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Preface

This book is intended for people who will use Global Positioning Systems (GPS),
Inertial Navigation Systems (INS), and Kalman filters. Our objective is to give our
readers a working familiarity with both the theoretical and practical aspects of these
subjects. For that purpose we have included “real-world” problems from practice as
illustrative examples. We also cover the more practical aspects of implementation:
how to represent problems in a mathematical model, analyze performance as a
function of model parameters, implement the mechanization equations in numeri-
cally stable algorithms, assess its computational requirements, test the validity of
results, and monitor performance in operation with sensor data from GPS and INS.
These important attributes, often overlooked in theoretical treatments, are essential
for effective application of theory to real-world problems.

The accompanying diskette contains MATLAB® m-files to demonstrate the
workings of the Kalman filter algorithms with GPS and INS data sets, so that the
reader can better discover how the Kalman filter works by observing it in action with
GPS and INS. The implementation of GPS, INS, and Kalman filtering on computers
also illuminates some of the practical considerations of finite-wordlength arithmetic
and the need for alternative algorithms to preserve the accuracy of the results. If the
student wishes to apply what she or he learns, then it is essential that she or he
experience its workings and failings—and learn to recognize the difference.

The book is organized for use as a text for an introductory course in GPS
technology at the senior level or as a first-year graduate level course in GPS, INS,
and Kalman filtering theory and application. It could also be used for self-instruction
or review by practicing engineers and scientists in these fields.

Chapter 1 informally introduces the general subject matter through its history of
development and application. Chapters 2—5 and 9 cover the basic theory of GPS and

ix
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present material for a senior-level class in geomatics, electrical engineering, systems
engineering, and computer science. Chapters 6—8 cover the application of GPS and
INS integration with Kalman filtering. These chapters could be covered in a graduate
level course in Electrical, computer, and systems engineering.

Chapter 6 gives the basics of INS. Chapter 7 covers linear optimal filters,
predictors, and nonlinear estimation by “extended” Kalman filters. Applications
of these techniques to the identification of unknown parameters of systems are given
as examples. Chapter 8 deals with Kalman filter engineering, with algorithms
provided for computer implementation. Chapter 9 covers current developments in
the Wide Area Augmentation System (WAAS) and Local-Area Augmentation
System (LAAS), including Local Area Differential GPS (LADGPS) and Wide-
Area Differential GPS (WADGPS).

The following chapter-level dependency graph shows the book’s organization and
how the subject of each chapter depends upon material in other chapters. The arrows
in the figure indicate the recommended order of study. Boxes above another box and
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connected by arrows indicate that the material represented by the upper boxes is
background material for the subject in the lower box.
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Introduction

The five basic forms of navigation are as follows:

1. Pilotage, which essentially relies on recognizing landmarks to know where
you are. It is older than human kind.

2. Dead reckoning, which relies on knowing where you started from, plus some
form of heading information and some estimate of speed.

3. Celestial navigation, using time and the angles between local vertical and
known celestial objects (e.g., sun, moon, or stars) [115].

4. Radio navigation, which relies on radio-frequency sources with known
locations (including Global Positioning System satellites).

5. Inertial navigation, which relies on knowing your initial position, velocity, and
attitude and thereafter measuring your attitude rates and accelerations. It is the
only form of navigation that does not rely on external references.

These forms of navigation can be used in combination as well [16, 135]. The subject
of this book is a combination of the fourth and fifth forms of navigation using
Kalman filtering.

Kalman filtering exploits a powerful synergism between the Global Positioning
System (GPS) and an inertial navigation system (INS). This synergism is possible, in
part, because the INS and GPS have very complementary error characteristics.
Short-term position errors from the INS are relatively small, but they degrade
without bound over time. GPS position errors, on the other hand, are not as good
over the short term, but they do not degrade with time. The Kalman filter is able to
take advantage of these characteristics to provide a common, integrated navigation
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2 INTRODUCTION

implementation with performance superior to that of either subsystem (GPS or INS).
By using statistical information about the errors in both systems, it is able to
combine a system with tens of meters position uncertainty (GPS) with another
system whose position uncertainty degrades at kilometers per hour (INS) and
achieve bounded position uncertainties in the order of centimeters [with differential
GPS (DGPS)] to meters.

A key function performed by the Kalman filter is the statistical combination of
GPS and INS information to track drifting parameters of the sensors in the INS. As a
result, the INS can provide enhanced inertial navigation accuracy during periods
when GPS signals may be lost, and the improved position and velocity estimates
from the INS can then be used to make GPS signal reacquisition happen much faster
when the GPS signal becomes available again.

This level of integration necessarily penetrates deeply into each of these
subsystems, in that it makes use of partial results that are not ordinarily accessible
to users. To take full advantage of the offered integration potential, we must delve
into technical details of the designs of both types of systems.

1.1 GPS AND GLONASS OVERVIEW

1.1.1 GPS

The GPS is part of a satellite-based navigation system developed by the U.S.
Department of Defense under its NAVSTAR satellite program [54, 56, 58—63, 96—
98].

1.1.1.1 GPS Orbits The fully operational GPS includes 24 or more (28 in
March 2000) active satellites approximately uniformly dispersed around six circular
orbits with four or more satellites each. The orbits are inclined at an angle of 55°
relative to the equator and are separated from each other by multiples of 60° right
ascension. The orbits are nongeostationary and approximately circular, with radii of
26,560 km and orbital periods of one-half sidereal day (*211.967 h). Theoretically,
three or more GPS satellites will always be visible from most points on the earth’s
surface, and four or more GPS satellites can be used to determine an observer’s
position anywhere on the earth’s surface 24 h per day.

1.1.1.2 GPS Signals Each GPS satellite carries a cesium and/or rubidium
atomic clock to provide timing information for the signals transmitted by the
satellites. Internal clock correction is provided for each satellite clock. Each GPS
satellite transmits two spread spectrum, L-band carrier signals—an L; signal with
carrier frequency f; = 1575.42MHz and an L, signal with carrier frequency
f, = 1227.6 MHz. These two frequencies are integral multiples f; = 1540/, and
Jf> = 1200f, of a base frequency f, = 1.023 MHz. The L, signal from each satellite
uses binary phase-shift keying (BPSK), modulated by two pseudorandom noise
(PRN) codes in phase quadrature, designated as the C/A-code and P-code. The L,
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signal from each satellite is BPSK modulated by only the P-code. A brief description
of the nature of these PRN codes follows, with greater detail given in Chapter 3.

Compensating for Propagation Delays This is one motivation for use of two
different carrier signals L, and L,. Because delay varies approximately as the inverse
square of signal frequency f (delay o f~2), the measurable differential delay
between the two carrier frequencies can be used to compensate for the delay in
each carrier. (See [86] for details.)

Code Division Multiplexing Knowledge of the PRN codes allows users indepen-
dent access to multiple GPS satellite signals on the same carrier frequency. The
signal transmitted by a particular GPS signal can be selected by generating and
matching, or correlating, the PRN code for that particular satellite. All PRN codes
are known and are generated or stored in GPS satellite signal receivers carried by
ground observers. A first PRN code for each GPS satellite, sometimes referred to as
a precision code or P-code, is a relatively long, fine-grained code having an
associated clock or chip rate of 10f, = 10.23 MHz. A second PRN code for each
GPS satellite, sometimes referred to as a clear or coarse acquisition code or C/A-
code, is intended to facilitate rapid satellite signal acquisition and hand-over to the P-
code. It is a relatively short, coarser grained code having an associated clock or chip
rate f, = 1.023 MHz. The C/A-code for any GPS satellite has a length of 1023 chips
or time increments before it repeats. The full P-code has a length of 259 days, during
which each satellite transmits a unique portion of the full P-code. The portion of P-
code used for a given GPS satellite has a length of precisely one week (7.000 days)
before this code portion repeats. Accepted methods for generating the C/A-code and
P-code were established by the satellite developer' in 1991 [42, 66].

Navigation Signal The GPS satellite bit stream includes navigational information
on the ephemeris of the transmitting GPS satellite and an almanac for all GPS
satellites, with parameters providing approximate corrections for ionospheric signal
propagation delays suitable for single-frequency receivers and for an offset time
between satellite clock time and true GPS time. The navigational information is
transmitted at a rate of 50 baud. Further discussion of the GPS and techniques for
obtaining position information from satellite signals can be found in Chapter 3 and
in [84, pp. 1-90].

1.1.1.3 Selective Availability Seclective Availability (SA) is a combination of
methods used by the U.S. Department of Defense for deliberately derating the
accuracy of GPS for “nonauthorized” (i.e., non—U.S. military) users. The current
satellite configurations use only pseudorandom dithering of the onboard time
reference [134], but the full configuration can also include truncation of the

! Satellite Systems Division of Rockwell International Corporation, now part of the Boeing Company.
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transmitted ephemerides. This results in three grades of service provided to GPS
users. SA has been removed as of May 1, 2000.

Precise Positioning Service Precise Positioning Service (PPS) is the full-
accuracy, single-receiver GPS positioning service provided to the United States
and its allied military organizations and other selected agencies. This service
includes access to the unencrypted P-code and the removal of any SA effects.

Standard Positioning Service without SA Standard Positioning Service (SPS)
provides GPS single-receiver (stand-alone) positioning service to any user on a
continuous, worldwide basis. SPS is intended to provide access only to the C/A-
code and the L; carrier.

Standard Positioning Service with SA The horizontal-position accuracy, as
degraded by SA, currently is advertised as 100 m, the vertical-position accuracy as
156 m, and time accuracy as 334ns—all at the 95% probability level. SPS also
guarantees the user-specified levels of coverage, availability, and reliability.

1.1.2 GLONASS

A second configuration for global positioning is the Global Orbiting Navigation
Satellite System (GLONASS), placed in orbit by the former Soviet Union, and now
maintained by the Russian Republic [75, 80].

1.1.2.1 GLONASS Orbits GLONASS also uses 24 satellites, but these are
distributed approximately uniformly in three orbital plans (as opposed to four for
GPS) of eight satellites each (six for GPS). Each orbital plane has a nominal
inclination of 64.8° relative to the equator, and the three orbital planes are separated
from each other by multiples of 120° right ascension. GLONASS orbits have smaller
radii than GPS orbits, about 25,510km, and a satellite period of revolution of
approximately % of a sidereal day. A GLONASS satellite and a GPS satellite will
complete 17 and 16 revolutions, respectively, around the earth every 8 days.

1.1.2.2 GLONASS Signals The GLONASS system uses frequency division
multiplexing of independent satellite signals. Its two carrier signals corresponding
to L, and L, have frequencies f; =(1.602+9k/16)GHz and f, =
(1.246 + 7k/16) GHz, where £k =0,1,2,...,23 is the satellite number. These
frequencies lie in two bands at 1.597-1.617 GHz (L,) and 1240-1260 GHz (L,).
The L, code is modulated by a C/A-code (chip rate =0.511 MHz) and by a P-code
(chip rate =5.11 MHz). The L, code is presently modulated only by the P-code. The
GLONASS satellites also transmit navigational data at a rate of 50 baud. Because the
satellite frequencies are distinguishable from each other, the P-code and the C/A-
code are the same for each satellite. The methods for receiving and analyzing
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GLONASS signals are similar to the methods used for GPS signals. Further details
can be found in the patent by Janky [66].
GLONASS does not use any form of SA.

1.2 DIFFERENTIAL AND AUGMENTED GPS

1.2.1 Differential GPS

Differential GPS (DGPS) is a technique for reducing the error in GPS-derived
positions by using additional data from a reference GPS receiver at a known
position. The most common form of DGPS involves determining the combined
effects of navigation message ephemeris and satellite clock errors (including
propagation delays and the effects of SA) at a reference station and transmitting
pseudorange corrections, in real time, to a user’s receiver, which applies the
corrections in the process of determining its position [63, 96, 98].

1.2.2 Local-Area Differential GPS

Local-area differential GPS (LAGPS) is a form of DGPS in which the user’s GPS
receiver also receives real-time pseudorange and, possibly, carrier phase corrections
from a local reference receiver generally located within the line of sight. The
corrections account for the combined effects of navigation message ephemeris and
satellite clock errors (including the effects of SA) and, usually, atmospheric
propagation delay errors at the reference station. With the assumption that these
errors are also common to the measurements made by the user’s receiver, the
application of the corrections will result in more accurate coordinates.

1.2.3 Wide-Area Differential GPS

Wide-area DGPS (WADGPS) is a form of DGPS in which the user’s GPS receiver
receives corrections determined from a network of reference stations distributed over
a wide geographical area. Separate corrections are usually determined for specific
error sources—such as satellite clock, ionospheric propagation delay, and ephemeris.
The corrections are applied in the user’s receiver or attached computer in computing
the receiver’s coordinates. The corrections are typically supplied in real time by way
of a geostationary communications satellite or through a network of ground-based
transmitters. Corrections may also be provided at a later date for postprocessing
collected data [63].

1.2.4 Wide-Area Augmentation System

Three space-based augmentation systems (SBASs) were under development at the
beginning of the third millenium. These are the Wide Area Augmentation
System (WAAS), European Geostationary Navigation Overlay System (EGNOS),
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and Multifunctional Transport Satellite (MTSAT) Based Augmentation System
(MSAS).

The WAAS enhances the GPS SPS over a wide geographical area. The U.S.
Federal Aviation Administration (FAA), in cooperation with other agencies, is
developing WAAS to provide WADGPS corrections, additional ranging signals
from geostationary earth orbit (GEO) satellites, and integrity data on the GPS and
GEO satellites.

1.2.5 Inmarsat Civil Navigation

The Inmarsat overlay is an implementation of a wide-area differential service.
Inmarsat is the International Mobile Satellite Organization, an 80-nation interna-
tional consortium, originally created in 1979 to provide maritime® mobile services
on a global basis but now offering a much wider range of mobile satellite services.
Inmarsat launched four geostationary satellites that provide complete coverage of the
globe from £70° latitude. The data broadcast by the satellites are applicable to users
in regions having a corresponding ground station network. The U.S. region is the
continental U.S. (CONUS) and uses Atlantic Ocean Region West (AOR-W) and
Pacific Ocean Region (POR) geostationary satellites. This is called the WAAS and is
being developed by the FAA. The ground station network is operated by the service
provider, that is, the FAA, whereas Inmarsat is responsible for operation of the space
segment. Inmarsat affiliates operate the uplink earth stations (e.g., COMSAT in the
United States). WAAS is discussed further in Chapter 9.

1.2.6 Satellite Overlay

The Inmarsat Civil Navigation Geostationary Satellite Overlay extends and comple-
ments the GPS and GLONASS satellite systems. The overlay navigation signals are
generated at ground based facilities. For example, for WAAS, two signals are
generated from Santa Paula, California—one for AOR-W and one for POR. The
back-up signal for POR is generated from Brewster, Washington. The backup signal
for AOR-W is generated from Clarksburg, Maryland. Signals are uplinked to
Inmarsat-3 satellites such as AOR-W and POR. These satellites contain special
satellite repeater channels for rebroadcasting the navigation signals to users. The use
of satellite repeater channels differs from the navigation signal broadcast techniques
employed by GLONASS and GPS. GLONASS and GPS satellites carry their own
navigation payloads that generate their respective navigation signals.

1.2.7 Future Satellite Systems

In Europe, activities supported by the European TRIPARTITE Group [European
Space Agency (ESA), European Commission (EC), EUROCONTROL] are under-

2The “mar” in the name originally stood for “maritime.”
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way to specify, install, and operate a future civil Global Navigation Satellite System
(GNSS) (GNSS-2 or GALILEO).

Based on the expectation that GNSS-2 will be developed through an evolutionary
process as well as long-term augmentations [e.g., GNSS-1 or European GNSS
Navigation Overlay Service (EGNOS)], short- to midterm augmentation systems
(e.g., differential systems) are being targeted.

The first steps toward GNSS-2 will be made by the TRIPARTITE Group. The
augmentations will be designed such that the individual elements will be suitable for
inclusion in GNSS-2 at a later date. This design process will provide the user with
maximum continuity in the upcoming transitions.

In Japan, the Japanese Commercial Aviation Board (JCAB) is developing the
MSAS.

1.3 APPLICATIONS

Both GPS and GLONASS have evolved from dedicated military systems into true
dual-use systems. Satellite navigation technology is utilized in numerous civil and
military applications, ranging from golf and leisure hiking to spacecraft navigation.
Further discussion on applications can be found in Chapters 8 and 9.

1.3.1 Auviation

The aviation community has propelled the use of GNSS and various augmentations
(e.g., WAAS, EGNOS, and MSAS). These systems provide guidance for en route
through precision approach phases of flight. Incorporation of a data link with a
GNSS receiver enables the transmission of aircraft location to other aircraft and/or
to air traffic control (ATC). This function is called automatic dependent surveillance
(ADS) and is in use in the POR. Key benefits are ATC monitoring for collision
avoidance and optimized routing to reduce travel time and fuel consumption [98].

1.3.2 Spacecraft Guidance

The space shuttle utilizes GPS for guidance in all phases of its operation (e.g.,
ground launch, on-orbit and reentry, and landing). NASA’s small satellite programs
use and plan to use GPS, as does the military on SBIRLEO (space-based infrared
low earth orbit) and GBI (ground-based interceptor) kill vehicles.

1.3.3 Maritime

GNSS has been used by both commercial and recreational maritime communities.
Navigation is enhanced on all bodies of waters, from oceanic travel to river ways,
especially in bad weather.
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1.3.4 Land

The surveying community heavily depends on DGPS to achieve measurement
accuracies in the millimeter range. Similar techniques are used in farming, surface
mining, and grading for real-time control of vehicles and in the railroad community
to obtain train locations with respect to adjacent tracks. GPS is a key component in
Intelligent Transport Systems (ITS). In vehicle applications, GNSS is used for route
guidance, tracking, and fleet management. Combining a cellular phone or data link
function with this system enables vehicle tracing and/or emergency messaging.

1.3.5 Geographic Information Systems (GIS), Mapping, and
Agriculture

Applications include utility and asset mapping and automated airborne mapping,
with remote sensing and photogrammetry. Recently, GIS, GPS, and remote sensing
have matured enough to be used in agriculture. GIS companies such as Environ-
mental System Research Institute (Redlands, California) have developed software
applications that enable growers to assess field conditions and their relationship to
yield. Real time kinematic and differential GNSS applications for precision farming
are being developed. This includes soil sampling, yield monitoring, chemical, and
fertilizer applications. Some GPS analysts are predicting precision site-specific
farming to become “the wave of the future.”
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2.1 NAVIGATION SYSTEMS CONSIDERED

This book is about GPS and INS and their integration. An inertial navigation unit
can be used anywhere on the globe, but it must be updated within hours of use by
independent navigation sources such as GPS or celestial navigation. Thousands of
self-contained INS units are in continuous use on military vehicles, and an
increasing number are being used in civilian applications.

2.1.1 Systems Other Than GPS

GPS signals may be replaced by LORAN-C signals produced by three or more long-
range navigation (LORAN) signal sources positioned at fixed, known locations for
outside-the-building location determination. A LORAN-C system relies upon a
plurality of ground-based signal towers, preferably spaced apart 100-300 km, that
transmit distinguishable electromagnetic signals that are received and processed by a
LORAN signal antenna and LORAN signal receiver/processor that are analogous to
the Satellite Positioning System signal antenna and receiver/processor. A represen-
tative LORAN-C system is discussed in LORAN-C User Handbook [85]. LORAN-C
signals use carrier frequencies of the order of 100 kHz and have maximum reception
distances of hundreds of kilometers. The combined use of FM signals for location
determination inside a building or similar structure can also provide a satisfactory
location determination (LD) system in most urban and suburban communities.
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There are other ground-based radiowave signal systems suitable for use as part of
an LD system. These include Omega, Decca, Tacan, JTIDS Relnav (U.S. Air Force
Joint Tactical Information Distribution System Relative Navigation), and PLRS
(U.S. Army Position Location and Reporting System). See summaries in [84, pp.
67 and 35-60].

2.1.2 Comparison Criteria

The following criteria may be used in selecting navigation systems appropriate for a
given application system:

navigation method(s) used,
coordinates provided,
navigational accuracy,

region(s) of coverage,

required transmission frequencies,
navigation fix update rate,

user set cost, and

® NNk

status of system development and readiness.

2.2 FUNDAMENTALS OF INERTIAL NAVIGATION

This is an introductory-level overview of inertial navigation. Technical details are in
Chapter 6 and [22, 75, 83, 118].

2.2.1 Basic Concepts of Inertial Navigation

Inertia is the propensity of bodies to maintain constant translational and rotational
velocity, unless disturbed by forces or torques, respectively (Newton’s first law
of motion).

An inertial reference frame is a coordinate frame in which Newton’s laws of
motion are valid. Inertial reference frames are neither rotating nor accelerat-
ing.

Inertial sensors measure rotation rate and acceleration, both of which are vector-
valued variables:

(a) Gyroscopes are sensors for measuring rotation: rate gyroscopes measure
rotation rate, and displacement gyroscopes (also called whole-angle
gyroscopes) measure rotation angle.

(b) Accelerometers are sensors for measuring acceleration. However, accel-
erometers cannot measure gravitational acceleration. That is, an accel-
erometer in free fall (or in orbit) has no detectable input.
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The input axis of an inertial sensor defines which vector component it measures.
Multiaxis sensors measure more than one component.

Inertial navigation uses gyroscopes and accelerometers to maintain an estimate of
the position, velocity, attitude, and attitude rates of the vehicle in or on which
the INS is carried, which could be a spacecraft, missile, aircraft, surface ship,
submarine, or land vehicle.

An inertial navigation system (INS) consists of the following:

(a) an inertial measurement unit (IMU) or inertial reference unit (IRU)
containing a cluster of sensors: accelerometers (two or more, but usually
three) and gyroscopes (three or more, but usually three). These sensors are
rigidly mounted to a common base to maintain the same relative orienta-
tions.

(b) Navigation computers (one or more) calculate the gravitational accelera-
tion (not measured by accelerometers) and doubly integrate the net
acceleration to maintain an estimate of the position of the host vehicle.

There are many different designs of inertial navigation systems with different
performance characteristics, but they fall generally into two categories:

e gimbaled and
e strapdown.

These are illustrated in Fig. 2.1 and described in the following subsections.

2.2.2 Gimbaled Systems

2.2.2.1 Gimbals A gimbal is a rigid frame with rotation bearings for isolating
the inside of the frame from external rotations about the bearing axes. If the bearings
could be made perfectly frictionless and the frame could be made perfectly balanced
(to eliminate unbalance torques due to acceleration), then the rotational inertia of the
frame would be sufficient to isolate it from rotations of the supporting body. This
level of perfection is generally not achievable in practice, however.

Alternatively, a gyroscope can be mounted inside the gimbal frame and used to
detect any rotation of the frame due to torques from bearing friction or frame
unbalance. The detected rotational disturbance can then be used in a feedback loop
to provide restoring torques on the gimbal bearings to null out all rotations of the
frame about the respective gimbal bearings.

At least three gimbals are required to isolate a subsystem from host vehicle
rotations about three axes, typically labeled roll, pitch, and yaw axes.

The gimbals in an INS are mounted inside one another, as illustrated in Fig. 2.15.
We show three gimbals here because that is the minimum number required. Three
gimbals will suffice for host vehicles with limited ranges of rotation in pitch and roll,
such as surface ships and land vehicles. In those applications, the outermost axis is
typically aligned with the host vehicle yaw axis (nominally vertical), so that all three
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SENSOR CLUSTER OF
3 ACCELEROMETERS
3 GYROSCOPES

MOUNTED ON COMMON
RIGID BASE ATTACHED
TO HOST VEHICLE

(a) Strapdown (b) Gimbaled

Fig. 2.1 Inertial measurement units.

gimbal rotation axes will remain essentially orthogonal when the inner gimbal axes
are kept level and the vehicle rotates freely about its yaw axis only.

A fourth gimbal is required for vehicles with full freedom of rotation about all
three axes—such as high-performance aircraft. Otherwise, rotations of the host
vehicle can align two of the three gimbal axes parallel to one another in a condition
called gimbal lock. In gimbal lock with only three gimbals, the remaining single
“unlocked” gimbal can only isolate the platform from rotations about a second
rotation axis. Rotations about the third axis of the “missing” gimbal will slew the
platform unless a fourth gimbal axis is provided for this contingency.

2.2.2.2 Stable Platforms The earliest INSs were developed in the mid-
twentieth century, when flight-qualified computers were not fast enough for
integrating the full (rotational and translational) equations of motion. As an
alternative, gimbals and torque servos were used to null out the rotations of a
stable platform or stable element on which the inertial sensors were mounted, as
illustrated in Fig. 2.15.

The stable element of a gimbaled system is also called an inertial platform or
“stable table.” it contains a sensor cluster of accelerometers and gyroscopes, similar
to that of the “strapdown” INS illustrated in Fig. 2.1a.

2.2.2.3 Signal Processing Essential software functions for a gimbaled INS
are shown in signal flow form in Fig. 2.2, with blocks representing the major
software functions, and x,, x,, x; representing position components.

The essential outputs of the gimbaled IMU are the sensed accelerations and
rotation rates. These are first compensated for errors detected during sensor- or
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GIMBAL GYRO GRAVITY INITIAL INITIAL
SERVO ERROR ACCEL. VELOCITY PosiTioN
Loors Comp. MoODEL x(to) x(to)
INERTIAL ACCEL. 21 t :?1 t z1(t)
A T2 T2
MEAs. ERROR O+ / - / z2(t)
UnNit Cowmp. z to 3 to z3(t)

Fig. 2.2 Essential signal processing for gimbaled INS.

system-level calibrations. This includes compensation for gyro drift rates due to
acceleration.

The compensated gyro signals are used for controlling the gimbals to keep the
platform in the desired orientation, independent of the rotations of the host vehicle.
This “desired orientation” can be (and usually is) locally level, with two of the
accelerometer input axes horizontal and one accelerometer input axis vertical. This is
not an inertial orientation, because the earth rotates, and because the host vehicle
can change its longitude and latitude. Compensation for these effects is included in
the gyro error compensation.

The accelerometer outputs are also compensated for known errors, including
compensation for gravitational accelerations which cannot be sensed and must be
modeled. The gravity model used in this compensation depends on vehicle position.
This coupling of position and acceleration creates recognized dynamical behavior of
position errors, including the following:

1. Schuler oscillation of horizontal position and velocity errors, in which the INS
behaves like a pendulum with period equal to the orbital period (about
84.4min at sea level). Any horizontal INS velocity errors will excite the
Schuler oscillation, but the amplitude of the oscillations will be bounded so
long as the INS velocity errors remain bounded.

2. Vertical-channel instability, in which positive feedback of altitude errors
through the gravity model makes INS altitude errors unstable. For INS
applications in surface ships, the vertical channel can be eliminated. External
water pressure is used for estimating depth for submarines, and barometric
altitude is commonly used to stabilize the vertical channel for aircraft.

After compensation for sensor errors and gravity, the accelerometer outputs are
integrated once and twice to obtain velocity and position, respectively. The position
estimates are usually converted to longitude, latitude, and altitude.
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(BODY-FIXED (SENSED INERTIAL  (TOTAL (VELO- (POSI-
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Fig. 2.3 Essential signal processing for strapdown INS.

2.2.3 Strapdown Systems

2.2.3.1 Sensor Cluster In strapdown systems, the inertial sensor cluster is
“strapped down” to the frame of the host vehicle, without using intervening gimbals
for rotational isolation, as illustrated in Fig. 2.1a. The system computer must then
integrate the full (six-degree-of-freedom) equations of motion.

2.2.3.2 Signal Processing The major software functions performed by
navigation computers for strapdown systems are shown in block form in Fig. 2.3.
The additional processing functions, beyond those required for gimbaled inertial
navigation, include the following:

1. The blocks labeled “Coordinate transformation update” and “Acceleration
coordinate transformation™ in Fig. 2.3, which essentially take the place of the
gimbal servo loops in Fig. 2.2. In effect, the strapdown software maintains
virtual gimbals in the form of a coordinate transformation from the uncon-
strained, body-fixed sensor coordinates to the equivalent sensor coordinates of
an inertial platform.

2. Attitude rate compensation for accelerometers, which was not required for
gimbaled systems but may be required for some applications of strapdown
systems. The gyroscopes and gimbals of a gimbaled IMU were used to isolate
the accelerometers from body rotation rates, which can introduce errors such
as centrifugal accelerations in rotating accelerometers.

2.3 SATELLITE NAVIGATION

The GPS is widely used in navigation. Its augmentation with other space-based
satellites is the future of navigation.
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Satellite Orbits

Fig. 2.4 GPS orbit planes.
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GPS satellites occupy six orbital planes inclined 55° from the equatorial plane, as
illustrated in Fig. 2.4, with four or more satellites per plane, as illustrated in Fig. 2.5.

2.3.2 Navigation Solution (Two-Dimensional Example)

Receiver location in two dimensions can be calculated by using range measurements

[45].

Argument of Latitude

F-+90°
Jol _9.00 =
©l Right Ascension osf

-90°4

(]

Fig. 2.5 GPS orbit phasing.
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2.3.2.1 Symmetric Solution Using Two Transmitters on Land In this
case, the receiver and two transmitters are located in the same plane, as shown in
Fig. 2.6, with known positions x;,y; and x,,y,. Ranges R, and R, of two
transmitters from the user position are calculated as

R, = ¢ AT}, Q2.1
R, = ¢ AT, (2.2)

where ¢ = speed of light (0.299792458 m/ns)
AT, = time taken for the radio wave to travel from transmitter 1 to the user
AT, = time taken for the radio wave to travel from transmitter 2 to the user
(X, Y) = user position

The range to each transmitter can be written as
Ry =[(X —x)* + (Y —y)’1'2, (23)
Ry =[(X —x,)" + (Y = )12, (2.4)
Expanding R, and R, in Taylor series expansion with small perturbation in X by
Ax and Y by Ay, yields
IR,
oY
IR,
Y

where u; and u, are higher order terms. The derivatives of Eqs. 2.3 and 2.4 with
respect to X, Y are substituted into Egs. 2.5 and 2.6, respectively.

OR
AR, =3—X1Ax+ Ay +uy, (2.5)

R
AR, = 8—X2Ax +—2Ay+u,, (2.6)

A
Y| Xmitter #1 Xmitter #2
(z1,91) ! (72, 2)
|
-0 ! +6

I

I

I

R, | R

I Estimated

: Usgr Pps.

! (X, Ya)

(X,Y) [User position)]

=

Fig. 2.6 Two transmitters with known two-dimensional positions.
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Thus, for the symmetric case,

X —x Y —»
AR, = ! Ax + Ay +u, (2.7
B ) e S R (F S S O S
= sin 0Ax + cos 0Ay + u,, (2.8)
AR, = —sin O0Ax + cos O0Ay + u,. (2.9)

To obtain the least-squares estimate of (X, Y), we need to minimize the quantity
J=u}+u3, (2.10)

which is

2 2

J = AR, —sin0Ax —cosOAy | +| AR, +sin0Ax — cos OAy | . (2.11)

uy U

The solution for the minimum can be found by setting dJ/0Ax = 0 = aJdAy,
then solving for Ax and Ay:

o

=— 2.12
0=2x (2.12)
= 2(AR| — sin 0Ax — cos OAy)(—sin 0) + 2(AR,
+ sin 0Ax — cos OAy)(sin 0) (2.13)
= AR, — AR, + 2sin 0Ax, (2.14)
with solution
AR, — AR,
=—"-". 2.15
Ax 2sin0 2.15)
The solution for Ay may be found in similar fashion as
AR, + AR
Ay =—1""2. 2.16
Y 2cos0 (2.16)

Navigation Solution Procedure Transmitter positions x;, y;, X,, ¥, are given.
Signal travel times AT}, AT, are given. Estimated user position X,,, Y, are assumed.
Set position coordinates X, ¥ equal to their initial estimates:

X=X, v=1,
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Compute the range errors,

Geometric ranges Measured pseudoranges

A A e
AR, =[(X, —x,)" + (¥, —»)1* = CATy, (2.17)
ARy = [(X, —x,)" + (¥, —»)1* = CAT,. (2.18)

Compute the theta angle,

0 =tan~' (2.19)
By
or
0 =sin"! —1__ (2.20)
/22
xXP+0
Compute user position corrections,
1
Ax = W(ARI — AR,), (2.21)
1
Compute a new estimate of position,
X=X,+Ax, Y=Y,+Ay. (2.23)
Results are shown in Fig. 2.7:
Correction equations Iteration equations

1
A)(best = m (ARI - ARZ)? Xnew = Xold + AXbest’

1
AYbest = m(ARl + AR2)’ YView = Youd + AYbest'

2.3.3 Satellite Selection and Dilution of Precision

Just as in a land-based system, better accuracy is obtained by using reference points
well separated in space. For example, the range measurements made to four
reference points clustered together will yield nearly equal values. Position calcula-
tions involve range differences, and where the ranges are nearly equal, small relative
errors are greatly magnified in the difference. This effect, brought about as a result of
satellite geometry is known as dilution of precision (DOP). This means that range
errors that occur from other causes such as clock errors are also magnified by the
geometric effect.

To find the best locations of the satellites to be used in the calculations of the user
position and velocity, the dilution of precision calculations (DOP) are needed.
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Fig. 2.7 Results of the iteration.

The observation equations in three dimensions for each satellite with known
coordinates (x;, y;, z;) and unknown user coordinates (X, Y, Z) are given by

2, = range = \/ (5, — X + (3 — ¥V’ + (- 2 (2.24)

These are nonlinear equations that can be linearized using Taylor series. (See,
e.g., Chapter 5 of [46].)

Let the vector of ranges be Z, = h(x), a nonlinear function h(x) of the four-
dimensional vector x representing user position and receiver clock bias, and expand
the left-hand side of this equation in a Tayor series about some nominal solution x"°™
for the unknown vector

x = [xlxx*]t (2.25)

of variables

def .
x! = east component of the user’s antenna location

def .
x*> = north component of the user’s antenna location

def . .
x* = upward vertical component of the user’s antenna location

def . .
x* = receiver clock bias (C,)
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for which

h
Z, = h(x) = h(x™") + aa_ix) ox + H.O.T.,

x=xnom (2 26)
ox =x — x"", 0Z, = h(x) — h(x"").

where H.O.T. is higher order term

These equations become

oh h(x)
5Zp - ax |x=xnoméx,
— Hsy, (2.27)

5x=X_Xnom’ 5y=Y_Yn0m’ 5z=Z_Zn0ms
where H!!l is the first-order term in the Taylor series expansion

5Zp = p(Xv Yv Z) - pr(Xnom! Ynom’ Z,

nom)

~ 9P, ox+, (2.28)

~ X Koo oo Zoan
[N

H

for v, = noise in receiver measurements. This vector equation can be written in
scalar form where i = satellite number as

dp;, —(x; = X) |
= X=Xnom i Ynom ’Znom
W e - (-1 -2
_ _(xi - Xnom)
2 2 2
\/(xi - Xnom) + (yi - Ynom) + (Zi - Znom)
A (2.29)
apif _ _( Vi — Ynom)
aY
\/(xi - Xnom)2 + (yi - Ynom)2 + (Zi - Znom)2
ap’, _(Zi — Znom)

0z
V& = X + (31 = Yoo + G — Zuw)?

for

i=1,2,3,4 (ie., four satellites). (2.30)
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We can combine Eqgs. 2.28 and 2.29 into the matrix equation

ax dy oz
0z op2 opr  op} ox v
oz, B x oy ! Sy N vy
oz op  apd 9’ . 0z v |
5Z;§ ax  dy oz C, Ufﬁ
= e oWl e | TR ST

L ox ay 0z i

4x4
which we can write in symbolic form as
iy el L
0z, = HY "ox +7op.

(See Table 5.3 in [46].)

To calculate H!'1, one needs satellite positions and the nominal value of the user’s
position,

_ gl
5Zp_H 5x+vp.

To calculate the geometric dilution of precision (GDOP) (approximately),

4x1 4x4 4x1
—~ = —~ =
6z, = HY "ox . (2.31)

Known are 6Z, and H (I from the pseudorange, satellite position, and nominal
value of the user’s position. The correction x is the unknown vector.
If we premultiply both sides of Eq. 2.31 by HIIT, the result will be

4x4 4x4
—~—
H 57, = HT H 5% (2.32)
———
4x4

Then we premultiply Eq. 2.32 by (HU'IT A1)~

ox = (HMT gy~ g 57 (2.33)
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If 6x and 5Zp are assumed random with zero mean, the error covariance

E(5x(5x)") (2.34)
1T 1)—1 11T 1T 1)—1 1]T T
= E(H"T g~ g sz [(HMT HY T HNT 57 1T (2.35)
= (HMT Y HIT Ez,62)) HM(HMT M)~ (2.36)
e e’

The pseudorange measurement covariance is assumed uncorrelated satellite-to-
satellite with variance (6°):

E(6Z,0Z)) = 6’1 (2.37)
D ——
4x4

Substituting Eq. 2.37 into Eq. 2.35 gives

E(éx(éx)T> _ 0_2(H[1]T H[l])fl (H[I]T H[l])(H[l]T H[l])*l

1 (2.38)
— O_Z(H[I]T H[]])_l
for
4x1 AE
f-g\x | AN
AU
Gy
and
poe ()
](\; i Illlorth coordinate
=up frame

the covariance matrix becomes

E(AEY  E(AEAN) E(AEAU) E(AEACD)

2
E(5x(5x)T) _ E(ANAE) E(AN) (2.39)
4x4 B E(AUY :
E(Cy)
We are principally interested in the diagonal elements of
Ay A Az A
(HUT ) Ay Ay Ay Ay (2.40)

Ay Az Asy Ay |
Ay Ay Az Au
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which are

GDOP = /A, + Ay, + A33 + Ayy  (geometric DOP)

PDOP = \/All +A22 + A33 (pOSitiOH DOP)

HDOP = /4, + 45, (horizontal DOP)
VDOP = /453 (vertical DOP)
TDOP = /Ay (time DOP)
GDIOP
' '
PDIOP TDOP
/
HDOP vDOP

The unscaled covariance matrix HMTHI! then has the form

(east DOP)2 covariance terms
(north DOP)?
(vertical DOP)? ’
covariance terms (time DOP)?
where
0
GDOP = \/trace(H[”T gyt B =2
R

nom> # nom>#nom

2.3.4 Typical Calculation of GDOP

2.3.4.1 Four Satellites The best accuracy is found with three satellites equally
spaced on the horizon, at minimum elevation angle, with the fourth satellite directly
overhead:

By Satellite Location

1 2 3 4

Elevation (deg) 5 5 5 90
Azimuth (deg) 0 120 240 0
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Typical example values of H!!l for this geometry are

0.0 0.996 0.087 1.0
0.863 —0.498 0.087 1.0
—0.863 —0.498 0.087 1.0
0.0 0.0 1.00 1.0

HU —

The GDOP calculations for this example are

0.672 0.0 0.0 0.0
(T gyt _ | 00 0672 00 0.0 |
——— | 00 00 1.60  —0.505

4x4
0.0 0.0 —0.505 0.409

GDOP = /0.672 + 0.672 + 1.6 + 0.409

= 1.83,
HDOP = 1.16,
VDOP = 1.26,
PDOP = 1.72,
TDOP = 0.64.

2.4 TIME AND GPS

2.4.1 Coordinated Universal Time Generation

Coordinated Universal Time (UTC) is the time scale based on the atomic second, but
occasionally corrected by the insertion of leap seconds, so as to keep it approxi-
mately synchronized with the earth’s rotation. The leap second adjustments keep
UTC within 0.9 s of UT1, which is a time scale based on the earth’s axial spin. UT1
is a measure of the true angular orientation of the earth in space. Because the earth
does not spin at exactly a constant rate, UT1 is not a uniform time scale [3].

2.4.2 GPS System Time

The time scale to which GPS signals are referenced is referred to as GPS time. GPS
time is derived from a composite or “paper” clock that consists of all operational
monitor station and satellite atomic clocks. Over the long run, it is steered to keep it
within about 1ps of UTC, as maintained by the master clock at the U.S. Naval
Observatory, ignoring the UTC leap seconds. At the integer second level, GPS time
equalled UTC in 1980. However, due to the leap seconds that have been inserted into
UTC, GPS time was ahead of UTC by 10s in April 2000.
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2.4.3 Receiver Computation of UTC

The parameters needed to calculate UTC from GPS time are found in subframe 4 of
the navigation data message. This data includes a notice to the user regarding the
scheduled future or recent past (relative to the navigation message upload) value of
the delta time due to leap seconds A g, together with the week number WN| gr and
the day number DN at the end of which the leap second becomes effective. The latter
two quantities are known as the effectivity time of the leap second. “Day one” is
defined as the first day relative to the end/start of a week and the WNygr value
consists of the eight least significant bits (LSBs) of the full week number.

Three different UTC/GPS time relationships exist, depending on the relationship
of the effectivity time to the user’s current GPS time:

1. First Case. Whenever the effectivity time indicated by the WN s and WN
values is not in the past relative to the user’s present GPS time, and the user’s
present time does not fall in the timespan starting at DN —}—% and ending at
DN + 3, the UTC time is calculated as:

ture = (tg — Atyre) (modulo 86400)s (2.41)
where #1c is in seconds and
A[UTC = AtLS +AO +A1 [IE — tOl‘ + 60,4800(WN - WN»]S, (242)

where #; = user GPS time from start of week (s)
At; g = the delta time due to leap seconds
Ay = a constant polynomial term from the ephemeris message
A, = a first-order polynomial term from the ephemeris message
to, = reference time for UTC data
WN = current week number derived from subframe 1
WN;, = UTC reference week number

The user GPS time #;; is in seconds relative to the end/start of the week, and
the reference time ¢y, for UTC data is referenced to the start of that week,
whose number WN, is given in word eight of page 18 in subframe 4. The WN,
value consists of the eight LSBs of the full week number. Thus, the user must
account for the truncated nature of this parameter as well as truncation of WN,
WN;, and WN[ s due to rollover of the full week number. These parameters are
managed by the GPS control segment so that the absolute value of the
difference between the untruncated WN and WN, values does not exceed 127.

2. Second Case. Whenever the user’s current GPS time falls within the timespan
of DN + % to DN + %, proper accommodation of the leap second event with a
possible week number transition is provided by the following expression for
UTC:

tyte = W [modulo (86,400 + At gp — Aty g)] s, (2.43)
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where
W = (t; — Atyre — 43,200) (modulo 86,400) + 43,200 s, (2.44)

and the definition of Afp¢ previously given applies throughout the transition
period.

3. Third Case. Whenever the effectivity time of the leap second event, as
indicated by the WNgr and DN values, is in the past relative to the user’s
current GPS time, the expression given for #r¢ in the first case above is valid
except that the value of Af g is used instead of Az g. The GPS control
segment coordinates the update of UTC parameters at a future upload in order
to maintain a proper continuity of the #;c time scale.

2.5 USER POSITION CALCULATIONS WITH NO ERRORS

With the position of the satellites known, this section will discuss how to calculate

the range (pseudorange) with no errors, including clock bias. Additional errors are

receiver errors, selective availability, clock errors, and ionospheric errors.
Neglecting clock errors, let us first determine position calculation with no errors:

p, = pseudorange (known),
x, y, z = satellite position coordinates (known),
X, Y, Z = user position coordinates (unknown),

x,y,zand X, Y, Z are in the earth-centered, earth-fixed (ECEF) coordinate system.
Position calculation with no errors gives

b ==X+ (y— 1P+ (-2 (2.45)
Squaring both sides yields

pr=G=X)P+(y-Y)’+(-2) (2.46)
=X+ YV + 22+ X0+ 22— 2Xx — 2Yy — 27z,
—————
r2
> —(* + ) +22) = = Crr — 2Xx — 2Yy — 27z, (2.47)
where » = radius of earth
Crr = clock bias correction

The four unknowns are (X, Y, Z, Crr). Satellite position (x, y, z) is calculated from
ephemeris data.
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For four satellites, Eq. 2.47 becomes

pfl — (] 4y +23) — r* = Crr — 2Xx, — 2Yy, — 27z,
pr, = (G +y3 +23) = r* = Crr = 2Xx, = 2¥y, — 22z,

(2.48)
pr, — (3 + 73 +23) = 1* = Crr — 2Xxy — 2Yy; — 27z,
Pi — (G 45 +723) — = Crr — 2Xx, — 2y, — 27z,
with unknown 4 x 1 state vector
X
Y
Z
Crr
We can rewrite the four equations in matrix form as
pr, = (F 7+ ) =7 2 =2y, -2z, 1 X
pr — (G413 +2)—r 2y =29y —22, L[| ¥
pf}—(x%—{—y%—l—z%)—rz - 2x3 —2y3 —2z3 1 zZ
pf4 — (G +yi+5) -1 2x4 —2y4—2z4 1 ][ Crr
or
4x1 4x4  4xl1
—— ==
R ="M U, (2.49)

where R = vector (known)
M = matrix (known)
U, = vector (unknown)

Then we premultiply both sides of Eq. 2.49 by M~!:
M™'R=M"'MU,
=U,
X
Y
Z
Crr
If the rank of M (defined in Section B.5.2), the number of linearly independent

columns of the matrix M, is less than 4, then M will not be invertible. In that case, its
determinant (defined in Section B.6.1) is given as

detM = [M| = 0.
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2.6 USER VELOCITY CALCULATION WITH NO ERRORS

The governing equation in this case is

pr ==X =X)+(y =)= 1)+ = 2)E-2)/p, (2.50)

where p, = range rate (known)
p, = range (known)
(x, y, z) = satellite positions (known)
(x, y, z) = satellite rate (known)
(X, Y, Z) = user position (known from position calculations)
(X, Y, Z) = user velocity (unknown)

p,+pi[x(x—X)+y'(y—Y)+z(z—2)]= <X;XX+y_YY+Z_ZZ>.

} P, P,
2.51)
For three satellites
. 1 . . ) 7
Pr, +p—[x1(x1 —X)+n(y = Y)+2(z = 2)]
r
) 1. ) )
Pr, +p—[x2(x2 —X)+0n(y, = Y) +23(z, = 2)]
r
) 1. ) )
Pry +p—[x3(x3 —X)+33(y3s = ¥) +23(z — 2)]
- r3 -
_(xl -X) (y—7) (z -2)7
Py, o, o, -
=X (-0 &-2 ||
= | =2 2 2 vl (2.52)
P, P, P, 5
(3 =X) (3 =Y) (z3 - 2)
: Pr, P ]
3x1 x3 3xl1
P
Dp="N U, (2.53)
3x1
—_ .
U, = N~! Dy. (2.54)

However, if the rank of N (defined on Section B.5.2) is <3, N will not be invertible.



PROBLEMS 29

Problems

Refer to Eq. C.103 and C.104 in Appendix C for satellite orbit equations.

2.1

2.2

2.3

24

For the following GPS satellites, find the satellite position in ECEF coordinates
at t = 3s. (Hint: see Appendix C.)

Q, (deg) 0, (deg)

@@ 326 68
b 26 34

Using the results of Problem 2.1, find the satellite positions in the local
reference frame. Reference should be to the COMSAT facility in Santa Paula,
California, located at 32.4° latitude, —119.2° longitude. Use coordinate shift
matrix § = 0. (Ref. to Appendix C, section C.3.9.)

Given the following GPS satellites:

Q, (deg) 0y (deg) p (m)

Satellite 1 326 68 2.324¢e7
Satellite 2 26 340 2.0755e7
Satellite 3 146 198 2.1103e7
Satellite 4 86 271 2.3491e7

(a) Find the user’s position in ECEF coordinates.

(b) Find the user’s position in locally level coordinates referenced to 0°
latitude, 0° longitude. Coordinate shift matrix S = 0.

Given two satellites in north and east coordinates,

x(1) = 6.1464e06 ¥(1) = 2.0172e07 in meters,
x(2) = 6.2579¢06 y(2) = —7.4412¢06 in meters,

with

¢ At(1) = p,(1) = 2.324e07  in meters,
¢ At(2) = p,(2) = 2.0755e07 in meters,

and starting with an initial guess of (x ., Vey), find the user’s position.
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Signal Characteristics and
Information Extraction

Why is the GPS signal so complex? GPS was designed to be readily accessible to
millions of military and civilian users. Therefore, it is a receive-only passive system
for a user, and the number of users that can simultaneously use the system is
unlimited. Because there are many functions that must be performed, the GPS signal
has a rather complex structure. As a consequence, there is a correspondingly
complex sequence of operations that a GPS receiver must carry out in order to
extract desired information from the signal. In this chapter we characterize the signal
mathematically, describe the purposes and properties of the important signal
components, and discuss generic methods for extracting information from these
components.

3.1 MATHEMATICAL SIGNAL WAVEFORM MODELS

Each GPS satellite simultaneously transmits on two L-band frequencies denoted by
L, and L,, which are 1575.42 and 1227.60 MHz, respectively. The carrier of the L,
signal consists of an in-phase and a quadrature-phase component. The in-phase
component is biphase modulated by a 50-bps data stream and a pseudorandom code
called the C/A-code consisting of a 1023-chip sequence that has a period of 1 ms
and a chipping rate of 1.023 MHz. The quadrature-phase component is also biphase
modulated by the same 50-bps data stream but with a different pseudorandom code

30
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called the P-code, which has a 10.23-MHz chipping rate and a one-week period. The
mathematical model of the L; waveform is

s(t) = /2P,d(t)c(t) cos(wt + 0) + /2P yd(t)p(t) sin(wt + 0), (3.1

where P; and P, are the respective carrier powers for the in-phase and quadrature-
phase carrier components, d(f) is the 50-bps data modulation, c¢(#) and p(¢) are the
respective C/A and P pseudorandom code waveforms, w is the L, carrier frequency
in radians per second, and 0 is a common phase shift in radians. The quadrature
carrier power Py is approximately 3 dB less than P;.

In contrast to the L, signal, the L, signal is modulated with only the 50-bps data
and the P-code, although there is the option of not transmitting the 50-bps data
stream. The mathematical model of the L, waveform is

s(t) = \J2Pod()p(1) sin(er + 6). (3.2)

Figures 3.1 and 3.2 respectively show the structure of the in-phase and quadrature-
phase components of the L, signal. The 50-bps data bit boundaries always occur at

2P, cos(m t) c(t)
L, Carrier C/A code
a(t)
50 Transmitted
bps signal
data  \pyiiply Multiply
—| [<—1 bit (20 ms)
— Data
— L L ! L, 50 bps
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I T ——
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l LI L [ /] | of C/A code
| — 7 1023 chips/ period
=
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|
I

Fig. 3.1 Structure of in-phase component of the L, signal.
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Fig. 3.2 Structure of quadrature-phase component of the L, signal.

an epoch of the C/A-code. The C/A-code epochs mark the beginning of each period
of the C/A-code, and there are precisely 20 code epochs per data bit, or 20,460
C/A-code chips. Within each C/A-code chip there are precisely 1540 L, carrier
cycles. In the quadrature-phase component of the L, signal there are precisely
204,600 P-code chips within each 50-bps data bit, and the data bit boundaries always
coincide with the beginning of a P-code chip [42, 56].

3.2 GPS SIGNAL COMPONENTS, PURPOSES, AND PROPERTIES

3.2.1 50-bps Data Stream

The 50-bps data stream conveys the navigation message, which includes, but is not
limited to, the following information:

1. Satellite Almanac Data. Each satellite transmits orbital data called the
almanac, which enables the user to calculate the approximate location of
every satellite in the GPS constellation at any given time. Almanac data is not
accurate enough for determining position but can be stored in a receiver where
it remains valid for many months. It is primarily used to determine which
satellites are visible at a given location so that the receiver can search for those
satellites when it is first turned on. It can also be used to determine the
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approximate expected signal Doppler shift to aid in rapid acquisition of the
satellite signals.

2. Satellite Ephemeris Data. Ephemeris data is similar to almanac data but
enables a much more accurate determination of satellite position needed to
convert signal propagation delay into an estimate of user position. In contrast
to almanac data, ephemeris data for a particular satellite is only broadcast by
that satellite, and the data is valid for only several hours.

3. Signal Timing Data. The 50-bps data stream includes time tagging, which is
used to establish the transmission time of specific points on the GPS signal.
This information is needed to determine the satellite-to-user propagation delay
used for ranging.

4. lonospheric Delay Data. Ranging errors due to ionospheric effects can be
partially canceled by using estimates of ionospheric delay that are broadcast in
the data stream.

5. Satellite Health Message. The data stream also contains information regarding
the current health of the satellite, so that the receiver can ignore that satellite if
it is not operating properly.

Structure of the Navigation Message The information in the navigation
message has the basic frame structure shown in Fig. 3.3. A complete message
consists of 25 frames, each containing 1500 bits. Each frame is subdivided into five
300-bit subframes, and each subframe consists of 10 words of 30 bits each, with the
most significant bit (MSB) of the word transmitted first. Thus, at the 50-bps rate it
takes 6 s to transmit a subframe and 30 s to complete one frame. Transmission of the
complete 25-frame navigation message requires 750s, or 12.5min. Except for
occasional updating, subframes 1, 2, and 3 are constant (i.e., repeat) with each
frame at the 30-s frame repetition rate. On the other hand, subframes 4 and 5 are
each subcommutated 25 times. The 25 versions of subframes 4 and 5 are referred to
as pages 1-25. Hence, except for occasional updating, each of these pages repeats
every 750s, or 12.5 min.

A detailed description of all information contained in the navigation message is
beyond the scope of this text. Therefore, we only give an overview of the
fundamental elements. Each subframe begins with a telemetry word (TLM). The
first 8 bits of the TLM is a preamble that makes it possible for the receiver to
determine when a subframe begins. The remainder of the TLM contains parity bits
and a telemetry message that is available only to authorized users and is not a
fundamental item. The second word of each subframe is called the hand-over word
(HOW).

Z-Count Information contained in the HOW is derived from a 29-bit quantity
called the Z-count. The Z-count is not transmitted as a single word, but part of it is
transmitted within the HOW. The Z-count counts epochs generated by the X register
of the P-code generator in the satellite, which occur every 1.5s. The 19 LSBs of the
Z-count, called the time-of-week (TOW) count, indicate the number of X; epochs
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Fig. 3.3 Navigation message frame structure.

that have occurred since the start of the current week. The start of the current week
occurs at the X, epoch, which occurs at approximately midnight of Saturday
night/Sunday morning. The TOW count increases from zero at the start of the
week to 403,199 and then rolls over to zero again at the start of the following week.
A TOW count of zero always occurs at the beginning of subframe 1 of the first frame
(the frame containing page 1 of subcommutated subframes 4 and 5). A truncated
version of the TOW count, containing its 17 MSBs, comprises the first 17 bits of the
HOW. Multiplication of this truncated count by 4 gives the TOW count at the start of
the following subframe. Since the receiver can use the TLM preamble to determine
precisely the time at which each subframe begins, a method for determining the time
of transmission of any part of the GPS signal is thereby established. The relationship
between the HOW counts and TOW counts is shown in Fig. 3.4.

GPS Week Number The 10 MSBs of the Z-count contain the GPS week number
(WN), which is a modulo-1024 week count. The zero state is defined to be that week
that started with the X; epoch occurring at approximately midnight on the night of
January 5, 1980/morning of January 6, 1980. Because WN is a modulo-1024 count,
an event called the week rollover occurs every 1024 weeks (a few months short of 20
years), and GPS receivers must be designed to accommodate it." The WN is not part
of the HOW but instead appears as the first 10 bits of the third word in subframe 1.

! The most recent rollover occurred at GPS time zero on August 22, 1999, with little difficulty.
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Fig. 3.4 Relationship between HOW counts and TOW counts.

Frame and Subframe Identification Three bits of the HOW are used to identify
which of the five subframes is being transmitted. The frame being transmitted
(corresponding to a page number from 1 to 25) can readily be identified from the
TOW count computed from the HOW of subframe 5. This TOW count is the TOW at
the start of the next frame. Since there are 20 TOW counts per frame, the frame
number of that frame is simply (TOW/20) (mod 25).

Information by Subframe 1In addition to the TLM and HOW, which occur in
every subframe, the following information is contained within the remaining eight
words of subframes 1-5 (only fundamental information is described):

1. Subframe 1. The WN portion of the Z-count is part of word 3 in this subframe.
Subframe 1 also contains GPS clock correction data for the satellite in the
form of polynomial coefficients defining how the correction varies with time.
Time defined by the clocks in the satellite is commonly called SV time (space
vehicle time); the time after corrections have been applied is called GPS time.
Thus, even though individual satellites may not have perfectly synchronized
SV times, they do share a common GPS time. Additional information in
subframe 1 includes the quantities #,., Tgp, and IODC. The clock reference
time f,. is used as a time origin to calculate satellite clock error, the
ionospheric group delay 7, is used to correct for ionospheric propagation
delay errors, and IODC (issue of date, clock) indicates the issue number of the
clock data set to alert users to changes in clock parameters.

2. Subframes 2 and 3. These subframes contain the ephemeris data, which is
used to determine the precise satellite position and velocity required by the



36

SIGNAL CHARACTERISTICS AND INFORMATION EXTRACTION

navigation solution. Unlike the almanac data, this data is very precise, is valid
over a relatively short period of time (several hours), and applies only to the
satellite transmitting it. The components of the ephemeris data are listed in
Table 3.1, and the algorithm that should be used to compute satellite position
in WGS 84 coordinates is given in Table 3.2. The satellite position computa-
tion using these data is implemented in the Matlab m-file ephemeris.m on the
accompanying diskette. The IODE (issue of date, ephemeris) informs users
when changes in ephemeris parameters have occurred. Each time new
parameters are uploaded from the GPS control segment, the IODE number
changes.

Subframe 4. The 25 pages of this subframe contain the almanac for satellites
with PRN (pseudorandom code) numbers 25 and higher, as well as special
messages, ionospheric correction terms, and coefficients to convert GPS time
to UTC time. There are also spare words for possible future applications. The
components of an almanac are very similar to those of the ephemeris, and the
calculation of satellite position is performed in essentially the same way.

Table 3.1 Components of Ephemeris Data

Name Description Units?
My Mean anomaly at reference time semicircle
An Mean motion difference from computed value semicircle/s
e Eccentricity dimensionless
Ja Square root of semimajor axis m'/2
Qo Longitude of ascending node of orbit plane at semicircle
weekly epoch
i Inclination angle at reference time semicircle
[0} Argument of perigee semicircle
Q Rate of right ascension semicircle/s
IDOT Rate of inclination angle semicircle/s
Cuc Amplitude of cosine harmonic correction term to the rad
argument of latitude
Cus Amplitude of sine harmonic correction term to the rad
argument of latitude
Cr Amplitude of cosine harmonic correction term to the m
orbit radius
Cs Amplitude of sine harmonic correction term to the m
orbit radius
Ci Amplitude of cosine harmonic correction term to the rad
angle of inclination
Cis Amplitude of sine harmonic correction term to the rad
angle of inclination
foe Ephemeris reference time S
IODE Issue of data, ephemeris dimensionless

2 Units used in MATLAB m-file ephemeris are different.
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Table 3.2 Algorithm for Computing Satellite Position

u=3.986005 x 10" m3/s? WGS 84 value of earth’s

universal gravitational parameter
Q, = 7292115167 x 107° rad/s WGS 84 value of earth’s rotation rate
a=(J/a? Semimajor axis
Ny = +/u/a Computed mean motion, rad/s
b=t—lhe? Time from ephemeris reference epoch
n=ny+A, Corrected mean motion
M, = My + nt, Mean anomaly
My = Ex — esin E; Kepler's equation for eccentric anomaly

__1f cosE -1
fi = cos <1fecosEk

£ —sin! <\/1 — e?sin Ek>
o=

True anomaly from cosine

True anomaly from sine

1—ecosE,

_1( e+cosfy
Ey = cos (m) Eccentric anomaly from cosine
o=Ffh+ow Argument of latitude
o = G €08 2¢ + C,s 8N 26 Second-harmonic correction to argument of latitude
org = C,cos2¢y + Cgsin2¢, Second-harmonic correction to radius
0l = Ciz €08 2¢ + Cis sin2¢ Second-harmonic correction to inclination
M = Gy + Oy Corrected argument of latitude
r, = a(1 — ecos Ey) + ory Corrected radius
ix =y + 0k + (IDOT)t, Corrected inclination
X} = I COS [iy X coordinate in orbit plane
Yie = I sin py, Y coordinate in orbit plane
Q= Qp + (Q — Qb — Qutye Corrected longitude of ascending node
Xy = X} COS Q) — ¥ COS iy SiN QY ECEF X coordinate
Yk = X, 8inQy + y, COSs jy cOS Q; ECEF Y coordinate
Zi = Yy Siniy ECEF Z coordinate

4tis in GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed of
light). Furthermore, t, shall be the actual total time difference between the time t and the time epoch #,, and
must account for beginning or end of week crossovers. That is, if f, is greater than 302,400s, subtract
604,800s from t,. If t, is less than —302, 400s, add 604,800 to t.

4. Subframe 5. The 25 pages of this subframe includes the almanac for satellites
with PRN numbers from 1 to 24.

It should be noted that since each satellite transmits all 25 pages, almanac data for all
satellites is transmitted by every satellite. Unlike ephemeris data, almanac data is
valid for long periods (months) but is much less precise. Additional data contained
in the navigation message is user range error (URE), which estimates the range error
due to errors in satellite ephemeris, timing errors, and selective availability (SA) and
flags to indicate the health status of the satellites.
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3.2.2 C/A-Code and lts Properties
The C/A-code has the following functions:

1. To enable accurate range measurements and resistance to errors caused by

multipath. To establish the position of a user to within 10-100 m, accurate
user-to-satellite range estimates are needed. The estimates are made from
measurements of signal propagation delay from the satellite to the user. To
achieve the required accuracy in measuring signal delay, the GPS carrier must
be modulated by a waveform having a relatively large bandwidth. The needed
bandwidth is provided by the C/A-code modulation, which also permits the
receiver to use correlation processing to effectively combat measurement
errors due to thermal noise. Because the C/A-code causes the bandwidth of
the signal to be much greater than that needed to convey the 50-bps data
stream, the resulting signal is called a spread-spectrum signal.

Using the C/A-code to increase the signal bandwidth also reduces errors in
measuring signal delay caused by multipath (the arrival of the signal via
multiple paths such as reflections from objects near the receiver antenna) since
the ability to separate the direct path signal from the reflected signal improves
as the signal bandwidth is made larger.

. To permit simultaneous range measurement from several satellites. The use of

a distinct C/A-code for each satellite permits all satellites to use the same L,
and L, frequencies without interfering with each other. This is possible
because the signal from an individual satellite can be isolated by correlating
it with a replica of its C/A-code in the receiver. This causes the C/A-code
modulation from that satellite to be removed so that the signal contains only
the 50-bps data and is therefore narrow band. This process is called
despreading of the signal. However, the correlation process does not cause
the signals from other satellites to become narrow band, because the codes
from different satellites are orthogonal. Therefore the interfering signals can
be rejected by passing the desired despread signal through a narrow-band
filter, a bandwith-sharing process called code division multiplexing (CDM) or
code division multiple access (CDMA).

. To provide protection from jamming. The C/A-code also provides a measure

of protection from intentional or unintentional jamming of the received signal
by another man-made signal. The correlation process that despreads the
desired signal has the property of spreading any other signal. Therefore, the
signal power of any interfering signal, even if it is narrow band, will be spread
over a large frequency band, and only that portion of the power lying in the
narrow-band filter will compete with the desired signal. The C/A-code
provides about 20-30dB of improvement in resistance to jamming from
narrowband signals.

We next detail important properties of the C/A-code.
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Fig. 3.5 Autocorrelation functions of C/A- and P(Y)-codes.

Temporal Structure Each satellite has a unique C/A-code, but all of the codes
consist of a repeating sequence of 1023 chips occurring at a rate of 1.023 MHz with
a period of 1 ms, as previously shown in Fig. 3.1. The leading edge of a specific chip
in the sequence, called the C/A-code epoch, defines the beginning of a new period.
Each chip is either positive or negative with the same magnitude. The polarities of
the 1023 chips appear to be randomly distributed but are in fact generated by a
deterministic algorithm implemented by shift registers. The algorithm produces
maximal-length Gold codes, which have the property of low cross-correlation
between different codes (orthogonality) as well as reasonably small autocorrelation
sidelobes.

Autocorrelation Function The autocovariance® function of the C/A-code is

T

W(7) = H c()e(t — 1) dt, (3.3)

0
where c(?) is the idealized C/A-code waveform (with chip values of £1), 7 is the
relative delay measured in seconds, and T is the code period (1 ms). The auto-
correlation function is periodic in t with a period of 1 ms. A single period is plotted
in Fig. 3.5, which is basically a triangle two chips wide at its base with a peak
located at © = 0 [in reality y/(t) contains small-sidelobe structures outside the
triangular region, but these are of little consequence].

The C/A-code autocorrelation function plays a substantial role in GPS receivers,
inasmuch as it forms the basis for code tracking and accurate user-to-satellite range

2 Strictly speaking, the autocorrelation function y(t) = (t)/(0) is the autocovariance function rescaled
by the signal variance [/(0)], but the terms autocorrelation and autocovariance are often interchanged in
engineering usage.
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measurement. In fact, the receiver continually computes values of this function in
which ¢(f) in the above integral is the signal code waveform and c(f — 1) is an
identical reference waveform (except for the relative delay 7) generated in the
receiver. Special hardware and software enable the receiver to adjust the reference
waveform delay so that the value of 7 is zero, thus enabling determination of the time
of arrival of the received signal.

Power Spectrum The power spectrum W( /) of the C/A-code describes how the
power in the code is distributed in the frequency domain. It can be defined either in
terms of a Fourier series expansion of the code waveform or equivalently in terms of
the code autocorrelation function. Using the latter, we have

T
P(f) = Jlim —J_T Y(t)e 7 dr. (3.4)

A plot of W(f) is shown as a smooth curve in Fig. 3.6; however, in reality W( f)
consists of spectral lines with 1-kHz spacing due to the 1-ms periodic structure of
(7). The power spectrum W( /) has a characteristic sin?(x)/x? shape with first nulls
located 1.023 MHz from the central peak. Approximately 90% of the signal power is
located between these two nulls, but the smaller portion lying outside the nulls is
very important for accurate ranging. Also shown in the figure for comparative
purposes is a typical noise power spectral density found in a GPS receiver after

A
\ Noise power
spectral density
} —+- t ~t — 1 —+- t f
—4f —3fc —2f —fe fe 2f 3fc 4f .

; ={ 1.023 MHz for C/A-code
¢ 1 10.23 MHz for P-code

Fig. 3.6 Power spectra of C/A- and P(Y)-codes.
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frequency conversion of the signal to baseband (i.e., with carrier removed). It can be
seen that the presence of the C/A-code causes the entire signal to lie well below the
noise level, because the signal power has been spread over a wide frequency range
(approximately +1 MHz).

Despreading of the Signal Spectrum The mathematical model of the signal
modulated by the C/A-code is

s(t) = /2P d(t)c(t) cos(wt + 0) (3.5)

where P; is the carrier power, d(f) is the 50-bps data modulation, c(f) is the C/A-
code waveform, w is the L, carrier frequency in radians per second, and 0 is the
carrier phase shift in radians. When this signal is frequency shifted to baseband and
tracked with a phase-lock loop, the carrier is removed and only the data modulation
and the C/A-code modulation remain. The resulting signal, which in normalized
form is

s(1) = d(t)e(?), (3.6)

has a power spectrum similar to that of the C/A-code in Fig. 3.6. As previously
mentioned, the signal in this form has a power spectrum lying below the receiver
noise level, making it inacessible. However, if the signal is multiplied by a replica of
c(t) in exact alignment with it, the result is

s(t)e(t) = d()e(d)e(t) = d(O)A() = d(2), (3.7)

where the last equality arises from the fact that the values of the ideal C/A-code
waveform are £1 (in reality the received C/A-code waveform is not ideal due to
bandlimiting in the receiver; however, the effects are usually minor). This procedure,
called code despreading, removes the C/A-code modulation from the signal. The
resulting signal has a two-sided spectral width of approximately 100 Hz due to the
50-bps data modulation. From the above equation it can be seen that the total signal
power has not been changed in this process, but it now is contained in a much
narrower bandwith. Thus the magnitude of the power spectrum is greatly increased,
as indicated in Fig. 3.7. In fact, it now exceeds that of the noise, and the signal can be
recovered by passing it through a small-bandwidth filter (signal recovery filter) to
remove the wide-band noise, as shown in the figure.

Role of Despreading in Interference Suppression At the same time that
the spectrum of the desired GPS signal is narrowed by the despreading process, any
interfering signal that is not modulated by the C/A-code will instead have its
spectrum spread to a width of at least 2 MHz, so that only a small portion of the
interfering power can pass through the signal recovery filter. The amount of
interference suppression gained by using the C/A-code depends on the bandwidth
of the recovery filter, the bandwidth of the interfering signal, and the bandwidth of
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Fig. 3.7 Despreading of the C/A-code.

the C/A-code. For narrow-band interferors whose signal can be modeled by a nearly
sinusoidal waveform and a signal recovery filter bandwidth of 1000 Hz or more, the
amount of interference suppression in decibels is given approximately by

/4
= 10log| =£ B .
n Oog<Wf> dB, (3.8)

where W, and W, are respectively the bandwidths of the C/A-code (2.046 MHz) and
the signal recovery filter. If W, = 2000 Hz, about 30dB of suppression can be
obtained for narrow-band interferors. When the signal recovery filter has a
bandwidth smaller than 1000 Hz, the situation is more complicated, since the
despread interfering sinusoid will have discrete spectral components with a 1000-
Hz spacing. As the bandwidth of the interfering signal increases, the C/A-code
despreading process provides a decreasing amount of interference suppression. For
interferors having a bandwidth greater than that of the signal recovery filter, the
amount of suppression in decibels provided by the C/A-code is approximately

W+ W,
n:1010g<L> dB, (3.9)
4

where I} is the bandwidth of the interferor. When W, > W,, the C/A-code provides
essentially no interference suppression at all compared to the use of an unspread
carrier.
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Code Division Multiplexing Property The C/A-codes from different satel-
lites are orthogonal, which means that for any two codes c¢,(¢) and c,(¢) from
different satellites, the cross-covariance

1 T
?J ci(H)cy(t —1)dt =0 forall 7. (3.10)
0

Thus, when a selected satellite signal is despread using a replica of its code, the
signals from other satellites look like wide-band interferors which are below the
noise level. This permits a GPS receiver to extract a multiplicity of individual
satellite signals and process them individually, even though all signals are trans-
mitted at the same frequency. This process is called code division multiplexing
(CDM).

3.2.3 P-Code and Its Properties

The P-code, which is used primarily for military applications, has the following
functions:

1. Increased Jamming Protection. Because the bandwidth of the P-code is 10
times greater than that of the C/A-code, it offers approximately 10 dB more
protection from narrow-band interference. In military applications the inter-
ference is likely to be a deliberate attempt to jam (render useless) the received
GPS signal.

2. Provision for Antispoofing. In addition to jamming, another military tactic that
an enemy can employ is to radiate a signal that appears to be a GPS signal
(spoofing), but in reality is designed to confuse the GPS receiver. This is
prevented by encrypting the P-code. The would-be spoofer cannot know the
encryption process and cannot make the contending signal look like a properly
encrypted signal. Thus the receiver can reject the false signal and decrypt the
desired one.

3. Denial of P-Code Use. The structure of the P-code is published in the open
literature, so than anyone may generate it as a reference code for despreading
the signal and making range measurements. However, encryption of the P-
code by the military will deny its use by unauthorized parties.

4. Increased Code Range Measurement Accuracy. All other parameters being
equal, accuracy in range measurement improves as the signal bandwidth
increases. Thus, the P-code provides improved range measurement accuracy as
compared to the C/A-code. Simultancous range measurements using both
codes is even better. Due to its increased bandwidth, the P-code is also more
resistant to range errors caused by multipath.

P-Code Characteristics Unlike the C/A-code, the P-code modulates both the
L, and L, carriers. Its chipping rate is 10.23 MHz, which is precisely 10 times the
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C/A rate, and it has a period of one week. It is transmitted synchronously with the
C/A- code in the sense that each chip transition of the C/A-code always corresponds
to a chip transition in the P-code. Like the C/A-code, the P-code autocorrelation
function has a triangular central peak centered at T = 0, but with one-tenth the base
width, as shown in Fig. 3.5. The power spectrum also has a sin?(x)/x? characteristic,
but with 10 times the bandwidth, as indicated in Fig. 3.6. Because the period of the
P-code is so long, the power spectrum may be regarded as continuous for practical
purposes. Each satellite broadcasts a unique P-code. The technique used to generate
it is similar to that of the C/A-code, but somewhat more complicated, and will not be
covered in this book.

Y-Code The encrypted form of the P-code used for antispoofing and denial of the
P-code to unauthorized users is called the Y-code. The Y-code is formed by
multiplying the P-code by an encrypting code called the W-code. The W-code is a
random-looking sequence of chips that occur at a 511.5-kHz rate. Thus there are 20
P-code chips for every W-code chip. Since both the P-code and the W-code have
chip values of %1, the resulting Y-code has the same appearance as the P-code, that
is, it also has a 10.23-MHz chipping rate. However, the Y-code cannot be despread
by a receiver replica P-code unless it is decrypted. Decryption consists of multi-
plying the Y-code by a receiver-generated replica of the W-code which is made
available only to authorized users. Since the encrypting W-code is also not known by
the creators of spoofing signals, it is easy to verify that such signals are not
legitimate.

3.2.4 L, and L, Carriers

The L, (or L,) carrier is used for the following purposes:

1. To provide very accurate range measurements for precision applications using
carrier phase.

2. To provide accurate Doppler measurements. The phase rate of the received
carrier can be used for accurate determination of user velocity. The integrated
Doppler, which can be obtained by counting the cycles of the received carrier,
is often used as a precise delta range observable that can materially aid the
performance of code tracking loops. The integrated Doppler history is also
used as part of the carrier phase ambiguity resolution process.

Dual-Frequency Operation The use of both the L, and L, frequencies
provides the following benefits:

1. Provides accurate measurement of ionospheric signal delay. A major source
of ranging error is caused by changes in both the phase velocity and group
velocity of the signal as it passes through the ionosphere. Range errors of 10—
20m are commonplace and sometimes much larger. Because the delay
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induced by the ionosphere is known to be inversely proportional to the square
of frequency, ionospheric range error can be estimated accurately by compar-
ing the times of arrival of the L, and L, signals. Details on the calculations
appear in Chapter 5.

2. Facilitates carrier phase ambiguity resolution. In high-accuracy GPS differ-
ential positioning, the range estimates using carrier phase measurements are
precise but highly ambiguous due to the periodic structure of the carrier. The
ambiguity is more easily resolved (by various methods) as the carrier
frequency decreases. By using L, and L, carrier frequencies, the ambiguity
resolution can be based on their frequency difference (1575.42 — 1227.6
MHz), which is smaller than either carrier frequency alone, and hence will
result in better ambiguity resolution performance.

3. Provides system redundancy (primarily for the military user).

3.3 SIGNAL POWER LEVELS

The L; C/A-code signal is transmitted at a minimum level of 478.63 W (26.8 dBW)
effective isotropic radiated power (EIRP), which means that the minimum received
power is the same as that which would be obtained if the satellite radiated 478.63 W
from an isotropic antenna. This effective power level is reached by radiating a
smaller total power in a beam approximately 30° wide toward the earth. The radiated
power level was chosen to provide a signal-to-noise ratio sufficient for tracking of
the signal by a receiver on the Earth with an unobstructed view of the satellite.
However, the chosen power has been criticized as being inadequate in light of the
need to operate GPS receivers under less desirable conditions, such as in heavy
vegetation or in urban canyons where considerable signal attenuation often occurs.
For this reason, future satellites may have higher transmitted power.

As the signal propagates toward the earth, it loses power density due to spherical
spreading. The loss is accounted for by a quantity called the free-space loss factor
(FSLF), given by

2 2

The FSLF is the fractional power density at a distance R meters from the transmitting
antenna compared to a value normalized to unity at the distance 1/47 meters from
the antenna phase center. Using R =2 x 107 and A = 0.19m at the L, frequency,
the FSLF is about 5.7 x 1071°, or —182.4 dB.

An additional atmospheric loss factor (ALF) of about 2.0 dB occurs as the signal
gets attenuated by the atmosphere. If the receiving antenna is assumed to be
isotropic, the received signal power is EIRP — FSLF — ALF = 26.8 — 182.4 —
2.0 = —157.6 dBW. Since a typical GPS antenna with right-hand circular polariza-
tion and a hemispherical pattern has about 3.0 dB of gain relative to an isotropic



46 SIGNAL CHARACTERISTICS AND INFORMATION EXTRACTION

Table 3.3 Calculation of Minimum Received Signal Power

Minimum transmitted signal power (EIRP) 26.82dBW
Free-space loss factor (FSLF) —182.4dB
Atmospheric loss factor (ALF) —2.0dB
Receiver antenna gain relative to isotropic (RAG) 3.0dB
Minimum received signal power (EIRP — FSLF — ALF + RAG) —154.6dBW

2Including antenna gain.

antenna, the minimum received signal power for such an antenna is about 3.0dB
larger. These results are summarized in Table 3.3.

3.4 SIGNAL ACQUISITION AND TRACKING

When a GPS receiver is turned on, a sequence of operations must ensue before
information in a GPS signal can be accessed and used to provide a navigation
solution. In the order of execution, these operations are as follows:

Determine which satellites are visible to the antenna.
Determine the approximate Doppler of each visible satellite.
Search for the signal both in frequency and C/A-code phase.
Detect the presence of a signal and confirm detection.

Lock onto and track the C/A-code.

Lock onto and track the carrier.

Perform data bit synchronization.

® NNk LD

Demodulate the 50-bps navigation data.

3.4.1 Determination of Visible Satellites

In many GPS receiver applications it is desirable to minimize the time from receiver
turn-on until the first navigation solution is obtained. This time interval is commonly
called time to first fix (TTFF). Depending on receiver characteristics, the TTFF might
range from 30s to several minutes. An important consideration in minimizing the
TTFF is to avoid a fruitless search for those satellite signals that are blocked by the
earth, that is, below the horizon. A receiver can restrict its search to only those
satellites that are visible if it knows its approximate location (within several hundred
miles) and approximate time (within approximately 10min) and has satellite
almanac data obtained within the last several months. The approximate location
can be manually entered by the user or it can be the position obtained by GPS when
the receiver was last in operation. The approximate time can also be entered
manually, but most receivers have a sufficiently accurate real-time clock that
operates continuously, even when the receiver is off.
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Using the approximate time, approximate position, and almanac data, the receiver
calculates the elevation angle of each satellite and identifies the visible satellites as
those whose elevation angle is greater than a specified value, called the mask angle,
which has typical values of 5° to 15°. At elevation angles below the mask angle,
tropospheric attenuation and delays tend to make the signals unreliable.

Most receivers automatically update the almanac data when in use, but if the
receiver is just “out of the box” or has not been used for many months, it will need
to search “blind” for a satellite signal to collect the needed almanac. In this case the
receiver will not know which satellites are visible, so it simply must work its way
down a predetermined list of satellites until a signal is found. Although such a
“blind” search may take an appreciable length of time, it is infrequently needed.

3.4.2 Signal Doppler Estimation

The TTFF can be further reduced if the approximate Doppler shifts of the visible
satellite signals are known. This permits the receiver to establish a frequency search
pattern in which the most likely frequencies of reception are searched first. The
expected Doppler shifts can be calculated from knowledge of approximate position,
approximate time, and valid almanac data. The greatest benefit is obtained if the
receiver has a reasonably accurate clock reference oscillator.

However, once the first satellite signal is found, a fairly good estimate of receiver
clock frequency error can be determined by comparing the predicted Doppler shift
with the measured Doppler shift. This error can then be subtracted out while
searching in frequency for the remaining satellites, thus significantly reducing the
range of frequencies that need to be searched.

3.4.3 Search for Signal in Frequency and C/A-Code Phase

Why is a Signal Search Necessary? Since GPS signals are radio signals, one
might assume that they could be received simply by setting a dial to a particular
frequency, as is done with AM and FM broadcast band receivers. Unfortunately, this
is not the case.

1. GPS signals are spread-spectrum signals in which the C/A or P-codes spread
the total signal power over a wide bandwidth. The signals are therefore
virtually undetectable unless they are despread with a replica code in the
receiver which is precisely aligned with the received code. Since the signal
cannot be detected until alignment has been achieved, a search over the
possible alignment positions (code search) is required.

2. A relatively narrow post-despreading bandwidth (perhaps 100-1000 Hz) is
required to raise the signal-to-noise ratio to detectable and/or usable levels.
However, because of the high carrier frequencies and large satellite velocities
used by GPS, the received signals can have large Doppler shifts (as much as
45 kHz) which may vary rapidly (as much as 1 Hz/s). The observed Doppler
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shift also varies with location on earth, so that the received frequency will
generally be unknown a priori. Furthermore, the frequency error in typical
receiver reference oscillators will typically cause several kilohertz or more of
frequency uncertainty at L-band. Thus, in addition to the code search, there is
also the need for a search in frequency.

Therefore, a GPS receiver must conduct a two-dimensional search in order to find
each satellite signal, where the dimensions are C/A-code delay and carrier
frequency. A search must be conducted across the full delay range of the C/A-
code for each frequency searched. A generic method for conducting the search is
illustrated in Fig. 3.8 in which the received waveform is multiplied by delayed
replicas of the C/A-code, translated by various frequencies, and then passed through
a baseband correlator containing a low-pass filter which has a relatively small
bandwidth (perhaps 100—-1000 Hz). The output energy of the detection filter serves
as a signal detection statistic and will be significant only if both the selected code
delay and frequency translation match that of the signal. When the energy exceeds a
predetermined threshold f, a tentative decision is made that a signal is being
received, subject to later confirmation. The value chosen for the threshold f is a
compromise between the conflicting goals of maximizing the probability P, of
detecting the signal when it is actually present at a given Doppler and code delay and
minimizing the probability P, of false alarm when it is not.

Searching in Code Delay For each frequency searched, the receiver generates the
same PRN code as that of the satellite and moves the delay of this code in discrete
steps (typically 0.5 chips) until approximate alignment with the received code (and
also a match in Doppler) is indicated when the correlator output energy exceeds

Sequence 1 in Y,-chip increments
through full span of 1023 chips

Sequence frequency in 500-Hz increments
through span of 20 kHz centered at estimate
r of received signal frequency

Code
gen

0SC

Detection threshold 8
90° T=3ms selected for:
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Fig. 3.8 Signal search method.
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threshold f5. A step size of 0.5 code chip, which is used by many GPS receivers, is an
acceptable compromise between the conflicting requirements of search speed
(enhanced by a larger step size) and guaranteeing a code delay that will be located
near the peak value of the code correlation function (enhanced by a smaller step
size). The best situation occurs when one of the delay positions is at the correlation
function peak, and the worst one occurs when there are two delay positions
straddling the peak, as indicated in Fig. 3.9. In the latter case, the effective SNR
is reduced by as much as 6 dB. However, the effect is ameliorated because, instead of
only one delay position with substantial correlation, there are two that can be tested
for the presence of signal.

An important parameter in the code search is the dwell time used for each code
delay position, since it influences both the search speed and the detection/false-
alarm performance. The dwell time should be an integral multiple of 1 ms to assure
that the correct correlation function, using the full range of 1023 code states, is
obtained. Satisfactory performance is obtained with dwell times from 1 to 4 ms in
most GPS receivers, but longer dwell times are sometimes used to increase detection
capability in weak-signal environments. However, if the dwell time for the search is a
substantial fraction of 20 ms (the duration of one data bit), it becomes increasingly
probable that a bit transition of the 50-Hz data modulation will destroy the coherent
processing of the correlator during the search and lead to a missed detection. This
imposes a practical limit for a search using coherent detection.

The simplest type of code search uses a fixed dwell time, a single detection
threshold value f, and a simple yes/no binary decision as to the presence of a signal.
Many receivers achieve considerable improvement in search speed by using a
sequential detection technique in which the overall dwell time is conditioned on a
ternary decision involving an upper and a lower detection threshold. Details on this
approach can be found in [125].

1/2 1/2

0 0

Fig. 3.9 Effect of ] chip step size in code search.
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Searching in Frequency The range of frequency uncertainty that must be
searched is a function of the accuracy of the receiver reference oscillator, how well
the approximate user position is known, and the accuracy of the receiver’s built-in
real-time clock. The first step in the search is to use stored almanac data to obtain an
estimate of the Doppler shift of the satellite signal. An interval [ f;, f;] of frequencies
to be searched is then established. The center of the interval is located at f. + f,
where f, is the L, (or L,) carrier frequency and f; is the estimated carrier Doppler
shift. The width of the search interval is made large enough to account for worst-case
errors in the receiver reference oscillator, in the estimate of user postion, and in the
real-time clock. A typical range for the frequency search interval is f, + f; £ S kHz.

The frequency search is conducted in N discrete frequency steps that cover the
entire search interval. The value of N is (f, —f;)/Af, where Af is the spacing
between adjacent frequencies (bin width). The bin width is determined by the
effective bandwidth of the correlator. For the coherent processing used in many GPS
receivers, the frequency bin width is approximately the reciprocal of the search dwell
time. Thus, typical values of Af are 250-1000 Hz. Assuming a +5-kHz frequency
search range, the number N of frequency steps to cover the entire search interval
would typically be 10—40.

Frequency Search Strategy Because the received signal frequency is more
likely to be near, rather than far from, the Doppler estimate, the expected time to
detect the signal can be minimized by starting the search at the estimated frequency
and expanding in an outward direction by alternately selecting frequencies above and
below the estimate, as indicated in Fig. 3.10. On the other hand, the unknown code
delay of the signal can be considered to be uniformly distributed over its range so
that each delay value is equally likely. Thus, the delays used in the code search can
simply sequence from 0 to 1023.5 chips in 0.5-chip increments.

Sequential Versus Parallel Search Methods Almost all current GPS
receivers are multichannel units in which each channel is assigned a satellite and
processing in the channels is carried out simultaneously. Thus, simultaneous
searches can be made for all usable satellites when the receiver is turned on.
Because the search in each channel consists of sequencing through all possible
frequency and code delay steps, it is called a sequential search. In this case, the
expected time required to acquire as many as eight satellites is typically 30-100s,
depending on the specific search parameters used.

Certain applications (mostly military) demand that the satellites be acquired much
more rapidly (perhaps within a few seconds). This can be accomplished by using a
parallel search technique in which extra hardware permits many frequencies and
code delays to be searched at the same time. However, this approach is seldom used
in commercial receivers because of its high cost.
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Fig. 3.10 Frequency search strategy.

3.4.4 Signal Detection and Confirmation

As previously mentioned, there is a trade-off between the probability of detection P,
and false alarm Pp,. As the detection threshold f is decreased, P, increases but Ppy
also increases, as illustrated in Fig. 3.11. Thus, the challenge in receiver design is to
achieve a sufficiently large P, so that a signal will not be missed but at the same time
keep Pg, small enough to avoid difficulties with false detections. When a false
detection occurs, the receiver will try to lock onto and track a nonexistent signal. By
the time the failure to track becomes evident, the receiver will have to initiate a
completely new search for the signal. On the other hand, when a detection failure
occurs, the receiver will waste time continuing to search remaining search cells that
contain no signal, after which a new search must be initiated.

Detection Confirmation One way to achieve both a large P, and a small P, is
to increase the dwell time so that the relative noise component of the detection
statistic is reduced. However, to reliably acquire weak GPS signals, the required
dwell time may result in unacceptably slow search speed. An effective way around
this problem is to use some form of detection confirmation.

To illustrate the detection confirmation concept, suppose that to obtain the
detection probability P, = 0.95 with a typical medium-strength GPS signal, we
obtain the false-alarm probability Pr, = 1073, (These are typical values for a fixed
search dwell time of 3 ms.) This means that on the average, there will be one false
detection in every 1000 frequency/code cells searched. A typical two-dimensional
GPS search region might contain as many as 40 frequency bins and 2046 code delay
positions, for a total of 40 x 2046 = 81, 840 such cells. Thus we could expect about
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82 false detections in the full search region. Given the implications of a false
detection discussed previously, this is clearly unacceptable.

However, suppose we change the rules for what happens when a detection (false
or otherwise) occurs by performing a confirmation of detection before turning the
signal over to the tracking loops. Because a false detection takes place only once in
1000 search cells, it is possible to use a much longer dwell (or a sequence of
repeated dwells) for purposes of confirmation without markedly increasing the
overall search speed, yet the confirmation process will have an extremely high
probability of being correct. In the event that confirmation indicates no signal, the
search can continue without interruption by the large time delay inherent in detecting
the failure to track. In addition to using longer dwell times, the confirmation process
can also perform a local search in which the frequency/code cell size is smaller than
that of the main, or global, search, thus providing a more accurate estimate of signal
frequency and code phase when a detection is confirmed. Figure 3.12 depicts this
scheme. The global search uses a detection threshold f3 that provides a high P, and a
moderate value of Pp,. Whenever the detection statistic A exceeds f at a
frequency/delay cell, a confirmation search is performed in a local region surround-
ing that cell. The local region is subdivided into smaller cells to obtain better
frequency delay resolution, and a longer dwell time is used in forming the detection
statistic A. The longer dwell time makes it possible to use a value of f§ that provides
both a high Pj, and a low Pp,.

Adaptive Signal Searches Some GPS receivers use a simple adaptive search
in which shorter dwell times are first used to permit rapid acquisition of moderate to
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strong signals. Whenever a search for a particular satellite is unsuccessful, it is likely
that the signal from that satellite is relatively weak, so the receiver increases the
dwell time and starts a new search that is slower but has better performance in
acquiring weak signals.

Coordination of Frequency Tuning and Code Chipping Rate As the
receiver is tuned in frequency during search, it is advantageous to precess the
chipping rate of the receiver generated code so that it is in accordance with the
Doppler shift under consideration. The relationship between Doppler shift and the
precession rate of the C/A-code is given by p(¢) = f;/1540, where p(¢) is the code
precession rate in chips per second, f; is the Doppler shift in Hertz, and a positive
precession rate is interpreted as an increase in the chipping rate. Precession is not
required while searching because the dwell times are so short. However, when
detection of the signal occurs, it is important to match the incoming and reference
code rates during the longer time required for detection confirmation and/or
initiation of code tracking to take place.

3.4.5 Code Tracking Loop

At the time of detection confirmation the receiver-generated reference C/A-code will
be in approximate alignment with that of the signal (usually within one-half chip),
and the reference code chipping rate will be approximately that of the signal.
Additionally, the frequency of the signal will be known to within the frequency bin
width Af. However, unless further measures are taken, the residual Doppler on the
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signal will eventually cause the received and reference codes to drift out of
alignment and the signal frequency to drift outside the frequency bin at which
detection occurred. If the code alignment error exceeds one chip in magnitude, the
incoming signal will no longer despread and will disappear below the noise level.
The signal will also disappear if it drifts outside the detection frequency bin. Thus
there is the need to continually adjust the timing of the reference code so that it
maintains accurate alignment with the received code, a process called code tracking.
The process of maintaining accurate tuning to the signal carrier, called carrier
tracking, is also necessary and will be discussed in following sections.

Code tracking is initiated as soon as signal detection is confirmed, and the goal is
to make the receiver-generated code line up with incoming code as precisely as
possible. There are two objectives in maintaining alignment:

1. Signal Despreading. The first objective is to fully despread the signal so that it
is no longer below the noise and so that information contained in the carrier
and the 50-bps data modulation can be recovered.

2. Range Measurements. The second objective is to enable precise measurement
of the time of arrival (TOA) of received code for purposes of measuring range.
Such measurements cannot be made directly from the received signal, since it
is below the noise level. Therefore, a code tracking loop, which has a large
processing gain, is employed to generate a reference code precisely aligned
with that of the received signal. This enables range measurements to be made
using the reference code instead of the much noisier received signal code
waveform.

Figure 3.13 illustrates the concept of a code tracking loop. It is assumed that a
numerically controlled oscillator (NCO) has translated the signal to complex base-
band form (i.e., zero frequency). Each component (/ and Q) of the baseband signal is
multiplied by three replicas of the C/A-code that are formed by delaying the output
of a single code generator by three delay values called early, punctual, and late. In
typical GPS receivers the early and late codes respectively lead and lag the punctual
code by 0.05 to 0.5 code chips and always maintain these relative positions.
Following each multiplier is a low-pass filter (LPF) or integrator that, together
with its associated multiplier, forms a correlator. The output magnitude of each
correlator is proportional to the cross-correlation of its received and reference codes,
where the cross-correlation function has the triangular shape previously shown in
Fig. 3.5. In normal operation the punctual code is aligned with the code of the
incoming signal so that the squared magnitude /3 + Q% of the punctual correlator
output is at the peak of the cross-correlation function, and the output magnitudes of
the early and late correlators have smaller but equal values on each side of the peak.
To maintain this condition, a loop error signal

e(t) =1} + 0] — (g + 0%) (3.12)
is formed, which is the difference between the squared magnitudes of the late and
early correlators. The loop error signal as a function of received code delay is shown
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in Fig. 3.14. Near the tracking point the error is positive if the received code is
delayed relative to the punctual code and negative if it is advanced. Alignment of the
punctual code with the received code is maintained by using the error signal to delay
the reference code generator when the error signal is positive and to advance it when
the error signal is negative. Since e.(t) is generally quite noisy, it is sent through a
low-pass loop filter before it controls the timing of the reference code generator, as
indicated in Fig. 3.13. The bandwidth of this filter is usually quite small, resulting in
a closed-loop bandwidth typically less than 1 Hz. This is the source of the large
processing gain that can be realized in extracting the C/A-code from the signal.

When the code tracking loop is first turned on, the integration time 7 for the
correlators is usually no more than a few milliseconds, in order to minimize
corruption of the correlation process by data bit transitions of the 50-bps data
stream whose locations in time are not yet known. However, after bit synchroniza-
tion has located the data bit boundaries, the integration interval can span a full data
bit (20 ms) in order to achieve a maximum contribution to processing gain.

Coherent Versus Noncoherent Code Tracking If the error signal is formed
from only the squared magnitudes of the (complex) early and late correlator outputs
as described above, the loop is called a noncoherent code tracking loop. A
distinguishing feature of such a loop is its insensitivity to the phase of the received
signal. Insensitivity to phase is desirable when the loop is first turned on, since at that
time the signal phase is random and not yet under any control.
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On the other hand, once the phase of the signal is being tracked, a coherent code
tracker can be employed, in which the outputs of the early and late correlators are
purely real. In this situation the loop error signal can be formed directly from the
difference of the early and late squared magnitudes from only the / correlator. By
avoiding the noise in the Q correlator outputs, a 3-dB SNR advantage is thereby
gained in tracking the code. However, a price is paid in that the code loop error
signal becomes sensitive to phase error in tracking the carrier. If phase tracking is
ever lost, complete failure of the code tracking loop could occur. This is a major
disadvantage, especially in mobile applications where the signal can vary rapidly in
magnitude and phase. Since noncoherent operation is much more robust in this
regard and is still needed when code tracking is initiated, most GPS receivers use
only noncoherent code tracking.

Factors Affecting Code Tracking Performance The bandwidth of the code
tracking loop is determined primarily by the loop filter and needs to be narrow for
best ranging accuracy but wide enough to avoid loss of lock if the receiver is subject
to large accelerations that can suddenly change the apparent chipping rate of the
received code. Excessive accelerations cause loss of lock by moving the received and
reference codes too far out of alignment before the loop can adequately respond.
Once the alignment error exceeds approximately 1 code chip, the loop loses lock
because it no longer has the ability to form the proper error signal.

In low-dynamics applications with lower cost receivers, code tracking loop
bandwidths on the order of 1Hz permit acceptable performance in hand-held



3.4 SIGNAL ACQUISITION AND TRACKING 57

units and in receivers with moderate dynamics (e.g., in automobiles). For high-
dynamics applications, such as missile platforms, loop bandwidths might be on the
order of 10Hz or larger. In surveying applications, which have no appreciable
dynamics, loop bandwidths can be as small as 0.01 Hz to obtain the required ranging
accuracy. Both tracking accuracy and the ability to handle dynamics are greatly
enhanced by means of carrier aiding from the receiver’s carrier phase tracking loop,
which will be be discussed subsequently.

3.4.6 Carrier Phase Tracking Loops

The purposes of tracking carrier phase are

1. to obtain a phase reference for coherent detection of the GPS biphase
modulated data,

2. to provide precise velocity measurements (via phase rate),
3. to obtain integrated Doppler for rate aiding of the code tracking loop, and

4. to obtain precise carrier phase pseudorange measurements in high-accuracy
receivers.

Tracking of carrier phase is usually accomplished by a phase-lock loop (PLL). A
Costas-type PLL or its equivalent must be used to prevent loss of phase coherence
induced by the biphase data modulation on the GPS carrier. The origin of the Costas
PLL is described in [24]. A typical Costas loop is shown in Fig. 3.15. In this design
the output of the receiver last intermediate-frequency (IF) amplifier is converted to a
complex baseband signal by multiplying the signal by both the in-phase and
quadrature-phase outputs of an NCO and integrating each product over each 20-
ms data bit interval to form a sequence of phasors. The phase angle of each phasor is
the phase difference between the signal carrier and the NCO output during the 20-ms
integration. A loop phase error signal is formed by multiplying together the / and O
components of each phasor. This error signal is unaffected by the biphase data
modulation because the modulation appears on both / and Q and is removed in
forming the 7 x Q product. After passing through a low-pass loop filter the error
signal controls the NCO phase to drive the loop error signal / x O to zero (the
phase-locked condition). In some receivers the error signal is generated by forming
twice the four-quadrant arctangent of the / and Q phasor components, as indicated in
the figure.

Because the Costas loop is unaffected by the data modulation, it will achieve
phase lock at two stable points where the NCO output phase differs from that of the
signal carrier by either 0° or 180°, respectively. This can be seen by considering
I =Acosf and Q = Asin 0, where A is the phasor amplitude and 6 is its phase.
Then,

I x Q= A*cosBsin6 =14 sin26. (3.13)
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There are four values of 0 in [0, 27) where the error signal / x O = 0. Two of these
are the stable points, namely 6 = 0 and 6 = 180°, toward which the loop tends to
return if perturbed. Since sin 26 is unchanged by 180° changes in 6 caused by the
data bits, the data modulation will have no effect. At either of the two stable points
the Q integrator output is nominally zero and the / integrator output contains the
demodulated data stream, but with a polarity ambiguity that can be removed by
observing frame preamble data. Thus the Costas loop has the additional feature of
serving as a data demodulator.

In the Costas loop design shown the phase of the signal is measured by
comparing the phase of the NCO output with a reference signal. Normally the
reference signal frequency is a rational multiple of the same crystal-controlled
oscillator that is used in frequency shifting the GPS signal down to the last IF. When
the NCO is locked to the phase of the incoming signal, the measured phase rate will
typically be in the range of 5 kHz due to signal Doppler shift. Two types of phase
measurement are usually performed on a periodic basis (the period might be every
20 ms). The first is an accurate measurement of the phase modulo 27, which is used
in precision carrier phase ranging. The second is the number of cycles (including the
fractional part) of phase change that have occurred from a defined point in time up to
the present time. The latter measurement is often called integrated Doppler and is
used for aiding the code tracking loop. By subtracting consecutive integrated
Doppler measurements, extremely accurate average frequency measurements can
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be made, which can be used by the navigation filter to accurately determine user
velocity.

Although the Costas loop is not disturbed by the presence of data modulation, at
low SNR its performance degrades considerably from that of a loop designed for a
pure carrier. The degradation is due to the noise x noise component of the / x O
error signal. Furthermore, the 20-ms duration of the / and Q integrations represents a
limit to the amount of coherent processing that can be achieved. If it is assumed that
the maximum acceptable bit error rate for the 50-bps data demodulation is 1073,
GPS signals become unusable when C/N,, falls below about 25 dB-Hz.

The design bandwidth of the PLL is determined by the SNR, desired tracking
accuracy, signal dynamics, and ability to “pull in” when acquiring the signal or
when lock is momentarily lost.

PLL Capture Range An important characteristic of the PLL is the ability to
“pull-in” to the frequency of a received signal. When the PLL is first turned on
following code acquisition, the difference between the signal carrier frequency and
the NCO frequency must be sufficiently small or the PLL will not lock. In typical
GPS applications, the PLL must have a relatively small bandwidth (1-10 Hz) to
prevent loss of lock due to noise. However, this results in a small pull-in (or capture)
range (perhaps only 3-30 Hz), which would require small (hence many) frequency
bins in the signal acquisition search algorithm.

Use of Frequency-Lock Loops for Carrier Capture Some receivers avoid
the conflicting demands of the need for a small bandwidth and a large capture range
in the PLL by using a frequency-lock loop (FLL). The capture range of a FLL is
typically much larger than that of a PLL, but the FLL cannot lock to phase.
Therefore, a FLL is often used to pull the NCO frequency into the capture range of
the PLL, at which time the FLL is turned off and the PLL is turned on. A typical
FLL design is shown in Fig. 3.16. The FLL generates a loop error signal eg;; that is
approximately proportional to the rotation rate of the baseband signal phasor and is
derived from the vector cross-product of successive baseband phasors
[I(t—7),0(t —v)] and [I(¢), O(f)], where 7 is a fixed delay, typically 1-5ms.
More precisely,

epL = QI — 1) = 1Ot — 7). (3.14)

PLL Order The order of a PLL refers to its capability to track different types of
signal dynamics. Most GPS receivers use second- or third-order PLLs. A second-
order loop can track a constant rate of phase change (i.e., constant frequency) with
zero average phase error and a constant rate of frequency change with a nonzero but
constant phase error. A third-order loop can track a constant rate of frequency
change with zero average phase error and a constant acceleration of frequency with
nonzero but constant phase error. Low-cost receivers typically use a second-order
PLL with fairly low bandwidth because the user dynamics are minimal and the rate
of change of the signal frequency due to satellite motion is sufficiently low
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(< 1Hz/s) that phase tracking error is negligible. On the other hand, receivers
designed for high dynamics (i.e., missiles) will sometimes use third-order or even
higher order PLLs to avoid loss of lock due to the large accelerations encountered.

The price paid for using higher order PLLs is a somewhat less robust perfor-
mance in the presence of noise. If independent measurements of platform dynamics
are available (such as accelerometer or INS outputs), they can be used to aid the PLL
by reducing stress on the loop. This can be advantageous because it often makes the
use of higher order loops unnecessary.

3.4.7 Bit Synchronization

Before bit synchronization can occur, the PLL must be locked to the GPS signal.
This is accomplished by running the Costas loop in a 1-ms integration mode where
each interval of integration is over one period of the C/A-code, starting and ending
at the code epoch. Since the 50-Hz biphase data bit transitions can occur only at code
epochs, there can be no bit transitions while integration is taking place. When the
PLL achieves lock, the output of the / integrator will be a sequence of values
occurring once per millisecond or 20 times per data bit. With nominal signal levels
the processing gain of the integrator is sufficient to guarantee with high probability
that the polarity of the 20 integrator outputs will remain constant during each data bit
interval and will change polarity when a data bit transition occurs.

A simple method of bit synchronization is to clock a modulo 20 counter with the
epochs of the receiver-generated reference C/A-code and record the count each time
the polarity of the / integrator output changes. A histogram of the frequency of each
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count is constructed, and the count having the highest frequency identifies the
epochs that mark the data bit boundaries.

3.4.8 Data Bit Demodulation

Once bit synchronization has been achieved, demodulation of the data bits can occur.
As previously described, many GPS receivers demodulate the data by integrating the
in-phase (/) component of the baseband phasor generated by a Costas loop, which
tracks the carrier phase. Each data bit is generated by integrating the / component
over a 20-ms interval from one data bit boundary to the next. The Costas loop causes
a polarity ambiguity of the data bits that can be resolved by observation of the
subframe preamble in the navigation message data.

3.5 EXTRACTION OF INFORMATION FOR NAVIGATION SOLUTION

After data demodulation has been performed, the essential information in the signal
needed for the navigation solution is at hand. This information can be classified into
the following three categories:

1. the information needed to determine signal transmission time,

2. the information needed to establish the position and velocity of each satellite,
and

3. the various pseudorange and Doppler measurements made by the receiver.

3.5.1 Signal Transmission Time Information

In our previous discussion of the Z-count, we saw that the receiver can establish the
time of transmission of the beginning of each subframe of the signal and of the
corresponding C/A-code epoch that coincides with it. Since the epochs are
transmitted precisely 1ms apart, the receiver labels subsequent C/A-code epochs
merely by counting them. This enables the determination of the transmission time of
any part of the signal by a process to be described later.

3.5.2 Ephemeris Data

The ephemeris data permits the position and velocity of each satellite to be
computed at the signal transmission time. The calculations have previously been
outlined in Table 3.2.

3.5.3 Pseudorange Measurements Using C/A-Code

In its basic form, finding the three-dimensional position of a user would consist of
determining the range, that is, the distance of the user from each of three or more
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satellites having known positions in space, and mathematically solving for a point in
space where that set of ranges would occur. The range to each satellite can be
determined by measuring how long it takes for the signal to propagate from the
satellite to the receiver and multiplying the propagation time by the speed of light.

Unfortunately, however, this method of computing range would require very
accurate synchronization of the satellite and receiver clocks used for the time
measurements. GPS satellites use very accurate and stable atomic clocks, but it is
economically infeasible to provide a comparable clock in a receiver. The problem of
clock synchronization is circumvented in GPS by treating the receiver clock error as
an additional unknown in the navigation equations and using measurements from an
additional satellite to provide enough equations for a solution for time as well as for
position. Thus the receiver can use an inexpensive clock for measuring time. Such an
approach leads to perhaps the most fundamental measurement made by a GPS
receiver: the pseudorange measurement, computed as

p= c(trcve - ZLxmit)7 (315)

where #,,, is the time at which a specific, identifiable portion of the signal is received,
t.mit 18 the time at which that same portion of the signal is transmitted, and c¢ is the
speed of light (2.99792458 x 103 m/s). It is important to note that f.,, is measured
according to the receiver clock, which may have a large time error, but 7,,.,;; is in terms
of GPS time, which in turn is SV (spacecraft vehicle) time plus a time correction
transmitted by the satellite. If the receiver clock were synchronized to GPS time, then
the pseudorange measurement would in fact be the range to the satellite.

Figure 3.17 shows the pseudorange measurement concept with four satellites,
which is the minimum number needed for a three-dimensional position solution
without synchronized clocks. The raw measurements are simultaneous snapshots at
time ... of the states of the received C/A-codes from all satellites. This is
accomplished indirectly by observation of the receiver-generated code state from
each code tracking loop. For purposes of simplicity we define the state of the C/A-
code to be the number of chips (including the fractional part) that have occured since
the last code epoch. Thus the state is a real number in the interval [0,1023).

As previously discussed, the receiver has been able to tag each code epoch with
its GPS transmission time. Thus, it is a relatively simple matter to compute the time
of transmission of the code state that is received at time ... For a given satellite let
t, denote the GPS transmission time of the last code epoch received prior to 7., let
X denote the code state observed at ¢, and let ¢, denote the C/A-code chipping

rcve»
rate (1.023 x 10° chips/s). Then the transmission time of that code state is

X
Z‘xmit:l‘e—i__' (316)
C

7

Basic Positioning Equations 1f pseudorange measurements can be made from
at least four satellites, enough information exists to solve for the unknown position
(X, Y, Z) of the GPS user and for the receiver clock error b, (often called the clock
bias). The equations are set up by equating the measured pseudorange to each



3.5 EXTRACTION OF INFORMATION FOR NAVIGATION SOLUTION 63

Receiver
<«— C/A-code period —>| clock time
te
’
A | C/A-code l
X i epoch ™=
Satellite 1 T > !
1
1
t% i
h
[ T
Sateliite 2 : > !
1
to, E
‘ 1
X3 > T
Satellite 3 : > !
o |
X4 > : T
1
Satellite 4 i -
reve

te. = GPS transmission time of ¢ = speed of light = 2.99792458 x 108 m/s
satellite / C/A code epoch
received immediately prior to tcye

X;= State of satellite i received code Pseudorange to ith satellite
in chips at time t.,o =C(treve — tg — Xi/c;) meters

¢, =C/A-code chipping rate = 1.023x106 chip/s

Fig. 3.17 Pseudorange measurement concept.

satellite with the corresponding unknown user-to-satellite distance plus the distance
error due to receiver clock bias:

o=\ =X+ (= Y+ — 2P+ Gy,

P2 :\/(xz—X)2+(J’2_Y)2+(ZZ_Z)2+C”’ (3.17)

Py =6y = X+ (3, = 1+ 5, — 20 + G

where p; denotes the measured pseudorange of the ith satellite whose position in
ECEF coordinates at . is (x;, ;, z;) and n > 4 is the number of satellites observed.
The unknowns in this nonlinear system of equations are the user position (X, Y, Z)
in ECEF coordinates and the receiver clock bias C,,.
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3.5.4 Pseudorange Measurements Using Carrier Phase

Although pseudorange measurements using the C/A-code are the most commonly
employed, a much higher level of measurement precision can be obtained by
measuring the received phase of the GPS L, or L, carrier. Because the carrier
waveform has a very short period (6.35 x 10~ s at the L, frequency), the noise-
induced error in measuring signal delay by means of phase measurements is
typically 10-100 times smaller than that encountered in code delay measurements.

However, carrier phase measurements are highly ambiguous because phase
measurements are simply modulo 27 numbers. Without further information such
measurements determine only the fractional part of the pseudorange when measured
in carrier wavelengths. Additional measurements are required to effect ambiguity
resolution, in which the integer number of wavelengths in the pseudorange
measurement can be determined. The relation between the measured signal phases
¢; and the unambiguous pseudoranges p; can be expressed as

p, = ;v<2—711+k1>,

Py = ),<—2~|—k )
VI (3.18)

(P
Py _)y<2n~|—k,, ,

where n is the number of satellites observed, / is the carrier wavelength, and %; is the
unknown integral number of wavelengths contained in the pseudorange. The
additional measurements required for determination of the k; may include C/A-
and/or P(Y)-code pseudorange measurements from the same satellites used for the
phase measurements. Since the code measurements are unambiguous, they signifi-
cantly narrow the range of admissible integer values for the k;. Additionally, phase
measurements made on both the L, and L, signals can be used to obtain a virtual
carrier frequency equal to the difference of the two carrier frequencies
(1575.42 — 1227.60 = 347.82 MHz). The 86.3-cm wavelength of this virtual carrier
thins out the density of pseudorange ambiguities by a factor of about 4.5, making the
ambiguity resolution process much easier. Redundant code and phase measurements
from extra satellites can also be used to aid the process; the extra code measurements
further narrow the range of admissible integer values for the k;, and the extra phase
measurements thin out the phase ambiguity density by virtue of satellite geometry.

Because of unpredictable variations in propagation delay of the code and carrier
due to the ionosphere and other error sources, it is all but impossible to obtain
ambiguity resolution with single-receiver positioning. Therefore, carrier phase
measurements are almost always relegated to high-accuracy applications in which
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such errors are canceled out by differential operation with an additional receiver
(base station).

In GPS receivers, carrier phase is usually measured by sampling the phase of the
reference oscillator of the carrier tracking loop. In most receivers this oscillator is an
NCO that tracks the phase of the incoming signal at a relatively low intermediate
frequency. The signal phase is preserved when the incoming signal is frequency
downconverted. The NCO is designed to provide a digital output of its instantaneous
phase in response to a sampling signal. Phase-based pseudorange measurements are
made by simultaneously sampling at time ¢, the phases of the NCOs tracking the
various satellites. As with all receiver measurements, the reference for the phase
measurements is the receiver’s clock reference oscillator.

3.5.5 Carrier Doppler Measurement

Measurement of the received carrier frequency provides information that can be used
to determine the velocity vector of the user. Although this could be done by forming
differences of code-based position estimates, frequency measurement is inherently
much more accurate and has faster response time in the presence of user dynamics.
The equations relating the measurements of Doppler shift to the user velocity are

1
Jar =j(V'“1 =V uy) +fp,

1
=—(Veu,—V, *W,) + £,
Ja ;h( )=Vt W) +f, (3.19)

1
f;in :j(v'un_vn'un)"i_fb’

where the unknowns are the user velocity vector v = (v,, Uy, v,) and the receiver
reference clock frequency error f, in hertz and the known quantities are the carrier
wavelength 4 and the measured Doppler shifts f}; in hertz, satellite velocity vectors
v;, and unit satellite direction vectors u; (pointing from the receiver antenna toward
the satellite antenna) for each satellite index i. The unit vectors u; are determined by
computing the user-to-ith satellite displacement vectors p; and normalizing them to
unit length:

p, =[x, = X), (¥ = Y),(z— Z)]T,
P (3.20)
B |pi|’

u;

In these expressions the ith satellite position (x;, y;, z;) at time #,,,;, is computed from
the ephemeris data and the user position (X, ¥, Z) can be determined from solution
of the basic positioning equations using the C/A- or P(Y)-codes.
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In GPS receivers, the Doppler measurements f;; are usually derived by sampling
the frequency setting of the NCO (Fig. 3.15) that tracks the phase of the incoming
signal. An alternate method is to count the output cycles of the NCO over a relatively
short time period, perhaps 1s or less. However, in either case, the measured Doppler
shift is not the raw measurement itself, but the deviation from what the raw NCO
measurement would be without any signal Doppler shift, assuming that the receiver
reference clock oscillator had no error.

3.5.6 Integrated Doppler Measurements

Integrated Doppler can be defined as the number of carrier cycles of Doppler shift
that have occurred in a given interval [#,, #]. For the ith satellite the relation between
integrated Doppler F; and Doppler shift f; is given by

Fult) = J Jout) . (3.21)

However, accurate calculation of integrated Doppler according to this relation would
require that the Doppler measurement be a continuous function of time. Instead,
GPS receivers take advantage of the fact that by simply observing the output of the
NCO in the carrier tracking loop (Fig. 3.15), the number of cycles that have occurred
since initial time ¢, can be counted directly.

Integrated Doppler measurements have several uses:

1. Accurate Measurement of Receiver Displacement over Time. Motion of the
receiver causes a change in the Doppler shift of the incoming signal. Thus, by
counting carrier cycles to obtain integrated Doppler, precise estimates of the
change in position (delta position) of the user over a given time interval can be
obtained. The error in these estimates is much smaller than the error in
establishing the absolute position using the C/A- or P(Y)-codes. The
capability of accurately measuring changes in position is used extensively in
real-time kinematic surveying with differential GPS. In such applications the
user needs to determine the locations of many points in a given land area with
great accuracy (perhaps to within a few centimeters). When the receiver is first
turned on, it may take a relatively long time to acquire the satellites, to make
both code and phase pseudorange measurements, and to resolve phase
ambiguities so that the location of the first surveyed point can be determined.
However, once this is done, the relative displacements of the remaining points
can be found very rapidly and accurately by transporting the receiver from
point to point while it continues to make integrated Doppler measurements.

2. Positioning Based on Received Signal Phase Trajectories. In another form of
differential GPS, a fixed receiver is used to measure the integrated Doppler
function, or phase trajectory curve, from each satellite over relatively long
periods of time (perhaps 5-20min). The position of the receiver can be
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determined by solving a system of equations relating the shape of the
trajectories to the receiver location. The accuracy of this positioning tech-
nique, typically within a few decimeters, is not as good as that obtained with
carrier phase pseudoranging but has the advantage that there is no phase
ambiguity. Some hand-held GPS receivers employ this technique to obtain
relatively good positioning accuracy at low cost.

3. Carrier Rate Aiding for the Code Tracking Loop. In the code tracking loop,
proper code alignment is achieved by using observations of the loop error
signal to determine whether to advance or retard the state of the otherwise
free-running receiver-generated code replica. Because the error signal is
relatively noisy, a narrow loop bandwidth is desirable to maintain good
pseudoranging accuracy. However, this degrades the ability of the loop to
maintain accurate tracking in applications where the receiver is subject to
substantial accelerations. The difficulty can be substantially mitigated with
carrier rate aiding, in which the primary code advance/retard commands are
not derived from the code discriminator (early—late correlator) error signal but
instead are derived from the Doppler-induced accumulation of carrier cycles in
the integrated Doppler function. Since there are 1540 carrier cycles per C/A-
code chip, the code will therefore be advanced by precisely one chip for
every 1540 cycles of accumulated count of integrated Doppler. The advantage
of this approach is that, even in the presence of dynamics, the integrated
Doppler can track the received code rate very accurately. As a consequence,
the error signal from the code discriminator is “decoupled” from the dynamics
and can be used for very small and infrequent adjustments to the code
generator.

3.6 THEORETICAL CONSIDERATIONS IN PSEUDORANGE AND
FREQUENCY ESTIMATION

In a well-designed GPS receiver the major source of measurement error within the
receiver is thermal noise, and it is useful to know the best performance that is
theoretically possible in its presence. Theoretical bounds on errors in estimating
code-based and carrier-based pseudorange, as well as in Doppler frequency
estimates, have been developed within an interesting branch of mathematical
statistics called estimation theory. There it is seen that a powerful estimation
approach called the method of maximum likelihood (ML) can often approach
theoretically optimum performance (see Section 7.2.4). ML estimates of pseudo-
range (using either the code or the carrier) and frequency are unbiased, which means
that the expected value of the error due to random noise is zero.

An important lower bound on the error variance of any unbiased estimator is
provided by the Cramer—Rao bound, and any estimator that reaches this lower limit
is called a minimum-variance unbiased estimator (MVUE). It can be shown that at
the typical SNRs encountered in GPS, ML estimates of code pseudorange, carrier



68 SIGNAL CHARACTERISTICS AND INFORMATION EXTRACTION

pseudorange, and carrier frequency are all MVUEs. Thus, these estimators are
optimal in the sense that no unbiased estimator has a smaller error variance [123].

3.6.1 Theoretical Versus Realizable Code-Based Pseudoranging
Performance

It can be shown that a ML estimate 7, of signal delay based on code measurements
is obtained by maximizing the cross-correlation of the received code c¢,(f) with a
reference code c,¢(f) that is an identical replica (including bandlimiting) of the
received code:

T
Ty = maxj ¢ (H)eCes(t — 1), (3.22)
T Jo

where [0, T is the signal observation interval. Here we assume coherent processing
for purposes of simplicity. This estimator is a MVUE, and it can be shown that the
error variance of 7y (which equals the Cramer—Rao bound) is
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This is a fundamental relation that in temporal terms states that the error variance is
proportional to the power spectral density &, of the noise and inversely proportional
to the integrated square of the derivative of the received code waveform. It is
generally more convenient to use an expression for the standard deviation, rather
than the variance, of delay error, in terms of the bandwidth of the C/A-code. The
following is derived in [126]:

3444 % 107

T = C/NOWT

In this expression it is assumed that the received code waveform has been
bandlimited by an ideal low-pass filter with one-sided bandwidth W. The signal
observation time is still denoted by 7, and C/N, is the ratio of power in the code
waveform to the one-sided power spectral density of the noise. A similar expression
is obtained for the error variance using the P(Y)-code, except the numerator is /10
times smaller.

Figure 3.18 shows the theoretically achievable pseudoranging error using the
C/A-code as a function of signal observation time for various values of C/N,. The
error is surprisingly small if the code bandwidth is sufficiently large. As an example,
for a moderately strong signal with C/N, =31, 623 (45dB-Hz), a bandwidth
W = 10 MHz, and a signal observation time of 1s, the standard deviation of the
ML delay estimate obtained from the above formula is about 6.2 x 107'0s,
corresponding to 18.6 cm after multiplying by the speed of light.

(3.24)
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Fig. 3.18 Theoretically achievable C/A-code pseudoranging error.

Code Pseudoranging Performance of Typical Receivers Most GPS
receivers approximate the ML estimator by correlating the incoming signal with
an ideal code waveform that does not include bandlimiting effects and use early and
late correlators in the code tracking loop that straddle the location of the correlation
function peak rather than find its actual location. As a result, the code tracking error
can be significantly larger than the theoretical minimum discussed above. One-chip
early—late spacing of the tracking correlators was common practice for the several
decades preceding the early 1990s. It is somewhat surprising that the substantial
amount of performance degradation resulting from this approach went unnoticed for
so long. Not until 1992 was it widely known that significant error reduction could be
obtained by narrowing the spacing down to 0.1-0.2 C/A-code chips in combination
with a large precorrelation bandwidth. Details of this approach, dubbed narrow
correlator technology, can be found in [121]. With narrow early—late spacing the
random noises on the early and late correlator outputs become highly correlated and
therefore tend to cancel when the difference error signal is formed. A large
precorrelation bandwidth sharpens the peak of the correlation function so that the
closely spaced early and late correlators can still operate on the high-slope portion of
the correlation function, thus preserving SNR in the loop.

It can be shown that the variance of the code tracking error continues to decrease
as the early—late spacing approaches zero but approaches a limiting value. Some
researchers are aware that forming a difference signal with early and late correlators
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is mathematically equivalent to a single correlation with the difference of the early
and late codes, which in the limit (as the early—late spacing goes to zero) becomes
equivalent to polarity modulated sampling of the received code at the punctual
reference code transitions and summing the sample values to produce the loop error
signal. Some GPS receivers already put this principle into practice.

Figure 3.19, found in [126], compares the performance of several correlator
schemes, including the narrow correlator, with theoretical limits. It is seen that the
narrow correlator approaches the theoretical performance limit given by the Cramer—
Rao bound as the early—late spacing 2e approaches zero.

3.6.2 Theoretical Error Bounds for Carrier-Based Pseudoranging
At typical GPS signal-to-noise ratios the ML estimate 1y, of signal delay using

carrier phase is a MVUE, and it can be shown that the error standard deviation is

1

T T onr JA(CIN)T

where £, is the GPS carrier frequency, and C/N, and T have the same meaning as in
Eq. 3.24. This result is also reasonably accurate for a carrier tracking loop if 7 is set
equal to the reciprocal of the loop bandwidth. As an example of the much greater
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Fig. 3.19 Performance of various correlators.
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accuracy of carrier phase pseudoranging compared with code pseudoranging, a
signal at C/N,, = 45 dB-Hz observed for 1 s can theoretically yield an error standard
deviation of 4 x 10~"3s, which corresponds to only 0.12mm. However, typical
errors of 1-3 mm are experienced in most receivers due to random phase jitter in the
reference oscillator.

3.6.3 Theoretical Error Bounds for Frequency Measurement

The ML estimate f;; of the carrier frequency is also a MVUE, and the expression
for its error standard deviation is

[ 3
% =\ 202 C N TS (3.26)

A 1-s observation of a despread GPS carrier with C/N, = 45dB-Hz yields a
theoretical error standard deviation of about 0.002 Hz, which could also be obtained
with a phase tracking loop having a bandwidth of 1 Hz. As in the case of phase
estimation, however, phase jitter in the receiver reference oscillator yields frequency
error standard deviations from 0.05 to 0.1 Hz.

3.7 MODERNIZATION OF GPS

Since it was declared fully operational in April 1995, the GPS has been operating
continuously with 24 or more operational satellites, and user equipment has evolved
rapidly, especially in the civil sector. As a result, radically improved levels of
performance have been reached in positioning, navigation, and time transfer.
However, the availability of GPS has also spawned new and demanding applications
that reveal certain shortcomings of the present system. Therefore, within the last
decade numerous governmental and civilian committees have investigated the needs
and deficiencies of the existing system in order to conceive a plan for GPS
modernization.

The modernization of GPS is a difficult and complex task that requires trade-offs
in many areas. Major issues include spectrum needs and availability, military and
civil performance, signal integrity and availability, financing and cost containment,
and potential competition from Europe’s Galileo system. However, after many years
of hard work it now appears that critical issues have been resolved. Major decisions
have been made for the incorporation of new civil frequencies, new civil and military
signals, and higher transmitted power levels.

3.7.1 Deficiencies of the Current System

The changes that are planned for GPS address the following needs:



72

SIGNAL CHARACTERISTICS AND INFORMATION EXTRACTION

. Civil users need two-frequency ionospheric correction capability in autono-

mous operation. Since only the encrypted P-code appears at the L, frequency,
civil users are denied the benefit of dual-frequency operation to remove
ionospheric range error in autonomous (i.e., nondifferential) operation.
Although special techniques such as signal squaring can be used to recover
the L, carrier, the P-code waveform is lost and the SNR is dramatically
reduced. Consequently, such techniques are of little value to the civil user in
reducing ionospheric range error.

. Signal blockage and attenuation are often encountered. In some applications

heavy foliage in wooded areas can attenuate the signal to an unusable level. In
certain locations, such as in urban canyons, a satellite signal can be completely
blocked by buildings or other features of the terrain. In such situations there
will not be enough visible satellites to obtain a navigation solution. New
applications, such as emergency 911 position location by GPS receivers
embedded in cellular telephone handsets, will require reliable operation of
GPS receivers inside buildings, despite heavy signal attenuation due to roof,
floors, and walls. Weak signals are difficult to acquire and track.

. Ability to resolve ambiguities in phase measurements needs improvement.

High-accuracy differential positioning at the centimeter level by civil users
requires rapid and reliable resolution of ambiguities in phase measurements.
Ambiguity resolution with single-frequency (L) receivers generally requires a
sufficient length of time for the satellite geometry to change significantly.
Performance is improved with dual-frequency receivers. However, the effec-
tive SNR of the L, signal is dramatically reduced because the encrypted P-
code cannot be despread by the civil user.

. Selective Availability is detrimental to performance in civil applications. SA

has been suspended as of 8§ pm. EDT on May 1, 2000.The degradation in
autonomous positioning performance by SA (about 50m RMS error) is of
concern in many civil applications requiring the full accuracy of which GPS is
capable. A prime example is vehicle tracking systems in which an accuracy of
5—-10 m RMS is needed to establish the correct city street on which a vehicle is
located. Moreover, many civil and military committees have found that a
military adversary can easily mitigate errors due to SA by using differential
positioning. In the civil sector, a large and costly infrastructure has developed
to overcome its effects.

. Improvements in system integrity and robustness are needed. In applications

involving public safety the integrity of the current system is judged to be
marginal. This is particularly true in aviation landing systems that demand the
presence of an adequate number of healthy satellite signals and functional
cross-checks during precision approaches. Additional satellites and higher
transmitted power levels are desirable in this context.

. Improvement is needed in multipath mitigation capability. Multipath remains a

dominant source of GPS positioning error and cannot be removed by
differential techniques. Although certain mitigation techniques, such as multi-
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path mitigation technology (MMT), approach theoretical performance limits
for in-receiver processing, the required processing adds to receiver costs. In
contrast, effective multipath rejection could be made available to all receivers
by using new GPS signal designs.

. The military needs improved acquisition capability and jamming immunity.

Because the P(Y)-code has an extremely long period (seven days), it is
difficult to acquire unless some knowledge of the code timing is known. In
the current system P(Y) timing information is supplied by the HOW. However,
to read the HOW, the C/A-code must first be acquired to gain access to the
navigation message. Unfortunately, the C/A-code is relatively susceptible to
jamming, which would seriously impair the ability of a military receiver to
acquire the P(Y) code. It would be far better if direct acquisition of a high-
performance code were possible.

3.7.2 Elements of the Modernized GPS

Civil Spectrum Modernization The upper part of Fig. 3.20 outlines the current
civil GPS signal spectrum and the additional codes and signal frequencies in the
plans for modernization. The major elements are as follows:

Civil Signals
Aeronautical Radionavigation I Radionavigation L1
Current Services Band (ARNS) I satellite Services RNSS Bands C/A-codes
960-1215 | Band(RNSS) 1215-12401560-1610
<« —>
Frequency in MHz —> i | 1575.42
Ls i L, i L,
Modernized I C/A-codes C/A-codes
!
| | ; | ! L [
1164.45 1188.45 1215 1227.6 1 1575.42
1
1176.45 '
Military Signals ———— L,
Current I RNSS Bands C/A-codes
|2 1215-1240 1560-1610

Frequency inMHz  —> P/Y-codes u /// P/Y-codes

Modernized M-codes

1575.42 -
M-codes

1227.6 -

C/A-codes

Note:

¥Civil F-codes (Fine-codes) at L5 and .
Military M-codes are in definition. |

| P/Y-codes

P/Y-codes

¥Band occupancy of L5 is TBD. 1227.6 1575.42
¥C/A-codes at L1 for Civil and Military uses. 12156 12396 1563.42 1587.42

Fig. 3.20 Existing and modernized GPS signal spectrum.
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1. C/A4 Codes on the L, Frequency. Each satellite will transmit the same C/A-

code on the L, frequency (1227.6 MHz) as it currently does on the L,
frequency (1575.42 MHz), which will result in the following improvements
for civil users:

o Two-fiequency ionospheric error correction becomes possible. The 1/f?
dispersive delay characteristic of the ionosphere can be used to accurately
estimate errors in propagation delay.

e Carrier phase ambiguity resolution will be significantly improved. The
accessibility of the L, and L, carriers provides “wide lane” phase
measurements having ambiguities that are much easier to resolve.

e The additional L, signal will improve robustness in acquisition and tracking
and improve C/A-code positioning accuracy.

Retention of the current C/A-codes on the L, frequency will satisfy a legacy
requirement for older civil GPS receivers.

. A New Ly Signal Modulated by a New Code Structure. Although the use of the

L, and L, frequencies can satisfy most civil users, there are concerns that the
L, frequency band may be subject to unacceptable levels of interference for
applications involving public safety, such as aviation. The potential for
interference arises because the International Telecommunications Union
(ITU) has authorized this band on a coprimary basis with radiolocation
services, such as high-power radars. As a result of FAA requests, the
Department of Transportation and Department of Defense have determined
a new civil GPS frequency, called Ls, in the Aeronautical Radio Navigation
System band at 1176.45 MHz. To gain maximum performance, the L5 spread-
spectrum codes will have a higher chipping rate and longer period than the
C/A-codes. Proposed codes have a 10.23-megachip/s chipping rate and a
period of 10230 chips. Additionally, the plan is to transmit two signals in
phase quadrature, one of which will not carry data modulation. The L signal
will provide the following system improvements:

e Ranging accuracy will improve. Pseudorange errors due to random noise
will be reduced below levels obtainable with the C/A-codes due to the
larger bandwidth of the proposed codes. As a consequence, both code-based
positioning accuracy and phase ambiguity resolution performance will
improve.

e Errors due to multipath will be reduced. The larger bandwidth of the new
codes will sharpen the peak of the code autocorrelation function, thereby
reducing the shift in the peak due to multipath signal components.

e Carrier phase tracking will improve. Weak-signal phase tracking perfor-
mance of GPS receivers is severely limited by the necessity of using a
Costas (or equivalent type) PLL to remove carrier phase reversals of the
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data modulation. Such loops rapidly degrade below a certain threshold
(about 25-30 dB-Hz) because truly coherent integration of the carrier phase
is limited to the 20-ms data bit length. In contrast, the “data-free”
quadrature component of the Ls signal will permit coherent integration of
the carrier for arbitrarily long periods, which will permit better phase
tracking accuracy and lower tracking thresholds.

e Weak-signal code acquisition and tracking will be enhanced. The “data-
free” component of the L5 signal will also permit new levels of positioning
capability with very weak signals. Acquisition will be improved because
fully coherent integration times longer than 20-ms will be possible. Code
tracking will also improve by virtue of better carrier phase tracking for the
purpose of code rate aiding.

o The Ls signal will further support rapid and reliable carrier phase
ambiguity resolution. Because the difference between the Ls and L,
frequencies is only 51.15MHz as opposed to the 347.82 MHz difference
between the L, and L, frequencies, carrier phase ambiguity will be possible
using an extra-wide lane width of about 5.9m instead of 0.86m. The
inevitable result will be virtually instantaneous ambiguity resolution, a
critical issue in high-performance real-time kinematic modes of GPS
positioning.

o The codes will be better isolated from each other. The longer length of the
Ls codes will reduce the size of cross-correlation between codes from
different satellites, thus minimizing the probability of locking onto the
wrong code during acquisition, even at the increased power levels of the
modernized signals.

3. Higher Transmitted Power Levels. For safety, cost, and performance, many in
the GPS community are advocating a general increase of 3—6 dB in the signal
power at at all three civil frequencies.

Military Spectrum Modernization The lower part of Fig. 3.20 shows the
current and modernized spectrum used by the military community. The current
signals consist of C/A-codes and P/Y-codes transmitted in quadrature in the L; band
and only P/Y-codes in the L, band. The primary elements of the modernized
spectrum are as follows:

1. All existing signals will be retained for legacy purposes.

2. New M-codes will also be transmitted in both the L, and L, bands. At the time
of this writing, these codes have not been finalized, but they will have a bit rate
from 3-8 megachips/s and modulate a subcarrier whose frequency will lie
somewhere between 6 and 9 MHz. The resulting spectrum has two lobes, one
on each side of the band center, and for this reason the M-codes are sometimes
called “split-spectrum” codes. They will be transmitted in the same quad-
rature channel as the C/A-codes, that is, in phase quadrature with the P(Y)
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codes. Civil use of these codes will be denied by as yet unannounced
encryption techniques. The M-codes will provide the following advantages
to military users:

e Direct acquisition of the M-codes will be possible. The design of these
codes will eliminate the need to first acquire the L; C/A-code with its
relatively high vulnerability to jamming.

e Better ranging accuracy will result. As can be seen in Fig. 3.20, the M-
codes have significantly more energy near the edges of the bands, with a
relatively small amount of energy near band center. Since most of the C/A-
code power is near band center, potential interference between the codes is
mitigated. The effective bandwidth of the M-codes is much larger than that
of the P(Y)-codes, which concentrate most of their power near the L, or L,
carrier. Because of the modulated subcarrier, the autocorrelation function of
the M-codes has, not just one peak, but several peaks spaced one subcarrier
period apart, with the largest at the center. The modulated subcarrier will
cause the central peak to be significantly sharpened, significantly reducing
pseudorange measurement error.

e Error due to multipath will be reduced. The sharp central peak of the M-
code autocorrelation function is less susceptible to shifting in the presence
of multipath correlation function components.

3.7.3 Modernization and System Performance Timetables

The schedule for modernization of the GPS has not been fully developed, but it
appears that it will occur over a period of 10-20 years. Figure 3.21 is an estimate of
how positioning accuracy might improve for civil and military receivers in various
modes of operation over the 2000-2010 time period.

3.8 GPS SATELLITE POSITION CALCULATIONS

The ephemeris parameters and algorithms used for computing satellite positions are
given in Tables 3.1 and 3.2, respectively.

The interface between the GPS space and user segments consists of two radio-
frequency (RF) links L, and L,. The carriers of the L-band links are modulated by up
to two bit trains, each of which normally is a composite generated by the modulo 2
addition of a PRN ranging code and the downlink system data. Utilizing these links,
the space vehicles of the GPS space segment should provide continuous earth
coverage for signals that provide to the user segment the ranging codes and system
data needed to accomplish the GPS navigation mission. These signals are available
to a suitably equipped user with RF visibility to a space vehicle. Therefore, the GPS
users continuously receive navigation information from the space vehicles in the
form of modulated data bits.
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Fig. 3.21 Estimated accuracy improvements and schedule.

The received information is computed and controlled by the control segment and
includes the satellite’s time, its clock correction and ephemeris parameters, almanacs
and health for all GPS space vehicles, and text messages. The precise position and
clock offset of the space vehicle antenna phase center in the ECEF coordinates can
be computed by receiving this information.

The ephemeris parameters describe the orbit during the interval of time (at least
l1h) for which the parameters are transmitted. This representation model is
characterized by a set of parameters that is an extension (including drag) to the
Keplerian orbital parameters. They also describe the ephemeris for an additional
interval of time (at least one-half hour) to allow time for the user to receive the
parameters for the new interval of time. The definitions of the parameters are given
in Table 3.1.

The age of data word (AODE) provides a confidence level in the ephemeris
representation parameters. The AODE represents the time difference (age) between
the reference time (7),) and the time of the last measurement update (#;) used to
estimate the representation parameters.

The ECEF coordinates for the phase center of the satellite’s antennas can be
calculated using a variation of the equations shown in Table 3.2. In this table, the
time 7 is the GPS system time at the time of transmission, that is, GPS time corrected
for transit time (range/speed of light). Further, #, is the actual total time difference
between the time ¢ and the epoch time #,, and must account for beginning- or end-of-
week crossovers. That is, if #, is greater than 302,400 s, subtract 604,800 s from #. If
t; is less than —302,400s, add 604,800 to #,. Also, note that Kepler’s equation for
eccentric anomaly is nonlinear in E. It is impractical to solve for E, any way except
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approximation. Standard practice is to solve this equation by the Newton—Raphson
second-order method explicitly and then use the resulting value of E; to calculate
true anomaly. The satellite’s antenna phase center position is very sensitive to small
perturbations in most ephemeris parameters. The sensitivity of position to the
parameters +/a, C,., and C,; is about 1 m/m. This sensitivity to angular parameters
is on the order of 10® m/semicircle and to the angular rate parameters on the order of
10'?> m/semicircle/s. Because of this extreme sensitivity to angular perturbations,
the required value of 7 (a mathematical constant, the ratio of a circle’s circumference
to its diameter) used in the curve fit is given here:

m = 3.1415926535898.

The user must correct the time received from the space vehicle in seconds with the
equation

t =t — At (3.27)

sV

where ¢ = GPS system time (5s)
t,, = effective SV PRN code phase time at message transmission time (s)
At,, = SV PRN code phase time offset (s)

The SV PRN code phase offset is given by
Aty = apy + ay(t — to,) + ap(t — toe)” + At,, (3.28)

where ay, a, ap, = polynomial coefficients given in the ephemeris data file
to. = clock data reference time (s)
At, = relativistic correction term (s) given by

At, = Fe\/asinE. (3.29)
In Eq. 3.29, F is a constant whose value is given as
-2
F= ;/’7 = —4.442807633 x 107'% s/m'/? (3.30)
c

where the speed of light ¢ = 2.99792458 x 108 m/s. Note that Egs. 3.27 and 3.28
are coupled. While the coefficients ay, a,,, and a,, are generated by using GPS time
as indicated in Eq. 3.28, sensitivity of £, to 7 is negligible. This negligible sensitivity
will allow the user to approximate ¢ by ¢, in Eq. 3.28. The value of # must account
for beginning- or end-of-week crossovers. That is, if the quantity ¢ — #,. is greater
than 302,400s, subtract 604,800s from ¢. If the quantity 7— ¢, is less than
—302,400s, add 604,800 to ¢.

By using the value of the ephemeris parameters for satellite PRN 2 in the set of
equations in Table 3.1 and Egs. 3.27-3.30, we can calculate the space vehicle time
offset and the ECEF coordinates of the satellite position [30]. Computer software
(ephemeris.m) is on the accompanying diskette.

Problems

3.1 An important signal parameter is the maximum Doppler shift due to satellite
motion, which must be accommodated by a receiver. Find its approximate
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value by assuming that a GPS satellite has a circular orbit with a radius of
27,000 km, an inclination angle of 55°, and a 12-h period. Is the rotation rate of
the earth significant? At what latitude(s) would one expect to see the largest
possible Doppler shift?

Another important parameter is the maximum rate of Doppler shift in hertz per
second that a phase-lock loop must be able to track. Using the orbital
parameters of the previous problem, calculate the maximum rate of Doppler
shift of a GPS signal one would expect, assuming that the receiver is stationary
with respect to the earth.

Find the power spectrum of the 50-bps data stream containing the navigation
message. Assume that the bit values are —1 and 1 with equal probability of
occurrence, that the bits are uncorrelated random variables, and that the
location of the bit boundary closest to # =0 is a uniformly distributed
random variable on the interval [—0.01s, 0.01s]. Hint: First find the auto-
correlation function R(7) of the bit stream and then take its Fourier transform.

In two-dimensional positioning, the user’s altitude is known, so only three
satellites are needed. Thus, there are three pseudorange equations containing
two position coordinates (e.g., latitude and longitude) and the receiver clock
bias term B. Since the equations are nonlinear, there will generally be more
than one position solution, and all solutions will be at the same altitude.
Determine a procedure that isolates the correct solution.

Some civil receivers attempt to extract the L, carrier by squaring the received
waveform after it has been frequency shifted to a lower IF. Show that the
squaring process removes the P(Y)-code and the data modulation, leaving a
sinusoidal signal component at twice the frequency of the original IF carrier. If
the SNR in a 20-MHz IF bandwidth is —30 dB before squaring, find the SNR
of the double-frequency component after squaring if it is passed through a
20-MHz bandpass filter. How narrow would the bandpass filter have to be to
increase the SNR to 0 dB?
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Receiver and Antenna
Design

4.1 RECEIVER ARCHITECTURE

Although there are many variations in GPS receiver design, all receivers must
perform certain basic functions. We will now discuss these functions in detail, each
of which appears as a block in the diagram of the generic receiver shown in Fig. 4.1.

4.1.1 Radio-Frequency Stages (Front End)

The purpose of the receiver front end is to filter and amplify the incoming GPS
signal. As was pointed out earlier, the GPS signal power available at the receiver
antenna output terminals is extremely small and can easily be masked by inter-
ference from more powerful signals adjacent to the GPS passband. To make the
signal usable for digital processing at a later stage, RF amplification in the receiver
front end provides as much as 35-55dB of gain. Usually the front end will also
contain passband filters to reduce out-of-band interference without degradation of
the GPS signal waveform. The nominal bandwith of both the L, and L, GPS signals
is 20 MHz (10 MHz on each side of the carrier), and sharp cutoff bandpass filters
are required for out-of-band signal rejection. However, the small ratio of passband
width to carrier frequency makes the design of such filters infeasible. Consequently,
filters with wider skirts are commonly used as a first stage of filtering, which also
helps to prevent front-end overloading by strong interference, and the sharp cutoff
filters are used later after downconversion to intermediate frequencies (IFs).

80
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Fig. 4.1 Generic GPS receiver.

4.1.2 Frequency Downconversion and IF Amplification

After amplification in the receiver front end, the GPS signal is converted to a lower
frequency called an intermediate frequency for further amplification and filtering.
Downconversion accomplishes several objectives:

1. The total amount of signal amplification needed by the receiver exceeds the

amount that can be performed in the receiver front end at the GPS carrier
frequency. Excessive amplification can result in parasitic feedback oscillation,
which is difficult to control. In addition, since sharp cutoff filters with a GPS
signal bandwidth are not feasible at the L-band, excessive front-end gain
makes the end-stage amplifiers vulnerable to overloading by strong nearby
out-of-band signals. By providing additional amplification at an IF different
from the received signal frequency, a large amount of gain can be realized
without the tendency toward oscillation.

By converting the signal to a lower frequency, the signal bandwidth is
unaffected, and the increased ratio of bandwidth to center frequency permits
the design of sharp-cutoff bandpass filters. These filters can be placed ahead of
the IF amplifiers to prevent saturation by strong out-of-band signals. The
filtering is often by means of surface acoustic wave (SAW) devices.
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3. Conversion of the signal to a lower frequency makes the sampling of the signal
required for digital processing much more feasible.

Downconversion is accomplished by multiplying the GPS signal by a sinusoid
called the local oscillator signal in a device called a mixer. The local oscillator
frequency is either larger or smaller than the GPS carrier frequency by an amount
equal to the IF. In either case the IF signal is the difference between the signal and
local oscillator frequencies. Sum frequency components are also produced, but these
are eliminated by a simple band-pass filter following the mixer. An incoming signal
either above or below the local oscillator frequency by an amount equal to the IF will
produce an IF signal, but only one of the two signals is desired. The other signal,
called the image, can be eliminated by bandpass filtering of the desired signal prior
to downconversion. However, since the frequency separation of the desired and
image signals is twice the IF, the filtering becomes difficult if a single down-
conversion to a low IF is attempted. For this reason downconversion is often
accomplished in more than one stage, with a relatively high first IF (30-100 MHz) to
permit image rejection.

Whether it is single stage or multistage, downconversion typically provides a final
IF that is low enough to be digitally sampled at feasible sampling rates without
frequency aliasing. In low-cost receivers typical final IFs range from 4 to 20 MHz
with bandwidths that have been filtered down to several MHz. This permits a
relatively low digital sampling rate and at the same time keeps the lower edge of the
signal spectrum well above 0 Hz to prevent spectral foldover. However, for adequate
image rejection either multistage downconversion or a special single-stage image
rejection mixer is required. In more advanced receivers there is a trend toward single
conversion to a signal at a relatively high IF (30—-100 MHz), because advances in
technology permit sampling and digitizing even at these high frequencies.

Signal-to-Noise Ratio An important aspect of receiver design is the calculation
of signal quality as measured by the signal-to-noise ratio (SNR) in the receiver IF
bandwith. Typical IF bandwidths range from about 2 MHz in low-cost receivers to
the full GPS signal bandwidth of 20 MHz in high-end units, and the dominant type
of noise is the thermal noise in the first RF amplifier stage of the receiver front end
(or the antenna preamplifier if it is used). The noise power in this bandwidth is given
by

N = kT,B 4.1)

where & = 1.3806 x 1072 J/K, B is the bandwidth in Hz, and T ., is the effective
noise temperature in degrees Kelvin. The effective noise temperature is a function of
sky noise, antenna noise temperature, line losses, receiver noise temperature, and
ambient temperature. A typical effective noise temperature for a GPS receiver is
513 K, resulting in a noise power of about —138.5 dBW in a 2-MHz bandwidth and
—128.5dBW in a 20-MHz bandwidth. The SNR is defined as the ratio of signal
power to noise power in the IF bandwidth, or the difference of these powers when
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expressed in decibels. Using —154.6 dBW for the received signal power obtained in
Section 3.3, the SNR in a 20-MHz bandwidth is seen to be —154.6 —
(—128.5) = —26.1dB. Although the GPS signal has a 20-MHz bandwidth, about
90% of the C/A-code power lies in a 2-MHz bandwith, so there is only about 0.5 dB
loss in signal power. Consequently the SNR in a 2-MHz bandwidth is
(—154.6 — 0.5) — (—138.5) = —16.6 dB. In either case it is evident that the signal
is completely masked by noise. Further processing to elevate the signal above the
noise will be discussed subsequently.

4.1.3 Digitization

In modern GPS receivers digital signal processing is used to track the GPS signal,
make pseudorange and Doppler measurements, and demodulate the 50-bps data
stream. For this purpose the signal is sampled and digitized by an analog-to-digital
converter (ADC). In most receivers the final IF signal is sampled, but in some the
final IF signal is converted down to an analog baseband signal prior to sampling. The
sampling rate must be chosen so that there is no spectral aliasing of the sampled
signal; this generally will be several times the final IF bandwidth (2-20 MHz).

Most low-cost receivers use 1-bit quantization of the digitized samples, which not
only is a very low cost method of analog-to-digital conversion, but has the additional
advantage that its performance is insensitive to changes in voltage levels. Thus, the
receiver needs no automatic gain control (AGC). At first glance it would appear that
1-bit quantization would introduce severe signal distortion. However, the noise,
which is Gaussian and typically much larger than the signal at this stage, introduces
a dithering effect that, when statistically averaged, results in an essentially linear
signal component. One-bit quantization does introduce some loss in SNR, typically
about 2dB, but in low-cost receivers this is an acceptable trade-off. A major
disadvantage of 1-bit quantization is that it exhibits a capture effect in the presence
of strong interfering signals and is therefore quite susceptible to jamming.

Typical high-end receivers use anywhere from 1.5-bit (three-level) to 3-bit (eight-
level) sample quantization. Three-bit quantization essentially eliminates the SNR
degradation found in 1-bit quantization and materially improves performance in the
presence of jamming signals. However, to gain the advantages of multibit quantiza-
tion, the ADC input signal level must exactly match the ADC dynamic range. Thus
the receiver must have AGC to keep the ADC input level constant. Some military
receivers use even more than 3-bit quantization to extend the dynamic range so that
jamming signals are less likely to saturate the ADC.

4.1.4 Baseband Signal Processing

Baseband signal processing refers to a collection of high-speed real-time algorithms
implemented in dedicated hardware and controlled by software that acquire and
track the GPS signal, extract the 50-bps navigation data, and provide measurements
of code and carrier pseudoranges and Doppler.
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Carrier Tracking Tracking of the carrier phase and frequency is accomplished
by using feedback control of a numerically controlled oscillator (NCO) to frequency
shift the signal to precisely zero frequency and phase. Because the shift to zero
frequency results in spectral foldover of the signal sidebands, both in-phase (/) and a
quadrature (Q) baseband signal components are formed in order to prevent signal
information loss. The / component is generated by multiplying the digitized IF by
the NCO output and the O component is formed by first introducing a 90° phase lag
in the NCO output before multiplication. Feedback is accomplished by using the
measured baseband phase to control the NCO so that this phase is driven toward
zero. When this occurs, signal power is entirely in the / component, and the Q
component contains only noise. However, both components are necessary both in
order to measure the phase error for feedback and to provide full signal information
during acquisition when phase lock has not yet been achieved. The baseband phase
Opaseband 18 defined by

gbaseband = atanZ(I ’ Q) (42)

where atan2 is the four-quadrant arctangent function. The phase needed for feedback
is recovered from / and Q after despreading of the signal. When phase lock has been
achieved, the output of the NCO will match the incoming IF signal in both frequency
and phase but will generally have much less noise due to low-pass filtering used in
the feedback loop. Comparing the NCO phase to a reference derived from the
receiver reference oscillator provides the phase measurements needed for carrier
phase pseudoranging. Additionally, the cycles of the NCO output can be accumu-
lated to provide the raw data for Doppler, delta-range, and integrated Doppler
measurements.

Code Tracking and Signal Spectral Despreading The digitized IF signal,
which has a wide bandwidth due to the C/A- (or P-) code modulation, is completely
obscured by noise. The signal power is raised above the noise power by despreading,
in which the digitized IF signal is multiplied by a receiver-generated replica of the
code precisely time aligned with the code on the received signal. Typically the
individual baseband I and Q signals from the controlled NCO mixer are despread in
parallel, as previously shown in Fig. 3.13. The despreading process removes the
code from the signal, thus concentrating the full signal power into the approximately
50-Hz baseband bandwidth of the data modulation. Subsequent filtering (usually in
the form of integration) can now be employed to dramatically raise the SNR to
values permitting observation and measurement of the signal. As an example, recall
that in a GPS receiver a typical SNR in a 2-MHz IF bandwidth is —16.6 dB. After
despreading and 50-Hz low-pass filtering the total signal power is still about the
same, but the bandwidth of the noise has been reduced from 2 MHz to about 50 Hz,
which increases the SNR by the ratio 2 x 10°/50, or 46 dB. The resulting SNR is
therefore —16.6 4+ 46.0 = 29.4dB.
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4.2.1 Number of Channels and Sequencing Rate

GPS receivers must observe the signal from at least four satellites to obtain three-
dimensional position and velocity estimates. If the user altitude is known, three
satellites will suffice. There are several choices as to how the signal observations
from a multiplicity of satellites can be implemented. In early designs, reduction of
hardware cost and complexity required that the number of processing channels be
kept at a minimum, often being smaller than the number of satellites observed. In
this case, each channel must sequentially observe more than one satellite. As a result
of improved lower cost technology, most modern GPS receivers have a sufficient
number of channels to permit one satellite to be continuously observed on each
channel.

4.2.1.1 Receivers with Channel Time Sharing

Single-Channel Receivers 1In a single-channel receiver, all processing, such as
acquisition, data demodulation, and code and carrier tracking, is performed by a
single channel in which the signals from all observed satellites are time shared.
Although this reduces hardware complexity, the software required to manage the
time-sharing process can be quite complex, and there are also severe performance
penalties. The process of acquiring satellites can be very slow and requires a
juggling act to track already-acquired satellites while trying to acquire others. The
process is quite tricky when receiving ephemeris data from a satellite, since about
30s of continuous reception is required. During this time the signals from other
satellites are eclipsed, and resumption of reliable tracking can be difficult.

After all satellites have been acquired and their ephemeris data stored, two basic
techniques can be used to track the satellite signals in a single-channel receiver. In
slow-sequencing designs the signal from each satellite is observed for a duration
(dwell time) on the order of 1. Since a minimum of four satellites must typically be
observed, the signal from each satellite is eclipsed for an appreciable length of time.
For this reason, extra time must be allowed for signal reacquisition at the beginning
of each dwell interval. Continually having to reacquire the signal generally results in
less reliable operation, since the probability of losing a signal is considerably greater
as compared to the case of continuous tracking. This is especially critical in the
presence of dynamics, in which unpredictable user platform motion can take place
during signal eclipse. Generally the positioning and velocity accuracy is also
degraded in the presence of dynamics.

If a single-channel receiver does not have to accurately measure velocity, tracking
can be accomplished with only a frequency-lock loop (FLL) for carrier tracking.
Since a FLL typically has a wider pull-in range and a shorter pull-in time than a
phase-lock loop (PLL), reacquisition of the signal is relatively fast and the
sequencing dwell time can be as small as 0.25s per satellite. Because loss of
phase lock is not an issue, this type of receiver is also more robust in the presence of
dynamics. On the other hand, if accurate velocity determination is required, a PLL
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must be used and the extra time required for phase lock during signal reacquisition
pushes the dwell time up to about 1-1.5 s per satellite, with an increased probability
of reacquisition failure due to dynamics.

A single-channel receiver requires relatively complex software for managing the
satellite time-sharing process. A typical design employs only one pseudonoise (PN)
code generator and one PPL in hardware. Typical tasks that the software must
perform during the dwell period for a specific satellite are as follows:

1. Select the PN code corresponding to the satellite observed.

2. Compute the current state of the code at the start of the dwell based on the
state at the end of the last dwell, the signal Doppler, and the eclipse time since
the last dwell.

Load the code state into the code generator hardware.
Compute the initial Doppler frequency of the FLL/PLL reference.
Load the Doppler frequency into the FLL/PLL hardware.

Initiate the reacquisition process by turning on the code and carrier tracking
loops.

AN

~

Determine when reacquisition (code/frequency/phase lock) has occurred.

8. Measure pseudorange/carrier phase/carrier phase rate during the remainder of
the dwell.

In addition to these tasks, the software must be capable of ignoring measurements
from a satellite if the signal is momentarily lost and must permanently remove the
satellite from the sequencing cycle when its signal becomes unusable, such as when
the satellite elevation angle is below the mask angle. The software must also have the
capability of acquiring new satellites and obtaining their ephemeris data as their
signals become available while at the same time not losing the satellites already
being tracked. A satellite whose ephemeris data is being recorded must have a much
longer dwell time (about 30 s) than the dwell times of other satellites that are only
being tracked, which causes a much longer eclipse time for the latter. The software
must therefore modify the calculations listed above to take this into account.

Because current technology makes the hardware costs of a multichannel receiver
almost as small as that for a single channel, the single-channel approach has been
almost entirely abandoned in modern designs.

Another method of time sharing that can be used in single-channel receivers is
multiplexing, in which the dwell time is much shorter, typically 5—10 ms per satellite.
Because the eclipse time is so short, the satellites do not need to be reacquired at
each dwell. However, a price is paid in that the effective SNR is significantly reduced
in proportion to the number of satellites being tracked. Resistance to jamming is also
degraded by values of 7dB or more. Additionally, the process of acquiring new
satellites without disruption is made more demanding because the acquisition search
must be broken into numerous short time intervals. Due to the rapidity with which
satellites are sequenced, a common practice with a two-channel receiver is to use a
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full complement of PN code generators that run all the time, so that high-speed
multiplexing of a single code generator can be avoided.

Two-Channel Receivers The use of two channels permits the second channel to
be a “roving” channel, in which new satellites can be acquired and ephemeris data
collected while on the first channel satellites can be tracked without slowdown in
position/velocity updates. However, the satellites must still be time shared on the
first channel. Thus the software must still perform the functions listed above and in
addition must be capable of inserting/deleting satellites from the sequencing cycle.
As with single-channel designs, either slow sequencing or multiplexing may be
used.

Receivers with Three to Five Channels In either slow-sequencing or multi-
plexed receivers, additional channels will generally permit better accuracy and
jamming immunity as well as more robust performance in the presence of dynamics.
A major breakthrough in receiver performance occurs with five or more channels,
because four satellites can be simultaneously tracked without the need for time
sharing. The fifth channel can be used to acquire a new satellite and collect its
ephemeris data before using it to replace one of the satellites being tracked on the
other four channels.

Multichannel All-in-View Receivers The universal trend in receiver design is to
use enough channels to receive all satellites that are visible. In most cases eight or
fewer useful satellites are visible at any given time; for this reason modern receivers
typically have no more than 10-12 channels, with perhaps several channels being
used for acquisition of new satellites and the remainder for tracking. Position/velo-
city accuracy is materially improved because satellites do not have to be continually
reacquired as is the case with slow sequencing, there is no reduction in effective
SNR found in multiplexing designs, and the use of more than the minimum number
of satellites results in an overdetermined solution. In addition, software design is
much simpler because each channel has its own tracking hardware that tracks only
one satellite and does not have to be time shared.

4.2.2 L, Capability

GPS receivers that can utilize the L, frequency (1227.60 MHz) gain several
advantages over L;-only receivers. Currently the L, carrier is modulated only with
a military-encrypted P-code, called the Y-code, and the 50-bps data stream. Because
of the encryption, civilians are denied the use of the P-code. However, it is still
possible to recover the L, carrier, which can provide significant performance gains in
certain applications.

Dual-Frequency lonospheric Correction Because the pseudorange error
caused by the ionosphere is inversely proportional to the square of frequency, it
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can be calculated in military receivers by comparing the P-code pseudorange
measurements obtained on the L; and L, frequencies. After subtraction of the
calculated error from the pseudorange measurements, the residual error due to the
ionosphere is typically no more than a few meters as compared to an uncorrected
error of 5-30 m. Although civilians do not have access to the P-code, in differential
positioning applications the L, carrier phase can be extracted without decryption,
and the ionospheric error can then be estimated by comparing the L; and L, phase
measurements.

Improved Carrier Phase Ambiguity Resolution in High-Accuracy Differ-
ential Positioning High-precision receivers, such as those used in surveying,
use carrier phase measurements to obtain very precise pseudoranges. However, the
periodic nature of the carrier makes the measurements highly ambiguous. Therefore,
solution of the positioning equations yields a grid of possible positions separated by
distances on the order of one to four carrier wavelengths, depending on geometry.
Removal of the ambiguity is accomplished by using additional information in the
form of code pseudorange measurements, changes in satellite geometry, or the use of
more satellites than is necessary. In general, ambiguity resolution becomes less
difficult as the frequency of the carrier decreases. By using both the L, and L,
carriers, a virtual carrier frequency of L; — L, = 1575.42 — 1227.60 = 347.82 MHz
can be obtained, which has a wavelength of about 86 cm as compared to the 19 cm
wavelength of the L, carrier. Ambiguity resolution can therefore be made faster and
more reliable by using the difference frequency.

4.2.3 Code Selections: C/A, P, or Codeless

All GPS receivers are designed to use the C/A-code, since it is the only code
accessible to civilians and is used by the military for initial signal acquisition. Most
military receivers also have P-code capability to take advantage of the improved
performance it offers. On the other hand, commercial receivers seldom have P-code
capability because the government does not make the needed decryption equipment
available to the civil sector. Some receivers, notably those used for precision
differential positioning application, also incorporate a codeless mode that permits
recovery of the L, carrier without knowledge of the code waveform.

The C/A-Code The C/A-code, with its 1.023-MHz chipping rate and 1-ms
period, has a bandwidth that permits a reasonably small pseudorange error due to
thermal noise. The code is easily generated by a few relatively small shift registers.
Because the C/A-code has only 1023 chips per period, it is relatively easy to
acquire. In military receivers direct acquisition of the P-code would be extremely
difficult and time consuming. For this reason these receivers first acquire the C/A-
code on the L, frequency, allowing the 50-bps data stream to be recovered. The data
contains a hand-over word that tells the military receiver a range in which to search
for the P-code.
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The P-Code The unencrypted P-code has a 10.23-MHz chipping rate and is
known to both civilian and military users. It has a very long period of one week. The
Y-code is produced by biphase modulation of the P-code by an encrypting code
known as the W-code. The W-code has a slower chipping rate than the P-code; there
are precisely 20 P-code chips per W-code chip. Normally the W-code is known only
to military users who can use decryption to recover the P-code, so that the civilian
community is denied the full use of the L, signal. However, as will be indicated
shortly, useful information can still be extracted from the L, signal in civilian
receivers without the need for decryption. Advantages of the P-code include the
following:

Improved Navigation Accuracy. Because the P-code has 10 times the chipping
rate of the C/A-code, its spectrum occupies a larger portion of the full 20-
MHz GPS signal bandwidth. Consequently, military receivers can typically
obtain three times better pseudoranging accuracy than that obtained with the
C/A-code.

Improved Jamming Immunity. The wider bandwidth of the P-code gives about
40 dB suppression of narrow-band jamming signals as compared to about
30dB for the C/A-code, which is of obvious importance in military applica-
tions.

Better Multipath Rejection. In the absence of special multipath mitigation
techniques, the P-code provides significantly smaller pseudorange errors in
the presence of multipath as compared to the C/A-code. Because the P-code
correlation function is approximately one-tenth as wide as that of the C/A-
code, there is less opportunity for a delayed-path component of the receiver-
generated signal correlation function to cause range error by overlap with the
direct-path component.

Codeless Techniques Commercial receivers can recover the L, carrier without
knowledge of the code modulation simply by squaring the received signal waveform
or by taking its absolute value. Because the a priori SNR is so small, the SNR of the
recovered carrier will be reduced by as much as 33 dB because the squaring of the
signal greatly increases the noise power relative to that of the signal. However, the
squared signal has extremely small bandwidth (limited only by Doppler variations),
so that narrow-band filtering can make up the difference.

4.2.4 Access to SA Signals

Selective Availability (SA) refers to errors that may be intentionally introduced into
the satellite signals by the military to prevent full-accuracy capability by the civilian
community. SA was suspended on May 1, 2000 but can be turned on again at the
discretion of the DoD. The errors appear to be random, have a zero long-term
average value, and typically have a standard deviation of 30m. Instantaneous
position errors of 50-100 m occur fairly often and are magnified by large position
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dilution of precision (PDOP) values. Part of the SA error is in the ephemeris data
transmitted by the satellite, and the rest is accomplished by dithering of the satellite
clock that controls the timing of the carrier and code waveforms. Civil users with a
single receiver generally have no way to eliminate errors due to SA, but authorized
users (mostly military) have the key to remove them completely. On the other hand,
civilians can remove SA errors by employing differential operation, and a large
network of differential reference stations has been spawned by this need.

4.2.5 Differential Capability

Differential GPS (DGPS) is a powerful technique for improving the performance of
GPS positioning. This concept involves the use of not only the user’s receiver
(sometimes called the remote or roving unit) but also a reference receiver at an
accurately known location within perhaps 200 km of the user. Because the location
of the reference receiver is known, pseudorange errors common to the user and
reference receivers can be measured and removed in the user’s positioning calcula-
tions.

Errors Common to Both Receivers The major sources of errors common to
the reference and remote receivers, which can be removed (or mostly removed) by
differential operation, are the following:

1. Selective Availability Error. As previously mentioned, these are typically about
30m, lo.

2. lonospheric Delays. Tonospheric signal propagation group delay, which is
discussed further in Chapter 5, can be as much as 20-30 m during the day to
3—6m at night. Receivers that can utilize both the L; and L, frequencies can
largely remove these errors by applying the inverse square-law dependence of
delay on frequency.

3. Tropospheric Delays. These delays, which occur in the lower atmosphere, are
usually smaller and more predictable than ionospheric errors, and typically are
in the 1-3m range but can be significantly larger at low satellite elevation
angles.

4. Ephemeris Errors. Ephemeris errors, which are the difference between the
actual satellite location and the location predicted by satellite orbital data, are
typically less than 3m and will undoubtedly become smaller as satellite
tracking technology improves.

5. Satellite Clock Errors. These are the difference between the actual satellite
clock time and that predicted by the satellite data.

Differential operation can almost completely remove satellite clock errors, errors
due to SA, and ephemeris errors. For these quantities the quality of correction has
little dependence on the separation of the reference and roving receivers. However,
because SA errors vary quite rapidly, care must be taken in time synchronizing the
corrections to the pseudorange measurements of the roving receiver. The degree of
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correction that can be achieved for ionospheric and tropospheric delays is excellent
when the two receivers are in close proximity, say, up to 20 km. At larger separations
the ionospheric/tropospheric propagation delays to the receivers become less
correlated, and residual errors after correction are correspondingly larger. None-
theless, substantial corrections can often be made with receiver separations as large
as 100200 km.

Differential operation is ineffective against errors due to multipath, because these
errors are strictly local to each of the two receivers.

Corrections in the Measurement Domain Versus the Solution Domain
In the broadest sense there are two ways that differential corrections can be made. In
the measurement domain, corrections are determined for pseudorange measurements
to each satellite in view of the reference receiver, and the user simply applies the
corrections corresponding to the satellites the roving receiver is observing. On the
other hand, in the solution domain approach, the reference station computes the
position error that results from pseudorange measurements to a set of satellites, and
this is applied as a correction to the user’s computed position. A significant
drawback to the solution domain approach is that the user and reference station
must use exactly the same set of satellites if the position correction is to be valid. In
most cases the reference station does not know which satellites can be received by
the roving receiver (e.g., some might be blocked by obstacles) and therefore would
have to transmit the position corrections for many possible sets of satellites. The
impracticality of doing this strongly favors the use of the measurement domain
method.

Real-Time Versus Postprocessed Corrections In some applications, such
as surveying, it is not necessary to obtain differentially corrected position solutions
in real time. In these applications it is common practice to obtain corrected positions
at a later time by bringing together recorded data from both receivers. No reference-
to-user data link is necessary if the recorded data from both receivers can be
physically transported to a common computer for processing.

However, in the vast majority of cases it is imperative that corrections be applied
as soon as the user has enough pseudorange measurements to obtain a position
solution. When the user needs to know his or her corrected position in real time,
current pseudorange corrections can be transmitted from the reference receiver to the
user via a radio or telephone link, and the user can use them in the positioning
calculations. This capability requires a user receiver input port for receiving and
using differential correction messages. A standardized format of these messages has
been recommended by Special Committee 104 (SC-104), established by the Radio
Technical Commission for Maritime Service (RTCM) in 1983. Details on this format
appear in [70].

4.2.6 Pseudosatellite Compatibility

Although differential GPS can improve the reliability, integrity, and accuracy of GPS
navigation, it cannot overcome inherent limitations that are critical to successful
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operation in specific applications. A major limitation is poor satellite geometry,
which can be caused by signal failure of one or more satellites, signal blockage by
local objects and/or terrain, and occasional periods of high PDOP, which can occur
even with a full constellation of satellites. Vertical positioning error is usually more
sensitive to this effect, which is bad news for aviation applications. In some cases a
navigation solution may not exist because not enough satellite signals can be
received.

The use of pseudolites can solve these problems within a local area. A pseudolite
is simply a ground-based transmitter that acts as an additional GPS satellite by
transmitting a GPS-like signal. This signal can be utilized by a receiver for
pseudoranging and can also convey messages to the receiver to improve reliability
and signal integrity. The RTCM SC-104 was formed in 1983 to study pseudolite
system and receiver design issues. The recommendations of SC-104 can be found in
[112]. The major improvements offered by pseudolites are the following:

1. Improvement in Geometry. Pseudolites, acting as additional satellites, can
provide major improvements in geometry, hence in positioning accuracy,
within their region of coverage. Vertical (VDOP) as well as horizontal
(HDOP) dilution of precision can be dramatically reduced, which is of
major importance to aviation. Experiments have shown that PDOP of about
3 over a region having a radius of 2040 km can be obtained by using several
pseudolites even when there are fewer than the minimum of four satellites that
would otherwise be needed for a navigation solution.

2. Improvement in Signal Availability. Navigation solutions with fewer than the
minimum required number of GPS satellites are made possible by using the
additional signals provided by pseudolites.

3. Inherent Transmission of Differential Corrections. The GPS-like signals
transmitted by a pseudolite include messaging capability that can be received
directly by the GPS receiver, thus allowing the user to receive differential
corrections without the need for a separate communications link.

4. Self-Contained Failure Notification. The additional signals provided by
pseudolites permit the user to perform his or her own failure assesment. For
example, if pseudorange measurements from four satellites and one pseudolite
are available, a problem can be detected by examining the consistency of the
measurements. If two pseudolites are available, not only can the failure of a
single signal be detected, but the offending signal can be identified as well.
These advantages are especially important in aviation, where pilot notification
of signal failures must occur very rapidly (within 1-10s).

5. Solution of Signal Blockage Problems. The additional signals from pseudolites
can virtually eliminate problems due to blockage of the satellite signals by
objects, terrain, or the receiving platform itself.

Pseudolite Signal Structure Ideally the pseudolite signal structure would
permit reception by a standard GPS receiver with little or no modification of the
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receiver design. Thus it would seem that the pseudolite signal should have a unique
C/A-code with the same characteristics as the C/A-codes used by the satellites.
However, with this scheme it would be difficult to prevent a pseudolite signal from
interfering with the reception of the satellite signals, even if its C/A-code were
orthogonal to the satellite codes. The fundamental difficulty, which is called the
near—far problem, occurs because of the inverse square-law dependence of received
signal power with range. The near—far problem does not occur with the GPS satellite
signals because variation in the user-to-satellite range is relatively small compared to
its average value. However, with pseudolites this is not the case. The problem is
illustrated by considering that the received signal strength of a pseudolite must be at
least approximately that of a satellite. If the pseudolite signal equals that of a satellite
when the user is, say, 50 km from the pseudolite, then that same signal will be 60 dB
stronger when the user is 50 m from the pseudolite. At this close range the pseudolite
signal would be so strong that it would jam the weaker GPS satellite signals.

Several solutions to the near—far problem involving both pseudolite signal design
and receiver design have been proposed in [112] for the 60-dB received signal
dynamic range discussed above.

Pseudolite Signal Design Approaches

1. Use of High-Performance Pseudorandom Codes. The 60dB of jamming
protection would require the pseudolite to transmit a code much longer than
a C/A-code and clocked at a much higher rate. This has been judged to be an
impractical solution because it would reduce compatibility with the GPS
signal structure and significantly increase receiver costs.

2. Pseudolite Frequency Offset. By moving the frequency of the pseudolite signal
sufficiently far away from the 1575.42-MHz L, frequency, filters in the
receiver could prevent the pseudolite signals from interfering with the satellite
signals. Again, however, this approach would significantly increase receiver
costs and reduce compatibility with the GPS signal structure.

3. Low-Duty-Cycle Time Division Multiplexing. A preferred approach is for the
pseudolite to transmit at the L, frequency using short, low-duty-cycle pulses
that interfere with the satellite signals only a small fraction of the time. The
impact on receiver design is minimal because modifications are primarily
digital and low in cost. This approach retains compatibility with the GPS
signal structure by using a new set of 51 pseudolite Gold codes with the same
chipping rate, period, and number of chips per period as the satellite C/A-
codes and a 50-bps data stream. Although the codes run continuously in both
the pseudolite and the user receiver, the pseudolite signal is gated on only
during eleven 90.91-ps intervals in each 10-ms (half-data-bit) interval. Each of
the 11 gate intervals transmits 93 new chips of the code, so that all 1023 chips
get transmitted in 10ms. However, the timing of the gate intervals is
randomized in order to randomize the signal spectrum. Further details of
the signal structure can be found in [112].
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Pseudolite Characteristics

1. Pseudolite Identification. Identification of a pseudolite is accomplished by
both its unique Gold code and its physical location, which appears in its 50-
bps message. Since pseudolite signals are low power and thus can be received
only within a relatively small coverage area, it is possible for pseudolites
spaced sufficiently far apart to use the same Gold code. In this case correct
identification is effected by noting the location transmitted by the pseudolite.

2. Pseudolite Clock Offset. Since the pseudolite can monitor GPS signals over
extended time periods, it can determine GPS time. This permits the trans-
mitted epochs of the pseudolite signal to be correct in GPS time and avoids the
necessity of transmitting pseudolite clock corrections. The time reference for
the differential pseudorange corrections transmitted by the pseudolite is also
GPS time.

3. Transmitted Signal Power. The primary use of pseudolite signals is for aircraft
in terminal areas, so that a typical maximum reception range is 50 km. At this
range a half-hemisphere omnidirectional transmitting antenna fed with
approximately 30 mW of signal power will provide a signal level comparable
to that typical of a GPS satellite (—116 dBm). At a range of 50 m the signal
level will be 60 dB larger (—56 dBm).

4. Pseudolite Message Structure. Although the pseudolite data stream is 50 bps
to assure compatibility with GPS receivers, its structure must be modified to
transmit information that differs somewhat from that transmitted by the GPS
satellites. A proposed structure can be found in [112].

5. Minimum Physical Spacing of Pseudolites. Placement of pseudolites involves
considerations that depend on whether the pseudolites use the same or
different Gold codes.

Separation of Pseudolites Using the Same Code One approach when two
pseudolites use the same code is to synchronize the timing of the gated signals of the
pseudolites and separate the pseudolites by a distance that guarantees that received
transmissions from different pseudolites will not overlap. This requires that the
pseudolites be separated by at least 130 km, which guarantees that a user 50 km from
the desired pseudolite will be at least 80 km from the undesired pseudolite. The
pulses from the latter will then travel at least 30 km further than those from the
desired pseudolite, thus arriving at least 100 ps later. Since the width of pulses is
90.91 ps, pulses from two pseudolites will not overlap and interference is thereby
avoided.

However, a more conservative approach is to separate two pseudolites by a
distance that is sufficient to guarantee that when the user is at the maximum usable
range from one pseudolite, the signal from the other is too weak to interfere.
Suppose each pseudolite is set to achieve a received signal level of —126 dBm at a
maximum service radius of 50 km and that an undesired pseudolite signal must be at
least 14 dB below the desired signal to avoid interference. A simple calculation
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involving the inverse square power law shows that this can be achieved with a
minimum spacing of 300 km between the two pseudolites, so that the minimum
distance to the undesired pseudolite will be 250 km when the user is 50 km from the
desired pseudolite.

Separation of Pseudolites Using Different Codes When the user must
receive several pseudolites simultaneously, separation of the signals from different
pseudolites might be possible by using different timing offsets of the transmitted
pulses. However, this would substantially complicate system design. A preferred
approach is to use synchronous transmissions but space the pseudolites so that when
the received pulses do overlap, they can still be recovered by using a suitable low-
cost receiver design. The situation is clarified by considering the two pseudolites
shown in Fig. 4.2, which are separated by at least 27.25 km, the distance traveled by
a signal in the time required to transmit a single pulse. With synchronous pulse
transmissions from the pseudolites there exists a central region bounded on the left
and right by two hyperbolic curves 27.25 km apart along the baseline connecting the
pseudolites. This distance is independent of the separation of the pseudolites, but the
curvature of the hyperbolas decreases as the pseudolite separation increases. Outside
the central region the received pulses will not overlap and can easily be recovered by
the receiver. The difficulty of separating the overlapping pulses within the central
region is a function of the pseudolite separation. Separation is most difficult when
the receiver is located at the intersection of a hyperbola and the baseline where the
stronger of the two signals has its largest value, thus having the potential to
overpower the weaker signal. This problem can be avoided by adequate separation
of the pseusolites, but the separation required is a function of receiver design.

ZONE OF NO PSEUDOLITE

ZONE OF NO PSEUDOLITE PULSE OVERLAP

PULSE OVERLAP

°
PSEUDOLITE A PSEUDOLITE B

52.25km |
| )
[ 27.25km |

ZONE OF NO WIDEBAND
PULSE CLIPPING

Fig. 4.2 Minimum spacing of pseudolites.
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It will be seen later that a typical receiver designed for pseudolite operation might
clip the incoming signal at +2¢ of the precorrelation noise power in order to limit
the received power of strong pseudolite signals. Under this assumption and an
assumed +1-MHz precorrelation bandwidth, the clipping threshold in a receiver
with a 4-dB noise figure would be —104 dBm. Assuming that the pseudolites are
designed to produce a —116-dBm power level at 50km, a receiver receiving
overlapping pulses would need to be at least 12.5km from both pseudolites to
avoid the capture effect in the clipping process. Thus, the two pseudolites in Fig. 4.2
should each be moved 12.5 km from the boundaries of the central region, resulting in
a minimum distance of 52.25 km between them.

Receiver Design for Pseudosatellite Compatibility Major design issues
for a GPS receiver that receives pseudosatellite signals (often called a participating
receiver) are as follows:

1. Continuous Reception. Because the receiver must continuously recover the
pseudolite data message, a channel must be dedicated to this task. For this
reason a single-channel slow-sequencing receiver could not be used. This is
really not a problem, since almost all modern receivers use parallel channels.

2. Ability to Track Pseudolite Gold Codes. The receiver must be capable of
generating and tracking each of the 51 special C/A-codes specified for the
pseudolite signals. These codes and their method of generation can be found
in [42]. Although the codes can be tracked with standard GPS tracking loops,
optimum performance demands that the noise between pseudolite pulses be
blanked to obtain a 10-dB improvement in SNR.

3. Reduction of Pseudosatellite Interference to GPS Signal Channels. In a GPS
satellite channel a pseudolite signal appears as pulsed interference that can be
60 dB greater above the satellite signal level. The resulting degradation of the
GPS satellite signal can be reduced to acceptable levels by properly designed
wide-band precorrelation signal clipping in the receiver. This approach, which
generally improves with increasing precorrelation bandwidth and decreasing
clipping level, typically results in a reduction in the GPS SNR of 1-2dB. A
somewhat more effective approach is to blank the GPS signal ahead of the
correlator during the reception of a pseudolite pulse, which results in a GPS
SNR reduction of about 0.5 dB.

4. Ability to Receive Overlapping Pseudolite Pulses. A group of pseudolites
designed to be utilized simultaneously must be located relatively close
together, inevitably causing received pulse overlap in certain portions of the
coverage area. Consequently, receiver design parameters must be chosen
carefully to assure that overlapping pulses from different pseudolites can be
separated. The signal level from a nearby pseudolite often can be strong
enough to overcome the approximately 24 dB of interference suppression
provided by the cross-correlation properties of distinct Gold codes and also
can obliterate a second overlapping signal by saturating the receiver amplifiers.
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Both of these problems can be solved by properly designed wide-band
precorrelation signal clipping, in which there are two conflicting requirements.
Deep (severe) clipping significantly reduces the amount of interfering power
from a strong signal but gives the stronger signal more ability to blank out the
weaker one (capture effect). On the other hand, more modest clipping levels
reduce the capture effect at the expense of passing more power from the
stronger signal into the correlators. As a result, more stress is put on the Gold
codes to separate the weaker pulses from the stronger ones in the correlation
process. An acceptable compromise for most purposes is to clip the received
signal at about 2 standard deviations of the precorrelation noise power.

4.2.7 Immunity to Pseudolite Signals

A receiver that is not designed to receive pseudolite signals (a so-called nonpar-
ticipating receiver) must be designed so that a pseudolite signal, which might be
60dB stronger than a satellite signal, will not interfere with the latter. The
importance of this requirement cannot be overstated, since it is expected that use
of pseudolites will grow dramatically, especially near airports. Therefore, purchasers
of nonparticipating receivers would be well advised to obtain assurances of
immunity to jamming by pseudolites.

Pseudolite immunity in a nonparticipating receiver can be effected by designing
the front-end amplifier circuits for quick recovery from overload in combination with
precorrelation hard limiting of the signal. This approach is suitable for low-cost
receivers such as hand-held units. More sophisticated receivers using more than 1 bit
of digital quantization to avoid quantization loss may still be designed to operate
well if the clipping level is the same as that used in participating receivers. The
design issues for obtaining immunity to pseudolite interference have been analyzed
by RTCM SC 104 and can be found in [112].

4.2.8 Aiding Inputs

Although GPS can operate as a stand-alone system, navigation accuracy and
coverage can be materially improved if additional information supplements the
received GPS signals. Basic sources include the following:

1. INS Aiding. Although GPS navigation is potentially very accurate, periods of
poor signal availability, jamming, and high-dynamic platform environments
often limit its capability. INSs are relatively immune to these situations and
thus offer powerful leverage in performance under these conditions. On the
other hand, the fundamental limitation of INS long-term drift is overcome by
the inherent calibration capability provided by GPS. Incorporation of INS
measurements is readily achieved through Kalman filtering.

2. Aiding with Additional Navigation Inputs. Kalman filtering can also use
additional measurement data from navigation systems such as LORAN C,
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vehicular wheel sensors, and magnetic compasses, to improve navigation
accuracy and reliability.

3. Altimeter Aiding. A fundamental property of GPS satellite geometry causes
the greatest error in GPS positioning to be in the vertical direction. Vertical
error can be significantly reduced by inputs from barometric, radar, or laser
altimeter data. Coupling within the system of positioning equations tends to
reduce the horizontal error as well.

4. Clock Aiding. An external clock with high stability and accuracy can
materially improve navigation performance. It can be continuously calibrated
when enough satellite signals are available to obtain precise GPS time. During
periods of poor satellite visibility it can be used to reduce the number of
satellites needed for positioning and velocity determination.

4.3 ANTENNA DESIGN

Although there is a wide variety of GPS antennas, most are normally right-hand
circularly polarized to match the incoming signal and the spatial reception pattern is
nominally a hemisphere. Such a pattern permits reception of satellites in any
azimuthal direction from zenith down to the horizon. The short wavelengths at the
L, and L, frequencies permit very compact designs. In low-cost hand-held receivers
the antenna is often integrated with the receiver electronics in a rugged case. In more
sophisticated applications it is often desirable that the antenna be separate from the
receiver in order to site it more advantageously. In these situations the signal is fed
from the antenna to the receiver via a low-loss coaxial cable. At L-band frequencies
the cable losses are still quite large and can reach 1 dB for every 10 f of cable. Thus,
it is often necessary to use a low-noise preamplifier at the antenna (active antenna).
Preamplifier gain is usually in the range of 20—40 dB, and DC power is commonly
fed to the preamplifier via the coaxial cable itself, with appropriate decoupling filters
to isolate the signal from the DC power voltage. The preamplifier sets the noise
figure for the entire receiver system and typically has a noise figure of 3—4 dB.

4.3.1 Various Types of Antennas

Figure 4.3 shows various types of GPS antennas:

Patch Antennas. The patch antenna, the most common antenna type, is often used
in low-cost hand-held receivers. In typical designs the antenna elements are
formed by etching the copper foil on a printed circuit board, which forms a
very rugged low-profile unit. This is advantageous in some aviation applica-
tions, because it is relatively easy to integrate the antenna into the skin of the
aircraft.

Dome Antennas. These antennas are housed in a bubblelike housing.

Blade Antennas. The blade antenna, also commonly used in aviation applications,
resembles a small airfoil protruding from its base.
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Fig. 4.3 Types of GPS antennas.

Helical (Volute) Antennas. Helical antennas contain elements that spiral along an
axis that typically points toward the zenith. In some designs the helical
elements are etched from a cylindrical copper-clad laminate to reduce cost.
Helical antennas are generally more complex and costly to manufacture than
patch antennas but tend to be somewhat more efficient. Some hand-held
receivers use this type of antenna as an articulated unit that can be adjusted to
point skyward while the case of the receiver can be oriented for comfortable
viewing by the user. A popular design is the quadrifilar helix, which consists
of four helixes symmetrically wound around a circular insulating core.

Choke-Ring Designs. In precision applications, such as surveying, choke-ring
antennas are used to reduce the effects of multipath signal components
reflected from the ground. These antennas are usually of the patch or helical
type with a groundplane containing a series of concentric circular troughs one-
quarter wavelength deep that act as transmission lines shorted at the bottom
ends so that their top ends exhibit a very high impedance at the GPS carrier
frequency. Low-elevation angle signals, including ground-reflected compo-
nents, are nulled by the troughs, reducing the antenna gain in these directions.
The size, weight, and cost of a choke-ring antenna are significantly greater
than that of simpler designs.

Phased-Array (Null-Steering) Antennas. Although most applications of GPS
require a nominally hemispherical antenna pattern, certain military applica-
tions require that the antenna be capable of inserting nulls in specified
directions to reduce the effect of intentional jamming of the received GPS
signal. Antenna designs that accomplish this consist of numerous elements
arranged in an array, as depicted in Fig. 4.4. By introducing dynamically
controlled phase shifts into the signal output of each element and then
summing the phase-shifted outputs over all elements, specified nulls in the
antenna pattern can be created that are capable of adapting, in real time, to
changing jamming threats. Needless to say, phased-array antennas are much
more costly than simpler designs and historically have only been used by the
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military. However, civilian applications have recently begun to emerge,
primarily for the purpose of improving positioning performance in the
presence of multipath. An introduction to multipath-mitigation antennas and
a design example can be found in [27].

Problems

4.1 An ultimate limit on the usability of weak GPS signals occurs when the bit
error rate (BER) in demodulating the 50-bps navigation message becomes
unacceptably large. Find the signal level in dBm at the output of the receiver
antenna that will give a BER of 107>, Assume an effective receiver noise
temperature of 513°K, and that all signal power has been translated to the
baseband I-channel with optimal demodulation (integration over the 20-ms bit
duration followed by polarity detection).

4.2 Support the claim that a 1-bit analog-to-digital converter (ADC) provides an
essentially linear response to a signal deeply buried in Gaussian noise by
solving the following problem: Suppose that the input signal s;, to the ADC is
a DC voltage embedded in zero-mean additive Gaussian noise n(f) with
standard deviation o, and that the power spectral density of n(z) is flat in



4.3

4.4

PROBLEMS 101

the frequency interval [— I, W] and zero outside the interval. Assume that the
1-bit ADC is modeled as a hard limiter that outputs a value v, = 1 if the
polarity of the signal plus noise is positive and v —1 if the polarity is
negative. Define the output signal s, by

out =

Sout = Elvoul, (4.3)
where E denotes expectation, and let o, be the standard deviation of the ADC
output.

The ADC input signal-to-noise ratio SNR;,, can then be defined by

out

SNR,, = S (4.4)

and the ADC output signal-to-noise ratio SNR,; by

SNR,,, = ~out (4.5)

out

where s, and o, are respectively the expected value and the standard
deviation of the ADC output. Show that if s;, < oy,, then s,,, = Ks;,, where
K is a constant, and

SNR,,, 2
2 ot 2 4,
SNR;, = (46)

Thus, the signal component of the ADC output is linearly related to the
input signal component, and the output SNR is about 2 dB less than that of the
input.

Some GPS receivers directly sample the signal at an IF instead of using mixers
for the final frequency shift to baseband. Suppose you wish to sample a GPS
signal with a bandwidth of 1 MHz centered at an IF of 3.5805 MHz. What
sampling rates will not result in frequency aliasing? If a sampling rate of
2.046 MHz were used, show how a digitally sampled baseband signal could be
obtained from the samples.

Instead of forming a baseband signal with / and Q components, a single-
component baseband signal can be created simply by multiplying the incoming
L, (or L,) carrier by a sinusoid of the same nominal frequency, followed by
low-pass filtering. Discuss the problems inherent in this approach. Hint: Form
the product of a sinusoidal carrier with a sinusoidal local oscillator signal, use
trigonometric identities to reveal the sum and difference frequency compo-
nents, and consider what happens to the difference frequency as the phase of
the incoming signal assumes various values.
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4.5 Write a computer program using C or another high-level language that
produces the 1023-chip C/A-code used by satellite SV1. The code for this
satellite is generated by two 10-stage shift registers called the G1 and G2
registers, each of which is initialized with all 1’s. The input to the first stage of
the G1 register is the exclusive OR of its 3rd and 10th stages. The input to the
first stage of the G2 register is the exclusive OR of its 2nd, 3rd, 6th, 8th, 9th,
and 10th stages. The C/A-code is the exclusive OR of stage 10 of G1, stage 2
of G2, and stage 6 of G2.
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GPS Data Errors

5.1 SELECTIVE AVAILABILITY ERRORS

Prior to May 1, 2000, Selective Availability (SA) was a mechanism adopted by the
Department of Defense (DoD) to control the achievable navigation accuracy by
nonmilitary GPS receivers. In the GPS SPS mode, the SA errors were specified to
degrade navigation solution accuracy to 100 m (2D RMS) horizontally and 156 m
(RMS) vertically.

In a press release on May 1, 2000, the President of the United States announced
the decision to discontinue this intentional degradation of GPS signals available to
the public. The decision to discontinue SA was coupled with continuing efforts to
upgrade the military utility of systems using GPS and supported by threat assess-
ments which concluded that setting SA to zero would have minimal impact on
United States national security. The decision was part of an ongoing effort to make
GPS more responsive to civil and commercial users worldwide.

The transition as seen from Colorado Springs, CO., U.S.A. at the GPS Support
Center is shown in Figure 5.1. The figure shows the horizontal and vertical errors
with SA, and after SA was suspended, midnight GMT (8 PM EDT), May 1, 2000.
Figure 5.2 shows mean errors with and without SA, with satellite PRN numbers.

Aviation applications will probably be the most visible user group to benefit from
the discontinuance of SA. However, precision approach will still require some form
of augmentation to ensure that integrity requirements are met. Even though setting
SA to zero reduces measurement errors, it does not reduce the need for and design of
WAAS and LAAS ground systems and avionics.

103



104 GPS DATA ERRORS

SA Transition -- 2 May 2000
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Fig. 5.1 Pseudorange residuals with SA.

Time and frequency users may see greater effects in the long term via commu-
nication systems that can realize significant future increases in effective bandwidth
use due to tighter synchronization tolerances. The effect on vehicle tracking
applications will vary. Tracking in the trucking industry requires accuracy only
good enough to locate in which city the truck is, whereas public safety applications
can require the precise location of the vehicle. Maritime applications have the
potential for significant benefits. The personal navigation consumer will benefit from
the availability of simpler and less expensive products, resulting in more extensive
use of GPS worldwide.

Because SA could be resumed at any time, for example, in time of military alert,
one needs to be aware of how to minimize these errors.

There are at least two mechanisms to implement SA. Mechanisms involve the
manipulation of GPS ephemeris data and dithering the satellite clock (carrier
frequency). The first is referred to as epsilon-SA (e-SA), and the second as clock-
dither SA. The clock-dither SA may be implemented by physically dithering the
frequency of the GPS signal carrier or by manipulating the satellite clock correction
data or both.

Though the mechanisms to implement SA and the true SA waveform are
classified, a variety of SA models exist in the literature (e.g., [4, 15, 21, 134]).
These references show various models. One proposed by Braasch [15] appears to be
the most promising and suitable. Another used with some success for predicting SA
is a Levinson predictor [6].
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Fig. 5.2 Pseudorange residuals with and without SA.
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The Braasch model assumes that all SA waveforms are driven by normal white
noise through linear system (autoregressive moving-average, ARMA) models (see
Chapter 3 of [46]). Using the standard techniques developed in system and
parameter identification theory, it is then possible to determine the structure and
parameters of the optimal linear system that best describes the statistical character-
istics of SA. The problem of modeling SA is estimating the model of a random
process (SA waveform) based on the input/output data.

The technique to find an SA model involves three basic elements:

o the observed SA,
e a model structure, and
e a criterion to determine the best model from the set of candidate models.

There are three choices of model structures:

1. an ARMA model of order (p, g), which is represented as ARMA(p, q);

2. an ARMA model of order (p, 0) known as the moving-average MA(p)
model; and

3. an ARMA model of order (g, 0), the auto regression AR(g) model.

Selection from these three models is performed with physical laws and past
experience.

5.1.1 Time Domain Description

Given observed SA data, the identification process repeatedly selects a model
structure and then calculates its parameters. The process is terminated when a
satisfactory model, according to a certain criterion, is found.

We start with the general ARMA model. Both the AR and MA models can be
viewed as special cases of an ARMA model. An ARMA( p, ¢) model is mathe-
matically described by

a Vi + Ar Vi1 + -+ aqyk—q-H = b]xk + bzxk_l + -+ bpxk_p+1 =+ € (51)

or in a concise form by

q P
_Z; AYr_iy1 = Z‘T bixy_jy1 + e, (5.2)
1= J=
where a;, i=1, 2,...,q,and b;, j =1, 2,...,p, are the sets of parameters that
describe the model structure, x; and y, are the input and output to the model at any
time k for k=1, 2,..., and ¢, is the noise value at time k. Without loss of

generality, it is always assumed that ¢; = 1.
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Once the model parameters a; and b; are known, the calculation of y; for an
arbitrary k can be accomplished by

q P
Ve=-— gaﬂk—m + X} bixi_jy1 + . (5-3)
i= Jj=

It is noted that when all of the a; in Eq. 5.3 take the value of 0, the model is
reduced to the MA ( p, 0) model or simply MA(p). When all of the b; take the value
of 0, the model is reduced to the AR(0, ¢) model or AR(g). In the latter case, y; is
calculated by

q
Ye=-— X;aiyk—i+l +ep. (5.4)

5.1.1.1 Model Structure Selection Criteria Two techniques, known as
Akaike’s final prediction error (FPE) criterion and the closely related Akaike’s
information theoretic criterion (AIC), may be used to aid in the selection of model
structure. According to Akaike’s theory, in the set of candidate models, the one with
the smallest values of FPE or AIC should be chosen. The FPE is calculated as

1+n/N

FPE = ,
1 —n/N

(5.5)

where n is the total number of parameters of the model to be estimated, N is the
length of the data record, and V is the loss function for the model under
consideration. Here, V' is defined as

V=3 e, (5.6)

=1
where e is as defined in Eq. 5.2. The AIC is calculated as

AIC = log[(1 4+ 2n/N)V] (5.7)

In the following, an AR(12) model was chosen to characterize SA. This selection

was based primarily on Braasch’s recommendation [14]. As such, the resulting

model should be used with caution before the validity of this model structure
assumption is further studied using the above criteria.

5.1.1.2 Frequency Domain Description The ARMA models can be
equivalently described in the frequency domain, which provides further insight
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into model behavior. Introducing a one-step delay operator Z~!, Eq. 5.2 can be
rewritten as

AZ YW, =B(Z 7 x, + e, (5.8)
where
q X
AZY =Y az7, (5.9)
i=1
P .
BZ™) =Y bz, (5.10)
i=1
and
Z7 e =i (5.11)

It is noted that A(Z~') and B(Z~") are polynomials of the time-shift operator Z~! and
normal arithmetic operations may be carried out under certain conditions. Defining a
new function H(Z~') as B(Z~!) divided by 4(Z~') and expanding the resulting
H(Z7") in terms of operator Z~!, we have

—1 00 )
igli = l_zzlh,z“. (5.12)

H(Z™ "=
The numbers of {4;} are the impulse responses of the model. It can be shown that 4;
is the output of the ARMA model at time i = 1, 2, ... when the model input x; takes
the value of zero at all times except for i = 1. The function H(Z~ ') is called the
frequency function of the system. By evaluating its value for Z~! = e/®, the
frequency response of the model can be calculated directly. Note that this process
is a direct application of the definition of the discrete Fourier transform (DFT) of 4;.

5.1.1.3 AR Model Parameter Estimation The parameters of an AR model
with structure

AZ Ny = ¢ (5.13)
may be estimated using the least-squares (LS) method. If we rewrite Eq. 5.13 in
matrix format for k =¢q, g+ 1,...,n, we get

Yn Yn—1 = yn—q+1 a; €n

Yn—1 Yn—2 - yn—q a, €,_1
. . . =1 . (5.14)

yq yqfl N1 aq eq
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or
H-A=E, (5.15)
where
Yn Yu—i yn—q-H
Yot Yn—2 Yn—q
H= ) _ ) ) R (5.16)
yq yqfl 1
A=la,a,a; --- aq]T, (5.17)
and
E=le, e_, e_, --- eq]T. (5.18)

The LS estimation of the parameter matrix A can then be obtained by

A=HTH)'HE. (5.19)

5.1.2 Collection of SA Data

To build effective SA models, samples of true SA data must be available. This
requirement cannot be met directly as the mechanism of SA generation and the
actual SA waveform are classified. The approach we take is to extract SA from flight
test data. National Satellite Test Bed (NSTB) flight tests recorded the pseudorange
measurements at all 10 RMS (Reference Monitoring Station) locations. These
pseudorange measurements contain various clock, propagation, and receiver
measurement errors, and they can, in general, be described as

PRM =p+ ATsat + ATrcvr + ATiono + ATtrop + ATmultipath +SA+ Atnoise (520)

where p is the true distance between the GPS satellite and the RMS receiver; AT,
and AT, are the satellite and receiver clock errors; AT, and AT, are the
ionosphere and troposphere propagation delays, AT, pan 1S the multipath error; SA
is the SA error; and At is the receiver measurement noise.

To best extract SA from PR,,, values of the other terms were estimated. The true
distance p is calculated by knowing the RMS receiver location and the precise orbit
data available from the National Geodetic Survey (NGS) bulletin board. GIPSY/
OASIS analysis (GOA) was used for this calculation, which re-created the precise
orbit and converted all relevant data into the same coordinate system. Models for

propagation and satellite clock errors have been built into GOA, and these were used



110 GPS DATA ERRORS

to estimate ATy, ATy, and ATy, The receiver clock errors were estimated by the

NSTB algorithm using data generated from GOA for the given flight test conditions.

From these, a simulated pseudorange PR;,,, was formed.:

PRsim = Psim + ATsatsim + ATrcvrsim + ATionosim + ATtrops,m (521)
where ATq . ATy, o ATiono,,» and ATy, — are, respectively, the estimated
values of ATg, ATy, ATigno, and ATy, in the simulation.

From Eqgs. 5.20 and 5.21, pseudorange residuals are calculated:

APR = PRy, — PRy, = SA + ATmultipath + Atpgise + AT models» (5.22)

where AT, 4. Stands for the total modeling error, given by

ATmodels = (p - psim) + (ATsat - ATsatsim) + (ATrcvr - ATrcvrsim)

+ (ATiono = ATiono,, ) + (ATup = ATy, ) (5.23)

It is noted that the terms AT, ipam and At,gis. should be significantly smaller than
SA, though it is not possible to estimate their values precisely. The term AT}, 4e1s
should also be negligible compared to SA. It is, therefore, reasonable to use APR as
an approximation to the actual SA term to estimate SA models. Examination of all
available data show that their values vary between £80 m. These are consistent with
previous reports on observed SA and with the DoD’s specification of SPS accuracy.

5.2 IONOSPHERIC PROPAGATION ERRORS

The ionosphere, which extends from approximately 50 to 1000 km above the surface
of the earth, consists of gases that have been ionized by solar radiation. The
ionization produces clouds of free electrons that act as a dispersive medium for GPS
signals in which propagation velocity is a function of frequency. A particular
location within the ionosphere is alternately illuminated by the sun and shadowed
from the sun by the earth in a daily cycle; consequently the characteristics of the
ionosphere exhibit a diurnal variation in which the ionization is usually maximum
late in midafternoon and minimum a few hours after midnight. Additional variations
result from changes in solar activity.

The primary effect of the ionosphere on GPS signals is to change the signal
propagation speed as compared to that of free space. A curious fact is that the signal
modulation (the code and data stream) is delayed, while the carrier phase is advanced
by the same amount. Thus the measured pseudorange using the code is larger than
the correct value, while that using the carrier phase is equally smaller. The
magnitude of either error is directly proportional to the total electron count (TEC)
in a tube of 1 m? cross section along the propagation path. The TEC varies spatially
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due to spatial nonhomogeneity of the ionosphere. Temporal variations are caused not
only by ionospheric dynamics, but also by rapid changes in the propagation path due
to satellite motion. The path delay for a satellite at zenith typically varies from about
1 m at night to 5—15 m during late afternoon. At low elevation angles the propagation
path through the ionosphere is much longer, so the corresponding delays can
increase to several meters at night and as much as 50 m during the day.

Since ionospheric error is usually greater at low elevation angles, the impact of
these errors could be reduced by not using measurements from satellites below a
certain elevation mask angle. However, in difficult signal environments, including
blockage of some satellites by obstacles, the user may be forced to use low-elevation
satellites. Mask angles of 5°—7.5° offer a good compromise between the loss of
measurements and the likelihood of large ionospheric errors.

The L;-only receivers in nondifferential operation can reduce ionospheric
pseudorange error by using a model of the ionosphere broadcast by the satellites,
which reduces the uncompensated ionospheric delay by about 50% on the average.
During the day errors as large as 10m at midlatitudes can still exist after
compensation with this model and can be much worse with increased solar activity.
Other recently developed models offer somewhat better performance. However, they
still do not handle adequately the daily variability of the TEC, which can depart from
the modeled value by 25% or more.

The L,/L, receivers in nondifferential operation can take advantage of the
dependency of delay on frequency to remove most of the ionospheric error. A
relatively simple analysis shows that the group delay varies inversely as the square of
the carrier frequency. This can be seen from the following model of the code
pseudorange measurements at the L, and L, frequencies:

k

2 (5.24)

pi=p=£

where p is the error-free pseudorange, p, is the measured pseudorange, and £ is a
constant that depends on the TEC along the propagation path. The subscripti = 1, 2
identifies the measurement at the L, or L, frequencies, respectively, and the plus or
minus sign is identified with respective code and carrier phase pseudorange
measurements. The two equations can be solved for both p and k. The solution
for p for code pseudorange measurements is

1P s
2:01 -

2
P2s
=1 =5

)= (5.25)

where f; and f, are the L, and L, carrier frequencies, respectively, and p; and p, are
the corresponding pseudorange measurements.

An equation similar to the above can be obtained for carrier phase pseudorange
measurements. However, in nondifferential operation the residual carrier phase
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pseudorange error can be greater than either an L, or L, carrier wavelength, making
ambiguity resolution difficult.

With differential operation ionospheric errors can be nearly eliminated in many
applications, because ionospheric errors tend to be highly correlated when the base
and roving stations are in sufficiently close proximity. With two L,-only receivers
separated by 25 km, the unmodeled differential ionospheric error is typically at the
10-20-cm level. At 100 km separation this can increase to as much as a meter.
Additional error reduction using an ionospheric model can further reduce these
errors by 25-50%.

5.2.1 lonospheric Delay Model
J. A. Klobuchar’s model [37,76] for ionospheric delay in seconds is given by

2 4

X X Y
T,=D All ——+—| fi <= 2
2 C + [ 2+241| orlxl_2 (5.26)

2n(t — T,
wherex:u
P

(rad)
DC = 5ns (constant offset)
T, = phase = 50,400 s
A = amplitude
P = period
t = local time of the earth subpoint of the signal intersection with mean
ionospheric height (s)

The algorithm assumes this latter height to be 350 km. The DC and phasing 7, are
held constant at Sns and 14 h (50,400 s) local time.
Amplitude (4) and period (P) are modeled as third-order polynomials:

3

3
A=2 od, (s, P= Z,;ﬁnd)fn (s),

n=0

where ¢,, is the geomagnetic latitude of the ionospheric subpoint and o,, f8, are
coefficients selected (from 370 such sets of constants) by the GPS master control
station and placed in the satellite navigation upload message for downlink to the
user.

For Southbury, Connecticut,

a, =[0.8382 x 1078, —0.745 x 1078, —0.596 x 107, 0.596 x 1077,
B, =[0.8806 x 10°, —0.3277 x 10°, —0.1966 x 10°, 0.1966 x 10°]

The parameter ¢,, is calculated as follows:
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1. Subtended earth angle (EA) between user and satellite is given by the
approximation

445

EA=—-—
el +20—4

(deg)

where el is the elevation of the satellite and with respect to the user equals
15.5°.

2. Geodetic latitude and longitude of the ionospheric subpoint are found using
the approximations

Iono lat. ¢; = ¢, + EAcos AZ (deg)
EAcos AZ
(deg)

Iono long. 4; = 4 _—
g A1 user cos ¢[

where ¢, = geodetic latitude = 41°
Ayser = geodetic longitude = —73°
AZ = azimuth of the satellite with respect to the user, = 112.5°
3. The geodetic latitude is converted to a geomagnetic coordinate system using
the approximation

¢,, = ¢; +11.6°cos(4; — 291°) (deg).

The final step in the algorithm is to account for elevation angle effect by scaling
with an obliquity factor (SF):

96° — el

3
W} (unitless).

SF:1+2|:

With scaling, time delay due to ionospheric becomes

X2 )C4 TT

SF(DC Al ——+—), < -,

- ( )+< 2+24) e
g

SF(DC), | < g

C = speed of light

where T, is in seconds and 7; in meters. The MATLAB program Klobuchar_fix.m
for computing ionospheric delay is described in Appendix A.
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5.2.2 GPS lono Algorithm

The problem of calculating ionospheric propagation delay from P-code and C/A-
code can be formulated in terms of the following measurement equalities:

Prii = p + Liiono T ¢Trx1 + ¢T6ps (5.27)

L.
Ppiy=p+—"— + ctpyy + ¢ (5.28)

_ Tliono _ T
(fualfir)? (fialfin)?
where Py, = L, pseudorange

Pri» = L, pseudorange

p = geometric distance between GPS satellite transmitter and GPS
receiver, including nondispersive contributions such as tropospheric
refraction and clock drift

Jf11 =L, frequency = 1575.42 MHz
Jf12 =L, frequency = 1227.6 MHz

Tpy1 = receiver noise as manifested in code (receiver and calibration biases)
at L, (ns)

Tpyy = receiver noise as manifested in code (receiver and calibration biases)
at L, (ns)

1gp = satellite group delay (interfrequency bias)
¢ = speed of light = 0.299792458 m/ns

Subtracting Eq. 5.28 from Eq. 5.27, we get

liono —

Priy — Priy c(Try1 — Try2) . (5.29)

S Y

What is actually measured in the ionospheric delay is the sum of receiver bias and
interfrequency bias. The biases are determined and taken out from the ionospheric
delay calculation. These biases may be up to 10ns (3 m) [33, 92].

However, the presence of ambiguities N, and N, in carrier phase measurements of
L, and L, preclude the possibility of using these in the daytime by themselves. At
night, these ambiguities can be calculated from the pseudoranges and carrier phase
measurements may be used for ionospheric calculations.

5.3 TROPOSPHERIC PROPAGATION ERRORS

The lower part of the earth’s atmosphere is composed of dry gases and water vapor,
which lengthen the propagation path due to refraction. The magnitude of the
resulting signal delay depends on the refractive index of the air along the propaga-
tion path and typically varies from about 2.5 m in the zenith direction to 10-15m at
low satellite elevation angles. The troposphere is nondispersive at the GPS
frequencies, so that delay is not frequency dependent. In contrast to the ionosphere,
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tropospheric path delay is consequently the same for code and carrier signal
components. Therefore, this delay cannot be measured by utilizing both L, and L,
pseudorange measurements, and either models and/or differential positioning must
be used to reduce the error.

The refractive index of the troposphere consists of that due to the dry gas
component and the water vapor component, which respectively contribute about 90%
and 10% of the total. Knowledge of the temperature, pressure, and humidity along the
propagation path can determine the refractivity profile, but such measurements are
usually not available to the user. However, using standard atmospheric models for dry
delay permits determination of the zenith delay to within about 0.5 m and with an error
at other elevation angles that approximately equals the zenith error times the cosecant
of the elevation angle. These standard atmospheric models are based on the laws of
ideal gases and assume spherical layers of constant refractivity with no temporal
variation and an effective atmospheric height of about 40 km. Estimation of dry delay
can be improved considerably if surface pressure and temperature measurements are
available, bringing the residual error down to within 2-5% of the total.

The component of tropospheric delay due to water vapor (at altitudes up to about
12km) is much more difficult to model, because there is considerable spatial and
temporal variation of water vapor in the atmosphere. Fortunately, the wet delay is
only about 10% of the total, with values of 5-30cm in continental midlatitudes.
Despite its variability, an exponential vertical profile model can reduce it to within
about 2-5 cm.

In practice, a model of the standard atmosphere at the antenna location would be
used to estimate the combined zenith delay due to both wet and dry components.
Such models use inputs such as the day of the year and the latitude and altitude of
the user. The delay is modeled as the zenith delay multiplied by a factor that is a
function of the satellite elevation angle. At zenith, this factor is unity, and it increases
with decreasing elevation angle as the length of the propagation path through the
troposphere increases. Typical values of the multiplication factor are 2 at 30°
elevation angle, 4 at 15°, 6 at 10°, and 10 at 5°. The accuracy of the model
decreases at low elevation angles, with decimeter level errors at zenith and about 1 m
at 10° elevation.

Much research has gone into the development and testing of various tropospheric
models. Excellent summaries of these appear in [56, 65, 110].

Although a GPS receiver cannot measure pseudorange error due to the tropos-
phere, differential operation can usually reduce the error to small values by taking
advantage of the high spatial correlation of tropospheric errors at two points within
100-200 km on the earth’s surface. However, exceptions often occur when storm
fronts pass between the receivers, causing large gradients in temperature, pressure,
and humidity.

5.4 THE MULTIPATH PROBLEM

Multipath propagation of the GPS signal is a dominant source of error in differential
positioning. Objects in the vicinity of a receiver antenna (notably the ground) can
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easily reflect GPS signals, resulting in one or more secondary propagation paths.
These secondary-path signals, which are superimposed on the desired direct-path
signal, always have a longer propagation time and can significantly distort the
amplitude and phase of the direct-path signal.

Errors due to multipath cannot be reduced by the use of differential GPS, since
they depend on local reflection geometry near each receiver antenna. In a receiver
without multipath protection, C/A-code ranging errors of 10 m or more can be
experienced. Multipath can not only cause large code ranging errors, but can also
severely degrade the ambiguity resolution process required for carrier phase ranging
such as that used in precision surveying applications.

Multipath propagation can be divided into two classes: static and dynamic. For a
stationary receiver, the propagation geometry changes slowly as the satellites move
across the sky, making the multipath parameters essentially constant for perhaps
several minutes. However, in mobile applications there can be rapid fluctuations in
fractions of a second. Therefore, different multipath mitigation techniques are
generally employed for these two types of multipath environments. Most current
research has been focused on static applications, such as surveying, where greater
demand for high accuracy exists. For this reason, we will confine our attention to the
static case.

5.5 HOW MULTIPATH CAUSES RANGING ERRORS

To facilitate an understanding of how multipath causes ranging errors, several
simplifications can be made that in no way obscure the fundamentals involved. We
will assume that the receiver processes only the C/A-code and that the received
signal has been converted to complex (i.e., analytic) form at baseband (nominally
zero frequency), where all Doppler shift has been removed by a carrier tracking
phase-lock loop. It is also assumed that the 50-bps GPS data modulation has been
removed from the signal, which can be achieved by standard techniques. When no
multipath is present, the received waveform is represented by

1) = ae’®c(t — 1) + n(?), (5.30)

where ¢(?) is the normalized, undelayed C/A-code waveform as transmitted, 7 is the
signal propagation delay, a is the signal amplitude, ¢ is the carrier phase, and n(¥) is
Gaussian receiver thermal noise having flat power spectral density. Pseudoranging
consists of estimating the delay parameter t. As we have previously seen, an optimal
estimate (i.e., a minimum-variance unbiased estimate) of 7 can be obtained by
forming the cross-correlation function

T,
R(7) = J r(t)c,(t — ) dt (5.31)
T
of r(¢) with a replica c,(f) of the transmitted C/A-code and choosing as the delay
estimate that value of 7 that maximizes this function. Except for an error due to
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receiver thermal noise, this occurs when the received and replica waveforms are in
time alignment. A typical cross-correlation function without multipath for C/A-code
receivers having a 2-MHz precorrelation bandwidth is shown by the solid lines
Fig. 5.3 (these plots ignore the effect of noise, which would add small random
variations to the curves).
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Fig. 5.3 Effect of multipath on C/A-code cross-correlation function.
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If multipath is present with a single secondary path, the waveform of Eq. 5.30
changes to

r(t) = ae’®e(t — 1)) + be/P2¢(t — 1,) + n(t), (5.32)

where the direct and secondary paths have respective propagation delays 7, and 1,
amplitudes « and b, and carrier phases ¢, and ¢,. In a receiver not designed
expressly to handle multipath, the resulting cross-correlation function will now have
two superimposed components, one from the direct path and one from the secondary
path. The result is a function with a distortion depending on the relative amplitude,
delay, and phase of the secondary-path signal, as illustrated at the top of Fig. 5.3 for
an in-phase secondary path and at the bottom of the figure for an out-of-phase
secondary path. Most importantly, the location of the peak of the function has been
displaced from its correct position, resulting in a pseudorange error.

In vintage receivers employing standard code tracking techniques (early and late
codes separated by one C/A-code chip), the magnitude of pseudorange error caused
by multipath can be quite large, reaching 70-80 m for a secondary-path signal one-
half as large as the direct-path signal and having a relative delay of approximately
250 m. Further details can be found in [51].

5.6 METHODS OF MULTIPATH MITIGATION

Processing against slowly changing multipath can be broadly separated into two
classes: spatial processing and time domain processing. Spatial processing uses
antenna design in combination with known or partially known characteristics of
signal propagation geometry to isolate the direct-path received signal. In contrast,
time domain processing achieves the same result by operating only on the multipath-
corrupted signal within the receiver.

5.6.1 Spatial Processing Techniques

Antenna Location Strategy Perhaps the simplest form of spatial processing is
to locate the antenna where it is less likely to receive reflected signals. For example,
to obtain the position of a point near reflective objects, one can first use GPS to
determine the position of a nearby point “in the clear” and then calculate the relative
position of the desired point by simple distance and/or angle measurement
techniques. Another technique that minimizes ever-present ground signal reflections
is to place the receiver antenna directly at ground level. This causes the point of
ground reflection to be essentially coincident with the antenna location so that the
secondary path very nearly has the same delay as the direct path. Clearly such
antenna location strategies may not always be possible but can be very effective
when feasible.
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Groundplane Antennas The most common form of spatial processing is an
antenna designed to attenuate signals reflected from the ground. A simple design
uses a metallic groundplane disk centered at the base of the antenna to shield the
antenna from below. A deficiency of this design is that when the signal wavefronts
arrive at the disk edge from below, they induce surface waves on the top of the disk
that then travel to the antenna. The surface waves can be eliminated by replacing the
groundplane with a choke ring, which is essentially a groundplane containing a
series of concentric circular troughs one-quarter wavelength deep. These troughs act
as transmission lines shorted at the bottom ends so that their top ends exhibit a very
high impedance at the GPS carrier frequency. Therefore, induced surface waves
cannot form, and signals that arrive from below the horizontal plane are significantly
attenuated. However, the size, weight, and cost of a choke-ring antenna is
significantly greater than that of simpler designs. Most importantly, the choke ring
cannot effectively attenuate secondary-path signals arriving from above the hori-
zontal, such as those reflecting from buildings or other structures. Nevertheless, such
antennas have proven to be effective when signal ground bounce is the dominant
source of multipath, particularly in GPS surveying applications.

Directive Antenna Arrays A more advanced form of spatial processing uses
antenna arrays to form a highly directive spatial response pattern with high gain in
the direction of the direct-path signal and attenuation in directions from which
secondary-path signals arrive. However, inasmuch as signals from different satellites
have different directions of arrival and different multipath geometries, many
directivity patterns must be simultaneously operative, and each must be capable of
adapting to changing geometry as the satellites move across the sky. For these
reasons, highly directive arrays seldom are practical or affordable for most applica-
tions.

Long-Term Signal Observation 1f a GPS signal is observed for sizable
fractions of an hour to several hours, one can take advantage of changes in multipath
geometry caused by satellite motion. This motion causes the relative delays between
the direct and secondary paths to change, resulting in measurable variations in the
received signal. For example, a periodic change in signal level caused by alternate
phase reinforcement and cancellation by the reflected signals is often observable.
Although a variety of algorithms have been proposed for extracting the direct-path
signal component from measurements of the received signal, the need for long
observation times rules out this technique for most applications. However, it can be
an effective method of multipath mitigation at a fixed site, such as at a differential
GPS base station. In this case, it is even possible to observe the same satellites from
one day to the next, looking for patterns of pseudorange or phase measurements that
repeat daily.
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5.6.2 Time Domain Processing

Despite the fact that time domain processing against GPS multipath errors has been
the subject of active research for at least two decades, there is still much to be
learned, both at theoretical and practical levels. Most of the practical approaches
have been developed by receiver manufacturers, who are often reluctant to explicitly
reveal their methods. Nevertheless, enough information about multipath processing
exists to gain insight into its recent evolution.

Narrow-Correlator Technology (1990—-1993) The first significant means to
reduce GPS multipath effects by receiver processing made its debut in the early
1990s. Until that time, most receivers had been designed with a 2-MHz precorrela-
tion bandwidth that encompassed most, but not all, of the GPS spread-spectrum
signal power. These receivers also used one-chip spacing between the early and late
reference C/A-codes in the code tracking loops. However, the 1992 paper [121]
makes it clear that using a significantly larger bandwidth combined with much closer
spacing of the early and late reference codes would dramatically improve the ranging
accuracy both with and without multipath. It is somewhat surprising that these facts
were not recognized earlier by the GPS community, given that they had been well
known in radar circles for many decades.

A 2-MHz precorrelation bandwidth causes the peak of the direct-path cross-
correlation function to be severely rounded, as illustrated in Fig. 5.3. Consequently,
the sloping sides of a secondary-path component of the correlation function can
significantly shift the location of the peak, as indicated in the figure. The result of
using an 8-MHz bandwidth is shown in Fig. 5.4, where it can be noted that the
sharper peak of the direct-path cross-correlation function is less easily shifted by the
secondary-path component. It can also be shown that at larger bandwidths the
sharper peak is more resistant to disturbance by receiver thermal noise, even though
the precorrelation signal-to-noise ratio is increased.

Another advantage of a larger precorrelation bandwidth is that the spacing
between the early and late reference codes in a code tracking loop can be made
smaller without significantly reducing the gain of the loop, hence the name narrow
correlator. It can be shown that this causes the noises on the early and late correlator
outputs to become more highly correlated, resulting in less noise on the loop error
signal. An additional benefit is that the code tracking loop will be affected only by
the multipath-induced distortions near the peak of the correlation function.

Leading-Edge Techniques Because the direct-path signal always precedes
secondary-path signals, the leading (left-hand) portion of the correlation function is
uncontaminated by multipath, as is illustrated in Fig. 5.4. Therefore, if one could
measure the location of just the leading part, it appears that the direct-path delay
could be determined with no error due to multipath. Unfortunately, this seemingly
happy state of affairs is illusory. With a small direct- to secondary-path separation,
the uncontaminated portion of the correlation function is a miniscule piece at the
extreme left, where the curve just begins to rise. In this region, not only is the signal-
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Fig. 5.4 Reduced multipath error with larger precorrelation bandwidth.

to-noise ratio relatively poor, but the slope of the curve is also relatively small, which
severely degrades the accuracy of delay estimation.

For these reasons, the leading-edge approach best suits situations with a moderate
to large direct- to secondary-path separation. However, even in these cases there is
the problem of making the delay measurement insensitive to the slope of the
correlation function leading edge, which can vary with signal strength. Such a
problem does not occur when measuring the location of the correlation function
peak.

Correlation Function Shape-Based Methods Some GPS receiver designers
have attempted to determine the parameters of the multipath model from the shape of
the correlation function. The idea has merit, but for best results many correlations
with different values of reference code delay are required to obtain a sampled version
of the function shape. Another practical difficulty arises in attempting to map each
measured shape into a corresponding direct-path delay estimate. Even in the simple
two-path model (Eq. 5.32) there are six signal parameters, so that a very large
number of correlation function shapes must be handled. An example of a heur-
istically developed shape-based approach called the early—late slope (ELS) method
can be found in [119], while a method based on maximum-likelihood estimation
called the multipath-estimating delay-lock loop (MEDLL) is described in [120].

Modified Correlator Reference Waveforms A relatively new approach to
multipath mitigation alters the waveform of the correlator reference PRN code to
provide a cross-correlation function with inherent resistance to errors caused by
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multipath. Examples include the strobe correlator as described in [39], the use of
special code reference waveforms to narrow the correlation function developed in
[127, 128], and the gated correlator developed in [90]. These techniques take
advantage of the fact that the range information in the received signal resides
primarily in the chip transitions of the C/A-code. By using a correlator reference
waveform that is not responsive to the flat portions of the C/A-code, the resulting
correlation function can be narrowed down to the width of a chip transition, thereby
being almost immune to multipath having a primary- to secondary-path separation
greater than 30-40m. An example of such a reference waveform and the corre-
sponding correlation function are shown in Fig. 5.5.

MMT Technology At the time of this writing, a recently developed proprietary
mitigation approach called multipath mitigation technology (MMT) is being
marketed to receiver manufacturers. The MMT technique appears to reach a
theoretical performance limit, described in the next section, for both code and
carrier phase ranging. It also has the advantage that its performance improves as the
signal observation time is lengthened. The method used by MMT can be found in
[130].
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Fig. 5.5 Multipath-mitigating reference code waveform.
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5.6.3 Performance of Time Domain Methods

Ranging with the C/A-Code Typical C/A-code ranging performance curves
for several multipath mitigation approaches are shown in Fig. 5.6 for the case of an
in-phase secondary path with amplitude one-half that of the direct path. Even with
the best available methods, peak range errors of 3—6 m are not uncommon. It can be
observed that the error tends to be largest for “close-in” multipath, where the
separation of the two paths is less than 20-30m. Indeed, this region poses the
greatest challenge in multipath mitigation research because the extraction of direct-
path delay from a signal with small direct- to secondary-path separation is an ill-
conditioned parameter estimation problem.

A serious limitation of most existing multipath mitigation algorithms is that the
residual error is mostly in the form of a bias that cannot be removed by further
filtering or averaging. On the other hand, the previously mentioned MMT algorithm
overcomes this limitation and also appears to have significantly better performance
than other published algorithms, as is indicated by curve F' of Fig. 5.6.

Carrier Phase Ranging The presence of multipath also causes errors in
estimating carrier phase, which limits the performance in surveying and other
precision applications, particularly with regard to carrier phase ambiguity resolution.
Not all current multipath mitigation algorithms are capable of reducing multipath-
induced phase error. The most difficult situation occurs at small separations between
the direct and secondary paths (less than a few meters). It can be shown that under
such conditions essentially no mitigation is theoretically possible. Typical phase
error curves for the MMT algorithm, which appears to have the best performance of
published methods, is shown in Fig. 5.7.
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Fig. 5.6 Performance of various multipath mitigation approaches.
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Testing Receiver Multipath Performance Conducting meaningful tests of
receiver multipath mitigation performance on either an absolute or a comparative
basis is no easy matter. There are often two conflicting goals. On the one hand, the
testing should be under strictly controlled conditions, so that the signal levels and
true multipath parameters are precisely known; otherwise the measured performance
cannot be linked to the multipath conditions that actually exist. Generally this will
require precision signal simulators and other ancillary equipment to generate
accurately characterized multipath signals.

On the other hand, receiver end users place more credence on how well a receiver
performs in the field. However, meaningful field measurements pose a daunting
challenge. It is extremely difficult to know the amount and character of the
multipath, and great difficulty can be experienced in isolating errors caused by
multipath from those of other sources. To add to these difficulties, it is not clear that
either the receiver manufacturers or the users have a good feel for the range of
multipath parameter values that represent typical operation in the field.

5.7 THEORETICAL LIMITS FOR MULTIPATH MITIGATION

5.7.1 Estimation-Theoretic Methods

Relatively little has been published on multipath mitigation from the fundamental
viewpoint of statistical estimation theory, despite the power of its methods and its
ability to reach theoretical performance limits in many cases. Knowledge of such
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limits provides a valuable benchmark in receiver design by permitting an accurate
assessment of the potential payoff in developing techniques that are better than those
in current use. Of equal importance is the revelation of the signal processing
operations that can reach performance bounds. Although it may not be feasible to
implement the processing directly, its revelation often leads to a practical method
that achieves nearly the same performance.

Optimality Criteria In discussing theoretical performance limits, it is important
to define the criterion of optimality. In GPS the optimal range estimator is
traditionally considered to be the minimum-variance unbiased estimator (MVUE),
which can be realized by properly designed receivers. However, it can be shown (see
[129]) that the standard deviation of a MVUE designed for multipath becomes
infinite as the primary- to secondary-path separation approaches zero. For this reason
it seems that a better criterion of optimality would be the minimum RMS error,
which can include both random and bias components. Unfortunately, it can be shown
that no estimator exists having minimum RMS error for every combination of true
multipath parameters.

5.7.3 MMSE Estimator

There is an estimator that can be claimed optimal in a weaker sense. The minimum-
mean-square-error (MMSE) estimator has the property that no other estimator has a
uniformly smaller RMS error. In other words, if some other estimator has smaller
RMS error than the MMSE estimator for some set of true multipath parameter
values, then that estimator must have a larger RMS error than the MMSE estimator
for some other set of values.

The MMSE estimator also has an important advantage not possessed by most
current multipath mitigation methods in that the RMS error decreases as the length
of the signal observation interval is increased.

5.7.4 Multipath Modeling Errors

Although a properly designed estimation-theoretic approach such as the MMSE
estimator will generally outperform other methods, the design of such estimators
requires a mathematical model of the multipath-contaminated signal containing
parameters to be estimated. If the actual signal departs from the assumed model,
performance degradation can occur. For example, if the model contains only two
signal propagation paths but in reality the signal is arriving via three or more paths,
large bias errors in range estimation can result. On the other hand, poorer
performance (usually in the form of random error cause by noise) can also occur
if the model has too many degrees of freedom. Striking the right balance in the
number of parameters in the model can be difficult if little information exists about
the multipath reflection geometry.
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5.8 EPHEMERIS DATA ERRORS

Small errors in the ephemeris data transmitted by each satellite cause corresponding
errors in the computed position of the satellite (here we exclude the ephemeris error
component of SA, which is regarded as a separate error source). Satellite ephemer-
ides are determined by the master control station of the GPS ground segment based
on monitoring of individual signals by four monitoring stations. Because the
locations of these stations are known precisely, an “inverted” positioning process
can calculate the orbital parameters of the satellites as if they were users. This
process is aided by precision clocks at the monitoring stations and by tracking over
long periods of time with optimal filter processing. Based on the orbital parameter
estimates thus obtained, the master control station uploads the ephemeris data to
each satellite, which then transmits the data to users via the navigation data message.
Errors in satellite position when calculated from the ephemeris data typically result
in range errors less than 1 m. Improvements in satellite tracking will undoubtedly
reduce this error further.

5.9 ONBOARD CLOCK ERRORS

Timing of the signal transmission from each satellite is directly controlled by its own
atomic clock without any corrections applied. This time frame is called space vehicle
(SV) time. A schematic of a rubidium atomic clock is shown in Fig. 5.8. Although
the atomic clocks in the satellites are highly accurate, errors can be large enough to
require correction. Correction is needed partly because it would be difficult to
directly synchronize the clocks closely in all the satellites. Instead, the clocks are
allowed some degree of relative drift that is estimated by ground station observations
and is used to generate clock correction data in the GPS navigation message. When
SV time is corrected using this data, the result is called GPS time. The time of
transmission used in calculating pseudoranges must be in GPS time, which is
common to all satellites.

The onboard clock error is typically less than 1 ms and varies slowly. This permits
the correction to be specified by a quadratic polynomial in time whose coefficients
are transmitted in the navigation message. The correction has the form

Atsy = agg + ap (1, — lo.) + apy(tsy — 15,) + Aty (5.33)

with
fps = fsy — Afgy (5.34)
where ay, ary, ar, are the correction coefficients, fgy is SV time, and Az is a small
relativistic clock correction caused by the orbital eccentricity. The clock data

reference time f#,. in seconds is broadcast in the navigation data message. The
stability of the atomic clocks permits the polynomial correction given by Eq. 5.33 to
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Fig. 5.8 Schematic of a rubidium atomic clock.

be valid over a time interval of 4—6h. After the correction has been applied, the
residual error in GPS time is typically less than a few nanoseconds, or about 1 m in
range.

5.10 RECEIVER CLOCK ERRORS

Because the navigation solution includes a solution for receiver clock error, the
requirements for accuracy of receiver clocks is far less stringent than for the GPS
satellite clocks. In fact, for receiver clocks short-term stability over the pseudorange
measurement period is usually more important than absolute frequency accuracy. In
almost all cases such clocks are quartz crystal oscillators with absolute accuracies in
the 1-10-ppm range over typical operating temperature ranges. When properly
designed, such oscillators typically have stabilities of 0.01-0.05 ppm over a period of
a few seconds.

Receivers that incorporate receiver clock error in the Kalman filter state vector
need a suitable mathematical model of the crystal clock error. A typical model in the
continuous-time domain is shown in Fig. 5.9, which is easily changed to a discrete
version for the Kalman filter. In this model the clock error consists of a bias
(frequency) component and a drift (time) component. The frequency error compo-
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nent is modeled as a random walk produced by integrated white noise. The time
error component is modeled as the integral of the frequency error after additional
white noise (statistically independent from that causing the frequency error) has been
added to the latter. In the model the key parameters that need to be specified are the
power spectral densities of the two noise sources, which depend on characteristics of
the specific crystal oscillator used.

The continuous time model has the form

jC 1 = Wi,
‘).CZ =X + Wy,
where w(¢) and w,(¢) are independent zero-mean white-noise processes with known

variances.
The equivalent discrete-time model has the state vector

and the stochastic process model

_ 1 0 Wl,k—l
Xk = [At 1}Xk_1 + [Wz,k-l i|, (535)

where At is the discrete-time step and {w, ;_;}, {w,,_,} are independent zero-mean
white-noise sequences with known variances.

5.11 ERROR BUDGETS

For purposes of analyzing the effects of the previously discussed errors, it is
convenient to convert each error into an equivalent range error experienced by a
user, which is called the user-equivalent range error (UERE). In general, the errors
from different sources will have different statistical properties. For example, satellite
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Fig. 5.10 GPS UERE budget.

clock and ephemeris errors tend to vary slowly with time and appear as biases over
moderately long time intervals, perhaps hours. On the other hand, errors due to
receiver noise and quantization effects may vary much more rapidly, perhaps within
seconds. Nonetheless, if sufficiently long time durations over many navigation
scenarios are considered, all errors can be considered as zero-mean random
processes that can be combined to form a single UERE. This is accomplished by
forming the root-sum-square of the UERE errors from all sources:

UERE = | (UEREY. (5.36)
i=1

Figure 5.10 depicts the various GPS UERE errors and their combined effect for both
C/A-code and P(Y)-code navigation at the 1-o level.

When SA is on, the UERE for the C/A-code user is about 36 m and reduces to
about 19 m when it is off. Aside from SA, it can be seen that for such a user the
dominant error sources in nondifferential operations are multipath, receiver noise/
resolution, and ionospheric delay (however, recent advances in receiver technology
have in some cases significantly reduced receiver noise/resolution errors). On the
other hand, the P(Y)-code user has a significantly smaller UERE of about 6 m, for
the following reasons:
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. Errors due to SA can be removed, if present. The authorized user can employ a

key to eliminate them.

. The full use of the L, and L, signals permits significant reduction of

ionospheric error.

. The wider bandwidth of the P(Y)-codes greatly reduces errors due to multi-

path and receiver noise.

Problems

5.1

5.2

53

Using the values provided for the Klobuchar’s model in Section 5.2, for
Southbury, Connecticut, calculate the ionospheric delay and plot the results.

Assume that a direct-path GPS L; C/A-code signal arrives with a phase such

that all of the signal power lies in the baseband I-channel, so that the baseband

signal is purely real. Further assume an infinite signal bandwidth so that the
cross-correlation of the baseband signal with an ideal C/A reference code
waveform will be an isosceles triangle 600 m wide at the base.

(a) Suppose that in addition to the direct-path signal there is a secondary-path
signal arriving with a relative time delay of precisely 250 L, carrier cycles
(so that it is in phase with the direct-path signal) and with an amplitude
one-half that of the direct path. Calculate the pseudorange error that would
result, including its sign, under noiseless conditions. Assume that
pseudorange is measured with a delay-lock loop using 0.1-chip spacing
between the early and late reference codes. Hint: The resulting cross-
correlation function is the superposition of the cross-correlation functions
of the direct- and secondary-path signals.

(b) Repeat the calculations of part (a) but with a secondary-path relative time
delay of precisely 250% carrier cycles. Note that in this case the secondary-
path phase is 180° out of phase with the direct-path signal, but still lies
entirely in the baseband I-channel.

(a) Using the discrete matrix version of the receiver clock model given by Eq.
5.35, find the standard deviation o,, of the white-noise sequence w ;
needed in the model to produce a frequency standard deviation o, of 1 Hz
after 10min of continuous oscillator operation. Assume that the initial
frequency error at # = 0 is zero and that the discrete-time step Az is 1s.

(b) Using the assumptions and the value of ¢,, found in part (a), find the
standard deviation o,, of the bias error after 10 min. Assume that o,,, = 0.

(c) Show that ¢, and o, approach infinity as the time 7 approaches infinity.
Will this cause any problems in the development of a Kalman filter that
includes estimates of the clock frequency and bias error?
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Inertial Navigation

6.1 BACKGROUND

A more basic introduction to the fundamental concepts of inertial navigation can be
found in Chapter 2, Section 2.2. Readers who are not already familiar with inertial
navigation should review that section before starting this chapter.

6.1.1 History of Inertial Navigation

Inertial navigation has had a relatively short but intense history of development,
much of it during the half-century of the Cold War, with contributions from
thousands of engineers and scientists. The following is only an outline of develop-
ments in the United States. More details can be found, for example, in [22, 43, 75,
83, 88, 107, 135].

6.1.1.1 Gyroscopes The word “gyroscope” was first used by Jean Bernard
Léon Foucault (1819-1868), who coined the term from the Greek words for turn
(yopoc) and view (6komc). Foucault used one to demonstrate the rotation of the earth
in 1852. Elmer Sperry (1860-1930) was one of the early pioneers in the develop-
ment of gyroscope technology. Gyroscopes were applied to dead reckoning naviga-
tion for iron ships (which could not rely on a magnetic compass) around 1911, to
automatic steering of ships in the 1920s, for steering torpedos in the 1920s, and for
heading and artificial horizon displays for aircraft in the 1920s and 1930s. Rockets
designed by Robert H. Goddard in the 1930s also used gyroscopes for steering, as
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did the autopilots for the German V-1 cruise missiles and V-2 ballistic missiles of
World War 1II.

6.1.1.2 Relation to Guidance and Control Navigation is concerned with
determining where you are relative to where you want to be, guidance with getting
yourself to your destination, and control with staying on track. There has been quite
a bit of synergism among these disciplines, especially in the development of missile
technologies where all three could use a common set of sensors, computing
resources, and engineering talent. As a consequence, the history of development
of inertial navigation technology has a lot of overlap with that of guidance and
control.

6.1.1.3 Gimbaled INS Gimbals have been used for isolating gyroscopes from
rotations of their mounting bases since the time of Foucault. They have been used for
isolating an inertial sensor cluster in a gimbaled inertial measurement unit (IMU)
since about 1950. Charles Stark Draper at the Instrumentation Laboratory at MIT
(later the Charles Stark Draper Laboratory) played a major role in the development
of gyroscope and INS technology for use on aircraft and ships. Much of the early
INS development was for use on military vehicles. An early impetus for INS tech-
nology development for missiles was the Navaho Project, started soon after World
War II by the U.S. Air Force for a supersonic cruise missile to carry a 15,000-1b
payload (the atomic bomb of that period), cruising at Mach 3.25 at 90,000 ft for
5500 miles, and arriving with a navigation accuracy of about 1 nautical mile. The
project was canceled in 1957 when nuclear devices had been shrunk to a size that
could be carried by the rockets of the day, but by then the prime contractor, North
American Aviation, had developed an operational INS for it. This technology was
soon put to use in the intercontinental ballistic missiles that replaced Navaho, as well
as in many military aircraft and ships. The navigation of the submarine Nautilus
under the polar ice cap in 1958 would not have been possible without its INS. It was
a gimbaled INS, as were nearly all such systems until the 1970s.

6.1.1.4 Early Strapdown Systems A gimbaled INS was carried on each of
nine Apollo command modules from the earth to the moon and back between
December 1968 and December 1972, but a strapdown INS was carried on each of
the six! Lunar Excursion Modules (LEMs) that shuttled two astronauts from lunar
orbit to the lunar surface and back.

6.1.1.5 Navigation Computers Strapdown INSs generally require more
powerful navigation computers than their gimbaled counterparts. It was the devel-
opment of silicon integrated circuit technology in the 1960s and 1970s that enabled
strapdown systems to compete with gimbaled systems in all applications but those
demanding extreme precision, such as ballistic missiles or submarines.

! Two additional LEMs were carried to the moon but did not land there. The Apollo 13 LEM did not make
its intended lunar landing but played a far more vital role in crew survival.
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6.1.2 Performance

Integration of acceleration sensing errors causes INS velocity errors to grow linearly
with time, and Schuler oscillations (Section 2.2.2.3) tend to keep position errors
proportional to velocity errors. As a consequence, INS position errors tend to grow
linearly with time. These errors are generally not known, except in terms of their
statistical properties. INS performance is also characterized in statistical terms.

6.1.2.1 CEP Rate A circle of equal probability (CEP) is a circle centered at the
estimated location of an INS on the surface of the earth, with radius such that it is
equally likely that the true position is either inside or outside that circle. The CEP
radius is a measure of position uncertainty. CEP rate is a measure of how fast
position uncertainty is growing.

6.1.2.2 INS Performance Ranges CEP rate has been used by the U.S. Air
Force to define the three ranges of INS performance shown in Table 6.1, along with
corresponding ranges of inertial sensor performance. These rough order-of-magni-
tude sensor performance requirements are for “cruise” applications, with accelera-
tion levels on the order of 1g.

6.1.3 Relation to GPS

6.1.3.1 Advantages/Disadvantages of INS The main advantages of iner-
tial navigation over other forms of navigation are as follows:

1. It is autonomous and does not rely on any external aids or on visibility
conditions. It can operate in tunnels or underwater as well as anywhere else.

2. It is inherently well suited for integrated navigation, guidance, and control of
the host vehicle. Its IMU measures the derivatives of the variables to be
controlled (e.g., position, velocity, and attitude).

3. It is immune to jamming and inherently stealthy. It neither receives nor emits
detectable radiation and requires no external antenna that might be detectable
by radar.

TABLE 6.1 INS and Inertial Sensor Performance Ranges

System or Sensor Performance Units Performance Ranges

High Medium Low
INS CEP Rate (NMI/h) <10~! a1 >10
Gyros deg/h <1073 ~ 102 >10~"
Accelerometers g2 <1077 ~ 106 >1075

41 g~9.8m/s/s.
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The disadvantages include the following:

1. Mean-squared navigation errors increase with time.
2. Cost, including:

(a) Acquisition cost, which can be an order of magnitude (or more) higher
than GPS receivers.

(b) Operations cost, including the crew actions and time required for initializ-
ing position and attitude. Time required for initializing INS attitude by
gyrocompass alignment is measured in minutes. Time-to-first-fix for GPS
receivers is measured in seconds.

(c) Maintenance cost. Electromechanical avionics systems (e.g., INS) tend to
have higher failure rates and repair costs than purely electronic avionics
systems (e.g., GPS).

3. Size and weight, which have been shrinking:

(a) Earlier INS systems weighed tens to hundreds of kilograms.

(b) Later “mesoscale” INSs for integration with GPS weighed a few kilo-
grams.

(c) Developing micro-electromechanical sensors are targeted for gram-size
systems.

INS weight has a multiplying effect on vehicle system design, because it

requires increased structure and propulsion weight as well.

4. Power requirements, which have been shrinking along with size and weight
but are still higher than those for GPS receivers.

5. Heat dissipation, which is proportional to and shrinking with power require-
ments.

6.1.3.2 Competition from GPS 1In the 1970s, U.S. commercial air carriers
were required by FAA regulations to carry two INS systems on all flights over water.
The cost of these two systems was on the order of 10° U.S. dollars at that time. The
relatively high cost of INS was one of the factors leading to the development of GPS.
After deployment of GPS in the 1980s, the few remaining applications for “stand-
alone” (i.e., unaided) INS include submarines, which cannot receive GPS signals
while submerged, and intercontinental ballistic missiles, which cannot rely on GPS
availability in time of war.

6.1.3.3 Synergism with GPS GPS integration has not only made inertial
navigation perform better, it has made it cost less. Sensor errors that were
unacceptable for stand-alone INS operation became acceptable for integrated
operation, and the manufacturing and calibration costs for removing these errors
could be eliminated. Also, new low-cost manufacturing methods using micro-
electromechanical systems (MEMSs) technologies could be applied to meet the
less stringent sensor requirements for integrated operation.
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The use of integrated GPS/INS for mapping the gravitational field near the
earth’s surface has also enhanced INS performance by providing more detailed and
accurate gravitational models.

Inertial navigation also benefits GPS performance by carrying the navigation
solution during loss of GPS signals and allowing rapid reacquisition when signals
become available.

Integrated GPS/INS have found applications that neither GPS nor INS could
perform alone. These include low-cost systems for precise automatic control of
vehicles operating at the surface of the earth, including automatic landing systems
for aircraft and autonomous control of surface mining equipment, surface grading
equipment, and farm equipment.

6.2 INERTIAL SENSORS

The design of inertial sensors is limited only by human imagination and the laws of
physics, and there are literally thousands of designs for gyroscopes and acceler-
ometers. Not all of them are used for inertial navigation. Gyroscopes, for example,
are used for steering and stabilizing ships, torpedoes, missiles, gunsights, cameras,
and binoculars, and acceleration sensors are used for measuring gravity, sensing
seismic signals, leveling, and measuring vibrations.

6.2.1 Sensor Technologies

A sampling of inertial sensor technologies used in inertial navigation is presented in
Table 6.2. There are many more, but these will serve to illustrate the great diversity
of technologies applied to inertial navigation. How these and other example devices
function will be explained briefly. A more thorough treatment of inertial sensor
designs is given in [118].

TABLE 6.2 Some Basic Inertial Sensor Technologies

Sensor Gyroscope Accelerometer
Physical Effect | Conservation Coriolis Sagnac | Gyroscopic Electro- Strain
Used? of angular effect effect precession magnetic  under
momentum force load
Sensor Angular Vibration  Ring Angular Drag cup Piezo-
Implementation | displacement laser displacement electric
Methods
Torque Rotation  Fiber Torque Electro- Piezo-
rebalance optic rebalance magnetic  resistive

2 All accelerometers use a proof mass. The physical effect is the manner in which acceleration of the proof
mass is sensed.
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6.2.2 Common Error Models

6.2.2.1 Sensor-Level Models Some of the more common types of sensor
errors are illustrated in Fig. 6.1. These are

(a) bias, which is any nonzero sensor output when the input is zero;

(b) scale factor error, often resulting from aging or manufacturing tolerances;

(¢) nonlinearity, which is present in most sensors to some degree;

(c) scale factor sign asymmetry, often from mismatched push—pull amplifiers;

(e) a dead zone, usually due to mechanical stiction or lock-in [for a ring laser
gyroscope (RLG)]; and

(f) quantization error, inherent in all digitized systems.

Theoretically, one should be able to recover the input from the sensor output so long
as the input/output relationship is known and invertible. Dead-zone errors and
quantization errors are the only ones shown with this problem. The cumulative
effects of both types (dead zone and quantization) often benefit from zero-mean
input noise or dithering. Also, not all digitization methods have equal cumulative
effects. Cumulative quantization errors for sensors with frequency outputs are
bounded by +1LSB, but the variance of cumulative errors from independent
sample-to-sample A/D conversion errors can grow linearly with time.

6.2.2.2 Cluster-Level Models For a cluster of three gyroscopes or acceler-
ometers with nominally orthogonal input axes, the effects of individual scale factor

OUTPUT OUTPUT OUTPUT }
/{...."..INPUT INPUT . INPUT
(a) Bias (b) Scale Factor (C) Nonlinearity

OUTPUT } OUTPUT OUTPUT } ——

INPUT INPUT _ ‘:._‘:"lNPUT
(d) £ Asymmetry (e) Dead Zone ——;) Quantization

Fig. 6.1 Common input/output error types.
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deviations and input axis misalignments from their nominal values can be modeled
by the equation

Zyytput = Snomina]{l + M}Zinput +b., (6.1)

where the components of the vector b, are the three sensor output biases, the
components of the Zj,,, and zy,, vectors are the sensed values (accelerations or
angular rates) and output values from the sensors, respectively, Spomina 1S the
nominal sensor scale factor, and the elements m;; of the “scale factor and misalign-
ment matrix” M represent the individual scale factor deviations and input axis
misalignments as illustrated in Fig. 6.2. The larger arrows in the figure represent the
nominal input axis directions (labeled #1, #2, and #3) and the smaller arrows
(labeled m;;) represent the directions of scale factor deviations (i =) and misalign-
ments (i # j).

Equation 6.1 is in “error form.” That is, it represents the outputs as functions of
the inputs. The corresponding “compensation form” is

1 _
Zinput = Sil {I+M} 1{Zoutpu'r —b_} (6.2)
1
= (IT-M+M —M + - Hzgypu — b} (6.3)
Snominal
1
~ {I - M}{Zoutput - bz} (64)

nominal

if the sensor errors are sufficiently small (e.g., <107°rad misalignments and
<1073 parts/part scale factor deviations).

M

my My

Fig. 6.2 Directions of modeled sensor cluster errors.
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The compensation form is the one used in system implementation for compensat-
ing sensor outputs using a single constant matrix M in the form

Zinput = M{Zoutput - bz} (65)

def

ME IT+m)~L (6.6)

nominal

6.2.3 Attitude Sensors

6.2.3.1 Nongyroscopic Attitude Sensors Gyroscopes are the attitude
sensors used in nearly all INSs. There are other types of attitude sensors, but they
are primarily used as aids to INSs with gyroscopes. These include the following:

1. Magnetic sensors, used primarily for coarse heading initialization.

2. Star trackers, used primarily for space-based or near-space applications. The
U-2 spy plane, for example, used an inertial-platform-mounted star tracker to
maintain INS alignment on long flights.

3. Optical ground alignment systems used on some space launch systems. Some
of these systems used Porro prisms mounted on the inertial platform to
maintain optical line-of-sight reference through ground-based theodolites to
reference directions at the launch complex.

4. GPS receiver systems using antenna arrays and carrier phase interferometry.
These have been developed for initializing artillery fire control systems, for
example, but the same technology could be used for INS aiding. The systems
generally have baselines in the order of several meters, which could limit their
applicability to some vehicles.

6.2.3.2 Gyroscope Performance Grades Gyroscopes used in inertial navi-
gation are called “inertial grade,” which generally refers to a range of sensor
performance, depending on INS performance requirements. Table 6.3 lists some

TABLE 6.3 Performance Grades for Gyroscopes

Performance Units Performance Grades
Parameter

Inertial Intermediate Moderate
Maximum deg/h 10%—10° 10°—10° 10%—10°
Input deg/s 10-2—10? 10-2—10? 10-2—10?
Scale Factor part/part 1076104 10741073 1073102
Bias deg/h 1074-10-2 1072-10 10102
Stability deg/s 10-8-10-6 10-6-10-2 1078-10-2
Bias deg/+vh 10741073 10-2-10"" 1-10
Drift deg/+/s 10-6-10-5 10-5-10—* 10-4—10-3
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generally accepted performance grades used for gyroscopes, based on their intended
applications but not necessarily including integrated GPS/INS applications.

These are only rough order-of-magnitude ranges for the different error character-
istics. Sensor requirements are largely determined by the application. For example,
gyroscopes for gimbaled systems generally require smaller input ranges than those
for strapdown applications.

6.2.3.3 Sensor Types Gyroscope designers have used many different
approaches to a common sensing problem, as evidenced by the following samples.
There are many more, and probably more yet to be discovered.

Momentum Wheels Momentum wheel gyroscopes use a spinning mass patterned
after the familiar child’s toy gyroscope. If the spinning momentum wheel is mounted
inside gimbals to isolate it from rotations of the body on which it is mounted, then its
spin axis tends to remain in an inertially fixed direction and the gimbal angles
provide a readout of the total angular displacement of that direction from body-fixed
axis directions. If, instead, its spin axis is torqued to follow the body axes, then the
required torque components provide a measure of the body angular rates normal to
the wheel spin axis. In either case, this type of gyroscope can potentially measure
two components (orthogonal to the momentum wheel axle) of angular displacement
or rate, in which case it is called a two-axis gyroscope. Because the drift
characteristics of momentum wheel gyroscopes are so strongly affected by bearing
torques, these gyroscopes are often designed with innovative bearing technologies
(e.g., gas, magnetic, or electrostatic bearings). If the mechanical coupling between
the momentum wheel and its axle is flexible with just the right mechanical spring
rate—depending on the rotation rate and angular momentum of the wheel—the
effective torsional spring rate on the momentum wheel can be canceled. This type of
dynamical “tuning” isolates the gyroscope from bearing torques and generally
improves gyroscope performance.

Coriolis Effect The Coriolis effect is named after Gustave Gaspard de Coriolis
(1792-1843), who described the apparent acceleration acting on a body moving with
constant velocity in a rotating coordinate frame [26]. It can be modeled in terms of
the vector cross-product (defined in Section B.2.10) as

ACoriolis = —Q @V (6.7)
Q, Uy

-l e (6.8)
Q, U3
—Qv3 + Q0

= | —Qsv; +Quv; |, (6.9)

—Q, 0, + Qv
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where v is the vector velocity of the body in the rotating coordinate frame, Q is the
inertial rotation rate vector of the coordinate frame (i.e., with direction parallel to the
rotation axis and magnitude equal to the rotation rate), and ac;.;;, 1s the apparent
acceleration acting on the body in the rotating coordinate frame.

Rotating Coriolis Effect Gyroscopes The gyroscopic effect in momentum wheel
gyroscopes can be explained in terms of the Coriolis effect, but there are also
gyroscopes that measure the Coriolis acceleration on the rotating wheel. An example
of such a two-axis gyroscope is illustrated in Fig. 6.3. For sensing rotation, it uses an
accelerometer mounted off-axis on the rotating member, with its acceleration input
axis parallel to the rotation axis of the base. When the entire assembly is rotated
about any axis normal to its own rotation axis, the accelerometer mounted on the
rotating base senses a sinusoidal Coriolis acceleration.

The position and velocity of the rotated accelerometer with respect to inertial
coordinates will be

co8(Qyrive?)
x(?) = p| sin(Qyive?) |, (6.10)
0
v(t) = ix(t) (6.11)
dt
— sin(Qygivel)
= PQurive | ©08(Qurivel) | (6.12)
0

where Q... 1s the drive rotation rate and p is the offset distance of the accelerometer
from the base rotation axis.

4 BASE ROTATION
AXIS

(a) Function (b) Sensing

Fig. 6.3 Rotating Coriolis effect gyroscope.
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The input axis of the accelerometer is parallel to the rotation axis of the base, so
it is insensitive to rotations about the base rotation axis (z-axis). However, if this
apparatus is rotated with components Q. ;. and Q, ;.. orthogonal to the z-axis,
then the Coriolis acceleration of the accelerometer will be the vector cross-product

Q)c,input
ACoriolis(f) = — Qy,input ® V(1) (6.13)
0
Qx,input - Sin(erivet)

= _derive Qy,input ® COS(erivet) (614)

0 0

0
= derive 0 (6.15)

_Qx,input COS(erivet) + Qy,input Sin(erivet)

The rotating z-axis accelerometer will then sense the z-component of Coriolis
acceleration,

az,input(t) = derive[Qx,input COS(erivet) - Qy,input Sin(erivet)]’ (6 16)

which can be demodulated to recover the phase components pQg4.,.Q, (in phase)
and pQyie €2, inpue (in quadrature), each of which is proportional to a component of
the input rotation rate. Demodulation of the accelerometer output removes the DC
bias, so this implementation is insensitive to accelerometer bias errors.

Rotating Multisensor ~Another accelerometer can be mounted on the moving base
of the rotating Coriolis effect gyroscope, but with its input axis tangential to its
direction of motion. Its ouputs can be demodulated in similar fashion to implement a
two-axis accelerometer with zero effective bias error.

Torsion Resonator Gyroscope This is a micro-electromechanical systems
(MEMS) device first developed at C. S. Draper Laboratories in the 1980s, then
jointly with Rockwell, Boeing, and Honeywell. It is similar in some respects to the
rotating Coriolis effect gyroscope, except that the wheel rotation is sinusoidal at the
torsional resonance frequency and input rotations are sensed as the wheel tilting at
that frequency. This gyroscope uses a momentum wheel coupled to a torsion spring
and driven at resonance to create sinusoidal angular momentum in the wheel. If the
device is turned about any axis in the plane of the wheel, the Coriolis effect will
introduce sinusoidal tilting about the orthogonal axis in the plane of the wheel, as
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Sorive = Owax cos (QREsONANTE)

TILT SENSING CAPACITORS
(a) Function (b) Sensing

Fig. 6.4 Torsion resonator gyroscope.

illustrated in Fig. 6.4a. This sinusoidal tilting is sensed by four capacitor sensors in
close proximity to the wheel underside, as illustrated in Fig. 6.4b.

Other Vibrating Coriolis Effect Gyroscopes These include vibrating wires,
vibrating beams, tuning forks (effectively, paired vibrating beams), and “wine
glasses” (using the vibrating modes thereof), in which a combination of turning
rate and Coriolis effect couples one mode of vibration into another. The vibrating
member is driven in one mode, the input is rotation rate, and the output is the sensed
vibration in the undriven mode. All vibrating Coriolis effect gyroscopes measure a
component of angular rate orthogonal to the vibrational velocity. The example
shown in Fig. 6.5 is a tuning fork driven in a vibration mode with its tines coming
together and apart in unison (Fig. 6.5a). Its sensitive axis is parallel to the tines.
Rotation about this axis is orthogonal to the direction of tine velocity, and the
resulting Coriolis acceleration will be in the direction of w ® v, which excites the
output vibration mode shown in Fig. 6.5b. This “twisting” mode will create a torque
couple through the handle, and some designs use a double-ended fork to transfer this
mode to a second set of output tines.

(a) INPUT MODE (b) OUTPUT MODE

Fig. 6.5 Vibration modes of tuning fork gyroscope.
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DETECTOR
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(a) Ring Laser Gyro (RLG) (b) Fiber Optic Gryo (FOG)

Fig. 6.6 Basic optical components of laser gyroscopes.

In some ways, performance of Coriolis effect sensors tends to get better as the
device sizes shrink, because sensitivity scales with velocity, which scales with
resonant frequency, which increases as the device sizes shrink.

Laser Gyroscopes Two fundamental laser gyroscope types are the ring laser
gyroscope (RLG) and the fiber optic gyroscope (FOQG), both of which use the Sagnac
effect? on counterrotating laser beams and a interferometric phase detector to
measure their relative phase changes. The basic optical components and operating
principles of both types are illustrated in Fig. 6.6.

Ring Laser Gyroscope The principal optical components of a RLG are illus-
trated in Fig. 6.6a, which shows a triangular lasing cavity with mirrors at the three
vertices. Lasing occurs in both directions, creating clockwise and counterclockwise
laser beams. The lasing cavity length is controlled by servoing one mirror, and one
mirror allows enough leakage so that the two counterrotating beams can form an
interference pattern on a photodetector array. Inertial rotation of this device in the
plane of the page will change the effective cavity lengths of the clockwise and
counterclockwise beams (the Sagnac effect), causing an effective relative frequency
change at the detector. The output is an interference fringe frequency proportional to
the input rotation rate, making the ring laser gyroscope a rate-integrating gyroscope.
The sensor scale factor is proportional to the area enclosed by the laser paths.

Fiber-Optic Gyroscope The principal optical components of a FOG are illu-
strated in Fig. 6.6b, which shows a common external laser source generating both
clockwise and counterclockwise light waves traveling around a loop of optical fiber.
Inertial rotation of this device in the plane of the page will change the effective path
lengths of the clockwise and counterclockwise beams in the loop of fiber (Sagnac
effect), causing an effective relative phase change at the detector. The interference
phase between the clockwise and counterclockwise beams is measured at the output
detector, but in this case the output phase difference is proportional to rotation rate.
In effect, the FOG is a rate gyroscope, whereas the RLG is a rate-integrating
gyroscope. Phase modulation in the optical path (plus some signal processing) can

2 Essentially, the finite velocity of light.
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be used to improve the effective output phase resolution. The FOG scale factor is
proportional to the product of the enclosed loop area and the number of turns.

Temperature changes and accelerations can alter the strain distribution in the
optical fiber, which could cause output errors. Minimizing these effects is a major
concern in the art of FOG design.

6.2.3.4 Gyroscope Error Models Error models for gyroscopes are used
primarily for two purposes:

1. In the design of gyroscopes, for predicting performance characteristics as
functions of design parameters. The models used for this purpose are usually
based on physical principles relating error characteristics to dimensions and
physical properties of the gyroscope and its component parts, including
electronics.

2. Calibration and compensation of output errors. Calibration is the process of
observing the gyroscope outputs with known inputs and using that data to fit
the unknown parameters of mathematical models for the outputs (including
errors) as functions of the known inputs. This relationship is inverted for error
compensation (i.e., determining the true inputs as functions of the corrupted
outputs). The models used for this purpose generally come from two sources:
(a) Models derived for design analysis and reused for calibration and

compensation. However, it is often the case that there is some “model
overlap” among such models, in that there can be more independent
causes than observable effects. In such cases, all coefficients of the
independent models will not be observable from test data, and one must
resort to choosing a subset of the underdetermined models.

(b) Mathematical models derived strictly from empirical data fitting. These
models are subject to the same sorts of observability conditions as the
models from design analysis, and care must be taken in the design of the
calibration procedure to assure that all model coefficients can be deter-
mined sufficiently well to meet error compensation requirements. The
covariance equations of Kalman filtering are very useful for this sort of
calibration analysis (see Chapters 7 and 8).

Integrated GPS/INS applications effectively perform sensor error model

calibration “on the fly” using sensor error models, sensor data redundancy,

and a Kalman filter.

In this chapter, we will be primarily concerned with error compensation and with the
mathematical forms of the error models. Error modeling for GPS/INS integration is
described in Chapter 8.

Bias Causes of output bias in gyroscopes include bearing torques (for momentum
wheel types), drive excitation feedthrough, and output electronics offsets [46, Ch. 3].
There are generally three types of bias errors to worry about:
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1. fixed bias, which only needs to be calibrated once;

2. bias stability from turn-on to turn-on, which may result from thermal cycling
of the gyroscope and its electronics, among other causes; and

3. bias drift after turn-on, which is usually modeled as a random walk (defined in
Section 7.5.1.2) and specified in such units as deg/h/~/h or other equivalent
units suitable for characterizing random walks.

After each turn-on, the general-purpose gyroscope bias error model will have the
form of a drift rate (rotation rate) about the gyroscope input axis:

Woutput = WDinput + (waias (6.17)

5wbias = 5wconstant + 5wtum—on + 5wrand0mwalk’ (618)

where 0w gnsane 1S @ known constant, 0®m-on 1S an unknown constant, and
O andomwalk 15 Modeled as a random-walk process:

d
% 5wrandomwalk = W(t)’ (6 19)

where w(f) is a zero-mean white-noise process with known variance.
Bias variability from turn-on is called bias stability, and bias variability after turn-
on is called bias drift.

Scale Factor The gyroscope scale factor is usually specified in compensation
form as

Winput = Csca]efactorwoutput’ (6.20)

where Cgyemctor €a0 have components that are constant, variable from turn-on to
turn-on, and drifting after turn-on:

Cscalefactor = Ceonstantscalefactor T Cscalefactorstabi]ity + Cscalefactordrifv (621)
similar to the gyroscope bias model.

Input Axis Misalignments The input axis for a gyroscope defines the component
of rotation rate that it senses. Its input axis is a direction fixed with respect to the
gyroscope mount. It is usually not possible to manufacture the gyroscope such that
its input axis is in the desired direction to the precision required, so some
compensation is necessary. The first gimbaled systems used mechanical shimming
to align the gyroscope input axes in orthogonal directions, because the navigation
computers did not have the capacity to do it in software as it is done nowadays.
There are two orthogonal components of input axis misalignment. For small-
angle misalignments, these components are approximately orthogonal to the desired
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input axis direction and they make the misaligned gyroscope sensitive to the rotation
rate components in these orthogonal directions. The small-angle approximation for
the output error dw; will then be of the form

0w; X ;04 + Wty (6.22)

where w; = component of rotation rate the gyroscope is intended to read

w; = rotation rate component orthogonal to w;

oy = rotation rate component orthogonal to w; and w;

a; = misalignment angular component (in radians) toward to o;

a; = misalignment angular component (in radians) toward to ;

Combined Three-Gyroscope Compensation Cluster-level compensation for
bias, scale factor, and input axis alignments for three gyroscopes with nominally
orthogonal input axes is implemented in matrix form as shown in Eq. 6.5 (p. 188),
which will have the form

w w

i,input o i,output
wj,input = ngro wj,output — Opins (> (623)
wk,input wk,output

where wy;,, is the bias compensation (a vector) and ngro (a 3 x 3 matrix) is the
combined scale factor and misalignment compensation. The diagonal elements of
@gyro compensate for the three scale factor errors, and the off-diagonal elements of
M,,,, compensate for the six input axis misalignments.

gyro
Input/Output Nonlinearity The nonlinearities of sensors are typically modeled in
terms of a MacLauren series expansion, with the first two terms being bias and scale
factor. The next order term will be the squared term, and the expansion will have the
forms

Ooytput = Co+ G Winput + CZwianut + e (6.24)
Winput = (60 + (61 Woutput + (ngcz)utput +ey (625)

depending on whether the input is modeled as a function of the output or vice versa.
The output compensation form of Eq. 6.25 is more useful in implementation,
however.

Acceleration Sensitivity Momentum wheel gyroscopes exhibit precession rates
caused by relative displacement of the center of mass from the center of the mass-
supporting force, as illustrated in Fig. 6.7. Gyroscope designers strive to make the
relative displacement as small as possible, but, for illustrative purposes, we have
used an extreme case of mass offset in Fig. 6.7. The paired couple of equal and
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ma

Fig. 6.7 Precession due to mass unbalance.

opposite acceleration and inertial forces ma, separated by a distance d, creates a
torque of magnitude 1 = dma. The analog of Newton’s second law for linear motion,
F = ma, for angular motion is © = Iw, where I is the moment of inertia (the angular
analog of mass) of the rotor assembly and  is its angular velocity. For the example
shown, this torque is at right angles to the rotor angular velocity w and causes the
angular velocity vector to precess.

Gyroscopes without momentum wheels may also exhibit acceleration sensitivity,
although it may not have the same functional form. In some cases, it is caused by
mechanical strain of the sensor structure.

6.2.3.5 g-squared Sensitivity (Anisoelasticity) Gyroscopes may also
exhibit output errors proportional to the square of acceleration components. The
causal mechanism in early momentum wheel designs could be traced to aniso-
elasticity (mismatched compliances of the gyroscope support under acceleration
loading).

6.2.4 Acceleration Sensors

All acceleration sensors used in inertial navigation are called “accelerometers.”
Acceleration sensors used for other purposes include bubble levels (for measuring
the direction of acceleration), gravimeters (for measuring gravity fields), and
seismometers (used in seismic prospecting and for sensing earthquakes and under-
ground explosions).

6.2.4.1 Accelerometer Types Accelerometers used for inertial navigation
depend on Newton’s second law (in the form F' = ma) to measure acceleration (a) by
measuring force (F'), with the scaling constant (m) called “proof mass.” These
common origins still allow for a wide range of sensor designs, however.
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Gyroscopic Accelerometers Gyroscopic accelerometers measure acceleration
through its influence on the precession rate of a mass-unbalanced gyroscope, as
illustrated in Fig. 6.7. If the gyroscope is allowed to precess, then the net precession
angle change (integral of precession rate) will be proportional to velocity change
(integral of acceleration). If the gyroscope is torqued to prevent precession, then the
required torque will be proportional to the disturbing acceleration. A pulse-
integrating gyroscopic accelerometer (PIGA) uses repeatable torque pulses, so that
pulse rate is proportional to acceleration and each pulse is equivalent to a constant
change in velocity (the integral of acceleration). Gyroscopic accelerometers are also
sensitive to rotation rates, so they are used almost exclusively in gimbaled systems.

Pendulous Accelerometers Pendulous accelerometers use a hinge to support the
proof mass in two dimensions, as illustrated in Fig. 6.8a, so that it is free to move
only in the input axis direction, normal to the “paddle” surface. This design requires
an external supporting force to keep the proof mass from moving in that direction,
and the force required to do it will be proportional to the acceleration that would
otherwise be disturbing the proof mass.

Force Rebalance Accelerometers Electromagnetic accelerometers (EMAs) are
pendulous accelerometers using electromagnetic force to keep the paddle from
moving. A common design uses a voice coil attached to the paddle and driven in an
arrangement similar to the speaker cone drive in permanent magnet speakers, with
the magnetic flux through the coils provided by permanent magnets. The coil current
is controlled through a feedback servo loop including a paddle position sensor such
as a capacitance pickoff. The current in this feedback loop through the voice coil will
be proportional to the disturbing acceleration. For pulse-integrating accelerometers,
the feedback current is supplied in discrete pulses with very repeatable shapes, so
that each pulse is proportional to a fixed change in velocity. An up/down counter
keeps track of the net pulse count between samples of the digitized accelerometer
output.

(a) Pendulus Accelerometer (b) Beam Accelerometer

Fig. 6.8 Single-axis accelerometers.
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Integrating Accelerometers The pulse-feedback electromagnetic accelerometer
is an integrating accelerometer, in that each pulse output corresponds to a constant
increment in velocity. The “drag cup” accelerometer illustrated in Fig. 6.9 is another
type of integrating accelerometer. It uses the same physical principles as the drag
cup speedometer used for half a century in automobiles, consisting of a rotating bar
magnet and conducting envelope (the drag cup) mounted on a common rotation
shaft but coupled only through the eddy current drag induced on the drag cup by the
relative rotation of the magnet. (The design includes a magnetic circuit return ring
outside the drag cup, not shown in this illustration.) The torque on the drag cup is
proportional to the relative rotation rate of the magnet. The drag cup accelerometer
has a deliberate mass unbalance on the drag cup, such that accelerations of the drag
cup orthogonal to the mass unbalance will induce a torque on the drag cup
proportional to acceleration. The bar magnet is driven by an electric motor, the
speed of which is servoed to keep the drag cup from rotating. The rotation rate of the
motor is then proportional to acceleration, and each revolution of the motor
corresponds to a fixed velocity change. These devices can be daisychained to
perform successive integrals. Two of them coupled in tandem, with the drag cup of
one used to drive the magnet of the other, would theoretically perform double
integration, with each motor drive revolution equivalent to a fixed increment of
position.

Strain-Sensing Accelerometers The cantilever beam accelerometer design illus-
trated in Fig. 6.8b senses the strain at the root of the beam resulting from support of
the proof mass under acceleration load. The surface strain near the root of the beam
will be proportional to the applied acceleration. This type of accelerometer can be
manufactured relatively inexpensively using MEMS technologies, with an ion-
implanted piezoresistor pattern to measure surface strain.

NET ;
RoTATION ‘

Fig. 6.9 Drag cup accelerometer.
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Fig. 6.10 Single-axis vibrating wire accelerometer.

Vibrating-Wire Accelerometers The resonant frequencies of vibrating wires (or
strings) depend upon the length, density, and elastic constant of the wire and on the
square of the tension in the wire. The motions of the wires must be sensed (e.g., by
capacitance pickoffs) and forced (e.g., electrostatically or electromagnetically) to be
kept in resonance. The wires can then be used as digitizing force sensors, as
illustrated in Fig. 6.10. The configuration shown is for a single-axis accelerometer,
but the concept can be expanded to a three-axis accelerometer by attaching pairs of
opposing wires in three orthogonal directions.

In the “push—pull” configuration shown, any lateral acceleration of the proof
mass will cause one wire frequency to increase and the other to decrease.
Furthermore, if the preload tensions in the wires are servoed to keep the sum of
their frequencies constant, then the difference frequency

ma
Wleft — wright (&8 (626)
et T Dright

xa. (6.27)

Both the difference frequency wiep — Wygne and the sum frequency ien + Wyigne
(used for preload tension control) can be obtained by mixing and filtering the two
wire position signals from the resonance forcing servo loop. Each cycle of the
difference frequency then corresponds to a constant delta velocity, making the sensor
inherently digital.

6.2.4.2 Error Models

Linear and Bias Models Many of the error models used for calibration and
compensation of accelerometers have the same functional forms as those for
gyroscopes, although the causal mechanisms may be quite different. The zero-
order (bias) and first-order (scale factor and input axis misalignments), in particular,
are functionally identical, as modeled in Eq. 6.5. For accelerometers, this model has
the form

ai,input o ai,output
Qinput | = Myee 4 output | — Apjas (> (6.28)
ak,input ak,output
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where ay;, is the bias compensation (a vector) and M, (a 3 x 3 matrix) is the
combined scale factor and misalignment compensation. Just as for the case with
gyroscopes, the diagonal elements of M, compensate for the three scale factor
errors, and the off-diagonal elements of M,,. compensate for the six input axis
misalignments.

acc

Higher Order Models Nonlinearities of accelerometers are modeled the same as
those of gyroscopes: as a MacLauren series expansion. The first two terms of the
series model bias and scale factor, which we have just considered. The next order
term is the so-called “g-squared” accelerometer error sensitivity, which is not
uncommon in inertial grade accelerometers:

— 2
Ainput = (60 + (glaoutput + %Zaoutput +e (629)
- — ——
bias scalefactor g-squared

Some accelerometers also exhibit second-order output errors called cross-axis
coupling errors, which are proportional to the product of the input acceleration
component and an acceleration component orthogonal to the input axis:

oa (6.30)

X a;a

i,cross-axis i“js
where a; is the input acceleration along the input axis and a; is a component

orthogonal to the input axis.

Instability Models Accelerometers also exhibit the same sorts of parameter
instabilities observed in gyroscopes (i.e., turn-on and drift), the composite model
for which is given in Eq. 6.21.

Centrifugal Acceleration Effects Accelerometers have input axes defining the
component(s) of acceleration that they measure. There is a not-uncommon super-
stition that these axes must intersect at a point to avoid some unspecified error
source. That is generally not the case, but there can be some differential sensitivity to
centrifugal accelerations due to high rotation rates and relative displacements
between accelerometers. The effect is rather weak, but not always negligible. It is
modeled by the equation

— 2
a; centrifugal — @ Tis (6.31)

where ? is the rotation rate and r; is the displacement component along the input
axis from the axis of rotation to the effective center of the accelerometer. Even
manned vehicles can rotate at « ~ 3 rad/s, which creates centrifugal accelerations of
about 1g at r; = 1 m and 0.001 g at 1 mm. The problem is less significant, if not
insignificant, for MEMS-scale accelerometers that can be mounted within milli-
meters of one another.
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Center of Percussion Because w can be measured, sensed centrifugal accelera-
tions can be compensated, if necessary. This requires designating some reference
point within the instrument cluster and measuring the radial distances and directions
to the accelerometers from that reference point. The point within the accelerometer
required for this calculation is sometimes called its “center of percussion.” It is
effectively the point such that rotations about all axes through the point produce no
sensible centrifugal accelerations, and that point can be located by testing the
accelerometer at differential reference locations on a rate table.

Angular Acceleration Sensitivity Pendulus accelerometers are sensitive to angu-
lar acceleration about their hinge lines, with errors equal to @Ay, Where @ is the
angular acceleration in radians per second squared and Ay, is the displacement of
the accelerometer proof mass (at its center of mass) from the hinge line. This effect
can reach the 1g level for Ay, ~ lem and o ~ 103 rad/s?, but these extreme
conditions are usually not persistent enough to matter in most applications.

6.3 NAVIGATION COORDINATES

Navigation is concerned with determining where you are relative to your destination,
and coordinate systems are used for specifying both locations. Definitions of the
principal coordinate systems used in GPS/INS integration and navigation are given
in Appendix C. These include coordinate systems used for representing the
trajectories of GPS satellites and user vehicles in the near-earth environment and
for representing the attitudes of host vehicles relative to locally level coordinates,
including the following:

1. Inertial coordinates:

(a) Earth-centered inertial (ECI), with origin at the center of mass of the earth
and principal axes in the directions of the vernal equinox (defined in
Section C.2.1) and the rotation axis of the earth.

(b) Satellite orbital coordinates, as illustrated in Fig. C.4 and used in GPS
ephemerides.

2. Earth-fixed coordinates:

(a) Earth-centered, earth-fixed (ECEF), with origin at the center of mass of the
earth and principal axes in the directions of the prime meridian (defined in
Section C.3.5) at the equator and the rotation axis of the earth.

(b) Geodetic coordinates, based on an ellipsoid model for the shape of the
earth. Longitude in geodetic coordinates is the same as in ECEF
coordinates, and geodetic latitude as defined as the angle between the
equatorial plane and the normal to the reference ellipsoid surface.
Geodetic latitude can differ from geocentric latitude by as much as 12
arc minutes, equivalent to about 20 km of northing distance.

(c) Local tangent plane (LTP) coordinates, also called “locally level coordi-
nates,” essentially representing the earth as being locally flat. These
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coordinates are particularly useful from a human factors standpoint for
representing the attitude of the host vehicle and for representing local
directions. They include

(i) east—north—up (ENU), shown in Fig. C.7;

(i) north—east—-down (NED), which can be simpler to relate to vehicle
coordinates; and
(iii) alpha wander, rotated from ENU coordinates through an angle o
about the local vertical (see Fig. C.8).
3. Vehicle-fixed coordinates:
(a) Roll-pitch—yaw (RPY) (axes shown in Fig. C.9).

Transformations between these different coordinate systems are important for
representing vehicle attitudes, for resolving inertial sensor outputs into inertial
navigation coordinates, and for GPS/INS integration. Methods used for representing
and implementing coordinate transformations are also presented in Appendix C,
Section C.4.

6.4 SYSTEM IMPLEMENTATIONS

6.4.1 Simplified Examples

The following examples are intended as an introduction to INS technology for
nonspecialists in INS technology. They illustrate some of the key properties of
inertial sensors and inertial system implementations.

6.4.1.1 Inertial Navigation in One Dimension If we all lived in one-
dimensional “Line Land,” then there could be no rotation and no need for
gyroscopes. In that case, an INS would need only one accelerometer and navigation
computer, and its implementation would be as illustrated in Fig. 6.11, where the
variable x denotes position in one dimension.

ACCELEROMETER. NAVIGATION COMPUTER
APPLIED +
ACCELERATION {’af SCALING SCALE FACTOR
GRAVITATIONAL
ACCELERATION ERRORS ERROR MODEL
_ GYROSCOPE _ GRAVITY MODEL
| | ) ™
X X
: (NONE REQUIRED) : /t 0 /c 0
+ +
I | to j_;é}i. to 15 x|
L e e - — = J

Fig. 6.11 INS functional implementation for a one-dimensional world.
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This implementation for one dimension has many features common to imple-
mentations for three dimensions:

e Accelerometers cannot measure gravitational acceleration. An accelerometer
effectively measures the force acting on its proof mass to make it follow its
mounting base, which includes only nongravitational accelerations applied
through physical forces acting on the INS through its host vehicle. Satellites,
which are effectively in free fall, experience no sensible accelerations.

e Accelerometers have scale factors, which are the ratios of input acceleration
units to output signal magnitude units (e.g., meters per second squared per
volt). The signal must be rescaled in the navigation computer by multiplying by
this scale factor.

e Accelerometers have output errors, including
1. unknown constant offSets, also called biases;

2. unknown constant scale factor errors;

3. unknown sensor input axis misalignments;

4. unknown nonconstant variations in bias and scale factor; and
5

. unknown zero-mean additive noise on the sensor outputs, including
quantization noise and electronic noise. The noise itself is not predictable,
but its statistical properties are used in Kalman filtering to estimate drifting
scale factor and biases.

e Gravitational accelerations must be modeled and calculated in the navigational
computer, then added to the sensed acceleration (after error and scale
compensation) to obtain the net acceleration X of the INS.

e The navigation computer must integrate acceleration to obtain velocity. This is
a definite integral and it requires an initial value, x(t;). That is, the INS
implementation in the navigation computer must start with a known initial
velocity.

e The navigation computer must also integrate velocity (x) to obtain position (x).
This is also a definite integral and it also requires an initial value, x(t,). The
INS implementation in the navigation computer must start with a known initial
location, too.

6.4.1.2 Inertial Navigation in Three Dimensions Inertial navigation in
three dimensions requires more sensors and more signal processing than in one
dimension, and it also introduces more possibilities for implementation. The earliest
successful INSs used gimbals to isolate the sensors from rotations of the host
vehicle.

Gimbaled INS A stable platform, inertial platform, or “stable table” is a
mechanically rigid unit isolated from the rotations of the host vehicle by a set of
three or (preferably) four gimbals, as illustrated in Figs. 6.12a,b. Each gimbal is
effectively a ring with orthogonal inside and outside pivot axes. These are nested
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3 ACCELEROMETERS
3 GYROSCOPES
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TO HOST VEHICLE

(a) Strapdown (b) Gimbaled

Fig. 6.12 Inertial measurement units.

inside one another, with the innermost gimbal attached through its inner pivot
bearing to the stable platform and the outermost gimbal (half cut away in this
illustration) attached to the vehicle. Gimbal pivot bearings include angle sensors and
electromagnetic torquing coils for sensing and controlling the gimbal pivot angles.

A sensor cluster of three gyroscopes and three accelerometers is rigidly mounted
to the stable platform, as illustrated in Fig. 6.12a. In the illustration, gyroscopes and
accelerometers are represented by square or circular cylinders, with their input axes
parallel to the cylinder axes. The gyroscopes on the stable platform are used to sense
any rotation of the platform, and their outputs are used in servo feedback loops with
gimbal pivot torque actuators to control the gimbals such that the platform remains
stable (i.e., does not rotate).

A fourth gimbal is required for vehicles such as missiles or high-performance
aircraft with full freedom of rotation about all three axes. Otherwise, rotations of the
host vehicle can align two of the three gimbal axes parallel to one another in a
condition called gimbal lock. In gimbal lock with only three gimbals, the remaining
single “unlocked” gimbal can only isolate the platform from rotations about a
second rotation axis. Rotations about the third axis of the “missing” gimbal will
slew the platform unless a fourth gimbal axis is provided for this contingency.

Floated-Ball Systems. The function of gimbals is to isolate the stable platform
from the rotations of the host vehicle. Floated-ball systems achieve the same effect
by floating the platform (now shaped like a ball) inside a fluid-filled sphere using
fluid thrusters attached to the stable ball to control its attitude and keep it centered in
the fluid cavity. This approach requires that the density of the fluid make the ball
neutrally buoyant, and some provisions are needed for getting power into the ball
and getting heat and signals out.
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Advantages and Disadvantages of Gimbaled Systems Gimbals are very
sophisticated electromechanical assemblies that are expensive to manufacture. As
a consequence, gimbaled systems tend to be more expensive than strapdown
systems. However, the isolation of the inertial platform from rotations of the host
vehicle can be exploited to eliminate many sensor error sources and achieve very
high system accuracy. This is especially important for applications in which GPS
aiding is not available, such as for submarine navigation.

6.4.1.3 Strapdown INS In strapdown systems, the gyroscopes and acceler-
ometers are hard mounted (“strapped down”) to a common base, as in Fig. 6.12a.
The common sensor mounting base is no longer inertially stabilized as in Fig. 6.12b,
but it may be attached to the vehicle frame with shock isolators designed to limit
rotational vibration between the vehicle frame and the instrument base.

Strapdown system gyroscopes are not used to keep the accelerometer input axes
stabilized, but they are used to maintain a coordinate transformation from the
accelerometer input axes to virtually stabilized directions, in the form of navigation
coordinates, as illustrated in Fig. 6.13. The navigation coordinates can be the same
sorts of local tangent plane coordinates used by inertial platforms.

Inertial sensors for strapdown systems experience much higher rotation rates than
their gimbaled counterparts. Rotation introduces error mechanisms that render some
sensor types (e.g., gyroscopic accelerometers) unacceptable for strapdown imple-
mentation and require redesign or attitude rate-dependent error compensation for
others. This is shown by the signal flow arrows shown in Fig. 6.13 between the
accelerometer and gyroscope error compensation boxes. Acceleration-dependent
error compensation for gyroscopes had been required for gimbaled systems.

6.4.2 |Initialization and Alignment

6.4.2.1 Navigation Initialization INS initialization is the process of deter-
mining initial values for system position, velocity, and attitude in navigation
coordinates. INS position initialization ordinarily relies on external sources such

(BODY-FIXED (SENSED INERTIAL  (TOTAL (VELO- (POSI-
IMU ACCELERATION) ACCELERATION)  ACCEL.) CITY) TION)
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Fig. 6.13 Outputs (in angular brackets) of simple strapdown INS.
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as GPS or manual entry by crew members. INS velocity initialization can be
accomplished by starting when it is zero (i.e., the host vehicle is not moving) or (for
vehicles carried in or on other vehicles) by reference to the carrier velocity. (See
alignment method 3 below.) INS attitude initialization is called alignment.

6.4.2.2 Sensor Alignment INS alignment is the process of aligning the stable
platform axes parallel to navigation coordinates (for gimbaled systems) or that of
determining the initial values of the coordinate transformation from sensor coordi-
nates to navigation coordinates (for strapdown systems).

Alignment Methods Four basic methods for INS alignment are as follows:

1. Optical alignment, using either of the following:

(a) Optical line-of sight reference to a ground-based direction (e.g., using a
ground-based theodolite and a mirror on the platform). Some space
boosters have used this type of optical alignment, which is much faster
and more accurate than gyrocompass alignment. Because it requires a
stable platform for mounting the mirror, it is only applicable to gimbaled
systems.

(b) An onboard star tracker, used primarily for alignment of gimbaled or
strapdown systems in space.

2. Gyrocompass alignment of stationary vehicles, using the sensed direction of
acceleration to determine the local vertical and the sensed direction of rotation
to determine north. Latitude can be determined by the angle between the earth
rotation vector and the horizontal, but longitude must be determined by other
means and entered manually or electronically. This method is inexpensive, but
the most time consuming (several minutes, typically).

3. Transfer alignment in a moving host vehicle, using velocity matching with an
aligned and operating INS. This method is typically several times faster than
gyrocompass alignment, but it requires another INS on the host vehicle and it
may require special maneuvering of the host vehicle to attain observability of
the alignment variables. It is commonly used for in-air INS alignment for
missiles launched from aircraft and for on-deck INS alignment for aircraft
launched from carriers. Alignment of carrier-launched aircraft may also use
the direction of the velocity impulse imparted by the steam catapult.

4. GPS-aided alignment, using position matching with GPS to estimate the
alignment variables. It is an integral part of integrated GPS/INS implemen-
tations. It does not require the host vehicle to remain stationary during
alignment, but there will be some period of time after turn-on (a few minutes,
typically) before system navigation errors settle to acceptable levels.

Gyrocompass alignment is the only one of these that requires no external aiding.
Gyrocompass alignment is not necessary for integrated GPS/INS, although many
INSs may already be configured for it.
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INS Gyrocompass Alignment Accuracy A rough rule-of-thumb for gyrocom-
pass alignment accuracy is

g2

2 > gyro 6.32
0 . > O- e — ( . )
gyrocompas: acc ¢ ’
Y S 152 COSZ( geodetic)

where

O gyrocompass 18 the minimum achievable RMS alignment error in radians,
O, 18 the RMS accelerometer accuracy in g7,

Ogyro 18 the RMS gyroscope accuracy in degrees per hour,

15 degrees per hour is the rotation rate of the earth, and
P geodetic 18 the latitude at which gyrocompassing is performed.

Alignment accuracy is also a function of the time allotted for it, and the time
required to achieve a specified accuracy is generally a function of sensor error
magnitudes (including noise) and the degree to which the vehicle remains stationary.

Gimbaled INS Gyrocompass Alignment Gyrocompass alignment for gimbaled
systems is a process for aligning the inertial platform axes with the navigation
coordinates using only the sensor outputs while the host vehicle is essentially
stationary. For systems using ENU navigation coordinates, for example, the platform
can be tilted until two of its accelerometer inputs are zero, at which time both input
axes will be horizontal. In this locally leveled orientation, the sensed rotation axis
will be in the north—up plane, and the platform can be slewed about the vertical axis
to null the input of one of its horizontal gyroscopes, at which time that gyroscope
input axis will point east-west. That is the basic concept used for gyrocompass
alignment, but practical implementation requires filtering® to reduce the effects of
sensor noise and unpredictable zero-mean vehicle disturbances due to loading
activities and/or wind gusts.

Strapdown INS Gyrocompass Alignment Gyrocompass alignment for strap-
down systems is a process for “virtual alignment” by determining the sensor cluster
attitude with respect to navigation coordinates using only the sensor outputs while
the system is essentially stationary.

If the sensor cluster could be firmly affixed to the earth and there were no sensor
errors, then the sensed acceleration vector ay,, in sensor coordinates would be in
the direction of the local vertical, the sensed rotation vector @y, would be in the

3 The vehicle dynamic model used for gyrocompass alignment filtering can be “tuned” to include the
major resonance modes of the vehicle suspension.
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direction of the earth rotation axis, and the unit column vectors

a
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would define the initial value of the coordinate transformation matrix from sensor-
fixed coordinates to ENU coordinates:

T
Coensorinu = [1el1yl1y] (6.36)

In practice, the sensor cluster is usually mounted in a vehicle that is not moving over
the surface of the earth but may be buffeted by wind gusts and/or disturbed by
fueling and payload handling. Gyrocompassing then requires some amount of
filtering to reduce the effects of vehicle buffeting and sensor noise. The gyrocompass
filtering period is typically on the order of several minutes for a medium-accuracy
INS but may continue for hours or days for high-accuracy systems.

6.4.3 Earth Models

Inertial navigation and satellite navigation require models for the shape, gravity, and
rotation of the earth.

6.4.3.1 Earth Rotation Rate Until the discovery of hyperfine transition
atomic clocks in the mid-twentieth century, the rotation of the earth had been our
most accurate clock. It has given us the time units of days, hours, minutes, and
seconds we use to manage our lives, and we continue to use its rotation as our
primary time reference, adding or subtracting leap seconds from our reference based
on atomic clocks to keep them synchronized to the rotation of the earth.

Variations in Earthrate We have known for several centuries that the directions
of the equinoxes are changing, but it was not until atomic clocks were developed that
we could measure the variations in the magnitude of earth rotation rate attributed to
dynamic forces within the earth and to interactions with the gravitational fields of the
sun and moon. Magnitudes, time scales, and causal mechanisms are still being sorted
out, but these are some current estimates:

1. On the scale of millions to billions of years, the rotation of the earth is slowing
down due to tidal effects that essentially convert rotational kinetic energy to
heat and transfer some of the angular momentum and energy of the earth to the
moon in its orbit about the earth. The rate of slowdown is, itself, slowing
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down, but it is currently estimated to be on the order of 0.2 parts per billion per
year.

2. On the scale of millennia, redistribution of water during ice ages changes the
moments of inertia of the earth, with rotation rate varying inversely as the
polar moment of inertia. There is also a steady change in direction of the
rotation axis, due principally to the solar gravity gradient acting on the earth’s
equatorial bulge, which causes the direction of the rotation axis of the earth to
move at about 20 arc seconds per year with a precession period of about
26,000 years. This also changes the direction of the equinoxes, where the
equatorial plane intersects the ecliptic (earth—sun plane). In terms of equivalent
torque required, a change of 20 arc seconds in direction is comparable to a
change of about 100 ppm in magnitude.

3. On the scale of years to millennia, there are changes in the internal flows in the
hydrosphere and lithosphere that alter both the direction and magnitude of the
apparent rotation axis of the earth and the pole axis within the earth. Apparent
pole shifts on the earth surface observed in the last few decades are on the
order of tens of meters.

4. On the scale of months to years, the global changes in weather patterns known
as El Nino are associated with a slowdown of the earth rotation rate on the
order of several parts per billion. Even annual effects such as snow accumula-
tion in winter or leaves growing on trees in the spring and falling in autumn
have calculable consequences. These variations can also excite polhode
motions of the earth rotation axis, which can be on the order of several
meters at the surface, with a period somewhat longer than a year. Seasonal
shifts in the jet streams may contribute some to this motion, too.

5. On the scale of days to weeks, shifts in the north and south jet streams and
associated weather patterns are suspected of altering the earth rotation rate on
the order of parts per billion.

However, for navigation missions on time scales on the order of hours, these
variations can be ignored.

WGS 84 Earthrate Model The value of earthrate in the World Geodetic System
1984 (WGS 84) earth model used by GPS is 7,292,115,167 x 10~'* rad/sec, or about
15.04109 deg/h. This is its sidereal rotation rate with respect to distant stars. Its
mean rotation rate with respect to the nearest star (our sun), as viewed from the
rotating earth, is 15 deg/h.

6.4.3.2 GPS Gravity Models Accurate gravity modeling is important for
maintaining ephemerides for GPS satellites, and models developed for GPS have
been a boon to inertial navigation as well. However, spatial resolution of the earth
gravitational field required for GPS operation may be a bit coarse compared to that
for precision inertial navigation, because the GPS satellites are not near the surface
and the mass concentration anomalies that create surface gravity anomalies. GPS
orbits have very little sensitivity to surface-level undulations of the gravitational field
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on the order of 100 km or less, but these can be important for high-precision inertial
systems.

6.4.3.3 INS Gravity Models Because an INS operates in a world with
gravitational accelerations it is unable to sense and unable to ignore, it must use a
reasonably faithful model of gravity.

Gravity models for the earth include centrifugal acceleration due to rotation of the
earth as well as true gravitational accelerations due to the mass distribution of the
earth, but they do not generally include oscillatory effects such as tidal variations.

Gravitational Potential ~Gravitational potential is defined to be zero at a point
infinitely distant from all massive bodies and to decrease toward massive bodies
such as the earth. That is, a point at infinity is the reference point for gravitational
potential.

In effect, the gravitational potential at a point in or near the earth is defined by the
potential energy lost by a unit of mass falling to that point from infinite altitude. In
falling from infinity, kinetic energy is converted to kinetic energy, mvgmpe /2, where
v is the escape velocity. Escape velocity at the surface of the earth is about

escape

11km/s.

Gravitational Acceleration Gravitational acceleration is the negative gradient of
gravitational potential. Potential is a scalar function, and its gradient is a vector.
Because gravitational potential increases with altitude, its gradient points upward
and the negative gradient points downward.

Equipotential Surfaces An equipotential surface is a surface of constant gravita-
tional potential. If the ocean and atmosphere were not moving, then the surface of
the ocean at static equilibrium would be an equipotential surface. Mean sea level is a
theoretical equipotential surface obtained by time averaging the dynamic effects.

Ellipsoid Models for Earth Geodesy is the process of determining the shape of
the earth, often using ellipsoids as approximations of an equipotential surface (e.g.,
mean sea level), as illustrated in Fig. 6.14. The one shown in the figure is an ellipsoid
of revolution, but there are many reference ellipsoids based on different survey data.
Some are global approximations and some are local approximations. The global
approximations deviate from a spherical surface by about +-10 km, and locations on
the earth referenced to different ellipsoidal approximations can differ from one
another by 10°-103 m.

Geodetic latitude on a reference ellipsoid is measured in terms of the angle
between the equator and the normal to the ellipsoid surface (the local vertical
reference), as illustrated in Fig. 6.14.

Orthometric height is measured normal to a reference ellipsoid surface.

WGS 84 Ellipsoid The World Geodetic System (WGS) is an international
standard for navigation coordinates. WGS 84 is a reference earth model released
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Fig. 6.14 Equipotential surface models for earth.

in 1984. It approximates mean sea level by an ellipsoid of revolution with its rotation
axis coincident with the rotation axis of the earth, its center at the center of mass of
the earth, and its prime meridian through Greenwich. Its semimajor axis (equatorial
radius) is defined to be 6,378,137 m, and its semiminor axis (polar radius) is defined
to be 6,356,752.3142 m.

Geoid Models Geoids are approximations of mean sea-level orthometric height
with respect to a reference ellipsoid. Geoids are defined by additional higher order
shapes, such as spherical harmonics of height deviations from an ellipsoid, as
illustrated in Fig. 6.14. There are many geoid models based on different data, but the
more recent, most accurate models depend heavily on GPS data. Geoid heights
deviate from reference ellipsoids by tens of meters, typically.

The WGS 84 geoid heights vary about £100 m from the reference ellipsoid. As a
rule, oceans tend to have lower geoid heights and continents tend to have higher
geoid heights. Coarse 20-m contour intervals are plotted versus longitude and
latitude in Fig. 6.15, with geoid regions above the ellipsoid shaded gray.

6.4.3.4 Longitude and Latitude Rates The second integral of acceleration
in locally level coordinates should result in the estimated vehicle position. This
integral is somewhat less than straightforward when longitude and latitude are the
preferred horizontal location variables.

The rate of change of vehicle altitude equals its vertical velocity, which is the first
integral of net (i.e., including gravity) vertical acceleration. The rates of change of
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Fig. 6.15 WGS 84 geoid heights.

vehicle longitude and latitude depend on the horizontal components of vehicle
velocity, but in a less direct manner. The relationship between longitude and latitude
rates and east and north velocities is further complicated by the oblate shape of the
earth.

The rates at which these angular coordinates change as the vehicle moves tangent
to the surface will depend upon the radius of curvature of the reference surface
model, which is an ellipsoid of revolution for the WGS 84 model. Radius of
curvature can depend on the direction of travel, and for an ellipsoidal model there is
one radius of curvature for north—south motion and another radius of curvature for
east—west motion.

Meridional Radius of Curvature The radius of curvature for north—south motion
is called the “meridional” radius of curvature, because north—south travel is along a
meridian (i.e., line of constant longitude). For an ellipsoid of revolution (the WGS 84
model), all meridians have the same shape, which is that of the ellipse that was
rotated to produce the ellipsoidal surface model. The tangent circle with the same
radius of curvature as the ellipse is called the “osculating” circle (osculating means
“kissing”). As illustrated in Fig. 6.16 for an oblate earth model, the radius of the
meridional osculating circle is smallest where the geocentric radius is largest (at the
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Fig. 6.16 Ellipse and osculating circles.

equator), and the radius of the osculating circle is largest where the geocentric radius
is smallest (at the poles). The osculating circle lies inside or on the ellipsoid at the
equator and outside or on the ellipsoid at the poles and passes through the ellipsoid
surface for latitudes in between.

The formula for meridional radius of curvature as a function of geodetic latitude
(¢geodetic) is

b2
N a[l - 62 Sin2(¢geodetic)]3/2
a(l —é)

. . 7 (6.38)
[l — 62 Slnz((]—')geodetic)]?’/2

Iy

(6.37)

where a is the semimajor axis of the ellipse, b is the semiminor axis, and
e? = (a®> — b?)/a? is the eccentricity squared.

Geodetic Latitude Rate The rate of change of geodetic latitude as a function of
north velocity is then

d¢geodetic _ Uy
dt VM + h ’

(6.39)
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and geodetic latitude can be maintained as the integral

¢geodetic(tnow) = ¢geodetic(tstan)

J fnow vy (2) dt (6.40)
tstart a(l - eZ)/{l - eZ Sinz[(pbgeodetic(t)]}?’/2 + h(t)]
where A(7) is height above (+) or below (—) the ellipsoid surface and @yeqgeric () Will

be in radians if vy(#) is in meters per second and r,,(¢) and A(f) are in meters.

Transverse Radius of Curvature The radius of curvature of the reference
ellipsoid surface in the east—west direction (i.e., orthogonal to the direction in
which the meridional radius of curvature is measured) is called the transverse radius
of curvature. It is the radius of the osculating circle in the local east—up plane, as
illustrated in Fig. 6.17, where the arrows at the point of tangency of the transverse
osculating circle are in the local ENU coordinate directions. As this figure illustrates,
on an oblate earth, the plane of a transverse osculating circle does not pass through
the center of the earth, except when the point of osculation is at the equator. (All
osculating circles at the poles are in meridional planes.) Also, unlike meridional
osculating circles, transverse osculating circles generally lie outside the ellipsoidal
surface, except at the point of tangency and at the equator, where the transverse
osculating circle is the equator.

The formula for the transverse radius of curvature on an ellipsoid of revolution is

a

.2 ’
\/1 — e?sin (¢geodetic)

rp= (6.41)

where a is the semimajor axis of the generating ellipse and e is its eccentricity.

Fig. 6.17 Transverse osculating circle.
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Longitude Rate The rate of change of longitude as a function of east velocity is
then

do U
— = 6.42
dt COS(ngeodetic)(l’T + h) ( )
and longitude can be maintained by the integral
frow vg(?) dt
Olt) = Otz + | LS ,
tan €08[Dgeqqeic D1/ 1 = € S0 eoiec0) + (1))
(6.42)

where A(t) is height above (4) or below (—) the ellipsoid surface and 6 will be in
radians if vg(?) is in meters per second and r;(¢) and A() are in meters. Note that this
formula has a singularity at the poles, where co8(¢geoqeric) = 0, @ consequence of
using latitude and longitude as location variables.

WGS 84 Reference Surface Curvatures The apparent variations in meridional
radius of curvature in Fig. 6.16 are rather large because the ellipse used in generating
Fig. 6.16 has an eccentricity of about 0.75. The WGS 84 ellipse has an eccentricity
of about 0.08, with geocentric, meridional, and transverse radius of curvature as
plotted in Fig. 6.18 versus geodetic latitude. For the WGS 84 model,

e mean geocentric radius is about 6371 km, from which it varies by —14.3 km
(—0.22%) to +7.1km (+0.11%);

e mean meridional radius of curvature is about 6357 km, from which it varies by
—21.3km (—0.33%) to 42.8 km (40.67%); and

e mean transverse radius of curvature is about 6385 km, from which it varies by
—7.1km (—0.11%) to +14.3 km (4-0.22%).

WGS84 MODEL
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6390}
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6380

63701 GEOCENTRIC

RADII [KM]
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Fig. 6.18 Radii of WGS 84 Reference Ellipsoid.
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Because these vary by several parts per thousand, one must take radius of curvature
into account when integrating horizontal velocity components to obtain longitude
and latitude.

6.4.4 Gimbaled System Implementations

6.4.4.1 Gimbal Design Issues The primary objective in the design of a
gimbal system is to isolate the inertial platform from rotations of the host vehicle.
Other issues addressed in design include

1. balancing the distribution of supported mass to avoid acceleration-dependent
gimbal torques,

2. routing signals and electrical power between the inertial platform and the host
vehicle,

3. controlling the temperature of the inertial platform and maintaining effective
heat transfer from the platform in all operational gimbal attitudes,

4. minimizing mechanical deformation of the gimbals under acceleration
loading, and

5. avoiding mechanical resonances of the gimbals that may cause vibration of the
platform.

6.4.4.2 Gimbal Sensors and Actuators Gyroscopes on the stable element
of a gimbaled INS are used to sense any inertial angular disturbances of the stable
element, and torquers in the gimbal pivots are used to apply feedback corrections to
null out the sensed disturbances. The feedback loops between the gyroscopes and
gimbal torquers are not constant, however. Angle resolvers in the gimbal pivots are
required for distributing the feedback torque signals among the different gimbal
pivot axes, depending on the current gimbal angles. These gimbal pivot angle
resolvers are also used to determine the attitude of the host vehicle with respect to
platform coordinates.

6.4.4.3 Coordinate Rotation Corrections Platform angular rates for main-
taining locally level alignment in local geodesic coordinates are

Un
- 6.44
S (6.44)
Vg
Do = COS((]B . ) + Em—— (645)
N ® geodetic rr +h
Wyp = Wg Sin(¢geodeti€)’ (646)
a(l —é)
o | ’ (6.47)
[1 — 62 Sln2(¢geodetic)]3/2
. a (6.48)

. 3 2 k]
[1 —é? Sln2(¢geodetic)] /

where all rotation rates are in units of radians per second and
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vy = north velocity (m/s)
vy = east velocity (m/s)
g, = rotation rate of the earth
P geodetic = current geodetic latitude
rp = transverse (east—west) radius of curvature (m) of reference ellipsoid
surface at current latitude (see Fig. 6.17)
), = meridional (north—south) radius of curvature (m) of reference ellipsoid
surface at current latitude (see Fig. 6.16)
h = current altitude (m) above reference ellipsoid
a = polar radius (semimajor axis of reference ellipsoid)

e = reference ellipsoid model eccentricity, = ~/a? — b?/a, where b =
polar radius

6.4.4.4 Coriolis Correction Platform coordinates referenced to north and east
are not inertial coordinates, and the resulting Coriolis effect must be compensated as
an east acceleration correction,

dagp ~ (72.92115 x 10~%)vy sin(¢ (6.49)

geodetic) ’

where Pyeqqeric 18 geodetic latitude and 72.92115 x 1076 is the earth rotation rate in
radians per second.

6.4.5 Strapdown System Implementations

6.4.5.1 Acceleration Integration Components of acceleration measured by
the accelerometers of a strapdown system are in body-fixed coordinates. These need
to be transformed to navigation coordinates for integration into velocity and position
components. If C%°% is the coordinate transformation matrix from body-fixed
coordinates to navigation coordinates, and a4, is the vector of sensed (and error-

compensated) accelerations in body-fixed coordinates, then
bod
Apay = Cngvyabody (650)

is the host vehicle acceleration in navigation coordinates, which would be equivalent
to platform coordinates in a gimbaled system. The rest of the translational navigation
implementation is similar to that of a gimbaled system. That is, this acceleration
vector in navigation coordinates (along with gravitational accelerations) is integrated
twice to maintain estimates of velocity and position in navigation coordinates.

6.4.5.2 Coordinate Transforms There are many ways to represent and
implement coordinate transformations. The more useful ones are coordinate trans-
formation matrices, rotation vectors, and quaternions, with quaternions being the
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preferred representation for strapdown coordinate transformations. All these meth-
ods are explained in Appendix C, and we explain here how these methods are
applied to maintain the transformations between sensor-fixed coordinates and the
navigation coordinates used for integrating the sensed accelerations.

6.4.5.3 Attitude Rate Integration To resolve sensed accelerations into navi-
gation coordinates, strapdown systems need to keep track of where the navigation
coordinates are pointed relative to body-fixed sensor coordinates. This can be done
by rotating the row vectors of ngsy using the quaternion rotation formula of
Eq. C.254 and the sensed and error-compensated angular rates in body-fixed
coordinates.

The three row vectors of C2°% are the direction cosine vectors of the respective
navigation coordinate axes in body-fixed coordinates.

The sampled rotation rate vectors w;, composed of the error-compensated
gyroscope outputs, define a series of incremental rotation vectors p, = w, At in
body coordinates, where At is the sampling interval.

However, to an observer standing on a rotating earth, the sun appears to be
rotating about the earth in the direction opposite earth rotation. The same is true of
navigation coordinates as viewed in body-fixed coordinates. When the sensed
rotation rate is , the directions of the navigation coordinates in body-fixed
coordinates appear to be rotating in the direction of —m. Therefore, the row vectors
of C?% need to be rotated through the incremental rotations —p = —; At in body-
fixed coordinates.

The implementation equations for maintaining the coordinate transformation
between sensor coordinates and navigation coordinates are given in Eqs. C.221—
C.225 (for implementation as direction cosine matrices) or Eqgs. C.252—C.254 (for
implementation as quaternions).

6.4.5.4 Troublesome Vibration Modes The stable elements of well-
designed gimbaled systems are effectively isolated from the rotational components
of internal vibration modes of the host vehicle. The gimbals do not isolate the stable
element from translational accelerations due to vibration, but integration of the
accelerations to velocities and positions reduces their influence to insignificant (or at
least acceptable) levels. Strapdown acceleration integration occurs after multiplica-
tion of sensed acceleration and estimated direction cosines, both of which can
contain vibration frequency components of the form sin(w,,?) and cos(w,;,?), where
., 1s the vibration frequency. The resulting products can then contain terms of the
form sinz(a)vibt) or cos?(my;t), integration of which can cause cumulative errors in
velocity and position.

Vibration Isolation of Strapdown Systems The design of shock and vibration
isolators for strapdown systems in high-vibration environments can be critical to
blocking vibration frequencies near or above the sensor sampling frequency and to
avoiding certain detrimental vibration modes of the sensor cluster. The known “bad
modes” of vibration include sculling motion and coning motion, which are
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(a) Skulling (b) Coning

Fig. 6.19 Detrimental vibration modes of cantilevered structures.

illustrated in Fig. 6.19 as resonant modes of cantilever beams. A sensor cluster
mounted away from the clamped end of such a structure will experience coupled
translational and rotational motions at the vibration frequency, and mounting
geometries with the center of mass of the instrument cluster offset from its effective
center of support can induce vibrational modes of a similar character. Coning motion
can also result in cumulative attitude errors due to mismatches in the frequency
responses of sensors or neglected higher order terms in attitude rate integration.

6.5 SYSTEM-LEVEL ERROR MODELS

There is no single, all-encompassing design for INS/GPS integration, because there
is no standard design for an INS. There may be minor differences between
generations of GPS satellites, but the differences between INS types are anything
but minor. There are some broad INS design types (e.g., gimbaled vs. strapdown),
but there are literally thousands of different inertial sensor designs that can be used
for each INS type.

What matters most from the standpoint of GPS/INS integration are the mathe-
matical models for the different types of error sources. We present here a variety of
inertial sensor error models, which will be sufficient for many of the sensors in
common use but perhaps not for every conceivable inertial sensor. For applications
with sensor characteristics different from those used here, the use of these error
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models in GPS/INS integration will serve to illustrate the general integration
methodology, so that users can apply the same methodology to GPS/INS integration
with other sensor error models as well.

6.5.1 Error Sources

6.5.1.1 Initialization Errors Inertial navigators can only integrate sensed
accelerations to propagate initial estimates of position and velocity. Systems without
GPS aiding require other sources for their initial estimates of position and velocity.
Initialization errors are the errors in these initial values.

6.5.1.2 Alignment Errors Most stand-alone INS implementations include an
initial period for alignment of the gimbals (for gimbaled systems) or attitude
direction cosines (for strapdown systems) with respect to the navigation axes.
Errors remaining at the end of this period are the alignment errors. These include
tilts (rotations about horizontal axes) and azimuth reference errors. Tilt errors
introduce acceleration errors through the miscalculation of gravitational accelera-
tion, and these propagate primarily as Schuler oscillations (i.e., zero-mean position
and velocity errors with ~ 84-min period) plus a non-zero-mean position error
approximately equal to the tilt error in radians times the radius from the earth center.
Initial azimuth errors primarily rotate the system trajectory about the starting point,
but there are secondary effects due to Coriolis accelerations and excitation of
Schuler oscillations.

6.5.1.3 Sensor Compensation Errors Sensor calibration is a procedure for
estimating the parameters of models used in sensor error compensation. It is not
uncommon for these modeled parameters to change over time and between turn-ons,
and designing sensors to make the parameters sufficiently constant can also make the
sensors relatively expensive. Costs resulting from stringent requirements for param-
eter stability can be reduced significantly for sensors that will be used in integrated
GPS/INS applications, because Kalman-filter-based GPS/INS integration can use
the differences between INS-derived position and GPS-derived position to make
corrections to the calibration parameters.

These nonconstant sensor compensation parameters are not true parameters (i.e.,
constants), but “slow variables,” which change slowly relative to the other dynamic
variables. Other slow variables in the integrated system model include the satellite
clock offsets for Selective Availability (SA).

The GPS/INS integration filter implementation requires models for how varia-
tions in the compensation parameters propagate into navigation errors. These models
are derived in Section 6.5.3 for the more common types of sensors and their
compensation parameters.
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6.5.1.4 Gravity Model Errors The influence of unknown gravity modeling
errors on vehicle dynamics is usually modeled as a zero-mean exponentially
correlated acceleration process,*

—At/t

5ak —e C""Cla|i°"53k_l + Wk, (6.51)

where At is the filter period, the correlation time

. ~ Deorrelation (6.52)

correlation s
|vh0rizontal |

Vhorizontal 1S horizontal velocity, D o eiaion 1S the horizontal correlation distance of
gravity anomalies (usually on the order of 10*-10°m), w, is a zero-mean white-
noise process with covariance matrix

def
Qgravitymodel = E(WkW]D (6.53)

~ dpps(1 — e 220, (6.54)

a3\ is the variance of acceleration error, and I is an identity matrix. The correlation
distance D relation ad RMS acceleration disturbance agpyg will generally depend
upon the local terrain. Here, D, ejaion tends to be larger and agy,g smaller as terrain
becomes more gentle or (for aircraft) as altitude increases.

6.5.2 Navigation Error Propagation

The dynamics of INS error propagation are strongly influenced by the fact that
gravitational accelerations point toward the center of the earth and decrease in
magnitude with altitude and is somewhat less influenced by the fact that the earth
rotates.

6.5.2.1 Schuler Oscillation Any horizontal location error ¢ will cause a
proportional miscalculation of the horizontal component of the modeled gravita-
tional acceleration G, as illustrated in Fig. 6.20, and the acceleration error is in the
direction opposite the location error. The net effect is an oscillation of the horizontal
position error with a period Tgy,,.r depending on the distance from the center of the
earth and the acceleration due to gravity at that radius. At the surface of the earth,

9.8 m/s?
Qschuter ~ 1/ 6ax10°m (6.55)

~ 0.00124 rad/s, (6.56)
Tschuler ~ 84.4 min. (6.57)

The Schuler period is, in fact, the orbital period at that altitude.

4 See Section 7.5.1.3.
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Fig. 6.20 Schuler oscillation of position error.

Schuler oscillation tends to make RMS horizontal position errors for INSs
proportional to RMS horizontal velocity errors, with a proportionality constant

ERMS A, 0.00124 571, (6.58)
ERMS

the Schuler frequency. For example, a Schuler oscillation with peak location errors
on the order of 1 km will have peak velocity errors on the order of 1 m/s.

6.5.2.2 Vertical Channel Instability The vertical gradient of gravitational
acceleration is G/R, where G is the gravitational acceleration at the radius R where
the gradient is calculated. Consequently, any positive (upward) error in estimated
altitude will result in an undercalculated downward gravitational acceleration, with
the acceleration error in the same direction and proportional to the altitude error. The
result is an ever-so-slightly unstable altitude error propagation equation, with an
exponential time constant on the order of 180h for operation at the surface of the
earth. The vertical channel therefore requires some sort of auxiliary measurement,
such as barometric altitude, to stabilize it.

6.5.2.3 Coriolis Coupling The Coriolis effect couples north velocity into east
acceleration, with a proportionality constant equal to wg, sin(¢), where wg, is the
earth rotation rate (=~ 7.3 x 10> rad/s) and ¢ is latitude. That is,

ér = —Qehulertr + g SIN(P)ey, (6.59)

éN = _Qéchuler‘gN (660)

where ¢ is east position error and ¢, is north position error.
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6.5.3 Sensor Error Propagation

Errors made in compensating for inertial sensor errors will cause navigation errors.
Here, we derive some approximating formulas for how errors in individual
compensation parameters propagate into velocity and position errors.

6.5.3.1 Accelerometer Compensation Error Propagation The compen-
sation equation for the most common accelerometer errors (scale factors, input axis
misalignments, and biases) can be put in the form

acompensated ~ ainput (661)

= Mu{aou'cput - abias}v (662)

where the 12 compensation parameters are the 9 elements of the scale factor
misalignment matrix M, and the 3 components of the output bias vector ay;.

The first-order sensitivities of compensated acceleration to variations in these
parameters can be calculated as the partial derivatives

aaCOl’l‘l ensate v
—“compensated __7Nf | (6.63)
Apias
aai,compensated _ 0, k# l:’ (664)
amakf 4 output — 4} bias> k=i,
where m,; is the element in the kth row and jth column of M, If we let the order of

compensation parameters be

T
Pacc.comp = (@1 bias @2,bias @3,bias Ma11 Ma12 Ma13 Man) Maxy Men3 My3p Mgy My33]

(6.65)
then the associated matrix of partial derivatives will be
- T
—Man M M3
—Ma12 M2 M3
—Mg13 —Mg3 —Mg33
a1 output — 41 bias 0 0
a2,output - a2,bias 0 0
aacompensalted . a3,0utput - a3,bias 0 0 (6 66)
8pacc.comp B 0 al,output — 41 bias 0 . .
0 a2,output — a2 bias 0
0 a3.0utput — 43 bias 0
0 0 al,output - al,bias
0 0 a3 output — 42, bias
L 0 0 a3.output - a3,bias i
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Acceleration errors due to accelerometer compensation errors in body coordinates
and navigation coordinates will then be

0a
5ab0dy ~ aCOLensated 5paccxcomp7 (667)
acc.comp
5anav = CEg\(jyéabody (6.68)
02 ompen
~ ngsy %csated 5pacc.comp ’ (669)

acc.comp

where 0P, comp 1S the vector of compensation parameter errors and C2% s the
coordinate transformation matrix from body-fixed coordinates to navigation coordi-
nates (e.g., Crny from Eq. C.93).

The velocity error sensitivities to each of the compensation parameters will be the
integral over time of the acceleration sensitivities, and the position error sensitivities
to each of the compensation parameters will be the integral over time of the velocity
sensitivities. However, the accelerations must be transformed into navigation

coordinates before integration:

t
5Vnav(t) = 5Vnav(t0) + 5anav(s) ds (670)
)
t
= 5Vnav(t0) + ngsy(s) 5ab0dy(s) ds (671)
)
t
A OVaay(lg) + | Coad(s ) B (5) P comp (6.72)
ty acc.comp

5Xnav(t) ~ 5Xnav(t0) + (t - ZLO) 5Vnav(t0)

t
+ J J Clzz\tjy( )ap Bcomp (S) 5pacc comp ds, (6.73)

ty acc.comp

where C2°% = I for gimbaled systems and dx,,,, is the navigation position error due
to compensation parameter errors. The GPS navigation solution does not include
0X,ay» and it is the difference between the INS and GPS solutions that is used to

estimate the compensation parameter errors.

6.5.3.2 Gyroscope Compensation Error Propagation The principal
effect of gyroscope compensation errors on inertial navigation position errors is
from the miscalculation of gravitational acceleration due to the resulting tilt errors,
as illustrated in Fig. 6.21, where
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Fig. 6.21 Acceleration errors due to tilts.

for the tilt error angles 605, 50, in radians and g ~ 9.8 m/s?. The corresponding
position errors will be the double integrals of the acceleration errors,

oxp(t) & oxp(ty) + (¢t — ty) ove(ty)

+ gJ Jt 80, (s) ds (6.76)

)

oxy (1) & oxy(ty) + (t — ty) ovy(ty)

— gJ Jt 005(s) ds. (6.77)

)

The sensitivity to rotational error about the local vertical (i.e., heading error) is
usually smaller, with

Sxp(f) ~ Sxplty) — 50y Axy, (6.78)

where ox; and Ox, are the navigation error components due to heading error 60,
(i.e., measured counterclockwise) in radians and Ax; and Ax, are the net position
changes between time 7, and ¢ in the east and north directions, respectively.

The compensation equation for the most common gyroscope errors (scale factors,
input axis misalignments, and biases) has the same form as those for accelerometer
errors,

Oippyt = Mg{"ooutput - mbias}’ (6.80)
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where the gyroscope compensation parameters are the nine elements of the
gyroscope scale factor misalignment matrix Mg and the three components of the
output bias vector wy,,. The first-order sensitivities of compensated rotation rate to
variations in these parameters can be calculated as the partial derivatives

8"")1r1put eV

- M, (6.81)
8("“‘blas £
0. 0, k# i,
a i,input — (682)
Mk Wj input — @j bias> k=i,

where mg; is the element in the kth row and jth column of M If we let

T
Pgyro.comp = [®1 bias D2,bias @3 bias Mgy Mgy Mg13 Mgyy Mooy Mgz, Mg3y Mg3) mg33] >

(6.83)
then the matrix of partial derivatives becomes
i —Mgyy —Mgy —Mg3) 1
Mgi2 ~Mgn Mex
—Mg13 —Mgo3 —Mg33
@1, output — @1, bias 0 0
@2 output ~ @2 bias 0 0
00comp | @3 0utput ~ @3 bias 0 0
Mgyrocomp 0 D1, output — ©1,bias 0
0 W) output — D2 bias 0
0 W3 output — @3, bias 0
0 0 @1, output — D1, bias
0 0 @7 output — D2, bias
L 0 0 @3 output ~ @3 bias |
(6.84)
and the tilt errors
t
00,0y (1) = 00,,, () + , 0y, (5) ds (6.85)
tO
= 00,5, (10) + | R (5) 3eeqy(s) dis (6.86)

1

A2 00,5, (1) + CE;’SYO Poomp (5)0Pgyrocomp dS-  (6.87)

) gyro.comp
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The east and north tilt components can then be substituted into Egs. 6.77 and 6.76 to
obtain the equation for position error due to tilts. Schuler oscillations (Sections
2.2.2.3 and 6.5.2.1) are excited when these position errors, in turn, cause tilts.

6.5.3.3 Carouseling and Gimbal Flipping These methods are commonly
used for mitigating the effects of sensor compensation errors in gimbaled systems.
The ability to rotate a gimbaled inertial platform was soon exploited as a means of
averaging out the effects of many types of sensor errors on navigational accuracy.
The simplest schemes rotate the platform containing the sensors about the local
vertical with a rotation period significantly shorter than the Schuler period of 84 min
(carouseling) or in discrete 90° or 180° steps (gimbal flipping). The effects of many
platform-fixed sensor errors (e.g., accelerometer and gyroscope biases and input axis
misalignments) can be effectively cancelled by such rotations.

Problems

6.1 In the one-dimensional Line Land world of Section 6.4.1.1, an INS requires no
gyroscopes. How many gyroscopes would be required for two-dimensional
navigation in Flat Land?

6.2 Derive the equivalent formulas in terms of Y (yaw angle), P (pitch angle), and
R (roll angle) for unit vectors 1, 1p, 1y in NED coordinates and 1y, 1z, 1,
in RPY coordinates, corresponding to Eqs. C.86—C.91 of Appendix C.

6.3 Explain why accelerometers cannot sense gravitational accelerations.

6.4 Calculate the numbers of computer multiplies and adds required for

(a) gyroscope scale factor/misalignment compensation (Eq. 6.23),

(b) accelerometer scale factor/misalignment compensation (Eq. 6.28), and

(c) transformation of accelerations to navigation coordinates (Fig. 6.13) using
quaternion rotations (Eq. C.243) requiring two quaternion products (Eq.
C.234).

If the INS performs these 100 times per second, how many operations per

second will be required?
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Kalman Filter Basics

7.1 INTRODUCTION

7.1.1 What is a Kalman Filter?

It is an extremely effective and versatile procedure for combining noisy sensor
outputs to estimate the state of a system with uncertain dynamics.
For our purposes in this book:

e The noisy sensors may include GPS receivers and inertial sensors (acceler-
ometers and gyroscopes, typically) but may also include speed sensors (e.g.,
wheel speeds of land vehicles, water speed sensors for ships, air speed sensors
for aircraft, or Doppler radar), and time sensors (clocks).

e The system state in question may include the position, velocity, acceleration,
attitude, and attitude rate of a vehicle on land, at sea, in the air, or in space, but
the system state may include ancillary “nuisance variables” for modeling
correlated noise sources (e.g., GPS Selective Availability timing errors) and
time-varying parameters of the sensors, such as scale factor, output bias, or (for
clocks) frequency. Selective Availability has been suspended as of May 1,
2000.

e Uncertain dynamics includes unpredictable disturbances of the host vehicle,
whether caused by a human operator or by the medium (e.g., winds, surface
currents, turns in the road, or terrain changes), but it may also include
unpredictable changes in the sensor parameters.

179
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More abstract treatments of the Kalman filter are presented in [18, 19, 40, 46, 67, 69,
71, 72], and a more basic introduction can be found in [31].

7.1.2 How it Works

The Kalman filter maintains two types of variables:

1. Estimated State Vector. The components of the estimated state vector include
the following:

(a) The variables of interest (i.e., what we want or need to know, such as
position and velocity).

(b) “Nuisance variables” that are of no intrinsic interest but may be necessary
to the estimation process. These nuisance variables may include, for
example, the selective availability errors of the GPS satellites. We
generally do not wish to know their values but may be obliged to calculate
them to improve the receiver estimate of position.

(c) The Kalman filter state variables for a specific application must include all
those system dynamic variables that are measurable by the sensors used in
that application. For example, a Kalman filter for a system containing
accelerometers and rate gyroscopes must contain acceleration and rotation
rate components to which these instruments respond. The acceleration and
angular rate components do not have to be those along the sensor input
axes, however. The Kalman filter state variables could be the components
along locally level earth-fixed coordinates, even though the sensors
measure components in vehicle-body-fixed coordinates.

In similar fashion, the Kalman filter state variables for GPS-only navigation
must contain the position coordinates of the receiver antenna, but these could
be geodetic latitude, longitude, and altitude with respect to a reference
ellipsoid or geocentric latitude, longitude, and altitude with respect to a
reference sphere, or ECEF Cartesian coordinates, or ECI coordinates, or any
equivalent coordinates.

2. A Covariance Matrix: a Measure of Estimation Uncertainty. The equations
used to propagate the covariance matrix (collectively called the Riccati
equation) model and manage uncertainty, taking into account how sensor
noise and dynamic uncertainty contribute to uncertainty about the estimated
system state.

By maintaining an estimate of its own estimation uncertainty and the relative
uncertainty in the various sensor outputs, the Kalman filter is able to combine all
sensor information “optimally,” in the sense that the resulting estimate minimizes
any quadratic loss function of estimation error, including the mean-squared value of
any linear combination of state estimation errors. The Kalman gain is the optimal



7.2 STATE AND COVARIANCE CORRECTION 181

weighting matrix for combining new sensor data with a prior estimate to obtain a
new estimate.

7.2 STATE AND COVARIANCE CORRECTION

The Kalman filter is a two-step process, the steps of which we call “prediction” and
“correction.” The filter can start with either step, but we will begin by describing the
correction step first.

The correction step makes corrections to an estimate, based on new information
obtained from sensor measurements.

The Kalman gain matrix K is the crown jewel of Kalman filtering. All the effort
of solving the matrix Riccati equation is for the sole purpose of computing the
“optimal” value of the gain matrix K used for correcting an estimate X,

xX(+) = X(-) + Kgain z — Hx(-) |, (7.1)
~—— ~—— —— N ——
corrected  predicted meas.  pred. meas.
based on a measurement
z = Hx + noise (7.2)

that is a linear function of the vector variable x to be estimated plus additive noise
with known statistical properties.

We will derive a formula for the Kalman gain based on an analogous filter called
the Gaussian maximum-likelihood estimator. It uses the analogies shown in Table
7.1 between concepts in Kalman filtering, Gaussian probability distributions, and
likelihood functions.

The derivation begins with background on properties of Gaussian probability
distributions and Gaussian likelihood functions, then development of models for
noisy sensor outputs and a derivation of the associated maximum-likelihood estimate
(MLE) for combining prior estimates with noisy sensor measurements.

7.2.1 Gaussian Probability Density Functions

Probability density functions (PDFs) are nonnegative integrable functions whose
integral equals wunity (i.e., 1). The density functions of Gaussian probability
distributions all have the form

Y P T
P = ey P - P - ), (7.3)
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TABLE 7.1 Analogous Concepts in Three Different Contexts

Context Kalman < Gaussian PaS Maximum-
filtering probability likelihood
distributions estimation
Concepts Probability <~ Likelihood
distribution function £
Estimate < Mean paS argmax(£)?
Covariance < Covariance < Information

2 Argmax(f) returns the argument x of the function fwhere f(x) achieves its maximum value.
For example, argmax(sin) = n/2 and argmax(cos)= 0.

where n is the dimension of P (i.e., P is an n X n matrix) and the parameters

def

M= Exenup)(X) (7.4)
-2 J dx, - J dx, p(X)x, (7.5)
PEE o (x—mx— ) (7.6)
ol j dx, - J dx, P — m)(x — ). (1.7)

The parameter p is the mean of the distribution. It will be a column vector with
the same dimensions as the variate x.

The parameter P is the covariance matrix of the distribution. By its definition, it
will always be an n x n symmetric and nonnegative definite matrix. However,
because its determinant appears in the denominator of the square root and its
inverse appears in the exponential function argument, it must be positive definite as
well. That is, its eigenvalues must be real and positive for the definition to work.

The constant factor 1/,/(27)" detP in Eq. 7.3 is there to make the integral of the
probability density function equal to unity, a necessary condition for all probability
density functions.

The operator E(-) is the expectancy operator, also called the expected-value
operator.

The notation x € A (p, P) denotes that the variate (i.e., random variable) x is
drawn from the Gaussian distribution with mean w and covariance P. Gaussian
distributions are also called normal or Laplace distributions.
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7.2.2 Likelihood Functions

Likelihood functions are similar to probability density functions, except that their
integrals are not constrained to equal unity, or even required to be finite. They are
useful for comparing relative likelihoods and for finding the value of the unknown
independent variable x at which the likelihood function achieves its maximum, as
illustrated in Fig. 7.1.

7.2.2.1 Gaussian Likelihood Functions Gaussian likelihood functions
have the form

L(x, 1, Y) = exp(—3[x — p]" Y[x — p]), (7.8)

where the parameter Y is called the information matrix of the likelihood function. It
replaces P~! in the Gaussian probability density function. If the information matrix
Y is nonsingular, then its inverse Y~! =P, a covariance matrix. However, an
information matrix is not required to be nonsingular. This property of information
matrices is important for representing the information from a set of measurements
(sensor outputs) with incomplete information for determining the unknown vector x.
That is, the measurements may provide no information about some linear combina-
tions of the components of x, as illustrated in Fig. 7.2.

7.2.2.2 Scaling of Likelihood Functions Maximum-likelihood estimation
is based on the argmax of the likelihood function, but for any positive scalar ¢ > 0,

argmax(cL) = argmax(L). (7.9)

max (L)

argmax (L)

Fig. 7.1 Maximum-likelihood estimate.
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T
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All Values Equally Likely

0

L(z) Y

(NO INFORMATION)

Fig. 7.2 Likelihood without maximum.

That is, positive scaling of likelihood functions will have no effect on the maximum-
likelihood estimate. As a consequence, likelihood functions can have arbitrary
positive scaling.

7.2.2.3 Independent Likelihood Functions The joint probability P(4&B)
of independent events 4 and B is the product P(4&B) = P(A) x P(B). The
analogous effect on independent likelihood functions £, and Lz is the pointwise
product. That is, at each “point” x,

Lags(x) = L,(x) x L(x). (7.10)

7.2.2.4 Pointwise Products One of the remarkable attributes of Gaussian
likelihood functions is that their pointwise products are also Gaussian likelihood
functions, as illustrated in Fig. 7.3.

Given two Gaussian likelihood functions with parameter sets { pLA,YA} and
{mp, Yp}, their pointwise product is a scaled Gaussian likelihood function with
parameters {p g5, Y, s5) such that, for all x,

exp(—%[x - ILA&B]TYA&B[X — M)

= C eXp(—%[X — '.LA]TYA[X - ”’A])

x exp(—%[x — Yl — m) (7.11)

for some constant ¢ > 0.
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Las8(z)
= L(z)Lp(z)

Fig. 7.3 Pointwise products of Gaussian likelihood functions.

One can solve Eq. 7.11 for the parameters {p g5, Y485} as functions of the
parameters {p,, Y , g, Yp}. Taking logarithms of both sides of Eq. 7.11 will
produce the equation

1 Mags] YagslX — Pags]
= log(c) — 3[x — w0 Y [x — p]
— %[X - MB]TYB[X — gl (7.12)

Next, taking the first and second derivatives with respect to the independent variable
x will produce the equations

Yigp(X — Pagp) = Y (X — py) + Yp(X — pp), (7.13)
Y8 = Y4+ Yp, (7.14)

respectively.

Information is Additive The information matrix of the combined likelihood
function (Y gz in Eq. 7.14) equals the sum of the individual information matrices
of the component likelihood functions (Y, and Y in Eq. 7.14).

Combined Maximum-Likelihood Estimate is a Weighted Average Equation
7.13 evaluated at x = 0 is

YissPass = Y 0y + Ypirg, (7.15)
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which can be solved for

Paes = Y aen(Yay + Yamp) (7.16)
= (Y + Yp) (Yapy + Yppp), (7.17)
where T denotes the Moore—Penrose inverse of a matrix (defined in Section B.1.4.7).

Equations 7.14 and 7.17 are key results for deriving the formula for Kalman gain.
All that remains is to define likelihood function parameters for noisy sensors.

7.2.3 Noisy Measurement Likelihoods

The term measurements refers to outputs of sensors that are to be used in estimating
the argument vector x of a likelihood function. Measurement models represent how
these measurements are related to x, including those errors called measurement
errors or sensor noise. These models can be expressed in terms of likelihood
functions with x as the argument.

7.2.3.1 Measurement Vector The collective output values from a multitude ¢
of sensors are the components of a vector

1k (7.18)

called the measurement vector, a column vector with £ rows.

7.2.3.2 Measurement Sensitivity Matrix We suppose that the measured
values z; are linearly! related to the unknown vector x we wish to estimate,

z = Hx (7.19)
where H is the measurement sensitivity matrix.

7.2.3.3 Measurement Noise Measurement noise is the electronic noise at the
output of the sensors. It is assumed to be additive,

z=Hx+v, (7.20)

! The Kalman filter is defined in terms of the measurement sensitivity matrix H, but the extended Kalman
filter (described in Section 7.6.4) can be defined in terms of a suitably differentiable vector-valued function
h(x).
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where the measurement noise vector v is assumed to be zero-mean Gaussian noise
with known covariance R,

E(v) o, (7.21)

RE £iwT). (7.22)

7.2.3.4 Measurement Likelihood A measurement vector z and its associated
covariance matrix of measurement noise R define a likelihood function for the
“true” value of the measurement (i.e., without noise). This likelihood function will
have mean

K, =2

and information matrix

assuming R is nonsingular.

7.2.3.5 Unknown Vector Likelihoods The same parameters defining
measurement likelihoods also define an inferred likelihood function for the true
value of the unknown vector, with mean

p,=H'p, (7.23)
=H'z (7.24)
and information matrix
Y, =H'Y,H (7.25)
=H'R'H, (7.26)

where the n x ¢ matrix H' is defined as the Moore—Penrose generalized inverse
(defined in Appendix B) of the £ x n matrix H. This information matrix will be
singular if £ < n (i.e., there are fewer sensor outputs than unknown variables), which
is not unusual for GPS/INS integration.

7.2.4 Gaussian MLE
7.2.4.1 Variables Gaussian MLE uses the following variables:
X, the maximum likelihood estimate of x. It will always equal the argmax (mean

1) of an associated Gaussian likelihood function, but it can have different
values:
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x(—), representing the likelihood function prior to using the measurements.
x(+), representing the likelihood function after using the measurements.

P, the covariance matrix of estimation uncertainty. It will always equal the inverse
of the information matrix Y of the associated likelihood function. It also can
have two values:

P(—), representing the likelihood function prior to using the measurements.
P(+), representing the likelihood function after using the measurements.
z, the vector of measurements.
H, the measurement sensitivity matrix.
R, the covariance matrix of sensor noise.

7.2.4.2 Update Equations The MLE formula for updating the variables x and
P to reflect the effect of measurements can be derived from Egs. 7.14 and 7.17 with
initial likelihood parameters

m, = X(-), (7.27)
the MLE before measurements, and
Y, =P(-)", (7.28)

the inverse of the covariance matrix of MLE uncertainty before measurements. The
likelihood function of x inferred from the measurements alone (i.e., without taking
into account the prior estimate) is represented by the likelihood function parameters

Y, =H'R'H, (7.29)
the information matrix of the measurements, and
p; =H'z, (7.30)

where z is the measurement vector.

7.2.4.3 Covariance Update The Gaussian likelihood function with param-
eters {m g5, Yagp} Of Egs. 7.14 and 7.17 then represents the state of knowledge
about the unknown vector x combining both sources (i.e., the prior likelihood and
the effect of the measurements). That is, the covariance of MLE uncertainty after
using the measurements will be

P(+) =Y g (7.31)
and the MLE of x after using the measurements will then be

X(+) = g (7.32)
Equation 7.14 can be simplified by applying the following general matrix formula?:

(A”' +BC™'D)"! = A — AB(C + DAB) 'DA, (7.33)

2 A formula with many discoverers. Henderson and Searle [53] list some earlier ones.
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where

A~' =Y, the prior information matrix for X
A = P(—), the prior covariance matrix for X
B = H', the transpose of the measurement sensitivity matrix
C=R
D = H, the measurement sensitivity matrix,

so that Eq. 7.31 becomes

P(H) =Y, (7.34)
=(Y,+HR'H)"" (Bq.7.14) (7.35)
=Y;' - Y;'H'HY;'H" + R)'HY;' (Eq.7.33) (7.36)
= P(—) — P(—)H"(HP(—)H" + R) 'HP(-), (7.37)

a form better conditioned for computation.

7.2.4.4 Estimate Update Equation 7.17 with substitutions from Egs. 7.27—
7.30 will have the form shown in Eq. 7.37

X(+) = pugp  (Eq. 7.32) (7.38)
= (Y, + Yp) (Y p + Yppp) (Eq. 17.7) (7.39)

_ R Y Tp-I1 i

=PH+)|P(—) x(—) +H R H E/-Z/ (7.40)
Eq.7.31 L Eq.7.28 Eq.7.27 Eq.7.29 Eq.7.30

= [P(—) — P(-)H'(HP(—)H" + R) '"HP(-)] (Eq.7.37)

x [P(—)"'%(—) + H'R"'HH'Z] (7.41)
= [I(—) — P(-)H"(HP(-)H" + R)™'H]
x [%(=) + P(-)H'R"'HHZ] (7.42)

= %(—) + P(-)H'(HP(—)HT + R)"'

x {[HP(—)H" + R)R™' — HP(-)H'R™ ']z — HX(-)}  (7.43)
= %(—) + P(-)HT(HP(—)HT + R)™'

x {[HP(—)H'R™' + 1 — HP(—)H'R ']z — HX(-)} (7.44)
= %(=) + P(-)H"(HP(—H" + R) ' x|z — HX(-)}, (7.45)

K

where the matrix K has a special meaning in Kalman filtering.



190 KALMAN FILTER BASICS

7.2.5 Kalman Gain Matrix

Equation 7.45 has the form of Eq. 7.1 with Kalman gain matrix
K = P(—)H'[HP(—)H" + R] ", (7.46)

which can be substituted into Eq. 7.37 to yield a simplified update equation for the
covariance matrix update for the effects of using measurements:

P(+) = P(—) — KHP(-). (7.47)

This completes the derivation of the Kalman gain matrix based on Gaussian
MLE.

7.3 STATE AND COVARIANCE PREDICTION

The rest of the Kalman filter is the prediction step, in which the estimate X and its
associated covariance matrix of estimation uncertainty P are propagated from one
time epoch to another. This is the part where the dynamics of the underlying physical
processes come into play. The “state” of a dynamic process is a vector of variables
that completely specify enough of the initial boundary value conditions for
propagating the trajectory of the dynamic process forward in time, and the procedure
for propagating that solution forward in time is called “state prediction.” The model
for propagating the covariance matrix of estimation uncertainty is derived from the
model used for propagating the state vector.

7.3.1 State Prediction Models

7.3.1.1 Differential Equation Models Ever since the differential calculus
was introduced (more or less simultaneously) by Sir Isaac Newton (1643—1727) and
Gottfried Wilhelm Leibnitz (1646—1716), we have been using ordinary differential
equations as models for the dynamical behavior of systems of all sorts.

Example 7.1 Differential Equation Model for Harmonic Resonator. Dynamical
behavior of the one-dimensional damped mass—spring shown schematically in Fig.
7.4 is modeled by the equations

dzé dé
m W =ma = = - Cdamping E - Cspringé + K(f_),

damping force spring force disturbance
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Spring Spring constant Cepring

iDisplacement &(t)
Mass m |—-+—

TDisturbing force w(t)

Dashpot Damping coefficient Cyamping

777777

Fig. 7.4 Schematic model for dynamic system of Example 7.1.

or

dzé Cdamping dé

as Cspringé _ @
dr m dt m -

, (7.48)
m

where m = mass attached to spring and damper
¢ = upward displacement of mass from its rest position

Cypring = SPring constant of spring
Camping = damping coefficient of dashpot

w(f) = disturbing force acting on mass

Systems of First-Order Linear Differential Equations The so-called state
space models for dynamic systems replace higher order differential equations with
systems of first-order differential equations. This can be done by defining the first
n — 1 derivatives of an nth-order differential equation as state variables.

Example 7.2 State Space Model for Harmonic Oscillator. Equation 7.48 is a
linear second-order (n = 2) differential equation. It can be transformed into a system
of two linear first-order differential equations with state variables

d
X déff (mass displacement), X, défjf (mass velocity),
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for which

dx

7; —x (7.49)
dx, _ —Cpring x + —Clamping X+ @ (7.50)
dt m m m

Representation in Terms of Vectors and Matrices State space models using
systems of linear first-order differential equations can be represented more
compactly in terms of a state vector, dynamic coefficient matrix, and dynamic
disturbance vector.

Systems of linear first-order differential equations represented in “long-hand”
form as

dx
711 =Xy + 2% +fi3xXs o X, +owrs
de
E Zfélxl +]32)C2 +fé3x3 + - +fénxn + Wy,
dxs
z :félxl +f}32x2 +f573x3 + - +f£‘7nxn + w3,
dx,
T =fuXt X +fnxs - S Xy W,

can be represented more compactly in matrix form as

d
Ex:Fx—i—w, (7.51)

where the state vector x, dynamic coefficient matrix ¥, and dynamic disturbance
vector w are given as

X1 Sa S Sz S Wy

RY) b fo Sz o S )
x=|% [, F= |51 f2 fis o Jfa |, w=| W |,

Xn fnl fnZ fn3 e fnn Wy

respectively.
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Example 7.3 Harmonic Resonator Model in Matrix Form. For the system of
linear differential equations 7.49 and 7.50,

X 0 1 0

1

X= |:)C2 :| ’ F= _Cspring _Cda.mping ’ w= K
m m m

Eigenvalues of Dynamic Coefficient Matrices The coefficient matrix F of a
system of linear differential equations x = Fx + w has effective units of reciprocal
time, or frequency (in units of radians per second). It is perhaps then not surprising
that the characteristic values (eigenvalues) of F are the characteristic frequencies of
the dynamic system represented by the differential equations.

The eigenvalues of an n x n matrix F are the roots of its characteristic
polynomial

det(I—F) = 3 a, ™. (7.52)
k=0

The eigenvalues of F have the same interpretation as the poles of the related system
transfer function, in that the dynamic system x = Fx + w is stable if and only if the
solutions 4 of det(AI — F) = 0 lie in the left half-plane.

Example 7.4 Damping and Resonant Frequency for Underdamped Harmonic
Resonator. For the dynamic coefficient matrix

0 1

F= _Cspring _Cdamping

m m

in Example 7.3, the eigenvalues of F are the roots of its characteristic polynomial

Y —1 Co C..
"2 ampin, Sprin;
det(AI — F) = det| Cypring . Caamping | =4+ m" £+ ; £,

which are

) Cda.mping 1
L= — —2m + E \/Ciamping — 4mCSpring.

If the discriminant

2
Cdamping - 4mCspring < 0’
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then the mass—spring system is called underdamped, and its eigenvalues are a
complex conjugate pair

1 .
L== + Opeonandd
Tdamping
with real part
_ 1 _ Cdamping
Tdamping 2m

and imaginary part

1
— 2
Wresonant = m \/ 4mCspring - Cdamping'

The alternative parameter

2m
Tdamping =
Campi
amping

is called the damping time constant of the system, and the other parameter o, qonant 1S
the resonant frequency in units of radians per second.

The dynamic coefficient matrix for the damped harmonic resonator model can
also be expressed in terms of the resonant frequency and damping time constant as

Fharmonic resonator — 2 1 2. (753)

So long as the damping coefficient Cgpping > 0, the eigenvalues of this system
will lie in the left half-plane. In that case, the damped mass—spring system is
guaranteed to be stable.

Matrix Exponential Function The matrix exponential function is defined (in
Section B.6.4) as

M S Ly 4
exp( )_/;)k' (7.54)

for square matrices M. The result is a square matrix of the same dimension as M.
This function has some useful properties:

1. The matrix N = exp(M) is always invertible and N~' = exp(—M).

2. If M is antisymmetric (i.e., its matrix transpose M = —M), then N = exp(M)
is an orthogonal matrix (i.e., its matrix transpose N = N~—1).
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3. The eigenvalues of N = exp(M) are the (scalar) exponential functions of the
eigenvalues of M.

4. If M(s) is an integrable function of a scalar s, then the derivative

% <Jl M(s) ds) = M(?) (JI M(s) ds). (7.55)

Forward Solution in Terms of Matrix Exponential Function The property of
the matrix exponential function shown in Eq. 7.55 can be used to define the forward
solution of Eq. 7.51 as

x(1) = exp <Jz F(s) ds) |:x(t0) + JI exp <— Js F(r) dr) wi(s) ds:|, (7.56)

where x(#,) is the initial value of the state vector x for # > ¢,.

Time Invariant Systems If the dynamic coefficient matrix F of Eq. 7.51 does not
depend on ¢ (time), then the problem is called time invariant. In that case,

r Fds = (t — t,)F (7.57)

to
and the forward solution

t

X(1) = exp|(t — t,)F] {x(to) + J exp[—(s — 1)F|w(s) ds}. (7.58)

fy

7.3.1.2 State Models for Discrete Time Measurements are the outputs of
sensors sampled at discrete times --- < t;,_; < t; < t;,; <---. The Kalman filter
uses these values to estimate the state of the associated dynamic systems at those
discrete times.

If welet..., X;_;, X;, X;,, ... be the corresponding state vector values of a
linear dynamic system at those discrete times, then each of these values can be
determined from the previous value by using Eq. 7.56 in the form

X = By 1 X4_ g + Wiy, (7.59)

def tk
b, = exp J
I

—1

F(s) ds) , (7.60)

w_ Yo, r exp (— Jl F(s) ds) w(?) dt. (7.61)

Tg—1
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Equation 7.59 is the discrete-time dynamic system model corresponding to the
continuous-time dynamic system model of Eq. 7.51.

The matrix ®,_; (defined in Eq. 7.60) in the discrete-time model (Eq. 7.59) is
called a state transition matrix for the dynamic system defined by F. Note that ®
depends only on F, and not on the dynamic disturbance function w(¢).

The noise vectors w,, are the discrete-time analog of the dynamic disturbance
function w(¢). They depend upon F and w.

Example 7.5 State Transition Matrix for Harmonic Resonator Model. The
underdamped harmonic resonator model of Example 7.4 has no time-dependent
terms in its coefficient matrix (Eq. 7.53), making it a time-invariant model with state
transition matrix

® = exp(Ar F)

sin(w At) sin(w At)
Wt @)

cos(w At) +
— e—At/r
sin(w At)
w 12

) ,  (7.62)
(1 + w*t%) cos(w Ar) — M

where @ = W eqonant> the resonant frequency
T = Tgamping> the damping time constant
At = discrete-time step.

The eigenvalues of F were shown to be —1/Tgamping £ i®resonant> SO the eigenva-
lues of F Az will be —A?/74,50ins £ 1 Al Oegonyne and the eigenvalues of ® will be

At
exp (— + 10 egonant At) = e 2 [cos(w Ar) £ isin(w Ar)).

Tdamping

A discrete-time dynamic system will be stable only if the eigenvalues of ® lie inside
the unit circle (i.e., |4,] < 1).

7.3.2 Covariance Prediction Models

The word stochastic derives from the Greek expression for aiming at a target,
indicating some degree of uncertainty in the dynamics of the projectile between
launch and impact. That idea has been formalized mathematically as stochastic
systems theory, used here for modeling dynamic processes that are not fully
predictable.

A stochastic process is a model for the evolution over time of a probability
distribution. For Kalman filtering, this can be viewed as the probability distribution
of the true state of a dynamic process. When the underlying probability distribution
is Gaussian, the distribution is completely specified by its mean and its covariance.
The mean will be the estimated value of the state vector, and the covariance matrix
represents the mean-squared uncertainty in the estimate. The time update equations
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of the Kalman filter propagate the estimated value and its associated mean-squared
uncertainty forward in time.

7.3.2.1 Zero-Mean White Gaussian Noise Processes A zero-mean white
Gaussian noise process in discrete time is a sequence of independent samples
s Wi_y, Wi, Wiy, ... from a normal probability distribution N(0, Q;) with
zero mean and known finite covariances Q,. In Kalman filtering, it is not necessary
(but not unusual) that the covariance of all samples be the same.
Sampling is called independent if the expected values of outer products

E(ww!) = { g A (7.63)
i 1 _] 9
for all integer indices i and j of the random process.

Zero-mean white Gaussian noise processes are the fundamental random processes
used in Kalman filtering. However, it is not necessary that all noise sources in the
modeled sensors and dynamic systems be zero-mean white Gaussian noise
processes. It is only necessary that they can be modeled in terms of such processes
(to be addressed in Section 7.5).

7.3.2.2 Gaussian Linear Stochastic Processes in Discrete Time A
linear stochastic processes model in discrete time has the form

X, =P X4 + W, (7.64)

where w, is a zero-mean white Gaussian noise process with known covariances Q;
and the vector x represents the state of a dynamic system.

This model for “marginally random” dynamics is quite useful for representing
physical systems (e.g., land vehicles, seacraft, aircraft) with zero-mean random
disturbances (e.g., wind gusts or sea surface currents). The state transition matrix ®;
represents the known dynamic behavior of the system, and the covariance matrices
Q, represent the unknown random disturbances. Together, they model the propaga-
tion of the necessary statistical properties of the state variable x.

Example 7.6 Harmonic Resonator with White Acceleration Disturbance
Noise. If the disturbance acting on the harmonic resonator of Examples 7.1-7.5
were zero-mean white acceleration noise with variance 6% pances then its distur-
bance noise covariance matrix would have the form

Q:[O , 0 ] (7.65)

0 O disturbance

7.3.2.3 Noise Distribution Matrix A common noise source can disturb more
than one independent component of the state vector representing a dynamic system.
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Forces applied to a rigid body, for example, can affect rotational dynamics as well as
translational dynamics. This sort of coupling of common disturbance noise sources
into different components of the state dynamics can be represented by using a noise
distribution matrix G in the form

%x = Fx + Gw(?), (7.66)

where the components of w(¢) are the common disturbance noise sources and the
matrix G represents how these disturbances are distributed among the state vector
components.

The covariance of state vector disturbance noise will then have the form GQ,,G™,
where Q,, is the covariance matrix for the white-noise process w(?).

The analogous model in discrete time has the form

Xp = @1 Xy + G Wiy, (7.67)

where {w,} is a zero-mean white-noise process in discrete time.

In either case (i.e., continuous or discrete time), it is possible to use the noise
distribution matrix for noise scaling, as well, so that the components of w;, can be
independent, uncorrelated unit normal variates and the noise covariance matrix
Q,, = L, the identity matrix.

7.3.2.4 Predictor Equations The linear stochastic process model parameters
® and Q can be used to calculate how the discrete-time process variables p and P
evolve over time.

Using Eq. 7.64 and taking expected values,

def
py = E(x;)

=@ E(X_y) + E(Wi_q)
=@ py_ +0
=®p_ 1y (7.68)

P E((x — m(xe — )"

= O E((X — Pge)(Ximt — ymy) DD
+ E(W,_;W;_,) + terms with expected value =0
=@, P + Q. (7.69)

7.4 SUMMARY OF KALMAN FILTER EQUATIONS

7.4.1 Essential Equations

The complete equations for the Kalman filter are summarized in Table 7.2.
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TABLE 7.2 Essential Kalman Filter Equations

Predictor (Time Updates)

Predicted state vector:

X (=) = @ X1 (+H) Eq. 7.68
Predicted covariance matrix:

Py(—) = ®4Py_{(H)Of + Qy_; Eq. 7.69
Corrector (Measurement Updates)
Kalman gain:

Ky = Py(—-)Hg(H P, (-)H; + Ry Eq. 7.46
Corrected state estimate:

Xic(+) = X (=) + Ki(24 — HXi () Eq. 7.1
Corrected covariance matrix:

Py (+) = Pr(—) — K H Py (—) Eq. 7.47

7.4.2 Common Terminology
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The symbols used in Table 7.2 for the variables and parameters of the Kalman filter
are essentially those used in the original paper by Kalman [71], and this notation is

fairly common in the literature.

The following are some names commonly used for the symbols in Table 7.2:

H is the measurement sensitivity matrix or observation matrix.
Hx, (—) is the predicted measurement.

z — HX;(—), the difference between the measurement vector and the predicted

measurement, is the innovations vector.

K is the Kalman gain.

P,(—) is the predicted or a priori value of estimation covariance.

P,(+) is the corrected or a posteriori value of estimation covariance.
Q,. is the covariance of dynamic disturbance noise.

R is the covariance of sensor noise or measurement uncertainty.

X, (—) is the predicted or a priori value of the estimated state vector.

X, (+) is the corrected or a posteriori value of the estimated state vector.
z is the measurement vector or observation vector.

7.4.3 Data Flow Diagrams

The matrix-level data flow of the Kalman filter implementation for a time-varying
problem is diagrammed in Fig. 7.5, with the inputs shown on the left, the outputs

(corrected estimates) on the right, and the symbol z

operator.

representing the unit delay

The dashed lines in the figure enclose two computation loops. The top loop is the
estimation loop, with the feedback gain (Kalman gain) coming from the bottom
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Fig. 7.5 Kalman filter data array flows for time-varying system.

loop. The bottom loop implements the Riccati equation solution used to calculate the
Kalman gain. This bottom loop runs “open loop,” in that there is no feedback
mechanism to stabilize it in the presence of roundoff errors. Numerical instability
problems with the Riccati equation propagation loop were discovered soon after the
introduction of the Kalman filter.
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7.5 ACCOMMODATING CORRELATED NOISE

The fundamental noise processes in the basic Kalman filter model are zero-mean
white Gaussian noise processes:

{w.}, called dynamic disturbance, plant noise, or process noise and

{v,}, called sensor noise, measurement noise, or observation noise.
However, it is not necessary that the physical noise processes of the real-world
application—either the dynamic disturbance or the sensor noise—be uncorrelated in
order to apply Kalman filtering.

For applications with uncorrelated noise sources, it is only necessary to model the

correlated noise process &, = v, w; using a linear stochastic system model of the
sort

§ =@, & | +yi1

where {y,} is a zero-mean white Gaussian noise process, and then augment the state
vector by appending the new variable &,

Xoriginal
Xaugmented = g (7 . 70)

and modify the parameter matrices ®, Q, and H accordingly.
7.5.1 Correlated Noise Models

7.5.1.1 Autocovariance Functions Correlation of a random sequence {,}

is characterized by its discrete-time autocovariance function P {gk}[Ak], a function of
the delay index Ak defined as

Py IAK] S Ep((& — m)(Epar — 1)), (7.71)

where p; is the mean value of the random sequence {§,}.
For white-noise processes,

0, Ak£0,
P[Ak]:{c Akio (1.72)

where C is the covariance of the process.
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7.5.1.2 Random Walks Random walks, also called Wiener processes, are
cumulative sums of white-noise processes {w;}:

& =§&_1+ w1, (7.73)

a stochastic process model with state transition matrix ® = I, an identity matrix.

Random walks are notoriously unstable, in the sense that the covariance of the
variate &, grows linearly with £ and without bound as & — oo. In general, if any of
the eigenvalues of a state transition matrix fall on or outside the unit circle in the
complex plane (as they all do for identity matrices), the variate of the stochastic
process can fail to have a finite steady-state covariance matrix. However, the
covariance of uncertainty in the estimated system state vector can still converge
to a finite steady-state value, even if the process itself is unstable. Methods
for determining whether estimation uncertainties will diverge are presented in
Chapter 8.

7.5.1.3 Exponentially Correlated Noise Exponentially correlated random
processes have finite, constant steady-state covariances. A scalar exponentially
random process {&;} has a model of the sort

S = &1 + Wiy, (7.74)
0<e<l,
£ =e M (7.75)

where At is the time period between samples and 7 is the exponential decay time
constant of the process. The steady-state variance ¢ of such a process is the solution
to its steady-state variance equation,

ot =+ 0 (7.76)

=1 _ng (7.77)
0

= (7.78)

where Q is the variance of the scalar zero-mean white-noise process {w;}.
The autocovariance sequence of an exponentially correlated random process in
discrete time has the general form

P[AKk] = o® exp(—|Ak|/N,), (7.79)
which falls off exponentially on either side of its peak value o¢? (the process

variance) at Ak = 0. The parameter N, is called the correlation number of the
process, where N, = t/At for correlation time 7 and sample interval Ar.
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7.5.1.4 Harmonic Noise Harmonic noise includes identifiable frequency
components, such as those from AC power or from mechanical or electrical
resonances. A stochastic process model for such sources has already been developed
in the examples of this chapter.

7.5.1.5 SA Noise Autocorrelation A clock dithering algorithm is described
in U.S. Patent 4,646,032 [134], including a parametric model of the autocorrelation
function (autocovariance function divided by variance) of the resulting timing errors.
SA was suspended on May 1, 2000, but can be turned on again. Knowledge of the
dithering algorithm does not necessarily give the user any advantage, but there is at
least a suspicion that this may be the algorithm used for SA dithering of the
individual GPS satellite time references. Its theoretical autocorrelation function is
plotted in Fig. 7.6 along with an exponential correlation curve. The two are scaled to
coincide at the autocorrelation coefficient value of 1/e ~ 0.36787944 ..., the
argument at which correlation time is defined. Unlike exponentially correlated
noise, this source has greater short-term correlation and less long-term correlation.

The correlation time of SA errors determined from GPS signal analysis is on the
order of 10>~10%s. It is possible that the actual correlation time is variable, which
might explain the range of values reported in the literature.

Although this is not an exponential autocorrelation function, it could perhaps be
modeled as such.

Autocorrelation function (from U.S. Patent #4,646,032)

0.9
Patented

08l algorithm

0.6 —

0.5 |~

Autocorrelation

0.3 -

Exponentially

02 correlated

0.1 -

0 | |
0 0.5 1 15 2

Relative time scale (tau/NT)

Fig. 7.6 Autocorrelation function for pseudonoise algorithm.
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7.5.1.6 Slow Variables SA timing errors (if present) are but one of a number
of slowly varying error sources in GPS/INS integration. Slow variables may also
include many of the calibration parameters of the inertial sensors, which can be
responding to temperature variations or other unknown but slowly changing
influences. Like SA errors, these other slow variations of these variables can often
be tracked and compensated by combining the INS navigation estimates with the
GPS-derived estimates. What is different about the calibration parameters is that they
are involved nonlinearly in the INS system model.

7.5.2 Empirical Noise Modeling

Noise models used in Kalman filtering should be reasonably faithful representations
of the true noise sources. Sensor noise can often be measured directly and used in
the design of an appropriate noise model. Dynamic process noise is not always so
accessible, and its models must often be inferred from indirect measurements.

7.5.2.1 Spectral Characterization Spectrum analyzers and spectrum analy-
sis software make it relatively easy to calculate the power spectral density of sampled
noise data, and the results are useful for characterizing the type of noise and
identifying likely noise models.

The resulting noise models can then be simulated using pseudorandom
sequences, and the power spectral densities of the simulated noise can be compared
to that of the sampled noise to verify the model.

The power spectral density of white noise is constant across the spectrum, and
each successive integral changes its slope by —20dB/decade of frequency, as
illustrated in Fig. 7.7.

7.5.2.2 Shaping Filters The spectrum of white noise is flat, and the amplitude
spectrum of the output of a filter with white-noise input will have the shape of the
amplitude transfer function of the filter, as illustrated in Fig. 7.8. Therefore, any
noise spectrum can be approximated by white noise passed through a shaping filter
to yield the desired shape. All correlated noise models for Kalman filters can be
implemented by shaping filters.

7.5.3 State Vector Augmentation

7.5.3.1 Correlated Dynamic Disturbance Noise A model for a linear
stochastic process model in discrete time with uncorrelated and correlated distur-
bance noise has the form

X, =@, ;1% + G o1 Wak—1 + Deg 18 (7.80)
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where w;,_; = zero-mean white (i.e., uncorrelated) disturbance noise
G, 1 = White-noise distribution matrix

&, = zero-mean correlated disturbance noise
D, ,_; = correlated noise distribution matrix

If the correlated dynamic disturbance noise can be modeled as yet another linear
stochastic process

E =@ &1 +Gp o1 We joi

(7.81)
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Putting white noise through shaping filters.
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with only zero-mean white-noise inputs {w, ,}, then the augmented state vector

def| Xk
Xaug,k ;I:g :| (782)
k

has a stochastic process model

(I)x,k—l D{_‘x,k—l
Xaug.k = 0 (I){ e Xaug k—1

wa,k—l 0
[ 0 Guer i| [Wer1Wesi] (7.83)

having only uncorrelated disturbance noise with covariance

0
Qaug,k—l = |:QW)6k_1 Qwi,k—l j| (784)

The new measurement sensitivity matrix for this augmented state vector will have
the block form

Haug,k =[H; O] (7.85)

The augmenting block is zero in this case because the uncorrelated noise source is
dynamic disturbance noise, not sensor noise.

7.5.3.2 Correlated Noise in Continuous Time There is an analogous
procedure for state augmentation using continuous-time models. If &) is a
correlated noise source defined by a model of the sort

d
Eg =F:£+w; (7.86)
for w:(#) a white-noise source, then any stochastic process model of the sort

d
%= Ex w0+ £0) (7.87)

with this correlated noise source can also be modeled by the augmented state vector

Xoug = [2} (7.88)
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as

d F, 1 W,
Exaug = |: 0 FVi|Xaug + |:Wf:| (789)

with only uncorrelated disturbance noise.

7.5.3.3 Correlated Sensor Noise The same sort of state augmentation can
be done for correlated sensor noise {§,},

7, = Hyx, + Apv + B§,, (7.90)
with the same type of model for the correlated noise (Eq. 7.81) and using the same

augmented state vector (Eq. 7.82), but now with a different augmented state
transition matrix

_ (I)x,k—l 0
(I)aug,kfl - |: 0 (I)C,k—l] (791)

and augmented measurement sensitivity matrix

H,,,=[H, Bl (7.92)

aug,k

7.6 NONLINEAR AND ADAPTIVE IMPLEMENTATIONS

Although the Kalman filter is defined for linear dynamic systems with linear sensors,
it has been applied more often than not to real-world applications without truly linear
dynamics or sensors—and usually with remarkably great success.

7.6.1 Nonlinear Dynamics

State dynamics for nonlinear systems are assumed to be definable in the functional
form

d
ax =f(x, 1) + w(?), (7.93)

where the function f is assumed to be differentiable with Jacobian matrix

of of
Fx, ) &= or — , (7.94)
OX [5r) X | nom 1)
——

extended linearized
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where the extended Kalman filter uses the estimated trajectory for evaluating the
Jacobian, and linearized Kalman filtering uses a nominal trajectory.

7.6.1.1 Nonlinear Dynamics with Control In applications with control
variables u(¢), Eq. 7.93 can also be expressed in the form

%x = f(x, u(?), ) + w(r), (7.95)

in which case the control vector u may also appear in the Jacobian matrix F.

7.6.1.2 Propagating Estimates The estimate X is propagated by solving the
differential equation

d, N
ax =f1(X, 1), (7.96)

using whatever means necessary (e.g., Runge—Kutta integration). The solution is
called the frajectory of the estimate.

7.6.1.3 Propagating Covariances The covariance matrix for nonlinear
systems is also propagated over time as the solution to the matrix differential
equation

%P(r) = F(x(1), HP(t) + P(OF' (x(£), £) + Q(2), (7.97)

where the values of F(¢) from Eq. 7.94 must be calculated along a trajectory x(¢).
This trajectory can be the solution for the estimated value X calculated using the
Kalman filter and Eq. 7.96 (for the extended Kalman filter) or along any “nominal”
trajectory (“linearized” Kalman filtering).

7.6.2 Nonlinear Sensors

Nonlinear Kalman filtering can accommodate sensors that are not truly linear but can
at least be represented in the functional form

7 = hy(x;) + Vi, (7.98)

where h is a smoothly differentiable function of x. For example, even linear sensors
with nonzero biases (offsets) by, Will have sensor models of the sort

h(X) = HX + bgpeors (799)
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in which case the Jacobian matrix

g, ¢ | (7.100)

7.6.2.1 Predicted Sensor Outputs The predicted value of nonlinear sensor
outputs uses the full nonlinear function applied to the estimated state vector:

7.6.2.2 Calculating Kalman Gains The value of the measurement sensitivity
matrix H used in calculating Kalman gains is evaluated as a Jacobian matrix

oh dh
H =2 a , 7.102
T ex | T ynom ( )
extended linearized

where the first value (used for extended Kalman filtering) uses the estimated
trajectory for evaluation of partial derivatives, and the second value uses a nominal
trajectory (for linearized Kalman filtering).

7.6.3 Linearized Kalman Filter

Perhaps the simplest approach to Kalman filtering for nonlinear systems uses
linearization of the system model about a nominal trajectory. This approach is
necessary for preliminary analysis of systems during the system design phase, when
there may be several potential trajectories defined by different mission scenarios.
The essential implementation equations for this case are summarized in Table 7.3.

7.6.4 Extended Kalman Filtering

Extended Kalman filtering is nonlinear Kalman filtering with all Jacobian matrices
(i.e., H and/or F) evaluated at X, the estimated state. The essential extended Kalman
filter equations are summarized in Table 7.4, the major differences from the
conventional Kalman filter equations of Table 7.2 being

1. integration of the nonlinear integrand x = f(x) to predict X,(—),

2. use of the nonlinear function h,(X,(—)) in measurement prediction,

3. use of the Jacobian matrix of the dynamic model function f as the dynamic
coefficient matrix F in the propagation of the covariance matrix, and

4. use of the Jacobian matrix of the measurement function h as the measurement
sensitivity matrix H in the covariance correction and Kalman gain equations.



210 KALMAN FILTER BASICS

TABLE 7.3 Linearized Kalman Filter Equations

Predictor (Time Updates)

Predicted state vector:

T

Xi(—) = Xy _4(+) +J f(x, 1) dt Eq. 7.96
te1

Predicted covariance matrix:

P=FP+PF +Q() Eq. 7.97

F= Eq. 7.94

X | ynom )
or
P(—) = ®4Py_{ (1@} + Q_, Eq. 7.69

Corrector (Measurement Updates)

Kalman gain:

Ky = Pe(-)HL(HP(-)H + R Eq. 7.46

H, = % o Eq. 7.102
Corrected state estimate:

X () = X, (—) + Ky [z — h (X ()] Egs. 7.1, 7.101
Corrected covariance matrix:

P.(+) = Pr(—) — KH(P(—) Egs. 7.47, 7.102

This approach is due to Stanley F. Schmidt, and it has been used successfully in
an enormous number of nonlinear applications.

7.6.5 Adaptive Kalman Filtering

In adaptive Kalman filtering, nonlinearities in the model arise from making
parameters of the model into functions of state variables. For example, the time
constant 7 of an exponentially correlated process

At
Xy = exp(— T)Xk_l + Wy (7103)

may be unknown or slowly time varying, in which case it can be made part of the
augmented state vector
X
Xaug = T
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TABLE 7.4 Extended Kalman Filter Equations

Predictor (Time Updates)

Predicted state vector:

Xk(=) = Xy () + [rk f(x, t) dt Eq. 7.96

Predicted covarianégi;natrix:

P=FP+PF +Q(t) Eq. 7.97

F= Eq. 7.94
X |5

or

Pi(—) = ®Py_(+)®Pf + Q,_, Eq. 7.69

® =Fo

D(t_4) =1

Corrector (Measurement Updates)

Kalman gain:

K, = P(-)HI(HP,(—)H] + R~ Eqgs. 7.46, 7.102
Corrected state estimate:

X (4) = X (=) + K[z — hy (X, (—)] Egs. 7.1, 7.101
Corrected covariance matrix:

Py(+) = Py(—) — KH Py (-) Egs. 7.47, 7.102

with dynamic model Jacobian

_ﬂ At exp(—At/7)x
F=| P77 2
0 exp(—At/t*)

where 7* > 7 is the exponential time constant of the variations in 7.

Example 7.7 Consider the problem of tracking the phase components of a damped
harmonic oscillator with slowly time-varying resonant frequency and damping time
constant. The state variables for this nonlinear dynamic system are

X, the in-phase component of the oscillator output signal (i.e, the only observable
component);

X,, the quadrature-phase component of the signal;
x3, the damping time constant of the oscillator (nominally 5 s); and
x4, the frequency of oscillator (nominally 2 nrad/s, or 1 Hz).
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The dynamic Jacobian matrix will be

—1/x; x4 x /%3 X,
Fo —x;  —l/x5 x/x3 —X;
0 o -1/, o |
0 0 0 -1/z,

where 7, is the correlation time for the time-varying oscillator damping time
constant, and 7, is the correlation time for the time-varying resonant frequency of
the oscillator.

If only the in-phase component or the oscillator output can be sensed, then the
measurement sensitivity matrix will have the form

H=[1 0 0 0].

Figure 7.9 is a sample output of the MATLAB m-file osc_ekf.m on the accompany-
ing diskette, which implements this extended Kalman filter. Note that it tracks the
phase, amplitude, frequency, and damping of the oscillator.

In-Phase
o

Quadrature
o

0 2 4 6 8 10 12
55 r T T
3 Lt bt ad ik L F -
8 5M i b iy vﬁm -- est.
A . L — true
4':0 2 4 6 8 10 12
©
Dol 4
g W
o
5 I L s 1 n
0 2 4 6 8 10 12

Time [sec]

Fig. 7.9 Extended Kalman filter tracking simulated time-varying oscillator.
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The unknown or time-varying parameters can also be in the measurement model.
For example, a sensor output with time-varying scale factor S and bias b can be
modeled using an augmented state vector of the sort

z=2Sx+b,

xaug =

> 0 =

and measurement sensitivity matrix

H=[§ % 1]

7.7 KALMAN-BUCY FILTER

7.7.1 Basic Equations

The analog of the Kalman filter in continuous time is the Kalman—Bucy filter,
developed jointly by Rudolf Kalman and Richard Bucy [72]. Stochastic process
models in continuous time are defined by stochastic differential equations of the sort

d
EX: Fx + w(?), (7.104)

where w(r) is a zero-mean white noise-process in continuous time. The mathematical
foundations for stochastic differential equations require a different type of calculus
(called the stochastic calculus® or Ité calculus), because white-noise processes are
not integrable functions in the ordinary (Riemann) calculus. However, the resulting
matrix Riccati differential equation for propagation of the covariance matrix

d
EP:FP+PFT+Q (7.105)

is integrable in the ordinary calculus, although the units of this Q matrix will be
different from those of Q in the Kalman filter.
The analogous differential equation for propagation of the estimate has the form

d, . .
SX= FX + PH'R!(z — HX), (7.106)

iKB

3 Jazwinski [67] uses the stochastic calculus to develop the Kalman—Bucy filter.
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with Kalman—Bucy gain Ky = PH'R™!, which is quite different from the Kalman
gain. The units of this matrix R (covariance of sensor errors) are different from those
of R in the Kalman filter, also.

7.7.2 Advantages of Kalman-Bucy Filtering

People already familiar with differential equations may find the Kalman—Bucy filter
more intuitive and easier to work with than the Kalman filter—despite complications
of the stochastic calculus. To its credit, the Kalman—Bucy filter requires only one
equation each for propagation of the estimate and its covariance, whereas the
Kalman filter requires two (for prediction and correction).

However, if the result must eventually be implemented in a digital processor, then
it will have to be put into discrete-time form. Formulas for this transformation are
given below. Those who prefer to “think in continuous time” can develop the
problem solution first in continuous time as a Kalman—Bucy filter, then transform the
result to Kalman filter form for implementation.

7.7.3 Model Parameters

Formulas for the Kalman filter parameters Q, and R, as functions of the Kalman—
Bucy filter parameters Q(#) and R(¢) can be derived from the process models.

7.7.3.1 Q(f) and Qx The relationship between these two distinct matrix
parameters depends on the coefficient matrix F(¢) in the stochastic system model:

fy t ty T
Q.= J exp (J F(s) ds)Q(t) exp (J F(s) ds) dr. (7.107)

f_ t t

7.7.3.2 R(f) and R, This relationship will depend on how the sensor outputs in
continuous time are filtered before sampling for the Kalman filter. If the sensor
outputs were simply sampled without filtering, then

However, it is common practice to use anti-alias filtering of the sensor outputs before
sampling for Kalman filtering. Filtering of this sort can also alter the parameter H
between the two implementations. For an integrate-and-hold filter (an effective anti-
aliasing filter), this relationship has the form

R, = th RO dt, (7.109)

s
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in which case the measurement sensitivity matrix for the Kalman filter will be
Hyg = At Hgp, where Hyp is the measurement sensitivity matrix for the Kalman—
Bucy filter.

7.8 GPS RECEIVER EXAMPLES

The following is a simplified example of the expected performance of a GPS
receiver using

1. DOP calculations and
2. covariance analysis using the Riccati equations of a Kalman filter

for given sets of GPS satellites. These examples are implemented in the MATLAB
m-file GPS_perf.m on the accompanying diskette.

7.8.1 Satellite Models

This example demonstrates how the Kalman filter converges to its minimum error
bound and how well the GPS system performs as a function of the different phasings
of the four available satellites. In the simulations, the available satellites and their
respective initial phasings include the following:

Satellite No. Q, (deg) 0y (deg)

1 326 68
2 26 340
3 146 198
4 86 271
5 206 90

The simulation runs two cases to demonstrate the criticality of picking the correctly
phased satellites. Case 1 chooses satellites 1, 2, 3, and 4 as an example of an
optimum set of satellites. Case 2 utilizes satellites 1, 2, 3, and 5 as an example of a
nonoptimal set of satellites that will result in the dreaded “GDOP chimney” measure
of performance.

Here, the GPS satellites are assumed to be in a circular orbital trajectory at a 55°
inclination angle. The angle € is the right ascension of the satellite and 0, is the
angular location of the satellite in its circular orbit. It is assumed that the satellites
orbit the earth at a constant rate 6 with a period of approximately 43,082 s or slightly
less than one half a day. The equations of motion that describe the angular phasing of
the satellites are given, as in the simulation:

Q) = Qy — O, 0(t) = 0, + 01,
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where the angular rates are given as

T v
- 286,164’ 0 =243,082’

where ¢ is in seconds. The projects simulate the GPS system from # = 0s to 3600 s as
an example of the available satellite visibility window.

7.8.2 Measurement Model

In both the GDOP and Kalman filter models, the common observation matrix
equations for discrete points is

zx = Hyx + vy,

where z, H, and v are the vectors and matrices for the kth observation point in time
k. This equation is usually linearized when calculating the pseudorange by defining
z=p—py=Hx+ 0.

Measurement noise v is usually assumed to be A(0, R) (normally distributed
with zero mean and variance R). The covariance of receiver error R is usually
assumed to be the same error for all measurements as long as all the same conditions
exist for all time intervals (03600 s) of interest. By defining the measurement Z as
the difference in the delta in position, the measurement sensitivity matrix H can be
linearized and approximated as HU (ie., first-order linear approximation) by
defining

oy _ 9pr
o’

1

H

where i refers to the n different states of the Kalman filter and p, is the reference
pseudorange.

7.8.3 Coordinates

The orbital frame coordinates used in this simulation simplify the mathematics by
using a linear transformation between the ECEF coordinate system to a locally level
coordinate frame as the observer’s local reference frame. Then, the satellite positions
become
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where (¥, y, Z) are the locally level coordinates of the satellites x, y, z original
ECEF coordinates. Here, R is the earth’s radius. This assumes a user position at
(0, 0, 0) and makes the math simpler because now the pseudorange can be written as

P18 =/ 11 (0) — O + (1, (6) — 0 + (,(8) — 0)2,

—(x () -0

Al =
+ 0 p1(0)

’

where Al'l represents the partial of the pseudorange with respect to x (component of
the A matrix). Therefore, the default earth and orbit constants are defined as

R =26560000.0, E Rad = 6380000.0, o = (55°).

7.8.4 Measurement Sensitivity Matrix

The definition of the different elements of the A matrix are
x1(t) = R{cos[0(t)] sin[Q(r)] + sin[0(1)] cos[Q(r)] cos o},

()= R{sin[O(t)]} sina,
z,(t) = R{ cos[0(2)] cos[Q(¢)] — sin[0(¢)] sin[Q(¢)] cos oc} — E Rad,

pi(0) = 0 OF + D1 OF + [0,

—x (1)
hpy = =@
A=
A _ —J’1(f)’
NG

10,
0=

and likewise for each of the other four satellites.
The complete H!! matrix can then be defined as

hL() A0 k1)
h2,() h2,(6) h2,(1)
W3,() h3,(0) h3,(0)
ha (1) ha(0)  ha(1)

H(t) =

—_— = = =
S O O O

where the last two columns refer to the clock bias and clock drift.
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In calculating GDOP only, the clock bias is used in the equations, so the H matrix
becomes

R hLG)  h1(0)

i
W) R () ]
HO=1 1300 w3 man 1

]

ha (1) hd,(1) hd.(2)

The calculation of the GDOP and various other DOP are then defined in terms of
this H(#) matrix as a function of time #:

A = [HOTHO ™,
GDOP(¢) = v/u[A(0)],
PDOP() = \/A(t)l,1 + A(0)5 + A(1)3 5,
HDOP() = \/4(0),, + A,
VDOP(:) = \[4(2) 5,
TDOP() = \/4(1) .

7.8.5 Implementation Results

7.8.5.1 DOP Calculations 1In the MATLAB implementation, the GDOP,
PDOP, HDOP, VDOP, and TDOP, are defined and plotted for the two different
cases of satellite phasings.

Case 1: Good Geometry The results from Case 1 (satellites 1, 2, 3 and 4) show
an excellent GDOP ranging to less 3.2 as a function of time. Figure 7.10 shows the
variation of GDOP in meters as a function of time. This is a reasonable GDOP.
Figure 7.11 shows all of the DOPs in meters as a function of time.

Case 2: Bad Geometry Case 2 satellite phasing results in the infamous GDOP
“chimney peak” during that time when satellite geometry fails to provide observa-
bility of user position. Figure 7.12 shows the resulting GDOP plots. It shows that
two satellites out of four are close to each other and thereby do not provide linearly
independent equations. This combination of satellites cannot be used to find the user
position, clock drift, and biases. Figure 7.13 is a multiplot of all the DOPs.

7.8.5.2 Kalman Filter Implementation For the second part of the example, a
covariance analysis of the GPS/Kalman filter system is used to evaluate the
performance of the system, given initial position estimates and estimates of receiver
R and system dynamic O noise. This type of analysis is done if actual measurement
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Fig. 7.10 Case 1 GDOP.
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Fig. 7.12 Case 2 GDOP.
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Fig. 7.13 Case 2 DOPs.

data is not available and can serve as a predictor of how well the system will
converge to a residual error estimate in the position and time. The masking error in
the O matrix is

0.333 0 0 0 0

0 0.333 0 0 0
0=10 0 0.333 0 0 ,

0 0 0 0.0833 0

0 0 0 0 0.142

where dimensions are in meters squared and meters squared per seconds squared.
The receiver noise R matrix in meters squared is

225 0 0 0
R— 0 225 0 0
0 0 225 0

0 0 0 225

The initial transformation matrix between the first and next measurement is the
matrix

S

Il
cocooco~
cocoo~o
co—~oo
o—~ococo
—— o oo



7.8 GPS RECEIVER EXAMPLES 221

The assumed initial error estimate was 100m and is presented by the Py(+)
matrix and is an estimate of how far off the initial measurements are from the actual
points:

10,000 0 0 0 0
0 10,000 0 0 0

P+ =| © 0 10,000 0 0
0 0 0 90,000 O
0 0 0 0 900

These assumptions assume a clock bias error of 300 m and a drift of 30 m/s. The
discrete extended Kalman filtering equations, as listed in Table 7.2, are the a priori
covariance matrix

Py(=) = OP,_ ()" + Oy,
the Kalman gain equation
K, = P H"H + P + R
and the a posteriori covariance matrix
Py(H) = (I = KeHVPy(-).

The diagonal elements of the covariance matrices P,(—) (predicted) and P,(+)
(corrected) are plotted as an estimate of how well the individual x, y, z and clock
drift errors converge as a function of time for t = 1 to t = 150s.

In a real system, the O, R, and ® matrices and Kalman gain estimates are under
control of the designer and need to be varied individually to obtain an acceptable

residual covariance error. This example only analyzes the covariance estimates for
the given Q, R, and ® matrices, which turned out to be a satisfactory set of inputs.

Simulation Procedure Start Simulation r =0, ..., 3600.
Case 1: Satellites 1, 2, 3, and 4:

T T T T
Ql=326000. Q2=2600. Q3=14670. QA =86 .
T T T T

Define variables:

m T
. _286,164’ 0,—243’082.




222 KALMAN FILTER BASICS

The angular rate equations are

QL) = Qyl —Q,1, 01(f) = 0,1 + 0,1,
Q2(f) = Q2 — Q.t, 02(f) = 0,2 + 0,1,
Q3(1) = Q3 — Q. 1, 03(1) = 0,3 + 0,1,
Q4(f) = Qyd — Q.1, 04() = 64 + 0,1

The default earth constants are
R = 26560000.0, E Rad = 6380000.0, cos o = cos 55°, sin o = sin 55°,
For satellite 1:

x1(t) = R{cos[0,(1)] sin[Q;(#)] + sin[0,(1)] cos Q,(r) cos a},
y1(t) = R{sin[6,(1)] sin
z)(1) = R{cos[0, (1)] cos[Q, (1)] — sin[0(¢)] sin[Q, (r)] cos o} — E Rad,

o) = I OF + DO + 210

and the H matrix elements are

—x;(7)
pi(0)

—zy(1)
pi(t)

_ (1)
pi(0)

hl () = AN0) hl.(f) =

For satellite 2

x5(¢) = R{cos[0,(1)] sin[Q,(#)] + sin[0,(£)] cos ,(¢) cos a},
¥o(t) = Rsin[0,(1)] sina, .
2,(t) = R{cos[0,(£)] cos[Q,(#)] — sin[0,(#)] sin[Q,(#)] cos «} — E Rad,

p2(0) =\ I OF + D20 + 0P

and the H matrix elements are

—x,(1)
py(t)

—,(?)

_ _—5()
pa(t)

()

h2.(t) = h2,(1) h2.(1)
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For satellite 3

x3(t) = R{cos[05(1)] sin[Q5(#)] + sin[0;(#)] cos Q5(¢) cos a},
¥3(t) = R sin[0;(¢)] sin «,

z3(t) = R{cos[05(#)] cos[€2;(#)] — sin[05(7)] sin[Q(7)] cos &} — E Rad,

p3(0) =I53O + s OF + 2501,
and the H matrix elements are

—5(1)
p3(0)

—x3(t)

p3(0)

_ —23(7)
p3(1)

h3.(t) = h3,(1) = h3,(1)

For satellite 4

x4(t) = R{cos[0,(#)] sin[Q,(¢)] + sin[0,(#)] cos ,(¢) cos o},
v4(t) = Rsin[04(¢)] sina,

z,(t) = R{cos[0,(?)] cos[€2(¢)] — sin[04(¢)] sin[Q,4(f)] cos o} — E Rad,

pa(t) = \/ [aF + DaF + [2(0F,

and the H matrix elements are

0=y 0=l =T
Complete A matrix:
h1(H) 1) Rl () 1 0
o= 560 1 1o |
ha (1) hd, (@) h4.() 1 0

The H matrix used in the GDOP calculation is

RL() b0 A1)
R2,(1) 2,0 h2.(0)
B3,(1) B3, h3.(0)
ha (1) A, () h4.(0)

HY(t) =

—_— e —

223
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The noise matrix is

0.333 0 0 0 0
0 0.333 0 0 0
0= 0 0 0.333 0 0
0 0 0 0.0833 0
0 0 0 0 0.142
The initial guess of the Py(+) matrix is
10,000 0 0 0 0
0 10,000 0 0 0
Py(+) = 0 0 10,000 0 0
0 0 0 90,000 0
0 0 0 0 900

and the R matrix is

225 0 0 0

R_ozzsoo
1o o 225 0o [

0 0 0 225
A = [HTOHM @],

GDOP(f) = /tr[A(1)].

Kalman Filter Simulation Results Figure 7.14 shows the square roots of the
covariance terms P;; (RMS east position uncertainty), both predicted (dashed line)
and corrected (solid line). After a few iterations, the RMS error in the x position is
less than 5 m. Figure 7.15 shows the corresponding RMS north position uncertainty
in meters, and Figure 7.16 shows the corresponding RMS vertical position
uncertainty in meters.

Figures 7.17 and 7.18 show the square roots of the error covariances in clock bias
and clock drift rate in meters.

Problems

7.1 Demonstrate the property of the matrix exponentials in Eq. 7.55 by showing
that

d
mexp(At F) = Fq),

with F defined by Eq. 7.53 and ® = exp(A¢ F) defined by Eq. 7.62.
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Fig. 7.14 RMS east position error.
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Fig. 7.15 RMS north position error.
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Fig. 7.16 RMS vertical position error.
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100

gfl

z
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Fig. 7.17 RMS clock error.
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\/!,_10
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Fig. 7.18 RMS drift error.

7.2 Given the scalar plant and observation equations
X = Xp—15 2 =x; 0 ~ N, a7)
and white noise
Exo=1,  Ex}=P,,

find the estimate of x; and the steady-state covariance.
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7.3 Given the vector plant and scalar observation equations,

1 1
X, = |:0 | ]xk_l 4+ w;_; (normal and white),

zz =[1 Olx;+ v, (normal and white),

0 0
EWK:O, Qk: 0 1 5

Ev, =0, R, =1+(=1)F,

find the covariances and Kalman gains for k = 10, P, = [ 10 0 i|

0 10
7.4 Given
_ 1 1 4 1( )
Xp = 0 lxkfl % 8)

zy =[1 Olx; 4+ vy ~ normal and white,

where g is gravity, find X;, P,(+) for k = 6:

A [90} » [10 0}
Xg = s = s
0 1 0 0 2

Ev, =0, Ev; =2

7.5 Given
Xp = —2X 1 + W1,
z;, = x; + v, ~ normal and white,
Ev, =0, Ev; =1,

Ew, =0, E(wkwj) = e Ik,

find the covariances and Kalman gains for £ = 3, P, = 10.
7.6 Given
El(w, = 1)(w; = D] = e,

find the discrete equation model.

7.7 Given
E(w(t,) — 1][w(ty) — 1]) = e~ 11721,

find the differential equation model.

227
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7.8 Based on the 24-satellite GPS constellation, five satellite trajectories are
selected, and their parameters tabulated accordingly:

o = 55°

Satellite ID
Q(°) 0(°)
272.847 268.126
332.847 80.956
32.847 111.876
92.847 135.226
0 152.847 197.046

= O oo NO®

(a) Choose correctly phased satellites of four.

(b) Calculate DOPs to show their selection by plots.

(¢) Use Kalman filter equations for P,(—), K;, and P;(+) to show the errors.
Draw the plots. This should be done with good GDOP.

Choose user positions at (0, 0, 0) for simplicity.
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Kalman Filter Engineering

We now consider the following, practical aspects of Kalman filtering applications:

1.

8.1

8.1.1

how performance of the Kalman filter can degrade due to computer roundoff
errors and alternative implementation methods with better robustness against
roundoff;

how to determine computer memory, word length, and throughput require-
ments for implementing Kalman filters in computers;

ways to implement real-time monitoring and analysis of filter performance;

. the Schmidt-Kalman suboptimal filter, designed for reducing computer

requirements;

covariance analysis, which uses the Riccati equations for performance-based
predictive design of sensor systems; and

Kalman filter architectures for GPS/INS integration.

MORE STABLE IMPLEMENTATION METHODS

Effects of Computer Roundoff

Computer roundoff limits the precision of numerical representation in the imple-
mentation of Kalman filters. It has been shown to cause severe degradation of filter
performance in many applications, and alternative implementations of the Kalman
filter equations (the Riccati equations, in particular) have been shown to improve
robustness against roundoff errors.

229
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Computer roundoff for floating-point arithmetic is often characterized by a single
parameter &.,nq0rr» Which is the largest number such that

1 + &roundofr = 1 in machine precision. 8.1)

The following example, due to Dyer and McReynolds [32], shows how a problem
that is well conditioned, as posed, can be made ill-conditioned by the filter
implementation.

Example 8.1 Let I, denote the n x » identity matrix. Consider the filtering problem
with measurement sensitivity matrix

and covariance matrices
P, =15, and R = 6’1,

where 6° < &ungofr DUt O > Eroungorr- In this case, although H clearly has rank 2 in
machine precision, the product HP(HT with roundoff will equal

3 340
340 3420
which is singular. The result is unchanged when R is added to HP,H". In this case,

then, the filter observational update fails because the matrix HP,H' + R is not
invertible.

8.1.2 Alternative Implementations

The covariance correction process (observational update) in the solution of the
Riccati equation was found to be the dominant source of numerical instability in the
Kalman filter implementation, with the more common symptoms of failure being
asymmetry of the covariance matrix (easily fixed) or, worse by far, negative terms on
its diagonal. These implementation problems could be avoided for some problems
by using more precision, but they were eventually solved for most applications by
using alternatives to the covariance matrix P as the dependent variable in the
covariance correction equation. However, each of these methods required a com-
patible method for covariance prediction. Table 8.1 lists several of these compatible
implementation methods for improving the numerical stability of Kalman filters.
Figure 8.1 illustrates how these methods perform on the ill-conditioned problem
of Example 8.1 as the conditioning parameter § — 0. For this particular test case,
using 64-bit floating-point precision (52-bit mantissa), the accuracy of the Carlson
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TABLE 8.1 Compatible Methods for Implementing the
Riccati Equation

Covariance Implementation Methods

Matrix Corrector Predictor
Format Method Method

Symmetric Kalman [71], Kalman [71]
nonnegative Joseph [19] Kalman [71]
definite

Square Potter Cii1(—) = DCy(+)
Cholesky [100, 8]
factor C

Triangular Carlson [20] Kailath—Schmidt?
Cholesky
factor C

Triangular Morf—Kailath combined [93]
Cholesky
factor C

Modified Bierman [10] Thornton [116]
Cholesky
factors U,D

2 From unpublished sources.

10 . .
0
o 10° } ;
£
s
wi
210°} .
«
Q
14
S
® 10"} :
10" 1905p9) =52 _sart(eps)
10% 10" 10" 10° 10°

delta

Fig. 8.1 Degradation of numerical solutions with problem conditioning.
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[20] and Bierman [10] implementations degrade more gracefully than the others as
0 — ¢, the machine precision limit. The Carlson and Bierman solutions still
maintain about nine digits (30 bits) of accuracy at é ~ /¢, when the other
methods have essentially no bits of accuracy in the computed solution.

These results, by themselves, do not prove the general superiority of the Carlson
and Bierman solutions for the Riccati equation. Relative performance of alternative
implementation methods may depend upon details of the specific application, and
for many applications, the standard Kalman filter implementation will suffice. For
many other applications, it has been found sufficient to constrain the covariance
matrix to remain symmetric.

8.1.3 Serial Measurement Processing

It is shown in [73] that it is more efficient to process the components of a
measurement vector serially, one component at a time, than to process them as a
vector. This may seem counterintuitive, but it is true even if its implementation
requires a transformation of measurement variables to make the associated measure-
ment noise covariance R a diagonal matrix (i.e., with noise uncorrelated from one
component to another).

8.1.3.1 Measurement Decorrelation If the covariance matrix R of measure-
ment noise is not a diagonal matrix, then it can be made so by UDUT decomposition
(Eq. B.22) and changing the measurement variables,

R.,, = UzD;U}, (8.2)
Ryecor def D; (a diagonal matrix), (8.3)
Zaceorr = Up\Zeorr, (8.4)
Hyecon = Up\Hegr, (8.5)

where R, is the nondiagonal (i.e., correlated component to component) measure-
ment noise covariance matrix, and the new decorrelated measurement vector Zg...
has a diagonal measurement noise covariance matrix Ry, and measurement
sensitivity matrix Hyegop-

8.1.3.2 Serial Processing of Decorrelated Measurements The compo-
nents of z4.,, can now be processed one component at a time using the
corresponding row of Hy., as its measurement sensitivity matrix and the
corresponding diagonal element of Ry, as its measurement noise variance.

A MATLAB implementation for this procedure is listed in Table 8.2, where the
final line is a “symmetrizing” procedure designed to improve robustness.
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TABLE 8.2 Matlab Implementation of
Serial Measurement Update

X = Xy
P = Py,
for j=1: ¢,

= Zk(,
H=H(3,:);

R = Ryccorr (jl])l
K- PH’/(HPH +R)
X
P

= K (z-Hx);
= P-KHP;
end;
Ryp) = X
Py = (P+P’) /2;

8.1.4 Joseph Stabilized Implementation

This implementation of the Kalman filter is in [19], where it is demonstrated that
numerical stability of the solution to the Riccati equation can be improved by
rearranging the standard formulas for the measurement update into the following
formats (given here for scalar measurements):

z
f=—2 8.6
VR ®.6)
H = #H, (8.7)
K = (HPH" + 1)"'PH", (8.8)
P« (/ —KH)P(J —KH)" + KK . (8.9)

These equations would replace those for K and P within the loop in Table 8.2.

The Joseph stabilized implementation and refinements (mostly taking advantage
of partial results and the redundancy due to symmetry) in [10], [46] and are
implemented in the MATLAB files Joseph.m, Josephb.m, and Josephdv.m,
respectively, on the accompanying diskette.

8.1.5 Factorization Methods

8.1.5.1 Historical Background Robust implementation methods were intro-
duced first for the covariance correction (measurement updates), observed to be the
principal source of numerical instability. In [100, 8], the idea of using a Cholesky
factor (defined in Section B.8.1) of the covariance matrix P, as the dependent
variable in the Riccati equation is introduced.

Carlson [20] discovered a more robust method using triangular Cholesky factors,
which have zeros either above or below their main diagonals. Bierman [10] extended



234 KALMAN FILTER ENGINEERING

this to modified Cholesky factors (defined in Section B.1.8.1), which are diagonal
and unit triangular matrices D and U, respectively, such that

UDuU' =P (8.10)

and U is triangular with 1’s along its main diagonal.

Compatible covariance prediction methods were discovered by Thomas Kailath
and Stanley F. Schmidt (for Carlson’s method) and Catherine Thornton [116] (for
Bierman’s method).

8.1.6 Square-Root Filtering Methods

8.1.6.1 Problems with the Riccati Equation Many early applications of
Kalman filtering ran into serious numerical instability problems in solving the
ancillary Riccati equation for the Kalman gain. The problem was eventually solved
(over the next decade or so) by reformulating the Riccati equation so that its solution
was more robust against computer roundoff errors. Some of the more successful of
these approaches are collectively called “square-root filtering.”

8.1.6.2 Square-Root Filtering The concept for square-root filtering came
from James H. Potter when he was at the MIT Instrumentation Laboratory (later the
Charles Stark Draper Laboratory) in the early 1960s, and his concept was
implemented successfully in the Kalman filter used for onboard navigation in all
the Apollo moon missions. Potter’s algorithm is implemented on the Matlab m-file
potter.m on the accompanying diskette. It was originally called square-root
filtering because it is based, in part, on an algorithm for taking a symmmetric square
root of a special form of a symmetric matrix.

The improved robustness of Potter’s approach comes from replacing the covar-
iance matrix P with its Cholesky factor' as the dependent parameter of the Riccati
equation. Some of the observed improvement in numerical stability is attributed to
improvement in the condition number cond(C) (ratio of largest to smallest char-
acteristic value) over cond(P), because

cond(C) = /cond(P). (8.11)

A matrix is considered ill-conditioned for inversion in a particular computer
(“machine” ) if its condition number is close to 1/&p,chines Where €machine 15 the
largest positive number® for which

machine

1"i_‘gmachine =1 (812)

'See Section B.1.8.1 for the definition and properties of Cholesky factors.
2emachine has the reserved name eps in MATLAB. Its value is returned when you type “eps”.
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in machine precision. That is, the result of adding &,,cine to 1 has no effect in
machine precision.

8.1.6.3 Triangularization Methods The so-called “QR” theorem of linear
algebra states that every real m x n matrix S can be factored in the form S = QR,
where Q is an m x m orthogonal matrix and R is an m X »n upper triangular matrix.
Depending on the relative magnitudes of m and #, the resulting triangular matrix R
may have any of the forms

A VN

with the nonzero part of the upper triangular submatrix in the upper right corner.

There are several algorithms for computing the triangular and orthogonal factors,
including some with the order of the factors reversed (effectively “RQ” algorithms).
These are also called triangularization methods. They are key to square-root
filtering, because they can transform a nontriangular Cholesky factor M into a
triangular one T, because

MM" = TOO™T" (8.13)

=TT". (8.14)

Algorithms that implement QR decompositions need not compute the orthogonal
factor explicitly, if it is not needed.

Because the matrix symbols Q (dynamic disturbance noise covariance) and R

(measurement noise covariance) are already used for specific parts of the Kalman
filter, we will use alternative symbols here.

8.1.6.4 QR Decomposition by Householder Transformations House-
holder transformation matrices® are orthogonal matrices of the form
2wyt

Hwv)=1- Ty

, (8.15)

where v is a column vector and 7 is the compatibly dimensioned identity matrix.

The condition number of an othogonal matrix is perfect (i.e., 1), making it well
suited for robust operations in numerical linear algebra. The QR decomposition of a
matrix M is effectively accomplished by a series of products by Householder
transformation matrices, in the partitioned form

X |:H(V) 0:|_
0 L‘ 0 | 0

3 Named for Alston S. Householder (1904—1993), who developed many of the more robust methods used
in numerical linear algebra.
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with the vector v chosen to annihilate all but the end element of the remaining
subrow x of M until only the upper triangular part remains. It suffices to let

0

v=x"-Ixl| o (8.16)
0
1

However, operations with Householder matrices are typically not implemented by
calculating the appropriate Householder matrix and taking a matrix product. They
can be implemented quite efficiently as an algorithm operating “in place” on the
matrix M, destroying M and leaving only the matrix T in its place when completed.
The MATLAB function housetri .m on the accompanying diskette does just this.

8.1.6.5 Triangularization of Cholesky Factors If A is any Cholesky factor
of P and A = CM is a QR decomposition of A such that M is the orthogonal factor
and C is the triangular factor, then C is a triangular Cholesky factor of P. That is,

P =AAT
= CM(CM)"
=CMM'C’
=cCC’ (8.17)

and C is triangular. This is the basis for the following two types of square-root
filtering.

8.1.6.6 Morf—Kailath Square-Root Filter In Morf-Kailath square-root
filtering, the entire Riccati equation, including prediction and correction steps, is
implemented in a single triangularization procedure. It effectively computes the
Cholesky factors of successive covariance matrices of prediction error (required for
computing Kalman gain) without ever explicitly computing the intermediate values
for corrected estimation errors. Assume the following:

G, is the dynamic disturbance distribution matrix of the system model,
Cy, is a Cholesky factor of Q;;
®, is the state transition matrix from the previous epoch;

Cp, is a Cholesky factor of P;(—), the covariance matrix of prediction error from
the previous epoch;

H, is the measurement sensitivity matrix of the previous epoch;
Cp, 1s the measurement noise covariance matrix of the previous epoch; and
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‘H is a triangularizing orthogonal matrix for the partitioned matrix such that

G,Cy, ®,Cp O 0 Cp W,
H= o : 8.18
[ 0 HC, Cp 0 0 g (8.18)

a partitioned upper triangular matrix.

Then Cp,_ is the square triangular Cholesky factor of P, the covariance matrix of
prediction error, and the Kalman gain

Kk-‘rl :‘I’k+1/CEk+l‘ (8.19)

8.1.6.7 Carlson—Schmidt Square—Root Filtering In Carlson—Schmidt
square-root filtering, only the temporal update (predictor) of the Riccati equation
is implemented using triangularization. The observational update is implemented by
an algorithm due to Carlson [20]. The Carlson algorithm is implemented in the
Matlab m-file carlson.m on the accompanying diskette. It calculates the
Cholesky factor Cp;_;(+) of the covariance matrix P, ;(+) corrected for the
effect of taking the measurement.
The temporal update is implemented as

[0 Cpi(D)]=[PCpi_i(+) GCoilH HyH;---H,, (8.20)

where Cp (=) =sought-for triangular Cholesky factor of P;(—)
Co.r = a Cholesky factor of Q,
[®,Cp_1(+) G;Cpy,l=is a Cholesky factor of P,(—), and the sequence of
Householder transformation matrices H,H,H; - - - H,
transforms it into the appropriate triangular form

It can be shown that the matrix [®,Cp;_(+) G;Cp,] is, indeed, a Cholesky
factor of P,(—) by multiplying it out:

[®Cp () GCpoyll®,Cpyi(+) GkCQ,k]T
= (I)kCP,k—l(+)((DkCP,k—1(+))T + GkCQ,k(GkCQ,k)T
= q)kCP,kflc};,kflq)z + GkCQ,kCasz
= P, (H)P; + G, Q,G{
=Pi(-).

The triangularization in Eq. 8.20 is implemented in the Matlab m-file schmidt.m
on the accompanying diskette.
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8.1.7 Bierman—Thornton UD Filter

The Bierman—Thornton square-root filter is analogous to the Carlson—Schmidt
square root filter, but with modified Cholesky factors of P in place of ordinary
Cholesky factors. It is also called “UD filtering,” in reference to the modified
Cholesky factors U and D.

The principal differences between Bierman—Thornton UD filtering and Carlson—
Schmidt square-root filtering are as follows:

1. The Bierman—Thornton square-root filter uses U and D in place of C.
2. The observational update (due to Bierman [10] ) requires no square roots.

3. The temporal update (due to Thornton [116]) uses modified weighted Gram—
Schmidt orthogonalization in place of Householder triangularization.

The methods of Carlson and Bierman are “rank 1 modification” algorithms for
Cholesky factors and modified Cholesky factors, respectively. A rank 1 modification
algorithm for a triangular Cholesky factor, for example, calculates the triangular
Cholesky factor C(+) such that

C(HC(H)" = C(-)C(=)" —w',

given the prior Cholesky factor C(—) and the vector v. Rank 1 modification in this
case refers to the matrix rank of the modification vv? of C(—)C(—)". In this
particular application of rank 1 modification, the matrix and vector are

P(—) = C(—)C(—)" (predicted covariance),
P(—)HT

YT VHP(H" + R’

respectively. This only works if the dimension of the measurement equals 1 (i.e., the
rank of H is 1), which is the reason that square-root filtering must process
measurement vector components one at a time.

The corresponding UD predictor algorithm was discovered by Catherine Thorn-
ton, and was the subject of her Ph.D. dissertation [116]. It is based on a relatively
robust orthogonalization method developed by Ake Bjérck [11] and called “modi-
fied Gram—Schmidt.” Bierman [10] refers to it as “modified weighted Gram-—
Schmidt” (MWGS), which is much longer than its appropriate name, “Thornton’s
method.” A listing of its implementation in Matlab (from thornton.m on the
accompanying diskette) is presented in Table 8.3.

The corresponding Matlab listing of the Bierman corrector algorithm (from
bierman.m on the accompanying diskette) is given in Table 8.4.
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TABLE 8.3 UD Filter Part 1: Thornton Predictor

function [x,U,D] = thornton(xin,Phi,Uin,Din,Gin, Q)
x = Phi*xin;

o°

state prediction
get model dimensions

o

[n,r]= size(Gin);
G = Gin;
U = eye(n);
PhiU = Phi*Uin;
for i=n:-1:1,
sigma = 0;
for j=1:n,

e

move to internal array
initialize U

o

sigma = sigma + PhiU(i,3j)”"2 *Din(j,Jj);
if (J <= 1)
sigma = sigma + G(i,3)"2 *Q(3,3);
end;
end;
D(i,i) = sigma;
for j=1:1i-1,
sigma = 0;
for k=1l:n,
sigma = sigma + PhiU (i, k)*Din(k, k)*PhiU(], k)
end;
for k=1:r,
sigma = sigma + G(i,k)*Q(k,k)*G(3,k);
end;
U(j,1) = sigma/D(i,1i);
for k=1:n,
PhiU(j, k) = PhiU(j,k) - U(j,1i)*PhiU(i,k);
end;
for k=1l:r,
G(J,k) = G(J,k) - U(J,1)*G(i,k);
end;
end;
end;

8.1.7.1 Potter Implementation The original square-root filter is due to James
H. Potter, who first introduced the idea of recasting the Riccati equation in terms of
Cholesky factors of the covariance matrix P. The Matlab m-file potter.m on the
accompanying diskette is a Matlab implementation of the Potter square-root filter.
The Potter approach handles only the observational update. It has been generalized
in [5] for vector-valued observations, with a corresponding differential equation for
the temporal propagation of the covariance equation.

8.2 IMPLEMENTATION REQUIREMENTS

Computer requirements for implementing Kalman filters tend to be dominated by the
need to solve the matrix Riccati equation, and many of these requirements can be
expressed as functions of the dimensions of the matrices in the Riccati equation.
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TABLE 8.4 UD Filter Part 2: Bierman Corrector

a = U’*H’;% a 1s not modified, but

b = D*a; % b is modified to become unscaled Kalman gain.
dz = z - H*xin;

alpha = R;

gamma = 1/alpha;
for j=1:length(xin),

beta = alpha;
alpha = alpha + a(j)*b(3);
lambda = -a(j) *gamma;
gamma = 1/alpha;
D(j,Jj) = beta*gamma*D(j,]);
for i=1:j-1,
beta =U(i,3);
U(i,j) = beta + b(i)*lambda;
b (i) = Db(i) + b(j)*beta;
end;
end;
dzs = gamma*dz; % apply scaling to innovations

x = x + dzs*b; % multiply by unscaled Kalman gain

8.2.1 Throughput

Computer throughput is measured in arithmetic operations per second (ops).
Minimum throughput required for implementing the Kalman filter will be the
product

Throughput (ops) & operations per cycle x cycles per second,

where the operations per cycle depends on the number of state variables (n) and
measurement variables (£) and cycles per second depends on attributes of the sensors
and the dynamic system model.

8.2.1.1 Cycles per Second The ecigenvalues of the dynamic coefficient
matrix F determine the natural frequencies of the dynamic system model, with the
real parts representing inverse decay times and the imaginary parts representing
natural resonant frequencies. Sampling rates much faster than the largest eigenvalue
of F are likely to be sufficient for Kalman filter implementation, but they may not be
necessary. This sort of analysis is used for calculating the size of the time steps
required for reliably integrating the differential equations for the system state
estimate X and its associated covariance matrix P, but determining workable
update rates for a particular application usually relies on simulation studies. Only
in simulation can we calculate differences beween the true solution and an
approximated solution.
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8.2.1.2 Operations per Cycle Factors that influence the numbers of arith-
metic operations per cycle of a Kalman filter implementation on a specific
application include the following:

1. The dimensions of the state vector x (n), measurement vector z (£), and
process noise vector w (p). These and the implementation methods (next item)
are the only factors considered in Fig. 8.2, so the results should be considered
upper bounds on just the estimation loop and Riccati equation. Computations
required to compute any of the parameter matrices are not included in the
calculations.

2. The implementation methods used, such as

(a) the original Kalman implementation,

(b) the Carlson—Schmidt square-root implementation,

(c¢) the Bierman—Thornton UD implementation, and

(d) the Morf-Kailath combined square-root implementation.

However, choices among these methods are more likely to be driven by cost
and numerical stability issues than by computational requirements. The more
stable implementation methods may perform as well with shorter wordlengths
as the less stable methods with longer wordlengths, which could make a big
difference in processor speed and cost.

3. Processor hardware architecture issues, including the following:
(a) Processor type, including

(1) reduced instruction set computers (RISCs), in which all arithmetic
operations take place between registers and can be completed in one
machine cycle and all data transfers between registers and memory
also require one machine cycle;

(i) complex instruction set computers (CISCs), which can perform many
RISC-type operations per instruction but with each instruction
executing in several machine cycles, and

(iii) DSP processors designed for pipelined dot products and analog
interfaces.

(b) The types of arithmetic operations available as machine instructions versus
those that must be implemented in software, such as square roots.

(c) Hardware interrupt structure, which may determine how well the processor
supports real-time programming constraints.

(d) Availability of real-time debugging hardware and software (compilers,
editors, source-on-line code debuggers).

(e) Data wordlength options.

(f) Arithmetic processing speed with representative instruction mix for
Kalman filtering.
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. Whether the implementation includes a dynamic disturbance noise distribution

matrix G.

. Whether any or all of the following matrices must be computed on each

interation:

(a) @ (n x n state transition matrix),

(b) H (£ x n measurement sensitivity matrix),

(¢) R (£ x £ measurement noise covariance matrix),

(d) Q (p x p dynamic disturbance noise covariance matrix), and
(e) G (n x p dynamic disturbance noise distribution matrix).

. Whether the estimate and covariance propagation is done using a state

transition matrix or (for nonlinear filtering) by numerical integration.

. Whether the predicted measurement is computed using a measurement

sensitivity matrix or a nonlinear measurement function.

. The sparse structure (if any) of the matrix parameters in the Kalman filter

equations. For example:

(a) For Kalman filters integrating independent systems with no dynamic
interactions (e.g., GPS and INS), dynamic coefficient matrices and state
transition matrices will have blocks of zeros representing the dynamic
uncoupling.

(b) Because most sensors measure only a limited number of variables, the
number of nonzero elements in the measurement senstivity matrix H
usually tends to grow as the number of sensors (¢) and not as the total
number of possible elements (nf).

(c) It is uncommon that the dynamic disturbance noise covariance matrix Q
and/or sensor noise covariance matrix R are dense (i.e., no zeros), and it is
not uncommon that they are diagonal matrices.

. Details of the programming implementation, such as

(a) whether the programming takes advantage of any offered matrix sparse-
ness by skipping multiplications by zero,

(b) whether the programming takes advantage of symmetry in the Riccati
equation solution, and

(c) multiplication order in evaluating matrix expressions, which can make a
significant difference in the computation required.

In Carlson—Schmidt square-root filtering (Section 8.1.6.7), for example, it is
not necessary to place the blocks of the matrix

[®Cp 1 (HIG,Cp ]

into a separate common array for triangularization. The additional array space
can be saved by doing an implicit triangularization of the array (by modified
indexing) without physically relocating the blocks.
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Not Quite Upper Bounds The contour plots in Fig. 8.2 are “not-quite-worst-case
computational cost” plotted in terms of equivalent multiply-and-accumulate opera-
tions per update cycle as functions of the parameter matrix dimensions and the
compatible implementation methods used. These are effectively “not-quite upper
bounds” because they assume the worst-case parameter matrix conditions (i.e., all
parameter matrices full and time varying) but do not include the added computa-
tional cost of calculating the time-varying parameter matrices. We cannot present a
comparable upper bound (other than Eq. 8.21) for the computational costs for
calculating the parameter matrices (®, H, G, Q and R), because these computational
costs will be very much application-dependent.
The results also assume that advantage is taken of symmetry, where possible.

Decorrelation Costs These computational costs for all implementations of the
corrector step (observational update) include those for diagonalizing R, which is on
the order of £(¢> — 1)/6 multiply-and-accumulate operations per update cycle,
where R is £ x £. They also include the measurement error decorrelation operations
for calculating the matrix ratios Ug\H and Ug\z, which is in the order of
%(n + 1)¢(¢ — 1) multiply-and-accumulate operations per update cycle, where n is
the number of state variables.

More detailed computational requirements are tabulated in [10], assuming
diagonal Q and R matrices (i.e., without the added worst-case computational
requirements for diagonalization and/or decorrelation included).

Kalman—Kalman The computational cost for the Kalman filter corrector step
(observational wupdate, including decorrelation) will be on the order of
£€(9n* + 2 + 3fn + 18n + 3¢ + 2) multiply-and-accumulate operations per up-
date cycle [10, p. 104, plus decorrelation], and that of the predictor step (temporal
update) will be on the order of n(2n*> 4 p? + n) multiply-and-accumulate operations
per update cycle, where p is the number of components in the dynamic disturbance
noise vector (i.e., Q is p x p).

Carlson—Schmidt Computational complexity of the Carlson algorithm is on the
order of 1£(12n* 4 3¢n + €* + 75n + 3¢ — 4) multiply-and-accumulate operations
per update cycle [10, p. 108, plus decorrelation]. (This algorithm requires taking
square roots, the computational costs for which were approximated as being
equivalent to six multiply-and-accumulate operations.)

The corresponding Schmidt—Kailath temporal update (using Householder trian-
gularization) has computational cost on the order of {n(2n® + 3np +6n +
12p + 25) multiply-and-accumulate operations per update cycle in the worst-case
scenario (G and Q time varying and Q nondiagonal). This includes the cost of
forming the products ®Cp and GCy, where Cp is a Cholesky factor of P and Cg is a
Cholesky factor of Q.

Bierman—Thornton The computational cost of the Bierman algorithm is on the
order of 1€(9n* 4+ 3¢n + £* + 3¢ + 12n — 4) multiply-and-accumulate operations
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Fig. 8.2 Arithmetic operations (multiply, accumulate) per update for Kalman filter implementa-

tions.

per update cycle, which is not significantly different from that of the conventional
Kalman filter [10, p. 107, plus decorrelation].

The corresponding not-quite-worst-case computational cost for the Thornton
update algorithm is on the order of in(4n* 4+ 3np +p*+n—1)/2+p(p* — 1)
multiply-and-accumulate operations per update cycle. These computational costs
include those for diagonalizing Q (by UD factorization), which is on the order of
é p(p? — 1) multiply-and-accumulate operations per update cycle, where Q is p x p.
These formulas also include the additional %np( p — 1) multiply-and-accumulate
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operations per update cycle required for taking the product GUg, where Uy, is the U-
factor from UD factorization of Q, before beginning the Thornton algorithm listed in
[10].

Not shown in the plots is the “Joseph stabilized” implementation, which
generally has better numerical stability than the conventional Kalman implementa-
tion but requires approximately three times the number of arithmetic operations per
update cycle [10, pp. 104 105].

The additional computational cost required for computing the parameter matrices
®, H, G, Q, and R tends to grow as

2 1 1
a 1; + ZE + né) +3p(@+ 1) +5L(£+ 1) (8.21)
Q R

multiply-and-accumulate operations per update cycle, where a is the average number
of multiply-and-accumulate operations per matrix element.

8.2.2 Memory

The minimum number of data words required for conventional Kalman filtering is
approximately 4n> + 3nf 4 2¢> [46], where # is the number of state variables and ¢
is the number of measurement variables. If necessary, these memory requirements
can be reduced somewhat by exploiting symmetry of the covariance matrix P to store
only the unique triangular part. Memory requirements for square-root filtering are
not substantially different.

8.2.2.1 Wordlength Bierman [10] has conjectured that square-root filtering
(Section 8.1.6.2) gives comparable accuracy with half as many bits of precision as
conventional Kalman filtering. No proof of this conjecture was offered, but Example
8.1 and Fig. 8.1 would seem to support it.

8.3 KALMAN FILTER MONITORING

8.3.1 Rejecting Anomalous Sensor Data

8.3.1.1 Effects of Anomalous Sensor Data Anomalous sensor data can
result from sensor failures or from corruption of the signals from sensors, and it is
important to detect these events before the anomalous data corrupts the estimate. The
filter is not designed to accept errors due to sensor failures or signal corruption, and
they can seriously degrade the accuracy of estimates. The Kalman filter has infinite
impulse response, so errors of this sort can persist for some time.
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8.3.1.2 Detecting Anomalous Sensor Data Fortunately, the Kalman filter
implementation includes parameters that can be used to detect anomalous data. The
Kalman gain matrix

K, = Py(—)H] (HP,(-)H{ + R (8.22)
Y('/t
includes the factor
-1
Y, = (HP,(—)H] +R;) . (8.23)

the information matrix of innovations. The innovations are the measurement
residuals

v & 7, — HiR(-), (8.24)

the differences between the apparent sensor outputs and the predicted sensor outputs.
The associated likelihood function for innovations is

L(v;) = exp(—%vZYvkvk), (8.25)
and the log-likelihood is
log[L(wp)] = —vi Y vy, (8.26)
which can easily be calculated. The equivalent statistic

T
o v Yy

. (8.27)

(i.e., without the sign change and division by 2, but divided by the dimension of v;)
is nonnegative with a minimum value of zero. If the Kalman filter were perfectly
modeled and all white-noise sources were Gaussian, this would be a chi-squared
statistic with distribution as plotted in Fig. 8.3. An upper limit threshold value on y?
can be used to detect anomalous sensor data, but a practical value of that threshold
should be determined by the operational values of %2, not the theoretical values. That
is, first its range of values should be determined by monitoring the system in
operation, then a threshold value y2,, chosen such that the fraction of good data
rejected when > > y2.  will be acceptable.
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Prob(Chi-squared > Threshold)
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Threshold
Fig. 8.3 Chi-squared distribution.

8.3.1.3 Exception Handling for Anomalous Sensor Data The log-likeli-
hood test can be used to detect and reject anomalous data, but it can also be
important to use the measurement innovations in other ways:

1. as a minimum, to raise an alarm whenever something anomalous has been
detected,;

2. to talley the relative frequency of sensor data anomalies, so that trending or
incipient failure may be detectable; and

3. to aid in identifying the source, such as which sensor or system may have
failed.

8.3.2 Monitoring Filter Health

Filter health monitoring methods are useful for detecting disparities between the
physical system and the model of the system used in Kalman filtering (useful in filter
development), for detecting numerical instabilities in the solution of the Riccati
equation, for detecting the onset of poor observability conditions, for detecting when
sensors fail, or for detecting gradual degradation of sensors.

8.3.2.1 Empirical Chi-Squared Distributions Calculating the empirical
distribution of the statistic y*> of Eq. 8.27 and comparing it to the theoretical
distribution in Fig. 8.3 is another way of checking that the filter model is in
reasonable agreement with the physical system. It does require many thousands of
samples to obtain a reasonable assessment of the distribution, however. These
distributions are also handy for setting the thresholds for data rejection, because they
characterize the frequency of type 2 errors (i.e., rejecting legitimate measurements).
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8.3.2.2 Covariance Analysis Covariance analysis in this context means
monitoring selected diagonal terms of the covariance matrix P of estimation
uncertainty. These are the variances of state estimation uncertainty; system require-
ments are often specified in terms of the variance or RMS uncertainties of key state
variables, and this is a way of checking that these requirements are being met. It is
not always possible to cover all operational trajectories in the design of the sensor
system, it is possible that situations can occur when these requirements are not being
met in operation, and it can be useful to know that.

8.3.2.3 Covariance Matrix Condition Number The condition number of a
matrix is the ratio of its largest to smallest characteristic values. A rough rule of
thumb for a healthy covariance matrix is that its condition number N ,4(P) < 1/¢,
where the machine precision limit ¢ = 27" and N, is the number of bits in the
mantissa of data words.

8.3.2.4 Checking Covariance Symmetry Square-root filtering (Section
8.1.6.2) is designed to ensure that the covariance matrix of estimation uncertainty
(the dependent variable of the matrix Riccati equation) remains symmetric and
positive definite. Otherwise, the fidelity of the solution of the Riccati equation can
degrade to the point that it corrupts the Kalman gain, and that in turn corrupts the
estimate. If you should choose not to use square-root filtering, then you may need
some assurance that the decision was justified.

Verhaegen and Van Dooren [124] have shown that asymmetry of P is one of the
factors contributing to numerical instability of the Riccati equation. If square-root
filtering is not used, then the covariance matrix can be “symmetrized” occasionally
by adding it to its transpose and rescaling:

P:=1P+P") (8.28)
This trick has been used for many years to head off numerical instabilities.

8.3.2.5 Test for Positive Definiteness Cholesky decomposition [9] is one
way to test whether P is positive definite, although the method may not be very
robust. Each diagonal term of the Cholesky factor of P requires taking a square root,
and the radicand will fail to be positive if P is indefinite. This can happen due to
roundoff in Cholesky decomposition if P is close to being indefinite. In either case, it
is probably a reasonable indication that the problem should be implemented using
square-root filtering.

8.3.2.6 Checking Innovations Means and Autocorrelations Innova-
tions are the differences between what comes out of the sensors and what was
expected, based on the estimated system state. If the system were perfectly modeled
in the Kalman filter, the innovations would be a zero-mean white-noise process and
its autocorrelation function would be zero except at zero delay. The departure of the
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empirical autocorrelation of innovations from this model is a useful tool for analysis
of mismodeling in real-world applications.

Calculation of Autocovariance and Autocorrelation Functions The mean of
the innovations should be zero. If not, the mean must be subtracted from the
innovations before calculating the autocovariance and autocorrelation functions of
the innovations.

For vector-valued innovations, the autocovariance function is a matrix-valued
function, defined as

def
= E(2,,2) 14). (8.29)

z,; f z; — H;X,(—) (innovations), (8.30)

Acovar.k

and the autocorrelation function is defined by

def — _
'Acm‘rel,k = Do’lAcovar,kDrrl’ (831)
(6, 0 0 - 0]
0 o, 0 - 0
p, {0 0 o5 - 0| (8.32)
(0 0 0 - o,

def /
0 = {Acovar,O}_[/" (833)

where the jth diagonal element {A.y.. o
component of the innovations vector.

}j of Acovaro 1s the variance of the jth

Calculation of Spectra and Cross-Spectra The Fourier transforms of the
diagonal elements of the autocovariance function A, (i.e., as functions of k)
are the power spectral densities (spectra) of the corresponding components of the
innovations, and the Fourier transforms of the off-diagonal elements are the cross-
spectra between the respective components.

Interpretation of Results Simple patterns to look for include the following:

1. Nonzero means of innovations may indicate the presence of uncompensated
sensor output biases, or mismodeled output biases. The modeled variance of
the bias may be seriously underestimated, for example.

2. Short-term means increasing or varying with time may indicate output noise
that is a random walk or an exponentially correlated process.
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3. Exponential decay of the autocorrelation functions is a reasonable indication
of unmodeled (or mismodeled) random walk or exponentially correlated noise.

4. Spectral peaks may indicate unmodeled harmonic noise, but it could also
indicate that there is an unmodeled harmonic term in the state dynamic model.

5. The autocovariance function Ao should equal HPH' +R for time-
invariant or very slowly time-varying systems. If A, is much bigger
than HPH' + R, it could indicate that R is too small or that the process noise
Q is too small, either of which may cause P to be too small. If A, ¢ is much
smaller than HPH" + R, R and/or Q may be too large.

6. If the off-diagonal elements of A, are much bigger than those of
D,'(HPH" + R)D, !, then there may be unmodeled correlations between
sensor outputs. These correlations could be caused by mechanical vibration or
power supply noise, for example.

8.4 SCHMIDT—KALMAN SUBOPTIMAL FILTERING

This is a methodology proposed by Schmidt [108] for reducing the processing and
memory requirements for Kalman filtering, with predictable performance degrada-
tion. It has been used in GPS navigation as a means of eliminating additional
variables (one per GPS satellite) required for Kalman filtering with correlated
satellite clock phase errors due to selective availability (principally) and ionospheric
delay errors. However, prospective users should always quantify the computational
savings before adopting this approach.

8.4.1 State Vector Partitioning

Schmidt—Kalman filtering partitions the state vector into “essential” variables and
“nuisance” variables,

X = [X_} (8.34)

where x, is the n, x 1 subvector of essential variables to be estimated, x,, is the
n, x 1 subvector that will not be estimated, and

n, + n, = n, the total number of state variables. (8.35)

Even though the subvector x, of nuisance variables is not estimated, the effects of
not doing so must be reflected in the covariance matrix P,, of uncertainty in the
estimated variables. For that purpose, the Schmidt—Kalman filter calculates the
covariance matrix P,, of uncertainty in the unestimated state variables and the cross-
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TABLE 8.5 Summary Implementation of
Schmidt—Kalman Filter

Corrector (Observational Update)

€ = [H(Puk(-)Hk + (=) H0)
+ HyPruc(DHT + P (H)
Ksk ik = (Pur(-Hji + Poi(—=)Hp)C
X, skt =X k(=) + Ko k(@ = HopXe ()
A=l —KskkHix
B= Ang,k(*)HI_kR;K,k
P.x+=AP, — AT —B-B
+ Ko k(Hy P = Hy i+ RK)K;K.k
Povst = APy k(=) = KskkHy sk Povk—
Poost = Pust!
Pokt =Py k=

Predictor (Time Update)

)A(r,,k+1f = d)akf(a.kJr

Poki1- = PP Ol + Q,,
Poit— = D Py Dl
vak+1— = P;/kﬂ—

vak+1— = (DVKPVVK+(I)Ik + vi

covariance matrix P, between the two types. These other covariance matrices are
used in the calculation of the Schmidt—Kalman gain.

8.4.2 Implementation Equations

The essential implementation equations for the Schmidt-Kalman (SK) filter are
listed in Table 8.5. These equations have been arranged for reusing intermediate
results to reduce computational requirements.

8.5 COVARIANCE ANALYSIS

The dependent variable of the Riccati equation is the covariance matrix of estimation
uncertainty, and using the Riccati equation to predict performance of a Kalman filter
is called covariance analysis. It is highly recommended, if not essential, in the
development of any integrated sensor system. It is useful for the following purposes:

1. quantifying expected system performance under the operating conditions for
which it is designed;
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2. determining how different operating conditions (e.g., momentary loss of GPS
signals) will influence system performance;

3. evaluating performance of alternative designs, with different sensors and/or
different sensor noise;

4. identifying the dominating error sources limiting system performance and
determining the payoffs for improving performance of critical subsystems;

5. finding where relaxation of sensor requirements will not significantly degrade
overall system performance; and

6. determining whether computer roundoff is likely to compromise the accuracy
of the solution.

Covariance analysis is generally much easier than full Kalman filter implementa-
tion, especially if the model is nonlinear. One may not have to integrate nonlinear
differential equations for covariance analysis, and many details that are critical for
implementing the Kalman filter are not that important for covariance analysis.

8.6 GPS/INS INTEGRATION ARCHITECTURES

GPS architecture is likely to change with the addition of more channels and aiding
signals, and INSs already have a wide variety of architectures. However, even if there
were only one GPS and one possible INS, there would still be many ways to
integrate the two. For these reasons, there is no all-encompassing Kalman filter
architecture for GPS/INS integration. As an alternative, we present here some
representative examples of integration architectures, depending on the type of INS
and the level of coupling required between the GPS, INS, and Kalman filter. These
examples cover a range from the simpler “loosely coupled” or “aiding” architec-
tures to the more complex “tightly coupled” integration architectures.

The term tightly coupled is usually applied to systems using a single Kalman filter
to integrate all sensor data, whereas loosely coupled systems may contain more than
one Kalman filter, but there are many possible levels of coupling between the
extremes.

8.6.1 GPS/Land Vehicle Integration

This is not an example of GPS/INS integration, but a simpler integration using
different sensor types. It would be considered loosely coupled in that the internal
workings of the GPS receiver are not altered, and there is no feedback from the
Kalman filter to the receiver.

Figure 8.4 shows an architecture for integrating GPS with a wheel speed sensor
(odometer) and magnetic compass for improving the navigational accuracy of
highway vehicle navigation systems. The schematic shows differential GPS and
map matching as part of the system, although they have little impact on the Kalman
filter design beyond reducing some covariance parameters.
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Fig. 8.4 GPS/Automobile integration architecture.

8.6.1.1 State Vector Wheel speed sensors tend to have slowly time-varying
scale factors (due to slow variations in tire pressure and temperature), and magnetic
compasses tend to have time-varying biases (due to localized magnetic anomalies).
These two parameters (wheel speed scale factor and compass bias) can be added to
the system state vector. A suitable system state vector for this application could
include the following 10 state variables:

o three position components (e.g., easting, northing, and altitude with respect to
a map reference point);

o three velocity components, each modeled as a random walk, with greater rate

of variation in the horizontal components;

e receiver clock bias and drift (two variables, model shown in Fig. 5.9);

e wheel speed scale factor (modeled as a slow random walk); and

e magnetic compass heading bias (modeled as another slow random walk).

The 10 x 10 state transition matrix for this model would have the block form

el
w

[=NeNeNeNe)

Afl; 0 0
L 0 0
0 1 Ar
0 0 1
0 0 O
0 0 O

S = O O OO

—_0 O O OO

(position)
(velocity)
(clock bias)
(clock drift)

(wheel speed scale factor)
(compass offset)

(8.36)

with nonzero process noise covariances on all but the position variables.
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8.6.1.2 Measurement Vector Inputs to the Kalman filter include the
following:

e From the GPS receiver:

(a) pseudoranges p; to each satellite being tracked by the receiver and
(b) integrated Doppler components Ap; for each of the satellites.

e From the wheel speed sensor: indicated vehicle speed.
e From the magnetic compass: magnetic heading angle.

The measurement sensitivity matrix for the GPS receiver inputs will be the same as
that used in the GPS receiver Kalman filter implementation (Section 7.8.5.2). If the
vehicle heading angle from the magnetic compass is measured clockwise from
north, then the nonlinear function

v
[UE :| = h(fx’ 50(’ Swheels (SSwheelspeed) +v (837)
N

1 4+ 0Syheeispecd)Swheel ~ Si0(at — Ot
:|:( heelspeed }Swheel ( ):|+ ’ (8.38)

(1 + 5Swheelspeed)swheel COS(OC - 50‘)

where v; = east velocity
vy = north velocity
V = sensor noise
o = magnetic compass output angle
Jo. = magnetic compass output bias
Swheel = Wheel speed sensor output
OSwheelspeed = Wheel speed sensor scale factor offset

The measurement sensitivity submatrix for these variables will be the partial
derivatives of this h evaluated at the estimated values of the state variables.

8.6.1.3 Potential Inprovements The schematic shows no feedback from the
Kalman filter to the GPS receiver, but such feedback could be used to enhance

e reacquisition of signals lost momentarily by occlusions from buildings and
other structures and

e the receiver tracking loops by using velocity changes.

8.6.2 GPS/INS Loosely Coupled Integration

Figure 8.5 is a schematic of a loosely coupled GPS/INS integration scheme with two
Kalman filters. The GPS Kalman filter will be similar in function to that described in
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Section 7.8.5.2, and the INS Kalman filter uses the GPS Kalman filter outputs for
estimating sensor errors that the INS would be incapable of estimating by itself. An
implementation of this type is called “GPS-aided INS” because the INS Kalman
filter treats the outputs of the GPS Kalman filter as sensor outputs and does not
include the GPS state variables (clock bias and drift).

The models used in the INS Kalman filter for estimating the INS parameters will
be the same or similar in form to those used in tightly coupled implementations
(Section 8.6.3). The sensor noise on the position and velocity data from the GPS
receiver are modeled as exponentially correlated random processes to account for the
fact that their variances remain bounded. The time constants for these exponentially
correlated processes will usually be on the order of 10%s.

The advantages of this type of implementation include the fact that the GPS
receiver can be treated as a separate subsystem requiring no alteration for the
system-level integration. It is a relatively simple way to make an inexpensive IMU
perform as well as an expensive one.

8.6.3 GPSI/INS Tightly Coupled Integration

The common system wide state vector in this implementation architecture includes
receiver state variables (clock bias and drift), GPS satellite state variables (propaga-
tion delay and selective availability timing errors), the INS navigation solution
(position, velocity, acceleration, attitude, and attitude rate), and INS sensor compen-
sation parameters.

The resulting Kalman filter implementation is doubly nonlinear, in that it has
nonlinear dynamics and nonlinear measurements. The primary source of nonlin-
earities is in the attitude model, which is inherently nonlinear. For Kalman filter
implementation, one would have to use extended Kalman filtering. For covariance
analysis, one must at least use a set of simulated or nominal system trajectories for
performance analysis.

Y

GPS IMU
RECEIVER

pi |Ap; a |@

PosiTION

GPS PoOsITION INS VELOCITY
KALMAN |0 o | FCALMAN ATTITUDE

FILTER FILTER AcceL. Bias & ScaLe FACTOR

| Gvro Bias & ScALE FACTOR

Fig. 8.5 GPS-aided strapdown INS.
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A model of this type can be used for preliminary assessment of expected system
performance and assessing how performance depends on details of the system
design and application, such as

1. operating with or without the influence of Selective Availability,
2. operating at higher latitudes where satellite coverage is more sparse,

W

using Schmidt—Kalman filtering (Section 8.4) in place of conventional Kalman
filtering,

performance specifications of the inertial sensors,
receiver performance characteristics,
vehicle trajectories and dynamics, and

Nk

momentary loss of GPS signals due to surrounding features (e.g., trees,
buildings, mountains) or jamming.

8.6.3.1 Combined System State Vector The system state vector of 65+
state variables includes the following:

Fifteen Vehicle Dynamic Variables

0, @ geodetic» h—the longitude, geodetic latitude, and orthometric altitude of the
vehicle.

v, Uy, Uy—the east, north, and vertical components of vehicle velocity, in meters
per second.

ag, ay, ay—the east, north, and vertical components of vehicle acceleration, in
meters per second squared. It is necessary to include acceleration in the state
vector because accelerometers measure the nongravitational component.

Prs Py> py—the east, north, and vertical components of the rotation vector
rotating locally level ENU coordinates into vehicle-fixed RPY coordinates.

Pg, Py, Py—time derivatives of the east, north, and vertical components of the
rotation vector rotating locally level ENU coordinates into vehicle-fixed RPY
coordinates.

Twelve Accelerometer Parameters

by, by, by, —roll-, pitch-, and yaw-axis components of accelerometer bias.
M_,—mnine elements of the 3 x 3 accelerometer scale factor and misalignment

matrix.
Twelve Gyroscope Parameters

bgys by, by, —roll-, pitch-, and yaw-axis components of gyroscope bias.
M,—nine elements of the 3 x 3 gyroscope scale factor and misalignment matrix.
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Two Receiver Clock Parameters

Apco—normalized clock pseudorange error (equivalent clock bias error in
seconds times c¢).

Avea—normalized clock pseudorange rate error (equivalent clock drift rate
error in seconds per second times c).

Twenty-Four (or More) GPS Timing Errors

Apg,—pseudorange error for ith GPS satellite, in meters.

In the minimum configuration (24 satellites active), 26 of the 65 state variables are
for GPS, and the remaining 39 are for the INS. The pseudorange and velocity units
for the 24 GPS system state variables are chosen to avoid factors of ¢ &~ 3 x 108 m/s
that could cause scaling problems in numerical processing of the covariance
matrix P.

Error Modeling with Temporary State Variables 1t is possible (and even
desirable) to reduce the number of state variables to include just those satellites
currently being used by the receiver. This approach does not apply to momentary
loss of a satellite for a few seconds (or less) due to signal blockage or multipath
interference but to the long-term loss of a satellite availability for minutes or hours
when it passes behind the earth. When the latter occurs, the corresponding state
variable for satellite pseudorange offset can be expunged from the state vector, along
with the corresponding element of the measurement vector and the corresponding
rows and columns of P, Q, H, and R. Similarly, when a new satellite first becomes
available (after “satelliterise™), its pseudorange offset can be added as a new state
variable with corresponding changes to the measurement vector. This approach
changes the dimensions of the measurement vector z, state vector X, state transition
matrix @, measurement sensitivity matrix H, measurement noise covariance matrix
R, and dynamic disturbance noise covariance Q—all of which will have pronounced
effects on the programming of the Kalman filter but which we do not consider here.
Setting the associated measurement sensitivity submatrix to zero has exactly the
same effect, with less programming agony but potentially greater impact on
throughput and memory requirements.

Momentary loss of a satellite is usually modeled by zeroing the corresponding
row(s) of the measurement sensitivity matrix, even in implementations using
temporary state variables for the satellites currently being tracked by the receiver.

Rotation Vectors as Attitude Variables The coordinate transformation matrix
from RPY to ENU coordinates is represented in terms of the equivalent rotation
vector

def Pe
PeNUu = | PN (8.39)
Pu
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in ENU coordinates. We use the rotation vector to represent attitude because attitude
is three dimensional and the higher dimensioned representations (quaternions,
coordinate transformation matrices) use redundant parameters that would cause
the system state vector to be underdetermined and Euler angles to have effective
“gimbal lock” problems. This complicates the model derivations a bit, but it avoids
observability problems in the analysis.

Sensor Parameter Model Cluster-level sensor calibration is used to compensate
for the biases, scale factor errors, and input axis misalignments of three-axis sensor
suites (e.g., accelerometers or rate gyroscopes), often with a model in the form

Voutput = b+ Mcalvinput’ (8.40)

where b is the vector of biases and M is the calibration matrix of scale factors and
misalignments. The 3 components of the bias vector b and 9 elements of the
calibration matrix M, make up the 15 sensor parameters for each type of sensor
(i.e., accelerometer or gyroscope), making a total of 30 sensor parameters in the
system state vector used for analysis.

For instrument compensation, it is usually preferred to have the model in
compensation form, as

Vinput = Mcomp (Vout - b)9
where the misalignment and scale factor compensation matrix would be

-1

Mcomp = Mcal'
However, for the purposes of covariance analysis, it will be more convenient to use
the calibration form of the scale factor and misalignment matrix shown in Eq. 8.40.

8.6.3.2 Measurement Model The 30+ equivalent sensors include 3 accel-
erometers, 3 gyroscopes, and 24 or more potential GPS receiver channels, the
outputs of which are pseudoranges and Doppler rates to the satellites in view. The
GPS receiver can only track the satellites in view, and we model this by setting to
zero the measurement sensitivities of receiver channels to GPS satellites occluded by
the earth.

Measurement Variables The elements of the measurement vector for this model
will be

ag, ap, ay—roll-, pitch-, and yaw-axis accelerometer outputs;

wpg, Wp, ®y—roll-, pitch- and yaw-axis gyroscope outputs;

p—GPS receiver pseudorange output for ith GPS satellite, if available; and
0;,—GPS receiver Doppler output for ith GPS satellite, if available.
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Acceleration Sensitivities The sensitivities of the outputs of vehicle-fixed accel-
erometers to the state variables are governed by the equations

ApNy = Cglljg(pENU)aRPY’ (8.41)
CEI;\[(J = [CEII:I%(pENU)]T (8.42)
1 — cos(|ppnul)
= cos(|penuls + —ENU ENUPENU
[PENUI

sin(| ) 0 —py PN

JSIPenD 0 —p, | (Bg.C112),  (8.43)
lPenul

—Pn PE 0

Appy = Ma(ameasured - ba)’ (844)

so that the dependence of the accelerometer output vector on the state variables can
be expressed as

Ameasured — ba + MaaRPY

- 1 — cos(|ppnyl)
=b,+M, ! cos(|penulls + —ENUPENUPENU
|Penul
sin(|ppNyl)
— — B ] |apny (8.46)
lPeNU
= h,(Penus aenus bas M), (8.47)

a function linear in the state variables agyy, b,, and M, and nonlinear in pgyy-

GPS Pseudorange Sensitivities Pseudorange output from the GPS receiver will
be with respect to the receiver antenna, whereas the position estimated by the INS
system is usually a physical reference point within the sensor cluster. It is necessary
to take the relative antenna offsets into account in the Kalman filter implementation.
In addition, for high-performance vehicles that use more than one GPS antenna to
maintain tracking during inverted maneuvers, it is necessary to switch offsets
whenever the antenna is switched. The measurement sensitivities for pseudorange
were derived in Section 7.2.3.2.

Attitude Rate Sensitivities The inputs of the gyroscopes are related to the state
vector components through Eq. C.148, which we can put into the form

. ap ap
e +— @y, 8.48
PeNU dooppy ®rpy FY—. ENU ( )
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where mgpy is the vector of inputs to the gyroscopes and the inertial rotation rate for
ENU coordinates is

__ W
ry+h
— v
PeNu = rr j— h + 0g Cos(d)geodetic) (8.49)

WD Sin(¢geodetic)

where wg, = earth rotation rate
P geodetic = geodetic latitude
vy = east component of velocity with respect to the surface of the earth
rp = transverse radius of curvature of the ellipsoid (Eq. 6.41)
vy =north component of velocity with respect to the surface of the earth.
ry; =meridional radius of curvature of the ellispoid (Eq. 6.38)

h = altitude above (+) or below (—) the reference ellispoid surface (~*mean
sea level)

The deritative of wgyy (Eq. 8.48) with respect to time will be needed in the
implementation and can be derived by differentiating Eq. 8.48 as

_ay vy (Fy + vy)
"yt h (VM+h)2

P ag vg(ir +vy) _ g SIN(P geodetic) UV
ENUT i h g+ B ray +

, (8.50)

Wg cos(d)geodetic)UN
ry +h

where a; = east component of acceleration with respect to the surface of the earth

ay = north component of acceleration with respect to the surface of the earth

vy, = vertical component of velocity with respect to the surface of the earth

7y, =time derivative of meridional radius of curvature (this effect is usually
ignored but can be calculated by taking the time derivative of Eq. 6.38)

rp=time derivative of transverse radius of curvature (this effect is also
ignored, as a rule, but can be calculated by taking the time derivative of
Eq. 6.41)
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Equation 8.48 can be put into the form

Uy
Fy + h
» \ . o ’
= - E , 8.51
“RPY <8mRPY) p Bu)ENU m + Wy COS(¢geodetic) ( )

Wg Sin(¢geodetic)

where the matrices of partial derivatives are given in Eqs. C.151 and C.154, the
matrix inverse

. —1 . .
op i sin(|pgNyl) I |P]5Nu|2 — sin(|pgnyl) T
EY = - PeENUPENU
RPY

3
lPenul lPenul

_ 1 —cos(lpenyl)

5 [PenU®] (8.52)
|PENUI
sin(0 1 — cos(0
=01,1) + 9( )[I -1,1;]— T“[l,,@] (8.53)
0 |ppayl (8.54)
def PENU (8.55)

) — 5
f lPenul

and the matrix fraction

Ip/dogpy _

1 — cos(|penul)
: = —cos(|ppny ) —————5 —
9P/ dwpNy Y

T
2 ENUPENU
[PENU

4 sin(|penyl) [

PenU®] (8.56)
[U5NH

= —cos(HI —[1 — cos(9)]1p1;T, + sin(0)[1,®]. (8.57)
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The full nonlinear functional dependence of the gyroscope ouputs on the state
variables can then be expressed in the form*

o‘)output = hw(ps P, Vg, Uy, h7 ¢geodetic’ Mcalf bgyro) (858)
= bgyro + Mcal{wRPY} (859)
= bgyro + Mcal

sin(|pgnul) |pENU|2 — sin(|ppnyl) T
x I- 3 PENUPENU
IPenul lPeNU

1 — cos(Ipenul) .

- —IZENU[pENU®] P
lPenU

[ — cos(Ipenul) sin(|pgnul)
- EIQ\IU ENU ENU +¢[PENU®]

L |Penul lPenU

_ —vy

ry + h
v
% rr j_ h + Wg COS(¢geodetic) ’ (860)
Wy Sin(d)geodetic)

Equation 8.60 is the nonlinear model for the dependence of the gyroscope inputs
on the other state variables. Its partial derivatives with respect to the state variables
are those used in the extended Kalman filter implementation.

8.6.3.3 State Dynamics The dynamics of rotation vector models are some-
what nonstandard, but the rest of the dynamic model is relatively straightforward.

Vehicle Dynamic Model This part of the dynamic model is fairly standard, with

d

7 0 = longitude rate, given by Eq. 6.42,

d
Eqﬁ = latitude rate, given by Eq. 6.39,

d
—h =v; (altitude rate),

dt
VENU = BENU,
d . .
7 2ENU = Wa (white noise),
d

7 PENU = PENU.-

4 The meridional and transverse curvatures are also functions of geodetic latitude, but the sensitivities are
usually considered to be too weak to be taken seriously.
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The second derivative of the rotation vector can be derived by taking the time
derivative of Eq. 8.48:

.. d op d op
PENU = |: ENUj| Wppy + [ ENU:|"*)ENU

dt dwgpy dt dmgNy
Peny || d PeNy
+|——||>» +—» 8.61
|: doopry | |20 PN | T Doy 2R (8.61)
S—— &
Gp
= f(Penu» PeNU VENUS Aanys @) + G W, (8.62)

where

ogpy is the input to the gyroscopes, which can be computed from Eq. 8.58 for
real-time implementation,

op

PeNy is given by Eq. C.154;
dopNy
8PENU
dwgpy

d 8PENU

d aPENU

is given by Eq. C.151;
is given by Eq. C.181;

is given by Eq. C.173;

op\y 1S given by Eq. 8.49;

oy is given by Eq. 8.50; and

ogpy 18 essentially the attitude dynamic disturbance noise in RPY coordinates, a
random process.

Equation 8.62 is in the standard form for nonlinear dynamics with additive
process noise W (7) in RPY coordinates and a process noise distribution matrix Gj.
The angular acceleration process noise covariance matrix

Qq, = E(wgWe,) (8.63)

generally depends on the vehicle type, with higher covariances for more agile
vehicles. For some vehicles, the covariances will be ordered as g;11 > a0 > 9i33s
with random roll maneuvers dominating pitch maneuvers and pitch maneuvers
dominating yaw maneuvers.

Equation C.194 in Appendix C is a general formula for taking the partial
derivatives of the nonlinear dynamic function in Eq. 8.62 with respect to ppyy-
Some of these derivatives will be submatrices of the extended Kalman filter dynamic
coefficient matrix F.
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Parameter Dynamics All the sensor parameters can be modeled as random
walks or, if a reasonable correlation time is known, as exponentially correlated
processes.

Pseudorange Offset Dynamics These tend to be dominated by SA, which can
be modeled as an exponentially correlated process with time constant on the order of
a minute. An independent state vector and process model is required for each GPS
satellite used.

Problems

8.1 Show that the matrix Cp , defined by Eq. 8.18 is the square triangular
Cholesky factor of P, the covariance matrix of prediction error.

8.2 Show that the matrix K, defined by Eq. 8.19 is the Kalman gain matrix.

8.3 If C is a Cholesky factor of P, is the block matrix [C]|0] (i.e., padded with any
number of zero columns on the right) also a Cholesky factor? How about
[01C]?

8.4 Calculate the partial derivatives of the function h (two components) in Eq. 8.38
with respect to magnetic compass bias (do) and wheel speed sensor scale factor
offset (0Syheeispeed)- (There should be four partial derivatives in the resulting
2 X 2 submatrix.)
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Differential GPS

9.1 INTRODUCTION

Differential GPS (DGPS) is a technique for reducing the error in GPS-derived
positions by using additional data from a reference GPS receiver at a known
position. The most common form of DGPS involves determining the combined
effects of navigation message ephemeris and satellite clock errors [including the
effects of selective availability (SA), if active] at a reference station and transmitting
pseudorange corrections, in real time, to a user’s receiver. The receiver applies the
corrections in the process of determining its position [63]. This results in the
following:

e Some error sources are canceled completely:
(a) selective availability and
(b) satellite ephemeris and clock errors.
e With other error sources, cancelation degrades with distance:
(a) ionospheric delay error and
(b) tropospheric delay error.
o Still other error sources are not canceled at all:
(a) multipath errors and
(b) receiver errors.

265
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9.2 LADGPS, WADGPS, AND WAAS

9.2.1 Description of Local-Area DGPS (LADGPS)

LADGPS is a form of DGPS in which the user’s GPS receiver receives real-time
pseudorange and, possibly, carrier phase corrections from a reference receiver
generally located within the line of sight. The corrections account for the combined
effects of navigation message ephemeris and satellite clock errors (including the
effects of SA) and, usually, atmospheric propagation delay errors at the reference
station. With the assumption that these errors are also common to the measurements
made by the user’s receiver, the application of the corrections will result in more
accurate coordinates [81].

9.2.2 Description of Wide-Area DGPS (WADGPS)

WADGPS is a form of DGPS in which the user’s GPS receiver receives corrections
determined from a network of reference stations distributed over a wide geographical
area. Separate corrections are usually determined for specific error sources, such as
satellite clock, ionospheric propagation delay, and ephemeris. The corrections are
applied in the user’s receiver or attached computer in computing the receiver’s
coordinates. The corrections are typically supplied in real time by way of a
geostationary communications satellite or through a network of ground-based
transmitters. Corrections may also be provided at a later date for post-processing
collected data [81].

9.2.3 Description of Wide Area Augmentation System (WAAS)

WAAS enhances the GPS SPS and is available over a wide geographical area. The
WAAS being developed by the Federal Aviation Administration, together with other
agencies, will provide WADGPS corrections, additional ranging signals from
geostationary (GEO) satellites, and integrity data on the GPS and GEO satellites
[81].

The GEO Uplink Subsytem includes a closed-loop control algorithm and special
signal generator hardware. These ensure that the downlink signal to the users is
controlled adequately to be used as a ranging source to supplement the GPS satellites
in view.

The primary mission of WAAS is to provide a means for air navigation for all
phases of flight in the National Airspace System (NAS) from departure, en route,
arrival, and through approach. GPS augmented by WAAS offers the capability for
both nonprecision approach (NPA) and precision approach (PA) within a specific
service volume. A secondary mission of the WAAS is to provide a WAAS network
time (WNT) offset between the WNT and Coordinated Universal Time (UTC) for
nonnavigation users.

WAAS provides improved en route navigation and PA capability to WAAS
certified avionics. The safety critical WAAS system consists of the equipment and
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software necessary to augment the Department of Defense (DoD) provided GPS
SPS. WAAS provides a signal in space (SIS) to WAAS certified aircraft avionics
using the WAAS for any FAA-approved phase of flight. The SIS provides two
services: (1) data on GPS and GEO satellites and (2) a ranging capability.

The GPS satellite data is received and processed at widely dispersed wide-area
reference Stations (WRSs), which are strategically located to provide coverage over
the required WAAS service volume. Data is forwarded to wide-area master stations
(WMSs), which process the data from multiple WRSs to determine the integrity,
differential corrections, and residual errors for each monitored satellite and for each
predetermined ionospheric grid point (IGP). Multiple WMSs are provided to
eliminate single-point failures within the WAAS network. Information from all
WMSs is sent to each GEO uplink subsystem (GUS) and uplinked along with the
GEO navigation message to GEO satellites. The GEO satellites downlink this data to
the users via the GPS SPS L-band ranging signal (L) frequency with GPS-type
modulation. Each ground-based station/subsystem communicates via a terrestrial
communications subsystem (TCS). See Fig. 9.1.

In addition to providing augmented GPS data to the users, WAAS verifies its own
integrity and takes any necessary action to ensure that the system meets the WAAS
performance requirements. WAAS also has a system operation and maintenance
function that provides status and related maintenance information to FAA airway
facilities (AFs) NAS personnel.

WAAS has a functional verification system (FVS) that is used for early
development test and evaluation (DT&E), refinement of contractor site installation
procedures, system-level testing, WAAS operational testing, and long-term support
for WAAS.

5 GPS satellites GEO subsystem

6%> User's WAAS
receiver
N

Wide-area GEO uplink
reference station-1 / subsystem

Wide-area
reference station-n

Wide-area
master station

A4

Fig. 9.1 WAAS Top Level View
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Correction and Verification (C&V) processes data from all WRSs to determine
integrity, differential corrections, satellite orbits, and residual error bounds for each
monitored satellite. It also determines ionospheric vertical delays and their residual
error bounds at each of the IGPs. C&V schedules and formats WAAS messages and
forwards them to the GUSs for broadcast to the GEO satellites.

C&V’s capabilities are as follows:

1.

10.

Control C&V Operations and Maintenance (COM) supports the transfer of
files, performs remotely initiated software configuration checks, and accepts
requests to start and stop execution of the C&V application software.

Control C&V Modes (CMD) manage mode transitions in the C&V subsys-
tem while the application software is running.

Monitor C&V (MCV) reports line replaceable unit (LRU) faults and
configuration status. In addition, it monitors software processes and provides
performance data for the local C&V subsystems.

Process Input Data (PID) selects and monitors data from the wide-area
reference equipment (WREs). Data that passes PID screening is repackaged
for other C&V capabilities. PID performs clock and L; GPS Precision
Positioning Service L-band ranging signal (L,) receiver bias calculations,
cycle slip detection, outlier detection, data smoothing, and data monitoring.
In addition, PID calculates and applies the windup correction to the carrier
phase, accumulates data to estimate the pseudorange to carrier phase bias,
and computes the ionosphere corrected carrier phase and measured slant
delay.

. Satellite Orbit Determination (SOD) determines the GPS and GEO satellite

orbits and clock offsets, WRE receiver clock offsets, and troposphere delay.

Ionosphere Correction Computation (ICC) determines the L; IGP vertical
delays, grid ionosphere vertical error (GIVE) for all defined IGPs, and L,-L,
interfrequency bias for each satellite transmitter and each WRS receiver.
Satellite Correction Processing (SCP) determines the fast and long-term
satellite corrections, including the user differential range error (UDRE). It
determines the WNT and the GEO and WNT clock steering commands [99].
Independent Data Verification (IDV) compares satellite corrections, GEO
navigation data, and ionospheric corrections from two independent computa-
tional sources, and if the comparisons are within limits, one source is selected
from which to build the WAAS messages. If the comparisons are not within
limits, various responses may occur, depending on the data being compared,
all the way from alarms being generated to the C&V being faulted.
Message Output Processing (MOP) transmits messages containing indepen-
dently verified results of C&V calculations to the GUS processing (GP) for
broadcast.

C&V Playback (PLB) processes the playback data that has been recorded by
the other C&V capabilities.
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11. Integrity Data Monitoring (IDM) checks both the broadcast and the to-be-
broadcast UDREs and GIVEs to ensure that they are properly bounding their
errors. In addition, it monitors and validates that the broadcast messages are
sent correctly. It also performs the WAAS time-to-alarm validation
[1, 99].

9.2.3.1 WRS Algorithms Each WRS collects raw pseudorange (PR) and
accumulated delta range (ADR) measurements from GPS and GEO satellites
selected for tracking. Each WRS performs smoothing on the measurements and
corrects for atmospheric effects, that is, ionospheric and tropospheric delays. These
smoothed and atmospherically corrected measurements are provided to the WMS.

9.2.3.2 WMS Foreground (Fast) Algorithms The WMS foreground algo-
rithms are applicable to real-time processing functions, specifically the computation
of fast correction, determination of satellite integrity status and WAAS message
formatting. This processing is done at a 1-HZ rate.

9.2.3.3 WMS Background (Slow) Algorithms The WMS background
processing consists of algorithms that estimate slowly varying parameters. These
algorithms consist of WRS clock error estimation, grid ionospecific delay computa-
tion, broadcast ephemeris computation, satellite orbit determination, satellite ephe-
meris error computation, and satellite visibility computation.

9.2.3.4 Independent Data Verification and Validation Algorithms This
includes a set of WRS and at least one WMS, which enable monitoring the integrity
status of GPS and the determination of wide-area DGPS correction data. Each WRS
has three dual frequency GPS receivers to provide parallel sets of measurement data.
The presence of parallel data streams enables Independent Data Verification and
Validation (IDV&V) to be employed to ensure the integrity of GPS data and their
corrections in the WAAS messages broadcast via one or more GEOs. With IDV&V
active, the WMS applies the corrections computed from one stream to the data from
the other stream to provide verification of the corrections prior to transmission. The
primary data stream is also used for the validation phase to check the active (already
broadcast) correction and to monitor their SIS performance. These algorithms are
continually being improved. The latest versions can be found in references [48, 96,
97, 137, 99] and [98, pp. 397-425].

9.3 GEO UPLINK SUBSYSTEM (GUS)

Corrections from the WMS are sent to the ground uplink subsystem (GUS) for
uplink to the GEO. The GUS receives integrity and correction data and WAAS
specific messages from the WMS, adds forward error correction (FEC) encoding,
and transmits the messages via a C-band uplink to the GEO satellites for broadcast
to the WAAS user. The GUS signal uses the GPS standard positioning service
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waveform (C/A-code, BPSK modulation); however, the data rate is higher (250
bps). The 250 bps of data are encoded with a one-half rate convolutional code,
resulting in a 500-symbols/s transmission rate.

Each symbol is modulated by the C/A-code, a 1.023 x 10°-chips/s pseudo
random sequence to provide a spread-spectrum signal. This signal is then BPSK
modulated by the GUS onto an IF carrier, upconverted to a C-band frequency, and
uplinked to the GEO. It is the C/A-code modulation that provides the ranging
capability if its phase is properly controlled.

Control of the carrier frequency and phase is also required to eliminate uplink
Doppler and to maintain coherence between code and carrier. The GUS monitors the
C-band and L, downlinks from the GEO to provide closed-loop control of the PRN
code and L, carrier coherency. WAAS short- and long-term code carrier coherence
requirements are met.

9.3.1 Description of the GUS Algorithm

The GUS control loop algorithm “precorrects” the code phase, carrier phase, and
carrier frequency of the GEO uplink signal to maintain GEO broadcast code—carrier
coherence. The uplink effects such as ionospheric code—carrier divergence, uplink
Doppler, equipment delays, and frequency offsets must be corrected in the GUS
control loop algorithm.

Figure 9.2 provides an overview of the functional elements of the GUS control
loop. The control loop contains algorithm elements (shaded boxes) and hardware
elements that either provide inputs to the algorithm or are controlled or affected by
outputs from the algorithm. The hardware elements include a WAAS GPS receiver,
GEO satellite, and GUS signal generator.

Downlink ionospheric delay is estimated in the ionospheric delay and rate
estimator using pseudorange measurements from the WAAS GPS receiver on L,
and L, (downconverted from the GEO C-band downlink at the GUS). This is a two-
state Kalman filter that estimates the ionospheric delay and delay rate.

At each measurement interval, a range measurement is taken and fed into the
range, rate, and acceleration estimator. This measurement is the average between the
reference pseudorange from the GUS signal generator PRg,, and the received
pseudorange from the L; downlink as measured by the WAAS GPS Receiver (PR,,)
and adjusted for estimated ionospheric delay (PR;,,,). The equation for the range
measurement is then

z= %[(PRgeo - PRiono) + PRsign] - TCup - TlewnS’

where T, = C-band uplink delay (m)
T)14wns = L receiver delay of the GUS (m)

The GUS signal generator is initialized with a pseudorange value from satellite
ephemeris data. This is the initial reference from which corrections are made.

The range, rate and acceleration estimator is a three-state Kalman filter that drives
the frequency and code control loops.
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Fig. 9.2 GUS control loop block diagram.

The code control loop is a second-order control system. The error signal for this
control system is the difference between the WAAS pseudorange (Pyq,) and the
estimated pseudorange from the Kalman filter. The loop output is the code rate
adjustments to the GUS signal generator.

The frequency control loop has two modes. First, it adjusts the signal generator
frequency to compensate for uplink Doppler effects. This is accomplished using a
first-order control system. The error signal input is the difference between the L,
Doppler frequency from the WAAS GPS receiver and the estimated range rate
(converted to a Doppler frequency) from the Kalman filter.

Once the frequency error is below a threshold value, the carrier phase is
controlled. This is accomplished using a second-order control system. The error
signal input to this system is the difference between the L, carrier phase and a carrier
phase estimate based on the Kalman filter output. This estimated range is converted
to carrier cycles using the range estimate at the time carrier phase control starts as a
reference. Fine adjustments are made to the signal generator carrier frequency to
maintain phase coherence [35, 47—49, 94].

9.3.2 In-Orbit Tests

Two separate series of in-orbit tests (IOTs) were conducted, one at the COMSAT
GPS Earth Station (GES) in Santa Paula, California with Pacific Ocean Region
(POR) and Atlantic Ocean Region-West (AOR-W) I-3 satellites and the other at the
COMSAT GES in Clarksburg, Maryland, using AOR-W. The IOTs were conducted
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to validate a prototype version of the GUS control loop algorithm. Data was
collected to verify the ionospheric estimation and code—carrier coherence perfor-
mance capability of the control loop and the short—term carrier frequency stability of
the -3 satellites with a prototype ground station. The test results were also used to
validate the GUS control loop simulation.

Figure 9.3 illustrates the IOT setup at a high level. Prototype ground station
hardware and software were used to assess algorithm performance at two different
ground stations with two different Inmarsat-3 satellites.

9.3.3 lonospheric Delay Estimation

The GUS control loop estimates the ionospheric delay contribution of the GEO C-
band uplink to maintain code—carrier coherence of the broadcast SIS. Figures 9.4—
9.6 provide the delay estimates for POR using the Santa Paula GES and AOR-W
using both the Santa Paula and Clarksburg GES. Each plot shows the estimated
ionospheric delay (output of the two-state Kalman filter) versus the calculated delay
using the L; and C pseudorange data from a WAAS GPS receiver. Calculated delay
is noisier and varying about 1 m/s, whereas the estimated delay by the Kalman filter
is right in middle of the measured delay, as shown in Figures 9.4-9.6. Delay
measurements were calculated using the equation

Ppiy —Ppe—tau Ly + tau C

Ionospheric delay =
1= [L, freq)/[C freq)
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where Pg;; = L, pseudorange (m)

Prc = C pseudorange (m)

tau L, = L, downlink delay (m)
tau C = C downlink delay (m)

L, freq = L, frequency, = 1575.42 MHz
Cfreq = C frequency, = 3630.42 MHz
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The ionosphere during the IOTs was fairly benign with no high levels of solar
activity observed. Table 9.1 provides the ionospheric delay statistics (in meters)

lonospheric delay (m)
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between the output of the ionospheric Kalman filter in the control loop, and the
calculated delay from the WAAS GPS receiver’s L; and L, pseudoranges. The
statistics show that the loop’s ionospheric delay estimation is very close (low RMS)
to the ionospheric delay calculated using the measured pseudorange from the WAAS
GPS receiver.

9.3.4 Code—Carrier Frequency Coherence

The GEO’s broadcast code—carrier frequency coherence requirement is specified in
the WAAS System Specification and Appendix A of reference [106]. It states:

The lack of coherence between the broadcast carrier phase and the code phase shall be
limited. The short term fractional frequency difference between the code phase rate and
the carrier frequency will be less than 5 x 10~'!. That is,

fcode _ f;‘arrier <5 x 10711

1.023 MHz 1575.42 MHz

TABLE 9.1 Observed RMS WAAS lonospheric Correc-

tion Errors

In-Orbit Test RMS Error (m)
Santa Paula GES, Oct. 10, 1997, POR 0.20
Santa Paula GES, Dec. 1, 1997, AOR-W 0.45

Clarksburg GES, Mar. 20, 1998, AOR-W 0.34
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Over the long term, the difference between the broadcast code phase (1/1540) and the
broadcast carrier phase will be within one carrier cycle, one sigma. This does not
include code-carrier divergence due to inospheric refraction in the downlink propaga-
tion path.

For the WAAS program, short term is defined as less than 10s and long term less
than 100s.

Pseudorange minus the ionospheric estimates averaged over 7 seconds is
expressed as

_ Ppyy(2) — Ionoestimate (7)

Fpr = meters/s.

T

Carrier phase minus the ionospheric estimate average over T seconds is expressed
as

_ —¢1,(1) + (Tonoestimate (1)/ ;)
T

Fpy cycles/s.

For long-term code—carrier coherence calculations, a T of 60s was chosen to
mitigate receiver bias errors in the pseudorange and carrier phase measurements of
the WAAS GPS receiver. For short-term code—carrier coherence a shorter 30-s
averaging time was selected. The code—carrier coherence requirement is specified at
the output of the GEO and not the receiver, so data averaging has to be employed to
back out receiver effects such as multipath and noise. Each averaging time was based
upon analyzing GPS satellite code—carrier coherence data and selecting the mini-
mum averaging time required for GPS to meet the WAAS code—carrier coherence
requirements.

For long term code—carrier coherence calculations, the difference between the
pseudorange and the phase measurements is given by

Apg_py = [Fer/211] — Fen cycles/s,

where 1;, is the wavelength of the L, carrier frequency and “long term coherence”
equals |Apg_pp(f + 100) — Apr_pp(?)| cycles.

For short-term code—carrier coherence calculations, the difference between the
pseudorange and the phase measurements is given by

P _ Fpr — Fpy
FR=PH ™10 x ¢ (speed of light)

and “short term coherence” is |dpg_py(f + 10) — dpr_pu(?)|-

The IOT long- and short-term code—carrier results from Santa Paula and
Clarksburg are shown in Table 2. The results indicate that the control loop algorithm
performance meets the long- and short-term code—carrier requirements of WAAS
with the I-3 satellites.
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TABLE 9.2 Code Carrier Coherence

Short Term? Long Term®
(10s) (100s)
Requirement <5 x 107" <1 cycle
Santa Paula prototyping POR, Oct. 10, 1997 1.89 x 10~ 0.326
AOR-W, Dec. 1, 1997 1.78 x 10~ 0.392
Clarksburg prototyping ~ AOR-W, Mar. 20, 1998 1.92 x 10~ 0.434

“Data averaging 30s for short term.
%Data averaging 60 for long term.

9.3.5 Carrier Frequency Stability

Carrier frequency stability is a function of both the uplink frequency standard, GUS
signal generator, and I-3 transponder. The GEO’ short-term carrier frequency
stability requirement is specified in the WAAS System Specification and Appendix
A of reference [106]. It states:

The short term stability of the carrier frequency (square root of the Allan variance) at
the input of the user’s receiver antenna shall be better than 5 x 107! over 1 to 10
seconds, excluding the effects of the ionosphere and Doppler.

The Allan variance [2] is calculated on the second difference of L, phase data
divided by the center frequency over 1-10s. Effects of smoothed ionosphere and
Doppler are compensated for in the data prior to this calculation. Test results in Table
9.3 show that the POR and AOR-W I-3 GEOs, in conjunction with WAAS ground
station equipment, meet the short-term carrier frequency stability requirement of
WAAS.

9.4 GEO UPLINK SUBSYSTEM (GUS) CLOCK STEERING
ALGORITHMS

The local oscillator (cesium frequency standard) at the GUS is not perfectly stable
with respect to WAAS network time (WNT). Even though the cesium frequency
standard is very stable, it has inherent drift. Over a long period of operation, as in the

TABLE 9.3 Carrier Frequency Stability Requirements Satisfied

1s, 10s,
Requirement for L, <5 x 10~ <5 x 10~
Santa Paula prototyping Oct. 10, 1997, POR 452 x 10~ 5.32 x 10712
Dec. 1, 1997, AOR-W 393 x 10~ 45x 10712

Clarksburg prototyping ~ Mar. 20, 1998 492 x 10~ 473 x 10712
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Fig. 9.7 WMS to GUS clock steering.

WAAS scenario, this slow drift will accumulate and result in an offset so large that
the value will not fit in the associated data fields in the WAAS Type 9 message. This
is why a clock steering algorithm is necessary at the GUS. This drifting effect will
cause GUS time and WNT to slowly diverge. The GUS can compensate for this drift
by periodically re-synchronizing the receiver time with the WNT using the estimated
receiver clock offset [a,(#,)]. This clock offset is provided by the WMS in WAAS
Type 9 messages. (See Fig. 9.7.)

GUS steering algorithms for the primary and backup GEO uplink subsystems
[103, 46] are discussed in the next section.

The primary GUS clock steering is closed loop via the signal generator, GEO,
WRS, WMS, to the GUS processor. The backup GUS clock steering is an open-loop
system, because the backup does not uplink to the GEO. The clock offset is
calculated using the estimated range and the range calculated from the C&V
provided GEO positions.

The GUS also contains the WAAS clock steering algorithm. This algorithm uses
the WAAS Type 9 messages from the WMS to align the GEO’s epoch with the GPS
epoch. The WAAS Type 9 message contains a term referred to as a; , or clock offset.
This offset represents a correction, or time difference, between the GEOs epoch and
WNT. WNT is the internal time reference scale of WAAS and is required to track the
GPS time scale, while at the same time providing the users with the translation to
UTC. Since GPS master time is not directly obtainable, the WAAS architecture
requires that WNT be computed at multiple WMSs using potentially differing sets of
measurements from potentially differing sets of receivers and clocks (WAAS
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reference stations). WNT is required to agree with GPS to within 50 ns. At the same
time, the WNT-to-UTC offset must be provided to the user, with the offset being
accurate to 20ns. The GUS calculates local clock adjustments. Based upon these
clock adjustments, the frequency standard can be made to speed up or slow the GUS
clock. This will keep the total GEO clock offset within the range allowed by the
WAAS Type 9 message so that users can make the proper clock corrections in their
algorithms.

9.4.1 Primary GUS Clock Steering Algorithm

The GUS clock steering algorithm calculates the fractional frequency control
adjustment required to slowly steer the GUS’s cesium frequency standard to align
the GEO’s epoch. These frequency control signals are very small so normal
operation of the code and frequency control loops of any user receiver is not
disturbed. Figure 9.8 shows the primary GUS’s closed-loop control system block
diagram. The primary GUS is the active uplink dedicated to either the AOR-W or
POR GEO satellite. If this primary GUS fails, then the hot “backup GUS” is
switched to primary.

The clock steering algorithm is designed using a proportional and integral (PI)
controller. This algorithm allows one to optimize by adjusting the parameters a, b,
and T. Values of a and b are optimized to 0.707 damping ratio.

The value a,(t;) is the range residual for the primary GUS:

1 N
ag(t) = N > ag(te_y)-

n=1

P.l. controller | .
1 _g 1
! T !
1 1
_a Yo+,
WNT 3 Average over N | o, C+>—:—
+ + ” data points ! !
1 + 1
1 1
— ' B 1
1 ——2 1
1
I ST .
1 1
1 = Cesium frequency standard
s &) ,
(f,) steering commands

T Cesium drift

Fig. 9.8 Clock steering block diagram.
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The value £.(#,) is the frequency control signal to be applied at time ¢, to the GUS
cesium frequency standard:

o) = =5 e+ | oo |

where T = large time constant
o, f = control parameters
N = number of data points within period ¢
t = time of averaging period
t, = time when the frequency control signal is applied to the cesium
frequency standard
ay(t,) = time offset for GEO at time ¢, provided by WMS for primary GUS
S = Laplace transform variable (see Fig. 9.8)

9.4.2 Backup GUS Clock Steering Algorithm

The backup GUS must employ a different algorithm for calculating the range
residual. Since the backup GUS is not transmitting to the satellite, the WMS cannot
model the clock drift at the backup GUS, and therefore an a, term is not present in
the WAAS Type 9 message. In lieu of the ¢, term provided by the WMS, the backup
GUS calculates an equivalent a,, parameter.

The range residual a,(#;) for the backup GUS is calculated as follows [44]:

Brg — Rwws
ay(f) = c— Sty
where Brg = range estimate in the backup range estimator
Rywwms = range estimate calculated from the GEO position supplied
by WMs Type 9 message
¢ = speed of light
S(,) = Sagnac effect correction in an inertial frame

The backup GUS uses the same algorithm f.(z,) as the primary GUS.

9.4.3 Clock Steering Test Results Description

AOR-W Primary (Clarksburg, MD) Figure 9.9 shows the test results for the
first nine days. The first two to three days had cold-start transients and WMS switch
overs (LA to DC and DC to LA). From the third to the sixth day, the clock stayed
within £250ns. At the end of the sixth day, a maneuver took place and caused a
small transient and the clock offset went to —750ns. On the eighth day, the primary
GUS was switched to Santa Paula, and another transient was observed. Clock
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Fig. 9.9 Primary GP clock steering parameters, AOR-W, Clarksburg.

steering command limits are £138.89 x 1073, Limits on the clock offset from the
WAAS Type 9 messages are £953.7 ns.

AOR-W Backup (Santa Paula, CA) Figure 9.10 shows that the backup GUS
stayed within £550ns for the first six days after initial transients. At the end of the
sixth day, a GEO maneuver caused a transient.

POR Primary (Brewster, WA) Figure 9.11 shows a cold-start transients and
WMS switchovers (LA to DC and DC to LA); the primary GUS stayed within
4450 ns after initial transients. There was a GUS switchover after the seventh day,
which caused transients.

POR Backup (Santa Paula, CA) Figure 9.12 shows cold-start transients. After
initial transients, the backup GUS stayed within +550 ns for nine days.

The clock offsets in all four cases are less than £953.7 ns (limit on WAAS Type 9
Message) for nine days.
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9.5 GEO ORBIT DETERMINATION

The purpose of WAAS is to provide pseudorange and ionospheric corrections for
GPS satellites to improve the accuracy for the GPS navigation user and to protect the
user with “integrity.” Integrity is the ability to provide timely warnings to the user
whenever any navigation parameters estimated using the system are outside
tolerance limits. WAAS may also augment the GPS constellation by providing
additional ranging sources using GEO satellites that are being used to broadcast the
WAAS signal.

The two parameters having the most influence on the integrity bounds for the
broadcast data are user differential ranging error (UDRE) for the pseudorange
corrections and grid ionospheric vertical error (GIVE) for the ionospheric correc-
tions. With these, the on-board navigation system estimates the horizontal protection
limit (HPL) and the vertical protection limit (VPL), which are then compared to the
Horizontal Alert Limit (HAL) and the Vertical Alert Limit (VAL) requirements for
the particular phase of flight involved, that is, oceanic/remote, en-route, terminal,
nonprecision approach, and precision approach. If the estimated protection limits are
greater than the alert limits, the navigation system is declared unavailable. Therefore,
the UDRE and GIVE values obtained by the WAAS (in concert with the GPS and
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GEO constellation geometry and reliability) essentially determine the degree of
availability of the WADGPS navigation service to the user.

The WAAS algorithms calculate the broadcast corrections and the corresponding
UDREs and GIVEs by processing the satellite signals received by the network of
ground stations. Therefore, the expected values for UDREs and GIVEs are
dependent on satellite and station geometries, satellite signal and clock performance,
receiver performance, environmental conditions (such as multipath, ionospheric
storms, etc.) and algorithm design [50, 95].

9.5.1 Geometric Analysis

In this section, GDOP will be defined in a reverse direction, as compared to Chapter
2, Section 2.5.2, and Chapter 7, Section 7.8, respectively. There is only one satellite
and multiple ground stations. GDOP will be calculated to determine the optimal
locations of the ground stations with respect to fixed satellites, such as GEOs [AOR-
W, POR, Atlantic Ocean Region East (AOR-E), Indian Ocean East (IOP), Multi-
functional Transport Satellite (MTSAT)].

The static geometry of the relation between the GEO and the ground stations is
characterized by treating the GEO as a ranging signal source with respect to a
network of synchronized ground stations. The states of the GEO are position x, y, z
and clock offset ct, where c is the speed of light. A least-squares estimate from the
linearized pseudorange differential is developed to obtain the GDOP (geometric
dilution of precision). Also introduced are the PDOP (position dilution of precision),
TDOP (time dilution of precision), VDOP (vertical dilution of precision), and
HDOP (horizontal dilution of precision). Some results relating the behavior of these
DOPs with respect to various ground geometries are then presented.

The equation for the pseudorange for each station is

b= = XP 4 0= VP 4 = 2P + Gy

Let the state of the GEO be identified by the vector x =[x y z Cb]T and the
measurements defined by the vector p =[p, p, p; --- pN]T, where N is the
number of stations that can measure the pseudorange. One can then obtain the H
matrix, defined as

T
I
gL

The ith row of H is given by

H =

1




284 DIFFERENTIAL GPS

with

r= = X+ 0 — Y+ 5 — 2

The first three columns of H are the direction cosines of the line-of-sight
directions from the receiver antenna to GPS satellite antennas. Then, taking the
linear approximation, the pseudorange differential is given by

dp=H dx+d,,

where d, is the residual.
If the residuals are random variables with zero mean and no correlations, the least
mean squares estimate for dx, called dX, is given by

di = (H"H)'H" dp.

This is obtained by minimizing the square of the residual with respect to dx.
Let the mean of the residuals be zero and the covariance be given by the matrix R,
that is, E£[d,] = 0 and E[d,d]] = R. In this case, the least mean squares estimate is

di = (H"R'H) '"H"R™" dp.
Then the error covariance matrix for dX is given by
Y = E[(dX — dx)(d% — dx)"]
= E[(H"R'H) '"H"R'd d"R"HH"R™'H)™

=H"R'H)".

If the covariance matrix for the residuals is diagonal and given by R = ¢/, then
this reduces to

L =c*(H'H)™".
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If we define the GEO frame such that x points in the cross-track direction (i.e.,
horizontal and orthogonal to the orbital track), y points along track, and z points
toward the earth, the DOPs can then be defined as follows:

_ \/Zxx + Zyy + 2‘zz + Ztt

2 ’

GDOP = \/:22)

vV Zw + 2“yy + 2“zz
PDOP=V+——~———

g

o2 ’
ZZZ
VDOP = ¥==,
o
Z[t
TDOP = ¥,
g
[T+
HDOP = Y=
o

Due to the fact that the DOPs are inversely related to the square root of the
number of stations, one can introduce a normalized DOP index, nDOP =
GDOP,/N,/100, that roughly characterizes the “geometry per station” obtained
from a particular station architecture. (N, is the number of reference stations.)

9.5.2 GEO Synchronous Satellite Orbit Determination via Covariance
Analysis

A full WAAS algorithm contains three Kalman filters—an orbit determination filter,
an ionospheric corrections filter, and a fast corrections filter. The fast corrections
filter is a Kalman filter that estimates the GEO, GPS, and ground station clock states
every second. In this section, we derive an estimated lower bound of the GEO UDRE
for a WAAS algorithm that contains only the orbit determination Kalman filter,
called the UDRE(OD), where OD refers to orbit determination.

A method is proposed to approximate the UDRE obtained for a WAAS including
both the orbit determination filter and the fast corrections filter from UDRE(OD).
From case studies of the geometries studied in the previous section, we obtain the
essential dependence of UDRE on ground station geometry.

A covariance analysis on the orbit determination is performed using a simplified
version of the orbit determination algorithms. The performance of the ionospheric
corrections filter is treated as perfect, and therefore, the ionospheric filter model is
ignored. The station clocks are treated as if perfectly synchronized using the GPS
satellite measurements. Therefore, the station clock states are ignored. This allows
the decoupling of the orbit determinations for all the statellites from each other,
simplifying the orbit determination problem to that for one satellite with its
corresponding ground station geometry and synchronized station clocks. Both of
these assumptions are liberal, and therefore, the UDRE(OD) obtained here is a lower
bound for the actual UDRE(OD). Finally, we consider only users within the service
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volume covered by the stations and, therefore, ignore any degradation factors
depending on user location.

To simulate the Kalman filter for the covariance matrix P, the following four
matrices are necessary:

O = state transition matrix;

H = measurement sensitivity matrix;

O = process noise covariance matrix; and
R = measurement noise covariance matrix.

The methods used to determine these matrices are described below.
The state vector for the satellite is

p
x=| 7 |,
G
where
r=lxyz ]T
is the satellite position in the ECI frame,
F=ky 2]

is the satellite velocity in the ECI frame, and C, is the satellite clock offset relative to
the synchronized station clocks. Newton’s second and third (gravitational) laws
provide the equations of motion for the satellite:

where 7 is the acceleration in the ECI frame, pj is the gravitational constant for the
earth, and M is the total perturbation vector in the ECI frame containing all the
perturbing accelerations. For this analysis, only the perturbation due to the oblate-
ness of the earth is included. The effect of this perturbation on the behavior of the
covariance is negligible, and therefore higher order perturbations are ignored. (Note
that although the theoretical model is simplified, the process noise covariance matrix
0 is chosen to be consistent with a far more sophisticated orbital model.)
Therefore,

3. W af

=-3 2W|7’7[[3X3 + 222",
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where aj is the semimajor axis of the earth shape model, J, is the second zonal
harmonic coefficient of the earth shape model, and Z=1[0 0 1" 7).

The second-order differential equation of motion can be rewritten as a pair of
first-order differential equations

F=ry =Py ©.1)

where r| and r, are vectors (r; = r), which therefore gives a system of six first order
equations.

The variational equations are differential equations describing the rates of change
of the satellite position and velocity vectors as functions of variations in the
components of the estimation state vector. These lead to the state transition matrix
@ used in the Kalman filter. The variational equations are

Y(t) = A@)Y (1) + B(n) Y (£), 9.2)
where
_ or(ty) or(ty)
Ylti)ss = |:<3”(fk—1))3x3 <aiﬁ(tk—l)>3><3i|’
. [ ¥t ar(t,) 9.3)
Y3 = [(ar(rk_1>)3xg(af(rK_1)>3xj’
At)s, 5 = g (9.4)
_ THg B
= W[Bw =3 ] - Eszw
X [Lys + 2287 — 108N ET +727) + (1072 — 5)ED], (9.4)
B(f);,3 = % = 0343, 9.5)

where 7 = r/|r|.

Equations 9.3-9.5 are substituted into Eq. 9.2 with Eq. 9.1, and the differential
equations are solved using the fourth-order Runge—Kutta method. The time step
used is a 5-min interval. The initial conditions for the GEO are specified for the
particular case given and propagated forward for each time step, whereas the initial
conditions for the Y’s are

Y(ti—1)3x6 = x5 0343], Y(t)306 = 033 L343]
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and reset for each time step. This is due to the divergence of the solution of the
differential equation used in this method to calculate the state transition matrix for
the Kepler problem.

This gives the state X" = [r] r]] and the state transition matrix

Y(fi)sxe  Osxi
Qpj1,, = | Y(t)sxe O3x 9.7

01x6 11><1

for the Kalman filter.
The measurement sensitivity matrix is given by

W [0\ () (o
VT N0 s\ s \8en) )y I

where p is the pseudorange for a station and N is the number of stations in view of
the satellite. Note that this is essentially the same H as in the previous section.
Ignoring relativistic corrections and denoting the station position by the vector
rg =[xy yg zS]T, the matrices above are given by

op _[r— rsl' or(t)
o r—rgl ar(t_y)’

op _[r— rsl' or(t)
o |r—rgl W(t_y)’

and

o
er)

The station position is calculated with the WGS-84 model for the earth and
converted to the ECI frame using the J2000 epoch. (See Appendix C.)

These are then combined with the measurement noise covariance matrix, R and
the process noise covariance matrix Q to obtain the Kalman filter equations for the
covariance matrix P as follows:

Pi(=) =Dy P (D41 + O,
Ky = Py(—)H{[HPy(—)H] + R,
— — — 7
Pu(+) = [ = K H P — K H]" + K RK,.

The initial condition, Py(+), and Q are chosen to be consistent with the WAAS
algorithms. The value of R is chosen by matching the output of the GEO covariance
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for AOR-W with R = ¢/ and is used as the input R for all other satellites and station
geometries (note that this therefore gives approximate results). This corresponds to
carrier phase ranging for the stations. The results corresponding to the value of R for
code ranging are also presented.

From this covariance, the lower bound on the UDRE is obtained by

UDRE > EMRBE + Kg/tr(P),

where EMRBE is the estimated maximum range and bias error. To obtain the .999
level of bounding for the UDRE with EMRBE = 0, Kg¢ = 3.29. Finally, since the
message is broadcast every second, Af = 1, so the trace can be used for the velocity
components as well.

Figure 9.13 shows the relationship between UDRE and GDOP for various GEO
satellites and WRS locations. Table 9.4 describes the various cases considered in this
analysis.

The numerical values used for the filter are as follows [all units are Systéme
International (SI)]:

e Earth parameters:

1y = 3.98600441 x 10", J, = 1082.63 x 1075,
ap = 6,378,137.0, by = 6,356,752.3142.

e Filter parameters:

Opos =0, Oy = 0.75 x 10°, 0., = 60,
op=0.013, Py =1449, Py =1x10"* Py, =1009.

UDRE vs GDOP for GEO

0 20000 40000 60000 80000 100000
GDOP
Fig. 9.13 Relationship between UDRE and GDOP.
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TABLE 9.4 Cases Used in Geometry-per-Station Analysis

Case UDRE GDOP Satellite Geometry
1 17.9 905 AOR-W WAAS stations (25), 21 in view
2 45.8 2516 AOR-W 4 WAAS stations (CONUS)
3 135 56536 AOR-W 4 WAAS stations (NE)
4 4.5 254 AOR-W WAAS stations + Santiago
5 5.8 212 AOR-W WAAS stations + London
6 4.0 154 AOR-W WAAS stations+ Santiago + London
7 7.5 439 AOR-W 4 WAAS stations (CONUS) + Santiago
8 8.6 337 AOR-W 4 WAAS stations (CONUS) + London
9 6.6 271 AOR-W 4 WAAS stations (CONUS) + Santiago + London
10 47.7 2799 AOR-W 4 WAAS stations (NE) + Santiago
11 215 1405 AOR-W 4 WAAS stations (NE) + London
12 16.4 1334 AOR-W 4 WAAS stations (NE) + Santiago + London
13 28.5 1686 POR WAAS stations (25), 8 in view
14 45.4 3196 POR WAAS stations, Hawaii
15 31.1 1898 POR WAAS stations, Cold Bay
16 55.0 4204 POR WAAS stations, Hawaii, Cold Bay
17 6.7 257 POR WAAS stations + Sydney
18 8.3 338 POR WAAS stations + Tokyo
19 6.7 257 POR WAAS stations + Sydney + Tokyo
20 21.0 1124 MTSAT MSAS stations, 8 in view
21 22.0 1191 MTSAT MSAS stations — Hawaii
22 24.9 1407 MTSAT MSAS stations — Australia
23 54.6 4149 MTSAT MSAS stations — Hawaii, Australia
24 22.0 1198 MTSAT MSAS stations — Ibaraki
25 29.0 1731 MTSAT MSAS stations — Ibaraki, Australia
26 54.8 4164 MTSAT MSAS stations — Ibaraki, Australia, Hawaii
27 13.2 609 MTSAT MSAS stations + Cold Bay
A 139 TEST Theta = 75°
B 422 TEST Theta = 30°
] 3343 TEST Theta = 10°
D 13211 TEST Theta = 5°
E 67 TEST 41 stations
F 64 TEST 41 + 4 stations

4 WAAS stations (CONUS) are Boston, Miami, Seattle, and Los Angeles.
4 WAAS stations (NE) are Boston, New York, Washington D.C., and Cleveland.

e Curve fit parameters:

Problems

GQ,ﬁt - 6.12, S(b'ﬁt - .0107.

9.1 Determine the code—carrier coherency at the GUS location using L, code and

carrier.

9.2 Determine the frequency stability of the AOR and POR transponder using
Allan variance for the L; using 1-10-s intervals.
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Appendix A

Software

MATLAB m-files on the accompanying diskette are divided into folders for each
chapter of the book. The following sections describe what the m-files demonstrate.

A.1 CHAPTER 3 SOFTWARE
A.1.1 Satellite Position Determination

The MATLAB script ephemeris.m calculates a GPS satellite position in ECEF
coordinates from its ephemeris parameters. The ephemeris parameters comprise a set
of Keplerian orbital parameters and describe the satellite orbit during a particular
time interval. From these parameters, ECEF coordinates are calculated using the
equations from the text. Note that time ¢ is the GPS time at transmission and 7, (tk
in the script) is the total time difference between time t and the epoch time 7,, (toe).
Kepler’s equation for eccentric anomaly is nonlinear in £, (Ek) and is solved
numerically using the Newton—Raphson method.

A.2 CHAPTER 5 SOFTWARE

The MATLAB script Klobuchar .m calculates the ionospheric delay by using the
Klobuchar model.

A.3 CHAPTER 6 SOFTWARE

The m-file 1atitude.m computes and plots the differences between geodetic and
geocentric latitude and parametric latitude for the WGS 84 ellipsoid model.

291
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A.3.1 Quaternion Utilities

The subdirectory “quaternions” contains the following m-files:

vrot2qrot.m

rotvec2qgvec.m

quattrim.m

gvecZ2mat.m

rotdemo.m

rotdemol.m

rotdemo2.m

rotdemo3.m

quatmats.m

trimdemo.m

gqmat2vec.m

viewfrom.m

Transforms a rotation vector to the equivalent quaternion
matrix and applies it to an initial quaternion matrix

Converts a rotation vector to the equivalent quaternion vector
Re-scales and adjusts the symmetric and antisymmetric parts
of a 4 x 4 matrix to make it a legitimate quaternion matrix
Converts the quaternion 4-vector to the equivalent quater-
nion 4 x 4 matrix

Computes and plots direction cosines of a coordinate trans-
formation matrix during a rotation (implemented using
quaternions for attitude rate integration)

Plots the locations of body coordinates on the unit sphere
during a rotation about an axis with azimuth 45° and
elevation about 35.26°

Plots the locations of body coordinates on the unit sphere
during a rotation about the east axis

Plots the locations of body coordinates on the unit sphere
during two successive rotations about different axes
Creates the four quaternion basis matrices Q;, Q,, Q3, Q4
Demonstrates  “quaternion trimming” (using quat-
trim.m) by comparing trimmed and untrimmed quater-
nions computed along a random-walk attitude trajectory
Converts a 4 x 4 quaternion matrix to the equivalent quater-
nion 4-vector.

A coordinate transformation utility used in the quaternion
demonstrations to compute the view of trajectories on the
unit sphere from any perspective

In addition, the MATLAB m-file quatdemo.m, which is bundled with some

versions of MATLAB,

is an excellent demonstration of three-dimensional rotation,

written by Loren Dean of The MathWorks.

A.4 CHAPTER 7 SOFTWARE

A.4.1 Pointwise Products of Likelihood Functions

The MATLAB m-file pwprod.m demonstrates the “Gaussian-ness” of pointwise
products of Gaussian likelihood functions and that the maximum-likelihood estima-
tion formulas do pick the peaks of the pointwise products. Two examples are
programmed: one using Gaussian likelihood functions that could be derived from
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probability distributions with covariance matrices and one using a degenerate
likelihood function that could not be derived from a Gaussian probability distribu-
tion with a covariance matrix but could be encountered in maximum-likelihood
estimation.

The examples chosen are two dimensional, because we cannot plot and view
likelihood functions defined over a higher number of dimensions. In practice, the
matrix H'R™'H represents the information about the system state x gained from a
measurement with measurement sensitivity matrix H and measurement noise
covariance R. This information matrix is often rank deficient and has no correspond-
ing covariance matrix.

A.4.2 GPS Navigation Performance Using Kalman Filtering

A.3.2.1 (GPS_perf.m) The m-file GPS_perf.m performs -covariance
analysis of GPS navigation performance by solving the associated Riccati equation.
The program allows the user to choose four of five satellites, performs both DOP
analysis and covariance analysis, and plots both the GDOPs and the RMS navigation
uncertainties from Kalman filtering. (Press the RETURN key to continue from one
plot to the next.)

The default selection (satellite numbers 1, 2, 3, 4) gives good GDOPs (<4) and
good performance. The RMS uncertainties in position and clock errors (calculated
from the Riccati equation solution) settle down to steady-state values within a minute
or two.

The alternate selection of satellite numbers 1, 2, 3, and 5, however, provides an
example in which observability is lost momentarily when these four satellites get
into a bad configuration for GPS navigation. In this situation, although the GDOP
goes to infinity, the RMS navigation uncertainties with Kalman filtering suffer only
slight degradation.

A.4.22 (init_var.m) The m-file init_var.m initializes parameters and
variables used in the GPS navigation Kalman filter analysis.

A.4.2.3 (choose_sat.m) The m-file choose_sat.m allows the user to
choose the satellite set (or use a default set). The default set (1, 2, 3, 4) gives good
performance.

A.4.24 (gps_init.m) The m-file gps_init.m initializes the selected
constellation of GPS satellites.

A.4.2.5 (calcH.m) The m-file calcH.m solves for satellite motion and
calculates the resulting measurement sensitivity matrix for the Kalman filter. This
example uses a simplified model for the GPS satellite dynamics.

A.4.2.6 (gdop.m) The m-file gdop.m calculates the GDOP as a function of
time for the chosen satellite constellation.
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A.4.2.7 (covar.m) The m-file covar.m solves the Riccati equation and
calculates the Kalman gain matrix. The square roots of the diagonal elements of the
covariance matrix P are saved for plotting.

A.4.28 (plot_covar.m) The m-file plot_covar.m plots the results of
the GPS navigation performance analysis for a time period of 1h.

A.4.2.9 (osc_ekf.m) Demonstrates extended Kalman filter on harmonic
oscillator model.

A.5 CHAPTER 8 SOFTWARE

A.5.1 Square-Root Filter Comparison

A.5.1.1 (shootout.m) The Matlab m-file shootout.m provides a demon-
stration of the relative fidelity of nine different ways to perform the covariance
correction on Example 8.1.

To test how different solution methods perform as conditioning worsens, the
observational update is performed for 10~°%> < § < 10°¢%/3 using nine different
implementation methods:

1. the conventional Kalman filter, as published by R. E. Kalman;

2. Swerling inverse implementation, published by P. Swerling before the Kalman
filter;

Joseph “stabilized” implementation as given by P. D. Joseph;
Joseph “stabilized” implementation as modified by G. J. Bierman;
Joseph “stabilized” implementation as modified by T. W. DeVries;
the Potter algorithm (due to J. E. Potter);

the Carlson “triangular” algorithm (N. A. Carlson);

the Bierman “U-D” algorithm (G. J. Bierman); and

the closed-form solution for this particular problem.

e I A

The first, second, and last of these are implemented in the m-file shootout.m. The
others are implemented in the m-files listed below.

The results are plotted as the RMS error in the computed value of P relative to the
closed-form solution. In order that all results, including failed results, can be plotted,
the value “NaN” (not a number) is interpreted as an underflow and set to zero, and
the value “Inf” is interpreted as the result of a divide-by-zero and set to 10%.

This demonstration should show that, for this particular problem, the accuracies
of the Carlson and Bierman implementations degrade more gracefully than the
others as 0 — ¢. This might encourage the use of the Carlson and Bierman methods
for applications with suspected roundoff problems, although it does not necessarily
demonstrate the superiority of these methods for all applications.
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A.5.1.2 Bierman UD Corrector (bierman.m) Performs the Bierman
“U-D” implementation of the Kalman filter measurement update.

A.5.1.3 Carlson ‘“Triangular’ Corrector (carlson.m) Performs the
Carlson “fast triangular” implementation of the Kalman filter measurement update.

A.5.1.4 Joseph “Stabilized” Corrector There are several forms of this
Riccati equation corrector implementation, which helps to preserve symmetry of P,
among other things:

joseph.m Performs the Joseph “stabilized” implementation of the Kalman
filter measurement update, as proposed by Peter Joseph [19].

josephb.m Performs the Joseph “stabilized” implementation of the Kalman
filter measurement update, as modified by G. J. Bierman.

josephdv.m Performs the Joseph “stabilized” implementation of the Kalman
filter measurement update, as modified by T. W. DeVries.

A.5.1.5 Potter’s Original Square-Root Filter (potter.m) Performs the
Potter “square root” implementation of the Kalman filter measurement update.

A.5.1.6 Upper Triangular Cholesky Factorization (utchol.m) Per-
forms upper triangular Cholesky factorization for initializing the Carlson “fast
triangular” implementation of the Kalman filter measurement update.

A.5.2 Rotation Vector Time Derivatives
The Matlab function rhodtrpy.m computes the 3 x 3 Jacobian matrix of partial

+ from Eq. C.151 used in the tightly coupled Kalman filter model.
WRrpY

The Matlab function rhodtenu.m computes the 3 x 3 Jacobian matrix of
dp
WENY

derivatives

partial derivatives from Eq. C.154 used in the tightly coupled Kalman filter

model.
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Appendix B

Vectors and Matrices

The “S” in “GPS” and in “INS” stands for “system,” and “systems science” for
modeling, analysis, design, and integration of such systems is based largely on linear
algebra and matrix theory. Matrices model the ways that components of systems
interact dynamically and how overall system performance depends on characteristics
of components and subsystems and on the ways they are used within the system.

This appendix presents an overview of matrix theory used for GPS/INS integra-
tion and the matrix notation used in this book. The level of presentation is intended
for readers who are already somewhat familiar with vectors and matrices. A more
thorough treatment can be found in most college-level textbooks on linear algebra
and matrix theory.

B.1 SCALARS

Vectors and matrices are arrays composed of scalars, which we will assume to be real
numbers. Unless constrained by other conventions, we represent scalars by italic
lowercase letters.

In computer implementations, these real numbers will be approximated by
floating-point numbers, which are but a finite subset of the rational numbers. The
default MATLAB representation for real numbers on 32-bit personal computers is in
64-bit ANSI standard floating point, with a 52-bit mantissa.

296
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B.2 VECTORS

B.2.1 Vector Notation

Vectors are arrays of scalars, either column vectors,

or row vectors,

Y=y 05 vl

Unless specified otherwise, vectors can be assumed to be column vectors.

The scalars v, or y; are called the components of v or y, respectively. The number
of components of a vector (rows in a column vector or columns in a row vector) is
called its dimension. The dimension of v shown above is the integer » and the
dimension of y is m. An n-dimensional vector is also called an n-vector.

Vectors are represented by boldface lowercase letters, and the corresponding italic
lowercase letters with subscripts represent the scalar components of the associated
vector.

B.2.2 Unit Vectors

A unit vector (i.e., a vector with magnitude equal to 1) is represented by the
symbol 1.

B.2.3 Subvectors

Vectors can be partitioned and represented in block form as a vector of subvectors:

where each subvector x, is also a vector, as indicated by boldfacing.
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B.2.4 Transpose of a Vector

Vector fransposition,, represented by the post-superscript T transforms row vectors
to column vectors, and vice versa:

N
Y2
vi=[vg, 05,03, ..., 0, ], yi=|M»
Ym
In MATLAB, the transpose of vector v is written as v'.

B.2.5 Vector Inner Product

The inner product or dot product of two m-vectors is the sum of the products of their
corresponding components:

T def &
Xy or Xty=) X
k=1

B.2.6 Orthogonal Vectors

Vectors x and y are called orthogonal or normal if their inner product is zero.

B.2.7 Magnitude of a Vector

The magnitude of a vector is the root-sum-squared of its components, denoted by
| - | and defined as

[v] &l ST (row vector)

N
= [2 v
k=1

ly| &ef V¥YTy (column vector)

m 2
= [ 2V
k=1

B.2.8 Unit Vectors and Orthonormal Vectors

A unit vector has magnitude equal to 1, and a pair or set of mutually orthogonal unit
vectors is called orthonormal.
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B.2.9 Vector Norms

The magnitude of a column n-vector x is also called its Euclidean norm. This is but
one of a class of norms called “Hélder norms,”" “l, norms,” or simply “p-norms”:

1/p
def | &
|Ix||p=[Z Ixil”} ,

=

and in the limit (as p — 00) as the sup? norm, or co norm:
def
Il oo < ma .
These norms satisfy the Holder inequality:
T 1 1
eyl < lxll,lvlly,  for —+—=1.
p q

They are also related by inequalities such as

XMoo < lxllg < lIxlly < 7l

The Euclidean norm (Holder 2-norm) is the default norm for vectors. When no
other norm is specified, the implied norm is the Euclidean norm.

B.2.10 Vector Cross-product

Vector cross-products are only defined for vectors with three components (i.e.,
3-vectors). For any two 3-vectors x and y, their vector cross-products are defined as

d X V3 — X3
€
XQY=| X3y —X1)3 |,
X1V — X
which has the properties
X®Yy=-yQKX,
x®x =0,

Ix ® y| = sin(0)[x[|yl,
where 6 is the angle between the vectors x and y.

"Named for the German mathematician Otto Ludwig Hélder (1859-1937).
2«Sup” (sounds like “soup”) stands for supremum, a mathematical term for the least upper bound of a set
of real numbers. The maximum (max) is the supremum over a finite set.
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B.2.11 Right-Handed Coordinate Systems

A Cartesian coordinate system in three dimensions is considered “right handed” if
its three coordinate axes are numbered consecutively such that the unit vectors 1,
along its respective coordinate axes satisfy the cross-product rules

1,1, =1, (B.2)
12 ® 13 - 11, (B3)

B.2.12 Vector Outer Product

The vector outer product of two column vectors

X1 30
X2 Y2
X = X3 s y= V3
xn ym
is defined as the n x m array
XYV X2 X2 e X
XV Xo¥2 XYoo ... X2V
xyT & Xy Xm0 s XY |
XVv X2 XpV2o oo XpVm
a matrix.
B.3 MATRICES

B.3.1 Matrix Notation

For positive integers m and n, an m-by-n real matrix A is a two-dimensional
rectangular array of scalars, designated by the subscript notation a;, and usually
displayed in the following format:

ang dpp a3 ... 4y
dyr  dy a3 aoy
A= | 91 a3 43 aszy,
A Ay A3 B ¢

The scalars a; are called the elements of A. Uppercase bolded letters are used for

matrices, with the corresponding lowercase letter denoting scalar elements of the
associated matrices.
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Row and Column Subscripts The first subscript (i) on the element a;; refers to
the row in which the element occurs, and the second subscript (j) refers to the
column in which a;; occurs in this format. The integers i and j in this notation are
also called indices of the elements. The first index is called the row index, and the
second index is called the column index of the element. The term “(ij)th position” in

the matrix A refers to the position of a;;, and a;; is called the “(ij)th element” of A:

<~ columns — rows
1st  2nd 3rd ... nth

ap;  ap ag a, < lst

ar  axn ays a,, < 2nd
ay  as ass ce. az, < 3rd

Api Ay A3 ce. a,, < mth

If juxtaposition of subscripts leads to confusion, they may be separated by
commas. The element in the eleventh row and first column of the matrix A would
then be denoted by a,; ;, not a;y;.

Dimensions The positive integers m and n are called the dimensions of a matrix
A: m is called the row dimension of A and n is called the column dimension of A.
The dimensions of A may also be represented as “m x n,” which is to be read as “m
by n” The symbol “x” in this notation does not indicate multiplication. (The
number of elements in the matrix A equals the product mn, however, and this is
important for determining memory requirements for data structures to hold A.)

B.3.2 Special Matrix Forms

Square Matrices A matrix is called square if it has the same row and column
dimensions. The main diagonal of a square matrix A is the set of elements a;; for
which i =j. The other elements are called off-diagonal. If all the off-diagonal
elements of a square matrix A are zero, A is called a diagonal matrix. This and other
special forms of square matrices are illustrated Fig. B.1.

Sparse and Dense Matrices A matrix with a “significant fraction” (typically,
half or more) of zero elements is called sparse. Matrices that are decidedly not
sparse are called dense, although both sparsity and density are matters of degree. All
the forms except symmetric shown in Fig. B.1 are sparse, although sparse matrices
do not have to be square. Sparsity is an important characteristic for implementation
of matrix methods, because it can be exploited to reduce computer memory and
computational requirements.
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Upper triangular
Q11 Q12 Q13 - Ay
0 ap1 ax ---ay,

0 0 Qg3 " Q3

0 0 0 ---a,

Lower triangular

a11 O O O

a21 a22 O O

@31 G3p G33 -+ 0
L Ap1 Qpo Ap3 -+ Ay ]

Diagonal

[ 4,000

0d,0:---0

0 0dy--- 0

| 00O0- dn_
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Unit
upper triangular

1 Ao Q43 ... A1y
0 1 Qoo * - Qop

0 0 1 --ag,

|0 0 0 ... 1 |
Unit
lower triangular
1 0 0 - 0|
Qoq 1 0O ... 0
031 a32 1 .. 0
_an1 Qpo Qpz - -+ 1_
Identity
[100---0 |
010---0
001 ---0
1000 -1 |

Strictly
upper triangular
O a12 a13 (11n
0 0 Qoo " -+ Qoy

0 0 0 - ag,

0 0 0 ..-0

Strictly
lower triangular

o 0 0 ---0

Qoq 0 0 ...0

agrazp 0 -0
_an1 Apo Apz - - - 0
Symmetric

A11Q12 Q13 -~ Ay
Q12 Q22 Q23 " "~ Aoy

@43 Q23 Q33 " " A3y,

| @1n Q2n A3p - - - App

Fig. B.1 Special forms of square matrices.

Zero Matrices The ultimate sparse matrix is a matrix in which all elements are 0
(zero). It is called a zero matrix, and it is represented by the symbol “0” (zero). The
equation 4 = 0 indicates that A is a zero matrix. Whenever it is necessary to specify
the dimensions of a zero matrix, they may be indicated by subscripting: 0
indicate an m x n zero matrix. If the matrix is square, only one subscript will be

used: 0, will mean an n x n zero matrix.

Identity Matrices The identity matrix will be represented by the symbol I. If it is
necessary to denote the dimension of I explicitly, it will be indicated by subscripting

the symbol: I, denotes the » x n identity matrix.

mXxn

will
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B.4 MATRIX OPERATIONS

B.4.1 Matrix Transposition

The transpose of A is the matrix AT (with the superscript “T” denoting the transpose
operation), obtained from A by interchanging rows and columns:

T
an dip a3 ... Ay an dy 4z ... Ay
dyr dypy dy3 ... aip 4y Azp ... Ay
dz1 d3p 43z ... 43, | = | 413 dp3 d3z ... dp3

A m3 ayy a3y

The transpose of an m x n matrix is an n X m matrix.
The transpose of the matrix M in MATLAB is written as M.

Symmetric Matrices A matrix A is called symmetric if AT = A and skew
symmetric (or anti-symmetric) if AT = —A. Only square matrices can be symmetric
or skew symmetric. Therefore, whenever a matrix is said to be symmetric or skew-
symmetric, it is implied that it is a square matrix. Any square matrix A can be
expressed as a sum of its symmetric and antisymmetric parts:

A=1A+A")+}(A-AT).
———— ———
symmetric antisymmetric

Cross-Product Matrices The vector cross-product p ® « can also be expressed
in matrix form as

[ pi o ]
PRa=|p |®|xm (B.5)
L P3 %3 |
[ P03 — p305 ]
= | P30 — P19 (B.6)
| P1% — Pr% |
= [pQ]a (B.7)
[0 —p; P2 %
= P3 0 —p % |, (B.8)
L=P2 P 0 %3
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where the “cross-product matrix”

dof 0 —p; P2
pR1E| p3 0 —p (B.9)
—P2 Py 0

is skew-symmetric.

B.4.2. Subscripted Matrix Expressions

Subscripts represent an operation on a matrix that extracts the designated matrix
element. Subscripts may also be applied to matrix expressions. The element in the
(if)th position of a matrix expression can be indicated by subscripting the expression,
as in

(AT} = a;.

Here, we have used braces { } to indicate the scope of the expression to which the
subscripting applies. This is a handy device for defining matrix operations.

B.4.3 Multiplication of Matrices by Scalars

Multiplication of a matrix A by a scalar s is equivalent to multiplying every element
of A by s:

{As},-j = {SA},-j = sa;.

B.4.4 Addition and Multiplication of Matrices

Addition of Matrices Is Associative and Commutative. Matrices can be
added together if and only if they share the same dimensions. If A and B have the
same dimensions, then addition is defined by adding corresponding elements:

{A+B);=a; +b;

Addition of matrices is commutative and associative. That is, A+ B = B + A and
A+B+C)=(A+B)+C.

Additive Inverse of a Matrix The product of a matrix A by the scalar —1 yields
its additive inverse —A.:

(~-DA=-A, A+(-A)=A—A=0.
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Here, we have followed the not uncommon practice of using the symbol “— both as
a unary (additive inverse) and binary (subtraction) operator. Subtraction of a matrix
A from a matrix B is equivalent to adding the additive inverse of A to B:

B—A=B+(—A).

Multiplication of Matrices Is Associative but Not Commutative. Multi-
plication of an m x n matrix A by a matrix B on the right-hand side of A, as in the
matrix product AB, is defined only if the row dimension of B equals the column
dimension of A. That is, we can multiply an m x n matrix A by a p x ¢ matrix B in
this order only if # = p. In that case, the matrices A and B are said to be conformable
for multiplication in that order, and the matrix product is defined element by
element by

def &
{AB}; = > aikbkj,
k=1

the result of which is an m x ¢ matrix. Whenever matrices appear as a product in an
expression, it is implied that they are conformable for multiplication.

Products with Identity Matrices Multiplication of any m x n matrix A by a
conformable identity matrix yields the original matrix A as the product:

AL, =A, I,A=A.

B.4.5 Powers of Square Matrices

Square matrices can always be multiplied by themselves, and the resulting matrix
products are again conformable for multiplication. Consequently, one can define the
pth power of a square matrix A as

AP = AXAXAX- - XA.

p elements

B.4.6 Matrix Inversion

If A and B are square matrices of the same dimension, and such that their product
AB =1,

then B is the matrix inverse of A and A is the matrix inverse of B. (It turns out that
BA = AB =1 in this case.) The inverse of a matrix A is unique, if it exists, and is
denoted by A~!. Not all matrices have inverses. Matrix inversion is the process of
finding a matrix inverse, if it exists. If the inverse of a matrix A does not exist, A is
called singular. Otherwise, it is called non-singular.



306 VECTORS AND MATRICES

B.4.7 Generalized Matrix Inversion

Even nonsquare and/or singular matrices can have generalized inverses. The Moore-
Penrose generalized inverse of an m x n matrix A is the n x m matrix A" such that

AATA = A,
ATAAT = AT
(AAN)T = AAT,
(ATA)" = ATA.

B.4.8 Orthogonal Matrices

A square matrix A is called orthogonal if AT = A=, Orthogonal matrices have
several useful properties:

e Orthogonality of a matrix A implies that the row vectors of A are jointly
orthonormal vectors, and the column vectors of A are also jointly orthonormal
vectors.

e The dot products of vectors are invariant under multiplication by a conform-
able orthogonal matrix. That is, if A is orthogonal, then x”y = (Ax)7(Ay) for
all conformable x and y.

e Products and inverses of orthogonal matrices are orthogonal.

As a rule, multiplications by orthogonal matrices tend to be numerically well
conditioned, compared to general matrix multiplications. (The inversion of ortho-
gonal matrices is obviously extremely well conditioned.)

B.5 BLOCK MATRIX FORMULAS

B.5.1 Submatrices, Partitioned Matrices, and Blocks

For any m x n matrix A and any subset S, < {1, 2,3, ..., m} of the row indices

and subset S, € {1,2, 3, ..., n} of the column indices, the subset of elements
A= {aljll € Srows’j € Scols}
is called a submatrix of A.
A partitioning of an integer n is an exhaustive collection of contiguous subsets S

of the form

s, s, s,
1,2,3,...,@1,@1—}—1),...,32,...,(31]71—i—l),...,l’l'
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The collection of submatrices formed by partitionings of the row and column
dimensions of a matrix is called a partitioning of the matrix, and the matrix is said to
be partitioned by that partitioning. Each submatrix of a partitioned matrix A is called
a partitioned submatrix, partition, submatrix block, subblock, or block of A. Each
block of a partitioned matrix A can be represented by a conformable matrix
expression, and A can be displayed as a block matrix:

B C D ... F
G H J ... L
A=|M N P R
vV W X ... Z
where B, C, D, . .. stand for matrix expressions. Whenever a matrix is displayed as a

block matrix, it is implied that all block submatrices in the same row have the same
row dimension and that all block submatrices in the same column have the same
column dimension.

A block matrix of the form

A0 0 0
0 B 0 0
0 0 C 0,
0 0 0 M

in which the off-diagonal block submatrices are zero matrices, is called a block
diagonal matrix, and a block matrix in which the block submatrices on one side of
the diagonal are zero matrices is called a block triangular matrix.

Columns and Rows as Blocks There are two special partitionings of matrices
in which the block submatrices are vectors. The column vectors of an m x n matrix
A are the block submatrices of the partitioning of A for which all column dimensions
are 1 and all row dimensions are m. The row vectors of A are the block submatrices
of the partitioning for which all row dimensions are 1 and all column dimensions
are n. All column vectors of an m x n matrix are m-vectors, and all row vectors are
n-vectors.

B.5.2 Rank and Linear Dependence

A linear combination of a finite set of n-vectors {v,} is a summation of the sort
> . a;v; for some set of scalars {g;}. If some linear combination ) a;v; = 0 and at
least one coefficient a; # 0, the set of vectors {v,} is called linearly dependent.
Conversely, if the only linear combination for which ) a;v; = 0 is the one for which
all the a; = 0, then the set of vectors {v,} is called linearly independent.
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The rank of a n x m matrix A equals the size of the largest collection of its
column vectors that is linearly independent. Note that any such linear combination
can be expressed in the form Aa, where the nonzero elements of the column m-
vector A are the associated scalars of the linear combination, and the number of
nonzero components of A is the size of the collection of column vectors in the linear
combination. The same value for the rank of a matrix is obtained if the test is applied
to its row vectors, where any linear combination of row vectors can be expressed in
the form aTA for some column n-vector A.

An n x n matrix is nonsingular if and only if its rank equals its dimension #.

B.5.3 Conformable Block Operations

Block matrices with conformable partitionings may be transposed, added, subtracted,
and multiplied in block format. For example,

A B1" [AT (T

c p|] |B" D'/

A B N E F TA+E B+F

C D G H|] |C+G D+H/

A B E F [AE + BG AF + BH
X = .

C D G H | CE+ DG CF + DH

B.5.4 Block Matrix Inversion Formula

The inverse of a partitioned matrix with square diagonal blocks may be represented
in block form as [53]

A B]' [E F
CcC D |G HY
where

E=A"'+A"'BHCA!,
F=—-A"'BH,

G =—-HCA™!,
H=[D-CA'B]"".

This formula can be proved by multiplying the original matrix times its alleged
inverse and verifying that the result is the identity matrix.
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B.5.5 Inversion Formulas for Matrix Expressions

Sherman—Morrison Formula A “rank 1” modification of a square matrix A is
a sum of the form A + be’, where b and ¢ are conformable column vectors. Its
inverse is given by the formula

A 'beTA™!

A L N i
[A +be’] 1+cTA b

Sherman—Morrison—-Woodbury Formula This is the generalization of the
above formula for conformable matrices in place of vectors:

[A+BCT] '=A"' — A 'B[I+C"A'B] 'CTA".

Hemes Inversion Formula A further generalization of this formula (used in the
derivation of the Kalman filter equations) includes an additional conformable square
matrix factor in the modification:

[A+BC'D'] '=A"' —A'B[C+D'A"'B] ‘DA (B.10)
B.6 FUNCTIONS OF SQUARE MATRICES

B.6.1 Determinants and Characteristic Values

Elementary Permutation Matrices An elementary permutation matrix is
formed by interchanging rows or columns of an identity matrix L,:

J
1 0 0 0
0 0 1 0
i .
Pp ; :
0 1 0 0
0 0 0 1

Multiplication of a vector x by P};; permutes the ith and jth elements of x. Note that
Py;; is an orthogonal matrix and that Pp;; = I,,, the identity matrix.
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Determinants of Elementary Permutation Matrices The determinant of an
elementary permutation matrix Py;; is defined to be —1, unless i =j (i.e., Py = L)

def —1, i;éj,
det(P[’ﬂ):{—i—l, i

Permutation Matrices A permutation matrix is any product of elementary
permutation matrices. These are also orthogonal matrices. Let P, denote the set of
all distinct n x n permutation matrices. There are n! =1 x 2 x 3 x - .- x n of them,
corresponding to the n! permutations of n indices.

Determinants of Permutation Matrices The determinant of a permutation
matrix can be defined by the rule that the determinant of a product of matrices is the
product of the determinants:

det(AB) = det(A) det(B).

Therefore, the determinant of a permutation matrix will be either +1 or —1. A
permutation matrix is called “even” if its determinant is +1 and “odd” if its
determinant equals —1.

Determinants of Square Matrices The determinant of any n X n matrix A can
be defined as follows:

def

de(A) ™ 5 der(p) ﬁ{AP},,.

This formula has ¢(n x n!) computational complexity (for a sum over n! products of
n elements each).

Characteristic Values of Square Matrices For a free variable /, the poly-
nomial

P det [A = Al = 3 a2
i=0

is called the characteristic polynomial of A. The roots of p,(1) are called the
characteristic values (or eigenvalues) of A. The determinant of A equals the product
of its characteristic values, with each characteristic value occurring as many times in
the product as the multiplicity of the associated root of the characteristic polynomial.
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Definiteness of Symmetric Matrices If A is symmetric, all its characteristic
values are real numbers, which implies that they can be ordered. They are usually
expressed in descending order:

A(A) = 15(A) = 43(A) = -+ = 4,(A).
A real square symmetric matrix A is called

positive definite if 1,(A) > 0,
non-negative definite if 1,(A) >0,
indefinite if 1;(A) > 0and 4,(A) <0,
non-positive definite if 1,(A) <0, and
negative definite if 1,(A) < 0.

Non-negative definite matrices are also called positive semidefinite, and non-
positive definite matrices are also called negative semidefinite.

Characteristic Vectors For each real characteristic value /,(A) of a real
symmetric A, there is a corresponding characteristic vector (or eigenvector) e;(A)
such that e;,(A) # 0 and Ae;(A) = 4;(A)e;(A). The characteristic vectors correspond-
ing to distinct characteristic values are mutually orthogonal.

B.6.2 The Matrix Trace

The trace of a square matrix is the sum of its diagonal elements. It also equals the
sum of the characteristic values and has the property that the trace of the product of
conformable matrices is independent of the order of multiplication—a very useful
attribute:

trace(AB) = 3" {AB} (B.11)
= Z ; A;B; (B.12)
=Y Y BA, (B.13)
= t;acel(BA). (B.14)

Note the product AB is conformable for the trace function only if it is a square
matrix, which requires that A and BT have the same dimensions. If they are m x n
(or n x m), then the computation of the trace of their product requires mn multi-
plications, whereas the product itself would require m?n (or mn*) multiplications.
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B.6.3 Algebraic Functions of Matrices

An algebraic function may be defined by an expression in which the independent
variable (a matrix) is a free variable, such as the truncated power series

f(A) = kZ B, A",
where the negative power A™? = {A_1 }p: {A?}~" In this representation, the matrix
A is the independent (free) variable and the other matrix parameters (B;) are
assumed to be known and fixed.

B.6.4 Analytic Functions of Matrices

An analytic function is defined in terms of a convergent power series. It is necessary
that the power series converge to a limit, and the matrix norms defined in Section
B.1.7 must be used to define and prove convergence of a power series. This level of
rigor is beyond the scope of this book, but we do need to use one particular analytic
function: the exponential function.

Matrix Exponential Function The power series

x

AL S AF (B.15)
=0 k!

ME I« 2x3-- xk, (B.16)

does converge® for all square matrices A. It defines the exponential function of the
matrix A. This definition is sufficient to prove some elementary properties of the
exponential function for matrices, such as

e &% =1, for 0,, the n x n zero matrix.

o e =el, for I, the n x n identity matrix.

o A = {eA}T.

o (d/dt)eM = Aer = eMA.

e The exponential of a skew-symmetric matrix is an orthogonal matrix.

o The characteristic vectors of A are also the characteristic vectors of e®.
e If / is a characteristic value of A, then ¢’ is a characteristic value of e®.

Powers and Exponentials of Cross-product Matrices The fact that
exponential functions of skew-symmetric matrices are orthogonal matrices will
have important consequences for coordinate transformations (Appendix C), because
the matrices transforming vectors from one right-handed coordinate system (defined
in Section B.1.2.11) to another can can be represented as the exponentials of cross-

3However, convergence is not fast enough to make this a reasonable general-purpose formula for
approximating the exponential of A. More reliable and efficient methods can be found, e.g., in [41].
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product matrices (defined in Eq. B.9). We show here how to represent the
exponential of a cross-product matrix

0 —p P2
[p®] = P3 0 —p
—P2 P 0

in closed form. The first few powers can be calculated by hand, as

pR]’ =1,
[p]' = [p3],
2 a2
P3 — P> P2P1 P3P
[P = pap1 —p3—pi P32
P3P pspy  —p3 —pi
=pp' — Ip/’L,

[p®]’ = [pRllpS)
— [p@][pp" — IpI’L;]’
= —Ipl[p®],

[p2]* = —IpI*[p&T.

PR = (=1 Ip*[p],
PRI = (=1 Ip*[p&T’,

so that the exponential expansion

T 1

exp([p®]) Z il [pR)]

00 2k+1 00 (_ 1VK [ |2k+2
=[p ®] +_{i%}[p®]+iii %}[p@f

ol | S @+ D) ol |& 2k +2)!
(oD (oD 0 —ps %)
1 — cos(|p| sin(|p|
— cos([pDL + — oyl ppT + TP 0y |
Pl Pl
—P2 M 0

(B.17)
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where ! denots the factorial function (defined in Eq. B.16).

B.6.5 Similarity Transformations and Analytic Functions

For any n x n nonsingular matrix A, the transform X — A'XA is called a
similarity transformation of the n x n matrix X. It is a useful transformation for
analytic functions of matrices

o0
fX) =3 axt,
k=0
because

o0
SAT'XA) = )" g (A'XA)
k=0
00
=AY g xHA
k=0
=ATf(X)A.
If the characteristic values of X are distinct, then the similarity transform performed

with the characteristic vectors of X as the column vectors of A will diagonalize X
with its characteristic values along the main diagonal:

AT'XA = diag,{/,},
f(AT'XA) = diag,{F(%0)},
f(X) = Adiag,{F(2,)}A"".

(Although this is a useful analytical approach for demonstrating functional depen-
dencies, it is not considered a robust numerical method.)

B.7 NORMS

B.7.1 Normed Linear Spaces

Vectors and matrices can be considered as elements of /inear spaces, in that they can
be added and multiplied by scalars. A norm is any nonnegative real-valued function
| - || defined on a linear space such that, for any scalar s and elements x and y of the
linear space (vectors or matrices),

x| =0 iff x=0,

x| >0 iff x3z#£0,
lsxll = Islllxll,

lx+xIl =< lxll+ vl
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where iff stands for “if and only if.” These constraints are rather loose, and many
possible norms can be defined for a particular linear space. A linear space with a
specified norm is called a normed linear space. The norm induces a topology on the
linear space, which is used to define continuity and convergence. Norms are also
used in numerical analysis for establishing error bounds and in sensitivity analysis
for bounding sensitivities. The multiplicity of norms is useful in these applications,
because the user is free to pick the one that works best for her or his particular
problem.

We define here many of the more popular norms, some of which are known by
more than one name.

B.7.2 Matrix Norms

Many norms have been defined for matrices. Two general types are presented here.
Both are derived from vector norms, but by different means.

Generalized Vector Norms Vector norms can be generalized to matrices by
treating the matrix like a doubly-subscripted vector. For example, the Holder norms
for vectors can be generalized to matrices as

m n l/p
Al = {szi,ﬂp} .
i=1j=1

The matrix (2)-norm defined in this way is also called the Euclidean norm, Schur
norm, or Frobenius norm. We will use the notation |- ||z in place of |- || for the
Frobenius norm.

The reason for putting the parentheses around the subscript p in the above
definition is that there is another way that the vector p-norms are used to define
matrix norms, and it is with this alternative definition that they are usually allowed to
wear an unadorned p subscript. These alternative norms also have the following
desirable properties.

Desirable Multiplicative Properties of Matrix Norms Because matrices can
be multiplied, one could also apply the additional constraint that

IABI[y < lAll5 1By
for conformable matrices A and B and a matrix norm || - ||;,. This is a good property
to have for some applications. One might also insist on a similar property with
respect to multiplication by vector x, for which a norm ||-[|;, may already be

defined:

[Ax[ly, < [lAllylxlly,-
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This property is called compatibility between the matrix norm || - ||;, and the vector
norms |- ||, and || -]|,. (Note that there can be two distinct vector norms associated
with a matrix norm: one in the normed linear space containing x and one in the space
containing Ax.)

Matrix Norms Subordinate to Vector Hélder Norms There is a family of
alternative matrix “p-norms” [but not (p)-norms] defined by the formula

) JAs,

A, <
P ||xu¢o llxll,

where the norms on the right-hand side are the vector Hélder norms and the induced
matrix norms on the left are called subordinate to the corresponding Holder norms.
The 2-norm defined in this way is also called the spectral norm of A. It has the
properties:

|diag, {4}l = max 2] and [ Axll, < Al Il

The first of these properties implies that || I||, = 1. The second property is compat-
ibility between the spectral norm and the vector Euclidean norm. (Subordinate
matrix norms are guaranteed to be compatible with the vector norms used to define
them.) All matrix norms subordinate to vector norms also have the property that
I = 1.

Computation of Matrix Hélder Norms The following formulas may be used
in computing 1-norms and co-norms of m x n matrices A:

i<j<n

Al = maX{Z Iayl}

n
[Alloc = max {Z Ia,,l}

1<i<m
J=

The norm ||[A[|, can be computed as the square root of the largest characteristic value
of ATA, which takes considerably more effort.

Default Matrix Norm When the type of norm applied to a matrix is not specified
(by an appropriate subscript), the default will be the spectral norm (Hoélder matrix
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2-norm). It satisfies the following bounds with respect to the Frobenius norm and the
other matrix Holder norms for m x n matrices A:

IAll, < lAllr < VAl

1
«/—%”A”l < lAll, = VnlAl;,

1
75”AHOO < Al = VmlAl,
max |g;| < [Allp < /mn max |a;l|.
1<i<m 1<i<m
1<j<n 1<j<n

B.8 FACTORIZATIONS AND DECOMPOSITIONS

Decompositions are also called factorizations of matrices. These are generally
represented by algorithms or formulas for representing a matrix as a product of
matrix factors with useful properties. The two factorization algorithms described
here have either triangular or diagonal factors in addition to orthogonal factors.

Decomposition methods are algorithms for computing the factors, given the
matrix to be “decomposed.”

B.8.1 Cholesky Decomposition

This decomposition is named after André Louis Cholesky [9], who was perhaps not
the first discoverer of the method for factoring a symmetric, positive-definite matrix
P as a product of triangular factors.

Cholesky Factors A Cholesky factor of a symmetric positive-definite matrix P
is a matrix C such that
ccl=p. (B.18)

Note that it does not matter whether we write this equation in the alternative form
F'F = P, because the two solutions are related by F = C.

Cholesky factors are not unique, however. If C is a Cholesky factor of P, then for
any conformable orthogonal matrix M, the matrix

A em

satisfies the equation
AAT = cM(cm)!
=CMM'C’
=cC’
=P.

(B.19)
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That is, A is also a legitimate Cholesky factor. The ability to transform one Cholesky
factor into another using orthogonal matrices will turn out to be very important in
square-root filtering (in Section 8.1.6).

Cholesky Factoring Algorithms There are two possible forms of the
Cholesky factorization algorithm, corresponding to two possible forms of the
defining equation:

P=L,L] =UJU, (B.20)
=U,U; = L,L,, (B.21)

where the Cholesky factors U,, U, are upper triangular and their respective
transposes L;, L, are lower triangular.

The first of these is implemented by the built-in MATLAB function chol (P),
with argument P a symmetric positive-definite matrix. The call chol (P) returns an
upper triangular matrix U, satisfying Eq. B.20. The MATLAB m-file cho12 .m on
the accompanying diskette implements the solution to Eq. B.21. The call
chol2 (P) returns an upper triangular matrix U, satisfying Eq. B.21.

Modified Cholesky Factorization The algorithm for Cholesky factorization of
a matrix requires taking square roots, which can be avoided by using a modified
Cholesky factorization in the form

P =UDU", (B.22)

where D is a diagonal matrix with positive diagonal elements and U is a unit
triangular matrix (i.e., U has 1’s along its main diagonal). This algorithm is
implemented in the m-file modchol.m on the accompanying diskette.

B.8.2 QR Decomposition (Triangularization)

The QR decomposition of a matrix A is a representation in the form
A =QR,

where Q is an orthogonal matrix and R is a triangular matrix. Numerical methods for
QR decomposition are also called “triangularization” methods. Some of these
methods are an integral part of square-root Kalman filtering and are presented in
Section 8.1.6.3.

B.8.3 Singular-Value Decomposition

The singular-value decomposition of an m x n matrix A is a representation in the
form A =T, DT,, where T,, and T, are orthogonal matrices (with square dimen-
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sions as specified by their subscripts) and D is an m x » matrix filled with zeros
everywhere except along the main diagonal of its maximal upper left square
submatrix. This decomposition will have either of three forms:

A = | T, 0 0 T, m<n,

A = T, 0 0 T, m=n,
0

A = Ty 0 T, m>n,

depending on the relative values of m and »n. The middle matrix D has the block form

diag'{ai}wmx n—m lf m <n,
i (n—m)

diag;{g;} if m =n,
| T diag;{o;}
if m > n,
0(mfn)><n
0, >20,>203>-->0,>0,

p = min(m, n).

That is, the diagonal nonzero elements of D are in descending order, and
nonnegative. These are called the singular values of A. For a proof that this
decomposition exists, and an algorithm for computing it, see the book by Golub and
Van Loan [41].

The singular values of a matrix characterize many useful matrix properties,
such as

Al = a1(A),

rank (A) = r such that ¢, > 0 and either 6, ; = 0 or » = p (the rank of a matrix
is defined in Section B.1.5.2), and

the condition number of A equals o, /a,.

The condition number of the matrix A in the linear equation Ax = b bounds the
sensitivity of the solution x to variations in » and the sensitivity of the solution to
roundoff errors in determining it. The singular-value decomposition may also be
used to define the “pseudorank” of A as the smallest singular value ¢; such that
o; > €0y, where ¢ is a processor- and precision-dependent constant such that
0 <e<k 1and 1+ ¢=1 in machine precision.
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These relationships are useful for the analysis of state transition matrices @ of
Kalman filters, which can be singular or close enough to being singular that
numerical roundoff can cause the product ®P®' to be essentially singular.

B.8.4 Eigenvalue—Eigenvector Decompositions of Symmetric
Matrices

Symmetric QR Decomposition The so-called “symmetric OQR” decomposi-
tion of an n x n symmetric real matrix A has the special form A = TDT?, where the
right orthogonal matrix is the transposed left orthogonal matrix and the diagonal
matrix

D = diag,{4;}.
That is, the diagonal elements are the characteristic values of the symmetric matrix.

Furthermore, the column vectors of the orthogonal matrix T are the associated
characteristic vectors e; of A:

A = TDT?
= Z /“lele;[’
i=1
T=le, e e e,]

These relationships are useful for the analysis of covariance matrices, which are
constrained to have nonnegative characteristic values, although their numerical
values may stray enough in practice (due to computer roundoff errors) to develop
negative characteristic values.

B.9 QUADRATIC FORMS

Bilinear and Quadratic Forms For a matrix A and all conformable column
vectors x and y, the functional mapping (x, y) — xT Ay is called a bilinear form. As a
function of x and y, it is linear in both x and y and hence bilinear. In the case that
x = y, the functional mapping x — xTAx is called a quadratic form. The matrix A of
a quadratic form is always a square matrix.

B.9.1 Symmetric Decomposition of Quadratic Forms

Any square matrix A can be represented uniquely as the sum of a symmetric matrix
and a skew-symmetric matrix:

A=J(A+ AT +3(A-AT),

where 1 (A + A") is called the symmetric part of A and (A — A") is called the
skew-symmetric part of A. The quadratic form x" Ax depends only on the symmetric
part of A:

XTAx = x" {% (A + AT) }x.
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Therefore, one can always assume that the matrix of a quadratic form is symmetric,
and one can express the quadratic form in summation form as

n n n
TAx — _ _ 2
XCAX =) Y @, XX = ) apxX; + ) apxxX; = ) apx; +2 ) apxx;
i=1j=1 = 5 = i

for symmetric A.

Ranges of Quadratic Forms The domain of a quadratic form for an n x n
matrix is n-dimensional Euclidean space, and the range is in (—oo, +00), the real
line. In the case that x # 0,

if A is positive definite, the range of x — xTAxis (0, +-00);

if A is non-negative definite, the range of x — xTAxis [0, +-00);
if A is indefinite, the range of x — xTAxis (—o00, +00);

if A is non-positive definite, the range of x — xTAxis (—o00, 0];

if A is negative definite, the range of x — xTAxis (—o00,0).

If xTx = 1, then 4,(A) < xTAx < 4,(A). That is, the quadratic form maps the unit
n-sphere onto the closed interval [4,(A), 4,;(A)].

B.10 DERIVATIVES OF MATRICES

B.10.1 Derivatives of Matrix-Valued Functions

The derivative of a matrix with respect to a scalar is the matrix of derivatives of its
elements:

(/@ (@ 00 o (O]
@ a0 S0 ()

F(r) = | 510 ) fist fan(®)

_fml(t) fm2(t) fm3(t) fmn(t) .

rd d d d 7
Efu(t) Eflz(t) Efm(t) Efln(t)
d d d d
Ele(f) 7 S22 Efzs(f) Efzn(f)

d g d d d
a PO= S RO TR0 L0

d d d d
_Efml(t) Efmz(z) EfmS(t) Efmn(l)_
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The rule for the derivative of a product applies also to matrix products:

d d d
ZAOBO] = [E A(t)] B(1) + A(r) [E B(t)},

provided that the order of the factors is preserved.

Derivative of Matrix Inverse If F(r) is square and nonsingular, then
F(/)F~'(t) =1, a constant. As a consequence, its derivative will be zero. This fact
can be used to derive the formula for the derivative of a matrix inverse:

0 =d/dr
= d/di[F(H)F 1 (1)]
= [d/diF()]F~" (1) + F(0)[d /dtF~' (1)],
d/dtF~\(f) = —F~'[d/dtF()]F . (B.23)

Derivative of Orthogonal Matrix 1f the F(f) is orthogonal, its inverse
F~!(r) = F'(¢), its transpose, and because

d/diF"(t) = [d/dtF(0)]" = F",

one can show that orthogonal matrices satisfy matrix differential equations with
antisymmetric dynamic coefficient matrices:

d d
_d T _d
= [FOF' (1] = [F (OF ()]
= F@OF" (1) + FOF (1), = F'())F(1) + FY()F(0),
FOF' (1) = —[F()F" (1)) FI()F(t) = —[F(F()f (1)]
= —[FOF" (1] = —[F' (kO]
= antisymmetric matrix = antisymmetric matrix
= Qleﬂf = g2right7
F(t) = QleﬁF(t)’ F(t) = F(Z)Qright'

That is, all time-differentiable orthogonal matrices F(¢) satisfy dynamic equations
with antisymmetric coefficient matrices, which can be either left- or right-side
coefficient matrices.
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B.10.2 Gradients of Quadratic Forms

If f(x) is a differentiable scalar-valued function of an n-vector x, then the vector

g_[af ¥ o gT

is called the gradient of f with respect to x. In the case that /" is a quadratic form with
symmetric matrix A, then the ith component of its gradient will be

d af 5
—(xTAx)] == ax; +2> a;xx
|:8x P ; i .l;f T

= (Zail-xi +2> apx, +2Y° ajixj)

i<k J<i
= | 2a;x;+2 Z Qi Xk
ik
=2 aygx;
k=1
= [2Ax];.

That is, the gradient vector can be expressed as

9
P (x"Ax) = 2Ax.
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Appendix C

Coordinate
Transformations

C.1 NOTATION

We use the notation CT°™ to denote a coordinate transformation matrix from one
coordinate frame (designated by “from”) to another coordinated frame (designated
by “to”). For example,

CE denotes the coordinate transformation matrix from earth-centered inertial
(ECI) coordinates to earth-fixed east-north—up (ENU) local coordinates and

CRPY denotes the coordinate transformation matrix from vehicle body-fixed roll-
pitch-yaw (RPY) coordinates to earth-fixed north—east-down (NED) co-
ordinates.

Coordinate transformation matrices satisfy the composition rule
B (A A
CoCpz =Cg,

where 4, B, and C represent different coordinate frames.
What we mean by a coordinate transformation matrix is that if a vector v has the
representation

v=|wv (C.1

324
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in XYZ coordinates and the same vector v has the alternative representation

Uu
v=| o, (C.2)
UW
in UVW coordinates, then
O o |
Uy = XYW Ul/' N (C.3)

where “XYZ” and “UVW? stand for any two Cartesian coordinate systems in three-
dimensional space.

The components of a vector in either coordinate system can be expressed in terms
of the vector components along unit vectors parallel to the respective coordinate
axes. For example, if one set of coordinate axes is labeled X, Y and Z, and the other
set of coordinate axes are labeled U, V, and W, then the same vector v can be
expressed in either coordinate frame as

v=uol,+ol,+0]l, (C4)
=v,1, +0v1, +v,1,, (C.5)

where

o the unit vectors 1, 1,, and 1. are along the XYZ axes;

o the scalars v,, v,, and v, are the respective components of v along the XYZ
axes;

e the unit vectors 1,, 1,, and 1,, are along the UVW axes; and

e the scalars v,, v, and v,, are the respective components of v along the UV'W
axes.

The respective components can also be represented in terms of dot products of v
with the various unit vectors,

v, =1lv=v,11, +0,111, + 0,171, (C.6)
v,=1v=o01,+0,1]1,+0v,11,, (C.7)

v, =1 v=r0,11,+ 0,111, + 0,111 (C.8)

u=z-u v-z v waz Tw
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which can be represented in matrix form as

Uy l;crlu 1)—£1L l;rlw Uy
_ T T T
o, =] 11, 171, 11, || o, (C.9)
UZ l;rlu l;rlL l;rlw UW
vy,
iy o |. (C.10)
vy,

W

which defines the coordinate transformation matrix C%y, from UVW to XYZ
coordinates in terms of the dot products of unit vectors. However, dot products of
unit vectors also satisfy the cosine rule (defined in Section B.1.2.5)

171, = cos(0,,), (C.11)

where 0, is the angle between the unit vectors 1, and 1,. As a consequence, the
coordinate transformation matrix can also be written in the form

cos(f,,) cos(b,,) cos(0,,)
C%Wz cos(f,,, cos(f,,) cos(,,) |, (C.12)
cos(0,,) cos(0,,) cos(0.,)

which is why coordinate transformation matrices are also called “direction cosines
matrices.”

Navigation makes use of coordinates that are natural to the problem at hand:
inertial coordinates for inertial navigation, orbital coordinates for GPS navigation,
and earth-fixed coordinates for representing locations on the earth.

The principal coordinate systems used in navigation, and the transformations
between these different coordinate systems, are summarized in this appendix. These
are primarily Cartesian (orthogonal) coordinates, and the transformations between
them can be represented by orthogonal matrices. However, the coordinate transfor-
mations can also be represented by rotation vectors or quaternions, and all
representations are used in the derivations and implementation of GPS/INS
integration.

C.2 INERTIAL REFERENCE DIRECTIONS

C.2.1 Vernal Equinox

The equinoxes are those times of year when the length of the day equals the length of
the night (the meaning of “equinox”), which only happens when the sun is over the
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equator. This happens twice a year: when the sun is passing from the Southern
Hemisphere to the Northern Hemisphere (vernal equinox) and again when it is
passing from the Northern Hemisphere to the Southern Hemisphere (autumnal
equinox). The time of the vernal equinox defines the beginning of spring (the
meaning of “vernal”) in the Northern Hemisphere, which usually occurs around
March 21-23.

The direction from the earth to the sun at the instant of the vernal equinox is used
as a “quasi-inertial” direction in some navigation coordinates. This direction is
defined by the intersection of the equatorial plane of the earth with the ecliptic
(earth—sun plane). These two planes are inclined at about 23.45°, as illustrated in
Fig. C.1. The inertial direction of the vernal equinox is changing ever so slowly, on
the order of 5 arc seconds per year, but the departure from truly inertial directions is
neglible over the time periods of most navigation problems. The vernal equinox was
in the constellation Pisces in the year 2000. It was in the constellation Aries at the
time of Hipparchus (190-120 BCE) and is sometimes still called “the first point of
Aries.”

C.2.2 Polar Axis of Earth

The one inertial reference direction that remains invariant in earth-fixed coordinates
as the earth rotates is its polar axis, and that direction is used as a reference direction
in inertial coordinates. Because the polar axis is (by definition) orthogonal to the
earth’s equatorial plane and the vernal equinox is (by definition) in the earth’s
equatorial plane, the earth’s polar axis will always be orthogonal to the vernal
equinox.

A third orthogonal axis can then be defined (by their cross-product) such that the
three axes define a right-handed (defined in Section B.2.11) orthogonal coordinate
system.

VERNAL ) EQUINOX

DIRECTION OF TRAVEL{\

Fig. C.1 Direction of Vernal Equinox.
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C.3 COORDINATE SYSTEMS

Although we are concerned exclusively with coordinate systems in the three
dimensions of the observable world, there are many ways of representing a location
in that world by a set of coordinates. The coordinates presented here are those used
in navigation with GPS and/or INS.

C.3.1 Cartesian and Polar Coordinates

René Descartes (1596-1650) introduced the idea of representing points in three-
dimensional space by a triplet of coordinates, called “Cartesian coordinates” in his
honor. They are also called “Euclidean coordinates,” but not because Euclid
discovered them first. The Cartesian coordinates (x,y,z) and polar coordinates
(0, ¢, r) of a common reference point, as illustrated in Fig. C.2, are related by the
equations

x = rcos(0) cos(¢), (C.13)
vy = rsin(0) cos(¢), (C.14)
z = rsin(¢), (C.15)
r= 4+ 422 (C.16)
¢ = arcsin(g) (—%n <¢ =< +%n), (C.17)
0= arctan@) (-7 <0 < +n), (C.18)

with the angle 6 (in radians) undefined if ¢ = :I:%n.

C.3.2 Celestial Coordinates

The “celestial sphere” is a system for inertial directions referenced to the polar axis
of the earth and the vernal equinox. The polar axis of these celestial coordinates is

X

Fig. C.2 Cartesian and polar coordinates.
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EARTH
POLAR
AXIS

DECLINATION

i

. o
VERNAL EQUINOX
Fig. C.3 Celestial coordinates.

parallel to the polar axis of the earth and its prime meridian is fixed to the vernal
equinox. Polar celestial coordinates are right ascension (the celestial analog of
longitude, measured eastward from the vernal equinox) and declination (the celestial
analog of latitude), as illustrated in Fig. C.3. Because the celestial sphere is used
primarily as a reference for direction, no origin need be specified.

Right ascension is zero at the vernal equinox and increases eastward (in the
direction the earth turns). The units of right ascension (RA) can be radians, degrees,
or hours (with 15 deg/h as the conversion factor).

By convention, declination is zero in the equatorial plane and increases toward
the north pole, with the result that celestial objects in the Northern Hemisphere have
positive declinations. Its units can be degrees or radians.

C.3.3 Satellite Orbit Coordinates

Johannes Kepler (1571-1630) discovered the geometric shapes of the orbits of
planets and the minimum number of parameters necessary to specify an orbit (called
“Keplerian” parameters). Keplerian parameters used to specify GPS satellite orbits
in terms of their orientations relative to the equatorial plane and the vernal equinox
(defined in Section C.2.1 and illustrated in Fig. C.1) include the following:

e Right ascension of the ascending node and orbit inclination, specifying the
orientation of the orbital plane with respect to the vernal equinox and
equatorial plane, is illustrated in Fig. C.4.

(a) Right ascension is defined in the previous section and is shown in Fig. C.3.
(b) The intersection of the orbital plane of a satellite with the equatorial plane
is called its “line of nodes,” where the “nodes” are the two intersections of
the satellite orbit with this line. The two nodes are dubbed “ascending”'

'The astronomical symbol for the ascending node is ) often read as “earphones.”
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SATELLITE . €5

/ ASCENDING
NODE

Fig. C.4 Keplerian parameters for satellite orbit.

(i.e., ascending from the Southern Hemisphere to the Northern Hemis-
phere) and “descending”. The right ascension of the ascending node
(RAAN) is the angle in the equatorial plane from the vernal equinox to the
ascending node, measured counterclockwise as seen looking down from
the north pole direction.

(c) Orbital inclination is the dihedral angle between the orbital plane and the
equatorial plane. It ranges from zero (orbit in equatorial plane) to 180°.

e Semimajor axis a and semiminor axis b (defined in Section C.3.5.2 and
illustrated in Fig. C.6) specify the size and shape of the elliptical orbit within
the orbital plane.

e Orientation of the ellipse within its orbital plane, specified in terms of the
“argument of perigee,” the angle between the ascending node and the perigee
of the orbit (closest approach to earth), is illustrated in Fig. C.4.

e Position of the satellite relative to perigee of the elliptical orbit, specified in
terms of the angle from perigee, called the “argument of latitude” or “true
anomaly,” is illustrated in Fig. C.4.

For computer simulation demonstrations, GPS satellite orbits can usually be
assumed to be circular with radius a = b = R = 26,560 km and inclined at 55° to
the equatorial plane. This eliminates the need to specify the orientation of the
elliptical orbit within the orbital plane. (The argument of perigee becomes overly
sensitive to orbit perturbations when eccentricity is close to zero.)
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RIGHT ASCENSION OF tlo’RIME MERIDIAN
Fig. C.5 ECI and ECEF Coordinates.

C.3.4 ECI Coordinates

Earth-centered inertial (ECI) coordinates are the favored inertial coordinates in the
near-earth environment. The origin of ECI coordinates is at the center of gravity of
the earth, with (Fig. C.5)

1. axis in the direction of the vernal equinox,
3. axis direction parallel to the rotation axis (north polar axis) of the earth, and

2. an additional axis to make this a right-handed orthogonal coordinate system,
with the polar axis as the third axis (hence the numbering).

The equatorial plane of the earth is also the equatorial plane of ECI coordinates,
but the earth itself is rotating relative to the vernal equinox at its sidereal rotation rate
of about 7,292,115,167 x 10~ rad/s, or about 15.04109 deg/h, as illustrated in
Fig. C.5.

C.3.5 ECEF Coordinates

Earth-centered, earth-fixed (ECEF) coordinates have the same origin (earth center)
and third (polar) axis as ECI coordinates but rotate with the earth, as shown in Fig.
C.5. As a consequence, ECI and ECEF longitudes differ only by a linear function of
time.

Longitude in ECEF coordinates is measured east (4+) and west (—) from the prime
meridian passing through the principal transit instrument at the observatory at
Greenwich, UK, a convention adopted by 41 representatives of 25 nations at the
International Meridian Conference, held in Washington, DC, in October of 1884.
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Latitudes are measured with respect to the equatorial plane, but there is more than
one kind of “latitude.” Geocentric latitude would be measured as the angle between
the equatorial plane and a line from the reference point to the center of the earth, but
this angle could not be determined accurately (before GPS) without running a transit
survey over vast distances. The angle between the pole star and the local vertical
direction could be measured more readily, and that angle is more closely approxi-
mated as geodetic latitude. There is yet a third latitude (parametric latitude) that is
useful in analysis. The latter two latitudes are defined in the following subsections.

C.3.5.1 Ellipsoidal Earth Models Geodesy is the study of the size and shape
of the earth and the establishment of physical control points defining the origin and
orientation of coordinate systems for mapping the earth. Earth shape models are very
important for navigation using either GPS or INS, or both. INS alignment is with
respect to the local vertical, which does not generally pass through the center of the
earth. That is because the earth is not spherical.

At different times in history, the earth has been regarded as being flat (first-order
approximation), spherical (second-order), and ellipsoidal (third-order). The third-
order model is an ellipsoid of revolution, with its shorter radius at the poles and its
longer radius at the equator.

C.3.5.2 Parametric Latitude For geoids based on ellipsoids of revolution,
every meridian is an ellipse with equatorial radius a (also called “semimajor axis”)
and polar radius b (also called “semiminor axis”). If we let z be the Cartesian
coordinate in the polar direction and X,.4i0nat D€ the equatorial coordinate in the
meridional plane, as illustrated in Fig. C.6, then the equation for this ellipse will be

x2 z2

meziﬁional + ﬁ -1 (C 19)
= Cosz((bparametrm) + Sin2 (¢’parametric) (CZO)
_ az COS2 (¢parametric) b2 Sinz(d)parametric)
— 1 (C.21)
a b?
_ [a COS(‘lspz;ramcn’ic)]2 4 [b Sin(d)parametric)]z ‘ (C.22)
a b?

That is, a parametric solution for the ellipse is

Xmeridional — ¢ COS(¢parametriC)’ (C23)

z = bsin(¢ (C.24)

parametric) ’

as illustrated in Fig. C.6. Although the parametric latitude ¢ ,rmeric has no physical
significance, it is quite useful for relating geocentric and geodetic latitude, which do
have physical significance.
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) a.cos (Pparamerric) ) .
z Vnormal
—asin (¢PARAMETmc) bcos (¢PARAMETRIC)
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y ¢chcsNTmc X \ >
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a

Fig. C.6 Geocentric, parametric, and geodetic latitudes in meridional plane.

C.3.5.3 Geodetic Latitude Geodetic latitude is defined as the elevation angle
above (+) or below (—) the equatorial plane of the normal to the ellipsoidal surface.
This direction can be defined in terms of the parametric latitude, because it is
orthogonal to the meridional tangential direction.

The vector tangential to the meridian will be in the direction of the derivative to
the elliptical equation solution with respect to parametric latitude:

9 a COS(¢parametriC)
Viangential X 9 (CZS)
(f)parametric b Sln(¢paramemc
_ —d Sin((/)parametric) , (C26)
b coS(Pparametric)

and the meridional normal direction will be orthogonal to it, or

bcos
Vnormal & |: (¢parametrlc :|» (C27)

a Sln((bparametric)

as illustrated in Fig. C.6.
The tangent of geodetic latitude is then the ratio of the z- and x-components of the
surface normal vector, or

w

tan((/)geodetic) b COS(¢ (C28)

parametnc

a
= Z tan(¢parametric) ’ (C.29)
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from which, using some standard trigonometric identities,

. tan((bgeodetic)
n N .30
(qsgeodetlc) I tanz((f) i ) ( )
geodetic

_ a Sin(¢parametric) (C.31)

\/az Sin2(¢parametric) + b? cos? (d)parametric)

1
COS(d)geodetic) = (C32)
1+ t3-112(¢gecvdetic)

_ b Cos(d)parametric) (C 33)

\/a2 Sin2(¢parametric) + b cos? ((»bparametric)

The inverse relationship is
b
A0 Pparamerrc) = AN Pgcoderic) (C.34)
from which, using the same trigonometric identities as before,
. 1:an((nzspa.ra.metric)
Sln(d)parametric) = \/l n tanz(qs ) (€.35)
parametric

_ b Sin(¢geodetic) (C 36)

\/az cos? ((rbgeodetic) + b7 Sinz((bgeo‘ieﬁc)

1
Cos(d)parametric) = \/l v 2(¢ ) (C.37)
an parametric

_ a COS(¢geodetic) (C 38)

- 2
\/az COSZ(¢geodetic) + b sin (¢geodetic)

and the two-dimensional X-Z Cartesian coordinates in the meridional plane of a
point on the geoid surface will
Xmeridional = acos(d)parametric) (C.39)

_ 612 COS(¢geodetic) (C 40)

\/612 COSZ(¢geodetic) + b? Sin2(¢geodetic)
z=b Sin(¢parametric) (C41)
b? sin :
_ (qsgeodetlc) (C42)
\/az Cosz(d)geodetic) + b7 Sin2(¢g60detic)

in terms of geodetic latitude.
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Equations C.40 and C.42 apply only to points on the geoid surface. Orthometric
height 4 above (+) or below (—) the geoid surface is measured along the surface
normal, so that the X-Z coordinates for a point with altitude 4 will be

Xmeridional = COS(¢geodetic)

a2

o ns . (C43)
\/a2 COSZ((bgeOdetic) + b Sil’l2 (¢geodetic)

z= Sin(¢geodetic)

bZ
x | h+ . (C.44)

)
\/ a? co8* (P geodetic) + D? SIN°(Pgeoderic)

In three-dimensional ECEF coordinates, with the X-axis passing through the
equator at the prime meridian (at which longitude 6 = 0),

XECEF = COS(O)Xmeridional (C45)
= COS(G) Cos(q’)geodetic)
(12
| ns . (C46)
\/az COSZ((bgeodetic) + b? Sinz (¢geodetic)
Yecer = SIN(0)X eridional (C47)
= Sln(e) Cos(d)geodetic)
(12
| ns . (C48)

2.2
\/612 COSZ(¢geodetic) + b? sin ((l’)geodetic)

ZECEF — Sin(¢geodetic)

b2
x | 7+ ; (C.49)

)
\/ a? cos* (P geodetic) + D* SIN°(Pgeodetic)

in terms of geodetic latitude ¢
respect to the reference geoid.

longitude 0, and orthometric altitude / with

geodetic»
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The inverse transformation, from ECEF XYZ to geodetic longitude—latitude—
altitude coordinates, is

0 = atan2(ygcgr, Xgcer)s (C.50)
e2a?sin®(¢
Pgeodetic = atan2 (ZECEF + T()’ ¢ — e*acos’ (C)>7 (C.51)
¢
=5 C.52
cos(¢p) T, ( )
where atan2 is the four-quadrant arctangent function in MATLAB and
C = atan2(aZECEF, bé), (C53)
& = \/Xtcer T VEcer- (C.54)
rp=———— (C.55)

T /1= esin(g)

where r; is the transverse radius of curvature on the ellipsoid, a is the equatorial
radius, b is the polar radius, and e is elliptical eccentricity.

C.3.5.4 Geocentric Latitude For points on the geoid surface, the tangent of
geocentric latitude is the ratio of distance above (+4) or below (—) the equator
[z =D sin(@pprameric)] to the distance from the polar axis [(Xmeridional =

a Cos(d)parametric)] , Or

b Sil’l( d)parametric )

t = C.56
an((pGEOCENTR[C) a COS(¢parametric) ( )
b
= Z tan(d)parametric) (C : 57)

b2
= ; tan(d)geodetic)v (CS 8)
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from which, using the same trigonometric identities as were used for geodetic
latitude,

. tan(d) eocen ric)
Sm(¢geocentric) = i t (€.59)
\/1 + tan (¢geocentﬁc)
_ b Sin(d)parametric) (C 60)
\/az 0052(¢parametric) + b? Sinz(d)parametric)
_ b? Sin((rbgeodetic) (C.61)
\/a4 cos? (¢geodetic) + b* Sin2(¢geodetic)
1
Cos(¢geocentric) = 5 (C.62)
\/ 1 + tan (¢geocentric)
_ a COS(¢parametric) (C 63)
\/ a? cos? (qbparametric) + b? Sin2(¢pma1netric)
_ a* Cos(d)geodetic) (C.64)
\/a4 cos? (¢geodetic) +b* Sin2(¢ge0detic)
The inverse relationships are
a
tan(¢parametric) = Ztan(¢geocentfi°)’ (C'65)
2
a
tan((]ﬁgeodeﬁc) = _ztan(¢geocentﬁc)’ (C66)
b
from which, using the same trigonometric identities again,
g g
. tan(d) rametri )
Sln(¢parametric) = l;a = (C.67)
\/1 + tan (¢parametﬁc)
_ a Sin((rbgeocentric) (C 68)
\/az Sinz (¢geocentn’c) + b COSz(¢geocenmc)
aZ Sil’l(¢ ntri )
Sin(¢geodetic) = — ’ (C69)
\/04 Sin2 (¢geocentric) + b* COSZ((bgeocenmC)
1
Cos(d)parametn'c) = 2 (C'70)
\/ 1 + tan (¢parametric)
_ b COS(¢geocentric) (C 7 1)
\/az Sin2 (¢geocentric) + b7 COSZ((bgeocenmC)
b? cos ~
COS(¢geodetic) = (¢geocentrlc) (C72)

.2 )
\/a“ sSin (¢geocentric) + b Cosz((pgeocentric)



338 COORDINATE TRANSFORMATIONS

C.3.6 LTP Coordinates

Local tangent plane (LTP) coordinates, also called “locally level coordinates,” are a
return to the first-order model of the earth as being flat, where they serve as local
reference directions for representing vehicle attitude and velocity for operation on or
near the surface of the earth. A common orientation for LTP coordinates has one
horizontal axis (the north axis) in the direction of increasing latitude and the other
horizontal axis (the east axis) in the direction of increasing longitude, as illustrated
in Fig. C.7. Horizontal location components in this local coordinate frame are called
“relative northing” and “relative easting.”

C.3.6.1 Alpha Wander Coordinates Maintaining east—north orientation was
a problem for some INSs at the poles, where north and east directions change by
180°. Early gimbaled inertial systems could not slew the platform axes fast enough
for near-polar operation. This problem was solved by letting the platform axes
“wander” from north but keeping track of the angle o between north and a reference
platfrom axis, as shown in Fig. C.8. This LTP orientation came to be called “alpha
wander.”

C.3.6.2 ENU/NED Coordinates East-north—up (ENU) and north—east-down
(NED) are two common right-handed LTP coordinate systems. ENU coordinates
may be preferred to NED coordinates because altitude increases in the upward
direction. But NED coordinates may also be preferred over ENU coordinates
because the direction of a right (clockwise) turn is in the positive direction with
respect to a downward axis, and NED coordinate axes coincide with vehicle-fixed
roll-pitch—-yaw (RPY) coordinates (Section C.3.7) when the vehicle is level and
headed north.

The coordinate transformation matrix Ckyy from ENU to NED coordinates and
the transformation matrix Cixy from NED to ENU coordinates are one and the
same:

0 1
Cip=Cob=1|1 0 0]. (C.73)
0 0

Fig. C.7 ENU coordinates.
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C.3.6.3 ENU/ECEF Coordinates The unit vectors in local east, north, and
up directions, as expressed in ECEF Cartesian coordinates, will be

[ —sin(0)
cos(0) |,
0

(C.74)

B _COS(H) Sin(d)geodetic)
—Sil’l(@) Sin(¢geodetic) ’

COS((:{)geodetic)

(C.75)

_COS(H) Cos(¢geodetic)
sin(0) COS((rbgeodetic) >

Sin((rbgeodetic)

(C.76)

and the unit vectors in the ECEF X, Y, and Z directions, as expressed in ENU

coordinates, will be

Ly

—sin(0)
_COS(H) Sin(¢geodetic) ’
cos(0) cos(¢p

(C.77)

geodetic)

Fig. C.8 Alpha wander.
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cos(0)
_Sin(()) Sin(¢geodetic) ’
L Sil‘l(@) COS(¢geodetic)
0

Cos(d)geodetic)
L Sin((/)geodetic)

(C.78)

(C.79)

C.3.6.4 NED/ECEF Coordinates 1t is more natural in some applications to
use NED directions for locally level coordinates. This coordinate system coincides
with vehicle-body-fixed RPY coordinates (shown in Fig. C.9) when the vehicle is
level headed north. The unit vectors in local north, east, and down directions, as
expressed in ECEF Cartesian coordinates, will be

B _COS(H) Sin(¢geodetic)
1N = —Sln(@) Sin(d)geodetic) s
COS(¢geodetic)
[ —sin(0)
1; = | cos(® |,
. 0
B _COS(H) Cos(d)geodetic)
1, = —sin(0) cos(¢geodetic) )
- Sin(¢geodetic)
Roll Axis
Pitch Axis
Yaw Axis

Fig. C.9 Roll-pitch-yaw axes.

(C.80)

(C.81)

(C.82)
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and the unit vectors in the ECEF X, Y, and Z directions, as expressed in NED
coordinates, will be

[ —cos(0) sin( geoqetic)

. _in(0) , (C.83)

| —cos(0) cos(¢

[ —sin(0) sin(Pgeogetic)

[ cos(0) , (C.84)
| —sin(6) cos(¢ geodetic)

B COS(¢geodetic)

- 0 7 (C.85)

L~ Sin(¢geodetic)

geodetic)

C.3.7 RPY Coordinates

The RPY coordinates are vehicle fixed, with the roll axis in the nominal direction of
motion of the vehicle, the pitch axis out the right-hand side, and the yaw axis such
that turning to the right is positive, as illustrated in Fig.C.9. The same orientations of
vehicle-fixed coordinates are used for surface ships and ground vehicles. They are
also called “SAE coordinates,” because they are the standard body-fixed coordinates
used by the Society of Automotive Engineers.

For rocket boosters with their roll axes vertical at lift-off, the pitch axis is
typically defined to be orthogonal to the plane of the boost trajectory (also called the
“pitch plane” or “ascent plane”).

C.3.8 Vehicle Attitude Euler Angles

The attitude of the vehicle body with respect to local coordinates can be specified in
terms of rotations about the vehicle roll, pitch, and yaw axes, starting with these axes
aligned with NED coordinates. The angles of rotation about each of these axes are
called Euler angles, named for the Swiss mathematician Leonard Euler (1707-
1783). It is always necessary to specify the order of rotations when specifying Euler
(pronounced “oiler”) angles.

A fairly common convention for vehicle attitude Euler angles is illustrated in
Fig. C.10, where, starting with the vehicle level with roll axis pointed north:

1. Yaw/Heading. Rotate through the yaw angle (Y) about the vehicle yaw axis to
the intended azimuth (heading) of the vehicle roll axis. Azimuth is measured
clockwise (east) from north.

2. Pitch. Rotate through the pitch angle (P) about the vehicle pitch axis to bring
the vehicle roll axis to its intended elevation. Elevation is measured positive
upward from the local horizontal plane.
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Fig. C.10 Vehicle Euler angles.

3. Roll. Rotate through the roll angle (R) about the vehicle roll axis to bring the
vehicle attitude to the specified orientation.

Euler angles are redundant for vehicle attitudes with 90° pitch, in which case the roll
axis is vertical. In that attitude, heading changes also rotate the vehicle about the roll
axis. This is the attitude of most rocket boosters at lift-off. Some boosters can be
seen making a roll maneuver immediately after lift-off to align their yaw axes with
the launch azimuth in the ascent plane. This maneuver may be required to correct for
launch delays on missions for which launch azimuth is a function of launch time.

C.3.8.1 RPY/ENU Coordinates With vehicle attitude specified by yaw angle
(Y), pitch angle (P), and roll angle (R) as specified above, the resulting unit vectors
of the roll, pitch, and yaw axes in ENU coordinates will be

[ sin(Y) cos(P)
1; = | cos(Y)cos(P) |, (C.86)
sin(P)
cos(R) cos(Y) + sin(R) sin(Y) sin(P) |
1, = | —cos(R)sin(Y) + sin(R) cos(Y) sin(P) |, (C.87)
—sin(R) cos(P) i
—sin(R) cos(Y) + cos(R) sin(Y) sin(P) ]
1, = sin(R) sin(Y) + cos(R) cos(Y) sin(P)
—cos(R) cos(P)

(C.88)
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the unit vectors of the east, north, and up axes in RPY coordinates will be

sin(Y’) cos(P)

1; = cos(R) cos(Y) + sin(R) sin(Y) sin(P)

—sin(R) cos(Y) + cos(R) sin(Y) sin(P) |
cos(Y) cos(P) ]

1y = | —cos(R)sin(Y) + sin(R) cos(Y) sin(P)

sin(R) sin(Y) + cos(R) cos(Y) sin(P) |

sin(P)
1, = | —sin(R)cos(P) |; (C.91)
| —cos(R) cos(P)

(C.89)

(C.90)

and the coordinate transformation matrix from RPY coordinates to ENU coordinates
will be

1
CERTI\)IB =[x 1p Iy]= lva (C.92)
1
SyCp CrCy + SpSySp  —SgCy + CrSySp
= | CyCp —CrSy + SgCySp  SpSy + CrCySp |, (C.93)
Sp —SrCp —CrCp
where
S = sin(R), (C.94)
Cy = cos(R), (C.95)
Sp = sin(P), (C.96)
Cpcos(P), (C.97)
Sy = sin(Y), (C.98)

Cy = cos(Y). (C.99)
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C.3.9 GPS Coordinates

The parameter Q in Fig. C.12 is the RAAN, which is the ECI longitude where the
orbital plane intersects the equatorial plane as the satellite crosses from the Southern
Hemisphere to the Northern Hemisphere. The orbital plane is specified by Q and o,
the inclination of the orbit plane with respect to the equatorial plane (« ~ 55° for
GPS satellite orbits). The 0 parameter represents the location of the satellite within
the orbit plane, as the angular phase in the circular orbit with respect to ascending
node.

For GPS satellite orbits, the angle 6 changes at a nearly constant rate of about
1.4584 x 10 rad/s and a period of about 43,082 s (half a day).

The nominal satellite position in ECEF coordinates is then given as

x = R[cos 0 cos Q—sin 0 sin Q cos ], (C.100)
y = R[cos 0 cos Q + sin 0 sin Q cos «], (C.101)
z=Rsinfsina, (C.102)
0=20 t—t d C.103

o+ —1) 43.082 eg, ( )
Q=0Q,—(—1t) 60 d (C.104)

- 086,164 % '

R =26,560,000 m. (C.105)

GPS satellite positions in the transmitted navigation message are specified in the
ECEF coordinate system of WGS 84. A locally level x!, y!, z! reference coordinate
system (described in Section C.3.6) is used by an observer location on the earth,
where the x' —)' plane is tangential to the surface of the earth, x' pointing east, '
pointing north, and z' normal to the plane. See Fig. C.11. Here,

ECEF
Xenu = Ceno Xecer + S,
CEEF = coordinate transformation matrix from ECEF to ENU,

S = coordinate origin shift vector from ECEF to local reference,

—sin 0 cos 0 0
CEEf = | —singcos® —singsind cos¢p |,
cos¢pcosl)  cos¢psinl  sing

Xy sin0 — Yy cos0
S = Xysingcosl — Yy singsind — Z;, cos ¢ |,
| —Xy cos¢cost — Yy, cospsinl — Z, sin

Xy, Yy, Zy = user’s position,
0 = local reference longitude,

¢ = local geometric latitude.
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Fig. C.11 Pseudorange.

EQUATORIAL

Fig. C.12 Satellite coordinates.
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C.4 COORDINATE TRANSFORMATION MODELS

Coordinate transformations are methods for transforming a vector represented in one
coordinate system into the appropriate representation in another coordinate system.
These coordinate transformations can be represented in a number of different ways,
each with its advantages and disadvantages.

These transformations generally involve translations (for coordinate systems with
different origins) and rotations (for Cartesian coordinate systems with different axis
directions) or transcendental transformations (between Cartesian and polar or
geodetic coordinates). The transformations between Cartesian and polar coordinates
have already been discussed in Section C.3.1 and translations are rather obvious, so
we will concentrate on the rotations.

C.4.1 Euler Angles

Euler angles were used for defining vehicle attitude in Section C.3.8, and vehicle
attitude representation is a common use of Euler angles in navigation.

Euler angles are used to define a coordinate transformation in terms of a set of
three angular rotations, performed in a specified sequence about three specified
orthogonal axes, to bring one coordinate frame to coincide with another. The
coordinate transformation from RPY coordinates to NED coordinates, for example,
can be composed from three Euler rotation matrices:

Yaw Pitch Roll

Cy —S, 0 Cp 0 S, TT1 0 07
CNip=| Sy Cy 0 0 1 010 G =S (C.106)
0 0 1][=S 0 G l0 S Gl
B CYPP _SYCR + CYSPSR SYsR + CYSPCR_
_ Sch CYCR + SYSPSR _CYsR + SYSPCR (C 107)
—Sp CpSi CpCp ’ '

L (roll axis) (pitch axis) (yaw axis)

in NED coordinates

where the matrix elements are defined in Eqs. C.94—C.99. This matrix also rotates
the NED coordinate axes to coincide with RPY coordinate axes. (Compare this with
the transformation from RPY to ENU coordinates in Eq. C.93.)

For example, the coordinate transformation for nominal booster rocket launch
attitude (roll axis straight up) would be given by Eq. with pitch angle P = %n
(Cp =0, Sp =1), which becomes

0 sin(R—Y) cos(R—Y)
CRib=| 0 cos(R—Y) —sin(R—7)
1 0 0
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That is, the coordinate transformation in this attitude depends only on the difference
between roll angle (R) and yaw angle (Y). Euler angles are a concise representation
for vehicle attitude. They are handy for driving cockpit displays such as compass
cards (using Y) and artificial horizon indicators (using R and P), but they are not
particularly handy for representing vehicle attitude dynamics. The reasons for the
latter include the following:

e Euler angles have discontinuities analogous to “gimbal lock” (Section 6.4.1.2)
when the vehicle roll axis is pointed upward, as it is for launch of many
rockets. In that orientation, tiny changes in vehicle pitch or yaw cause £180°
changes in heading angle. For aircraft, this creates a slewing rate problem for
electromechanical compass card displays.

e The relationships between sensed body rates and Euler angle rates are
mathematically complicated.

C.4.2 Rotation Vectors

All right-handed orthogonal coordinate systems with the same origins in three
dimensions can be transformed one onto another by single rotations about fixed
axes. The corresponding rofation vectors relating two coordinate systems are defined
by the direction (rotation axis) and magnitude (rotation angle) of that transformation.

For example, the rotation vector for rotating ENU coordinates to NED coordi-
nates (and vice versa) is

/2
pep = | /Y2 | (C.108)
0

which has magnitude [pkRy| = 7 (180°) and direction north-east, as illustrated in
Fig. C.13. (For illustrative purposes only, NED coordinates are shown as being
translated from ENU coordinates in Fig. C.13. In practice, rotation vectors represent
pure rotations, without any translation.)

The rotation vector is another minimal representation of a coordinate transforma-
tion, along with Euler angles. Like Euler angles, rotation vectors are concise but also
have some drawbacks:

1. It is not a unique representation, in that adding multiples of +27 to the
magnitude of a rotation vector has no effect on the transformation it
represents.

2. It is a nonlinear and rather complicated representation, in that the result of one
rotation followed by another is a third rotation, the rotation vector for which is
a fairly complicated function of the first two rotation vectors.

But, unlike Euler angles, rotation vector models do not exhibit “gimbal lock.”
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Fig. C.13 Rotation from ENU to NED coordinates.

C.4.2.1 Rotation Vector to Matrix The rotation represented by a rotation
vector

p=| 0 (C.109)

can be implemented as multiplication by the matrix

C(p) < exp(pe) (C.110)
0 —ps P>
&ef exp 03 0 —p (C.111)
—P2 P 0
0 —ps 2]
= cos(lplt; + P or smleD ], -y, e
Pl Pl
—P2 P 0
0 —uy u,
= cos(O)1; + (1—005(0))1,,1; +sin(@)| u3 0 —uy |, (C.113)
—u, u, 0
0% |pl, (C.114)
, 5, (C.115)

which was derived in Eq. B.17. That is, for any three-rowed column vector v, C(p)v
rotates it through an angle of |p| radians about the vector p.
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The form of the matrix in Eq. C.113 is better suited for computation when 6 ~ 0,
but the form of the matrix in Eq. C.112 is useful for computing sensitivities using

partial derivatives (used in Chapter 8).

For example, the rotation vector pkyy in Eq. C.108 transforming between ENU

and NED has magnitude and direction
0=mn [sin(0) = 0, cos(0) = —1],
1/v2
1,=|1/v2 |,
0

respectively, and the corresponding rotation matrix

0 —u Uy
Ciip = cos(my + [1—cos(m)]1,1, +sin(m)| u; 0 —u
—Uy U 0

=-13421,1,+0

-1 0 0 110
=] 0 -1 o0|+|1 10
0 0 -1 00 0
[0 1 0
=[1 0 o
(0 0 —1

transforms from ENU to NED coordinates. (Compare this result to Eq. C.73.)
Because coordinate transformation matrices are orthogonal matrices and the matrix

CENY is also symmetric, CERy is its own inverse. That is,

CXib = Cinv- (C.116)

C.4.2.2 Matrix to Rotation Vector Although there is a unique coordinate
transformation matrix for each rotation vector, the converse is not true. Adding
multiples of 27 to the magnitude of a rotation vector has no effect on the resulting
coordinate transformation matrix. The following approach yields a unique rotation
vector with magnitude |p| < 7.

The trace tr(C) of a square matrix M is the sum of its diagonal values. For the
coordinate transformation matrix of Eq. C.112,

tr[C(p)] = 1 + 2 cos(0), (C.117)

2Linear combinations of the sort a;1;, 5 + a, [1 p®] +a;1 pI’T,, where 1 is a unit vector, form a subalgebra

of 3 x 3 matrices with relatively simple rules for multiplication, inversion, etc.
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from which the rotation angle

lpl =0 (C.118)

= arcos (tr[C(pz)]—l) , (C.119)

a formula that will yield a result in the range 0 < 6 < 7, but with poor fidelity near
where the derivative of the cosine equals zero at § = 0 and 6 = =.

The values of 8 near § = 0 and 6 = 7 can be better estimated using the sine of 0,
which can be recovered using the antisymmetric part of C(p),

0 —ay a3
A= ay 0 —ay (C.120)
—di3 as; 0
€ 1cp) - C(p)] (C.121)
. 0 —ps P2
- 51“0(9) ps 0 —p |, (C.122)
B 0
from which the vector
as; 1
ap | = sm(@)ﬁp (C.123)
)

will have magnitude

Va3, +aly + a3, = sin(0) (C.124)

and the same direction as p. As a consequence, one can recover the magnitude 0 of p

from
tr[C(p)] — 1
0= atan2<,/a§2 i +dl, %) (C.125)

using the MATLAB function atan2, and then the rotation vector p as

0 a3

. a
sin(6) ai

p= (C.126)

when 0 < 0 < 7.
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C.4.2.3 Special Cases for sin(0) ~0 For 0 ~ 0, p ~ 0, although Eq. C.126

may still work adequately for 0 > 1079, say.
For 6 ~ 7, the symmetric part of C(p),
St 12 13
S = S S 823 (C127)
S13 $23 33
def
L 1 iC(p) + CT(p)] (C.128)
1—cos(0
— cos(0)1; + %() pp’ (C.129)
2
2 g
S B +?pp (C.130)
and the unit vector
1, ] C.131
satisfies
2u -1 2uu, 2uquy
S~ | 2uu, 23-1 2uuy |, (C.132)
2”1“3 2”2”3 21/!% -1
which can be solved for a unique u by assigning u;, > 0 for
St
k =argmax| | sp» | |, (C.133)
533
U, = 1/%(Skk + 1) (C134)
then, depending on whether k = 1, k =2, or k = 3,
k=1 k=2 k=3
4o~ fSutlosn Si3
! 2 2u, 2uy
2 2u, V 2 2u,
~ B Sy sl

Uz
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and

U
p=0| u, |. (C.136)

C.4.2.4 Time Derivatives of Rotation Vectors The mathematical relation-
ships between rotation rates ; and the time derivatives of the corresponding
rotation vector p are fairly complicated, but they can be derived from Eq. C.221 for
the dynamics of coordinate transformation matrices.

Let ppyy be the rotation vector represented in earth-fixed ENU coordinates that
rotates earth-fixed ENU coordinate axes into vehicle body-fixed RPY axes, and let
C(p) be the corresponding rotation matrix, so that, in ENU coordinates,

1,=[1 0 0], 1y=[0 1 0], 1,=[0 o 1],
Clpenu)e = 1z, Clpenu)ly = 1p, Clpenu)ly =1y,
Civu =[x 1, 1], (C.137)
= [Clpenu)1z  Clppnu)ly  Clpenp)ly]
=Clppnu)ll; 1y 1y]

1 0 0
=Clppn)| 0 1 0
0 0 1
CERU = C(pgny)- (C.138)

That is, C(pENU) is the coordinate transformation matrix from RPY coordinates to
ENU coordinates. As a consequence, from Eq. C.221,

%C(pm) = %CEEE (C.139)
0 Wy —y 0 —wy wp
=| —oy 0 wp |CR +CRU| oy 0 —wp |,
| oy —og 0 ] —wp wp 0
(C.140)
P 0 oy —oy ] 0 —wy wp
EC(pENU) = | —oy 0 g |ClPpny) + Clpenu) | @y 0 —op |,
| oy —og 0 | —wp Wp 0

(C.141)
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where

Wp
(.ORPY == Cl)P (C 142)
Wy

is the vector of inertial rotation rates of the vehicle body, expressed in RPY
coordinates, and

Wg
WpNy = | On (C.143)
Wy

is the vector of inertial rotation rates of the ENU coordinate frame, expressed in
ENU coordinates.
The 3 x 3 matrix equation C.141 is equivalent to nine scalar equations:

dcyy . acyy . dcyy .

opp FE %P +%Pu— —C130p + €1 Wy — €31y + & 1Oy,
acyy . acy, . acyy

app FE %pN"i_apUpU_CISG)R_CIle_C32wN+C22wU1
dcys . a3 . acyz .

a0:"E T opy —py+ 3pUpU = —C1 W + €1 1Wp = C3 30y + Cp 30y,
acy; . 9cy; acyy .

e "E o0y PN+8p Py = —Cr30p + €0y + €310 — €1 1Oy,
E;CTZ;'E gcpzzPN‘i‘%PU—0230)13—021@1/4‘5320)5—01 20y
%'5 g%;/’ +g;—2;pu— —C2Wp + €3 1Wp + C3 300 — €1 300y,
dcyy . 93y aczy .

FrCar . PN+8p Py = —C330p + €30y — 310 + ¢ 1Oy,
%.E gcpnﬂ +%pU—033(913_(331601/_CZZwE+012wN’
dcss . dcs; . dcsz .

0. "E T op — Pyt 300 Py = —C3,0p + €3 1Wp — € 30 + €| 30y,

where

11 Cn2 €13 def
€1 Cxn O3 | = C(PENU)
G311 €3 C33

and the partial derivatives
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dcyy  ug(l— uz){2[1 — cos(0)] — 0 sin(0)}

g 0 ’

dcyy uN{—Zu%[l — cos()] — Gsin(G)(l — u‘%)}

Iy 6 ’

dey,  uy{—2ug[l — cos(0)] — Osin(0)(1 — uz)}

Iy 0 ’

dcpy uN(l - Zu%)[l — c08(0)] + uguy sin(0) — Ouguy, cos(0) + Ouyu sin(0)
g 0 ’
deyy  up(1 = 2uy)[1 = cos(0)] + uyuy sin(0) — Quyuy cos(0) + uguy sin(0)
pn 0 ’
dcyy  —2uguyuy[l — cos(0)] — (1 - u%/) sin(0) — 0u?; cos(0) + Ouyuyug sin(0)
Iy 0 ’
deys uy (1 — 2u)[1 = cos(0)] — uguy sin(0) + Ouguy cos(0) + Ouyu sin(0)
g 0 ’
deys  —2uguyuyll — cos(0)] + (1 — uy) sin(0) + Ouy, cos(0) + Ouyuyug sin(0)
pn 0 ’
deys  ug(1 = 2ug)[1 = cos(0)] — uyuy sin(0) + Ouyuy cos(6) + Ougug; sin(0)
Iy 0 ’
dcy uN(l - Zu%)[l — cos(0)] — uguy sin(0) + Ouguy; cos(0) + Ouyuz sin(0)
g 0 ’
ey up(1 = 2uy)[1 — cos(0)] — uyuy sin(0) + Ouyuy cos(0) + ugus sin(0)
oy 0 ’
ey, —2uguyuy[l — cos(0)] 4 sin(0)(1 — ug;) + Oug; cos(0) + Ouyuyug sin(0)
dpy 0 ’
dcyy uE{—Zu]zV[l — cos(0)] — 0(1 — ujzv) sin(@)}

g 0 ’

deyy  uy (1 —uy){2[1 — cos(6)] — Osin(0)}

oy 0 ’

dcyy uU{—2u]2\,[l — cos(0)] — 6(1 - ulz\,) sin(G)}

oy 0 ’

deyy  —2uguyuy[l — cos(0)] — (1 — ug) sin(0) — Ouj cos(6) + Ouguyuy sin(0)
g 0 ’
dcy; uU(l - Zu%v)[l — co8(0)] + uguy sin(0) — Ouguy cos(0) + Ou3uy; sin(6)
Ay 0 ’
dcyy  uy (1 —2ud)[1 — cos(0)] + uguy sin(0) — Quguy cos(0) + Ouiuy sin(0)

oy 0
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dey uy (1 = 2ug)[1 — cos(0)] + uguy sin(0) — Ouguy cos(0) + Ouyug; sin(0)

pp 0 ’
dcyp —2uguyuy[l — cos(0)] — (1 - ujzv) sin(f) — Hulz\, cos(0) + Ouguyug sin(0)
Iy 0 ’
dczy,  up(1 = 2uf)[1 — cos(0)] + uyuy sin(0) — Ouyuy cos(0) + Qugug; sin(0)
py 0 ’
ey —2upuyuy[l — cos(0)] + (1 — uz) sin(0) + Ou cos(6) + Ouyuyuy sin(0)
pr 0 '
dcyy uU(l - 2”12\1)[1 — c0s(0)] — uguy sin(0) + Quguy cos(0) + 0u3,uy sin(6)
Iy 0 ’
dezy  uy (1 —2ug)[1 — cos(0)] — upuy sin(6) + Ouguy cos() 4 Oui uy sin(0)
oy 0 ’
doys up{—2u}[1 — cos(0)] — 0sin(0)(1 + uf))}

pp 0 ’

doys uy{—2u} [1 — cos(0)] — Osin(0)(1 + u)}

oy 0 ’

doys uy (1 — u){2[1—cos(0)] — 0sin(0)}

oy 0
for

0 Ippul,
def P def P def P
MEZFE, Uy = 9]\/, uu:?U.

These nine scalar linear equations can be put into matrix form and solved in least
squares fashion as

Wpr
e — CUP
PE
. Wy
L| pxy | =R , (C.144)
. g
L Pu
Oy
LWy
i PE ] o
oy | = [LTL]\[LTR][ RPY] (C.145)
. ~— | WNU
LAy /00>
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The matrix product L’ L will always be invertible because its determinant

[1—cos(0)]?

det[L"L] = 32 5 , (C.146)
lim det[L'L] = 8, (C.147)
and the resulting equation for ppy; can be put into the form
Peny = W [ orpy (C.148)
ENU o0 || @pny | ‘
The 3 x 6 matrix dp/dw can be partitioned as
ap o o
Rl | R (C.149)
R0 0Wgpy |d®ENy
with 3 x 3 submatrices
0 1 sin sin 1
P _ [_2_ (IeD) ] v lelsineh ;1o
dogpy  Llpl®  2lpl[1—cos(Ip)] 2[1—cos(lpD] 2
(C.150)
0 sin(0) 0
=11 +-———[1-1,1p"]+-[1,Q], C.151
5+ 31 —cos@it 1171+ 511,61 (c.151)
Py
limp—P_ 1, (C.152)
p=0" Jeppy
H [ 1 sin(lp)) ] :
=T T T o | PP
dwENy Ipl”°  2lpl[1—cos(|p])]
lplsin(|p|) 1
-1+ -[pR] (C.153)
2i—cos(lp] " 2'°
0 sin(0) 0
=11 —————[1-1,11]+-[1,8] C.154
PP 2[1—cos(0)][ P ”]+2[ al ( )
lim — P — . (C.155)
[p|—0 8('0ENU

For locally leveled gimbaled systems, wgpy = 0. That is, the gimbals normally
keep the accelerometer axes aligned to the ENU or NED coordinate axes, a process
modeled by wgyy alone.
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C.4.2.5 Time Derivatives of Matrix Expressions The Kalman filter imple-
mentation for integrating GPS with a strapdown INS in Chapter 8§ will require
derivatives with respect to time of the matrices

of of
PNV (Bq.C.150) and “PENU(Eq. C.153).
dwgpy dwpNy

We derive here a general-purpose formula for taking such derivatives and then
apply it to these two cases.

General Formulas There is a general-purpose formula for taking the time
derivatives (d/dt)M(p) of matrix expressions of the sort

M(p) = M(s1(p), 5>(p), 53(p)) (C.156)

=51(p) Is + 5,(p) [p®] + 53(P)pp” . (C.157)

that is, as linear combinations of I, p®, and pp’ with scalar functions of p as the
coefficients.
The derivation uses the time derivatives of the basis matrices,

d
d .
i["@] = [p®], (C.159)
d ) .
PP =pp" +pp’, (C.160)

where the vector

d
= — C.161
p=_p ( )

and then uses the chain rule for differentiation to obtain the general formula

as(p) .. 9s2(p) . ‘
S;j‘()p) pL; + S;f)p) plp®] + 5,(p)[P®,

d
ZMP) =

ds3(p) p

+ o0

[pp" ]+ s3(@)[pp" +pp']. (C.162)

where the gradients ds;(p)/dp are to be computed as row vectors and the inner
products [ds;(p)/9p]p will be scalars.
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Equation C.162 is the general-purpose formula for the matrix forms of interest,
which differ only in their scalar functions s;(p). These scalar functions s;(p) are
generally rational functions of the following scalar functions (shown in terms of their
gradients):

3
—|plP =plpl?p" C.163
apIpl plplP"p . ( )
9 . _ —1,.T
8—psm(lp|) = cos(lpDIpl" p", (C.164)
0 _ : -1, T
$COS(IPI) = —sin(|p)Ip|”"p (C.165)

Time Derivative of dpgyy/dwgpy In this case (Eq. C.150).

__lplsinlpl)
s1(p) = S —cos(lp)] (C.166)
NN Ip|~'sin(lp]) .
p  2l-cos(lp)] (C.167)
5(p) =14, (C.168)
3
a%: 013, (C.169)
_[L o sinde)
5(P) = |:|p| 2|p|[1—cos(|p|)]]’ (C.170)
d3(p) _ 1+ Ip| ™" sin(|p]) — 4 |p|*[1—cos(|p|)] o 17
ap 2lp[1—cos(Ip])] ’ -
d ey 9s1(P) . as,(p) .
didomy ~ op PB T gp PRSI TSR]
3
+ S;‘(,p) plep’] +s:(p)[pp" +pp’]. (C.172)

— |pl~" sin(p|) 1.
2[1—cos(lp)) )(" o)l +3lbe)

<1 + |p| ™" sin(lp]) — 4 p| [1— COS(IpI)]> x (p79)[pp"]

2|pl*[1—cos(|pl)]

! sin(|p|) 1t
p—_2|p|1 COS(|p|)])[pp +pp'] (C.173)
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Time Derivative of dpgyy/dmgny In this case (Eq. C.153),
lpl sin(|p|)

s1(p) = —m, (C.174)
ds;(p) _1—|p| 'sin(lp]) 1
o~ 2l—cos(p] * (173)
5(p) =3, (C.176)
%_s;: 0,5, (C.177)
_ [t sin(pl)
e)= [|p|2 2|p|[1—cos(|p|)]]’ (179
-1 .. )
isp) _ 1+ 1pl”" sinlp) — 4 lpl {1 —cos(lpD] - c.179)
ap 2[p|[1—cos(]pl)]
d dppny _ 9s1(p) . ds,(p) . :
didony ~ Op pL; + op plp®] + s,(p)[pR],
ds3(p) . . .
+ % plpp" ] +s3(p)[pp" +pp'] (C.180)

2[1—cos(Ip)]
) 1+|p|—1sin(|p|)—4|p|—2[1—cos(|p|)]> N
< 2|pl*[1—cos(|p|)] x (p'p)[pp'].

! sin(|p|) . ,
- <|P|2_2|p|[1—cos(|p|)]> B0 +pi']. (C.181)

)(pr)13 £ Ihe]

C.4.2.6 Partial Derivatives with Respect to Rotation Vectors Calcula-
tion of the dynamic coefficient matrices F and measurement sensitivity matrices H in
linearized or extended Kalman filtering with rotation vectors pgyy as part of the
system model state vector requires taking derivatives with respect to ppyy of
associated vector-valued f- or h-functions, as

Fe 3f (Pau- V)

: (C.182)
PeNU
oh ,

H= M, (C.183)
IPeNU

where the vector-valued functions will have the general form

f(Penus V) or h(pexys V)
= {s0(Penv)Ts + 51 (Penu) [PENU®] + 52 (PEnU)PENUPENU Y, (C.184)
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and sy, §;, 5, are scalar-valued functions of pgyy and v is a vector that does not
depend on pgyy.- We will derive here the general formulas that can be used for taking
the partial derivatives of (ppny. v)/9peny OF Oh(peny, V)/peny- These formulas
can all be derived by calculating the derivatives of the different factors in the
functional forms and then using the chain rule for differentiation to obtain the final
result.

Derivatives of Scalars The derivatives of the scalar factors s, s, 5, are

ol 3s;(Peny) 05 (Penu) 8Si(pENU)i|
(Peny) = , C.185
oy (PEN0) [ dor oy Opy (G189

a row vector. Consequently, for any vector-valued function g(pgyy) by the chain
rule, the derivatives of the vector-valued product s, (pgny) g(Peny) are

s (Penu)E(PENU)) = g(Ppny) 3s,(PeNy) ) 0g(PeNy)

+s(p , (C.186)
IPeNU IPeNU NV dpeny
3x3 matrix 3 x3 matrix

the result of which will be the 3 x 3 Jacobian matrix of that subexpression in f or h.

Derivatives of Vectors The three potential forms of the vector-valued function g
in Eq. C.186 are

Iv=yv,
g(Penu) = 1 PenU V. (C.187)

T
PeENUPENUYS

each of which is considered independently:

ov
= 0,5, (C.188)
IPENU e
a%w®v:%w®%wL (C.189)
BpENU apENU
— _[va), (C.190)
0 —u Uy
e | (C.191)
_UZ 1_)1 0
IPENUPENUY T IPeny IpinuY
IPeNUPENUY _ v +p , (C.192)
IPeNU (Pex )apENU Y peny

= (PEnuY) s + PenUY - (C.193)
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General Formula Combining the above formulas for the different parts, one can
obtain the following general-purpose formula:

0
9PeNU

:V|:aSO(pENU) aSO(PENU) 8SO(pENU)]
0P dpy dpy

{s0(Pexu)Ls + 51 (Penu) [PENU®] + 52 (pENU)pENUpgNU by

0s (pENU) 0s) (pENU) 0s) (pENU)]

+ ®
[Peve V][ g dpy py

— 5 (PENU)[V®]

ds, (pENU) ds, (PENU) ds, (pENU):|
g dpy dpy

+ 52 (penu) [ (PENUY) L33 + PenuY' - (C.194)

+ (pENUV) PeNU |:

applicable for any differentiable scalar functions sy, s, $,.

C.4.3 Direction Cosines Matrix

We have demonstrated in Eq.C.12 that the coordinate transformation matrix between
one orthogonal coordinate system and another is a matrix of direction cosines
between the unit axis vectors of the two coordinate systems,

cos(Oyy) cos(Oyy)  cos(Oyy)
C%ZM/: COS(HYU) COS(HYV) COS(QYW) . (C195)

cos(Ozy) cos(Oz) cos(Ozy)

Because the angles do not depend on the order of the direction vectors (i.e.,
0., = 0,,), the inverse transformation matrix

[cos(0yx) cos(0yy) cos(0y,
Cliy = | cos(0yx) cos(0,y) cos(0y7) |, (C.196)
cos(BWX) cos(@WY) COS(GWX
cos(Oyy) cos(Oyy) cos(Oyy) !
= cos(ﬂyy) cos(QW) cos(@YW) , C.197
| cos(0z) cos(Bz) cos(0z)

= (cy. (C.198)
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That is, the inverse coordinate transformation matrix is the transpose of the forward
coordinate transformation matrix. This implies that the coordinate transformation
matrices are orthogonal matrices.

C.4.3.1 Rotating Coordinates Let “rot” denote a set of rotating coordinates,
with axes Xy, Yror Zrot» and let “non” represent a set of non-rotating (i.e., inertial)
coordinates, with axes X, o1, Ynon» Znon» @ illustrated in Fig. C.14.

Any vector v, in rotating coordinates can be represented in terms of its

nonrotating components and unit vectors parallel to the nonrotating axes, as

Viot = Ux,nonlx,non + Uy,nonly,non + Uz.nonlz,non (C199)

vX,l’lOl’l
= [lx,non ly,non lz.non] Uy, non (CZOO)

Uz,non

non.

= Crot vnonv (C201)
where 0, nons Uy nons Uz non ar€ nonrotating components of the vector, 1, ,4n, 1, nons
1, ,on = unit vectors along X, Y00, Z,0q axes, as expressed in rotating coordinates

V.ot = vector v expressed in RPY coordinates

Voon = vector v expressed in ECI coordinates,

Ci' = coordinate transformation matrix from nonrotating coordinates to rotating
coordinates

and

C]r1<())tn = [lx,non 1y,non lz,non]' (C.202)

1XNON =
—Wror @ Lxwon

Fig. C.14 Rotating coordinates.
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The time derivative of Cry', as viewed from the non-rotating coordinate frame,
can be derived in terms of the dynamics of the unit vectors 1, o4, 1, hon and 1., in
rotating coordinates.

As seen by an observer fixed with respect to the nonrotating coordinates, the
nonrotating coordinate directions will appear to remain fixed, but the external inertial
reference directions will appear to be changing, as illustrated in Fig. C.14.
Gyroscopes fixed in the rotating coordinates would measure three components of
the inertial rotation rate vector

wx,rot

ot = | Py,rot (C203)
w

w

z,rot

in rotating coordinates, but the non-rotating unit vectors, as viewed in rotating
coordinates, appear to be changing in the opposite sense, as

d
E 1x.non =-—0,8 lx,non’ (C.204)
d
dt 1y,non =—0,Q® ly,nons (C.205)
d
dt L hon = —®rt @ 1 pons (C.205)

as illustrated in Fig. C.14. The time-derivative of the coordinate transformation
represented in Eq. C.202 will then be

G =Gl Gl Gleom] (207
=0 @Linen — @ @100 — 0 ® 1 0]
= —[0®Lcnon] Lynon  1zinonl
= — [0 Q]Ci, (C.208)
0 —W; 1ot Wy, rot
(0@ E | O 0 —o |- (C.209)
— @y, ot Wy rot 0

The inverse coordinate transformation

o, = (can)™! (C.210)
= (c2n), (C.211)
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the transpose of Cly', and its derivative

d d

T non\ T
7 Coon = 7, (C) (C.212)
d T
= (ECF&H> (C.213)
= (~[om@]Ci)’ (C.214)
= _(C?&H)T[wrot(@]Ta (CZIS)
= Cron[@a®]. (C.216)

In the case that “rot” is “RPY” (roll-pitch-yaw coordinates) and “non” is “ECI”
(earth centered inertial coordinates), Eq. C.216 becomes

d
5 il = Cicr [orey®], (C.217)

and in the case that “rot” is “ENU” (east-north-up coordinates) and “non” is “ECI”
(earth centered inertial coordinates), Eq. C.208 becomes

d
2 O = —[@nu@]Cixy, (C218)

and the derivative of their product

OB — CELCEY, c219)
i CRPY — i CECI CRPY + CECI i CRPY (C 220)
dt ENU dt ENU ECI ENU dr ECI '

= [[~oeu®ICiu]Citr + Cinu[CRot [wrpy ®]]
= [~ o] CE%JCEE?{ + CET(\:I{JCE{;?{[(”RPY®]’

RPY RPY
CENU CENU

d
ECE{% = —[@pu®ICEN + CRny[0rpy & (C.221)
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Equation C.221 was originally used for maintaining vehicle attitude information in
strapdown INS implementations, where the variables

wppy = vector of inertial rates measured by the gyroscopes,

(C.222)
MWENU = Oyrihrate T ®,, + W, ,
0
Wg = Wg cos(¢geodetic) , (C.223)
Sin(¢geodetic)
0
o - | (C.224)
ve T I’T + h ’ ’
—1
®, =N 0 (C.225)
oyt h ’ :

and
where wg, = earth rotation rate
P geodetic = geodetic latitude
v = the east component of velocity with respect to the surface of the earth
rp = transverse radius of curvature of the ellipsoid (Eq. 6.41)
vy = north component of velocity with respect to the surface of the earth
ry, = meridional radius of curvature of the ellispoid (Eq. 6.38)
h = altitude above (+) or below (—) the reference ellipsoid surface (=
mean sea level)

Unfortunately, Eq. C.221 was found to be not particularly well suited for accurate
integration in finite-precision arithmetic. This integration problem was eventually
solved using quaternions.

C.4.4 Quaternions

The term gquaternions is used in several contexts to refer to sets of four. In
mathematics, it refers to an algebra in four dimensions discovered by the Irish
physicist and mathematician Sir William Rowan Hamilton (1805-1865). The utility
of quaternions for representing rotations (as points on a sphere in four dimensions)
was known before strapdown systems, they soon became the standard representation
of coordinate transforms in strapdown systems, and they have since been applied to
computer animation.
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C.4.4.1 Quaternion Matrices For people already familiar with matrix alge-
bra, the algebra of quaternions can be defined by using an isomorphism between
4 x 1 quaternion vectors q and real 4 x 4 quaternion matrices Q:

q1 91 —492 —43 Y4
q= q Q= q> q91 —4a qs3, (C.226)
q3 qs qs 91 —9>
qa 94 —4q3 q2 91
=491+ 90 + 9393 + 9494, (C.227)
1 0 0 O,
ef| 0 1 0 0,
det , C.228
< 00 1 0 ( )
L0 0 0 1
0 -1 0 07
aof | 1 0 0 0
o , C.229
% 0 0 0 —I ( )
0 01 0.
0 0 —1 07
0 0 0 1
def
o , C.230
% 1 0 00 ( )
L0 —1 0 0
0 0 0 —17
0 0 -1 0
def
o , C.231
%=10 1 0 o (€231
10 o0 0]

in terms of four 4 x 4 quaternion basis matrices, Q,, Q,, Qz, Qj, the first of which
is an identity matrix and the rest of which are antisymmetric.

C.4.4.2 Addition and Multiplication Addition of quaternion vectors is the
same as that for ordinary vectors. Multiplication is defined by the usual rules for
matrix multiplication applied to the four quaternion basis matrices, the multi-
plication table for which is given in Table C.1. Note that, like matrix multiplication,
quaternion multiplication is noncommutative. That is, the result depends on the
order of multiplication.

Using the quaternion basis matrix multiplication Table (C.1), the ordered product
AB of two quaternion matrices

A=aQ +a,Q) +a;Q3 +a,9Qy, (C.232)
B=0,Q,+b,Q +bQ9; + 5,9, (C.233)
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TABLE C.1 Multiplication of Quaternion
Basis Matrices

First Factor Second Factor

9 Q4 QD Q3 Q
QD [ - Q —Q3
Q3 Q3 —Q4 —Q4 (9
Q Q 3 - -2

can be shown to be
AB = (a1b1 — azbz — a3b3 — a4b4)Q1
+ (azbl + a1b2 — a4b3 + a3b4) Q2
+ (a3hy + aghy + ayby — ayb,) Oy
+ (a4b1 — a3b2 + a2b3 + alb4) Q4

(C.234)

in terms of the coefficients a;, b, and the quaternion basis matrices.

C.4.4.3 Conjugation Conjugation of quaternions is a unary operation analo-
gous to conjugation of complex numbers, in that the real part (the first component of
a quaternion) is unchanged and the other parts change sign. For quaternions, this is
equivalent to transposition of the associated quaternion matrix

Q=99 +9:9 + 9395 +q:9s, (C.235)

so that
Q' =99 — 9, — 495 — 9,94 (C.236)
< q%, (C.236)
QQ=(qi+B+5+4d)Q (C.238)
< q*q = q/’. (C.239)

C.4.4.4 Representing Rotations The problem with rotation vectors as
representations for rotations is that the rotation vector representing successive
rotations p;, p,, P3,..., P, is not a simple function of the respective rotation
vectors.

This representation problem is solved rather elegantly using quaternions, such
that the quaternion representation of the successive rotations is represented by the
quaternion product q,Xq,_; X --- Xq;Xq, Xq,. That is, each successive rotation
can be implemented by a single quaternion product.

The quaternion equivalent of the rotation vector p with |p| = 0,

Py U
p | o, | ¥l u, (C.240)
P3 3
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(i.e., where u is a unit vector), is

] [~0°

pisin(0/2) | | 4, s1n<§)

def 9
q(p) = = ;
in(0/2 . (0
pa SIV/Z) sme( /2) u, sm<2>
p3 sin(0/2) (0
A _u3 sin 5 |

(C.241)

and the vector w resulting from the rotation of any three-dimensional vector

through the angle 6 about the unit vector u is implemented by the quaternion product

aw) € q(p)a(v)a*(p)

B 0\ ] B 0
;) s(3) |
. (0 0 . (0
r u, sm<§> " —u,; sin E)
- N | o | (0
u, s1n(2> o —u, sin E)
0 0
_u3 sm<§> | I —uy sin 5)
0
Wi
= |
W3

wy = cos(0)o; + [1—cos(0)][u, (1 v; + uyv; + uzv3)]
+ sin(0)(upv3 — u30y),

wy = cos(0)v, + [1—cos(O)][uy(uyv) + uyv; + usv3)]
+ sin(0)(uzv; — uv3),

wy = cos(0)v3 + [1—cos(O)][us(u;v; + uy0, + uzv3)]
+ sin(0)(u; v, — uyvy),

C.242

(C.243)

(C.244)

(C.245)

(C.246)

(C.247)
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or
Wy Uy
w, | =C@)| v |, (C.248)
W3 U3

where the rotation matrix C(p) is defined in Eq. C.113 and Eq. C.242 implements
the same rotation of v as the matrix product C(p)v. Moreover, if

def

q(wy) = v (C.249)
and
def
aw) = a(Pa(Wie—)a*(Py) (C.250)
for k=1, 2, 3,..., n, then the nested quaternion product
qaw,) = q(p,) - - 4(P)aP)Av)g*(P)a*(py) - - - a*(p,) (C.251)

implements the succession of rotations represented by the rotation vectors p;, p,, p3,
.., P, and the single quaternion

def
QG = 9@)aP, ) - qP:)aP)a(P,) (C.252)
= q(P,) -1 (C.253)
then represents the net effect of the successive rotations as
a(w,) = qp,)a(Wo)qf.- (C.254)

The initial value qp; for the rotation quaternion will depend upon the inital
orientation of the two coordinate systems. The initial value

def

(= -

applies to the case that the two coordinate systems are aligned. In strapdown system
applications, the initial value qy, is determined during the INS alignment procedure.

Equation C.252 is the much-used quaternion representation for successive
rotations, and Eq. C.254 is how it is used to perform coordinate transformations
of any vector w,,.

This representation uses the four components of a unit quaternion to maintain the
transformation from one coordinate frame to another through a succession of
rotations. In practice, computer roundoff may tend to alter the magnitude of the
alegedly unit quaternion, but it can easily be rescaled to a unit quaternion by dividing
by its magnitude.
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Glossary

o Proportional to.

® Vector cross-product.

g Inertial rotation rate of the earth (7292115167 x 10~!* rads/s).

A posteriori Pertaining to the probability distribution of the corrected value of a
variable. The term applies to the expected value (mean) and variance (or
covariance matrix).

A priori Pertaining to the probability distribution of the predicted value of a
variable.

argmax The argument of a function where it achieves its maximum value, e.g.,
argmax(sin) = /2.

Argument of perigee The angle measured in the orbital plane from the ascending
node, in the direction of satellite motion, to the perigee (closest approach to the
earth) of the satellite orbit.

ARINC Aecronautical Radio, Inc. An organization providing technical staff for
various international airline committees.

ARINC 24 Format from Aeronautical Radio, Inc. (ARINC) for the transfer of data
from one data base to another.

Ascending node The ascending node of a satellite in orbit about the earth is the
direction from the center of mass of the earth to the point where the satellite
crosses from the Southern Hemisphere into the Northern Hemisphere. The
opposite node is called the descending node.

bps Bits per second.

BPSK Binary phase-shift keying. A carrier modulation scheme using zero and
180° phase shifts.
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¢ Symbol used for the speed of light in a vacuum, 299,792,458 m/s. This value of
¢ is exact in the International System of Units (SI).

CDM Code division multiplexing. A signaling protocol for sharing a common
bandwidth allocation amoung several users by using independent spread-spec-
trum modulations (i.e., spreading codes).

CEP Circle of equal probability. The radius of a circle centered at the mean of a
distribution such that the probabilities of being inside or outside the circle are
equal.

Datum In geodesy, cartography (mapping), surveying, navigation, and astronomy,
a datum" is a set of parameter values defining a model for the size and shape of
the earth and physical control points defining the origin and orientation of a
coordinate system for mapping the earth. A datum used for navigation may also
include the rotation rate and gravity field of the earth.

Descending node See ascending node.

DGPS Differential GPS. Employing a reference station at a known location to
determine timing corrections for each satellite in view.

DME Distance-measuring Equipment. A radionavigation aid giving the receiver
user his or her direction and range from a transmitting station with known
location.

DOP Dilution of precision. A measure of degradation of the navigation estimate
due to satellite geometry.

Earthrate The inertial rotation rate of the earth, approximately 7,292,115 x
10~ rad/s, or 15.04109° per hour.

Easting Distance eastward from a reference point. In global easting—northing
coordinates, positive easting is measured eastward along the equator from the
prime meridian.

ECEF Earth centered, earth fixed. Coordinates centered in the earth and rotating
with the earth.

ECI Earth centered inertial. Inertial (i.e., nonrotating) coordinates centered in the
earth.

EGM Earth Gravity Model. A designation used by the U.S. National Imaging and
Mapping Agency to designated geoid models of the gravitational field
of the earth. EGM 96 is the name used for the geoid model based on 1996
data.

Epoch The instant of time at which a given data set (e.g., satellite ephemeris) is
valid.

'Data and datum are both derived from the Latin verb dare, “to give,” the passive voice perfect participle
of which means “given.” Depending on the grammatical gender, number, and case of the noun to which it
refers (i.e., what is given), its Latin spelling could be data, datae, datam, datarum, datas, dati, datis, dato,
datorum, datos, datum, or datus. In the nominative case, neuter gender, datum is singular and data is
plural. In Engish usage, either may refer to something singular or plural, and dafum can be pluralized as
datums.
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Expected value The mean of a probability distribution or a function of a
distributed variate.

FAR False-alarm rate. Equal to the expected number of false detections in a
specified time period, based on the detection threshold used.

FSLF Free-space loss factor. A formula (Eq. 3.11) that accounts for the decrease
in signal power density with distance.

g Unit of acceleration, approximately equal to gravitational acceleration at the
surface of the earth, or 9.80665 m/s.

Geoid A model for an equipotential surface (mean sea height, usually) of the
gravitational field of the earth.

GLONASS Global Orbiting Navigation Satellite System. Developed by the former
Soviet Union and currently maintained by the Russian Republic.

Inclination The inclination of a satellite orbit is the dihedral angle between the
equatorial plane and the satellite orbit plane.

L, GPS L-band signal with carrier center frequency at 1575.42 MHz.

L, GPS L-band signal with carrier center frequency at 1227.6 MHz.

L-band The 1-2 GHz frequency range.

Line of nodes The line of intersection of an orbit plane and the equatorial plane.

MEMS Micro-Electro-Mechanical Systems. Including electromechanical device
design and fabrication technologies derived from semiconductor processing
technology.

ML Maximum likelihood. A statistical estimation method based on likelihood
functions (as opposed to probability functions) and on maximizing the likelihood
of the estimate, rather than minimizing some expected loss function (e.g.,
minimum mean-squared error).

NMI Nautical mile (=1852 m).

Northing Distance northward from a reference point. In global easting—northing
coordinates, northing is measured from the equator.

PLGR Personal low-cost GPS receiver. A militarized hand-held GPS receiver with
L, signal access.

ppm Parts per million.

PRN Pseudorandom noise or pseudorandom number. Also used to designate the
C/A spreading code number (1-31) to designate a GPS satellite ID, and used
synonymously with the SVN (space vehicle number).

PSD Power spectral density. Power distribution density in the frequency domain.

Pseudorange The apparent range to a GPS satellite from the receiver antenna,
calculated from the time of signal transmission (encoded in the received signal),
time of signal reception (including receiver clock errors), and speed of signal
propagation (c).

RAAN Right ascension of ascending node. Essentially, the celestial longitude
(measured from the vernal equinox) of the ascending node of a satellite orbit. The
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ascending node of a satellite in orbit about the earth is the direction from the
center of mass of the earth to the point where the satellite crosses from the
Southern Hemisphere into the Northern Hemisphere. Its right ascension is the
angle measured in the equatorial plane from the direction of the vernal equinox to
the ascending node.

SAVVAN Systéme Automatique de Vérification en Vol des Aides a la Navigation.
An automatic in-flight navigation aids checking system.

Selective Availability Intentional introduction of errors into GPS signals to deny
full accuracy capability to unauthorized users.

SNR Signal-to-noise ratio. The unitless ratio of signal power to noise power, or
(when a function of frequency) signal power spectral density to noise power
spectral density.

SVN Space vehicle number. A unique identification number assigned to each
operating GPS satellite. Synonymous with PRN.

TLM Telemetry word in GPS message subframe.

TTFF Time to first fix. A GPS receiver performance characteristic defined as the
average time between receiver turn-on and the first four-dimensional (position
and time) navigation solution.

Variate Random variable.

Vernal Equinox The direction from the center of mass of the earth to the center of
mass of the sun at the instant when the sun is passing through the equatorial plane
from the Southern Hemisphere to the Northern Hemisphere.

VOR VHF OmniRange. A radio navigation aid providing users with range-only
information relative to transmitters with known locations.

W-code Secure code used in encrypting P-code to produce Y-code.

WGS 84 World Geodetic System 1984. Datum for the earth, defining a gravita-
tional constant, a rotation rate, origin and orientation of ECEF coordinates, and a
reference ellipsoid.

WN  Week number (0-1023). Referenced to last rollover date (when WN last reset
to zero). (Rollover occurred at GPS time zero on August 22, 1999.)

Y-code Encrypted P-code in the L, channel.
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