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Chapter 1

INTRODUCTION TO
THE SCIENCE OF
DIGITAL SIGNAL ANALYSIS

Computers are worthless,
They can oply gIVe yoR answers

—FaBLO FICASR0

e no mistake about it. This is a book bor raders about digs-
al processing. It is not a book for engineers about trading.
dance, the reverse may seem to be true for many traders
¢ the subject matver is on the cutting edge of technology
"."-'n.  mathematics behind this technology can be more ad-

ced than that encountered in school, Recognizing that many
w0 simply use the technology rather than become
led hh,mmmwmmthh book is aimed at several
‘We provide the rationale, derive the equations, and pro-
3¢ computer code to implement the techniques. With this
1, our results can be used in applications ranging from a
wtier indicator operating within TradeStation or Super-
0 the cations that are springboards for siill more

leis comemon for technical analysis indicators to be described
B terms of a fixed period of time. For example, the standard
BgEh used for 4 Relative Strength Indicator (RSI) is the Last 14
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price bars. One often hears about a five-day Stochastic or a 10/30-
day moving average system. Since the market is continuously
changing, there is absalucely no reason to use static periods in

your indicators. Choosing the corrcet time period is essential to

using traditional indicators to their maximum potential. While
deriving the tools with which to make indicators adaptive, vou
will see novel indicatars that surpass the traditional encs in
accuracy and performance.

Digital signal processing is an ¢xciting new field for techni-
cally criented traders. Manv of the indicators that have been
uscd previously can now be generalized, and the computations
can now be accomplished more precisely using digital methods.
It is interesting to note that many of the digital signal proccssing
rechniques | describe have been known for many years and used
in the physical scicnces. My ubjective is to expose vou to these
techniques to make your trading more profitable and more plea-
surable.

Many physical systems involve the use of analog signals that
are represented as continuous time functions. There is an ampli-
tude associated with the signal at each instant in time. Therc is
an infinite number of amplitude values that the signal may
assume. However, if the signal 1s frequency bandlimited, there
is o significant encrgy above the cutoff frequency. Since energy
is required in any physical system to change amplitude, this im-
plies that the signal cannot change amplitude instantaneously.
Theretare, points closely spaced in time will have relatively
similar amplitudes. There arc several ways in which a signal can
be represented other than as a continuous analog signal. One
methad is to guantize the amplitude and hold that value uncil
the next quantization is performed. Therc are a finite number of
amplitudes, but the function is continuous in time. This is in
contrast to a discrete time signal, which has continuous ampli-
tude values but is only defined at discrete instants in time. As
with analog signals, there is an infinite number of levels, but
there are only a finite number of peints in rime. If a signal is
quantized in both amplitude and time, it is called a digital siz-
nal. The data we deal with in trading are digital signals from
sampling that is done in uniform periods of time {once per day,
unce per hour, etc.).

Introduction to the Science of Digital Signal Analysis 3

A discrete time signal can be obtained from an analeg signal
by multiplying it by a periodic impulse train. The sampling sig-
nal can be expressed in the time domain as

stl= > 8jt—KkT}
k=—=

where & =the impulse function
T = period between impulscs

Using Fourier theory, multiplication in the frequency domain is
synonymous with conveolution in the time domain. In other
words, multiplying signals in the time domain is the same as
heterodyning, or mixing, the signals in the frequency domain.
The impulse train has an infinite number of harmmonics at fre-
quencics that are the reciprocal of the period between pulscs.

The cffects of sampling in the frequency domain arc illus-
trated in Figure 1.1. The continuous bandlimited signal Ry is
shown in the top segment (2] as having a frequency relloff at
some point. In the middle segment |b), the sampling impulse
waveform S|f} bas a monechromatic spectral line ar the sam-
pling frequency £, and all its harmonics. When the sampling is
performed pn the bandlimited signal, the convolved waveform
i3 shown in cthe bottom scgment {¢). Nat only is the original band-
limited continuous signal present, but this samc signal also
appears as the upper and lower sidebands of cach sampling fre-
quency harmonic. Since the lower sideband of the sampling
frequency can extend into the original baseband, the bandlimit-
ing must occur below half the sampling frequency. Half the sam-
pling frequency is called the Nyguist frequency becausc the
Nyquist Sampling Thearem states that there must be at least
two samples per cycle of the signal to avoid aliasing.

Aliasing is a form of distortion. It results from sampling a
continuaus signal less than twice per cyele. This distortion can
be scen in the two waveforms depicted in Figure 1.2. Both the
upper trace and the lower trace have identical sampling points,
denated by the dots. The samples in the top trace appear to be
valid. However, these same samplcs plot out the sine wave of
the lower trace, where there are four samples per cycle. The dif-
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Eigure 1.1, Sanmpled dara i b frequency domain.

fevence is cxplained by aliasing in the top trace. The samples are
taken ar three-quarters of a cyvele apart, ot two somples cvery
one-and-2-hali eyeles. This docs not meet the Nyquist critcrion
of at least two samplas por eyele.

In wading, we ¢an scale all dme frames to cach bar Each bar
is @ sample. Therefore, o meet the Nyguist criterion, the ab.
solute shoreest c¥cle we can consider is a 2-bar cvele. As a prac-
tical marrer, 5- and 6-har cycles shauld be constdered the shartest
uscful eveles.

If the input signal is insuificienty handlimited, the aliased
frequency components are folded back into the sampled base-
hand as falsc signals and aoise. For this reason, data should
always be smoothed before any other operation is performed.
Otherwise, the undesired signal components will have an ad-
verse effect om your computations, Smoathing removes the
high-frequency components, precluding these comprments from
being folded back inco the analysis bandwidth,
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Figarc 1.2, Slznats must be sampled at least twice por cecle.

The compicx waveshapes that describe traders’ charts can
be comsidered as svnthesized irom more primitive waveshapes,
adding vr subtracting from cach other depending on their rela-
uve phases, These kinds of waves are called coferent, nteaning
the amplitude at any given position can be determined by a veo-
tor additiom of the amplitudes, The waveshapes arc analogous to
voltage in electric cirguits. When we mcasure the strength of
the signals, we prefer not to use the amplitude oi the wave as a
measure becausc it is dependent on the location, or phasce,
within the wave Rather, power 15 the preferred measure of
strength. Power is propordional o waveform amplitnde squared,
just as the power a 100-W tHghtbulb consames [roio a 115-Y cit-
cuit is proportonal to the voltoge squared. In digatal signal
analyiis, we are mostly concerned with relative puwer, or pawer
ratios. It is convenicent to express these power ratios it terms of
decibels.

As an historical aside, ome deeibel was the power lost in a
telephone signal over one mile «of wire [the name was derived
from Alezander Graham Belll A decibel is one-tenth of 3 bel.
The bel is the logarithm base 10 of the power ratio. Thus, a deci.
bet is [0 Log, i F2/P1), and is abbreviated as JB. Working with
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decibels simplifies understanding signal levels both because
large poweer Tatios are compressed into o smaller range of num-
bers due to the logarithm and because adding decibels (1.¢., add-
ing logarithms| is easzer than carrying out multiplication in your
head. For example, 2*2 = 4 can also be performed with loga-
rithms: Log{| = 0.3, so that Log(2) + Logi2) = 0.6, which is Logd];
Memaorizing some key ratios makes the identification of relative
power instantly recognizable. A power ratio of 2 translates to +3
dB. If that ratio is 4 rather than 2, then it translates w -3 dB
That is, the reciprocal of the power ratio is the same absolute
value of decibels, but the sign is reversed. A ratio smaller than |
|but necessarily greater chan 0] is always expressed in negative
decibels, If we dooble the power, that is 3 dB. If we double it
again so that the power is 4 times the original, that (= £ dB, Dou-
bling seill again vo ger 8 times the original power, we add another
3 dB to reach a level of # dB. Since we have a logarithm base 10,
a power ratio of 10 s 10 dB, and a power tatio of 100 is 20 dB, and
50 on. Consider this o further illustrate the use of decibel: Tf a
filter has half the power coming out of it a5 was entered, the out-
put power is <3 dB. The filter is said to have a 3-dB loss. If a sim-
Lar filter is placed at the output of the first, the net output power
rom the composite circuit would be -6 dB,

The measurement -3 dB is usually a critical poine for a fileer.
This hali-power point in the filter response occurs when the
wave amplimude (s 0.7 relative 1o its maximum value, This is true
tecause 0,707 = 0.5, the half-power ratio. The critical point in
he filter is often called the cutoff frequency becausé frequency
omponents beyond the cutoff frequency are attenuated to g
reater degree and frequency components within the cutaff fre-
quency are attenuated very little. To simplify, think of the filter
s having a stone-wall response. In this analogy, frequencies
elow the cutoff frequency are not attenuated and frequencies
I-EI-I:I!'L‘ the cutoff frequency are not allowed to pass throogh the
ilter.

EasyLanguage 1s currently the mose popular computer lan-
uage for traders. Thus, 1 use this system to penerate COmpUter
odes. EasyLanguage is a dialect of Pascal, containing special-
zed keywords unique o trading Because it reads almost like

Introduction 1o the Scicace of DHgital Signal Analysis T

English, EasyLanguage is almost efforthess to understand. It is
also easy to translate 1o other computer languages. When trans-
lating, the reference convention must be understood. The Easy-
Lamguage assumption is that all computations are done with
reference to the current bar. For example, Close means the clos-
ing price of the current har. If there is a reference associated with
that parameter, it is displayed in square brackets and means the
neimber of bars hack to which it refers. For example, Close[3]
felers to the closing price 3 bars ago. Zero can be used as a refer
ence, and has the same meaning as the current bar withour any
reference |there is no reference into the futurel. As a further
example, a two-day momentum s written as: Momentum =
Close — Close|2];, Each completed line of code must terminate in
# semicolon. For clarity, I always write out the generic descrip
tion of an action rather than relying on 3 more esoteric Trade-
Station function call. As a result, the computer code presented
should be easily translated to BASIC, Cu+, or even an Excel

spreadsheet

Key Points to Remember

# This book can be read at several levels, rangng from a broad
perspective overview to detailed computer coding.

»  Novel and unigque indicators are made possible by the math-
cmatical technigues to be introduced.

¢ Even conventlonal indicator performance can be enhanced
by making them adaptive to current market conditions,

* Time scales of tinancial data can be deale with on a per-bar
hasis, The absalute time scale of the data s irrelevant for
computational purposes.

*  Working with sampled data i1s distinctly different from work-
ing with continvous information. Sampled data should al-
wavs be smoothed to avold erratic signals.



Chapter 2

MARKET MODES

Chany often breeds Iife, when order Breeds Raddt,
—l'[ir«lk'f |:I.m':-n|.l: .ﬁ.l'hl.hb'-

The whole point of technical analysis is vo find a way to exploit
the inclficiency of the market for gain. The general objective
of the market is to provide accurate prices for asset allocation.
Thar is, investors can choose sirategies that allow prices to fully
reflect all available information at any time, Such a market [a
market in which prices always fully reflect avallable informa-
tion) is called efficient. Much research has been done to prove
that the market is indeed efficient. However, the fact that there
exists a number of traders who are continuously successtul is
adequate proof that markets are not necessarily completely edfi-
cient. The failure of the efficiency hypothesis in several cases is
sufficient evidence to invalidate the hypothesis itseli.

Classical efficient market models are often concerned with
the adjusement of securicy prices to three information subsets,
Weak form tests comprise the first subset, in which we are sim-
mly given the historical prices. The scoond subset s semistrong
lorm tests thar concern themselves with whether prices effi-
ciently adiust to other publicly available information. Strong
form rests, the third subset, are concerned with whether in-
vestors have monepolistic access to any information relevant to
Price formation. The general conclusion, partlealardy for the
weak form tests, is that the markets can be only marginally prof-
Hable to s wrader. In fact, only the strong Form tests are viewed a8
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benchmarks against deviations from market efficiency. These
strong form tests point to activities such as insider trading and
the market-making function of specialists.

The efficient-markets-model statement that the price fully
reflects available information implies that successive price
changes are independent of one another. In addition, it has usu-
ally been assumed that successive changes are identically dis-
tributed. Together, these two hypotheses constitute the Random
Walk Model, which says that the conditional and marginal
probability distributions of an independent random variable are
identical. In addition, it says that the probability density func-
tion must be the same for all time. This model is clearly flawed.
If the mean return is constant over time, then the return is inde-
pendent of any information available at a given time.

I assume that there is an adequate number of traders in-
volved in making the market that a statistical analysis involving
a Random Walk is appropriate. There must be several constraints
to such a Random Walk. The first constraint is that the prices
be constrained to one dimension—they can only go up or down.
The second constraint is that time must progress monoton-
ically.

I have formed my philosophical basis of market action from
extensive work using constrained Random Walks in the physi-
cal sciences.' The expression of such a Random Walk is that of a
drunkard moving on a one-dimensional array of regularly spaced
points. At regular intervals, the drunkard flips a coin and makes
one step to the right or left, depending on the outcome of the
coin toss. At the end of n steps, he can be at any one of 2n + |
sites, and the probability that he is at any site can be calculated.
Let the distance between the points on the lattice be AL, and let
the time between successive steps be AT If AL and AT are
allowed to shrink to zero in such a way that (AL)*/AT remains
constant to the diffusion constant D, then the equation govern-
ing the distribution of the displacement of the Random Walker
from his starting point is

‘Weiss, G. H., and R. J. Rubin. “Random Walks: Theory and Selected
Applications.” Advances in Chemical Physics 52 (1982): 363-505.
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8P &P
kg™
i er famous partial differential equation is called tl_le Dif-
‘l‘hl_;l;ﬂ ;"Ihquation. 'I'}l:e function P(x,t) can be intc}'l?retcd in two
ways. It can either be taken to express the p_rgbabﬂny _densny or
the concentration of diffusing matter at position x at time t. Fol-
lowing the latter interpretation, it can, for example, descnbe_the
way heat flows up the stem of a silver spoon when placed in a
f coffee.
hm';:‘::pb:tter understand the theory of diffusion, imagine the
way a smoke plume leaves a smokestack. Thi_nk a_lbout how the
smoke rises compared to how a trend carries itself through
the market. A gentle breeze determines the angle to which the
smoke, or trend, is bent. The widening of the smolFe plume
represents the probability density of the smoke par_tlclf:s as a
function of distance from the smokestack. This widening is anal-
ogous to the decreased accuracy of the prediction of future trend
prices further into the future.

The formulation of the Drunkard’s Walk has no property
that can be regarded as the analog of momentum. A more realis-
tic model of a physical object’s motion needs to account for
some form of memory—we need to know where the object came
from and the likelihood it will continue to move in the same
direction. The simplest modification of the Random Walk is to
allow the coin toss to determine the persistence of motion. In
other words, with probability p the drunkard makes his next
step in the same direction as the last one, and with probability
1-p he makes a move in the opposite direction. The ordinary
Drunkard’s Walk occurs when p = %, because either move is
equally likely. The interesting feature of the modified Drunk-
ard’s Walk is that as the distance between the point and the time
between steps decreases, one no longer obtains the Diffusion
Equation, but rather the following equation:

g, 150 _ &P
T h ax?
in one dimension, where T and ¢* are constants. This is anothe'r
famous partial differential equation called the Telegrapher’s
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Equation. This equation expresses the idea thar diffusion occurs
in restricted regions, such that x* < ¢*t®. That is, the position
must be less than the velocity of propagation ¢ multiplied by
time ¢ More important, the Telegrapher's Equation describes
the harmonic motion of Plx,t) just as surely as it describes the
electric wave traveling down a pair of wires.

Harmaonic motion is ubiquitous. It is the natural response o
a disturhance on any scale ranging from the atomic to the galac-
tic. You can demonstrate the effect by holding a ruler over the
edge of a table, bending the ruler down, and then releasing it,
The resulting vibration is harmonic motion. Alternatively, you
can stretch a rubber band between your fingers, pull the band
to one side, and then release it. The oscillations of the rubber
band also constitute harmonic motion. Since there are plenty of
opportunities for market disturbances, it is only a small streteh
to extend the solution to the Drunkard’s Walk problem from
physical phenomena and use it to describe the action of the
market,

The Drunkard’s Walk solution can describe two market con-
ditions. In the first condition, the probability is evenly divided
between stepping to the right or the leit, resulting in the Trend

Made, which is described by the Diffusion Equation, The second
condition, the probability of motion direction is skewed, results

in the Cyele Mode, which is described by the Telegrapher's Equa-

tion. The difference between the two conditions can be as sim-
ple as the question that the majority of traders constantly ask
themselves. If the question is “1 wonder if the market will go up.
of down!” then the probability of market movement is about
alk-50, eseablishing the conditions for a Trend Mode. However, if
the question is posed as “Will the trend continue!” then the

conditions are such that the Telegrapher's Equation applies. Asa
result, the Cycle Mode of the market can be estahlished
The Telegrapher's Equation solution also describes the me-

andering of a river. Viewed as an aerial photograph, every river
in the world meanders. This meandering is not due to a lack

of homogeneity in the soil, but to the conservation of energy.
{You can appreciate that soil homogeneity is not a factor because
other streams, such as ocean currents, also meander in a nearly
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homogeneous medium. ) Ocean currents are not nearly as visible
as rivers and are, therefore, not as familiar to most of us. Every
meander in a river is independent of other meanders, and are all
thus completely random. If we were to look at all the meanders
as an ensemble, overlaying one on top of the other like a mul-
tiple exposure photograph, the meander randomness would also
become apparent. The composite envelope of the niver paths
would be about the same as the cross sectionm of the smoke
plume. However, if we are in a given meander, we are virtually
eertain of the general path of the river for a short distance down-
gtream. The result is that the river can be described as having a
short-term coherency but a randomness over the longer span.

River meanders are like the cycles we have in the market.
We can measure and use these short-term cyeles to our advan-
tage tf we realize they can come and go in the longer term,

We can extend our analogy to understand when short-term
cycles occur. Rivers meander in an attempt to maintain a con-
stant slope on their way to the ocean. If the slope 1s too severe,
the meander has the same effect as a skier who weaves back and
forth across a slope to slow the descent. The flow of a river phys-
jcally adjusts itself for the purpose of energy conservation, If the
water speeds up, the width of the river decreases to yield a con-
stant flow wvolume. The faster flow contains more kinetic
energy, and the river attempts 1o slow it down by changing direc-
tion. At the same tme, the niver direction cannot change
abruptly because of the momentum of the water's flow, Mean-
dering results. Thus, meanders cause the river to take the path of
1l.*-i!H resistance in the sense of energy conservation. We should
think of markets in the same way. Time must progress as surely
as the river must flow to the ocean. Overbought and oversold
conditions result from attempts 1o conserve the energy of the
market. This particular energy arises from the fear and greed of

5.

Again, it may be useful to test the principle of energy con-
8ervation for yourself, Tear a strip about 1 inch wide along the
8ide of a standard sheet of paper about 11 inches long. Grasp
£ach end of this strip between the thumb and forefinger of each

d. Now move your hands toward one another. Your com-
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res 0T data amoothers for Trend Modes and oscillator-tvpe
ators for Cycle Modes, In later chapters, we develop supe-
jndicators for both market modes. At this point, it is impor-
to understand that the two modes of 2 simplified market
¢] have been directly derived from solutons ta the Drunk-
g Walk problem. Keep asking yourself, “Will the market go
s ar down today?” and “I wonder if the trend will continue?”

Pression is putting energy into this strip, and its natural respons
can take one of four modes. These modes are decermined hy thy
boundary conditions that you force. If both hands are pointing
up, the response is a single upward arc, approximating one alte
nation of 4 sine wave.  both hands are pointing down, thy
response 18 & downward arc. If either hand is pointing up ang
the other pointing down, the strip responsc to the energy inpy
is approximately a fuil sinc wave. These four lowest modes azng
the natural responses following the principle of conservation g
energy. You can introduce additicnal bends in che strip, but:g
minor jiggling will cause the paper to snap to one of the fo :
lvwest modes, with the cxact mode depending on the boun + A simplified model of the market has a Trend Mode and a
conditions that you impose. The two full sinewave modes 3 Cycle Mode,
appraximately the second harmonic of the two single alternsg » The market model is similar to a meandering river.
tion modes. : "« Both the Trend Mode and the Cycle Mode are derived from
The market only has a single dominant cycle most of thi “ :  the Drunkard’s Wall,
time. When multiple eycles are simultaneously present, they a 2 » - Different technical indicators are appropriate for each mar-
generally harmonically related. This is not to say that nonhad ket mode.
monic simultaneous cycles cannot exist—ijust that they arc rard
encugh to be discounted in simplified modcls of market actiond
The general observation of a single dominant cycle tends td
support the notion that the natural response to a disturbance id
monotonic harmonic maotion.
It is true that if you are a hammet, the rest of the world loo
like a nail. We must take care ta recognize that all market actio 1
is not strictly described by cycles alone and that cycle tools arg
not always appropriate. A more complete model of the markef
can be achicved by knowing that there are times when the solud
tion ta the Telegrapher's Equation prevails and times when thé
solution to the Diffusion Equation applies. We can, therefored
divide the market action into a Cycle Modc and a Trend Mode]
By having anly two modes in our market model, we can swit i
our trading strategy back and forth between them, using the
MOIE appropriate tool according to our situation. Since our digi4
tal signal processing tools analyze cycles, we can establish tha#l
& Trend Mode is mare appropriate at any given time due to thef
failure of a Cycle Mode. A
There arc many ways to analyze the market using technica
analysis. Regarding indicators, the prefcrred tools arc moving

Key Points to Remember



Chapter 3

MOVING AVERAGES

Trend is not destiny.

— Lgwis MUMFORD

Centuries ago Karl Friedrich Gauss proved that the average is
the best estimator of the random variable. He derived the famil-
iar bell-shaped probability density curve known as the Gauss-
ian, or Normal, distribution. When the probability distribution
of a random variable is unknown, the Gaussian distribution is
generally assumed. In this bell-shaped curve, the peak value, or
the mean, is the nominal forecast. The width of the variation
from the mean is described in terms of the variance. It is cer-
tainly true that the average is the best estimator for the market
in the case where the Diffusion Equation {as described in Chap-
ter 2) applies. The best estimate of the location of any smoke
particle is the average across the width of the plume. This is
probably why moving averages are heavily used by technical
traders—they want the best estimate of the random variable.
All moving averages have two characteristics in common:
They smooth the data and cause lag because they depend on
historical information for computation. By far the most serious
implication for traders is the induced lag. Lag delays any buying
or selling decision and is almost always a bad characteristic.
Therefore, averaging 1s typically a trade-off between the
amount of desired smoothing and the amount of lag that can be
tolerated. _

There are three popular types of moving averages. These are
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1. Simple Moving Average {SMA)
2. Weightod Moving Average [WMA)
3. Exponential Moving Average [EMA)

Each of these types of averages has its own respective mierit,
and there are times when any one of the threc is the appropriste
choice. The discussions in this chapter describe each of the three
MOVINg averages 5o you can make the comparisons for vour own
applications,

Simple Moving Average

An n-day simple average is formed by adding the prices of a secu- :

tity over n days and dividing by n. Thus, the weighted price for
cach day is the real price divided by 2. The simple average
becomes 4 moving average by adding the next day’s weighted

price o the sum and dropping off the weighted firat day’s price. ;

Thus, the simple average moves from day to day. This is the
most efficient way to compute a Simple Moving Average [SMA].

Another way to view an SMA is as an average of the data
within a window. In this concept, the window slides across the .

chart, forming the moving average from bar w bar, as shown in

Figure 3.1. Figure 3.1 shows a 10-bar window and the moving °

average formed by this window. The average is plotted at the
right-hand side of the window, causing the moving average lag
This is neccssary because the window cannot accept data inro
the future. Su, when a moving average is used in actual trading,
the 1ag cannot be overcome., Centering the maoving averags on the
window is not helpful for trading because future data would he
required to get the carrent value of the average, Obviously, future
data are nat available for the last har on the charr.

The stacic lag of an SMA can be computed as a2 function of
the window width. Consider the following case where the data
have a price of zero ar the left edge of the window. The price
tncreases by one unir for cach subseguent bar, as shown in Fig-
urc 3.2, The average price is always the price at the center of the

window, cxpressed mathematically at [ — 1)/2. The aveorage is

Moving Averages 19
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Figure 3.1. 3 moving average averages data within a moving

windaw.
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plotted at the right-hand side of the window. Since the price
slope 13 unity (rises vertically ong unit for caa_:.h umit increasce
along the horizontal), the averaged price at the right-hand side of
the window is effectively lagging the price at the center of the
window by jn — 1!/2 bars. This lag is simply un?ﬁ.':}idﬂh]-:. A
example of a 5-bar window average is shown in Figure 3.2, 1U1s
clear in this cxample that the lag is two units, cqual ta [5 - 1)/2,
As a trader, you must make a trade-off by chousj__ng hetween the
amovnt of smoothing vou want from your moving average and
the arnount of lag you can tolerate. _

A thorough understanding of the impact of moving average
lag is absolutcly crucial for successful trading, On the one hand,
3 wide aviraging window provides a very smoath moving avey-
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Fligure 3.2, Compiting the 580 lag

age. However, such a moving average is so sluggish in respo
that it may only be useful in working with the longest trends.
narrow averaging window, on the other hand, does not pro
much smoothing so the average may be highly responsive
can produce whipsaw signals due to madequate smoothi
Approaching a moving average trom the perspective of the £
quency domain rather than from the time domain can thus
useful and instructive

Assume the data comprise a theoretical sine wave as she
m Figure 3.3. We can arrange our averaging window to be
width we choose. The width of Window A in Figure 3.3
exactly one half eycle. If the window were narrower, then t
average would not include all the data points in the posit
alternation of the sine wave, and the average would therefore
less sensitive. if the window were wider than a half cycle,
average would contain some negative data points as well as
the data poinis in the positive alternation. Thus, the aver
would also be less sensitive. Figure 3.3 shows the half-peri
movIng average of 4 sine wave. The peak value of this mov
average occurs at the right-hand side of Window A because Wi

Maoving Averages i

dow A contains only the positive data points in the sine wave
As we move the window to the right, the moving average
in amplitude. Reaching Window B, the moving aver-
|s gero at the right-hand edge because Window B contans
as many negative data points as positive data points,
mﬂu average Lo sum to Icro Comunuing to move the win-
dow to the right, we amve at Window C. The moving average
Window C is maximum negative because Window C contains
only negative data points. The moving average is created by shid-
ing the window scross the entire data ser
MNote that the hali-peniod SMA of a sine wave 15 anothes
sinusoid |waves that look like sine waves), delayed by a gquaner
cycle. Drawing from our previous knowledge of the lag of an
SMA, we can assert that the lag is hali the window width,
tlpl!ﬂtli in fractions of a cvcle period or in degrees of phase. A
-cycle SMA will lag the price by an eighth of 2 cycle. This
is the equivalent of saying that if the averaging window is 90
degrees wide, the resulting SMA lag will be 45 degrees
When the market is in a Cyele Mode, it is more important to
think in terms of the phase shift an SMA will induce rather than
in terms of the number of bars of lag that it will cause. For exam-
ple, a 2-har lag is almost inconsequential for a 40-bar cycle

Figure 3.5,  Hall-cycle SMA of 3 sne wive
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However, this same 2-bar lag is & full quarter-of-a-cycle pk

lh:ftfntmﬂnhr:rd:.hmn;,i:uﬁmmmm

]:mdm the phases in relative terms, particularly when des
ng wli_h shorter cycles, For this reason, it is olten pre !
10 continuously sdape an SMA window to be a fraction of

measured market cycle rather than using

This adapration enables the SMA to i o
provide th ag
Hon to price movement regardless of the time WIDE':E: Iom

inant cycle.

SMA. Examination of Figure 3.4 show
1 s that in
Lh:n tl!u- window width is exactly one cyele, thﬂ:npr:l: )
ta points sbove the mean as there are below it Therefore hd

SMA 35 nmlrmu!nnhuipttm case, We use this ph

non later 1o create the Instantaneous Trendli I
measured the dominant cyele. By adijusting the :irﬂgﬂ; t:'il st
window whose width is exactly the measured dominant c
H:dmmnrk;ﬁumlmm' t cvcle completely. Since our simpli;
g consists of a Trend Mode component and
vele component, we are left with only the Trend Mods
component after the dominant cycle component has been

Figure 3.4, The sverage of 5 full-cocle SMA is rero

- ool ara 8

moved. The Instantaneous Trendline differs from an SMA only
in the respect that the window width can vary from bar to bar.
gince the window width is always a full eycle period for this
indicator, the lag of the Instantaneous Trendline is a half period
of the dominant cycle.

The SMA is also identically zero for a pure sine wave when
the window width is exactly an integer number of cycles wide.
This can be seen in Figure 3.5, in which the window width is 12
pars. Figure 3.5 is attained by changing the frequency applied 1o
the fixed 12-bar-wide window, The results are plotted after being
pormalized to the Nyquist frequency, which is exactly half the
sampling trequency. For example, if the data being used consist
of daily bars, then the Nyquist frequency is 0.5 bars per day.
Since the cycle period and the cycle frequency are inversely pro-
portional, the period of the Nyquist frequency is 2 bars. The
periods of those components that have an integer number of
eycles within the 12-bar window have been noted in Figure 3.5,

The SMA window can be viewed as a transfer function that
muluiplies the data falling within the window by | and multi-
plies all data outside the window by 0. This transier response is
a pulse in the time domain. Functions in the time domain are
related to functions in the frequency domain by the Fourier
Transtorm, as discussed in Chapter 1. A derivation of Fourier

Transforms is beyond the scope of this book, but is covered in

Figare 3.8, The transfer response of @ 12-har SMA.
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many fine texts, Without the derivation, I assert that the Foy
Transform of the pulse in the time domain is

SMA([Period| = Sinjn* WiPlinW/P

where W = width of the SMA window
= perind of the cycle being averaged

The SMA is expressed in terms of wave amplitude. This mathe
matical equation for the frequency domain response of an SMA
exactly describes the function shown in Figure 3.5, except '
the figure is plotted in decibels rather than wave amplitude
Each time the ratio of the window width to the eycle period is an
integer, the argument of the sine function is a multiple of F
Since the sine is exactly zero for arguments in multiples of Pj
the transfer response has nulls for these cycle perinds.
Figure 3.5 shows thar low-frequency components (longer
cycles] are allowed to pass through the SMA with only a small
amount of attenuation, or sige reduction. However, high
trequency components (shorter cycles| are greatly attenuated :
even between the null points. For this reason, an SMA falls intg
the category of low-pass filters, Low-pass filtening is exactlyl
what is desired from a data smoother The smoothing comes
about as a result of reducing the size of, or attenuating, the
amplitude of the higher-frequency components within the da
The frequency description of an SMA does not have a nulfl
zero frequency. At zero frequency, its period is infinite because
cycle period is the reciprocal of frequency. Therefore, although
the numerator goes to zero at zemn trequency, the denominatol
also goes to zera, In the limit, the ratio of the numerator to th
denominator is unity (a value of 11, We have previously assigned
0me signiticance to the cycle period that is twice the window
width [or more precisely, where the window width was half the
cycle period). In this case, the numerator in the SMA frequency
description rises to become unity and the denominator s n/d.
The cycle period that is twice the width of the SMA window is
a workable and easy-to-remember demarcation between those
cycle periods that have small attenuation and those that have

Moving Averages 5

attenuation. For example, an SMA window width of 8

E‘:‘:ﬂﬂ]d allow those cycle components of 16 bars and longer

nearly unattenuated and would attenuate cycle compo-
whose periods are shorter than 16 bars.

We now have the tools to think about SMAs in both the ume

: ] lig

; mains. We know that the 8-bar SMA has a
- E?;TE:: iﬂmdi This same SMA gives a 16-bar r:;.n:ll: & i]-
o2 se delay and a 32-bar eycle a 45-degree ph.n_u:: de_a:yr m
P::I.: component i removed l:nmplr.tlf.h-'. This ahility to
mﬁﬁ L".I; the impact of averages in both the time and frequency
dnm:i:s will greatly improve your probability of success as a

rrader.

Weighted Moving Average

i i lated to an
i Average |[WMA) is closely re

me:l’?"hh::mm;ﬁ:?&?ﬁfmmc is the coefficients of the mu]tlpﬁllcr
hrt]:u: WMA are not constant across the window 'fndth._ F_tra!: -E::-.
the cocfficients are linearly weighted across the 1.7.-1:-!:1:11.;. o El_;u_
fare, it follows that the oldest data point is mUhtFII'F‘im} 5
next oldest data point 15 multiplied by J'i, t}]:; third o ::: .1::_:
paint is multiplied by 3, and so on untl the most rec _

int ::nr?ujtilpﬁilcd by n for an n-bar window width. The a-uEm]?f
imdlta. and coefficient pmducts is divided by the sum iﬁv;li
coefficients to normalize the averaging process. A 4-har
code can be written as

WMA = (4*Price + 3° Price| 1] + 3* Price|2] + Price|3]}/10;

- A 15 shown in Figure

The transfer response of the 4-bar WM 0
3.6 Ei.u:ea;l-n: data nr:--:mwﬂ,g]ned across the window width, l:::.‘
can be no precise averaging to zero as there was with an SMA,

Nevertheless, the WMA is also a low-pass filter. The point where
filter attenuation is 3 dB acts as our point of demarcation

between the passhand and the stopband. In Figure 3.6, ti-{_::lu-:-:ulf
lﬁlmfmilim:] frequency of 0.25, corresponding to an 8-bar cycle.
=¥eles longer than roughly 8 bars are passed essentially unatten-



Figare 3.6. Frequency response of a 4-har WMA,

uated, and cvcles shorter
provide the smoothing,
As with SMAs, smoothing of WMAs
ing the width of the window. For exampl
of a 7-bar WMA is shown in Figure 3.7.
point oceurs at a normalize
period of approximately 14
related to the window wid
twice its window width, as a reaso
A WMA offers a major
lag in its transfer response, The reduced lag results from

nable approximarion.

Figure 3.7, Frequency response of 4 7-bar WA

than § hars are reduced in amplitude

15 improved by increas
¢, the transfer responS
In this case, the -3 d
d frequency of about 0.14, which is
bars. Since the passband is linearly
th, the passhand of a3 WMA is alsd

advantage because it exhibits reducsg

2T

Moving Averages

mast recent data being the most heavily weighted. The amount
o lag induced by an SMA or a WMA is the center of gravity of
che transfer response., In the case of the SMA, the center of Erav-
s ie at the center of the filter, resulting in a lag of (7 - 112 for
an n-bar window width, The shape of the WMA coelficients
i#"' a triangle across the width of the filter, resulting in the
‘center of gravity being a triangle, one-third of the distance across
the window. Thus, the lag of an n-bar WMA is (o - 1)/3. There-
h‘h‘. our examples, a 4-bar WMA has a lag of only 1 bar and a
F-bar WMA has a lag of only 2 bars.

~ The weighting functions for a WMA do not necessarily have
to be linear across the width of the window. The linear weight-
ing is nonetheless very simple to compute, and the impact of lin-
ear weighting is easy to remember by recalling the center of
gravity of a triangle. Furthermore, the impact of other weighting
distributions is too subtle for trading purposes. Therefore, there
is no compelling reason to use iny weighting factor other than

Exponential Moving Average
The moving averages discussed thus far are nonrecursive. That

is, previous calculations are unnecessary to compute the cur-
rent value of the moving average. An Exponential Moving Aver-

 [EMA] is different in a major way because it is recursive.
ﬁ' calculations use a fraction of the current price added to
another fraction of the EMA calculation 1 bar ago, The first
Mfraction is usually called alpha {a) and can have a value between
‘Uand 1. The two fractions must sum to unity, so the second
fraction must have the value of 1 - . The equation to compute

is

an EMA
EMA = a*Price + (1 - a]*EMA|1]

‘uﬁ} EMA becomes a moving average by moving from bar to bar,
hﬂiﬂﬂ to right, across the price data.

_ The term exponential describes the way an EMA transter re-
Sponse decays in amplitude relative to a single input. Imagine a
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case in which the data set has an amplitude of | /i at one bar ang
an amplitude of 0 everywhere else. When the EMA is applied g
this data, the first output from the filter is unity because theps
was no previous value for the EMA. On subsequent calculations
the price value is 0, and so the sequence of caleulations is

EMA[0] =1

EMA(l] ={1 -

EMA[2] = (1 - a)*{1 - &} = (1 = &
EMA[3) =1 -af*(l -a)=(] - a)

EMA[n] =1 - o

Since the quantity {1 - a) must be less than 1, the amplitude
decays as the exponent of cach succeeding calculation from an
impulse input. Hence the name Exponential. In principle, a part
of any data input remains in subsequent calculations although
the contribution becomes vanishingly small. This at
makies an EMA part of a general class of filters called Infinite
Impulse Response (IIR) filters. IR filters are distinct from the
Finite Impulse Response (FIR| filters, the class to which the
SMA and WMA belong. With FIR filters, the filter provides an
output only so long as the impulse falls within the window,
Thus, in this case, the response to an impulse is finite,

It is instructive to examine the EMA response to a step tungs:
tion. A step function has a series of constant values and 1
jumps to another series of constant values. Assume the price has
been 0 for a long time and then suddenly jumps up to a value of
I and maintains that value thereafter. On the first bar, the EMA
will have a value of . On the second bar, the value will be o 4
@*(1 - al. On the third bar, the value will be & + a*(] - ol + 6%
(1 —al, and so on. The EMA will gradually approach the value of
1. A common error in programming is to insert a value for o
sich as 0.2, and insert another number for (I = el such as 0.9
The two terms must sum to unity or the recursive algorithm
will lead o erratic results or might even cause your COmpuUter o
crash. You should always check your computer code to ensu

Moving Avernges 9

: wor terms sum to unity. [ am so cautious on this point that
1% the value o as a global variable and write out the EMA
mﬁm

know the two terms must sum correct]y.

in terms of o. By letting the computer do the work, |

We can easily derive the lag of an EMA for the case ot price
that riscs linearly at the rate of one unit per bar Recalling the
jorm of the EMA calculation,

EMA = o* Price + |1 = a]*EMA[1];

We can assert that the price on day d i1s d. If we assume the
lag of the EMA is L. then the current value of the EMA 15 [d - L.
Furthermore, the previous EMA would have a value of [d - L -
1), since price is rising one unit per bar, Putting these values into
the equation for the EMA, we obtain

jd-Lj=a*d+|l ~a)*|d=-L~-1]
si'd+|d-Ll-1-a*d+a*|lL+1)
O=a*{L+1}-1
=1L+ 1)

This equation shows that we can select an acceptable lag, and
from that lag, compute the alpha term of the EMA. For example,
if we can accept a 3-bar lag resulting from the EMA, we would
uee =125,

We can al=o relate an EMA to an SMA on the basis of their
equivalent static lags. Recalling that the lag of an SMA 13 |n -
1)f2 for an n-bar SMA, we can substitute this value of lag into

alpha calculation of the EMA as

a=1/{lm-1}/2+1]
=2/[[n=1]+2]
=2fin+1)

This is the rtlatmnshm between an n-bar SMA and the alpha of

a0 EMA that is quoted in most technical analysis books,

_-I“L 12-bar SMA was used to compute the transter response
in Figure 3.5. The cquivalent alpha for an EMA is a =



30 Rackel Science for Traders

Figure 3.8. Transfer response of an EMA with delay equal o that of a 12-
bar SMA

%, = 0.1538, The EMA transfer response for this value of alphais
shown in Figure 3.8. Comparing Figures 3.8 and 3.5, it 1s obvi
ous that the EMA normalized frequency passband is mue
smaller than the passhand of the SMA, Therefore, an EMA pro
vides much more smoothing than an SMA for an equivalent
amount of lag. Alternatively, you can conclude that an EMA
has much less lag than an SMA for an equivalent amount €
smoothing. |

It is also interesting to compare a WMA to an EMA on tf
basis of equivalent lag. The WMA that produced the transiel
response depicted in Figure 3.7 had a lag of 2 bars. For a 2-bar lag
an EMA has @ = 0.3333. The transfer response of the EMA #
shown in Figure 3.9. In this case, the EMA response is neart)
equivalent to the response of the WMA shown in Figure 3.
with the WMA providing slightly better filtering. Furthermaore
the WMA attenuates those components within the passhand
little less than the EMA for these same components. |

We do not vet have the tools to compute the cycle pmndl J
the passhand demarcation in the frequency domain in terms @
the alpha of the EMA, but we can assert without proot that thi
relationshap is

P=-2rfln(l-al

Moving Averages i1

Figure 3.9. Transfer response of an EMA with debay equal to thae of 2 7-
bar WMA

where In is the natural logarithm. This relationship is proved in
Chapter 13. Computation of the natural logarithm may be
unnatural to most traders, so we simplify the equation with a
little mathematical slight of hand. We can approximate the nat-

ural logarithm with a truncated infinite series because {1 - af
will always be less than uniry as

In(l-al=-a-c*2-o'/3-a'fd ... —afn
¥ @ is sufficiently small, we can ignore all but the first two

m-iﬂf the series. Substituting the truncated series for the nat-
ural logarithm in the passhand penod calculation, we obtain

P =2xfla+ o'f2)
= dgfla®(l +al)

Key Points to Remember

=55 of their formulation, the purpose of moving averages
5 to smooth the input data. Their use s a trade-off berween the

sHount of smoothing you desire and the amount of lag you can
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stand. The characteristics of the mast Popular moving
ages are

SMA

Lag is jn— 142,

Passhand period is 2+

Phase lag is a linear function of window width,
WMA

Lag is jn — 1)/3,

Passhand period is 245
Gives the best filtering for 2 given amount of lag,
Phase lag is a linegr function of window width,

EMA

= 1/Lag+ 1),

& =2/(n+ 1} when compared to an SMaA,

The o and [1 - 2| terms muse always sum to unity,
Passhband perind is ~2n/Inj1 ~ o) = drfleet |2 + oll.
Phase lag is nonlinear due to recursion.

avery

Chapter 4

MOMENTUM FUNCTTONS

Buachward, tom back Wik,
oh tme in yvour Hight . .

—ELIZARETH AKERS ALLEN

T'can'’t begin to tell vou the numher of traders that has asked me
to make their signals happen just one bar satmner. The typical
question iz “Can’t you just take a momentum!” In the mpst
simple case, momentum is Just the 1-bar difference in pricc.
Momentum is deceiving because it can give the illusion of anic-
ipating turning points. In fact, there are cases in which some

in which advaneing the indicator signal is impassible. For this
TEdsom, it s instructive to return o basics and thoroughly inves.
tigate the prapertics of momentum functinne.

In the most peneral SERSE, momentum functions simply rake
the difference of successive values to sense the rate of change,
Just ag the sums forming the averages are analogous to integrals
in the calculus, momentum e analogous ta derivatives in the
calenlus, The mpact of momentum ean be appreciated by cak-
Ing surcessive momentims as we do in Figure 4. 1.

. In Figure 4.1, we analyze the successive momentums of a
Simple tamp function. The ramp is described as having a zerg

Ope before an instant in time T and then breaking tu a finite
5:0pe at that instant. This 18 a relatively smaoth funecion. The
st momentum of the T2IP is a step. There is no change in the
slope of the ramp before of after time T, so the step function is

cator. Even experienced technicians get lured into investizgations

i3
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RAMP /murmon

I_— 18t derivative
sTEP (Momantiam)

to increase the performance of their indicators. That reason
.monstrated in Figure 4.2, where the momentum of a pure
ke wave is taken. Since momentum is the rate of change of a
sction, the momentum of the sine wave is maximum at the
% edge of Figure 4.2 where the sine wave crosses zero. The

I

e entum decreases as the sine wave increases. It reaches zero

MPULSE f nd derhvative ushe point where the sine wave crests. The slope of the sine
(Accatsrstion) Eve at this point is zero, causing the momentum to be zero.

JERK f srd Garivative gtinuing to the _right, thg slope of the sine wave incre_ases in
v p negative direction, causing the momentum to reach its neg-

Mye maximum just as the sine wave again crosses zero. The
mentum is traced out by the dashed line in Figure 4.2. This
thed line has the characteristic that it reaches a crest 90 de-
before the sine wave crests and reaches a valley 90 degrees
e the sine wave does.

¥ the price were a sine wave, it would be easy to conclude
t momentum is a leading indicator. But this is true only
en the market is in a Cycle Mode, It is, therefore, imperative
first identify the mode of the market before assigning a lead-
indicator capability to the momentum. In Chapter 11, meth-
to identify market modes are discussed.

je. We have already stated that momentum is analogous to a
grivative in the calculus. We can use this fact to analyze the

Figure 4.1. Successive application of momentum shows that
momentum can never anticipate an event. Also, momentum
functions become increasingly discontinnous.

formed by instantly jumping from an initia! slope of zero to}
finite value of the slope of the ramp. Taking the momentun
the step function, there is no change except the instantand
jump from one value to another at time T. This forms an impd
An impulse is a mathematical artifice that has infinite he§
and zero width in such a way that the area of this “rectangle]
unity. Put simply, an impulse is a spike at time T. Next, talg
the momentum of the impulse, we obtain a jerk. The jer§
formed by a two-step process. A positive impulse part of the§
is first formed by traversing the leading edge of the imp#
function. This is followed by the formation of the negd
impulse part, which is due to traversing the trailing edge of
impulse function. 1

Examination of Figure 4.1 identifies two undeniable tru
about momentum functions. These are g

1. Momentum can never lead the event. §
2. Momentum is always more disjoint (i.e., noisier} than
original function. :

These truths are obvious when removed from the distractiond

a price chart. There must be a reason why traders expect mon§ Figure 4.2. Momentum leads a pure sine wave by 90 degrees.
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behavior of momentum in the frequency domain. From any
culus text, the derivative of a sine wave having the angular f§
quency o is -]

sted by about 3 dB. Since very-low-frequency components
cted and higher-frequency components are passed, Figure
ests that momentum can be used as a detrending filter.
ez, the passband is too narrow to be of practical benefit.

recall from Chapter 3, the half-power point, or -3 dB
is the accepted practical cutoff frequency. According to
inition, only cycles with periods of 4 bars or less would
_We can flatten the frequency response by making the fil-

d{Sin|wt)}/dt = ®* Cos{wt)

This equation shows that the derivative of a sine wave dj
lead the sine wave by 90 degrees because the result is exacth ,
cosine wave, like the dashed momentum shown in Figure 4 er. However, in making the filter wider we also increase
The equation also shows that amplitude is directly proportiog Rsg. As with an SMA, the lag through an n-bar momentum is
to frequency. The amplitude is omega (@), which is 2*x* B [ - 1)/2. Therefore, there is a 1-bar lag for a 3-bar momen-
quency. We expect the same phenomenon in trading. If we ¢ wiLag = (3 — 1}/2=2/2=1}. The 3-bar momentum is computed
the simple difference {momentum) of a 2-bar cycle that va§ im the equation:
between +1 and ~1, the difference will be the crest-to-vs
value, or 2. Conversely, if we have a 50-bar cycle swinging
tween +1 and -1, then the maximum momentum will§
approximately %s = 0.08. There is no momentum for extren
long cycles because there is essentially no rate of change tha
useful for trading. The frequency response of a simple 14
momentum is shown in Figure 4.3. :

Figure 4.3 shows that a zero frequency signal is almost ¢
pletely rejected by the filter. Shorter frequencies are rejed
less. For example, a 10-bar cycle signal has a normalized
quency of 2/Period = %o = 0.2, and is only attenuated by aboud
dB. A 4-bar cycle signal (% = 0.5 normalized frequency] is g

Mo = 0.5*Price — 0.5*Price[2];

The frequency response of this filter is shown in Figure 4.4.
» are two clear benefits from this filter, as opposed to the
le momentum filter of Figure 4.3. First, the frequency re-
se of the filter is much flatter. For example, the attenuation
normalized frequency of 0.1 (a 20-bar cycle) is only —10 dB
likead of the approximate 17 dB in Figure 4.3. Second, the 2-
i cycle [normalized frequency = 1) is nearly completely sup-
Bgecd. The 2-bar cycle is always suppressed if the order of the
Remetrical filter is odd.

E e el S e T T L

....................................................

4.4. A 3-bar detrending filter has flatter frequency response and

Figure 4.3. Frequency response of a simple momentum. 4
pets the 2-bar cycle.



i Hocket Scicnce for Traders

Flaure 4.5. A 3-bar momenium reqtoves both 2- and 4-bar cocle come
primens,

1 a linle hit i good, a whaole lor mare is hetoer mayhe, We
can atternpe to flacten the frequency response by using a 5-bar

momentum. The cquation becomes
Mo = (1.5 Price = .5 Price{4):

 lhe frequency response for this 5-har momentum is showe
in Figure 4.5, Unforunacely, we have introduced another fre
quency notel at a 4-har evele. Onee we stop and think about it
we sce that this makes sense because subtracring data from a4
bar cycle 4 bars apo will exactly cancel any ourput {rom the
high-pass filver, '

The frequency notehung exhibited in Tigure 4.5 can he elin
mated by making the filter have symmetricsl coctiicients. For
example, if we write the equation as -

Ma = 00909 Price + 14545 * Price|1]
+0 - 04545 Price[3]  0.0909 Price]4],

we then get the high-pass frequency response shown in Figuf
4.6, We have quickly reached the point of diminishing rerum:
for this approach. For example, the attenuarion for the 2i)bat
eyele slipped from 5 dB in Figure 4.5 ro about -8 JB in Figan

.

+0. In addition, rhe lag from rhe high-pass filier is 3 hars. The

Momentum Functinns ia

Figuse 4.6, A 5-bar bhigh-pass tiher smoothes passhand Treguomey re-
- wpanse,

advantage af the ':-"B-de,gle: |:||'|a:-i: lead due o diffcrencing is
gquickly lost duc o the lag. The total phase lag as a funcrion of
;I.rd_c period due to the 3-har lag ¢on b written as

Phase lag = 360" 3/ TPeriod =90 degrees

By setting the phase lag to zero, we find that the shortest cycle
period having no phase lag is 2 12-bar period, Longer eyveles will
have a phase lcad. Since we need o work with cyvele peniods
even shorter than 12 bars, there 15 ne point in attempting to
‘make the daticrencing have a wider passhand because additionsal
Iag will be induced. Thus, we have reached nur point of dimin-
Mshing returns. Further amplitude comeerions must be accom-
pijshed by measuring the dominant cvele and then applyving a
Cirreciion term for thar cvele.

- It is ineeresting Lo take the momeneum of an SMA. To elarify
_th'E point, we refer to prices [rom the current time as A, B, C, T,
and E. & 4-bar SMA of the prices s .

SMA=A+B=-C+Di4
And the 4-bar SMA of the prices | har ago is

SMAIL =R+ C+D+El4
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When we take the difference of the two moving averages, we

SMA - SMA[1] ={A — E)/4

The interesting conclusion here is that the momentum of
4-bar SMA is exactly the same as a 4-bar momentum with
a constant factor of the averaging. This specific conclusio

be extended to any length SMA.

By the same token, an SMA of four momentums arriv

the same conclusion. Consider this relationship:

[(A—B]+(B—C)+(C-D)+[D—E))/4=(A—E)/4

It all boils down to the same thing. An n-bar average of mo

tums is exactly the same as an n-bar momentum.

Key Points to Remember

¢ Momentum can never lead the event.

Momentum is always noisier than the original function

* Momentum can produce a 90-degree phase lead in the
Mode.

¢ Improving momentum quickly reaches a point of di
ing returns.

* Amplitude compensation of momentum can be accomp
by measuring the dominant cycle and applying a corr
for that cycle period.

* The momentum of an n-bar SMA is the same as an n-y

momentum.

Chapter 5

- COMPLEX VARIABLES

Numbers are like people; torture them enough
and they will tell you anything.

—ANONYMOUS

The mathematical concept of complex variable_s is !'ntrodl}cefl in
this chapter to lay the groundwork for the deruafatl_on of indica-
tors that are either impossible without complex van_ables or that
- would require enormous computational overheaq w%thoqt them.
Mastering complex variables will give you great insight into the
- way market action can be described, and can even suggest new
indicators.
. Since you are reading this book, you are undoubtedly com-
prtable with our number system. However, there are some
gimitive societies that have no words for numbers larger than
D, other than an equivalent to “many,” because they run out of
gers on which to count. Even more surprising is the fact that
. concept of zero is a relatively modern invention. If you stop
¢ think about it, “nothing” in the physical world is an
stract concept, so why would one need a word to describe it?
eTe was no zero in Roman numerals. In fact, the concept of
D was not introduced to the Western world until the Renais-
e when Leonardo de Pisa (1170-1240j) {also called Fibonacci}
Ote Liber abaci. Somewhat later, the idea of negative numbers
8. introduced. If zero is an abstract concept, how could one
ibly have less than nothing? Clearly, this objection to thle
mber system existed before the days of margin calls. Today, it
epted that the numbering system can be viewed as a con-
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tinuum of real numbers rangin
finity along a straight line. - Vet e e _
There is no reason why numbers must be confined to
We can conceive of numbers as existing in a plane. Fo
this concept, any position on that plane can be descrih
ordered pair of real numbers. The first number of th
denotes the number of units along the horizontal dj M
and the second number of the pair denotes the number ¢
along the vertical dimension. But describing a position i
is rather clumsy. Also, a need for complex numbers ¢
algebra from the impossibility of finding the square roots
ative quantities. The clumsy situation has to be avoided. s
do this by the invention of the imaginary unit

i=V-1

We can then define a complex number as a combina
{a + ib} formed from the two real numbers g and b, and the
inary unit i. The imaginary unit i not only has the valu
square root of —1, but also serves as a rotation operator.
the point on the plane denoted by (a + ib) is a units alo
horizontal and b units along the vertical. In this structu
imaginary operator reorients a real number from the ho
axis to the vertical, acting as the rotation operator.
components a and ib are called the real and the im
respectively, of the complex number, Numbers along th
cal dimension are often called imaginary numbers. This-
unfortunate name choice, for this number is no more im
than other numbers. Imaginary numbers is just an ass

name, like rational numbers or prime numbers. What is ij
tant is that the use of complex numbers ensures that 2 poB
ents can be factored
ynomial x% + bx + ¢ ¢z

mial of any order with real coeffici
complex roots. For example, the pol
be factored into real roots if ¢ > b2. -
Electrical engineering uses the symbol i to denote ele
current. Therefore, it is common practice to use the sym
denote the complex operator to avoid confusion with elec
current. We follow that practice in this book. It is also co

to refer to the horizontal dimension as x and the vertical disi

_113
..j2

‘}1

L —j1

[ —j2

-3

Figure 5.1. Real and 'imaginary numbers in the
complex plane.

1 as ¥, so the complex number z is understood to be z = x +j.

e real and complex numbers forming the complex plane are
i in Figure 5.1.

fi::'ft(liaﬁetigurcan be easily performed in the complex pflane. If
1 add a real number to another real number, the result is a real
mber that is the sum of the two real numbers. If you add
iaginary number to another imaginary number, 'the rpsu.lt
yn imaginary number that is the sum of the two imaginary
mbers. However, if you add an imaginary number to a real
ber, the result is a complex number. The real numbers and
pginary numbers are said to be orthogonal. In t.hiS case, ortho-
not only means that the numbers exist at right angles, but
0 means that they are independent of each other. The most
nplicated mathematical operation occurs when a _complf:x
mber is added to another complex number. In doing this,
- real components are added together and, independently, the
ginary components are added together. An example of com-
% addition is shown in Figure 5.2, which shows that the addi-



Figure 5.2, Addition of two complex numbers.

tion of complex numbers is exactly the same operation as vecd
addition in two dimensions, 4
The product of a real and an imaginary number is imagin
Thus 2*j3 = j6. The product of two real numbers is real, as is §
product of two imaginary numbers: j2°j3 = -6, and j3*(-j i
+12. The reason the product of two imaginary numbers is reaj
that the imaginary unit is also multiplied, and j2=-1. The mf
tiplication of two generalized complex numbers is 4
I:
la+jb)*{c + jd) = ac - bd + jad + jbc = (ac — bd) + jlad + bc)y
A complex number can also be expressed in polar coon
nates. With reference to Figure 5.3, the polar coordinate dimg
sions are r at an angle of 6. The relationships between the rd
and imaginary coordinates and the polar coordinates are

a=r*Cos (6}
b=r*Sin (8]
r=Va* + p?
8= ArcTan{b/a}

It is also useful to express complex numbers in exponen
form. The exponential function is, by definition, equal to t§
limit approached by an infinite series: £,
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Z = {a+jb)

Imaginary
o
-

Reai

Figure 5.3. Components of z.

x x X7
8‘=1+X+E+'3—!*+...;T

This series reminds us of the series that defines the trigono-
metric functions:

0 o s
cos(9)=1—ﬁ+ﬁ—...+(-l )t
’ 8 , o SR
sm(9]=9—5+5—...—(-1] 2= 1)1

The sine and cosine series, although rather like the exponen-
tial series in most other ways, have a reversal of sign of alternate
terms. A similar reversal of sign takes place in the exp_onenlfial
series, but only if the exponent is imaginary. COl'lSidel: e’, wlnc_h
can be found by letting x = j0 in the exponential series. In this
case we obtain

2 4
o188

3 5
N

3t 5!

By comparison to the series expansions for the sine and
Ccosine functions we can exnrecs the exnanential form ac
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The concept of the exponential form is an ex.tremely impor-
«ant one for the digital signal processing o_f trading waveformg.
The waveform we observe on the charts is called an analytic
waveform. If we can break the analytu; waver_forrn into its two
orthogonal components, we can immediately fm_d the amplitude
of the cycle. By examination of Figure 5.4 and using the Pythago-
rean Theorem, we can see that the square of t}_le real comp(;nent
plus the square of the imaginary component is equal to 2, the
square of the cycle amplitude. Thus, we have a bar-by-briu meas-
arement of the amplitude of the cycle in the time do_mam. Such
a highly responsive measurement of sigpal ‘amphtude is an impor-
tant component of all effective trading 1ndlca‘Fors and systems.

The exponential form also gives us a particularly su_nple way
to measure the period of the market cycle. The cycle period meas-
urement approach can be understood with reference to Figure
5.5. The initial measurement is made at time t; so that the phase
angle is ot;. The second measurement is made at time t,, result-
ing in the measured angle ®t,. The difference betwetlan the two
phase angles is A8. To measure the cycle period, we simply keep
adding all the A8s until the sum equals 360 degrees. Thg number
of times we have to add the A@s is, by definition, the period of the
cycle. We discuss exactly how to do this in Chapter 7.

e’® =Cos (8) + j Sin {8)

Alternately, we can express the Cosine and Sine functions

e’ +e®=2 Cos ()
and e - ¢ =2 Sin (6)

This is an important theorem of complex variable theo
known as Euler’s Theorem. Euler’s Theorem says that sines
cosines can be expressed in terms of an exponential func
having an imaginary operator.

We are all familiar with the frequency of a cycle. For exam}
ple, the power coming from our wall plugs is an alternating ¢
rent. The frequency of this alternating current is 60 cycles p
second. Cycles are repetitive. Each time a cycle is completed,
sweeps through 360 degrees, or 2n radians, of a sine wave. It
convenient to define the angular frequency as 2n times the re
ular frequency by the equation © = 2nf, where w is the Greek le
ter omega. Using these definitions, wt is the number of radians
cycle covers in a given amount of time. Since ot is an angle, wy
can represent the cycle in exponential form as ¢, using con
plex notation. We thus see in Figure 5.4 that a pure cycle of 2
analytic waveform in the time domain can be represented as
projection onto either the real or imaginary axis.

r*Sinfof) A6

Imaginary
Imaginary

of r"Cos{wl)

Real

Real

Figure 5.4. Expenential complex frequency and

its components. Figure 5.5. Two successive phasor measurements.
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i i nly for a short

. Assuming the secondary cycle is present o y
]:illi thse résﬁlgtant phasor will look like the domma?nt cycle
: w'th 'a little whiffle superimposed on it. These whiffles are
gmediately identifiable when the phasor is plotted. In later

cycle. The phase angle represents a particular location chapters, we identify these whiffles in the real data.

the cycle.
The phasor diagrams we have been discussing only con -

the presence of one significant dominant cycle in the data, Key Points to Remember
ily, that is usually the case. The phasor dia am is ther _

i : ! 3 Complex variables are a two-dimensional number set.

The horizontal dimensions are called rez}l numbers.

The vertical dimensions are called imaginary numbers.

j =V-1 and is the 90-degree rotation operator.

A rotating phasor describes a pure cycle from the exponen-

tial complex frequency. . _

Relative phases can be described using pl}asor diagrams.

Euler’s equations describe Cosines and Smes' of real frequen-

cies as being comprised of complex' frequencu?s. _

e Two simultaneous cycles can be depicted as a bicycle diagram.

functions to the original data, and also for comparing the la;
amplitude of smoothing functions to the original data,
But what if there is a secondary cycle present in the
Such a cycle is very difficult to identify because it lasts for 0
brief amount of time and the short amount of data we are forg
to use cannot provide enough resolution for filters. Since §
complex variables can be added, the phasor picture might ldl
something like the depiction in Figure 5.6. The dominant cv
having a frequency of «,, is rotating as previously described.
secondary cycle is assumed to have a smaller amplitude a
higher frequency ®,. When these two complex variables
added, the secondary cycle spins like a bicycle pedal at the en
the crank, which is analogous to the tip of the phasor of the

Imaginary

Figure 5.6 The addition of two phasors having
different frequencies.
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is multiplying two frequencies (and then filtering to select thg
desired output}. So, if we have a baseband data frequency of f§
the heterodyning can be described as the product of two si gnaly
By a trigonometric identity, this product results in the sum am
difference frequencies as

0.5*Cos(2nf,t}* Cos{2nfyt) = Cos{2n{f, + f,)t) + Cos{2a| fflt)

The lower sideband can be considered as a negative frd
quency relative to the sampling frequency, and the upper sidy
band can be considered as a positive frequency relative to thi
sampling frequency. Furthermore, every harmonic of the sg it
pling frequency exists. Each harmonic also has an upper i
lower sideband containing the baseband signals.

Since the lower sideband of the sampling frequency exists, §
could extend down into the baseband range of frequencies. F §
this reason, the baseband range of frequencies is limited to fol
This is called the Nyquist sampling criteria. In trading, hig
means the absolute shortest period we can use is a 2-bar cycle, 4
a frequency of 0.5 cycles per bar. The sampling frequency can I}
weekly, daily, hourly, and so on, but the shortest period we c g
consider in any time frame is a 2-bar cycle. b

The sampled data spectrum can be pictured as shown in B
ure 6.1. The baseband signal is depicted as 2 continuum of fi§
quencies that is bandlimited, either naturally or by a filter, to
less than half the sampling frequency f,. Several of the harmol§
ics of the sampling frequency are also shown, along with thef
respective sidebands. Since we are talking about complex ng
tions, the sampled spectrum can extend below zero frequency 2
well, As a result, the complete sampled frequency spectruf
extends from minus infinity to plus infinity, as shown in Figu
6.2. An interesting observation is that either the upper or low§§
sideband of any harmonic of the sampling frequency can
processed with exactly the same result because the same infof
mation resides in all sidebands. The frequency selection for prd}
cessing is a matter of convenience and is, therefore, usually thy
baseband because demodulation of the zero frequency harma
is not required. 1
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A &
> o<1
0 £,12 £ 3L/2 21,

Figure 6.1. The baseband frequency below half the sampling frequency
appears as sidebands on harmonics of the sampling frequency.

The waveforms with which all traders are familiar are called
analytic signals. Analytic signals are defined as a special case of
a complex function without imaginary values, that have only
positive or only negative frequencies, but not both. We need to
construct more general complex functions to enable more effi-
cient signal processing. This can be done by synthesizing the
analytic signal from a combination of two complex signals that
are odd and even functions around zero. _

First, we must recall the trigonometric identities Cos{wt) =
Cos{—t) and Sin{wt) = —-Sin{~wt} and Euler’s equations:

e + g7 = 2 Cos|nt)
and gt — g7t = 42 Sin{wt)
We can synthesize the analytic signal by summing the two com-
plex signals as shown in Figure 6.3. The real component of Figure
6.3(a) is summed with the imaginary component in Figure 6.3{b}
to form the complex signal shown in Figure 6.3{c). From Euler’s

4 4 f $
w1 > 1 ><
2, 40 2 2t,
Figure 6.2, Sampled datz spectrum extends to negative frequencies.
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T l T A*Cos{ wyh)
(a) ‘

l T JA"Sin(ayf)
)

A S—

Figure 6.4. Periodic frequency response of a Digital Hilbert Trans-
former.

Hiz)= Y C.z°

s~

If we let z = 2T with T = 1, the Fourier Transform becomes

fy

Figure 6.3.  An analytic signal is comprised of InPhase and Quadra-

1 ;
=—— | Hle"e™™dw
ture components. Cs on _[: (€™}

i
¥
¥

and Hig*= 5 C,e

I = —

equations, the two complex signals can be called the InPh
fi.e., the Cosine) component and the Quadrature [i.e., the §i g
component. Quadrature means being rotated by 90 degrees.

The Hilbert Transformer has been derived in a number i
texts, to which you may want to refer for more information
One purpose of a Hilbert Transform is to create a complex signy

This equation describes the coefficients of the digital filter. Solv-
ing the integral equation for the filter coefficients (becaq.se tl}e
square wave has the same Sin(x)/x form as the pulse described in
Chapter 3}, we obtain

from an analytic signal. A Hilbert Transformer shifts all posi 5 Sin? (%)
frequencies by -90 degrees and all negative frequencies by 4 C. = 2 \4/
degrees. Since the frequency response of sampled systems 1 R n

periodic, we can describe the Hilbert Transformer in terms §
angular frequency as shown in Figure 6.4 for unity amplitud
components. Since this graph is periodic, we can use the Fourig
series to determine the coefficients of the exponential serid
that represents the plot. The Fourier series can be written as

k. forn=0and C,=0forn=0.

& The value of n is relative to the center of the filter, so the
§ center coefficient is always zero. The value of the sine squared
E term is always positive and has a unity value for odd values of n.
& The coefficients are, therefore, simply 1/n for odd val_ues of n;
they are positive for the most recent data half O:i the fllter;_ and
they are negative in the older data half of the filter. The ideal

‘Rabiner, Lawrence R., and Bernard Gold. Theory and A lication d poli g T
% 5 Hilbert Transformer extends coefficients from minus infinity to

Digital Signal Processing. Englewood Cliffs: Prentice Hall, 1975,
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plus infinity. The 2/x factor can be ignored here because e
coefficient is divided by the sum of the coefficients to produce
normalized amplitude response. That is, the desired frequency
components at the output of the filter should have the sam
amplitude they had at the filter input. We can approximate th
Hilbert Transformer by truncating the extent. For example, wi
could truncate the filter at n = 7. In this case, where thi
detrended Price is represented by P, the Quadrature componeny
{Q) of the Hilbert Transform can be written as &

= [Pf7 + P[2]/5 + P[4]/3 + Pl6] - P[8]-P[10})/3 - P f12]/5
- P14)/7) /(1 + 1/3 + 1/5 + 1/7);

The InPhase component (I} of the filter is referenced to the
ter of the filter, and can be written simply as

I=P[9]

Note that the lag of this Hilbert Transform is 9 bars.

Since the Hilbert Transformer must be truncated, ideally
should be sufficiently long to capture a full cycle of the long
period under consideration. It is not unreasonable to want
process a cycle that is 40-bars long. This is about two month:
daily data. In this case, we would like to truncate at n = 19. Ho
ever, such a Hilbert Transformer would have a lag of 21 b
This lag is unacceptable because we would also want to pro
cycles with a period of 10 bars or less. The 21-bar lag would
more than two cycles of the data that have shorter periods.

An alternative way to truncate the Hilbert Transformer is
use as short a filter as possible. If we truncate the Hilbert Trang
former at n = 3, the Quadrature component can be written as

=(P/3 + P[2] - P[4] -
=0.25*P +0.75* P[2]

P[6])/(4/3)
—0.75*P[4] - 0.25* Pl6);

This short Hilbert Transformer has a lag of only 3 bars. Howd
ever, the severe truncation produces the amplitude transfe}
response shown in Figure 6.5. A truncated Hilbert Transformey
has a frequency response similar to that of 2 momentum functior
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Figure 6.5. Amplitude response of a Hilbert Transformer truncated at
n=3.

The amplitude response of a minimum-length Hilbert Trans-
former can be improved by adjusting the filter coefficients by
trial and error. The resulting Hilbert Transformer filter equation
is

Q= 0.0962*P + 0.5769* P[2] - 0.5769* P[4] — 0.0962* P[6)];
The amplitude response of the Improved Hilbert Transformer is
shown in Figure 6.6.

Figure 6.6. Amplitude response of the Improved Hilbert Transformer.



-'The response of t Jproved Hithert for purpose of the Hilbert Transform, as explained earlier, is
similar from theﬁf:highﬂ-pm filee scribed: InPhase and Quadrature components from the analyup
(Figure 4.6}. The Improved Hilbert Transformier m. The InPhase and Quadrature components enable effi-
metrical response, but has a 3-bar lag versus the 2 pmputation to find the dominant cycle penOfl, the domi-
high-pass filter. Also, there is less rejection of the. cycle amplitude, and the phase of the dominant cycle.
length cycles in the Improved Hilbert Transformer.. 1 these parameters we can calculate unique sfnd precise u?dJ-
the attenuation for a normalized frequency of 0.1 {a :such as the Signal-to-Noise Ratio, the Sinewave Indica-
is about ~6 dB, whereas the rejection of the 5-bar h Cycle Mode predictive indicator}, and an Instantaneous

. dline. The (nearly) complete code to calculate the InPhase

was about ~8 dB at this frequency. The Improved ¥ ete code to c;
former also makes a pretty good high-pass filter. Quadrature components is given in Figure 6.7. (The com-
code requires the computation of the dominant cycle

We formed the Improved Hilbert Transformer to s
which is covered in the next chapter.)

criterion of minimizing lag. The penalty we paid for mi xiig ' .
lag was the resulting amplitude taper across the frequ 4In EasyLanguage code, all input values must be dehped. In
 case of Figure 6.7, the only input value is Price, and is com-

at which we desire to operate. Since the Improved Hilber . :
former is so similar to a high-pass filter, and the high-pa ed as the average of the High and Low for each bar in the data

has an amplitude rolloff directly proportional to freque
can compensate for the amplitude rolloff if we know'
quency. We do not have the frequency directly because
the InPhase and Quadrature components to compute i
ever, we do know what the measured cycle period was 1
Since frequency is a slowly varying function from bar to
cycle period 1 bar ago can easily be used for amplitude
sation.

Inputs: Price ( (H+L} /2);
ars: Smooth(0), Detrender{0), I1{0), Q1{(0), Period(0);

.E CurrentBar = 5 then begin

i . Smooth = {4*Price + 3*Price[l] + 2+Price[2] +
If the Hilbert Transformer were a pure differen SESEATALY I T,
know the amplitude correction term would be inversely Detrender = (.0962*Smooth + .5769%Smooth(2] -
tional to o {see Chapter 4). Since the cycle period is the .5769*Smooth[4] - .0962*Smooth(6])*

cal of the frequency, the correction term would be (Per (.075*Period[1] + .54);

When we examine Figure 6.6, we see that we need an 11
rection for a cycle period of 40 bars (normalized frequ
0.05) and a 6.2 dB correction for a cycle period of 20 b
malized frequency of 0.1). Converting these decibel
amplitude and writing a straight line correction equa
have the result '

{Compute InPhase and Quadrature components}
Ql = {.0962*Detrender + .5769*Detrender[2] -
.5769*Detrender(4] - .0962*Detrender[6])*

{.075*Pericd[1] + .54);
I1 = Detrenderi{3];

Plotl(I1, “InPhase”);

Amplitude correction = (0.075* Period[1] + 0.54) SROERL Ok, QAR ERETREI

This amplitude correction enables us to effectively use
mum-length Hilbert Transformer to keep the lag to as sn
value as possible.

Figure 6.7. Hilbert Transform EasyLanguage code.
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series. Next, all the other variables must be defined, and th
initial values must be set to zero. The first line of computatio
code computes the variable Smoother as a 4-bar Weighted M
ing Average (WMA] of Price. A 4-bar WMA is used to re
some of the higher-frequency components prior to detrend
the Price. The lag penalty for this smoothing is only 1 bar. T}
Price is detrended in the next line of code. Since we have ifl
amplitude-corrected Hilbert Transformer, and since we want4
detrend over its length, we simply use the Hilbert Transforng
itself as the detrender. We do not particularly care about tj
phase of the detrended analytic signal at this point. However,
do note that detrending has introduced another 3 bars of lag vy
the computation. The amplitude correction can be applied s .
we compute the period of the dominant cycle. The InPhase 1l
Quadrature components are contained in the next two lines
code. The Quadrature component is computed by applying t}§
Hilbert Transformer a second time. The InPhase component
computed simply by using the Detrender value referenced to}
bars ago, the center of the Hilbert Transformer. Therefore, ti§
calculation of the InPhase and Quadrature components int
duces still another 3 bars of delay in the calculation. We ng
have a total of 7 bars of delay after computing the InPhase
Quadrature components.
The InPhase and Quadrature components are only conce
with Cycle Mode signals because the Detrender removed t
trending components. The 7-bar lag can be converted to a pha§
lag by the following process: We divide the 7-bar lag by the do
inant cycle period to get a percentage of a cycle and then muld]
ply by 360 degrees. Furthermore, the Hilbert Transformer offel
the advantage of providing 90 degrees of phase lead. The equ
tion for phase lag is then .

Phase lag = 360*7/Period - 90

Therefore, a 28-bar dominant cycle will have zero lag. A 14-b§

dominant cycle will have 90 degrees lag, or a quarter cycle. 'r_
phase lag grows rapidly for still shorter cycle periods. For exaty
ple, a 7-bar cycle will have 180-degrees lag, corresponding
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cycle. The phase lag of the InPhase and Quadrature compo-

ents can be a serious consideration when interpreting the
“results of some indicators. For example, knowing the InPhase
component is delayed by 7 bars from the time-domain wave-
form, we can anticipate the crest of the time-domain waveform
by pro;ectlng when the InPhase component will reach its maxi-
mum 7 bars into the future.

Key Points to Remember

Both positive and negative frequencies are possible in signal
processing.

Only positive frequencies or only negative frequencies, but
not both, comprise the analytic signal.

Complex signals contain InPhase and Quadrature compo-
nents.

An analytic signal can be synthesized by complex signals.
Following the preceding two points, an analytic signal can be
decomposed into InPhase and Quadrature components.

A Hilbert Transformer is the technique used to decompose
analytic signals.

Hilbert Transformers must be severely truncated to produce
acceptable lag for use in trading.

Amplitude compensation of the InPhase and Quadrature
components can be accomplished by knowing the period of
the dominant cycle.

The analytic signal must be smoothed and detrended prior to
computing the InPhase and Quadrature components.

The amplitude-compensated Hilbert Transformer can be
used to detrend the analytic waveform.

The phase lag of the InPhase and Quadrature components is
[360*7/Period - 90) degrees.



Chapter 7

MEASURING CYCLE PERIODS

... but what are we going to do with
all those skinned catst

~ ANONYMOUS

One fundamental definition of a cycle is that the process under
consideration has a constant rate of phase change. We can meas-
ure the phase of a complex signal directly. Knowing the phase at
each sample, we need only take the bar-to-bar difference to
obtain the rate of phase change. In this chapter, you are pre-
sented with several mathematical techniques for measuring the
period of the dominant cycle. While mathematically dissimilar,
all these techniques share the common feature of using differen-
tial phase between samples.

Phase Accumulation

The Phase Accumulation technique of cycle period measure-
ment is perhaps the easiest to comprehend. In this technique,
We measure the phase at each sample by taking the arctangent of
the ratio of the Quadrature component to the InPhase compo-
Bent. A delta phase is generated by taking the difference of the
s¢ between successive samples. At each sample we can then
k backward, adding up the delta phases. When the sum of the
ta phases reaches 360 degrees, we must have passed through

flllll cycle, on average. The process is repeated for each new
u e.
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The Phase Accumulation method of cycle meas
always uses one full cycle’s worth of historical data. This ig
an advantage and disadvantage. The advantage is the
obtaining the answer scales directly with the cycle period
is, the measurement of a short cycle period has less lag
measurement of a longer cycle period. However, the n
samples used in making the measurement means the ave
period is variable with cycle period. Longer averaging
the noise level compared to the signal. Therefore, shorter g
periods necessarily have a higher output Signal-to-Noise R

Implementing the Phase Accumulation method of s
measurement with the EasyLanguage code is described wi
erence to Figure 7.1. The initial part of the code creates
InPhase and Quadrature components, I1 and Q1, as discus
the last chapter. It is crucial that I1 and Q1 be smoothed
the arctangent of their ratio is taken. We do the smoothing
EMA whose alpha equals 0.15. The instantaneous phas
phase at any bar) is computed as the arctangent of the ratio
toI1. This gives the instantaneous phase within a quadran
quadrant ambiguity is removed in the subsequent three 4
code. We then compute the differential phase [DeltaP
between successive samples. There can be considerable errg
the raw differential phase computation. To keep these
errors from unduly influencing the outcome, we limit the v
of the differential phase to be between cycle periods of 6
(DeltaPhase = %% = 60) and 50 bars {Delta Phase = % = 7).
DeltaPhases are then accumulated until the PhaseSum ex
360 degrees. At that point, the cycle period is assigned
number of samples required for the PhaseSum to reach the
degree value. The accumulation is done for each bar in th
set but is limited to a value of 40 bars. The limitation is bas

our assumption that cycle periods of 40 bars and longer resulf
a Trend Mode, and detailed knowledge of their periods is'

necessary, If the cycle period has not been identified withi

maximum 40-bar accumulation period, then it is assigned }

value of the cycle period measurement for the previous sa

It is then smoothed by an EMA whose alpha equals 0.25 to

ate a pleasing presentation. The lag due to this EMA is 3 b
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Inputs: Price{ {(H+L) /2) ;
‘Yars: Smooth{0),
' Detrender (0},

I1(0),

oi(o0},

Phase (0},

DeltaPhase (0},

InstPeriod(0),

count (0) ,

PhaseSum (0},

Period(0);

If CurrentBar > 5 then begin

Smooth = {4*Price + 3*Price[l] + 2*Pricel[2] +
Price(3]) / 10;

Detrender = (.0962*Smocth + .5769*Smooth[2] -
.5769*Smooth[4] - .0862*Smooth[6])*{.075%
Period[1l] + .54};

{Compute InPhase and Quadrature components)

Q1 = {.0962*Detrender + .5769*Detrender[2] -
.5762*Detrender[4] - .0962*Detrender{e6])*
{.075*Period[1] + .54); .

Il = Detrender{3];

{smooth the I and Q components before applying
the discriminator}

Il = .15*I1 + ,85*I1[1];

01 = .15*Q1 + .85*Ql[1];

{Use ArcTangent to compute the current phase)

If absValue{Il) > 0 then Phase =
ArcTangent (AbsValue (Q1/11)) ;

{Resolve the ArcTangent ambiguity for guadrants
2, 3, and 4}

If I1 « 0 and Q1 > 0 then Phase = 180 - Phase;

If IT1 « 0 and Q1 < 0 then Phase = 180 + Phase;

If I1 » 0 and Q1 <« 0 then Phase = 360 - Phase;

{econt fnued)

Figure 7.1. Phase Accumulator cycle period measurement.




{Compute a differential phase, resolve
wraparound from quadrant 1 to quadrant.
limit delta phase errors} o

beltaFhase = Phase[l] - Phase;

If Phase[1l] < 90 and Phase > 270 then Deltl
= 360 + Phase{l] - Phase;

{Limit DeltaPhase to be within the bounds oﬁ
bar and 50 bar cycles}

If DeltaPhase < 7 then DeltaPhase = 7;

If DeltaPhase > 60 then Deltaphase = &0;

mdyne means we are mulnplymg the 31gnal by itself. More
, W€ want to multiply the signal of the current bar with

smplex conjugate of the signal 1 bar ago. The complex con-

is, by definition, a complex number whose sign of the

ary_component has been reversed. Expressing the signal
lar coordinates, the arithmetic is

(pefmn’(pe_fmtn—l) = pZSMtH_ tp—1} = plgf@

{8um DeltaPhases to reach 360 degrees. The =
the instantanecus period.}
InstPeriod = 0;
PhaseSum = §;
For count = 0 to 40 begin
PhaseSum = PhaseSum + DeltaFPhage {count].
If PhageSum > 360 and InstPeriod = 0 th
begin
InstPeriod = count;

The interesting result is that we get both the square of the sig-
amplitude and the angular frequency {2z / Period} from the
duct because the difference in time between samples (t, — t,_1)
t 1 bar. In principle, this means that we can get the instanta-
cycle period in just two successive samples. The added
efit is that we also get the square of the signal amplitude. The
culations are carried out using the real and imaginary compo-
ts rather than converting them to polar coordinates. Either
y, the results are the same.

~ The EasyLanguage code for the Homodyne Discriminator is
ribed with reference to Figure 7.2. The InPhase and Quadra-
re components are computed using the Hilbert Transformer as
lained in Chapter 6. These components are smoothed in a
que complex averager and then smoothed by an EMA to
id any undesired cross products in the multiplication step
follows. Consider the result as a composite of signal and
represented by (S + N). If we were to multiply this by itself,
would get § + N? + SN + NS. Of the four products, three are
sired due to noise. Therefore, we must take every measure
move undesired components prior to any multiplication.
complex averaging consists of applying the Hilbert Trans-
ner to both the InPhase and Quadrature components. This
Pvances the phase of each component by 90 degrees. When the
ase component is advanced by 90 degrees, it becomes equal
he Quadrature component. Similarly, when the Quadrature
ponent is advanced in phase by 90 degrees, it becomes the
¢ as the negative InPhase component. So, if we perform a
bert Transform on an InPhase component, it will be aligned

End;
End;

{Resolve Instantaneocus Period errors and smo

If InstPeriocd = 0 then InstPeriod =
InstPeriod{l1];

Period = .25*InetPeriod + .75*Periodill;

Plotl (Period, *DC®);

End;

Figure 7.1. (Continued).

Total lag through the Phase Accumulation cycle
measurement consists of 6 bars for the first EMA, 3 bars
display smoothing EMA, 7-bars lag to compute the ¢
InPhase and Quadrature components, and one full cycle
accumulation process, Therefore, the total lag is 16 bars p
full-cycle period. Since the dominant cycle period is a r
slow varying function of time, this lag may be accep
many applications.
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Inputs: Price ((H+L) /2) ; I2 = .2%I2 + .8*I2{1];
02 = .2%Q2 + .B*Q2[1];

Vars: Smcoth(0},

Detrender(0) ., {Homodyne Discriminator)

I1(0), Re = I2%I2[1] + Q2*Q2[1);

QL(0), Im = I2%Q2[1] - Q2*I2[1];

jreo), Re = .2*Re + .8*Re[l];

jQ(o), Tin = .2+Im + .8*Im[1];

I2(0), If Im <> 0 and Re <> 0 then Period = 360/

Q2 (0}, ArcTangent {Im/Re) ;

Re {0}, If Period » 1.5*Periocd[l] then Period =

Im(0}, 1.5*Period[1];

Period (0}, If Period <« .67*Period[l] then Period =

SmoothPeriod (0} ; .67*Periodll]}; ’

If CurrentBar > 5 then begin
Smooth (4*Price + 3*Pricell) + 2+%Price[2]
Price{3]) / 10;
Detrender = (.0962*Smooth +
.5769*Smooth (4]
Periodfl] + .54};

.5769%Smooth[2]
-0962*5mooth [6] ) * (. 075%

{Compute InPhase and Quadrature components}

Q1 = {.0%962*Detrender + -5769*Detrender[2] -
.5769*Detrender [4] - .0962*Detrender (6] ) * (.07
Feriod[l] + .54};

11 = Detrender(3];

{Advance the phase of I1 and Q1 by 80 degrees}

I {.0962*T1 + .5769+11[2] .5769*I1([4]
.0962*T1 [&] }*(.075%Period[1] + .54) ;

jQ = (.0962*%QLl + ,5769*Q1[2] .5769%Q1 [4]
.0962*Ql[6])*(.075*Period{1] + .54} ;

{Phasor additicn for 2 bar averaging) }
12 = I1 - jO;
Q2 = Q1 + jI;

{Smooth the I and Q components before applying
the discriminator)

{continue

If Period < 6 then Pericd = 6;

If Period » 50 then Period = 50;

Period = .2*Period + .8*Period[l}:

SmoothPeriod = .33*Period + .67*SmoothPeriod([1];

Plotl {SmocthPericd, *DC");

End;

Figure 7.2. (Continued).

in phase with the Quadrature component. However, the Hilbert
Transform has a 3-bar lag. The transformed InPhase component
summed with the Quadrature component is therefore the math-
ematical equivalent of the simple average of a signal with the

signal 3 bars ago. The same process applies to performing a
‘Hilbert Transform on the imaginary component and adding it to
the InPhase component. The net result is that the net complex
‘averaging lag is 1.5 bars. After smoothing, the signal is multi-
‘plied by the complex conjugate of the signal 1 bar ago. The
“resulting output real component is the product of the two real
- components added to the product of the two imaginary compo-
-nents. Similarly, the resulting output imaginary component is
the difference of the two input cross products. Both the real and

Figure 7.2.

Homodyne Discriminator cycle period measurement.

- imaginary output products are smoothed again before the cycle
- Period is computed. This is done by taking the arctangent of the

69
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ratio of the output imaginary component to the real compa,
The rate change of the cycle period is limited to be +50 pe; :
of the previous cycle period, and the resultant period is fum

limited to be greater than 6 bars and less than 50 bars. Fj d

the period is smoothed for a pleasing display. ;
Total lag through the Homodyne Discriminator cycle peg

measurement consists of the following: seven-bars lag to »“
pute the original InPhase and Quadrature components §

4-bars lag in each of the three EMAs, and 1.5 bars for the cd
plex averaging. Therefore, the total lag is a constant 20.5
The net smoothing is the same regardless of the meas )

period. Therefore, the Signal-to-Noise Ratio as well as the
constant for all cycle periods.

Dual Differentiator

We have seen how the phase angle is computed from a comp}
signal as the arctangent of the ratio of the imaginary compond
to the real component. Furthermore, we have seen that s
frequency is defined as the rate change of phase. We can 1
these facts to derive still a third way of using complex signalg
measure the cycle period. From the definition of the derivat]
of an arctangent, the mathematics of this process are g

0 =arctan(—?—)
1
<40 _——— (IAQ- QA _ {IAQ - QAl)
*= dt_l+($—)2 P ez

Simplifying, and solving for the cycle period instead of 7
quency, we obtain 4
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B

Inputs:

Vvars:

Price{ {H+L)/2);

Smooth(0),
Detrendexr (0},
I1{0},

QlL{0),

jI{o},

joi{o),

I2(0),

g2(0),
Period(0),
SmoothPeriod{();

If CurrentBar > 5 then begin

Smocoth = (4*Price + 3*#Price{l} + 2*Price[2] +
Price(3]) / 10;

Detrender = (.0562*Smocth + .5769*Smoothf{z] -
.5769*8mooth([4] - .0962*Smooth[6])*(.075%
Period[1] + .54);

{Compute InPhase and Quadrature components}

Q1 = (.0962*Detrender + .5769*Detrender[2] -
.5769*Detrender (4] - .0962%*Detrender[6])*(.075*
Period[1] + .54};

Il = Detrender[3};

{Advance the phase of Il and Q1 by 90 degrees)

JI = {.0962*I1 + .5769*%I1[2] - .5769*I1(4] -
.0962*I1[6])*(.075*Periocd[1] + .54);
jQ = (.0962*Q1 + .5769*Q1{2] - .5769%*Q1l (4] -

.0962#01[6])*(.075%Period[1] + .54};

{Phasor addition for 3 bar averaging)}
I2 = I1 - jQ;
02 = Q1 + 3jI;

{$mooth the I and Q components before applying
the discriminator}

L1IB*I2 + ,75%*I2[1];

L15%Q2 + . 75+%*Q2[1];

I2
Q2

{continued)

Figure 7.3. Dual Differential cycle period measurement.
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ardless of the measured period. Therefore, the Si gnal. -to-Noise
{Dual Differential Discriminator} '- a5 el ds the lag, - cycle penods.
Valuel = Q2*(12 - 1I2(1]) - I2%(02 - Q2[1]); v ’ |
If Valuel > .01 then Period = &.2832+* (T2+T2 4 _
Q2*02) / valuel; .
If Period » 1.5+*Period([1] then Period = Cycle Measurement Comparison
1.5*Period{1]; -
HEEEE R CINEGRISALY Then Poariod) = We now have three techniques to measure cycle periods
o ; complex arithmetic. We only know that they vary in lag
It seried » 50 tne Eenioa # & usﬁlfhat the lag is relatively long in each case. The only way to
If Period » 50 then Period = 50; ; ' ) Ny variety o
Period = .15*%Period + .85*Period[1]; etermine the best t'echm'que is to exeflc ol the ccle
SmoothPericd = .33*Period + . 67*SmoothPeriod(1}]; gts. The first test is de31gned to see OW accur. vy ' s
easurement is made using a perfect sine wave. In Figure 7.4,
FRRHoRT RSy MICE we have created an analytic waveform as a pure cycle whose
-period increases linearly from 10 to 40 bars across the screen.
- _The cycle length measurements of the three techniques are plot-

ted in the first subgraph. This subgraph is scaled from 10 to 40

Figure 7.3. (Continued). bars, so vertical displacement shows the measured cycle period.

and Quadrature components are computed with the

Transformer using procedures identical to those in the D
Differentiator. These components undergo a complex aver:

and are smoothed in an EMA to avoid any undesired cross
ucts in the multiplication step that follows. The period is sol

directly from the smoothed InPhase and Quadrature co

nents. The interim calculation for the denominator is perforn§
as Valuel to ensure that the denominator will not have a

value. The sign of Valuel is reversed relative to the theoret
equation because the differences are looking backward in

The rate change of the cycle period is limited to be +50 pe:
of the previous cycle period, and the resultant period is
limited to be greater than 6 bars and less than 50 bars. Fi

the period is smoothed for a pleasing display.
Total lag through the Dual Differentiator Discriminator ¢

period measurement consists of 7-bars lag to compute the orig

InPhase and Quadrature components and 4-bars lag in each of £§
two EMAs, plus 1.5 bars for the complex averaging. Therefore, §§
total lag is a constant 16.5 bars. The net smoothing is the sar]

waveform,
Chart created with TradeSiation2000i® by Omega Research, fnc.

Figure 7.4. Cycle period measurements in response te a chirped analytic
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At first glance, it appears that the Phase Accumulator method §
less accurate than the others. However recalling that its lag i-
longer than the others for longer cycle periods, this appa:en

inaccuracy is due solely to the lag associated with the changij
waveform period. )

period of 15 bars and a period of 30 bars. The response of the
three cycle period measurers is shown in Figure 7.5. Now we can
see some differences. As expected, the Phase Accumulator is the
slowest to respond to this step in the cycle period because of the

Figure 7.5. Cycle measurer transient responses to rapid changes of
cycle period.
Chart created with TradeStation2000i% by Omega Research, I,
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additional smoothing. Also as expected, the Dual Differentiator
reacts the fastest in this test. However, the Dual Differentiator
exhibits some overshoot error. As a result, it appears that the
Homodyne approach has the superior transient response.
Another significant test finds how the cycle period measurers
perform as the Signal-to-Noise Ratio degenerates. Market data
almost always have a poor Signal-to-Noise Ratio, and the ability
+o0 make accurate measurements is crucial. In fact, it was this
stress test that led to additional smoothing prior to the multipli-
cation operations in the Homodyne and Dual Differentiator
cycle period measurers. Without this smoothing, the perform-
ance in low Signal-to-Noise environments was just awful, pro-
ducing measured cycle periods nearly half the correct period. The
performance of the cycle period measurers are compared in Fig-
ure 7.6 as a function of Signal-to-Noise Ratio when measuring a
theoretical twenty-bar sinewave signal. It is clear from Figure 7.6
that the Homodyne approach is not only more accurate at high
Signal-to-Noise Ratios but its performance degrades more grace-
fully as the noise is increased relative to the signal strength.
The real acid test of the cycle period measurers’ performance
determines how well they do when acting on real data. We do
this in Figure 7.7. All three tend to give similar measurements

Cycle Measurement Accuracy Yersus SN
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Cycle Period
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Figure 7.6. Phase measurer performance as a function of
Signal-to-Noise Ratio.
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Three cycle performance measurements on real data.

Measuring Cycle Periods L

3 when the market is in a Cycle Mode. However, there is a wide

difference in the measurements when the market is in a Trend
Mode. My observations have led me to conclude that the Homo-
dyne is overall more accurate in measurement of cycles when

the market is in a Trend Mode.
For all these reasons I conclude that the Homodyne Dis-

criminator is the superior approach. This frequency measurer is
used throughout the remainder of this book.

Key Points to Remember

e A basic definition of a cycle is a constant rate change of
phase.

e The Hilbert Transform generates InPhase and Quadrature
components from which the phase at each bar can be meas-
ured.

o The phase rate of change is established as the differential
phase from bar to bar.

¢ Complex averaging can be accomplished by applying the
Hilbert Transformer to both the InPhase and Quadrature
components, advancing their phase by 20 degrees. The
phase-advanced components are then algebraically added to
their orthogonal counterparts to effect the averaging.

o There are at least three different ways to measure cycle
period using the InPhase and Quadrature components.

* The Homodyne Discriminator is the superior cycle period
measurer.



Chapter 8

SIGNAL-TO-NOISE RATIO

Logic is a system whereby one may
go wrong with confidence.

—(CHARLES KETTERING

The signal amplitude is simply the length of the phasor. Recall-
ing the Pythagorean Theorem, the length of the phasor is the
square root of the sum of the squares of the InPhase and Quad-
rature components. We therefore have the signal amplitude on a
bar-by-bar basis after we take the Hilbert Transform.

The signal amplitude is not of much use by itself. However,
if we can estimate the signal amplitude relative to the market
noise, we then have a tool that estimates the quality of our tech-
nical analysis. With the kind of market data now available, let
us develop a unique definition of noise. A sampled signal is
shown in Figure 8.1(a) as a sine wave with the sampling uncer-
tainty represented as the high and low of each bar. The high and
low is the uncertainty of each of our perfect sinewave sample
points. We can make good trades as long as our signal amplitude
is much larger than the average daily range of the bars. Another
case for the same signal amplitude is shown in Figure 8.1(b).
When half the average daily range becomes equal to the signal
amplitude, making money on a trade becomes a crapshoot.
Under this condition, it is possible to make an entry at the low
of the bar (which contains the signal high} and make an exit at
the high of the bar (which contains the signal low} for zero profit.
We will therefore term the case where half the average daily

79
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Signal-to-Noise Ratio

81
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Figure 8.1. (a) Fourteen dB SNR. (b) Zero dB SNR.

trading range is equal to the signal amplitude as our zerp de
Signal-to-Noise Ratio {0 dB SNR| condition. We want the
amplitude to be at least twice the noise amplitude (6dB S
that there exists a reasonable chance to make 2 profit from§
analysis.

will be an Exponentia] Moving Average {EMA) with an alp
0.1. The trading range is simply the high minus the low of
bar. The EasyLanguage code to compute the SNR is given inj

computed as the variable “Range” near the top of the code.
ond, the signal power is computed by adding the square

. Price( (H+L}/2);

Range (0),
Smooth (0},
Detrender (o0},
I1(0},

Q1(0},

iI{0),

jo{a),

Iz2(0},

Q2(0),

Re (0],

Im(0},
Period{p},
SmoocthPeriocd(0),
SNR{0) ;

If CurrentBar > 5 then begin

{Compute “Ncise” ag the average range}
Range »1*{H - L) + .9*Rangel[1];

Smooth = {4*Price + 3*Price[1] + 2*Price(2] +

Price[3]) / 10;

Detrender = (.0962*Smooth + .5769*Smooth([2] -
- -0962*%8mooth[6]) * (.

-5769*Smooth[4]
Period[1] + .54);

{Compute InPhase and Quadrature components}
(.0962+*Detrender + .5769*Detrender[2] -
-5769*Detrender [4] - -0962*Detrender[s] ) *

QL
(.075*Period[1] + .54} ;
Il = Detrender[3];

{advance the phase of T1 and
JjI (.0962+T1 + .5769*11[2] -
.0962*11[6])*(.075*Period[l] +
iQ = (.0962%Q1 + .5769%01[2] -
.0962*Q1[6])*{.075*Peri0d[l] + .54);

.54} ;

Q1 by 90 degrees}
.5765*11[4] -

-5769*%Q1[4]) -

075%*

(continued{_J

Figure 8.2. Computing the SNR.
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Bnd;

ogarithm of the power ratio. Since EasyLanguage takes only
natural logarithms, the logarithm must be converted to log base

0 by being divided by the natural logarithm of 10. A compen-
sating term of 6 dB must be added due to our definition of signal

o noise. As defined earlier, the signal amplitude is the length of
the phasor. At 0 dB, the peak-to-peak noise signal is twice the
amplitude of the signal. Therefore, when we compute the 0 dB
-icase, the ratio is calculated to be 10*Log{1/2)*2 = -6 dB. We
‘must then add 6 dB back into the computation to remove this
ias, establishing our definition of 0 dB SNR.

Assuming the noise is relatively constant, the lag of the
Signal-to-Noise Indicator is just the 7 bars that restilt from the
Hilbert Transformer plus the 3 bars due to smoothing of the
display.

There is another way to compute the SNR. Recall that in
- the derivation of the Homodyne Discriminator, the amplitude
squared fell out of the equation automatically when we solved
for the frequency. In EasyLanguage code, the amplitude squared
is the sum of the variables Re and Im. Therefore, our alternate
solution for the SNR is obtained by replacing {I1*11 + Q1*Ql}
with (Re + Im). That is the only change in the code shown in Fig-
ure 8.3. The alternate calculation uses the signal information
that is smoothed by two EMAS, causing a 3-bar lag each, plus the
lag induced by the complex averaging of 1.5 bars. Therefore, we
expect the alternate SNR computation to produce a result that is
smoother and has an additional 7.5-bar lag as compared to the
. first {or, primary) calculation. The two SNR computations are
- compared in Figure 8.4. Qur expectation of a smoother and more
~delayed alternate computation is manifest.

The 10-bar lag induced by the computation of the Primary
SNR makes this calculation unusable for practical trading. The

{Phasor addition for 3 bar averaging}
I2 = I1 - jQ:
Q2 =01 + 3I;

{Smocth the I and Q components before applying
the discriminator}

I2 = .2%I2 4+ ,8*I2(1];

Q2 = .2*%Q2 + .8*Q2[1];

{Homodyne Discriminator)

Re = I2+*I2[1]1 + Qz*Q2[1];

Im = I2*Q2[1] - Q2+12(1];

Re = .2*Re + .8*Rell];

Im = .2%Im + .8*Im[1];

If Im <> 0 and Re <> 0 then Period =
360/ArcTangent (Im/Re) ;

If Period > 1.5*Period[l] then Period
1.5*Period[1] ;

If Pericd < .67*Period[1] then Period
.67*Period[1] ;

If Period < 6 then Period = 6;

If Period > 50 then Period = 50;

Period = .2*Pericd + .8*Period[1];

i

{Compute smoothed SNR in Decibels, guarding
against a divide by zero error)

If Range > 0 then SNR = .25#({10*Log({{(I1*I1 +
Q01*Q1}/ (Range*Range) ) /Log(10) + &)} +
.75*SNR[1];

{Plot Results}
Plotl (SNR, "SNR");
Plotz{6, ™“Ref”};

dditional lag of the Alternate SNR makes its use unthinkable.
¥ carefully examining the required conditions, we can arrive at
an SNR Indicator that has an acceptable lag.

The first condition of the Hilbert Transform is that its transfer
¥esponse must have a zero transfer response at zero frequency.
that means the signal must be detrended. The first thing we do
after the initial smoothing is to use the Detrender as the Quadra-

Figure 8.2. (Continued).
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If CurrentBar > 5 then begin

Inputs: Price({H+L)/2); I2 = I1 - jQ:
2 = Q1 + JI;

Vars: Range (0}, g 2 :
Smooth (0}, {Smooth the I and Q components before applying
Detrender {0}, the discriminator)}
I1(0), I2 = .2%I2 + .8%I2[1];
91(0), Q2 = .2%*Q2 + .B*Q2[1];
joo}, {Homedyne Discriminator}
I2(0), Re = 12*I2[1] + Q2*Q2[1};
gz2(0), Im = I2*Q2[1] - Q2+*12[1];
Re (0}, Re = .2*Re + .8*Re[1l);
Im{0), Im = .2*Im + .8*Im[1};

Period(0},
SmoothPeriod (0],
SHNR (0} ;

If Im <> 0 and Re <> { then Period =
360/ArcTangent {Im/Re) ;

If Period > 1.5%Period[1l] then Period
1.5*Pericd{l];

If Pericd <« .67*Period[i] then Period
.67*Period[1] ; )

If Period <« 6 then Period = 6;

If Period » 50 then Period = 50;

Periocd = .2*Period + .8*Pericd[l];

{Compute “Noise” as the average range}
Range = .1*(H - L) + .9*Range(l];

Smooth = {4*Price + 3*Pricel[l] + 2*%Pricel2] +
Price[3]1) / 10;

Detrender = (.0962*Smooth + .5769%*Smooth[2] -
.576%*Smooth[4] - .0962*Smooth([6])*{.075*
Period{l] + .54};

{Compute smoothed SNR in Decibels, guarding
against a divide by zerc error}

If Range » 0 then SNR = .25*{10*Log{(Re +
Im)/ {Range*Range) ) /Log{10) + 6} + _75*3NR[1];

{Compute InPhase and Quadrature components)

Ql = (.0962*Detrender + .5769*Detrender[2] -
.5769*Detrender [4] - ,0962*Detrender[6]}*(.07
Period[1] + .54);

I1 = Detrender(3];

{Plot Results}
Plotl1{(SNR, "S8NR");
Plot2(6, “Ref”);

Bnd;

{Advance the phase of I1 and Q1 by S0 degrees)

3T = (.0962*I1 + ,5769*I1[2] - .5769*I1[4] - Figure 8.3. (Continued).
.0962*T1[€])*(.075*Period (1] + .54});
JQ = (.0962*Q1 + .5769*Q1[2] - .5769+Q1[4] -

-0962%Q1{61)*{.075*Period[1] + .54); e component of the Hilbert Transform. If we shorten the
etrender to a 2-bar momentum, the resulting lag is only 1 bar.
ause of the shorter momentum, we need a more aggressive

iplitude correction as a function of the measured period. We can

{Phasor addition for 3 bar averaging) }
fcont inue

easure slowly varying periods as we have done previously before
Oceeding with the calculation of the SNR. We also know that if

Figure 8.3. Alternate SNR computation.
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Figure 8.4. The alternate SNR computation is smoother and has more lag
the primary computation.
Chart created with TradeStation20001® by Omega Research, Inc.

we take a Simple Moving Average {SMA| over half the m
period, the lag of this average is a quarter cycle. A quarter
90 degrees of phase lag—exactly the lag needed to create:
InPhase component from the Quadrature component. This
ing also reduces the dominant cycle amplitude by 2/x, so an 4
tional n/2 amplitude correction term must be included in’
computation of the InPhase component.
All these conditions have been included in the computati
the Enhanced SNR Indicator, as described in the code of Fi
8.5. In this code, the period of the measured dominant cycle
culated in exactly the same manner as we calculated it for
mary SNR Indicator. Near the end of the code, after the domi
cycle is determined, we compute the SNR, The Quadrature
ponent Q3 is calculated by multiplying the 2-bar momentu
the Weighted Moving Average (WMA) smoothing by the
nant cycle amplitude correction factor. The correction terms )
derived by observing the output amplitude of the 2-bar mo :

_. *****i’*******t***********t*'l'i‘***i***i**i*******i**l‘***

Jnegcription : Enhanced Signal to Noise Ratio Indicator
?******wrtt********w***w****t*********u**u***t*******t*}

- fnpute:  Price((H+L)/2);

‘ yars: Smooth(0),
k Detrender (0},
I1{0),
Q1{(0),
FI{0),
3Q{0),
12{0),
02(0),
Re(0),
Im{0),
Peried{0),
smoothPeriod (0},
; count (0),
] I3(0),
Q3(0),
Signal{0),
Noise (0},
BNR{D) ;

If CurrentBar > 5 then begin
Smooth = (4*Price + 3*Price[1] + 2+*Price[2] +
Price[3]} / 10;
Detrender = (.0962*3mooth + .5769*Smooth[2] -
.5769*Smooth[4] - .0962*Smooth([6])*(.075%
Period[1l] + .54); 3

; {Compute InPhase and Quadrature components}
' Q1 = (.0962*Detrender + .5769*Detrender[2] -
.5769*Detrender 4] - .0962*Detrender [6]}*

{.075*Period[l] + .54);
11 = Detrender|[3]:;

{Advance the phase of I1 and Ql by 90 degrees}

iI = (.0962*I1 + .5769*I1[2] - .5769*I1[4] -
.0962*11[6]1)*{.075*Period[1] + .54);
jQ = (.0962%Q1 + .5769*Q1[2] - .576%*Q1[4] -

L0862*%01[6])Y*(.075*Period[1] + .54);
{continued)

Figure 8.5. Enhanced SNR computation.
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Figure 8.5. (Continued).

89
when the chirp waveform of Figure 7.4 was applied. The out-
{Phasor addition for 3 bar averaging) } _ Mplitudes for the 10-bar cycle period and the 40-bar CYCIG
;i - ;i ; j.?f od were used to compute the straight line compensation
L rms 0.1759 and 0.4607. The InPhase component I3 is computed
{Smooth the I and Q components before applying -the half-dominant cycle moving AvETage multlp!.led by the xi/2
the discriminator} P]imde correction term. Again, the noise power is cpmputed as
I2 = .2*I2 + .8*I2[1]; e square of the averaged range of the bars, and the signal power
Q2 = .2%02 + .8*Q2[1]; computed as the sum of the square of the InPhase component
. of
{Homodyne Discriminator} d the square of tl.le Qua_ldrature component. T(l;e t(z]tlal lagb the
Re = I2*T2(1] + Q2*Q2[1]; hanced SNR Indicator is only 4 bars, compared to the 10-bar lag
Im = I2*Q2[1] - Q2*12[i]; the Primary SNR Indicator. This lag comprises 1 bar for the ini-
Re = .2*Re + .8*Re[1]; smoothing, 1 bar for the computation of the Quadrature com-
Im = .2*Im + .8*Im[1]; _ nent, and 2 bars for the final smoothing of the indicator.
If3?§/;> 'g s ETI <;R0)' ehen Beriod = The performance of the Enhanced SNR Indicator is shown in
roiangen 113 e); . # 3
If Period » 1.5*Period[l] then Period = gure 8.6 with the same data that We'used 111. the. computation
1.5+Period[1] ; of the Primary and Alternate SNR Indicators in Figure 8.4. Th_e
If Period < .67*Period[1] then Period = Enhanced SNR Indicator now has lag properties that make it
-67*Period[1]; seful for trading.
If Period « 6 then Period = §:
If Period » 50 then Period = 50;
Period = .2*Pericd + -B*Period[1] ;
SmoothPericd = _33*Period + .67*SmoothPeriod[1]
Q3 = .5*(Bmooth - Smooth[2]) *{.1759*SmoothPeriod
.4607); ............
I3 =0 VeSS
For count = 0 to Int(SmoothPericd/2) - 1 begin
I3 = I3 + Q3[count];
End;
I3 = 1.57*I3 / Int{(SmoothPeriod/2);
Signal = T3*I3 + Q2#Q3;
Noise = ,1%(H - L)*(H - L)*_.25 4 .9*Noise[1];
If (Noise <> 0 and Signal <» 8) then SNR =
-33* (10*Log (Signal /Noise) /Log(10)) + .67+SNRI[1
Plot1{SNR, "SNR");
Plot2(6, "Ref”);
aend;

Figure 8.6. The Enhanced SNR Indicator has minimum lag,
Chart created with TradeStation2000i® by Omega Research, Inc.
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LA
{ ***i-***ti*t***i*********i**t*******i**ii********
Description : Hilbert Oscillator

Inputs: Price ( (H+L) /2) ;
Vars: Smooth(Q),
Detrender {0),
I1{o),
Q1{0),
JI(o},
joo),
I2{Q),
Q2(0},
Re (0},
Im{0),
Period (D)},
SmoothPeriod(p),
count (0},
I3(0),
03(0);

If CurrentBar > 5 then begin
Smooth = (4*Price + 3*p
rice[1] 2*p
Price[3]) / 10; ' rieelal 4
Detrender = {.0962*Smooth + -5769*Smooth [2]

.5769*Smooth4] - 05%62*5
; i mooth[e] j* (.
Period[1l] + .54); e ose

{Compute InPhasge and Quadrature components }

01 = (.0962*Detrender + -57659%Detrender[2]
-5769*Detrender [¢] - -0562*Detrender[6] ) *
(.075*Period(1] + .54} ;

I1 = Detrender([3];

{Advance the phase of 11 and Q1 by 90 degrees)

3T = (.0962*%I1 + .5769*I1[2] - -5769*I1[4] -
-0962*I1[6])*(.075+Period[1] + .54);
JQ = (.0962*%01 + .5769%Q1[2] - -5769%Q1 [4] -

-0962*Q1[6] )% (. 075%Period[1] + .54);

{continue

Figure 8.7.  Hilbert Oscillator computation.

***ﬂt**ﬂ-****i***l'*******i******i*****************i :
* ¥
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End;

{Phasor addition for 3 bar averaging) }
12 = I1 - jQ;
0z = 01 + JI;

{Smooth the I and O compenents before applying
the discriminator}

I2 = .2%I2 + .8*I2([1];

Q2 = .2*Q2 + .8*Q2{1]:

{Homodyne Discriminator}

Re I2+I2([1] + Q2*Q2[1];

Im = I2*Q2[1]1 - Q2*I2[1];

Re = .2*Re + .B*Re(l];

Im = .2*Im + .8*Im[1];

If Im <> 0 and Re <> 0 then Period =
360/ArcTangent {Im/Re) ;

If Period » 1.5*Pericd[1] then Pericd
1.5*Period[1];

If Period < .67*Period[l] then Period
67*Period[1]};

If Period <« &6 then Period = 6;

If Pericd > 50 then Peried = 50;

Period = .2*Pericd + .8*Period[l];

SmoothPeriod = .33*Pericd + .67*SmaothPeriocd(1];

03 = .5*%([Smooth - Smooth[2])*{.1759*SmoothPericd +
L4607} ;

I3 = &

For count = 0 to Int(SmoothPeriod/2) - 1 begin
I3 = I3 + Q3 [count];:

End;

I3 = 1.57+*I3 / Int{SmoothPericd/2);

Valuel = 0;

For count = 0 to Int (SmoothPericd/4) - 1 begin
valuel = Valuel + Q3 [count];

End;

valuel = 1.25*Valuel / Int(SmoothPeriod/4);

Plotl (I3, ®I");:
Plot2 (Valuel, “IR"};

Figure 8.7. (Continued).
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While not related to SNR, the reduced lag procedure tk
leads to the Enhanced SNR Indicator suggests a way to devel
a fast and responsive oscillator. If we compute a quarter-cyg
moving average of Q3, it will lag Q3 by 45 degrees. The

cycle moving average of Q3 lags Q3 by 90 degrees. Since €

leads the cycle component of the signal by 90 degrees, it folloy
that the two moving averages will cross 22.5 degrees in advan
of the crests and valleys of a theoretically perfect cycle. #
though this will not be a leading indicator because of the 9-k

lag required to compute Q3, it does prove itself to be superior

most currently available oscillators. The code to compute ¢
Hilbert Oscillator is given in Figure 8.7, and its performance.

shown in Figure 8.8. The bandwidth for the computation ‘i

Valuel is twice the bandwidth of 13. Therefore, the amplitug
compensation will be less, approximately the square root
1.57, which is about 1.25. :

;'p — et — Tow B R TR b ; ' g

Figure 8.8. The Hilbert Oscillator identifies every major turning point.
Chart created with TradeStatton2000¢® by Omega Research, Inc,

Signal-to-Noise Ratio 93

Key Points to Remember

The average high to low range of the bars can be co_nsidered
noise because the range is the uncertainty of making good
Cycle Mode tradles. iesin il amplibnde

or amplitude 1s the signa :
El;ilghﬁode trﬂding should be avoided when the SNR is
below 6 dB.
The Primary SNR Indicator has a lag of 10 bars.
The Alternate SNR Indicator has an additional 7.5 bars of
lag, thus making a total lag of 17.5 bars.
The Enhanced SNR Indicator reduces lag to only 4 bars.
A useful oscillator results from minimizing Hilbert Trans-

form lag.



Chapter 9

THE SINEWAVE INDICATOR

A painter can hang his pictures,
bat a writer can only hang himself.

—EDWARD DAHLEERG

As noted in Chapter 6, the Hilbert Transform synthesizes the
InPhase and Quadrature components from the analytic wave-
form. We can then immediately compute the phase of the signal
by taking the arctangent of the ratio of these components. In
principle, that should tell us where we are positioned within the
cycle. Unfortunately, this is not true. The first problem is that
the Hilbert Transform induces a lag of 7 bars. That lag is a sub-
stantial portion of most tradable cycles. The second problem is
that even that phase measurement is typically very noisy,
tequiring many more bars of data to be used. The lag thus ren-
ders the phase measurement made directly from the Hilbert
Transform unusable.

However, the Hilbert Transform can be used to measure the
dominant cycle period. Since the dominant cycle period is a
slowly varying function of time, the lag of this measurement is
often dcceptable. We assume this to be the case for our analyses.
wing the dominant cycle period, we can heterodyne the per-

05
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without lag. Thus, we can compute indicators having zerg}
from this information.

The EasyLanguage code to measure dominant cycle phaasg
described with reference to Figure 9.1. The majority of the cf
computes the Hilbert Transform and finds the dominang cd
period using the preferred Homodyne Discriminator. The pk
computation part of the code begins with a comment line
flag. The first step is to smooth the price data. Any compong
having a cycle period less than 6 bars are not desired and shgi
be removed before the computations commence. We remi
them by employing a 4-bar Weighted Moving Average (WM
The WMA introduces 1 bar of lag that we will want to remg
by compensation later in the calculations. Next, the smoot}
data are multiplied by the real {cosine} component of the g g
nant cycle and independently by the imaginary (sine} comg
nent of the dominant cycle. The products are summed then o
one full dominant cycle. We compute the phase angle as the #
tangent of the ratio of the imaginary part to the real part,
phase increases from left to right across the chart. A 90-degi
reference shift is immediately introduced. Next, we ot
remove the 1-bar lag that was introduced by the smoothing
the price. This is done by adding the phase corresponding 4
1-bar lag of the smoothed dominant cycle period.

Finally, the phase ambiguity is removed for those cases
the imaginary part is less than zero, providing a 360-degree p 3
presentation. Normally, we think of the phase as going from
360 degrees and then repeating for the next cycle. However,
perform the cycle wraparound at 315 degrees because there
tendency for the phase to be near 0 degrees when the market i
a downtrend. If the wraparound were at 360 degrees, the swj
from the bottom of the subgraph to the top provides less the
pleasing display.

The way the phase display behaves in a Trend Mode
potentially provide some useful information to a trader.
phase tends to stop advancing when the market is in a
Mode. That is, there is no rate of change and, therefore, no cy i
The phase tends to rest near 180 degrees when the market i@
an uptrend and tends to rest near O degrees when the mark

Inputs:

The Sinewave Indicator 97

Price( (H+L}/2):

: Smooth{0],

Hars petrender (0},
11(0),
Qi1(0},
JI(0),
jq(o},
I2(0},
Qz1(o),
Re (0},
Im(0},
Period{0),
SmoothPeriod (0},
SmoothPrice{0),
DCPeriod{0),
RealPart {g),
ImagPart {0},
count {0},
DCPhase (0) ;

If CurrentBar > 5 then begin .
Smooth = {4*Price + 3*Pricell] + 2*Pricel[2] +

Price[31) / 10;
Detrender = (.0962*Smpoth + .5769*Smooth (2] -
.5769*Smooth([4] -« .0962%*Smoothl[6])*(.075%

Period[1] + .54);

{Compute InPhase and Quadrature components}

Ql = {.0962*Detrender + .576%*Detrender[2] -
.5769*Detrender [4] - .0962%*Detrender(6})*{.075%*
Period[1l]) + .54);

I1 = Detrender[3];

{Advance the phase of Il and Q1 by 90 degrees}

JI = (.0962*I1 + .5769%*I1[2] - ,5769*I1[4] -
.0962*T1[6]}*{.075*Period[1] + .54);
JQ = (.0962*Q1 + .5769*Q1[2] - .5769*Q1([4] -

.0962*Q1[6]}*(.075*Period[1] + .54);
{continued)

Figure 9.1. Computing the dominant cycle phase.
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{Phasor addition for 3 bar averag
I2 ~ 11 - jQ;
Qz Q1 + jI;

ing}}

{Smooth the I and Q ¢
the discriminator}
-2%I2 + .8%I2[1];
-2*%Q2 + .8%*Q21(1];

I2
Q2

{Homodyne Discriminator)

Re = I2*I2(1] + Q2*Q2(1];

Im = I2*Q2[1] - Q2+*I2][1];

Re = _2*Re + -8*Re[1l];

Im = .2%Im + .8*Im[1];

If Im <> 0 and Re <> 0 then Period =

BSO/ArcTangent{Im/ReJ;
If Period » 1.5*Periodfl] then Period
1.5*Period[1];
If Period <« .67*Period[1] then Period
.67*Period[1] ;
If Period < & then Period = 6;
If Period » 50 then Period = 50;
Period = .2*Period + .B8*Period[1];
SmoothPeriod = .33%Period + .

{Compute Dominant Cycle Phase)

SmoothPrice = (4*Price + 3*Pricell] + 2*Price[2]
Price[3]} / 10; -

DCPeriod = IntPortion(SmoothPeriod + .5);

RealPart = 0;

ImagPart = 0;

For count = 0 To DCPeriod - 1 begin
RealPart = RealPart + Cosine (360 * count
DCPeriod) + (SmocthPrice (count] ) ;
ImagPart ImagPart + Sine(360 * count
DCPeriod) » {(SmoothPrice [count]) :

/

End;
If AbsValue (RealPart} » 0. 001 then DCPhase
Arctangent {ImagPart / RealPart);

If Absvalue(RealPart) <= 0,061 then DCPhase =
Sign(ImagPart) ;
DCPhase = DCPhase + $0; K
(cont inued

omponents before applying 4

7*SmoothPeriod[1]

90 §

{Compenaate for one bar lag of the Weighted

Moving Average}
DCPhase = DCPhase + 360 / SmocothPeriod;

If ImagPart < 0 then DCPhase = DCPhase + 180;
If DCPhase » 315 then DCPhase DCPhaee - 360;

Plotl (DCPhase, "Phage”);

Figure 9.1. (Continued).

i4n a downtrend. The reason for this is that although the price
ta have been detrended, there is still some residual trend
ross the 6 bars of the Detrender. The summation of the proq-
wct of the pure trend to the complex components of the domi-
pant cycle can be thought of as similar to the integrals

2%

Im=] xSin{x)dx=-
0

2
Re=J’0 x Cos{x)dx =0

The ratio of the RealPart to the Imaginary will always be a
number when the market is in a Trend Mode. However,
sign of that number will be negative when the market is in
1 uptrend and positive when the market is in a downtrend. As
Iesult the phase will be near 180 degrees in uptrending mar-
and near 0 degrees in downtrending markets.

. We obtain the Sinewave Indicator by plotting the sine of the
easured phase angle. This gives us an oscillator that always
s between the limits of —1 and +1. We enhance the usabil-

of this oscillator by plotting the sine of the phase angle
:_ Ivanced by 45 degrees. The effect of plotting these two lines is
0wn for both the phasor and time-domain presentations in
#gure 9.2. Adding 45 degrees clearly advances the phasor from a

oAk

£

Figure 9.1. (Continued).




100 Rocket Scieace for Traders

Figure 9.2. Phasor and time-domain views of the Sinewave
Indicator.

45-degree slant to the vertical position. This phase advg
means the LeadSine waveform will crest before the sine cré
The LeadSine and Sine lines cross 22.5 degrees, or 1/16th j
cycle, before the turning point of the cycle is reached. If the
ket has a cycle of 16 bars or less, this is a signal to enter or
trade immediately. If the market has a longer cycle, th
some built-in anticipation time before you pull the trigger.

Compared to conventional oscillators such as the Stock
or Relative Strength Indicator (RSI), the Sinewave Indicator
two major advantages. These are

1. The Sinewave Indicator anticipates the Cycle Mode
point rather than waiting for confirmation.

The phase does not advance when the market is in a TH
Mode. Therefore, the Sinewave Indicator tends to not §
false whipsaw signals when the market is in a Trend M#

2.

An additional advantage is that the anticipation signal isH
tained strictly by mathematically advancing the phase. '
tum is not employed. Therefore, the Sinewave Indicator sigl
are no more noisy than the original signal. 4

The code to compute and display the Sinewave Indics
given in Figure 9.3. This EasyLanguage code is identical to the:
given for the phase in Figure 9.1 except for the plot statements

The Phase and Sinewave Indicators are plotted against
theoretical analytic waveforms and real-world data to dent

Inputs:

re:

Price( (H+L) /2);

Smooth{0),
Detrendexr{0),
11(0},

Q1(0),

ir (o).

jo(o},

12(0},

Qz2(0),

Re(0),

Im(0},

Period (0},
SmoothPeriod (0},
SmoothPrice {0},
DCPeriod (0],
RealPart {0),
ImagPart(0),
count (0),
DCPhase () ;

If CurrentBar > 5 then begin

Smooth = {4*Price + 3*Price(l] + 2*Price[2] +
Price[3]} / 10;

Detrender = (.0962*Smooth + .576%*Smooth[2] -
.5769*Smooth{4) - .0962*Smooth[6])}+*(.075*
Period[l] + .54);

{Compute InPhase and Quadrature components}
Q1 = (.0962*Detrender + .5769*Detrender[2] -
.5769*Detrender [4] - .0862*Detrender(6])+*

(.075*Period[1] + .54):
I1 = Detrender|[3];

{advance the phase of I1 and Q1 by 9¢ degrees)

JI = {.0962*I1 + _5769%I1[2] - .5769*I1[4] -
.0962*T1[6]}*(.075*Period([1] + .54);
JjQ = (.0962*%Q1 + .5769*Q1[2) - .5769+*01[4] -

.0962+Q1[6])*{.075*Period[1] + .54);

{Phasor addition for 3 bar averaging)}

I2 = I1 - j0Q;

2 = Q1 + jI;

? 2 : {cont inued)

Figure 9.3. EasyLanguage code to compute the Sinewave Indicator.
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{Compensate for one bar lag of the Weighted
Moving Average |
pCPhase = DCPhase + 3160 / SmocthPeriod;

{8mcoth the I and { components before applying
the discriminacor)
I3 = _3%I3 4+ .8*I2([1);
Q02 = .2%Q2 + .8*02[1];
1f ImagPart < 0 then DCFhase = DCFhase + 180;

{Homodyne Discriminator} 1f DCPhase » 315 then DCPhase = DCPhase - 360;

Fa = T2%T2[1] + Q2*Q2[1];

Im = I2*Q2[1] - Q2*I2[1];:

Re = .3%Re + .8*Re(l];

Im = .2%Im + . 8*Im[1];

If Im <> 0 and Re <> 0 then Period =
160/ ArcTangent (Im/Re);

If Period » 1.5*Period[1l] then Periad =
1.5*Paricd[1] ;

If Pericd < .67*Period([l] then Period =
GT7*Period([1] ;

If Period « 6 then Period = &;

If Period » 50 then Pericd = 50;

Period = .2%Pericd + .B¢Pericd(l];

SmoothPeriod « .33*Pericd + .67*SmoothPeriod(l]

Plocl (Sine (DCPhase) , *5ine®);
PlotZ (Bine (DCFhase « 45), “LeadSine®);

Figure 9.3. (Continued ).

e their performance. Figure 9.4 shows a theoretical sinewave
ic waveform whose period increases linearly from 10 to 40
The Sinewave and Phase Indicators are displayed in the two
sgraphs. Note how the phase rate of change decreases as the
period becomes longer. The dotted line is a typical point of
g, illustrating that the analytic waveform and the Sine
of the Sinewave Indicator crest simultancously, and the
sured phase is 90 degrees at this point. The LeadSine always
s the Sine line before the turning point in the cycle, giving
indication of the cyclic turning point. The amount of
Vance warning relative to the length of the cycle is less for the
arter cycles.
A real-world trading scenario is depicted in Figure 9.5. The
ket is in a Trend Mode for nearly the entire left half of the
as identified by the lack of phase rate of change and lack of
wers by the Sinewave Indicator. The Cycle Mode of the
18 identified by the rectangle. The Cycle Mode starts when
rate of change is approximately the same as the phase
ﬂl‘-hln@: of the dominant cycle. The Cycle Mode ends when

{Compute Dominant Cycle Phase)
SmoothPrice = (4*Price + 3I*Frice([1] + Price [2]5
Price[3]) / 10; :
DEPericd = IntPortioniSmoothPericd + .5);
RealPart = 0;
ImagPart = 0;
For count = O Te DCPericd - 1 begin
RealFart = RealPart + Cogine (360 * count
DfPericd) * (SmoocthPrice [count]);
ImagPart = ImagPart + Sine (360 * count /
DEPeriod) + (SmocthPrice[count]);:
End;
If Abavalue (RealPart) = 0.001 then DCPhase =
Arctangent (ImagPart / RealFarc);
If AbaValue (RealPart] <= 0.001 then DCPhase =
Eign(ImagParc)
DCPhase = DCPhase + 90;
{contir

rate of change becomes negative—a clear impossibility.
E the Cycle Mode period, the Sinewave Indicator gives
buy signals and two sell signals. All are excellent except the
which almost always happens when the eyele fails.

Figure 9.3. (Continued),
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igure 9.4. The Sinewave Indicator always gives an advanced turning-

nint warning.
boart crovatedd writh TrsdeStation20004® by Omega Rexearch, fnc
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Figure 9.5. The Sinewave Indicator gives correct Cycle Mode signals.
Chart croided with TradeStation 20000 ® by (hneg Research, fnc
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Key Points to Remember

The phase computed from the Hilbert Transform cannot be
used directly because of the lag that results from computing.
The cycle period measurement is a slowly varying function
of time and may be used as the dominant cycle.

The phase of the dominant cycle is computed by heterodyn-
ing the complex dominant cycle with the smoothed analytic
waveform and taking the arctangent of the complex compo-
nents,

The phase hovers near 0 degrees in downtrends and near 180
degrees in uptrends.

The Sinewave Indicator consists of the Sine of the Dominant
Cycle phase and the Sine of the Dominant Cycle phase
advanced by 45 degrees (LeadSine).

The Sinewave Indicator gives entry and exit signals 1/16th of
a cycle period in advance of the cycle turning point.

The Sinewave Indicator seldom gives false whipsaw signals
when the market is in a Trend Mode.



Chapter 10

THE INSTANTANEOUS
TRENDLINE

Never mistake motion for action.

—ERNEST HEMINGWAY

Perhaps the term instantaneous is a bit presumptuous to apply
to the concepts we discuss in this chapter. Nonetheless, the
term is somewhat appropriate in that our technology enables us
to compute a continuous trendline from which we can rapidly
assess market action. As derived from the Drunkard’s Walk
problem in Chapter 1, our model says the market consists of a
Trend Mode and a Cycle Mode. It is more accurate to describe
the general market as a combination of these two modes. Fur-
thermore, in Chapter 3 we prove that we can completely elimi-
nate the dominant cycle component by taking a Simple Moving
Average (SMA) over the period of the cycle. If we take a simple
average over the period of the dominant cycle on a bar-by-bar
basis—because we have been able to identify a continuously
varying dominant cycle—we basically have a variable-length
moving average. This moving average is important because the
dominant cycle component is always notched out. It follows
that if the composite analytic waveform consists of only a trend
Component and a cycle component, and if we remove the cycle
Ctomponent, the residual must be the trend. Of course, this is not
Precisely true, because there will always be components other
than the dominant cycle present. However, this is a workable

107
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solution for trading purposes because the secondary cycles usu
ally have a small amplitude. E

We employ a 4-bar Weighted Moving Average (WMA) in con ]
junction with the Instantaneous Trendline to give an indicatio
of when the price crosses the Instantaneous Trendline. Having
only a 1-bar lag, the 4-bar WMA is useful for this purpose. One;
way to recognize the onset of a trend is to count backward fro
the current bar to the first crossing of the WMA and the Instan
taneous Trendline. If the count is greater than a half-dominan
cycle, you know that the market is in a Trend Mode. The reaso
for this is that if the market were in a Cycle Mode, we woul
expect the price to cross the Instantaneous Trendline every ha
cycle. Failure to do this is a clear indication of a Trend Mode.
fact, an amended rule might say that the onset of a Trend Mod¢
is declared if the price has crossed more than a quarter cycle ago}
and does not appear to even try to head back across the Instang
taneous Trendline. This amended rule will get you into a Tren
Mode trade much earlier. However, as with all anticipatory si
nals, you will get caught in an error once in a while. A Trend
Mode is over when the Smoothed Price crosses the Instants)
neous Trendline. :

Because we are taking an SMA over the entire period of thi
dominant cycle, the lag of an Instantaneous Trendline is oné}
half the dominant cycle. This lag is unavoidable. It is also p
sible to take an SMA over half the period of the domin
cycle. The half-period average has a quarter-cycle lag.
result is that the quarter-cycle average will cross the Instan
neons Trendline just as the Sinewave Indicator reaches a p
or valley. The half-period average crossing the Instantane
Trendline can be used as a confirmation signal, which 4
another way of identifying when the price has reachied a cyc! b
turning point.

The Easylanguage code to compute the Instantane:
Trendline is given in Figure 10.1. As in computations in pr
ous chapters, the code starts with the Hilbert Transform
measures the dominant cycle using the Homodyne Discri
tor algorithm. The Instantaneous Trendline is computed
averaging the price over the integer number of bars of
smoothed dominant cycle. This average is smoothed in a 4

Inputs:

Vars:

Price ( (H+L} /2);

Smooth{0),
Petrender (0),
I¥1(0),

Q1(D},

jIi(o},

jof{o),

I2(0),

Q2(0),

Re (0},

Im(0},
Period(Q),
SmoothPeriod (0},
SmoothPrice {0},
DCPeriod{d) ,
RealPart {0},

- ImagPart(0),

count {0) ,
ITrend{0),
Trendline (0) ;

If CurrentBar > 5 then begin

Smooth = {(4*Price + 3*Price[l] + 2*Pricef2] +
Price[2]) / 10; ’
Detrender = (.0962*Smooth +
.5769*Smooth 4] -
Period[1] + .54);

.5765*Smooth [2] -
-0962*Smooth [6] } * (. 075+

{Compute InPhase and Quadrature components}

Ql = (.0962*Detrender + .5769*Detrender([2] -
.5769*Detrender (4] - .0962*Detrender[6])*(.075%
Period[1] + .54);

Il = Detrender([3];

{Advance the phase of Il and Q1 by 50 degrees}
JI = (.0962*I1 + .5769*I11{2] - .576%%I1[4] -

.0562*T1{6])*{.075*Period[1] + .54):
j0 = (.0962*Q1 + .5769+*Q1[2] - .5769*01[4] -
.0962#Q1[6] ) *{.075*Pericd{l] + .54});

{Phasor addition for 3 bar averaging)}
Iz = I1 - jQ;
Q2 = Q1 + jI;
{cont inued)

Figure 10.1. EasyLanguage code to compute the Instantaneous Trendline.
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WMA to make the Instantaneous Trendline a little smoother
The price itself is also smoothed in a 4-bar WMA to provide the
second line of this indicator.

The actions of the Instantaneous Trendline and the Smoothec
Price curves are shown in Figure 10.2. The Smoothed Price
crosses the Instantaneous Trendline during the third week ir
August. The measured dominant cycle period during this time
was about 22 bars (see Figure 7.7). Since the price does not even

the discriminator}
I2 = .2*12 + .8*I2(1];
Q2 = .2%Q2 + .8%Q2{1];

{Homedyne Discriminator}
Re = I2*I2[1] + Q2*0Q2[1];

Im = I2*Q2([1]1 - Q2*I2([1]; :
Re = .2%Re + .B%Re[1]: try to come back to the Instantaneous Trendline, we declare the
Im = .2%Tm + .8*Im[1]; trend in force about five days after the crossing, around the first

If Tm <> 0 and Re <> 0 then Period =
360/ArcTangent {Im/Re) ;

If Period > 1.5*Period({l] then Period =
1.5%¥Period[1] ;

If Period « .67*Period(l] then Period =
.67*Period[1] ;

If Period < 6 then Period = 6;

If Pericd > 50 then Period = 50;

Pericd = .2*Pericd + .8+*Periodll];

SmoothPeriod = .33*Period + .67*SmoothPeriod[l];

of September. According to this indicator, the trend stays in
force until the Smoothed Price crosses the Instantaneous Trend-
line again, in mid-January. Other indications from the Sinewave
Indicator would have declared the trend over near the first of
December, however. With reference to Figure 9.5, the Sinewave
Indicator line crossing early in December signals a Cycle Mode

buy signal.

{Compute Trendline as simple average over the

measured dominant cycle period} : 4 : :

; DCPeriod = IntPortion{SmoocthPericd + .5); i@ 3 : : e | W
; ITrend = 0; : : 5 '

! For count = 0 to DCPeriod - 1 begin K. :
ITrend = ITrend + Price[count]: ﬂf E |

{smooth the I and Q components before applying
|
]
|
|
|
]

E end;
i If DCPericd > 0 then ITrend = ITrend / DCPeriod;
: Trendline = {(4*ITrend + 3*ITrend (1] +

2+ITrend[2] + ITrend[3]) / 10;
If CurrentBar <« 12 then Trendline = Price;

SmoothPrice = (4*Price + 3*Pricefl] +
2+Price[2] + Price[3]) / 10;

Plotl {Trendline, *Trendline”®};
Plot2 {SmoothPrice, “SPB");

End;

Figure 10.1. (Continued).
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Key Points to Remember

The Instantaneous Trendline is generated by removing
dominant cycle component of the composite wavefo
This is done taking a simple average over the period of t
dominant cycle.

A trend is declared in force if the SmoothPrice has
crossed the Instantaneous Trendline within the previ
half-dominant cycle. .

As a faster indication of the trend onset, a trend is declared
the Smoothed Price has not crossed the Instanta
Trendline within the previous quarter-dominant cycle
does not appear to start in the crossing direction.

A trend is over when the SmoothPrice crosses the Instan
neous Trendline.

Chapter 11

IDENTIFYING MARKET MODES

Invention is the mother of necexsity

—THORSTEIN VEBLEN

The simplified model of the market, derived from the Drunk-
ard's Walk problem, has only two modes—the Cycle Mode and
the Trend Mode. Through the derivation of the Sinewave Indica-
tor and the Instantaneous Trendline, we have shown several
ways to estimate which mode the market may have for a given
moment. As with most technical indicators, the decision point
between modes is not clear-cut. In fact, trying to automate the
decision often leads to a great deal of chatter and rapid back and
forth switching of decisions.

Since the Cycle Mode exists for the smallest fraction of time
and since most traders make the most money following a trend
rather than a cycle, it is best to assume that the market 15 in a
Trend Mode unless some very specific criteria are met. There are
only two criteria to establish a Cycle Mode. First, a Cycle Mode
exists for the period of a half-dominant cycle after the crossing of
the two Sinewave Indicator lines. Second, a Cycle Mode exists if
the measured phase rate of change is more than two-thirds the
phase rate of change of the dominant cycle [360/Period) and is less
than 1.5 times the phase rate of change of the dominant cycle.

There is another condition that defines a Trend Mode. This
condition is derived from pragmatic observation, not theoretical
considerations. When the market makes a major reversal, 1t often
does this with great vigor. When this occurs, the prices have a
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wide separation from the Instantaneous Trendline. When

prices are widely separated from the Instantaneous Trendlizf
is possible for the Cycle Mode conditions to be met—bug

Cycle Mode identification is clearly incorrect. I have th
inserted another overriding rule for these cases. That rule

if the SmoothPrice {the 4-bar WMA of the Price) is separaté|

more than 1.5 percent from the Instantaneous Trendline,
the cortect market mode is the Trend Mode.

We can apply the mode identification in a TradeSta
SuperCharts Paintbar to visually identify the current n
mode. In addition, the mode identification can be used as
fragment as part of an automatic trading system to es
which set of trading rules will be employed. The EasyLang
code to compute the market mode and identify it as a paint}
given in Figure 11.1.

Inputs: Price((H+L) /2};

Vars: Smooth{0},
Detrendexr{0) ,
I1(0),

Ql{o},

jI{a),

jQf{o),

Iz2{0),

Q2 (0),

Re (0) ]

Im(0),

Period (o),

SmoothPeriod (0},

SmoothPrice{0),

DCPeriod{0) ,

RealPart {0),

ImagPart (0),

count ({),

DCPhase (0},
{cont

Figare 11.1. EasyLanguage code to identify the market mo
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Itrend {0},
Trendline (0},
Trend{0),
DaysInTrend(0) ;

1f CurrentBar > 5 then begin
amooth = (4*Price + 3*Pricell] + 2*Price[2] +
Price[3])/10;
Detrender = (.0962*Smocth +_.5769*Sm00th[2] -
.5769*Smooth[4] - .0962*Smooth([6]}*(._ 075+
Period[l] + .54);

{Compute InPhase and Quadrature components }

Q1 = {.0962*Detrender + .5769*Detrender[2] -
.576%*Detrender [4] - .0962*Detrender[6])*{.075*
Period[1l] + .54};

I1 = Detrender [3];

{Advance the phase of Il and Q1 by 90 degrees}

FI = (.0962%I1 + .5769%I1[2] - .5769*I1[4] -
_0962*I1[6]1)*{_075*Period[1] + .54);
3O = *(.0962%0Q1 + .5769%Q1[2] - .5769*Q1[4] -

.0962*01[6])*(.075*Period[1] + .54}; -

{Phasor addition for 3 bar averaging)}
12 =Ti = 50 '
02 = Q1 + jI;

{Smooth the I and Q components before applying
the discriminator}

I2 = ,2*I2 + .8*I2([1];

Q2 = .2%Q2 + .8*Q2[1];

{Homodyne Discriminator)

Re T2*12[1] + Q2*Q2[1]:

Im = I2*Q2[1] - Q2*I2[1];

Re = .2*Re + .8*Rell]};

Im = .2*Im + .8*Im[1];

If Im <> 0 and Re <> 0 then Periocd =
160 /ArcTangent (Im/Re} ;

{continued)

Figure 11.1. (Continued).
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If Period > 1.5*Period[l] then Period =
1.5*%Peried[1]; :

If Period < .67*Period[l] then Periocd =.
.67*Period[1] ;

If Period < 6 then Period = 6;

If Period > 50 then Period = 50;

Period = .2*Period + .8*Period[1];

SmoothPeriod = .33*%Period + .67*SmoothPericd{l];

{Compute Dominant Cycle Phase}
SmoothPrice = (4*Price + 3*Price[l] + 2+
Price[2] + Pricel[31)/10;
DCPeriod = IntPortion{SmoothPeriod + .5};
RealPart 0;
ImagPart = 0;
For count = 0 To DCPeriod - 1 begin
RealPart = RealPart + Cosine (360 * count
/ DCPeriocd}* (SmoothPrice [count]);
ImagPart = ImagPart + Sine (360 *
count. /DCPeriod} * {SmoothPrice [count] ) ;

End;

If AbsValue (RealPart) >0 then DCPhase =
Arctangent (ImagPart / RealPart);

If AbsValue (RealPart} <= 0.001 then DCPhase = S0
Sign (ImagPart) ;

DCPhase = DCPhase + 90;

{Compensate for one bar lag of the Weighted
Moving Average}
DCPhase = DCPhase + 360 / SmoothPeriod;

If ImagPart < 0 then DCPhagse = DCPhase + 186;
If DCPhage > 315 then DCPhase = DCPhase - 360;

{Compute Trendline as gimple average over the
measured dominant cycle period}
ITrend = 0;
For count = 0 to DCPeriod - 1 begin
ITrend = ITrend + Price[count};
End;

{continued;

Figure 11.1. (Continued).

End;

If DCPeriod » 0 then ITrend = ITrend / DCPeriod;

Trendline = (4*ITrend + 3*ITrend[1] +
2+ITrend[2] + ITrend[3]1)/10;

If CurrentBar < 12 then Trendline = Price;

{assume Trend Mode}
Trend = 1;

{Measure days in trend from last crossing of the
Sinewave Indicator lines}

If Sine(DCPhase) Creosses Over Sine{DCPhase + 45)
or Sine{DCPhase) Crosses Under Sine{DCPhase +
45) Then begin

DPaysinTrend = 0;
Trend = 0;

End;

DaysInTrend = DaysInTrend + 1;

If DaysInTrend < .5*SmoothPeriod then Trend = 0;

{Cycle Mode if delta phase is +/- 50% of dominant
¢ycle change of phase}

Tf SmoothPeriod <> 0 and (DCPhase - DCPhase(l] =
.67*360/SmoothPeriod and DCPhase - DCPhase[l] <
1.5%360/SmoothPeriod) then Trend = 0;

{Trend Mcde if prices are widely separated from

the Trendline}
If AbsvValue ( (SmoothPrice - Trendline) /Trendline} »>=

.015 then Trend = 1;

{Paint Bar if in the Cycle Mode}
If Trend = 0 then begin
Plotl (high, ®“high”};
Plot2(low, “low”);
End;

Figure 11.1. (Continued).
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Points 10 Remember _
S . Chapler 12
v Awdrme the matket is in 4 Trend Mode unless spribc crite

Lia arc met, ]
v A Cyele Made vwists [or 9 half-dominant cycle alter the crid
ing of the Sinewave Mmdicawor Limes or when the aeasred
phae rane of change is wichin =50 pereent of the phase rage
of change of the dominant evcle. '
a A TFrend Mode is declared if the 4-bar WhA is separaed from
the Insranpameous Trendline by mone than L3 pereent
s The markal mode can be ideniified se a painthar or vaed 8 §
eamle irapmyene in an aucomatie Leading aysuem.

DESIGNING A PROFITABLE
TRADING SYSTEM

Truth amed gcfends Loereph] el o gRTAALe
and sumsreomian.

| EAIER~

In rhis chapter we develap a complem|y autounatic Lrading sys.
vern ratled the SineTrond Astomgtic Svilen based an tho roles
thot we dovelup in the previous chaptom, Cher Fundamental
spproach is 10 trade vsang the Trend Mede roles when the mar-
ket is iy 9 Trend Mode and trade using thy Cyele Mode nules
when the markel is in a Cycle Minde. The code shown in Figure
¥L.1 is a complete trading system using theat nukes staicely frum
i theoreteal perspective. Therc is absolutely noaccornmodaion
for real wrading sitnations or speuific personalities of the com-
medity ox stock being maded
This ¢ode was first applicd ro rhe Treasury Tonds fnres
vantracl becanse rhe systermn rrades hodh Jong and shore with
evjual laeibivy, The Trensury Bond data were o back-adjnsted con.
tinuam goneragl covering the poriod from 2 Tuly 1984 10 16 ne
2000, a perigd of 1554 years, [A Tack-adiusted conlipugus cone
fTact g created by stringing real conwrasts ogether and adiusuing
all prices in the previous comtract by the price difterence
tween vomtracts at the mollover date, The process iy repeatad
for each now previons contracr] Adding s 51000 mones-
Mangaement stop, the resalls right ool of the box axc shown in
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Inputs: Price ( (H+L}/2);

Vars: Smooth(0),
Detrender (0},
11{0),

Q1{0),

jI{0},

jQ (D},

I2(0),

Q2(0),

Re(0),

Im{0),
Period{ad),
SmoothPeriod (0},
SmoothPrice (D},
DCPericd(0),
RealPart {0),
ImagPartc (2],
count (0},
DCPhase (0],
DCSine {0},
LeadS8ine(0),
Itrend(0),
Trendline{{),
Trend (0},
DaysInTrend(0) ;

If CurrentBar > 5 then begin
Smooth = (4*Price + 3*Price[l] + 2*Price[2] +
Price(3]) / 10;
Detrender = (.0962*Smooth + ,5769*Smooth[2} -
.5769*Smooth[4] - .0962%Smooth[6])*{.D75%*
Period[l] + .54);

{Compute InPhase and Quadrature components}
01 = (.0962*Detrender + .5769*Detrender[2] -
.5769*Detrender (4] - ,0962*Detrender [6])*

{.075*Period[1] + .54);
I1 = Detrender[3];

{Advance the phase of I and QI by 90 degrees}

§I = (.0962*%I1 + .5769*I1{2] - .5769*I1[4] -
.0962%I1[6]}*(.075*Period[1] + .54);
JO = (.0962%Ql + .5769*Q1{2] - .5769*%Q1[4] -

L0962*%Q1[6])*(.075*Period[1l] + .54);

{Phasor addition for 3 bar averaging)}
I2 = I1 - 30Q; '
Q2 = Q1 + 3jI;

{smooth the I and ¢ components before applying
the discriminator}

I2 = .2%I2 + .8%*I2[1]-.;

Q2 = .2%Q2 + .8%Q2[1];

{Homodyne Discriminator]

Re = I2+#I2[1] + Q2*Qz2[1];
Im = I2%Q2[1] - Q2*I1211];
Re = .2%Re + .8*Re[1];

Im = .2%Im + .8*Im[1];

If Im <> 0 and Re <> 0 then Period =
360/ArcTangent {Im/Re) ;

If Period » 1.5*Period[1] then Period
1.5*Period[l];

If Period < .67*Period[l] then Period =
.67*Pexriod[l] ;

If Period < 6 then Period = &;

If Period > 50 then Period = 50;

Period = .2*Period + .8*Period[l}];

SmoothPeriod = .33*Period + .67*SmoothPeriod[1];

I3

{Compute Dominant Cycle Phaae}
SmoothPrice = (4*Price + 3*Price[l] + 2*Price[2] +
Price[3]) / 10;
DCPeriod = IntPortion(SmocthPeriod + .5);
RealPart = 0;
ImagPart = 0;
For count = {0 To DCPeriod - 1 begin
RealPart = RealPart + Cosine(360 * count /
DCPeriod) * {SmoothPrice[count]);
fcontinued)

Figure 12.1. Easylanguage code for an Automatic SineTrend Trading Systed

Figure 12.1. (Continued).
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ImagPart = ImagPart + Sine{360 * count /
DCPeriod) * (SmcothPricel[count]);
End;
If AbsValue{RealPart) >0 then DCPhase -
Arctangent {ImagPart / RealPart);
If AbsValue (RealPart) <= 0.001 then DCPhase —
90 * Sign{ImagPart});
DCPhase = DCPhase + 90;

{Compensate for one bar lag of the Weighted
Moving Average}
DCPhase = DCPhase + 360 / SmoothPeriod;

If ImagPart < 0 then DCPhase = DCPhage + 180;
If DCPhase » 315 then DCPhase - DCPhase - 360;

{Compute the Sine and LeadSine Indicators}
DCSine = Sine(DCPhase) ;
LeadSine = Sine(DCPhase + 45);

{Compute Trendline as simple average over the
measured dominant cycle period)

ITrend = 0;

For count = 0 to DCPericd - 1 begin

ITrend = ITrend + Price[count];

End;

If PCPeriod > 0 then ITrend = ITrend / DCPeriod;

Trendline = (4*ITrend + 3*ITrend[l] + 2*ITrend 2] +
ITrend([3]) / 10;

If CurrentBar < 12 then Trendline - Price;

{RAssume Trend Mode)
Trend = 1;

Designing a Profitable Trading System 123

{Measure days in trend from last crossing of the
Sinewave Indicator lines} :
If Sine(DCPhase) Crosses Over Sine(DCPhage + 45}
or Sine(DCPhase) Crosses Under Sine (DCPhase +

45) Then begin
DaysInTrend = 0;
Trend = 0;

End; 5
(continued)

Figure 12.1. (Continued).

End;

DaysInTrend = DaysInTrend + 1;
If DaysInTrend < .5*SmoothPeriod then Trend = 0;

{Cycle Mode if delta phase is +/- 50% of dominant

cycle change of phase}
If SmoothPeriod <» 0 and (DCPhase - DCPhase([1] >

.67*360/SmoothPeriod and DCPhase - DCPhase[l] <
1.5%360/SmoothPeriod) then Trend = 0;

{Declare a Trend Modé if the SmoothPrice is more
than 1.5% from the Trendline}

If Absvalue{ (SmoothPrice - Trendline}/Trendline} »=
.015 then Trend = 1;

If Trend = 1 then begin
If Trend[1l] = ¢ then begin
If MarketPosition = -1 and Smooth
Price »= Trendline then buy;
If MarketPosition = 1 and SmoothPrice <«
Trendline then sell;
End; .
If SmoothPrice Crosses Over Trendl;ne
then buy; .
1f SmoothPrice Crosses Under Trendline
then sell;

End;

If Trend = 0 then begin .
If LeadSine Crosses Over DCSine then buy;

If LeadSine Crosses Under DCSine then
gell;
End;

Figure 12.1. (Continued).
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Figure 12.2. Phenomenal! The $398 average profit per trade with
a 40 percent success rate on only $12,500 maximum drawdown ]
is competitive with any commercially available Treasury Bond }
trading system. About 80 percent of the profits were made on }
long side trades. 1

I was curious as to how much of the action was contributed ]
by the Trend Mode and how much was contributed by the Cycle
Mode. I therefore simply deleted the four lines of code that made §
the Cycle Mode trades and ran the system again on the same ]
Treasury Bond data. The results of the Trend Mode—only trading
are given in Figure 12.3.

These results are simply awful! The average profit per trade §

dropped to negative territory before any rational allowance for |

Total Net Profit $92.875.00
Gross Profit $201,031.25 Gross Loss ($108,156.25) §
Total # of trades 233  Percent 40.77% §
profitable
Number winning 95  Number losing 1383
trades trades
Largest winning $15,468.75  Largest losing ($1,156.25) 4
trade trade
Average winning $2,116.12  Average losing ($783.74}4
trade trade 1
Ratio avg win/ 2.70  Avg trade $398.61 4
avg loss (win & loss) E
Max consec. 5 Max consec. ' 11%
Winners losers
Avg # bars in 20 Avg#barsin
winners losers
Max intraday ($12,500.00)
drawdown
Profit Factor 1.86 Max # contracts

held

Figure 12.2, Original SineTrend performance summary on Treasury Bonds—{

9 July 1984 to 16 June 2000.
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Total Net Profit $19,968.75

Gross Profit $39,093.75 Gross Loss {$59,062.50)

Total # of trades 81 Percent profitable 18.52%

Number winning 15 Number losing 66
trades trades

Largest winning $8,218.75 Largest losing trade ($1,000.00)
trade

Average winning $2,606.25 Average losing trade ($894.89)
trade

Ratio avg win/ 291 Avgtrade $246.53
avg loss jwin & loss}

Max consec. 2 Max consec. losers 12
Winners

Avg # bars in 38 Avg # bars in losers 8
winners

Max intraday ($23,343.75)
drawdown

Profit Factor 0.66 Max # contracts held 1

Figuore 12.3. SineTrend trend only performance summary on Treasury Bonds—
9 July 1984 to 16 June 2000.

slippage and commission! The first thing these results indicate
is that the system is being carried by Cycle Mode trades. At this
point, it seems prudent to make a concession to real-world real-
ities and try to modify the Trend Mode rules. One of the easiest
things to do is change the computation of the Instantaneous
Trendline. By increasing or decreasing the Instantaneous Trend-
line SMA length, the resulting Instantaneous Trendline will be
either more reactive or will react slower. If we change the code
by using a CycPart multiplier, the SMA length is still related to
the period of the measured dominant cycle. The code fragment
for the Trendline calculation was changed as indicated in Figure
12.4. After changing the code, optimizing on a CycPart of 1.15,
and increasing the money-management stop to $1,100, the
results indicated in Figure 12.5 were obtained. These changes
and optimizations are not “curve fitting” because the testing
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End;

{Compute Trendline as simple average over the
measured dominant cycle period)
ITrend = O;
IntPericd = IntPortion(CycPart*SmoothPeriod + .5);
For count = 0 to IntPeriod -
ITrend = ITrend + Price[count]:

1 begin

If DCPeriod > 0 then ITrend = ITrend / IncPeriocd;
Trendline = (4*ITremd + 3I*ITrend[1] + 2*ITrend(2] »

ITrand[3]) / 10;
If CurrentBar « 12 then Trendline = Price;

Figure 12.4.  Code fragment for optimizable Instantaneous Trendline calculation.

Total Met Profit
Gross Profit

Total # of trades
MNumber winning
trades
Largest winning
trade
Avera
tra
Ratio avg win/
avE loss
Max consec,
WInners
Avg ¥ bars 1n
winners
Max intraday

drawdown
Profit Factor

winning

£113,525.00
S205,000.00

191
85

£16,062.50
£1.411.76
2.79

5
24

($8,137.50)

21.24

(ross Loss

Percent profitable
Number losing
trades

Largest losing
trade

Average losing
trace

Avg trade
[win & loss)

Max consec,
losers

Avg # bars in
losers

Maix #
contraces held

($91,475.00)

44.5%
106

($1,125.00)
($862.97)
$594.37
o

&

Figure 12.5. SineTrend performance summary on Treasury Bonds, modified
CycPart = 1.15, money-management stop = $1,100—9 July 1984 1o 16 June 2000.
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covered a 16-year span and the results carry a substantial trade-

to-parameter ratio.

These results are outstanding! The net profit has been
increased by 22 percent over the original system. The increased
net profit and reduced number of trades have produced nearly a 50
percent increase in the average profit per trade. Further, the max-
imum drawdown over the 15-year period was reduced by 35 per-
cent. Incidentally, going back and checking on the Trend Mode-
only performance after the Instantancous Trendline was opui-
mized, | got the results shown in Figure 12.6. Now the Trend
Mode has been enhanced to carry its share of the load. The opti-
mization resulted from a minor increase in the period to calculate

the Instantaneous Trendline.

Total Net Profit £43,062.50

Cross Profit 08, 00600

Total # of trades 67

Mumber winning 24

Largest winning §16,062.50
trade

Average winning 54,111.09
trade

Ratio ave win/ .17
avg loss

Max consec. 4
Winners

Avg # bars in 52
wWinners

Max intraday ($10,956.25)
drawdown

Profit Factor 1.77

e

Gross Loss ($55,843.75)

Percent profitable A582%

Mumber losing 43
trades

Largest losing (§1,781.25)
trade

Average losing (51,2986
trade

Avg trade $642.72
{win & loss]

Max comsec, é
losers

Avg # bars in 13
losers

Max ® contracts |
held

Figure 12.6. Sinelrend performance summary on Treasury Bonds (Trend
Mode-anly), modified CycPart = 1.15, money-management stop = $1,500—

9 July 1984 10 16 June 2000,
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The continuous and sustained equity growth of this Sine-
Trend Automatic System over the 15-year period indicates just
how robust this system is. A major contribution to its robust-
ness is the fact that the underlying principles of the system were
based purely on theoretical considerations. Equity growth is
shown in Figure 12.7.

The obvious question to ask now is whether the SineTrend
Automatic System works with contracts other than Treasury

Bonds. Since the system is based purely on theory, the answer is
that it should be universal. There are bound to be some issues for

which it trades better than others, however. To test the premise
that it can be applied to other securities, 1 applied the modified
SineTrend to the back-adjusted Swiss Franc futures contract over
the period from 13 February 1975 to | June 2000. When the Crye-
Part input was optimized for 1.10 and the money-management
stop was set at $2,200, | obtained the results shown in Figure 12.8,

The results of the SineTrend Automatic Trading System are
maore than respectable—they are on par with the results obtained
by most commercially available trading systems. The average

130,000

10,006 4

§80 0D 4

160,000 -

40 D0 4

$20.000 4

W . — . e
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Figure 12.7. Equity Curve.
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—

Total Met Profit £139,212.50

Gross Profit £366,575.00 Gross Loss ($227,362.50

Total # of trades 460 Percent profitable 50.87%

sumber winning 234 MNumber losing 226
trades trades

Largest winning §12,71250 Largest losing (83,200,001
trade trade

Average winning $1,566.56  Average losing (51,006,083
trade trade

Ratio avg win/ 1.56 Avg trade 2302 .64
avg loss {win & loss)

Muax consec. 9  Max consec, 8
WINNers losers

Avg & bars in I6 Avg# bars in 7
winners losers

Max intraday {§18,187.50
drawdown

Profit Factor 1.61 Max # contracts |

held

Figure 12.8.  SineTrend performance summary on Deutschemark, modified Cyc-
Part = 110, money-management stop = §2,200—13 February 1975 10 1 June 2000,

profit per trade is $302. The probability of success is over 50 per-
cent. The ratio of average win to average loss is 1.56:1. Joe
Krutsinger calls this the “daddy-goes-to-town number,” meaning
that every time daddy goes to town he brings home $1.50 when
he is a winner as opposed to giving up $1 when he is a loser,

The SineTrend system, as presented, is just a core from
which much more sophisticated and profitable systems can be
spawned. The trading rules I have provided are extremely sim-
ple. There is an infinite number of ways these rules can be
enhanced. For example, we know the Sinewave Indicator crosses
one-eighth of a cycle before the turning point. For longer cycle
periods, we could be entering and exiting the Cycle Mode trades
100 early. It would not be terribly difficult to add a lag factor
relating to the measured period before entering Cycle Mode
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trades. There may even be better or more reactive ways to
switch between the Trend Mode and the Cycle Mode. A correct §
mode determination is bound to have a profound effect on the §
trading system because deciding the mode is the primary deci-
sion to be made before the rules are applied. It is my desire to ]
turn you loose on making the system better. I look forward to §

hearing of your successes.

Key Points to Remember

* The SineTrend Automatic Trading System switches trading

rules depending on the mode of the market.

* In the Trend Mode, trades are made on the basis of the ;'_

SmoothPrice crossing the Instantaneous Trendline.

e In the Cycle Mode, trades are made on the basis of the cross-

ing of the Sinewave Indicator lines.

¢ The automatic trading system based on theoretical princi-
ples performs on par with commercially available systems §

right out of the box.

Chaptler 13

TRANSFORM ARITHMETIC

The real danger is not that computers will begin to
think like men, but that men will
begin to think Iike computers.

—SYDNEY J. HARRIS

The purpose for invoking transform arithmetic is to apply a tool
toward solving a differential equation problem by using simple
algebra. Without this tool, many of the problems we encounter
would be intractable. There are many kinds of transforms. For
example, Mellin and Legendre Transforms exist for working in
cylindrical and spherical coordinates. Hankel and Meijer Trans-
forms exist for working with Bessel Functions. The list goes on
and on.

The data with which we deal in trading are sampled data. We
get a sample of the data once per bar regardless of the time frame
of the sample. Many price charts are displayed as daily data. The
sampling basis is equally valid for other sampling periods, such
as weekly, hourly, or even one-minute bars. All information
scales to the sampling period. The correct transform tool to use
for this data is the Z Transform. We describe the Z Transform in
this chapter so that we can later assess the transfer character-
istics of more complicated filters. It is instructive to review
several other transforms so that we can relate our problem solu-
tions to real-world situations, achieving greater insight into
both the problem and its solution. Because most traders have
had no previous exposure to this powerful tool, I explain trans-
form arithmetic in the simplest possible manner and only in
terms of how it applies to trading.

131
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Laplace Transform

The Laplace Transform is used, among other purposes, to solve g
for the transient conditions in electrical circuits. As an illustra- i
tion, a simple electrical circuit is shown in Figure 13.1. A tran.}
stent occurs after the switch is closed. We will show the solution;
for how the voltage V changes as a function of time after the
switch is closed. From physics we know that the current flowing Ji
through a capacitor is proportional to the size of the capacitor 3
and the rate change of voltage across it. The equation for current
tlow is

=0

After the switch is closed, current flows through the resistor, 3
through the capacitot, and is returned to thc battery that has a
voltage E. From Ohm’s Law, the voltage V is the battery voltag
less the current multiplied by the Resistance R. That is,

VeE_IR=E_-rC Y
dt

We now have a differential equation to solve for V as a functio:
of time. Differential equations are pretty scary stuff, so let u

il
m
]

I
1l
~

o ]

Figure 13.1. A simple electrical circuit for transient analysis.
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invoke the Laplace Transform by substituting the Laplace Op-
erator § for the calculus operator (d/dt). Our equation now be-
comes

V=FE- RCSV
Vv E
RC-rC %Y
1 E
WS+—r]=
Rc) RC
1
v=_RC_ g
S+—1—
RC

Amazing! We have solved the problem for the voltage V using
only simple algebra. More precise, V is a function of the Laplace
Operator, and should be written as

L
RC
1

S+E

Vis) = E

In general, the output function ¥{s} is equal to the input function
X(s) multiplied by the system transfer response His). In other
words, the system transfer response is the X(s)/Y(s) ratio.

We really want the solution for voltage as a function of time.
The way we do this is to compare the relationship between the
Laplace Transform and the solution in the time domain. Trans-
form pairs for these solutions can be found in many handbooks
and textbooks on the subject. In this case, we find that the trans-
form pair is

a
S+a

= (1 —e™
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By examining like terms, we immediately have the solution for
voltage in the time domain as ]

Vit = E(1 - &%)

Thus, we have solved a relatively complex differential equatiory
using the Laplace Transform and simple algebra. In the S Dog
main, the output is the input multiplied by the transfer responsé
of t.he system. In other words, the transfer response is the ratig
of the input to the output. In this format, the transfer function
can describe filters independent of the input driving function. Ir§
our example, the input is the constant battery voltage E. Thid
input is multiplied in the $ Domain (and in the time domairg
because it is a constant) by the transfer response of the RC filter§
We will see this form of equation again when we examine 2§
Transforms. "

Fourier Transform

What Laplace Transforms are for transient analysis, Fourief
Transforms are for steady-state analysis. Recalling that thd
expression for complex frequency is ¢, when we take th¢
derivative of the complex frequency we get d[e™)/dt = jo &/*. 5¢
the Fourier Transform operator for the rate of change is j4
instead of S. The Fourier and Laplace Transforms share man$
common characteristics.

Fourier Transforms are the tools we use to describe relatio:
ships in the time domain and frequency domain. For examplég
an impulse in the frequency domain is a definition of a pud§
monotonic cycle. This cycle is a sine wave in the time domaity
Fourier Transforms have many applications for the solution &
physical problems. For example, the relationship between th§
pattern across a lens and the projected image constitute §
Fourier Transform pair. Similarly, the relationship between th§
aperture distribution of an antenna and the radiation patterr§
somewhat analogous to a flashlight beam, is a Fourier Tran$
form pair.
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Z Transform

Just as Laplace and Fourier Transforms are powerful tools for
continuous systems, Z Transforms provide a corresponding
powerful tool for discrete systems. There are significant paral-
lels between Z Transforms and Fourier Transforms. The Z
Transform can be multiplied by the transfer response of a sys-
tem to obtain a Z Transform of the system output. The sampled
data output for a discrete system can be found by taking the
inverse Z Transform. Because this theory is so important to dig-
ital signal processing, a brief review of Z Transform theory is in
order.

We begin by defining a sequence of samples of the form x, x;,
Xy, X3, and so on. We designate the sequence of values by {x{nT})},
or because the sampling period T can be considered unity,
simply {x{n}}. The sequence may consist of a finite number of
samples or can be infinite in extent. The Z Transform of the se-
quence is given as

Zixin)) = S x{njz

n=0

since all values of x are O for n < 0. Suppose the sequence {x{n))
consists of an infinity of values as

{x(n)} =

where a < 0. The Z Transform for the sequence is

la, & & &, ... }={af"

X|z)= Zoxln]z"' = iola)"z'” = iolaz‘l]"

Designating the common ratio as r = az, the Z Transform is
recognized as the geometric progression 1, r, 72, 1, r*,. ... The
sum of the terms of this progression is
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Since ris less than nnitv and & approaches infmity, the sum s
plifivs 1o £ =141 - ., Substituting » = 4z °, we ubtain

o ™ s S

l—az ~ z-u

Weo can now tind the Z Transform of a step function wheed

xi6] = Oiorn < Qand xat =1 foca =00 In 1his case,

A e
(=0 ==

One of the more interesting and wsetul propertics aof the 2
Transiorm 5 the 2ifect of a one sample delav on a funetion. Sup
POSC d sequense is given by ]

oo’ =00) X0, X020, ..
the Z Trawsiorm of this sequence is
r=w+xllz "+ 22+ %3 +. ..

Now, suppose the sequence i delaved by one sample nme.
Z Transform of the outpur sequence then s given by

Tizh millz-+xlizi+mdlzis.
Crr simply
Yzl =Xzl
That is, a onc sample time delay is cquivalenc to multiplying

Z Tranaform by 7', An additional delay results in an addition)
racctow of 7', and se o, This can be seen in cgoation form as

xa'— xz,
-1 —zlz
- 2 s )z

Transform Arithmetlc 127

Fur a transform o work, there muast be an inversion. Since
2]l = X[2], them the inverse operation is written as 27| Xzl =
x|l There are several wavs to ohtain the inverse cransform, bur
gerhaps the casicat is suggested hy the origingl definition of the
7 Transtorm, The capansion wr Xz] into a sum of Inverse pow-
ers of = will cxhibit x|n! as coetlicients of the expansion. When
Xzl is a rational fraction, the cxpansion can be made by long
divizion, For cxample, we can And the Inverse Z Transform for
the step function whose 2 Transform was

L

K|z =
Iz £-1

Perdforming the lung division, we abtain

z- 1z
z-1
1
1-z"!
z|
zl -3
2 i d
z-\."l

We have thus re-ceeated the neiginal step function with which
We startod, Wo can also covate some common Z Transform pairs
inspectian. For example, we know thar

wﬁf carn substitule @7 = @ for o {since ¢ 1 2 number less than
whity and che sampling period is anieyl and ohrain

Zie ™ ==-F .
el -

We nuw have a wansfarm pair bor an cXpopennal function,
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Annther obvions transfrm paic #xials {or an impulse June
tion. The impulss fanelion will Bave 2 value nnly during the
First sample, Ies Z Transform ia therefore unity. It follows
the ymprulse delayed by g samples i o

Approximations of Analog Transfer Punctions

Cccasionally, it is desicable wo convern a0 known analag bran:
functon in the 5 Domain ine a digital wansier fanction, This B
raost oiren done with the eransler innerion of a low-pasy or and
pass filter, such a5 2 Butrerworth or Chehyahay type, beratse &
the wealth of development and experience wieh these file
There gre two waps Lo perform thiy conversion. We describg
only the impulss invariant methnd because it directly relanc
the glectrical circuit described earlicr in this chaprer to sn Expg
nential Moving Avcrage (EMAL

The impulse invariant methed consists of Gniding
impulse response of the analog fileer &jel and seming £ = 6T
Z Tramstorm of the quantized impalse response is taken 50 tha
Hiz| = 1 TE. e is key wo factor the analvp transfer respongg
and vse 3 parvial fraccion cxpansion s thar the &quaust can BE
written in the Aellowing nrm:

= '.,.‘:- Jdl:
His= 2 =53

where p, ropresenty vhe sth pole [the poind at which the denoms
nator goes ko Zerol, A, is the mapnitude associsted wich the it
pale, and N is the pumber of poles. The impulse tesponse &
giwen by che Ioverse Laplace Transform, which bas e follow
foarm;

i
blel= 3 A

=1

Since each pole in the & Domain gives rise to an exponentid
term in the time domain, at the ssrople times we have
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I
ed1= > Ae
L |
We have derived che Z Transboron of an exponenlial as

Fs

RO R

?.'l{_, tkr-l_

Theealore, the Z Transfonm of che impulae response 1=

b
Flgt — ™ Az
-l -

Becalling that the teansfer respomse of the resistor-capacibor an:.-
lag pltur is gicen by

1
KT
i

M

Hisi=
5

The tentisfer response hus a single pole loceted ot 5 - FFHD We
wan innncdiotely substiture like terms w obwin the digitl
LransbyT rospomese fo e

Z
£l

mal- Wkt

.

Eiplifying, by lerding (1 - o = 27, the cguatien hecomes

Ar
Hi7l= —— [

a4l the frequency mesponse of the digital Hlter fransfor resgonse
15 Rivem ax

AT

I FP s PR LA
FTET T w
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Thr entical, orcototd, fregquenuy is that poing 2t which the wnpli.
tuwde o1 the paa eems i the denominator arg cqual. Since o -
2P owhere s the penol cormespomding oo e coesf fre.
quency, the criticdl perind is

g =l] -

;.
;": =lml - o
I
M-
o lml - o

This ia exacely the cutut! pericdd we dsserced for an EMA in
Chapler 3. Alternestlively, 1l we bovow Lhe desercd cwtoff poraad,
v can calvulare the EAMA o as

v=l-e&"

Let v look a1 che cranster cesponsc in greater doepth.

Ax
me, —————
2] =11 -nl
2 A
-] -aiz
S oy -

oy 1=l -
¥orl=al el ¥zl = AKX

Consverling e the digital domawy, and oolizg thatl z7' ootates a
woe prrisd dela, wo g

ol -l -Ax
y=dhy (-l

I weo bave a sicp mnclion ioput of iy amphieads, the ouiput
must alsa reach umity when dhe number of periods is large

Therztare. A st =qual o We conelude rhar e digital sqouvds

le:t uif 4y TediafOT-Lu[ECITIr Ao

ol
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vomn+ il wist]
This is exactly the eauaicn r an EMA. Tn other words, the

EA b= the cquevalene er o B¢ Tow-pass Glter in the physical
eor .

Key Points to Kemembey

Frinslorra anthnacoie is wsed o dlgebyaically wolve difforen-

tial ryuatione ur diffedence equation pooliletna thar wanld be

inLescuiehle olbierwise,

 Tn the @ Thomain, the nutpuat s egueal 10 the product of the
inpot and the wransler sosponee.

v CLhe crapster respomee duscnhes che podotivance of Tdlers
imdependently [po the anpud driving funcrion.

+ laplice. bouricr, and & Transfomos are relaved.



Chapter 14

FINITE IMPULSE
RESPONSE FILTERS

There is nothing permanent except change.

—HERACLITUS

A Simple Moving Average [SMA] is one example of a Finite
Impulse Response {FIR] filter. Spoken, these filters are alterna-
tively pronounced “eff-eye-are” or “fur” filters. FIR filters have
no corollary in the physical world—they exist only as digital
computations. Their unique characteristic is that their impulse
response is exactly the same as their coefficients, An impulse as
input digital data is simply unity for one sample and zero for all
other samples. As this impulse ages out, that is, as it is succes-
sively delayed, it excites each element of the filter successively,
sweeping out the amplitude of the filter coefficients. Thus, the
impulse response is the same as the filter coefficients. The gen-
eral time response of a FIR filter is

Ya=hox + hix{1] + hyx[2] + hsx[3] . . . By x[N = 1]

Or, more concisely

N-1
Vo= Z hx[N - ij
i=0

Taking the Z Transform gives us

143
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N-1 _
Yiz) = Z hX(z)z"
i=0
so that the transfer response is

Yz M
Hiz)= 57 = 2,1

Note that if the transfer response is expressed as a rational
fraction, the response of the FIR filter is all zeros. That is, there
is no denominator other than unity. From the fundamental theo-
rem of algebra, the Nth order polynomial describing the transfer
response can be factored into N terms, each of which is a zero of
the polynomial. Moving average filters are characterized as hav-
ing all-zero responses,

The lag of a FIR filter is equal to the location along the filter
where the sum of the coefficients is equal to half the sum of co-
efficients in the entire filter. In mathematical form, this condi-
tion is expressed as

Note that the first coefficient, the one with zero lag, is not used.
Perhaps an easier way to picture the lag is to imagine the filter
coefficients describing the height of a geometrical shape. If you
were to draw this shape on a piece of paper and cut it out with a
pair of scissors, the lag would be equal to the center of gravity.
That is, it would be equal to the balance point of the shape. FIR
filters are usually symmetric about their center so that lag is
exactly the center of the filter.

Weighted Moving Averages (WMA] are FIR filters that are
not symmetric about their center point. This gives them the
advantage of having less lag. The output of a 4-bar WMA is

y = |4x + 3x[1] + 2x[2] + x[3]}/10

so that the coefficients are 4, 3, 2, and 1. Discarding the first
coefticient, we see that the second coefficient is equal to the
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sum of all the coefficients [excluding the first}. Therefore, a 4-bar
WMA has a 1-bar lag. As a second example, the output of a 7-bar
WMA is

v ={7x+ 6x[1] + 5x[2] + 4x{3] + 3x[4] + 2x{5] + x|6])/28

In this case, the coetficients are 7, 6, 5, 4, 3, 2, and 1. After dis-
carding the first zero-lag coefficient, the sum of the next two
coefficients is equal to half the total sum. Therefore, a 7-bar
WMA has a lag of 2 bars.

A big advantage of symmetrical FIR filters is that lag is con-
stant regardless of the frequency of the signal being applied to
the input of the filter. This means that there is no time distor-
tion due to the filtering. The phase lag will be linear. Suppose
the time lag is 4 bars. This means there is 180 degrees of phase
lag to an 8-bar cycle period, 90 degrees of phase lag to a 16-bar
cycle period, and only 45 degrees of phase lag to a 32-bar cycle
period.

The phase lag that results from a WMA is nearly linear
throughout the passband of the filter. One nice thing about the
WMA is that higher-frequency components at and above the
critical band-pass frequency are delayed less than the frequency
components within the passband. This means that distortion
tends to work in favor of the trader by delaying the higher-
frequency wiggles less than the lag of the smoothed output.

The truth is that many of the benefits of FIR filters are
unavailable to traders because the length of the filter must be
relatively long to synthesize interesting passbands. As a result,
the induced lag is prohibitive. However, we can perform some
innovative tricks and put FIR filters to good use. For exgmple, in
Chapter 3 we showed how an SMA length can be ad]ustled to
notch out undesired frequency components. Figure 3.5 is te-
peated here as Figure 14.1 to demonstrate this effect. The SMA
has a notch in its frequency response for those cyfcle components
having an integer number of cycles across the width of the f1lte?_

An SMA is a FIR filter that has uniform amplitude coeffi-
cients. The transfer response can be viewed as a rectangle over
the finite duration of the filter. The Fourier Transform qf t}}1s
rectangle is a Sin(X})/X distribution, which is exactly what is dis-
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Figure 14.1.  Frequency response of a 12-bar SMA

played in Figure 14.1. The numerator of this function goes to
zero each time X goes through a multiple of 180 degrees. If L is
the length of the FIR filter and P is the period of the signal var
able being applied to it, the frequency response of the SMA FIR
filter in radian measure is

il 2L
Hiw) = y

P

Note that the Sin{X)/X distribution has lobes in the response
between the notches. Smoothing the time-domain response can
lower these lobes. This means we must taper the coetficients
the FIR filter. When we taper the coefficients of the filter, the
end elements have a smaller contribution to the filtering action
than they do in the uniform amplitude case. The result is that
there is less filtering action for a given length FIR-tapered fil
when compared to the uniform amplitude coefficient case of
SMA. We therefore have a trade-off between the degree of out-
of-band filtering and the efficiency of filtering the passband. A
number of amplitude tapers have been invented, each with

desired charscteristic for out-of-band signal rejection. It is im-
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Figure 14.2.
FIR filser.

Amplitude response of a three-clement linearly tapered

practical for traders to employ these tapers, however, because of
the additional lag induced by passband inefficiency. Linear coef-
ficient tapers are adequate for most trading applications.

It might be instructive to examine the passband of several
linearly tapered FIR filters. Starting with one of the shortest pos-
sible, a three-clement filter has a response of

v=|x+2xf1] + x2]1/4

The lag through this filter is just to the center of the filter, which
is 1 bar. Its amplitude response is shown in Figure 14.2. The nor-
malized frequency corresponds to a 2-bar period. So this short
filter is only useful for canceling the 2-bar cycle.

The next longest FIR-tapered filter has four elements. Its

response is
Y= {x+ 2x{1] + 22| + 63])/6

The lag through this filter is 1.5 bars to the center of the filter.
Its amplitude response is shown in Figure 14.3. The additional
term has introduced a second null for a 3-bar cycle at a normal-
ized frequency of 0.67. [The way to navigate between the nor-
malized frequency and the cycle period is to divide the
normalized frequency by 2 and then invert.] The cutoff fre-
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Figure 14.3. Amplitude response of a four-element linearly tapered FIR
filter.

quency, the point at which the amplitude response is -3 dB, is at
a normalized frequency of about 0.33. This corresponds to a 6-
bar cycle.

Continuing our sequence of successively longer tapered FIR
tilters, the response of a 5-bar filter is

Y =[x+ 2x[1] + 3x[2] + 2x{4] + x[5])/9

The lag of this filter—the distance to its center—is 2 bars. The
amplitude of this 5-bar tapered FIR filter is shown in Figure 14.4.

Figure 14.4. Amplitude response of a five-element linearly tapered FIR
filter.
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We can see that something interesting has happened. The can-
cellation of the 2-bar cycle has been lost. Although it is difficult
to see on the large amplitude scale, the cutoff frequency has
been reduced when compared to that of the 4-bar filter, but not
by much. This filter does not seem to be of much use.

By contrast, a six-element linearly tapered FIR filter has some
very interesting characteristics. Its time-domain response is

Y = (x + 2x{1] + 3x[2] + 3x[3] + 2x[4] + x[5])/12

The lag through this filter is 2.5 bars to the center of the filter.
Its amplitude response is shown in Figure 14.5. Not only has the
cancellation of the 2-bar cycle period returned, but also the cut-
off frequency has been reduced to about 0.2, a 10-bar cycle. Fur-
thermore, the 3-bar and 4-bar cycles have been notched out by
this filter. Attenuation between the notches is not uniform, but
is nonetheless substantial. This is an excellent filter for general-
purpose use by traders.

We can now continue with our filter sequence. In so doing,
we would find that we would prefer to have an even number of
elements in our tapered FIR filter so that the normalized unity
frequency, a 2-bar cycle, is always notched out. Longer and longer
cycles constitute the passband as the length of the filter is in-
creased, with the cutoff period being about 1.5 times the length

—mqerrrpAn e

Figure 14.5. Amplitude response of a six-element linearly tapered FIR
filter.
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of the filter. Never forget that the lag of an N-length filter {3
IN = 1)/2. Lag is the most crucial parameter of filter p e
for a trader.

Key Points to Remember

A Simple Moving Average (SMA) is a Finite Impulse Re.
sponse (FIR) filter with uniform amplitude filter coefficier
Symmetrical FIR filters have no time distortion and, thes
fore, have a linear phase delay.
The lag of a FIR filter is the center of gravity of the filter co
ficients.
A Weighted Moving Average (WMA) has linear phase
acToss its
A WMA always has less lag outside the passhand than it has
for cycle components within the passband.
A 4-bar WMA has a lag of 1 bar.

A 7-bar WMA has a lag of 2 bars.

A six-clement symmetrically, linearly tapered FIR filver f
one of trading’s most interesting and useful filters, i
The passband period of 2 symmetrically, linearly tapered F
tilter is approximately 1.5 times the length of the filter.

Chapter 15

INFINITE IMPULSE
RESPONSE FILTERS

Evervane is a child of his past.
—Ensia . RosTow

An Exponential Moving Average (EMA) is one example of an
Infinite Impulse Response ([IR] filter. Spoken, these filters are
almost always pronounced “eye-eye-are” filters. As the name
implies, IIR filters ring out forever (in theory) after being stimu-
lated by an impulse excitation, just like a bell. These filters are
the digital equivalent of filters that can, and have, been designed
and constructed from physical world components. As we show
in Chapter 13, an EMA is one example of an [IR filter. The trans-
fer response of the EMA is shown to be

a
Hiz) = T -

As opposed to the all-zero response of the FIR filter, the
transfer response of the IR filter is expressed as a rational frac-
tion. When we examine the Z Transform for the filtered output,
we can understand why this produces the infinite impulse
response. For the EMA, this is
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Y(z) = H{z)Xi{z)
__ oX[z)
C1-{1-ajz!

When we multiply both sides of this equation by the denomina-

tor on the right side, we obtain

Yiz) - (1 - a}Y[z)z"! = a X[z}
Yiz) = aX(z) + (1 - oJY{z)z"!

This equation says that the current output depends not only on '.
the current input, but also on the output one sample ago. That }

is, the calculation is recursive. This repeats for each subsequent
sample, so that the current output always depends on all previ-
ous outputs.

The IIR filters are generally patterned after specific analog
filter shapes such as Butterworth, Chebyshey, or Elliptic designs.
Scaling and accuracy considerations are much more important

for IR filters than for FIR filters because the iterative calcula-

tions compound rounding errors, and good judgment must be
used to determine if a particular filter is practical given the
number of bits available. We must give special attention to limit

cycles, which are low-level oscillations due to rounding error in 3
computation. As rounding errors are included in each recursion, 3
the results can be cumulative. This kind of error causes particu- §
lar trouble when using EasyLanguage because TradeStation §
rounds floating point calculations to 4 bits. If an IR filter blows 3§
up on you, the problem may not be a bug in your eode, but may 3}
result from limit cycles. If this occurs, you must modify the §
design. One thing you can do is compute the filter response in a 4
Dynamic Linked Library (DLL) that has been compiled at a J
higher level of precision, and call up that DLL from your Easy- §

Language code.

A pole is a zero of the denominator polynomial of a filter §
transfer response. The EMA has a single pole in its transferj
response. More complex filters use a larger number of samples §
of previous outputs, and therefore have a higher-order polyno-
mial in the denominator of the transfer response. From thej
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fundamental theorem of algebra, we know that thig polyno-
mial can be factored into zeros of the polynomial. Since the
polynomial is in the denominator of the transfer response
these factors are called the poles of the response. These are thé
values of z' at which the transfer response blows up mathe-
matically because the denominator is zero, giving an infinite
result. This cannot happen in the filters because z! is con-
strained to be in integer numbers and the poles never occur at
integer numbers in stable filters. Higher-order filters are called
multipole filters. In trading, we are limited to just a few poles to
calculate IR responses because each pole necessarily brings
additional lag. Without the lag consideration, we could theoret-
ically continue to add an infinite number of poles to our filter
design to create a stone-wall filter response at the critical period.

Butterworth Filters

There is a host of multipole filter designs available. One of the
more common multipole filter responses is called a Butter-
worth filter. This filter is maximally smooth at zero frequency.
That is, it has the highest number of derivatives that have a null
value at zero frequency. The filtering advantage of using multi-
pole Butterworth filters is shown in the comparison in Figure
15.1. All three filters have a cutoff period at a 20-bar cycle. We
clearly get more filtering with each increase in the number of
poles.

The low-frequency lag of Butterworth filters can be com-
puted by the following equation:

Lag = N*P/r

where N = number of poles in the filter
P = critical period of the filter

The equations for a two-pole Butterworth filter in EasyLanguage
notation are



154 Hacket Seicnce [or Traders

ATtenange
BERBRZEes

Figere 15,1, Kesponses for one-. oo, dnd thies-pole filers having .
I+ bar cutoll lawreasreg the oumber of podet s frises the lag for

men cuaall parrod
e e R ]

Infinite Impulss Wespanse Fillers i

a = ExpValuei-1 4141 14159/,
b=2"a"Cos [1L414° 180/ M
y= byl -aa s« i1} - b+ a"ali8]"fx+2"{1] « 2

where P = cutodf peniod of the two-pole filter. The equations lor
g three-pole Butterworth filter in EasyLanguage notation are

d = ExpValusl-3. 14159/
b=1"a*Cos [1.738* LA/,
o=a"m,
y= b+ clHl] =ic+ bel* W] + c "3
o {1 =Becl* (] = cl/R1*(x + 3*xd 1] + 3"xf2] + 3]},

where P = catodf period of the three-pole filter. The merits of the
higher-order filters are shown in Fygures 152 and 153, Clearly,
the higher-order filterns ofier greater fidelity when the lag is held
(e En

—

b
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Butterworth Filter Tables

It is often easier to use a lookup table to get filter coefficients]
than uniquely calculate the coefficients each time they are used.
In Tables 15.1 and 15.2, the notation is defined as follows: A[0] is
used with the current price data, A[n] is used with the price data}
[n] bars ago, A[2] is used with price data 2 bars ago, and B[n] is
used with the previously calculated filter output [n] bars ago]
These tables are sure to make it easier to use higher-order filters.

Gaussian and Other Low-Lag Filters

The first objective of using smoothers is to eliminate or reduce]
the undesired high-frequency components in the price data}

Table 15.1. Two-Pole Butterworth Filter Coefficients
Period Al0] Al1] Al2] B[1]}

2 0.285784 0.571568 0.285784 -0.131366

4 0.203973 0407946 0.203973 0.292597

6 0.130825 0.261650 (.130825 0.704171

8 0.088501 0.177002 0.088501 0.975372
10 0.063284 0.126567 0.063284 1.158161
12 0.047322 0.094643 0.047322 1.287652
14 0.036654 0.073308 0.036654 1.383531
16 0.029198 0.058397 (0.029198 1.457120
18 0.023793 0.047586 0.023793 1.515266
20 0.019754 0.039507 0.019754 1.562309
22 0.016658 0.033317 0.016658 1.601119
24 0.014235 0.028470 0.014235 1.633667
26 0.012303 0.024607 0.012303 1.661342
28 0.010739 0.021477 0.01073%9 1.685157
30 0.009454 0.018908 0.009454 1.705862
32 0.00838¢ 0.016773 0.008386 1.724025
34 0.007490 0.014980 0.007490 1.740086
36 0.006729 0.013459  0.006729 1.754388
38 0.006079 0.012158 0.006079 1.767204
40 0.005518 0.011037 0.005518 1.778753

Table 15.2. Three-Pole Butterworth Filter Coefficients

B[3]
0.001867
0.043214
0.123145
0.207880
0.284610
0.350920
0.407548
0.455938
0.497514
0.533488
0.564848
0.592385
0.616731
0.638395
0.657784
0.675232
0.691011

BJ2]
—.026816
-0.247486
-0.607116
-0.934652
-1.2002.63
-1.412114
—1.582459
~1.721388
-1.836396
-1.932941
-2.015013
—2.085571
-2.146834
-2.200500
-2.247883
-2.290012
~2.327708
~2.361631
-2.392315
—2.420202

B{1]
-0.336246

Al3]
0.170149
0.100733
0.050373
0.027610
0.016541
0.010629
0.007213
0.005111

Al2]
0.510448
0.302200
0.151118
0.082830
0.049622
0.031887
0.021640
0.015334
0.011250
0.008492
0.006565
0.005179
0.004156
0.003385
0.002794
0.002333
0.001967
0.001674
0.001437
0.001242

All]
0.510448
0.302200
0.151118
0.082830
0.049622
0.031887
0.021640
0.015334
0.011250
0.008492
0.006565
0.005179
0.004156
0.003385
0.00279%4
0.002333
0.001967
0.001674
0.001437
0.001242

Alo]
0.170149
0.100733
0.050373
0.027610
0.016541
0.010629
0.007213
0.005111

Period

0.398405
1.080990
1.505892
1.783327
1.976163
2.117205
2.224560
2.308883
2.376806
2.432658
2.479376
2.519020
2.553078
2.582648
2.608560
2.631451
2.651819
2.670059
2.686486

] < O

8
10
12
14
16

0.003750
0.002831
0.002188
0.001726
0.001385
0.001128
0.000931
0.000778
0.000656
0.000558
0.000479
0.000414

0.003750
0.002831
0.002188
0.001726
0.001385
0.001128

18
20
22

157

24
26
28

0.000931
0.000778
0.000656
0.000558
0.000479

30
32

34

0.705347
0.718425
0.730403

36
38

0.000414

40
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Figure 15.4. Lag of a three-pole Butterworth filter with a 10-bar period

cutoff.

Therefore, these smoothers are called low-pass filters, and they §
all work by some form of averaging. Butterworth low-pass filters 3
can do this job, but nothing comes for free. A higher degree of fil- §
tering is necessarily accompanied by a larger amount of lag. We §
have come to see that this is a fact of life.

The downfall of most trading indicators, lag causes the fail-
ure to react to price changes in a timely manner. A better}
approach to filtering, therefore, is to minimize the lag and accept
the resultant smoothing. The importance of lag {group delay i8
an engineer’s way of saying lag, which distinguishes lag from the
phase delay through the filter} is demonstrated in Figure 15,4.
This illustrates the lag of a three-pole Butterworth filter that}
attenuates cycles shorter than 10 bars.

The low-frequency lag of a Butterworth filter can be es
mated by the following equation, where N is the number
poles in the filter and P is the longest cycle period to pa
through the filter:
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Lag= N*P/n*

The lag story gets worse as the frequency components of the
input waveform get closer to the band edge of the filter. The
higher-frequency components within the passband of the filter
are actually delayed more than the lower-frequency compo-
nents. This is exactly the opposite of what a trader desires. We
have to react more quickly to rapid changes in the market, and
we therefore prefer a smoothing filter that has less lag with the
higher-frequency components.

A Gaussian filter is one whose transfer response is described
by the familiar Gaussian bell-shaped curve. In the case of low-
pass filters, only the upper half of the curve describes the filter.
The use of Gaussian filters is a move toward achieving the dual
goals of reducing lag and reducing the lag of high-frequency com-
ponents relative to the lag of lower-frequency components. We
can construct multipole Gaussian filters that provide a desired
degree of smoothing. The group delay of a three-pole Gaussian
filter having a 0.1 cycle per day passband is shown in Figure 15.5
for comparison to the delay produced by a Butterworth filter.

For an equivalent number of poles, the lag of a Gaussian filter
is about half the lag of a Butterworth filter. More important, the
higher-frequency components have even less lag than the low-
frequency components. With Gaussian filters, the lag jas a func-
tion of frequency) goes in the right direction for traders—decreased
lag. However, a Gaussian filter has about half the smoothing
effectiveness as an equivalently sized Butterworth filter. A four-
pole Gaussian filter has about the same smoothing performance
as a two-pole Butterworth filter. Thus, performing the same
amount of filtering, these two filters have about the same low-
frequency lag, but the Gaussian filter preserves the original price
function with greater fidelity because the higher-frequency com-
ponents within the passband are not delayed as much as those
within the Butterworth filter. Comparative filter responses of a
two-pole Butterworth filter and a two-pole Gaussian filter, each
having a 10-bar cycle passband, are shown in Figure 15.6.

There is no magic to the Gaussian filter. It can be defined
simply as the multiple application of an Exponential Moving
Average (EMA). The transfer response of an EMA is
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o
Hzl= T —

Applying the EMA N times gives us an N-pole Gaussian tilter §
transfer response expressed by the following equation:

Hi = (1)

At zero frequency, z™' = 1 because the Z Transform of a function |
is just the function itself at zero frequency. Therefore, this low-
pass filter gain is unity. Also, the denominator assumes the
value of oV at zero frequency. The cutoff frequency of the filter }
is defined as that point where the transfer response is down by |
3 dB, or 0.707 in amplitude. If the transfer response is down by 3 ;
dB, then the denominator, the only term that is a function of §

Figure 15.5. Lag of a three-pole Gaussian filter with a 10-bar period cutoff. 3
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Figure 15.6 Comparison of two-pole filters illustrates that the Gaussian filter has
much less lag than the Butterworth filter. The Gaussian filter has less smoothing.
Chart created with TradeStation2000i ® by Omega Research, Inc.

frequency, must be up by 3 dB, or 1.414 in amplitude. When this
occurs, we obtain the following relationship:

(1-{1-az'¥=14140"

where z"' = ¢ and w = 2x/P. Crunching through the complex
arithmetic, we arrive at the solution for alpha as

o =—f + SQR(B* + 2}
where B = (1 - cos {w))/{1.414¥N - 1),

We can use this generalized solution for alpha to compute
the coefficients for any order Gaussian filter. And, because z is
Synonymous with a l-bar lag, we can easily use EasyLanguage
code to form equations from the N-pole transfer response for the
Output.
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One pole:  y=ax+ {1 -alyfl]
Two poles:  y=o2x+2(1 —o)y[l] {1 - a]y[2]

Three poles: y=ox +3{1 — aJy{1] - 3(1 — a)*¥[2] + {1 — ot*¥[3]

Four poles:  y=ot*x +4{1 — a)y[1] - 6(1 - af*¥{2]
+4{1 - ofy[3] - (1 - &)¥{4]

As we have seen in terms of the Butterworth filter, it is often
easier to consult a lookup table to get filter coefficients than it is:
to calculate the coefficients each time they are used. In Tables §i
15.3-15.6, column A lists the price data coefficient and column 3
B lists the previously calculated filter output [n] bars ago. E

Gaussian Filter Tables

Table 15.3. One-Pole Gaussian Filter (EMA)

Period Alo] B[1}

2 0.828427 0.171573

4 0.732051 0.267949

6 0.618034 0.381966

8 0.526602 0.473398
10 0.455887 0.544113
12 0.400720 0.599180
14 0.356896 0.643104
16 0.321416 0.678584
18 0.292186 0.707814
20 0.267730 0.732270
22 0.246990 0.753010
24 0.229192 0.770808
26 0.213760 0.786240
28 0.200256 0.799744
30 0.188343 0.811657
32 0.177759 0.822241
34 0.168294 0.831706
36 0.159780 0.840220
38 0.152082 0.847918
40 0.145089 0.854911

Infinite Impulse Response Filters

Table 15.4. Two-Pole Gaussian Filter Coefficients

Period Al0] B[1] B[2]

2 0.834615 0.172854 —.007470

4 0.72295% 0.299460 -0.022419

6 0.578300 0.479080 -0.057379

8 0.457577 0.647112 -0.104688
10 0.365017 0.791668 -0.156684
12 0.295336 0.913103 -0.208439
14 0.242632 1.014847 -0.257479
16 (.202250 1.100556 -0.302806
18 0.170835 1.173357 —0.344192.
20 0.146017 1.235757 —0.381774
22 0.126125 1.289719 —0.415844
24 0.109966 1.336777 —0.446743
26 0.096680 1.378133 —.474813
28 0.085633 1.414738 —0.500371
a0 0.076357 1.447346 —0.523703
32 0.068496 1.476567 —0.545063
34 0.061779 1.502894 —0.564672
36 0.055996 1.526729 —0.582726
a8 0.050984 1.548408 -0.599392
40 0.046612 1.568205 -0.614817
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Table 15.5. Three-Pobe Gaussian Filver Cocefficients

Rockel Science for Traders

Period Alo] Bl1] Bi2|

2 0.836701 0.173094 <[ RIERT
4 0.7 18670 0312814 -0.032617
L] 0.558792 0.529009 —.FR3LR3
L 0422292 0. 749159 =(L187130
10 0.318295 0.251680 —1.301899
12 0.24 2068 1.130321 <0 425875
14 0.186612 1 285644 =.550960
16 0. 146016 1420251 ~LAT13T]
18 0. 115940 1.53 7154 0. 787614
0 0.093340 1.639147 ~{.895601
12 D.oTaLL] 1.728632 1. 896056
14 0.062791 1.807607 ~1.089148
26 0052354 1877714 =1.175270
1R D407 5 1940297 -1 254018
30 0.037442 1.996460 ~1.328618
al (L032045 2047111 -1 396887
34 0027635 1 93000 -1.460217
36 LIRLRE ) 2.134754 ~1.519058
38 00209546 1172895 -1 573824
40 0018409 1 I0THAS -] 614889
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Table 15.6.  FourPole Gaussian Filier Coefficients
Period Ao Bl1] Bl2] B4

2 0837747 0173178 0011247 5 0000004
4 0716200  0.320247 aﬂ.MH&; &% 0.000041
& 0.547128 0559812 0117521  0.010965 0.000384
8 0400596 0817734 0250758 0034176 0.001747
i 0288459 1066023 -0.426152 Q075715 0.005045
12 0209650 1293310 -0.627244 0135304 0010919
|4 (153408 1496645 839084 0209527 0.019599
6 0113779 1676861 -1.054449 (0204804 (.0308H5
1% 0085631 1836187 1264344 0386920 0.044405
20 0065397 1977213 -L466015 0483104 0059700
22 0050648 2102418 -1.657560 0580814 0076320
24 039744 2214011 -L.R3RID3 O6TRIOT 0093860
26 0.031571 2313908 -2.007ROM4 0774311  0.111980
28 (L5363 2403709 -2 166681 0868012 0130403
30 0020589 1484797 -2315331 0958854 0.148910
a 0016875 2558316 -2454368 1.046508 D0.167331
34 0013953 1625237 -21584450 1.130799 018553
3 0011831 1646378 -2706235 1211662 0.203436
M 0.009770 2742435 -21.820356 1289107 0220456
40 0008263 2794000 2927413 1383199  0.238049
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Key Points to Remember

An Exponential Moving Average [EMA) is an Infinite Imp
Response (IIR} filter, having only one pole in its response.
Classical filter types, such as Butterworth, Chebyshev, and
Gaussian are IIR filters. 3
Lag of an IIR filter is nonlinear as a function of input fr
quency.

Low-frequency lag of a Butterworth filter is N*P/n?.
Gaussian filters have the least lag of all the multipole fil§
ters. The low-frequency lag is approximately half the lowd
frequency lag of an equivalently sized Butterworth filter. 7
Calculations involving TIR filters can blow up due to thd
cumulative effect of rounding errors in the computation.

Chapter 16

REMOVING LAG

Money is a terrible master
but an excellent servant.

—P.T. BARNUM

In 1960, R.E. Kalman introduced the concept of optimum esti-
mation. Since then, his technique has proven to be a powerful
and practical tool. The approach it utilizes is particalarly well-
suited for optimizing the performance of modern terrestrial and
space navigation systems. Many traders not directly involved in
system analysis have heard about Kalman filtering and have
expressed interest in learning more about applying it to the mar-
ket. Although attempts have been made to provide simple, intu-
itive explanations, none has been completely successful. Almost
without exception, descriptions have become mired in the jar-
gon and state-space notation of the cult.

In spite of the obscure-looking mathematics {the most impen-
etrable of which can be found in Dr. Kalman’s original paper),
Kalman filtering is a surprisingly direct and simple concept. In the
spirit of pragmatism, we will not deal with the full-blown matrix
equations that a thorough explanation of Kalman filtering re-
quires, and we will be less than rigorous in its application to trad-
ing. Rigorous application requires knowledge of the probability
distributions of the statistics. Nonetheless, we end with practical
and useful results. We depart from the classical approach by work-
ing backward from Exponential Moving Averages (EMAs|. With

167
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this process, we introduce a method to achieve a nearly zero-la
moving average. From there, we develop an automatic trading sy§

tem based on the zero-lag principle.

Suboptimal Filters

Tracking filters use a linear model to estimate the position of §
target. The classic example is a gunner shooting at an enemy tad
get. He estimates the angle of his gun and shoots. The forwarj
foot soldiers radio back how much deviation there was from thy
target. The gunner computes the incremental change requiref
for his new gun angle from the deviation. An Alpha filter show
that this model constitutes using the previous estimate plus §

constant times the difference between the last real position ani
the last estimate. The equation for this filter is

X~ = XM[1] + ofZ - XA[1])

where X" = estimated next position
Z = last real position

This is exactly the same as the EMA with which you are famik
iar. Let us rearrange the terms so that the EMA is written as 3

EMA = o*Price + {1 — o) " EMA]|1]

As you know, this EMA equation produces a lag in the estimated
price. We can improve our estimate of position by adding an est§
mate of the velocity to the last known position. The positiof

equation then becomes
X =XM1+ gf{Z + K*V*) - XM1]}

where V* = velocity estimate
K = gain factor
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The velocity estimate is an EMA of the rate of change of posi-
tion, so that

vr=VA1]+ BV - Vi)

This is the Beta part of an Alpha-Beta filter. An Alpha-Beta filter
considers not only the change of position, but also the change of
velocity. In trading terms, an Alpha-Beta filter not only consid-
ers the price, but also the change of price [momentum).

We can create a near-zero-lag filter for the special case where
B = 1. In this case, the EMA can be written as

ZEMA = a*{Price + K*(Price — Price[3]}} + (1 — o)*ZEMA[1]

where ZEMA is the zero-lag EMA. I took the liberty of uéing the
three-day momentum as the velocity estimate. Figure 16.1 shows

1HH

W0

R £

R Y Y

15V

R

i t1000n

o]

TS

Figure 16.1. Zerolag moving average compared to standard EMA with ¢ = 0.25.
Chart created with TradeStation2000¢® by Omega Research, Inc.
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an EMA using o = 0.25 compared to a ZEMA using the san
alpha and K=0.5. This is not a bad zero-lag filter, even if it is sulg
optimal. It is suboptimal because it is not a true Kalman filter,

ZerolLag Trading System

The concepts of the Instantaneous Trendline and the Zero
EMA are very powerful. To demonstrate just how profound th;
concepts are, I designed an intraday trading system and applied §
to one of the more exciting and challenging contracts that exif
today-—the S&P futures. An intraday trade is defined as arf
active trade that is traded and then closed at the end of the da$
Figure 16.2 illustrates the back-tested results of the S&P fu

Total Net Profit $146,450.00
Gross Profit $336,937.50 Gross Loss [$190,487
Total # of trades 283  Percent profitabie
Number winning 142  Number losing
trades trades
Largest winning $15,000.00 Largest losing ($1,512
trade trade
Average winning $2,372.80  Average losing [$1,350
trade trade
Ratio avg win/ 1.76 Avgtrade
avg loss (win & loss)
Max consec. 7  Max consec.
Winners losers
Avg # bars in 7 Avg# bars in
winners losers
Max intraday ($17,650.00)
drawdown
Profit Factor 1.77 Max # contracts

held

Figure 16.2. ZeroLag performance summary on S&P intraday—1 Jan
1997 to 7 June 2000.

Removing Lag:

market from 1 January 1997 to 7 June
management stop was used. The resulg
come over $40,000 per year per contrac
trade of $517, and slightly more than h;
jtable! This system trades an average ¢
new part of the code (after the Hllbert
you are familiar) starts where T set
computed by sequentially capturing
lowest low today. The ZEMA is com
0.5. Now the trading rules come into.
Rule number one demands an out:
taken. That is, either the highest high
yesterday’s high or the lowest low tod
terday’s low. Next, a new position is
bar of the day. A new position is
that the MarketPosition equals zero {
second bar of the day, if the ZeroLag
neous Trendline and the filter condi
tion is established. The filter conditio
of the second bar must be greater thi
high of the second bar must be ]:u,gh
and the close of the first bar must |
its range. A similar rule exists fo
the open of the second bar must be
the low of the second bar must be
and the close of the first bar mi
its range. Also, a crossover rule ex
the following set of conditions
crosses over the Instantaneous ‘It
bar is less than the high of the p
current bar is in the upper half of
of conditions is met, then sell: Th
Instantaneous Trendline, the low'"
than the low of the previous one,
is in the lower half of the range of tH
The complete code to achieve th
Figure 16.3. There is not a lot of new
code is used to compute the Instan
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{Compute InPhase and Quadrature components }
01 = {.0962*Detrender + .5769*Detrender[2] -
.576%*Detrender [4] - .0962*Detrender[6]}*

{.075*Period[1] + .54);
I1 = Detrender [3];

Inputs: Price((H+L}/2),
alpha{.33);

Vars: Smooth(0),
Detrender{0),

11(0),

Q1{0}, {Advance the phase of Il and Q1 by 90 degrees)
31{0), JjI = (.0962*I1 + .5769*I1([2] - .5769*I1{4] -
ja(o), .0962%I1[6]) *(.075%Period{1] + .54);

12(0), §O = {.0962*Ql + .5769%Q1[2] - .5769%Q1[4]) -
Qz2{(0), .0962*Q1 [&] ) *(.075*Period[1] + .54};

Re (0},

Im{Q), {Phasor addition for 3 bar averaging]}
Period(0), I2 = I1 - §Q;

SmoothPeriod (0}, 02 = 01 + jI;

SmoothPrice(0),
DCPeriod(0),
RealPart {g),
ImagPart (0},
count (0},
ITrend(0),
Trendline (0},

{smocoth the I and Q components before applying
the discriminator}

I2 L2*%I2 + _B*I2[1];

Q2 = .2%Q2 + .8%*Q2[1];

{Homodyne Discriminator}

Zerolag {0}, Re = I2*I2[1] + Q2*Q2{1];

Ht (0}, Im = I2*02[1] - Q2*I2f1];

Le(o), Re = .2*Re + .8*Re{l];

Yh(0}, Im = .2*Im + .8+*Imf1);

¥1(0); If Im <> ¢ and Re <> 0 then Period =

360/ArcTangent {Im/Re) ;

If Period > 1.5*Period[1] then Period
1.5*Period{l];

If Period <« .67*Period[l] then Pericd
.67*Perjod[1l];

If Period <« 6 then Periocd = 6;

If Period » 50 then Period = 50;

Period = .2*Period + .8*Period[l];:

SmoothPeriod = .33*Period + .67*SmoothPeriod[1];

{Initialize ZeroLag}
If CurrentBar = 5 then begin
ZeroLag = (H+L)/2;

End;

If CurrentBar > 5 then begin
Smooth = (4*Price + 3*Price(l] + 2+*Pricel2] +
Price[3]) / 10; '
Detrender = {,0962*Smooth + .5769*8mooth[2] -
-5769*%8Smooth [4] - .0962*Smooth[6])*(.075+%
Period[1] + .54);

{compute Trendline as simple average over the
measured dominant cycle period}

( T DCPeriod = IntPortion{SmoothPeriod + .5):
il Lnue {continued)

Figure 16.3. Zerolag Intraday Trading System EasyLanguage code. ; Figure 16.3. (Continued).
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ITrend = 0;

For count = ¢ to BCPeriod - 1 begin
ITrend = ITrend + Pricelcount];

End;

If DCPeriod > {0 then ITrend = ITrend / DCPeriod;

Trendline = (4*ITrend + 3*ITrend([l] + 2*

ITrend{2] + ITrend([3]) / 10;
If CurrentBar < 12 then Trendline = Price;

{set yesterday’s high and low)}
If Date <> Date[l] then begin
Ht = High;
Lt = Low;
Yh = Ht[1];
Yl = Lt[1];
End;

{Establish today’s high and low}
If High > Ht then Ht = High;
If Low <« Lt then Lt = Low;

{Compute zero lag filter}
ZeroLag = alpha* (Price + .5* (Price - Pricel3])) +
{1 - alpha) *ZercLag[1];

{Demand an outside day to trade}
If Date »= 0 and (Ht »= Yh or Lt <= Y1} then
begin
{New positions are entered at the end of
the second bar of the day}
If Date = Date[l] and Date > Date[2] and
MarketPosition = 0 then begin
If Zerolag » Trendline and Cpen »
Open[l] and High » High{l] and
Close[1] » Low[l] + ({(High[1] -
Low([1])/ 3 then buy;
If ZerolLag < Trendline and Open <
Open[l]} and Low < Low[l] and
Closell] < High[1l] - ¢High[1] -
Low([1]}/ 3 then =ell;
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If ZeroLag Crosses Cver Trendline and High
< High[l] and Close > Low + (High -
Low} /2 then buy;
If ZerolLag Crossges Under Trendline and Low
> Low[l] and Close > High - (High -
Low) /2 then gell;
Bnd;

{cont inuedl

Figure 16.3. (Continued).

Figure 16.3. (Continued).

additional input—the alpha used in the ZeroLag EMA. In this
case, I assigned a value of 0.33 to alpha, corresponding to a 2-bar
lag if the EMA lag was not removed.

Key Points to Remember

» Exponential Moving Average (EMA) lag can be removed by
adding a short-term momentum factor times a gain term to
the current price in the EMA equation.

* A ZeroLag EMA is similar to a Kalman filter with a constant
gain.

¢ The theoretical Instantaneous Trendline and ZeroLag Indica-
tors are powerful tools even for demanding intraday trading.



Chapter 17

MAMA—THE MOTHER OF
ADAPTIVE MOVING AVERAGES

(hank ke o mon of acrion.
2t dike g mas of Sogs i

Flergni-Lonns Bepcsom

We have already encountered one method to make Finite Im-
pulse Respomsc (FIR| filters adaptive—setting the cutoff [re
guency to be sume multiplier times the measured cvele period,
In certain apecial cases, the length of the Simple Moving Aver-
gge (SMA s ser not only to smooth, but also to specifically
motch out, some undesired frequency components. The Instan-
ranecus Trendline is one such example, We can produce a much
faster Tespomse £o r;l'n:lngn:s. if we introduce 11r.~11.]l1'||:-=1|'i11_,' into an
[abinate Trmpulse Besponse (TR fileer calewlation. Nonlineanoies
usually depend on price volacility. We brielly describe several of
these approaches before applying the Hilhert Transform lor a
e approach

Kauiman's Adaptive Moving Average

Kautman’s Adaptive Moving Average (KAMA| is based on the
concept that 4 neisy market requires a slower trend than one
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with less neize.! The basic .,Iln:'plc t5 thar che trendiine musgsS
lug further hehind the price in o relatively noise market to avei])
Being penetnibed by the price. The moving avengge can speerd e
when the prices meve consiswcntly in one dirceoon. Aceandi

to Perry Kaufman, who invented the svstern, FAMA is intended
tir use the fasrest rend possible, hased on the smallest calculg-
by period for the existing market conditions, I doees this by
changing the alpha of the EMA with cach new sample. Thes

equation tor KAMA (8
EARMA < 5 Price + |1 - 5" KAMA[]

where 5 = smeothing Gictor. This is exactly Whe sone equation
that we wsc lor the Exponcntial Moving Avcraoe (ENMA] E‘:l':l:pr
the variable ¥ replaces the alpha constznt of the EMA

The epnation for the smecthing facror involves rwo bound-
aries and an efficiency racio,

= |E"[fastest — slowesl) — slowese)

Fasrest reters to the alpha of the shortest period boundary, 511:-1.'-'--
est refers to the alpha of the longest period bovndary, The suges
wested pericd boursdaries are 2 amd 30 hars. In this case, the Ewi

ilphas are calewhiibed 1o be

Faswese =212 + L) =0La8a7
Slorwres = 2020 + U =0.03415

simplifying the equastion for the smooching facror, we e

8= LI F + 0064502

The sfficlency sai (E)is ehe absolute value of the dillerence S
ol price across the caleulaton sran divided by the sum of the s

aulmian, Perey | drading Systenis and Methods dnd ed, Mew Yorkl .
Jabin Wilew & Soos, 1995,
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absalure value of she individual poce differences across the cal-
culathon spaun. The equation for F is

- [Price — Price|n|

| Price[d] - Price[i + 1]

The default value tor N s 1L However, testing wo find the hese
lcngth is suggested.

Yariable Index Dynamic dveraue

Yartable Index Dynamic Average VIDYA) uses 2 pivotal smonch
g constant that s fixed” The suggested value of s constant
2 0.2, corresponding wo the alpha of a nine-day EMA. The cgua-
rion for VICVYA is
VIDYA = 102k Close + |1 = 0271 VIDYA[]

Again, thiz 15 exactly the same squation as an EMA except the
relative valatility teom & bBas heen included o ingoduce the
momlingarity. The walodility teran s the ratio of the standand
deviation of Closes over the last & days o the standand deviarion
af Closes aver the last = davs, where m s greater than n, Sug-
grsted values are & = 9 and e = 30,

MESA Adagnive Moving Average—a.k.a. MAMA

Forgive the whimsy of the name [ atrached o this unigoe indi-
cator, hut with that name Fos sure you wrll alw ays remember it
Lile I'-""-"l-'i.-"L and VIDY A e strsing point for 2LANMA iz 2 con-

"Chacde, Tushar § and Stanley Keall, Tie New Techrdod] Troder Mew
Turk: Jobn Wilev & Sans, 1994,
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ventional Exponential Moving Average (EMA). The equation fo:
an EMA is written as ]

EMA = o* Price + (1 — o)*EMA[1]

where o is less than 1. In English, this equation says that the]
EMA is comprised of taking a fraction of the current price and
adding one minus that fraction times the previous value of thg
EMA. The larger the value of ¢, the more responsive the EMA}
becomes to the current price. Conversely, if o becomes smaller]
the EMA is more dependent on previous values of the averagd
rather than the current price. Therefore, a way to make an EMA
adaptive is to vary the value of o according to some independent
parameter.

The concept of MAMA is to relate the phase rate of changy
to the EMA alpha, thus making the EMA adaptive. The cycl§
phase goes from 0 through 360 degrees in each cycle. The phasy
is continuous, but is usually drawn with the snap back to §
degrees as the beginning of each cycle. Thus the phase rate of
change is 360 degrees per cycle. The shorter the cycle, the faste]
the phase rate of change. For example, a 36-bar cycle has a phasi
rate of change of 10 degrees per bar, while a 10-bar cycle ha
rate of change of 36 degrees per bar. The cycle periods tend to
longer when the market is in a Trend Mode.

The cycle phase is computed from the arctangent of the ra
of the Quadrature component to the InPhase component.
obtain the phase rate of change values by taking the difference
successive phase measurements. The arctangent function oni}
measures phase over a half cycle, from —90 degrees to +90 d¢
grees. Since the phase measurement snaps back every half cyc
a huge negative rate change of phase every half cycle resulf
from the computation of the rate change of phase. Measurel
negative rate changes of phase can also occur when the markd
is in a Trend Mode. Any negative rate change of phase is theg
retically impossible because phase must advance as time if
creases. We therefore limit all rate change of phase to be no le§
than unity.

The alpha in MAMA is allowed to range between a max
mum and minimum value, these values being established 4

MAMA——The Mother of Adaptive Moving Averages 181

inputs. The suggested maximum value is FastLimit = 0.5, and
the suggested minimum is SlowLimit = 0.05. The variable alpha
is computed as the FastLimit divided by the phase rate of
change. Any time there is a negative phase rate of change, the
value of alpha is set to the FastLimit. If the phase rate of change
is large, the variable alpha is bounded at the SlowLimit.

The arctangent function produces a phase response between
—90 degrees and +90 degrees, with a phase wrap back to -90
degrees. There is a huge negative rate change of phase across this
phase wrap boundary. By limiting this negative rate change of
phase to +1, the alpha used in the EMA is set to the FastLimit.
The phase wrap boundary occurs at 0 degrees and 180 degrees of
a theoretical sine wave due to the 90-degree lag of the Hilbert
Transform.

The variable alpha is guaranteed to be set to the FastLimit
every half cycle due to the measured phase snap back. This rela-
tively large value of alpha causes MAMA to rapidly approach the
price. After the phase snaps back, the alpha returns to a typically
small value. The small value of alpha causes MAMA to hold
nearly the value it achieved when alpha was at the FastLimit.
This switching between the relatively large and relatively smail
values of alpha produce the ratcheting action that you observe in
the waveform. The ratcheting occurs less often when the mar-
ket is in the Trend Mode because the cycle period is longer in
these cases.

An interesting set of indicators result if the MAMA is
applied to the first MAMA line to produce a Following Adaptive
Moving Average (FAMA). By using an alpha in FAMA that is half
the value of the alpha in MAMA, the FAMA has steps in time
synchronization with MAMA, but the vertical movement is
Dot as great. As a result, MAMA and FAMA do not cross unless
there has been a major change in market direction. This suggests
an adaptive moving average crossover system that is virtually
free of whipsaw trades.

The MAMA code is shown in Figure 17.1. This code is nearly
the same as the one that computes the Hilbert Transform
Homodyne Discriminator cycle measurement {see Chapter 7,
Figure 7.2), with the additional code to compute phase rate of

change, the nonlinear alpha, and the MAMA and FAMA lines.
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Inputs:

vars: Smooth(0),

If CurrentBar > 5 then begin

Price( {H+L) /2},
FagtDimit (.5),
SlowLimit {.05);

Detrender (0],
I1(0).,

Q1(0},

jx(o),

jo(o},

12(0),

Q2(0),

Re{0},

I'l'l'l(o)'o

Period (0},
SmoothPeriod (0},
Phase (0},
peltaPhase (0],
alpha (0},

MAMA (0} ;

FBAMA (0} ;

Smooth = (4*Price + 3*Priceil] + 2*price[2] +-?:
Pricel3]1) / 10; &

Detrender = {.0962*Smooth + .§789+*Smoothi2] - -
.5769*Smooth (4] - .0962*Smooth[6])*
{.¢075*Period[1] + .54};

{Compute InPhase and Quadrature components}
Q1 = (.0962*Detrender + .5769*Detyender [2] -
.5769*Detrender [4] - .0962*Detrender (6]} ) *

(.OTS*PeIiOd[l] + .54);
I1 = Detrender[3];

{advance the-phase of I1 and Q1 by 90 degrees} ;

il = {.0962*I1 + .5769%I1[2] - 5769*I1[4] -
_p8e2*I1[6])*(.075*Periodll] + .54);
JjO = {.0962*Q1 + _5769*Q1[2] - .5769+01 (4] -

.0962%QL[6])* (.075*Period (1] + .54} \;
(continued&v
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{Phasor addition for 3 bar averaging)}
12 = I1 - jO;:
Q2 = Q1 + 3I;

{Smooth the I and Q components before applying
the discriminator}

I2 » ,2%I2 + .B*I2f1);

Q2 = .2%Q2 + .8%Q2([1];

{Homodyne Discriminator}

Re = I2%*I2[1] + Q2+%Q2[1);

Im = I2*Q2{1] - Q2*I2[1]);

Re = .2%Re + _8*Re[l]:;

Im = .2*Im + .8*Im(1];

If Im <> 0 and Re «<» 0 then Period =
360/ArcTangent (Im/Re) ; ;

If Period » 1.5*Period[l] then Period =
1.5*Period[1];

If Period « .67*Pariod[l] then Period =
.67*Perliod (1] ; :

If Period « 6 then Period = §;

If Period » 50 then Period = 50;

Pariod = ,2*Period + .8*Period[l];

SmoothPeriod = .33*Pericd + .67*SmoothPeriod[1l];

If I1 <> 0 then Phase = (ArcTangentiQl / I1));

DeltaPhase = Phase(l] - Phasge;

1f DeltaPhase « 1 then DeltaPhase = 1;

alpha = Speed / DeltaPhase;

If alpha < SlowLimit then alpha = SlowLimit;

MAMA = alpha*Price + (1 - alpha)+*MAMA[1];

FAMR = .5*alpha*MAMA + {1 - .5*alpha)*FAHm[1];

Plot1{MAMA, “MAMA”);
Plot2 (FAMA, “FAMA*);

Figare 17.1. MAMA Easylanguage code.

Figore 17.1. (Continued).



184 Rocket Science for Traders
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Figure 17.2. MAMA rapidly ratchets to follow price.
Chart created with TradeStation2000i® by Omega Research, Inc.

The unique character of MAMA is shown in Figure 17.2. The;
thicker MAMA line ratchets closely behind the price. The thi
FAMA line steps in time sequence with MAMA, but the moves
ment is not as dramatic because its alpha is at half value. Fro
Figure 17.2 it is clear that the two adaptive moving average lin
only cross at major market reversals. Their action enables the cres
ation of a trading system that is virtually free of whipsaw trade

Key Points to Remember

* Most adaptive moving averages use momentum as the bas
of the nonlinearity of alpha in an Exponential Moving Aver
age (EMA).

» Mesa Adaptive Moving Average (MAMA| uses the Hilbe ;
Transform phase rate of change to produce a ratcheting
action of the adaptive moving average.

*+ MAMA is ideal as the basis of a trading system to minimiz
whipsaws.

Chapter 18

EHLERS FILTERS

To affinity—and beyond!

—Buzz LIGHTYEAR {PARAPHRASED)

The most common filters used by traders are moving averages—
either Simple Moving Averages {SMA) or Exponential Moving
Averages (EMA). These are linear filters. Linear filters are opti-
mal for smoothing stationary, slowly varying signals that are
corrupted with high-frequency noise. Unfortunately, price data
are not stationary much of the time. A coin flip experiment is an
example of a statistical stationary process. However, if weighted
coins are introduced into the experiment randomly, the statis-
tics of the experiment now depend on which coin is used, and
therefore are nonstationary. The signals we deal with can often
be described statistically. For example, human speech has noise-
like statistics. The process is nonstationary because it changes
from moment to moment. Although speech has noiselike char-
acteristics, that is not to say that it does not carry information.
Price data resembles speech in statistical characteristics. The
data are both noiselike and nonstationary. One of the main prob-
lems we encounter in trading when using technical analysis is
that we must attempt to restore signals that are often nonsta-
tlonary and are also corrupted by noise. When dealing with non-
Stationary signals that have sharp transitions of their mean or
When dealing with impulsive noise, linear filtering techniques
8lve poor results. In this chapter, I describe how to make some
amazing nonlinear filters that better handlec these signals.

185
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The filters | have inweneed are nonbiocar FIR fileers. It turna

out that they provide both extraordinary smouthing in sideways ¥

markets and ageressively follow maor price movements with

minimal lag. The development of my [:ltors statts with a gencral 4§
class of FIR filters called Qrder Statistic [O8) filters. These filters §
arc well-known for speech and image processing,’ to sharpen @

edges, inerease concrast, and for robust estimation. In contrast to
Lncar filters, where temporal ordering ot the samples is pre-
served, 05 tilkers base their operation on the ranking of samples
within the filter window. The dara arc rankcd by their summary
statistics, such as theit mean or varianes, rather chan by their

temporal positian. y
Among OS5 fileers, the Median filter is the best known. In g $
Median filter, the outpur is the median value of all the data val- 8

ues within the obacrvation window. As oppiosed to an averaging
filter, the Median filrer simply discards all data cxcept che
median value In this way, impulsive noize spikes and cxtreme

price data are chiminated racher than included in the average, 38

The median value can fall at the first sample in the data window,

at the last sample, or anywhere in between, Thus, temporal 3§
characteristics are lost. The Median blwer tends to smooth out 38

short-term variations that lead to whipsaw trades with lineat fil-
ters, However, the lag of a Median filter in vesponse to a sherp
and sustained pnice movement is substanoal—it necessarily is §
ahout half the filter window width. The response of 2 Modian fil-
ter that has a 10-bar window width s shown in Figure 18.1. Note;
that the tilter did not respond to small price movements in
October;November or in JTanuary February, which possibly
could have eliminated several potential whipsaw rades thaty
would have been produced by linear filters, Finding the median §
i3 a sitnple soring problem, and, convenicntly, TradeStation:
contains a median function. Therctore, 1 will not provide cod®
for a Median filter. Median filters can be smoothed with an EMASY
to make them more presentable and casicr to read. '
‘Pitas, lnannis, and Apastasios N. Venctsanopouios. “Ondur Statstich
in Digital Image Processing,” Proceedrags of the 1EEE 80712 [199213:
18923-192k1.

Ehlers Filters L&"

Figure 18.1.  Besponst of 4 10-bar Median Gher.
Ftar? crvatic w 156 Fraade U weaXPar L b Oncige Dearrd, Tor

Like OF filters, Ehlers filters are robust. Additionally, they
exploit both the rank-order and wmparal characeeristies of the
data. Tha is, the Ehlers filter maintains the temporal altiniuy
hetween s cocfficients and the statistic in use. The generalized
Ehlers filter ean be ericnted to any statistic of vour choics, making
it cxiremely vasy to calculare. The most obvious statistie to use 16
prive momentum because these data cnsble the nonlinear Eblers
filter to rapudly faliow price changes fus they enable the KAMA TR
filter (o do the same). The range of statistc used is vireually limu-
less, For example, the Eblers hlver could be nonlinear with respect
to acceleration [the rate change of momentum), Signdl-to-WNaise
Katja, volume, money How |delea price times volumcel, aod soon,
Even other indicators, such as Stochastic or Relative Strengrh
Indicators |HS1s! can be used as a statisue. This will becotne move
apparent after we cxplain the calculanng proceduare

The Ehlers Glter has a formuiation sioplar to that of the TIR
filter, 1f v js the lileer outpur and x, is the ith input acioss o Gleer
window width 1, then the ecquation is
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Y=C X +CaXa+ C3Xz3+ CeXqt+ ... + CpXp

The c’s are the coefficients that contain the statistic in whig
you are interested. For example, if you are interested in the 5-by
momentum, each coefficient would be, in EasyLanguage noy
tion,

Price{count] — Price[count + 5]

In this way, the coefficients are ordered according to their sij
within the window. For example, c; could possibly have
largest momentum and ¢, could be the next largest momen
and their temporal locations within the filter is retained. U
gain of the filter must be retained. This naturally occurs by nd
malizing each of the filter coefficients by their sum so the sign
output of the filter is expressed as an affine polynomial. So, t}
complete formal description of the Ehlers filter is

n-1

EE CiX;

y=S2—
C
i=0

The statistic used in the Ehlers filters should be detrendy
for maximum effectiveness. If we do not detrend the statis§
each of the coefficients will have a large common term relat#
to any differences there may be between them. If the coefficidl
have a large common term, the Ehlers filter behaves almid
identical to an SMA. A
The EasyLanguage code for the Ehlers filter is given in Fig¥
18.2 for the particular example of a 5-bar momentum.
The example filter has 15 coefficients, although the array
coefficients is dimensioned to 25 to allow experimentst$§
using a longer filter. (If a filter longer than 25 samples is desit§
the dimension of the Array must be increased accordingly.}{
the first calculation, we find each coefficient in the filter as §
5-bar momentum. The next computation sums the numeras§
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Inputs: Price((H+L)/2),
Length (15} ;

Vars: count (0},
SumCoef (0},
Num(0) ,
Fiitc{o);

Array: Coef[25] (0};

[coefficients can be computed using any statistic of
choice ------=--- a 5 bar momentum is used as an
example}

For count = 0 to Length - 1 begin
Coef [count] = AbsValue (Pricel[count] -
Price[Count + S]};
end;

{sum across the numerator and across all coefficients}
Num = 0;
SumCoef =0;
For count = 0 to Length -1 begin
Num = Num + Coef [count] *Price[count];
SumCoef = SumCoef + Coef [count];
end;
Filt = Num / SumCoef;

Plotl (Filt, “Ehlers~”);

Figure 18.2. Easylanguage code to compute Ehlers filters.

as the product of each coefficient and the price at the corre-
sponding sample, and sums the coefficients alone. Finally, the
filter is completed by taking the ratio of the numerator to the
coefficient sum. The performance of this filter is shown in Fig-
ure 18.3.

Figure 18.3 illustrates how the momentum-derived Ehlers
filter clearly responds quickly to rapid price movements while
rejecting minor price movements to a greater degree. This kind
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A

15-Bar Ehlers Filter: \ i J||I || i
S-fI:ar Mq:rr-f|1|;|_|r|1 | r| i IHr'—-lr“H.lllfl‘l\lNJ 17
B = PR R N .
- | ["

FELI':lEr sr..'l'r-.|

=L Mol N e { || |i. ]

prrna

" o ww B = i AL
Figurc 18.3.  Performance of 4 15-bar Eblers filter using 1 5-bar momentum

compared to the performance of 2 15-bar S¥A.
Cherr! crestfon i Draseilation 26005 by Cwmeps Bl e

ot tilter can be used to quickly respond to changes in trend direc-
tion without producing the whipsaws that are so prevalent when
linear filters are employed. The Ehlers fileer can be rendered very
aggressive by squaring each coefficient.

The greater flexibility of Ehlers filters opens up whaole
new avenues ol technical analysis research, For example, the
statistic can be some tangible parameter of market activicy
such as money flow or volume, Also, more arcane parameters
such as Signal-to-Noise Ratio can be used. In this case, the co-
ellicients where the Signal-to-Noise Ratio is the greatest would
have the largest weight, discounting the price data values where
the Signal-to-Noise Ratio is less. Also, Ehlers filters can he
adaptive. For example, the length of the 5-har momentum
Ehlers filter in our example could be adaptive to the length of
the measured cycle period. Such a filter would be both adaptive
and nonlinear.
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15 Bar Adaptive
Ehilars Fiter

Figure 18.4.  Performance of an adaptive 15-bar Eblers [ilier compared to

fhe performance of @ 15-har SMA.
Ot rpatend wifh Trele ¥ S oW S fy nopa Menarrol, e

The flexibility and adaptability of the Ehlers filter is demon-
strated in Figure 184, where the statistic used is the difference
hetween the current price and the previously caleulated value of
the filter. . ;

Since whipsaw signals rend to be ﬁupprﬂsﬁed_ w}th E_hll;:r_s fil-
ters, exciting new oscillators can be ereated by taking the differ-
ence of Ehlers filters that have different scales. Imagine

indicators analogous to RSI or Srochastics without whipsaws!

Oscillators could also be generated from the differences of Ehlers

filters by using a different statistic in each ﬁllfﬂr.: Ju

R«:ﬁ;rdlcs; of the flexibility of the _Ehlv_ars Ié}te_f, itis fE‘SEfE:ll o
step back and reflect on the mutivntlﬂﬂ_fﬁ? ' Fr?ﬁﬁuhlio 1?:
type. By so doing, we may discover ait nptlﬂ'%ylﬁ E?di;i | I the
calculation of the coefficients. We know mar ‘-‘-"tt td_‘;ﬁ{:;l‘mhst
often nonstationary. We also know thatwe want to follow the
sharp and sustained movements of pric

e as closely as possible,
: G pe detector. Tt
This led us to use the Median filter as a8 'g?dg? '2!? nor



T Rocker Science for Traders

Fignee 18,5, Visnalzing the soarpness ub an lge.

all edges ave the sume, We cin visnalize che sharpness of cdges:
i Figure 18,3 by imagining looking down on chis ligure as we
wonld on 2 piece of gaper, illuminared from alove cur leit shouls
der, and hanging aver the edge of a desl. The edge at the top ol
Fizure 18.5 w5 vory sharp, as if the paper wore creased. Continid- -
ing down Figure 185, the lighe dillosion = more dispersed, i
prving the lusion chat the edpe becomes more rownded. I fact,
the shading of Figure 185 was generaved by & Cussian function:
whose standard deviation increased trom top oo hottom.

If we consider the gry shading levels in Figuie 185 as dis-
Lances, we e i way of compuring filter cocllicicnts in terms of
sharpmess of the edge. White is the maximum distanee in ong
direction from Lthe medizn gray, umd hiwek is the maximuwn dis-
tance in the ather direction, In this sense, distance is 0 measure
nf depicice ftom the edee, tiking inwe aceount the edge sham-
nesz. Transitioning o price chares, che differcncs in prices can :|!l|5:-:l
imugined as o distanec. Fecolling the Pythagorean Theorom (oo

Elilers Flliers

which the lengreh of the hvpotenuse of 4
sum of the squares of the lenpgths of chye.
appl it b our necds wid say that 2 geners
zample is the square root of the sum of she
dillerence between that price and each .
lengsh of the flter windew, The distg

int are che coeflicients of the Eh_'lefﬁz_“:
the distancelike cocllicients is perhaps be
erciec Lo Lthe EasvLanguage code f':"IEkL 3

Lapata: Pwical (H4Ly 20,
Lasigliini bl ;

Vars: counb 0],
LozgEaniks (00,
SgnCoe2 o],
hanlial .

rileid) ;

nrray: Coes (35100,
Dizeenomz [Z26] 100 34

Fax cousab = 0 £o Lepgoh = 1 keeglmiis s
Dowlansed [2oune] = 0y |

Fa- Tesslasik = L I:l:l_Pﬂ_.l

O p=ansee [azimk ]

S

|Frice lsmanth - : e

IFTics [gpanc| - Price

CH

Faef famuns] = Tistancezloz k1
BI |
Em o= 0

STl =g <
Par conal = 0 o Leogkn 'JI.E_IE :
Kun = Kum i Cosf [Eﬂ“F]!{..:-
Saines = dumdoel 4 '-'-'E'Fﬂli ot
CE B

TF Sunloet vw I Lheo Filc = h

“Shiwrad )

Flptl IFilzT.

Figure 15,6, Esylangmage code for GES
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' |15-Sgr Ehlers Fiser:| |
tance Crsfissls]

Figure 18.7  Pertormunce of the distance coeflicien Ehlérs ke
herrs gl uieh | rabe SRR vy Oewens Resvarch, far,

the prices across the filter abservation window are the same,
then the cocflicients of the filter are all the same, and we have
the equivalent of an SMA, TTowever, if the prices shife rapidly,
t|'_l':: dlﬁt-‘ln_ccs trom the increased price points increasse, and
higher weights are given to these filter cocificients. The per
tormance of the distance coefficient Fhlers filter is shown
Figure 15.7, :

The tilter cocilicients can be made to be even muore nonlin:
car than caleulared in Figure 18,6, For example, the distance can
be cubed or raized to the fourth power by squaring che squared
distancel. A reciprocal Gaussian response is an cven mope poie
lincar funcrion of distance that we can use 1o caloulate the filter
coctticients. These more nonlinear responscs follow the edzes in
PIICE movement more aggressively. However, the very fact the :
they are so nonlinear removes m uch of the gray arca in the re :
spomsc. The most nonlinear caleulations pru_ufu-.:t results that are
not discernable from median filters, The coctficients become
hlack and while. The tocus of our current research is 1o identi -':.

Ehlers Filters 19%

the onset of che price shift more accurately. The currently cal-
gulated distance functions are related to the change of price. In
caleulus terms, this is the [irst derivative. The shift of the rate
change of price is the ideal identifier for the impending price
move. In calculus terms, we can use the maximum of the sec-
ond derivative to pinpoint the onset of the price change. The
challenge is how to translate the second derivative into filter
coefficients without introducing so0 much noise thac the filter
response is unusable.

The opportunities 1o use Ehlers lilters in technical analvsis
are limitless, T am sure whole books will be devored to cata-
loging the various stauistics and applications where they work
best. In the meantime, vou will have the opporcunity 1o cxploit
them for your own fun and profie.

Key Points (0 Remember

« DMarket data tend to be nonstationary much of the time.
Theretore, adaptive technique or nonlinear data processing is
required for maximum effectiveness.

» Ehlers filters are casy o compute. Compute the coefficient
at each posivion in the filter for the chosen statistic, Com-
pute the [ilier as the sum of the produet of the prices times
the coelficicnts divided by the sum of cocfficicnes,

*  Ehlers filters aggressively follow sustained price shifes and
revert tooa FIR filter response when the prices are in a trading
FAngL.

* A host of indicators and trading systems can he derived [rom
Ehlers filcers.



Chapter 19

MEASURING MARKET SPECTRA

Selemog 12 the refusal bo beliawa
oz the fraxiz af hape,

— T B

All major mading sofvware plartorms have the Fast Foorer
Tramstorm [TTT] toal available. Yer, using FFTs for markel analy-
ais is analogous 1o using a chaimsaw at § wood-carving conven-
tion. While chainsaws are certainly elfective, they are not the
correct tool Tor the job. Back i [986, T wrote one of the first FFTs
for traders wsing RASIC code for an Apple I computer.’
Although TFTe are poweriul tools for many applications, there
are better and more precise tools we can use for market analysis,

A problem with FFTs is chat they are subject o several con-
siraints. One constraint is that there can only be an integer
nurnber of cveles in the dara window, For example, it we have 64
dara samples in our measurement window (it 64-paint FFT|, the
longest evele lengrh we can measare is 64 bars, The nexe longest
lemprh has 2 eyeles in the window, or % = 32-har cycle, The next
longest lengehs are % = 21 3 bars, % = 16 bars, and 50 on. There-
[ore, the integer constraine results in a lack of resolution, In
uther words, a large gap exists hetween the medsured cyvcle
lengths that can be produced, in the length of eyele periods in
which we wish to work, We cannot rell if the 1"7'3! cvele s 14 bars

Waufman, Ferry . Trading Systems and Methods, Srd ed, New Yoek:
fohn Wiley & Sons, TH9E,
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or 1% bars in length, Therefore, the spectruim measurement nees
cssarily has a low resolution.

The only way wo increase the FFT resolution is to incroase
the length of the data window. I we increase the dats lengeh 1a
256 vamples, we reach a 1-har resolurion for evele lengths in the
vicinity of a 16-bar cycle. However, ohtaining this resolution &
highlights another constraine. The cvele measurement is valid B
only if the data arc stadonary over the entire data window. This
means that a 16-bar cvcle must have the same amplitude and S
phase aver the roral 16 full eyeles. In other words, using daily 8
data, a 16-day eycle must be consistently present for over a full
vear for the measurement to be valid, Can this happen? T don's
think so! By the time a | 6-bar cycle oceurs for more than scveral
cycles, it will be observed by every trader in the world amd they
will destroy thar cyele by jumping all over it. Tts porential longs
term ¢xistence is the very cause of its demmise! The imly way 108
obtain a valid high-resolution cyele measurement is 1o select g
techiique for which only a short amoeount of data is required.
MESA flls this requirement. ]

Sl not convinced! Lot us demeomstrare this point with®
rome measurements. Figure 19,1 shows how we have converted
the amplitede of 2 conventional hell-shaped spectum display
mto gray density according to the amplicude of the spectrall
components. Think of the gray shading ranging [rom white hot'S
ta ice cold. Shading the amplitude enables us to plot the spee=8
trum comtour below the price bars in time synchronization. A8
white line represcnts a sharp, well-defined cvele, A wide light™S
ETEY 513'1'.'.'1'-'.'11 tells us char the top of the ]‘.-E”-:-ih:lpud CUTVE 15 vers =
broad and that the measurement has poor resolution. Figure 19,2
i5 a 64-point FFT measurcment of a theoretical 24-bar sine wave”
Since this is a theorerical evele with no noise, the measurements
should be precise. But it is not! The spectral contour shows chae®
the measurement has very poor resolution. The measured lengths
vould as casily be 15 hars as 30 bars. Figure 19.3 is a 64-point FFT
taken on real market data. Here, we can barcly determine ehuat
the evele is moving, but cannot delinitively identify it Revisit=s
ing these data later using the MESA measurement technigue, weS
will see just how much more precise the MESA system is.

s

o

|

Measnring Market Spectia

16 i} ad 40 &
CYCLE PERIDD

Fignee 19.1.

spectrum amplitnde o shadiog cenversion
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& Ga-polat FET of 2 teoretical 23-har gicle
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[ Toctober  — THowsber

Figure 19.3. A 64-point FFT of March 1996 Treasury Bonds.

The notional schematic for the way MESA measures the §
spectrum is shown in Figure 19.4. The data sample is fed into §
one input of a comparator. This data sample can be any length— |
it can even be less than a single dominant cycle period. The |

other input into the comparator comes from the output of a dig-

ita] filter. The signal that is input into the digital filter is white |

noise (containing all frequencies and amplitudes). This digital
filter is tuned by the output of the comparator until the two
inputs are as nearly alike as possible. In short, what we have
done is pattern matching in the time domain. We have removed
the signal components with the filter, leaving the residual with
maximum entropy [maximum disarray).

Once the filter has been set, we can do several things. First,
we can connect a sweep generator to the filter input and sense
the relative amplitude of the output as the frequency band is
swept. This produces the bell-shaped spectral estimate similar

Measuring Market Spectra

Feedback
White Adaptive Comparator
Noise Filter

Waveform

Figure 19.4. How MESA measures the spectrum.

201

Figure 19.5. MESA measurement of a theoretical 24-bar cycle.
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to the one shown in Figure 19.1. This spectral estimate is, in §
fact, the cycle content of the original data sample within the 3
measurement capabilities of the digital filter. Second, because {
we have a digital filter on a clock, we can let the clock run into §
the future and predict futures prices on the assumption that the §

measured cycles will continue for a short time.

The MESA spectrum measurement is notable in several j
respects. Most important, only a small amount of data is §

required to make a high-quality measurement. The MESA algo-
rithm is, therefore, highly likely to be able to make a measure-

ment using nearly stationary data, as the data need remain §
stationary for only a short while. As previously indicated, cycle A

1 Dctober 1 Novermber | December Ti056 February 1 March
™ - T i !

Figure 19.6. MESA spectrum measurement of March 1996 Treasury
Bonds.
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measurements are valid only if the data are stationary. Also,
because the MESA algorithm requires only a short amount of
data, we are able to exploit the short-term coherency of the
market. This is entirely consistent with the Telegrapher’s Equa-
tion solution to the Drunkard’s Walk problem. This means that
when the market is in a Cycle Mode, the measured cycle has
predictive capability. Additionally, the MESA approach makes
high-resolution spectral estimates. The high-quality measure-
ment of the theoretical 24-bar cycle is shown in Figure 19.5,
where only one cycle’s worth of data is used in the measure-
ments. Here, the spectral contour is a single line, meaning that
the bell-shaped curve is just a spike centered at the 24-bar cycle
period. Figure 19.6 shows the ebb and flow of the measured cycle
for the March 1996 Treasury Bonds. While clearly illustrated
with the MESA approach, this cycle characteristic was only
inferred in the FFT measurement.

Key Points to Remember

* The Fast Fourier Transform (FFT) is not the proper tool to
analyze market data.

* AnFFT can measure only an integer number of cycles within
its observation window.

* An FFT requires a large amount of data to achieve high-
resolution measurements. If we are looking at market data
over a long time span, the FFT is useless because the data
cannot fulfill the requirement to remain relatively station-
ary in order to achieve a valid measurement.

* MESA operates by pattern matching in the time domain.
Data outside the short observation window are rejected.

* There is typically only one dominant cycle in the market at
a time.



Chapter 20

OPTIMUM PREDICTIVE FILTERS

The impossible is often the untried.

—Jim GOODWIN

Technical analysis is necessarily reactive to the action of the
market. The indicators we develop are largely generated to sense
the direction in which the price is expected to go. The predictive
nature of these indicators is based on correlation to past experi-
ence, so the expectation logic runs as follows: If something
happened before, it will very likely happen again. However, no
indicator is truly predictive in the scientific sense.

In this chapter, I describe a predictive filter, explain how to
generate this filter, and {most important] define the conditions
under which the filter can be most effectively used. Like all
technical indicators, the Optimum Predictive filter cannot be
used universally. However, carefully observing those conditions
where it is appropriate can make the Optimum Predictive filter
a valuable addition to your arsenal of technical analysis
weapons. [ extrapolate from the concept of Optimum Predictive
filters and discuss another way to eliminate lag from moving
averages.

Optimum Predictive Filters

An Optimum Predictive filter is simply the difference between
the original function and its Exponential Moving Average

205
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(EMA).! That's it! It really is that simple! While the implemen.-

tation is rather uncomplicated, the derivation is considerably §

more complex. In general, the response of an optimum system is

described by the solution of the Wiener-Hopf equation, a discus- }

sion of which is well beyond the scope of this book.

Having defined an Optimum Predictive filter, we must }
quickly specify the conditions that are required for that filter to 3

be valid. There are two such conditions. One condition is that

the amplitude swings of the original function must be limited,
The second condition is that the probability of the function pas- $&
sing through zero value must satisfy a Poisson probability distri-

bution. It turns out that these conditions are easy to satisfy.

Without getting into the math, a Poisson probability distri- '_ ]
bution tells us that the number of crossings we expect are not far §&
removed from the average number of crossings. This is simply M

another way of saying that the market must be in a Cycle Mode. 38
An approximation to the Poisson probability distribution can be
achicved using market data if the prices have been detrended. It 381

is absolutely crucial that we detrend because buy/sell signals are §

obtained by the crossing of the signal and the predictive filter 3

lines. If the price has not been properly detrended to meet the j
Poisson probability constraint, the lines will not cross correctly. 4

Since we desire a predictive filter, lag must be held to an ;
absolute minimum. However, the price data must have at least |
some smoothing to separate the valid signals from the false. We |
use a 4-bar Weighted Moving Average (WMA) because it has a §
lag of only 1 bar. We detrend by taking the smoothed price less °
the smoothed price 2 bars ago. This particular momentum has
the phase characteristics of a Hilbert Transformer and a lag of ]
only 1 bar. As a practical matter, we need to smooth again after |
detrending to minimize the noise that was introduced by the
detrending action. We therefore have 3 bars of lag just to obtain
the proper detrended signal. This will cause some phase distor- §
tion of the output. The phase lag due to the 2-bar lag is 3+360/ §

Wiley & Sons, 1966.

Lee, Y.W. Statistical Theory of Communication. Ncw York: John }

Optimum Predictive By

Period. However, the Hilbert Transformer.1
phase lead. Therefore, if the data have 3
the detrended price will be exactly in phase:
price. The detrended price will lead in phage
periods and will lag in phase for shorter cycle tigiciiie
market is in a Trend Mode, the cycle periods :
As a result, under Trend Mode conditions. sisekts $h
early will be produced. However, the Poig;on. ; crite-
rion is not likely to be met under these conditionaideany event
the signals are invalid when the market is ih % Tyend Mode.
These limitations must be accepted. srflomr s

The filtered output of the EMA should lﬂf"iﬁlﬁaetrended
price by about 45 degrees in phase. When we seé's-45-degree
phase lag, we know that the dominant cycle somponent is
approximately at the cutoff frequency of the BMA filter. The
phasor diagram in Figure 20.1 shows us why this is so and
demonstrates why the prediction works at all. The Detrender is
a phasor at a reference angle of zero and rotates counterclock-
wise. The DetrendEMA lags the Detrender by about 45 degrees.

-DetrendEMA _ Predict
Detrender
DetrendEMA
Figure 20.1. The predict Phasor Diagram.
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When we subtract the latter from the former in vector arith-
metic, we reverse the direction of the DetrendEMA and then
ptli]nrm vector addition. When we do this, the Predict vector
results, .

Since the DetrendEMA is at the cutoff frequency of the
EMA, its amplitude is about 70 percent of the Detrender ampli.
tude. At a 45-degree angle, the real and imaginary components
are equal at a relative amplitude of 0.5 (0.7*Cos(45)]. The vector
subtraction in complex arithmetic is Predict = 1 -0.5 + j0.5 = 0.5
+ f0.5. Since the two components of the Predict phasor are both
0.5, the absolute amplitude of the Predict phasor is 0.7 from the
Pythagorean Theorem. Therefore, the Predict phasor must he
multiplied by 1.4 to have the same normalized amplitude as the
Detrender phasor.

Frequency components within the EMA passhand will not
be attenuated as much as those components outside the passs
band. Additionally, the EMA passhand’s frequency components
will have less than 45 degrees of phase lag. If the phase lag i
small, then the vector difference between the Detrender and thie
DetrendEMA will be a vector with a very small amplitude. The
small-amplitude Predict vector contributes little as a predictor.
However, if the DetrendEMA lags the Detrender by much more
than 45 degrees, it falls outside the passband of the EMA filter,
thus severely reducing its amplitude. In this case, the Predict
vector will lead the Detrender by less than 45 degrees and wil
also have a very small amplitude. Therefore, having the fres
quency component outside the EMA passhand also does not cons
tribute to an effective predictor,

A solution does exist to provide the proper phase
ship. First, we must compute the market cyele, using the 1
Transform. Then, we use the computed cycle period to computt
the desired alpha tor the EMA. From Chapter 13, we remembé
that the calculation is .

a=] - e

Figure 20.2 gives us the code to perform all the calcula --j.
for the Optimum Predictor. As we have seen before, the majors

Inputa: PFricel (H+L) /2};

Yaro: Smoothi{gl.
Detrandar (o],
T1E0};
g1 iel.

11 00),

jgto,

13{a),

a210) ,

e 0],

Im{a},

Pearicd (),
SmoothPariod (0],
Detrendard (0},
Emoatha {0y,
alpha 0],
DetrondEMA (0] ,
Predict (0}

If CurrentBar > 5 then begin. =
Smooth = {4*Price + J*Pricef]
Price[31) / 10 i
Decrender = (. 0962%Smooth « 18
-5769*5mcoch(4] - ,0BEI*SmO
Period[1] + 5803 OO

{Compute InPhase and Quadcal
01 = [.0962*Decrender
LETE9 D s
[, 075+Pericd(l] &
I1 = Detcrendar[3)i

[Advance the phase of i
i1 = |.0962%11 » 5768
,0962*11[611%(.07
j": - i-UH!*ﬁli u __ -
.0962%01 [6] 1% [ O76

{fhasor addicion [ox 3 Iﬂ_fl"_
12 = It - iy 3
92 = Q1 & 31; i

209
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[Smooth the I and O components bafore applying
the discriminator]

Id = .2%I3 + .0B*I3[1];

g2 = 2402 « _8+02[1];

[Homodyne Discriminacor |

Re = $2¢12[1] « Q2=gafirl;

Im = F2+Q2[1] - Q2«12 (1]

Ea = . Z*Raé + .B*Ha(l];

Im = .2%Im &« .E*Iml1];

If Im «» § afid Be «» 0 then Period =
JE0/ArcTangsnt (In/Rel |

1f Period » 1.5*Period(l] then Pericd =
1.5 Period 1] ;

If Pariod « . G7'Peariod[l] then Period =

JET*Pericd (L]

IE Period « & then Pericd = E:

If Period > 50 chan Period = 50;

Feriod = .Z2*Pariod + .8*Period(l];

SmoothPeriod = .33*Pericd & ,&7*SmoothPeriod|L]

[optimum Predictar]

Detrender? = .S*Smooth - .S*Emooth(d];
Bricoth? = [d4*Detrender? + 3*Detrender2(l] -
a'Derranders (2] « Detrendecz[3]] 7 10:
alpha = 1 - ExpValus(-&.28/Period)

DetrendEMA = alpha*Smoothld =
i1 - alpha) *DecrendEMa 1] ;
Fredict = 1. 4* (Bmoothl - DetrendEMA)

Flotl (Smooth2, =Signal”®);
Floaktd (Predict, *Predict®);

Bnd;

Figure 20.2.  (Continued).

ity of the code involves the computation of the period
the Homodyne Discriminator algorithm. Once the period h
been computed, the Optimum Predictor is found in just a
lines of code. First, the minimum-length Hilbert ‘I‘?mns!‘urmﬂ‘
used to compute the Detrender2 value from the prices that ha

Dptimam Predictis

been smoothed by the 4-bar Weighted |
Detrender? is smoothed in the 4-bar
The HJFI'.'I..H of the EMA is Complited
and the EMA of Smooth is taken s
the DetrendEMA. The difference
Detrend EMA is multiplied by 1.4
Finally, the Smooth2 and leht
cators, :
The Optimum Predictor is plol
graph below the price chart. Buy an
Predict and Smooth2 lines cross,
deed prescient. The Optimum P
best in trading systems when ¢
rules to eliminate the false s
point of the LeadSine of tlmSmm v
a confirming signal.
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Predictive Moving Averages

The concept of taking a difference of lagging line from the origi-
nal function to produce a leading function suggests extending
the concept to moving averages. There is no direct theory for
this, but it seems to work pretty well. If I take a 7-bar WMA of
prices, that average lags the prices by 2 bars. If I take a 7-bar
WMA of the first average, this second average is delayed another
2 bars. If I take the difference between the two averages and add
that difference to the first average, the result should be a
smoothed line of the original price function with no lag. Sure, 1
could try to use more lag for the second moving average, which
should produce a better predictive curve. However, remember
the lesson of Chapter 3? An analysis curve cannot precede an
event. You cannot predict an event before it occurs.

If we then take a 4-bar WMA of the smoothed line to create
a l-bar lag, this lagging line becomes a signal when the lines
cross. This is as close to an ideal indicator as we can get. There

Inputs: Price({H+L)/2);

Vars: WMAL{O},

WMA2 {0},
Predict {0},
Trigger (0);
WMAL = (7*Price + &*Price[l] + 5*Price(2] + 4*Pricel[3]
+ 3*Price(4] + 2*Price[s] + Pricel6]) / 28;
WMAZ = (7*WMALl + 6*WMAL [1] + S*WMAL[2] + 4*WMA1[3] +

3*WMAL [4] + 2*WMA1l[5] + WMAl[&]) / 28;
Predict = 2*WMAl - WMA2;
Trigger = (4*Predict + 3*Predict[1] + 2*Predict [2] +
Predict) / 10;

Plotl{Trigger, “Trigger”};
Plotz (Predict, “Predict”};

Figure 20.4. EasylLanguage code to compute predictive averages.
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Figure 20.5. Predictive moving average and trigger signal.
Chart created with TradeStation 2000i® by Omega Research, Inc.

is no phase distortion. The code to compute this indicator is
given in Figure 20.4. The code could hardly be simpler. A sample
of the indicator is shown in Figure 20.5.

Key Points to Remember

e A theoretically optimum predictor exists.

e The Optimum Predictor is calculated as the difference be-
tween a detrended signal and its Exponential Moving Aver-
age (EMA).

¢ The EMA constant of the Optimum Predictor is computed
using the measured dominant cycle as the cutoff period of
the filter.

* Moving average lag can be eliminated by taking the moving
average of the first moving average, taking the difference
between them, and adding that difference back onto the first
moving average.



Chapter 21

WHAT YOU SEE
IS WHAT YOU GET

Success is a journey, not a destination.

—BEN SWEETLAND

That famous half-glass of water—optimists see it as half-full and
pessimists see it as half-empty. An engineer sees the glass as hav-
ing been designed with too much capacity. That which we see is
really a matter of perception. Market technicians have designed a
wide variety of techniques to visualize what has happened in the
past in order to infer what the future holds. Candlestick charts
and Point and Figure charts are two examples of charting price
data. When it comes to indicators, there is a plethora of wiggles,
squiggles, zigzags, channels, and so on, that requires volumes to
describe.

I would now like to add to this cacophony of displays one so
new and novel, one so sensitive, that it dramatically pinpoints
variations and anomalies that cannot be removed with mathe-
matical filters—at least within the lag constraints imposed by
trading considerations. All we do is plot the InPhase and Quad-
rature components of the Hilbert Transform. We can certainly
plot these components in a subgraph below the price chart so
they resemble an oscillator. However, if we were to plot these
two components against each other in an orthogonal set of coor-
dinates (an x-y plot), we would be exactly tracing out the phasor
diagram. Plotting the phasor is the objective of this process.

215
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The first step in generating the phasor display is to compute
the InPhase and Quadrature components exactly the way we did
in Chapter 7. The only difference is that we must plot the I1 and
QI components in a subgraph. Additionally, we must include a
line of code to output the I1 and QI values into an ASCII file.
Figure 21.1 leads you through this EasyLanguage code.

Inputs: Price ((H+L)/2);

Vars: Smooth(0),
Detrender (0),
11(0),

Q1(0),

§I1(0),

jQ(o),

I2(0),

Q2(0),

Re (0),

Im(0),
Period(0),
SmoothPeriod(0) ;

If CurrentBar > 5 then begin
Smooth = (4*Price + 3*Price[l] + 2*Price(2] +
Price(3]) / 10;
Detrender = (.0962+*Smooth + .5769*Smooth([2] -
-5769*Smooth (4] - .0962*Smooth([6])*(.075*
Period[1l] + .54);

{Compute InPhase and Quadrature components )

Q1 = (.0962*Detrender + .5769*Detrender (2] -
.5769*Detrender (4] - .0962*Detrender(6])*(.075*
Period[l)]) + .54);

Il = Detrender|[3];

{Advance the phase of I1 and Q1 by 90 degrees}
(continued)
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JI = (.0962*I1 + .5769*I1([2] - .5769*I1[4] -
.0962*I11(6))*(.075*Period (1] + .55);

jQ = (.0962+*Q1 + .5769*Q1(2) - .5769*Q1 (4] -
-0962+*Q1(6]))*(.075*Period (1] + .55);

{Phasor addition for 3 bar averaging) )
12 = I1 - 3Q:
Q2 = Q1 + JI;

{Smooth the I and Q components before applying
the discriminator}

I2 = .2%I2 + .8*1I2([1);

Q2 = .2*Q2 + .8*Q2(1);

{Homodyne Discriminator}

Re = I2*I2(1] + Q2+*Q2(1);

Im = I2*Q2([1) - Q2*I2[1];

Re = .2*Re + .B*Re([l];

Im = .2*Im + .8*Im(1];

If Im <> 0 and Re <> 0 then Period =
360/ArcTangent (Im/Re) ;

If Period > 1.5*Period[1] then Period =
1.5*Period[1];

If Period < .67*Period[1l]) then Period =
.67*Period[1];

I1f Period < 6 then Period = 6;

If Period > 50 then Period = 50;

Period = .2*Period + .8*Period[1];

SmoothPeriod = .33*Period + .67*SmoothPeriod[1];

Plotl(I1, *I*);
Plot2(Q1, “Q~");

If Date > Date[l] then Print(File(*c:\hilbert\
10-cov”), date, ™,* , I1, “,%, Q1):

Figure 21.1. Easylanguage code to create an ASCII file of InPhase and Quad-
rature data.

Figure 21.1. (Continued).
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The tinal hine of code ereates 4 hile in the HILRERT irectory
on your U drive. You should have created this directory AT
Windows Explorer before you run the program. The fle is
[C.C8V, a comma-delimited ASCI file, You will import this file
inte BExcel to generate the phasor display. Reading the file into
Excel is straightforward. just elick FILE . .. QOPEN and jres1tiomn
CAHILBERT in the Look In dialog hox. Change the Files of Type
dialog hax to Text Files, The file IQ should then appear in the
main dialog box Highhghe this file and click OFEN, and the
three columns of the file will be displayed .

The phasor 1s created by highlighting roughly 30 rows of the
twa night-hand columns and clicking on the Chart Wizard in the
Excel toolbar, In che first step of the Wizard, select the XY Scat-
ter] Plot and then choose the option te show the daca poimes con-
nected by smoath lines. Then click NEXT Accepe the defaults
of the Wizard step 2 by clicking NEXT. In the Wizard step 3,
select the Cridlines tab and then unselece the aption w show
major pridhines. Skip the Wizard step 4 by clicking FINISH.
Click on the Senes 1 legend and press the delete key o remove
it. Fanally, click on the chare and drag 1t 50 the gray graphacal
area 15 approximiate]ly sguare.

When you timish these operations, you will see a display sim-
tlar to that shown m Figure 21.7, which depicts 29 poines of a
theoretical 30-bar sine wave. Due ta the sign convention of com-
puting the CQuadrature component, the phasor track rotaces
clockwise, The cyvele period can be estimared by counting the
points in any quadrant and multiplying by 4. A perfect oyele will
plot out as a corcle in this kind of display,

We will now tallow the phasor display over 120 trading days
ot the June 1996 Tressury Bonds contract. [ like to use this old
data sct brcause it transitions from a Trend Mode to a Cvele
Mode, and back o a Trend Mode. Since there are no intermedi-
ate modes, this data set facilitates explanaton,

Figure 214 1s.a phasar plot for the dara in the shaded box of
Figure 21 3. Prices start in 4 Trend Mode at the left edge of the
box. The staning pome s located in the first quadrant of Figure
214 Since the market is in a Trend Mode, the phase hardly
advances for gbout the first 17 bars. Then, due wo the price dip
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Figure 21.2  Taenib-nine points of a 3k-kar sine wave, A perfec)
cvile plods as a circle i the phasor display

and recovery, an apparent | 2-bar cyele started. T arrived at this
evile pertod by counting the points i the lefr-half plane and
doubling them, After another few points, this cvcle tails and the
Trend Mode is reestabhished {or data to the end of the shaded
hox. The data set ends in the Trend Mode in the fourth guadrant
af the phasor plot

The Trend Maode continues as depicted 1n the shaded box in
Figure 21.5 and as a phasor in Figure 21.6, starting in the fourth
quadrant. There is no definitive cycle movement im the first 22
bars excepr for about a half eycle ot a 14-har cyele. | estimated
the period of this hall cvele by counting the number of points in
the nght halt of the plot for this pointe in time. After this bried
cyclic burst, the phasor wanders almost aimlessly for another 15
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Figure 21.4. Phusor diagram for Figure 213 data,
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bars. The path of the phasor even turns counterclockwise dur-
ing this period. A counterclockwise rotation theoretically
means that time is running backwards. This is impossible,
Therefore, the only rational explanation for the path of the pha-
sor is that the market is in a Trend Mode, where the advancing
of phase has no meaning,

A new cycle is established at the top of Figure 21.6, and con-
tinues for 14 bars to the end of the data set. The cycle period is
about 20 bars, estimated by counting the points in the right half
of the plane during this point in time. The cycle shape is cer-
tainly distorted due to large amplitude fluctuations, but it is
rotating about the origin at a relatively constant rate.

Near textbook cycles continue in Figure 21.8 for about 1.5
cycles from the beginning of the data period shown in Figure
21.7. Just by counting the points over one full rotation, we can
estimate the cycle period to be about 16 bars. However, about 21
bars from the beginning of the data set, another anomaly
appears. Two very fast whiffles, or curlycues, appear in the data.
The shorter of these appears to be about a 5-bar cycle superim-
posed on a 12-bar cycle; both of these appear to be superimposed
on the preexisting 16-bar cycle.

Returning to the phasor diagram schematic, this time in Fig-
ure 21.9, we can see an explanation for these whiffles.

A shorter subordinate cycle can be viewed as a phasor that
rotates at the tip of the Dominant Cycle phasor, rotating at a
rate faster than that of the Dominant Cycle. The Dominant
Cycle phasor is rotating at its own rate. Thus, an evanescent
five-day cycle produces a signature like the smaller whiffle in
Figure 21.8. In fact, the shorter whiffle is superimposed on the
longer 12-bar whiffle. The really interesting point is that the
two whiffles indicate that the phase of the dominant cycle
has stopped advancing, signaling the beginning of a Trend
Mode. With this identification, we see that the Trend Mode
started about 17 bars before the end of the data. Having iden-
tified the Trend onset well before the major price movement,
we are well-equipped to maximize the profit of the Trend
movement.

A subordinate cycle does not necessarily have to be a com-
plete cycle. Fractional subordinate cycles can account for erratic

Figure 21.7 Third 40-bar analysis section of Treasury Bonds. The shaded win-

dow is plotted as a phasor in Figure 21.8.
Chart created with TradeStation2000i® by Omega Research, Inc.
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Figure 21.8. Phasor diagram for Figure 21.7 data.
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Subordinate Cycle

Dominant Cycle

L |

Figure 21.9. A subordinate cycle phasor rotates
at the arrowhead of the dominant cvele phasor

paths in the phasor plot, such as the one that exists near the ori-
gin of Figure 21.6,

Subordinate cycles whose periods are longer than the penod
of the dominant cycle are more difficult to visualize. They
throw the trajectory of the dominant cycle off center. Whether
the subordinate cycle is shorter or longer than the Dominant
Cycle, the phasor plot immediately identifies the impact of sub-
ordinate cycles without performing any additional filtering,
Additional filtening would certainly introduce lag that would
make further analysis even more difficult.

The key advantage of being acquainted with the phasor plot
is that you now have a tool to precisely estimate the eyelic tum-

ing points. You want to sell when the InPhase component is at

its maximum and buy when the InPhase component is at its
minimum. These buy and sell rules are subject, however, to the

lag of the computation of the InPhase component. Reviewing

the EasyLanguage code, we see that there is a 1-bar lag due to the

4-bar WMA, a 3-bar lag due to the detrending [the center of the |

filter), and a 3-bar lag for the final computation of 11. The buving
and selling opportunity must account for this 7-bar lag in the
computation of the InPhase component. If yvou have a 14-har

What You See Is What 'Ih.-.ﬁ#-;

dominant cycle, the 7-bar lag constitutes a |80
the phasor location [i.e., a half eyclel, :w' i
detrending operation in the computation inrrody .
phase lead. Thus, you need compensate only for a ¢
lag |a quarter cycle] for this 14-bar cycle. Said anos
must anticipate the maximum InPhase combe:
|'% bars} for a selling opportunity and an
InPhase component by 3.5 bars for a )
precision technique is vastly superior to the
you may have seen described in most trading 1
Since the compensation calculation 1% so imp
try to clarify by using another example. Suppose the
cvcle 1s 21 davs, The 7-bar lag would be w facvele
120 degrees. Removing the 90-degree lead that ¢ d due ©
detrending, the resultant lag of the InPhase component is
120 < 90 = 30 degrees, Thirty degrees is one-twe. g:g”:hm
1.75 days in this example of a 21-bar eycle. So, in this case, you
wauld have to anticipate the InPhase maxima and minima by
only about two days.

Key Points to Remember

* A phasor diagram can be displayed by plotting the InPhase
and Cuadrature components of the Hilbert Transform in an

Excel x-y scatter plot. : .
*  The existence of more than one cycle can be identified by

whiffles in the phasor diagram. _ .
# The phnsnr -L'Ii.ng;rnm et h:]p vou anticipate the precise

cyelic turming points in the market.
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Many serviceable indicators exist. Improving them by mak-
ing them adaptive to current market conditions should be
the objective of every trader and is the object of this book. In
this final chapter, | review three standard indicators: Relative
Strength Indicaror (RSI), Stochastic, and the Commodity Chan-
nel Indicator (CCI). This review includes a discussion of making
these indicators adaptive to the measured cyvele period using the
Homodyne Discriminator.

RSI

Welles Wilder defined the RSI as'
RSI= 100 (1001 + RS}

where RS = [Closes Upl/(Closes Down)
= CU/CD

RS is shorthand for Relative Strength. That is, CU is the sum of
the difference in closing prices over the observation period
where that difference is positive. Similarly, CD is the sum of the
difference in closing prices aver the observation period where
that difference is negative, but the sum is expressed as a positive
number. When we substitute CU/CD for RS and simplify the

RSl equation, we get

100
R =1 - 1 + CUJCD
_ 1p0 - S00CD
=400 CU+CD
_ 100CU + 100CD - 100CD
CU+CD
100U
RSl= &0 +cp

"Wilder, [. Welles, Jr. New Concepts i Technical Trading Svstems
Winston-Salem, NC: Hunter Publishing, 1978,

Making Standard Indicators Adaptive

In other words, the BSI is the of tha wil o
delta closes up to the sum of all thF:;:IT; it
vation period. The only variable here is the shee & , '
For maximum effectiveness, the observation perioc
half the measured dominant cycle period. If the ¢
period is half the dominant cycle for a PUre sine wave. """‘5"'*1
up is exactly equal to the total closes during part o ;,:.-":"':"5' ]
trom the valley to the peak. In this case, the RSI would hac,
value of 100. During another part of the cycle—the nex:
cycle—there would be no closes up. During this half ¢
RSI would have a value of zero. So, in . half ¢
:_t’ﬁdwﬂci&tﬁetmmt:hﬂi::fmﬁtﬂﬂl hservation

\gure 211, the Easylanguage code measures the
m;ing:l the !;I.w: Discriminator ﬁ& len
pe as the basis tor finding CU and CD, and compu
RSL. Since half the evele p:riudmnynmﬂl i versal answer,
we include a CycPart input as a modifier. 'I'Hilﬁtﬂhwl]'m;
to optimize the observation period for each particular situation.

The optimized RSI tends to hhlﬂlﬂﬁﬁllﬁ!w
price data. This suggests a way to turn a good indicator into a
great indicator. If we subtract 50 from the optimized RSI, we
would get a zero mean and thus tend to have Poisson-like statis-
tics on the RSI's zero crossings. If that were the case, we could
smooth the optimized RSI and make an Optimum Predictive fil-
ter from it. That way we could anticipate signals rather than
wait for signals to cross the 30 percent and 70 percent marks
tor confirmation as is done with the standard indicator. T will
leave it to you to decide which method best suits vour needs and

purposes.

on
oy,
shoald b
R

Stochastic

The name of this indicator is rather amusing because the in-
dicator has absolutely nothing to do with a statistical sto-
chastic process. A stochastic process is defined as a randomly
determined sequence of operations. When the indicator was
forwarded by Rick Redmont to Tim Slater, then president of
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Inputs: Pricel (H+L)/2),

CycPart{.5};

Vars: Smooth(0),

Detrender{0),
T1(0),

Q1{0).,

jI{C},

jQ(o),

12(0),

Qz1{0),

Re (D),

Im{0),
Period(0),
SmoothPeriod (0},
count (0},
cuio),

cD{o),

RSI (0} ;

Tf CurrentBar > 5 then begin

Smooth = {(4*Price + 3*Price[l] + 2*Price[2] +
Pricel[3]) / 10;

Detrender = {.0962*Smocth + .5769*Smooth[2] -
.5769*Smooth{4] - .0962*Smooth[6])}*(.075*

Period[1] + .54);

{Compute InPhase and Quadrature components }
Q1 = (.0962*Detrender + .5769*Detrender [2] -
.5769*Datrender [4] - .0962*Detrender(s8])*

{.075*Period (1} + .54};
11 = Detrender[3];

{Advance the phase of Il and Q1 by 50 degrees}
JI = (.0962*I1 + 5E769%T1[2] - .5769+*11[4] -
.0962*I1[6])*(.075*Period[1] + .54) ;
j@ = (.0962+Q1 + .5769+%Q1[2] - .5769%vQ1 4] -
,0962*Q1{6]) ¥ (.075*Pericd[1] + .54);
{continued}

Figure 22.1. Easylanguage code to compute the adaptive RSI.

{Phasor addition for 3 bar averaging}}
I2 = I1 - jQ;
Q2 = Q1 + jI;

{Smooth the I and ¢ components before applying
the discriminator}

I2 = .2%I2 + .8%I2([1];

Q2 = .2%Q2 + .8%Q2[1];

{Homodyne Discriminator}

Re a I2*I2[1] + Q2*Q2[1];

Im = I2%*Q2[1] - Q2+*I2[1];

Re = ,2*Re + .8*Re(l]:;

Im = ,2*Im + .B+*Im([1];

If Im <> 0 and Re «<» { then Period =
360/ArcTangent {Im/Re) ;

If Pericod > 1.5*Period[l] then Periocd =
1.5*Periocd[1];

If Period < .67tPeriod[1] then Period =
.67*Period[l] ;

If Pericd < 6 then Period = 6;

If Pericd » 50 then Period = 50;

Period = _2*Period + .8*Period[1];

smoothPeriod = .33*Period + .67*SmoothPeriod{l]:

CU = 0;
CD = 0;
For count = 0 to Int(CycPart*SmoothPeriod} -
1 begin
If Clogse{count] - Closefcount + 1] » O then
CU = CU + {Cloge[count] -
Close[count + 11);
If Close[count] - Clope([count + 1] < ¢ then
CD = CD + {(Close[count + 1] -
Close [count]) ;
End;
If CU + CD <> 0 then RSI = 100*CU / (CU + CD);

Plotl (R8I, °“RSI*);

Figure 22.1. (Continued).
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Compu-Trac, the word stochastic was scribbled in the margin.
Tim thought that was a good name, and it stuck. The indicator
has since been popularized by Dr. George Lane.

The Stochastic measures the current closing price relative to
the lowest low over the observation period. It then normalizes
this to the range between the highest high and the lowest low
over the observation period. In equation form this is

. Close - LL

Stochastic = HH - LL

If the current closing price is equal to the highest high over the
observation period, then the Stochastic has a value of 1. If the
current closing price is equal to the lowest low over the obser-
vation period, then the Stochastic has a value of zero. These are
the limits over which the Stochastic can range.

To optimize the Stochastic for the measured cycle, the cor-
rect fraction of the cycle to use is one-half, as the Stochastic can
range from its minimum to its maximum on each half cycle
the period. As before, the code for the optimized Stochastic
(given in Figure 22.2) measures the cycle period using the Homo-
dyne Discriminator algorithm and then uses that period as the
basis for finding HH and LL and computing the Stochastic. Si
half the cycle period may not be the universal answer, we i
clude a CycPart input as a modifier. This input allows you
optimize the observation period for each particular situation.

The optimized Stochastic tends to be in phase with the o
inal price data. This suggests a way to turn a good indicator into
a great one. If we subtract 50 from the optimized Stochastic,
would get a zero mean and thus tend to have Poisson-like sta
tics on the Stochastic’s zero crossings. If that were the case,
could smooth the optimized Stochastic and make an Optim
Predictive filter from it. That way we could anticipate si
rather than wait for signals to cross the 20 percent and 80
cent marks for confirmation as is done with the standard indi
tor. I will leave it to you to decide which method best suits y

needs and purposes.

Making Standard In

Inputs: Price( (H+L)/2),
CycPart(.5);

Vars: Smooth(0),
Detrender (0),
I1(0),

Q1(0),

jI(o),

jQ(o),

I12(0),

Q2(0),

Re(0),

Im(0),
Period(0),
SmoothPeriod(0),
count (0) ,
HH(0),

LL(0),
Stochastic(0);

If CurrentBar > 5 then begin
Smooth = (4*Price + ltlriﬂ

Price[3]) / 10;
Detrender = (. on:-m i
.5769*Smooth [4] - ' Sme
(.075*Period[1] + Hl:

{Compute InPhase and Quadrature w%

Q1 = (.0962*Detrender + .5769*Detrender(2] -
.5769*Detrender (4] - .0962*Detrender([6])*
(.075*Period (1] + .54);

I1 = Detrender(3];

{Advance the phase of Il and Q1 by 90 degrees)
JI = (.0962+I1 + .5769*I1(2] - .5769*I1([4] -
.0962*11(6])*(.075*Period[1] + .54);
§Q = (.0962+*Q1 + .5769*Q1[2]) - .5769*Q1[4] -
.0962+*Q1(6])*(.075*Period([1] + .54);
(continued)

Figure 22.2. EasylLanguage code to compute the adaptive Stochastic.
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End;

{Phasor addition for 3 bar averaging)}
I2 = I1 - jQ;
Q2 = Q1 + jJI;

{Smooth the I and Q components before applying
the discriminator)

I2 = .2*1I2 + .B*I2([1];

Q2 = .2*Q2 + .8*Q2[1];

{Homodyne Discriminator}

Re = I2*I2([1] + Q2+*Q2([1]);

Im = I2%*Q2(1] - Q2*I2(1);

Re = .2*Re + .B*Re(l];

Im = .2*Im + .B8*Im[1);

If Im <> 0 and Re <> 0 then Period =
360/ArcTangent (Im/Re) ;

If Period > 1.5*Period[1l] then Period =
1.5*Period(1];

If Period < .67*Period[l] then Period =
.67*Period (1] ;

If Period < 6 then Period = 6;

If Period > 50 then Period = 50;

Period = .2*Period + .8*Period[l];

SmoothPeriod = .33*Period + .67*SmoothPeriod[1];

HH = High;
LL = Low;
For count = 0 to Int(CycPart*SmoothPeriod) -
1 begin
If High[count] > HH then HH = High[count];
If Low[count] < LL then LL = Low[count];
End;
If HH - LL <> 0 then Stochastic = (Close - LL) /
(HH - LL);

Plotl (Stochastic, ®“Stoc”);

Figure 22.2. (Continued).
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Commodity Channel Index

Refer to Figure 22.3 through discussion for EasyLanguage
coding. The Commodity Channel Index (CCI) computes the
average of the median price of each bar over the observation
period.” It also computes the Mean Deviation (MD) from this
average. The CCI is formed as the current deviation from the
average price normalized to the MD. With a Gaussian probabil-
ity distribution, 68 percent of all possible outcomes are con-
tained within the first standard deviation from the mean. The
CCl is scaled so that values above +100 are above the upper first
standard deviation from the mean and values below 100 are
below the lower first standard deviation from the mean. Multi-
plying the MD in the code by 0.015 implements this normaliza-
tion. Many traders use this indicator as an overbought/oversold
indicator with 100 or greater indicating that the market is over-
bought, and ~100 or less that the market is oversold. Since the
trading channel is being formed by the indicator, the obvious
observation period is the same as the cycle length. Since the
complete cycle period may not be the universal answer, we
include a CycPart input as a modifier. This input allows you to
optimize the observation period for each particular situation.

*Lambert, Donald R. “Commodity Channel Index.” Commodities
Magazine (October 1980): 40-41.
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Inputs: Price((H+L)/2),
CycPart (1) ;

Vars: Smooth(0),
Detrender (0),
I1(0),

Qi(o0),

j1(o),

jQ(o),

I12(0),

Q2(0),

Re(0),

Im(0),
Period(0),
SmoothPeriod(0),
Length(0),
count (0) ,
MedianPrice(0),
MD(0),

CCI(0);

If CurrentBar > 5 then begin
Smooth = (4*Price + 3*Price(l] + 2*Price(2] +
Price(3]) / 10;
Detrender = (.0962*Smooth + .5769*Smooth([2] -
.5769*Smooth (4] - .0962*Smooth[6])*
(.075*Period (1) + .54);

{Compute InPhase and Quadrature components}
Q1 = (.0962*Detrender + .5769*Detrender (2] -
.5769*Detrender (4] - .0962*Detrender([6])*

(.075*Period([1] + .54);
I1 = Detrender(3];

{Advance the phase of Il and Q1 by 90 degrees)
JjI = (.0962*I1 + .5769*I1([2] - .5769+*I1(4] -
.0962*I1(6])*(.075*Period (1] + .54);
JQ = (.0962*Q1 + .5769*Q1([2] - .5769*Q1([4] -
.0962*Q1(6])*(.075*Period[1]) + .54);
(continued)

Figure 22.3. Easylanguage code to compute the adaptive CCI.

{Phasor addition for 3 bar averaging)}
12 = I1 - jQ:
Q2 = Q1 + jI;

{smooth the I and Q components before applying
the discriminator}

I2 = ,2*I2 + .8*I2([1]);

Q2 = .2*Q2 + .8%*Q2([1];

{Homodyne Discriminator}

Re = I2+I2([1] + Q2*Q2(1];

Im = I2*Q2([1] - Q2*I2([1);

Re = .2*Re + .B*Re(l];

Im = .2*Im + .8*Im[1);

If Im <> 0 and Re <> 0 then Period =
360/ArcTangent (Im/Re) ;

I1f Period > 1.5*Period(1] then Period =
1.5*Period([1];

If Period < .67*Period[l] then Period =
.67*Period([1];

If Period < 6 then Period = 6;

If Period > 50 then Period = 50;

Period = .2*Period + .8*Period(1l];

SmoothPeriod = .33*Period + .67*SmoothPeriod(l];

Length = IntPortion(CycPart*Pericd);
MedianPrice = (High + Low + Close) / 3;
Avg = 0;
For count = 0 to Length - 1 begin
Avg = Avg + MedianPrice[count];
End;
Avg = Avg / Length;
MD = 0;
For count = 0 to Length - 1 begin
MD = MD + AbsValue (MedianPrice[count] -
Avg) ;
End;
MD = MD / Length;
If MD <> 0 then CCI = (MedianPrice - Avg) /
(0.015*MD) ;

Plotl (CC1, ™“CCI*);

Figure 22.3. (Continued).



EPILOGUE: SPLASH DOWN

At Lift Off, we said our goal was to revolutionize the art of trad-
ing by introducing the concept of modern digital signal process-
ing. | hope you agree that this has led to the development of some
profoundly effective new trading tools. More important, we hope
that these new trading tools have given you a new perspective on
how to view the market as well as how to technically analyze it.
Rocket Science for Traders was written on several levels. At
one level you have been given cookbook codes for trading
systems with which you can begin trading immediately. The his-
torical performance of these systems is on par, or exceeds, the
performance of commercial systems that cost thousands of dol-
lars. At another level you have genuinely new analysis tools,
such as the Homodyne cycle period measurer, the Signal-to-
Noise Indicator, the Instantaneous Trendline, the Sinewave Indi-
cator, and more. These indicators view the market from entirely
new perspectives and therefore augment your existing tools. I
invite you to read the book again—perhaps more than once—and
reach the highest level possible. That level constitutes a deep
understanding of both the market and our analysis processes.
This book is by no means the final word on digital signal pro-
cessing as it applies to trading. For example, Ehlers filters are
engaged in a continuing state of research, evolution, and design.
Through these efforts I hope to generate more accurate models of
the market that will lead to even greater profits for traders. I encour-
age you to join me in this journey and boldly go where no trader has
gone before. I look forward to hearing about your adventures in the
market and invite you to share the new horizons you reach.
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