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preface

he emergence of computational finance as a discipline in its own right is
relatively recent. The first international conference on computational

finance took place in 1995 at Stanford University, where, as far as the
author is aware, the name for this new discipline was coined. The Journal
of Computational Finance was created shortly thereafter, and its success
and popularity soon demonstrated that there was a body of work of suffi-
cient mass and extent to rightfully configure the emergence of a new disci-
pline, complete with its views, paradigms, and methods.

The use of computational methods for solving engineering problems
allows us to analyze systems of such scale and complexity that their analy-
sis would not be conceivable through empirical study through purely ana-
lytical means. Computational chemistry, computational fluid dynamics, the
numerical simulation of astronomical structures, structural analysis, and so
on, are examples where the use of sophisticated numerical techniques
allows us to gain a type of understanding of the nature of the problem that
could not be gained otherwise.

Just as physicists and engineers solve problems by solving so-called
“conservation equations,” financial engineers price financial instruments by
solving their corresponding pricing equations. The conservation equations
of physics establish relationships between the rates of convection, diffusion,
creation, and disappearance of mass, momentum, and energy. Typically,
these relationships are in the form of partial differential equations (PDEs).
The pricing equations of financial instruments state the way the price of the
instrument depends on time and the value of other instruments or processes.
Typically, these pricing equations are also PDEs.

While the conservation equations of physics are derived by considering
the detailed balance of mass, momentum, and energy flows, the pricing
equations of financial instruments are derived by considering arbitrage
(rather, the absence of arbitrage) and expectations. Are there significant dif-
ferences in the computational challenges presented by physical problems
and financial problems? Although this question is hard to answer with gen-
erality, there are observations we can make about how financial engineers
perceive these challenges vis-à-vis their colleagues in other disciplines. In
engineering fields such as structural analysis or fluid dynamics, engineers
can deal with a relatively well-established set of PDEs with which he or she
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can solve a very large number of problems by simply changing the bound-
ary conditions. This relative consensus and stability of the mathematical
framework makes it possible to develop large and flexible software systems
to implement particular solution approaches applicable to particular areas
of engineering. These systems can be used to solve a large variety of prob-
lems by simply changing boundary values and the way boundaries are
treated. These systems will typically implement a particular numerical
approach, such as finite elements or finite differences, applicable to large
classes of problems. Structural engineers, for example, can deal with a large
array of problems using a single computational methodology, such as finite
elements. Aerodynamicists can work on projects ranging from small air-
craft to reentry vehicles and still use the same methodology, such as finite
differences.

This situation is significantly different in financial engineering. The
pricing of financial contracts is not just a matter of repeatedly applying the
same numerical methodology with different boundary conditions. In many
cases, the pricing equation is very specific to the particular financial instru-
ment being considered. In other cases, the pricing equation is not known.
Yet in other cases the pricing equation is extremely ill-suited for certain
types of numerical techniques. This means that the financial engineer must
be fluent in a number of computational techniques appropriate for dealing
with different instruments.

This book is designed as a graduate textbook in financial engineering.
It was motivated by the need to present the main techniques used in quanti-
tative pricing in a single source adequate for Master level students. Students
are expected to have some background in algebra, elementary statistics, cal-
culus, and elementary techniques of financial pricing, such as binomial
trees and simple Monte Carlo simulation. The book includes a brief intro-
duction to the fundamentals of stochastic calculus.

The book is divided into seven chapters covering an introduction to
stochastic calculus, a summary of asset pricing theory, simulation applied
to pricing, and pricing using finite difference solutions. The topic of trees as
a tool for pricing is touched on at the end of the finite differences chapter.
Although trees are a popular pricing technique, finite differences, of which
trees are a particularly simple case, are a far more powerful and flexible
approach. Significant effort is dedicated to the fundamentals of early exer-
cise simulation. This methodology is rapidly taking the lead as a preferred
way to price highly dimensional early exercise instruments.

Chapter 1 is a brief introduction to single-period pricing with the
objective of motivating the idea that the price of a financial instrument is
given by an expectation.
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Chapter 2 is a summary introduction to the basic elements of stochastic
calculus. The material is presented in a nonrigorous way and should be
easy to follow by anyone with a basic background in elementary calculus.

Chapter 3 is a brief description of pricing in continuous time, where
the main objectives are to more precisely determine the price as an expecta-
tion under a suitable measure and to derive the relevant pricing equation.

Chapter 4 focuses on the generation of scenarios for simulation. In
practical implementations of simulation, the generation of scenarios of
appropriate quality is essential. Issues of accuracy are discussed in detail.

Chapter 5 is dedicated to simulation applied to computing expectations
for European pricing. This chapter gives a summary with selected case
studies of the main approaches that have demonstrated practical value in
financial pricing.

Chapter 6 deals with simulation applied to early exercise pricing. At
the time of this writing, this is a rapidly evolving subject. For this reason,
this chapter must be viewed as an update of the most established aspects of
simulation for early exercise pricing. The chapter presents a brief historical
account of the various techniques, but the emphasis is on linear squares
Monte Carlo, the technique that has marked a breakthrough in this area.

Chapter 7 summarizes the use of finite differences in option pricing.
The material is presented in a concise manner, with an emphasis on the fun-
damentals.

DOMINGO TAVELLA

San Francisco, California
March 2002
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CHAPTER 1

1

Arbitrage and Pricing

he purpose of this short chapter is to motivate the notion that the price
of a financial instrument is expressed in the form of an expectation of

suitably discounted future values or cash flows. To accomplish this, we will
work in a single period framework, where we will show that the price of a
security is an expectation where the probabilities used to compute the
expectation are determined by a normalizing asset, known as the numeraire
asset. We will not elaborate on discrete time pricing beyond this initial
chapter. The reader interested in additional details of discrete time pricing
can consult the excellent work by Dotham (1990). The reason we will not
dwell on discrete time modeling is that the power of the numerical pricing
methods we will consider originates in their application to continuous time
models.

THE PRICING PROBLEM 

We will obtain intuitive derivation of pricing formulation by the following
line of reasoning.

■ Absence of arbitrage implies the existence of state prices. State
prices are the values of elementary securities known as Arrow-
Debreu securities.

■ State prices, when properly rescaled by the values of other instruments
or portfolios of instruments, can be interpreted as probabilities. 

■ The derivative’s price is an expectation with respect to a probability
measure determined by the rescaling of state prices (a probability mea-
sure assigns probabilities to outcomes.) 

■ When the underlying processes that determine the derivative’s price are
Ito processes, the expectation can be expressed as the solution to a par-
abolic partial differential equation. This is the pricing equation.

T



2 QUANTITATIVE METHODS IN DERIVATIVES PRICING

Arbitrage
We will consider a market that at payoff time T may achieve one of S states.
Assume there are N traded securities, whose values at t 0 are denoted by
Vn(0), n 1,…, N, and whose payoffs at time t T are indicated by
Fs,n(T), s 1,…, S, n 1,…, N. The matrix (T), whose elements are
Fs,n(T), is called the payoff matrix. Each column of the payoff matrix repre-
sents the payoffs of a given security for the different market states. Each row
represents the payoffs of the different securities for a given market state.

We now define the concept of Arrow-Debreu securities. We will use
this concept in establishing the arbitrage conditions in the discrete time
model. An Arrow-Debreu security is a security that pays $1 at time T if a
particular state materializes and pays $0, otherwise.

If at time t 0, we purchase the jth Arrow-Debreu security in the amount
Fj,n(T), we will get a payoff at time T equal to Fj,n(T) if the jth state materializes,
and zero, otherwise. This means that if we purchase the jth Arrow-Debreu secu-
rity in the amount Fj,n(T), we will match the payoff of the nth asset in state j.

If we purchase a portfolio of Arrow-Debreu securities, such that F1,n(T)
is the amount of Arrow-Debreu security 1, F2,n(T) is the amount of Arrow-
Debreu security 2, and … FS,n(T) is the amount of Arrow-Debreu security S,
we will match the payoffs of the nth asset in all states at time T. The value of
this portfolio is equal to � Fs,n(T)�s, where �s is the value of the sth
Arrow-Debreu security. The present value of the nth asset must be equal to the
value of this portfolio, because their payoffs are the same. (See Equation 1.1.)

(1.1)

If this relationship were not satisfied, it would be possible to make a
riskless profit. If the portfolio of Arrow-Debreu securities were more valu-
able than the asset, we would short-sell the portfolio of Arrow-Debreu
securities and buy the asset. If the asset were more valuable than the portfo-
lio of Arrow-Debreu securities, we would do the opposite. In either case,
the difference would be a riskless profit.

State Prices
The values of the Arrow-Debreu securities are called state prices. If some-
how we can determine these prices, we can use them to price other securi-
ties whose payoffs are known. If we limit our definition of arbitrage to
the situation we described in the last section and we assume that there are

=
= =
= = F̃

=

s=1
s=S

Vn 0( ) Fs,n T( )�s, n
s=1

s=S

∑ 1,…, N= =
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as many independent assets as there are possible market states, we can
find the state prices from observed asset prices by solving the algebraic
system

(1.2)

where N S.
If there is a market for Arrow-Debreu securities, solving this system

will give us their prices. If we know their prices, we can price any other
security whose payoffs are known. We could then argue that the existence
of state prices implies the absence of arbitrage, and vice versa. Since the
state prices are the values of securities with positive payoffs, the state prices
are positive.

A more precise definition of absence of arbitrage is to say that any
investment with nonnegative payoff in every possible market outcome at
a future time must have a nonnegative initial cost. Loosely speaking,
this statement simply says that we cannot get something for nothing.
Mathematically, this means that if we hold amounts xn, n 1,…, N of
assets whose initial values are Vn(0), n 1,…, N, we must have the
conditional:

With this formulation of arbitrage, it is possible to show that also in
the case where the number of market states is greater than the number of
securities, S N, absence of arbitrage implies the existence of positive state

s

(1.3)

(The proof of this statement uses arguments from operations research: for
details, please refer to Varian (1987) or Duffie (1996).) It is clear that each
�s can be interpreted as the values of a security that has a payoff of $1 at
time T if the state s materializes and $0, otherwise. We can see this by set-
ting the payoff matrix F equal to the identity matrix.

Fs,n T( )�s
s=1

s=S

∑ Vn 0( ), n 1,…, N= =

=

=
=

If Fs,n T( ) xn 0, s³
n=1

n=N

∑ 1,…, S, then Vn 0( )xn 0³
n=1

n=N

∑=

Vn 0( ) �sFs,n T( )
s=1

s=S

∑=

1,…, S, such that=
³

prices � 0, s³
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In summary, the present value, V(0), of a security with payoff Vs(T) at
time T, if state s materializes, is given by

(1.4)

If there are as many market states as there are independent securities,
the state prices �i are unique and the market is called complete. If there are
more market states than independent securities, the market is called incom-
plete. In this case, the state prices are not unique.

Equation 1.4 is the starting point for pricing a derivative as an expecta-
tion of future values.

Present Value as an Expectation of Future Values
Consider two instruments whose present values are denoted by A(0) and
B(0) and whose payoff vectors are A(T) and B(T). We write down the ratio
of their present values, using the last equation, as:

(1.5)

This expression can be written as

(1.6)

where

(1.7)

Notice that the pis are all nonnegative, and they add up to 1. Hence,
since there are as many pis as there are possible market outcomes, the pis can
be interpreted as probability masses. The market outcomes have probabilities
of occurrence of their own, which we call objective or market probabilities.
The probabilities we have just derived are different from the objective proba-
bility of the market outcomes. In fact, the market objective probabilities do

V 0( ) �sVs T( )
s=1

s=S

∑=

A 0( )
B 0( )
------------

�1B1 T( )
�1B1 T( S S
----------------------------------------------------------------

A1 T( )
B1 T( )
----------------=

… �SBS T( )
�1B1 T( ) … �SBS T( )+ +
----------------------------------------------------------------

AS T( )
BS T( )
----------------+

A 0( )
B 0( )
------------ pi

Ai T( )
Bi T( )
---------------

i=1

i=S

∑=

pi
�iBi T( )

�1B1 T( ) … �SBS T( )+ +
----------------------------------------------------------------=

…) + + � B ( )T
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not appear explicitly in the derivation. We refer to the probabilities in
Equation 1.7 as induced by the asset in the denominator of Equation 1.5. The
asset in the denominator is called the numeraire asset.

If the asset in the denominator of Equation 1.5 does not vanish for the mar-
ket outcomes of interest, the induced probabilities will be different from zero
for the outcomes where the objective probabilities are different from zero. A
probability measure assigns probabilities to outcomes. Probability measures
that assign probabilities with this property are called equivalent probability
measures. We can infer that absence of arbitrage means that the price of a
traded asset, normalized with the price of another traded asset or portfolio of
traded assets, equals the expectation of the normalized value at time T with
respect to a probability measure induced by the normalizing asset.

This means that the present value of an asset can be written as

(1.8)

where EB denotes expectation with respect to probabilities induced by B.
If asset B is an investment of $1 that pays a known compound return r

at time T, we get the more familiar formula

(1.9)

where Q indicates that the expectation is taken with respect to probabilities
induced by the continuously compounded $1 investment. This familiar for-
mula says that the present value of an asset with uncertain payoffs is the
discounted expectation of the payoffs (assuming that the interest rate is
known), where the probabilities of market outcomes are said to be risk
neutral.

How are the objective probabilities of market outcomes related to the
probabilities induced by the numeraire asset? This relationship is captured
by the so-called “Radon-Nikodym derivative,” defined as

(1.10)

where  is the objective, or market probability mass, for the ith market
outcome. The Radon-Nikodym derivative has the property

(1.11)

A 0( ) B 0( )EBA T( )
B T( )
-------------=

A 0( ) EQexp rT–( )A T( )=

exp rT–( )EQA T( )=

Zi
pi

pi
M

--------=

pi
M

EMZ 1=
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where EM indicates expectation with respect to the market or objective
measure. For any random variable X,

(1.12)

We can now summarize our observations:

■ If the number of possible market outcomes is equal to the number of
independent assets with payoffs associated with these market out-
comes, the market is called complete. A unique set of state prices
determines a unique probability measure induced by a normalizing
asset, and there is no arbitrage.

■ If the number of possible market outcomes is greater than the number of
independent assets with payoffs associated with these outcomes, the market
is called incomplete. State prices rule out arbitrage but are not unique and
there is a nonunique probability measure induced by a normalizing asset.

■ If there are more independent assets than market states, there are no
state prices, there are no probabilities induced by a normalizing asset,
and there is arbitrage.

So far, we have motivated the formulation of the pricing problem as an
expectation of future payoffs. This expectation is taken with respect to prob-
abilities associated with a given normalizing asset. The goal of quantitative
pricing is to compute this expectation. As we will see, this expectation can be
computed according to different methodologies. Each methodology for com-
puting the expectation gives rise to a different specialization of quantitative
financial pricing. The main approaches are as follows.

■ Direct analytical evaluation of the expectation: This approach may
give closed-form solutions. We will see some simple examples in
Chapter 3.

■ Numerical computation of the expectation by simulation: A variety of
Monte Carlo techniques can be used with varying degrees of success.
We will discuss these techniques in Chapters 5 and 6. 

■ Transformation of the expectation into a partial differential equation
(PDE) or an integro-partial differential equation (IPDE): This allows us
to resort to the vast field of numerical analysis applied to parabolic
PDEs. We will discuss this in Chapter 7.

Before tackling the pricing problem with any particular methodology,
we must enrich the framework for formulating the expectation we dis-

EBX EM ZX( )=
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cussed. The reason for this is that a number of questions arise that are not
contemplated in this extremely simplistic model. For example: What hap-
pens if payoffs are distributed in time? What happens if payoffs occur at
unknown times? What happens if the holder of a security can make deci-
sions regarding payoffs as time evolves? To address these issues, we will
formulate the pricing problem in continuous time. It also happens that
working in continuous time allows us to introduce powerful methodologies
that would not be possible otherwise, such as numerical solutions of sto-
chastic differential equations and partial differential equations.

The fundamental tool for working with financial pricing in continuous
time is stochastic calculus. This textbook assumes no prior knowledge of
stochastic calculus on the part of the reader. The next chapter is a brief
summary of the main concepts of stochastic calculus that we will need to
work effectively with the rest of the chapters.

Before moving on, however, we must keep in mind that the pricing frame-
work that we just postulated, where the price of a security is an expectation,
hinges on the absence of arbitrage. Unlike physicists, who do not have to
worry about the validity of the conservation principles on which they base
their calculations, financial engineers must be concerned about the validity
of their fundamental principle, the absence of arbitrage. Although the phys-
ical world does not violate its conservation equations, the market may, in fact,
“violate” the absence of arbitrage. If this happens, the framework and meth-
odologies this book concerns itself with will not work.

Before deciding on a computational methodology, the validity of the
nonarbitrage pricing framework must be determined. It is useful to ask
these questions:

■ Are the instruments of interest and its hedging securities sufficiently
liquid? 

■ Are there any restrictions on trading that would be relevant to the
instrument in question, such as the inability to perform short sales? 

■ Are there significant transaction costs associated with the instrument
or its hedging securities?

Clearly, effort in developing a sophisticated pricing approach is not
warranted if the fundamental assumption on which the approach is based
is invalid. 





CHAPTER 2

9

Fundamentals of
Stochastic Calculus

his chapter provides a summary of the concepts of stochastic calculus
needed in financial engineering calculations. This chapter is an attempt to

condense the fundamentals of a complex subject in a manner that is accessible
to readers with a modest mathematical background. Readers who already
have a background in stochastic calculus can go directly to the next chapter.
The exposition in this chapter is nonrigorous and intuitive. For a more com-
prehensive treatment of stochastic calculus, the reader may consult the excel-
lent works of Karatzas and Shreve (1988) and Protter (1995). The book by
Oksendal (1995) is applications-oriented and highly recommended.

BASIC DEFINITIONS

Unlike regular calculus, which deals with deterministic functions, integrals,
and differential equations, stochastic calculus deals with stochastic pro-
cesses, functions of stochastic processes, integrals involving processes, and
differential equations involving processes.

A stochastic process is defined in a probability space. Before discussing sto-
chastic processes in detail, we elaborate on the elements of the probability space.

PROBABILITY SPACE

A stochastic process is defined in a probability space, which we denote by
(�, F, P). In the probability space we have the following elements.

■ � is the space of all possible outcomes of an observation or experi-
ment, also known as the sample space.

■ F is known as the filtration. The filtration is a set of so-called “�-
fields,” or “�-algebras.” The filtration determines, or encodes, the

T



10 QUANTITATIVE METHODS IN DERIVATIVES PRICING

information that is revealed by observing the time evolution of the sto-
chastic process.

■ P is the probability measure. It assigns probabilities to subsets of �.

We will now describe these items in greater detail.

Sample Space
The outcomes contained in the sample space � depend on what we are
interested in observing. For example, if we are considering the number of
times a stock price has moved upward within a period of time, � would be
a set of integers, where each integer represents a possible number of
upward moves by the stock, namely � {0, 1, , n}.

A more relevant example, which will serve as a basis for discussion in the
next few sections, is when we are interested in the trajectories of up and down
moves of a stock price in a given period of time. � would then be the set of
up and down sequences that can be observed in that period of time. For exam-
ple, if the period of time contains three observations, � will consist of 23 8
sequences, each one indicating the succession of up and down moves, namely,
� {uuu, uud, udu, udd, duu, dud, ddu, ddd}. The observations we are
interested in are realizations of stochastic processes. (The price of a stock, as
we will see later, can be characterized by a stochastic process.) Therefore, the
sample space of interest to us is the set of possible trajectories of a stochastic
process in a given time interval.

Filtration and the Revelation of Information
Information about the true outcome is represented by subsets of �. Consider-
ing our three-observation example, before any observation is made, we can say
the following about the true outcome of the stock trajectory: The true trajec-
tory will not be part of the empty set, ∅, and will be part of the sample space, �.

Therefore, before any observation is made, information about the true
outcome of the price trajectory is represented by the following set of sub-
sets of �:

(2.1)

At the first observation of our three observation example, we can say the
following about the eventual trajectory that will turn out to be true: a) The
true trajectory will not be contained in the empty set, ∅, and will be contained
in the sample space, �; and b) The true trajectory will be part of either the
set U {uuu, uud, udu, udd} or the set D {duu, dud, ddu, duu}.

At the first observation, the information about the true outcome is rep-
resented by the following set of subsets of �:

= …

=

=

F0 ∅, �{ }=

= =
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(2.2)

At the second observation, we can say the following: a) The true trajectory
will not be contained in the empty set, ∅, and will be contained in the sample
set �; b) The true trajectory will be part of one of the sets UU {uuu, uud},
UD {udu, udd}, DU {duu, dud}, DD {ddu, ddd}; and c) The true tra-
jectory will be part of the union of these sets.

At the second observation, information about the true outcome is rep-
resented by the following set of subsets of �:

(2.3)

These sets of subsets of �, which reveal increasingly more information
about the true outcome, are called �-fields or �-algebras. The indexed collec-
tion of these �-algebras is called a filtration, F {F0, , Fn}. Each element
of the filtration encodes information revealed by observation of the up and
down moves of the stock price. In this case, we can refer to the filtration as
generated by the up and down moves of the stock price. The filtration
{F0, F1, F2} is generated by the first two observations of the up and down
moves. It is clear that the �-algebras generated by the up and down moves
before time t are subsets the �-algebra generated at by the up and down
moves at time t:

(2.4)

Probability Measure
A probability measure is a set function. A set function assigns values to
sets. A probability measure assigns a real number in the interval [0, 1] to
the disjoint sets of sets of �  in such a way that these numbers add up to one
(it assigns zero to ∅ and one to �). A probability measure gives us the
probability that the true outcome (in the case of the stock price, the true
trajectory) is contained in a particular set. Changing the measure means
changing the function that assigns values to the sets in �. One probability
measure of particular interest is the market measure. This measure assigns
probabilities that are consistent with actual market movements. Other mea-
sures are also possible. Chapter 1 introduced the concept of probability
measures associated with different normalizing assets. These alternative
probability measures are useful because they allow us to formulate the pric-
ing problem in terms of quantities we know, or because they facilitate the
mathematical formulation. We will discuss this in detail in Chapter 3. The
reader interested in more detailed information on probability measures is
referred to the excellent book by Billingsley (1994).

F1 ∅, �, U, D{ }=

=
= = =

F2 ∅, �, UU, UD, DD, UU UD,…∪{ }=

= …

F0 F1 F2
…⊂ ⊂
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RANDOM VARIABLES

A random variable is a function that maps the elements of � to the set of real
numbers. For the same sample space, we can have different random variables.
In our example, the stock price at an observation time is a random variable.
The number of times the stock price exceeds a given amount is another ran-
dom variable.

By observing a random variable we can determine information about the
true outcome of an experiment. In our example, by observing the stock price we
can determine information about the true outcome of the stock trajectory. This
information is represented by �-algebras generated by the random variable.

If the stock price is described by a recombining binomial tree, we will
get less information by observing the stock price than we get by observing
the stock trajectories directly. Let’s elaborate on the �-algebras generated
by the stock price when the binomial tree is recombining.

Let’s denote by �(Si) the �-algebra generated by the stock price at the ith
observation, where Si is the random variable that characterizes the stock price
at the ith observation. Before any observation is made and at the first obser-
vation, the �-algebras generated by the stock price are the same as F0 and F1:

(2.5)

(2.6)

At the second observation time, however, the fact that the stock price fol-
lows a recombining tree does not allow us to distinguish between trajectories
in DU and UD. From here on, the �-algebras generated by the stock price
contain less information than we can get from observing the samples directly:

(2.7)

We are now in a position to define a stochastic process.

STOCHASTIC PROCESS

A stochastic process is a set of random variables parameterized by time,
t

Measurable Stochastic Process
A stochastic process St is Ft-measurable if every set in the �-algebra gener-
ated by St, �(S(t)), is in Ft. This means that if we know the information in
Ft, we know St. By this we mean that if we know the outcomes up to and
including the observation at time t, we can evaluate St.

� S0( ) � , �{ }=

� S1( ) � , �, U, D{ }=

� S2( ) � , �, UU, UD DU, DD, UU UD DU�( ), �� �{ }=

such as S , 0 £ £t T, defined in a probability space {�, F, P}.
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Adapted Process
A stochastic process St is adapted to Ft if St is Ft-measurable.

Conditional Expectation
The expectation of X, conditional on the information contained in the �-
algebra Ft, is denoted as follows:

(2.8)

where we adopt a simple notation for the conditional expectation operator.
Y is an Ft-measurable random variable. If X is adapted to Ft,

(2.9)

Iterated Expectations If we assume two �-algebras, G and H, such that
the information in G is contained in H, then the iterated expectation of a
random variable simplifies as follows:

(2.10)

We will typically be referring to conditional expectations when the �-
t s

have

(2.11)

Martingales 
t t t

is a martingale if the expectation of its value at a future time, s, conditional
on information at an earlier time, t, is equal to the value of the process at
the earlier time t:

(2.12)

WIENER PROCESS

The Wiener process, also known as Brownian motion, is the basic process
of continuous-time financial modeling.

To visualize a Wiener process, consider a sequence of up and down
moves of the price process, St. The up or down moves are determined at
times tk tk–1 + �t, k 0, , n. At each tk, the up or down amount is

Y E X Ft[ ] Et X[ ]= =

X Et X[ ]=

E E X H[ ] G[ ] E X G[ ]=

t t s ,=

Et Ss[ ] t=

= = …

E [E [ ]X t s£E [ ]X ]

algebras are elements of a filtration F. In this case, since F ⊂ F , t s, we£

Assume that S  is a stochastic process adapted to F , 0 t T. The process S££

S , 0 t s T

£

££
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determined by sampling from a normal distribution with mean 0 and vari-
ance �t:

(2.13)

Here, Z is a standard normal distribution and � is a sample point in
the sample space �. The sample point represents a sequence of up and
down moves along the trajectory of the Wiener process. We would get a
standard Wiener process by letting �t 0. The properties of the Wiener
process are the following:

■ For each sample � �, W(t, �) is a continuous function of t.
■ The initial condition of a Wiener process is W(t 0, �) 0 a.s.

Almost surely (a.s.) means that the probability of W(0, �) 0 is 1. 
■ The increments of the Wiener process are normal and independent.

This means

(2.14)

For simplicity, we omit reference to the sample point �, and use sub-
scripts for the time dependence.

A Wiener process is adapted to a �-algebra Ft. The filtration  can
be the one generated by the Wiener process itself, or it can be one generated
by the Wiener process as well as other processes, as long as the other processes
don’t reveal information about future movements of the Wiener process.

The following are additional properties of the Wiener process:

■ The Wiener process is Markovian. This means that for 0 t s, con-
ditional on Ft, everything random about Ws (such as the mean, vari-
ance, and so forth) depends only on Wt.

■ The statement above implies that the Wiener process is a martingale:
Et[Ws] Wt, t s.

■ The Wiener process is an infinitely “wiggly” function that does not
have a defined slope or tangent. The mathematical concept that cap-
tures the infinite wiggliness of a process is called second variation or
quadratic variation. Differentiable functions have zero second varia-
tion. The Wiener process has finite second variation.

To motivate the notion of second variation (SV) as a characterization
for the Wiener process, we will first discuss the first variation (FV) and the
second variation of a differentiable function.

W tk+1, �( ) W tk, �( ) �tZ+=

→

∈
= =

=

E0 Ws Wt–[ ] 0, t s,£=

var Ws Wt–[ ] s t, t s,£–=

cov Ws Wt–( ), Wv Wu–( )[ ] 0, t s u v£ £ £=

Ft{ }t 0

=

³

£ £

£
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First Variation of a Differentiable Function
The first variation of a differentiable function is finite, whereas the first
variation of the Wiener process is infinite.

Define points in time

(2.15)

and define

(2.16)

The first variation, also called simply the variation of a function f(t), is
defined as

(2.17)

If the function f(t) is differentiable, the mean value theorem and a little
algebra give

(2.18)

This means that, in general, the first variation of a differentiable func-
tion will be different from zero.

First Variation of the Wiener Process
The first variation of the Wiener process is infinite. The reason for this will
become clear after we discuss the second variation of the Wiener process.

Second Variation of a Differentiable Function 
The second, or quadratic, variation is defined as

(2.19)

Applying the mean value theorem and some algebra, we find

(2.20)

0 t0 t1
... tn£ £ £ T= =

� max ti+1 ti–( ), 0 i n<£=

FV f( ) f ti+1( ) f ti( )–
i=0

i=n

�
� 0�
lim=

FV f( ) df t( )
td

------------ td
t=0

t=T

	=

SV f( ) f ti+1( ) f ti( )– 2

i=0

i=n

�
� 0�
lim=

SV f( ) �
f t( )d

td
------------

2
td

t=0

t=T

	� 0�
lim=
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Since in a differentiable function the integrand is bounded, the second
variation of a differentiable function is zero:

SV(f) 0 (2.21)

Second Variation of the Wiener Process
Some algebra shows that the second variation of the Wiener process is
equal to its variance:

SV(W(t T)) T (2.22)

This also says that the first variation of the Wiener process is infinite:

(2.23)

Since the second variation is finite and the Wiener process is continu-
ous, this shows that the first variation is infinite.

Products of Infinitesimal Increments of 
Wiener Processes
In using stochastic calculus as a practical tool, the product of two infinites-
imal increments of Wiener processes is not a stochastic quantity.

First Practical Result: dWdW = dt
From the derivation of the second variation of the Wiener process we found that

(2.24)

The quantity (W(t + �t) W(t))2 �t is a stochastic process whose
variance vanishes like �t2 as �t 0. We also know that E[(W(t + �t)
W(t))2] �t, or equivalently, E[(W(t + �t) W(t))2 �t] 0. This means
that (W(t + �t) W(t))2 �t tends to zero as �t 0. We can write,

(2.25)

=

= =

FV W T( )( ) W ti+1( ) W ti( )–
i=0

i=n

∑
� 0→
lim=

1
max �W( )
--------------------------- W ti+1( ) W ti( )– 2

i=0

i=n

∑
� 0→
lim³

SV W T( )( )
max �W( )
----------------------------³

var W t �t+( ) W t( )–( )2
�t–[ ] 2�t2=

– –
→ –

= – – =
– – →

W t �t+( ) W t( )–( )2
�t as �t 0→→
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Using differential notation, this means

dWdW dt (2.26)

This result is striking in that, to lowest order, the product of these two
random quantities is a deterministic quantity.

Second Practical Result: dW1111dW2222 = 0= 0= 0= 0 If  If  If  If W1111 and  and  and  and W2222 Are Independent Are Independent Are Independent Are Independent

Corollary: dW1111dW2222 = ����dt IfIfIfIf W1111 andandandand W2222 AreAreAreAre CorrelatedCorrelatedCorrelatedCorrelated
This is a straightforward consequence of the last result. Assume that Z1
and Z2 are independent Wiener processes. We can construct correlated
Wiener processes W1 and W2 as follows:

(2.27)

(2.28)

It is straightforward to verify that the correlation between dW1 and
dW2 have variance dt and correlation coefficient �:

(2.29)

(2.30)

(2.31)

Here we made use of dZ1dZ2 0. The correlation coefficient between
dW1 and dW2 is

(2.32)

The product of the increments of two correlated Wiener processes is

(2.33)

=

dW1 t( ) dZ1 t( )=

dW2 t( ) �dZ1 t( ) 1 �2– dZ2 t( )+=

var dW1 t( )[ ] var dZ1 t( )[ ] dt= =

var dW2 t( )[ ] var dZ1 t( )[ ] var dZ2 t( )[ ]+=

�2dt 1 �2–( )dt+=

dt=

cov dW1 t( )dW2 t( )[ ] �dZ1dZ2 1 �2– dZ1dZ2+=

�dt=

=

�
cov dZ1, dZ2[ ]

var dZ1[ ] var dZ2[ ]
------------------------------------------------------------=

�dt

dt dt
---------------------=

�=

dW1 t( )dW2 t( ) �dZ1
2 t( ) 1 �2– dZ2 t( )dZ1 t( )+=

�dt=
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STOCHASTIC INTEGRALS

Consider a function g(Y(t), t), where Y(t) is a stochastic process and t is
time. We want to work with integrals of the form:

(2.34)

Before describing how we interpret this integral, consider the case of
the Riemann integral of a deterministic function, f(t):

(2.35)

We define points in time 0 t0 t1 tn t and � max(ti+1 ti),

(2.36)

where t i �i ti+1, i 1, ,n 1. The Riemann integral is the limit of
these partial sum sequences:

(2.37)

The important thing to remark about the Riemann integral is that the
result does not depend on the choice of �i.

The stochastic integral is also defined as a limit of sequences of partial
sums. In this case, however, the result does depend on the choice of �i. The
Ito integral corresponds to the specific choice �i ti. The limit used in
defining the Ito integral is the mean square limit, or limit in the mean.

Mean Square Limit 
A sequence gn(t) is said to converge to a function g(t) in the mean square if

(2.38)

The notation used to express this convergence is

(2.39)

I t( ) g Y s( ), s( ) W s( )d
0

t
∫=

J t( ) f s( ) sd
0

t
∫=

= £ £ ... £ = = –

Jn t( ) f �i( ) ti+1 ti–( )
i=1

i=n–1

∑=

£ £ = –

J t( ) Jn t( )
� 0→
lim=

=

E gn t( ) g t( )–[ ]2
0

t

∫n 	→
lim dt 0=

g t( ) ms-lim gn t( )=
n 	→

0 <i n. In this case, we define the sequence of partial sums as£

. . .
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Ito Integral
The Ito integral corresponds to the case where the integrand is evaluated at
the beginning of the subintervals used to define the partial sums. This is the
integral of interest in financial pricing. We assume that g(Y(t), t) is adapted
to the filtration generated by W(t) and that E[ ] 	:

(2.40)

The definition of the Ito integral is then

(2.41)

If we chose a different point within the subintervals to evaluate the
integrand in the partial sums, we would get a different result for I(t). For
example, if we choose to evaluate the integrand at the midpoint in the
Wiener process interval, we get the Stratanovich integral.

Why are we interested in the Ito integral in finance, as opposed to other
definitions of the stochastic integral, such as the Stratanovich integral? As
we will see later, the fact that the integrand is evaluated at the beginning of
the Wiener process interval is precisely what makes the definition of the Ito
integral an adequate choice in finance. Intuitively, we can say that this cor-
responds to the fact that financial positions are changed in response to
unexpected changes.

Properties of the Ito Integral
These properties of the Ito integral are useful in getting solutions to sto-
chastic differential equations and other applications.

The Ito Integral Is a Martingale This means that for 
 t,

(2.42)

We can see why this is the case by representing the integral as

(2.43)

When represented as the limit of partial sums, the second integral on
the right is the sum of terms of the form g(Y(
i), ti)(W(
i+1) – W(
i)). Since

g2 sd
0
t∫ <

In t( ) g Y ti( ), ti( ) W ti+1( ) W ti( )–( )
i=1

i=n–1

∑=

I t( ) ms-lim In t( )=
n 	→

≥

Et g Y 
( ), 
( ) W 
( )d
0

s

∫ g Y 
( ), 
( ) W 
( )d
0

t

∫=

g Y 
( ), 
( ) W 
( )d
0

s

∫ g Y 
( ), 
( ) W 
( ) g Y 
( ), 
( ) W 
( )d
t

s

∫+d
0

t

∫=
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Y is determined by the information generated at time ti, the terms that
make up these partial sums all have zero mean. This tells us that
Et[ g(Y(
), 
)dW(
)] 0. Therefore,

(2.44)

Variance of the Ito Integral The variance of the Ito integral is

(2.45)

To prove this result, first notice that since the Ito integral is a martingale,

(2.46)

From the definition of variance, 

(2.47)

Since the cross terms have zero expectation,

(2.48)

t

s∫ =

Et g Y 
( ), 
( ) W 
( )d
0

s

∫ Et g Y 
( ), 
( ) W 
( )d
0

t

∫
known at time t

=

g Y 
( ), 
( ) W 
( )d
0

t

∫=

        

var g Y s( ), s( ) W s( )d
0

t

∫ E g Y s( ), s( )( )2 sd
0

t

∫=

E g Y s( ), s( ) W s( )d
0

t

∫ 0=

var g Y s( ), s( ) W s( )d
0

t

∫

E g Y s( ), s( ) W s( ) g Y s( ), s( ) W s( )d
0

t

∫d
0

t

∫ E g Y s( ), s( ) W s( )d
0

t

∫ 
 
 2

–=

=0

E g Y si( ), si( ) W( si+1( )
i,j=1

i,j=n–1

∑ W si( ) )g Y sj( ), sj( ) W sj+1( ) W sj( )–( )–
n 	→
lim=

          

var g Y s( ), s( ) W s( )d
0

t

∫ E g Y si( ), si( )2 si+1 si–( )
i=1

i=n–1

∑
n 	→
lim=

E g Y s( ), s( )( )2 sd
0

t

∫=
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Covariance of Ito Integrals Following similar arguments as in the last
paragraph, one can show that the covariance of two Ito integrals is given by

(2.49)

where g1() and g2() are functions adapted to the filtration generated by
W(t). A little algebra leads to

(2.50)

ITO PROCESSES

Ito processes are also called Ito diffusions (Oksendal 1995). We will also
refer to these processes as drift-diffusion processes. In one dimension, the
differential form of an Ito process is

(2.51)

where a(.) and b(.) are adapted to the filtration generated by W(t).
The integral form of this process is

(2.52)

where the second integral on the right is interpreted as an Ito integral. a(.) is
called the drift, and b(.) is called the volatility (b2 is the variance of the pro-
cess change per unit time).1 We usually work with the differential form of
Ito processes, but we must keep in mind that this is only meaningful if the

1In practice, volatility refers to the standard deviation of the relative process change,
. Here, we will apply this terminology to either the relative or absolute process

change, depending on context.

cov g1 X s( ), s( ) W s( )d
0

t

∫ , g2 X s( ), s( ) W s( )d
0

t

∫
E g1 X s( ), s( ) W s( ) g2 X s( ), s( ) W s( )d

0

t

∫d
0

t

∫=

cov g1 X s( ), s( ) W s( ), g2 X s( ), s( ) W s( )d
0

t

∫d
0

t

∫
E g1 X s( ), s( )g2 X s( ), s( )[ ] sd

0

t

∫=

dX t( ) a X t( ), t( )dt b X t( ), t( )dW t( )+=

X t( ) X 0( ) a X s( ), s( ) s b X s( ), s( ) W s( )d
0

t

∫+d
0

t

∫+=

dx
x------
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integral form of the process is consistent with the Ito interpretation of the
Ito stochastic integral.

A very common form of Ito process used in finance is

(2.53)

In this case, �(.) is also called the drift and �(.) is referred to as the vola-
tility.

In several dimensions, we could have a multidimensional process
{X1, , XN}, where each component is driven by a multidimensional
Wiener process {W1, , WM} and where M and N are not necessarily equal.
We will elaborate on this in the next section.

MULTIDIMENSIONAL PROCESSES

There are several ways to represent a multidimensional stochastic process.
This section is meant to clarify the notation that we may encounter.

Multidimensional Wiener Processes
We briefly discussed multidimensional Wiener processes earlier this chapter.
A multidimensional Wiener process  is a (column) vector {W1,
W2, ,WK}T of correlated Wiener processes Wi. As we saw earlier, the
product of any two components of  is the covariance between those com-
ponents:

(2.54)

We can build correlated Wiener processes by taking combinations of
uncorrelated Wiener processes. If  is a (column) vector of uncorrelated
Wiener processes, {Z1, Z2, , ZK}T, we can get the multidimensional Wiener
process  through a suitable matrix-vector multiplication as follows:

(2.55)

As we will see in Chapter 4, the matrix with components aij is the lower
Choleski factor of the correlation matrix of the dWi.

The covariance between any two components of  can now be
expressed as

dX t( )
X t( )

--------------- � X t( ), t( )dt � X t( ), t( )dW t( )+=

…
…

W
…

dW

dWidWj cov dWi, dWj[ ]=

�ijdt=

Z
…

W

dWi aijdZj, i
j=1

j=K

∑ 1,…, K= =

dW
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(2.56)

In vector notation,

(2.57)

(2.58)

where  and  are (column) vectors. The covariance is

(2.59)

Multidimensional Ito Processes 
As an example, consider a two-dimensional drift-diffusion process, with
components X(t) and Y(t):

(2.60)

(2.61)

In this case, dWX, dWY, �X, and �T are scalars, and the product dXdY is

(2.62)

We can also use vector notation for the Wiener part of these processes:

(2.63)

(2.64)

Notice that here we have incorporated the coefficients of the linear com-
bination in Equation 2.58 into the definition of . The covariance of dX
and dY is

(2.65)

dWndWm cov dZn, dZm[ ]=

anjdZj
j=1

j=K

∑
 
 
 
 

amjdZj
j=1

j=K

∑
 
 
 
 

=

an1am1
… anKamK+ +=

dWn an
TdZ=

dWm am
T dZ=

an am

dWndWm an
Tam

inner vector product

= dt

  

dX �Xdt �XdWX+=

dY �Ydt �YdWY+=

dXdY �X�Y cov dWXdWY( )=

�X�Y�XYdt=

dX �Xdt �X
T

dW+=

dY �Ydt �Y
T
dW+=

�

dXdY cov dX dY,( )=

�X
T

�Ydt=
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We can have an even more compact notation for multidimensional Ito
processes by defining an array {X1(t), , XK(t)}. In this case, we
use matrix notation for the Wiener components:

(2.66)

where  is a matrix.
When dealing with multidimensional processes, we will typically favor

the vector representation of the Wiener part, shown in Equation 2.64. For
simplicity, we will normally not use the arrow and the transpose signs,
however. In such a case, we would write two-dimensional processes as

(2.67)

(2.68)

with covariance

(2.69)

where it is understood that �X and �Y are vectors, and dW is a vector of
uncorrelated Wiener processes.

ITO’S LEMMA

Ito’s lemma, also known as Ito’s formula, gives us the drift-diffusion pro-
cess of a function of a drift-diffusion process.

An informal derivation of Ito’s formula is straightforward. Assume a
function G(X, t), where X(t) is an Ito process:

(2.70)

We are interested in dG(t), which represents the total change of G as a
result of changes in X, W, and t. We apply Taylor’s expansion to G and
keep the second order term in dX. To do this we need to assume that
G(X, t) is twice differentiable with respect to X:

(2.71)

Notice that there is nothing out of the ordinary in expanding G(X, t) in
terms of changes in X and t, even if the changes in X are stochastic.

In ordinary calculus we would only keep first-order terms. In our case,
however, (dX)2 is of order dt:

X t( ) = …

dX t( ) �dt �̃dW+=

�̃

dX �Xdt �XdW+=

dY �Ydt �YdW+=

dXdY cov dX, dY( )=
�X�Ydt=

dX t( ) aX X, t( )dt bX X, t( )dW t( )+=

dG t( ) ∂G
∂t
--------dt ∂G

∂X
--------dX 1

2
---∂2G

∂X2
----------- dX( )2+ +=
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(2.72)

Replacing in Equation 2.71,

(2.73)

Ito’s formula then becomes

(2.74)

This is the practical form of Ito’s formula. To get the process G(t), we inte-
grate this equation, giving the proper interpretation to the stochastic integral.

(2.75)

Multidimensional Ito’s Lemma
The derivation of Ito’s formula in several dimensions is straightforward. We
illustrate the case of two dimensions. Extensions to more dimensions are
trivial. Assume a function G(X(t), Y(t), t) of the Ito processes

(2.76)

where �X, �Y are vectors, and dW is a vector of uncorrelated Wiener pro-
cesses. Expanding dG(X(t), Y(t), t) in terms of dt, dX(t), and dY(t), and
keeping second-order terms, we get

(2.77)

dX( )2 aX X, t( )dt bX X, t( )dW t( )+[ ]2=

aXdt( )2 2aXbXdtdW bX
2 X, t( ) dW( )2+ +=

� dt2( ) � dt1.5( ) =dt

bX
2 X, t( )dt=

              

dG t( ) ∂G
∂t

--------dt ∂G
∂X
-------- aXdt bXdW+( ) 1

2
---∂2G

∂X2
-----------bX

2 dt+ +=

dG t( ) ∂G
∂t
-------- ∂G

∂X
--------aX

1
2
---∂2G

∂X2
-----------bX

2+ +
 
 
 

dt ∂G
∂X
--------bXdW+=

G s( ) G 0( ) ∂G
∂t

-------- t ∂G
∂X
--------aX

1
2
---∂2G

∂X2
-----------bX

2+ +d
 
 
 

td
0

s
∫ ∂G

∂X
--------bX W t( )d

0

s
∫+ +=

dX t( ) �Xdt �XdWdY t( )+ �Ydt �YdW+= =

dG t( ) ∂G
∂t

--------dt=

∂G
∂X
--------dX ∂G

∂Y
--------dY+ +

1
2
--- ∂2G

∂X2
----------- dX( )2+

∂2G
∂X∂Y
--------------- dXdY( )+

1
2
--- ∂2G

∂Y2
----------- dY( )2+
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Replacing for (dX)2, (dY)2, and dXdY, we get

(2.78)

Collecting terms, we get

(2.79)

Here we understand that �X, �Y, and dW are vectors. This will be
our preferred notation. However, for the sake of completeness, consider
the case where the Wiener part of the Ito processes is expressed in scalar
form:

(2.80)

Here, �X and �Y are scalars (although the notation is the same as
above), and dWX, dWY are one-dimensional correlated Wiener processes.
In this case, Ito’s formula is

(2.81)

This form is also very common in the finance literature.

dG t( ) ∂G
∂t
--------dt=

∂G
∂X
--------dX ∂G

∂Y
--------dY+ +

1
2
---∂2G

∂X2
-----------�X�Xdt+

∂2G
∂X∂Y
---------------�X�Ydt+

1
2
---∂2G

∂Y2
-----------�Y�Ydt+

dG t( ) ∂G
∂t

-------- ∂G
∂X
--------�X

∂G
∂Y
--------�Y+ +

=

1
2
---∂2G

∂X2
-----------�X�X

∂2G
∂X∂Y
----------------�X�Y

1
2
---∂2G

∂Y2
-----------�Y�Y



dt+ + +

∂G
∂X
--------�X

∂G
∂Y
--------�Y+ 

  dW+

dX t( ) �Xdt �XdWXdY t( )+ �Ydt �YdWX+= =

dG t( ) ∂G
∂t

-------- ∂G
∂X
--------�X

∂G
∂Y
--------�Y+ +

=

1
2
--- ∂2G

∂X2
-----------�X

2 ∂2G
∂X∂Y
----------------�X�Y�XY

1
2
--- ∂2G

∂Y2
-----------�Y

2+ + +



dt

∂G
∂X
--------�XdWX

∂G
∂Y
--------�YdWY+ +
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STOCHASTIC DIFFERENTIAL EQUATIONS

A stochastic differential equation (SDE) is written as follows:

(2.82)

If X(t0) is an initial value, the solution of the SDE is

(2.83)

where we agree that the last term in Equation 2.83 is an Ito integral.

Solution of SDEs We would like to get an expression for X(t) such that
integrals involving X(t) or functions of X(t) do not appear on the
right-hand side. This explicit solution of the SDE is the most useful in
practice.

This is straightforward in only a few simple cases and is in general
quite difficult. We will explore some simple examples.

In the trivial case of an SDE with constant a and b subject to the initial
condition X(0) = X0,

(2.84)

the solution at time t is

(2.85)

where we use the fact that W(0) 0. To be able to say that this solution
is the one given by Equation 2.83, we must also say that the trajectory
of W(t) in the interval 0, t is the same in both cases. This means that
both solutions are the same if the event � in W(t, �) is the same in both
cases.

The case where the a and b are functions of time but do not depend on
X(t) is slightly more elaborate. In this case the SDE is

(2.86)

and the solution is

(2.87)

Here we know that the last integral on the right is a normal process
with mean zero and variance

(2.88)

dX t( ) a X, t( )dt b X, t( )dW t( )+=

X t( ) X t0( ) a X, s( ) s b X, s( ) W s( )d
0

t∫+d
0

t∫+=

dX t( ) adt bdW t( )+=

X t( ) X0 at bW t( )+ +=

=

dX t( ) a t( )dt b t( )dW t( )+=

X t( ) X 0( ) a s( ) s b s( ) W s( )d
0

t
∫+d

0

t
∫+=

var b s( ) W s( )d
0

t

∫ b2 s( ) sd
0

t

∫=
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With this result, we can write Equation 2.87 as follows:

(2.89)

where we made use of the fact that var[W(t)] t. Again, we must assume
that the trajectory of W(t) is the same in Equations 2.89 and 2.87.

A slightly more complicated example that is frequently used in finance
is the following:

(2.90)

Applying Ito’s lemma to Y(t) logX(t) we get

(2.91)

Replacing , we get

(2.92)

This can now be integrated:

(2.93)

Replacing X = exp(Y), we get

(2.94)

A case of importance in finance is when a and b are constant. In that
case,

(2.95)

Moments of SDE Solutions
Often we are interested in computing the moments of the solutions of
SDEs. One way to do this is to solve the SDE and then compute the
moments. It turns out, however, that it is much easier to get ordinary differ-

X t( ) X 0( ) a s( ) sd
0

t

∫ 1
t
--- b2 s( ) sd

0

t

∫ W t( )+ +=

=

dX t( ) X t( )a t( )dt X t( )b t( )dW t( )+=

=

dY t( ) dX
X

-------- 1
2
--- dX

X
-------- 

  2
–=

dX
X

--------

dY t( ) a t( )dt b t( )dW t( ) 1
2
--- a t( )dt b t( )dW t( )+( )2–+=

a t( ) 1
2
---b t( )2dt– b t( )dW t( )+=

Y t( ) Y 0( ) a s( ) 1
2
---b s( )2– sd

0

t

∫ b s( ) W s( )d
0

t

∫+ +=

X t( ) X 0( ) exp a s( ) 1
2
---b s( )2– sd

0

t

∫ b s( ) W s( )d
0

t

∫+ 
 =

X t( ) X 0( ) exp a 1
2
---b2– 

  t bW t( )+ 
 =
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ential equations for the moments that can then be solved either analytically
or numerically.

For the process

(2.96)

we can use Ito’s lemma to get an SDE for the process X(t)n:

(2.97)

We now have an ordinary differential equation for the expectation of Xn:

(2.98)

We can remark the following about this ordinary differential equation.
Depending on the nature of a(X, t) and b(X, t), we can find two different
situations.

■ Equation 2.98 is part of a hierarchy, where the equations need to be
solved in succession for n 1, 2, . . .  In this case, it may be possible
to find analytical solutions or to solve for a number of moments
numerically.

■ Equation 2.98 is part of an open system of equations, where in order to
find a particular moment you need to know higher order ones. In this
case it is not possible to find exact analytical or numerical solutions of
the exact equations for the moments. It is possible, however, to derive a
sufficiently large set of equations and make assumptions about higher
order moments. A practical implementation of this idea requires
numerical solutions.

SDE Commonly Used in Finance
Stochastic differential equations are used primarily to model prices and
interest rates. They can also be used to model other parameters, such as
default intensities and volatilities.

Here we list a short sample of some of the most commonly used SDEs
in finance. These models have become well established because they are
analytically tractable and tend to represent the processes they are modeling
fairly well. Perhaps the area where there has been the largest proliferation
of models is in interest rates. Besides the first one, this short list refers to

dX t( ) a X, t( )dt b X, t( )dW t( )+=

dXn t( ) nXn–1a X, t( ) 1
2
---n n 1–( )Xn–2b2 X, t( )+ dt=

nXn–1b X, t( )dW t( )+

dE Xn t( )[ ]
dt

--------------------------- nE Xn–1a X, t( )[ ]=

1
2
---n n 1–( )E Xn–2b2 X, t( )[ ]+

=
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short rates models. For practical applications in computational finance,
however, LIBOR models are of greater relevance. We will discuss those in
detail in Chapter 4.

There are many variations beyond the simple models mentioned here.
For a comprehensive discussion, see Duffie (1996).

Geometric Brownian Motion This is the most commonly used process in
continuous stock price modeling:

(2.99)

Earlier, we discussed this example in detail.

Ho and Lee Short Rate Model This is one of the earliest Gaussian models
for the short rate (Ho and Lee 1986). An important consideration in using
this model is that it produces negative rates.

(2.100)

Vasicek Interest Rate Model This is a very common process for the short
rate (Vasicek 1977). Like the Ho-Lee model, this model can produce nega-
tive rates. The innovation consists of the introduction of mean reversion in
the drift:

(2.101)

Hull and White Short Rate Model This model has been used extensively in
fixed income pricing (Hull and White 1990). It is also known as the
extended or generalized Vasicek model:

(2.102)

Cox-Ingersoll-Ross Short Rate Model This is the simplest model that pre-
vents rates from being negative and also allows for analytical valuation of
simple interest rate products (Cox 1985):

(2.103)

The Markov Property of Solutions of SDE
A process X(t) is said to satisfy the Markov property, or to be Markovian, if
the random properties of the process at time s t, conditional on information
at time t, only depend on the value of the process at time t. This means that
the process does not have a memory of events before the observation time
that will influence its stochastic properties beyond the observation time. In

dS t( ) S t( )�dt S t( )�dW t( )+=

dr t( ) a t( )dt �dW t( )+=

dr t( ) a br t( )–[ ]dt �dW t( )+=

dr t( ) a t( ) br t( )–[ ]dt �dW t( )+=

dr t( ) a t( ) b t( )r t( )–[ ]dt r t( )�dW t( )+=

≥
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other words, the behavior of the process beyond the observation time does
not depend on the trajectory that the process followed up to the observation
time.

Subject to technical conditions, the solution of the SDE,

(2.104)

is Markovian. Intuitively, the reason for this is that if the solution is known
at a given time, t0, all the properties at a later time, t1, are uniquely deter-
mined by the value of the process at t0, X(t0). This is the case because X(t0)
is the initial condition of the solution that determines the behavior of the
process at t1 ≥ t0.

There are several ways to express the Markovian property of a stochas-
tic process. In our case, we are interested in writing this property in terms
of an expectation, because our immediate use for the Markovian property
is the derivation of the Feynman-Kac theorem.

We use the following notation: E(t,x) means the expectation given t and
x. Compare this with Et, which means expectation conditional on informa-
tion at time t.

For a Markovian process, the expectation of a function of the stochas-
tic process f(X) satisfies

(2.105)

This expression says that the process does not remember what hap-
pened before the observation time, t. In other words, the only relevant part
of the information set at time t is the value of the process, X(t).

The Feynman-Kac Theorem
The Feynman-Kac theorem states that we can find the (time-dependent)
expectation of a function of a Markovian stochastic process by solving a
partial differential equation, subject to appropriate boundary and end
conditions.

Since, as we will see in the next chapter, we price derivatives by eval-
uating expectations of (properly discounted) cash flows, in many cases
the Feynman-Kac theorem allows us to derive a PDE for the derivative’s
price.

The Feynman-Kac theorem states that given an SDE,

(2.106)

the expectation of a function of X(T), for 0 ≤ t ≥ T, given by

(2.107)

dX t( ) a X, t( )dt b X, t( )dW t( )+=

Et f X s( )( )[ ] E t,X t( )( ) f X s( )( )[ ], s t≥=

dX t( ) a X, t( )dt b X, t( )dW t( )+=

g t, x( ) E t,X t( )=x( ) f X T( )( )[ ]=
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satisfies the partial differential equation

(2.108)

subject to the end condition (EC):

(2.109)

Notice that g(t, x) is not a random variable. If we replace x with X(t) in g(t, x),
we have a stochastic process. We will show that this stochastic process is a mar-
tingale and then use this fact to show that g(t, x) must satisfy the PDE above:

(2.110)

Replacing the definition of g in Et[g(s, X(s))] we get

(2.111)

Since we are assuming that the X(t) is Markovian, we get

(2.112)

Replacing in Equation 2.111, we get

(2.113)

From the properties of expectations, we get

(2.114)

(2.115)

Invoking the Markovian property again, the result is

(2.116)

Replacing in Equation 2.115, we get

(2.117)

Finally, the result is

(2.118)

This shows that g(t, X(t)) is a martingale. Since g is a function of time
and X(t), we can use Ito’s lemma to get the SDE that governs g(t):

∂g
∂t
------ a x, t( )∂g

∂x
------ 1

2
---b2 x, t( )∂2g

∂x2
---------++ 0=

g t T, x=( ) f x( )=

Et g s, X s( )( )[ ] g t, X t( )( ), s t≥=

Et g s, X s( )( )[ ] Et E s,X s( )( ) f X T( )( )[ ]{ }=

E s,X s( )( ) f X T( )( )[ ] Es f X T( )( )[ ]=

Et g s, X s( )( )[ ] Et Es f X T( )( )[ ]{ }=

Et Es f X T( )( )[ ]{ } Et f X T( )( )[ ]=

Et g s, X s( )( )[ ] Et f X T( )( )[ ]=

Et f X T( )( )[ ] E t,X t( )( ) f X T( )( )[ ]=

Et g s, X s( )( )[ ] E t,X t( )( ) f X T( )( )[ ]=

Et g s, X s( )( )[ ] g t X t( ),( )=
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(2.119)

Since g is a martingale, the drift of dg(t) must be zero. This gives us the
PDE satisfied by g(t, x).

MEASURE CHANGES

The measure assigns probabilities to outcomes. Changing the measure
means assigning different probabilities to the same outcomes. In our case,
the outcomes are the paths or realizations of a stochastic process.

For example, a process may have a symmetrical distribution in one
measure and an asymmetrical distribution in a different measure. Of partic-
ular importance in finance are so-called “equivalent” measures. We change
from one measure to an equivalent measure if we distort the probability of
outcomes such that those outcomes that have zero probability in the origi-
nal measure also have zero probability in the new measure.

To illustrate the concept of measure change, consider the process

(2.120)

where a and b are constants and W(t) is a Wiener process. Integrating this
equation subject to the initial condition S(0) 0, the process S(t) is

(2.121)

If we make a plot of the probability density of S(t), we find that the
probability density is a normal distribution of mean at and standard devia-
tion . This distribution results from the probabilities assigned to the
outcomes of W(t) by the measure under which W(t) is a Wiener process.

Now we ask the question: Is it possible to distort the distribution of the
outcomes of S(t) in such a manner that this process can be written as

(2.122)

where  is also a Wiener process? The answer is yes. (Notice that b is un-
changed.) In fact, it is possible to express a measure such that S(t) can be written as

(2.123)

where  is any (reasonable) drift we want, and  is a Wiener process
under that measure.

dg t( ) ∂g
∂t
------ a X, t( ) ∂g

∂X
------- 1

2
---b2 X, t( ) ∂2g

∂X2
----------+ +

 
 
 

dt=

b X, t( ) ∂g
∂X
-------dW t( )+

dS t( ) adt bdW t( )+=

=

S t( ) at bW t( )+=

b t

dS t( ) bdŴ t( )=

Ŵ t( )

dS t( ) ãdt bdW̃ t( )+=

ã W̃ t( )



34 QUANTITATIVE METHODS IN DERIVATIVES PRICING

Why is this important? To illustrate the implication of this statement,
consider a case where we have two processes, X(t) and Y(t), and assume
that we are interested in some computation that is only valid if process Y(t)
is a martingale. Originally, we are given processes

(2.124)

(2.125)

where Y(t) is not a martingale. If we now transform the measure (distort
the probability distribution) of process Y(t) such that dY(t) byd ,
where  is a Wiener process in this new measure, and then appropri-
ately carry this distortion over to process X(t), we will have both processes
in the measure that makes Y(t) a martingale. We can write this as

(2.126)

(2.127)

where  is a new drift. This done, we can move on with our task that
involved both X(t) and Y(t) and that required that Y(t) should be a martingale.

It turns out that the measure change that causes Y(t) to have the desired
drift (zero in this case) does not require that we work with the solution of
the SDE for Y(t)! All we do is change the SDE itself (in a very simple way,
as we’ll see shortly). In other words, getting  is very easy.

To see the implication of this, assume that our task consists of finding
the expectation of the product X(t)Y(t) in the new measure that makes Y(t)
a martingale. Using Ito’s lemma, the process for X(t)Y(t) in the new mea-
sure is

(2.128)

and the result we were looking for is

(2.129)

where this expectation is in the measure that makes Y(t) a martingale.
Since, as we will see, getting  is very easy and does not require solving any
of the SDEs, we can accomplish what we want without actually implement-
ing the distortion of probability density. All we need is reassurance that

 is indeed a Wiener process in the measure that made Y(t) a martin-
gale. The Girsanov theorem gives us this reassurance and the changes that
need to be applied to the SDE.

The reason why the issue of changing the measure arises is that, as was
suggested in the first chapter, in financial pricing we are interested in prob-

dX t( ) axdt bxdW t( )+=

dY t( ) aydt bydW t( )+=

= Ŵ t( )
Ŵ t( )

dX t( ) âxdt bxdŴ t( )+=

dY t( ) bydŴ t( )=

âx

â

d X t( )Y t( )( ) Yâx bxby+( )dt Ybx Xby+( )dŴ t( )+=

E X t( )Y t( )[ ] Y 0( )âx bxby+( )t=

â

Ŵ t( )
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abilities that are assigned by measures associated with assets or portfolios
of assets. As it turns out, these probabilities are determined by the drift of
the processes involved (not by their volatility).

Girsanov Theorem
The Girsanov theorem states that given a process �(t), 0 t T, adapted to
the information generated by the Wiener process W(t), the process

(2.130)

is a Wiener process in a measure defined by the relationship

(2.131)

where Z(T) is called the Radon-Nikodym derivative. Z(t) is a process given by

(2.132)

For any random variable Y, expectations in the two measures are
related as follows:

(2.133)

In the particular case of an expectation conditional on the initial infor-
mation, we have

(2.134)

It now becomes clear the way we would handle the example in Equa-
tions 2.124 and 2.125. Rewrite these equations as

(2.135)

(2.136)

where �(t) = ay . With the definitions

(2.137)

(2.138)

we recover Equations 2.126 and 2.127.

≤ ≤

Ŵ t( ) W t( ) � t( ) td
0

T

∫+=

dP̂ Z T( )dP=

Z t( ) exp � s( ) W s( )d
0

t

∫– 1
2
--- �

2 s( ) sd
0

t

∫– 
 =

Z t( )Et
P̂ Y[ ] Et

P Z T( )Y[ ]=

E0
P̂ Y[ ] E0

P Z T( )Y[ ]=

dX t( ) ax ay–( )dt dW t( ) aydt+ +=

dY t( ) ay ay–( )dt dW t( ) aydt+ +=

dŴ t( ) dW t( ) aydt+=

âx ax ay–=
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When applying the Girsanov theorem, we assume that a technical con-
dition called the Novikov condition holds:

(2.139)

It is also possible to derive a multidimensional version of the Girsanov
theorem, in which case W and � are vector processes. For a detailed deriva-
tion of the Girsanov theorem, refer to Oksendal (1995).

MARTINGALE REPRESENTATION THEOREM

We will use the martingale representation theorem in the next chapter to
discuss the existence of a hedging process. This theorem is the converse of
the Ito integral. The martingale representation theorem says that given a
martingale M(t), such that M(0) 0, with respect to a measure P where
W(t) is a Wiener process, then there exists an adapted process 
(t) such that

(2.140)

For a proof of this theorem, see Oksendal (1995).

PROCESSES WITH JUMPS

In some instances, underlying processes may undergo changes that can be
better modeled as unanticipated finite jumps.

When pricing financial derivatives, there are two occurrences of jumps
we need to worry about. One occurrence is jumps in the underlying process
of the derivative instrument. The other occurrence is jumps in the value of
the instrument itself as a result of the jump in the underlying process.

There is an important mathematical difference brought about by the
introduction of underlying processes with jumps. If we model the underlying
processes as continuous drift-diffusion processes, Ito’s lemma allows us to
completely define the process of a function of the underlying processes. If we
incorporate unanticipated finite jumps in the underlying processes, we can still
use Ito’s lemma, but we don’t have enough information to completely define
the jump of the derivative instrument as a result of the jump in the underlying
process. We must supply this information as additional conditions that relate
the two jumps. We discuss this more extensively in the next chapter.

How do we use Ito’s lemma in the presence of jumps? To visualize this, con-
sider that Ito’s lemma gives us the process of a function of a drift-diffusion process.

E exp 1
2
--- � t( )2 td
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T
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 s( ) W s( )d
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So, as long as no jumps occur, Ito’s lemma will apply. Ito’s lemma applies without
any changes in between jumps. However, we want to find a way to express Ito’s
lemma such that it applies across jumps as well, not only in between jumps.

The Poisson Jump Model
The Poisson model for jumps is commonly used in finance to model unan-
ticipated changes such as stock price jumps or the occurrence of default. The
Poisson model states that the probability of the occurrence of one jump in the
interval �t is h�t plus higher order terms, where h is called the jump intensity.
Notice that the word intensity here refers to the probability of occurrence, not
to the magnitude of the jump. In general, the jump intensity may itself be a
stochastic process. For now we will assume that jump intensity is a deter-
ministic function of time.

The probability of one jump over the infinitesimal interval dt is equal
to h(t)dt. The probability that no jump has occurred in the interval (0, t) is
called the survival probability and is denoted by ps(t). The change in proba-
bility that no jump has occurred in the interval (0, t) is given by

(2.141)

Integrating this equation gives us an expression for the survival probability:

(2.142)

The probability that at least one jump has occurred in the interval 0, t
is simply 1 – ps(t).

Defining a Pure Jump Process
Assume that the process S(t) undergoes pure jumps. We will define the
change of the process as a result of jumps by djS(t), where the subscript
indicates that in general this is not an infinitesimal quantity:

(2.143)

Here S(t–) is the value of the process as it approaches t from the left. The
value of djS(t) is zero until a jump happens. The jump intensity, or the proba-
bility that the jump happens in the interval t, t dt, may depend on S. If it
does, it will be a function of the process immediately before the jump, S(t–).

If the jump happens, its magnitude, z, is drawn from a distribution

(S(t–), z). The expected magnitude of the pure jump is then

(2.144)
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We can now arrange Equation 2.143 as follows:

(2.145)

The process  is called a compensated process and is a martingale. We
can now write the pure jump process as

(2.146)

where

(2.147)

Defining a Jump-Diffusion Process
To define a jump-diffusion process, just add the jump component, djS(t), to
a drift-diffusion process.

If we add the jump component to the drift-diffusion process

(2.148)

we get the jump-diffusion process

(2.149)

Ito’s Lemma in the Presence of Jumps
Since Ito’s lemma is valid between jumps, the application of Ito’s lemma to
a function g(S(t), t) of the process given by Equation 2.149 gives

(2.150)

If the jump in S(t) happens, g(t) jumps by an amount �g. This amount
is drawn from a distribution 
g(), which may depend on other variables
such as g(t–), the jump magnitude of S(t), and S(t–). As before, we can write

(2.151)

Replacing in the equation for dg(t), we get
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(2.152)

In general, we may not have a way to specify the jump magnitude dis-
tribution of g as a function of the jump distribution of S. We will see exam-
ples of this in the next chapter when we discuss defaultable instruments.
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Pricing in Continuous Time

y formulating the pricing problem in continuous time we can bring to
bear the analytical tools of stochastic calculus and partial differential

equations. The basic formulation of the continuous time pricing problem
consists of expressing the current value of a derivative security as an expec-
tation of properly discounted future cash flows.

If B(t) is the value of a traded asset that does not pay dividends, the
basic relationship for computing the value of a European derivative secu-
rity, V(t), is of the form

(3.1)

where the expectation is taken in a measure determined, or induced, by
asset B(t).

Asset B(t) is called a normalizing asset or numeraire. This expression
tells us that the value of a derivative, in units of B, is a martingale if the sto-
chastic processes involved in V(t) are expressed in a measure associated
with B(t). Equation 3.1 determines the measure under which other deriva-
tives can be priced. For example, if (t) is the price of another European
derivative,

(3.2)

where the expectation is taken in the same measure as in Equation 3.1.
Once we have formulated this expectation, we have at least three alterna-
tives to compute its value. We can compute the expectation analytically
(this is easy to do in the case of simple Black and Scholes European options),
we can value the expectation through simulation, or we can express the
expectation in terms of a partial differential equation. We can then solve the
partial differential equation either analytically or numerically. With some

B
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Ṽ t( )
B t( )
----------- Et

B Ṽ T( )
B T( )
-------------=



42 QUANTITATIVE METHODS IN DERIVATIVES PRICING

significant changes, a similar picture carries over to the case of derivatives
with early exercise features, such as Bermudan or American options. We
will discuss European derivatives first and derivatives with early exercise
later on.

The most commonly used normalizing asset in continuous time is the
money market account, �(t), defined as the value of a continuously rein-
vested unit of account.

(3.3)

The measure under which the value of a derivative normalized with the
money market account is a martingale is called the risk neutral measure.

Risk neutral pricing, where the money market account is the normaliz-
ing asset, is the standard framework for pricing in continuous time. We will
develop this framework in sufficient detail. Similar frameworks can also be
set up for pricing with other normalizing assets.

We will start by pricing a derivative on a single asset in the risk neutral
measure. We will then extend the same logic for the case where the normal-
izing asset is something other than the money market account. After that,
we will consider the multidimensional case of risk neutral pricing.

ONE-DIMENSIONAL RISK NEUTRAL PRICING

We want to price a derivative, V(t), whose payoff depends on the price process:

(3.4)

We assume that there is a money market account, Equation 3.3, whose pro-
cess is

(3.5)

We require that �(t), �(t), and r(t) be adapted to a filtration that con-
tains the information generated by W(t).

We now construct a portfolio, Y(t), which consists of �(t) units of S(t)
and an investment in �(t).

Over an infinitesimal instant of time, the portfolio value will change for
two reasons. The value invested in S(t) will change in proportion to dS,
causing capital gains or losses, and the value invested in the money market
account will change in proportion to .
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The change in value of this portfolio over an infinitesimal period of time, dt, is

(3.6)

In the next few paragraphs we will show that if W(t) is a Wiener pro-
cess in the measure induced by �(t), namely, the risk. neutral measure, the
portfolio process Y(t) normalized with �(t) is a martingale, and there is a
hedging process, �(t), that allows us to match the values of Y(T) with the
payoff of the derivative at time T. Assuming for the moment that this is
true, we get a pricing formula for the derivative as follows.

Since the normalized value of Y(t) is a martingale,

(3.7)

Since we are saying that there is a �(t) that allows us to match Y(T) with
V(T), the value of Y(t) must be the value of the derivative at time t. This
gives us the pricing formula:

(3.8)

Since the portfolio Y(t) can be made to track the derivative price by
properly choosing �(t), this portfolio is said to replicate the value of the
derivative as a function of time. Y(t) is called a hedge portfolio or a repli-
cating portfolio.

The reader may infer that if instead of choosing the money market
account as one of the components of Y(t) we had chosen another asset, say,
asset B(t), we would arrive at a similar martingale expression, except that
now the measure under which the Brownian motions in both S(t) and B(t)
are expressed is determined, or induced, by B(t) (we will show this later).
Our pricing formula in this case would be

(3.9)

We now prove the two necessary facts: The normalized replicating
portfolio is a martingale, and the appropriate hedge ratio exists.

Using Ito’s lemma, the process for  is

(3.10)
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Replacing  and  and keeping first-order terms yields

(3.11)

We can rewrite this expression as

(3.12)

if we define

(3.13)

Girsanov theorem tells us that

(3.14)

is a Wiener process in a world where the probability density of the out-
comes of W(t), dP, is distorted (or rescaled) in the following way,

(3.15)

where Z(t), known as the Radon-Nikodym derivative, is given by (see
Equation 2.132)

(3.16)

Equation 3.12 becomes

(3.17)
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This means that in the measure defined by Equation 3.15, the asset
price normalized with the money market account is a martingale:

(3.18)

We can also express this result as follows: Equation 3.18 is a condition
that changes the probability of outcomes of W(t), , in a way that
we can define a new Wiener process W�(t). In terms of this new Wiener
process, the asset process becomes

(3.19)

The process

(3.20)

is expressed in the risk neutral measure. The quantity

(3.21)

is called the market price of risk. The market price of risk is the amount by
which the return of the asset exceeds the risk-free return per unit of volatility.

We will now show that the process for the normalized portfolio is also a mar-
tingale when expressed in the risk neutral measure. Replace  in Equation 3.6:

(3.22)

Replacing for dS(t) and Y(t), we get

(3.23)
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The process

(3.24)

is a martingale, since it has no drift. Integrating this equation, we rearrange
the solution as follows:

(3.25)

The integral on the left-hand side is a martingale that starts at zero.
Call this martingale M(t):

(3.26)

The martingale representation theorem says that there exists an
adapted process f(t) such that

(3.27)

This says that there is the following hedge process:

(3.28)

In summary, we have accomplished the following:

■ We defined the risk neutral measure by the condition that the process
of the ratio of the underlying asset price to the money market account
should be a martingale. 

■ We constructed a portfolio consisting of a certain amount of the under-
lying asset and the money market account. 

■ We showed that this portfolio, normalized with the money market
account, is also a martingale. If we assume that the terminal value of
the portfolio equals the payoff of the derivative, this martingale gives
us a pricing formula for the derivative. 

■ We showed that the appropriate amount of the underlying asset in this
portfolio can be found such that the portfolio value at maturity
matches the value of the derivative at maturity.
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The derivative security priced this way reflects absence of arbitrage. If
portfolio Y(t) did not track the value of the derivative, one could sell
whichever is more expensive and purchase whichever is less expensive and
realize a riskless profit at maturity (since both have the same payoff value).

We can view this one-dimensional analysis in two ways. We can think
of a market that contains only one underlying asset (not a very interesting
market), or we can think of a pricing exercise in a multidimensional market
where we consider an underlying asset in isolation.

MULTIDIMENSIONAL MARKET MODEL

By a multidimensional market we mean a market where the sources of
uncertainty are several correlated Wiener processes, or, equivalently, a mar-
ket driven by a multidimensional Wiener process.

The standard model for a multidimensional market is to assume that
the market has a fundamental set of N traded assets, plus a money market
account. We assume that the price process of each traded asset, Si, evolves
according to a multidimensional Ito process as follows:

(3.29)

where W  is an M-dimensional Wiener process, and where
�i(t) and �i,j(t) can be random, but are adapted to a filtration equal to or
larger than the filtration generated by W.

In addition, we assume that there is a money market account process given by

(3.30)

where r(s) is the instantaneous return, which may be random.
To develop the pricing framework for a contingent claim, we will proceed

in a similar way as in the one-dimensional case. However, unlike the one-
dimensional case, where we are always able to get a pricing formula in the form
of an expectation, in the multidimensional market this may not happen, or the
expectation may not be unique (in which case it would not be very useful).

We summarize the steps:

■ Using the Girsanov theorem we show that the processes for assets, Si,
normalized with the money market account can be made driftless if we
can compute so-called “market prices of risk.” If we cannot compute
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market prices of risk, it is not possible to make these processes driftless,
and we will not be able to express the price of a derivative as an expec-
tation in the risk neutral measure.

■ We define a portfolio consisting of the assets, Si, and the money mar-
ket account. This portfolio is also a martingale in the risk neutral
measure. We assume that this portfolio replicates the payoff of the
derivative.

■ Using the martingale representation theorem we show that the quanti-
ties of assets needed to define the portfolio that replicates the payoff of
the derivative can be found if the market prices of risk can be deter-
mined. This allows us to produce a meaningful formula for the deriva-
tive price in the form of an expectation.

Using Ito’s lemma, Equation 3.29 gives

(3.31)

We rewrite this as follows:

(3.32)

If we can determine a multidimensional market price of risk process,

(t), by solving the linear system

(3.33)

then the discounted asset price can be written as follows:

(3.34)
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with

(3.35)

where 
sure.

If we cannot solve Equation 3.33, there is no risk neutral measure. If
Equation 3.33 has more than one solution, there is more than one risk neu-
tral measure.

To price a claim that pays V(T), we define a portfolio process, Y(t),
, whose end value at t T matches the payoff of the claim. It is

straightforward to show that this process, normalized with the money
market account, is a martingale under the risk neutral measure. The ini-
tial value of this process will then be equal to the value of the claim. The
portfolio process is the value of an investment in the assets Si and in a
money market account that pays the risk-free rate r(t). The investor
holds the amount �i(t) of asset Si over an infinitesimal time dt. During
this interval, the investment changes in value for two reasons. There is a
contribution due to change in the asset price equal to 
and there is a contribution due to the return on the money market
account equal to . The portfolio process
follows

(3.36)

Using Equation 3.34 and a little algebra, we get

(3.37)

This shows that process Y(t) normalized with the money market
account is a martingale under the risk neutral measure. Since the portfolio
process matches the payoff of the derivative, we have

(3.38)

dŴj t( ) dWj t( ) d 
j s( ) sd
0

t
∫ 

 +=
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Since �(0) 1, the value of the derivative is

(3.39)

Now we need to see under which conditions the processes �i(t) exist.
We can prove that this process exists through the martingale representation
theorem in the same way as the one-dimensional case.

The following is a martingale such that M(0) 0:

(3.40)

The multidimensional version of the martingale representation theorem
says that there exist processes fi(t) such that

(3.41)

This gives a system of equations for the hedging ratios:

(3.42)

The pricing and hedging problem is now defined in terms of two sys-
tems of equations: the market price of risk equations (3.33) and the hedg-
ing ratio equations (3.42).

We can make the following observations. If Equation 3.33 has a unique
solution, namely, if there is a unique multidimensional process 
(t), then
there is only one way to define the Radon-Nikodym derivative and, conse-
quently, there is only one risk neutral measure.

If there is a unique solution for 
(t), there is a solution to the hedging
Equation 3.42, and consequently, every derivative can be hedged. In this
the market is said to be complete. Arbitrage is also ruled out because we
can purchase or sell the replicating portfolio or the underlying assets in the
right amounts and ensure a riskless profit.

If Equation 3.33 has multiple solutions for 
(t), the Radon-Nikodym
derivative is not unique and we cannot use the equivalent martingale mea-
sure for pricing. In this case there is no arbitrage, but claims cannot be
hedged. The market is said to be incomplete.
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If Equation 3.33 does not have a solution for 
(t), there is arbitrage
and the equivalent risk neutral measure does not exist.

To summarize,

■ Complete market: Absence of arbitrage means that the equivalent risk
neutral measure is unique and every derivative can be hedged.

■ Incomplete market: Absence of arbitrage does not imply the equiva-
lent risk neutral measure is unique and not every derivative can be
hedged.

■ No risk neutral measure: There are arbitrage opportunities.

Extension to Other Normalizing Assets
The approach followed here can be extended to consider assets other than
the money market account as normalizing assets. This is important because
it often happens that the pricing problem can be better formulated when a
different normalizing asset is used. We will illustrate the derivation with a
numeraire or normalizing asset that does not pay dividends. For simplicity
of the derivation, this time we will use vector notation.

We consider an underlying asset, S(t), and a normalizing asset, B(t),
with processes

(3.43)

(3.44)

where  is a multidimensional Wiener process. We assume that these are
risk neutral processes and that these assets don’t pay dividends. In order to
operate with asset processes we must first make sure that all the Wiener
processes involved are in a common measure. In this case it is just a matter
of convenience to choose the risk neutral measure.

The process for the underlying asset, normalized with asset B(t) is

(3.45)
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We can rewrite this as follows:

(3.46)

The Girsanov theorem tells us that the process

(3.47)

is a Wiener process in a measure defined through the appropriate Radon-
Nykodim derivative. We refer to the measure under which  is a
Wiener process as the measure induced by B(t). In order to obtain useful
pricing formulas or pricing equations, we usually don’t need to compute
this new measure transformation explicitly. All we need is the knowledge
that in this new measure,  is a Wiener process.

In the measure induced by B(t), the normalized asset process is

(3.48)

We now consider a replicating portfolio consisting of the underlying
asset, S(t), and the normalizing asset, B(t). Following the same line of
thought as in the previous section, we consider a portfolio Y(t) consisting
of a hedge amount �(t) invested in asset S(t), and the difference between
the value of the portfolio and the value invested in the underlying asset is
invested in the normalizing asset. The portfolio process is

(3.49)

The fundamental difference between this portfolio and the one created
with the money market account is that now the component of return due to
asset B(t) is stochastic. Before, this component was r(t)dt, which is deter-
ministic conditional on information at time t. As before, we now use Ito’s
lemma to get a process for :
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(3.50)

Using Equation 3.47, the process for the normalized replicating portfo-
lio is

(3.51)

This says that the portfolio price normalized with asset B(t) is a martin-
gale. If we now consider a portfolio that matches the payoff of the deriva-
tive, we get a pricing equation in the form of an expectation taken with
respect to the measure induced by B(t):

(3.52)

Since Y(T) V(T), the pricing formula is

(3.53)

Deriving Risk-Neutralized Processes
As we will see in the next chapter, one of the main tasks in pricing is to
transform all the processes involved to the measure where the pricing is
done. In many cases this is the risk neutral measure. In other cases this mea-
sure is induced by an asset price other than the money market account. In
most cases the first step for getting the process in the desired measure is get-
ting the processes in the risk neutral measure.

If the underlying assets Si don’t pay dividends, it is straightforward to
get the risk-neutralized process for the assets. All we need to do is replace
the Wiener process in the market measure with the Wiener process in the
risk neutral measure. For example, for the case of a one-dimensional asset
we have
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(3.54)

(3.55)

(3.56)

(3.57)

The risk-neutralized process for asset S is then

(3.58)

If the asset pays a dividend rate y, however, the asset process in the
market measure must reflect the dividend payments as a drop in value:

(3.59)

In this case, the process that must be driftless is

(3.60)

This is consistent with requiring that

(3.61)

should be driftless. This equation results from regarding each infinitesimal
dividend payment yS(t)dt as a payoff.

Equation 3.60 leads to the following expression for the risk-neutralized
asset process:

(3.62)

This last equation is also consistent with a martingale for the portfolio
process Y(t).

Another simple example is the derivation of the risk neutral process
for the foreign exchange rate, X(t), which represents the units of domestic
currency needed to purchase one unit of foreign currency (notice that this
definition is typically the inverse of the quoted foreign exchange rates, with
the exception of the British Pound). We assume that the process for X(t) is
of the form
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�

------------dt– 
 +=

rS t( )dt � t( )S t( )dŴ t( )+=
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(3.63)

where  is a multidimensional Wiener process. In order to derive the process
for the foreign exchange, we must take into account that a Wiener process in
the risk neutral measure in the foreign market (the one relevant to the
exchange rate X(t)) is not in general a Wiener process in the risk neutral mea-
sure in the domestic market. In order to obtain a relationship for the drift we
may consider the price process of a foreign asset, Sf (t), translated into the
domestic currency, namely, d(X(t)Sf (t)). If we did this for an arbitrary asset Sf,
we would introduce the Wiener process of Sf, whose risk neutral drift in the
domestic currency is not known. If, however, we select the foreign money mar-
ket account as the foreign asset, we don’t introduce any additional Brownian
motions and we get

(3.64)

The drift of the foreign exchange rate is obtained by requiring that the
drift of the translated foreign money market account should be the risk-free
rate. This gives us

(3.65)

This says that in the domestic measure, the foreign exchange rate
behaves like an asset that pays a dividend yield equal to the instantaneous
foreign risk-free rate.

As a second example, we consider the relationship between Wiener
processes in the foreign risk-free measure and Wiener processes in the
domestic risk-free measure. Consider a foreign asset that in the foreign risk-
free measure has the process

(3.66)

The process for the foreign asset translated into the domestic currency is

(3.67)

where dt stands for cov( , ). This expression will produce the cor-
rect domestic risk neutral drift if the following relationship is satisfied:
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(3.68)

where is a Wiener process in the domestic measure. This is the funda-
mental relationship that connects the two Wiener processes.

THE PRICING EQUATION

When pricing a European derivative the task is to compute an expectation
of the form

(3.69)

where B(.) is the value of the normalizing or numeraire asset and V(T) is
the (known) value of the derivative at maturity. Computationally, there are
two ways to evaluate this expectation.

■ Solve the problem by simulation and get an approximate value for the
expectation. We will see this in detail in Chapter 5.

■ Recast the expectation in the form of a partial differential equation.
Solve the PDE with a numerical technique. In Chapter 7 we discuss the
use of finite differences to accomplish this.

When pricing an American derivative or a derivative with early exer-
cise, our objective is to compute an expectation of the form

(3.70)

where t � are exercise times and F(�) is the (known) exercise value, or
payoff, of the derivative at t �. Computationally, we will also discuss two
ways to evaluate this expectation.

■ Solve the problem by simulation using an adaptation of Monte Carlo
simulation to deal with early exercise. We will see this in detail in
Chapter 6. This extension to early exercise is not an easy modification
of the techniques for European pricing.

■ Recast the expectation as a set of partial differential inequalities. These
inequalities are called a partial differential complementarity problem.
This problem can be solved with the finite difference techniques of
Chapter 7. The numerical implementation of the partial differential
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complementarity problem with finite differences is a straightforward
modification (quite trivial in most cases) of the finite difference formu-
lation for European pricing.

European Derivatives
Although we often refer to the pricing equation of European derivatives as
a partial differential equation (PDE), in general the equation is a partial-
integro differential equation (PIDE). The difference is significant mathe-
matically, but it is not a substantial complication numerically.

The derivation of a PDE as the pricing equation for a European deriva-
tive is possible if the underlying processes are Markovian. Difficulties arise
if the underlying process is not Markovian; that is, if the underlying process
depends on the path of the Wiener processes involved. The best-known
example is the case of the short rate process in the Heath-Jarrow-Morton
model (Heath, Jarrow, and Morton, 1992). Some of the well-known mod-
els for the short rate are ways of getting around this problem. Such models
are designed with features that make the short rate Markovian (Bhar and
Chiarella, 1997).

The typical pricing equation looks as follows:

(3.71)

where S and r are Ito processes, a, b, c, d, e, and f are functions of S, r, and
t, I is a coordinate that does not have a corresponding diffusion term, h is a
Poisson jump intensity (this could also be a stochastic process), and 
(.) is
the jump density.

The classical Black-Scholes equation lacks the I coordinate and the
jump term. The convolution integral does not add significant difficulties to
the numerical task of solving this equation. We now describe the two main
approaches for deriving the pricing equation.

In the absence of jumps in the underlying processes, there are two funda-
mental approaches for deriving the pricing equations for European derivatives.
The first approach consists in constructing a hedging portfolio whose value

∂V
∂t
-------

Convection

a ∂V
∂S
------- b∂V

∂r
------- c∂V

∂I
-------+ +

Diffusion

d ∂2V

∂S2
---------- e�

∂2V
∂S∂r
------------ f ∂2V

∂r2
----------+ ++ +

Source

rV – h 
 
( )V 
( ) 
d∫
Convolution

V– 
 

Jump

=

                   

      

          

            



58 QUANTITATIVE METHODS IN DERIVATIVES PRICING

tracks the value of the derivative as a function of time. The second approach
is based on the Feynman-Kac theorem, which states that the conditional expec-
tation of a stochastic process obeys a partial differential equation. If there are
jumps in the underlying processes, we need to introduce additional assump-
tions about the effect of the jumps. We devote a separate section to the deri-
vation of the pricing equation in the presence of jumps.

Hedging Portfolio Approach
Consider an option on an underlying process S(t), t [0, T ], with a payoff
V(S(T), T) g(S(T)). We want to obtain the equation describing the value
of the option at time t [0, T ], V(S(t), t). Assume that the underlying pro-
cess is as follows, where �(S(t), t) and �(S(t), t) are known given the infor-
mation available at time t:

(3.72)

For notational convenience, we will from now on omit the arguments
in V and its derivatives, �, �, and W unless there is need for additional clar-
ity. Applying Ito’s lemma to V(S(t), t), we get

(3.73)

Assume now a hedging portfolio, Y(t), designed to track the evolu-
tion of the value of the derivative from time 0 to T, as we did earlier in
the chapter. The portfolio will consist of �(t) units of S(t), plus borrowing
or lending. Over an infinitesimal interval of time, the portfolio value will
change as described by Equation 3.6. Denoting the instantaneous bor-
rowing or lending rate by r(t), the change in the replicating portfolio
value is

(3.74)

Substituting dS from Equation 3.72 into Equation 3.74, the replicating
portfolio process is

(3.75)

In order for the portfolio to hedge the option, V(S(t), t) and Y(t) must
have the same drift and the same volatility. Equating the drifts in Equations
3.73 and 3.75, we find the following equation for the value of the option:
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(3.76)

Equating the volatilities, we find the number of units of S must satisfy
the relationship

(3.77)

Since we require that the hedging portfolio should replicate the option
for any t [0, T ], we set Y(t) V(S(t), t) in Equation 3.76. Replacing for
n in Equation 3.76, we get the following pricing equation,

(3.78)

with the end condition

(3.79)

This is the Black-Scholes partial differential equation of option pricing.
Notice that the drift �(S(t), t) of the underlying process does not appear in
this expression.

Equation 3.78 applies if r is a deterministic function of time. If r itself
were governed by a stochastic process, this should be reflected in the deri-
vation and additional terms would appear. Notice also that if we set � r
and Y V in Equation 3.76, we obtain the Black and Scholes equation.
However, Equation 3.76 only enforces the drifts of dV and dY to be the
same, not their unanticipated changes. In other words, assuming that � r
has the same effect as requiring that the volatility component of the option
price process and the volatility component of the replicating portfolio pro-
cess should be the same. As we saw earlier, if r(t) is the instantaneous risk-
free rate, a situation where we assume that the rate of growth of any non-
dividend paying asset is equal to r(t) is equivalent to expressing the process
for the asset in the risk neutral measure. As a result, the invocation of risk
neutrality allows us, in the absence of cash flows associated with the under-
lying processes, to determine the pricing equation by simply enforcing the
equality Et[dV(S(t), t)] r(t)V(S(t), t), where dV(S(t), t) is the increment of
V obtained through the application of Ito’s lemma. Invoking risk neutrality
means that the drifts of the underlying processes must be consistent with
risk neutral returns of traded assets. If the underlying process is the price of
a stock that does not pay dividends, this consistency with risk neutrality
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simply means that Et[dS(t)] r(t)S(t). In more complex cases, obtaining the
appropriate risk neutral drift may require significant elaboration, as we dis-
cussed earlier in the chapter.

Feynman-Kac Approach 
The Feynman-Kac theorem establishes a relationship between stochastic
differential equations and partial differential equations. Given the stochas-
tic differential equation

(3.80)

the Feynman-Kac theorem states that the expectation

(3.81)

is the solution to the following partial differential equation,

(3.82)

subject to the end condition

(3.83)

In the case of several underlying processes, y1(t), y2(t),…, yn(t), follow-
ing the stochastic differential equations,

(3.84)

the function
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is given by the solution of the differential equation:

(3.86)
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(3.87)

where �ij cov(dWi, dWj)/dt.
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As an example of the Feynman-Kac approach, consider the derivation
of the pricing equation for a claim in the case where the interest rate is
described by the Hull and White model (Equation 2.102). In the risk neu-
tral measure, the price of a claim on S(t) paying g(S(T)) at maturity is
given by

(3.88)

Assume that the processes for S(t) and r(t) are given by

(3.89)

and

(3.90)

where �S and �r may be functions of the state variables r and S and time.
Notice that the argument in the expectation in Equation 3.88 is not simply
a function of T, but it depends on the trajectories of r. In order to apply the
Feynman-Kac formula, we need to transform the argument of the expecta-
tion, so that it depends on the values of processes at time T only. We can
accomplish this at the expense of temporarily increasing the dimensionality
of the problem by defining an auxiliary process of the form

(3.91)

With this, the value of the claim is (notice the conditions required of
the expectation)

(3.92)

We now define

(3.93)

and apply the three-dimensional Feynman-Kac formula to U(r, S, z, t):
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We can now eliminate the additional dimension, z, by replacing U(r, S,
z, t) ezV(r, S, t) in Equation 3.95. This gives the two-dimensional pricing
equation

(3.95)

with the end condition

(3.96)

THE PRICING EQUATION IN THE PRESENCE OF JUMPS

Jump processes are frequently used to produce a more realistic description
of the underlying processes, such as in the case of jump diffusion models
for stock price movements (Merton, 1976). In other instances, the intro-
duction of jumps is an essential component of a pricing framework, such as
in the case of credit derivatives (Duffie and Singleton, 1999).

If one or more of the underlying processes are discontinuous, the deri-
vation of a pricing equation becomes somewhat more involved. As we saw
in the previous section, the argument that we can construct a hedging port-
folio containing a given amount of the underlying security leads to the pric-
ing equation and to the conclusion that the derivative should grow at the
risk-free rate. If, instead of invoking the argument of a hedging portfolio,
we take the expectation of the derivative process in a risk neutral world, we
arrive at the same pricing equation. In the case of jumps, the pricing equa-
tion that we can get by invoking the hedging portfolio argument may
depend on a criterion for the risk of the hedged portfolio. A common crite-
rion is to state that the hedged portfolio should have minimum variance
(Wilmott, 1998). This criterion leads to a particular pricing equation. We
may justifiably ask, however, whether the equation obtained in this way is
the one followed by market prices of the derivative (Tavella and Randall,
2000). An alternative approach to derive a pricing equation is to invoke the
idea that changes in prices due to jumps are diversified away in the market-
place. This argument allows us to obtain a pricing equation by requiring
that the risk neutral expectation of the derivative price change should be
proportional to the risk-free rate. This is the approach we take in the next
two examples.
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An Application of Jump Processes: Credit Derivatives
The purpose of this section is to illustrate issues in the derivation of pricing
equations when jumps are involved. The reader interested in gaining a
broader understanding of credit derivatives may consult some of the numer-
ous articles in the literature (e.g., Duffie and Singleton, 1999; Schoenbucher,
1997).

Credit derivatives are instruments sensitive to changes in either the
credit quality of the issuer of an underlying security, or to so-called
“credit events” affecting the issuer of the underlying security. Among the
credit events that affect the quality of the issuer are defaults and changes
in credit rating. In principle, a corporate bond can be viewed as a credit
derivative much the same way a nondefaultable bond can be viewed as
an interest rate derivative. The market has agreed to call credit deriva-
tives instruments specifically designed to manage credit risk, either by
mitigating the risk or by gaining exposure to credit risk.

The two main approaches for pricing credit derivatives are structural
methods, which attempt to establish relationships between the capital
structure of the issuer of securities underlying the credit derivative, and
reduced methods, where pricing is done by postulating models for the sto-
chastic processes involved, without particular regard for capital structure
considerations.

We will concentrate on the applications to reduced models. We will
illustrate the derivation of the pricing equations by considering a derivative
that depends on a credit event such as default or credit change. We will
assume that the credit event can be characterized as a pure jump process. If
the credit event is a default, the value of the jump process at time t is an
integer number that indicates the number of defaults that have occurred up
to time t.

The process for the value of the derivative will be a function of the sto-
chastic process that represents the credit event, as well as a function of any
other relevant diffusion processes, such as the short rate.

In Chapter 2 we discussed the application of Ito’s lemma to the case of
processes with jumps. Consider the combined jump-diffusion process x (for
additional details, please refer to Chapter 2):

(3.97)

If we now set � 0 and � 0, we obtain a pure jump process with
jumps at time t of magnitude z, distributed according to 
(x(t), z)

dx t( ) � h x t( ), t( ) z
 x t( ), z( ) zd∫+ 
  dt �dW t( ) dJx+ +=

= =
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(3.98)

If in addition, we also assume that 
(x(s), z) �(z 1), where �(.) is
the Dirac delta function, we obtain a jump process that can jump by one
at time t. We will assume that this is a useful representation of the process
of credit events we are interested in. Notice that at this stage we are not
precisely specifying what the credit event is. The event intensity, h, can
depend on both the event count, x(t), and time. If the credit event were a
default and we restricted our attention to the first event of default, the
intensity would be only a function of time. The process for the credit
event becomes

(3.99)

Additionally, we may assume that the intensity of occurrence of the
credit event follows a diffusion process

(3.100)

where �h and �h can be functions of time and the other continuous processes
in the problem. To illustrate the derivation of the pricing equation for credit
derivatives, let’s also assume that the short rate is described by a diffusion
process

(3.101)

where the drift and the volatility can be functions of time and the other
continuous processes in the problem. Using Ito’s lemma with jumps, the
value of the derivative, V(t), is governed by the following jump-diffusion
process:

(3.102)

where the last term represents the random shocks undergone by the deriva-
tive’s price as a result of the jumps in default process x. Carrying out the
integral in Equation 3.102, we get

dx t( ) h x t( ), t( ) z
 x t( ), z( ) zd∫ 
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= –
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(3.103)

Assume now that the market fully diversifies the shocks due to default.
This means that the risk neutral expectation of dV(t) must be equal to
rV(t). If we assume that the processes for h, r, and x are in the risk neutral
measure, this expectation gives us the partial differential equation govern-
ing the derivative price. Taking the expectation of Equation 3.103,

(3.104)

where we used the fact that Wr, Wh, and JV are martingales.
For clarity of the discussion, assume now that the credit event charac-

terized by x(t) is the default process. Notice that x does not contribute to
the dimensionality of the problem because it does not appear on the left-
hand side of the pricing equation. It is convenient to rewrite the pricing
equation as follows:

(3.105)

where �V is the known change in value of the derivative if default occurs.
We will next discuss two simple examples of application of the pricing
equation.

Defaultable Bonds
In the event of default of the issuer of a bond, the bond drops in value to a
level called the recovery value of the bond. The way the recovery value of
the bond is characterized can have a significant influence on the pricing of the
bond. Let’s assume that upon default, the holder of the bond receives a
given fraction, R(t), of the contemporaneous market value of the bond. In
that case, the right-hand side of Equation 3.105 can be written as

(3.106)
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where L is the loss fraction in the event of default. Of course, R(t) can be a
stochastic process. This assumption about recovery is known as recovery of
market value (Duffie and Singleton, 1999). The pricing equation is now

(3.107)

In addition, we need an end condition at maturity and boundary condi-
tions for r 0, r , h 0, h . If we view the bond as a contract that
terminates upon default, the end condition will be equal to a known payment
equal to the notional amount. Although the boundary conditions will be dis-
cussed in greater detail in Chapter 7, here we can make an observation that
brings up the significance of assuming the recovery to be a given fraction of
market value as opposed to a given amount. If we ask ourselves what the
value of the bond is as h , it appears intuitively clear that if the recovery
is equal to a given amount to be paid in case of default, the value of the bond
should be precisely this amount. The reason for this is that if the intensity of
default is infinitely large, the bond will default immediately and the holder
will receive the known amount immediately. If, on the other hand, recovery is
given in terms of market value, the pricing equation will contain a source
term of the form LVh, which cannot be balanced by the finite terms on the
left-hand side if V 0. The only way for the equation to make sense as
h (assuming V remains smooth) is for V 0 as h→ 	.

The suitable boundary condition for h 0 is the solution to the PDE
describing a default-free bond.

Full Protection Credit Put
A credit put compensates the holder for the loss of value of defaultable
bonds as a result of default, credit degradation, or both. Here we formulate
a simple example as follows. Consider a derivative that pays the holder the
following amount if default occurs at time t, where 0 t T,

(3.108)

where R(t) is the recovery rate, B(t, TB) is a risk-free bond maturing at time TB,
Bd(t, TD) is a defaultable bond maturing at time TD, and K is a constant. We
will assume that the occurrence of a default is enough to trigger the payment.
In such a case, the contract terminates. If no payments triggered by default have
occurred until maturity, at maturity the derivative pays the following:

(3.109)
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This is a full-protection credit put because it protects both against
defaults and drop of value as a result of increased yields.

The right-hand side of Equation 3.105 in this case is

(3.110)

The pricing equation of the credit put can be written as

(3.111)

with the end condition

(3.112)

and suitable boundary conditions.
Notice that in order to solve Equation 3.111 we need to know B(t, TB)

and Bd(t, TD) at every point in the solution space. This means that in addi-
tion to this PDE, we need to solve the two additional ones representing the
values of the riskless and defaultable bonds. For the riskless bond we have

(3.113)

and for the defaultable bond,

(3.114)

In addition, we need suitable boundary conditions. The issue of
boundary conditions will be discussed in detail in Chapter 7. The pricing
problem is then the solution of a system of the three partial differential
Equations 3.111, 3.113, and 3.114. 

AMERICAN DERIVATIVES 

An American style derivative is a contract whose cash flows can be influ-
enced by the holder. The holder affects the cash flows of the contract
through an exercise strategy. In its simplest form, the exercise strategy may
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simply consist of the decision to exercise or not exercise at any given time
between the inception of the contract and its maturity date. In general,
however, the exercise policy can consist of complex rules stipulated in the
contract. The market has evolved specialized names for specific types of
exercise policies. Here, however, we call an American derivative any deriva-
tive whose cash flows can be affected by the holder in a nontrivial manner
(the trivial manner to affect the cash flows is to sell the contract).

Relationship between European and 
American Derivatives
For simplicity of exposition, we will consider the case of a single underlying
process, S(t). We denote the set of exercise strategies by c(.), whose argu-
ments may include items such as the underlying process, properties of the
past history of the underlying processes, time, and so on. In the simple case
of an American put, c(S, t) is a binary variable representing the exercise or
don’t exercise decisions.

If markets are complete, there is a straightforward conceptual relation-
ship between European and American derivatives. If the market is com-
plete, the cash flows generated by any derivative security can be replicated
through a dynamic trading strategy with other securities. Fixing an exercise
strategy means that the holder of the security will not be able to influence
the cash flows. This means that for every exercise strategy of an American
security there is a corresponding European security. Consider a derivative
whose price, V, depends on an exercise strategy, c. Consider now a particu-
lar exercise strategy , such that

(3.115)

The exercise strategy  is called an optimal exercise strategy. It is easy to
see that in order to prevent arbitrage, the value of the American security must
equal V( ). Assume that the American security’s price is less than V( ). In
this case, we sell the portfolio that replicates V( ) and we purchase the Amer-
ican derivative. We now follow an optimal exercise strategy, thereby match-
ing the cash flows between the American security and V( ), and we keep the
initial risk-free profit. If, on the other hand, the price of the American security
were greater than V( ), we can buy the portfolio that replicates V( ) and sell
the American derivative. The holder of the American security will follow an
optimal exercise strategy, thus causing the cash flows between the American
security and V( ) to be matched. Again, we keep the initial risk-free profit.
Notice that because we assume that markets are complete, there is no prob-
lem in replicating V( ).
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ĉ

ĉ ĉ
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We see that the valuation of American options is no different than the
valuation of European options, provided we know the optimal exercise
strategy . Of course, we don’t know ahead of time what the optimal exer-
cise strategy is. In practice, the optimal exercise strategy is found simulta-
neously with the price.

In derivatives pricing, optimal exercise strategies are associated with
the concept of free boundaries. For illustration, consider the case of the
simple exercise–don’t exercise version of exercise strategy. The free
boundary separates the region in (S, t) where it is optimal to exercise the
option from the region where it is optimal to hold the option. The free
boundary is also referred to as the exercise boundary. The argument in
the previous paragraph indicates that the price of the American security
will have the same description as a European security on the side of the
free boundary where it is optimal to hold the security, and it will be
equal to the exercise value on the side where it is optimal to exercise.
Since the European pricing problem is described by a partial differential
equation, the presence of the exercise boundary poses the question of
suitable conditions at those boundaries. In the approaches that we fol-
low in this book, it is not necessary to be concerned about the details of
what happens at the exercise boundaries. The reason is that in the least
squares Monte Carlo method and in the linear complementarity imple-
mentation of finite differences, our methods of choice for dealing with
early exercise, the exercise boundary is resolved as part of the solution.
In order to better understand the behavior of the solution, however, the
next two sections discuss the conditions that must be satisfied at the
exercise boundaries. It is possible to pose the problem such that the exer-
cise boundary is also a boundary of the computational domain. This is
easy to do if the problem has one space variable. The resolution of the
boundary as an integral part of the solution, however, is a much more
practical approach, especially in several dimensions (this is true of simu-
lation and finite differences).

For the purpose of clarifying the conditions at the exercise boundaries,
the next two sections address the American pricing problem in the context
of dynamic optimization.

American Options as Dynamic Optimization Problems
This discussion is not intended as a real solution strategy, but as a device to
derive the continuity conditions at the exercise boundaries. For the purpose
of illustration, consider an American derivative with an exercise–don’t
exercise strategy that applies in the interval 0 t T. Here, at every time t
the decision must be made whether to exercise the option or to continue to
hold it. Notice that direct optimization of the option value over the space

ĉ

≤ ≤
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of exercise strategies will in general lead to a problem with a very large
number of dimensions, since the number of possible exercise strategies is
very large. We can, in principle, parameterize the problem by a suitable
description of the free boundaries and solve an optimization problem over
a reduced number of dimensions. Although this is often done in practice
(Ingersoll, 1998), it requires a priori knowledge of the features and location
of the free boundaries.

In the case when the optimal exercise strategy depends only on the cur-
rent value of the underlying processes and time, there is a powerful alternative
for determining the optimal strategy and thereby the option value, known as
the Bellman principle of dynamic programming (Dixit and Pindyck, 1994).

The Bellman principle leads to a recursive argument that states the
optimal strategy in terms of two components. In the case of an American
option with an exercise–don’t exercise strategy, the Bellman principle in
continuous time can be phrased as follows. At a given time, the optimal
strategy corresponds to the maximum of either the exercise value or the
value associated with selecting an optimal strategy an instant later. This
idea can be expressed in what is known as the Bellman equation of
dynamic programming. For simplicity, consider only one underlying price
process, S(t), and an exercise value, F(S(t)), that depends only on S(t).
Notice that we assume the exercise value itself does not depend on the exer-
cise strategy. The Bellman equation is

(3.116)

where PVt stands for present value at time t.
Notice that the recursive structure of Equation 3.116 allows us to solve

for both the optimal strategy and the value of the security if we know end
conditions and work backward in time. The commonly used backward
induction techniques implemented through trees for American option pric-
ing are particular implementations of solutions of the Bellman equation.
We will use the Bellman equation to discuss the boundary conditions at
exercise boundaries.

Conditions at Exercise Boundaries
The purpose of this section is to better understand the way the solution
behaves near exercise boundaries. In practice, we don’t need to concern
ourselves with the properties of the exercise boundary, since the exercise
boundary is automatically captured by simulation or by the linear comple-
mentarity formulation. There are two conditions that must be satisfied at
exercise boundaries. The first condition is that the exercise value and the
continuation value of the option must be the same at the exercise boundary.

V S t( ), t( ) max {F S t( )( ), PVt V S t( ) dS t( ), t dt++( )[ ] }=
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This is a way of characterizing the exercise boundary as a region of indif-
ference between exercising and not exercising the option.

The second condition is that the gradient of the option value with
respect to the underlying variables must be continuous at the exercise
boundary. This condition is known as smooth pasting and it states that the
gradient of the exercise value of the option must be equal to the gradient of
the continuation value.

To prove the condition of smooth pasting, consider the implications of
Equation 3.116 when we are at the exercise boundary. If we are at the exer-
cise boundary, we must have V(S, t) F(S). Assume that an upward move-
ment in S would place us in the exercise region, while a downward movement
would place us in the continuation region (this only requires continuity of
V(S, t) at the exercise boundary). If there is an upward movement in S, the
option payoff will be

(3.117)

If there is a downward movement, the option value will be

(3.118)

Assume now that the probability of an upward movement is equal to p.
The option value can be written as

(3.119)

where PV(.) denotes present value. Since at the exercise boundary we are
indifferent between exercising and waiting, V(S, t) must equal the discounted
expectation of V(S dS, t dt). Replacing this in Equation 3.119, we get

(3.120)

Expanding in Taylor series and replacing F V, we get

(3.121)

If the underlying process is a diffusion process of the form dS =
�dt + �dW, then infinitesimal changes in S are proportional to . In
addition, the probability of upward or downward movements also deviates
from one proportionally to . This means that the last equation can be
written as follows:
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(3.122)

Neglecting higher order terms, we get the following relationship that
must be satisfied at the exercise boundary:

(3.123)

This condition is known as smooth pasting.

Linear Complementarity Formulation of 
American Option Pricing
The value at time t of an option that can be exercised at times � is given by
the following expectation:

∫ (3.124)

where � are stopping times conditional on information at time t, and F(.) is
the payoff if the option is exercised at time equal to the stopping time �
(Lamberton and Lapeyre, 1996).

It can be shown that Equation 3.124 will hold if the following system of
partial differential inequalities is satisfied (Lamberton and Lapeyre, 1996):

(3.125)

Intuitively, this system can be understood in the following manner. The
first inequality expresses the fact that at all times the value of the option
cannot fall below its intrinsic value. The second inequality reflects the fact
that if the value of the option grows more slowly than that of a riskless
bond, the option is exercised. The third condition enforces the fact that if
the value of the option is above its intrinsic value, the price of the option is
described by the same partial differential equation that describes the corre-
sponding European option. The last condition indicates that the option
value at maturity equals its intrinsic value. In Chapter 7 we will describe in
some detail a standard method for solving Equation 3.125.
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PATH DEPENDENCY 

In this section, path dependency refers to the dependency of the payoff of the
derivative on the trajectory followed by one or more of the underlying pro-
cesses. Another notion of path dependency refers to the underlying processes
themselves being a function of the trajectory. There is a distinction between
these two notions of path dependency. If the underlying processes themselves
are path dependent, we may not be able to obtain, without further assump-
tions (Bhar and Chiarella, 1997), a pricing equation in the form of a partial
differential equation. Our case of interest is when the value of the derivative
depends on the trajectory but the underlying processes are Markovian.

There are two primary reasons why path dependency is a concern in the
context of numerical solutions. One reason is that if the cash flows of the
derivative depend on some function of the trajectory of the underlying pro-
cesses, this dependency will result in a larger number of dimensions in the
pricing equation. Another reason is that it may cause the resulting pricing
equation to be significantly more difficult to solve. The reason is the addi-
tional difficulty imposed by absence of diffusion in the additional dimen-
sion. In order to illustrate the second point, consider a simple case of a single
underlying process, S(t), where the derivative price depends on the time inte-
gral of some function of the underlying process, g(t), defined as follows:

(3.126)

The derivative price will be a function of S, g, and t. Assume that S fol-
lows the log-normal process dS S�dt S�dW. The application of Ito’s
lemma to g(t) gives us

(3.127)

This means that the increment of g at time t is known if the informa-
tion set at time t is known. The fact that g was given by an integral of a
function of the underlying process means that dg does not have a diffusion
component. We can now apply Ito’s lemma to dV(S, g, t) and use the proce-
dures described earlier to derive the pricing equation:

(3.128)

There are two observations we can make about the effect of the g
dimension. The most obvious one is that there is no corresponding diffu-
sion in the g dimension. This alone can be a reason for concern, since, as
will be established in Chapter 7, it is the diffusion term that contributes to
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the stability of the numerical schemes used to solve the pricing equation. A
more subtle observation, however, is that the coefficient in front of  can
in principle be of a very different magnitude than the other coefficients in
the equation, depending on the definition of f(S). This may also signifi-
cantly add to the numerical difficulty (Zvan et al., 1997–1998).

In practice, the additional convective term turns out not to be a significant
difficulty if one considers the case of discrete sampling. Discrete sampling will be
the main approach to path dependency in this book. The interested reader is
referred to reference Zvan et al., 1997–1998, as a good example of work on the
development of robust algorithms for the continuous case. An alternative
approach to getting around the problem of absent diffusion in a particular coor-
dinate is to introduce artificial diffusion in that direction and then obtain the limit
as the artificial diffusion vanishes. This can be done numerically quite efficiently.

Discrete Sampling of Path Dependency
Discrete sampling of path dependency is of course a better approximation of
what really happens, since the movement of the underlying processes can only
be observed at discrete points in time. Discrete sampling, however, can also be
viewed as a means of dealing with the problem introduced by the additional
convective term and the absence of corresponding diffusion. The key observa-
tion is that the value of the option immediately before the sampling time and
immediately after the sampling time must be the same. This will be the case as
long as sampling itself does not trigger cash flows. Denoting the sampling times
by  and the times immediately preceeding the sampling time by

this continuity condition is expressed as

(3.129)

In Chapter 7 we will refer to this condition as displacement shock. The
pricing equation between sampling times is obtained by applying Ito’s lemma
to the relevant underlying processes. Since g(S, t) is constant between sam-
pling times g(S, t) does not appear in the pricing equation. Between sampling
times we must solve

(3.130)

where the term f(S)  does not enter. This equation must be solved within
each sampling interval subject to initial conditions derived from the conti-
nuity condition above.

The initial condition at the beginning of each sampling interval must be
extracted from the solution at the end of the previous sampling interval such that
the continuity conditions are satisfied. Notice that although the g dimension has
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dropped from the PDE, the solution itself still has the g dimension. What has hap-
pened is that the changes in the g dimension, which in the continuous sampling
case occur through the differential equation, here occur through the initial con-
ditions in each sampling interval. The application of the continuity condition
given by Equation 3.129 has the effect of concentrating the convection at the
boundaries of sampling intervals.

The practical implementation of the continuity condition or displace-
ment shock will be discussed in greater detail in Chapter 7. The continuity
condition is also referred to as a jump condition in the literature (Wilmott,
DeWynne, and Howison, 1993). 
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Scenario Generation

enerating scenarios of the underlying processes that determine the deriv-
ative’s price is an essential and delicate task from an analytical perspective

as well as from a system design viewpoint. This chapter sets up the nomen-
clature we will use in the remaining chapters to refer to scenarios and
describes the main issues and methods for generating scenarios for pricing.

The two main applications of scenarios are risk management and pric-
ing. The objectives of using scenarios in risk management are to obtain dis-
tributions of possible gains and losses as a function of future time and to
determine the concentration of risk among various components of a portfo-
lio of instruments. The main objective of scenarios in pricing is to compute
the expectation that gives us the value of the financial instrument. Scenarios
are used when this is done by simulation, the topic of the next two chapters.

These two applications have different implications in the methods used to
generate scenarios. The most obvious difference is that if we are interested in
determining probabilities of future gains and losses, we would expect our sce-
narios to be based on real world probabilities. If we are using the scenarios for
pricing, on the other hand, the scenarios must be based on the probabilities
associated with the measure induced by the numeraire asset, as we discussed
extensively in last two chapters. If we don’t do this, our expectation will give us
the wrong price. When generating scenarios for pricing, using the right measure
is essential. When generating scenarios for risk management, however, which
probability measure we use to produce the scenarios is a much less significant
issue. This is the case because the dispersion of values, especially over short time
horizons, is primarily dominated by the volatility and correlation of the under-
lying processes, rather than by their drifts. Since the difference in probability
measure is determined by the drift of the underlying processes, as long as the
time horizon is not large it may not matter whether we do value-at-risk analysis
using scenarios meant for pricing. It must be clear, however, that doing pricing
with scenarios meant for risk management is not possible in general.

This distinction between scenarios for pricing and scenarios for risk man-
agement has a bearing on the design of pricing and risk management systems.

G
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We can visualize a situation where value-at-risk analysis is conducted on a
portfolio of instruments where some of the instruments are priced by simula-
tion. In designing a system it is important to have an architecture that allows
for proper separation between pricing and risk management scenarios.

In this chapter we will discuss issues pertaining to scenarios for pricing
through simulation.

SCENARIO NOMENCLATURE

As we saw in the last chapter, the value of a derivative security with payoffs
at a known time T is given by the expectation of its payoff, normalized
with the numeraire asset. The value of a European derivative whose payoff
depends on a single underlying process, S(t), is given by the expectation

(4.1)

where all stochastic processes in this expectation are consistent with the
measure induced by the numeraire asset B(t).

If we wish to construct scenarios for computing this expectation
numerically, we can raise the following questions.

■ Should we generate scenarios for S(t) and B(t) separately and then com-
pute the argument in the expectation operator?

■ Should we generate scenarios for V(S(t), t) and B(t) separately?
■ Should we instead generate scenarios for the ratio ?

All of these alternatives are possible. The last alternative, in particular,
can lead to extremely fast computations. From a system’s design perspec-
tive and code reusability, the preferred approach is the first one, which we
will focus on for the remainder of the chapter. 

Another important question is: Are the scenarios for pricing European
derivatives and derivatives with early exercise the same? This question is
relevant because the expectation for early exercise derivatives (such as
American and Bermudan) is taken at an unknown exercise time, �, that
maximizes the expectation:

(4.2)

For the particular approach for computing early exercise options with
simulation that we will emphasize in this book, the answer is yes. The same
scenarios used in European pricing can be used in early exercise pricing.

V S 0( ),0( ) B 0( )E0
B V(S(T),T)

B T( )
----------------------------=

V S t( ) t,( )
B t( )

-------------------------

V S 0( ) 0,( ) B 0( ) sup
0 � T≤ ≤

E0
B V S �( ) �,( )

B �( )
--------------------------=
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This is not true in general, but it is true in our case. We are now ready to
introduce the scenario nomenclature.

We consider an underlying process S(t), described by the stochastic dif-
ferential equation

(4.3)

A scenario is a set of values ,…, that are an approximation to
the jth realization, Sj(ti), of the solution of Equation 5.112, evaluated at times
0 ti T, i 1,…, I. A scenario is also called a trajectory. For the next several
sections we will be talking about spot trajectories. A spot trajectory can be
visualized as a line in the state-versus-time plane, describing the path followed
by a realization of the stochastic process (actually, by an approximation to the
stochastic process). Later, we will discuss LIBOR rate trajectories. A LIBOR
rate trajectory is not a single line in the state-versus-time space, because the
state itself is now a collection of rates (an interest rate curve). The methodol-
ogy we discuss here, however, applies to both types of trajectories.

A scenario set is a collection of scenarios or trajectories, j 1,…, J,
1,…, i I. If we consider a multidimensional process, (t), instead of a scalar
process, S, the same definitions apply. In this case, a scenario consists of a vec-
tor  i 1,…, I.

Notice that because our scenarios are usually approximations to the
paths followed by the solution of the stochastic differential equation, we dif-
ferentiate between scenarios and exact paths by the use of a . Since this nota-
tion is cumbersome, we will drop the  when there is no issue of confusion.

SCENARIO CONSTRUCTION

There are several ways to construct scenarios for pricing. We now give a
summary and then discuss the various procedures in detail.

■ Constructing a path of the solution to Equation 5.112 at times ti,
i 1,…, I by exact advancement of the solution: This method is only
possible if we have an analytical expression for the solution of the sto-
chastic differential equation.

■ Sampling from the joint distribution of S(ti), i 1,…, I: This approach
requires that we have an analytical solution for the SDE and that we be
able to derive the joint distribution of S(ti).

■ Approximate numerical solution of the stochastic differential equation:
This is the method of choice if we cannot use any of the previous ones.
Just as in the case of ordinary differential equations, there are numerical
techniques for discretizing and solving stochastic differential equations.

dS t( ) a S t,( )dt b S t,( )dW+=

Ŝj ti( ) i, 1=

≤ ≤ =

Ŝj ti( ), =
= S

Ŝj ti( ), =

ˆ
ˆ

=

=
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Exact Solution Advancement
This approach is best illustrated with a simple example. Consider a log-
normal process with constant drift and volatility,

(4.4)

with solution

(4.5)

Using this expression, we can construct our trajectories as follows:

(4.6)

Our problem now is to obtain a sequence of Wiener processes W(ti) to
use in Equation 4.6. There is more than one way to accomplish this. We
discuss the simplest way now and elaborate on other alternatives later. The
increment of the Wiener process can be generated by

(4.7)

where Z is a standard normal random variable. Notice that if the time spac-
ing is uniform, all the increments we add to construct the Wiener path have
the same variance. We will elaborate on this later, but at this stage we
should realize that building the path this way means that we are sampling
from a multidimensional distribution (each W(ti) represents one dimen-
sion), where all the dimensions have the same variance. This is fine in some
cases but is not fine in others. More on this later.

Replacing this increment in Equation 4.6 we get

(4.8)

Defining the outcomes of successive drawings of the random variable Z
corresponding to the jth trajectory by , we finally get the following
recursive expression for the jth trajectory of S(t):

(4.9)

In this particular case, constructing trajectories is very simple if we have
a way to generate independent standard normal random variables. However,
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some observations are in order. Although the process W(t) is one dimensional
in the sense that it represents a single source of uncertainty driving S(t) in the
stochastic differential Equation 4.4, the set {W(ti), i 1, , I} must be
viewed as the components of a vector of random variables with a multidi-
mensional distribution. This also means that for a fixed j, the  are realiza-
tions of a multidimensional standard normal random variable, which happen
to be independent. Whether we view the  as coming from a multidimen-
sional distribution of independent normals or as drawings from a single one-
dimensional distribution does not affect the outcome (that is, the statistical
properties of the scenarios), as long as the  are generated from pseudoran-
dom numbers. Pseudorandom numbers are produced by algorithms that try
to approximate the properties of true random numbers. This distinction,
however, is conceptually important and it becomes essential if we generate
the  not from pseudorandom numbers, but from quasi-random sequences.
Quasi-random sequences approximate some, but not all, of the properties of
true random numbers. This will become much clearer soon.

Sampling from the Joint Distribution 
of the Random Process
If the solution of Equation 4.3 is Gaussian (or it can be transformed into a
Gaussian) and we know it explicitly, we may be able to construct the joint
distribution of S(ti). We can then sample from this joint distribution
extremely efficiently and construct the entire trajectory Sj(ti) at once (if we
do this we get an exact solution; this is the reason for not having a  on the
S). In doing this we don’t have to advance from one time step to another. As
a result, the computation can be very fast.

The simplest example is the construction of a standard Wiener process
trajectory, Wj(ti), i 1,…, I. The covariance matrix of the W(ti) is

(4.10)
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This means

(4.11)

and the correlation coefficient is

(4.12)

Remember that W(ti) is related to a standard normal, Z, through the
relationship

(4.13)

This means

(4.14)

This means that given ti, i 1, , I, if we sample from a standard
joint normal distribution with correlation matrix

(4.15)

we get the desired W j(ti) by replacing the jth realization of Zi in Equation 4.13

(4.16)

The standard procedure for sampling from a joint normal distribution
is to create correlated standard normal random variables from linear com-
binations of uncorrelated standard normals. This is known as the Choleski
decomposition and is explained in detail later in the chapter.

Another simple example is the case of a log-normal process with con-
stant drift and volatility. Using Ito’s lemma on

(4.17)

we have

(4.18)
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and

(4.19)

The covariance between log S(tk) and log S(tl) is

(4.20)

The correlation coefficient is

(4.21)

If we sample from a joint normal distribution with a correlation matrix
whose entries are given by the last equation and call the drawings of the jth
trajectory , we get the trajectories of log S by rescaling with the vola-
tility of log S and displacing  with the expectation of log S:

(4.22)

or, equivalently,

(4.23)

In this simple case we could have replaced the results from Equation
4.16 in the analytical solution of the log-normal SDE,

(4.24)

because the variance of S(t) and the correlation of log S(tk), S(tl) are the
same as the variance of �W(t) and the correlation of �W(tk), �W(tl).

In general, however, this is not so simple, and to get the correlation
matrix of the random variables that make up the trajectory, there may be a
significant amount of algebra. A powerful and fairly general procedure for
getting the correlation matrix is by solving the evolution equation of the
covariance of the stochastic process at two points in time.
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Time Evolution of the Covariance of S (tk ) and S (tl) In Chapter 2 we de-
rived ordinary differential equations for the time evolution of the moments
of a stochastic process. Here we do something similar for the covariance.

We would like to get an ordinary differential equation of the form:

(4.25)

If we can integrate this equation from t tk to t tl, subject to the
initial condition cov(S(tk), S(tk)) var(S(tk)), we get an analytical expres-
sion for the covariance of the process at two points in time.

To derive the evolution equation, we start from the definition of covariance:

(4.26)

This gives

(4.27)

To get , use

(4.28)

To get , use

(4.29)

dcov S tk( ) S t( ),( )
dt

--------------------------------------------- f S tk( ) tk S t( ) t,,,( )=

= =
=

cov S tk( ) S t( ),( ) E S tk( ) S t( ),[ ] E S tk( )[ ]E S t( )[ ]–=

dcov S tk( ) S t( ),( )
dt

---------------------------------------------
dE S tk( )S t( )[ ]

dt
------------------------------------ E S tk( )[ ]dE S t( )[ ]

dt
----------------------–=

dE S t( )[ ]
dt

-----------------------

dE S t( )[ ]
dt

---------------------- dE S t dt+( )[ ] E S t( )[ ]–
dt

----------------------------------------------------------- 
 =

E S t( ) Sd+[ ] E S t( )[ ]–
dt

-------------------------------------------------------- 
 =

E S t( ) a S t( ) t,( )dt b S t( ) t,( ) W t( )d+ +[ ] E S t( )[ ]–
dt

--------------------------------------------------------------------------------------------------------------------------------- 
 =

E a S t( ) t,( )dt b S t( ) t,( ) W t( )d+[ ]
dt

--------------------------------------------------------------------------------------- 
 =

E a S t( ) t,( )dt[ ]
dt

---------------------------------------

=0

E b S t( ) t,( ) W t( )d[ ]
dt

------------------------------------------------------+
 
 
 
 

=

E a S t( ) t,( )[ ]=

        

dE S tk( )S t( )[ ]

dt
-------------------------------------

dE S tk( )S t( )[ ]
dt

------------------------------------
E S tk( )S t dt+( )[ ] E S tk( )S t( )[ ]–

dt
----------------------------------------------------------------------------------=

E S tk( ) S t( ) dS+( )[ ] E S tk( )S t( )[ ]–

dt
----------------------------------------------------------------------------------------=

E S tk( )dS[ ]
dt

----------------------------=



Scenario Generation 85

(4.29)

Replacing Equations 4.28 and 4.29 in Equation 4.27, we get

(4.30)

Notice that if the drift is independent of S(t), the two terms on the left
cancel and the covariance does not change as a function of the t. This
means that in this case the covariance between S(tk) and S(tl), where tl tk,
is equal to the variance of S(tk). This is consistent with the log-normal case
and the Wiener process we did in the previous section.

To get the variance (we need this for the initial conditions), we can solve
an ordinary differential equation for the variance. Deriving an ordinary dif-
ferential equation for the variance is very simple. From the definition of
variance,

(4.31)

we get

(4.32)

To get , we apply Ito’s lemma to S(t)2:

(4.33)

This gives

(4.34)

Replacing Equations 4.28 and 4.34 in Equation 4.32, we get

(4.35)
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This equation must be solved to provide the initial conditions for the
equation for the covariance. As mentioned in Chapter 2, these equations
may not be closed. This means that it is possible that we don’t get a finite
number of equations to solve for the covariance. In such a case, it may be
possible to use advanced mathematical software to generate equations for a
sufficiently large number of moments.

Generating Scenarios by Numerical Integration 
of the Stochastic Differential Equations
The numerical integration of the stochastic differential equation

(4.36)

by finite differences is the most robust way of generating scenarios for pricing.
In the case of the numerical integration of ordinary (deterministic) dif-

ferential equations by finite differences, the numerical scheme introduces a
discretization error that translates into the numerical solution differing
from the exact solution by an amount proportional to a power of the time
step. This amount is the truncation error of the numerical scheme. We will
deal with this issue extensively in Chapter 7.

In the case of the numerical integration of stochastic differential equa-
tions by finite differences, on the other hand, the interpretation of the
numerical error introduced by the discretization scheme is more compli-
cated. The reason for this is that unlike the case of ordinary differential
equations, where the only thing we are interested in computing is the solu-
tion itself, when dealing with stochastic differential equations, there are
two aspects that interest us. One aspect is the accuracy with which we com-
pute the trajectories or paths of a realization of the solution. The other
aspect is the accuracy with which we compute functions of the process such
as expectations and moments. In the case of a plain European option,
whose value is computed by calculating an expectation at known payoff
time, it is clear that the accuracy we are interested in is the accuracy with
which we can compute that expectation.

The order of accuracy with which a given scheme can approximate tra-
jectories of the solution is not the same as the accuracy with which the
same scheme can approximate expectations and moments of functions of
the trajectories.

The convergence of the numerically computed trajectories to the exact
trajectories is called strong convergence. The order of the numerical scheme
that characterizes this convergence is called order of strong convergence.
The convergence of the numerically computed moments of functions of the
stochastic process to the exact values of those moments is called weak con-

dS t( ) a S t,( )dt b S t,( )dW+=
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vergence. The order of the numerical scheme that characterizes this conver-
gence is called order of weak convergence.

Just as there is a comprehensive theory of convergence and stability for
finite differences applied to deterministic ordinary differential equations,
there is a similar theory for stochastic differential equations. The work by
Kloeden and Platen (1995) is a comprehensive reference on this subject. We
will discuss finite difference theory for partial differential equations in
Chapter 7 in great detail. Although we will not cover the theory of finite
difference for stochastic differential equations in this book, the information
given in this chapter is sufficient for the purpose of judiciously building
quality scenarios for pricing. For an exhaustive treatment of numerical
schemes for stochastic differential equations, the reader is referred to
Kloeden and Platen (1995).

The two most popular schemes for integrating stochastic differential
equations in finance are the explicit Euler scheme and the Milshtein scheme
(Milshtein, 1978).

Given a stochastic differential equation

(4.37)

the Euler scheme advances the solution from time point ti to ti+1 ti �t
as follows (the properties of this scheme when applied to ordinary differen-
tial equations will be discussed in detail in Chapter 7):

(4.38)

The corresponding formula for the Milshtein scheme is

(4.39)

The Milshtein scheme only differs from the Euler scheme in the second
line. Notice that the drift and volatility in the right-hand side of both
schemes are evaluated at time ti. As we will discuss in Chapter 7, this means
that these are explicit schemes.

If the process S(t) is multidimensional, the drift is a vector and the volatility
is either a vector or a matrix, depending on the representation of W(t) (see
Chapter 2). For the multidimensional extension, see Kloeden and Platen (1995).

Using the standard log-normal process, we give a heuristic argument
that shows why the order of strong convergence and the order of weak
convergence differ. As a simple case study, we discuss exhaustively the
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distortions introduced by the Euler scheme in the log-normal process.
This study illustrates the high level of caution that is warranted in using
the Euler scheme.

Order of Strong Convergence Given a stochastic differential equation,

(4.40)

a finite difference scheme produces a numerical solution (ti), 0 ti–1 ti T,
i 1, , I, of Equation 4.40. For simplicity, assume that the ti are equally
spaced, . The scheme has q order of strong convergence if

(4.41)

where � is a constant that does not depend on �. In this definition, |.| denotes
the Euclidian norm (the square root of the sum of the squares). This would
be relevant if S(t) were a multidimensional trajectory. In the one-dimensional
case, which we are dealing with here, this norm is the same as the absolute
value. The norm in the expectation operator enforces the pathwise interpre-
tation of the scheme accuracy. The use of a norm is necessary because other-
wise positive and negative deviations by the numerically computed trajectory
from the exact trajectory may tend to cancel out, and the proximity of the two
trajectories would not be captured.

In general, the explicit Euler scheme has an order of strong
convergence of 0.5, which means that the error is proportional to .
However, when the volatility of the process change is deterministic, the
Euler scheme has an order of strong convergence of 1. The Milshtein
scheme always has an order of strong convergence of 1, which means the
error is proportional to �t, regardless of whether the volatility is
deterministic or not. As we just saw, the additional work required to
implement the Milshtein scheme, as opposed to the Euler scheme, is
insignificant. If capturing the details of the trajectories is important and
the volatility is not deterministic, the Milshtein scheme should be
preferred to the Euler scheme.

Order of Weak Convergence Referring to the stochastic differential equa-
tion of the last subsection, let f(S(T)) denote a function of the trajectory of
the solution. A finite difference scheme has q order of weak convergence if

(4.42)

where � is a constant that does not depend on �.
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Strong and Weak Convergence for the Euler Scheme We motivate the dif-
ference between strong and weak convergence by a simplified and intuitive
analysis of the Euler scheme applied to the standard log-normal stochastic
differential equation. This analysis is not rigorous and is meant to show
why the same scheme has different accuracy when it is used to compute tra-
jectories than when it is used to compute expectations.

Consider the stochastic differential equation:

(4.43)

If we assume that � and � are constant, we know the solution is

(4.44)

The Euler scheme applied to Equation 4.43 is

(4.45)

where �W(ti) W(ti+1) W(ti). The numerical solution at time tk is given by

(4.46)

Assuming that there are I time steps in the interval 0 t T, the error
for strong convergence is

(4.47)

where we assume that S(0) 1 for simplicity. To determine how well the prod-
uct in the right approximates the exponential, we expand exp ((� � 2)�t
��W(ti)) in Taylor series, keeping terms just past order �t:

(4.48)
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(4.48)

Defining c ( )�, we have

(4.49)

The product in Equation 4.47 can be expanded approximately as follows:

(4.50)

where �W is any �W(ti). Replacing this in Equation 4.47 and leaving out
the �(�t2) term, we have

(4.51)

1 �
1
2
---�2– 

  �t ��W ti( )+ +=

1
2
---�

2

=�t

�W ti( )2+

�
1
2
---�

2– 
  ��t�W ti( )+

1
6
---�

3
�W ti( )3

� �t2( )+ +

1 ��t ��W ti( )+ +=

�
1
2
---�

2– 
  ��t�W ti( )+

1
6
---�

3
�W ti( )3

� �t2( )+ +
    

= � 1
2
---�

2–

1 ��t ��W ti( )+ + �
1
2
---�

2– 
  �t ��W ti( )+ 

 exp c�t�W ti( )–=

1
6
---�

3
�W ti( )3– � �t2( )–

1 ��t ��W ti( )+ +[ ]
i=0

i=I–1

∏

�
1
2
---�

2– 
  �t ��W ti( )+ 

  c�t�W ti( )– 1
6
---�

3
�W ti( )3–exp

i=0

i=I–1

∏=

�
1
2
---�

2– 
  T �WT+ 

 exp I� �t�W( ) I� �W3( ) I� �t2( )++ +=

E Ŝ T( ) S T( )– E I� �t�W( ) I� �W3( )+=

T
�t
------� �t�W( ) T

�t
------� �W3( )+=

TE 1
�t
------� �t�W( )

� �t

1
�t
------� �W3( )

� �t

+
=

� �t( )=

           
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To analyze the weak convergence, we should be specific about the function
f(.) in the weak convergence statement

(4.52)

For simplicity, we consider as example the expectation of the process itself.

(4.53)

As with the strong convergence case, we replace the Euler discretized
process, Equation 4.45, in the last expression:

(4.54)

When we replace the expansion of the product given by Equation 4.50
in the last equation, the terms with �W in the expansion will not contribute
to the expectation in the Equation 4.54:

(4.55)

Now we can see clearly why the order of convergence is different when
we look at paths and when we look at properties such as the expectation.
When we look at properties such moments, the odd powers of �W don’t
contribute to the expectation that expresses the convergence. This is because
in weak convergence we take the expectation first and then the norm. When
we look at the individual paths, on the other hand, these terms are the main
contributors to the difference between the exact and the numerical solu-
tions. This is because we take the norm first and then the expectation.

We now illustrate that the order of strong convergence of the Euler
scheme is 1 when the volatility is deterministic by considering the simple case:

(4.56)

The Euler scheme applied to this equation is

(4.57)
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dS �dt �dW+=
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The approximate solution at time T is

(4.58)

The exact solution at time T is

(4.59)

We consider now the difference

(4.60)

where the difference between the first two terms on the right is of order �t
because the first term on the right is a first-order approximation to the inte-
gral represented by the second term. To characterize the last two terms on
the right, we notice that those terms are Gaussian. Therefore,

(4.61)

(4.62)

We can now express the third term in Equation 4.60 as follows:

(4.63)

To characterize the last term in Equation 4.60, we also need its expec-
tation and variance:

(4.64)
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∑
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(4.65)

Therefore,

(4.66)

We can now express the difference of the last two terms in Equation
4.60 as follows:

(4.67)

where we exploited the fact that the sum in the first line of Equation 4.67 is
a first-order approximation of the integral in the same line, and where we
expanded the square root in the second line in Taylor series. To first order,
Equation 4.60 is of first order in �t:

(4.68)

Taking the absolute value of this difference is also of first order in �t. The
expectation of the absolute value is also of first order in �t. Therefore, the
Euler method applied to the simple SDE in Equation 4.56 has order of
strong convergence equal to 1. In this case, there is nothing to be gained by
using the Milshtein scheme in place of the Euler scheme to construct sce-
nario trajectories.

BROWNIAN BRIDGE

The Brownian bridge is a very useful device for constructing trajectories.
The basic idea of the Brownian bridge is as follows. Assume you have a
Wiener process defined by a set of time-indexed random variables

var � t( ) W t( )d
0

T
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{W(t1), W(t2), }. How do you insert a random variable W(tk), where
ti tk ti+1, into the set in such a manner that the resulting set still con-
stitutes a Wiener process? You can view the Brownian bridge as a sort of
interpolation that allows you to introduce intermediate points in the tra-
jectory of a Wiener process when that trajectory is known at discrete
time points. There are practical reasons why it is a good idea to be able
to do this. For example, assume that you have a scenario set that gets
reused by a number of pricing applications. Assume that some of the
applications may require knowledge of the scenario set at a specific point
in time not included in the original set. The Brownian bridge gives you a
way of generating that missing part of the trajectories in the scenario sets
without having to reconstruct the trajectories. A more profound reason,
which we will explore in detail, has to do with the way the Brownian
bridge is constructed. By adding one more element into the {W(t1),
W(t2), } set, we increase the dimensionality of this set. In order to add
a new element into the set, the Brownian bridge uses a new random vari-
able whose variance is lower than the variance of the new element that is
added. It turns out that increasing the dimensionality of a set of random
variables by using an additional random variable of smaller variance is
very desirable when quasi-random sequences are used. This is of signifi-
cant importance in scenario generation.

Brownian Bridge Construction
Given W(t) and W(t �t1 �t2), we want to find W(t �t1). We assume
that we can get the middle point by a weighted average of the two end
points plus an independent normal random variable:

(4.69)

where �, �, and � are constants to be determined, and Z is a standard nor-
mal random variable.

W(t �t1) must satisfy the following conditions:

(4.70)

(4.71)

(4.72)

These conditions give us the following equations for �, �, and �:

(4.73)

…
≤ ≤

…

+ + +

W t �t1+( ) �W t( ) �W t �t1 �t2+ +( ) �Z+ +=

+

cov W t �t1+( ) W t( ),[ ] t=

cov W t �t1+( ) W t �t1 �t2+ +( ),[ ] t �t1+=

var W t �t1+( )[ ] t �t1+=

� �+ 1=

�t � t �t1 �t2+ +( )+ t �t1+=

�
2t 2��t �

2 t �t1 �t2+ +( ) �
2+ + + t �t1+=
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Solving these equations (this is very straightforward, despite the non-
linearities in � and �), we get

(4.74)

(4.75)

(4.76)

The variance of the normal random variable that was added in order to
construct W(t �t1) is � 2 �t1�. If instead of using the Brownian bridge,
we would have created W(t �t1) in the standard way,

(4.77)

we would have used a normal random variable with variance �t1. In the
case of �t1 �t2, which corresponds to adding a component halfway
between endpoints, the variance of the normal deviate used in the Brown-
ian bridge is half the variance of the normal deviate used in Equation 4.77
(since in this case � ).

Generating Scenarios with Brownian Bridges
We can use the Brownian bridge to generate a Wiener path and then use the
Wiener path to produce a trajectory of the process we are interested in. We
can use points from the Wiener path to get W(ti) and W(ti–1) and replace
these values in the expression for analytical advancement, Equation 4.6, or
in our numerical integration scheme, such as Equations 4.38 or 4.39.

The simplest strategy for generating a Wiener path using the Brownian
bridge is to divide the time span of the trajectory into two equal parts and
apply the Brownian bridge construction to the the middle point. We then
repeat the procedure for the left and right sides of the time interval. To
illustrate how this works, consider a case where you want to compute a
Wiener trajectory from t 0 to t T, at four equidistant points.

We want to compute W(ti), 0 1,…, 4 where ti i�t, with �t , and
initial condition W(t0) W(0) 0. In this case, �  (see Equation 4.74).
These are the steps:

(4.78)
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t4Z4=
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(4.78)

This is very easy to generalize to any number of time points if the number
of time points is a power of two. Each Zi is the ith component of a multidi-
mensional standard normal random variable where the dimensions are uncor-
related. Notice that as you “fill in” the Wiener path, the additional variance
of the normal components you add to the average of the two immediate W’s
has decreasing value. Of course, the total variance of all the Wiener incre-
ments (W(ti+1) W(ti)) does not depend on how you construct the path.
However, the fact that in the Brownian bridge approach you are using ran-
dom variables that are multiplied by a factor of decreasing magnitude means
that the importance of those variables also decreases as you fill in the path.
The dimensions of the random variables with larger variance need to be cov-
ered, or sampled, more efficiently than the dimensions with smaller variance.
In standard Monte Carlo this is not an issue because standard Monte Carlo,
where we sample from a joint normal distribution, is equally efficient at sam-
pling from any dimension. But, as we will see in the next chapter, standard
Monte Carlo is very slow. An alternative to standard Monte Carlo, called
quasi-random sequence Monte Carlo, on the other hand, differs in its ability
to cover lower dimensions, as compared with higher dimensions. This
method for path construction, where the variance is concentrated in the first
few dimensions (these are the ones you build first following the procedure
above), reduces the burden on the simulation from having to sample effi-
ciently from the higher dimensions. The effect of this way of constructing
Wiener paths has been called dimensionality reduction in the literature. But it
is important to understand that this approach does not reduce the number of
dimensions. What it does is change the problem around such that some
dimensions (these are called higher dimensions simply because of the order in
which they occur in the algorithm described by Equation 4.78) face less activ-
ity by the random variables used to get the Zi’s than others. This reduces the
need to carefully sample from such dimensions. This is precisely what we
need in order to use quasi-random sequences effectively. These issues are dis-
cussed in detail by Caflisch, Morokoff, and Owen, 1997.

1
2
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As we noted after Equation 4.7, the traditional forward construction of
the Wiener path,

(4.79)

weighs each Zi by the same factor (assuming the time intervals are the
same), causing all the dimensions of Z to be equally important.

At this point we can ask two questions about the Brownian bridge
approach to trajectory building.

■ Why not use an approach like this directly on the process of interest,
rather than on the driving Wiener process? For example, if we are
interested in constructing a path for process S(t), why not use some-
thing like the Brownian bridge directly on S(t)?

■ If we are dealing with a multidimensional Wiener process, where each
 is a vector of correlated variables, and we apply the Brownian

bridge approach to each of the components of , will this spoil the
correlation that must exist between the components of ?

The answer to these two questions touches on related issues. As far as the
first question, the reason why the Brownian bridge is so straightforward is
because we only need the variance to characterize the Wiener process (the expec-
tation is satisfied automatically since we use standard normals to generate the
Wiener process), and because the covariance between W(tk) and W(tl) only
depends on the minimum of (tk, tl). This is not the case in general. A process may
need multiple moments to be characterized, and we will not be able to construct
it with the simple argument that worked so well for the Wiener process.

As far as the second question, the answer is no. If you have a multidi-
mensional Wiener process, you can safely use the Brownian bridge construc-
tion in each component and your correlations will be what they are supposed
to be. This point is deeper than it seems, so we will elaborate. When we have
a multidimensional process (don’t confuse this notion of multidimensional,
which means a process driven by several, perhaps correlated Wiener pro-
cesses, with the fact that each trajectory is characterized by time-indexed mul-
tidimensional random variables), the correlation between the values of the
various components is determined by the correlation between the changes in
values. To clarify this, consider a process with K dimensions:

(4.80)

In this representation we assume that �k(.) is a scalar and that Wk(t),
k 1,…, K are the components of a multidimensional Wiener process. Chapter 2

W ti( ) W ti–1( ) ti ti–1– Zi+=

Ŵ ti( )
Ŵ t( )

Ŵ t( )

dSk t( ) ak S1 t( ), … , SK t( ) t,( )( )dt=

�K S1 t( ),… , SK t( ) t,( )( )dWK t( ) k 1, = … , K+

=
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discusses other representations of multidimensional processes. The correlation of
the process levels, that is correlation (Sk(t), Sl(t)), is determined by the correlation
of the process changes, (dSk(t), dSl(t)), but these two correlations are not equal in
general. In the case of Wiener processes, however, they are equal. This allows us
to preserve the correlation across dimensions by properly correlating the standard
normals used in the bridge construction.

To see that the correlation of two Wiener processes is the same as the
correlation of their increments, we consider two Wiener processes, W1(t)
and W2(t), such that dW1(t)dW2(t) �dt, and we find the correlation
between W1(t) and W2(t), which we denote by  We do this in a
more rigorous way than needed in this simple case because this illustrates a
general way that will work with more complicated processes:

(4.81)

To get E[W1(t)W2(t)], apply Ito’s lemma to g(W1, W2) W1(t)W2(t):

(4.82)

We now take expectation of both sides and integrate

(4.83)
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Replacing for g(W1,W2), we get

(4.84)

Substituting this in Equation 4.81, we confirm that 

(4.85)

When we do the Brownian bridge for a multidimensional Wiener process,
we do the procedure in Equations 4.78 on each dimension. Equation 4.85
suggests that we can get the correct correlation between dimensions if we
impose that correlation on the normal random variables that enter in the con-
struction procedure in Equation 4.78. To verify that this is the case, consider
a Brownian bridge applied to two Wiener processes, W1 and W2, such that
dW1(t)dW2(t) �dt:

(4.86)

(4.87)

where Z(1) and Z(2) are the standard normal random variables used with dimen-
sions 1 and 2, respectively. It is straightforward to verify that �
if cov [Z(1), Z(2)] �.

The fact that the correlation between the level and the changes is the same
for Wiener processes can also be expressed as follows. The correlation between
finite changes across dimensions are the same as the correlation between infin-
itesimal changes across dimensions.

This is not the case in general. To illustrate this, consider the case of
two standard log-normal processes:

(4.88)

(4.89)

where dW1(t)dW2(t) �dt. We want to get the correlation of S1(t) and
S2(t) as a function of �:

(4.90)
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var S1[ ]var S2[ ]
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Using the same approach as before, define g(S1, S2) S1(t)S2(t) and
apply Ito’s lemma:

(4.91)

Taking expectation on both sides and considering that �1, �2, �1, and �2
are constant, we get

(4.92)

This can be integrated to give

(4.93)

since

(4.94)

Replacing in Equation 4.91, we get

(4.95)

As t 0, �, but as time increases,  decreases.
In conclusion, if we have a general multidimensional stochastic pro-

cess, approximations of finite increments of the process will influence the
correlation of process values across dimensions. 

JOINT NORMALS BY THE CHOLESKI 
DECOMPOSITION APPROACH

The standard procedure for generating a set of correlated normal ran-
dom variables is through a linear combination of uncorrelated normal
random variables. Assume we have a set of n independent standard nor-
mal random variables Zi , i 1,…, n, and we want to build a set of n
correlated standard normals , i 1,…, n, with correlation matrix R.

=

d S1 t( )S2 t( )( ) S2dS1 S1dS2 S1S2�1�2�dt+ +=

S1S2 �1 �2 �1�2�+ +( )dt=

S1S2�1dW1 t( ) S1S2�2dW2 t( )+ +

dE S1S2[ ]
E S1S2[ ]

------------------------ �1 �2 ��1�2+ +( )dt=

E S1S2[ ] S1 0( )S2 0( ) exp �1 �2 ��1�2+ +( )t=

E S1 t( )( ) S1 0( ) �1t( )exp=

E S2 t( )( ) S2 0( ) �2t( )exp=

var S1 t( )( ) S1
2 0( ) 2�1t( ) �1

2t( ) 1–exp( )exp=

var S2 t( )( ) S2
2 0( ) 2�2t( ) �2

2t( ) 1–exp( )exp=

�S1S2

�1�2�t( ) 1–exp

�1
2t( ) 1–exp( ) �2

2t( ) 1–exp( )
-------------------------------------------------------------------------------=

→ �S1S2
= �S1S2

=
Z̃i =
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We express these variables as column vectors Z {Z1,…, Zn}T and
…,  and assume that we can accomplish this by the fol-

lowing linear combination:

(4.96)

where A is a square matrix to be determined. Multiplying both sides of
Equation 4.96 by their transpose, we get

(4.97)

Since (AZ)T ZTAT, we have

(4.98)

We also have that the correlation matrix of the  is given by the expecta-
tion of . The expectation of ZZT is the identity matrix, because the Zi
are independent. Since the matrix A is assumed to be deterministic, taking
expectation of both sides of Equation 4.98 gives

(4.99)

An expression of the form

(4.100)

where A is a lower triangular matrix, is called the Choleski decomposition
of matrix R, and the A, AT are called the Choleski factors. Press et al., 1992,
give a numerical implementation of this algorithm. A procedure called sin-
gular value decomposition (Press et al., 1992) also accomplishes the same
result and is sometimes used instead of the Choleski decomposition. The
Choleski decomposition is a simpler and safer alternative for the following
reasons.

■ The Choleski decomposition will only work with a valid correlation or
covariance matrix. For a covariance matrix to be valid, the series of
observations from which the matrix was generated must be sufficiently
long. If the number of observations is insufficient, the Choleski decom-
position will fail (the Choleski decomposition only works with positive
definite matrices).

=
Z̃ Z̃1,{= Z̃n}T

Z̃ AZ=

Z̃Z̃
T

AZ( ) AZ( )T=

=

Z̃Z̃
T

A ZZT( )AT=

Z̃i
Z̃Z̃T

E Z̃Z̃
T[ ] E A ZZT( )AT[ ]=

R AE ZZT[ ]AT=

AIAT=

AAT=

R AAT=
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■ The covariance matrix entries must be stated with enough numerical
precision. Even if the number of observations are enough to generate a
valid covariance matrix, an insufficient number of valid digits in the
numerical representation of the matrix may be sufficient to ruin it. This
is particularly true of large covariance matrices. A large covariance
matrix is an extremely rigid mathematical entity. Any attempt to tinker
with the entries of a large covariance matrix will almost certainly inval-
idate it. If the matrix is invalid because of insufficient accuracy or
because it was improperly manipulated, this will also be revealed by
the failure of the Choleski decomposition.

Notice that the second observation also implies that we cannot investi-
gate the effect of correlation on the price of a derivative by simply perturb-
ing an entry in the correlation matrix of the underlying assets.

QUASI-RANDOM SEQUENCES

Quasi-random sequences allow us to conduct simulations that under
some conditions may be far more efficient than standard Monte Carlo.
The basic problem with standard Monte Carlo is that, unless special tech-
niques are used (which we will discuss in the next chapter), it is intrinsi-
cally slow.

Despite this problem with speed, which in many cases can be
addressed with the techniques we will discuss in Chapter 5, standard
Monte Carlo has two two highly desirable properties when applied to
financial pricing.

■ In most cases, simulation with standard Monte Carlo has a clearly
defined convergence law. This allows us to stop simulating when we have
reached the desired level of accuracy. This means that we have a clearly
defined termination criterion to stop simulating at the right time.

■ The efficiency of a simulation with standard Monte Carlo is not sensi-
tive to the dimensionality of the problem.

Although these two properties are highly valuable, the fact that stan-
dard Monte Carlo can be very slow in financial pricing has motivated the
search for alternatives. The outcome of this search are so-called “quasi-
random sequences.” These are sequences of numbers that fill in a multi-
dimensional unit hypercube in a way that they can be used in replacement
of a multidimensional uniform distribution. As we will see, quasi-random
sequences can lead to dramatic increases in speed, but this comes at the
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cost of negating, to some extent, the good properties of standard Monte
Carlo mentioned above.

■ Although simulating with quasi-random sequences has a convergence
law, it is preferable to determine a termination criterion by calibrat-
ing the quasi-random sequence computation with standard Monte
Carlo results. In other words, we have a less clearly defined termina-
tion criterion.

■ The efficiency of a simulation with a quasi-random sequence be-
comes increasingly penalized as the dimensionality of the problem
grows.

The second point, which at first sight might appear to be a disadvan-
tage, can be significantly ameliorated if the problem can be reformulated in
a way that most of the variability of the underlying stochastic factors
becomes concentrated in a few dimensions. In this case, the speed potential
of quasi-random sequences can be more fully realized. This is precisely
what happens when we build scenarios using the Brownian bridge ap-
proach.

The reason why regular Monte Carlo is slow is because randomly
sampling from a multidimensional distribution does not fill in the space
with the regularity that would be desirable. Random points tend to
cluster, and this clustering limits the efficiency with which regular
Monte Carlo can capture payoff features. This clustering is best
observed in low dimensions. Figure 4.1 shows what happens when we
plot in the unit square points drawn from a two-dimensional uniform
distribution. 

Clearly, the points don’t fill in the square uniformly, but have the ten-
dency to cluster. When the two-dimensional uniform deviates are mapped
to two-dimensional standard normals, the clustering remains. When ap-
plied to option pricing, this clustering causes a simulation with few random
samples to miss features that determine the option value. As we will see in
the next chapter, the number of samples needed for accurate pricing using
straight Monte Carlo is surprisingly large.

Since the purpose of simulation in pricing is to compute an expecta-
tion, another alternative we may consider is to make a uniform grid in
the [0, 1]d cube and then use those grid points to evaluate the payoff
and distribution functions that are involved in the expectation. In this
approach, we would use a standard multidimensional integration tech-
nique to evaluate the expectation numerically. To illustrate how this
would work, consider a call option on a log-normal stock with maturity
t T.=
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The price is given by

(4.101)

Since Z is a standard normal and the standard normal density function
is given by

(4.102)

the value is

(4.103)

FIGURE 4.1 Illustrating clustering. 128 uniform deviates in the unit square.
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We can write this integral in terms of the inverse of the standard density
function:

(4.104)

The integrand in this equation is well behaved, and we would expect
that a few equally spaced points in the [0, 1] interval should be enough to
compute the integral with good accuracy. It is easy to verify that for T 1,
r 0.1, S(0) 100, K 100, and � 0.3, just four equally spaced
points in the unit interval, we can compute the price with three digits of
accuracy!

Notice that the integral in Equation 4.104 can also be interpreted as an
expectation over uniform random samples:

(4.105)

If we compute this expectation by sampling, without repeats, from
equally spaced points ui in the unit interval, the expression

(4.106)

is equivalent to a first-order integration of Equation 4.104, since :

(4.107)

Clearly, since the numerical integration of Equation 4.104 can be done
efficiently with a few equally spaced points in the unit interval, this also
means that computing the expectation in Equation 4.105 by sampling from
equally spaced points in the unit interval is very effective, since both
approaches are equivalent.

Unfortunately, there are two fatal flaws with this approach.
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■ The number of data points needed to sample from grids explodes like
Nd, where N is the number of points per dimension and d is the num-
ber of dimensions. This constitutes an insurmountable computational
barrier. This is the same type of difficulty faced by the finite difference
approach, which limits the number of dimensions that can be practi-
cally handled to three or less.

■ It is not possible to incrementally enlarge the size of the grid and at the
same time keep the grid uniform. This means that with a uniform grid
approach it is not possible to have a termination criterion that can be
invoked incrementally. This is a very serious limitation.

Quasi-random sequences are a deterministic way of filling in multidi-
mensional unit intervals with the following characteristics.

■ The intervals are filled in more evenly than with Monte Carlo. The
evenness is captured by the concept of discrepancy. The discrepancy
increases as the number of dimensions increases.

■ As the number of dimensions increases, quasi-random sequences become
increasingly less capable of evenly filling in the space. In high dimensions
(typically over 30) they leave holes in the sampling space, leading to a
steadily decreasing ability to capture the variability of random variables
associated with those dimensions.

■ It is possible to define a theoretical error bound in an incremental way.
However, unlike the case of regular Monte Carlo, with quasi-random
sequences the actual numerical error can be drastically different from
the theoretical error bound. For this reason there is a need to use stan-
dard Monte Carlo to calibrate simulations with these sequences

Figure 4.2 shows a plot of 256 points of a two-dimensional Sobol
sequence. When compared with Figure 4.1, it is clear that the Sobol points
cover the unit square more uniformly. 

Figure 4.3 shows a plot of dimensions one and six of a six-dimensional
Sobol sequence. Comparing this figure with the previous one, we see that
Figure 4.3 shows a more visible pattern of points and has a less “random”
look. As the number of dimensions increases, the points of quasi-random
sequences tend to leave open spaces that eventually may make the use of
standard Monte Carlo more advantageous.

There is one fundamental distinction between random or pseudorandom
numbers and quasi-random sequences that we will remark here and elaborate
more on later in the chapter. Notice that when dealing with truly random
numbers, we can construct random points in [0,1]d by making multiple calls
from the same uniform random number generator and assigning each outcome
to a different dimension. This is how Figure 4.1 was produced. This is not the
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FIGURE 4.2 Two-dimensional Sobol sequence. 256 Sobol points in the unit square.

FIGURE 4.3 Dimensions one and six of a six-dimensional Sobol sequence. 256 
Sobol points in one unit square.
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way quasi-random sequences work. A two dimensional quasi-random
sequence, for example, cannot be built by assigning the outcomes of one-
dimensional sequences to two dimensions. This is a fundamental difference in
practical applications. It is commonly stated that software applications can be
made to work with pseudorandom numbers or with quasi-random numbers by
simply replacing the algorithm that produces the input to the Choleski
construction of correlated normals. This is a simplistic view that can lead to
serious trouble if the implementation is not done properly. With pseudorandom
numbers, the algorithm that produces the input needed to get correlated
normals does not need to know the dimensionality of the problem. With quasi-
random sequences this is not the case. This fact has implications in the object
design of financial software.

To visualize what may happen if you use one-dimensional quasi-
random sequences to build multidimensional random variables, consider
Figure 4.4.

The points not only don’t fill the unit square uniformly; they are
restricted to a subspace. If we use this as the source of uniforms for our
simulation, we simply get the wrong answer.

FIGURE 4.4 Making a “two”-dimensional distribution with one-dimensional 
Sobol points. 128 Sobol points from a one-dimensional sequence alternatively 
assigned to dimensions one and two. 
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The Concept of Discrepancy
The local discrepancy, D(Cj; N), of a quasi-random sequence is defined as

(4.108)

where Cj is a subcube of the hypercube.
The discrepancy, (N), is defined as

(4.109)

The most popular quasi-random sequences, such as the Halton, Sobol,
Faure, and Niederreiter sequences, have discrepancies that satisfy

(4.110)

where c(d) depends only on d and is independent of the total number of points, N.

Discrepancy and Convergence: 
The Koksma-Hlawka Inequality
The convergence of an integral approximated by quasi–Monte Carlo simu-
lation is characterized by the Koksma-Hlawka inequality. The purpose of
this section is to show that although we can make a theoretical statement
about convergence in quasi–Monte Carlo, this statement is presented in a
manner that has limited practical value. For detailed derivations and
proofs, the reader is referred to the book by Niederreiter, 1992.

Assume we are interested in approximating the integral

(4.111)

where Cs is an s-dimensional unit hypercube. We define the variation in the
sense of Vitali by

(4.112)

With this, we define the variation of f in the sense of Krause as

(4.113)
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The Kokma-Hlawka inequality is

(4.114)

where xn are multidimensional samples from Cs.
We can now appreciate that this criterion for convergence is extremely

difficult to change into a numerical statement. The reason for this is that
these variations involve higher derivatives of the function we are trying to
integrate. Obviously, in most interesting cases when we resort to numeri-
cal integration with simulation, we don’t know the analytical form of
function f(.).

Proper Use of Quasi-Random Sequences
In constructing scenario trajectories, we need to advance the stochastic pro-
cess, S(t), from one point in time to the next. To get a particular trajectory
we can work with S(t) directly or we can first construct a Wiener path and
then use the path or the Wiener process, W(ti), or the Wiener increments,
W(ti+1) W(ti), to get S(ti). The sequence of time points depends on whether
we are using the Brownian bridge approach or not. If we are not using the
Brownian bridge, we proceed sequentially from t1 to tI. In this case, it does
not really matter whether we work with S(t) directly or build W(t) first.

One-Dimensional Scenarios Figure 4.5 shows the building of a one-dimensional
scenario set with pseudorandom numbers.

Figure 4.6 indicates the building of a one-dimensional scenario set with
pseudorandom numbers.

The main difference in these two approaches is the call of the quasi-
random sequence generator. This happens before a particular trajectory is built.

If we are using the Brownian bridge concept, the inner loop in Figure 4.6
must be changed to reflect the order in which the new W(ti) are created with the
Brownian bridge. In the case of a four-point trajectory, this order is i 4, 2, 3.

Multidimensional Scenarios If we are building multidimensional scenario
sets, the pseudocode for standard pseudo–Monte Carlo is shown in Figure 4.7.
Here we assume that the correlation matrix of the d (t) does not depend on
time. If the correlation matrix is time dependent, there are two alternatives. The
Choleski factorization can be done k times before the j-loop is started and the
matrix array of Choleski factors can be kept in memory, or the Choleski decom-
position is done at every time step. In the latter case there is significantly more
numerical work.   

1
N
----- f xn( )

n=1

n=N

∑ f u( ) ud
C s∫– G f( )D∗ N( )≤

–

=

S
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The use of quasi-random sequences for building multidimensional tra-
jectories is more involved. If we are not using the Brownian bridge idea, the
pseudocode is as shown in Figure 4.8.

In this case, at each Monte Carlo cycle we need to produce an Id-
dimensional quasi-random sequence. At each time step, we use d points
from the quasi-random sequence to produce the correlated Wiener process
across the dimensions of the processes (t). 

for (j�1; j J; j��)
{

for (i�1; i I; i��)
{

Sample uniform random variable, Ui.
Using Ui, compute standard normal.
Get W(ti+1) W(ti).
Get S(ti+1) by replacing W(ti+1) W(ti) in exact solution
advancement or in numerical scheme.

}
}

FIGURE 4.5 Pseudocode for one-dimensional scenario set with pseudorandom 
numbers. The set has J trajectories, each trajectory has I time points. 

for (j�1; j J; i��)
{

Sample an I-dimensional quasi-random sequence.
for (i�1; i I; i��)
{

Select the ith dimension from the quasi-random sequence; this is the
uniform “random” sample Ui.
Using Ui, compute standard normal.
Get W(ti+1) W(ti).
Get S(ti+1) by replacing W(ti+1) W(ti) in exact solution
advancement or in numerical scheme.

}
}

FIGURE 4.6 Pseudocode for one-dimensional scenario trajectory with quasi-
random sequences (no Brownian bridge). The set has J trajectories, each trajectory 
has I time points.
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≤
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Get Choleski factors for correlation matrix of d .
for (j�1; j J; j��)
{

for (i�1; i I; i��)
{

for (k�1;k d; k��)
{

Sample uniform random variable, Ui.
Using Ui , compute standard normal.
Get Wk(ti+1) Wk(ti).
Get Sk(ti+1) by replacing Wk(ti+1) W(ti) in exact solution
advancement or in numerical scheme.

}
}

}

FIGURE 4.7 Pseudocode for d-dimensional scenario set with pseudorandom numbers. 
The set has J trajectories, each trajectory has I time points, the number of process 
dimension is d.

Get Choleski factors for correlation matrix of d .
for (j�1; j J; j��)
{

Sample an Id-dimensional quasi-random sequence
for (i�1; i I; i��)
{

Select set of d samples from the quasi-random sequence, Uk,k�1 d.
Using the Uk and the Choleski factors, get correlated standard normals.
for (k�1;k d; k��)
{

Get Wk(ti+1) Wk(ti).
Get Sk(ti+1) by replacing Wk(ti+1) W(ti) in exact solution
advancement or in numerical scheme.

}
}

}

FIGURE 4.8 Pseudocode for multidimensional scenario trajectory with quasi-random 
sequences (no Brownian bridge). The set has J trajectories, each trajectory has I time 
points, the number of process dimensions is d.
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If we want to use the Brownian bridge approach with multidimen-
sional trajectories, we would sweep the i-loop in Figure 4.8 in the
sequence required by the Brownian bridge. The issue arises, however, as
to how to select the order of trajectories in the k-loop. It might be
advantageous to order the trajectories from larger volatility to smaller
volatility, thereby ensuring that the higher volatility processes get
affected by the lower dimensions of the quasi-random sequence. 

INTEREST RATE SCENARIOS

In the “Scenario Nomenclature” section earlier this chapter, we defined a
spot trajectory as a set of values (ti), i 1, , I that are an approximation
to the exact realizations of the solution to the stochastic differential equation
describing S(t). If we have a vector of processes, (t), we speak of a multidi-
mensional trajectory. These trajectories are lines in the S t domain, and in
the case of multidimensional processes, the trajectories are sets of lines. In the
case of interest rates in general, a trajectory does not consist of a single line
but of a family of forward curves. Here we discuss how to generate arbitrage-
free interest rate scenarios. These scenarios are useful for pricing, but they
can also be used for risk management calculations if the time horizon is
short.

We will discuss the dynamics of forward-rated and LIBOR rates.

HJM for Instantaneous Forwards
To gain insight into the dynamics of interest rates, we first derive the
equation that governs the instantaneous forward rate. The basic frame-
work for the dynamics of forward rates is the Heath-Jarrow-Morton
model of interest rates (Heath, Jarrow, and Morton, 1992). The discus-
sion presented here is a summary. For more detail, the reader is referred
to the specialized literature.

The instantaneous forward rate observed at time t and maturity at time
T is denoted by f(t, T). We postulate the following SDE for f(t, T) (the rea-
son for this is the practicalities of implementation):

(4.115)

where � is a constant, and the argument in � indicates that we assume stationary
volatility. The subscript in dft indicates that the differential results from a change
in t. We need to determine �. To do this, we require that the drift at time t of a zero
coupon bond, B(t, T), maturing at T should be f(t, t). The price of such a bond is

(4.116)
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To construct the process for B(t, T), we define

(4.117)

Hence,

(4.118)

Replacing df from Equation 4.115, this becomes

(4.119)

where

(4.120)

(4.121)

Using Ito’s lemma, the process for the bond price is

(4.122)

Replacing from dG from Equation 4.119, we get

(4.123)

Since in the risk neutral measure the drift of dP(t, T) must be equal to
f(t, t), the following relationship must be satisfied:

(4.124)

Replacing for a and b, we get

(4.125)

Differentiating both sides with respect to T, we get the familiar HJM drift:

(4.126)

The HJM approach can also be formulated for noninstantaneous for-
ward rates. However, in practice many products are priced from LIBOR
rates, rather than forward rates. The next section describes the analytics
needed to construct LIBOR rate scenarios.
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LIBOR Rate Scenarios
The LIBOR rate observed at time t, applicable to the time interval ti, ti+1, is
defined by

(4.127)

Our objective is to advance a sequence of LIBOR rates {L(t, t1, t2),
L(t, t2, t3), , L(t, tn–1, tn)} from observation time t to observation time t �t.
To do this we will derive stochastic differential equations for each of the LIBOR
rates and we will solve these equations numerically. Notice that as we advance
the rates, the observation time eventually reaches the period over which the
LIBOR rate is defined. When this happens, that particular rate is fixed and no
longer changes. To simplify the algebra, we will use the following notation:

(4.128)

To derive the SDE governing Li, we apply Ito’s lemma to get :

(4.129)

From Equation 4.127 we get

(4.130)

We now express the dynamics of  in the risk neutral world (where
bond prices have an instantaneous rate of return equal to the instantaneous
risk free rate, r(t)):

(4.131)

The important thing to remark here is that the Wiener process W is the
same for all the bonds. If the bond returns are not perfectly correlated, then
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W is a vector or a multidimensional Wiener process, and �i is also a vector
(we discussed this extensively in Chapter 2). Here we assume that the
proper interpretation of W as a scalar or vector is understood. Replacing
Equations 4.130 and 4.131 into Equation 4.129, we get

(4.132)

This can be rewritten as

(4.133)

where the quantity Wi+1 on the right is a Wiener process in a particular
measure. This measure is the one induced by Bi+1 (this is the case because
this expression was derived by considering the process for ). 

Introducing the definition,

(4.134)

the SDEs for the LIBOR rates are

(4.135)

(4.136)

where each Wi is a Wiener process in a different measure. We cannot gener-
ate scenarios if the Wiener processes are in different measures. For the con-
struction of the Wiener processes to make sense, all of them must be
expressed in the same measure. In this case this issue is very easy to deal
with, because successive Wi processes can be generated recursively in terms
of a single Wiener process.

Two successive Wi processes are related as follows:
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(4.137)

This gives

(4.138)

Using Equation 4.134, we get

(4.139)

This shows that we can write the process Wi+1 (which is a Wiener process
in the measure induced by Bi+1) as Wi (which is a Wiener process in the measure
induced by Bi), plus a drift. This means that we can construct scenarios by gen-
erating one of the Wi processes and then expressing the rest of the Ws recursively
in terms of the first one. In this way, the scenarios would be constructed by draw-
ing random numbers in the same measure. Notice that the drifts in Equa-
tion 4.139 are path dependent. This is not a problem if we proceed as follows.
Given the initial term structure of LIBOR rates, we obtain initial values for Li.
We next select a starting Wiener process index and generate Z,
where Z is a standard normal random variable and �t is the integration step. We
then compute the remaining Wiener increments recursively as follows:

(4.140)

We next need to update the LIBOR rates. To do this, we observe that
Equation 4.136 has a local log-normal structure if we assume that �i is con-
stant. We then get

(4.141)

We can now increment time by �t and use Equation 4.140 to get the next
set of Wiener increments, which we then insert in Equation 4.141 to get the
next LIBOR increments. This procedure captures the complicated path
dependency of the drifts in an explicit manner (details about the concept of
explicit computations will be given in Chapter 7). It is possible to improve
on this simple approach to the integration of Equation 4.136 by making
a predictor-corrector update of the drift in Equation 4.140. To do this, we
first compute a preliminary update (t �t). We then use the average

( (t �t) Li(t)) in place of Li(t) in Equation 4.140 to generate a new set
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of �Wi+1, which we finally use in Equation 4.141 to get a final update for
Li(t �t). This allows us to take very large integration steps (of the order of 0.5
years for realistic market data) and still properly capture the path dependency.
The concept of predictor corrector will be fully explored in Chapter 7.

To carry out the recursive update of the Wiener processes, we can start
with any Wi. It is convenient, however, to use the Wi of the LIBOR rate that
will still be alive and as close as possible to the horizon of the scenarios we
are building (the smallest ti, such that , where  is the maxi-
mum integration time of Equation 4.136). This means that typically we
start with a Wiener process corresponding to a high maturity and work
backward to lower maturities.

PRINCIPAL COMPONENT ANALYSIS TO 
APPROXIMATE CORRELATION MATRICES

In the generation of trajectories for multidimensional processes, such as the
LIBOR trajectories we described in the last section, it is often desirable to
reduce the stochastic dimensionality of the scenarios, while at the same
time capturing features considered important. Among the considerations
for doing this are the following.

■ Market practice in some cases relies on models that assume a low
dimensionality. Calibrating against such models may motivate reducing
the number of dimensions. 

■ By doing our simulations with reduced stochastic dimensions it may
become possible to perform a quality check on the simulated results by
comparing with results from techniques that are reliable but that only
work in very low dimensions, such as finite differences and trees. 

■ Reducing the number of dimensions may enable us to gain a better
understanding of the processes involved. Historical data shows that
correlation contains relatively stable information as well as noise.
Dimensionality reduction can help separate the two and facilitate mod-
eling of the stable information.

A standard procedure for reducing the dimensionality of a process is as
follows. Given a vector process, L, of length n, defined by

(4.142)

where L and a are n-vectors, � is an n-vector, b is an n m matrix, and dW
is an n-vector of independent Wiener processes, our objective is to get the
matrix b such that

+

ti tmax≥ tmax

dL adt �bdW+=

×
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(4.143)

where bbT is an approximation to the measured correlation matrix of
dL, C. The measured correlation matrix can be factored as

(4.144)

where A is the matrix of eigenvectors of C, and D is the diagonal matrix of
ordered eigenvalues of C. The procedure consists of eliminating the n m
smallest elements of D. We call this resulting matrix . We construct the
matrix,

(4.145)

where  is a diagonal matrix with the square root of the elements of
. This b matrix is n m.
Now consider the matrix . This matrix will look very much

like a correlation matrix, except that its diagonal entries are not equal to
one. We can define

(4.146)

It is easy to verify that with this rescaling, the quantity bbT is a matrix
with ones on the diagonal. This definition of b allows us to reduce the num-
ber of independent Wiener processes from n down to m, while at the same
time preserving the individual volatilities of each element in the vector L.
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European Pricing
with Simulation

s we saw in Chapter 3, the price of a derivative security can be ex-
pressed as an expectation of discounted payoffs. In the case of European

derivatives, where the times when future cash flows occur are known,
Monte Carlo simulation is a robust and well-established way to get an esti-
mate of this expectation. In the case of derivatives with early exercise fea-
tures, such as American or Bermudan options, pricing with simulation is a
much more challenging problem. It is only due to very recent advances that
simulation can be viewed as a practical approach for pricing early exercise
derivatives.

In this chapter we will discuss some of the standard methods and issues
associated with pricing European derivatives. The discussion on methods
and issues is by no means exhaustive, but it consists of a selection made on
the basis of practicality and usefulness.

ROLES OF SIMULATION IN FINANCE

When we refer to simulation, what we have in mind is known as the Monte
Carlo method (pseudo–Monte Carlo and quasi–Monte Carlo are varia-
tions). The book by Hammersley and Handscomb (1964) is an excellent
general source on the Monte Carlo method. The texts by Bratley, Fox, and
Schrage (1987) and by Law and Kelton (2000) are good general references
on simulation.

There are two primary areas in the application of the Monte Carlo
method in finance, with distinct requirements and issues: pricing and risk
management. In the next two subsections we briefly describe some of the
main differences between these two applications of simulation.

A
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Monte Carlo in Pricing
In this case we are interested in computing (or estimating) an expectation. In
the case of a European derivative, we are interested in the expectation

(5.1)

where B(.) is the normalizing asset and V(T) is the known payoff at matu-
rity.

In the case of an option with early exercise, we are interested in

(5.2)

where � is a stopping time and F(�) is the payoff at t �. What is impor-
tant about these two problems is that we are trying to compute expecta-
tions and we assume that the distribution properties of the function
whose expectation we want are determined by underlying processes (Ito
or Poisson processes, for example). These processes are given to us as part
of the problem formulation, and we accept the distributions that result
for . Typically, we are not looking for properties other than the
expectation. In applying Monte Carlo to pricing a European derivative,
we face two challenges.

■ How do we construct the function  from the underlying processes? 
■ How do we estimate the expectation efficiently and accurately?

The first item is important, because we may not have an analytical for-
mula for  as a function of the underlying processes. In fact, in many
cases of practical interest, we don’t. The second item is important because
we must get the answer with known error bounds (if at all possible) and
within time constraints.

In computing the distribution of the discounted payoffs, we must
work with processes that are specified in an appropriate measure. In its
simplest form, Monte Carlo pricing is carried out in the pricing measure
used to derive the derivative price. However, since we are only interested
in an expectation, we do not necessarily have to carry out our simula-
tion in the pricing measure. We may be able to carry out our simulation in
a measure other than the pricing measure, but one that is more suitable for
speed and accuracy. Or, we may be able to work with a function that is not
the discounted payoff, but one with the same expectation as the discounted
payoff. These aspects are quite different in risk management applications
of simulation.
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In summary, here are the main challenges in simulation applied to pricing.

■ Speed: The computation of the expectation should be fast enough to be
satisfactory for trading. At the time of this writing, this amounts to the
order of a second or less on high-end desk computers.

■ Accuracy: Accuracy should be good enough for trading and hedging.
■ Early exercise: Although significant advances have occurred in this

area, at the time of this writing the use of simulation in early exercise
still has room for significant improvements. We will discuss this topic
extensively in the next chapter.

Monte Carlo in Risk Management
The applications of Monte Carlo simulations to risk management have to
do with estimating losses that can occur with a given probability over a
given time horizon. The area where this is relevant is known as value-at-
risk computations (Jorion (2000) is a comprehensive source on this sub-
ject). In value-at-risk-computations we want to arrive at statements such as,
“We are 90 percent confident that over the next 24 hours there is less than
a 1 percent chance that losses will exceed 20 million dollars.” This state-
ment tells us that in risk management we are typically interested in resolv-
ing the tails of distributions. This poses different challenges than estimating
the expectation, which is what matters in pricing.

The appropriate measure for risk management applications of simula-
tion is the market or real world measure. This may or may not be critical,
depending on the time horizon and the nature of the portfolio. Furthermore,
the fact that we are interested in events that occur in the tails of distributions
also means that we are interested in the dependency structure of extreme
events. This dependency is not properly described by correlations and brings
in considerations quite different from what is relevant to pricing. A good
reference in this area is in Embrechts, Resnik, and Samorodnitsky (1999).

Furthermore, unlike pricing applications, the demand on accuracy in
risk management applications refers to the aggregation of a large number
of financial contracts, not to the individual contracts. The same can be
said of computational speed. We will not elaborate on risk management
applications of simulation in this book.

To summarize, the main challenges of simulation in risk management
are presented below.

■ Speed: The entire portfolio of the institution must be completed over a
period of a few hours. This may mean that the methodology of pricing
used for the purpose of risk management could be different than the
one used for trading.
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■ Reliability: The results obtained must pass backtesting standards. This
is a modeling issue, highly influenced by statistical considerations. 

■ Relevance: This refers to the question of whether the results of simula-
tion can be used for decision making or purely for compliance with reg-
ulatory requirements.

THE WORKFLOW OF PRICING WITH MONTE CARLO

The following items describe the principal ideas in Monte Carlo pricing.
We will discuss these items in much greater detail in the rest of the chapter.

■ In its simplest form, pricing with Monte Carlo works by evaluating the
payoff function repeatedly and taking the average of these evaluations.
Each evaluation is called a Monte Carlo cycle. In more refined imple-
mentations, the evaluation that is conducted at each Monte Carlo cycle
is not of the payoff function but of a different function with the same
expectation but more desirable statistical properties.

■ Each evaluation is preceeded by the computation of underlying
assets or processes. In the case of a simple European equity option,
for example, the evaluation of the payoff function requires knowl-
edge of the underlying price at maturity. The underlying price needed
to evaluate the payoff function is captured in the concept of sce-
nario. The computation of scenarios may require sampling from a
known distribution function or may require the solution of stochas-
tic differential equations. Each Monte Carlo cycle requires the com-
putation of a scenario. We discussed the generation of scenarios in
detail in Chapter 4.

■ Each Monte Carlo cycle gives us a number (the evaluation of the
payoff function or of some other, more statistically suitable func-
tion), which is the realization of a random variable. In simple Monte
Carlo, the random variables whose values are realized in each cycle
all have the same properties and are independent. These properties
are called properties of the population or properties of the parent
distribution. Monte Carlo simulation consists of producing a finite
sample from an infinite population. In some implementations of
Monte Carlo, the random variables that get realized at each cycle
may not be independent.

■ The objective of Monte Carlo simulation in pricing is to infer primarily
the mean, but perhaps also other moments of the parent distribution,
namely, the distribution of the properly normalized payoffs (which is
unknown to us, of course), from the properties of the sample generated
by the Monte Carlo cycles.
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■ In order to infer the statistical properties of the parent distribution, we
need to work with estimators of those properties. A good Monte Carlo
simulation hinges on the design of efficient estimators.

ESTIMATORS

An estimator is a random variable that we can use to infer the statistical
properties of the parent distribution. For example, the mean of the sam-
ple is an estimator of the mean of the population. Since estimators are
random variables, they have their own distributions. The estimator com-
puted from a sample is a realization of a random variable. An efficient
estimator is one whose distribution is highly concentrated around the
true value of the statistical parameter we are trying to measure. An unbi-
ased estimator is one whose expectation is the statistical quantity we are
estimating.

Estimation of the Mean
Assume n independent and identically distributed (IID) random variables

 Each Xi is a normalized (discounted) evaluation of the payoff
function as a result of the ith Monte Carlo cycle. Consider the sample
mean:

(5.3)

The mean of the sample is an estimator of the mean of the population.
Is it an unbiased estimator of the population mean? To answer this ques-
tion, we simply take the expectation of :

(5.4)

Since the expectation of each Xi is the same as the expectation of the
population,

(5.5)
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This gives

(5.6)

which shows that the expectation of the sample is an unbiased estimator of
the expectation of the population.

How good is this estimator? To answer this, we look at the variance of 

(5.7)

Here we made use of the fact that the Xi are independent random vari-
ables from a parent distribution with variance . This gives us:

(5.8)

This tells us that the standard error of the mean estimator is inversely
proportional to the square root of the number of samples. Notice that the
estimator of the mean is the sum of independent random variables. The cen-
tral limit theorem tells us that the mean estimator is normally distributed.

If we assume that the computational work involved in estimating the
mean is linearly proportional to the number of cycles, then

(5.9)

This tells us that if the computational time needed to get a sample Xi is
independent of the total number of samples, then in order to double the
accuracy we must quadruple the computational work.

However, it is perfectly possible to have a situation where in order to
increase the accuracy of the estimation the computational work needed to

E X[ ] E X[ ]=

X:

�X
2 var X( )=

var 1
n
--- Xi

i 1=

i n=

∑=

1

n2
------ var Xi( )

i 1=

i n=

∑=

1

n2
------ �X

2

i 1=

i n=

∑=

1

n2
------n�X

2=

�X
2

�X
2 �X

2

n
--------=

Computational work n
�X

2

Error( )2
---------------------∝ ∝



European Pricing with Simulation 127

compute Xi increases. In such a case this scaling law breaks down and the
relationship between computational work and accuracy may become far
worse. To visualize how this link between the number of Monte Carlo cycles
and the effort within each cycle may arise, consider a case where the Xi are
computed through some numerical approximation. Clearly, if we are con-
ducting a relatively crude Monte Carlo with a small number of samples, it
may not make sense to excessively refine the computation of each Xi . As we
increase the number of cycles, and as a result we expect to get a better estima-
tion of the mean, then it would make sense to refine the computation of each
Xi . This means that in such a case, the more Monte Carlo cycles we run to
estimate the mean, the more work we do in each cycle. This happens when
the computation of the payoff function involves the numerical solution of
stochastic differential equations. This link between the computational work
of each cycle and the total number of cycles may lead to a computational bar-
rier, where the amount of work needed to further increase the accuracy of the
estimation becomes unmanageable. We will discuss this in greater detail later.

At this point we can make two significant observations.

■ In numerical analysis there is an informal concept known as the curse of
dimensionality. This refers to the fact that the computational load (CPU
time, memory requirements, etc.) may increase exponentially with the
number of dimensions in the problem. The computational work needed
to estimate the expectation through Monte Carlo does not depend explic-
itly on the dimensionality of the problem. This means that there is no
curse of dimensionality in Monte Carlo computations when we are only
interested in a simple expectation. This is the case with European options.
Unlike other methodologies, such as finite differences, where the compu-
tational burden increases with the number of dimensions, there is no such
limitation with Monte Carlo. As we will see later, the situation is less rosy
when we deal with early exercise.

■ The standard error of the mean estimation depends on the standard devia-
tion of the population. Since we don’t know the variance of the population,
we must estimate it. However, the estimator of the variance of the popula-
tion is a random variable, and it has a variance. This implies that there will
be an error in our assessment of the standard error of the mean estimator.

Estimation of the Variance
An obvious candidate for estimating the variance of the population is the
variance of the sample:
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We now determine whether this estimator is unbiased:

(5.11)

The expression

(5.12)

says that the variance of the sample is not an unbiased estimator of the
variance of the population. This also tells us that the quantity
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is an unbiased estimator of the variance of the population because the 
factor cancels:

(5.14)

Since the estimator s2 is a random variable, it has a variance (this is the
variance of the variance estimator).

After some algebra, we can show that the variance of s2 is given by

(5.15)

If the parent distribution is Gaussian, then the variance of the variance
estimator is

(5.16)

For n large, this is approximately

(5.17)

Let’s now compare the standard deviation of the mean estimator and
the standard deviation of the variance estimator:

where we should keep in mind that the second expression is only valid for
Gaussian parents.
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How about estimating the standard deviation, as opposed to the vari-
ance? We can use s as an estimator of the standard deviation. We can
derive an expression for the standard deviation of the standard deviation
estimator. For the case of a Gaussian parent distribution, it can be shown
that the standard error in the estimation of the standard deviation is
(Lupton, 1993)

(5.18)

Assessment of this error may become important in value-at-risk com-
putations.

SIMULATION EFFICIENCY

The efficiency of an estimator refers to the computational cost of achieving
a given level of confidence in the quantity we are trying to estimate. Our
primary concern in pricing is estimating the expected value of discounted
cash flows. As we saw in the last section, both the uncertainty in estimating
the expectation as well as the uncertainty in the error of our estimation
depend on the variance of the population from which we sample. Clearly, if
the variance of the population is smaller, we will need fewer samples to
attain a given level of accuracy.

The simplest approach to computing the expectation of a payoff is to
sample the discounted payoff function. However, we have other choices.
For example, we could sample something that is not the discounted value
of the payoff but which has the same expectation as the discounted payoff.
This will work if in this way we manage to reduce the variance of the pop-
ulation. Another alternative is to distort the probability density of the dis-
counted payoff such that the variance is reduced but the expectation
remains the same.

If we do this, we may end up having an estimator of the expectation
that has significantly smaller variance and allows us to get an accurate
computation of the value with relatively few samples. However, whatever
we do to reduce the variance of the population will most likely tend to
increase the computational time per Monte Carlo cycle. As a result, in
order to make a fair comparison between estimators, we must take into
account not only their variance but also the computational work for each
Monte Carlo cycle.

The total computational work required by an estimator with variance
�2 scales as

(5.19)
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where n is the number of cycles needed to achieve the accuracy we want,
and � is the computational work per cycle. Replacing for n,

(5.20)

Assume now that two estimators with variance  and  and work
per Monte Carlo cycle �1 and �2, respectively. Define , the ratio of
computational work per replication. We can now define an acceleration
factor that results by using estimator 2 instead of estimator 1:

(5.21)

We would like y to be as large as possible. The next section discusses
the main strategies available to accomplish this. We will then go into some
of those strategies in greater detail.

Increasing Simulation Efficiency
If we do nothing about efficiency, the number of Monte Carlo replications
we need to achieve acceptable pricing accuracy may be surprisingly large.
It may in fact be so large that it renders a naive implementation of the
Monte Carlo method all but useless given the practical requirements of
trading and risk management. For example, to price a typical European
call down to one cent per $10 we may need over 1 million replications. In
other instruments, such as index amortizing swaps, the computational
time with naive Monte Carlo may be impractically long. As a result, in
many cases variance reduction is not just a mathematical nicety, but a
practical requirement.

The most commonly used strategies for variance reduction are the
following.

■ Antithetic variates: We construct the estimator by using two Brownian
motion trajectories that are mirror images of each other. This causes
cancellation of dispersion. This method tends to reduce the variance
modestly, but it is extremely easy to implement and as a result, very
commonly used.

■ Control variates: The estimator includes a problem highly correlated
with the one we want to solve. We must know the expectation of the
correlated problem either analytically or numerically. The combined
problem has less variance. The correlated problem is called the control
variate. In either case, we must know the expectation of the control
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variate very well, because any uncertainty in the control variate will
contaminate our desired results. This is the methodology of choice in
many pricing problems. If carried out properly, we can accomplish
extremely high improvements in efficiency. Significant insight and
understanding of the problem is required, however.

■ Importance sampling: We take expectations using a different probabil-
ity density than that of the problem we are solving. This is effectively
an application of the Girsanov theorem, where the measure is distorted
in a manner that the variance is reduced. It can be very effective in
problems involving jumps.

■ Stratification: We arrange the Monte Carlo replications within prede-
termined regions of the distribution, thus covering the space spanned
by the random variables more evenly. Stratification can be particularly
effective when important events that need to be captured occur in the
tails of distributions.

■ Moment matching: This consists in ensuring that the moments of the
sample of the underlying processes are matched to the moments of
the population. It follows the intuitive but rather vague notion that if
we want to get the correct expectation, we should have the correct
underlying process. It is straightforward to implement, but it is not
guaranteed to work.

■ Low-discrepancy sequences: We discussed this topic to some extent in the
previous chapter. Also known as quasi–Monte Carlo methods, these
approaches use sequences that cover the space of underlying random vari-
ables more evenly than regular Monte Carlo. Essentially, low-discrepancy
sequences get around the problem known as clustering, which happens
with regular Monte Carlo. Clustering means that random points gener-
ated by Monte Carlo in a multidimensional space will not be spread out
in a manner that could be considered necessarily optimal for a given num-
ber of dimensions. Low-discrepancy sequences get around this problem
by controlling the way sampling points are arranged in a multidimen-
sional space. When the number of dimensions is small, the idea of evening
out the arrangement of sampling points may appear intuitive and attrac-
tive. As the number of dimensions increases, however, attempts to even
out the distribution of sampling points ends up translating into regions of
space (you can visualize these as holes) that don’t get sampled. Quasi–
Monte Carlo methods were popularized in the early 1990s, but the fact
that many of the interesting and useful properties of simulation depend
on the use of (pseudo-) random numbers has affected the growth of the
popularity of low-discrepancy methods.

Next, we will concentrate on the four of these strategies that have
proven to be the most fruitful in pricing applications.
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ANTITHETIC VARIATES 

The easiest way to describe the method of antithetic variates is through a
simple example. Assume we want to price a European call on a price
process:

(5.22)

The solution of this SDE at maturity, t T, is

(5.23)

where Z is a standard normal random variable. The payoff function is

(5.24)

where K is the strike.
To apply the antithetic variate technique, we generate standard normal

random numbers Zj, j 1,…, n and define two set of samples of the
underlying price:

(5.25)

Similarly, we define two sets of discounted payoff samples:

(5.26)

Now we construct our mean estimator by averaging these samples:

(5.27)

Notice that in constructing the estimator, it is important that we take
each element in the sample to be the sum of  and . If we took the 
and  in succession, we would not have independent random variables in
the sample and we would not be able to invoke the variance properties of
the estimator, which assume the sample is made up of independent random
variables.
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Efficiency of Antithetic Variates
Each sampling in the simulation using the antithetic method involves
roughly twice the work of straight Monte Carlo. It is not exactly twice
because some efficiencies can be incorporated into the simulation architec-
ture. However, it is reasonable to assume that the replication time will
approximately double. Hence, the replication work ration is

(5.28)

The acceleration factor (Equation 5.21) of the antithetic method is

(5.29)

Since var [V+] var [V –], we have

(5.30)

For any variance reduction approach to be worthwhile, its acceleration
factor must be greater than 1. This implies that for the antithetic method to
work, we need V+ and V– to be negatively correlated:

(5.31)

This will happen if the payoff function is a monotonic function of Z.
Notice that if the V+ and V– are perfectly negatively correlated, the effi-
ciency factor becomes infinitely large. This means that in such a case we
would know the answer with only one Monte Carlo cycle. This would hap-
pen if the payoff were a linear function of the random variable Z.

If the payoff is symmetric with respect to Z, then the efficiency factor
will drop below 1, and the application of this method will result in greater
computational effort, rather than less.
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In summary, we can say the following about the antithetic method.

■ Significant efficiency requires an almost linear payoff function. The
function must be linear in the random variable where the antithetic
variable is defined. In the case described here, this is the standard nor-
mal random variable. This situation almost never happens in practice,
and the gains, if any, tend to be modest.

■ There is typically insignificant additional coding effort needed to imple-
ment the antithetic method, and for this reason it is quite commonly
used. However, care must be taken not to use this method blindly, since
we may end up using more computer time, rather than less. Attempts to
combine this method with other methods typically don’t work well.

CONTROL VARIATES

This is typically a far more powerful way of reducing the variance in pric-
ing than using antithetic variates. When properly designed, computations
can be accelerated by one or even two orders of magnitude.

In financial applications of the control variate method, the emphasis
has traditionally been on using a closely related financial instrument whose
value is known analytically to compute the value of another instrument by
simulation. The combination of the two instruments allows us to construct
an estimator with much less variance if both instruments are closely related.
The best-known example in finance is the arithmetic average Asian option,
priced by simulation using the geometric average Asian option as control
variate. While there is a closed form solution of the geometric average
option, there is no analytical solution in the arithmetic average case.

The fact that we are pricing a financial instrument does not mean that
we have to use another financial instrument as control variate. In fact, any
other function of the same underlying processes whose expectation is known,
and which is highly correlated with the instrument we are interested in will
work. Also, we don’t have to know the control variate’s expectation analyti-
cally. Even if we know the control variate expectation numerically, the tech-
nique will work as long as we have a reasonably good assessment of the
control variate expectation.

We need some nomenclature and definitions.

■  is the uncontrolled estimator of the value of the instrument we are
interested in.

■  is the controlled estimator. This estimator has an expectation equal
to or very close to the expectation we are seeking, but its variance is
much smaller than that of .

V

V
c

V
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■  is the estimator of the value of another instrument closely related to the
one we are interested in. We call this instrument the control variate instru-
ment. In general, the control variate does not have to be a valid financial
instrument at all, although in most cases it is. For simplicity, we will refer
to the control variate as an instrument, or simply as the control variate.

■ Va is the value of the control variate instrument. It is important that we
should know this value very accurately.

■ � is a constant to be chosen optimally.
■  is the variance of the control variate.
■  is the variance of the instrument we are interested in.

The controlled estimator is constructed as follows:

(5.32)

In terms of samples, this can be written as

(5.33)

We can select an optimal � by minimizing the variance of the con-
trolled estimator:

(5.34)

The minimum variance corresponds to

(5.35)

This gives

(5.36)

The optimal value of � that minimizes the variance of the controlled
estimator is

(5.37)

With this value of �, the minimum variance of the controlled estimator is

(5.38)
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If the control variate estimator and the uncontrolled estimator were
perfectly correlated, we would be able to compute the value of the instru-
ment we are interested in with one Monte Carlo cycle. This makes sense,
because if both the instrument we want to price and the control variate
instrument were perfectly correlated, then the control variate would simply
be a rescaling of the instrument we are pricing. This implies that pricing the
control variate instrument was essentially the same as pricing the instru-
ment we want, save for a constant. This situation would not materialize in
practice, but we can get fairly close to it.

Efficiency of Control Variates
The acceleration factor, Equation 5.21, becomes

(5.39)

In order to benefit from the control variate, the correlation coefficient
between the instrument and the control instrument must be arranged such
that

(5.40)

Equivalently,

(5.41)

If it took as much time to sample the control instrument as the original
instrument, , and the minimum correlation coefficient for which the
control variate technique will work is 

(5.42)

This is a fairly severe limitation. The reason is that the correlation coef-
ficient between control and instrument enters as �2. We need to have very
tight correlations in order to gain significantly in speed. The minimum
value of � increases rapidly as the incremental effort to compute the control
variate increases.

Case Study: Application of Control Variates to 
Discretely Sampled Step-Up Barrier Options
This simple example shows some of the practical issues to be considered in
applying control variates. The traditional approach to control variates has
been to select a highly correlated financial instrument as a control variate, for
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which the price is known, preferably analytically. This approach is typically
limited to academic examples (the best-known one is the arithmetic Asian
option computed with the geometric Asian as control variate).

A much more practical approach is to select a control variate that can
be solved numerically very accurately with a simple and reliable implemen-
tation, by simulation or other methods, such as finite differences or trees.
This numerically “priced” control variate can then be used repeatedly to
price variations of the instrument of interest. We put priced in quotes
because, as we said earlier, the control variate does not need to be a mean-
ingful financial instrument, although in most cases it will be. We now use a
discretely sampled barrier option to illustrate this case.

Consider the pricing of a weekly monitored European knockout call
with maturity one year, such that in the first half of the year the barrier, H, is
set to $125, and in the second half of the year it is set to $127. Assume the
underlying process is log-normal with risk-free rate r 0.07, dividend yield
d 0.02, and volatility � 0.2. This problem is very simple to solve by
simulation. If the spot price S(0) 100, the price of the option is about $3,
and the variance of the uncontrolled estimator is approximately 35. This
means that the number of cycles needed to estimate the price within $0.01 is

There are several ways to select an effective control variate. Intuitively,
we can think that a discretely sampled barrier option with a constant barrier
could be a reasonable control variate. This is very attractive, because the
case of a discretely sampled constant barrier can be solved almost analyti-
cally by applying a correction to the continuously sampled case (Broadie,
Glasserman, and Kou, 1996). However, the approximate nature of this solu-
tion will contaminate the expectation of the controlled estimator. A more
practical and robust approach is to use a discretely sampled constant barrier
option that has been priced using finite differences. If the finite difference
technique works well for the constant barrier option, why not use it also for
the case we are interested in? We can certainly do this. However, there are
three reasons why we may still want to use simulation for our case and finite
differences for the control variate. One reason is that applying finite differ-
ences to a constant barrier option is extremely simple; another is that the
price obtained with finite differences is reliable and very accurate; and yet
another reason is that this control variate can be reused for different config-
urations of the instrument we are interested in. The main requirement of a
good control variate is that the price must be known very accurately. A fast
computation of the control’s price is welcome, but it is not a critical require-
ment if the control can be used more than once.

The fact that our problem contains a barrier that steps up in the second
half of the year means that the second half of the barrier will be less likely to
be hit when compared with the second half of the barrier of the control, if

=
= =
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everything else stays the same. If we can somehow change something about
the control to decrease the likelihood that the barrier will be hit in the sec-
ond half of the year, it is possible that we will get a better control variate.
One way we can accomplish this is to use a different underlying process for
the control. For example, if we use a process with a lower volatility for the
control instrument, the likelihood of the barrier being hit in the second half
of the year will decrease, and we would expect that a slightly less volatile
underlying will lead to a more efficient control. Another way to accomplish
a similar effect is to increase the dividend yield of the control underlying. If
we do this, the underlying price of the control variate will grow less on the
average in the risk neutral world, and will therefore be less likely to hit the
barrier compared with the case of lower dividend yield.

For the parameters we are discussing here, this is a very effective way of
producing a control variate. Figure 5.1 shows the correlation coefficient of
the uncontrolled estimator and the control variate estimator for varying divi-
dend yield of the price process used in the control variate. We see that if the
control variate is constructed with the same process as that of the problem we
are trying to solve, the correlation coefficient between the uncontrolled esti-
mator and the control variate is approximately 0.87. Assuming that the con-
trol variate doubles the computational effort (very much the case here), this
translates into an acceleration factor approximately equal to 2. If we solve the

FIGURE 5.1 Effect of yield of control variate process on correlation between 
uncontrolled estimator of discretely sampled barrier and control variate. European 
knockout call with H 125 for t < 0.5 and H 127 for t > 0.5, S(0) 100, 
K 100, r 0.07, d 0.02, � 0.2, T 1. Control variate parameters are 
identical except for the barrier: H 125 for  and the dividend yield 
varies as shown.
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control variate with an underlying price process with a dividend yield of
0.035, the correlation coefficient goes up to approximately 0.97. This means
that the acceleration factor is now approximately 8.4. This is a very signifi-
cant gain. We can now get the desired accuracy almost ten times faster.

In this case, the variance of the control variate is approximately 23,
and the covariance of the instrument with the control variate is approxi-
mately 28. This gives  The controlled estimator is then,

(5.43)

The value of the step-up barrier option is 2.962. The expectation of the
control variate with d 0.035 is 2.452.

IMPORTANCE SAMPLING

The basic idea of importance sampling, also known as the measure transfor-
mation approach, consists of computing expectations by sampling from a dif-
ferent distribution than the original distribution, chosen in such a manner that
the variance of the mean estimator is reduced. By sampling from a distribution
other than the original one and properly adjusting the samples, it is possible to
get an estimator that has the same mean as the original one but with less vari-
ance. This adjustment consists of making a measure transformation such that
the expectation of the estimator is preserved. As a result, importance sampling
is a particular application of the Girsanov theorem. Although many textbooks
in simulation don’t refer explicitly to the connection of importance sampling
with the Girsanov theorem, we will emphasize this aspect here because this
connection is particularly relevant in financial pricing.

To introduce the concept of importance sampling, consider the value of a
derivative as an expectation of a suitably discounted payoff function, F(S(T)),
where S(T) is the underlying process at maturity. For simplicity, we assume
the normalizing asset is incorporated in the definitions of V(0) and F(S(T)):

(5.44)

Assume now that the probability density function of S(T) consistent
with Equation 5.44 is p(.). If the normalizing asset were the money market
account, this probability density would be the risk neutral probability den-
sity. The expectation can be written as follows:

(5.45)
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The integral in this equation is a Lebesque integral, but we will not
worry about this here. For the purpose of this discussion, we can assume
that this is a regular Riemann integral. The simple Monte Carlo implemen-
tation of this expectation is

(5.46)

where we have n replications and Si are realizations of independent random
variables with probability density p(.).

We now select another probability density, , that does not vanish
where , and write the expectation as

(5.47)

The Monte Carlo implementation of the expectation in the last equa-
tion is

(5.48)

where  are realizations of independent random variables with probability
density 

By properly selecting , in some cases we can achieve

where  has p.d.f  and S has p.d.f p(.). If we achieve this, depending
on the cost of computing the , we may obtain a significant gain in com-
putational efficiency when computing V(0).

Usually, p(.) is called the nominal probability density, and  is re-
ferred to as the importance probability density.

The quantity  is called the likelihood ratio and is related to the Radon-
Nikodym derivative we introduced in Chapter 2. Equations 5.45 and 5.47
imply

(5.49)
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Remembering from Chapter 2, the expectation in two measures is
related as follows:

(5.50)

To make the connection with the Girsanov theorem is a good idea in
financial pricing because it gives us a means to compute the process Z. We
can then use this process to convert to a more suitable measure for taking
the expectation.

Optimal Importance Density 
A natural question arises: What is the importance probability density, ,
that minimizes the variance of ? If F(.) is a positive function, it is
very simple to see that the optimal importance density is

(5.51)

To verify that this is the case, consider the definition of variance:

(5.52)

Replacing Equation 5.51 in the last equation, we get

(5.53)
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If we select Equation 5.51 as our importance density, we get an estima-
tor of the mean with zero variance! This means that we could solve the
pricing problem with only one Monte Carlo replication. Of course, this is
not really very helpful because Equation 5.51 contains V(0), and if we
knew V(0) we would have already solved the problem.

There are several ways of selecting a suitable importance density. In
financial pricing applications, there are two main approaches.

■ Rather than focusing on computing a formula for the importance density,
we can alter the underlying process and use Girsanov’s theorem to get the
appropriate measure transformation. Since in financial pricing we usually
work with Wiener processes, this approach is particularly appealing. We
present an in-depth discussion of an example showing this technique.

■ We can try to model the importance density directly by considering a
different version of the problem with more suitable properties. The dif-
ference between this approach and the previous one is that here we
don’t alter the parameters of the original problem. This can be very
effective in pricing default-related instruments. We will also discuss an
example of this approach in detail.

Applying the Girsanov Theorem to 
Importance Sampling: European Call Option
To illustrate the Girsanov approach to importance sampling in financial
pricing, consider the case of a European call option on a non-dividend pay-
ing stock with the risk neutral log-normal price process,

(5.54)

where r is the risk-free rate, assumed to be constant. K denotes the strike,
and T is the time to maturity. The value of the option is, then,

(5.55)

In order to solve this problem by simulation, we construct trajectories
of the stock price process from t 0 to t T. Because this is a European
call with no events happening between t 0 and t T, these trajectories
have only two time points of interest, 0 and T. Let’s call the end points of
these trajectories Sj(T), j 1,…, J (we use a superscript to be consistent
with the notation introduced in Chapter 4):

(5.56)
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With the discounted payoff F(S) exp(–rT)[S K]+,

(5.57)

It seems intuitively clear that we are likely to get better performance
by changing the process S(t) in such a way that we increase the proportion
of states at time T that are in the money. That is, if we can change S(t) in
such a way that a larger proportion of the right-hand side of Equation
5.56 are nonzero, we would expect better efficiency. As we will see
shortly, this intuition is only partially right and in some cases may be quite
wrong.

One way to get a larger proportion of trajectories to be in the money
at time T is to increase the drift of the stock price process. If we do this,
the stock price will then move upward more quickly and trajectories will
be more likely to end up in the money. We can change the price process as
follows:

(5.58)

where c is a positive constant. Defining

(5.59)

the stock process can be written as

(5.60)

We know from Chapter 2 that  is a Brownian motion in a measure
defined by the relationship,

(5.61)

where

(5.62)

with . Replacing this in the last equation, we get

(5.63)
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In order to use Equation 5.61, we express it as

(5.64)

The reason for this is that the expectation on the left is the value of the
derivative and is in the same measure as the expectation in Equation 5.55.
The value of the derivative is

(5.65)

We are now ready to compute the expectation on the right-hand side of
Equation 5.65 with Monte Carlo. To do this, we must make sure that all
processes in the argument of  are expressed in terms of , not in terms of
W. This is necessary so that we can treat the W ’s as Wiener processes.

The underlying stock price can be solved from Equation 5.60:

(5.66)

To get the argument in Equation 5.65, we must express Z(t) in terms of
:

(5.67)

Replacing Equations 5.66 and 5.67 in Equation 5.65 and noticing that
Z(0) 1, we get the expectation that we will compute by Monte Carlo
simulation:

(5.68)
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To have a better understanding of what to expect, let’s look at what the
value of the derivative in the original measure would be had we not done
any adjustments to the price process drift:

(5.69)

Notice that while the modification of the drift we did should cause more
paths to end up in the money, the appearance of the exponential in the
denominator in Equation 5.68 complicates the situation. There are two
sources of difficulty. The  term in the denominator will decrease the
effect of the drift distortion we introduce. The negative effect of this term
depends on the time to maturity and the volatility. The second source of
difficulty is the  term in the denominator. Although the drift modifi-
cation we made by adding c to the original drift will tend to make more S(t)
paths land in the money, the Wiener process in the denominator will have
the equivalent effect of bending those trajectories down, as far as the expec-
tation is concerned. For a given volatility, this effect becomes increasingly
more pronounced for higher drift distortions.

These facts are clearly visible in the following results. We will call the
estimator without importance sampling the nominal estimator. Figure 5.2
shows the distributions of the random variable in the expectation of Equa-
tion 5.68 for a call option with the parameters quoted in the caption.

For small drift upward distortions, the distribution is closely centered
around the strike, as expected. For moderate values of c the distribution is
skewed to the right. It is at these values of c that significant gains in perfor-
mance are achieved. For high values of c the distribution becomes skewed

FIGURE 5.2 Effect of drift adjustment on payoff distribution. European call with 
S(0) 100, K 100, r 0.1, � 0.3, T 0.75 years.
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to the left. This is the situation where terms in the Z(T) begin to dominate
the upward drift induced by c.

Figure 5.3 shows the ratio of in-the-money replications of the impor-
tance sampling case over the nominal case. For large values of c the fraction of
in-the-money replications is much larger than in the nominal case, but this does
not translate into increased numerical efficiency for the reasons discussed above.

Figure 5.4 indicates the reduction in variance that we can achieve by
distorting the drift upward. The plot shows the ratio of the variance of the

FIGURE 5.3 Effect of drift adjustment on in-the-money cycles at payoff time. 
Ratio of in-the-money replications at payoff for simulation with and without impor-
tance sampling for European call with S(0) 100, K 100, r 0.1, � 0.3, 
T 0.75 years.

FIGURE 5.4 Effect of drift adjustment on the variance. Ratio of variance with 
importance sampling to variance without importance sampling for European call 
with S(0) 100, K 100, r 0.1, � 0.3, T 0.75 years.
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estimator with importance sampling to that of the nominal estimator. The
plot shows a clearly defined minimum. The shape of the curve suggests that
the counteracting effect of Z(T) is fairly symmetrical with the beneficial
effect of S(t) in the importance sampling measure.

Finally, Figure 5.5 shows the acceleration factor that can be achieved
with importance sampling in this case. As we discussed earlier, the accelera-
tion factor is given by

(5.70)

In our case,

(5.71)

In this case we can assume that the additional work of computing Z(T)
is approximately the same as the work of computing F(S(T)). The figure
shows that c must be greater than approximately 0.1 and less than approx-
imately 0.7 for this technique to work as implemented (with a constant

FIGURE 5.5 Effect of drift adjustment on importance sampling acceleration factor.
Acceleration factor assuming 
 0.5 for European call with S(0) 100, K 100,
r 0.1, � 0.3, T 0.75 years.
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drift distortion). At its best, this technique as applied to this case will give
us a five-fold increase in performance.

Importance Sampling by Direct Modeling of 
the Importance Density: Credit Put
As another application of importance sampling, we consider the case of
cash flows that occur as a result of a default event. Since this is a particu-
larly powerful application of this technique, we explore in detail the pric-
ing of a credit put. A credit put is an instrument that pays an amount,
which may or may not be known in advance, when a default event hap-
pens. The probability of a default event happening within the maturity of
the instrument is extremely low. For this reason, using naive Monte
Carlo to price a credit put (or other instruments that pay on default
events) can be very costly. The vast majority of the effort computing the
estimator will be wasted, since the relevant event occurs with very low
probability.

Assume a credit put that pays a known amount P(t) if a default event
happens at time t �. Assuming that any processes involved are in the risk
neutral measure, the value at time t 0 of this instrument is

(5.72)

where �(�) is the money market account evaluated at default time t �.
The expectation in Equation 5.72 is taken over all default times �. The
standard model for the default process (this topic will be covered in greater
detail in Chapter 7) is the Poisson process. In the Poisson model, the proba-
bility that a default event occurs after time t is given by

(5.73)

where h(t) is called the default intensity and can be a stochastic process.
Denote by � the probability density of �. By definition of probability

density,

(5.74)

Replacing for  we get
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where we use the fact that the expectation is a linear operation. � is the
nominal probability density of default. To get the likelihood ratio, we want
to construct this probability. In a fairly general way, we can assume that the
default intensity follows a stochastic process of the form

(5.76)

where ah is a drift, bh is a volatility, and Wh is a Wiener process. With this
degree of generality, we will not typically know the nominal probability
of default analytically, but we can approximate it numerically very accu-
rately. To do this, we can compute the expectation in Equation 5.75 for
an array of discrete times , , i 1,…, I, where T is a
sufficiently large time to cover the times of default of interest. We now
define

(5.77)

This equation can be solved very efficiently using the techniques explained
in Chapter 4. Once the array �(ti) is known, we can compute the nominal
density at default time, �(�), � ti, using an appropriate interpolation tech-
nique. This is very effective and suitable for Monte Carlo simulations.

To construct the importance density, define now another default inten-
sity function, , which produces default times with probability density

. If we let  denote the default times drawn from , we can estimate
the value of the credit put as follows:

(5.78)

As we discussed before, the ratio  is the likelihood ratio.
There are several choices to select .

■ Assume a stochastic process for  with the same initial values and
drift but higher volatility than that of h(t).

■ Assume a stochastic process for  with the same volatility but
higher initial value and drift than that of h(t).

■ Assume  is a deterministic function.
■ Assume that  is a process unrelated to that of h(t).

Of these possibilities, the simplest one, namely, setting  to a deter-
ministic function of time, is usually quite effective. The first one and the last
ones are unlikely to be effective.
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ĥ t( )
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Assume we choose This gives us a simple analytical expres-
sion for the importance default density:

(5.79)

To start the simulation, we select default times from . To do this, we
equate �� to an exponential variate. Denote by Ui a draw from the uniform
distribution in [0, 1]. Then,

(5.80)

With this, the estimation of the value is as follows:

(5.81)

To understand the power of this approach, we consider a simple case
where the credit put pays a constant amount in case of default, and where
the money market account is �(t) exp(rt), with r constant. Figure 5.6
shows the acceleration factors that can be obtained when the default inten-
sity is 0.01. Figure 5.7 shows the acceleration factors when the default
intensity is 0.02. Both figures were done on the same scale to visualize the
different performance of importance sampling when the default intensity
changes.

FIGURE 5.6 Credit put pricing by importance sampling. Acceleration factors 
assuming 
 1 for h 0.01, 10 percent discount rate, constant payments on 
default, and maturities of 3, 5, and 10 years. Default intensity ratio is .
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From these figures, we see that importance sampling as described here
is more efficient for short maturities and low default intensities. This is very
fortunate because low default intensity and short maturities are the most
challenging cases if no acceleration is used.

We should expect much greater benefits from this technique if there is
significant work in computing the payments on default, or in getting the
discount factor. This would be the case when the interest rate is stochastic,
or when the model used for the discount curve involves the numerical inte-
gration of a stochastic differential equation.

MOMENT MATCHING

When constructing trajectories (in the simplest case each trajectory may
consist of just two points, the starting and end values), we use basic ran-
dom variables. Typically, these basic random variables are standard normal
variables generated from uniform deviates. Since we build a finite number
of trajectories, we use a finite number of (typically) normal random vari-
ables to build our scenarios. The moment matching technique consists of
altering the basic random variables used in building the scenarios such that
some of the moments of the finite set of these random variables are the
same as the moments of their population. If our basic random variables are
standard normals, there are two ways to implement the moment matching
technique. We can require that the mean of our sample of standard normals
must be zero and not worry about their variance, or we may require that
their mean should be zero and their variance should be one.

FIGURE 5.7 Credit put pricing by importance sampling. Acceleration factors 
assuming 
 1 for h 0.02, 10 percent discount rate, constant payments on 
default, and maturities of 3, 5, and 10 years. Default intensity ratio is .
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If we use a set of n standard normals Zi, i 1, , n, using their sam-
ple mean and variance,

(5.82)

(5.83)

we can define new random variables, , with zero mean,

(5.84)

or new random variables, , with zero mean and unit variance,

(5.85)

The evaluation of the derivative price is done by replacing the Zi with
 or .

Although this appears trivial, implementing this technique in simula-
tion algorithms requires some care. The new random variables are not
independent. One consequence of this is that we can no longer use the
variance of the samples to determine the standard error. Instead, we must
resort to batching. This means that we must compute the standard error
of the estimated option price by simulating the estimated option price.
Since this amounts to a Monte Carlo within a Monte Carlo, the computa-
tional time involved can be significantly larger than the case where we
deal with iid random variables. Another consequence is that a naive sub-
stitution of a normal random number generator with the transformed
variates  or  may lead to bad output. To illustrate this point, consider
what happens when we price a discretely sampled Asian option. Such an
option pays on the difference between the arithmetic average of the under-
lying price as sampled discretely between inception and maturity. An effi-
cient implementation using standard normals would consist of generating
price trajectories and building the average value as the trajectory is built.
Once the payoff is evaluated, the trajectory information is no longer
needed and the memory space used for that trajectory is used for the next
trajectory. To advance the trajectory from one sampling time to the next,
we need to invoke a normal random number generator repeatedly. In the
case of a log-normal price process,

(5.86)
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where I is the number of monitoring points. To properly capture path
dependency, the Zi must be independent and normally distributed. If we are
using standard normals to draw the Zi, we can build the trajectories
according to Equation 5.86 one after another, and the function that gener-
ates the Zi does not need to know about the trajectories themselves. To
match moments, however, Equation 5.86 would have to be written as

(5.87)

where J is the number of Monte Carlo replications (or number of trajecto-
ries). Here, the  have had their moments matched in the j direction, not
in the i direction. This guarantees that the cross-sectional basic random
variables are independent. Clearly, this says that now the algorithm that
generates the modified basic random variables needs to know about trajec-
tories. This has some effect on algorithm design and implementation.

Moment matching is not guaranteed to be helpful, but in some cases it is
remarkably helpful. Table 5.1 shows the standard error of a simple European call
option, simulated with 10000 Monte Carlo replications. The standard deviation
of the option price, �C, was computed by batching the simulation 200 times.

Table 5.2 shows similar results for a European discretely sampled arith-
metic Asia call. Clearly, the moment matching technique is far more effec-
tive with the standard European call than with the arithmetic Asian call.
This is a common situation, where the effectiveness of the technique must
be evaluated on a case-by-case basis.

TABLE 5.1 Effect of moment matching on standard deviation of European call 
option price.

����C without MM ����C with mean matching ����C with full MM

0.33 0.186 (accel. 1.77) 0.048 (accel. 6.87)

Note: � 0.4, spot 100, strike 100, risk-free rate 0.1, maturity 1 year.

TABLE 5.2 Effect of moment matching on standard deviation of European 
discretely sampled Asian call option price.

����C without MM ����C with mean matching ����C with full MM

0.178 0.104 (accel. 1.71) 0.093 (accel. 1.91)

Note: � 0.4, spot 100, strike 100, risk-free rate 0.1, maturity 1 year, monitoring 
interval 0.1 year
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In summary, we can say the following about moment matching.

■ Works by making the properties of the input random variables consis-
tent with the population.

■ Easy to implement, but may have algorithm design consequences.
■ Transformed variables are no longer independent. Must use batching

to get standard error.
■ In implementation, care must be taken to preserve independence of

cross-sectional random variables.
■ There is no guarantee of performance. Must be tested on a case-by-case

basis.

STRATIFICATION

Stratification is a technique that shares some of the conceptual ideas of
importance sampling and low discrepancy sequences. In importance sam-
pling, we accelerate the simulation by sampling from a distribution (the
importance distribution) different from the original distribution, but
which emphasizes the regions of greater importance. Stratification does
not modify the distribution, but allocates the sampling points such that
important regions are better captured. As in low discrepancy sequences,
stratification avoids the clustering typical of naive Monte Carlo.

The basic idea in stratification is to divide the region where the ran-
dom variable is defined into disjoint subregions. The expectation is
then computed as the sum of the expectations in each subregion. The
subregions are called strata or stratification regions. This is illustrated
in Figure 5.8. Here, the subregions are one-dimensional intervals. In

FIGURE 5.8 Stratification in one dimension. The region where the random vari-
able is defined is divided into subregions Ri, where the payoff function is sampled. 
f(
) is the probability density function of 
.

�iR
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multiple dimensions, the idea is similar, but the subregions are multidi-
mensional cells.

Assuming that the stratification subregions Ri are given, our task is to
determine how to distribute the sampling points across the subregions, or, in
other words, how to allocate sampling points to different strata, such that the
variance of the expectation estimator is minimized. Denote the underlying sto-
chastic variable by 
 and the function whose expectation we want by F(
). In
pricing a derivative, F(
) is a discounted payoff function. Depending how we
pose the problem, 
 can be the underlying price, the Wiener process used to
construct the underlying price, the standard normal variable used to construct
the Wiener process, or the [0, 1] uniform random variates used to generate the
standard normals. The expectation of the discounted payoff in a subregion is

(5.88)

and the derivative value is

(5.89)

where we assume that there are m subregions.
To analyze stratification we define subpayoff functions, Fi(
), such that

 if  and  if . This is shown graphically
for the one-dimensional case in Figure 5.9.

With this, Equation 5.88 can be written as

(5.90)

FIGURE 5.9 Stratification in one dimension. The subpayoff function Fi(
) agrees 
with F(
) in subregion Ri and is zero elsewhere.
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where pi is the probability mass in Ri, and the expectation is taken with
respect to a probability density equal to  if  and equal to 0 other-
wise (with this definition, this probability density integrates to 1 over the
range of 
). Replacing in Equation 5.89 we get

(5.91)

We can now estimate the expectation in Equation 5.91 by averaging the
samples of Fi(.) over the entire range of 
. However, the only nonzero values
of Fi are for , where  This gives us:

(5.92)

To compute the variance of  we use the fact that the random vari-
ables on the right-hand side of Equation 5.92 are independent:

(5.93)

In Equation 5.93,  is the variance of F(
) over Ri. The analytical expres-
sion for this variance is

(5.94)

To determine the best allocation of ni to the strata Ri, we must solve
the following constrained minimization problem:

(5.95)
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(5.96)
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This problem is easy to solve using Lagrange multipliers (Courant and
John, 1974). Introducing the Lagrange multiplier �, we must solve the
system of equations,

(5.97)

This is a system of m 1 equations and m 1 unknowns (ni and �). From
the first equation in Equation 5.97 we get

(5.98)

Replacing ni in the second equation in Equation 5.97 we get

(5.99)

Replacing  in Equation 5.98 we get the following formula for the opti-
mal allocation of sampling points in subregions:

(5.100)

where pj is the probability mass of the jth region and �j is the standard
deviation of the random variable over the jth region. If sampling points are
allocated according to Equation 5.100, it is easy to verify that the variance
of the mean estimator is

(5.101)

How useful is this in practice? Of course, the �i are not known in advance.
The analytical expression given by Equation 5.94 assumes that we already
know Vi. If we knew this, we would not bother any further with the problem.
One potential approach is to conduct a preliminary simulation to roughly
assess what the �i should be. This is along the lines of the preliminary estima-
tion of the covariance in the control variate approach we discussed earlier.
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We will not elaborate on this. Instead, we will now discuss two practi-
cal approaches for implementing stratification for financial pricing.

In practice, stratification is implemented in the [0, 1]d hypercube,
which is the range of independent uniform variates used to generate corre-
lated normals. The simplest thing to do is to divide the [0, 1]d hypercube
into uniform cells and allocate one sampling point to each cell. In doing
this, we don’t worry about the approach being implemented optimally, but
we do concentrate on simplicity.

This simple form of stratification is extremely efficient in one dimen-
sion, but the data requirements grow very quickly with the number of
dimensions. Why would this be preferable to simply dividing the domain in
uniform cells and performing a deterministic integration? One reason is
that although this is a crude approach, unlike deterministic integration it is
a simulation and allows us to determine a standard error. To determine the
standard error we cannot simply increase the number of strata. The out-
comes that result from increasing the number of strata are not independent.
As a result, we must use batching, where the computation is repeated a
number of times with different starting conditions.

Stratified Standard Normals in One Dimension
If Ui,  are independent uniforms on [0, 1], the following trans-
formation gives us uniforms in the intervals , :

(5.102)

We obtain the stratified standard normals through the transformation

(5.103)

where �(.) is the cumulative standard normal distribution function. The
following two figures illustrate one-dimensional stratification on the stan-
dard normal distribution. Figure 5.10 shows a histogram of 1000 samples
without stratification. Figure 5.11 shows a histogram of 1000 normals with
the simple stratified sampling we are discussing. Not surprisingly, stratifica-
tion produces a much better description of the distribution.

Although the most obvious application of one-dimensional stratifica-
tion is the pricing of options that depend on a single underlying process,
this does not mean that the use of one-dimensional stratification is limited
to one-dimensional problems. As we discussed in Chapter 4, the construc-
tion of trajectories is actually a multidimensional problem, meaning that
we need to simulate the Wiener process at intermediate times between onset
and maturity.
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The use of one-dimensional stratification may be useful in constructing
trajectories using the Brownian bridge approach. In this case, we first get the
end values of the Wiener process using one-dimensional stratification, and then
we fill in the intermediate values of the Wiener process using the Brownian
bridge and sampling without stratification. Since, as we discussed in Chapter 4,
most of the variability is captured by the Wiener process at maturity, this
approach could be an attractive alternative for path-dependent options.

Another variation would be to use a two-dimensional stratification for
the first two dimensions of the Brownian bridge construction (the terminal

FIGURE 5.10 Simulation histogram of standard normals. Histogram consists of 40 
bins from –3 to +3. 1000 replications.

FIGURE 5.11 Simulation histogram of stratified standard normals. Histogram 
consists of 40 bins from –3 to +3. 1000 strata.
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and middle points of the Wiener process). Next we discuss a procedure
closely related to this type of stratification.

Latin Hypercube Sampling
Latin hypercube sampling (LHS) (Press et al., 1992) is a technique for imple-
menting stratified sampling. Unlike the simple form of stratified sampling we
discussed in the last section, which places one sample point on each cell in the
unit hypercube, LHS places one sample point in each column and in each row
of cells. No cell has more than one sample point. Figure 5.12 shows how four
sample points are allocated in two dimensions. In LHS, increasing the num-
ber of sampling points means increasing the number of rows and columns.

Figure 5.13 shows 128 Latin hypercube samples in two dimensions.
Picking a point in multiple dimensions with Latin hypercube sampling

is equivalent to sampling randomly from stratification in each dimension
without replacement. Figure 5.14 shows how this works.

This idea can be encoded into the following algorithm for generating
up to n uniform sample points in d dimensions:

(5.104)

where each �j is an array of random permutations of 1, , n, and �j[i] is
the ith element of the array. 

FIGURE 5.12 Latin hypercube sampling in two dimensions. 4 sample points are 
allocated to 4 rows and 4 columns.
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Case Study: Latin Hypercube Sampling 
Applied to Exotic Basket Option
The fact that LHS places one sampling point per row and column has the
intuitive outcome that LHS will work best when there is little interaction
among dimensions. In financial pricing, interaction among the dimensions
of the problem have two sources. One source is the correlation between

FIGURE 5.13 Latin hypercube sampling in two dimensions. 128 sample points are 
allocated to 128 rows and 128 columns.

FIGURE 5.14 Latin hypercube sampling in two dimensions constructed from two one-
dimensional stratifications. The round symbols are points from the one-dimensional 
stratifications. The numbers indicate a possible random sequence for selecting the points 
in each direction.
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underlying processes. The other source encompasses both the payoff condi-
tion and the boundary conditions. Of these, the payoff condition is likely to
be the most significant source of interaction among underlying processes in
most cases. Unfortunately, interesting financial derivatives have payoff con-
ditions that tend to induce significant interaction among the underlying
processes. The one derivative that does not introduce any interaction
among the underlying processes is a basket forward, not a particularly
exotic case.

We can explore some of the properties of the LHS method by looking at a
basket call option with the following features. Given assets Si, ,
and two strike prices K1 and K2, the payoff is defined as follows:

(5.105)

This option is a basket of calls with a binary cap. The basket consists of ns
calls with strike K1, one on each asset Si. If the sum of the individual calls at
maturity exceeds K2, the holder receives the amount K2. Otherwise she
receives the basket of calls. We assume that all spots are equal, such that
Si(0) S0,

This option is an interesting test example because by changing K1 and
K2 we can encompass three features.

■ If K1 → 0 and K2 → 	, the option becomes a basket forward. In this
case there is no interdependence among assets induced by the payoff.

■ If K1 �(S0) and K2 → 	, the option becomes a basket of calls. In this
case there is no interdependence among assets induced by payoff, but
the payoff is nonlinear in each dimension.

■ If K1 �(S0) and K2 �(∑(S(0) K1)), the option payoff induces
strong interdependence.

We will consider a case of eight log-normal assets, with risk-free rate
0.05, volatility 0.3, and time to maturity 1 year. We consider two correla-
tion matrices, one with 0.2 and one with 0.8 correlation between asset
returns, respectively. Table 5.3 shows the standard deviations of the value
estimator for standard Monte Carlo and LHS. The runs were done with
1000 replications. The standard deviations for the LHS case were com-
puted with 20 batches. These numbers are only a guide, but they clearly
reveal that the LHS method becomes increasingly more desirable as the
importance of the nonlinear features of the payoff decreases.

Table 5.4 shows the case where K1 → 0 and K2 → 	. It is clear now
that the effectiveness of the LHS is much greater than that of standard
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Monte Carlo. As the asset returns correlation increases, the effectiveness of
the LHS decreases, but so does the effectiveness of the standard Monte
Carlo. The standard deviation ratios remain the same. The batching size is
the same as in Table 5.3. 

EFFECT OF DISCRETIZATION ON ACCURACY AND 
THE EMERGENCE OF COMPUTATIONAL BARRIERS

As we saw in Chapter 4, the construction of trajectories by numerical inte-
gration of the stochastic differential equations governing underlying pro-
cesses introduces a discretization error. The discretization error is
different, depending on whether we are referring to the accuracy with
which the paths themselves or the accuracy with which functionals of the
process are computed. If we focus on the accuracy of the paths, the discret-
ization error arises from the weak convergence properties of the numerical

TABLE 5.3 Standard error of standard MC and LHS for exotic basket call.

20 percent correlation 80 percent correlation

K2 ����MC ����LHS K2 ����MC ����LHS

100 2.4 1.9 100 3.5 3.0

200 1.8 1.2 200 2.8 1.5

400 2.3 0.5 400 3.7 1.3

Note: Volatility 0.3, spots 100, strike 100, risk-free rate 0.05, maturity 1 year. �MC
and �LHS are the standard deviations of the value estimator in percentage. The Latin Hyper-
cube becomes increasingly more effective as the digital feature becomes less important and the 
assets return become less correlated.

TABLE 5.4 Standard error of standard MC and LHS for 
forward basket limit.

20 percent correlation 80 percent correlation

����MC ����LHS ����MC ����LHS

0.5 0.04 0.9 0.08

Note: Volatility 0.3, spots 100, risk-free rate 0.05, maturity 1 
year. �MC and �LHS are the standard deviations of the value estimator in 
percentage. The Latin Hypercube is an order of magnitude more effective.

= = = =

= = =
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scheme. The Euler scheme, for example, has an order of weak convergence
of 0.5, meaning that the discretization error in computing paths is of order

, where �t is the time integration step. The discretization error on
moments arises from the strong convergence properties of the numerical
scheme. Using the Euler scheme we can compute moments with a discreti-
zation error of order �t.

The only way to generate trajectories of general underlying processes
that are not subject to error is to solve the stochastic differential equation
analytically. In many cases of practical importance this is not possible. This
is particularly the case when we work with implied local volatility functions

 In such cases we must construct tra-
jectories by numerical solution of the stochastic differential equation.

If we use a numerical scheme (such as the Euler scheme) to build
approximate trajectories of the underlying process and then use Monte
Carlo simulation to price an option that depends on that underlying pro-
cess, we confront a complication in defining the convergence of our Monte
Carlo simulation. Our simulation will converge at the rate , where n is
the number of Monte Carlo replications, to a value that is consistent with
the approximate trajectories calculated with the numerical scheme. Clearly,
this value, to which the Monte Carlo converges, is not the true value we
seek. That true value will be consistent with exact solutions of the SDE
governing the underlying process, not with the approximate solutions given
by the numerical integration scheme.

Two questions arise.

■ How far should the Monte Carlo be pushed, given that the trajectories
it uses are approximate?

■ How does the computational effort of the Monte Carlo scale with the
true accuracy of the solution?

As far as the first question goes, it does not make sense to try to extract
more accuracy out of the simulation than is embedded in the approximate
nature of the trajectories. An elaboration of this idea gives us the answer to
the second question. We will see that when there is numerical discretization
error of order �t, the scaling law between accuracy and computational
effort jumps from to . This is extremely important and
means that when using a numerical scheme such as Euler, eventually we
have to use eight times more effort to double the accuracy of our calcula-
tion. Of course, this transition from the second to the third power of the
accuracy may occur after we have attained the accuracy we want. However,
if the accuracy we want, given the discretization parameters we are cur-
rently using, places our computation in the  scaling, we confront
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what we call a computational barrier, where further increases in accuracy
come at much higher computational expense.

We now quantify these ideas. We are solving a pricing problem by sim-
ulation and we will assume we build trajectories of the underlying process,
S(t), by numerically solving

(5.106)

using the Euler scheme, with an order of weak convergence �t. The error in
computing functionals of S(t) will be

��t ��t (5.107)

where � is a constant. The error due to the Monte Carlo convergence is

(5.108)

where �C is the standard deviation of our option value estimator. Since it
makes sense that these two errors should be of the same order, we set
�MC ��t and get the relationship

(5.109)

where T is the maturity over which we solve the underlying stochastic dif-
ferential equation numerically. Since there are  evaluations of the under-
lying process in each Monte Carlo replication, the computational effort,
WC , in the simulation scales as follows:

(5.110)

Since the error in the computation, �, is assumed to be of the same order as
the Monte Carlo and discretization errors, with Equations 5.109 and 5.110
we get

(5.111)

If there were no discretization of the underlying process involved, the
computational effort would scale like  regardless of the level of accuracy
we seek.

In the next susbsections we will determine the number of Monte Carlo
replications beyond which no further improvement in accuracy is possible
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without a much larger computational effort. Doing this analysis for general
cases of nonlinear stochastic differential equations is difficult and is not
done in practical applications. The purpose of the analysis that follows is to
gain an understanding of what may happen when discretization error and
the standard Monte Carlo error are equally dominant.

We will do the analysis on the standard log-normal process integrated
with the Euler scheme. Of course, in practice we don’t have to integrate the
log-normal process approximately with a numerical scheme because the
solution to the stochastic differential equation is known analytically. But
our objective is to illustrate the fundamentals. To this end, the simple log-
normal process is ideal.

We will consider two cases in detail. First, we look at the discretization error
of the mean and variance of the log-normal process when the SDE is integrated
with the Euler scheme. Then, we consider the error induced by the discretization
when trajectories of a price process are used to price a European call option.

Discretization Error for the Log-Normal Process
Consider the log-normal process described by

(5.112)

where � and � are constant and W(t) is a Wiener process.
Consider now the process defined by the following difference (not dif-

ferential) stochastic equation, which results from applying the Euler scheme
to Equation 5.112:

(5.113)

where �t is finite and constant. The solution  is an approximation to
the exact solution S(t). We will determine how the expected value and vari-
ance of process  differ from the expected value and variance of S(t)
using a simple first order perturbation technique.1

The exact process S(t) and the approximate process  are related as
follows:

(5.114)

1Actually, in the simple case of the log-normal process, the expectation and variance
of the approximate process can be computed exactly. We will use the perturbation
technique, however, because it is a method of general validity.
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where n is the integration step number and �(.) is an error term, itself a sto-
chastic process (this � is not the same as the one in the previous section). We
will interpret the functions  and  as continuous functions
of time that agree with the expectation and variance of the the process 
at , 

Discretization Error of the Mean Taking expectation of both sides of
Equation 5.113, the mean of the approximate log-normal process satisfies

(5.115)

where we remember to assume � is a constant. The mean of the exact pro-
cess follows the differential form of the last equation:

(5.116)

Expanding the left-hand side of Equation 5.115 to second order in �t we
have

(5.117)

Replacing

(5.118)

in Equation 5.117 we get

(5.119)

where we drop the arguments in S(.) and �(.) for convenience. Notice that
the fourth term on the left is of higher order. Since we are doing a first-
order analysis, we can neglect this term. Replacing Equation 5.116 into
Equation 5.119 we get

(5.120)

Introducing Equation 5.116 into Equation 5.120, we get the following
first-order ordinary differential equation for the error of the mean:

E Ŝ t( )[ ] var Ŝ t( )[ ]
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(5.121)

The mean of the exact log-normal process is

(5.122)

where S(0) is the initial process value. Since the initial conditions of the
approximate process, , and the exact process, S(t), are the same, Equa-
tion 5.121 can be written as follows:

(5.123)

Since, by definition, the initial error is zero, the solution of Equation 5.123
is

(5.124)

Remember that � is what we need to add to the exact solution to get the
approximate solution. Since � is negative, this equation tells us that the
first-order effect of the Euler discretization on the log-normal process is to
depress the mean. To the first order, this effect is only due to the drift (the
volatility does not enter in Equation 5.124). Effectively, the discretization
induces a downward drift. If the drift of the log-normal process is negative,
this distortion will grow at the beginning but will eventually die out as the
exponential term begins to dominate. If the drift is positive, the first-order
error will grow exponentially.

This simple analysis reveals that the behavior of the discretized process
is by no means intuitive. Of course, this result does not carry over to other
processes and only serves to illustrate what can be expected.

Discretization Error of the Variance A little algebra shows that the vari-
ance of the approximate process is given by

(5.125)

while the ordinary differential equation for the variance of the exact log-
normal process is
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(5.126)

Expanding the left-hand side of Equation 5.125 and retaining up to second-
order terms in �t, we get

(5.127)

We define the error of the variance as follows:

(5.128)

Replacing Equations 5.128 and 5.114 in Equation 5.127 we get

(5.129)

Replacing Equation 5.126 into Equation 5.129 and neglecting higher-order
terms, we get the following first-order ordinary differential equation for the
error of the variance:

(5.130)

The variance for the exact process can be obtained by integrating
Equation 5.126:

(5.131)

Replacing this expression for the variance as well as E[S(t)] and E[�] in
Equation 5.130, we can rewrite the equation for the error of the variance as
follows:

(5.132)

where

(5.133)
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(5.134)

(5.135)

Solving Equation 5.132 subject to the initial condition 0,
we obtain the following expression for the error of the variance, valid to
first order in �t:

(5.136)

The quantity in the square bracket in the right-hand side of Equation
5.136 is negative. This tells us that the first-order discretization effect on
the trajectories is a lower variance in the approximate process. As we saw
in the previous section, the discretization effect is also a lower mean in the
approximate process. We must emphasize that these conclusions are only
applicable to the log-normal process. The main purpose of the analysis is to
illustrate how nonintuitive these effects can be.

Of course, instead of working with the equation for the variance
directly, we could have worked with the equations for the moments; the
result would have been the same.

The next two figures show how significant the effect of discretization
error can be. Figures 5.15 and 5.16 show a case where the log-normal
stochastic differential equation was integrated with the Euler  scheme
using quarterly time steps. Especially for the variance, the numerical dis-
tortion can be very significant when the drift is large and positive.

So far we have discussed the effect of discretization on the properties of
the trajectories themselves. How does this translate into pricing errors?
How much accuracy can we get with the Monte Carlo method before we
hit a computational barrier? We discuss this in the next section for a Euro-
pean call.

Discretization Error and Computational Barriers 
for a European Call2

We use the log-normal process to gain insight into the effect of discretiza-
tion on the derivative price. We analyze the case of a simple European call.
A European call on a process with deterministic volatility would not be

2 This analysis was done jointly with Dr. Ervin Zhao.
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FIGURE 5.15 Discretization error effect on the mean. Log-normal process inte-
grated with Euler scheme with time step 0.25, � 0.4. Normalized with S(0) 1.

FIGURE 5.16 Discretization error effect on the variance. Log-normal process inte-
grated with Euler scheme with time step 0.25, � 0.4. Normalized with S(0) 1.
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priced by simulation, but this insight can be useful in cases where we need
to use a numerical scheme to construct scenarios.

This is the strategy for analysis.

■ We compute the errors induced by discretization in the moments of the
log-normal process.

■ We construct an approximate probability density function for the sim-
ulated log-normal process using the Edgeworth expansion. This allows
us to introduce the discretization error in the representation of the
approximate pdf.

■ The discretization error of the call price is approximately the difference
between the price obtained with the approximate probability density repre-
sented by the Edgeworth expansion and the log-normal probability density.

As in the previous section, we start out with the approximate process,

(5.137)

We define the error in the moments of the underlying process as follows:

(5.138)

We will not repeat the algebraic steps, but it is straightforward to see
that this error is governed by the following ordinary differential equation:

(5.139)

where

(5.140)

Solving Equation 5.139 subject to the initial condition �(0) 0, we
get the following expression for the discretization error of the moments:
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(5.141)

To obtain an expression for the discretization error of the option price,
we express the probability density function (pdf) of the simulated price pro-
cess as an Edgeworth asymptotic expansion (Abramovitz and Stegun,
1964) about a log-normal pdf whose first two moments are matched to the
first two moments of the discretized process. Denoting the pdf of the simu-
lated process at the option maturity by  and the log-normal pdf with the
first two moments matched by f(.), we have

(5.142)

with 
 �, where the summation on the right-hand side starts with i 3
because the first two moments are matched. Equation 5.142 is an asymp-
totic expansion and will not converge in general. Here we will limit this
expansion to the first two terms, which means that we match the first four
moments. We determine the coefficients ai by requiring that the moments of

 should equal the moments of its Edgeworth expansion.
With the definitions,

(5.143)

(5.144)

we get the following recursive relationship for the coefficients in Equation
5.142:

(5.145)

In this equation,  and �n are the nth moments of  and S, respectively,
evaluated at t T, where T is the maturity of the call option.

We are now ready to get the effect of the numerically induced error on
the option price. The values of the exact and simulated calls are

(5.146)
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(5.147)

where r is the risk-free rate and K is the strike. Using Equation 5.142, we
find

(5.148)

The error in the price is then

(5.149)

To determine the number of Monte Carlo replications beyond which
we cannot increase the accuracy of the simulation for a given integration
time step (remember we assume we are using the Euler scheme to solve
the stochastic differential equation), we equate �C to the standard error of
the option price estimator. The following table (5.5) shows exact call
option prices for the same underlying process discussed in the previous

TABLE 5.5 Discretization error effect on a European call.

Strike T 1 T 1.25 T 1.5 T 1.75 T 2

30 21.434 21.789 22.143 22.496 22.847

35 15.731 17.179 17.627 18.071 18.510

40 12.253 12.834 13.401 13.951 14.486

45 8.311 9.021 9.693 10.333 10.946

50 5.193 5.957 6.673 7.352 8.000

55 2.997 3.709 4.389 5.043 5.674

60 1.608 2.190 2.772 3.350 3.921

65 0.811 1.236 1.691 2.165 2.650

70 0.387 0.671 1.002 1.368 1.759

Note: The bolded digits represent the accuracy bound consistent with a quarterly time step. 
Log-normal process integrated with Euler Scheme with time step 0.25, � 0.4. Spot 50, 
risk-free rate 0.1. Maturities in years.
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Ĉ C exp rT–( )
ai
i!
----

∂if

∂

i

------- K( )
i 3=

i 	=

∑–=

�C exp rT–( )
ai
i!
----

∂if

∂

i

------- K( )
i 3=

i 	=

∑–=

= = = = =

= =
=



176 QUANTITATIVE METHODS IN DERIVATIVES PRICING

section. The integration step is quarterly. The bolded figures in the table
indicate the digits that cannot be improved upon, given the fact that we
are solving the trajectories by quarterly integration. Given that increasing
the accuracy can only be achieved by reducing the time step, we see that
moving the order of accuracy by one order of magnitude would cause the
computational work to increase by a magnitude that scales like 103. This
marks the onset of a computational barrier that becomes increasingly
costly to overcome.



CHAPTER 6
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Simulation for
Early Exercise

fficient pricing of instruments with early exercise features is an evolv-
ing topic of ongoing research. As of this writing, it is only recently that

simulation methods of practical value have become available to the practi-
tioner. The initial sections of this chapter follow a somewhat historical
account of earlier attempts in early exercise simulation, leading up to the
least squares Monte Carlo method, currently the approach of choice. This
method is discussed in sufficient detail to enable the reader to produce real-
istic implementations.

THE BASIC DIFFICULTY IN PRICING
EARLY EXERCISE WITH SIMULATION

The two greatest challenges in pricing instruments are path dependency and
dimensionality. Early exercise in itself is not a particularly difficult challenge
from a numerical viewpoint. The type of path dependency that creates a
challenge is not the one produced by the payoff features of the instrument,
but the one caused by the driving processes themselves. The reason why this
type of path dependency is a challenge is that there is no corresponding par-
tial differential equation to solve for the derivative price. This means that
when we have path dependency at the process level, such as in the case of
the Heath-Jarrow-Morton model for the forward rate, simulation is the only
way to tackle the problem.

If the number of dimensions is small (less than four), and the underly-
ing processes are Markovian, the finite difference approach, discussed
extensively in the next chapter, is a robust strategy. This method is fast, its
convergence properties are well understood, it can accommodate complex
payoff requirements, and it is capable of dealing with both continuous as
well as discrete exercise.

E
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When the number of dimensions is three or larger, however, finite
differences and other methodologies, such as finite elements, confront a
fundamental difficulty. This difficulty has to do with data storage
requirements. Assuming that the underlying processes are Markovian, it
is important to realize that dimensionality is not a problem because of a
burden imposed on artithmetic operations. Dimensionality is fundamen-
tally a data problem. The reason for this is that as the number of dimen-
sions increases, storage requirements may become unfeasible with some
methodologies, such as the finite difference method.

When the number of dimensions is large, there are no satisfactory
deterministic methods for pricing.

It is well known that simulation applied to the computation of expecta-
tions over a known time horizon is not affected by dimensionality. The con-
vergence law of an expectation only depends on the variance of the price
population, not on the number of stochastic dimensions of the population.
Simulation, on the other hand, is a slow methodology unless clever accelera-
tion techniques are used. The possibility of finding ways to accelerate the sim-
ulation, together with the fact that convergence is not affected by the number
of dimensions, explain why Monte Carlo simulation has been so popular in
pricing European derivatives.

In the case of instruments with early exercise features, the price is also
given by an expectation. Unlike the case of European instruments, however,
this expectation is not over a known horizon but is taken over a stochastic
horizon, such as maximizing the value of the instrument. This fact changes
the picture in a fundamental way.

The use of simulation for pricing of an instrument with early exercise
features, such as a Bermudan option, is far more difficult a task than
pricing the European version of the instrument. This difficulty exists even
in one dimension. However the fact that other pricing methods, such as
finite differences, run into trouble with a large number of dimensions has
created an incentive to try to adapt simulation to be able to handle early
exercise. These efforts started as early as 1993, when the first attempts to
price American derivatives using simulation were undertaken. These
early efforts only addressed the difficulty of early exercise, not of dimen-
sionality. These early efforts did not succeed, but even if they had been
successful, they would have remained of limited practical use unless the
issue of dimensionality was properly dealt with. The reason is that if
there is no dimensionality issue, finite differences easily take care of the
problem (for Markovian underlying processes).

In 1997 it became possible for the first time to use a simulation-based
approach to compute early exercise in several dimensions. This was an
important breakthrough because for the first time, results from simulation
could be guaranteed to capture the true price in a statistically meaningful
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way. This early successful methodology was extremely slow and could not
be applied to large scale pricing.

As of this writing, there is no simulation-based approach capable of
directly computing continuous early exercise. The approaches that exist
compute discrete exercise (Bermudan) cases, and only by extrapolation can
we get the continuous exercise case. This is in contrast with finite differ-
ences, where both the continuous and the discrete exercise cases can be
computed.

SIMULATION APPLIED TO EARLY EXERCISE

The fundamental difficulty in applying simulation when there is early exer-
cise is that at any exercise point we must decide between holding or exercis-
ing. The holding value of the option is itself an expectation, conditional on
the information at that exercise time. This means that in order to decide
between holding or exercising at an exercise opportunity, we must already
have determined, by simulation, the conditional expectation of holding the
option at that exercise opportunity. But this requires that we must have
converged the simulation before we finish valuing the option by simulation.
This is, of course, a contradiction. To show this explicitly, consider the
value of a Bermudan option with exercise times ti ti+1, i 1, , I.
Assume the option depends on an underlying process S(t). If we express the
underlying process in the risk neutral measure, the value of the option at
time ti is

(6.1)

where G(ti) is the value of exercising the option at time ti. This is a recur-
sive relationship. If we seek to compute the expectation in the right-hand
side of this equation by producing trajectories of the underlying process
S(t), we may see that a difficulty arises. This is because we don’t have a way
to know which trajectories should be included at ti+1. Trajectories for
which the option was exercised at tk < ti+1, 1 k i should not be included.
But we will not know what those trajectories are until we have recursed
Equation 6.1 all the way to t t1.

This apparent difficulty is alleviated by realizing that what we need to
know is not which trajectories to include in the expectation but rather which
trajectories are associated with holding (or zero payoffs as a result of hold-
ing the instrument). The trajectories that are associated with zero payoffs
are the ones that correspond to continuation. The ones associated with a
known payoff correspond to exercise. This is conceptually simple to do if we
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proceed recursively backwards from maturity. The fact that we use simula-
tion for generating the scenarios does not alter the fact that we must solve a
backward recursion problem, just as in the case of trees or finite differences.

As we discussed in Chapter 3, if we knew the exercise policy of an
early exercise instrument, pricing the instrument would be trivial. Know-
ing the exercise policy means that we know the value of the underlying
process as a function of time, for which exercise should occur. This fact
has motivated two fundamental approaches to simulation applied to early
exercise. One approach is to parameterize the early exercise policy and
then find the value of the parameters that maximize the value of the instru-
ment. Another approach is to estimate the exercise policy directly. The sec-
ond approach is the one that has proved most successful.

Dealing with Estimator Bias
Before discussing any particular approach in detail, we must realize that in
most cases we will have a simulation procedure that produces a biased result.
The bias can be either high or low. A simulation procedure that converges to
the correct result as the number of cycles tends to infinity is called an asymp-
totically unbiased procedure. Given a simulation approach for pricing early
exercise options, the first thing to do is to determine whether the method is
biased high or low. If the approach as originally proposed is biased low, then
it is desirable to obtain an upper bound that would be consistent with the
assumptions of the original approach. If the approach is biased high, we
would do the opposite. This means that given a particular approach, it is
highly desirable to generate two estimators for the option value, one biased
high and the other biased low. If the approach as originally proposed is
biased, this is a way of getting a confidence interval that brackets the result.

Being able to bracket the result is desirable but not essential in order to
profit from a simulation approach. We may be able to calibrate the
approach with known results from other methodologies to have a good
idea as to the quality of the results, even if the results are systematically
biased. When using simulation for auditing the viability or correctness of
an analytical derivation or of any other quantitative pricing method, the
ability to produce upper and lower bounds may become essential.

To illustrate the issues involved in estimator bias, consider the simplest
estimator of the value of a Bermudan option. This simple estimator, called
the perfect foresight path estimator, is constructed as follows.

■ Generate N paths of the underlying process. 
■ For each path, determine the exercise time where the payoff would be a

maximum if the option were exercised at that time.
■ Discount those payoffs to the present and average the results.



Simulation for Early Exercise 181

This procedure gives us an idea of the price of the option, but it is a
very poor idea. This procedure will produce a greatly exaggerated estima-
tion of the value of the option. To illustrate, consider the case of an at-the-
money Bermudan put, with strike $100, stock volatility 0.1, risk-free
rate 0.1, maturity 1 year, and 20 exercise times. The results are shown in
Figure 6.1. For comparison, the figure also shows an accurate computation
of the Bermudan put value and the Black and Scholes value. As we can see,
the simple path estimator grossly overstates the value of the Bermudan put.
Notice that this computation is very simple to make.

What is fundamentally wrong with this estimator? At any exercise
opportunity, the decision to exercise or to hold is made with the informa-
tion available at that time. The perfect foresight estimator makes that deci-
sion based on knowledge of the trajectory beyond the decision time. How
should this estimator be changed so that it gives a more reasonable result?
This change would require that at each point where an exercise decision is
made, the path should split into a large number of paths, from which
expected continuation and holding values could be determined. Clearly,
this first attempt to fix the simple path estimator would dramatically
increase the complexity of the computation.

It is important to realize that this simple estimator does not consist in
approximating the stopping times or exercise policy of the Bermudan put.
By definition, a stopping time is determined by information available at the
time of the decision, not at a future time. 

FIGURE 6.1 Perfect foresight estimator of American put value. At-the-money put 
with S(0) 100, K 100, r 0.1, � 0.1, T 1 years. This estimator greatly 
overstates the American premium.
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What would the bias be if the estimator of the Bermudan price were
based on true stopping times? It is easy to see that such an estimator would
be biased low. The reason is that the value of an early exercise option is the
maximum value of all possible exercise strategies. If the computation pro-
duces an approximate exercise strategy, the estimator will be biased low.

A number of simulation-based approaches for early exercise consist of
averaging a number of computations, each one of which involves an aver-
age. To illustrate, consider an estimator that is based on computing the
maximum of either holding the option or exercising. Assume that in order
to compute the holding value of the option we must make an average over
a number of future states. This procedure is repeated a number of times and
the results are averaged. According to this, we would compute the estima-
tor of the option value as follows:

(6.2)

where the tilde indicates that the right-hand side is an estimator.  is the
estimator of the continuation value, and Ve is the exercise value. Jensen’s
inequality states that the expectation of a convex function of a random
variable is greater than or equal to the function of the expectation of a ran-
dom variable (Billingsley, 1994). A sufficient condition for Jensen’s inequal-
ity to hold is that the function should have a nonnegative second derivative
with respect to the random variable. This is the case with Equation 6.2.
Taking expectations of both sides, we get

(6.3)

However, the value of the option is given by

(6.4)

This shows that  computed this way is biased upward. The issue of esti-
mator bias is discussed extensively in Broadie and Glasserman (1997). As we
will see, the simulated tree and the stochastic mesh algorithms produce esti-
mators of this type but can be complemented with a biased low estimator. The
least squares Monte Carlo approach produces a biased low estimator and can
be complemented with a biased high estimator.

The next four subsections describe algorithms and approaches that
currently can be viewed as the historical backdrop in attempts to price
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early exercise by simulation. This summary description, which follows
closely Broadie and Glasserman’s excellent survey (1997a), is included
here for completeness. The interested reader can find additional informa-
tion in Broadie and Glasserman’s survey and the references therein.
These four sections are not a requirement for the methodology of great-
est practicality, the least squares Monte Carlo method described later in
the chapter.

Path-Bundling Algorithms
These algorithms, which started with the pioneering work of Tilley (1993),
require that the trajectories be calculated first and kept in memory. Assume
we denote each path by S j(t), j 1, , N, where N is the number of paths.
The value of the option corresponding to path Sj(t) is denoted by V(t, Sj(t)).
At maturity, t tI, the value of the option is the final payoff:

(6.5)

To compute the value of the option at tI–1, we first determine an array
of integers kI–1 1, , N such that

(6.6)

This ordering establishes a relationship between the index kI–1 and the
index j of the paths. Each j has a corresponding kI–1. We denote this corre-
spondence by j(kI–1). Figure 6.2 illustrates the idea. 

FIGURE 6.2 Path bundling. Paths are grouped in bundles. Paths within a bundle 
share the same continuation value. Unclear extension to higher dimensions (Broadie 
and Glasserman, 1997). 
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Once the paths are reordered according to Equation 6.6, the paths are
divided into groups, or bundles, each with an equal number of paths. By
grouping the paths in this way, we get paths to which we can assign a com-
mon continuation value to all the paths in each bundle. Assume that each
bundle has M trajectories. The continuation value of the option at time tI–1
for the paths in the mth bundle is given by

(6.7)

where PV stands for the present value at time tI–1. The exercise value of the
option at time tI–1 for a path indexed by kI–1 is G(Sj(kI–1), tI–1). The value of
the option at time tI–1 for any paths in the mth bundle is then set to

(6.8)

It is easy to see how this scheme can be recursively continued backward
in time. At each exercise time, Cm is an estimation of the value of not exer-
cising the option, conditional on a level of the underlying price representa-
tive of the paths contained in the mth bundle. At first sight, this approach
appears to do what we want. The reordering of arrays and the grouping of
paths into bundles takes into account the paths for which exercise has
occurred. The algorithm captures the essence of early exercise.

However, we can also clearly see that this approach has a number of
serious difficulties.

■ The basic problem is with the estimation of the continuation value. As
described, this algorithm must assign the same continuation value to all
the paths included in a given bundle.

■ This would not be a problem in and of itself, except that bundling the
paths amounts to imposing a discretization on an already discretized
problem. The continuous distribution of paths is discretized with indi-
vidual trajectories, and then these trajectories are classified at another
level of discretization. When this happens, it is hard to visualize how
accuracy is affected.

■ A significant difficulty is that it is not clear how this idea generalizes to
higher dimensions. This issue is absolutely fundamental, and no algorithm
that fails to address it can be seriously considered as a winner. Remem-
ber that it is not the question of early exercise per se that matters, but the
handling of data volume and growth associated with many dimensions.
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■ There are also some difficulties of practical nature, such as the need to
store all the trajectories. 

Although the path-bundling algorithm is problematic, it lays the foun-
dation for an obvious extension. 

STATE STRATIFICATION ALGORITHMS

The simplest way to visualize these methods is to consider the multidi-
mensional space defined by the value of the underlying processes and to
divide this space into cells. In a one-dimensional problem the cells would
look like a grid parameterized by time (there would be a one-dimensional
grid at each exercise opportunity). In a two-dimensional problem the cells
would be a rectangular grid parameterized by time (one rectangular grid
for each exercise opportunity). We can then generate paths and observe
how these paths cross the cells as the paths go from one exercise opportu-
nity to the next. We can now do an analysis very similar to the case of
path bundling, but rather than basing the analysis on paths that are
together in a bundle, we base it on the paths that emanate from a com-
mon cell at one exercise opportunity and enter the same or a different cell
at the next exercise opportunity.

What is wrong with this approach? Well, if implemented this way, this
approach does not conquer the problem of dimensionality. The data issue
remains a problem, because the number of cells grows very quickly as the
number of dimensions grows.

An alternative specification of this algorithm is to define the cells not
on the underlying state, but on some aggregation or function of the under-
lying states. This would allow us to reduce the number of dimensions and
manage the data problem. To illustrate how this would work, assume that
we have a two-dimensional problem with underlying price processes S1(t)
and S2(t), with I exercise opportunities. Rather than building I rectangular
grids in S1, S2 space, we can think of building I one-dimensional grids in the
one-dimensional space S1 S2.

We can begin to suspect that if we do this, something may go wrong in
a fundamental way. The value of continuation must be known for all com-
binations of S1 and S2 that may be relevant to the decision to hold or to
exercise. This is accomplished by considering a two-dimensional grid, but it
isn’t if you look at the sum of the underlying prices.

Barraquand and Martineaux (1995) have proposed to use the payoff
function as the criterion for aggregating the states. This will work if the pay-
off is such that there is only one decision to be made (hold or exercise) for
each value of the exercise function. Unfortunately, this is not always the case.

+
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SIMULATED RECOMBINING LATTICES

The basic idea is to repeatedly price the option using randomly gener-
ated recombining lattices and then average the results. This concept was
introduced by Broadie and Glasserman (1997b), who call it the stochas-
tic mesh approach. This produces an estimator of the early exercise
price by simulating arrays of points in the multidimensional underlying
state space for each exercise time. The array of points is illustrated in
Figure 6.3. The value obtained from each mesh is a realization of the
value estimator.

Stochastic meshes are essentially multidimensional recombining lat-
tices. This is easy to see by looking at a one-dimensional version of a
recombining mesh, shown in Figure 6.4.

How are the meshes generated? We can construct the mesh by sam-
pling from the distribution of , or we can sample from some other distri-
bution. Sampling from a different distribution amounts to performing a
change in measure, and in this case we must use a likelihood ratio of the
probability density of  and the probability density from which we are
sampling to build the mesh. This likelihood ratio is

(6.9)

where p(t ; k, l) is the transition probabilities in the measure of  between the
kth mesh points at time ti and the l th mesh points at time ti+1.  is the

FIGURE 6.3 Three-dimensional stochastic mesh. Three-dimensional points are 
forced to recombine. Each Monte Carlo replication results from a simulated mesh 
(Broadie and Glasserman, 1997b).
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transition probability used to generate the mesh. If there are M nodes or
mesh points at each exercise time, the estimator of the option price at time ti
conditional on state (ti) is

(6.10)

Broadie and Glasserman (1997b) have specific recommendations for choos-
ing the transition densities.

In this approach, the estimator involves a nonlinear function of the
payoff expectation. As a consequence, this estimator is biased upward, and
becomes unbiased when M → 	.

In summary, we can make the following observations about the sto-
chastic mesh approach.

■ The stochastic mesh approach is equivalent to simulating recombining
lattices and averaging the results. This gives an upwardly biased esti-
mation of the derivative price.

■ It is also possible to obtain a downwardly biased estimator.
■ This method does not deal successfully with the issue of dimensionality.

Simulated Bushy Trees
This concept, also introduced by Broadie and Glasserman (1997), is very
similar to the previous one, except that instead of using a recombining lat-
tice to get the estimator, we use a nonrecombining multidimensional tree.

FIGURE 6.4 Two-dimensional stochastic mesh.
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Figure 6.5 shows the one-dimensional case. As in the previous case, a
straightforward computation of the option value by averaging an estimator
of the price based on a randomly generated tree would give an upwardly
biased result. Broadie and Glasserman (1997) discuss how upward and
lower bounds can be generated for constructing a confidence interval of the
price. 

We can summarize this approach as follows.

■ The simulated bushy tree approach is robust, but becomes unmanage-
able as the number of exercise opportunities and the number of dimen-
sions grow.

■ Because it is easy to produce a confidence interval for the price, this
approach has been very useful in auditing the results from faster
algorithms.

LEAST SQUARES MONTE CARLO

The introduction of regression-based Monte Carlo (also called least squares
Monte Carlo, or LSMC) constituted the first definite breakthrough in pric-
ing early exercise derivatives by Monte Carlo. The previous approaches
had one fundamental fact in common. The value of continuation condi-
tional on a particular state was calculated by working separately with each
node (in the case of lattices or trees) or each bundle (in the case of the bun-
dling method). In order for the continuation value to be meaningful, each
node needs to have a sufficiently large number of branches (in the bushy
tree or lattices case) or a sufficient number of paths (in the bundling

FIGURE 6.5 Simulated bushy tree. Quickly becomes unmanageable as the number 
of exercise opportunities grows (Broadie and Glasserman, 1997).
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method). This localized way of computing the continuation value is the
basic reason why those methods don’t succeed in attacking the dimension-
ality problem. While the straightforward computation of an expectation
using Monte Carlo is not sensitive to the dimensionality of the problem, the
particular way in which previous methods have tackled the computation of
the continuation value reintroduces the dimensionality in the problem. On
top of this problem, the simulated bushy tree is also limited by the number
of exercise opportunities.

Regression-based Monte Carlo differs fundamentally from the previous
methods in that the work needed for computing the continuation value at
any state is done once based on the entire cross-sectional information,
rather than based on each node. This work is in the form of a regression,
which is then applied to each state to get the continuation value. Essen-
tially, this approach solves the dynamic optimization problem posed by the
Bellman equation (described in Chapter 3), where the value of continuation
is computed on the basis of a regression on cross-sectional data.

The number of dimensions drops out from the problem, except in the
computation of the regression. The regression requires the use of basis
functions, which must link the various dimensions of the problem. The
number of basis functions will then grow with the number of dimensions,
and one could argue that the dimensionality issue creeps back in again
through the number of basis functions required. However, as we will see
later, in some cases this dimensionality problem is much less severe than it
seems. There is also some indication that working with cross-sectional
data makes the estimation of the continuation value increasingly more
efficient as the number of dimensions grows. The full potential of this
methodology as well as alternatives to simple regressions are yet to be
explored.

The LSMC method was popularized by Longstaff and Schwartz (1998,
2000). Work along similar lines was undertaken independently by other
researchers (Tsitsikilis and Van Roy, 2000). Recently, Clement, Lamberton,
and Protter (2001) proved the convergence characteristics of the method.

Since this method is based on an exercise policy approach, it provides a
lower bound. Andersen and Broadie (2001) proposed a way to obtain an
upper bound for the LSMC.

Least Squares and Conditional Expectation
As we will discuss in the next section, the LSMC algorithm computes the con-
ditional expectation of continuation from simulated observations of the
present value of continuation through linear regression.

In this section we elucidate the connection between least squares and
conditional expectation.
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Assume two arrays of observations, Xj and Fj , j 1,…, M. We view Xj
as measurements of the variable X. We view Fj as measurements of a func-
tion F(Xj) with an error. We view Xj as realizations of independent random
variables. We assume that the measurements Fj are realizations of normally
distributed random variables, , centered around the “correct” value
F(Xj). Function F(X) is defined in terms of some parameters �1,…, �L, yet
to be determined. For simplicity we will only write these parameters explic-
itly when needed. The probability of the measurement Fj will be propor-
tional to

(6.11)

where �i is the standard deviation of the random variable .
If there are M data points ( j 1,…, M), the probability of all the mea-

sured data points will be proportional to the product:

(6.12)

Notice that if we had a perfect model for F(S), the values Fj would be the
same as F(Sj). This maximizes the exponential in Equation 6.12. Then we can
say that a good candidate for F(S) is one that maximizes the probability in
Equation 6.12 with respect to any parameters that define F(S). Maximizing
the product in Equation 6.12 is the same as minimizing the product,

(6.13)

which, in its turn, is the same as minimizing the logarithm of Equation 6.13.
The following minimization problem with respect to parameters �l,

l 1,…, L,

(6.14)

is referred to as maximum likelihood estimation (MLE). Although MLE is very
desirable, we typically don’t know the �j. A simple solution to this difficulty is
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to assume that all the �j are the same (Press et al., 1992). When we do this, we
get the least squares estimation (LSE) formulation for the determination of the
parameters �l, l 1,…, L:

(6.15)

Least squares estimation is a particular case of MLE when

■ The distributions of the random variables from which the observations
are assumed to be drawn are normal.

■ All the standard deviations of those random variables are the same.

LSE will be less satisfactory if

■ The standard deviations are not the same.
■ The distributions are not normal. In financial modeling this problem is

associated with “fat-tailed” distributions.

One particular form of LSE is particularly useful: Linear least squares
estimation (LLSE). In linear least squares, the function takes the form:

(6.16)

where the fi(.) are called basis functions.
Notice that linear only refers to the parameters �l, not to the functions

fl(.). In fact, these functions are typically nonlinear. The linear regression is
the special case where f1 is a constant, f2 is a linear function, and the rest of
the basis functions are zero.

With Equation 6.16, our minimization problem, given by Equation 6.15,
becomes

(6.17)

This leads to the following system of equations:

(6.18)
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This gives us the following linear system for �l, l 1,…, L:

(6.19)

where

(6.20)

(6.21)

These linear equations can be solved with standard numerical routines
(Press et al., 1992).

We can now make the connection between linear least squares and the
conditional expected value of continuation. We have

(6.22)

Since the error is normally distributed by assumption and is centered
around F(Xj), we get

(6.23)

This equation establishes the connection between least squares regres-
sion and the conditional expectation. The LSMC algorithm exploits this fact.

LSMC Algorithm
The algorithm of the LSMC approach is as follows.

■ Generate N trajectories of the underlying process or processes. For
illustration, we assume there is only one underlying process. The trajec-
tories only need to be defined at exercise dates, ti, i 1,…, I and are
denoted by S j(t), j 1,…, N.
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■ At any exercise time ti, the value of the option is

(6.24)

where Cj(ti) is the expectation of the continuation value conditional on
the underlying price Sj(ti), and G(Sj(ti), ti) is the exercise value.

■ To determine the conditional expectation of the continuation value, we
first compute the present value of continuation cash flows:

(6.25)

where Bj(ti, tk) is the discount factor that applies at time ti for the jth tra-
jectory of a cash flow that occurs at time tk. This discount factor will
depend on the measure used to pose the problem. In general, the discount
factor will be a function of the trajectory. The sum in this expression is
done trajectory-wise up to a previously determined stopping time, or
until maturity. As we will discuss in detail in the next section, this condi-
tional expectation can be restricted to a suitable subset of the trajectories.
In the case of a simple Bermudan put, for example, this subset is made up
of the trajectories that are in the money at time ti. In more general cases,
however, this subset is chosen according to a more general criterion that
we will call the moneyness criterion, described below.

■ Define L basis functions, fl(S), l 1, , L and regress the present value of
continuation cash flows, (ti), on the underlying values Sj(ti) using
least squares. This regression produces a set of coefficients �l, l 1, , L.
We now interpret this regression as an estimation of the conditional
expectation of the continuation cash flows. We can now evaluate the con-
ditional expectation by evaluating the regression for each Sj(ti):

(6.26)

■ Every time an exercise decision is made in evaluating Equation 6.24, we
get an estimation of a stopping time. The stopping time is recorded and
used in determining which elements enter in the sum in Equation 6.25.

■ In practice it is possible to carry out this cross-sectional analysis on a subset
of trajectories. The selection of this subset is based on the criterion of mon-
eyness, discussed in the next section. The simplest form of this criterion is
to condition on trajectories that are in the money at the cross-section under
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consideration. Another version of the criterion is to condition on trajecto-
ries that are judged to be more representative of exercise. These are nonrig-
orous ways to reduce the computational burden.

Since the LSMC method is based on building an approximate exercise
policy, this method gives us a lower bound of option price.

For a particular instrument, the exercise policy is encoded in a stopping
rule. The stopping rule can be expressed in the form of a matrix, �, with
entries 0 or 1. In a one-dimensional problem, this matrix has as many rows
as there are trajectories, and as many columns as there are exercise times.
An entry equal to 1 in the ith column and the jth row means that the jth
trajectory has a corresponding stopping time at time ti. Once this matrix is
known, the value of the derivative is given by

(6.27)

In multidimensional problems, the stopping rule matrix is a multidimen-
sional array. The stopping rule allows us to map the underlying trajectories
onto exercise boundaries.

The fact that the LSMC is based on estimating the stopping rule does not
mean that the exercise boundary must look nice in order for the computation
to be accurate. As an example, consider an at-the-money Bermudan put with
strike $40 on a non-dividend paying stock with volatility 0.3, maturity 1 year,
and monthly exercise opportunities. Assume that the risk-free rate is 0.06.

Figure 6.6 shows the exercise boundary for two simulations of 10,000 and
100,000 Monte Carlo cycles, respectively. The computation with 100,000 cycles
gives very accurate results, although both exercise boundaries look crudely cap-
tured. This figure suggests that although the LSMC method gives a lower bound
because it captures the exercise boundary approximately, we can nevertheless
expect that the results can be quite good, even if the boundary is not captured
accurately in a visual way. These computations were done with six monomial
basis functions for the linear regression, fl(x) xl–1, l 1,…, 5. 

To investigate the effect of the number of basis functions on the conver-
gence of the value, we consider the Bermudan premium of a put option with
maturity 1 year, volatility 0.2, and 50 exercise times. The exact value of the
Bermudan premium is not known, but we can get a very accurate assessment
with a good quality finite difference computation. The results are summarized
in Figure 6.7. These results are for 40,000 Monte Carlo cycles. As expected, the
true value of the Bermudan premium is reached from below. Taking into
account the scale of the plot, we see that the method captures the Bermudan
premium reasonably well with four basis functions or more.
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We can make the following additional observations about the LSMC
method.

■ The currently published versions of the LSMC are based on the use of
simple linear regression for estimating the conditional expectation of the
continuation value. Other techniques are also possible, such as weighted
regressions, robust regressions, and so on. These alternatives have not
been explored in the open literature.

FIGURE 6.6 Bermudan put exercise boundary for 104 and 105 replications.
Monthly exercise, at the money put with S(0) 40, r 0.06, � 0.3, T 1 year.

FIGURE 6.7 Effect of basis functions on Bermudan premium. At-the-money 
Bermudan put with 50 exercise opportunities per year, S(0) 40, r 0.06, 
� 0.2, T 1 year. Basis functions are monomials. The benchmark is a highly 
accurate finite difference computation.
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■ The software implementation of the LSMC is very straightforward and
lends itself to recursion. In this regard, it can be programmed with a
very similar architecture as the finite difference method.

■ We can generate scenario trajectories by integrating the stochastic dif-
ferential equations of the underlying processes numerically by sampling
from the exact solution for the underlying processes, by sampling from
the exact covariance matrix of the trajectory, or by Brownian bridge
approximations.

■ The use of quasi-random sequences (Sobol, etc.) in the Brownian
bridge construction has been found to have nice convergence proper-
ties. However, no rigorous studies have been published in this area.

■ All the standard variance reduction techniques of standard Monte
Carlo apply to LSMC.

■ The object nature of the software implementation of LSMC allows us
to combine different methodologies in conducting a simulation. For
example, an option that enters in the payoff of another option being
priced with LSMC can be computed with finite differences, analytically,
or in some other way. These combinations have not been explored so
far.

The Moneyness Criterion
As we mentioned in the last section, in the simple case of a Bermudan put that it
is possible to restrict the subset of trajectories used in computing the conditional
expectation of continuation to those trajectories that are in the money at the
time when we are computing that expectation. This idea can be generalized by
defining a subset of the trajectories that are selected for computing the condi-
tional expectation. The criterion used to select this subset will be referred to as
the moneyness criterion. In the case of a simple Bermudan put, the moneyness
criterion we have used so far selects the subset of paths for the conditional
expectation if the intrinsic value corresponding to those paths is positive; in
other words, the paths are selected if the corresponding intrinsic value exceeds
zero. We can relax this requirement and state that the paths are selected if the
intrinsic value exceeds an amount greater than zero. In such a case we say that
the moneyness criterion is given by the amount the intrinsic value must exceed
in order for the corresponding paths to be included in the conditional expecta-
tion set. Table 6.1 shows the impact on the price and Bermudan premium of the
option from Figure 6.7 for several values of the moneyness criterion.

This table shows that the effect of changing the moneyness in this range
is within the standard error of the computations. 

This flexibility in selecting the subset of trajectories for the conditional
expectation is not particularly significant in this simple case, but it may
prove crucial in other cases. For example, if we are solving a problem
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where there are many underlying processes (such as a basket option), the
ability to select the subset for computing the regression may make the prob-
lem much more tractable. As we will see in another example, we will be
able to limit the number of basis functions by limiting the number of assets
for which the conditional expectation is computed.

Implementation Considerations
The following are some of the practical considerations in designing a pric-
ing implementation of the LSMC method.

■ Separation between regression scenarios and pricing scenarios:
Although it is not crucial to use a different set of scenarios for comput-
ing the regression and for pricing, it is a good idea to implement the
approach such that this is possible. This is an indication of the robust-
ness of the implementation.

■ Flexibility in the choice of basis functions: Some experimentation is
needed to select a suitable set of basis functions. The number of basis
functions and the number of simulation cycles establish an optimum
balance of computational work. 

■ Flexibility in selecting a moneyness criterion: Although this is not a sci-
entifically grounded consideration, it can play an important role in
keeping the computational cost (speed and memory requirements)
under control.

■ Benchmarking and calibration: There are two types of benchmarks that an
LSMC system should be subjected to. One is the pricing of the European

TABLE 6.1 Effect of moneyness criterion.

Moneyness criterion VBermudan Bermudan premium

0 2.3159 0.2495

1 2.3137 0.2473

2 2.2942 0.2278

3 2.3189 0.2505

4 2.3183 0.2519

Note: The conditional expectation paths are those for which the intrinsic put value is 
greater than the moneyness criterion. The moneyness criterion in this case is the exercise 
value to be exceeded by a particular trajectory in order for the trajectory to be included in 
the conditional expectation. At-the-money Bermudan put with 50 exercise opportunities 
per year, S(0) 40, r 0.06,    � 0.2, T 1 year. All cases done with 40,000 cycles and a 
standard deviation approximately equal to 0.013.

= = = =
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version of the instrument under consideration or related instruments. This
is always possible (by simulation, trees, or finite differences, depending on
the number of dimensions and nature of the underlying processes). The
main purpose of this benchmark is to make sure that the system is cor-
rectly pricing the European versions to arbitrary accuracy. Another
benchmark is a test of the LSMC system with a low-dimensionality ver-
sion of the instrument under consideration. This benchmark is more diffi-
cult than the first because it requires that a parallel method of computing
early exercise should be available. The ideal way to do this is with finite
differences or lattices. The main purpose of the second benchmark is to be
able to select the basis functions judiciously. The case studies presented in
the next sections illustrate both of these benchmarks.

In the next section we discuss in some detail two case studies of the
LSMC. The information in these cases should provide the reader with a
realistic feel of performance and accuracy issues.

CASE STUDY 1: BERMUDAN CALL 
ON BEST-OF-THREE ASSETS1

The call on the best performing asset of a group of assets has become a fairly
standard test in multivariate option pricing (Fu et al., 2001). Here we try to
determine the level of accuracy that can be achieved with the LSMC method
and CPU times that can be expected in a good implementation of this method.
As of this writing, the only competing method with LSMC in the case of three
assets or less is the finite difference method. Beyond three dimensions, the
finite difference method becomes impractical, even with powerful machines.
The comparison with finite differences is meaningful for two reasons. Finite
differences is the method of choice if the number of dimensions is low, and the
results produced by quality implementation of finite difference methods are
very reliable (we will discuss this in great detail in Chapter 7).

Specification
We consider a Bermudan call on a portfolio of three assets with price processes

(6.28)

1I am grateful to Dr. Curt Randall from SciComp. Inc., who provided the numerical
results for this case study.

dSj
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where yj is the dividend yield. Notice that here we use subscripts to denote
different assets. The assets parameters are as follows:

(6.29)

The strike, risk-free rate, and maturity are

(6.30)

The payoff function of the Bermudan call at exercise time � is

(6.31)

The correlation matrix of the Wiener processes in Equation 6.28 is

(6.32)

Basis Functions 
The number of basis functions can grow quickly as the number of assets
increases. Using the idea of moneyness criterion, we can restrict the number
of assets to which the regression is applied. This allows us to limit the num-
ber of basis functions needed. In this case, we regress on the spots of the
two highest assets.

Assume that S1 and S2 are the two largest assets at a given time step.
The basis functions are

S1 0( ) S2 0( ) S3 0( ) 100= = =
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The Benchmark
The first step in a simulation study is to obtain a benchmark to be used for com-
parison. In this case, a highly accurate finite difference computation was used.
The finite difference computation uses a grid in three space dimensions (corre-
sponding to the three underlying assets) and time. The results are summarized in
Table 6.2. The first column indicates the number of grid points in the three space
dimensions. V	 represents the value of the Bermudan call extrapolated to an infi-
nitely fine grid. This value can be assumed to be numerically exact. The reason

TABLE 6.2 Finite difference benchmark.

Bermudan call on best-of-three assets
Finite difference benchmark

Grid size V V V				 CPU time (sec.)

10 Exercise opportunities

40 40 40 17.734 0.612 5.93

50 50 50 17.774 0.391 12.96

60 60 60 17.794 0.277 20.12

80 80 80 17.817 0.149 53.67

	 	 	 17.844 0 —

15 Exercise opportunities

40 40 40 17.851 0.656 7.88

50 50 50 17.896 0.408 17.46

60 60 60 17.915 0.299 26.97

80 80 80 17.940 0.161 72.56

	 	 	 17.969 0 —

30 Exercise opportunities

40 40 40 17.956 0.693 13.83

50 50 50 18.002 0.443 31.13

60 60 60 18.026 0.308 47.35

80 80 80 18.051 0.173 130.21

	 	 	 18.082 0 —

Note: PDE solutions with predictor-corrector ADI scheme. The infinite grid solution is obtained by 
extrapolation. Boundaries correspond to . Computational grid is defined through all 
hyperbolic sine transformation. Boundary conditions neglect diffusion. Time step is 0.1.
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for this is that in finite difference solutions (we will discuss issues like this in much
greater detail in Chapter 7) the scaling of the truncation error is known precisely.
In this case, since we are using a second-order spatial difference scheme,

(6.33)

where c is a constant and �X is the grid spacing (in this case this is the same
in each space dimension). 

The last column shows the CPU times, in seconds, for a 1Gz computer.
The computing time needed to arrive at an acceptable result using finite dif-
ferences is less than is suggested by this table because the scaling of the trun-
cation error can be easily observed. As the next tables will show, the CPU
time used by the LSMC for similar accuracy is significantly lower.

Numerical Results
The next three tables summarize the LSMC simulation results. The simula-
tion error is given as plus/minus the standard deviation estimated through
batching (a batch consisted of 10 samples). When using Sobol sequences,
batching is done by repeating the entire computation starting from a differ-
ent starting point each time. In interpreting the results in Tables 6.3, 6.4,
and 6.5, we must keep the following in mind.

■ The standard error brackets the value under the assumptions of this
implementation. If the number of cycles in computing the regression is
maintained constant, and the number of cycles in the Monte Carlo val-
uation is increased, the standard error is not a bracket about the cor-
rect limit as the number of cycles goes to infinity.

■ The fact that conditional expectation has been applied only to a subset
of the asset trajectories also means that the limiting value will not be
approached correctly.

Because of these caveats, the standard deviations we quote are only an
indication of the stability of the results, not of their true accuracy.

Table 6.3 compares the results obtained with a pseudorandom and a
non-Brownian bridge implementation of Sobol quasi-random sampling. In
both cases, the number of cycles in the regression loop and the Monte
Carlo loop are the same. As expected, the Sobol sequences offer some
advantage when the number of dimensions introduced by exercise opportu-
nities is small. As the total number of dimensions increases, the perfor-
mance of the pseudorandom approach catches up with that of Sobol. The
CPU time is approximately the same in both cases. 

Table 6.4 shows the effect of the Brownian bridge construction. In this
case there is some advantage about using Brownian bridges when the num-
ber of cycles and the number of exercise opportunities are large.

V	 V c X∆( )2+=
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Finally, Table 6.5 shows the effect of a different number of replications
in the computation of the regression (regression module) and the Monte
Carlo valuation (simulation module). Savings in CPU time result from lim-
iting the number of cycles in the regression loop. The fact that the number
of cycles are different, however, implies we must be cautious in interpreting
the convergence of the results. 

CASE STUDY 2: BERMUDAN SWAPTION2

Bermudan interest rate instruments are ideal candidates for selecting the
LSMC as the solution approach. The two main reasons for this are the
dimensionality that results from the number of factors in modeling the term

TABLE 6.3 Comparing pseudorandom numbers with Sobol.

Sobol (no BB) Pseudorandom

nr, nv V CPU V CPU

10 Exercise opportunities 

104 17.792 ± 0.065 2.66 17.749 ± 0.166 2.53

3104 17.777 ± 0.045 8.07 17.782 ± 0.098 7.56

105 17.803 ± 0.025 26.66 17.813 ± 0.047 24.57

15 Exercise opportunities

104 17.862 ± 0.060 3.68 17.745 ± 0.165 3.51

3104 17.914 ± 0.051 11.11 17.889 ± 0.079 10.43

105 17.920 ± 0.025 37.33 17.879 ± 0.051 34.78

30 Exercise opportunities

104 17.955 ± 0.084 7.21 17.849 ± 0.172 6.95

3104 17.968 ± 0.079 20.91 17.967 ± 0.106 21.05

105 18.017 ± 0.036 61.94 17.993 ± 0.044 57.22

Note: nr is the number of scenarios used for correlation, nv is the number of scenarios used 
for valuation. As the number of exercise opportunities increases, the advantage of the 
quasi-random method over standard Monte Carlo decreases.

2This work was carried out jointly with Dr. Georg Meier of HypoVereinsbank and
Mr. Dider Vermeiren of Octanti Associates.
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structure and the path dependency characteristics of the rates. The dimen-
sionality of the term structure makes it very difficult to use alternative
techniques, such as lattices or finite differences. The Bermudan swaption is
a very common instrument where the need for accurate pricing is particu-
larly important. 

Specification
The Bermudan swaption used in this case study gives the holder the right to
enter into a 10 year maturity annual swap at the end of years 1 through 9.
We assume a flat initial forward rate term structure of 5 percent; the strike
for all maturities is also 5 percent; and the volatility of the forward rates is
assumed to be a constant 0.2.

Scenario Generation
We assume that the scenarios are governed by the LIBOR dynamics
described in Chapter 4. We assume that there are 10 annual rates with con-
stant correlation coefficient 0.7. The main purpose of introducing an

TABLE 6.4 Effect of Brownian bridges on Sobol sequence performance.

Sobol with Brownian bridge Sobol without Brownian bridge

nr, nv V V

10 Exercise opportunities

104 17.779 ± 0.062 17.792 ± 0.065

3104 17.791 ± 0.038 17.776 ± 0.045

105 17.804 ± 0.012 17.803 ± 0.025

15 Exercise opportunities 

104 17.876 ± 0.133 17.862 ± 0.060

3104 17.893 ± 0.043 17.914 ± 0.051

105 17.914 ± 0.023 17.920 ± 0.025

30 Exercise opportunities

104 17.951 ± 0.117 17.955 ± 0.084

3104 18.013 ± 0.043 17.968 ± 0.079

105 18.0287 ± 0.017 18.017 ± 0.036

Note: nr and nv are the number of correlation and valuation scenarios, respectively. On the 
average, the Brownian bridge reduces the standard error by about half.
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imperfectly correlated rate structure is to study the effect of the dimension-
ality of the state variables. The forward rate scenarios were generated using
principal component analysis on the correlation matrix, with the diagonal
elements normalized to one (see Chapter 4).

Basis Functions
In the case of an interest rate product such as a swaption, there are several
possibilities for choosing the correlation or conditioning state variable. In
the case of a Bermudan swaption, one obvious choice is the swap rates of
the underlying swaps at exercise times. Other choices are the forwards that
determine the swap rates of the underlying swaps. Yet other possibilities are
the European versions of the swaptions at exercise times. The selection of
appropriate correlation variables is largely a matter of experience.

In general, the swap rate alone does not provide as much information about
changes in the term structure as the combination of the swap rate and the for-
ward rates. In the case of plain vanilla swaps, swap value provides the
same information as the swap rate, so it won’t matter which one is

TABLE 6.5 Effect of regression and valuation cycles.

Matched versus unmatched number of regression and valuation paths

nr nv V CPU nr nv V CPU

10 Exercise opportunities

104 104 17.777 ± 0.082 2.70 104 104 17.779 ± 0.062 2.66 

104 3104 17.762 ± 0.043 4.15 3104 3104 17.791 ± 0.038 7.83

104 105 17.769 ± 0.014 9.41 105 105 17.805 ± 0.013 26.07

15 Exercise opportunities

104 104 17.887 ± 0.143 3.70 104 104 17.876 ± 0.133 3.76

104 3104 17.869 ± 0.053 5.85 3104 3104 17.893 ± 0.043 11.36

104 105 17.868 ± 0.022 13.33 105 105 17.914 ± 0.024 37.36

30 Exercise opportunities

104 104 17.976 ± 0.130 7.06 104 104 17.951 ± 0.117 7.16 

104 3104 17.960 ± 0.047 11.09 3104 3104 18.013 ± 0.044 22.16

104 105 17.957 ± 0.024 25.24 105 105 18.028 ± 0.017 63.58

Note: Significant savings in CPU time may result from limiting the number of cycles in the 
regression loop.
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selected as the conditioning variable. In more complex swaps, such as
amortizing swaps, selecting the swap value may be more desirable.

This study reveals that very good results can be obtained by selecting as
correlation variables at a particular exercise time the swap rate (or the
swap value) of the underlying swap at that time, and the forward rate near-
est the exercise time.

If the stochastic dimension of the term structure is one (a term structure
that moves parallel to itself), we can expect no additional improvements by
combining several correlation variables.

In this case study we use the same monomials as in the previous case.

The Benchmark
As mentioned earlier, there are two benchmarks that an LSMC pricer
must pass. One is the correct pricing of European versions of the instru-
ment; the other is a satisfactory comparison with a different and reliable
method. Here we discuss the Bermudan benchmark only. In the previous
case study we used finite differences as a benchmark. In this case we used
a highly accurate single factor lattice approach.3 Table 6.6 shows that the

TABLE 6.6 Single factor lattice benchmark.

Bermudan swaption: Single factor lattice benchmark.

Exercise dates Lattice value LSMC value Std error

1 to 9 454,273 453,981 1,455

2 to 9 444,848 444,420 1,067

3 to 9 417,716 417,938 1,255

4 to 9 377,905 379,050 1,375

5 to 9 328,490 327,616 807

6 to 9 271,756 270,205 675

7 to 9 209,335 209,133 363

8 to 9 142,523 142,522 304

9 72,387 72,431 170

Note: Differences between accurate lattice computations and LSMC results. LSMC com-
puted with 10,000 trajectories, standard error with 10 batches. Basis functions are mono-
mials of degree two in the swap values and the first forward rate at exercise.

3The lattice is a variation of a bushy tree with enforced recombination, proprietary 
technology of HypoVereinsbank, Munich.
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results of the LSMC compare with the results of the lattice within the
standard error.

Numerical Results
Table 6.7 shows the effect of selecting different correlation variables and
the degree of the monomials that define the basis functions. Notice that as
the maturity of the exercise opportunity increases, the less significant the
difference between choices of correlation variable and basis function
degree. This is expected, since as exercise opportunities progress the impor-
tance of shape changes in the term structure on the value of the instrument
decreases. At the last exercise opportunity the Bermudan swaption is no
longer Bermudan, and there is no difference between choices of basis func-
tions or correlation variables. 

TABLE 6.7 Convergence of Bermudan swaption value as function of correlation 
variables.

Bermudan swaption—10 factors
Effect of conditioning variable selection

Exercise
dates

Forward
Degree 2

Forward
Degree 3

Forward + Swap
Degree 2

Forward + Swap +
European swaption 

Degree 2

1 to 9 391,028 391,624 404,977 405,315

2 to 9 381,275 381,898 394,970 394,985

3 to 9 360,723 360,725 372,710 372,674

4 to 9 330,223 330,274 339,714 339,828

5 to 9 290,246 290,384 298,473 298,637

6 to 9 243,037 243,122 249,241 249,370

7 to 9 191,745 191,740 194,683 194,749

8 to 9 136,176 136,198 136,196 136,186

9 72,616 72,616 72,616 72,616

Note: LSMC computed with 10,000 trajectories.
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Pricing with Finite Differences

his chapter presents a summary of the finite difference method applied
to pricing derivatives. The material presented here is sufficient to under-

stand the methodology in enough detail to implement practical solutions.
For a more extensive discussion, which includes a large number of numeri-
cal examples and a detailed analysis of special issues, the reader is referred
to the comprehensive work by Tavella and Randall (2000).

FUNDAMENTALS

Because finite differences deal directly with the pricing equation, this tech-
nique is also referred to as a PDE method. The finite difference method has
been used for derivatives pricing for a long time, but it is only in recent
years that this methodology has gained significant popularity.

The work by Brennan and Schwartz (1977), for example, is an early
example of the application of finite differences to pricing derivatives.

An advantage of finite differences that was understood early on is that
the finite difference approach is an extremely effective way of capturing
early exercise. Since, until recently, simulation methods faced serious chal-
lenges in dealing with early exercise, the finite difference method was the
numerical approach of choice in many cases involving early exercise. The
fact that finite differences are also able to deal effectively with jumps and
paths dependencies was not fully appreciated until recently, however
(Tavella and Randall, 2000). Although, as we will see in the course of this
chapter, finite differences have a number of highly desirable properties,
there is one fundamental obstacle that remains unsurmounted. This is the
fact that the data requirements become unmanageable as the number of
dimensions grows. The number of dimensions for pricing instruments on
standard desktop machines under practical conditions appears to be three
or less.

At the time of this writing, the simulation techniques we discussed
in Chapter 6 are in tight competition with finite differences for pricing

T
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low-dimensionality instruments with early exercise features. For dimen-
sions three or larger, the simulation approach quickly takes the lead
regarding speed. However, as we saw in Chapter 6, even for a small
number of dimensions, the least squares Monte Carlo method may com-
pete favorably with finite differences. Given these facts, why would we
want to use finite differences? Here are some of the reasons why.

■ In finite differences there is a clearly understood scaling between com-
putational effort and accuracy. This is not always the case with Monte
Carlo, where this scaling may jump from  to , for example (see
Chapter 5). For this reason, finite differences provide reliable results
that can be used as benchmarks, as we did in Chapter 6. The impact of
truncation error on Monte Carlo simulation is very difficult to inter-
pret. In many cases, the truncation error in finite differences is rela-
tively easy to interpret.

■ Finite differences can handle early exercise, discrete sampling, and
complex boundaries and barriers.

■ Finite differences capture truly continuous early exercise features. This
stands in contrast to the simulation methods we discussed in Chapter 6,
which capture discrete exercise. At the time of this writing, with those
methods, the continuous exercise is obtained by extrapolating to infi-
nitely frequent exercise.

These are the two primary difficulties with finite differences.

■ The driving processes must be Markovian. The contingencies, however,
don’t have to be Markovian. In fact, finite differences are very effective
at dealing with many forms of path dependencies.

■ The number of dimensions must be small. This is the primary disad-
vantage of finite differences. This is not a numerical issue as much as a
data issue. The fact that finite differences rely on grids means that stor-
age requirements present a fundamental barrier as the number of
dimensions grows.

We can argue that a particular form of finite differences is the most
popular tool for derivatives pricing. As we will see later, trees can be viewed
as a specific implementation of a very restricted form of finite differences.
The form of finite differences that trees represent have highly limiting fea-
tures, which are at the root of the rigidities that characterize trees. For this
reason, even if you don’t use finite differences in practice, the material in
this chapter is essential for understanding the limitations of trees.

As we saw in Chapter 3, the pricing equation is a recasting of the expec-
tation that gives us the derivative’s price. What is the fundamental difference

1
n

------- 1
n1.5
---------
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between solving this expectation using simulation or a tree and solving it
using finite differences? When we solve the problem by simulation, we con-
struct trajectories of the underlying that assume the underlying has a given
initial value. The same idea applies to trees. This means that the results of
simulation or of tree calculations are valid for a given value of the initial
spot price. If we want to know the value of the derivative for a different ini-
tial spot price, we have to repeat the calculation. This is not the case with
finite differences. Since in finite differences the spot price is viewed as a
space coordinate, the computation gives us the derivative’s price for all the
values of the initial spot price within the computational domain. This is also
true of the hedging parameters, which obey their own pricing equations.

The typical pricing equation, as we discussed in Chapter 3, is as follows:

(7.1)

The most common form of Equation 7.1 is one where the term , which
is associated with path dependency, and the convolution jump in the source
term, which is associated with jumps, are missing. In this case, the pricing
equation becomes the classical Black and Scholes equation. The Black and
Scholes equation is a parabolic partial differential equation in reverse time. By
reverse time we mean that we must solve this equation starting from maturity
and advancing backward toward earlier time. The reverse time aspect reflects
the fact that in finance, information about payoffs becomes more concentrated
as time goes by. While the underlying processes diffuse forward, the informa-
tion about contingent payments increases. Parabolic is one of the three classifi-
cations of partial differential equations.1 The fact that the pricing equation is
parabolic allows us to use finite difference techniques that were developed
for diffusion-dominated problems in physics and engineering, which are also
parabolic. The basic implication of a parabolic partial differential equation

1The other two are hyperbolic and elliptic.

Convection Diffusion

∂V
∂t
------- a∂V

∂S
------- b∂V

∂r
------- c∂V

∂I
-------+ + d∂2V

∂S2
---------- e�

∂2V
∂S∂r
------------ f ∂2V

∂r2
----------+ ++ +

Source

rV – h 
 
( )V 
( ) 
d∫ V–

Convolution
 
 
 =

Jump

                   

      

          

              

∂V
∂I
-------



210 QUANTITATIVE METHODS IN DERIVATIVES PRICING

is that if we know the solution at a number of discrete points at time t, we
can advance the solution to time t �t, where �t is known as the time step
(the advancement is to a smaller time because our equation is in reverse
time). This advancement is a relatively simple algebraic problem. In the case
of trees, this advancement is known as backward induction. In the case of
finite differences applied to a parabolic PDE, this advancement is called
marching.

Finite Difference Strategy
To do the analysis, it is convenient to work in increasing time. We accom-
plish this by rewriting the pricing equation in terms of time to maturity. To
illustrate, consider the standard Black and Scholes equation of a derivative
with a log-normal underlying:

(7.2)

where r is the risk-free rate and where the underlying process follows the
stochastic differential equation

(7.3)

Equation 7.2 must be solved for V(S, t) subject to end conditions deter-
mined by the derivative payoff at maturity, V(S(T), T) F(S(T), T), and
suitable boundary conditions. If T is the maturity time, we define the time
to maturity  as follows:

(7.4)

We replace  for t in Equation 7.2 to get

(7.5)

Equation 7.5 must be solved subject to initial conditions given by the deriv-
ative payoff,  Through the rest of this chapter,
however, we don’t carry the hat around and instead use t with the under-
standing that we mean . The form of the equations we will solve is then

(7.6)

subject to initial conditions V(S, 0) F(S, 0) and suitable boundary conditions.
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To implement the finite difference strategy, we represent the partial
derivatives in terms of solution values at discrete points in the S, t
domain. These points are arranged in the form of a regular grid, as shown
in Figure 7.1. Although this grid does not have to be regular, it is estab-
lished practice to use regular grids. The reason for this will become clear
as we develop the underlying theory. If there is a need for concentrating
grid points in certain areas of the solution domain, the grid is defined in a
domain given by a coordinate transformation of the underlying states and
time. In that domain, the grid is regular. This greatly facilitates the analy-
sis and implementation of numerical schemes.

There are two discretizations involved in setting up a finite difference
solution. One discretization involves the space derivatives, the other
involves the time derivative. The combination of these two discretizations
gives us the finite difference algorithm. The finite difference algorithm
establishes an algebraic relationship between the solution values at time tn
and the solution values at time tn+1.

The names commonly given to finite difference schemes, such as
Euler scheme, Crank-Nicholson scheme, and so on, refer to the time dis-
cretization part of the finite difference algorithm. There is a great variety
of time discretization schemes from which to choose, but the ones that
have established themselves are relatively few. The usual space discretiza-
tions are much less varied. Typically, we use central differences in the

FIGURE 7.1 Finite difference grid for a derivative with a single underlying. Given 
known solution values at grid points up to time tn, the finite difference scheme advances 
the solution to time tn+1. Time is the remaining time to maturity. S is the underlying 
state or a suitable transformation. The upper and lower rows of grid points are 
boundary values. Boundary values can be given or computed as part of the solution.

S

ttn + 1

Si + 1 = Si + � t

tn
= tn + � t

Si
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interior of the domain and one-sided differences at boundaries. This will
be fully explained shortly.

Depending on the nature of the time discretization scheme, the result-
ing relationship between values at tn and tn+1 may be such that we can solve
for the unknown solution values at tn+1 individually, in a straightforward
algebraic fashion. Time discretization schemes that allow us to do this are
called explicit schemes (the explicit Euler scheme is the simplest example).
Time discretization schemes that require that we solve for all the values at
tn+1 simultaneously are called implicit schemes (the implicit Euler scheme is
the simplest example).

Constructing Finite Difference Space Discretizations
Our objective is to express the partial derivatives , , and so on, as a
linear combination of u evaluated at discrete points with a known trunca-
tion error. The order of the truncation error is referred to as accuracy of the
discrete approximation. These approximations are very easy to accomplish
using Taylor series expansions. To illustrate, assume we want a finite differ-
ence representation of  evaluated at x, using discrete values to the left of
x. Assume also that we want this approximation to be second order accu-
rate. This is an example of a second-order one-sided finite difference dis-
cretization. Given a grid spacing �x, we postulate the following expansion,

(7.7)

where TE is the truncation error. We expand the terms in the right-hand
side of Equation 7.7 about x up to second order in �x:

(7.8)

We now require that the terms on the right-hand side of Equation 7.8
add up to . We accomplish this if the coefficients c–2, c–1, and c0 solve
the system of equations,
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Solving this system, we get

(7.10)

We can use this approach to get higher-order discretizations (Tavella
and Randall, 2000).

Four Essential Space Discretizations Most of our work with finite differ-
ence in finance can be done with just four space discretizations.

Second-order central discretizations:

(7.11)

(7.12)

(7.13)

One-sided first-order discretization:

(7.14)

Implementation of Space Discretization
For illustration, consider the following pricing equation:

(7.15)

where r and � are constants. We construct a grid of equally spaced points
{xi} {x0, x1,…, xI}, such that xi+1 xi �x, and replace the space deriv-
atives in Equation 7.15 with the finite difference representations in Equa-
tions 7.11 and 7.12.
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(7.16)

where TE is the truncation error that results from the discrete space
approximations. We now denote by ui the solution at grid point xi that
incorporates the trunction error. ui is a function of time, not a function of
x. We rewrite Equation 7.16 as follows:

(7.17)

Notice that now we have a total derivative with respect to time on the
left-hand side. As the truncation error approaches zero, the discrete
solution ui approaches the exact solution V(xi). If we now focus on inte-
rior points only, {x1,…, xI–1}, we can write a system of I 1 ordinary
differential equations, one for each interior grid point. Rearranging
Equation 7.17, we get

(7.18)

This is a tridiagonal rectangular system; there are I 1 unknowns, and
there are I 1 equations. u0 and uI are at the lower and upper boundaries,
respectively. There are several things we can do to deal with u0 and uI.

■ We may be able to know an exact value or expression or a suitable
approximation for the boundary values. For example, if we are pricing
a call option, the lower boundary may be zero and the upper boundary
may be given by the present value of the intrinsic value at maturity. If
we replace u0 and uI with known values, the first and last columns of
the rectangular system go away and the system becomes square. We
can now hopefully solve for the interior values.

■ We may be able to express the boundary values in terms of interior val-
ues by making suitable statements about the shape of the solution near
boundaries. In this case, the first and last columns of the rectangular
system also go away and the system becomes square.

■ We may be able to add additional equations for u0 and uI. In this case
we enlarge the system by adding two rows and making it square.

■ We can do a combination of the above. We will discuss this in greater
detail later on.
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After we introduce proper assumptions about boundaries, Equation
7.18 is written as

(7.19)

where u {u0,…, uI} and A is a matrix called the discretization matrix. We
would like to solve this system subject to initial conditions (these are deter-
mined by the payoff). Unfortunately, this system cannot be solved analyti-
cally (except in very rare cases). To solve this system we must use a numerical
time discretization scheme. We can now define the finite difference problem
as follows. The finite difference problem is the formulation and implementa-
tion of a scheme for the time discretization of Equation 7.19.

As we will see, the properties of the discrete solution result from the
interaction of the discretization matrix, A, and the time discretization
scheme. Before proceeding, let’s briefly remark on the difference between
European pricing and early exercise pricing.

■ In pricing a European option, we have a finite difference problem as
described.

■ In pricing options with early exercise (American or Bermudan), we
have a discrete linear complementarity problem. From an implementa-
tion viewpoint, the early exercise and the European cases are almost
identical. We will discuss this in detail later in the chapter.

One aspect crucial to the numerical efficiency of finite differences is the
fact that the matrix A is sparse. This means that most of the entries in the
matrix are zero. In addition, the discretization matrix typically has a struc-
ture that contributes to the numerical efficiency of the resulting algorithm.
Although we have illustrated the space discretization with a simple one-
dimensional pricing equation, the same idea applies if there are more dimen-
sions. How about the convolution integral? It turns out that because the
convolution integral contributes to the source term in the pricing equation,
it does not affect the feasibility of the numerical solution. However, the dis-
cretization of the convolution integral may cause the discretization matrix to
become full, as opposed to sparse. This would have a detrimental effect on
efficiency. However, there are straightforward iterative techniques that we
can use to get around this problem (Tavella and Randall, 2000).

The Mechanics of Finite Differences
The system in Equation 7.19 is discretized in time. To do this, we define a time
step, �t, and define time points tn n�t. We use the following notation:

(7.20)
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We now define a time scheme that approximates the total derivative .
This time scheme gives the name to the resulting finite difference algorithm.
The simplest time scheme is the so-called “explicit Euler scheme.” When
applied to Equation 7.19, this scheme is

(7.21)

where the last term is a truncation error (the subscript in the truncation error
indicates that this is the truncation error due to time discretization, as
opposed to space discretization). Using our notation given by Equation 7.20,

(7.22)

Let’s now consider the following vector equation, where  incorpo-
rates the truncation error:

(7.23)

Notice that at this point we have introduced two sources of numerical
error. The first source is the discretization of the space derivatives. The sec-
ond is the discretization of the time derivative.

Remembering that ,  are vectors, we can rewrite this equation as

(7.24)

where I is the identity matrix. Equation 7.24 is a particular case of a system
of linear equations of the form

(7.25)

where AL and AR are matrices (the subscripts stand for left and right matri-
ces.) These matrices are usually very large (equal to the number of grid
points) and very sparse. The solution of Equation 7.25 has the following
iterative structure:

(7.26)
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�t
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� �=
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The vector b results from a simple and very efficient vector matrix mul-
tiplication. The solution of the system  can be extremely efficient
if the sparse structure of AL can be exploited. This is an important reason
for the preference to use second-order central differences for the approxima-
tion of the space derivatives. In the case of a simple one-dimensional pricing
equation, second-order central differences preserve the tridiagonal structure
of the discretization matrix. Ideally, we would like to solve this system
exploiting the sparse structure and using a direct method. For a direct
method to work effectively, it must be highly specialized. Using a direct stan-
dard linear solver from a numerical library is not typically a good choice. If
this approach is not possible, we can use efficient iterative techniques, as we
will discuss shortly.

In the simple case illustrated by Equation 7.24, the solution of
 is trivial, because AL I. In this case,

(7.27)

In this case we can get the components of  one after the other without
actually solving a linear system. This is what characterizes an explicit
method.

To illustrate an implicit method, consider what happens if we evaluate
the right-hand side of Equation 7.23 at tn+1:

(7.28)

This can be rewritten as follows:

(7.29)

Now we must solve a linear system to advance from tn to tn+1. This is
what characterizes an implicit method.

STABILITY AND ACCURACY ANALYSIS

To understand the reason why stability is central to the analysis of finite
difference schemes, we must consider three fundamental issues.

■ Consistency: Refers to the convergence of the finite difference solution
to the PDE solution as the time step and the grid size vanish.
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�t
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■ Convergence: There is convergence if the finite difference solution
error at a fixed point tends to zero as the time step and the grid size
vanish.

■ Stability: The finite difference solution is stable if it remains bounded
as the number of time steps grows.

These three issues are connected through the Lax equivalence theorem:

Given a consistent finite difference scheme applied to a properly posed 
initial value problem, stability is the only requirement for convergence.

Richtmeyer and Morton (1967) give a proof of this theorem.
We will only be using consistent schemes. The Lax equivalence theorem

essentially means that if we are solving the right problem with a stable
scheme, we can get the accuracy level we want. This also means that error
and stability analyses are essential for the design of new schemes for under-
standing the behavior of existing ones.

There are two basic approaches to stability analysis.

■ Fourier approach: This is fairly simple and is the approach we find in
most textbooks on numerical analysis. In the Fourier approach we
replaced the discretized finite difference solution with Fourier modes
and derive the conditions for growth of the Fourier coefficients (Tavella
and Randall, 2000). The conditions under which those coefficients
remain bounded determine the stability constraints. This approach is
simple, but it does not take boundary conditions into account.

■ Matrix approach: This approach is based on the analysis of the eigen-
values of the discretization matrix. It is far more comprehensive than
the Fourier approach and allows us to gain a deep understanding of the
properties of the scheme and of the way stability is affected by bound-
ary conditions.

We will limit our discussion to the matrix approach. The mathematics
required is straightforward and the insights that can be reached are pro-
found. The reader interested in the Fourier approach may consult Tavella
and Randall (2000) for details.

Remember that the discretization of the space derivatives turns our
PDE into a system of ODEs:

(7.30)

where A is the discretization matrix. We assume that A is nonsingular and has
a set of linearly independent eigenvectors. If X is the matrix of eigenvectors of

du
dt
------- Au=
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A, and � is a diagonal matrix with the eigenvalues of A, the following rela-
tionship holds (Strang, 1988):

(7.31)

We can now decouple the system in Equation 7.30 as follows. We mul-
tiply Equation 7.30 on the left by X–1 and take into account that XX–1 I
to get

(7.32)

We now introduce a local time linearization and assume that the elements
of X are time independent:

(7.33)

Using Equation 7.31, we have

(7.34)

Introducing the definition,

(7.35)

the system of ODE in Equation 7.34 becomes

(7.36)

This is now an uncoupled system of ordinary differential equations
whose solution vector, v, has elements

(7.37)

where cj are constants determined by initial conditions. We will use Equa-
tion 7.36 to determine the stability characteristics of schemes.

Notice that if we solve Equation 7.36, we can recover the values we are
interested in from the transformation u Xv. We don’t do this in an actual
implementation of finite differences. The purpose of working with Equa-
tion 7.36 is only for stability analysis. The actual implementation of finite
difference schemes is as described in the last section. The stability and accu-
racy of the implementation, however, can be inferred by analyzing the time
discretization of Equation 7.36.

X 1– AX �=

=

X 1– du
dt
------- X 1– AXX 1– u=

dX 1– u
dt

----------------- X 1– AXX 1– u=

dX 1– u
dt

----------------- �X 1– u=

v X 1– u=

dv
dt
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vj cj exp �jt( )=

=
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To determine the stability and accuracy of a scheme, we consider only
one of the components of v. We determine the stability and accuracy of
schemes by looking at the time evolution of the time-discretized solution of

(7.38)

We denote the discrete time solution of Equation 7.38 by . The
scheme will be stable if every  remains bounded. To determine the time
accuracy of the scheme, we consider the difference between the exact and
the approximate solution of Equation 7.38, . When we talk about
the accuracy of a scheme, we normally refer to time accuracy. Time accu-
racy is the order of the time step to which the discrete and the exact solu-
tions of the uncoupled system agree. This means that the order of accuracy,
p, is given by

(7.39)

Locally, the exact solution of Equation 7.38 is

(7.40)

The time discretization error is given by

(7.41)

If we get an expansion for  in terms of �j�t, we can substitute this expan-
sion in Equation 7.41 and get an expression for the time discretization
error.

We will discuss how we get an analytical expression for . We will use
this expression for determining stability and accuracy.

To analyze the effect of time discretization, we introduce the concept of
shift operator, Ei. Given the definition,

(7.42)

the shift operator is defined through the relationship

(7.43)
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where the i in Ei is interpreted as a power, while the n in v(n) is inter-
preted as an index. We use parentheses to differentiate between an
index and a power. (Don’t confuse the shift operator with the expecta-
tion operator.) We are interested in polynomials of the shift operator
because the time discretization of Equation 7.38 will introduce such
polynomials.

Define a polynomial of the shift operator as

(7.44)

where ai are constant coefficients. An equation of the form

(7.45)

is known as a homogeneous difference equation and has the solution
(Mickens, 1990):

(7.46)

where the bk are constants and �k are the roots of the polynomial equation,

(7.47)

We now have the tools to get an analytical expression for . If we dis-
cretize the time derivative in

(7.48)

we get a polynomial of the displacement operator with �j�t as a parameter:

(7.49)

To illustrate how this happens, assume we discretize Equation 7.48
using the explicit Euler method. In this case,  is the solution of

(7.50)

which can be rewritten as

(7.51)
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Remember that  incorporates the truncation error in the discretization. In
this case the polynomial in the shift operator is

(7.52)

and the roots are obtained by solving

(7.53)

In this simple case, the exact solution of the difference Equation 7.50 is

(7.54)

where cj is a constant determined from initial conditions.
We can now proceed with the general case. In general there will be K

�-roots for each eigenvalue. The exact solution to the difference equation
that results from the time discretization of Equation 7.48 is

(7.55)

where cjk are constants and the �jk are solutions of

(7.56)

We now establish the connection between vj and . The exact solu-
tion, from Equation 7.40, is

(7.57)

The �jk depend on �j and �t only through the product �j�t. If 
from Equation 7.55 is to converge to  from Equation 7.57 as �t → 0, at
least one of the �jk must converge to the expansion on the right of Equa-
tion 7.57. This means that at least one of the �jk for some k must be
expressible as

(7.58)

where the pth term is the first one that deviates from the Taylor expansion
on the right-hand side of Equation 7.57. As discussed earlier, p is called the
order of accuracy of the scheme. For each j, the �jk that do not converge to
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the exponential expansion as �t → 0 are called spurious roots or spurious
amplification factors. The spurious roots contribute to the error of the
scheme and may limit the stability bounds.

For a scheme to be stable, the absolute value of all the �jk correspond-
ing to each eigenvalue �j must be less than one. This fact is determined by
the combined effects of the �j and the choice of time discretization scheme.
The �j are determined by the discretization matrix. The discretization
matrix is determined by the choice of space discretization and by the treat-
ment of boundary conditions.

The discretization matrix introduces a spectrum or distribution of
eigenvalues �j. Some of these eigenvalues are relevant to the solution,
some are not. The ones that are not relevant are called parasitic eigen-
values. The eigenvalues describe scales in the solution. For example,
near expiration a call option has rapidly varying scales near the strike.
To describe this solution properly we need a rich spectrum of eigenval-
ues. Far away from expiration, however, the solution is smoother and
has fewer scales, therefore fewer eigenvalues are needed to describe the
solution. The parasitic eigenvalues are scales created by the numerical
algorithm. They represent high frequency modes not relevant to most of
the solution. But these eigenvalues are there because they are a conse-
quence of the space discretization, which we cannot avoid. The main
difference between implicit and explicit schemes is the way they respond
to these eigenvalues.

■ Implicit schemes tolerate a broad spectrum of eigenvalues. This
includes both the relevant and the parasitic eigenvalues. For this rea-
son, implicit schemes are flexible and stable.

■ Explicit schemes don’t tolerate a broad spectrum of eigenvalues (either
relevant or not). For this reason, implicit schemes are rigid and easily
become unstable.

We can now make a preliminary remark about the connection between
finite differences and trees.

■ Standard trees (binomial or trinomial) are a form of explicit scheme.
■ Trees have difficulty overcoming the rigidities created by themselves.

These rigidities are their intolerance to parasitic eigenvalues and have
nothing to do with the problem being solved.

■ For this reason, working with trees may require much more effort than
is justified by accuracy requirements.

We will elaborate on this later.
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The following section is summarized from Tavella and Randall (2000),
which contains detailed analysis of other algorithms.

Analysis of Specific Algorithms
The purpose of this section is to illustrate how the framework developed in
this chapter can be used to analyze individual algorithms. Following these
steps, the reader can easily scrutinize alternative algorithms (including their
own).

The construction of a finite difference scheme consists of two parts.
One part is the space discretization, the other is the time discretization.
In the matrix approach, the analysis of a particular algorithm starts out
by mapping the relationship between the �jk and the �j. In other words,
the analysis starts with the time discretization part. This leads to the def-
inition of regions in the �j complex plane where the resulting scheme will
be either stable or unstable. Space and time discretizations must be such
that the resulting scheme is both stable and has suitable convergence
properties.

Example 1: The Explicit Euler Scheme Consider one of the ordinary dif-
ferential equations in eigenvector space resulting from space discretization:

(7.59)

Introducing the explicit approximation,

(7.60)

we get the following representation of the finite difference problem:

(7.61)

Equivalently,

(7.62)

where the shift polynomial is defined as follows:

(7.63)

This method has only one amplification factor:

(7.64)
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To compute the accuracy of this method, we compare Equation 7.64
with the expansion of e��t.

(7.65)

The discrepancy between the right-hand sides in Equation 7.65 and
Equation 7.64 is

(7.66)

Because the leading order term is �(�t2), this is a first-order accurate
method. The stability region is determined by the condition 

For the diffusion equation

(7.67)

discretized with central space differences, it can be shown that the most
extreme eigenvalue is  (Smith, 1985) (under the assumption that u(S, t)
is zero at the boundaries). It follows that for stability we require

(7.68)

This means that the time step must be restricted as

(7.69)

Notice that if we double the number of spatial grid points, we obtain four
times more spatial accuracy at the expense of four times more time steps.
This, however, requires eight times more computational work. In many
cases, this requirement from stability causes the time step to become much
smaller than would be needed to control time discretization accuracy. We
can postulate an alternative interpretation of this restriction. The inverse of
each of the  can be viewed as a characteristic diffusion time. The small-
est of such times is proportional to the square of the spatial grid spacing.
Denoting this diffusion time by �d, the stability constraint becomes simply

(7.70)

This means that the time step is determined by a characteristic time that is
typically irrelevant to the problem under consideration. This is an illustration of
the serious limitations of explicit schemes. This limitation carries over to trees.
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Example 2: The Implicit Euler Scheme Now consider the following implicit
approximation to the derivative in Equation 7.59:

(7.71)

(7.72)

Equivalently,

(7.73)

where the shift polynomial is

(7.74)

This method also has only one � root,

(7.75)

where � is negative. We can expand this expression in terms of ��t

(7.76)

We compute the accuracy of this method by comparing this expansion
with the expansion of e��t. The discrepancy between the two expansions is

(7.77)

This indicates that this is also only a first-order method. Since the
requirement for stability, , is satisfied for all values of ��t from
Equation 7.75, this is an unconditionally stable method.

This method is free from the constraint imposed by Equation 7.69.
That constraint was imposed entirely by the discretization of the space
dimension and was not connected with the phenomenon described by the
partial differential equation. Notice that the relationship between accuracy
and computational effort is less clear than in the previous case. Now
advancing the solution requires solving a linear system at each time step. If
we assume that the solution of the linear system requires effort linearly pro-
portional to the number of spatial grid points, then we can quadruple the
spatial accuracy by doubling the computational effort. This happens in the
particularly simple case when we have a tridiagonal matrix to invert at each
time step. The relationship between accuracy and computational effort is
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more complex (and typically less favorable) if the linear system must be
solved by more general direct or iterative solvers, as is the case in multiple
dimensions.

The fact that the method is unconditionally stable does not necessarily
mean that the solution will make sense for large time steps. It simply means
that the numerical solution will not blow up.

Example 3: The Crank-Nicholson Scheme This method incorporates both
explicit and implicit features. It is unconditionally stable but may exhibit
undesirable qualities if the time step is very large. Despite this, the
Crank-Nicholson scheme has been extremely popular for numerical solu-
tions in finance. The main appeal of the method is its second-order accu-
racy and stability, which are achieved with a minor increase in
computational cost compared to the implicit method.

Consider an approximation to the derivative in Equation 7.59 that
combines explicit and implicit components:

(7.78)

This gives the representation,

(7.79)

Equivalently,

(7.80)

where the shift polynomial is

(7.81)

This method also has only one � root:

(7.82)

We can expand this expression in terms of ��t:

(7.83)
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The discrepancy between this expansion and the expansion of e��t is

(7.84)

This indicates that this is a second-order method. As was the case with
the implicit Euler method, the requirement for stability, , is satisfied
for all values of ��t from Equation 7.82. This is also an unconditionally
stable method.

The Crank-Nicholson scheme has been shown to have undesirable
properties under some circumstances. To understand this, consider what
happens for �t >> �d. In this case, the amplification factor has the limit:

(7.85)

This means that the solution components for which �t >> �d may not
decay appreciably, but simply oscillate in time. These components originate
in discontinuities in initial conditions or in shocks such as those induced by
discretely sampled barriers. Although these components do decay, we are
not interested in an accurate description of their time evolution. For a satis-
factory solution, these components should disappear after a relatively small
number of time steps. After q time steps, Equation 7.85 implies that the
amplitude of these components will have decayed by the factor:

(7.86)

This means that we can get a reduction of these components by a factor
of about 2.7 after q time steps if we select �t as follows:

(7.87)

We can select the time step to ensure that such components are damped sig-
nificantly within a given number of time steps. Usually, but not always, it is
not difficult to find a time step that causes the quick disappearance of these
unimportant oscillations.

TIME ADVANCEMENT AND LINEAR SOLVERS

The implementation of time advancement in a finite difference solution
consists of solving the iterative problem:

(7.88)
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where, as explained in the previous section, the AL and AR matrices result
from the choice of time discretization scheme and discretization matrix.

Before discussing the methods of solution in detail, let’s summarize
some important features of this system.

■ Matrix AL can be extremely large. For example, in a two-dimensional
problem with a grid of 100 points along each dimension, the total
number of entries in AL would be (100 100)2 108.

■ Matrix AL is also typically very sparse. If we use second-order central
differences for the space derivatives and appropriate boundary condi-
tions, this matrix is tridiagonal.

■ The sparseness of the system may be ruined by the convolution integral in
the source term. If this is the case, we can use iterative techniques that rely
on lagging the source terms to get around the lack of sparse structure in AL.

■ In the case of multidimensional problems, the system will typically be
sparse but will not have a tridiagonal structure. This is caused both by
the multidimensionality itself and the presence of cross derivatives. In
this case we can use iterative solvers or techniques that transform the
original system into a sequence of systems, each one of which is a tridi-
agonal system, such as alternating direction implicity methods (ADI).

■ The presence of cross derivatives represents a special challenge. The matrix
is changed in such a way that efficient direct solvers are not readily viable.
One way to solve the problem is to use iterative solvers. Another way is to
use predictor-corrector techniques for the cross derivative terms.

■ The early exercise problem modifies the problem by incorporating
optimal exercise at each time step. To solve this problem with accuracy
consistent with the accuracy of the finite difference scheme, the system
must be solved iteratively. We discuss this in detail later on.

Next we discuss in some detail the two primary ways to solve the linear system
that advances the solution in time: the use of direct solvers and iterative solvers.

Direct Solvers
To qualify as a direct solver an algorithm must reach the solution in a finite
number of computational steps. An algorithm could be capable of reaching
the solution within a finite number of steps theoretically, but to be a true
direct solver it must be able to do so numerically. The most common direct
solver is the tridiagonal solver using the Thomas algorithm. We describe
this solver in detail, since this is the algorithm of choice in solving Euro-
pean problems that depend on one underlying. The tridiagonal solver is
also relevant to multidimensional problems when they are treated as a
succession of one-dimensional problems, such as in the case of alternating
directions implicit (ADI) algorithms.

× =
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Tridiagonal Solver The purpose is to solve the tridiagonal system:

(7.89)

This is accomplished in two steps. The first step is a downward (upward)
sweep of normalization and elimination, the second step is an upward (down-
ward) sweep that yields the solution. The version of the algorithm with the
downward sweep first is shown below.

Normalization:

(7.90)

Elimination:

(7.91)

Normalization:

(7.92)
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This is continued until the system looks as follows:

(7.93)

The solution follows immediately in the upward sweep:

(7.94)

More Sophisticated Direct Solvers It is possible to use more sophisticated
direct solvers that exploit the sparseness structure of the linear system. How-
ever, these solvers are not essential in practice. We can get robust implementa-
tions of finite differences using tridiagonal and iterative solvers. The interested
reader may consult Tavella and Randall (2000) and the references therein.

Iterative Solvers
An iterative solver achieves the solution through an iterative improvement of
an initial guess. There are two main types of iterative solvers. Stationary
methods use iteration schemes with parameters that remain fixed during the
iterations. Examples of these methods are the Jacobi, Gauss-Seidel, and suc-
cessive overrelaxation (SOR) methods. Nonstationary methods use parame-
ters that are updated as the iteration proceeds. Examples are the conjugate
gradient family and minimal residual methods. The interested reader may
consult Barrett et al. (1994) for an extensive reference on iterative methods.

Iterative solvers perform best if the matrix in ALu b is diagonally
dominant. The ideal diagonally dominant matrix is the identity matrix.
Therefore, the closer AL is to the identity matrix, the better the perfor-
mance of the iterative solver. This suggests the following strategy. We select
a matrix C and solve the equivalent system,

(7.95)

where C is selected such that ALC –1 is as close to the indentity matrix as
possible. Of course, the best choice for this would be C AL. But this is
not practical, because if we knew  we would have solved the problem
already. Therefore, we resort to some approximation to get the matrix C or
its inverse. Replacing the original system with Equation 7.95 is called pre-
conditioning. The method used to obtain C is called a preconditioner. The
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simplest preconditioner is to set C –1 equal to the inverse of the diagonal of
AL. We will not elaborate on preconditioners here. The interested reader
may refer to Tavella and Randall (2000) for a detailed discussion.

Next we describe three iterative techniques: the Jacobi, Gauss-Seidel, and
Successive Overrelaxation (SOR) methods. The main objective is to describe the
SOR method in detail. The reason for this is that the SOR method is sufficient
to tackle most practical European multidimensional problems. Furthermore, a
slight modification of SOR, called the projected SOR, is the technique of choice
of early exercise (multidimensional or not). The reason for the order in the
exposition is that the Gauss-Seidel method is a generalization of the Jacobi
method, and the SOR method is a generalization of the Gauss-Seidel method.

The Jacobi Method Consider the system of linear equations,

(7.96)

If we solved for a particular unknown assuming that we know the val-
ues of all the others, we would have the following expression:

(7.97)

This equation suggests an iterative algorithm of the form,

(7.98)

where n stands for the iteration number, not to be confused with the time
step (this iteration is happening within a given time step).

The Gauss-Seidel Method The Gauss-Seidel method is a simple generali-
zation of the Jacobi method. The only change is that the changes that occur
to the unknowns are incorporated into the scheme as they occur. The algo-
rithm is as follows:

(7.99)

Here also we can use the framework we presented to analyze the stabil-
ity and convergence of the scheme.
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The Successive Overrelaxation Method The successive overrelaxation
method (SOR) is constructed by averaging a Gauss-Seidel iterate with a
previous iterate:

(7.100)

(7.101)

The parameter � is called the overrelaxation parameter. Its value strongly
affects the rate of convergence of the method. The optimal value of � is in
general difficult to compute. In financial applications it is often the case
that � 1 is the safest choice.

FINITE DIFFERENCE APPROACH FOR EARLY EXERCISE

The application of finite difference schemes to price American-style derivatives
is the subject of much ongoing research. Here we present a basic discussion on
the finite difference discretization of the partial differential complementarity
formulation introduced in Chapter 3. By discretizing the partial differential
complementarity problem, we reduce the American option pricing problem to
the solution of a sequence of linear complementarity problems (LCP). For
greater detail, the reader is referred to the extensive work by Cottle, Pang, and
Stone (1992), where convergence issues are thoroughly discussed.

The Linear Complementarity Problem
Given a matrix A and vectors b and c, the linear complementarity problem
consists of finding vector x that satisfies the following conditions:

(7.102)

(7.103)

(7.104)

To illustrate how the partial differential complementarity formulation of
the option pricing problem leads to a sequence of LCPs, assume the follow-
ing PDCP:

(7.105)
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where

(7.106)

Consider the application of the Crank-Nicholson scheme to the PDCP
above. As we saw earlier, the Crank-Nicholson scheme consists of approxi-
mating the Lu operator as follows. (For added clarity, in the remainder of
this section we will use bolded letters to indicate arrays.)

(7.107)

where A is a matrix and f are boundary terms.
Introducing the definitions:

and replacing in the definition of the PDCP, we get the following LCP:

(7.108)

(7.109)

where F is a discrete approximation to the intrinsic value, F. This shows
that we must solve an LCP at each time step.

An equivalent and more compact version is obtained by making the
following substitutions:

(7.110)

(7.111)

With this we get the representation of the LCP discussed by Cottle, Pang,
and Stone (1992):

(7.112)
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(7.113)

Two fundamental questions in the solution of an LCP refer to the
uniqueness of the solution and to the formulation of a suitable method
of solution. The answer to both of these questions depends primarily on
the nature of the matrix M. As discussed by Huang and Pang (1998), the
vector q is not particularly significant in establishing the properties of
the LCP.

The LCP has a unique solution for all vectors q if and only if the matrix
M is what is referred to as a P-matrix. A P-matrix is one whose real eigen-
values are all positive; this is equivalent to having all principal minors posi-
tive. A positive definite matrix is a particular case of a P-matrix. On the
other hand, a P-matrix is not necessarily positive definite, since it need not
be symmetric.

The second question we must consider is the selection of a method of
solution. Just as it was the case with systems of linear equations, the
methods of solution for the LCP fall into two categories: methods that
yield the solution in a finite number of steps, called pivoting methods,
and iterative methods. Also as is the case with linear systems, the selec-
tion of a suitable method is influenced by the size of the problem. A finite
difference discretization of the PDCP will typically give rise to a very
large matrix M, with the same characteristics as the matrices that arise in
pricing European options. This is the primary reason why we will limit
our discussion here to iterative methods.

We now motivate the derivation of iterative methods for solving the
LCP by observing that a vector z is a solution to an LCP if and only if it sat-
isfies the following relationship:

(7.114)

If we now represent matrix M as the sum of two matrices, B and C,
and assume that a vector zk from the kth iteration is available, the follow-
ing recursive algorithm for determining z suggests itself:

(7.115)

Notice that here k does not refer to a point in time, but it refers to the
kth iteration for the LCP we must solve at a given point in time. We can
express this algorithm as a fixed point iteration:

(7.116)

(7.117)
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Straightforward algebraic manipulations lead to the following iterative
algorithm:

(7.118)

Notice that there is a parallel between this iterative algorithm and the
standard iterative algorithms for solving linear systems. Depending on the
choice of matrix B, we obtain LCP versions of the linear system methods.
For example, if B is chosen as the diagonal of M, we obtain the so-called
“projected Jacobi method.” It is called “projected” because the max( )
operator causes the next iterate to be positive.

The most popular algorithm for the solution of the LCP in option pric-
ing is the projected successive overrelaxation algorithm. We obtain this
algorithm by the following selection of the B matrix:

(7.119)

where L is the strictly lower triangular part of M, D diag(m11,…, mnn),
and � is a relaxation parameter. Notice that in this case, care must be taken
when applying the max( ) operator. The implementation of the PSOR algo-
rithm to the LCP in Equation 7.108 leads to

(7.120)

(7.121)

where  is an intermediate value (this requires these two equations to be
solved in succession for each i).

The next question to address is under what conditions does the
PSOR algorithm converge. For values of � in a range , the PSOR
algorithm converges if M is an H+-matrix (Huang and Pang, 1998). M
is an H+-matrix if the following two conditions are satisfied: The diag-
onal elements of M are positive, and the matrix  is defined next as a
P-matrix.

(7.122)

(7.123)

A symmetric, positive definite matrix is a particular case of an H+-matrix.
In practical applications, we get a positive definite M if the pricing equation has
been transformed into a simple diffusion equation with constant coefficients. If
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this is not done, the second-order discretization of the convection terms will
cause the off-diagonal elements of M to be nonsymmetrical. If the matrix is not
symmetric, we can no longer talk of a positive definite matrix in the traditional
sense. A nonsymmetric matrix whose symmetrical part is positive definite is
not necessarily an H+-matrix.

Good performance of the PSOR method is typically associated with
diagonal dominance. By observing the definition of the matrix M, it is easy
to see that diagonal dominance improves as the time step is reduced. When
central differences are used for both the convective and diffusion terms, it
may be required that the time step be made sufficiently small for conver-
gence to occur.

BOUNDARY CONDITIONS

The characterization and imposition of boundary conditions (BCs) must
be done carefully. In many cases, bad or improperly imposed BCs will
spoil the numerical solution or mask important features of the solution.
In some cases, the solution may look perfectly acceptable but be funda-
mentally wrong. In some other cases, the solution may be so featureless
that the use of bad boundary conditions may not matter. This is the case
of a vanilla call. Bad BCs will not matter if the solution cannot propa-
gate its effects. In the case of a vanilla call, for example, both the upper
and lower boundaries may be so far removed from the region of signifi-
cant diffusion (near the strike), that the solution may not be able to
carry the wrong information into the area of interest. This should serve
as a warning against using simple problems such as vanilla calls to
check the correctness of BC implementations. We may get the right
answer, even if our BCs are wrong. In other cases, one of several varia-
tions of good BCs can make the difference needed to achieve trading
quality values. This is sometimes the case with bonds.

There are several criteria that we may use to determine the BCs for a spe-
cific problem. We will discuss some of these issues in greater detail in the text.

■ Solution geometry: It may happen that we know the shape of the solu-
tion in the vicinity of the computational boundaries. For example, if
the solution becomes a flat surface at large distances, we may exploit
this fact to produce a suitable boundary condition. This type of BC
destroys the pricing equation at the boundary.

■ Asymptotic behavior: Sometimes we know limiting analytical forms of
the solution near the boundaries. For example, in a call option we can
derive an analytical expression for the value of the call when the spot is
very large. This also gives us a way of producing a valid BC.
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■ Known solution values: In some cases we may know the value of the
solution at the computational boundary. For example, in the case of
an up-and-out call with a known rebate, the solution value at the
barrier equals the known value of the rebate. If we choose the barrier
to be part of the boundary, we immediately have a suitable boundary
condition by setting the solution value equal to the rebate.

■ Use of the pricing equation: The pricing equation itself may be
used as a BC. In this case, the discretization of the pricing equa-
tion at boundaries must be such that only internal points are
involved. Using the pricing equation as BC may or may not influ-
ence efficiency.

■ Use of modified pricing equation: Simplified forms of the pricing equa-
tion can sometimes be used at the boundaries. For example, at the
boundaries we may assume that diffusion is negligible compared with
convection.

Implementation of Boundary Conditions
There are three basic approaches for implementing boundary conditions.
We can embed the boundary conditions in the discretization such that the
known boundaries drop out of the equations; we can expand the system of
equations by adding boundary equations; or we can enforce the boundary
conditions through iteration.

Embedding Boundary Conditions in Discretization By embedding the bound-
ary conditions in the discretization matrix, we reduce the number of
equations by twice the number of dimensions (there are two boundaries
for each dimension). This is a common approach in textbooks. To illus-
trate, consider the case where the system we must solve at each time
step is tridiagonal. We refer to the following system as the discretiza-
tion system:

(7.124)

The unknowns are u0,…, uI. As written, matrices AL and AR are rectangu-
lar (there are more unknowns than equations). The boundary conditions
must be brought in to take care of u0 and uI. The idea is to eliminate u0 and
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uI at n 1 and create a new vector on the right-hand side. If u0 and uI are
given, we have

(7.125)

Here we only show the modification to the first equation, but a similar
modification occurs for the last equation. The matrix on the left is now
square, but the matrix on the right is rectangular.

The advantage of this approach is that we preserve the structure of AR.
There are some disadvantages, however, because we need to create an addi-
tional vector, and we need to work with a combination of square and rect-
angular matrices.

Implementing Boundary Conditions by Expanding Discretization System
Assume that u0 and uI are known. The system in Equation 7.124 can be
expanded by adding one equation for u0 and another for uI:

(7.126)

The solution vector on the right-hand side of Equation 7.126 is con-
structed with u1,…, uI–1 at n but u0 and uI at n 1.

As another example of this technique, assume we want to invoke zero
curvature at the u0. Since

(7.127)

this requirement amounts to

(7.128)
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To reflect this requirement, Equation 7.124 can be modified as follows:

(7.129)

There are some distinct advantages to this approach. All matrices are
of the same size, there is no need for creating additional vectors, and it is
the natural framework for specifying a PDE at the boundary. One disad-
vantage is that in some cases we may ruin the original structure of the AL
matrix. This is the case in Equation 7.129, where the matrix on the left is
no longer tridiagonal.

Solving Alternative PDEs at Boundaries
We need an additional condition at the boundary because central differ-
ences don’t apply at the boundary. One-sided differences, however, do
apply at the boundary. Therefore, at boundaries we can use the pricing
equation, or a simplified version of the pricing equation, discretized with
one-sided differences. Assume we are solving the one-dimensional problem:

(7.130)

In our discussion of stability, we assumed that we were advancing in time
to maturity. To do this we made a trivial time transformation. This was done
for simplicity. In practice, however, it is customary to leave the pricing equa-
tion as is and instead advance with negative time steps, starting at maturity
and progressing down to valuation time. In this section we assume that we
do this. The basic idea is not affected by this detail of implementation.

Pricing Equation 7.130 can be used as is at the boundary, or we can use
a simpler version by eliminating the diffusion part:

(7.131)

In the case of multidimensional problems, we have more choices. We
may decide that diffusion is not important in one dimension, but that it is
important in another dimension. The correct decision is a matter of insight,
experience, and understanding of the problem at hand.

We now develop an example in detail by assuming that we want to use
the convection part on the boundaries. The starting point is the discretiza-
tion matrix.
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At i 0 we use one-sided differences:

(7.132)

At  we use central differences:

(7.133)

At i I we use one-sided differences:

(7.134)

The time-discretized problem looks as follows:

(7.135)

Assuming we use the Crank-Nicholson scheme, we have

(7.136)

Replacing Equation 7.135 in the last equation, we get

(7.137)
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(7.138)

In this simple example, the use of the convection terms at the bound-
aries did not alter the tridiagonal structure of the AL matrix. Notice that
the one-sided discretization we used is first-order accurate, while the rest of
the discretization is second order. If we had used second-order one-sided
differencing for the convection terms, we would have altered the tridiago-
nal nature of the discretization matrix. Likewise, if we had used the full
equation at the boundaries, one-sided discretization would have altered the
tridiagonal structure of the discretization matrix.

The destruction of the tridiagonal structure is not only a problem for a
direct solver. It may also alter the convergence properties of the SOR or
PSOR iterations, causing them to fail. This failure occurs because the itera-
tion matrix of the SOR or PSOR algorithm contains eigenvalues greater than
one. This may occur if the grid is sufficiently fine. The implication is that
while the use of a more accurate boundary condition (the full pricing equa-
tion) may be beneficial in that it better represents what happens at the bound-
ary, which increases accuracy, this benefit may come at the price of a more
likely appearance of the wrong eigenvalue in the SOR iteration matrix. The
particular strategy for accuracy and efficiency is highly problem dependent.

BARRIERS

The finite difference method is an excellent approach for pricing barrier options.
Barrier options are also a rich test case that illustrate a number of important
complexities in finite difference computations. Because barrier options are
prime candidates for finite difference computations, we discuss them in suffi-
cient detail, including what should be expected from numerical computations.

■ Barrier options clearly show how discrete sampling results can be used
to obtain results for continuous sampling or other sampling frequencies
without having to compute a separate problem in each case.

■ Barrier options demonstrate the importance and the consequences of
using coordinate transformations.
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■ Barrier options illustrate the use of finite difference strategies for com-
pound options.

■ Barrier options are a clear example of pricing equations with time-
dependent coefficients.

We will discuss the coordinate transformation implications of pricing
barrier options at this time. We will, however, discuss coordinate transfor-
mations in much greater detail in a later section.

Coordinate Transformation Versus 
Process Transformation
When pricing an instrument with a time-dependent barrier, it may be desir-
able to treat the barrier as a boundary, as shown in Figure 7.2. If we do this,
the grid lines would be curved and the grid spacing would not be uniform.

It is very desirable to map the barriers to constant boundaries, as
shown in Figure 7.3. This allows us to use a uniform finite difference grid.

We can view the mapping from a time-dependent barrier to a constant bar-
rier in two equivalent ways. To illustrate, assume that the pricing equation is

(7.139)

where R is the rebate. The value of this instrument is driven by

(7.140)

To transform the problem such that the rebate is applied to a constant
barrier, we can define the transformation,

 (7.141)

FIGURE 7.2 Barrier option with a time-dependent barrier. The underlying process 
is x(t) and the barrier is an upper boundary.
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and use the chain rule to transform Equation 7.139 to

(7.142)

Another way of viewing this transformation is to define a new process,

(7.143)

and then use this new process to get the new pricing equation. This also
results in Equation 7.142.

A general recommendation for computing barrier options is to trans-
form the computational domains into strips bounded by the barriers. A
very common case is when the payoff of the barrier option is another
option. In some cases, the option that is part of the barrier payoff can be
computed analytically. This would be the case in simple barrier options
whose payoff is a straightforward Black and Scholes call or put option. But
in cases where the payoff is a more complex option, we would like to com-
pute the value of the payoff option using finite differences as well. In this
case, there is an issue regarding the grid to be used for the barrier option
and for the payoff option. Several alternatives exist here. The grid of the
underlying option can be a subset of the grid of the barrier option, or they
can be different grids. If the grids are different, the information of the pay-
off at the barrier must be transferred through interpolation from the grid of
the payoff option to the barrier option.

FIGURE 7.3 Barrier option with time-dependent barrier mapped to a constant. The 
underlying process, z(t), has been selected so that it takes the value h0 when x(t) h(t).
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The next few figures show finite difference results for the value, delta, and
gamma of a continuously sampled up and out call on a log-normal asset with
volatility � 0.2 and dividend yield d 0.02. The maturity is one year, and
the strike, K, is 100. These are highly accurate computations done with the
Crank-Nicholson scheme. The reader interested in computing barrier options
with finite differences should be attentive to the features shown in the follow-
ing figures.

Figures 7.4, 7.5, and 7.6 show the value, delta, and gamma very near
maturity. The important thing to notice is the presence of steep gradients.

FIGURE 7.4 Continuously sampled up-and-out call. Option value at 0.02 years 
away from maturity. Log-normal asset process with � 0.2, r 0.07, d 0.02, 
K 100, T 1 year, barrier at 125.8.

FIGURE 7.5 Continuously sampled up-and-out call. Option delta at 0.02 years 
away from maturity. Log-normal asset process with � 0.2, r 0.07, K 100, 
T 1 year, barrier at 125.8.
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Figures 7.7, 7.8, and 7.9 show the value, delta, and gamma halfway to
maturity. Comparing these figures with the previous ones, we see a lessen-
ing of gradients. Notice that the curves’ shapes don’t undergo a trivial res-
caling or change as we move away from maturity. This type of detail is
important in judging the quality of the numerical solution.   

FIGURE 7.6 Continuously sampled up-and-out call. Option gamma at 0.02 years 
away from maturity. Log-normal asset process with � 0.2, r 0.07, K 100, 
T 1 year, barrier at 125.8.

FIGURE 7.7 Continuously sampled up-and-out call. Option value at 0.5 years 
away from maturity. Log-normal asset process with � 0.2, r 0.07, d 0.02, 
K 100, T 1 year, barrier at 125.8.
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Discrete Sampling of Barriers
When solving a barrier option problem, we design the computational grid
such that grid points are placed on the barrier. Since barrier payoff values
are assigned to the discretely placed grid points on the barrier, does this
mean that what we are actually solving is a discretely sampled barrier prob-
lem? The answer is no. We are solving a continuously sampled barrier
problem. To resolve the discrete nature of the sampling properly, the solu-
tion regions between sampling points must be resolved. This requires that
we place grid points between sampling points as well.

FIGURE 7.8 Continuously sampled up-and-out call. Option delta at 0.5 years 
away from maturity. Log-normal asset process with � 0.2, r 0.07, K 100, 
T 1 year, barrier at 125.8.

FIGURE 7.9 Continuously sampled up-and-out call. Option gamma at 0.5 years 
away from maturity. Log-normal asset process with � 0.2, r 0.07, K 100, 
T 1 year, barrier at 125.8.
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Pricing a discretely sampled barrier option can be viewed in two differ-
ent ways. One way is to regard each discrete sampling of a barrier as an ini-
tial value problem. In this view, a discretely sampled barrier option is a
sequence of initial value problems, each problem starting at the sampling
computational time. An alternative view is to consider the discrete sam-
pling as a Bermudan exercise, where the holder of the option receives the
barrier payoff if the spot price is anywhere about the barrier at sampling
time.

These two views are conceptually equivalent but have different numer-
ical implications. The initial value view of discretely sampled barriers is the
most common one. At each sampling time, new initial values for the solu-
tion of the pricing equation are created by including the barrier payoff as
part of the initial values, and the solution is allowed to diffuse outside the
barrier up to the next sampling point, where new initial values are created
(Tavella and Randall, 2000). Near the sampling times there are strong gra-
dients, and caution must be taken in constructing a grid that can capture
these gradients. Since the sampling is captured by initial values, the solution
between sampling points is a European problem, which in many cases can
be solved with fast solvers (when the matrices are tridiagonals). The Ber-
mudan view consists of regarding the sampling time as an exercise time
where the holder exercises into the barrier payoff. The same issues about
strong gradients arise here as well. In this case, however, the option payoff
is immersed in the solution field. This requires the use of a PSOR to pre-
serve accuracy (Tavella and Randall, 2000).

The presence of discrete sampling causes changes in the distribution of
value, delta, and gamma that are not immediately obvious. We will con-
sider an up-and-out call option as in the previous case, but it will be dis-
cretely sampled eight times between inception and maturity. We focus on
the features of these distributions as we approach maturity. The following
figures show results at 0.02 years away from the next sampling point.

Figures 7.10, 7.11, and 7.12 show the value, delta, and gamma with
five remaining samplings to maturity (three samplings have already taken
place). The important feature to notice is the apparent oscillation in the dis-
tribution of gamma in Figure 7.12. A fair question to ask is whether these
“oscillations” originate in improperly damped waves in the numerical solu-
tion, or whether they are a legitimate feature of the solution. These compu-
tations were made in a way that no oscillations due to the numerics should
be visible. 

To understand the origin of this behavior, we look at the same parame-
ters when only one sampling point remains. This is shown in Figures 7.13,
7.14, and 7.15.

Examination of these figures shows that they are very similar to Figures
7.4, 7.5, and 7.6, except that the plots extend beyond the barrier. The fact
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FIGURE 7.10 Discretely sampled up-and-out call. Option value with five sam-
plings remaining. Log-normal asset process with � 0.2, r 0.07, d 0.02, 
K 100, T 1 year, barrier at 125.8.

FIGURE 7.11 Discretely sampled up-and-out call. Option delta with five samplings 
remaining. Log-normal asset process with � 0.2, r 0.07, K 100, T 1 year, 
barrier at 125.8.

FIGURE 7.12 Discretely sampled up-and-out call. Option gamma with five sam-
plings remaining. Log-normal asset process with � 0.2, r 0.07, K 100, 
T 1 year, barrier at 125.8.
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FIGURE 7.13 Discretely sampled up-and-out call. Option value with one sampling 
remaining. Log-normal asset process with � 0.2, r 0.07, d 0.02, K 100, 
T 1 year, barrier at 125.8.

FIGURE 7.14 Discretely sampled up-and-out call. Option delta with one sampling 
remaining. Log-normal asset process with � 0.2, r 0.07, K 100, T 1
year, barrier at 125.8.

FIGURE 7.15 Discretely sampled up-and-out call. Option gamma with one sam-
pling remaining. Log-normal asset process with � 0.2, r 0.07, K 100, 
T 1 year, barrier at 125.8.
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that the plots extend beyond the barrier are an indication that the solution
diffuses between sampling points.

The complex shape of the gamma in Figure 7.12 is not due to numerical
oscillations, but rather to the cumulative effect of sampling points that are
yet to occur. As exercise information diffuses backward in time, the sam-
pling intervals impose time scales that become visible in gamma. These
scales are also present in the value and the delta of the option, but they are
not readily visible in the plots. If we plotted even higher derivatives of the
value, we would expect to see these scales more clearly.

We finalize this section with two issues of practical significance. In
building a grid when we have discrete sampling, we must decide where to
place the sampling point with respect to the grid points. As the sampling
interval becomes large, the optimal location of the sampling point is
between grid points. If the sampling point coincides with a grid point, the
space accuracy of the scheme drops to first order. The intuition behind this
fact is that discrete sampling implies describing a discontinuous function
through discrete points. This is best done if the discontinuity is halfway
between two points. More details on this topic can be found in Tavella and
Randall (2000).

Convergence to Continuous Sampling Computations done for a particular
sampling frequency can be used to infer the value of the barrier option for
other sampling frequencies, including the case of continuous sampling. The
reason this is possible is that the continuous and the discrete sampling val-
ues differ in a known way as a function of the sampling interval. It is easy
to see that this difference must be proportional to , where � is the
volatility of the underlying asset:

(7.144)
where c is a constant.

There are two justifications we can invoke. A financial reason is that
the incremental loss of probability of hitting the barrier as a result of dis-
crete sampling must be proportional to the diffusion of the underlying
process through the sampling interval. This diffusion is proportional to

. Another reason comes from dimensional analysis. Discrete sam-
pling introduces another nondimensional group in the problem propor-
tional to . Any changes in the outcome of the problem due to
discrete sampling must be a function of this group. When �t → 0, such
changes must be linear functions of the nondimensional group. This dis-
cussion does not tell us what the constant in Equation 7.144 is. For an
analytical treatment of this issue, see Broadie, Glasserman, and Kou
(1996).

� �t

discrete sampling price continuous sampling price c� t∆=–   as t∆ 0→

� �t

� �t
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We can exploit this relationship to get the value of a discretely sampled
barrier option for arbitrary sampling frequency as follows. Given numerically
computed values of barrier options for sampling intervals �1, �2, and �3,
denoted by V1, V2, and V3, respectively, we make a plot of log(V1 V),
log(V2 V), and log(V3 V) versus log �1, log �2, and log �3. The magni-
tude of V that turns this plot into a straight line is the extrapolated value of
the barrier option for continuous sampling.

COORDINATE TRANSFORMATIONS

It is highly desirable to work with uniform grids. Except in a few simple
cases, a uniform grid will not capture the most important features of the
solution unless we introduce coordinate transformations. Coordinate trans-
formations allow us to better discern important features of the solution
field and at the same time maintain a uniformly spaced grid.

Coordinate transformations fulfill three basic objectives.

■ Boundary control: To be able to precisely accommodate and resolve
external boundaries. This is essential in barrier problems, where we
transform the domain into a rectangular strip.

■ Resolution of high gradient features: This refers to accurately capturing
internal and end conditions features where the solution varies widely.
This objective is often combined with the previous one, since in many
cases the regions of high gradients are near boundaries.

■ Dimensional redistribution: This is an advanced application of coordi-
nate transformations where we can achieve higher performance by
transferring resolution from dimensions where the gradients are mild
to dimensions where the gradients are steep.

Coordinate transformations accomplish these objectives through two
mechanisms.

■ They change the eigenvalue spectrum of the discretization matrix.
■ They change the solution levels to which the eigenvalues are exposed.

Coordinate transformations do not, in general, simplify the pricing
equation. In fact, they typically make the pricing equation much more com-
plex. This is not an issue, however, because transformations are typically
implemented numerically, not analytically. The logarithmic transformation
of the Black and Scholes pricing equation is a notable exception. This trans-
formation leads to a simpler PDE and in many cases a better numerical
problem.

–
– –
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To illustrate the changes in the eigenvalue spectrum introduced by
coordinate transformation, consider the logarithmic transformation applied
to the Black and Scholes pricing equation:

(7.145)

With the coordinate transformation z log x the pricing equation is

(7.146)

The transformed equation is simpler because its coefficients are con-
stant. The fact that the coefficients are constant has a profound effect on the
eigenvalues of the discretization matrix, as shown in Figure 7.16. The differ-
ence between the largest and the smallest eigenvalue in the case of Equation
7.146 is much smaller than in the case of the original Black and Scholes
equation. The fact that the eigenvalues look nicer does not mean that the
transformation is beneficial, however. The transformation must also con-
centrate grid points in regions that matter. The logarithmic transformation
of the Black and Scholes equation does this in some cases but not in others.
In the case of a call option, for example, the logarithmic transformation
works fairly well because it concentrates points in the region where they are
needed for values of the underlying of the order of the strike. In the case of
a barrier option this transformation does not take the barrier into account

FIGURE 7.16 Effect of logarithmic transformation on eigenvalue spectrum of the 
discretization matrix of the Black and Scholes equation. The logarithmic transfor-
mation dramatically flattens the eigenvalue distribution.
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and we would not expect it to work particularly well. In general we must
select transformations purely on the basis of how they help resolve features
of the solution, not on the basis of how they simplify the pricing equation.

Implementation of Coordinate Transformations
We will concentrate on one-dimensional coordinate transformations.
Extension of the ideas presented here to several dimensions is trivial but it
may become analytically cumbersome. For a comprehensive discussion of
multidimensional coordinate transformation, the reader may consult
Tavella and Randall (2000).

We will denote the original space coordinate by S and the trans-
formed space coordinate by 
. In simple cases it may be practical to
implement the coordinate transformations analytically. In general, how-
ever, coordinate transformations are best implemented numerically. This
is not only a matter of minimizing algebraic derivations but also a matter
of flexibility, as we will see shortly.

Analytical Implementation of Coordinate Transformations Defining the map-
ping function we get

(7.147)

The analytical implementation of a coordinate transformation consists
in applying the chain rule of differentiation using Equation 7.147:

(7.148)

(7.149)

The simplest analytical example is the logarithmic transformation
applied to the Black and Scholes equation. We did this before, but we
repeat it here as a simple illustration.

Using Equations 7.148 and 7.149 with 
 log (S) in

(7.150)
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we get

(7.151)

As a result of the log transformation, the coefficients became constant
and the drift changed by . As discussed in the previous section, this
transformation has two effects. It changes the eigenvalues of the discreti-
zation matrix as shown in Figure 7.16, and it concentrates points in lower
values of S.

Analytical transformations are limited because we usually don’t know

 f(S). What we know is how the grid points are distributed in the 
 coordi-
nate, where we assume the grid points are equally spaced. As a result, what
we usually know is S f –1(
). This implies that coordinate transforma-
tions are best handled numerically.

Numerical Implementation of Coordinate Transformations Figure 7.17 il-
lustrates the situation we face. We have a uniform distribution of grid points in
the transformed coordinate and a way of mapping those points to the original
coordinate, such that boundaries or features we would like to resolve are prop-
erly captured. We may have obtained the distribution of points in the S coordi-
nate by an analytically known inverse transformation, S f –1(
), or by some
other numerical procedure. The important fact is that we know the inverse
transformation, not the direct transformation. We will denote the inverse trans-
formation by g(
) f –1(
).

We will illustrate the numerical implementation of coordinate transfor-
mation with the Black and Scholes equation. Given the inverse transformation

(7.152)

FIGURE 7.17 Coordinate transformation. We know the distribution of points in 
the transformed domain.
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and its Jacobian,2 defined as

(7.153)

the pricing equation

(7.154)

can be written as

(7.155)

It is easy to verify that if we replace S exp(
) in the Jacobian, Equa-
tion 7.151 becomes Equation 7.154 with � r.

We now discretize Equation 7.155. The diffusion term is best handled
numerically as follows (for more details, see Tavella and Randall (2000)):

(7.156)

This approximation is second order in �
 if we set

(7.157)

Using the notation,

the discretized form of Equation 7.155 is

(7.158)

2This idea carries over to multiple dimensions easily, where the Jacobian is a matrix
and its inverse is defined as the inverse of that matrix.

J 
( ) dS
d

--------=

∂u
∂t
------ �S∂u

∂S
------ 1

2
---�

2S2 ∂u

∂S 2
---------+ + ru=

∂u
∂t
------ �

S 
( )
J 
( )
----------∂u

∂

------ 1

2
---�

2S2 
( )
J 
( )

------------- ∂
∂

----- 1

J 
( )
----------∂u

∂

------ 

 + + ru=

=
=

∂
∂

----- 1

J 
( )
----------∂u

∂

------ 

  u 
 �
+( ) u 
( )–

J 

1
2
---
+ 

  �

2

----------------------------------------- u 
( ) u 
 �
–( )–

J 

1
2
---– 
 

  �

2

-----------------------------------------–≈

J 
 �
+( ) S 
 �
+( ) S 
( )–
�


-----------------------------------------=

Si S 
i( )=

Si 1± S 
i �
±( )=

Ji 1
2
---± J 
i

1
2
---�
± 

 =

∂u
∂t
------ �

�

-------

Si
Ji+1

2
---

Ji–
1
2
---

+
----------------------- ui+1 ui–1–( ) �

2

�

2

----------
Si

2

Ji+1
2
---

Ji–
1
2
---

+
-----------------------

ui+1 ui–
Ji+1

2
---

--------------------
ui ui–1–

Ji–
1
2
---

--------------------–
 
 
 

rui=+ +



Pricing with Finite Differences 257

The discretization matrix is tridiagonal:

(7.159)

with

(7.160)

We now discuss two simple and useful numerical transformations.

Example 1: Transformation to Place a Known Underlying Value on a Grid Point
Assume that we would like to map the range S 10 to S 90 in our orig-
inal coordinate to the range 
 0.1 to 
 0.9 in our transformed coordi-
nate, such that the point S 59 maps to 
 0.5.

The procedure to accomplish this is as follows.

■ Construct an array representing the grid points in the transformed coordi-
nate. In our case, this array could be {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9}.

■ Construct an array of the original points that we want to map to
known locations in the transformed domain. In this example, this array
is {10, 59, 90}.

■ Construct an array of the known mapping in the transformed domain.
In our case, {0.1, 0.5, 0.9}.

■ Do a cubic spline of  against  (the former is the dependent variable,
the latter is the independent variable).

■ Obtain the array of Si values by interpolating on each element of .
This is our grid in the original coordinates.

■ Using the grid points in the original coordinates, Si, construct the Jaco-
bians according to Equation 7.157. We can now construct the discreti-
zation matrix.

From this description it is clear that we were able to construct the grid
without knowing the transformation function f (S). In this case, we
used a simple cubic spline. There are far more elaborate ways to construct
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grids (Tavella and Randall, 2000). If we use an interpolation approach, we
must be careful to respect the continuity of the derivative of the Jacobian. A
cubic spline will do this.

The transformation is illustrated in Figure 7.18.
A variation of this transformation is one where you would like to place

a known value of the original coordinate between two grid points. Assume
that you would like the value S 59 to map to 
 0.5 �
, instead of

 0.5. This is very easy to accomplish by splining the pair {0.1,
0.5 �
, 0.9} and {10, 59, 90}, instead of the pairs {0.1, 0.5, 0.9}
and {10, 59, 90}.

Example 2: Transformation to Concentrate Points Around Desired Locations
The basic idea is to work with the Jacobian, rather than with the transfor-
mation itself. A transformation that accomplishes what we want will have a
Jacobian that is peaky at the location where we want to concentrate points.
What we need to do is postulate a Jacobian with this property and then
integrate the Jacobian (numerically or analytically) to get the grid points in
the original domain. The following Jacobian, taken from Tavella and Ran-
dall (2000), leads to a concentration of points around S S* in the range

:

(7.161)

FIGURE 7.18 Mapping of known points to transformed coordinate. Points 
S 10, S 59, and S 90 are mapped to 
 0.1, 
 0.5, and 
 0.9, respec-
tively, using a cubic spline.
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This Jacobian can be integrated analytically:

(7.162)

The value of � controls the degree of concentration of points. If � << Smax
Smin, the points will be highly concentrated; if � >> Smax Smin, the
points will be highly uniform. Figure 7.19 shows an example of this
approach.

The complexity of transformations increases quickly as the number of
dimensions increases. It is also possible to build time-dependent transfor-
mations (a simple example of this was discussed in the section on barrier
options). In general, realistic financial pricing problems do not require very
complex transformations. The reader interested in greater detail can con-
sult Tavella and Randall (2000).

DISCRETE EVENTS AND PATH DEPENDENCY

The power of finite differences in solving path-dependent derivatives such
as Asian options is related to the way finite differences can be used to
price derivatives whose underlyings undergo jumps at known points in
time.

To illustrate how this connection arises, let’s consider the case of an
option on a stock with a known discrete dividend payment amount. We will
show that the price of this option results from a sequence of computations on

FIGURE 7.19 Concentration of points. Grid points computed with Equation 7.162 
for � 0.2(Smax Smin). Points are concentrated around S* 59, which maps to 

 0.565 (indicated by the arrow).
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nondividend paying stock. These computations involve the pricing equation
for the underlying stock process without dividends. This idea is important
because we can solve the dividend case by solving the PDE for the nondivi-
dend case. What makes this possible is the concept of displacement shocks.
Displacement shocks (also called continuity conditions or jump conditions)
connect the derivative’s price before and after the underlying’s jump. By
increasing the frequency of dividend payments, we can approach the continu-
ous dividend case.

Of course, the PDE for the case of a derivative on a continuously dividend-
paying stock is known and not significantly different for the case of no div-
idends. However, this idea can be extended to cases where either deriving
the pricing equation is difficult, or where the pricing equation is hard to
solve. This means that we are able to solve problems that may be quite dif-
ficult through a sequence of problems that are much easier. We will discuss
the case of discrete dividends as a first example.

Displacement Shocks
The value of a derivative may depend on a process subjected to jumps at
known points in time. For example, the value of an option on a stock that
pays discrete dividends will depend on a stochastic process that jumps
down by the amount of the dividend each time a dividend payment hap-
pens. If the derivative is such that those jumps do not induce cash flows to
the holder of the instrument, the derivative’s price must be continuous
across the points in time when the jumps occur. This continuity means that
the value of the derivative immediately after the jump in the underlying,
valued at the underlying level after the jump, must be the same as the value
immediately before the jump, valued at the underlying level before the jump
(assuming that no exercise is allowed at the dividend payment time).

Example: Call Option on Stock with Discrete Dividends As an example, con-
sider the case of a derivative on a stock, S(t), that pays a discrete dividend d. The
value of the derivative, u(S, t), must obey

(7.163)

where t– is the instant of time right before the dividend payment hap-
pens. In computational time (or remaining time to maturity), this expres-
sion is

(7.164)

where t+ is the instant of time right after the dividend payment happens. We
refer to a condition of this type as a displacement shock. Although the option

u S t–,( ) u S d t,–( )=

u S t,( ) u S d t+,–( )=
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value does not change as a result of the jump, the hedge characteristics
change. Equation 7.164 is implemented as an initial condition and does not
cause stability concerns. In between discrete dividend payments, we solve the
standard Black and Scholes pricing equation.

Figures 7.20, 7.21, and 7.22 show the results for a call option with one
year maturity, risk-free rate 0.05, volatility 0.3, strike 100, and a dis-
crete dividend payment of 4 percent of the spot value.  

FIGURE 7.20 Discrete dividend payment effect on call value. Option value imme-
diately before and immediately after dividend payment. (Before and after are with 
respect to remaining time to maturity.) T 1 year, K 100, r 0.05, d 0.04, 
� 0.3. Discrete dividend at t 0.25 years.

FIGURE 7.21 Discrete dividend payment effect on call delta. Option delta immedi-
ately before and immediately after dividend payment. (Before and after are with 
respect to remaining time to maturity.) T 1 year, K 100, r  0.05, d 0.04, 
� 0.3. Discrete dividend at t 0.25 years.
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If we imagine that we allow the number of discrete payments to go to
infinity and impose the displacement shock of Equation 7.164 at each pay-
ment, we would be effectively solving the pricing equation,

(7.165)

where y is the continuous dividend yield. This equation differs from the one
that we implement between displacement shocks,

(7.166)

in that the drift of the underlying process is different. If we wanted to
solve the continuous dividend yield case, we would not actually exploit
the discrete approach in the limit of infinitely many dividend payments.
We would solve Equation 7.165 directly. In path-dependent derivatives
involving continuous sampling, however, it may be far more advanta-
geous to exploit the displacement shock idea rather than solving the
full pricing equation. We illustrate this next for the case of an Asian
option.

Path Dependency and Discrete Sampling
From a computational standpoint, we distinguish three basic types of path
dependencies.

FIGURE 7.22 Discrete dividend payment effect on call gamma. Before and after 
refer to remaining time to maturity. T 1 year, K 100, r 0.05, d 0.04, 
� 0.3. Discrete dividend at t 0.25 years.
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■ Path dependency in the underlying stochastic processes. This is the case
of the short rate in the Heath-Jarrow-Morton framework. Since in this
case we don’t get a PDE as a pricing equation, we are not concerned
with this type of path dependency when applying finite differences
techniques as discussed in this chapter.

■ Path dependency imposed by boundaries. This is the case of barrier
options. This is the easiest type of path dependency to treat with finite
differences.

■ Path dependency imposed by payment contingencies. This is the case of
options with payoffs that depend on certain properties of the underly-
ing’s trajectory, such as in the case of Asian options, Parisian options,
and so on. This type of path dependency is much harder to treat with
finite differences than the previous one. This type will be the focus of
this section.

The property of the trajectory that determines the path dependency may
enter the pricing problem as an additional process. For example, in the case
of an Asian option whose payoff depends on an average of an underlying
process, this average is itself a process that enters as an additional dimension
in the pricing equation. We can tackle this path dependency in two ways. We
can derive the pricing equation specifically for this type of path dependency
and apply standard finite difference techniques to that pricing equation.
There are two difficulties here. One is that we need to derive the pricing
equation, and this may not be an easy task. The other is that the result-
ing pricing equation may be much harder to solve than the standard pricing
equation we have been discussing so far. To understand why this may be the
case, consider an option whose payoff is a function of the continuous arith-
metic average of a stock process, S(t), described by dS(t) S�dt S�dW(t).
The running arithmetic average of this stock process is

(7.167)

If we apply the techniques of Chapter 3 to derive a pricing equation for
this option, we will find that the pricing equation is a PDE where both S(t)
and X(t) appear as independent dimensions. However, they appear in a fun-
damentally different way. While dS(t) has a dW(t) term in it, dX(t) does
not. This means that in the resulting PDE the dimension X will only appear
in the first-order derivatives (convective terms), not in the second-order
derivatives (diffusive terms). As it turns out, the appearance of additional
convective terms without a diffusive counterpart poses numerical difficul-
ties. Not all path dependencies result in pricing equations without a diffu-
sive component. However, our approach here will not be to derive and
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solve the specific PDE for a particular path-dependent option, but to use
the displacement shock ideas discussed earlier. This is a far more robust and
simpler approach where we capture the solution of a more complicated
PDE (which we may not even know) through the limit of a sequence of
solutions of a much simpler, standard PDE.

An additional appeal of the displacement shock approach is that this is
the natural choice for discrete sampling of path dependency. As a result,
this approach gives us two things: a way to compute path-dependent
options with discrete sampling and a way to converge to the limit of contin-
uous sampling without having to deal with the specific PDE for the partic-
ular form of path dependency.

How is the continuous sampling limit approached as the sampling inter-
val vanishes? This depends on whether the increment of the path-dependent
quantity has a dW term in it or not. If it does, we can argue that the continu-
ous sampling limit should be approached with an error  (this is the
case of a discretely sampled Parisian option). If the increment of the path-
dependent quantity does not have a diffusion part, the limit is approached
like �t (this is the case of a discretely sampled arithmetic Asian option).

Example: Discretely Sampled Arithmetic Asian Option We define G to be
the running sum of asset prices at observation times. The payoff of an
arithmetic Asian call is

(7.168)

where N is the number of sampling times and K is the strike. At each sampling
time, G jumps by S, and the displacement shock condition at sampling time ti is

(7.169)

In between sampling times, the solution progresses according to the stan-
dard Black and Scholes equation. At the sampling time, new initial conditions
are created following Equation 7.169. It is important to realize that although we
are solving PDEs with one space dimension between sampling times, the prob-
lem is truly two dimensional. The grid point values in the G coordinate enter as
parameters in the initial conditions between sampling points. This means that
between sampling points we are solving as many one-dimensional problems as
there are grid points in the G coordinate. The solution information that must be
kept in memory must take into account the grid points in the G coordinate. In
practice, this is a very efficient way of dealing with discrete sampling.

As a simple example, consider an arithmetic Asian option with the fol-
lowing characteristics: log-normal stock price with risk-free rate r 0.1,
stock volatility � 0.4, 10 samplings per year, strike K 100, and

� �t( )
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maturity T 1 year. The problem is solved with the Crank-Nicholson
scheme.

The following figures indicate what the nonintuitive nature of the
implementation of the displacement shocks accomplish in this case. Figure
7.23 shows the value of the option at maturity. Since the payoff is only a
function of the arithmetic average measured at maturity, the payoff is inde-
pendent of the spot price at maturity.

Figure 7.24 shows the value of the option at t 0.45, or about half-
way to maturity. Notice that the effect of the displacement shocks is to
rotate the solution such that as time decreases, the importance of the spot
price becomes more prevalent in comparison with the average.

Finally, Figure 7.25 shows the option value at t 0. We see now that
the value depends exclusively on the level of the spot (no average has taken
place at t 0). The solution has then rotated 90 degrees. This was accom-
plished by applying the displacement shock conditions ten times between
t 1 and t 0. We were able to do this without ever inquiring what the
actual pricing equation of an arithmetic Asian option is like. We could easily
find the limiting value for continuous sampling by exploiting the fact that in
this case the continuous sampling value must be reached linearly, propor-
tional to the sampling interval �t. For additional details and examples on the
use of this approach to the computation of path-dependent options, the
reader is referred to Tavella and Randall (2000), where many of the detailed
numerical issues are discussed. In conclusion, we can remark the following.  

FIGURE 7.23 Payoff at maturity. Arithmetic Asian call with r 0.1, � 0.4, 10 
samplings per year, K 100, T 1 year.
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FIGURE 7.24 Option value at t = 0.45. Arithmetic Asian call with r 0.1, 
� 0.4, 10 samplings per year, K 100, T 1 year.

FIGURE 7.25 Option value at t = 0. Arithmetic Asian call with r 0.1, � 0.4, 
10 samplings per year, K 100, T 1 year.
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■ There may be more than one way to impose displacement shock condi-
tions. For an example of this in the context of Asian options, see
Tavella and Randall (2000).

■ The displacement shock condition requires interpolation. Cubic splines
work well, but lower quality interpolations can also be used.

■ The displacement shock condition may require extrapolation. Whether
this is required may depend on the formulation of the shock condition.
When needed, linear extrapolation appears to work well.

TREES, LATTICES, AND FINITE DIFFERENCES

Trees are a very popular approach to implement financial pricing. We
have not, however, dedicated time to trees because trees, as we will see in
this short section, are particular forms of finite difference schemes. The
nature of the finite difference scheme that trees represent will make it
immediately clear to the reader why trees cannot perform better than
some of the lowest-performing finite difference schemes. From a practical
view, properly implemented finite difference code will be equally fast or
faster, much more robust, and far more flexible than trees (binomial or
trinomial).

Although the words trees and lattices are used almost interchange-
ably, here we will make a differentiation. Both a tree and a lattice are
defined by an array of points in the multidimensional space whose coor-
dinates are the underlying states and time. Beyond this geometric charac-
terization, we will distinguish the following differences between trees and
lattices.

■ Trees are typically triangular arrays of points (the shape may be more
complex if the tree has been cropped), where the transition probabili-
ties result from the parameterization of the tree. Arbitrage arguments
and assumptions about the recombination of the tree are used to deter-
mine the distance between nodes and the transition probabilities at the
same time. The triangular shape results naturally from the way these
arguments are applied.

■ Lattices are not necessarily triangular arrays of points (or regular
arrays, for that matter). A lattice is characterized by an array of
points and transition probabilities that are not determined together
with the construction of the lattice but are determined separately.
When so defined, lattices are more flexible than trees in that they
offer flexibility in node placement. We can build a lattice easily if we
are able to compute transition probabilities directly from the underly-
ing process. A powerful way to compute transition probabilities using
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finite differences is by numerically solving the Fokker-Plank equation
of probability diffusion. We have not discussed this equation or lat-
tices in this book, but the interested reader can consult Tavella (2001)
for additional ideas and information.

Our emphasis now will be in the connection between trees and finite
differences. We will illustrate this connection in the context of the CRR
(Cox, Ross, and Rubinstein, 1979) and Jarrow and Rudd (Jarrow and
Rudd, 1983) binomial trees. The reader can explore the connection with
other trees easily.

Connection Between the CRR Binomial Tree and 
Finite Differences
The CRR tree assumes a log-normal underlying process (we assume no div-
idends for simplicity),

(7.170)

where r is the instantaneous risk-free rate. The underlying price is subject to
up and down moves of the form,

(7.171)

where �t is the time spacing of the tree.
The transition probability to the up move is (the probability of a down

move is one minus the probability of an up move)

(7.172)

Taylor series expansion of this expression gives

(7.173)

This definition of up and down moves means two things:

■ The spacing of nodes in the logarithm of the underlying process is con-
stant and is equal to . 

■ The tree recombines at constant values of the underlying process (an up
move followed by a down move leads to the original value).
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With x log(S),

(7.174)

The pricing equation of a European derivative is

(7.175)

where t starts at maturity, such that our initial conditions are given by the
payoff function. We now define a grid spaced by �x and apply the explicit
Euler scheme to this equation. This gives us the update formula,

(7.176)

where  approximates V(t, x) at t n�t and x xi.
If we now select the value of �x that makes the term multiplying 

equal to zero, we get

(7.177)

This is precisely the value of the node spacing in the CRR tree. If we
now replace this value in the term that multiplies , we get

(7.178)

This is precisely the expression for the transition probability to the up
state in the CRR tree. We can conclude that the grid of x values can be
viewed as containing a binomial tree if the A, B, and C coefficients in
explicit Euler finite difference approximation are interpreted as transition
probabilities. Figure 7.26 illustrates this point.

Recently, Rubinstein (2000) has conducted a related analysis. 
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Connection Between the Jarrow and 
Rudd Binomial Tree and Finite Differences
The Jarrow and Rudd binomial tree differs from the CRR tree in the
parameterization. It also assumes a log-normal process, but the up and
down moves are

(7.179)

and the probability of an upward move is

(7.180)

A Taylor series expansion shows that this probability tends to 0.5 as
�t → 0:

(7.181)

Inspection of the up and down factors suggests that the Jarrow-Rudd
tree recombines around the value S exp((r �2)t). This means that if we

FIGURE 7.26 CRR binomial tree embedded in a finite difference grid. To first 
order, the explicit Euler scheme and the CRR binomial tree are equivalent if the grid 
spacing is selected in the appropriate relationship with the the time step.
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consider the transformation S exp( (r �2)t), we would have a tree that
recombines around S. Consequently, if we consider the transformation,

(7.182)

we would have a tree whose nodes are equally spaced by the amount 
and that would recombine around a constant value. This suggests that if we
base our pricing equation on the transformation in Equation 7.182 and dis-
cretize this equation with the explicit Euler scheme, we would recover the
Jarrow-Rudd binomial tree. Since the process for y is driftless, the pricing
equation using Equation 7.182 is

(7.183)

The explicit Euler finite difference update of this equation is

(7.184)

As in the case of the CRR tree, the value of �y that causes the middle
term on the left to be zero is . Replacing this value in
the expression for C, we have

(7.185)

This value is the same to lower order as the probability of an upward
move, given by Equation 7.181. Therefore, the Jarrow-Rudd binomial tree
can be viewed in the same way as the CRR tree: as being embedded in a
finite difference grid when the explicit Euler scheme is used.

A similar analysis can be carried out for other tree configurations (such
as trinomial trees). For additional thoughts on this subject, refer to Tavella
(2000).
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Implications of the Correspondence Between 
Trees and Finite Differences
The fact that trees are forms of explicit finite difference schemes has the
implication that trees inherit all the rigidities and problems of explicit finite
difference schemes (stability constraints due to an unfavorable eigenvalue
spectrum). Furthermore, while in finite differences (explicit or implicit) we
have great flexibility in handling boundaries, this flexibility does not exist
with trees. Practitioners have invested a great deal of labor in adapting trees
to handle unusual boundaries, a task that can be trivially handled by finite
differences.
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