 5.75s of November 15, 2005.
2. Buy the repo to May 8, 2001, at 3.814%.
3. Receive fixed on $100,000,000×.04086/.03927 or about $104.05

million November 15, 2005, swaps forward to May 8, 2001.
4. Buy $100,000,000×.04086/.03742 or about $109.19 million of

the 6.75s of May 15, 2005.
5. Sell the repo to May 8, 2001, at 5.006%.
6. Pay fixed on

(18.11)

or about $115.29 million May 15, 2005, swaps forward to May
8, 2001.

Steps 1 through 3 essentially sell the OTR five-year on an asset
swap basis forward to May 8, 2001. The forward DV01 of the swap
position is equated to that of the bond so that the value of the for-
ward asset swap is immune to parallel changes in forward bond yields
and forward swap rates. The asset swap makes money only if the
OTR five-year cheapens relative to swaps and loses money only if it
richens relative to swaps. Similarly, steps 4 through 6 essentially buy
the old five-year on an asset swap basis forward to May 8, 2001. Nei-
ther steps 1 through 3 nor steps 4 through 6 is literally an asset swap
since the fixed cash flows do not cancel. But these positions are simi-
lar in spirit to asset swaps in that they make or lose money with
changes in asset swap spreads.

Note that step 4 sets the forward DV01 of the old five-year equal
to the forward DV01 of the OTR five-year. As a result, each asset
swap trade has the same exposure to changes in swap spread. But this
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implies that the combination of the two asset swap trades generates
P&L only from movements in the spread of spreads and not from
equal moves of each asset swap spread. In short, the proposed trade
generates P&L only in response to changes in the quantity that is per-
ceived to be mispriced, namely the spread of spreads.

Table 18.4 reports the relevant yields and swap rates on May 8,
2001. The spread of spreads fell so that the OTR five-year was 2.9 ba-
sis points rich to the old five-year. On January 17, 2001, that spread
had been sold forward to May 8, 2001, at 7.6 basis points. Therefore,
on a position short $100,000,000 5.75s of November 15, 2005, with a
forward DV01 of .04086, the profit from the trade was approximately

(18.12)

Table 18.5 presents a more accurate summary of the P&L of the
trade by security. The P&L of each part of the trade equals the change
in forward price, as a percent of par, times the face value. The total
P&L comes to $192,985, quite close to the estimate in (18.12) from
using the DV01 of the OTR five-year position and the change in the
spread of spreads.

$ , ,
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7 6 2 9 192 042× × −( ) =

TABLE 18.4 Yields and Spreads for 5s and Old 5s as of May 8, 2001

Swap Rate Spread
Coupon Maturity Description Yield to Maturity (bps)

5.750% 11/15/05 OTR 5-year 4.725% 5.385% –66.0
6.750% 05/15/05 Old 5-year 4.644% 5.275% –63.1

Spread (bps) 8.1 11.0

Spread of spreads (bps) –2.9

TABLE 18.5 Summary P&L of Forward Spread of Spreads Trade

Face 1/17/01 5/8/01
Position ($millions) Forward Price Price P&L ($)

OTR 5 –100.00 103.2874 104.1263 –838,900
Swap to 11/15/2005 104.05 99.9428 101.5051 1,625,584
Old 5 109.19 106.4366 107.6398 1,313,774
Swap to 05/15/2005 –115.29 99.9549 101.6094 –1,907,473

Total: 192,985
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Comparing Tables 18.2 and 18.4 shows that the term structure
steepened dramatically from January 17, 2001, to May 8, 2001. The
swap curve from May 15, 2005, to November 15, 2005, steepened 7
basis points, from 4 to 11. The spread of the two Treasury bond yields
in the table moved 20 basis points, from –11.9 to 8.1. Of these 20 basis
points, 7 may be regarded as a steepening of the Treasury curve while
the remaining 13 may be regarded as the looked-for cheapening of the
OTR five-year to the old five-year. In this particular example, therefore,
a trade that sold the OTR five-year and bought the old five-year without
any swaps would have done particularly well, benefiting from both the
relative cheapening of the OTR five-year and the steepening. However,
had the Treasury and swap curves flattened instead, the OTR versus old
trade without swaps would have done worse than the spread of spreads
trade and might even have lost money. In short, the spread of spreads
trade is less subject to curve risk and, therefore, is a purer bet on the
richness of the OTR five-year than is the OTR versus old trade. This
conclusion is, of course, subject to the caveat that in the maturity region
of interest the Treasury and swap curves flatten or steepen together. If
the Treasury curve were to flatten and the swap curve to steepen, then
the spread of spreads trade could do very badly indeed.
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CHAPTER 19
Fixed Income Options

Many readers are likely to be familiar with equity options. This chapter
seeks to present issues of particular relevance to fixed income markets

without excessively repeating material usually covered in the context of eq-
uity options. To this end the chapter begins with a brief review of some op-
tion basics and continues with a more fixed income focus.

DEFINITIONS AND REVIEW

A call option on a bond gives the right to purchase that bond at a fixed strike
or exercise price. If the call is European in style, this right may be exercised
on one particular date called the expiration, or exercise date. An example
from a later section is a European call option to buy the 5s of February 15,
2011, at 99-181/4 on July 15, 2002. If the price of the 5s of February 15,
2011, on July 15, 2002, turns out to be 98, then the value of the right to pur-
chase the bond at 99-181/4 is zero. If, however, the price of the bond on July
15, 2002, turns out to be 100, then the value of the call option is

(19.1)

Note that the amount paid for the bond in the example is actually 99-
181/4 plus accrued interest. However, since that bond can then be sold
for 100 plus accrued interest, the accrued interest does not appear in
equation (19.1).

In general, if the price of the bond at expiration is P and the strike
price is K, then the value of the call option at expiration is

(19.2)max ,P K−( )0

100 99 18 32 42971
4− +[ ] = .



Figure 19.1 graphs this function for a call option on the 5s of February
15, 2011, struck at 99-181/4. Since the value of the call option is zero or
positive, a simple arbitrage argument shows that the price of the call op-
tion before expiration must be positive. Put more simply, one has to pay
for the right but not the obligation to purchase a bond at a fixed price.
This implies, by the way, that purchasing an option loses money, ex post,
if the bond price does not rally enough to compensate for the initial cost
of the option.

A put option gives the right to sell a bond at the strike price. Consider a
put on the 5s of February 15, 2011, struck at 99-181/4 and expiring on July
15, 2011. If the price of the bond at expiration is greater than 99-181/4, then
the right to sell the bond at 99-181/4 is worthless. Alternatively, if the price
of the bond at expiration is below the strike price, for example at 98, then
the put option is worth

(19.3)

More generally, the value of a put at expiration is

(19.4)max ,K P−( )0

99 18 32 98 1 57031
4+ − = .
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FIGURE 19.1 Value of a 99-18.25 Call Option on the 5s of February 15, 2011, at
Expiration
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Figure 19.2 graphs this function for a put option on the 5s of February 15,
2011, struck at 99-181/4. By arbitrage arguments the price of the put must
be positive. Furthermore, a purchase of a put will lose money, ex post, if
the price of the bond does not fall enough to compensate for the initial cost
of the put.

It follows from the expiration values in Figures 19.1 and 19.2 that, at
any time before expiration, the value of a call option increases with the
price of the underlying bond and the value of a put decreases with the
price. Higher volatility increases the values of both puts and calls. This
fact is due to the asymmetric payoffs depicted in Figures 19.1 and 19.2. In
the case of calls, higher volatility raises the likelihood of large price in-
creases (relative to the strike) that translate to larger, positive payoffs.
While the likelihood of large price declines also increases, the payoff from
a large decline is no different from the payoff from a small decline: Both
are zero. Similarly, puts benefit from a greater likelihood of large price de-
clines but do not suffer from the concomitant greater likelihood of large
price increases.

Calls and puts can be combined into portfolios to create a great many
payoff functions. One important combination is a straddle, achieved by a
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FIGURE 19.2 Value of a 99-18.25 Put Option on the 5s of February 15, 2011, at
Expiration
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position in one call and one put with the same strike. Figure 19.3 graphs
the expiration value of a straddle on the 5s of February 15, 2011, struck at
99-181/4. Unlike call options that benefit from rising bond prices and put
options that benefit from falling prices, straddles benefit from both rising
and falling prices, that is they benefit mostly from changes in bond prices
or, equivalently, from volatility. By arbitrage arguments the price of a
straddle must be positive. Therefore, a straddle will lose money, ex post, if
the absolute change in the bond price is not large enough to compensate
for the initial cost of the straddle.

A Bermudan call or put option allows for exercise on some fixed set of
dates. A typical Bermudan option on a bond would allow the holder to ex-
ercise on any coupon payment date. An American call or put option allows
for exercise at any time on or before the expiration date.

PRICING AMERICAN AND BERMUDAN BOND 
OPTIONS IN A TERM STRUCTURE MODEL

By way of introducing arbitrage-free pricing, Chapter 9 described the
pricing of European bond options. Basically, either (19.2) or (19.4) is
used to determine the value of the option at expiration and then the stan-
dard tree methodology is used to determine the value of the option on
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FIGURE 19.3 Value of a 99-18.25 Straddle on the 5s of February 15, 2011, at
Expiration
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earlier dates. This section, therefore, focuses on the pricing of American
and Bermudan options.

The following example prices an option to call 100 face of a 1.5-year,
5.25% coupon bond at par on any coupon date. Assume that the risk-
neutral interest rate process over six-month periods is as in the example of
Chapter 9:

With this tree and the techniques of Part Three, the price tree for a 5.25%
coupon bond maturing in 1.5 years may be computed to be

Note that all the prices in the tree are ex-coupon prices. So, for example,
on date 2, state 2, the bond is worth 100.122 after the coupon payment of
2.625 has been made.

The value of the option to call this bond at par is worthless on the ma-
turity date of the bond since the bond is always worth par at maturity. On
any date before maturity the option has two sources of value. First, it can
be exercised immediately. If the price of the bond is P and the strike price is
K, then the value of immediate exercise, denoted VE, is
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(19.5)

Second, the option can be held to the next date. The value of the option in
this case is like the value of any security held over a date, namely the ex-
pected discounted value in the risk-neutral tree. Denote this value by VH.

The option owner maximizes the value of the option by choosing on
each possible exercise date whether to exercise or to hold the option. If the
value of exercising is greater the best choice is to exercise, while if the value
of holding is greater the best choice is to hold. Mathematically, the value of
the option, V, is given by

(19.6)

For more intuition about the early exercise decision, consider the fol-
lowing two strategies. Strategy 1 is to exercise the option and hold the
bond over the next period. Strategy 2 is not to exercise and, if conditions
warrant next period, to exercise then. The advantage of strategy 1 is that
purchasing the bond entitles the owner to the coupon earned over the pe-
riod. The advantages of strategy 2 are that the strike price does not have
to be paid for another period and that the option owner has another pe-
riod in which to observe market prices and decide whether to pay the
strike price for the bond. With respect to the advantage of waiting to de-
cide, if prices fall precipitously over the period then strategy 2 is superior
to strategy 1 since it would have been better not to exercise. And if prices
rise precipitously then strategy 2 is just as good as strategy 1 since the op-
tion can still be exercised and the bonds bought for the same strike price
of 100. To summarize, early exercise of the call option is optimal only if
the value of collecting the coupon exceeds the combined values of delay-
ing payment and of delaying the decision to purchase the bond at the fixed
strike price.1

Returning to the numerical example, the value of immediately exercis-
ing the option on date 2 is .613, .122, and 0 in states 0, 1, and 2, respec-
tively. Furthermore, since the option is worthless on date 3, the value of the
option on date 2 is just the value of immediate exercise.

V V VE H= ( )max ,

V P KE = −( )max ,0
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1In the stock option context, the equivalent result is that early exercise of a call op-
tion is not optimal unless the dividend is large enough.



On date 1, state 0, the value of immediate exercise is .655. The value
of holding the option is

(19.7)

Therefore, on date 1, state 0, the owner of the option will choose to exer-
cise and the value of the option is .655. Here, it is worth more to exercise
the option on date 1 and earn a coupon rate of 5.25% in a 4.50% short-
term rate environment than to hold on to the option.

On date 1, state 1, the bond sells for less than par so the value of im-
mediate exercise equals zero. The value of holding the option is

(19.8)

Hence the owner will hold the option, and its value is .042.
Finally, on date 0, the value of exercising the option immediately is

.006. The value of holding the option is

(19.9)

The owner of the option will not exercise, and the value of the option on
date 0 is .159. In this situation, earning a coupon of 5.25% in a 5% short-
term rate environment is not sufficient compensation for giving up an op-
tion that could be worth as much as .655 on date 1.

The following tree for the value of the option collects these results. States
in which the option is exercised are indicated by option values in boldface.
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Put options are priced analogously. The only change is that the value
of immediately exercising a put option struck at K when the bond price is
P equals

(19.10)

rather than (19.5). The advantage of early exercise for a put option (i.e.,
the right to sell) is that the strike price is received earlier. The disadvantages
of exercising a put early are giving up the coupon and not being able to
wait another period before deciding whether to sell the bond at the fixed
strike price.

Before concluding this section it should be noted that the selection of
time steps takes on added importance for the pricing of American and
Bermudan options. The concern when pricing any security is that a time
step larger than an instant is only an approximation to the more nearly
continuous process of international markets. The additional concern
when pricing Bermudan or American options is that a tree may not allow
for sufficiently frequent exercise decisions. Consider, for example, using a
tree with annual time steps to price a Bermudan option that permits exer-
cise every six months. By omitting possible exercise dates the tree does
not permit an option holder to make certain decisions to maximize the
value of the option. Furthermore, since on these omitted exercise dates an
option holder would never make a decision that lowers the value of the
option, omitting these exercise dates necessarily undervalues the Bermu-
dan option.

In the case of a Bermudan option the step size problem can be 
fixed either by reducing the step size so that every Bermudan exercise
date is on the tree or by augmenting an existing tree with the Bermudan
exercise dates. In the case of an American option it is impossible to 
add enough dates to reflect the value of the option fully. While detailed
numerical analysis is beyond the scope of this book, two responses 
to this problem may be mentioned. First, experiment with different 
step sizes to determine which are accurate enough for the purpose 
at hand. Second, calculate option values for smaller and smaller step
sizes and then extrapolate to the option value in the case of contin-
uous exercise.

V K PE = −( )max ,0
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APPLICATION: FNMA 6.25s of July 19, 2011, and the Pricing of Callable Bonds

The Federal National Mortgage Association (FNMA) recently reintroduced its Callable
Benchmark Program under which it regularly sells callable bonds to the public. On July 19,
2001, for example, FNMA sold an issue with a coupon of 6.25%, a maturity date of July 19,
2011, and a call feature allowing FNMA to purchase these bonds on July 19, 2004, at par.
This call feature is called an embedded call because the option is part of the bond’s struc-
ture and does not trade separately from the bond. In any case, until July 19, 2004, the bond
pays coupons at a rate of 6.25%. On July 19, 2004, FNMA must decide whether or not to
exercise its call. If FNMA does exercise, it pays par to repurchase all of the bonds. If FNMA
does not exercise, the bond continues to earn 6.25% until maturity at which time principal
is returned. This structure is sometimes referred to as “10NC3,” pronounced “10-non-call-
three,” because it is a 10-year bond that is not callable for three years. These three years
are referred to as the period of call protection.

The call feature of the FNMA 6.25s of July 19, 2011, is a particularly simple example of
an embedded option. First, FNMA’s option is European; it may call the bonds only on July
19, 2004. Other callable bonds give the issuer a Bermudan or American call after the period
of call protection. For example, a Bermudan version might allow FNMA to call the bonds on
any coupon date on or after the first call date of July 19, 2004, while an American version
would allow FNMA to call the bonds at any time after July 19, 2004. The second reason the
call feature of the FNMA issue is particularly simple is that the strike price is par. Other
callable bonds require the issuer to pay a premium above par (e.g., 102 percent of par). In
the Bermudan or American cases there might be a schedule of call prices. An old rule of
thumb in the corporate bond market was to set the premium on the first call date equal to
half the coupon rate. After the first call date the premium was set to decline linearly to par
over some number of years and then to remain at par until the bond’s maturity. The pricing
technique of the previous section is easily adapted to a schedule of call prices.

The rest of this section and the next discuss the price behavior of callable bonds in
detail. The basic idea, however, is as follows. If interest rates rise after an issuer sells a
bond, the issuer wins in the sense that it is borrowing money at a relatively low rate of in-
terest. Conversely, if rates fall after the sale then bondholders win in the sense that they
are investing at a relatively high rate of interest. The embedded option, by allowing the is-
suer to purchase the bonds at some fixed price, caps the amount by which investors can
profit from a rate decline. In fact, an embedded call at par cancels any price appreciation
as of the call date although investors do collect an above-market coupon rate before the
call. In exchange for giving up some or all of the price appreciation from a rate decline,
bondholders receive a higher coupon rate from a callable bond than from an otherwise
identical noncallable bond.

APPLICATION: FNMA 6.25s of July 19, 2011, and the Pricing of Callable Bonds 405



To understand the pricing of the callable bond issue, assume that there exists an oth-
erwise identical noncallable bond—a noncallable bond issued by FNMA with a coupon rate
of 6.25% and a maturity date of July 19, 2011. Also assume that there exists a separately
traded European call option to buy this noncallable bond at par. Finally, let PC denote the
price of the callable bond, let PNC denote the price of the otherwise identical noncallable
bond, and let C denote the price of the European call on the noncallable bond. Then,

(19.11)

Equation (19.11) may be proved by arbitrage arguments as follows. Assume that PC<PNC–C.
Then an arbitrageur would execute the following trades:

Buy the callable bond for PC.
Buy the European call option for C.
Sell the noncallable bond for PNC.

The cash flow from these trades is PNC–C–PC, which, by assumption, is positive.
If rates are lower on July 19, 2004, and FNMA exercises the embedded option to buy

its bonds at par, then the arbitrageur can unwind the trade without additional profit or loss
as follows:

Sell the callable bond to FNMA for 100.
Exercise the European call option to purchase the noncallable bond for 100.
Deliver the purchased noncallable bond to cover the short position.

Alternatively, if rates are higher on July 19, 2004, and FNMA decides not to exercise its op-
tion, the arbitrageur can unwind the trade without additional profit or loss as follows:

Allow the European call option to expire unexercised.
Deliver the once callable bond to cover the short position in the noncallable bond.

Note that the arbitrageur can deliver the callable bond to cover the short in the noncallable
bond because on July 19, 2004, FNMA’s embedded option expires. That once callable bond
becomes equivalent to the otherwise identical noncallable bond.

The preceding argument shows that the assumption PC<PNC–C leads to an initial cash
flow without any subsequent losses, that is, to an arbitrage opportunity. The same argu-
ment in reverse shows that PC>PNC–C also leads to an arbitrage opportunity. Hence the
equality in (19.11) must hold.

The intuition behind equation (19.11) is that the callable bond is equivalent to an oth-

P P CC NC= −
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erwise identical noncallable bond minus the value of the embedded option. The value of the
option is subtracted from the noncallable bond price because the issuer has the option.
Equivalently, the value of the option is subtracted because the bondholder has sold the em-
bedded option to the issuer.

Along the lines of the previous section, a term structure model may be used to price
the European option on the otherwise identical noncallable bond. After that, equation
(19.11) may be used to obtain a value for the callable bond. While the discussion to this
point assumes that the embedded option is European, equation (19.11) applies to other op-
tion styles as well. If the option embedded in the FNMA 6.25s of July 19, 2011, were
Bermudan or American, then a term structure model would be used to calculate the value of
that Bermudan or American option on a hypothetical noncallable FNMA bond with a coupon
of 6.25% and a maturity date of July 19, 2011. Then this Bermudan or American option
value would be subtracted from the value of the noncallable bond to obtain the value of the
callable bond.

Combining equation (19.11) with the optimal exercise rules described in the previous
section reveals the following about the price of the callable bond. First, if the issuer calls the
bond then the price of the callable bond equals the strike price. Second, if the issuer
chooses not to call the bond (when it may do so) then the callable bond price is less than
the strike price. To prove the first of these statements, note that if it is optimal to exercise,
then, by equation (19.6), the value of the call option must equal the value of immediate ex-
ercise. Furthermore, by equation (19.5), the value of immediate exercise equals the price of
the noncallable bond minus the strike. Putting these facts together,

(19.12)

But substituting (19.12) into (19.11),

(19.13)

To prove the second statement, note that if it is not optimal to exercise, then, by equation
(19.6), the value of the option is greater than the value of immediate exercise given by
equation (19.5). Hence

(19.14)

Then, substituting (19.14) into (19.11),

(19.15)

By market convention, issuers pay for embedded call options through a higher
coupon rate rather than by selling callable bonds at a discount from par. On July 19, 2001,

P P C P P K KC NC NC NC= − < − −( ) =

C P KNC> −

P P C P P K KC NC NC NC= − = − −( ) =

C P KNC= −
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for example, when FNMA sold its 6.25s of July 19, 2011, for approximately par, the yield
on 10-year FNMA bonds was approximately 5.85%. FNMA could have sold a callable bond
with a coupon of 5.85%. In that case the otherwise identical noncallable bond would be
worth about par, and the callable bond, by equation (19.11), would sell at a discount from
par. Instead, FNMA chose to sell a callable bond with a coupon of 6.25%. The otherwise
identical noncallable bond was worth more than par but the embedded call option, through
equation (19.11), reduced the price of the callable bond to approximately par.

GRAPHICAL ANALYSIS OF CALLABLE BOND PRICING

This section graphically explores the qualitative behavior of callable
bond prices using the FNMA 6.25s of July 19, 2011, for settle on July
19, 2001, as an example. Begin by defining two reference bonds. The first
is the otherwise identical noncallable bond referred to in the previous
section—an imaginary 10-year noncallable FNMA bond with a coupon
of 6.25% and a maturity of July 19, 2011. The second reference bond is
an imaginary three-year noncallable FNMA bond with a coupon of
6.25% and a maturity of July 19, 2004.2 Assuming a flat yield curve on
July 19, 2001, the dashed line and thin solid line in Figure 19.4 graph the
prices of these reference bonds at different yield levels. When rates are
particularly low the 10-year bond is worth more than the three-year
bond because the former earns an above-market rate for a longer period
of time. Conversely, when rates are particularly high the three-year bond
is worth more because it earns a below-market rate for a shorter period
of time. Also, the 10-year bond’s price-yield curve is the steeper of the
two because its DV01 is greater.

The thick solid line in the figure graphs the price of the callable
bond using a particular pricing model. While the shape and placement of
this curve depends on the model and its parameters, the qualitative re-
sults described in the rest of this section apply to any model and any set
of parameters.
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three-year reference bond would change. For the analysis of this section to apply,
this reference bond would pay 3.125 every six months, like the callable bond, but
would pay 102 instead of 100 at maturity. While admittedly an odd structure, this
reference bond can be priced easily.



The four qualitative features of Figure 19.4 may be summarized as
follows.

1. The price of the callable bond is always below the price of the three-
year bond.

2. The price of the callable bond is always below the price of the 10-year
bond.

3. As rates increase, the price of the callable bond approaches the price of
the 10-year bond.

4. As rates decrease, the price of the callable bond approaches the price
of the three-year bond.

The intuition behind statement 1 is as follows. From July 19, 2001, to
July 19, 2004, the callable bond and the three-year bond make exactly the
same coupon payments. However, on July 19, 2004, the three-year bond
will be worth par while the callable bond will be worth par or less: By the
results at the end of the previous section, the callable bond will be worth
par if FNMA calls the bond but less than par otherwise. But if the cash
flows from the bonds are the same until July 19, 2004, and then the three-
year bond is worth as much as or more than the callable bond, then, by ar-
bitrage, the three-year bond must be worth more as of July 19, 2001.

Statement 2 follows immediately from the fact that the price of an
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FIGURE 19.4 Price-Rate Curves for the Callable Bond and the Two Noncallable
Reference Bonds
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option is always positive. Since C>0, by (19.11) PC<PNC. In fact, rear-
ranging (19.11), C=PNC–PC. Hence the value of the call option is given
graphically by the distance between the price of the 10-year bond and the
price of the callable bond in Figure 19.4.

Statement 3 is explained by noting that, when rates are high and bond
prices low, the option to call the bond at par is worth very little. More
loosely, when rates are high the likelihood of the bond being called on July
19, 2004, is quite low. But, this being the case, the prices of the callable
bond and the 10-year bond will be close.

Finally, statement 4 follows from the observation that, when rates are
low and bond prices high, the option to call the bond at par is very valu-
able. The probability that the bond will be called on July 19, 2004, is high.
This being the case, the prices of the callable bond and the three-year bond
will be close.

Figure 19.4 also shows that an embedded call option induces negative
convexity. For the callable bond price curve to resemble the three-year
curve at low rates and the 10-year curve at high rates, the callable bond
curve must be negatively convex.

Figure 19.5 illustrates the negative convexity of callable bonds more
dramatically by graphing the duration of the two reference bonds and that
of the callable FNMA bonds. The duration of the 10-year bond is, as ex-
pected, greater than that of the three-year bond. Furthermore, the 10-year
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FIGURE 19.5 Duration-Rate Curves for the Callable Bond and the Two
Noncallable Reference Bonds

2.5

3.5

4.5

5.5

6.5

7.5

3.00% 4.00% 5.00% 6.00% 7.00% 8.00% 9.00%

Rate

D
u

ra
ti

o
n

10-year Noncallable

3-year Noncallable

Callable



duration curve is steeper than that of the three-year because longer bonds
are generally more convex. See Chapter 6.

When rates are high the duration of the callable bond approaches the
duration of the 10-year bond. However, since the callable bond may be
called and, in that eventuality, may turn out to be a relatively short-term
bond, the duration of the callable bond will be below that of the 10-year
bond. When rates are low the duration of the callable bond approaches the
duration of the three-year bond. Since, however, the callable bond may not
be called and thus turn out to be a relatively long-term bond, the duration
of the callable bond will be above that of the three-year bond. In order for
the duration of the callable bond to move from the duration of the three-
year bond when rates are low to the duration of the 10-year bond when
rates are high, the duration of the callable bond must increase with rates.
But this is a definition of negative convexity.

The analysis of Figures 19.4 and 19.5 helps explain why FNMA has
chosen to issue callable bonds. FNMA owns a great amount of mortgages
that, as will be explained in Chapter 21, are negatively convex. By selling
only noncallable debt, FNMA would find itself with negatively convex as-
sets and positively convex liabilities. As explained in the context of Figure
5.9, a position with that composition would require constant monitoring
and frequent hedging. By selling some callable debt, however, FNMA can
ensure that its negatively convex assets are at least partially matched by
negatively convex liabilities.

Using data over the six-month period subsequent to the issuance of the
FNMA 6.25s of July 19, 2011, Figure 19.6 shows that the theoretical
analysis built into Figures 19.4 and 19.5 holds in practice. Figure 19.6
graphs the price of the noncallable FNMA 6s of May 15, 2011, and the
price of the callable FNMA 6.25s of July 19, 2011, as a function of the
yield of the noncallable bond. Because of the embedded call, the callable
bond does not rally as much as the noncallable bond as rates fall. Also, the
empirical duration of the callable bond is clearly lower than that of the
noncallable bond. Finally, some negative convexity seems to be present in
the data but the effect is certainly mild.

A NOTE ON YIELD-TO-CALL

As defined in Chapter 3, the yield-to-maturity is the rate such that dis-
counting a bond’s cash flows by that rate gives the market price. For a
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callable bond, with cash flows that may be earned to the first call date, to
maturity, or to some date in between, there is no obvious way to define a
yield. In response, some market participants turn to yield-to-call.

To calculate the yield-to-call, assume that the bond will definitely be
called at some future date. The most common assumption is that the call
will take place on the first call date but, in principle, any call date may be
used for the calculation. To distinguish among these assumptions practi-
tioners refer to yield-to-first-call, to first par call, to November 15, 2007,
call, and so on. In any case, the assumption of a particular call scenario
gives a particular set of cash flows. The yield-to-call is the rate such that
discounting these cash flows by that rate gives the market price.

Some practitioners believe that bonds may be priced on yield-to-call
basis when rates are low and on a yield-to-maturity basis when rates are
high. These practitioners also tend to believe that the price of a callable
bond is bracketed by price using yield-to-call and price using yield-to-ma-
turity. Figure 19.4 shows these rules of thumb to be misleading. At any
given yield the price of the callable bond on a yield-to-maturity basis is
simply the price of the 10-year bond. Similarly, at any given yield the price
of the callable bond on a yield-to-call basis is simply the price of the three-
year bond. At any yield level the price of the callable bond is below both
the price on a yield-to-call basis and the price on a yield-to-maturity basis.
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FIGURE 19.6 Prices of the Noncallable FNMA 6s of May 15, 2011, and the
Callable 6.25s of July 19, 2011
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Hence both of these price calculations overestimate the price of the callable
bond, and the prices from the two approaches do not bracket the price of
the callable bond.

The intuition behind the overestimation of the callable bond price us-
ing either yield-to-call or yield-to-maturity is that the issuer of the bond
has an option. Assuming that the issuer will not exercise this option opti-
mally underestimates the issuer’s option and overestimates the value of the
callable bond. The yield-to-call calculation makes this error by assuming
that the issuer acts suboptimally by committing to call the bond no matter
what subsequently happens to rates. The yield-to-maturity calculation
makes the error by assuming that the issuer commits not to call the bond
no matter what subsequently happens to rates.

SWAPTIONS, CAPS, AND FLOORS

Swaptions (i.e., options on swaps) are particularly liquid fixed income op-
tions. A receiver swaption gives the owner the right to receive fixed in an
interest rate swap. For example, a European-style receiver might give its
owner the right on May 15, 2002, to receive fixed on a 10-year swap at a
fixed rate of 5.75%. A payer swaption gives the owner the right to pay
fixed in an interest rate swap. For example, an American-style payer might
give its owner the right at any time on or before May 15, 2002, to pay
fixed on a 10-year swap at a fixed rate of 5.75%.

Recall from Chapter 18 that the initial value of the floating side of a
swap, including the fictional notional payment at maturity, is par. Also re-
call that the fixed side of a swap, including the fictional notional payment,
is equivalent in structure to a bond with a coupon payment equal to the
fixed rate of the swap. These observations imply that the right to receive
fixed at 5.75% and pay floating for 10 years is equivalent to the right to re-
ceive a 5.75% 10-year bond for a price of par. In other words, this receiver
option is equivalent to a call option on a 10-year 5.75% coupon bond.
Similarly, the payer option just mentioned is equivalent to a put option on
a 10-year 5.75% coupon bond. Therefore, the term structure models of
Part Three combined with the discussion in this chapter may be used to
price swaptions.

The swaption market is sufficiently developed to offer a wide range of
option exercise periods and underlying swap expirations. Table 19.1 illus-
trates a subset of this range of offerings as of January, 2002. The rows
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represent option expiration periods, the columns represent swap expira-
tions, and the entries record the yield volatility (see Chapter 12) implied
by the respective swaptions prices and Black’s model.3 For example, a
three-month option to enter into a 10-year swap is priced using a yield
volatility of 25.2%.

Caps and floors are other popular interest rate options. Define a caplet
as a security that, for every dollar of notional amount, pays

(19.16)

d days after time t, where L(t) is the specified LIBOR rate and L
–

is the
caplet rate or strike rate. As an example, consider a $10,000,000 caplet on
three-month LIBOR struck at 2.25% and expiring on August 15, 2002. If
three-month LIBOR on May 15, 2002, is 2.50%, then this caplet pays

(19.17)

If, however, three-month LIBOR on May 15, 2002, is below 2.25%, for
example at 2.00%, then the caplet pays nothing. This caplet, therefore, is a
call on three-month LIBOR.

$ , , . % . %
$ ,

10 000 000 2 50 2 25 92

360
6 389

× −( ) ×
=

max ( ) ,L t L d−( ) ×0

360
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TABLE 19.1 Swaption Volatility Grid, January 2002

Underlying Swap Maturity

1 year 2 Years 5 Years 10 Years 30 Years

1 month 47.6% 40.3% 29.1% 25.2% 17.6%
3 months 43.5% 37.8% 28.7% 25.2% 17.8%

Swaption 6 months 42.9% 35.0% 27.1% 24.0% 17.1%
Maturity 1 year 34.0% 29.0% 24.6% 22.2% 16.1%

2 years 26.0% 24.4% 22.7% 20.9% 15.8%
5 years 21.4% 20.9% 19.7% 18.1% 14.0%

10 years 17.1% 16.8% 16.1% 15.1% 11.3%

3Black’s model for swaptions is closely related to the Black-Scholes stock option
model. For further details see Hull (2000), pp. 543–547.



A cap is a series of caplets. For example, buying a two-year cap on
February 15, 2002, is equivalent to seven caplets maturing on August 15,
2002, November 15, 2002, and so on, out to Februry 15, 2004. (By con-
vention the caplet maturing on May 15, 2002, is omitted since the setting
of LIBOR relevant for a May 15, 2002, payment, that is, LIBOR on Febru-
ary 15, 2002, is known at the time the cap is traded.)

A floorlet pays

(19.18)

d days after time t and, therefore, is a put on LIBOR. A floor is a series of
floorlets.

The payoffs to the other options described in this chapter are ex-
pressed in terms of bond prices while the payoffs to caps and floors de-
pend directly on the level of interest rates. In any case, the tools of Part
Three can be easily applied to value caps and floors. As of January, 2002,
Table 19.2 presents volatility levels for caps on three-month LIBOR given
their prices and a variant of the Black-Scholes option model.4 For exam-
ple, a five-year cap on three-month LIBOR is priced using a yield volatility
of 26.8%.

Tables 19.1 and 19.2 reveal the difficulty of designing models for trad-
ing swaptions, caps, and floors. First, given the varying levels of liquidity
of the options in these grids, decisions have to be made about how much
influence each option should have in the modeling process. Second, a

max ( ),L L t d−( ) ×0

360
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TABLE 19.2 Three-Month
LIBOR Cap Volatility,
January 2002

Yield
Maturity Volatility

1 year 38.6%
2 years 34.9%
5 years 26.8%

10 years 23.1%

4See Hull (2000), pp. 537–543.



model with very few factors is not usually able to capture the rich structure
of these volatility grids without a good deal of time dependence in the
volatility functions. But, as described in Part Three, time-dependent volatil-
ity functions can sometimes strain credulity.

For the limited goal of quoting market prices, models that essentially
interpolate the volatility grids are adequate, and relatively complex time-
dependent volatility functions can be tolerated. For the more ambitious
goals of pricing for value and for hedging, practitioners and academics are
gravitating to multi-factor models that balance the competing objectives of
describing market prices, of computational feasibility, and of economic
and financial sensibility. See Chapter 13.

QUOTING PRICES WITH VOLATILITY MEASURES 
IN FIXED INCOME OPTIONS MARKETS

Market participants often use yield-to-maturity to quote bond prices be-
cause interest rates are in many ways more intuitive than bond prices. Sim-
ilarly, market participants often use volatility to quote option prices
because volatility is in many ways more intuitive than option prices. Chap-
ter 3 defined the widely accepted relationship between yield-to-maturity
and price. This section discusses the use of market conventions to quote
the relationship between volatility and option prices.

Many options trading desks have their own proprietary term structure
models to value fixed income options. If customers want to know the
volatility at which they are buying or selling options, these trading desks
have a problem. Quoting the volatility inputs to their proprietary models
does not really help customers because they do not know the model and
have no means of generating prices given these volatility inputs. Further-
more, the trading desk may not want to reveal the workings of its models.
Therefore, markets have settled on various canonical models with which to
relate price and volatility.

In the bond options market, Black’s model, a close relative of the
Black-Scholes stock option model, is used for this purpose. As discussed in
Chapter 9, direct applications of stock option models to bonds may be rea-
sonable if the time to option expiry is relatively short. Further details are
not presented here other than to note that Black’s model assumes that the
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price of a bond on the option expiration date is lognormally distributed
with a mean equal to the bond’s forward price.5

Figure 19.7 reproduces a Bloomberg screen used for valuing options us-
ing Black’s model. The darkened rectangles indicate trader input values. The
header under “OPTION VALUATION” indicates that the option is on the U.S.
Treasury 5s of February 15, 2011. As of the trade date January 15, 2002,
this bond was the double-old 10-year. The option expires in six months, on
July 15, 2002. The current price of the bond is 101-81/4 corresponding to a
yield of 4.827%. The strike price of the option is 99-181/4 corresponding to
a yield of 5.063%. At the bottom right of the screen, the repo rate is 1.58%
which, given the bond price, gives a forward price of 99-181/4. The option is,
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5For more details, see Hull (2000), pp. 533–537.

FIGURE 19.7 Bloomberg’s Option Valuation Screen for Options on the 5s of
February 15, 2001
Source: Copyright 2002 Bloomberg L.P.



therefore, an at-the-money forward (ATMF) option, meaning that the strike
price equals the forward price. The risk-free rate equals 1.58%, used in
Black’s model to discount the payoffs of the option under the assumed log-
normal distribution. Because the double-old 10-year was not particularly
special on January 15, 2002, the repo rate and the risk-free rate are equal. If
the bond were trading special, the repo rate used to calculate the bond’s for-
ward price would be less than the risk-free rate.

As can be seen above the words “CALL” and “PUT,” the option is a Eu-
ropean option. To the right is the model code “P” used to indicate the
price-based or Black’s model. Below this code is a brief description of the
model’s properties. It is a one-factor model with the bond price itself as the
factor. There is no mean reversion in the process, the bond price is lognor-
mal, and the volatility is constant. The description also indicates that the
volatility is relative, that is, measured as a percentage of the bond’s for-
ward price.

The main part of the option valuation screen shows that at a percent-
age price volatility of 9.087% put and call prices equal 2.521.6 This means,
for example, that an option on $100,000,000 of the 5s of February 15,
2011, on July 15, 2002, at 99-181/4 costs

(19.19)

The price volatility is labeled “Price I. Vol” for “Price Implied Volatility”
because the pricing screen may be used in one of two ways. First, one may
input the volatility and the screen calculates the option price using Black’s
model. Second, one may input the option price and the screen calculates
the implied volatility—the volatility that, when used in Black’s model, pro-
duces the input option price.

While Black’s model is widely used to relate option price and volatility,
percentage price volatility (or, simply, price volatility) is not so intuitive as
volatility based on interest rates. Writing the percentage change in the for-
ward price as ∆Pfwd /Pfwd , the percentage change may be rewritten as

$ , ,
.

$ , ,100 000 000
2 521
100

2 521 000× =

418 FIXED INCOME OPTIONS

6At-the-money forward put and call prices must be equal by put-call parity.



(19.20)

Letting σp denote price volatility and σy denote yield volatility, it follows
from equation (19.20) that

(19.21)

In the example of Figure 19.7,

(19.22)

Note that all of these inputs are on the Bloomberg screen. Since the
strike is equal to the forward price, the yield corresponding to the strike
is the forward yield. Also, the forward DV01 is computed next to the
symbol “dPdY” (i.e., the derivative of price with respect to yield). Solv-
ing equation (19.22),

(19.23)

as reported in the row labeled “Yield Vol (%).” The input “F,” by the
way, indicates that volatility should be computed using a forward rate, as
done here.

Many market participants find yield volatility more intuitive than price
volatility. With yields at 5.063%, for example, a yield volatility of 26% in-
dicates that a one standard deviation move is equal to 26% of 5.063%.
This also suggests measuring volatility in basis points: 26% of 5.063% is
131.6 basis points. Letting σbp denote basis point volatility, then, as ex-
plained in Chapter 12,

(19.24)

It is crucial to note that while volatility can be quoted as yield volatility
or as basis point volatility, Black’s model takes price volatility as input. In
other words, it is price volatility that determines the probability distribution
used to calculate option prices. To make this point more clearly, consider
three models: Black’s model with price volatility equal to 9.087%, a model
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with a lognormally distributed short rate and yield volatility equal to 26%,
and a model with a normally distributed short rate and basis point volatility
equal to 131.6 basis points. These three models are different. They will not
always produce the same option prices even though the volatility measures
are the same in the sense of equations (19.21) and (19.24).

Return now to the trading desk with a proprietary option pricing
model. A customer inquires about an at-the-money forward option on the
5s of February 15, 2011, and the desk responds with a price of 2.521 cor-
responding to a Black’s model volatility of 9.087%. The customer knows
the price and has some idea what this price means in terms of volatility,
whether by thinking about price volatility directly or by converting to yield
or basis point volatility. But the customer cannot infer the price the trading
desk would attach to a different option on the same bond nor certainly to
an option on a different bond. Plugging in a price volatility of 9.087% on a
Bloomberg screen to price other options on the 5s of February 15, 2011,
will not produce the trading desk’s price unless the trading desk itself uses
Black’s model.

SMILE AND SKEW

Assume that the market price is 2.521 for the ATMF option on the 5s of
February 15, 2011, corresponding to a Black volatility of 9.087%. If Black’s
model were the true pricing model, an option on the 5s of February 15,
2011, with any strike expiring on July 15, 2002, could be priced using a
volatility of 9.087%. The correct risk-neutral distribution of the terminal
price, however, might have fatter tails than the lognormal price distribution
assumed in Black’s model. The tails of a distribution refer to the probability
of relatively extreme events (i.e., events far from the mean). A distribution
with fat tails relative to the lognormal price distribution has relatively higher
probability of extreme events and relatively lower probability of the more
central outcomes. The implication of fat tails for option pricing is that out-
of-the-money forward (OTMF) options—options with strikes above or be-
low the forward price—will be worth more than indicated by Black’s model.
Equivalently, since option prices increase with volatility, using Black’s model
to compute the implied volatility of an OTMF option will produce a volatil-
ity number higher than 9.087%. This effect is called a smile from the shape
of a graph of Black implied volatility against strike.

If, relative to the lognormal price distribution, the correct pricing dis-
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tribution attaches relatively high probabilities to outcomes above the for-
ward price and relatively low probabilities to outcomes below the forward
price, or vice versa, then the correct distribution is skewed relative to the
lognormal price distribution. As a result the true distribution will generate
option prices above Black’s model for high strikes and below Black’s model
for low strikes, or vice versa. Equivalently, the implied volatility computed
from Black’s model will be higher than 9.087% for high strikes and below
9.087% for low strikes, or vice versa.

In general, of course, the correct risk-neutral distribution can differ in
arbitrary ways from the lognormal price distribution of Black’s model, and
the implied volatility computed by Black’s model for options with different
strikes can take on many different patterns. Figure 19.8 graphs two exam-
ples. The horizontal axis gives the strike of call options on the 5s of Febru-
ary 15, 2011, and the vertical axis gives the implied volatility of call
options computed using Black’s model.

The curve labeled “Normal Model” generates option prices using a
one-factor model with normally distributed short rates, an annualized
volatility of 146 basis points, and mean reversion with a half-life of about
23 years. The model was calibrated so that the ATMF call option has a
price of 2.521. Note that this curve is relatively flat, meaning that the im-
plied volatility of call options with various strikes is not far from 9.087%.
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FIGURE 19.8 Black’s Model Implied Volatility as a Function of Strike for a
Normal and a Lognormal Short-Rate Model
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This is not very surprising because normally distributed rates imply lognor-
mally distributed bond prices, as assumed in Black’s model.

By contrast, the curve labeled “Lognormal Model” demonstrates sub-
stantial skew. This one-factor model with no mean reversion and a yield
volatility of 27.66% gives an ATMF option price of 2.521, but the implied
volatility of call options with other strikes is very different from 9.087%.
In particular, call options with low strikes are associated with relatively
high Black volatility and call options with high strikes are associated with
relatively low Black volatility. Equivalently, the lognormal model values
the low-strike options more and the high-strike options less than Black’s
model. This is not surprising given the shape of the normal and lognormal
probability density functions in Figure 12.3 or the corresponding cumula-
tive normal and lognormal distribution functions in Figure 19.9. The log-
normal distribution attaches relatively low probability to low levels of
interest rates (i.e., to high prices). Therefore, the lognormal short-rate
model values high-strike options less than Black’s lognormal price (approx-
imately normal short-rate) model. Also, the lognormal distribution at-
taches relatively high probability to high rates (i.e., to low prices) so that
the lognormal model values low-strike options more than Black’s model.
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FIGURE 19.9 Cumulative Normal and Lognormal Distribution Functions Based
on Example in Figure 12.3
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CHAPTER 20
Note and Bond Futures

Futures contracts on government bonds are important for the longer-ma-
turity part of the market for the same reasons that futures on short-term

deposits are important for the short end. Futures on bonds are very liquid
and require relatively little capital to establish sizable positions. Conse-
quently, these contracts are often the instruments of choice for hedging
risks arising from changes in longer-term rates and for speculating on the
direction of these rates.

Unlike the futures contracts described in Chapter 17, futures contracts
on bonds contain many embedded options that greatly complicate their
valuation. This chapter addresses the relevant issues in the context of U.S.
Treasury futures, but the treatment applies equally well to futures traded in
European markets. In fact, the options embedded in European futures con-
tracts are simpler than those embedded in U.S. contracts.

MECHANICS

This section describes the workings of U.S. note and bond futures con-
tracts.1 The section after next explains the motivations behind the design of
these contracts.

Futures contracts on U.S. government bonds do not have one underly-
ing security. Instead, there is a basket of underlying securities defined by
some set of rules. The 10-year note contract expiring in March, 2002
(TYH2), for example, includes as an underlying security any U.S. Treasury
note that matures in 6.5 to 10 years from March 1, 2002. This rule in-
cludes all of the securities listed in Table 20.1. The rule excludes, however,

1For a more detailed treatment see Burghardt, Belton, Lane, and Papa (1994).



the 9.125s of May 15, 2009: While this bond matures in a little less than
7.25 years from March 1, 2002, it was issued as a U.S. Treasury bond
rather than a U.S. Treasury note.2 The conversion factors listed in the table
are discussed shortly.

The seller of a futures contract, or the short, commits to sell or deliver
a particular quantity of a bond in that contract’s basket during the delivery
month. The seller may choose which bond to deliver and when to deliver
during the delivery month. These options are called the quality option and
the timing option, respectively. The buyer of the futures contract, or the
long, commits to buy or take delivery of the bonds chosen by the seller at
the time chosen by the seller. For TYH2 the delivery month is March 2002.
Delivery may not take place before the first delivery date of March 1,
2002, nor after the last delivery date of March 28, 2002. The contract size
of TYH2 is $100,000, so the seller delivers $100,000 face amount of the
chosen bonds to the buyer for each contract the seller is short.

Market forces determine the futures price at any time. Each day, the
exchange on which the futures trade determines a settlement price that is
usually close to the price of the last trade of the day. Mark-to-market pay-
ments, described in Chapter 17, are based on daily changes in the settle-
ment price. Table 20.2 lists the settlement prices of TYH2 from November
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TABLE 20.1 The Deliverable Basket into
TYH2

Conversion
Coupon Maturity Factor

4.75% 11/15/08 0.9335
5.50% 05/15/09 0.9718
6.00% 08/15/09 0.9999
6.50% 02/15/10 1.0305
5.75% 08/15/10 0.9838
5.00% 02/15/11 0.9326
5.00% 08/15/11 0.9297

2U.S. Treasury notes are issued with an original term of 10 years or less. U.S. Trea-
sury bonds are issued with an original term greater than 10 years. This distinction
is rarely of any importance and this chapter continues to use the term bond to
mean any coupon bond.



15 to November 30, 2001, along with the mark-to-market payments aris-
ing from a long position of one contract. To illustrate this calculation, the
settlement price falls from November 19 to November 20, 2001, by 23.5
ticks (i.e., 32nds). On the $100,000 face amount of one contract the loss to
a long position is $100,000×(23.5/32)/100 or $734.

The price at which a seller delivers a particular bond to a buyer is de-
termined by the settlement price of the futures contract and by the conver-
sion factor of that particular bond. Let the settlement price of the futures
contract at time t be F(t) and the conversion factor of bond i be cf i . Then
the delivery price is cf i×F(t) and the invoice price for delivery is this deliv-
ery price plus accrued interest: cf i×F(t)+AIi(t). The conversion factors for
TYH2 are listed in Table 20.1. If, for example, the futures settlement price
is 100, any delivery of the 4.75s of November 15, 2008, will occur at a flat
price of .9335×100 or 93.35. At the same time any delivery of the 6.5s of
February 15, 2010, will occur at a flat price of 1.0305×100 or 103.05.

Each contract trades until its last trade date. The settlement price at
the end of that day is the final settlement price. This final settlement price is
used for the last mark-to-market payment and for any deliveries that have
not yet been made. The last trade date of TYH2 is March 19, 2002. Any
delivery from then on, through the last delivery date of March 28, 2002, is
based on the final settlement price determined on March 19, 2002. This
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TABLE 20.2 Settlement Prices of TYH2 and Mark-
to-Market from a Long of One Contract

Change Mark-to-
Date Price (32nds) Market

11/15/01 106-25
11/16/01 105-24 –33 –$1,031
11/19/01 106-23 31 $969
11/20/01 105-31+ –23.5 –$734
11/21/01 105-07+ –24 –$750
11/23/01 104-28+ –11 –$344
11/26/01 104-27+ –1 –$31
11/27/01 105-14 18.5 $578
11/28/01 105-13 –1 –$31
11/29/01 106-25 44 $1,375
11/30/01 106-30+ 5.5 $172



feature of U.S. futures contracts gives rise to the end-of-month option dis-
cussed in the penultimate section of this chapter.

The quality option is the most significant embedded option in fu-
tures contracts. To simplify the presentation, the timing and end-of-
month options are ignored until discussed explicitly. Ignoring these two
options is equivalent to assuming that the first delivery date, the last
trade date, and the last delivery date are one and the same. In fact, this
simplification accurately describes the government bond futures con-
tracts that trade in Europe.

COST OF DELIVERY AND THE DETERMINATION 
OF THE FINAL SETTLEMENT PRICE

The cost of delivery measures how much it costs a short to fulfill the com-
mitment to deliver a bond through a futures contract. Having decided to
deliver bond i, the short has to buy the bond at its market price and then
deliver it at the futures price. If the price of bond i at time t is Pi(t), then

(20.1)

The short will minimize the cost of delivery by choosing which bond to de-
liver from among the bonds in the delivery basket. The bond that mini-
mizes the cost of delivery is called the cheapest-to-deliver or the CTD.
Table 20.3 illustrates cost of delivery calculations for TYH2 as of March
28, 2002, assuming that all bonds yield 5% and that the final settlement
price is 105.6215. For example, the cost of delivering the 6s of August 15,
2009, is

(20.2)

In the example of Table 20.3, the 4.75s of November 15, 2008, are the
bonds with the lowest cost of delivery, which in this case is zero. The next
to CTD are the 5.5s of May 15, 2009, with a cost of delivery of 32 cents.

Since this section ignores the timing and end-of-month options, the de-
termination of the final settlement price is quite simple:

106 107 9999 105 6215 496. . . .− × =

Cost of Delivery = ( ) + ( ) − × ( ) + ( )( )
= ( ) − × ( )

P t AI t cf F t AI t

P t cf F t

i i i i

i i
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(20.3)

where T denotes the last delivery date.
Equation (20.3) is proved by showing that there is an arbitrage oppor-

tunity if (20.3) does not hold.
First assume that F(T)>PCTD(T)/cf CTD or, equivalently, that

cf CTD×F(T)–PCTD(T)>0. In this case a trader could buy the CTD, sell the
contract, and deliver the CTD. The profit from this trade is

(20.4)

But, by assumption, (20.4) is positive and, therefore, the trade described
constitutes an arbitrage opportunity. Hence it cannot be the case that
F(T)>PCTD(T)/cf CTD.

Next assume that F(T)<PCTD(T)/cf CTD or, equivalently, that
PCTD(T)–cf CTD×F(T)>0. In this case a trader could sell the CTD, buy the
contract, and take delivery of the bond delivered by the short. Denoting
the delivered bond as bond j, the profit from this strategy is

(20.5)

By the definition of CTD, the cost of delivering bond j must be greater than
the cost of delivering the CTD. Hence,

P T cf F Tj j( ) − × ( )

cf F T P TCTD CTD× ( ) − ( )

F T
P T

cf

CTD

CTD( ) =
( )
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TABLE 20.3 Cost of Delivery Calculations Assuming Yields of 5%

Futures price: 105.6215

Conversion Cost of Price/
Coupon Maturity Price Factor Delivery Factor

4.75% 11/15/08 98.598 0.9335 0.000 105.6215
5.50% 05/15/09 102.962 0.9718 0.319 105.9501
6.00% 08/15/09 106.107 0.9999 0.496 106.1174
6.50% 02/15/10 109.671 1.0305 0.828 106.4249
5.75% 08/15/10 105.081 0.9838 1.170 106.8109
5.00% 02/15/11 99.995 0.9326 1.492 107.2213
5.00% 08/15/11 99.995 0.9297 1.798 107.5558



(20.6)

where equality holds if bond j is the CTD. But, by assumption, the right-
hand side of (20.6) is positive. Therefore Pj(T)–cf j×F(T) is positive, and the
trade constitutes an arbitrage opportunity. Hence it cannot be the case that
F(T)<PCTD(T)/cf CTD. Ruling out these two assumed inequalities proves that
equation (20.3) must hold.

Having determined the final settlement price is (20.3), the relationships
among all the bonds in the basket, the CTD, and the futures price as of the
last delivery date can be summarized neatly. First, it follows immediately
from (20.3) that

(20.7)

In words, the cost of delivering the CTD on the last delivery date is zero.
Second, combining (20.3) with the CTD condition in (20.6) and rearrang-
ing terms, for any bond j that is not the CTD,

(20.8)

Equation (20.8) says that the CTD is the bond with the smallest ratio of
price to conversion factor and that the futures price equals this minimum
ratio. Furthermore, the futures price is less than or equal to the price of any
bond divided by its conversion factor. Intuitively, the short uses the deliv-
ery option to minimize the value of the short position, that is to minimize
the value of the futures contract. In particular, the short delivers the bond
with the minimum ratio of price to conversion factor and, given that rule,
the futures price equals that minimum. The last column of Table 20.3 illus-
trates the validity of equation (20.8) for the example of this section.

MOTIVATIONS FOR A DELIVERY BASKET 
AND CONVERSION FACTORS

The design of bond futures contracts purposely avoids a single underlying
security. One reason for this is that if the single underlying bond should
lose liquidity, perhaps because it has been accumulated over time by buy-
and-hold investors and institutions, then the futures contract would lose its

P T

cf

P T

cf
F T

j

j

CTD

CTD

( )
>

( )
= ( )

P T cf F TCTD CTD( ) − × ( ) = 0

P T cf F T P T cf F Tj j CTD CTD( ) − × ( ) ≥ ( ) − × ( )
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liquidity as well. Another reason for avoiding a single underlying bond is
the possibility of a squeeze. To illustrate this problem, assume for the mo-
ment that only one bond were deliverable into a futures contract. Then a
trader might be able to profit by simultaneously purchasing a large fraction
of that bond issue and a large number of contracts. As parties with short
positions in the contract scramble to buy that bond to deliver or scramble
to buy back the contracts they have sold,3 the trader can sell the holding of
both bonds and contracts at prices well above their fair values. But by
making shorts hesitant to take positions, the threat of a squeeze can pre-
vent a contract from attracting volume and liquidity.

The existence of a basket of securities effectively avoids the problems
of a single deliverable only if the cost of delivering the next to CTD is not
that much higher than the cost of delivering the CTD. In the example of
Table 20.3, the difference between the cost of delivering the CTD and the
cost of delivering the next to CTD is 32 cents. If a trader squeezes the 4.75s
of November 15, 2008, then the most that can be extracted from shorts in
the contract is 32 cents: If the trader tries to extract more, then shorts
would purchase and deliver the 5.50s of May 15, 2009, instead.

The difference between the cost of delivering the CTD and the cost of
delivering the next to CTD is as small as it is because of the conversion fac-
tors. To see this, imagine that all the conversion factors were equal to one
so that any bond in the basket could be delivered at the futures price. In
this special case, (20.8) shows that, on the delivery date, the bond with the
lowest price would be CTD and the futures price would equal this lowest
price. In the example of Table 20.3, the CTD would still be the 4.75s of
November 15, 2008, but the futures price would be 98.598. The 5s of Feb-
ruary 15, 2011, and the 5s of August 15, 2011, would tie for the next to
CTD at a price of 99.995. The cost of delivering either of these would be
99.995–98.598 or 1.397, much more than the 32-cent cost of delivering
the next to CTD when the actual conversion factors are used.

The large difference between delivering the CTD versus the next to
CTD when all conversion factors are one arises because the same credit is
given for delivering the low-coupon 4.75s of November 15, 2008, as the 5s
of August 15, 2011. Actual conversion factors reduce the differences in de-
livery costs across bonds by adjusting delivery prices for coupon rates. For
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TYH2 the notional coupon of the contract is 6%. The precise role of this
coupon is discussed shortly, but the basic idea is to set the conversion fac-
tor of bonds with a coupon rate of 6% to one so that their delivery prices
(i.e., the conversion factors times the futures price) are equal to the futures
price. Bonds with a coupon rate below 6%, typically worth less than bonds
with coupons equal to 6%, are assigned conversion factors less than one so
that their delivery prices are below the futures price. Finally, bonds with a
coupon rate above 6%, typically worth more than bonds with a coupon
rate of 6%, are assigned conversion factors greater than one so that their
delivery prices are above the futures price. The conversion factors in Table
20.3 clearly increase with coupon rate and approximately equal one at a
rate of 6%.

Conversion factors are computed by the futures exchanges and are eas-
ily available. The precise rule for computing conversion factors is a bit
complicated, but there is an approximate rule that is pretty accurate and,
as will soon become clear, quite useful for intuition about futures con-
tracts. The conversion factor of a bond is approximately equal to its price
per dollar face amount as of the last delivery date with a yield equal to the
notional coupon rate. Table 20.4 illustrates the accuracy of the approxima-
tion for TYH2.

To see why conversion factors set according to this rule reduce the dif-
ferences in delivery costs across bonds, assume that the approximation just
described holds exactly and that the term structure is flat at the notional
coupon rate. Under these assumptions the price of each bond is the value
of 100 face amount at a yield equal to the notional coupon rate and the
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TABLE 20.4 Approximating Conversion Factors as the Unit Bond
Price at a Yield Equal to the Notional Coupon

Conversion
Coupon Maturity Factor Approximation Error

4.75% 11/15/08 0.9335 0.9324 –0.0011
5.50% 05/15/09 0.9718 0.9713 –0.0005
6.00% 08/15/09 0.9999 0.9999 0.0000
6.50% 02/15/10 1.0305 1.0310 0.0005
5.75% 08/15/10 0.9838 0.9836 –0.0002
5.00% 02/15/11 0.9326 0.9318 –0.0008
5.00% 08/15/11 0.9297 0.9290 –0.0007



conversion factor of each bond is the value of one face amount at a yield
equal to the notional coupon rate. Equivalently, the ratio of the price of
each bond to its conversion factor is 100 and, by the logic of the previous
section, the futures price is also 100. But this implies that the cost of deliv-
ering each bond is zero and, therefore, that all bonds are jointly CTD. To
summarize, if the term structure is flat at the notional coupon rate then
conversion factors perfectly adjust delivery prices. No bond is preferable to
any other with respect to delivery. Also, squeezes of individual bond issues
are pointless since shorts are just as willing to deliver issues that have not
been accumulated.

IMPERFECTION OF CONVERSION FACTORS AND 
THE DELIVERY OPTION AT EXPIRATION

Most of the time—that is, whenever the term structure is not flat at the no-
tional coupon rate—conversion factors used in futures contracts do not
perfectly adjust delivery prices. Figure 20.1 illustrates this point for three
bonds in the TYH2 basket under the assumption of a flat term structure.
The vertical axis graphs price divided by conversion factor, and the hori-
zontal axis graphs yield. As discussed in the previous paragraph, at a yield
of 6% the conversion factors perfectly adjust prices and the ratio of price
to conversion factor equals 100 for all three bonds.

As yield moves away from the notional coupon it is no longer true that
conversion factors perfectly adjust delivery prices. To understand why this
is so, consider the slope of the price ratio–yield curves in Figure 20.1. Since
the vertical axis is price divided by conversion factor, the slope of the curve
for bond i on the delivery date T is

(20.9)

But at a yield of 6% the conversion factor of a bond is approximately
equal to its price per dollar face value. In light of this fact, (20.9) reveals
that the slope of the price ratio–yield curve for a bond in Figure 20.1 is ap-
proximately proportional to that bond’s duration.

As yield increases above the notional coupon rate the prices of all
bonds fall, but the price of the bond with the highest duration, namely the

1
cf

dP T

dyi

i ( )
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5s of August 15, 2011, falls relative to the prices of other bonds. But, be-
cause conversion factors are fixed, the delivery price of the 5s of August
15, 2011, stays the same relative to that of all other bonds. In other words,
as yields increase above the notional coupon rate, the cost of delivering the
5s of August 15, 2011, falls more than that of any other bond. Therefore,
while all bonds are equally attractive to deliver at a yield of 6%, as yield
increases the 5s of August 15, 2011, become CTD. Graphically, the ratio of
the price to conversion factor of the 5s of August 15, 2011, falls below that
of all other bonds.

As yield falls below the notional coupon rate, the prices of all bonds
increase but the price of the bond with the lowest duration, namely the
4.75s of November 15, 2008, increases the least. At the same time, since
the conversion factors are fixed the delivery price of the 4.75s of Novem-
ber 15, 2008, stays the same relative to those of other bonds. Therefore,
while all bonds are equally attractive to deliver at a yield of 6%, as yield
decreases the 4.75s of November 15, 2008, become CTD.

Figure 20.1 is a stylized example in that it assumes a flat term struc-
ture. It is for this reason that the CTD is either the 4.75s of November 15,
2008, or the 5s of August 15, 2011, but never the 6.50s of February 15,
2010, except, of course, at 6% when all bonds are jointly CTD. In reality,
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FIGURE 20.1 CTD Analysis for TYH2 at Delivery: A Flat Term Structure of
Yields
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of course, the term structure can take on a wide variety of shapes that will
affect the determination of the CTD. In general, anything that cheapens a
bond relative to other bonds makes that bond more likely to be CTD. If,
for example, the curve steepens, then long-duration bonds (e.g., the 5s of
August 15, 2011) are more likely to be CTD. On the other hand, if the
curve flattens, then short-duration bonds (e.g., the 4.75s of November 15,
2008) are more likely to be CTD. Figure 20.2 depicts a different shift in
which the 6.50s of February 15, 2010, cheapen by 4 basis points (i.e., their
yield increases by 4 basis points) relative to levels in Figure 20.1. As a re-
sult the 6.5s of February 15, 2010, become CTD when the general yield
level is between about 5.60% and 6.20%. For lower yields the 4.75s of
November 15, 2008, remain CTD, and for higher yields the 5s of August
15, 2011, remain CTD.

At any yield level the futures price at delivery is, according to equation
(20.3), the ratio of the price of the CTD to its conversion factor. Graphi-
cally, the futures price is the lower envelope of the price ratio–yield curves.
Figure 20.3 graphs the futures price corresponding to the price ratio–yield
curves in Figure 20.2. Note that the futures price at delivery is negatively
convex. As yield decreases the duration of the futures contract moves from
resembling the relatively high duration of the 5s of August 15, 2011, to re-
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FIGURE 20.2 CTD Analysis for TYH2 at Delivery: A Flat Term Structure with a
Cheapening of the 6.5s of February 15, 2010
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sembling the intermediate duration of the 6.50s of February 15, 2010, to
resembling the relatively low duration of the 4.75s of November 15, 2008.
Hence, at delivery, the duration of the futures contract falls with yield; that
is, the contract is negatively convex.

One way to think about the quality option at expiration is as the value
of being able to deliver any of the three bonds depicted in Figure 20.3
rather than being forced to deliver the 5s of August 15, 2011. In the figure,
this value is related to the difference between the price ratio of the 5s of
August 15, 2011, and the futures price at any particular yield level. When
yield is relatively high and the 5s of August 15, 2011, are the CTD, there is
no difference in value between being able to choose which bond to deliver
and being forced to deliver the 5s of August 15, 2011. The value of the op-
tion is higher when yield is in the intermediate range and the CTD is the
6.50s of February 15, 2010. Finally, the value of the option is highest when
yield is relatively low and the CTD has moved all the way to the 4.75s of
November 15, 2008.

The quality option at expiration may also be viewed with another
bond as the benchmark. Say, for example, that the quality option is defined
as the value of being able to deliver any bond rather than having to deliver
the 6.50s of February 15, 2010. Then, at expiration, the option is worth
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FIGURE 20.3 Futures Price for TYH2 at Delivery: A Flat Term Structure with a
Cheapening of the 6.5s of February 15, 2010
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nothing in the intermediate range of yield but has value for relatively high
or relatively low levels of yield.

GROSS AND NET BASIS

Transactions in futures are usually either outright (i.e., buying or selling fu-
tures by themselves) or against forward bond positions in the form of basis
trades. Basis trades essentially take a view that the futures contract is cheap
or rich relative to the value of bonds in the delivery basket. These trades
are important to arbitrageurs who profit from these trades but, from a
market perspective, the potential for profit in these trades is the force that
keeps a future contract near its fair value relative to cash bonds. This sec-
tion defines basis trades and relates the profit from these trades to the
change in a quantity called the net basis.

A long basis trade in bond i may be described as follows4:

Buy Gi face amount of deliverable bond i.
Sell the repo of bond i to the last delivery date.
Sell cf i×Gi/100,000 futures contracts.

The combination of buying the bond and selling the repo is equivalent 
to buying the bond forward to the last delivery date. Rewriting the 
description,

Buy Gi face amount of deliverable bond i forward to the last delivery
date.

Sell cf i×Gi/100,000 futures contracts.

The analogous form of a short basis trade is the reverse set of transactions:

Sell Gi face amount of a deliverable bond i.
Buy the repo of bond i to the last delivery date.
Buy cf i×Gi/100,000 futures contracts.

Gross and Net Basis 435
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Or, equivalently,

Sell Gi face amount of a deliverable bond i forward to the last delivery
date.

Buy cf i×Gi/100,000 futures contracts.

Note that buying or selling the basis in this form involves no cash outlay:
The repo position finances or invests the bond proceeds, and the futures
trade, by definition, requires no cash.5

Let Pi(t) be the spot price of bond i at time t, let Pfwd
i (t) be its time t for-

ward price to the last delivery date, and let F(t) be the futures price at time
t. Then the gross basis and net basis of bond i at time t, GBi(t) and NBi(T)
respectively, are defined as:

(20.10)

(20.11)

Using equation (16.8), the forward price may be written in terms of the
spot price and carry. Using this fact to rewrite equation (20.11),

(20.12)

The right-hand side of equation (20.12) explains the term net basis: It is
the gross basis net of carry.

At delivery the forward price equals the spot price, or, equivalently,
carry equals zero. Therefore, by inspection of (20.10) and (20.11) or of
(20.12), the gross basis equals the net basis. Furthermore, by comparing
these equations to (20.1), both measures equal the cost of delivery.

Table 20.5 reports the gross and net basis for all the bonds in TYH2
as of November 26, 2001. In accordance with market convention, basis
values in the table are quoted in ticks or 32nds. As an example of the cal-

NB t P t t cf F t GB t ti i i i i i( ) = ( ) − ( ) − × ( ) = ( ) − ( )carry carry

NB t P t cf F ti
fwd
i i( ) = ( ) − × ( )

GB t P t cf F ti i i( ) = ( ) − × ( )
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culations, consider the 6s of August 15, 2009. Since the gross basis in
decimals is

(20.13)

the gross basis is 1.7605×32 or 56.3 ticks. The carry is given in ticks in the
table, so the net basis is 56.3–42.7 or 13.6 ticks.

Chapter 17 showed that a futures position could be transformed into a
forward position by adjusting the number of futures contracts according to
the tail. For ease of exposition, it is now assumed that all basis position are
properly tailed so that the text can treat a futures position as if it were a
forward position. In other words, in the background of the discussion is an
unmentioned tail adjustment. The case study at the end of the chapter ex-
plicitly describes this tail adjustment.

Neglecting the mark-to-market feature of the futures, that is, assuming
that the futures position is properly tailed, the profit and loss (P&L) from a
long basis trade initiated at time t and taken off at time t' is the profit of a
long forward position in a bond minus the profit of a long futures position.
Mathematically the P&L is

(20.14)G P t P t G cf F t F ti
fwd
i

fwd
i i i× ( ) − ( )[ ] − × × ( ) − ( )[ ]' '

106 19 5 32 9999 104 27 5 32 1 7605+ − × +( ) =. . . .
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TABLE 20.5 TYH2 and Its Deliverable Basket as of November 26, 2001

Pricing date: 11/26/01
Last delivery date: 03/28/02
Futures price: 104-27.5

Conversion Gross Forward
Coupon Maturity Factor Price Basis Repo Yield Carry Net Basis

6.000% 08/15/09 0.9999 106-19.5 56.3 1.80% 5.132% 42.7 13.6
6.500% 02/15/10 1.0305 109-31 61.2 1.80% 5.174% 47.3 13.8
5.500% 05/15/09 0.9718 103-20 55.1 1.80% 5.091% 38.7 16.4
4.750% 11/15/08 0.9335 99-13.5 49.1 1.80% 5.029% 31.5 17.6
5.750% 08/15/10 0.9838 105-2.375 61.2 1.80% 5.183% 40.4 20.9
5.000% 02/15/11 0.9326 99-26.125 64.8 1.65% 5.181% 35.1 29.7
5.000% 08/15/11 0.9297 99-28.5 76.9 1.00% 5.193% 42.1 34.8



Using the definition of net basis in equation (20.11), this P&L may be
rewritten as

(20.15)

In words, (20.15) says that the P&L from the long basis position equals the
size of the bond position times the change in the net basis.

QUALITY OPTION BEFORE DELIVERY

This section describes the quality option before the delivery date and relates
the value of this option to net basis, both algebraically and graphically.

Continuing to assume that futures positions are properly tailed, the
net basis at time t is the value of the quality option at delivery, with re-
spect to bond i, that can be locked in as of date t. To see this, recall that
on the delivery date T the cost of delivering bond i is Pi(T)–cf i×F(T). Since
a trader on date t can lock in a price of Pfwd

i (t) for date T delivery of bond i
and can lock in a futures price of F(t) for date T delivery, the cost of deliv-
ery that can be locked in on date T is Pfwd

i (t)–cf i ×F(t). At the same time, the
cost of delivering the CTD on the delivery date is, by definition, zero.
Therefore, the cost of delivering a particular bond minus the cost of deliv-
ering the bond that is optimal to deliver is also Pfwd

i (t)–cf i ×F(t). Finally, by
equation (20.11), this is just the net basis.

If the net basis of any bond is near zero, then the quality option em-
bedded in the contract is nearly worthless and selling that bond forward is
equivalent to selling the futures contract (again assuming proper tailing).
Mathematically, this is a special case of equation (20.11). When the net ba-
sis equals zero, then F(t)=Pfwd

i (t)/cf i .
The bonds in Table 20.5 are in order of ascending net basis. The bond

with the lowest net basis, in this case the 6s of August 15, 2009, is usually
called the CTD. Strictly speaking it is not correct to call any bond the CTD
before the first delivery date. But the smaller the value of the quality option
with respect to a particular bond, the lower the cost of committing to de-
liver that bond (i.e., of sacrificing the quality option). In this sense, the
smaller the value of the quality option, the smaller the net basis, and the
closer the bond is to being the CTD. In the same sense the 6s of August 15,

G NB t NB ti i i× ( ) − ( )[ ]'
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2009, and the 6.50s of February 15, 2010, with net bases within .2 ticks of
each other, are essentially jointly CTD.

Figure 20.4 uses the data in Table 20.5 and a pricing model to illus-
trate the value of the quality option and the concept of CTD before deliv-
ery. On the vertical axis is the forward price divided by the conversion
factor and on the horizontal axis is a parallel basis point shift in the for-
ward yields relative to those in table 20.5. Unlike Figure 20.3, depicting
the futures price on the delivery date, the futures price in Figure 20.4 is not
equal to the minimum of the price to conversion factor ratios. In fact, the
futures price is strictly less than all these ratios. Intuitively, before expira-
tion the value of the quality option is positive and the minimum net basis is
positive. The futures price is closest to the price of the 6.50s of February
15, 2010, divided by its conversion factor. This indicates that, of the three
bonds portrayed, it is the CTD.

The discussion surrounding Figures 20.1 and 20.2 shows that yield
levels above the notional coupon rate tend to make the short-duration
bonds CTD. In Table 20.5 the levels of the forward yields to the delivery
date are between 80 and 100 basis points below the notional coupon rate
of 6%, but the shortest-duration bonds, that is, the 4.75s of November 15,
2008, and the 5.50s of May 15, 2009, are not CTD. The reason for this is
that the curve is relatively steep: The forward yield of the 5s of August 15,
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FIGURE 20.4 TYH2 and Its Deliverables as of November 26, 2001
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2011, is over 16 basis points greater than that of the 4.75s of November
15, 2008. This curve shape richens the shorter-duration bonds relative to
other bonds in the basket and pushes the CTD out to the 6s of August 15,
2009. If general yield levels were to fall further, the CTD would shift to the
front end of the basket. If the curve were to steepen more, the CTD would
shift to the back end of the basket.

Figure 20.5 graphs the net basis for three bonds in the TYH2 basket
using the data in Table 20.5 and a pricing model. The net basis graphs be-
have like the quality options they represent. The net basis of the 4.75s of
November 15, 2008, increases with rates since the 4.75s of November 15,
2008, move further away from being CTD as rates increase. In option par-
lance, the net basis of the 4.75s of November 15, 2008, behaves like a call
on rates or, equivalently, like a put on bond prices. The net basis of the 5s
of August 15, 2011, increases as rates fall since the 5s of August 15, 2011,
move further away from being CTD as rates fall. This net basis, therefore,
behaves like a put on rates or, equivalently, like a call on bond prices. Fi-
nally, the net basis of the 6.50s of February 15, 2010, increases when rates
fall and when rates rise. The 6.50s of February 15, 2010, are very close to
CTD at yield levels as of November 26, 2001. Any change in rates pushes
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FIGURE 20.5 Net Basis, TYH2 Deliverables as of November 26, 2001
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them away from CTD and raises their net basis. Thus, the net basis of a
bond close to CTD behaves like a straddle on rates or prices.

Maintaining the assumption of parallel shifts of forward yields, Figure
20.6 graphs the DV01 of the futures contract and of the 6.5s of February
15, 2010. The intuition behind the negative convexity of the futures con-
tract is explained in the section on the delivery option at expiration. How-
ever, along with Figure 20.4, this figure dramatically demonstrates that the
interest rate behavior of a futures contract is quite different from the inter-
est rate behavior of a bond. Furthermore, when hedging a bond with a fu-
tures contract or vice versa the hedge must be rebalanced as rates change.

SOME NOTES ON PRICING THE QUALITY OPTION 
IN TERM STRUCTURE MODELS

Having set up a term structure model in the form of a tree, pricing the
quality option is straightforward. Start at the delivery date. At each node
compute the price to conversion factor ratio for each bond. Find the
bond with the minimum ratio and set the futures price equal to that ratio.
This is the tree equivalent of Figure 20.3. Given these terminal values of
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FIGURE 20.6 DV01 of TYH2 and DV01 of 6.5s of February 15, 2010
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the futures price, prices on earlier dates can be computed along the lines
described in Chapter 17.

The algorithm described in the previous paragraph assumes that the
prices of the bonds are available on the last delivery date. For example, for
TYH2 it assumes that the price of the 4.75s of November 15, 2008, is
available at all nodes on March 28, 2002. These bond prices can be com-
puted in one of two ways. If a model with a closed-form solution for spot
rates is being used, these rates can be used to compute bond prices as of the
delivery date. Otherwise, the tree has to be extended to the maturity date
of the longest bond in the basket, and bond prices have to be computed us-
ing the usual tree methodology. Obviously the first solution is faster and
less subject to numerical error, but each user must decide if a model with a
closed-form solution is suitable for the purpose at hand.

As discussed in Part Three, pricing models usually assume that some
set of securities is fairly priced. In the case of futures the standard assump-
tion is that the forward prices of all the bonds in the deliverable basket are
fair. Technically this can be accomplished by attaching an OAS to each
bond such that its forward price in the model matches the forward price
in the market. The assumption that bond prices are fair is popular because
many market participants first uncover an investment or trade opportu-
nity in bonds and then determine whether futures contracts should be
used instead of some or all bonds in the trade. This is the case because fu-
tures are complex securities and, as a result, many investors and traders
use futures only when they offer advantages in value, liquidity, or both.
Separating the value of futures relative to bonds from the value of bonds
themselves allows for a clean consideration of the costs and benefits of us-
ing futures.

Term structure models commonly used for pricing futures contracts
fall into two main categories. First are one- or two-factor models of the
types described in Part Three. The advantage of these models is that they
are relatively easy to implement and, for the most part, flexible enough to
capture the yield curve dynamics driving futures prices. With only one or
two factors, however, these models cannot capture the empirical price
movements of one bond relative to its neighboring bonds. So, for example,
these models cannot capture a change like the relative cheapening of the
6.50s of February 15, 2010, depicted in Figure 20.2.

The second type of model used in practice allows for a richer set of
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relative price movements across the deliverable basket. These models es-
sentially allow each bond to follow its own price or yield process. The
cost of this flexibility is model complexity of two types. First, ensuring
that these models are arbitrage-free takes some effort. Second, the user
must specify parameters that describe the stochastic behavior of all bond
prices in the basket. For TYH2, for example, a user might have to specify
volatility for each of the seven bonds in the deliverable basket and their 21
correlation coefficients.

Futures traders often describe their models in terms of the betas of
the bonds in the basket with respect to a benchmark bond in the basket.
The benchmark is usually chosen as the longest bond in the basket but, if
that bond is an on-the-run bond exhibiting a lot of idiosyncratic behav-
ior, then the second to longest bond might be chosen as a benchmark. For
TYH2, for example, the 5s of August 15, 2011, are a common bench-
mark. The beta of a bond represents the expected change in the yield of
that bond given a one-basis point change in the yield of the benchmark. If
the 4.75s of November 15, 2008, were assigned a beta of 1.02, it would
mean that its yield is expected to increase or decrease by 2% more than
the increase or decrease of the yield of the 5s of August 15, 2011. The
beta of a particular bond can be thought of as the coefficient from a re-
gression of changes in its yield on changes in the yield of the benchmark
bond. Note that in a one-factor model the beta of a bond is simply the ra-
tio of the volatility of that bond yield to the volatility of the benchmark
bond yield.

MEASURES OF RATE SENSITIVITY

The sensitivity of a futures contract to changes in interest rates is often
computed with respect to either spot yields or forward yields. To compute
a DV01, for example, the spot yields of all the bonds in the basket may be
shifted up and down by one basis point or the forward yields to the deliv-
ery date may be shifted up and down by one basis point. To understand the
implications of this choice, recall from Chapter 16 that a change in the
spot yield may be thought of as a simultaneous change in the repo rate and
in the forward yield. Therefore, computing a DV01 by changing forward
yields assumes that repo rates stay the same, while computing a DV01 by
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changing spot yields assumes that forward yields and repo rates move in
parallel. Which of these assumptions is more useful for hedging is an em-
pirical question in which historical analysis and expectations about the fu-
ture play a role.

The discussion in the previous paragraph suggests that there is a family
of one-factor measures of price sensitivity for futures contracts. It may be
assumed that for every one-basis point move in the spot yield the repo rate
moves by .25, .5, or some other fraction of a basis point. Once again, the
correct choice is an empirical question.

A drawback of this one-factor approach is that repo rates and the
yields of bonds in the basket are in very different parts of the yield curve
and, as such, are far from perfectly correlated. A better solution than
making an assumption about how much repo moves relative to spot
yields is to measure exposures to spot yields and repo separately. In other
words, compute both the change in futures price for a parallel shift in
spot yields and the change in futures price for a parallel shift in repo
rates. The first exposure may be hedged with cash bonds and the second
with repo or Eurodollar and fed funds contracts. From this perspective
the weakness of the one-factor approach stands out. Hedging a futures
contract with cash bonds alone is, at least in part, a hedge of repo rates
with bonds in the delivery basket, for example, a hedge of a three-month
rate with 10-year bonds.

Since the futures price depends on the slope of the curve as well as on
the level of interest rates, a one-factor approach in the bond sector may not
be sufficient for many applications. An obvious solution is to use a two-
factor model for both pricing and hedging. Another solution is to use a
one-factor model for pricing and, for safety, to compute a derivative with
respect to some measure of the slope of the term structure. To ensure that a
futures position is not too exposed to the idiosyncratic risk of a particular
bond, it may also be prudent to compute sensitivities with respect to
changes in individual bond yields.

TIMING OPTION

The party short the futures contract may deliver at any time during the de-
livery month. The delivery period of TYH2, for example, extends from
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March 1 to March 28, 2001. Consider the following two strategies for a
trader with a short futures position during the delivery month. First, the
early delivery strategy: Buy the CTD repo, deliver the CTD early, and stay
short the CTD to the futures expiration date. Or second, the late delivery
strategy: Stay short the futures contract until the expiration date. The de-
terminants of the best policy are carry and option value. Under the early
delivery strategy, the trader pays carry on the CTD and sacrifices any value
left in the quality option. Under the late delivery strategy, the trader pays
no carry and can switch bonds if the CTD changes. Clearly, if carry is pos-
itive, it is optimal to delay delivery. If carry is negative, however, then the
carry advantage of delivering early must be weighed against the sacrifice of
the quality option.

END-OF-MONTH OPTION

At the last trading date the final settlement price is set. A position long
bond i, the current CTD, and short a matching face amount of futures con-
tracts6 is worth cf i×F

–
where F

–
is the final settlement price. If the price of

the bond rises or falls but remains CTD, the value of the position stays
fixed at this value. However, if bond prices change such that the CTD
changes, that is, such that for some new CTD

(20.16)

then the short can sell the holding of bond i, buy the new CTD, and de-
liver the new CTD instead of bond i. This option to switch bonds after
the last trading date is called the end-of-month option. The P&L from
the switch is

P cf F P cf FCTD CTD i i− × < − ×
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6A basis position before the last trade date consists of a bond position and a con-
version-factor-weighted number of futures contracts. After the last trade date the
position must be adjusted to a matched number of futures contracts. Further dis-
cussion is too technical for the scope of this chapter. It should be noted, how-
ever, that the difference between these two hedge ratios is called a tail but has
nothing to do with the financing tail introduced in Chapter 17 and discussed in
this chapter.



(20.17)

Before the last trade date the futures price reflects any cheapening of
the CTD. After the last trade date, however, equation (20.17) shows that
any cheapening of the CTD leads to greater and greater profits.

Despite this potential for great value, the end-of-month option does
not turn out to be worth much in practice. First, since the end-of-month
period is short, bond prices do not have the time to move very much. In
TYH2, for example, the end-of-month period lasts less than seven business
days.7 Second, traders long bonds and short futures actively seek opportu-
nities to profit by switching bond holdings. This attention tends to domi-
nate trading of bonds in the deliverable basket. As a result, any time a
bond begins to cheapen all the shorts express an interest in switching and
the cheapening of the bond comes to an abrupt halt.

cf F P P cf FCTD i CTD i× + − − ×
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7The final settlement price is set on March 19, 2002. From March 20 to March 28,
2002, inclusive is seven business days, but the short has to give notice of the bond
to be delivered before the last delivery day. This notification requirement shortens
the time usable by the end-of-month option.

TRADING CASE STUDY: November ‘08 Basis 
into TYM0

On February 28, 2000, the 10-year note contract expiring in June
2000 (TYM0) appeared cheap in most models used by the industry.
Table 20.6 gives some background information about the contract
and prices at the time.

To take advantage of this cheapness, many traders sold the 4.75s
of November 15, 2008, net basis at 7.45 ticks. Table 20.7 illustrates
why many traders thought this was a good trade. The table is con-
structed using a horizon date of May 19, 2000. (The reason for this
choice will become clear shortly.) The table lists several scenarios of
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parallel shifts in forward yields for delivery on the last delivery date
of TYM0 (i.e., June 30, 2000). The scenario of +20 basis points is
the scenario in which forward yields of all deliverable bonds for June
30, 2000, delivery increase 20 basis points from the trade date of
February 28, 2000, to the horizon date of May 19, 2000. The table
also gives the futures price and the net basis of the 11/08s in the var-
ious scenarios according to a particular pricing model. This model
price assumes that the futures price is fair relative to cash bonds on
the horizon date. The row in Table 20.7 labeled “Basis P&L($)”
gives the predicted P&L from selling $100,000,000 11/08 net basis
on February 28, 2000, as of the horizon date May 19, 2000. As
shown in (20.15), the P&L of a basis trade equals the change in the
net basis times the face amount of bonds.8 So, for example, in the
+20 scenario the P&L is

(20.18)

8The tail held to realize this P&L is discussed at the end of the case.

$ , ,
. .
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TABLE 20.6 TYM0 and Its Deliverable Basket as of February 28, 2000

Pricing date: 2/28/00
Last delivery date: 6/30/00
Futures price: 95-9

Conversion Gross Forward Net 
Coupon Maturity Factor Price Basis Repo Yield Carry Basis

4.750% 11/15/08 0.9195 87-24.625 5.1 5.55% 6.667% –2.4 7.5
6.000% 8/15/09 1.0000 96-3 26.0 4.90% 6.637% 13.2 12.8
5.500% 5/15/09 0.9662 92-16.875 14.9 5.70% 6.632% 1.2 13.7
5.500% 2/15/08 0.9702 92-31.625 17.5 5.75% 6.692% 0.9 16.6
5.625% 5/15/08 0.9769 93-20.125 17.6 5.80% 6.681% 0.8 16.7
6.125% 8/15/07 1.0071 96-26.25 27.6 5.84% 6.716% 4.2 23.4
6.625% 5/15/07 1.0342 99-19.875 34.6 5.84% 6.734% 7.2 27.4
6.250% 2/15/07 1.0133 97-20.75 35.2 5.84% 6.723% 5.0 30.2
5.000% 2/15/10 1.0358 100-16 57.9 3.85% 6.550% 27.7 30.2
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Many traders thought that selling the 11/08 basis was a good
trade based on data like that presented in the “Basis P&L($)” row of
Table 20.7. The scenarios cover the most likely outcomes. There are
77 days from the trade date to the horizon date. Assuming a volatility
of 100 basis points per year, the volatility over 77 days is 100√77/365

—–  
or

46 basis points so a scenario span from –80 to +80 covers from about
–1.74 to +1.74 standard deviations. The trade starts to lose money in
a rally of a bit more than 60 basis points, but makes money for any
smaller rally and any sell-off. In the context of the table, it is a matter
of personal preference to determine if the potential gains are large
enough for the risks borne.

A criticism of making a trading decision based on Table 20.7 is
that the table does not really describe all of the risks involved in the
basis trade. If the curve flattens, then one of the shortest bonds in the
basket will become CTD and the net basis of the 11/08s will rise. If
the curve steepens, then one of the longer bonds in the basket will be-
come CTD and the net basis of the 11/08s will rise. Also, if the 11/08s
for some reason cheapen relative to the other bonds in the basket,
then the net basis of the 11/08s will rise. All these risks are not in-
cluded in Table 20.7.

Some traders looking at the payoff profile of the basis in Table
20.7 did not like the dramatic drop in P&L after a rally of more than
40 basis points. To make the P&L profile look better, many traders
bought 95 strike call options on TYM0 expiring on May 19, 2000,
for 1.51 per 100 face amount of futures. The payoff from calls on 100
face of futures is given in Table 20.7. With a rally of 60 basis points,
for example, the payoff is 99.2198–95–1.516 or 2.704. Choosing to
purchase 47 calls (i.e., calls on 47 contracts covering 47×$100,000 or
$4.7 million face) evens out the payoff profile nicely. The rally of 60
basis points makes the 47 calls worth

(20.19)

Adding this to the P&L of $10,938 from the net basis position alone
gives a total P&L of $138,034. Finally, Table 20.7 gives the predicted 
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P&L profile with the options position. It is understandable that some
traders would choose to sacrifice some upside in a sell-off to limit the
loss in a large rally.

The option position also reduces risk in a way not shown in
Table 20.7. If volatility were to rise over the trading horizon, the
value of the quality option and therefore the net basis would rise as
well. A long option position would at least partially offset this loss
since option values increase with volatility. This argument applies
strictly between the trade date and the horizon date. On the hori-
zon date the net basis will be adversely affected by increased
volatility but the expiring option will not benefit from that in-
creased volatility. Nevertheless, as the case will show, preventing
losses over the course of the trade can be as important as the final
P&L profile.

It should now be clear that the P&L analysis was done to a May
19, 2000, horizon because the option on TYM0 expired on that date.
Options on futures are set to expire before the first delivery date so
that these options cannot expire after all delivery has taken place.
This convention often makes basis trading difficult because delivery
usually occurs on the last delivery date, more than a month after the
relevant option has expired. A trader can correct for this mismatch by
using bond options that mature later in the delivery month.9 Unfortu-
nately, however, these options are not exchange traded and are not so
liquid as futures options.

Tables 20.8, 20.9, and 20.10 show how the trade worked out.
Table 20.8 reports the forward yield of each bond in the basket for
June 30, 2000, delivery on the trade date, on two intermediate dates
of interest, and on the option expiration date. Table 20.9 reports the
futures price, the net basis of each bond, and the option price on these
same four dates. Table 20.10 reports the cumulative P&L compo-
nents of the trade.

From the initiation of the trade to April 3, 2000, forward yields

9Another possibility is options on the next futures contract. For example, the
contract after TYMO is the September contract. This choice entails basis risk
that has to be evaluated.
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fell approximately in parallel by 47 basis points. As a result the CTD
moved toward the shorter end of the basket, to the 8/07s and 2/08s,
and the 11/08 net basis rose to 11.06 for a loss of $112,813. The op-
tion position, however, gained $87,391, making the total loss only
$25,422. On this date the models reported that the contract was still

TABLE 20.8 Forward Yields for June 30, 2000, Delivery as of Selected Dates

Pricing Date:
2/28/00 4/3/00 2/28/00 4/10/00 4/3/00 5/19/00 2/28/00

to to to 
Forward Forward 4/3/00 Forward 4/10/00 Forward 5/19/00

Coupon Maturity Yield Yield Change Yield Change Yield Change

6.250% 02/15/07 6.7234 6.2505 –47.3 6.0814 –16.9 6.7656 4.2
6.625% 05/15/07 6.7344 6.2637 –47.1 6.1002 –16.4 6.7668 3.2
6.125% 08/15/07 6.7155 6.2514 –46.4 6.0915 –16.0 6.7530 3.8
5.500% 02/15/08 6.6920 6.2253 –46.7 6.0467 –17.9 6.7175 2.6
5.625% 05/15/08 6.6814 6.2035 –47.8 6.0144 –18.9 6.7083 2.7
4.750% 11/15/08 6.6670 6.1885 –47.9 5.9924 –19.6 6.6851 1.8
5.500% 05/15/09 6.6319 6.1579 –47.4 5.9584 –20.0 6.6354 0.3
6.000% 08/15/09 6.6370 6.1464 –49.1 5.9485 –19.8 6.6033 –3.4
6.500% 02/15/10 6.5502 6.0468 –50.3 5.8481 –19.9 6.5159 –3.4

TABLE 20.9 TYM0 Futures Price, Futures Options Price, and Net Basis
Values as of Selected Dates

Pricing Date: 2/28/00 4/3/00 4/10/00 5/19/00

Futures price: 95-9 98-8.5 99-6.5 95-9.5
Price of calls @95: 1.516 3.375 4.234 0.297

Coupon Maturity Net Basis Net Basis Net Basis Net Basis

6.250% 02/15/07 30.2 13.3 12.1 22.7
6.625% 05/15/07 27.4 11.5 9.8 21.3
6.125% 08/15/07 23.4 9.9 8.8 16.3
5.500% 02/15/08 16.6 9.7 14.2 11.5
5.625% 05/15/08 16.7 13.9 21.3 11.3
4.750% 11/15/08 7.5 11.1 22.0 3.5
5.500% 05/15/09 13.7 19.2 32.6 12.5
6.000% 08/15/09 12.8 22.9 36.7 19.4
6.500% 02/15/10 30.2 47.3 63.5 37.4
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cheap but that it had richened by about 1.5 ticks relative to cash. This
implies that the loss would have been about $100,000,000×(1.5/32)/100
or $46,875 larger had the value of the futures contract not richened
to approach its theoretically fair value.

From April 3 to April 10, 2000, the forward yields continued to
fall by between 16 and 20 basis points. Over this period, however, the
forward yield curve flattened by about 3 basis points. In addition, the
models reported that the contract had cheapened about 2.5 ticks over
these few days. The combination of these effects was disastrous for
the trade. The flattening rally moved all the shorter-term bonds closer
to CTD. The net basis of every bond from the 2/07s to the 5/08s fell
below that of the 11/08s. The net basis of the 11/08s increased to over
22 for a loss on the net basis position of $455,000. The option posi-
tion gained $127,781, mitigating the damage to a loss of $327,219.

Note that the loss of $327,219 is greater than any number in the
predicted P&L of Table 20.7. Part of this is due to the steepening of
the forward yield curve and part due to the additional cheapening of
the futures contract. In any case, the trading lesson is that intermedi-
ate losses can be much greater than horizon losses. In other words,
even if the analysis of Table 20.7 turned out to be correct, the losses
in the interim could be great and perhaps too great to bear. In particu-
lar, a trader showing a loss of $455,000 or $327,219 on this trade
might have been ordered to reduce or close the position. In that situa-
tion the trader would never see the results of Table 20.7. In fact, one 

TABLE 20.10 Cumulative P&L from the November ’08 Basis Trade, with and
without Futures Options

Face amount basis: –100,000,000
Face amount calls: 4,700,000

11/15/08 Option P&L from P&L from
Date Net Basis Price Net Basis Options Total P&L

2/28/00 7.45 1.516
4/3/00 11.06 3.375 –112,813 87,391 –25,422
4/10/00 22.01 4.234 –455,000 127,781 –327,219
5/19/00 3.51 0.297 123,125 –57,281 65,844
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explanation at the time for the cheapening of the futures contract
from April 3, 2000, to April 10, 2000, was that many traders were
forced to liquidate short basis positions. Since such liquidations entail
selling futures and buying bonds, enough activity of this sort will
cheapen the contract relative to bonds.

By May 19, 2000, the forward yield curve had returned to the
levels of February 28, 2001, but had flattened by between 3 and 4 ba-
sis points. This yield curve move restored the 11/08s to CTD and re-
duced their net basis to 3.51. Even though the futures contracts
returned to their original levels, the options lost most of their time
value. The total P&L of the trade to its horizon turned out to be
$65,844. Note that this profit is substantially below the predicted
P&L of about $153,532. First, the forward yield curve did flatten,
making the shorter-maturity bonds closer to CTD than predicted by
the parallel shift scenarios. Second, while the model assumed that the
futures contract would be fair relative to the bonds on May 19, 2000,
it turned out that the contract was still somewhat cheap to cash on
that date. A quick way to quantify these effects is to notice that the
net basis of the 11/08s on the horizon date was 3.51 while it had been
predicted to be close to 1. This difference of 2.51 ticks is worth
$100,000,000×(2.51/32)/100 or $78,438 in P&L. Adding this to the ac-
tual P&L of $65,844 would bring the total to $144,282, much closer
to the predicted number. By the way, a trader can, at least in theory,
capture any P&L shortfall due to the cheapness of the futures con-
tract on the horizon date by subsequent trading.

Before concluding the case, the tail of this trade is described. By
working with the net basis directly the case implicitly assumes that
the tail was being managed. The conversion factor of the 11/08s was
.9195, so, without the tail, the trade would have purchased about 920
contracts against the sale of $100,000,000 bonds. On February 28,
2000, there were 122 days to the last delivery date, and the repo rate
for the 11/08s to that date was 5.55%. Hence, using the rule of Chap-
ter 17, the tail was

(20.20)920
0555 122

360
17× × =.
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contracts. In other words, only 920-17 or 903 contracts should have
been bought against the bond position. On April 3, 2000, the re-
quired tail had fallen to 13 contracts, or, equivalently, the futures po-
sition should have increased to 920-13 or 907 contracts. Over that
time period the futures price rose from 95-9 to 98-81/2, making the
tail worth about 2.98 per 100 face of contracts. Assuming an average
tail of 15 contracts (i.e., $1,500,000 face), the tail in this trade turned
out to be worth $44,765. In other words, had the tail not been man-
aged, the P&L of the basis trade would have differed from the bond
position times the change in net basis by about $44,765.
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CHAPTER 21
Mortgage-Backed Securities

A mortgage is a loan secured by property. Until the 1970s banks made
mortgage loans and held them until maturity, collecting principal and

interest payments until the mortgages were paid off. This primary market
was the only mortgage market. During the 1970s, however, the securitiza-
tion of mortgages began. The growth of this secondary market substan-
tially changed the mortgage business. Banks that might otherwise restrict
their lending, because of limited capital or because of asset allocation deci-
sions, can now continue to make mortgage loans since these loans can be
quickly and efficiently sold. At the same time investors have a new security
through which to lend their surplus funds.

Individual mortgages are grouped together in pools and packaged in a
mortgage-backed security (MBS). In a pass-through security, interest and
principal payments flow from the homeowner, through banks and servicing
agents, to investors in the MBS. The issuers of these securities often guar-
antee the ultimate payment of interest and principal so that investors do
not have to face the risk of homeowner default.

In striving to understand and value mortgage-backed securities, practi-
tioners expend a great deal of effort modeling the aggregate behavior of
homeowners with respect to their mortgages and analyzing the impact on a
wide variety of MBS. This chapter serves as an introduction to this highly
developed and specialized field of inquiry.1

BASIC MORTGAGE MATHEMATICS

The most typical mortgage structure is a fixed rate, level payment mort-
gage. Say that to buy a home an individual borrows from a bank $100,000

1For a book-length treatment see Hayre (2001).



secured by that home. To pay back the loan the individual agrees to pay
the bank $599.55 every month for 30 years. The payments are called level
because the monthly payment is the same every month. This structure dif-
fers from that of a bond, for example, which makes relatively small
coupon payments every period and then makes one relatively large princi-
pal payment.

The interest rate on a mortgage is defined as the monthly compounded
yield-to-maturity of the mortgage. In the example, the interest rate y is de-
fined such that

(21.1)

Solving numerically, y=6%.
The intuition behind this definition of the mortgage rate is as follows.

If the term structure were flat at y, then the left-hand side of equation
(21.1) equals the present value of the mortgage’s cash flows. The mortgage
is a fair loan only if this present value equals the original amount given by
the bank to the borrower.2 Therefore, under the assumption of a flat term
structure, (21.1) represents a fair pricing condition. Mortgage pricing with-
out the flat term structure assumption will be examined shortly.

While a mortgage rate can be calculated from its payments, the pay-
ments can also be derived from the rate. Let X be the unknown monthly
payment and let the mortgage rate be 6%. Then the equation relating X to
the rate is

(21.2)

Applying equation (3.3) to perform the summation, equation (21.2) may
be solved to show that
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The rate of the mortgage may be used to divide the monthly payments
into its interest and principal components. These accounting quantities are
useful for tax purposes since interest payments are deductible from income
while principal payments are not. Let B(n) be the outstanding principal
balance of the mortgage after the payment on date n. The interest compo-
nent of the payment on date n+1 is

(21.4)

In words, the interest component of the monthly payment over a particular
period equals the mortgage rate times the principal outstanding at the be-
ginning of that period. The principal component of the payment is the re-
mainder, namely

(21.5)

In the example, the original balance is $100,000. At the end of the first
month, interest at 6% is due on this balance, implying that the interest
component of the first payment is

(21.6)

The rest of the monthly payment of $599.55 pays down principal, imply-
ing that the principal component of the first payment is $599.55–$500.00
or $99.55. This principal payment reduces the outstanding balance from
the original $100,000 to

(21.7)

The interest payment for the end of the second month will be based on the
principal amount outstanding at the end of the first month as given in
(21.7). Continuing this sequence of calculations produces an amortization
table, selected rows of which are given in Table 21.1.

Early payments are composed mostly of interest, while later payments
are composed mostly of principal. This is explained by the phrase “interest
lives off principal.” Interest at any time is due only on the then outstanding
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principal amount. As principal is paid off, the amount of interest necessar-
ily declines.

The outstanding balance on any date can be computed through the
amortization table, but there is an instructive shortcut. Discounting using
the mortgage rate at origination, the present value of the remaining pay-
ments equals the principal outstanding. This is a fair pricing condition un-
der the assumption that the term structure is flat and that interest rates
have not changed since the origination of the mortgage.

To illustrate this shortcut in the example, after five years or 60
monthly payments there remain 300 payments. The value of these pay-
ments using the original mortgage rate for discounting is

(21.8)

where the second equality follows from equation (3.3). Hence, the balance
outstanding after five years is $93,054.36, as reported in Table 21.1.

To this point all cash flows have been discounted at a single rate. But
Part One showed that each cash flow must be discounted by the rate ap-
propriate for that cash flow’s maturity. Therefore, the true fair pricing con-
dition for a $100,000 mortgage paying X per month for N months is

$ .
.

$ .
.

.
$ , .599 55

1

1 06 12
599 55

1 1 1 06 12

06 12
93 054 36

1

300
300

+( )
= ×

− +( )
=

=
∑ n
n

458 MORTGAGE-BACKED SECURITIES

TABLE 21.1 Selected Rows from an
Amortization Table of a 6% 30-Year Mortgage

Payment Interest Principal Ending
Month Payment Payment Balance

100,000.00
1 500.00 99.55 99,900.45
2 499.50 100.05 99,800.40
3 499.00 100.55 99,699.85

36 481.01 118.54 96,084.07
60 465.94 133.61 93,054.36

120 419.33 180.22 83,685.72
180 356.46 243.09 71,048.84
240 271.66 327.89 54,003.59
300 157.27 442.28 31,012.09
360 2.98 596.57 0.00



(21.9)

where d(n) is the discount factor applicable for cash flows on date n.
It is useful to think of equation (21.9) as the starting point for mort-

gage pricing. The lender uses discount factors or, equivalently, the term
structure of interest rates, to determine the fair mortgage payment. Only
then does the lender compute the mortgage rate as another way of quoting
the mortgage payment.3 This discussion is analogous to the discussion of
yield-to-maturity in Chapter 3. Bonds are priced under the term structure
of interest rates and then the resulting prices are quoted using yield.

The fair pricing condition (21.9) applies at the time of the mortgage’s
origination. Over time discount factors change and the present value of the
mortgage cash flows changes as well. Mathematically, with N� payments re-
maining and a new discount function d�(n), the present value of the mort-
gage is

(21.10)

The monthly payment X is the same in (21.10) as in (21.9), but the new
discount function reflects the time value of money in the current economic
environment.

The present value of the mortgage after its origination may be greater
than, equal to, or less than the principal outstanding. If rates have risen
since origination, then the mortgage has become a loan with a below-mar-
ket rate and the value of the mortgage will be less than the principal out-
standing. If, however, rates have fallen since origination, then the mortgage
has become an above-market loan and the value of the mortgage will ex-
ceed the principal outstanding.

PREPAYMENT OPTION

A very important feature of mortgages not mentioned in the previous sec-
tion is that homeowners have a prepayment option. This means that a
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homeowner may pay the bank the outstanding principal at any time and be
freed from the obligation of making further payments. In the example of
the previous section, the mortgage balance at the end of five years is
$93,054.36. To be free of all payment obligations from that time on the
borrower can pay the bank $93,054.36.

The prepayment option is valuable when mortgage rates have fallen. In
that case, as discussed in the previous section, the value of an existing
mortgage exceeds the principal outstanding. Therefore, the borrower gains
in a present value sense from paying the principal outstanding and being
free of any further obligation. When rates have risen, however, the value of
an existing mortgage is less than the principal outstanding. In this situation
a borrower loses in a present value sense from paying the principal out-
standing in lieu of making future payments. By this logic, the prepayment
option is an American call option on an otherwise identical, nonpre-
payable mortgage. The strike of the option equals the principal amount
outstanding and, therefore, changes after every payment.

The homeowner is very much in the position of an issuer of a callable
bond. An issuer sells a bond, receives the proceeds, and undertakes to
make a set of scheduled payments. Consistent with the features of the em-
bedded call option, the issuer can pay bondholders some strike price to re-
purchase the bonds and be free of the obligation to make any further
payments. Similarly, a homeowner receives money from a bank in ex-
change for a promise to make certain payments. Using the prepayment op-
tion the homeowner may pay the principal outstanding and not be obliged
to make any further payments.

The fair loan condition described in the previous section has to be
amended to account for the value of the prepayment option. Like the con-
vention in the callable bond market, homeowners pay for the prepayment
option by paying a higher mortgage rate (as opposed to paying the rate ap-
propriate for a nonprepayable mortgage and receiving less than the face
amount of the mortgage at the time of the loan). Therefore, the fair loan
condition requires that at origination of the loan the present value of the
mortgage cash flows minus the value of the prepayment option equals the
initial principal amount. The mortgage rate that satisfies this condition in
the current interest rate environment is called the current coupon rate.

When pricing the embedded options in government, agency, or corpo-
rate bonds, it is usually reasonable to assume that these issuers act in ac-
cordance with the valuation procedures of Chapter 19. More specifically,
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they exercise an option if and only if the value of immediate exercise ex-
ceeds the value of holding in some term structure model. If this were the
case for homeowners and their prepayment options, the techniques of
Chapter 19 could be easily adapted to value prepayable mortgages. In
practice, however, homeowners do not seem to behave like these institu-
tional issuers.

One way in which homeowner behavior does not match that of insti-
tutional issuers is that prepayments sometimes occur for reasons unre-
lated to interest rates. Examples include defaults, natural disasters, and
home sales.

Defaults generate prepayments because mortgages, like many other
loans and debt securities, become payable in full when the borrower fails
to make a payment. If the borrower cannot pay the outstanding principal
amount, the home can be sold to raise some, if not all, of the outstanding
balance. Since issuers of mortgage-backed securites often guarantee the ul-
timate payment of principal and interest, investors in MBS expect to expe-
rience defaults as prepayments. More specifically, any principal paid by the
homeowner, any cash raised from the sale of the home, and any balance
contributed by the MBS issuer’s reserves flow through to the investor as a
prepayment after the event of default.4

Disasters generate prepayments because, like many other debt secu-
rities with collateral, mortgages are payable in full if the collateral is
damaged or destroyed by fire, flood, earthquake, and so on. Without
sufficient insurance, of course, it may be hard to recover the amount
due. But, once again, MBS issuers ensure that investors experience these
disasters as prepayments.

While defaults and disasters generate some prepayments, the most
important cause of prepayments that are not directly motivated by inter-
est rates is housing turnover. Most mortgages are due on sale, meaning
that any outstanding principal must be paid when a house is sold. Since
people often decide to move without regard to the interest rate, prepay-
ments resulting from housing turnover will not be very related to the be-
havior of interest rates. Practitioners have found that the age of a
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mortgage is very useful in predicting turnover. For example, people are
not very likely to move right after they purchase a home but more likely
to do so over the subsequent few years. The state of the economy, partic-
ularly of the geographic region of the homeowner, is also important in
understanding turnover.

While housing turnover does not primarily depend on interest rates,
there can be some interaction between turnover and interest rates. A
homeowner who has a mortgage at a relatively low rate might be reluc-
tant to pay off the mortgage as part of a move. Technically, paying off the
mortgage in this case is like paying par for a bond that should be selling
at a discount. Or, from a more pragmatic point of view, paying off a low-
rate mortgage and taking on a new mortgage on a new home at market
rates will result in an increased cost that a homeowner might not want to
bear. This interaction between turnover and interest rates is called the
lock-in effect.

Another interaction between turnover and interest rates surfaces for
mortgages that are not due-on-sale but assumable. If a mortgage is assum-
able, the buyer of a home may take over the mortgage at the existing rate.
If new mortgage rates are high relative to the existing mortgage rate, then
the buyer and seller will find it worthwhile to have the buyer assume the
mortgage.5 In this case, then, the sale of the home will not result in a pre-
payment. Conversely, if new mortgage rates are low relative to the existing
mortgage rate, then the mortgage will not be assumed and the mortgage
will be repaid.

Having described the causes of prepayments not directly related to in-
terest rates, the discussion turns to the main cause of prepayments, namely
refinancing. Homeowners can exercise their prepayment options in re-
sponse to lower interest rates by paying the outstanding principal balance
in cash. However, since most homeowners do not have this amount of cash
available, they exercise their prepayment options by refinancing their mort-
gages. In the purest form of a refinancing, a homeowner asks the original
lending bank, or another bank, for a new mortgage loan sufficient to pay
off the outstanding principal of the existing mortgage.

Ignoring transaction costs for a moment, the present value advantage
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of prepaying an above-market mortgage with cash is the same as the pre-
sent value advantage of a pure refinancing. In both cases the existing mort-
gage payments are canceled. Then, in the case of a cash prepayment, the
homeowner pays the principal outstanding in cash. In the case of a pure re-
financing, the homeowner assumes a new mortgage in the size of that same
principal outstanding. Furthermore, since the new mortgage rate is the cur-
rent market rate, the value of the new mortgage obligation equals that
principal outstanding. Hence, in terms of present value, the cash prepay-
ment and the pure refinancing are equivalent.

In reality, homeowners do face transaction costs when refinancing.
One explicit cost is the fee charged by banks when making mortgage loans.
These are called points since they are expressed in a number of percentage
points on the amount borrowed. This transaction cost raises no conceptual
difficulties. The points charged by banks can simply be added to the out-
standing principal amount to get the true strike price of the prepayment
option. Then, the techniques of Chapter 19, in combination with a term
structure model, can be used to derive optimal refinancing policies.

As it turns out, even when focusing on prepayments motivated solely
by lower interest rates and even after accounting for points, homeowners
do not behave in a way that justifies using the valuation procedures of
Chapter 19. The main reason is that homeowners are not financial profes-
sionals. The cost to them of focusing on the prepayment problem, of mak-
ing the right decision, and of putting together the paperwork can be quite
large. Moreover, since homeowners vary greatly in financial sophistication
or in access to such sophistication, the true costs of exercising the prepay-
ment option vary greatly across homeowners.

Three well-known empirical facts about prepayments support the no-
tion that the true costs of refinancing are larger than points and that these
true costs vary across homeowners. First, refinancing activity lags interest
rates moves; that is, it takes time before falling rates cause the amount of
refinancing to pick up. Some of this delay is due to the time it takes banks
to process the new mortgage loans, but some of the delay is no doubt due
to the time it takes homeowners to learn about the possibility of refinanc-
ing and to make their decisions. Second, refinancing activity picks up after
rates show particularly large declines and after rates hit new lows. This
empirical observation has been explained as a media effect. Large declines
and new lows in rates make newspapers report on the events, cause home-
owners to talk to each other about the possibility of refinancing, and make
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it worthwhile for professionals in the mortgage business to advertise the
benefits of refinancing. Third, mortgage pools that have been heavily refi-
nanced in the past respond particularly slowly to lower levels of interest
rates. This phenomenon has been called the burnout effect. The simplest
explanation for this phenomenon is that homeowners with the lowest true
costs of refinancing tend to refinance at the first opportunity for profitably
doing so. Those homeowners remaining in the pool have particularly high
true costs of refinancing and, therefore, their behavior is particularly insen-
sitive to falling rates.

To summarize, some prepayments do not depend directly on the level
of interest rates and those that do cannot be well described by the assump-
tions of Chapter 19. Therefore, practitioners have devised alternative ap-
proaches for pricing mortgage-backed securities.

OVERVIEW OF MORTGAGE PRICING MODELS

The earliest approaches to pricing mortgage-backed securities can be
called static cash flow models. These models assume that prepayment
rates can be predicted as a function of the age of the mortgages in a
pool. Typical assumptions, based on empirical regularities, are that the
prepayment rate increases gradually with mortgage age and then levels
off at some constant prepayment rate. In a slightly more sophisticated
approach, past behavior of prepayments as a function of age is used di-
rectly to predict future behavior.

Some practitioners like these models because they allow for the calcu-
lation of yield. Since assumed prepayments depend only on the age of the
mortgages, the cash flows of the mortgage pool over time can be deter-
mined. Then, given that set of cash flows and a market price, a yield can
be computed.

Despite this advantage, there are two severe problems with the static
cash flow approach. First, the model is not a pricing model at all. Yes,
given a market price, a yield may be computed. But a pricing model must
provide a means of determining price in the first place. Static cash flow
models cannot do this because they do not specify what yield is appropri-
ate for a mortgage. A 30-year bond yield, for example, is clearly not ap-
propriate because the scheduled cash flow pattern of a mortgage differs
substantially from that of a bond and because the cash flows of a mortgage
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are really not fixed. The fact that prepayments change as interest rates
change affects the pricing of mortgages but is not captured at all in static
cash flow models.

The second, not unrelated problem with static cash flow models is that
they provide misleading price-yield and duration-yield curves. Since these
models assume that cash flows are fixed, the predicted interest rate behav-
ior of mortgages will be qualitatively like the interest rate behavior of
bonds with fixed cash flows. But, from the discussion of the previous sec-
tion, the price-yield and duration-yield curves of mortgages should have
more in common with those of callable bonds. The prepayment option al-
ters the qualitative shape of these curves because mortgage cash flows, like
those of callable bonds, are not fixed but instead depend on how interest
rates evolve over time.

Another set of models may be called implied models. Recognizing the
difficulties encountered by static cash flow models, implied models have a
more modest objective. They do not seek to price mortgage-backed securi-
ties but simply to estimate their interest rate sensitivity. Making the as-
sumption that the sensitivity of a mortgage changes slowly over time, they
use recent data on price sensitivity to estimate interest rate sensitivity nu-
merically. The technical procedure is the same as described in Part Two.
Given two prices and two interest rate levels, perhaps of the 10-year swap
rate, one can compute the change in the price of an MBS divided by the
change in the interest rate and convert the result to the desired sensitivity
measure. The hope is that averaging daily estimates over the recent past
provides a useful estimate of an MBS’ current interest rate sensitivity. A
variation on this procedure is to look for a historical period closely match-
ing the current environment and to use price and rate data from that envi-
ronment to estimate sensitivity.

The implied models have several drawbacks as well. First, they are not
pricing models. It should be mentioned, however, that investors with a
mandate to invest in MBS might be content to take the market price as
given and to use implied models for hedging and risk management. The
second drawback is that the sensitivity of MBS to interest rates may change
rapidly over time. As discussed, the qualitative behavior of mortgages is
similar to that of callable bonds. And, as illustrated by Figure 19.5, the du-
ration of callable bonds can change rapidly relative to that of noncallable
bonds. Similarly, mortgage durations can change a great deal as relatively
small changes in rates make prepayments more or less likely. Therefore,
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when one most needs accurate measures of interest rate sensitivity, recent
implied sensitivities may prove misleading.

The third set of pricing models, called prepayment models, is the most
popular among sophisticated practitioners. Often composed of two sepa-
rate models—a turnover model and a refinancing model—this category of
models uses historical data and expert knowledge to model prepayments as
a function of several variables. More precisely, a prepayment model pre-
dicts the amount of prepayments to be experienced by a pool of mortgages
as a function of the chosen input variables.

Prepayment models usually define an incentive function, which quanti-
fies how desirable refinancing is to homeowners. This function can also be
used to quantify the lock-in effect, that is, how averse a homeowner is to
selling a home and giving up a below-market mortgage. Examples of incen-
tive functions include the present value advantage of refinancing, the re-
duction in monthly payments as a result of refinancing, and the difference
between the existing mortgage rate and the current coupon rate. While in-
centive functions always depend on the term structure of interest rates, the
complexity of this dependence varies across models. An example of simple
dependence would be using the 10-year swap rate to calculate the present
value advantage of refinancing. An example of a complex dependence
would be using the shape of the entire swap curve to calculate this present
value advantage.

Lagged or past interest rates may be used to model the media effect.
For example, both the change in rates over the past month and the level of
rates relative to recent lows are proxies for the focus of homeowners on in-
terest rates and on the benefits of refinancing.

Noninterest rate variables that enter into turnover and refinancing
models may include any variable deemed useful in predicting prepayments.
Some common examples of such variables, along with brief explanations
of their relevance, are these:

• Mortgage age. Recent homeowners tend not to turn over or refinance
as quickly as homeowners who have been in place for a while.

• Points paid. Borrowers who are willing to pay large fees in points so as
to reduce their mortgage rates are likely to be planning to stay in their
homes longer than borrowers who accept higher rates in exchange for
paying only a small fee. Hence, mortgages with high points are likely
to turn over and prepay less quickly than mortgages with low points.
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• Amount outstanding. Borrowers with very little principal outstanding
are not likely to bother refinancing even if the present value savings, as
a percentage of amount outstanding, are high.

• Season of the year. Homeowners are more likely to move in certain
seasons or months than in others.

• Geography. Given that economic conditions vary across states, both
turnover and refinancing activity may differ across states. The predic-
tive power of geography may decay quickly. In other words, the fact
that people in California change residence more often than people in
Kansas may be true now but is not necessarily a best guess of condi-
tions five years from now.

One disadvantage of prepayment function models is that they are sta-
tistical models as opposed to models of homeowner behavior. The risk of
such an approach is that historical data, on which most prepayment func-
tion models are based, may lose their relevance as economic conditions
change. Unfortunately, theoretically superior approaches that directly
model the homeowner decision process, the true costs of refinancing, the
diversity of homeowners, and so on, have not proved particularly success-
ful or gained industry acceptance.

IMPLEMENTING PREPAYMENT MODELS

It is possible that a prepayment function could be combined with the pric-
ing trees of Part Three to value a pass-through security. Scheduled mort-
gage payments plus any prepayments as predicted by the prepayment
function would give the cash flow from a pool of mortgages on any partic-
ular date and state. And given a way to generate cash flows, pricing along
the tree would proceed in the usual way, by computing expected dis-
counted values. As it turns out, however, the complexity of prepayment
models designed by the industry makes it difficult to use interest rate trees.

The tree technology assumes that the value of a security at any node
depends only on interest rates or factors at that node. This assumption
excludes the possibility that the value of a security depends on past in-
terest rates—in particular, on how interest rates arrived at the current
node. For example, a particular node at date 5 of a tree might be arrived
at by two up moves followed by three down moves, by three down
moves followed by two up moves, or by other paths. In all previous
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problems in this book the path to this node did not matter because the
value of the securities under consideration depend only on the current
state. The values of these securities are path independent. The values of
mortgages, by contrast, are believed to be path dependent. The empirical
importance of the burnout effect implies that a mortgage pool that has
already experienced rates below 6% will prepay less quickly than a pool
that has never experienced rates below 6% even though both pools cur-
rently face the same interest rates. The media effect is another example
of path dependence. Say that the current mortgage rate is 6%. Then, in
some implementations of the media effect, prepayments are higher if the
mortgage rate has been well above 6% for a year than if the mortgage
rate has recently fallen below 6%.

A popular solution to pricing path-dependent securities is Monte Carlo
simulation. This procedure can be summarized as follows.6

Step 1: Using some term structure model that describes the risk-neu-
tral evolution of the short rate, generate a randomly selected path over
the life of the mortgage pool. An example follows assuming semiannual
time steps:

Date 0: 4%
Date 1: 4.25%
Date 2: 3.75%
Date 3: 3.5%
Date 4: 3%
Step 2: Moving forward along this path, use the scheduled mortgage

cash flows and the prepayment function to generate the cash flows from
the mortgage pool until the principal has been completely repaid. Example:

Date 1: $10
Date 2: $12
Date 3: $15
Date 4: $80
Step 3: Find the value of the security along the selected interest rate

path. More specifically, starting at the date of the last cash flow, discount
all cash flows back to the present using the short rates. As with price trees,
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values on a particular date assume that the cash flows on that date have
just been made. Example:

Date 4: $0
Date 3: $80/(1+.035/2)=$78.62
Date 2: ($78.62+$15)/(1+.0375/2)=$91.90
Date 1: ($91.90+$12)/(1+.0425/2)=$101.74
Date 0: ($101.74+$10)/(1+.04/2)=$109.55
Step 4: Repeat steps 1 through 3 many times and calculate the average

value of the security across these paths. Use that average as the model price
of the security.

To justify Monte Carlo simulation, recall equation (16.17) or equation
(16.18). These equations say that a security may be priced as follows. First,
discount each possible value of a security by the path of interest rates to
that particular value. Second, using the probabilities of reaching each pos-
sible value, calculate the expected discounted value. This is very much like
Monte Carlo simulation except that the development in Chapter 16 as-
sumes that all possible paths are included when computing the expected
value. In Monte Carlo simulation, by contrast, a subset of the possible
paths is chosen at random. To the extent that the randomly selected subset
is representative of all the paths and to the extent that this subset is a large
enough sample of paths, Monte Carlo simulation will provide acceptable
approximations to the true model price.

Step 1 uses a term structure model to generate rate paths. As in the
case of interest rate trees, the term structure model may match the current
term structure of interest rates in whole or in part. Since prepayment mod-
els are usually used to value mortgages relative to government bonds or
swaps, practitioners tend to take the entire term structure as given.

Step 2 reveals the advantage of Monte Carlo simulations over interest
rate trees. Since the paths are generated starting from the present and mov-
ing forward, a prepayment function that depends on the history of rates
can be used to obtain cash flows. In the example, the cash flow of $15 on
date 3 might have depended on any or all of the short-term rates on date 0,
1, or 2. By the way, while the short-term rate on date 4 is never used for
discounting because the last cash flow is on date 4, this rate may very well
have been used to compute that the cash flow on date 4 is $80. In particu-
lar, the 3% rate on date 4 might have triggered a prepayment of outstand-
ing principal.
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While the Monte Carlo technique of moving forward in time to gener-
ate cash flows has the advantage of handling path dependence, the ap-
proach is not suitable for all problems. Consider trying to price an
American or Bermudan option one period before expiration using the
Monte Carlo technique. Recall that this option price equals the maximum
of the value of immediate exercise and the value of holding the option over
the coming period. Given the interest rate at expiration and one period be-
fore expiration along a particular path, the value of exercising the option
at expiration and at the period before expiration can be computed. But
knowing the option value at expiration along a particular path is not
enough to compute the value of holding the option. All possible option val-
ues at expiration are required for computing the value of holding the op-
tion from the period before expiration to expiration. This is the reason the
tree methodology starts by computing all possible option values at expira-
tion and then moves back to the period before expiration. In any case,
without a good deal of extra effort, Monte Carlo techniques cannot be
used to value optimally exercised Bermudan or American options.7 Given,
however, that homeowners do not optimally exercise their options, this
sacrifice is certainly worthwhile in the mortgage context.

Just as the tree methodology can be used to calculate measures of in-
terest rate sensitivity, so can the Monte Carlo method. The original term
structure may be shifted up and down by a basis point. Then new paths
may be generated and the pricing procedure repeated to obtain up and
down prices. These up and down prices may be used to calculate numerical
sensitivities. And taking the original price together with these two shifted
prices allows for the numerical computation of convexity.

The computation of the option-adjusted spread of an MBS is analo-
gous to that discussed in Chapter 14. In the case of Monte Carlo paths,
each path is shifted by a varying number of basis points until, using the
shifted rates for discounting, the model price of the MBS equals its market
price. Note that, as in Chapter 14, the shifted rates are not used to recalcu-
late the cash flows but only for discounting. This procedure preserves OAS
as a model’s prediction of the excess return to a hedged position in a seem-
ingly mispriced security.

470 MORTGAGE-BACKED SECURITIES

7A new technique to price early exercise provisions in a Monte Carlo framework is
proposed in Longstaff and Schwartz (2001).



The assumptions of the prepayment function are clearly crucial in
determining the model value of an MBS. But since the prepayment func-
tion is only an estimate of homeowner behavior, many practitioners like
to calculate the sensitivity of model value to the parameters of the pre-
payment function. These sensitivities answer questions like the follow-
ing: What happens to model value if homeowners refinance more or less
aggressively than assumed in the model? What if turnover turns out to
be higher or lower than assumed in the model? What if the burnout ef-
fect is stronger or weaker than assumed in the model? These sensitivities
of model value to changes in model assumptions serve two purposes.
First, they allow an investor or trader to judge whether the model OAS
values are robust enough to justify taking sizable positions relative to
government bonds or swaps. Second, these sensitivities allow an investor
or trader to hedge prepayment model risks with other MBS. For exam-
ple, while an individual MBS may have a large exposure to errors in the
specification of turnover, it may be possible to create a portfolio of MBS
such that the value of the portfolio is relatively insensitive to errors in
turnover assumptions.

PRICE-RATE CURVE OF A MORTGAGE PASS-THROUGH

Figure 21.1 graphs the price of a 6%, 30-year, nonprepayable mortgage
and, using a highly stylized prepayment model, the price of a pass-
through on a pool of 6%, 30-year, prepayable mortgages. The term struc-
ture is assumed to be flat at the level given by the horizontal axis. The
price-yield curve of the nonprepayable mortgage exhibits the usual prop-
erties of a security with fixed cash flows: It slopes downward and is posi-
tively convex.

According to the figure, the price of the pass-through is above that of
the nonprepayable mortgage when rates are relatively high. This phenom-
enon is due to the fact that housing turnover, defaults, and disasters gener-
ate prepayments even when rates are relatively high. And when rates are
high relative to the existing mortgage rate, prepayments benefit investors
in the pass-through: A below-market fixed income investment is returned
to these investors at par. Therefore, these seemingly suboptimal prepay-
ments raise the price of a pass-through relative to the price of a nonpre-
payable mortgage. These prepayments are only seemingly suboptimal
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because it may very well be optimal for the homeowner to move. But,
from the narrower perspective of interest rate mathematics and of in-
vestors in the MBS, turnover prepayments in a high-rate environment
raise the value of mortgages.

Apart from the price premium of the pass-through at relatively high
rates described in the previous paragraph, the price-yield curve of the
pass-through qualitatively resembles that of a callable bond. First, the
pass-through does not rally as much as its nonprepayable counterpart
when rates fall because homeowners prepay at par. Prepayments in a
low-rate environment lower the value of mortgages. Second, for the
same reason, the pass-through curve exhibits negative convexity. The
only way for the pass-through to experience less of a rally than the non-
prepayable mortgage is for the interest rate sensitivity of the pass-
through to fall as rates fall.

Note that the price of the pass-through does rise above par at relatively
low rates even though homeowners could free themselves of that above-
par obligation by prepaying at par. This effect, of course, is due to the fact
that homeowners do not exercise their prepayment option as aggressively
as called for in Chapter 19.
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FIGURE 21.1 Price-Rate Curves for a Nonprepayable Mortgage and for a Pass-
Through
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APPLICATION: Mortgage Hedging and the Directionality of Swap Spreads

On several occasions in 2001 it was observed that swap spreads narrowed in sharp fixed in-
come rallies and widened in sharp sell-offs. Many strategists believed that the activity of mort-
gage hedgers explained a good deal of this correlation. For illustration, Table 21.2 records two
periods over which this phenomenon was observed and explained by market commentators as
due to mortgage hedging. In the first example the 10-year Treasury rallied by 15 basis points
and swap spreads narrowed by nearly 11 basis points. In the second example the 10-year Trea-
sury sold off by 59 basis points and the swap spread widened by almost 7 basis points.

The argument made was along these lines. The total amount of MBS outstanding with
15- and 30-year mortgages as collateral was, at the time, about $2.25 trillion. With 10-year
swap rates at about 5.75%, the duration of the portfolio of outstanding MBS is about 2.8.
Furthermore, a 25-basis point increase in rates would raise this duration by about .5 years
to 3.3, while a 25-basis point decrease in rates would lower it by about .5 years to 2.3.
(Note the negative convexity of the MBS universe.) Therefore, if only 20% of the holders of
MBS hedge their interest rate exposure, a 25-basis point change in rates creates a dollar
basis point exposure of

(21.11)

or $2.25 billion. If this were hedged exclusively with 10-year swaps, at a duration of about
7.525,8 the face amount required would be

(21.12)
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TABLE 21.2 Ten-Year Rates and Spreads over Two
Periods in 2001

10-Year 10-Year Swap
Swap Treasury Spread

Date Rate Rate (bps)

9/21/01 5.386% 4.689% 69.7
9/10/01 5.644% 4.839% 80.5
Change –0.258% –0.150% –10.8
11/16/01 5.553% 4.893% 66.0
11/9/01 4.895% 4.303% 59.2
Change 0.658% 0.590% 6.8

8Apply equation (6.26) at a yield of 5.75%.



or about $30 billion.9 To summarize: Given the size and convexity of the universe of
MBS, and an estimate of how much of that market is actively hedged, a 25 basis point
change in the swap rate requires a hedge adjustment of about $30 billion face amount of
10-year swaps.

The implication of these calculations for swap spreads is as follows. Assume that in-
terest rates fall by 25 basis points. Since MBS duration falls, investors who hedge find
themselves with not enough duration. To compensate they receive in swaps, probably with
five- or 10-year maturity. And, as shown by the previous calculations, the amount they re-
ceive is far from trivial. As a result of this rush to receive, swap rates fall relative to Trea-
suries so that swap spreads narrow. If interest rates rise by 25 basis points the story works
in reverse. MBS duration rises, investors who hedge find themselves with too much dura-
tion, they pay in swaps, swap rates rise relative to Treasuries, and swap spreads widen.

This argument does not necessarily imply that the effect on swap spreads is perma-
nent. Since swaps are more liquid than mortgages, hedgers’ first reaction is to cover their
exposure with swaps. But, over time, they might unwind their swap hedge and adjust their
holdings of mortgages. If this were the case, then the story for falling rates would end as
follows. After mortgage hedgers receive in swaps to make up for lost duration, and widen
swap spreads in the process, they slowly unwind their swaps and buy mortgages. In other
words, they replace the temporarily purchased duration in swaps with duration in mort-
gages. The effect of this activity is to narrow swap spreads, perhaps back to their original
levels, and richen mortgages relative to other assets.

There are a few points in the arguments of this section that require elaboration.
First, why do market participants hedging the interest rate risk of MBS trade swaps in-
stead of Treasuries? Before 1998 Treasuries were more commonly used to hedge MBS
and the correlation between mortgage and Treasury rates justified that practice. The logic
was that MBS cash flows, guaranteed by the agencies or other strong credits, are essen-
tially free of default risk. Therefore, the correct benchmark for discounting and for hedg-
ing MBS is the Treasury market. Since 1998, however, swaps have gained in popularity as
hedges for MBS at the expense of Treasuries. While the default characteristics of MBS
have not changed much, the shift toward swaps might be explained by the following in-
terrelated trends: the relative decline in the supply of Treasuries, the increase in idiosyn-
cratic behavior of Treasury securities, and the deteriorating correlation between the
Treasury and MBS markets.
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9This calculation is a bit conservative because the duration of the swap, being positively convex, moves
in the opposite direction of the duration of the mortgage. The change in the duration of the swap, how-
ever, at about .09 years for a 25 basis point shift, is relatively small.



The second point requiring elaboration is why traders and investors hedge mortgages
with five- and 10-year swaps. Table 7.1 presented the key rate duration profile of a 30-year
nonprepayable mortgage and showed that the 10-year key rate is quite influential. Put an-
other way, the cash flow pattern of a nonprepayable mortgage makes the security quite sen-
sitive to rates of terms less than 30 years despite the stated mortgage maturity of 30 years.
The same argument applies with more force to mortgages with prepayment options, mak-
ing five- and 10-year swaps sensible hedging securities.

Finally, if there is such a large demand to hedge long positions in mortgages, why isn’t
there a demand to hedge short positions in mortgages? In other words, if the duration of
mortgages falls and investors hedging long positions need to buy duration, then market
participants hedging short positions must need to sell duration. And, if this is the case, the
two effects cancel and there should be no effect on swap spreads. The answer to this ques-
tion is that the most significant market participants who short mortgages are homeowners,
and homeowners simply do not actively hedge the interest rate risk of their mortgages.

MORTGAGE DERIVATIVES, IOs, AND POs

The properties of pass-through securities displayed in Figure 21.1 do not
suit the needs of all investors. In an effort to broaden the appeal of MBS,
practitioners have carved up pools of mortgages into different derivatives.
One example is planned amortization class (PAC) bonds, which are a type
of collateralized mortgage obligation (CMO). A PAC bond is created by set-
ting some fixed prepayment schedule and promising that the PAC bond will
receive interest and principal according to that schedule so long as the ac-
tual prepayments from the underlying mortgage pools are not exceptionally
large or exceptionally small. In order to comply with this promise, some
other derivative securities, called companion or support bonds, absorb the
prepayment uncertainty. If prepayments are relatively high and PAC bonds
receive their promised principal payments, then the companion bonds must
receive relatively large prepayments. Alternatively, if prepayments are rela-
tively low and PAC bonds receive the promised principal payments, then
the companion bonds must receive relatively few prepayments. The point of
this structure is that investors who do not like prepayment uncertainty—
that is, who do not like the call feature of mortgage securities—can partici-
pate in the mortgage market through PACs. Dealers and investors who are
comfortable with modeling prepayments and with controlling the accompa-
nying interest rate risk can buy the companion or support bonds.
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Other popular mortgage derivatives are interest-only (IO) and principal-
only (PO) strips. The cash flows from a pool of mortgages or a pass-
through are divided such that the IO gets all the interest payments while
the PO gets all the principal payments. Figure 21.2 graphs the prices of the
pass-through and of these two derivatives. As in Figure 21.1, a highly styl-
ized prepayment model is used and the horizontal axis gives the level of a
flat term structure. Since the cash flows from the pass-through are diverted
to either the IO or the PO, the price of the IO plus the price of the PO
equals the price of the pass-through.

When rates are very high and prepayments low, the PO is like a zero
coupon bond, paying nothing until maturity. As rates fall and prepayments
accelerate, the value of the PO rises dramatically. First, there is the usual
effect that lower rates increase present values. Second, since the PO is like a
zero coupon bond, it will be particularly sensitive to this effect. Third, as
prepayments increase, some of the PO, which sells at a discount, is re-
deemed at par. Together, these three effects make PO prices particularly
sensitive to interest rate changes.

The price-yield curve of the IO can be derived by subtracting the value
of the PO from the value of the pass-through, but it is instructive to de-
scribe IO pricing independently. When rates are very high and prepayments
low, the IO is like a security with a fixed set of cash flows. As rates fall and
mortgages begin to prepay, the flows of an IO vanish. Interest lives off
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FIGURE 21.2 Price-Rate Curves for a Pass-Through, an IO, and a PO
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principal. Whenever some of the principal is paid off there is less available
from which to collect interest. But, unlike callable bonds or pass-throughs
that receive principal, when exercise or prepayments cause interest pay-
ments to stop or slow the IO gets nothing. Once again, its cash flows sim-
ply vanish. This effect swamps the discounting effect so that when rates fall
IO values decrease dramatically. The negative DV01 or duration of IOs, an
unusual feature among fixed income products, may be valued by traders
and portfolio managers in combination with more regularly behaved fixed
income securities. For example, if the mortgage sector as a whole is consid-
ered cheap, as it often is, buying cheap IOs to hedge interest rate risk offers
more value than selling fairly priced swaps.
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EXERCISES

CHAPTER 1 Bond Prices, Discount Factors, and Arbitrage

1.1 Write down the cash flow dates and the cash flows of $1,000 face
value of the U.S. Treasury 4s of April 30, 2003, issued on April 30,
2001.

1.2 Here is a list of bond transactions on May 15, 2001. For each transac-
tion list the transaction price.

Bond Price Face Amount
10.75s of 5/15/2003 112-25/8 $10,000
4.25s of 11/15/2003 99-14+ $1,000
7.25s of 5/15/2004 107-4 $1,000,000

1.3 Use this list of Treasury bond prices as of May 15, 2001, to derive the
discount factors for cash flows to be received in 6 months, 1 year, and
1.5 years.

Bond Price
7.5’s of 11/15/2001 101-253/4
7.5’s of 05/15/2001 103-1215/16

11.625’s of 11/15/2002 110-211/4

1.4 Suppose there existed a Treasury issue with a 7.5% coupon matur-
ing on November 15, 2002. Using the discount factors derived in
question 1.3, what would be the price of the 7.5s of November 15,
2002?

1.5 Say that the 7.5s of November 15, 2002, existed and traded at a price
of 105 instead of the price derived in question 1.4. How could one
earn an arbitrage profit by trading the 7.5s of November 15, 2002,
and the three bonds listed in question 1.3? Using the prices listed in
question 1.3, how much arbitrage profit is available in this trade?



1.6 Consider the following three bonds and bond prices:

Bond Price
0s of 5/15/2002 96-12
7.5s of 5/15/2002 103-1215/16

15s of 5/15/2002 106-2

Do these prices make sense relative to one another? Why or why not?

CHAPTER 2 Bond Prices, Spot Rates, and Forward Rates

2.1 You invest $100 for two years at 5%, compounded semiannually.
How much do you have at the end of the two years?

2.2 You invested $100 for three years and, at the end of those three years,
your investment was worth $120. What was your semiannually com-
pounded rate of return?

2.3 Using your answers to question 1.3, derive the spot rates for 6
months, 1 year, and 1.5 years.

2.4 Derive the relationship between discount factors and forward rates.
2.5 Using your answers to either question 1.3 or 2.3, derive the six-month

rates for 0 years, .5 years, and 1 year forward.
2.6 Are the forward rates from question 2.5 above or below the spot rates

of question 2.3? Why is this the case?
2.7 Question 1.3 gives the price of the 7.5s of November 15, 2001, and

the 7.5s of May 15, 2002. The answer to question 1.4 gives the price
of the 7.5s of November 15, 2002. Are these prices rising, falling, or
both rising and falling with maturity? Why?

CHAPTER 3 Yield-to-Maturity

3.1 On May 15, 2001, the price of the 11.625s of November 15, 2002,
was 110-214/4. Verify that the yield-to-maturity was 4.2139%. Ex-
plain this yield relative to the spot rates from question 2.3.

3.2 On May 15, 2001, the price of the 6.75s of May 15, 2005, was
106-211/8. Use a calculator or spreadsheet to find the yield of the bond.

3.3 Consider a 10-year par bond yielding 5%. How much of the bond’s
value comes from principal and how much from coupon payments?
How does your answer change for a 30-year par bond yielding 5%?
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3.4 Why would anyone buy a bond selling at a premium when after hold-
ing that bond to maturity it will be worth only par?

3.5 On May 15, 2001, the price and yield of the 11.625s of November
15, 2002, were 110-211/4 and 4.2139%, respectively. Say that on No-
vember 15, 2001, the yield of the bond is still 4.2139%. Calculate the
annualized return on the bond over that six-month period.

3.6 Consider the following bond yields on May 15, 2001:

Bond Yield
5.25s of 8/15/2003 4.3806
5.75s of 8/15/2003 4.3838
11.125s of 8/15/2003 4.4717

Do these yields make sense relative to one another? Assume that the
yield curve on May 15, 2001, was upward-sloping.

3.7 A 60-year-old retired woman is considering purchasing an annuity
that pays $25,000 every six months for the rest of her life. Assume
that the term structure of semiannually compounded rates is flat at
6%.
a. If the annuity cost $575,000 and the woman expects to live an-

other 25 years, will she purchase the annuity? What if she expects
to live another 15 years?

b. If law prohibits insurance companies from charging a different
annuity price to men and to women and if everyone expects
women to live longer than men, what would happen in the annu-
ity market?

3.8 A state lottery advertises a jackpot of $1,000,000. In the fine print it is
written that the winner receives 40 annual payments of $25,000. If
the term structure is flat at 6%, what is the true value of the jackpot?

CHAPTER 4 Generalizations and Curve Fitting

4.1 The Treasury 5s of February 15, 2011, which were issued on Febru-
ary 15, 2001, are purchased on May 15, 2001, for a quoted price of
96-231/2. What is the invoice price on $100,000 face amount?

4.2 Bank 1 offers 4.85% compounded monthly for a one-year investment.
Bank 2 offers 5% compounded semiannually. Which bank offers the
better investment?
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4.3 Using simple interest and the actual/360 convention, how much inter-
est is owed on a $1,000,000 loan from April 24, 2001, to May 2,
2001?

4.4 Is the discount function in Figure 1.2 concave or convex?
4.5 The following table gives spot rates for four terms:

Term Spot Rate
2 4.32%
5 5.10%

10 5.74%
30 6.07%

Fit a cubic using equation (4.21) through these points. Graph the re-
sulting spot rate function. Does this function seem reasonable? Why
or why not?

4.6 A trader thinks that the 10.75s of August 15, 2005, are cheap relative
to other bonds in that maturity sector. What risk does the trader face
by buying that bond in the hope that its price will rise relative to other
bonds in the sector? What if the trader buys that bond and sells the
6.5 of August 15, 2005?

4.7 What is the .75-year discount factor if the .75-year rate, continuously
compounded, is 6%?

CHAPTER 5 One-Factor Measures of Price Sensitivity

The exercises for this chapter are built around a spreadsheet exercise. Set
up a column of interest rates from 1.75% to 8.25% in 25 basis point incre-
ments. In the next column compute the price of a perpetuity with a face of
100 and a coupon of 5%: 100×.05/y where y is the rate in the first column.
In the next column compute the price of a one-year bond with a face of
100 and an annual coupon of 5%: 105/(1+y).

5.1 Graph the prices of the perpetuity and the one-year bond as a func-
tion of the interest rate. Use the graph to determine which security is
more sensitive to changes in rates. Use the graph to determine which
security is more convex.

5.2 On the spreadsheet compute the DV01 of the perpetuity and of the
one-year bond numerically for all of the rates in the first column. To
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compute the DV01 at a rate y, use the prices at the rates y plus 25 ba-
sis points and y minus 25 basis points. Do the results match your an-
swer to question 5.1? How can you tell from these results which
security has the higher convexity?

5.3 A trader buys 100 face of the perpetuity and hedges with the one-year
bond. At a yield level of 5% what is the DV01 hedge? Why is the
hedge so large? What is the hedge at a yield level of 2.50%? Explain
why the hedge changes.

5.4 Calculate the duration of the perpetuity and of the one-year bond in
the spreadsheet. At a yield level of 5% interpret the duration numbers
in the context of a 10 basis point interest rate move for a fixed income
portfolio manager.

5.5 Compute the convexity of the perpetuity and the one-year bond at all
yield levels in the first column of your spreadsheet. To compute the
convexity at y, compute the derivative using prices at y plus 25 basis
points and at y. Then compute the derivative using prices at y and y
minus 25 basis points.

5.6 Is the hedged position at a yield level of 5% computed for question
5.3 long or short convexity? First answer intuitively and then calcu-
late the exact answer.

5.7 Estimate the price change of the perpetuity from a yield level of 5% to
a level of 6% using its duration and convexity at 5%. How does this
compare to the actual price change?

CHAPTER 6 Measures of Price Sensitivity Based 
on Parallel Yield Shifts

6.1 Order the following bonds by duration without doing any calcula-
tions:

Coupon Maturity Yield
4.25% 11/15/2003 4.4820%
11.875% 11/15/2003 4.5534%
4.625% 5/15/2006 4.9315%
6.875% 5/15/2006 5.0379%

6.2 Try to order the bonds listed in question 6.1 by DV01 without doing
any calculations. This is not so straightforward as question 6.1.

Exercises 483



6.3 Calculate the DV01 and modified duration for each of the following
bonds as of May 15, 2001:

Coupon Maturity Yield Price
8.75 5/15/2020 5.9653% 131-127/8
8.125 5/15/2021 5.9857% 124-241/8

Comment on the results.
6.4 In a particular trading session, two-year Treasury notes declined by

$19 per $1,000 face amount while 30-year bonds fell $11 per $1,000
face amount. What lesson does this session have to teach with respect
to the use of yield-based duration to hedge bond positions?

6.5 Calculate the Macaulay duration of 30-year and 100-year par bonds
at a yield of 6%. Use the results to explain why Treasury STRIPS ma-
turing in 20 to 30 years are in particularly high demand.

6.6 Bond underwriters often agree to purchase a corporate client’s new
bonds at a set price and then attempt to reoffer the bonds to investors.
There can be a few days between the time the underwriter sets the
price it will pay and the time it manages to sell all of its client’s bonds.
Underwriting fees often increase with the maturity of the bonds being
sold. Why might this be so?

CHAPTER 7 Key Rate and Bucket Exposures

The following questions will lead to the design of a spreadsheet to calcu-
late the two- and five-year key rate duration profile of four-year bonds.

7.1 Column A should contain the coupon payment dates from .5 to 5
years in increments of .5 years. Let column B hold a spot rate curve
flat at 4.50%. Put the discount factors corresponding to the spot rate
curve in column C. Price a 12% and a 6.50% four-year bond under
this initial spot rate curve.

7.2 Create a new spot rate curve, by adding a two-year key rate shift of
10 basis points, in column D. Compute the new discount factors in
column E. What are the new bond prices?

7.3 Create a new spot rate curve, by adding a five-year key rate shift of 10
basis points, in column F. Compute the new discount factors in col-
umn G. What are the new bond prices?
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7.4 Use the results from questions 7.1 to 7.3 to calculate the key rate du-
rations of each of the bonds.

7.5 Sum the key rate durations to obtain the total duration of each bond.
Calculate the percentage of the total duration accounted for by each
key rate for each bond. Comment on the results.

7.6 What would the key rate duration profile of a four-year zero coupon
bond look like relative to those computed for question 7.4? How
would your answer change for a five-year zero coupon bond?

CHAPTER 8 Regression-Based Hedging

You consider hedging FNMA 6.5s of August 15, 2004, with FNMA 6s of
May 15, 2011. Taking changes in the yield of the 6s of May 15, 2011, as
the independent variable and changes in the yield of the 6.5s of August 15,
2004, as the independent variable from July 2001 to January 2002 gives
the following regression results:

Number of observations 131
R-squared 77.93%
Standard error 4.0861

Regression Coefficients Value t-Stat
Constant –.7549 –2.1126
Change in yield of 6s of 5/15/2011 .9619 21.3399

8.1 What is surprising about the regression coefficients?
8.2 The DV01 of the 6.50s of August 15, 2004, is 2.796, and the DV01 of

the 6s of May 15, 2011, is 7.499. Using the regression results given, how
much face value of the 6s of May 15, 2011, would you sell to hedge a
$10,000,000 face value position in the 6.50s of August 15, 2004?

8.3 How do the regression results given here compare with the regression
results in Table 8.1? Explain the differences. How do the regression
results given here make you feel about hedging FNMA 6.50s of Au-
gust 15, 2004, with FNMA 6.5s of May 15, 2011?

CHAPTER 9 The Science of Term Structure Models

9.1 A fixed income analyst needs to estimate the price of an interest
rate cap that pays $1,000,000 next year if the one-year Treasury
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rate exceeds 6% and pays nothing otherwise. Using a macroeco-
nomic model developed in another area of the firm the analyst esti-
mates that the one-year Treasury rate will exceed 6% with a
probability of 25%. Since the current one-year rate is 5%, the ana-
lyst prices the cap as follows:

Comment on this pricing procedure.
9.2 The following tree gives the true six-month rate process:

The prices of six-month, one-year, and 1.5-year zeros are 97.5610,
95.0908, and 92.5069. Find the risk-neutral probabilities for the six-
month rate process. Assume, as in the text, that the risk-neutral prob-
ability of an up move from date 1 to date 2 is the same from both date
1 states. As a check to your work, write down the price trees for the
six-month, one-year, and 1.5-year zeros.

9.3 Using the risk-neutral tree derived for question 9.2, price $100 face
amount of the following 1.5-year collared floater. Payments are made
every six months according to this rule: If the short rate on date i is ri,
then the interest payment of the collared floater on date i+1 is

In addition, at maturity, the collared floater returns the $100 principal
amount.
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9.4 Using your answers to questions 9.2 and 9.3, find the portfolio of the
originally one-year and 1.5-year zeros that replicates the collared
floater from date 1, state 1, to date 2. Verify that the price of this
replicating portfolio gives the same price for the collared floater at
that node as derived for question 9.3.

9.5 Using the risk-neutral tree from question 9.2, price $100 notional
amount of a 1.5-year participating cap with a strike of 5% and a
participation rate of 40%. Payments are made every six months ac-
cording to this rule: If the short rate on date i is ri, then the cash flow
from the participating cap on date i+1 is, as a percent of par,

There is no principal payment at maturity.

CHAPTER 10 The Short-Rate Process and the Shape of the Term
Structure

10.1 On February 15, 2001, the yields on a 5-year and a 10-year interest
STRIPS were 5.043% and 5.385%, respectively. Assuming that the
expected yield change of each is zero and that the yield volatility is 95
basis points for both, use equation (10.27) to infer the risk premium in
the marketplace. Hint: You will also need equations (6.24) and (6.36).

On May 15, 2001, the yields on a 5-year and 10-year interest
STRIPS were 5.099% and 5.735%, respectively. Repeat the preced-
ing exercise.

10.2 Describe as fully as possible the qualitative effect of each of these
changes on 10- and 30-year par yields.
a. The market risk premium increases.
b. Volatility across the curve increases.
c. Volatility of the 10-year rate decreases while the volatility of the

30-year par rate stays the same.
d. The expected values of future short-term rates fall. Hint: Make as-

sumptions about which future rates change in expected value.
e. The market risk premium falls and the volatility across the curve

falls in such a way as to keep the 10-year yield unchanged.
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CHAPTER 11 The Art of Term Structure Models: Drift

11.1 Assume an initial interest rate of 5%. Using a binomial model to ap-
proximate normally distributed rates with weekly time steps, no
drift, and an annualized volatility of 100 basis points, what are the
two possible rates on date 1?

11.2 Add a drift of 20 basis points per year to the model described in
question 11.1. What are the two rates now?

11.3 Consider the following segment of a binomial tree with six-month
time steps. All transition probabilities equal .5.

Does this tree display mean reversion?
11.4 What mean reversion parameter is required to achieve a half-life of

15 years?

CHAPTER 12 The Art of Term Structure Models:
Volatility and Distribution

12.1 The yield volatility of a short-term interest rate is 20% at a level of
5%. Quote the basis point volatility and the Cox-Ingersoll-Ross
(CIR) volatility parameter.

12.2 You are told that the following tree was built with a constant
volatility. All probabilities equal .5. Which volatility measure is, in
fact, constant?
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12.3 Use the closed-form solution in Appendix 12A to compute spot rates
of various maturities in the Vasicek model with the parameters
θ=10%, k=.035, σ=.02, and r0=4%. Comment on the shape of the
term structure.

CHAPTER 13 Multi-Factor Term Structure Models

13.1 The following trees give the processes for the two factors of a term
structure model:

The correlation of the changes in the factors is –.5. Finally, the short-
term rate equals the sum of the factors. Derive the two-dimensional
tree for the short-term rate.

CHAPTER 14 Trading with Term Structure Models

14.1 Question 9.3 required the calculation of the price tree for a collared
floater. Repeat this exercise, under the same assumptions, but assum-
ing that the option-adjusted spread (OAS) of the collared floater is
10 basis points.

14.2 Using the price trees from questions 9.3 and 14.1, calculate the re-
turn to a hedged and financed position in the collared floater from
dates 0 to 1 assuming no convergence (i.e., the OAS on date 1 is also
10 basis points). Hint 1: Use all of the proceeds from selling the
replicating portfolio to buy collared floaters. Hint 2: You do not
need to know the composition of the replicating portfolio to answer
this question.

Is your answer as you expected? Explain.
14.3 What is the return if the collared floater converges on date 1 so its

OAS equals 0 on that date?
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CHAPTER 15 Repo

The following data as of May 15, 2001, relates to the old 10-year Treasury
bond and the on-the-run 10-year Treasury bond.

Overnight
Coupon Maturity Yield Price Repo Rate DV01
5.75% 8/15/2010 5.4709% 101-317/8 3.80% .07273
5% 2/15/2011 5.4346% 96-23+ 0.10% .07343

15.1 Calculate the carryover one day for $100 face of each of these bonds
and comment on the difference. Note that there are 89 days between
May 15, 2001, and August 15, 2001, and 181 days between Febru-
ary 15, 2001, and August 15, 2001.

15.2 Calculate the return to an investment in each bond if their respective
yields fall by one basis point immediately after purchase.

15.3 By how many basis points does the yield spread between the two
bonds have to change for the returns to be the same?

15.4 Explain whether or not it is likely for the yield spread to move in
the direction indicated by your answer to question 15.3. Also ex-
plain the conditions under which a one-day investment in the on-
the-run 10-year will be superior to an investment in the old
10-year and vice versa.

CHAPTER 16 Forward Contracts

16.1 For delivery dates in the near future, the forward prices of zero
coupon bonds are above spot prices while the forward prices of
coupon bonds are usually below spot prices. Explain.

16.2 For settle on November 27, 2001, the yield on the 4.75s of Novem-
ber 15, 2008, was 4.842% and the repo rate to March 28, 2002, was
1.80%. Approximate the forward yield of the 4.75s of November
15, 2008, to March 28, 2002, with as simple a calculation as you
can devise. The actual forward yield was 5.023%.

16.3 Using the numbers in question 16.2, which is larger: the spot DV01
of the 4.75s of November 15, 2008, or its forward DV01 for deliv-
ery on March 28, 2002?
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16.4 For settle on November 27, 2001, the price of the 5s of February 15,
2011 was 99-261/8 and its repo rate to March 28, 2002, was 1.65%.
Compute the forward price of the bond for March 28, 2002, deliv-
ery. You may assume that the repo rate curve is flat.

16.5 Say that on November 27, 2001, you bought the 5s of February 15,
2011, forward for March 28, 2002, delivery at the forward price com-
puted for question 16.4. If the price of the 5s of February 15, 2011, on
March 28, 2002, turns out to be 100, what is your profit or loss?

16.6 Which is larger: the three-month forward price of a then six-month
zero or the six-month forward price of a then three-month zero?

CHAPTER 17 Eurodollar and Fed Funds Futures

For questions 17.1 to 17.5 use the following data. As of February 5, 2002,
fed funds contracts traded at these levels:

February 98.250
March 98.250
April 98.275
May 98.195
June 98.145

17.1 A bank makes a loan of $50,000,000 on February 5, 2002, to be re-
paid on June 30, 2002. The bank plans to fund this loan with
overnight borrowing. How many of each fed funds contract should
it trade to hedge its interest rate exposure?

17.2 What cost of funds does the bank lock in by trading the contracts ac-
cording to the answer to question 17.1? Quote the cost as an ac-
tual/360 rate and assume for simplicity that daily borrowing by the
bank is not compounded while borrowing across months is com-
pounded.

17.3 Say that the average fed funds rates realized each month are as follows:

February 1.75%
March 1.75%
April 1.75%
May 1.95%
June 2.00%
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How much does the bank pay to finance its loan, and how much
does it gain or lose from its fed funds position? Show that the net ef-
fect is to lock in the rate derived in question 17.2.

17.4 The most recent meeting of the FOMC was in January 2002, and the
next two meetings are on March 19 and May 7. Assume that the
only possible action on March 19 is to keep the fed funds target the
same or to lower it by 25 basis points. What is the fed funds rate on
February 5, 2002? What is the implied probability in the fed funds
market of a 25 basis point reduction on March 19? You may ignore
all other effects (e.g., risk premium).

17.5 Using your answer from question 17.4 for the expected fed funds
rate before the May 7 FOMC meeting, what does the May fed funds
contract say about the probability of an increase in rates at the May
7 meeting? Assume that the only two possible outcomes at that meet-
ing are that the FOMC leaves the fed funds rate unchanged or that it
increases that rate by 25 basis points.

17.6 A corporate lender makes the same loan as the bank in question
17.1, but wants to use Eurodollar futures instead of fed funds futures
whenever possible and prudent. March Eurodollar futures expire on
March 18, 2002, and June Eurodollar futures expire on June 17,
2002. What hedge of the loan uses February fed funds futures and
March and/or June Eurodollar futures? Can you make an argument
based on the FOMC meeting schedule given in question 17.4 for just
ignoring the risk covered by the February fed funds contracts?

17.7 As of February 5, 2002, two Treasury bonds were priced as follows:

Coupon Maturity TED Spread DV01
3.625 8/31/2003 31.1 1.53
4.500 11/15/2003 35.7 1.75

Qualitatively describe a spread of spreads trade suggested by these
numbers. How much would a trade involving $100,000,000 of the
4.5s of November 15, 2003, make if the TED spread of the two
bonds immediately equalized?

CHAPTER 18 Interest Rate Swaps

18.1 From the point of view of the fixed receiver, what are the exact cash
flow dates and amounts of a $10,000,000 two-year swap at 5.75%
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settling on February 15, 2002? Assume for the purposes of this ques-
tion that the floating rate always sets at 2.50% over the life of the
swap. Also assume that cash flow dates falling on weekends are
made on the following business day. Why do the cash flows look so
attractive to the fixed receiver?

18.2 Consider 100 face of a five-year floating rate note with semiannual
resets. Assume that the term structure is flat at 5%. What is the
DV01 of the series of floating coupons? Explain the surprising 
result.

18.3 One year ago you paid fixed on $10,000,000 of a 10-year interest
rate swap at 5.75%. The nine-year par swap rate now is 6.25%, and
the nine-year discount factor from the current swap rate curve is
.572208. Assume that the next floating payment has just been set.
Will you pay or receive money to terminate the swap? How much
money will be exchanged in the termination?

18.4 “The FNMA 6.25s of May 15, 2029, should sell at an asset
swap spread less than 15 basis points because the yield on an
equivalent maturity bond of a financially strong bank is less
than 15 basis points below the yield of that FNMA security.”
Comment on this reasoning.

18.5 On February 15, 2001, the 10-year swap spread was 96.5 basis
points, and the overnight special spread of the on-the-run 10-year
Treasury was 119 basis points. On May 15, 2001, the 10-year swap
spread was 80.3 basis points, and the overnight special spread of the
on-the-run 10-year was 422 basis points. Comment on the compara-
bility of these two swap spreads.

CHAPTER 19 Fixed Income Options

19.1 Formalize the arbitrage argument that the value of a call option must
be positive.

19.2 Graph the value at expiration of the following option combination:
long one 95 strike option, short two 100 strike options, and long one
105 strike option.

19.3 The following diagram gives the tree for the price of a callable bond.
The numbers above the tree give the call prices on particular dates.
Circle the states in which the bond is optimally called.

Exercises 493



19.4 Consider a 5%, 10-year bond puttable at par by the holder after five
years. In other words, the investor has the right to sell the bond to
the issuer at par after five years. Describe the qualitative behavior of
this bond as interest rates change.

19.5 Bond A matures in 15 years but is callable at par in 10 years. Bond B
matures in six years but is callable at par in one year. At a yield ap-
proximately equal to the coupon rate, which bond’s duration will
change more rapidly as interest rates change?

19.6 What is the price volatility of a five-year zero coupon bond at a yield
of 5% and a yield volatility of 25%?

CHAPTER 20 Note and Bond Futures

20.1 Using the conversion factors in Table 20.1, what is the delivery price
of the 5.75s of August 15, 2010, if TYH2 expires at 102 and the
bond price is then 101?

20.2 Using the data from question 20.1, what is the cost of delivering the
5.75s of August 15, 2010?

20.3 From the answer to question 20.2, are the 5.75s of August 15, 2010,
cheapest to deliver (CTD)? Why or why not?

20.4 Recently it has often been true that only two bonds, the on-the-run
five-year and the old five-year, have been eligible for delivery into the
five-year futures contract. Describe how each of the following will
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impact which bond is CTD: yield level, slope of the term structure,
on-the-run versus off-the-run premium.

20.5 According to Table 20.5 the net basis of the 6.5s of February 15,
2010, for delivery into TYH2 as of November 26, 2001, is 13.8. Say
that a trader sold $50,000,000 face of these bonds forward to Febru-
ary 15, 2010, and bought a conversion-factor-weighted number of
TYH2 contracts. Using the conversion factors in Table 20.5, how
many contracts does the trader buy? If the 6.5s of February 15, 2010,
are CTD at expiration, what is the trader’s profit? You may ignore the
tail (i.e., the difference between futures and forward contracts) for
this question. When will the trader lose money on this trade?

20.6 A trader has a futures model that assumes there is only one delivery
date. Knowing that there is a timing option, the trader computes
both the model futures price assuming that delivery happens on the
first delivery date and the model futures price assuming that delivery
happens on the last delivery date. The trader then assumes that the
true futures price should equal the smaller of these two prices. Com-
ment on this procedure.

CHAPTER 21 Mortgage-Backed Securities

21.1 Assume that the term structure of monthly compounded rates is flat
at 6%. Find the monthly payment of a 15-year, $100,000 mortgage.

21.2 An adjustable-rate mortgage (ARM) resets the interest rate every set
period so that the borrower is essentially rolling over a short-term
loan. How does the option to prepay an ARM compare to the option
to prepay a fixed-rate mortgage?

21.3 Explain the intuition for each of the following results.
a. When interest rates fall, POs outperform 30-year Treasuries.
b. When interest rates rise by 100 basis points, mortgage pass-

throughs fall by about 7%. When interest rates fall by 100 basis
points, pass-throughs rise by 4%.

c. When interest rates decline, IOs and inverse IOs decline in price,
but IOs suffer more severely. (An inverse IO receives no principal
payments, like an IO, but receives interest payments that float in-
versely with the level of rates.)
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