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Preface

This edition is a rather modest modification of the second edition. The
principal changes have been in organization and coverage of material.
The organizational changes have resulted in an expansion of the chapter
on probability, an earlier introduction of expected value techniques, and a
smoother development of the theory. The coverage of topics has been
modified somewhat to permit the inclusion of a few of the newer and more
useful statistical techniques. In particular, a chapter on the elementary
parts of general decision methods has been added. '

For the benefit of those who are unacquainted with the earlier editions
of this book, I should explain what my objectives were in the writing of it.
I'hoped to produce a text that would give students with only an elementary
calculus background an introduction to the mathematical theory of
statistics and at the same time provide them some experience with applica-
tions. Students in the physical sciences or engineering usually acquire the
necessary background by the time they are juniors; however, students of
the social and life sciences often do not do so until they are farther along
in their studies. L

The number of topics covered is large for a book of this size. 1 have
purposely tried to give elementary treatments of a number of statistical
techniques so that the student will get a taste of the wide range of such
methods. I feel that it is more important at this level to give a survey-type
course than it is to concentrate on a few topics at greater depth.

Although I believe a first course in statistical methods should strive for
breadth rather than depth, I am also of the opinion that students will not
really understand or appreciate the methods unless they apply them
immediately to concrete problems. Ihave therefore attempted to illustrate
and apply the theory as soon as it has been presented, and I have included
a large number of exercises of varying degrees of difficulty. Many of the
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vi PREFACE

exercises are direct applications of formulas to empirical data, others are
theoretical problems that can be solved by the methods that have been
presented, and a few are of the type that require considerable ingenuity.
The instructor is expected to select those exercises that will suit his objec-
tives in the course. Answers to the even-numbered exercises may be
obtained in pamphlet form from the publisher.

From time to time I have received letters from some of the readers of the
carlier editions of this book with suggestions for its improvement. I have
always appreciated such letters even though I may not have included the
suggestions in a revision. I wish to take this opportunity to thank all
who have used my book in the past and particularly those who were kind
enough to write me concerning it. I am especially grateful to my colleague
Thomas Ferguson for his numerous helpful suggestions, many of which
have been incorporated in the present revision.

PauL G. HoEL

Los Angeles, California
September 1962
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CHAPTER 1

Introduction

Statistical methods are essentially methods for dealing with data that
have been obtained by a repetitive operation For some sets of data, the
operation that gave rise to the data is clearly of this repetitive type This
would be true, for example, of a set of diameters of a certain part ina
mass-production manufacturing process or a set of percentages obtained
from routine chemical analyses. For other sets of data, the actual operation
may not seem to be repetitive, but it may be possible to conceive of it as
being so. This would be true for the ages at death of certain insurance-
policy holders or for the total number of mistakes an experiiental set of
animals made the first time they ran a maze.

Experience indicates that many repetitive operations or experiments
behave as though they occurred under essentially stable circumstances.
Games of chance, such as coin tossing or dice rolling, usually exhibit this
property.  Many experiments and operations in the various branches of
science and industry do likewise. Under such circumstances, it is often
possible to construct a satisfactory mathematical model of the repetitive
operation. This model can then be employed to study properties of the
operation and to draw conclusions concerning it. Although mathematical
models are especially useful devices for studying real-life problems when
the model is realistic of the actual operation involved, it often happens
that such models prove useful even though the operation is not highly
stable.

The mathematical model that a statistician selects for a repetitive
operation is usually one that enables him to make predictions about the
frequency with which certain results can be expected to occur when the
operation is repeated a number of times. For example, the model for
studying the inheritance of color in the propagation of certain flowers
might be one that predicted three times as many flowers of one color as of
another color. In the investigation of the quality of manufactured parts
the model might be one that predicts the percentage of defectlve parts
that can be expected in the manufacturing process.

1




2 INTRODUCTION TO MATHEMATICAL STATISTICS

Because of the nature of statistical data and models, it is only natural
that probability should be the fundamental tool in statistical theory.
The statistician looks on probability as an idealization of the proportion
of times that a certain result will occur in repeated trials of an experiment;
consequently, a probability model is the type of mathematical model
selected by him. Because probability is so important in the theory and
applications of statistical methods, a brief introduction to probability is
given before the study of statistical methods as such is taken up.

The idea of a mathematical model for assisting in the solution of real-
life problems is a familiar one in the various sciences. For example, a
physicist studying projectile motion often assumes that the simple laws of
mechanics yield a satisfactory model, in spite of the complexity of the
actual problem. For more refined work, he introduces a more complicated
model. Since a model is only an idealization of the actual situation, the
conclusions derived from it can be relied on only to the extent that the
model chosen is a sufficiently good approximation to the actual situation
being studied. In any given problem, therefore, it is essential to be well
acquainted with the field of application in order to know what models are
likely to be realistic. This is just as true for statistical models as for models
in the various branches of science.

The science student will soon discover the similarity between certain of
the statistical methods and certain scientific methods in which the scientist
sets up a hypothesis, conducts an experiment, and then tests the hypothesis
by means of his experimental data. Although statistical methods are
applicable to all branches of science, they have been applied most actively
in the biological and social sciences because the laboratory methods
of the physical sciences have not been sufficiently broad to treat many of the
problems of those other sciences. Problems in the biological and social
sciences often involve undesired variables that cannot be controlled, as
contrasted to the physical sciences in which such variables can often be
controlled satisfactorily in the laboratory. Statistical theory is concerned
not only with how to solve certain problems of the various sciences but also
with how experiments in those sciences should be designed. Thus the
science student should expect to learn statistical techniques to assist him
in treating his experimental data and in designing his experiments in a more
efficient manner.

The theory of statistics can be treated as a branch of mathematics in
which probability is the basic tool; however, since the theory developed
from an attempt to solve real-life problems, much of it would not be fully
appreciated if it were removed from such applications. Therefore the
theory and the applications are considered simultaneously throughout this
book, although the emphasis is on the theory.
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In the process of solving a real-life problem in statistics three steps may
be recognized. First, a mathematical model is selected. Second, a check
is made of the reasonableness of the model. Third, the proper conclusions
are drawn from this model to solve the proposed problem. In this book
the emphasis is on the first and third steps. In order to do justice to the
second step, it would be necessary to be well acquainted with the field of
application. It would also be necessary to know how the conclusions are
affected by changes in the assumptions necessary for the model.

Students who have not had experience with applied science are some-
times disturbed by the readiness with which a statistician will accept
certain of his model assumptions as being sufficiently well satisfied in a
given problem to justify confidence in the validity of the conclusions. One
of the striking features of much of statistical theory is that its field of
application is much broader than the assumptions involved would seem
to justify. The rapid development of, and interest in, statistical methods
during the last few decades can be attributed in part to the highly successful
application of statistical techniques to so many different branches of
science and industry.
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A fuller discussion of some of the preceding ideas may be found in the following books:

Cramér, H., The Elements of Probability Theory and Some of Its Apphcatwm John
Wiley and Sons Chapters 1 and 2.

Fisher, R. A., Statistical Methods for Research Workers, Oliver and Boyd, Chapter 1.’

Kendall, M. G., The Advanced Theory of Statistics, Griffin and Co., pp. 164-166.

Neyman, J., FArsr Course in Probability and Statistics, Henry Holt and Co » pp. 1-6.

Wilks, S. S., Mathematical Statistics, Princeton University Press, pp. 1-4.




CHAPTER 2

Probability

2.1 Introduction

An individual’s approach to probability depends on the nature of his
interest in the subject. The pure mathematician usually prefers to treat
probability from an axiomatic point of view, just as he does, say, the
study of geometry. The applied statistician usually prefers to think of
probability as the proportion of times that a certain event will occur if the
experiment related to the event is repeated indefinitely. The approach to
probability here is based on a blending of these two points of view.

The statistician is usually interested in probability only as it pertains to
the possible outcomes of experiments. Furthermore, he is interested in
only those experiments that are repetitive in nature or that can be conceived
of as being so. Experiments such as tossing a coin, counting the number of
defective parts in a box of parts, or reading the daily temperature on a
thermometer are examples of simple repetitive experiments. An experi-
ment in which several experimental animals are fed different rations in an
attempt to determine the relative growth properties of the rations may be
performed only once with those same animals; nevertheless, the experi-
ment may be thought of as the first in an unlimited number of similar
experiments and therefore may be conceived of as being repetitive.

2.2 Sample Space

Consider a simple experiment such as tossing a coin. In this experiment
there are but two possible outcomes, a head and a tail. It is convenient
to represent the possible outcomes of such an experiment, and experi-
ments in general, by points on a line or by points in higher dimensions.
Here it would be convenient to represent a head by the point 1 on the »
axis and a tail by the point 0. This choice is convenient because the
number corresponds to the number of heads obtained in the toss. If the

4
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(1,H) (H.H)

(1,7) , (HT)
1

Fig. 1. A simple sample space.

experiment had consisted of tossing the coin twice, there would have been
four possible outcomes, namely HH, HT, TH, TT. For reasons of sym-
metry, it would be desirable to represent these outcomes.by the points
(1, 1), (1,0), (0,1), and (0, 0) in the ,y plane. Figure 1 illustrates this
choice of points to represent the possible outcomes of the experiment.
If the coin were tossed three times, it would be convenient to use three
dimensions to represent the possible experimental outcomes. This repre-
sentation, of course, is merely a convenience, and if desired one could just
as well mark off any eight points on the x axis to represent the eight possible
outcomes. ‘

DEFINITION:  The set of points representing the possible outcomes of an
experiment is called the sample space, or the event space, of the experiment.

The idea of a sample space is introduced because it is a cofwenient
mathematical device for developing the theory of probability as it pertains
to the outcomes of experiments. :

2.3 Sample Space Probabilities

Experience shows that for some experiments one possible outcome is
much more likely to occur than another possible outcome. For example,
in counting the number of defective screws in a box of screws purchased
from a reputable firm, one is much more likely to find all good screws than
all defective screws. In many simple games of chance, however, it often
happens that all the possible outcomes will occur about equally often in a
large number of repetitions of the experiment. Thus, in tossing a die
repeatedly, each of the six sides will usually occur with about the same
frequency.
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Before it is possible to discuss the probability of some combination of
possible experimental outcomes, it is necessary that probabilities be
assigned to each of the sample points in the sample space. Since the
interpretation of probability is going to be in terms of frequency, the
probability that is assigned to a given sample point should be approxi-
mately equal to the proportion of times that the sample point will be
obtained, or is expected to be obtained, in a large number of repetitions
of the experiment. This frequency interpretation of probability requires
that probabilities be non-negative and that the sum of the probabilities
assigned to the sample points be equal to one; hence probabilities must
be assigned with this restriction in mind. In the preceding illustration of
tossing a coin twice, it would be natural to assign the probability of § to
each of the four sample points, unless experience has indicated that the
coin is biased, that is, that one side comes up more frequently than the
other. The assignment of probabilities to each of the possible outcomes in
sampling a box of screws for defectives would need to be based on experi-
ence with the manufacturer’s product. From a mathematical point of
view, any set of non-negative numbers totaling one may be assigned to
the sample points as probabilities; however, the conclusions derived from
the theory are not likely to prove very realistic unless the sample point
probabilities are chosen in a realistic manner. The assignment of probabil-
ities to the sample points constitutes the first step in the process of choosing
a mathematical model for the real-life experiment under consideration.

Since the development of the theory of probability is especially simple
when there is only a finite number of sample points, it is assumed in the
next few sections that the sample space is of this kind. Let the total
number of sample points be denoted by »n and let py, py, -+, p,, be the
probabilities assigned to the respective sample points. In most simple
games of chance the p’s are chosen to be equal from symmetry considera-
tions. Thus in rolling a die one would naturally assign equal probabilities
(1) to the six sample points that constitute the sample space. If experience
with a particular die has shown that the six possible outcomes do not occur
with approximately the same relative frequency, then a set of p’s that is
based on this experience should be assigned instead, provided this same
die is to be used in future experiments. After the sample point probabilities
have been assigned, one can begin to discuss the probability of events.

2.4 Events

Consider an experiment such that whatever the outcome of the experi-
ment it can be decided whether an event 4 has occurred. This means
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that each sample point can be classified as one for which 4 will occur or as
one for which 4 will not occur. Since the sample point probabilities give
the expected relative frequency of occurrence of the corresponding out-
comes, the sum of the sample point probabilities associated with A4 will
give the expected relative frequency of occurrence of A, and therefore it
should be called the probability of the occurrence of 4. These considera-

tions yield the following basic definition of probability for finite sample
spaces:

(1) DEFINITION: The probability that an event A will occur is the sum of
the probabilities of the sample points that are associated with the occurrence

of A.

In symbols, if P{4} denotes the probability that 4 will occur when the
experiment is performed, then

(2 P4} = AE p;

where the sum is over the values of the p’s for the sample points correspond-
ing to the occurrence of A, ,

As an illustration, suppose a coin is tossed twice and suppose that all
four sample points, as shown in Fig. 1, are assigned the same probability.
Then the probability of getting a total of one head and one tail is 2 because
the two sample points (H, T) and (T, H), with associated probabilities of
1, correspond to the occurrence of the desired event. B

As a second illustration, consider the experiment of rolling two dice.

The sample space here consists of 36 points corresponding to the 36
possible outcomes that are listed in Table 1.

TaABLE 1
11 21 31 41 51 61
12 22 32 42 52 62
13 23 33 43 53 63
14 24 34 44 54 64
15 25 35 45 55 65
16 26 36 46 56 66

The first number of each pair denotes the number that came up on one
of the dice and the second number denotes the number that came up on the
other. It is assumed that the two dice are distinguishable or are rolled in
order. The symmetric nature of dice, together with experience in rolling
them, suggests that it is reasonable to assign the same probability (3%
to all 36 sample points. Then the probability of getting a total of, say,
seven points on the two dice is g% because the six sample points 16, 25, 34,
43, 52, 61 correspond to the occurrence of the desired event.
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As an illustration in which all sample points are not assigned the same
probability, consider a pair of modified dice in which each one-spot has
been changed to a two-spot. As a result, each die will possess two 2’s
but no 1. In order to compensate for this alteration in Table 1, it is
necessary merely to replace each 1 by a 2 in that table. The first two rows,
and also the first two columns, will then become identical. If similar
expressions are combined, the possible outcomes for this experiment are
those listed in Table 2. ‘

TABLE 2
24 3202 22) 522 622
23(2) 33(1) 43(1) 53(D) 63(1)
24(2) 34(1) 44(1) 54(1) 64(1)
25(2) 35(1) 45(1) 55(1) 65(1)
26(2) 36(1) 46(1) 56(1) 66(1)

The numbers in parentheses following the outcomes give the number of
outcomes in Table 1 yielding corresponding outcomes in Table 2. Thus
a (4) follows the outcome 22 because the events 11, 12, 21, and 22 of
Table 1 all reduce to 22 when each 1 is replaced by a 2. In view of the
earlier assumption that each of the 36 possible outcomes of Table 1 will
occur with the same relative frequency, the natural probabilities to assign
the possible outcomes listed in Table 2 are those obtained by multiplying
z% by the numbers in parentheses.

Now if A is the event of getting a total of seven points in the experiment
of rolling the two altered dice, it will follow from Table 2 that

PiA} =% +3s+5s tas =53

because these numbers are the probabilities assigned to the four favorable
outcomes, namely, 25, 34, 43, and 52. This result is the same as that of the
earlier experiment of rolling two normal dice. 1f B is the event of geiting a
total of four points for the experiment of rolling the altered dice, then from
Table 2 it is clear that 22 is the only favorable outcome, hence that

P8} = %

This result is not the same as that obtained when two normal dice are
rolled. From Table 1, the latter result is 5%.

2.5 Addition Theorem

Applications of probability are often concerned with a number of
related events rather than with just one event. For simplicity, consider
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two such events, 4, and 4,, associated with an experiment. One may be
interested in knowing whether both 4, and 4, will occur when the experi-
ment is performed. This joint event will be denoted by the product A;,
and its probability by P{4;4,}. On the other hand, one may be interested
in knowing whether at least one of the events 4, and A, will occur when
the experiment is performed. This event will be denoted by the sum Ay +
A, and its probability by P{4, + A4,}. At least one of the two events will
occur if A, occurs but 4, does not, or if 4, occurs but 4; does not, or if
both 4; and A4, occur. The purpose of this section is to derive a formula
for P{4; + 4,}. )

Let the sample space for an experiment be represented by the points in
Fig. 2 and let the sample points corresponding to the occurrence of A4
and A4 be the points interior to the regions labeled 4; and 4,, respectively.,
The points common to these two regions determine a region that has been
labeled 4;4,. This notation makes it clear that the region A, A4, is part of
the region A4, and also part of the region A,. ’

From definition (1), it follows that P{A, + A,} is the sum of the prob-
abilities for the sample points lying inside the two regions 4; and A,
combined. Now P{4;} gives the sum of the probabilities for the points
in 4, and P{d,} for the points in 4,. The quantity P{4,} + P{4,} would
therefore give the sum of the probabilities for points lying inside the two
regions combined, except for the fact that the probabilities for points
inside the common region 4,4, would be summed twice. Since the latter
sum is P{4,4,}, it is necessary to subtract this amount from the preceding
sum before the correct answer can be obtained. These computations yield
a fundamental theorem of probability known as the addition theorem,

(3) ADDITION THEOREM:
P{Al + Az} = P{Al} + P{A,z} - P{A1A2}
Two events 4, and 4, often have no sample points in common. When
this occurs, the events 4; and A, are said to be mutually exclusive because

-
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if one of the events occurs the other cannot occur. Formula (3) then
reduces to the following formula:

@ P{A; + Ay} = P{A,} + P{A;} when A, and A,
are mutually exclusive

Formulas (3) and (4) can be generalized to more than two events. The
generalization of (4) is obvious and is used in later work. The generaliza-
tion of (3) is more complicated; however since the generalization is not
needed in later work, it is not considered here.

2.6 Multiplication Theorem

The purpose of this section is to derive a formula for P{A4,4,} in terms
of probabilities of single events. In order to do so, it is necesary to intro-
duce the notion of conditional probability. Suppose that one is interested
in knowing whether 4, will occur, subject to the condition that A, is
certain to occur. Since A, is certain to occur only when the sample space is
restricted to those points lying inside the region labeled 4, in Fig. 2, it is
necessary to consider how probabilities should be assigned to the points
of this new smaller sample space. If, originally, a sample point in 4; had
been assigned, say, twice as large a probability as another point in 4,,
then it should be assigned twice as large a probability in the new sample
space also, because ignoring experimental outcomes that do not yield the
event A, should not affect the two-to-one ratio of expected frequencies
for those two sample points. It is merely necessary therefore to multiply
the original probabilities assigned to points in 4; by a constant factor ¢
such that the sum of the new probabilities will be one. Thus, if 7; denotes
the new probability corresponding to p; in the original assignment, one
should choose m; = cp, where

=3 m=c3 p=cP{A)
Ayq Ay

As a result, ¢ = 1/P{4,}, and therefore

Pi
(5) m =
P{d;}

Now that the new sample space has been determined, one can calculate
probabilities in the usual manner by merely applying definition (). Al
such probabilities will be conditional probabilities, subject to the occur-
rence of A,. If the probability that 4, will occur, subject to the restriction
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that 4, is certain to occur, is denoted by P{4, | A1}, then it follows from
definition (1) and formula (5) that

Az} P;
P{A,| Ay} = o=
(] A} = 3 m =L ‘
The first sum is over those r; corresponding to sample points lying inside
4,4, because they are the only sample points inside A4, associated with the
occurrence of 4,. Since the numerator sum in the last expression is the
one that defines P{4,4,}, it follows that the formula for conditional
probability reduces to
P{A4,4,}
©) P{dy | Ay} = ——18
P{A;}

It is assumed here that 4, is an event for which P{4;} = 0. This
formula, when written in product form, yields the fundamental multiplica-
tion theorem for probabilities.

(7). MULTIPLICATION THEOREM: P{d;4,} = P{A,}P{4, | 4,}.

Although formula (6) holds only when P{4,} 5 0, formula (7) may be
treated as holding in general if it is agreed to give the right side the value
0 when the factor P{4,} is equal to 0. If the order of the two events is
interchanged, formula (7) becomes

8 P{A 4y} = P{4,}P{4, | Ay}

Now, suppose that 4; and A, are two events such that P{4, | 4,} =
P{4,} and such that P{4,}P{4,} > 0. Then the event A, is said to be
independent in a probability sense, or more briefly, independent, of the
event 4;. This name follows from the property that the probability of A,
occurring is not affected by adding the condition that 4, must occur.
When 4, is independent of 4,, (7) reduces to )

®) P{AlA:Z} = P{Al}P{Az}

Conversely, when (9) is true, it follows from comparing (9) and (7) that 4,
is independent of 4,. If the right members of (8) and (9) are equated, it
will be seen that P{4, | A,} = P{4,}. But this states that the event 4, is
independent of the event A4,. Thus, if 4, is independent of 4, it follows
that 4; must be independent of 4,. Because of this mutual independence
and because (9) implies this independence, it is customary to define inde-
pendence in the following manner: '

(10) DerFINITION: Two events, A, and A, are said to be z'ndepeiqdent if
P{d; 4y} = P{A;}P{dy}.
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Formulas (7) and (10) can be generalized in an obvious manner for more
than two events by always combining events into two groups.

2.6.1 Illustrations

As illustrations of the application of the preceding rules of probability,
consider a few simple problems related to games of chance. From sym-
metry considerations, it is usually assumed in such games that all possible
outcomes should be assigned the same probability. This was done, for
example, in discussing the probability of events in connection with Table
1. Tt was not done in connection with Table 2 because symmetry was
missing in the experiment that gave rise to Table 2. When all sample
points are assigned the same probability, the computation of P{4} becomes
especially simple because then it reduces to calculating the ratio of the
number of sample points in A to the total number of sample points in the
sample space. This follows directly from formula (2) because then
p; = 1/n when the total number of sample points is 7, and therefore the
sum in (2) is equal to 1/n times the number of sample points in 4. In the
following illustrations it is assumed that symmetry is present and therefore
that probabilities may be calculated in this simple manner.

(a) If two dice are rolled, what is the probability of getting either a
total of 7 or a total of 11 points? Let 4; and A, denote the events of
getting a total of 7 and 11 points, respectively. Since these events are
mutually exclusive, formula (4) may be applied. From Table 1 there are
six sample points giving rise to event 4; and two giving rise to 4,; con-
sequently, under the symmetry assumption P{4;} = % and P{4,} = .
Formula (4) then yields

P{d; + Ao} = 5% + 3% = 4%

This result is, of course, the same as that obtained by counting favorable
and total outcomes in Table 1 and applying definition (1) directly.

(b) If two dice are rolled, what is the probability that each of them will
show at least five points? Let 4, denote the event of getting a 5 or 6 on
the first die and A, the event of getting a 5 or 6 on the second die. If the
dice are rolled properly, events 4, and A, may be assumed to be inde-
pendent; therefore formula (10) may be applied. Now one can treat the
experiment of rolling two dice as composed of two consecutive indepen-
dent experiments in which one die is rolled first and then the second die is
rolled. From this point of view, the event A; is concerned with the first
experiment only for which there are six sample points, two of which
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correspond to the occurrence of 4;. Under the symmetry assumption, it
therefore follows that P{4,} = 2. The event 4, plays the same role with
respect to the second experiment as 4, does in the first; hence P{4,} = 2.
Formula (10) now yields the desired result, namely, .
Pl =3¢ =%

This result could also have been obtained directly by counting sample
points in the sample space of Table 1 for the complete experiméht. Since
there are 36 sample points and the four sample points given by the out-
comes 55, 56, 65, 66 correspond to the occurrence of Ay A,, it follows from
definition (1) that P{4,4,} = 4%. The advantage of using formula (10)
here is that it enables one to work with simpler sample spaces than the
original sample space. The real purpose of these illustrations, however, is
to develop familiarity with the formulas and not to simplify calculations,
because in many problems the experimental sample space is not available
for a direct application of definition (1).

(¢) Two cards are drawn from an ordinary deck of 52 cards but the
first card drawn is replaced before the second card is drawn. What is the
probability that at least one of the cards will be a spade? Let A, denote
the event of drawing a spade on the first draw and 4, the event of drawing
a spade on the second draw. The problem then is to calculate P{4, + A,}
by means of formula (3). As in the preceding illustration, the complete
experiment can be broken down into two consecutive independent experi-
ments. Here P{4;} = 1% =1 because 4, is concerned with the first
drawing only and there are 52 sample points, 13 of which are favorable
(spades), in that experiment. Similarly, P{4,} = 1. Because of the
independence of 4; and 4,, it follows from formula (10) that PiA,4,) =

i1 =1% Application of formula (3) now gives

PlAit ol =1 +i—&=1%

This problem can also be solved indirectly by first calculating the prob-
ability that neither card drawn will be a spade, which is £2 - 22, and then
subtracting this result from 1. The reasoning here is that the opposite of
“neither card will be a spade” is “at least one card will be a spade.” Of
course, one could also solve this problem by counting sample points and
applying definition (1). The total number of sample points is 52-52,
whereas the favorable number is 5252 — 39 - 39 because only those
sample points corresponding to a pair of nonspades are unfavorable.

(d) Two cards are drawn from a deck of cards. . What is the probability
that both cards will be spades? As in the preceding illustration, let A,
and A, denote the events of getting a spade on the first and second draw-
ings, respectively. Since the first card drawn is not replaced before the
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second drawing, these events are certainly not independent; therefore
formula (7) must be used. As before, the complete experiment may be
treated as composed of two consecutive experiments; however, here they
are not independent experiments. In the first experiment there are 52
sample points, of which 13 correspond to the occurrence of 4;; therefore
P{4,} = 2. In calculating P{d, | 4,} it is necessary to consider only that
part of the original sample space for which A4, is certain to occur. It will
contain 13 - 51 sample points because to each of the 13 possible spades
that may be obtained on the first drawing there are always 51 remaining
cards that may be obtained on the second drawing. There are 13- 12
points in this sample space that correspond to the occurrence of A,
because to each of the 13 possible spades that may be obtained on the
first drawing there are always 12 remaining spades that may be obtained
on the second drawing to give 13 - 12 spade pairs. Asaresult, P{4, | 4,} =
13-12/13 - 51 = 1%, By using symmetry this computation could have
been simplified considerably. Since the conditional probability of getting
a spade on the second drawing, given that a space was obtained on the first
drawing, should be equal to the corresponding probability when a partic-
ular spade is known to have been obtained on the first drawing, one could
just as well have worked with the sample space in which a particular spade
is obtained on the first drawing. This reduced sample space contains only
51 points, 12 of which are favorable. The calculation of P{A, | 4,} now
becomes 2. The application of formula (7) can now be made and yields
the result

PA A} = 1231 =

Hereafter, formulas (4) and (7) will be applied without discussing the
nature of the various sample spaces involved in the computations. Further-
more, symmetry considerations such as those used to simplify the pre-
ceding computations will be used whenever they are advantageous.
If one is not certain in a given problem that his intuition is correct in
choosing simple sample spaces, he should go back to the original sample
space.

(¢) This last illustration is a somewhat more complicated exercise
in the manipulation of formulas (4) and (7). One box contains two red
balls. A second box of identical appearance contains one red and one
white ball. If a box is selected by chance and one ball is drawn from it,
what is the probability that the first box was the selected one, if the drawn
ball turns out to be red? Let 4; denote the event of selecting the first
box and A, that of selecting the second box. Let 4, denote the event of
drawing a red ball and A, that of drawing a white ball. Then the problem
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is to calculate the conditional probability P{d, | 4,}. Interchanging A,
and 4, in (6) will give
P{A,A
P{A1| Ay} = “__“{ 1)
P{d,}

The numerator probability may be calculated by using formula (7)
directly, with the understanding that to select a box by chance means that
the probability of selecting, say, the first box is . Thus .

P{A1A2} = P{Al}P{A2 | Al} ﬁ%‘I =}

The denominator probability may be calculated by considering the event
A, in conjunction with the selection of a box. Now A, will occur if, and
only if, one of the two mutually exclusive events 4,4, and 4,4, occurs.
Thus, by formula (4),

(an P{Az} = P{A.{Az} + P{/TlAz}
But

[

P{A—1A2} = P{A—l}P{A‘z l A—l} =4 3=1%
Since P{4,4,} was found to be equal to 4, it follows from (11) and this
last result that P{4,} = %, and hence that

P{Ay| A} =

Wb

fee [rol=

This problem was designed to give practice in the use of the two basic
probability formulas; however, it could have been solved more simply by
looking at the sample space and applying definition (1). A sample space
consisting of the four points I1, 12, I11, 112, would be quite natural here.
The Roman numeral denotes the box number, and the Arabic numeral
the ball number. One would assign equal probabilities to these four
points. The condition A, restricts the sample space to the first three sample
points if ball number 2 in the second box is understood to be the white
one. Thus each of these three sample points must be assigned the prob-
ability 3. Now, the first two sample points correspond to the occurrence
of A;; hence P{d, | 4,} = 3. ;

2.7 Bayes’ Formula

Hlustration (e) of the preceding section is typical of problems in which
one looks at the outcome of an experiment and then asks for the prob-
ability that the outcome was due to a particular one of the possible
“causes” of the outcome. Thus in illustration (e) there are two possible
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causes, or ways, for a red ball to be obtained, and the problem is to cal-
culate the probability that it was due to the first one. Although the solution
to the problem was obtained by merely applying the two rules of proba-
bility in the proper sequence, the computations are sufficiently extensive to
make it worthwhile to derive a formula for treating such problems syste-
matically.

For the purpose of obtaining a formula, let the sample space of the
experiment be divided into k& mutually exclusive regions H,, H,, * -+, H,.
These regions represent the k possible causes of an experimental outcome
which are of interest. Thus in Fig. 2 there are four such regions displayed—
the three closed regions bounded by curves and the rest of the sample
space. Next, let 4 be the event that occurred when the experiment was
performed and consider the problem of calculating the probability that
H,; was the cause of the occurrence of 4. This means that the sample point
was one of the points inside H; associated with the occurrence of 4. From
formula {6) this probability is given by

_ P{H,A}
(12) P{H;| A} = P
But,
(13) P{HA} = P{H}P{A| H}

Now the event A4 can occur only in conjunction with one of the k possible
events H;, Hy, + -+, H;. Thus 4 will occur if, and only if, one of the
mutually exclusive events H 4, HyA, -+ -, H, A occurs. The addition rule
for mutually exclusive events therefore gives

P{A} = P{HA} + P{H,A} + -+ + P{H A}

If formula (13) is applied to each term on the right, one will obtain
I3
P{4} = 3 P{H}P{4| H}
i=1

The substitution of this formula and formula (13) in (12} yields the desired
formula for calculating probabilities of causes. The result may be sum-
marized as follows:

P{H}P{A| H,}

BAYES' FORMULA:  P{H,| A} = —
3 P{HP(A] H)

Illustration (e) of the preceding section, which was solved by the expedi-

tious use of the two rules of probability, is solved here to illustrate the

direct use of Bayes’ formula. Let H, and H, correspond to the events
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of getting box number 1 and box number 2, respectively, and let 4 be the
event of getting a red ball. Since a box is selected by chance, P{H,} =
P{H,} = £, Further, it is clear from the contents of the two boxes that
P{A|H} = 1and P{4| H,} = }. Bayes’ formula then yields

1.
P{HIIA}=—1——L———=2
Pel4+4-% 3

2.8 Combinatorial Formulas

The simplest problems on which to develop facility in applying the
addition’and multiplication rules of probability are some of those related
to games of chance. For many such problems, however, the counting of
sample points corresponding to various events becomes tedious unless
compact counting methods are developed. A few of the formulas that
yield such methods are derived in this section.

2.8.1 Permutations

Consider a set of » different objects, such as n blocks having different
numbers or colors. Let r of the n objects be selected and arranged in a line.
Such an arrangement is called a permutation of the r objects. If two of the
r objects are interchanged in their respective positions, a different per-
mutation results. In order to count the total number of permutations, it
suffices to consider the r positions on the line as fixed and then count the
number of ways in which blocks can be selected to be placed in the r
positions. Starting from the position farthest to the left, any one of the
n blocks may be chosen to fill this position. After the first position has
been filled, there will be only n — 1 blocks left to choose from to fill the
second position. For each choice for the first position, there are therefore
n — 1 choices for the second position; hence n(n — 1) total choices for
the two positions. If this selection procedure is continued, there will be
n — 1+ 1 blocks left to choose from for the rth position. If the total
number of such permutations is denoted by ,P,, it therefore follows that

(14) Pr=nm—1(n—r+1)

The symbol , P, is usually called the number of permutations of n things
taken r at a tlme

As an illustration, suppose one is given the four letters @, b, ¢, d. The
number of permutations of these four letters taken two at a time is given
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by 4P, =43 =12. These permutations are easily enumerated as
follows: ab, ba, ac, ca, ad, da, be, ¢b, bd, db, cd, dec.
If r is chosen equal to n, (14) reduces to

(15) Po=n(n—1)- (1) =n!

In order to permit formulas that involve factorials to be correct even when
n = 0, it is necessary to define 0! = 1. This is consistent for » = 1 with
the factorial property that (n — 1)! = n!/n.

2.8.2 Combinations

If one is interested only in what particular objects are selected when
r objects are chosen from # objects, without regard to their arrangement
in a line, then the unordered selection is called a combination. Thus,
if two letters are chosen from the four letters a, b, ¢, d, the combination ab
is the same combination as ba, but of course it differs from the combina-
tion ac. The total number of combinations possible in selecting r objects
from n different objects is denoted by the symbol (f) This symbol is
usually called the number of combinations of » things taken r at a time.

In order to derive a formula for (7) , it suffices to compare the total

number of permutations and total number of combinations possible.
Since a permutation is obtained by first selecting r objects and then
arranging them in some order, whereas a combination is obtained by
performing only the first step, it follows that the total number of permuta-
tions is obtained by taking every possible combination, the total number

of which is (’:), and arranging them in all possible ways. But from (15)

the total number of arrangements of r objects in » places is !; hence the
total number of permutations is given by multiplying the number of com-

binations, (f), by r!. Thus ,P, = (;‘1) - r!, Using formula (14), it there-

fore follows that

(16) <")="(n—1)---(n—r+1)‘

r r!

Since n(n— 1)+ -(m—r+ 1) =nl/(n—r)!, formula (16) may be
written in the following more compact form:

(7 () ==
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As an illustration, the number of combinations of two letters selected

from the four letters a, b, ¢, d is given by (;) = 4!/21 21 = 6. The actual
combinations are ab, ac, ad, be, bd, cd.

2.8.3 Permutations When Some Elements Are Alike

In the preceding derivations it has been assumed that all the n objects
are different. It sometimes happens, however, that the # objects contain a
number of similar objects, Thus one might have five colored balls of
which three are white and two black, instead of five distinct colors. Now
suppose that there are only & distinct kinds of objects and that there are
n, of the first kind, n, of the second kind, - - - , and n,, of the kth kind, where
n + ny + - + n, = n. The total number of different permutations of
these n objects arranged in a line is obviously less than #!. In order to find
the total number of distinct permutations, it suffices to compare the
number of permutations now, which is denoted by P, with the number that
would be obtained if the like objects were given marks to distinguish them.

The comparison is similar to that made between f) and P, in deriving

formula (16). Each permutation in the problem under consideration gives
rise to additional permutations when the like objects are made different
by markings. For example, if the »,; similar objects in a permutation are
made different, they can be rearranged in their positions in n,! ways.
Since this is true for each of the P permutations, there will be #,! times as
many permutations when the n; similar objects are made different as
before. In the same manner, the n, similar objects may be made different
to give m,! times as many permutations as before. Continuing this pro-
cedure, the total number of permutations after all similar objects have
been made different will be ny! ny! - - 1! times as large as the number
of permutations before the similar objects were made different; hence the
total number after these changes will be Pn;!n,! -+ - m,!. But after all
similar objects have been made different, the total number of permuta-
tions will be the number of permutations of » different things taken n at
a time, which is n!. Equating these two results and solving for P, one
obtains

(18) __nt

nylngl e e my!

for the total number of permutations of » things in which there are #,
alike, n, alike, - - -, n,, alike. As an illustration, consider the number of
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permutations of the five letters a, a, a, b, b. Formula (18) yields 5!/3!2! =
10. These permutations are easily written down: aaabb, aabab, abaab,
baaab, aabba, ababa, baaba, abbaa, babaa, bbaaa.

2.8.4 Illustrations of the Use of Combinatorial Formulas

(@) Consider a bridge hand consisting of 13 cards chosen from an
ordinary deck. What is the probability that such a hand will contain
exactly seven spades? Since a bridge hand is not concerned with the order
in which the various cards are obtained, the total number of possible
bridge hands is equal to the number of ways of choosing 13 objects from

52 objects, or (fg) This is therefore the total number of sample points
in the sample space. The number of hands containing exactly seven spades

is equal to the number of ways of choosing 7 spades from 13 spades, or

7
nonspades, or (29) Hence the desired probability is given by

- (13 (39
716/ 13139113139!

52\  716!6!33152!
13

(13), multiplied by the number of ways of choosing 6 nonspades from 39

(b) What is the probability that a bridge hand will contain at most one
ace? The total number of bridge hands containing at most one ace con-
sists of those with one ace and those with no ace. The number of hands with

12
(13) ; consequently, the total number of favorable hands is

(1)) + ()

Since the total number of possible bridge hands was found earlier to be

one ace is given by (T) (48), whereas the number with no ace is given by

(g), the desired probability is given by the ratio
4\ (48 48
(1)(12) + (13)
52
13
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(c) If you know that a bridge hand contains at most one ace, what is
the probability that it contains no ace? The number of sample points in
this sample space is given by the numerator of the preceding result. The
number of those corresponding to the desired event, namely bridge hands

with no ace, is given by (‘fg) ; consequently, the desired probability is
given by the ratio

48

13

(1) + (3)

(d) If a coin is tossed five times, what is the probability that three heads

and two tails will be obtained? First, consider a fixed order in which the

desired result can occur, say HHHTT. From (10) the probability of
obtaining this particular order of events is (})°. Any other ordering of
these three H’s and two T’s will have the same probability of being ob-
tained. Next, consider the number of possible orderings. This number is
equal to the number of permutations of five letters, of which three are
alike and two are alike, which by formula (18) is equal to 5!/3! 2! = 10.
Since the 10 orderings constitute the mutually exclusive ways in which the
desired event can occur, formula (4) yields the desired answer, ‘:'namely,
10(3)° = +%.

(e) A pair of coins is tossed 200 times. What is the probability that
exactly @ of the 200 tosses will show double heads? As in the preceding
illustration, consider a fixed order in which the desired result cafrfl occur,
say,

x 200 -z
—

SS--+S FF++-F

where S denotes a success, that is, a double head, and F a failure, and
where there are x successes and 200 — x failures. Because of the inde-
pendence of the trials, the probability that this particular ordering will be
obtained is (3)7($)?®-*. The number of such orderings is equal to the
number of permutations of the S’s and F’s, which in turn is equal to the
number of permutations of 200 things,. of which x are alike and 200 — z
are alike. By formula (18), this number is 200!/2! (200 — «)!. Since these
orderings constitute the mutually exclusive ways in which the desired
event can occur, it follows that the desired probability is given by

" o —ila) i
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2.9 Random Variables

Consider a sample space corresponding to the tossing of two coins and
suppose that interest is centered on the total number of heads that will be
obtained. In order to study probabilities of such events, it is convenient
to introduce a variable « to represent the total number of heads obtained.
If the sample space suggested in 2.2 and displayed in Fig. 1 is used, the
variable z will assume the value O at the sample point (0, 0), the value 1
at the sample points (1, 0) and (0, 1), and the value 2 at the sample point
(1, 1). A numerical-valued variable x such as this is an example of a
random, or chance, variable.

(20) DEerINITION: A random variable is a numerical-valued variable
defined on a sample space.

As an illustration, if « denotes the sum of the points obtained in rolling
two dice, then z is a random variable that can assume integral values from
2 to 12. The sample space here consists of 36 sample points. As another
illustration, if four cards are drawn from a deck and if « denotes the
number of black cards obtained, then z is a random variable that can
assume integral values from 0 to 4. The sample space here consists of

52 .
( 4) sample points.

The name random, or chance, is given to the variables in these illustra-
tions because they are defined on sample spaces associated with physical
experiments in which the outcome of any one experiment is uncertain and
is therefore said to depend on chance.

2.10 Frequency Functions

After a random variable x has been defined on a sample space, interest
usually centers on determining the probability that x will assume specified
values in its range of possible values. From (1), the probability that = will
assume a particular value, say w,, is equal to the sum of the probabilities
for the sample points for which @ = 2, The relationship between the
value of x and its probability is expressed by means of a function called
the frequency function, which is defined as follows:

(21) DERNITION: A function f(x) that yields the probability that the
random variable x will assume any particular value in its range is called the
frequency function of the random variable .

R A
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A frequency function often consists of merely a table of values, Thus,
if two coins are tossed and if # denotes the total number of heads obtained,
it suffices to define f(x) by means of the following set of values: f(0) = 1,
f=4%/2=1 "

In the following chapters, when explicit mathematical models are selected
for experiments, several important frequency functions are given by means
of formulas rather than by tables of values. The function defined by (19)
is an example of a frequency function defined by a formula.

In order to judge quickly how a variable is distributed, that is, how its
probability changes as the variable changes, it is convenient to graph the
frequency function f(z) by means of a line graph. As an illustration of
such a graph, let # denote the sum of the points obtained in rolling a pair
of dice. Enumeration of cases and the use of Table 1 will show that
FO) = f(12) = &, f3) = f(U]) = &, f(4) = f(10) = &, f(5) = f(9) =
&, f(6) = f(8) = &, and f(7) = 5. A line graph of f(x) is given in
Fig. 3.

A function closely related to the frequency function f(x) is the distribution
function F(z). It is defined by the relation

@) F) = 3 1)
i<

where the summation occurs over all those values of the random variable
that are less than or equal to the specified value of . Thus F(z,) gives the
probability that the random variable  will assume a value less than or
equal to ,, as contrasted to f(z,), which gives the probability that = will
assume the particular value #,. The function F(#) is called the distribution
function by pure mathematicians, but it is sometimes called the cumulative
distribution function by statisticians. The graph of F(z) for the dice

f(x)
Sa6 1
Y6
Yas |-
Ve~

2/36 |—

1/36 I

I I S S S T TR T R
Fig. 3. Line graph for a frequency function.
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Fig. 4. Graph of a distribution function.

illustration of the preceding paragraph is given in Fig. 4. It should be
noted that the value of F(z) for x an integer is the upper value rather than
the lower.

2.11 Joint Frequency Functions

Many experiments involve several random variables rather than just
one. For simplicity, consider two random variables » and y. A mathe-
matical model for these two variables is a function that gives the probability
that = will assume a particular value while at the same time y will assume
a particular value. A function f(z, y) that gives such probabilities is called
a joint frequency function of the two random variables # and y. The
adjective joint is usually omitted, since there is little possibility of confusing
a function of two variables with a function of one variable.

As an illustration, let  denote the number of spades obtained in drawing
one card from an ordinary deck and let ¥ denote the number of spades
obtained in drawing a second card from the deck, without the first card
being replaced. Then f(x, y) is defined by the following table of values:
JO,00= 2228 f(1,0)=143-2%; f(0,1) =333 and f(I,1) =
37 - #%. The graph of f(«, y) as a line graph is given in Fig. 5.

As a second illustration, let  and ¥ denote the number of red and
white balls, respectively, obtained in drawing two balls from a bag con-
taining two red, two white, and two black balls. Here the joint frequency

function is given by N /2 5
[

)

(23) S, y) =
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This frequency function is defined by a formula; however, it could have
been defined by means of a table of values, as in the first illustration. The
numerator in (23) is obtained by realizing that the « red balls must come
from the two red balls, the y white balls must come from the two white balls,
and the remaining 2 — (¢ + ¥) balls must come from the two bIa_cjk balls.

In much of the statistical theory that is developed in the following
chapters, the variables are unrelated in a probability sense. In the first
illustration the variables # and ¥ would have been such variables if the
first card drawn had been replaced before the second card was drawn. To
say that variables are unrelated in a probability sense means that the
probability of one of the variables assuming a particular value is inde-
pendent of the values the other variables assume. Random variables
possessing this property are said to be independently distributed and are
called independent random variables. In order to define independence
more precisely, let f(z;, @y, * - -, 2,,) be the joint frequency function of the
indicated variables and let fi(x,) denote the frequency function of the
variable ;. The function f(x,) merely gives the probability distribution of
the variable »; when the remaining variables are ignored.

The essential property of such variables follows from the definition of
independent events given by (10) and may be formalized in the following
manner:

(24) DEFINITION: [If the joint frequency function f(zy, g, * -+, xn) can be
Jactored in the form f(z, @y, - - - , @,) = fiw))fo(x,) - * f,(x,), where f(x,) is

f(x,5)

o

(0,0) 1) y

(1,0) |(1. 1)

Fig. 5. Graph of a joint frequency function.
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the frequency function of x;, then the random variables x, ,, * * * , x,, are said
to be independently distributed.

As an illustration, consider the first of the two preceding illustrations,
modified to the extent that the first card drawn is replaced before the second
card is drawn. The frequency function of #, which is denoted by fi(z), is

given by the formula
(13)( 39 )
z )\l —«x
) = —F———=
fi(#) =
1
Since the first card is returned to the deck before the second drawing, the
second drawing does not differ from the first drawing in properties;
consequently, the frequency function of y, which is denoted by fi(y), is

given by the same formula with x replaced by y. Since » and y are ob-
viously independent here,

G2 ()62

N\l =2/ \y/\1l—y
1 1

As an example in which (24) does not hold, consider the second of the

two preceding illustrations for which the joint frequency function is given
by (23). If fi(x) denotes the frequency function of x alone, then

)62
zJ\2 —=x
fi(@) = ——~(—6—
2
Similarly, if f,(y) denotes the frequency function of y alone, then
W62
y/\2—y
6
2
If (24) were to hold here, which means that f(x, y) as given by (23) would
have to be equal to fi(x)fx(¥), then it would be necessary that

R2)6E)=G)e-2-)

= fi(®) fo(y)

Sfo(y) =
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Furthermore, this relationship would be required to hold for all experi-
mentally possible values of « and y. It obviously does not hold for x = 1
andy = 1. Asa matter of fact, it does not hold for a single pair of possible
values,

Even though a joint frequency function of two variables may zfjppeéf to
be the product of a function of z alone and a function of y alone, it does
not necessarily follow that the variables are independently distributed.
A simple illustration of this fact can be obtained by modifying the problem
that was just considered. As before, let # and y denote the number of red
and white balls, respectively, obtained in drawing two balls from the bag,
but now let the bag contain two red and two white balls only. Then the
joint frequency function of # and ¥ is given by

2\ (2
23) fy) = QAQ
)

This frequency function appears to factor properly for independence, but
these variables are obviously not independent. As a matter of fact, y is
completely determined by « and could be replaced by 2 — 2 in this formula.
For independence it is necessary that the joint frequency function can be
factored into the product of the individual frequency functions of the two
variables. In this illustration (25) is the frequency function of x alone if
is replaced by 2 — 2. Since, by symmetry, the frequency function of » alone
is the same as that for « alone, it is clear that f(z, ¥) is not equal to the
product of the individual frequency functions here and that it cannot be
made so.

2.12 Marginal and Conditional Distributions

In the preceding section it was necessary to obtain the frequency func-
tions of the individual variables before one could decide whether the
variables in a joint frequency function were independent. Since it is
important to know whether a set of variables is independent, it would be
desirable to have a systematic way of finding the frequency functions of the
individual variables. Such a method is readily obtained by means of for-
mula (7) for the case of two variables. Although one can easily extend the
method so that it will apply to more than two variables, there is ho need
for the extension in later work; therefore the discussion is limited to two
variables.
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Consider an experiment for which A, is the event that a random variable
will assume the value « and 4, is the event that a second random variable
will assume the value y. The multiplication formula

(26) P{A1A2} = P{AI}P{AZ I Al}

can then be expressed in terms of frequency functions. Since P{4;4,} now
gives the probability that the two random variables will assume the values
x and y, respectively, it is equivalent to f(z, y), the value of the joint
frequency function at the point (z, ). Similarly, P{4,} is the probability
that the first variable will assume the value x; therefore it is equivalent to
f(x), the value of the frequency function of the first variable at the point
x. Since P{A, | A;} gives the probability that the second variable will
assume the value y, given that the first variable is known to have the value
, it is equivalent to the value of a conditional frequency function, which
is denoted by f(y | x). Formula (26) now becomes

@7 Sy =f@f |2

Since f(y | «) gives the conditional probability that the second random
variable will assume the value y¥ when the first random variable has the
fixed value z, the sum of f(y | x) over all possible values of ¥ for this fixed
value of x must equal 1. Hence, if both sides of (27) are summed over all
possible values of y, the formula for f(z) given below in (28) will be
obtained: In connection with the joint frequency function f(x, y), the
function f(z) is called the « marginal frequency function;- however, it is
merely the frequency function of the first random variable. This result
may be expressed as

(28) MARGINAL DISTRIBUTION: f(#) = Y f(z, y)
Y

In a similar manner, the y marginal frequency function can be obtained,
say g(y), by summing f(w, y) over all values of x with ¥ held fixed. Thus
gly) = 2 f(=, ). These results show that if one has the joint frequency

x
function of two random variables and if one desires the frequency function
of one of them, it is merely necessary to sum the joint frequency function
over all values of the other variable.

The conditional frequency function f(y | 2) gives the distribution of the
second random variable when the first variable is held fixed. This distribu-
tion is sometimes called the x array distribution of the joint distribution.
Because of (27), if f(z) 7= 0, one may therefore write

f(=, y)
f(=)

(29) CoNDITIONAL DISTRIBUTION:  f(y | ) =
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The conditional distribution for « with y held fixed is given by an analogous
formula. This shows that if one has the joint frequency function of two
variables and desires the conditional frequency function for one of them
when the other is held fixed, it is merely necessary to divide the joint fre-
quency function by the frequency function of the fixed variable.

For the purpose of illustrating the preceding ideas, suppose that a bag
contains two white and four black balls and that two balls are drawn from
the bag. Let 2 and y represent the results of the two drawings, 0 cor-
responding to a black ball and 1 corresponding to a white ball. Then,
every possible result will be represented by one of the four points in the
a,y plane shown in Fig. 6. From the contents of the bag and the order in
which the drawings are made, it follows directly from formula (27) that

f(0,0) =f(0)f(0]0) =%-2 =&
fO,1)=f0)f(1[0)=%-2=4
fALO)=fDfO| D=2 2=4
SO =fOfA ) =33 =4

The values of f(x, y) have been graphed in Fig. 6 by means of a simple
line chart. .

In order to illustrate the method of obtaining a marginal distribution
and a conditional distribution from the joint distribution, assume now
that only the final values of f(z, y) just calculated are known. Thus the
only information available is that given in Fig. 6. One should erase from

his mind how these numbers were obtained.

f(z,y)

(2]

1

Gl

(I

ol

0,0) 0, 1) ¥
/

. /
5 7

Loy (L,
x

Fig. 6. Theoretical distribution for two discrete variables.
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The « marginal frequency function can be obtained by applying formula
(28). Thus

JO =70,0+f0,1) =5+ =3

JO =710 +f1LD=~%A+&=5%

If the four points in the x,y plane are thought of as mass points whose
total mass is 1, then the » marginal distribution represents the distribution
of mass along the z axis after the points in the z,y plane have been pro-
jected on the = axis.

The conditional frequency function of y for x fixed can be obtained by
applying formula (29) and using the results just obtained. Thus, if » is
assigned the value » = 1,

It

[0 _ £ _4

(0 1 = —_—— = == -
oI fm xS
fan &5 _ 1

1 ]_ = — = == —

e Jao 3 s

Geometrically, f(y| 1) represents the distribution of probability mass
along the line » = 1 when the two points on this line have had their
probability masses multiplied by a number, 1/f(1), to make the sum of their
masses equal 1.

As a second illustration, in which the joint frequency function is given
directly, consider the frequency function defined by the formula

J@y =&H@E+y+1)

where x and y can assume only the integer values 0, 1, or 2. The sample
space with its probabilities calculated by means of this formula is shown
in Fig. 7.

From formula (28), the marginal frequency function of z is given by

f@=3&+y+1)

¥

y
3 4
2e5 5 27
2 3 4
195 5 5
1 2 3
77 27 27 x

—r

Fig. 7. Sample space for f(z,y) = (= + y + 1)/27.
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In carrying out the summation it is clear from Fig. 7 that y may range over
all its possible values regardless of the value of « that was fixed; hence
\ i

(30) f@=3 &Kz +y+1)=Hz+2)

¥=0
By symmetry, the marginal frequency function of y will be the same as
that for #; hence 4
8w =35 +2)

It is clear that f(x, g) is not equal to the product of its marginal frequency
functions here and therefore that  and y are not independent random
variables. ‘

From formula (29) and the result given in (30), it follows that the con-
ditional frequency function of y for z fixed is given by

1
se+y+1) x4+ y+1
fly] o) =2 =
| s+ 2) 3z +2)
If « is assigned the value 2, for example,

S]2) = & +3)
This function would be useful if one wished to calculate probabilities for
various values of y when it is known that « has the value 2. It can easily
be checked that this is a probability function by summing the three proba-
bilities obtained from this formula by letting ¥ = 0, 1, and 2 and verifying
that the sum is 1.

It was a simple matter to find the marginal frequency function in the
preceding problem because the sum over y in formula (28) was over all
possible values of y regardless of the fixed value of . The problem would
have been somewhat more difficult if the frequency function had been
given by the formula '

[, g) =A@ +y+ 1) |
and the sample space had been the one shown in Fig. 8. This sample
space differs from the one in Fig. 7 in that y is not permitted to exceed «

y
5
2 .1_3
- 3 4
1 ®is e
1 2 3
18 o o x
1 2

Fig. 8. Sample space for f(z, y) = (& + y + 1)/18.
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in value. Now if one wanted the marginal value f(1), the sum in (28)

would become
1

=3 &%y +2)=1%

¥=0
However, if one wanted the marginal value f(2), the sum would become

2
f@ = Zoa%(y +3) =1
V=
Thus the values of ¥ over which the sum is to be taken depend upon what
marginal value of z is desired. Although the simplest procedure here is to
perform the summation separately for each value of #, one can sum for a
general x. Calculations for a general  will show that the marginal function
can be expressed by means of the formula

f(@) = 5@ + DBz + 2)

2.13 Continuous Frequency Functions

Thus far the discussion of probability has been confined to finite sample
spaces. This simplification made it possible to derive the fundamental
rules of probability in an elementary manner. It is assumed hereafter that
these rules may also be applied to sample spaces in which there may be an
infinite number of sample points. As an illustration of a problem for
which this extension of the applicability of the rules of probability is
needed, calculate the probability that the first head obtained in tossing a
coin repeatedly will occur on or before the fourth toss. Here the sample
space might conveniently consist of the infinite number of sample points
represented by the infinite sequence of outcomes H, TH, TTH, TTTH,

. If it is assumed that the coin is not biased, the probabilities that
would be assigned to these sample points are 4, (3)2, ()%, ()% - - - . 1t will
be observed that the sum of these sample point probabilities is 1, as it
should be. The random variable z here is a variable that can assume any
one of the values 1, 2, 3, - - -, and the problem is to calculate the value of
F(4).

The random variable of the preceding illustration is an example of a
discrete variable. A discrete random variable is a random variable that can
assume only a finite number, or an infinite sequence, of distinct values.
This means that the values can be arranged in a definite order.

Although the extension of the applicability of the rules of probability
as indicated above enables one to consider a much larger class of problems
than before, there are many important classes of problems that are still
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not covered. These problems involve sample spaces that contain all the
points in an interval or intervals rather than just a discrete set of points.
For example, suppose an experiment consists in the weighing of an adult
male from the population of a given city. Although there is only ‘a finite
number of individuals in the city, hence only a finite number of possible
outcomes of the experiment, the mathematical model for such an experi-
ment is much simpler if one conceives of an infinite number of indjviduals
and of all possible weights in some interval as being possible outcomes of
the experiment. If the random variable « denoting the weight of an indi-
vidual is introduced, then this assumes that « could take on any value in
the interval, say, 150 to 160 pounds. A random variable that may assume
any value in some interval or intervals is called a continuous ‘random
variable. Such variables as weights, lengths, temperatures, and velocities,
which involve measurement, are considered to be continuous. Although
there are variables that are a mixture of the discrete and continuous types,
the important problems in statistics usually involve either one or the other;
hence only these two distinct types are considered.

For the purpose of discussing properties of continuous variables,
consider a particular continuous random variable z that represents the
thickness of a metal washer obtained from a certain machine turning out
washers. If the machine were permitted to turn out, say, 100 washers, and
if the thicknesses of these 100 washers were measured to the nearest .001
inch, there would be available 100 values of  with which to study the be-
havior of the machine. If these 100 values were collected and represented
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Fig. 9. Histogram for Table 3.

to choose any convenient unit on the y axis, with the result that the areas
of the rectangles may be only proportional to the corresponding fre-
quencies rather than equal to them. The histogram shown in Fig. 9 for
the data of Table 3 has been constructed with such a convenient choice of
units; hence areas there are only proportional to frequencies.

If the histogram is to be constructed so that areas will be equal to
relative frequencies, then the total area of the histogram must equal 1
because the sum of the relative frequencies must equal 1. If 4 denotes the
distance between consecutive x values, the height of the rectangle centered
at, say, x; will be f;/Nh, where f; denotes the absolute frequency of ;. This
result is obvious when it is realized that this ordinate when multiplied by
the base # must equal the relative frequency f;/N.

The histogram of Fig. 9 indicates the frequency with which various
values of @ were obtained for 100 runs of the experiment. If 200 runs had
been made, the resulting histogram would have been twice as large as
that based on 100 runs. In order to compare histograms based on dif-
ferent numbers of experiments, it is necessary to choose units on the y
axis, as discussed in the preceding paragraph, in such a manner that the
area of the histogram will always be equal to one. With this choice of
units, the histogram would be expected to approach a fixed histogram as
the number of runs of the experiment is increased indefinitely. Further-
more, if it is assumed that « can be measured as accurately as desired so
that the unit on the » axis, 4, can be made as small as desired, then the
histogram would be expected to smooth out and approximate a continuous
curve as the number of runs of the experiment is increased indefinitely
and 4 is chosen very small. Such a curve is thought of as an idealization
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for the relative frequency with which different values of « would be ex-
pected to be obtained for runs of the actual experiment.

When the area of the histogram is made equal to 1, it follows from the
preceding discussion that the sum of the areas of several neighboring
rectangles is equal to the relative frequency with which the value of z
was observed to lie in the interval that forms the base of those rectangles.
Since this property will continue to hold as the number of runs of the
experiment increases indefinitely, the area under the expected limiting, or
idealized, curve between any two given values of z should be equal to the
relative frequency with which > would be expected to lie in the interval
determined by those values of z. The function f(z) whose graph is con-
ceived as being the limiting form of the histogram is treated as the mathe-
matical model for the continuous random variable « and is called the
frequency function of the variable. Since relative frequency in the case
of a histogram is replaced by probability in the case of a mathematical
model, the definition of a frequency function for a continuous variable
may be stated in the following form:

(31) DEFINITION: A frequency function for a continuous random varzable x
is a function f(x) that possesses the following properties:

(@ f(x) 20
(i) . f f@)dx =1
o
(iii) f f(@)de = P{a < x < b}

where a and b are any two values of x, with a < b.

Property (i) is obviously necessary since negative probability has no
meaning. Property (i) corresponds to the requirement that the proba-
bility of an event that is certain to occur should be equal to one. Here x
is certain to assume some real value when an observation of it is made.
Although it is certain to assume some value, the probability that it will
assume a stated value is O for a continuous random variable. At first
this may seem somewhat paradoxical, but if one wants the probability
that = will assume some value in the interval from «, to x, + Az, it is given

by the integral oo A
f f(2) da
Lo

The mean value theorem of integral calculus may be applied here under
the assumption that f(x) is a continuous function to give the value

Az f(xy + 0 Ax), 0<o<1
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But when Az is allowed to approach 0, this probability will approach 0,
and therefore the probability that 2 will assume the particular value z,
must certainly be 0. Thus, in dealing with continuous random variables,
one asks only for the probability that the variable will lie in some interval
or intervals. As a result, probabilities for continuous variables are always
given by integrals, whereas those for discrete variables are given by sums.
If the range of « is not the entire real line, it is assumed that f(z) is defined
to be equal to O for those values outside the specified range of the
variable.

"~ As an illustration, consider the possibility of using f(x) = ke " as a
frequency function for « where k is some constant. From (i) it is clear that
k must be positive. Since the integral of e=® from — oo to + o0 is infinite, it
follows that the range of  must be restricted; hence assume, for example,
that z can take on only non-negative values. Then f(x) will be defined to
be O for negative values and to be given by the formula for non-negative
values. From (ii) it then follows that k¥ must be equal to 1 because the
integral of e~ from 0 to oo is equal to 1. The calculation of, say, P{l <
x < 2} would then become

2
f e fde=el—e2=.23
1

The graph of this frequency function and the representation of P{1 <
x < 2} as an area is given in Fig. 10.

Although f(z) may be chosen at will in any given problem, a choice for
which the resulting probabilities are not approximated well by observed
relative frequencies is not likely to be a useful choice. As in the case of
discrete variables, there are particular frequency functions that have
proved very useful in statistical work and whose explicit formulas are
considered later.

f(x)
2.—-

4 ] | x
1 2 3 4 5

Fig. 10. Graph of a frequency function for a continuous variable.
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The frequency function for a continuous variable is often called the
probability density function, or density function, of the variable; how-
ever, it is very convenient, and becoming increasingly common, to use
only the single name “frequency function” for both discrete and con-
tinuous variables.

The distribution function, F(x), for the continuous variable z is defined

by
(32) F(z) = f "W ar

The graph of F(z) for the preceding illustration is given in Fig. 11. It
should be noted that P{I < « < 2} is now given by F(2) — F(1), that is,
by the difference of the ordinates on the graph of F(x). Here the graph
was constructed by first determining F(x) from definition (32). Thus

F(x):fe"tdt=]——e””, x>0
0 :

=0, <0

The frequency function is the one commonly used in the applications
of statistical theory; however, the distribution function is also very useful
in deriving some of that theory. For example, it is often easier to find the
distribution function of a random variable than it is to find the frequency
function. But after the distribution function has been found, \'the fre-
quency function can be obtained by differentiating the distribution func-
tion, since, by employing a familiar calculus formula for differentiating
an integral with respect to its variable upper limit, it follows from (32)

that
dF(z) _
dz ’
This technique, of course, cannot be used on discrete variable distribu-

tions. For such distributions it is necessary to take differences of F(x)
values to obtain f(z) values.

f(@)

F(x)

| X
1 2 3

Fig. 11. Graph of the distribution function for a continuous variable.:
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2.14 Joint Continuous Frequency Functions

A frequency function for several continuous variables is the natural gen-
eralization of a frequency function for one variable. Thus a frequency
function for two variables 2 and i would be denoted by f(z, y) and would
be represented geometrically by a surface in three dimensions, just as a
frequency function of one variable, f (), was represented by a curve in
two dimensions. The volume under the surface lying above the rectangle
determined by @ < < b and ¢ <y < d would give the probability that
the random variables z and y will assume values corresponding to points
lying inside this rectangle. The essential properties for a frequency func-
tion of several variables may be formalized as follows:

(33) DEFINITION: A frequency function for n continuous random variables

@y, Ty 0 X, IS @ function f(xy, Ty, 0, @) that possesses the following
properties: ‘

(I) f(xlﬂmza."axn)zo

(”) f . .J f(xla Loy * 7" s x'n) dml dmZ e d.’l’/'n =1

bn by
(iii) f o f flay, @y, o, ) dzy day - - dey,
2 . =_-P{a1<x1<b1,-..’an<xn<bn}

As an illustration, consider the function f(z, y) = e~ @+ which is a
two-dimensional generalization of the example used in the preceding
section. If f(x, y)is defined to be zero for negative values of » and y, it will
be observed that (i) and (ii) are satisfied. From (iii), the calculation of,
say, P{1 < z < 2,0 <y < 2} will then be given by

2 2 - ,
f J etV dudy = (et — e B — e =20
0v1 .

The graph of f(z, y) and the representation of P{1 <2 <2 0<y<2}
as a volume is given in Fig. 12.

Continuous random variables that are unrelated in a probability sense
are said to be independently distributed, just as in the case of discrete
random variables. To say that continuous random variables are un-
related in a probability sense means that the probability that one of the
variables will assume a value in a given interval is independent of the
values the other variables assume. In order that this property shall hold
it suffices to define independence here exactly as it was done for discrete
variables; hence definition (24) applies to continuous variables also.
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f(x,y)

1

X

Fig. 12. Graph of a joint frequency function for two continuous variables.

For the purpose of showing that the desired property holds, let f (1, 2o,
, ,) be a frequency function satisfying (24). Then property (iii) of
(33) implies that ‘

P{a1<a;1<b1,--~,an<a:n<bn}
bn bl
- f . f e fulze) -+ flan) day day - - - da,

_ f " ) day f Fulay) dity - j £, dz,

-——-P{al<x1<bI}P{a2<x2<b2}-~-P{an<xn<bn}

This result states that the probability that the variables x;, - - -, », will
simultaneously satisfy the indicated inequalities is equal to the product
of the probabilities of the individual variables satisfying these inequalities.
This property is the analogue foi continuous variables of property (10)
for events. '

The frequency function whose graph is given in Fig. 12 is an illustration
of a joint frequency function of two independent random variables. In
the present notation fy(z;) = e~*1 and fy(x,) = e ™.

It should be noted that in writing probability statements for continuous
variables, such as in (33) (iii), it is irrelevant whether o, < z; < b, or
a, < x, < b, is used to determine the desired region because the integral
is the same for the two cases. This property does not hold, however, for
discrete variables. ;

By using integrals in place of sums, formulas can be derived for marginal
and conditional distributions just as in the case of discrete variables.
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Since the derivations are somewhat sophisticated at this stage of the
theory and are not needed for some time, they are postponed to a later
chapter. /
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EXERCISES

1. A die has 2 of its sides painted red, 2 black, and 2 yellow. If the die is
rolled twice, describe a 2-dimensional sample space for the experiment. What
probabilities would you assign to the various sample points ?

2. A coin is tossed 3 times. Describe a 1-dimensional sample space for the
experiment. What probabilities would you assign to the various sample points?

3. If the die in problem 1 is rolled until a red side comes up, describe a sample
space for the experiment. What probabilities would you assign to the various
sample points ?

4. A box contains 3 white and 2 black balls. One ball is to be drawn from it.
Describe a sample space and assign probabilities to the sample points when
(@) the balls are also numbered, () like colored balls cannot be distinguished.

5. A box contains 2 white and 2 black balls. Two balls are to be drawn from
the box. Describe a 2-dimensional sample space and assign probabilities to the
sample points when (a) the balls are also numbered, (b) like colored balls cannot
be distinguished.

6. A bag contains 3 white and 1 black ball. Two balls are to be drawn from
it. Describe a 2-dimensional sample space consisting of 4 points based on color
and draw and assign probabilities to the sample points. Would 3 points have
sufficed ?

7. Two balls are drawn from an urn containing 2 white, 3 black, and 4 green
balls. (@) What is the probability that the first is white and the second is black?
(b) What is this probability if the first ball is replaced before the second drawing?

8. One urn contains 2 white and 2 black balls; a second urn contains 2 white
and 4 black balls. (@) If 1 ball is chosen from each urn, what is the probability
that they will be the same color? (b) If an urn is selected by chance and 1 ball
is drawn from it, what is the probability that it will be a white ball? (¢) If an
urn is selected by chance and 2 balls are drawn from it, what is the probability
that they will be the same color?

9. Compare the chances of rolling a 4 with 1 die and rolling a total of § with
2 dice.

10. If 6 dice are rolled, what is the probability that each of the numbers 1
through 6 will occur?
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11. Assuming that the ratio of male children is %, find the probability that in a
family of 6 children (a) all children will be of the same sex; (b) the 4 oldest
children will be boys and the 2 youngest will be girls; (c) exactly half the children
will be boys.

12. Successive drawings of a card from an ordinary deck are made with
replacement each time. How many drawings are necessary before the probability
is at least  that an ace will be obtained at least once?

13. Two boxes contain 1 black and 2 white balls and 2 black and 1 white ball,
respectively. One ball is transferred from the first to the second box, after which
a ball is drawn from the second box. What is the probability that it is white?

14. A coin is tossed. If it comes up heads, a die is thrown and you ‘are paid
the number showing in dollars. If it comes up tails, two dice are thrown and
you are paid in dollars the sum of the numbers showing. What is the probability
that you will be paid at most four dollars?

15. A card is drawn from an ordinary deck. What is the probability that it is a
king, given that it is a face card?

16. Two dice are rolled. What is the plobability that the sum of the faces
exceeds 8, given that one (or more) of the faces is a 6?

17. A box contains 2 red tickets numbered 1 and 2 and 2 green tickets numbered
Iand 2. If two tickets are drawn from the box, what is the probability that both
will be red, given that one of them is known to be (@) red, () red ticket numbered
1?

18. A group of businessmen consists of 30 per cent Democrats and 70 per
cent Republicans If 20 per cent of the Democrats and 40 per cent of the Repub
licans smoke cigars, what is the probability that a cigar-smoking businessman is
a Republican?

19. A test for detecting cancer which appears promising has been developed
It was found that 98 per cent of the cancer patients in a large hospital reacted
positively to the test, whereas only 4 per cent of those not having cancer did so.
If 3 per cent of the patients in the hospital have cancer, what is the probability
that a patient selected by chance who reacts positively to the test will actually
have cancer?

20. Each of 3 boxes has 2 drawers. One box contains a gold coin in each
drawer, another contains a silver coin in each drawer, and the third contains a
gold coin in one drawer and a silver coin in the other. A box is chosen, a drawer
is opened and found to contain a gold coin. What is the probability that the
coin in the other drawer is silver?

21. A, B, and C in order toss a coin. The first one to throw a head wins.
What are their respective chances of winning? Note that the game may continue
indefinitely.

22, Fourteen quarters and 1 five-dollar gold piece are in one purse and 15
quarters are in another purse. Ten coins are taken from the first purse and
placed in the second, and then 10 coins are taken from the second and placed
in the first. How much money could you expect to get if you chose the first
purse? How much if you chose the second purse?
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23. If a poker hand of 5 cards is drawn from a deck, what is the probability
that it will contain 2 aces?

24. What is the probability that a bridge hand will contain 13 cards of the
same suit?

25. If a box contains 40 good and 10 defective fuses and 10 fuses are selected,
what is the probability that all will be good ?

26. From a group of 50 people, 3 are to be chosen. Find the probability that
none of 10 certain people in the group will be chosen.

27. If the numbers 1, 2, - - -, » are arranged in order by chance, what is the
probability that the numbers 1 and 2 will appear next to each other ?

28. What is the probability that the bridge hands of north and south together
contain exactly 3 aces?

29. If a bridge player and his partner have 9 spades between them, what is the
probability that the 4 spades held by their opponents will be split two and two?

30. What is the probability that of 4 cards drawn from a deck 2 will be black
and 2 red?

31. If you hold 3 tickets to a lottery for which  tickets were sold and 5 prizes
are to be given, what is the probability that you will win at least 1 prize?

32. Let # and y denote the respective number of heads obtained in tossing 2
coins twice. Calculate the probability that ¥ — « will be less than 1.

33. A tosses 3 coins and B tosses 2 coins, simultaneously. The one with the
greater number of heads wins. (2) What is the probability that 4 will win?
(b) What is this probability if the experiment is repeated whenever a tie occurs ?

34. A bag contains 1 black ball and 2 white balls. A ball is drawn and replaced
by a ball of the opposite color. Then another ball is drawn from the bag. Find
the conditional probability that the first ball drawn was white, given that the
second ball drawn was white.

35. Find the probability that a poker hand of 5 cards will contain only black
cards, (@) given that it contains at least 3 black cards, (b) given that it contains
at least 3 spades.

36. Find the probability that a poker hand (5 cards) contains no card smaller
than 7, given that it contains at least 1 card over 10, where aces are considered
as high cards.

37. Three cards are drawn from an ordinary deck. (a) If it is known that the
hand contains at least 2 aces, what is the probability that it contains 3 aces?
(b) If it is known that the hand contains the 2 red aces, what is the probability
that it contains 3 aces?

n n n+1
38. Showthat( )+<) =( )
r—1 ¥ ¥

39. Given the discrete frequency function f@ =elxl, 2 =012, (a)
calculate P{z = 2}; (b) calculate P{z < 2}; and (c) show that ¢! is the proper
constant for this frequency function.

40. A coin is tossed until a head appears. (2) What is the probability that a
head will first appear on the third toss? (6} What is the probability f(z) that =
tosses will be required to produce a head? (¢) Graph the frequency function

f@).
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41. If the probability is § that a finesse in bridge will be successful, (a) what
is the probability that 3 out of 5 such finesses will be successful? (b) What is
the probability, f(x), that z out of 5 such finesses will be successful? (c) Graph
the frequency function f(w).

42. Graph the distribution function F(x) for the frequency function obtained
in problem 40.

43. Graph the distribution function F(x) for the frequency function obtained
in problem 41.

44. Two dice are rolled. Let « be the difference of the face numbers showing,
the higher minus the lower. Find the frequency function of =.

45. A box contains 3 red and 2 black balls. Two balls are drawn from the
box. Let x equal the number of red balls obtained. Find the frequency functlon
of « and also its distribution function.

46. A die is tossed once. If a 4, 5, or 6 comes up, let # equal the number
showing. If a1, 2, or 3 comes up, toss the die again and let x equal the sum of
the two numbers that came up. Find the frequency function of .

47. In the game of odd man wins, 3 people toss a coin. The game continues
until someone has an outcome different from the other 2. The individual with
the different outcome wins. Let # equal the number of games needed before a
decision is reached. Find the frequency function of =.

48, There are N tickets numbered 1,2, -, N, from which » are chosen.
Let z equal the smallest number appearing on the tickets drawn. Find the
frequency function of z. '

49. Let # and ¥ denote the number of heads obtained in tossing a coin twice.
Find an expression for the frequency function f(x, ).

50. Let » and y denote the number of heads obtained in tossing a pazr ‘of coins
twice. Find an expression for the frequency function f (=, v).

51. Six dice are rolled. Let «# denote the number of 1’s and y the ndmbcr of
2’s that show. Find an expression for f(z, y), the probability of obtammg z 1’s
and y 2’s.

52. Five cards are drawn from a deck. Let « denote the number of aces and ¥
denote the number of kings that show. Find an expression for f (.L y), the
probability of obtaining # aces and y kings.

53. For the first illustration in section 2.11, calculate the values of (@) f(1),
)50, (©) f| 1), (@) gt | 0).

54. For the distribution given by (23) in section 2.11, find expressions for the
marginal and conditional distributions f(1) and f(y | 1.

55. For the distribution of problem 49, find the marginal distribution f(x)
and the conditional distribution f(y | «). Comment.

56. For the distribution of problem 50, find an expression for the conditional
distribution g(z | ).

57. Calculate the marginal values f(1) and g(3) for problem 51.

58. Use a result from problem 57 to obtain an expression for the conditional
distribution f(y | 1) for the distribution of problem 51.

59. Consider a deck of cards consisting of the ace, king, queen, and jack of
each of the 4 suits. If 2 cards are drawn from this deck, and « and y denote the
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number of spades and hearts obtained, find () the marginal distribution of z
and () an expression for the conditional distribution of v for = = 1.

60. Given f(z,y) = cxy at the points (1,1), (2, 1), (2,2), (3, 1), and zero
elsewhere, (a) evaluate ¢; (b) find f@); (o) find f(y | @).

61. Explain why 2 varjables « and y cannot be independently distributed,
regardless of the nature of f'(x, ), if the region in the xy plane where Sz, ) is
positive is the triangular region of Fig. 8.

62. Explain why 2 variables « and ¥ cannot be independently distributed if
the region in the xy plane where S (=, y) is positive is not a rectangle (possibly
infinite) with sides parallel to the coordinate axes.

63. Given the continuous frequency function f(@) = cve™™,2 > 0,(a)determine
the proper value for ¢; (b) calculate P{z < 1}; and (c) calculate P{l < < 3}.

64. Given the continuous frequency function f@ =¢,0 <z <2, (a) deter-
mine the proper value for ¢; (b) calculate P{z < 1}; and (¢) calculate P{z > 1.5}.

65. Find the distribution function F(z) and graph it if the frequency function
ofvis(@)f(®») =1,0 <2 < 1; B fx) =xfor0 <z <1 and f(z) = —» + 2
for 1 <z <2; and (¢) f(z) = [=(1 + x)]L

66. If f(x) = ¢, > 0, find a number %, such that the probability is 1 that
x will exceed .

67. Suppose the life in hours, 2, of a type of radio tube has the frequency
function f(x) = ¢/#% « > 500. (a) Evaluate ¢. (b) Find the distribution function
of . (c) Calculate the probability that a tube will last at least 1000 hours.

68. Suppose the probability that an atom of a radioactive material will dis-
integrate in time 7 is given by 1 — e~*, where « is a constant depending on the
material. Find the frequency function of =, the length of life for such an atom.

69. If half the radioactive material of problem 68 will disintegrate in 1000
units of time, calculate the probability that the life of an atom of this material
will exceed 2000 units of time,

70. Given the joint frequency function f(z,y) = wmye @+, & >0, y > 0,
calculate P{w < 1,y < 1},

71. Given the joint frequency function f@,y) =8xy,0 <2 <1,0<y <a,
calculate (@) P{z < .5,y < .25}; (b) P{z <.5}; and (¢) P{y < .25}, (d) From
the preceding calculations, what conclusions can be made concerning the inde-
pendence of the variables « and y ?

72. If = and y are independent random variables with the same continuous
distribution function F, find an expression for P{x < t, ¥ < r}. Use this to find
the distribution function G(2) of the variable z = max {=, y}.

73.  f(®) = pPe#fat, @ =0,1,2, -, and f(y | 2) = (;)py(l -y =

0,1,2,---,2, show that the marginal frequency function of y is given by
gW) = (upyre2[yl.

74. Show that for the events A4, B, C, the probability that at least one of the
events will occur is given by P{4} + P{B} + P{C} — P{4B} — P{AC} — P{BC} +
P{4BC}. -

75. Give an example of two random variables  and y that are not independent
but such that «* and »? are independent.




CHAPTER 3 jj | -
Nature of Statistical Methods

3.1 Mathematical Models

The preceding two chapters have indicated to some extent the nature
of statistical methods. The emphasis there was on experiments of the
repetitive type, ‘whether real or conceptual. Statisticians are mainly
interested in constructing and applying mathematical models for experi-
ments of this type. The advantage of such a model is that it enables the
statistician to study properties of the experiment and to make prédictions
about the outcomes of future trials of the experiment, both of which
would be difficult or impossible to do without such a model.

The process of constructing a model on the basis of experimental data
and drawing conclusions from it is an example of inductive inference.
When it is applied to statistical problems, it is usually called statistical
inference. Thus statisticians are principally engaged in making statistical
inferences. )

Most often the statistician is interested in constructing a mathematical
model for a random variable associated with an experiment rather than
for the experiment itself. For example, if @ represents the number of
defective parts that will be found in a lot of 100 parts submitted for
inspection, he would prefer to have a model that predicts the frequency
with which the various values of = will be obtained rather than one that
predicts the frequency with which the various possible experimental out-
comes will occur when 100 parts are selected from the production process.
As a consequence, most of the models chosen by statisticians are frequency
functions of random variables. Statistical inferences are therefore usually
inferences about frequency functions. ,

As an illustration of the precedmg ideas, suppose a biologist has ob-
served that 44 out of 200 insects of a given type possess markings that are
different from those of the rest. Suppose, further, that the biologist
suspects that the markings are inherited according to a law which implies
that 25 per cent of such insects would be expected to possess the less

45
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common markings. If he assumes that the inheritance law is operating
here and lets @ represent the number of insects out of 200 that will possess
the less common markings, then the model that he would naturally select
is the frequency function

; = el

This particular frequency function is the same as the frequency function
given by (19), Chapter 2, because the two problems are equivalent from
a probability point of view if the observations made on insects are con-
sidered as independent trials of an experiment.

If there had been no theory to suggest that } of such insects should
possess the unusual markings, the biologist might have chosen this same
frequency function with the probability 4 replaced by the observed rela-
tive frequency .22.

By means of (1) it would be possible for the biologist to make predictions
about future sets of 200 observations and thus detect disagreements
with his theory.

In its most general formulation, statistical inference is a type of decision
making based on probability. The statistician is largely engaged in con-
structing methods for making decisions. In a more limited sense, however,
a large share of the inferences, or decisions, made by statisticians fall
into one of two categories. Either they involve the testing of some hy-
pothesis about the frequency function selected as the model, or they involve
the estimation of parameters or other characteristics of this frequency
fanction. These two types of statistical inference will be studied briefly
in the next two sections from a general point of view but are applied
throughout the book and studied further in Chapter 9.

3.2 Testing Hypotheses

Since the variety of statistical hypotheses that occur in applications is
very large, a fairly general definition of what constitutes a statistical
hypothesis is needed. Such a definition is the following:

(2) DEFINITION: A statistical hypothesis is an assumption about the Jre-
quency function of a random variable.

As an illustration for a discrete variable, consider the problem of the
preceding section. If p denotes the proportion of all insects possessing
the less common markings, then the assumption that p = 1 is a statistical
hypothesis. As an illustration for a continuous variable, suppose the
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random variable » represents the time that elapses between two suécessive
trippings of a Geiger counter in studying cosmic radiation and suppose
it is assumed that the frequency function for x is a function of the form

3) f(x; 0) = Ge™%

where § is a parameter whose value depends on the expel‘imenfal con-
ditions. The assumption that the frequency function is a function of this
particular form is obviously a statistical hypothesis. If it is assumed that
the parameter 0 is equal to 2, then this assumption is also a statistical
hypothesis.

Now consider what is meant by testing a statistical hypothesns A
general definition can be expressed in the following form:

(4) DEFINITION: A test of a statistical hypothesis is a procedure Jor
deciding whether to accept or reject the hypothesis.

This definition permits the statistician unlimited freedom in designing
a test; however, he will obviously be guided by its desirable properties.
Thus a simple but ordinarily useless test is one in which a coin is tossed
and it is agreed to accept the hypothesis in question if, and only if, the

coin turns up a head.

In order to illustrate how the statistician proceeds in attemptmg to
design a test that possesses desirable properties, consider a problem re-
lated to the frequency function (3). Suppose a physicist is certain, from
theoretical or experimental considerations, that the time that elapses
between two successive trippings on a counter possesses the frequency
function (3). Suppose further that he is quite certain that for the material
with which he is working the value of the parameter is either 2 or 1, with
his intuition favoring the value 2. To assist him in making a chmce the
statistician might proceed in the following manner,

Assume that the frequency function (3) applies. Although this assump-
tion constitutes a statistical hypothesis, it will not be tested here because
the physicist is quite certain of the validity of this assumption. Assume
that the parameter 0 has the value 2. This assumption is the statistical
hypothesis to be tested. Denote this hypothesis by H,. Let H; denote
the alternative hypothesis that 6 = 1. Thus the problem is one of testing
the hypothesis H against the single alternative H;.

To test H,, a single observation is made on the random variable x;
that is, a single time interval between two successive trippings of the
counter is measured. In real-life problems one usually takes several
observations, but to avoid complicating the discussion at this stage only
one observation is taken here. On the basis of the value of « obtained, a
decision will be made either to accept H, or to reject it. The latter decision,
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of course, is equivalent to accepting H,. The problem then is to deter-
mine what values of x should be selected for accepting H, and what
values for rejecting Hy. If a choice has been made of the values of « that
will correspond to rejection, then the remaining values of @ will necessarily
correspond to acceptance. It is customary to call the rejection values the
critical region of the test. For this problem, the sample space may be
considered as the positive half of the » axis. Every possible outcome can
be represented by a point on this line with its # coordinate giving the value
of the associated random variable . Since only one observation is being
made here, the sample space is one dimensional. If n observations were
to be taken, the corresponding sample space would be » dimensional, with
one coordinate axis for each observation. In order to have a definition
of the critical region that is applicable to more general sample spaces, it
is formulated as follows:

(5) DEFINITION: The critical region of a test of a statistical hypothesis
is that part of the sample space that corresponds to the rejection of the
hypothesis being tested.

In terms of the foregoing language, the problem of constructing a test
of H, for the problem under discussion is therefore the problem of choosing
a critical region for the test.

3.2.1 Two Types of Error

Now suppose that the statistician arbitrarily selects the part of the x
axis to the right of » = 1 as the critical region. To decide whether this
was a wise choice, consider its consequences. If H, is actually true and
the observed value of x exceeds 1, H, will be rejected because it has been
agreed to reject H, whenever the sample point falls in the critical region.
This, of course, is an incorrect decision. This kind of error is called the
type I error. On the other hand, if H, is actually true and the observed
value of « does not exceed 1, H, will be accepted. This also is an incorrect

TABLE 1
H, True H, True

z>1 Type I Correct
(reject Hy) error decision

z <1 Correct Type 11
(accept Hy) decision error
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decision. This kind of error is called the type II error. These two in-
correct decisions, as well as the two correct decisions that are possible
here, are displayed in Table 1.

It is necessary to measure in some way the seriousness of making either
one of these errors before one can judge whether the choice of a critical
region was wise. This can be accomplished by using what is known as
the size of an error as the measure of its seriousness.

(6) DErFINITION: The size of the type I error is the probability that the
sample point will fall in the critical region when Hy is true, the size of the
type II error is the probability that the sample point will fall in the non-
critical region when H, is true. '

Now, in terms of the sizes of the two types of error, it is possible to
introduce a simple principle to follow in determining good tests of hy-
potheses. It may be expressed as follows.

(7) PRINCIPLE: Among all tests possessing the same size type I error,
choose one for which the size of the type II error is as small as possible.

Other principles can easily be suggested: for example, minimizing the
sum of the sizes of the two types of error. However, principle (7) has
proved to be very useful in constructing tests. A statistician often deter-
mines in advance what size type I error he will tolerate. Then if the
number of runs of his experiment is fixed, he will attempt to construct his
test to minimize the size of the type 1L error. For a fixed number of runs
of an experiment, the size of the type Il error will usually increase if the
size of the type I error is decreased; hence one cannot make the type
I error as small as desired without paying for an increasingly large type 11
error. In real-life experiments it is often necessary to adjust the type I
error until a satisfactory balance has been reached between the sizes of
the two errors. The type I and type IT error sizes are usually denoted by
the letters « and f, respectively. For the sake of avoiding lengthy dis-
‘cussions regarding the practical consequences of possible choices for the
sizes of these two errors, a convention of almost always choosing the size
of the type I error as .05 is adopted. This means that approximately 5 per
cent of the time true hypotheses being tested will be rejected. The value
of « = .05 is quite arbitrary here and some other value could have been
agreed on; however, it is the value of « most commonly used by applied
statisticians. In any applied problem one can calculate the value of § and
then adjust the value of o if the value of § is unsatisfactory when « = .05.
This works both ways, of course. For a very large experiment, with « fixed
at .05, it might turn out that 8 would be considerably smaller than .05, If
the type I error were considered more serious than a type 1I error, one
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would need to adjust the test to make « smaller than 8, which would then
make o smaller than .05.

Now consider the problem under discussion from the point of view of
this principle. If the sizes of the two types of error for the selected critical
region, namely # > 1, are denoted by « and $, respectively, then, because
the two competing hypotheses here are Hy:0 = 2 and H,:0 = 1, it follows
from (3) and (6) that

o =f 2e”% da = 135
1
and

1
B =f e %dx = .632
0

Since probabilities correspond to areas under graphs of frequency func-
tions, these values may be represented geometrically as indicated in
Fig. 1.

In order to decide whether the preceding test, that is, the choice of a
critical region, was a good one, it follows from (7) that it is necessary to
compare this test with other tests for which « = .135. Here only one
other test is considered as a competitor, namely, the test that uses the
left ““tail”” rather than the right “tail”” of the graph of the frequency func-
tion under H, as the critical region. Thus the critical region for the com-
peting test consists of the part of the axis to the left of the point z, where
@, 18 such that

Ly
f 2e ¥ do = 135
0

f(x)

2
1\
8

H

f(

T
N
w I
B

Fig. 1. Graphs showing sizes of two types of error.
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f(x)

07 1 2 3 4

Fig. 2. Graphs for a competing test.

If the integration is performed and tables of exponentials are consulted,
it will readily be found that x, = .07. From (6), it then follows that

B =f e do = 932
.07

Graphs showing the sizes of the two types of error for the competing test
are given in Fig. 2. ‘

It is clear from comparing the two values of f that the first test is
superior to the second. The second test would incorrectly reject H,
93 per cent of the time, whereas the first test would do so only 63 per cent
of the time. Both tests have very large type II errors, but this is to be
expected when only one observation is taken. By using methods that are
developed in Chapter 9, it can be shown that the first test selected is the
best test that can be constructed for this problem according to principle
.

These principles of test construction apply to discrete variable problems
also. As a simple illustration of how to make discrete variable computa-
tions, consider the following academic problem. A coin is known to be
either an honest coin or one that yields twice as many heads as tails. A
decision is to be made as to which type of coin it is by tossing it three times
and observing the number of heads, z, that result.

The problem may be formalized by choosing

Hy:p=1% and H :p=2

Here p denotes the probability that a head will be obtained when the coin
is tossed once. Since the coin is to be tossed three times, the random
variable « can assume only the values 0, 1, 2, or 3. The four points on the
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Fig. 3. H, probabilities.

x axis corresponding to these values may be chosen as the sample space
here, even though the natural sample space for the experiment of tossing
three coins would be one consisting of eight points in three dimensions.
If one is interested only in the number of heads that turn up, then the
four-point sample space is more convenient to work with than the original
sample space. When Hj is true, the probabilities that should be assigned
to the four sample points in this space are those displayed in Fig. 3. These
values were calculated in the manner illustrated in exercise (d) of 2.8.4.

Now consider two different choices for the critical region of this test,
namely, the point z = 0 and the point # = 3. Except for convenience,
these two parts of the sample space were chosen quite arbitrarily. They
should serve to illustrate techniques and principles in test construction
for discrete variables. From Fig. 3 it will be seen that both of these critical
regions yield a type I error of size « = }; hence they are equally good as
far as making type I errors is concerned.

When H, is true, calculations similar to those employed in illustrations
(d) and (e) of 2.8.4 with p = } will show that the probabilities that should
be assigned to the four sample points are those listed in Fig. 4. Now
when x = 0 is chosen as the critical region for the test, the size of the
type II error is equal to § = 3§ because that is the probability that
will not assume the value 0. On the other hand, when @ = 3 is chosen as
the critical region, the value of f is ;% because that is the probability
that = will not assume the value 3. Thus it is clear that « = 3 is a better
critical region than « = 0 for testing H, against H,.

In discussing critical regions, it is customary to call them critical
regions of size « if the magnitude of the type I error is «. Thus in the pre-
ceding illustration the two competing critical regions there were of size 1.

One difficulty in applying these methods to discrete variable problems
is that critical regions of specified sizes cannot always be chosen without
resorting to other devices. In the preceding illustration, for example,
one cannot directly choose a critical region of size « = 7. This difficulty
is seldom much of a problem in real-life applications because then experi-
ments are usually sufficiently large to permit a wide choice of sizes for

o e~
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Fig. 4. H, probabilities.
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the type I error. Moreover, there are techniques available, which are
discussed in a later chapter, that enable one to construct critical regions
of any desired size, even for problems such as the preceding one. -

In the following chapters tests of hypotheses are made without being
concerned whether the critical region selected is the best possible; how-
ever, after Chapter 9 has been studied it will be found that the ‘tests in
the earlier chapters were well chosen from this point of view. For the
simpler problems, the critical region that the experimenter carefully selects
on an intuitive basis is likely to be a good one from the point of view of
principle (7).

3.2.2 Power Function

The problem considered in the preceding sections to illustrate the general
methods for selecting a good test was easy to discuss largely because there
was only a single alternative H; to the hypothesis H, being tested. Most
problems, however, involve more than a single alternative. For example,
if one were interested in knowing whether the proportion of defective
parts in a manufacturing process is increasing, he might wish to test the
hypothesis Hy: p = p,, in which p, is the proportion of defectives found
in the past, against the hypothesis Hy:p > p,. For the first problem
discussed in 3.2.1, it might well be that the physicist would have preferred
to test the hypothesis Hy:0 = 2 against the alternative H,:0 < 2 rather
than against the alternative H,:0 = 1. The experimenter often has
theoretical or empirical reasons for knowing what value of the parameter
to test, but he seldom knows what particular alternative value will hold
if Hy is false, ;

For such more general classes of alternatives, the size of the type 11
error § will depend on the particular alternative value of 0 being con-
sidered. In order to determine how good the chosen test may be, compared
to a competing test, it is therefore necessary to compare the type If errors
for all possible alternative values of § rather than for just one alternative
value as before. For this purpose, it is necessary to consider the calcula-
tion of the size of the type II error as a function of 8. The size of this error
is denoted by #(6). Now, from (6), A() is the probability that the sample
point will fall in the noncritical region when  is the true value of the pa-
rameter. It is usually more convenient to work exclusively with the critical
region; therefore it is customary to calculate 1 — S(f), which is the
probability that the sample point will fall in the critical region when 6
is the true value of the parameter. The function 1 — B(6) is called the
power function and may be defined formally as follows. ‘
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(8)  DrrmNiTION: The power function P(0) of a test is the function of the
parameter that gives the probability that the sample point will fall in the
critical region of the test when 0 is the true value of the parameter.

Since P(0) = 1 — f(0), seeking for a test that minimizes the type II
error $(8) is equivalent to seeking for one that maximizes the power P(0).

The problems that were considered in the preceding section are used
to illustrate how the power function can assist one in selecting good tests
when there is more than a single alternative value of the parameter. For
the first illustration, let the hypothesis to be tested be H,: 6 = 2, as before,
but let the alternative hypothesis now be Hy : 6 < 2 rather than H,: 0 = 1.
As before, let x > 1 and « < .07 be the respective critical regions of size
o = .135 for the two competing tests, and let P,(f) and Py(0) denote the
power functions for the two tests. From (8), the power functions of these
tests are given by integrating the frequency function (3) over the respective
critical regions; hence

9 Py(0) =f fe %% da = ¢~ *
1
and

07
Py(6) =f fe % do = 1 — e 07
0

The graphs of P,(f) and P,(0), which are called the power curves for
the two tests, are shown in Fig. 5. These curves must intersect at the point
(2, .135) because the power function gives the probability that the sample
point will fall in the critical region and this probability has been chosen
equal to « = .135 when H,: 0 = 2 is true. Since the power curve for the
first test lies above the power curve for the second test for all values of
6 < 2 and the only alternative values permitted in the problem are those
given by H, : 0 < 2, it follows that the first test is superior to the second
for the problem under discussion.

P,(6)
—— ] | 8
1 2 3

Fig. 5. Two competing power curves.
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By means of a theorem that will be studied in Chapter 9, it can be
shown that any test whose critical region is of size « = .135 will yield a
power curve that nowhere lies above the power curve for this first test;
consequently, this test is the best possible for the problem under discus-
sion. It was stated in an earlier section that this is the best possible test
for the alternative H;: 0 = 1, but now a stronger statement is befng made,
namely, that this test is the best possible for every alternative value of 6
satisfying the inequality 6 < 2. H

Not only is the power function useful for assisting one in comparing
tests and finding best tests when more than one alternative value of the
parameter exists, but it is also useful for determining the effectiveness
of a given test for making the correct decision as a function of the param-
eter value. For example, the power function Py(6) given by (9) shows
that the probability is .37 of making the correct decision, namely, rejecting
H, when 6 =1, and that this probability rises to .61 when 6 = }. By
studying the power function, or power curve, of a test the experimenter
can determine his chances of detecting various possible alternative values
of the parameter that may occur and thus determine whether his experi-
ment is large enough to give him the confidence that he would like in
whatever decision will be made by the test. ;

For the second illustration of the preceding section, consider the con-
struction of the power function for the better of the two tests discussed
there. The construction for the other test would be similar. Since the
critical region consists of the point « = 3, it is necessary to calculate the
probability that 2 will assume the value 3, given that the probability of a
head in a single toss of the coin is p. But this is merely the probability of
getting three heads in three tosses of the coin. Since the tosses are inde-
pendent, this probability is p®; consequently, the power function here is

given by
Pp) = p?

The graph of this power function is shown in Fig: 6. It is clear from Fig.
6 that the critical region # = 3 is a poor one if the coin is biased in favor
of tails. For example, if p were equal to §, the probability of rejecting
the incorrect hypothesis H, that the coin is honest is only 5%. The test is
really not much good unless the alternative value of p is close to 1. Thus,
if p were equal to £, the probability of rejecting H, would rise to %%. In
order to obtain a good test here, it would be necessary to toss the coin
considerably more than three times,

The preceding material on how statistical hypotheses are set up and
tested may appear somewhat artificial to someone experienced with real-
life problems in testing hypotheses. Very often one has no precise value
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P(p)
1

| P
1

Fig. 6. A power curve for testing a coin.

6, of a parameter § to test but only an approximate value based on
experience. If this approximate value is treated as the precise value 6,
to be tested and the test accepts the hypothesis H,, this does not mean that
one believes 0, is the true value of 6. Rather, it means that the true value
of 6 is probably in the neighborhood of 6, and that from a practical point
of view it is safe to treat §, as the true value. The practical conclusions to
be drawn from the test of a statistical hypothesis are by no means the same
as the statistical conclusions obtained by following the procedure outlined
above for testing a precise hypothesis. Further information on the prac-
tical interpretation of statistical methods is given in the following chapters
in the applications of the theory. The next section takes up the problem of
determining how close a 0, based on experience is likely to be to the true
value of 6.

Although this book is concerned principally with methods for testing
hypotheses and estimating parameters of frequency functions, there are
many problems that cannot be treated adequately by means of such
methods. For example, a decision-making problem may involve choosing
one of three possible decisions rather than one of two. One would there-
fore like to know how best to proceed in making the choice. Some of
these methods are discussed in a later chapter.

3.3 Estimation

Most of the problems of estimation in statistics are those of estimating
parameters of frequency functions. For example, the physicist interested
in studying cosmic radiation would be interested in estimating the pa-
rameter 0 in the frequency function (3) because this parameter determines
the rate of the radiation. By taking a number of observations on his
variable z, he could use the resulting data to estimate the value of 6.
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Two kinds of estimates of parameters are in common use. ‘One is
called a point estimate and the other is called an interval estimate. A
point estimate is the familiar kind of estimate; that is, it is a number
obtained from computations on the observed values of the random
variable which serves as an approximation to the parameter. For example,
the observed proportion of defective parts in 50 consecutive parts turned
out by a machine is a point estimate of the true proportion p for that
machine. An interval estimate is an interval determined by two numbers
obtained from computations on the observed values of the random
variable that is expected to contain the true value of the parameter in its
interior. Interval estimates are considered briefly in Chapter 6 and more
fully in Chapter 9; therefore, only point estimates are discussed here.

In order to know how to use several observations of a random variable
in an intelligent manner for constructing a point estimate of a parameter
of the frequency function of the random variable, it is desirable to have
some general principle to follow, just as it was in testing hypotheses.
The principle, or method, should be such that the estimates obtained by
using the method will possess desirable properties. For example, if two
different methods are applied to the same sets of observations and if one
method produces estimates that are consistently closer to the value of the
parameter being estimated than those of the other method, then the first
method would obviously be preferred. Properties of good point estimates
are considered in some detail in Chapter 9; here it suffices to describe a
method that is usually preferred by most statisticians and to state that the
method possesses many desirable properties. This method of estimation,
known as the maximum likelihood method, is used in the following
chapters whenever the problem arises of finding a point estimate of a
parameter of a frequency function. It is defined after some necessary nota-
tion has been introduced. .

Let f(; 0)) be the frequency function of the random variable «, where 6
is the parameter to be estimated. Suppose that # observations are to be
made of the variable z. Let zy, @, - -, 2, denote the n random variables
corresponding to these » observations. Then the function given by

(10) Ly, -+ w3 0) = f@y; O)f (2350) - - - f (2,5 0)

defines a function of the random variables @y, Ty, * ++, @, and the param-
eter 0 which is known as the likelihood function. '

For the purpose of interpreting this function, suppose that the observa-
tional values are obtained from » independent trials of an experiment for
which f(x; 0) is the frequency function of a discrete random variable z.
Then, for any particular set of observational values, because of (24),
Chapter 2, the likelihood function gives the probability of obtaining that
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set of values, including their order of occurrence. If, however,  is a
continuous variable, the likelihood function gives the probability density
at the sample point (z,, ,, - - -, 2,), where the sample space is thought of
as being n dimensional.

Now, for a given set of observational values, an estimate of ¢ is merely
a number obtained from calculations made on the observational values;
however, from the point of view of procedure, an estimate is a function
of the observational values. For example, the function

(@ + 29+ -+ 2,)n

is a typical estimate. It is customary for some statisticians to use the word
estimator for the function and the word estimate for the value of the func-
tion after the observational values have been inserted. Thus

(x1+x2+ +xn)/n

would be called an estimator of §, whereas its numerical value in any given
problem would be called an estimate of 6. Other statisticians, however,
use the word estimate both for the function and its numerical value.

Using the notation and terminology of the preceding paragraphs, the
method of maximum likelihood estimation may be defined in the following
manner:

(11) DEFINITION: A maximum likelihood estimator 6 of the parameter
0 in the frequency function f(x; 6) is an estimator that maximizes the like-
lihood function L(zy, - - -, x,,; 0) as a function of 0.

If the z, are treated as fixed, the likelihood function becomes a function
of 6 only, say L(f); consequently, the problem of finding a maximum
likelihood estimator is the problem of finding the value of 6 that maxi-
mizes L(0). This maximizing value of 0 is, of course, a function of the
x; that have been treated as fixed; hence, if one is discussing a maximum
likelihood estimator it is necessary to write § = 6(x;, 2,, - - * , 2,,) to show
that the estimator is a function of the observational values rather than
just a number.

Maximum likelihood estimators can usually be obtained by calculus
methods because the relative maximum of the likelihood function ob-
tained by differentiating L(xy, - - -, z,,; §) with respect to 6 and setting
the derivative equal to zero is usually an absolute maximum.

As an illustration of the calculus technique for finding maximum
likelihood estimates, consider the problem of estimating the parameter
6 in the frequency function (3) if five observations on z yielded the values
=9, 2, =17 23= 4,2, = .3, and z; = 2.4.
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- The maximum likelihood estimator is first obtained as follbws. By
means of (3) and (10), the likelihood function is

— —02; . —bzy , ., — 0z,
€ e e

n
-6 2 a,
= Qe i=1

Then, differentiating with respect to 6, and collecting terms,
— = 0" E(— 0, 4 n)

Setting 0L/30 = 0 and solving for 6, it will be observed that cither 6 = 0
or the quantity in brackets is 0. Since there is no frequency function when
6 = 0, the only nontrivial solution of this equation is

(12) P
This is the desired maximum likelihood estimator of 6. It will be observed
that this estimator is merely the reciprocal of the arithmetic mean of the
In order to find the maximum likelihood estimate for the given observa-
tions, it is merely necessary to choose # = 5 and insert the five given
observational values in (12). Computations yield the estimate § = .88.
As a second illustration, let p be the probability that an event A will
occur when an experiment is performed and let the experiment be repeated
until 4 does occur. Further, let # denote the number of experiments that
are required before 4 occurs. Here the frequency function of z is

(13) J@ =1~ pyip

because 2 — 1 successive failures, followed by a success, for the event
A4 must occur if the event A4 is to occur the first time on experiment number
. The problem is to find the maximum likelihood estimator of p. Now
the function given by (13) is also the likelihood function; therefore its
maximum with respect to the parameter p must be found. It is convenient
here to take logarithms and then maximize the log f(x) by calculus
methods. The value of p that maximizes log f(x) will be the same as the
value that maximizes f(z). Thus ‘

log f(z) = (x — 1) log (1 — p) + log p
Hence
0 log f(x) z~—1 1
PSS, = O IO + =
dp l—p p
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If this derivative is set equal to 0, it will be found that the value of p which
satisfies the resulting equation is given by

b=

KR |=

Thus, if 4 were the event of getting a 1 to turn up in rolling a die, the
estimate of p, whose value is § here, would be the reciprocal of the number
of rolls needed before a 1 appeared.

As a slight generalization of this problem, suppose a set of 7 such
experiments is carried out. Let @y, @y, - - * , @, denote the number of trials
of the experiment required before A occurs in each group of experiments.
Each of the x, possesses the frequency function given in (13); therefore
the likelihood function now is

L= f[lf(aa-)

=1—=p"p-(l=p=p(L=p7p

= (1 —p)=="p
As before, the maximum is easier to find if one first takes logarithms.
Thus

log L= Qx, —n)log(l —p) +nlogp
Hence

dlogL Sz, —n  n
= — + =
op 1—0p p

The solution of the equation obtained by setting this derivative equal to
zero is given by
p=—
2
The similarity of this result with that given in (12) should not tempt one
to generalize about the nature of maximum likelihood estimates.
Although the discussion of estimation has been limited to that of esti-
mating a parameter of a frequency function, there are methods available
for estimating various properties of a frequency function, such as its
maximum value. In addition, there are methods for estimating the fre-
quency function itself. In doing so it is customary to estimate the distribu-
tion function either by a broken line curve, which corresponds to a point
estimate, or by a pair of such curves that are expected to contain the true
distribution function curve between them, which corresponds to an
interval estimate.
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Problems of estimation are often more delicate than those of testing
hypotheses because there is usually more danger of being misled when
estlmatmg a parameter of an incorrect model than when testing a hypoth-
esis about it. For example, an experiment may be designed to compare
two groups of animals, one treated and the other untreated. If the two
groups do differ and one tests the hypothesis that they do not, then in a
well-designed experiment one is likely to reject that hypothesis even though
an incorrect model may have been chosen to represent the behavior of
the animals. Estimates of a parameter for the two groups, however,
might be very misleading in describing the behavior of the animals if the
model chosen to do so were unrealistic.

REFERENCES

More extensive discussions of the ideas presented in this chapter may be found in
several of the books listed in the references for Chapter 1.

EXERCISES

1. Given the frequency function f(x; 0) = 1/6, 0 < 2 < 6, and 0 elsewhere,
if you are testing the hypothesis H,:6 =1 against H,:0 =2 by means of a
single observed value of @, (a) what would the sizes of the type I and 'type IT
errors be if you chose the interval .5 < « as the critical region? (b) What would
the sizes of these errors be if you chose the interval 1 < @ < 1.5 as the critical
region?

2. Suppose you wish to test a hypothesis H, against an alternative H, by
tossing a coin once and agreeing to accept H, if a head shows and to accept Hy
otherwise. (a) What are the values of « and § for this test? (b) What would
the values of « and § be if you tossed the coin twice and agreed to accept H,
if 2 heads showed and to accept H, otherwise?

3. Given that = has the frequency function f(#; 0) = 4,6 — 1 <o <0 + 1,
and O elsewhere, if H,:0 = 4 and H,:6 = 5 and the critical region is to be of
size « = .25 and to consist of a single interval, show by a sketch which critical
region you would choose and determine what the value of 8 would be for that
choice, assuming that the test is to be based on a single observed value of .

4. What critical region with « = .5 would you choose in problem 1 if you
wanted a critical region of this size that minimizes 5?7

5. Given f(z;0) =(1 + 02 6 >0, 0 <z <1, and 0 elsewhere, if the
hypothesis H,:6 =1 is to be tested by taking a single observation on z and
using the interval @ < .5 as the critical region, (@) calculate the value of « and
(b) calculate the probability of determining that Hy is false if the true value of §
is 2,
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6. Let @ be a random variable whose frequency function values under H,, and
H, are as follows.

x 1 2 3 4 5 6 7

f| Hy)| .01 .02 .03 .05 .05 .07 77

fG| H)| .03 .09 .10 .10 .20 .18 .30

(@) List all critical regions whose size is equal to .10

(b) List all critical regions whose size does not exceed .10

(¢) Among the critical regions in (a), which has the smallest value of 8?
(d) Are there any in (&) which have a still smaller value of 3?

7. A box is known to contain either 3 red and 7 black balls or 7 red and 3
black balls. Three balls are to be drawn from the box, and on the basis of their
colors a decision relating to the contents of the box will be made. If H, denotes
the hypothesis that there are 3 red and 7 black balls and if H, will be accepted
unless 3 red balls are obtained, what are the values of o« and £ here?

8. A bag is known to contain 9 black balls and either 1 or 2 white balls. To
test the hypothesis that there is only 1 white ball, balls are drawn until a white
one appears. Let @ equal the number of balls drawn and find f(z) under both
hypotheses. Choose a good critical region for the test and find its value of «
and §.

9. Find the power function for problem 5 and graph it.

10. If the region > 4.5 is used as the critical region in problem 3, find the
power function for 6 > 4 and sketch it. Using your result, determine what
alternative values of 6 > 4 are such that § < .25.

11. If p denotes the probability that an event A4 will occur in a single trial of
an experiment, then f(z; p) = (1 — p)*p is the frequency function for =, the
number of trials needed before 4 occurs. Find the power function for testing
Hy:p = % if the critical region consists of the points = 1, 2, 3. Criticize this
choice of critical region.

Ha=02v/2 0 find the maximum

12. Given the frequency function f(z; 6) = e~
likelihood estimator of ¢ based on a sample of size .

13. Given the frequency function f(z; 0) = e~%0%/x!, where x can assume only
non-negative integer values, and given the six observed values 6, 11, 4, 8, 7, and
6, find the maximum likelihood estimate for 0.

14. Find the maximum likelihood estimator for 0 based on »n observations for

the frequency function f(x; 0) = (1 + 0)2%, 6 > —1 0<ae<1.

15. Given the frequency function f(z; 6) = e 200/0 \/271‘, find the maximum
likelihood estimator for 6.
16. In problem 15 treat 62 as the parameter to be estimated and write the

frequency function as f(x; 1) = e 2"/ V272, where A = 02. Now find the maxi-
mum likelihood estimator for A and compare with the result for problem 15.
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17. A box contains 10 balls, of which the proportion p are white. Let equal
the number of white balls obtained in drawing 2 balls from the box. Find the
frequency function f(z; p) and then find the value of p that will maximize f(; p).
Here the only values that p can assume are p = if10,i =0,1, -, 10.

18. For the frequency function f(z;6) =1/0, 0 <z <0, and 0 elsewhere,
show that for n observations on this variable, the estimate § that maximizes the
likelihood (1/6)* must be § = max {wy, @y, - - -, x,}, that is, the largest of the n
observations. ..

19. Show that the likelihood function L(#) will be maximized when log L(6) is
maximized if standard calculus methods may be used to obtain the maximum.




CHAPTER 4

Empirical Frequency Distributions of

One Variable

4.1 " Introduction

In this chapter and the next, statistical methods that involve only one
random variable will be studied. This chapter is concerned with methods
for extracting information from data that will be useful in helping to
determine a model for the random variable giving rise to the data. For
example, if z represents the range error in a radar tracking experiment and
if 200 trackings have been made, it is important to know how to use the
experimental data to help determine what frequency function should be
selected for z. The emphasis in this chapter is on the practical mechanics
of handling data, whereas the next chapter is concerned with the actual
selection of the model. After the material of this chapter and the next
have been completed, the problems of statistical inference discussed in
the preceding chapter can begin to be solved.

It is convenient in discussing statistical methods to call the totality of
possible experimental outcomes the population of such outcomes. Then
a set of data obtained from performing the experiment a number of times
is called a sample from the population. In this language statistical infer-
ence consists in drawing conclusions about a population by means of a
sample extracted from the population. This chapter, therefore, is con-
cerned with methods for extracting information from samples for use in
studying the populations from which the samples were drawn.

The type of information that should be extracted from a set of data
depends upon the nature of the data and upon the model that is likely
to be selected. In some problems one knows from theoretical considera-
tions or from experience with similar problems what model should be
used. For example, the frequency function that was introduced in (1),
Chapter 3, is such a model. The frequency function given in (3), Chapter
3, is another. All that is really needed from experimental data for such

64
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models is information that will give one good estimates of the parameters

“involved. In other problems neither theory nor experience is available to
assist one in selecting a model. Then it is necessary to use experimental
data to decide on a reasonable type of model before one can test hypo-
theses about it or estimate its parameters, F ortunately, in testing certain
hypotheses about frequency functions it is not necessary to know the
frequency function too precisely, and therefore the information concerning
it that can be obtained from moderate amounts of data may sufﬁce to
describe it adequately for testing purposes.

In considering the nature of the data it is particularly 1mp0rtant to
distinguish between those sets of data for which the order in which the
observations were obtained yields useful information and those sets for
which it does not. For example, if one were interested in studying weather
phenomena or the stock market from day to day, the order would be very
important. Industrial experience indicates that the information obtained
from considering the order in which articles are manufactured is indis-
pensable for efficient production. However, if one were interested in
studying certain characteristics of college students and had selected a set
of students by choosing every twentieth name in a college directory, he
would hardly expect the order in which the names were obtained to be of
any value in the study. Methods for dealing with data for which drder is
important are considered in later chapters. In this chapter the emphasis
is on techniques that do'not use order information. The material in these
later chapters will enable the investigator to decide whether he is justified
in assuming that he may ignore the order information present in his data.

4.2 Classification of Data

Suppose one is given the weights of 200 college men and he wishes to
use them to study the weight distribution of such men. Now it is very
difficult to look at 200 measurements and obtain any reasonably accurate
idea of how those measurements are distributed. For the purpose of
obtaining a better idea of the distribution of weights it is therefore con-
venient to condense the data somewhat by classifying the measurements
into groups. It will then be possible to graph the modified distribution
and learn more about how weights are distributed. This condensation
will also be useful for simplifying the computations of various averages that
need to be evaluated, particularly if fast computing facilities are not avail-
able. These averages will supply additional information about the distri-
bution. Thus the purpose of classifying data is to assist in the extraction of
certain kinds of useful information concerning the underlying distribution.
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If the data are for a discrete variable, there is usually no need for classifi-
cation. Thus data on the number of petals on flowers of a given species
or the number of yeast cells on a square of a hemacytometer are naturally
classified. There is usually little difficulty in performing the classification
when there appears to be a need for it.

If the data are for a continuous type of variable such as length, weight,
or time, they are recorded to a certain digit or decimal accuracy. For
example, if the diameter of a steel rod is measured to the nearest thousandth
of an inch, a diameter of .431 inch assumes that the measurement, if
taken to more decimal places, would lie between .4305 and .4315 inch.

In classifying data for a continuous variable experience indicates that
for most data it is desirable to use 10 to 20 classes. With less than 10
classes too much accuracy is lost, whereas with more than 20 classes the
computations become unnecessarily tedious. In order to determine
boundaries for the various class intervals, it is merely necessary to know
the smallest and largest observations of the set. As an illustration, sup-
pose that 200 steel rods were measured and it was found that the smallest
and largest diameters were .431 and .503 inch, respectively. Since the
range of values, which is .072 inch here, is to be divided into 10 to 20 equal
intervals, the class interval should be chosen as some convenient number
between .0036 and .0072. A class interval of .005 inch will evidently be
convenient. Since the first class interval should contain the smallest
measurement of the set, it must begin at least as low as .4305. Further-
more, in order to avoid having measurements fall on the boundary of two
adjacent class intervals, it is convenient to choose class boundaries to
a unit beyond the accuracy of the measurements. Thus in this problem it
would be convenient to choose the first class interval as .4305-.4355,
The remaining class boundaries are then determined by merely adding the
class interval .005 repeatedly until the largest measurement is enclosed in
the final interval. If .4305-.4355 is chosen as the first class interval, there
will be 15 class intervals and the last class interval will be .5005-.5055.
When the class boundaries have been determined, it is a simple matter
to list each measurement of the set in its proper class interval by merely
recording a short vertical bar to represent it. When the number of bars
corresponding to each class interval has been recorded, the data are said
to have been classified into a frequency table. It is assumed in such a
classification that all measurements in a given class interval, say the ith
interval, have the value at the midpoint of the interval. This value is
called the class mark and is denoted by «,. Thus 2; = .433 and x,; = .503
in the example just considered. The number of measurements found in
the ith class interval is denoted by f;, and the total number of measure-
ments is denoted by n. Table 1 illustrates the tabulation and resulting
frequency table for the set of steel rods mentioned previously.
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It is a common practice for many applied statisticians to mdlcate class
intervals in a slightly different form from that suggested above. They
record not actual class interval boundaries but rather noncontiguous
boundaries. Thus they would indicate the first three class intervals by
431-435, .436-.440, and .441-.445, When interval boundaries are so
indicated, the true boundaries are ordinarily halfway between the upper

TaBLE 1
Class boundaries . Frequencies Class marks: =z | Frequencies: f
0.4305-0.4355 | // 0.433 2
A355- 4405 | Y .438 5
4405 .4455 | P 443 7
A455- 4505 [ TRY TTT .448 13
A505- .4555 | N TIY TR 11T 453 19
A555- .4605 | Y TR TR Y TR ) 458 27
A4605- 4655 | LTI TRY TR PN 77T 463 29
A655- 4705 | TN TR TR THUY .468 25
AT05- 4755 | TR TR TR 17 473 23
AT755- .4805 | I MY 1111 478 14
4805~ 4855 | T WY 483 15
A4855-7.4905 | [ 1111 488 9
4905~ .4955 | [/ 493 6
4955- .5005 | ///] 498 4
.5005- .5055 | // .503 2

and lower recorded boundaries of adjacent intervals. Another common
method of recording class intervals is to employ common boundaries but
to agree that an interval includes measurements up to but not including
the upper boundary. Then the first three class intervals above would be
indicated by .431-.436, .436-.441, and .441-.446. A measurement that
falls on a boundary is placed in the higher of the two intervals. If one
knows the accuracy of measurement of the variable, there is little difficulty
in determining the true class boundaries and class marks for these two
methods of classification. It is important to use the exact class marks;
otherwise a systematic error will be introduced in many of the computations
to follow.

4.3 Graphical Representation of Empirical Distributions
A rough idea of how the values of a random variable are distributed

can be obtained from inspecting its histogram. The histogram for the
data of Table 1 for absolute frequencies is given in Fig. 1. It should be
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Fig. 2. Distribution of 302,000 marriages classified according to the age
of the bride-groom. Frequencies are in units of 1000.

350
300
250
200
150
100

50

0

f

322

213

70

26 1712
|l|11|11.1.0.6....751x

H I 1 1
25 75 125 175 225 275 325 375 425 475 525 575 625
Fig. 3. Distribution of 727 deaths from scarlet fever classified according to age.

'

REEER D A R TR

WEBTTE]

&

i



EMPIRICAL FREQUENCY DISTRIBUTIONS OF ONE VARIABLE " = 69
noted that the class marks are at the midpoints of the bases of ihe rec-
tangles making up the histogram. If preferred, the histogram may be
drawn to show the class boundaries rather than the class marks.

Fortunately, many important frequency distributions to be found in
nature and industry are of a relatively simple form. They usually range
from a bell-shaped distribution, like that in Fig. 1, to something resembhng
the right half of a bell-shaped distribution. A distribution of the latter
type is said to be skewed, skewness meaning lack of symmetry with respect
to a vertical axis. It will be found, for example, that the foIlowing variables
have frequency distributions that possess such forms in approximately
increasing degrees of skewness: stature; various industrial measure-
ments; weight; age at marriage; mortality age for certain diseases;
and wealth. Figures I, 2, and 3 represent three typical dxstnbutlons with
increasing degrees of skewness.

4.4  Arithmetical Representation of Empirical Distributions

As explained earlier, the principal reason for classifying data and
drawing the histogram of the resulting frequency table is to determme the
nature of the distribution. Some of the theory that is developed 1 n later
chapters requires that the distribution be one that possesses a graph
similar to that displayed in Fig. 1; consequently, it is necessary to know
whether one has this type of distribution before attempting to apply
such theories to it.

Although a histogram yields a considerable amount of general mforma-
tion concerning the distribution of a set of sample measurements more
precise and useful information for studying a distribution can be obtained
from an arithmetical description of the distribution. For example if
the histogram of weights for a sample of 200 men from one college were
available for comparison with the histogram of a similar sample from
another college, it might be difficult to state, except in very general terms,
how the two distributions differ. Rather than compare the two weight
distributions in their entirety, it might suffice to compare the average
weights and the variation in weights of the two groups.

The nature of a statistical problem largely determines whether a few
simple arithmetical properties of the distribution will be enough to describe
it satisfactorily. Most of the problems that are encountered in this book
are the type that requires only a few simple properties of the distribution
for its solution. For simple frequency distributions, such as those whose
graphs are given in Figs. 1, 2, and 3, this description is accomplished
satisfactorily by means of the low-order moments of the distribution,
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which are defined in (1). In many problems the statistician is concerned
only with the first and second moments. In a few problems he uses the
first four moments, but seldom does he use more than four.- One reason
for this is that the higher moments are so unstable in repeated sampling
experiments that little additional reliable information can be obtained
from them.

For data that have been classified let x, be the class mark for the ith
class interval, f; the observed absolute frequency for the ith interval, A
the number of intervals, and » the sum of the absolute frequencies. With
this notation, empirical moments are defined as follows:

(1) DerNITION: The kth moment about the origin of an empirical fre-
quency distribution is given by
h
m, == aff,

ni=1
If the data have not been classified, «; will represent the value of the ith
observation, the f; will all be equal to 1, and /4 will be equal to n. The
prime placed on my, is to distinguish this kth moment from another
moment to be defined later.

Physics and calculus students are usually familiar with moments as
they pertain to masses f; located on the x axis at distances x; from the
origin. For example, the moment of inertia is essentially the second
moment. Statistical interpretations of the low-order moments are given
in the next two sections.

4.4.1 The First Moment as a Measure of Location

The first moment about the origin, m,’, is called the mean and is usually
denoted by Z; hence

13
) 7=-3 af.

T =

For unclassified data Z reduces to the familiar formula for the average
of a set of numbers. Formula (2) is sometimes spoken of as the formula
for the weighted mean; however, it is merely a variation of the familiar
form adapted to classified data. Geometrically, the mean represents the
point on the z axis where a sheet of metal in the shape of the histogram
would balance on a knife edge. For a histogram like that of Fig. 1 it is
clear that # defines a measure of location, that is, a value at which the data
tend to center. The mean is ordinarily meant when the word average is
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used. For example, the statement that the average weight of a group of
people is 140 pounds implies that this is their mean weight. §

If the z; and f; are not large, the value of Z is easily computed from its
definition, particularly if a calculating machine is available. Otherwise
considerable time is saved for frequency tables having equal class intervals
by using a short method based on introducing a new variable u, which takes
on only small integral values and which is defined by

(3 Cr=cuy o

Here ¢ is the class interval and =, is a conveniently chosen class mark.
The computations are somewhat easier if , is chosen as a class mark
near the middle of the distribution. When this expression is substituted
for z; in (2),

z

(cu; + 20,

il
S| I =

h
2
=1
)
Zl (cus f; + xof))
1 13 1 13

=2 cuf;, + . '21 %y f;

ni=1

1

Since ¢ and #, are constants with respect to these summations, they may
be factored out and placed in front of the summation signs; hence
12 12 :
T=c=2 ufi+ax=-Y f;
ni=1 ni=1
From (2) it is clear that the coefficient of ¢ is %, and from the definition of
n the coefficient of #, is 1; therefore '

4 : T = ci +

Since the computations needed to find % are relatively easy, the value of
# can be obtained quite easily without the aid of a calculating machine,
This short method is illustrated in Table 2. The data for this frequency
distribution are taken from 1000 telephone conversations in séconds,
recorded to the nearest second. Here x, was chosen as 449.5 because this
choice gives rise to smaller products in the #f column than other choices,
although 549.5 is nearly as good. When (4) is applied to Table 2,
7= 100(-2_51) +449.5 = 4752
1000 ’
For certain common types of distributions, the mean is superior to
other ordinary measures of location, some of which are considered briefly
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later. This superiority rests largely on the fact that in repeated sampling
experiments from such distributions the mean usually tends to be more
stable than these other measures of location. For example, suppose one
took a sample of five trees from a forest and calculated their mean height.
Instead of the mean, one could have chosen, say, the middle height of the
five as the measure of location. Now, if one repeated this experiment a
large number of times, he would usually find that the set of means would
tend to be more closely clustered than the set of middle measurements.

TABLE 2
z f u uf

49.5 6 -4 —24
149.5 28 -3 -84
249.5 88 -2 —176
349.5 180 -1 —180
449.5 247 0
549.5 260 1 260
649.5 133 2 266
749.5 42 3 126
849.5 11 4 44
949.5 5 5 25
Totals 1000 257

This property of greater stability is particularly important in later work
when a precise estimate of a population mean is desired. It should be
clearly understood that the mean possesses these advantages only for
certain types of distributions of particular importance which are con-
sidered in later chapters. There are other well-known distributions for
which the mean is a very poor measure of location.

4.4.2 The Second Moment as a Measure of Variation

The concept of variation is of paramount importance in statistics.
Statistical methods have often been called methods for studying variation.
The problem of measuring variation occurs repeatedly in the various
sciences and in certain branches of industry. For example, in order to
detect any lack of uniformity in the quality of a manufactured product, it
is first necessary to know the variability of the product. This may be
illustrated in the following manner. Suppose a purchaser of wire will not
tolerate wire that does not possess a tensile strength of at least 50 pounds
and that he is considering buying it from one or the other of two firms.
If equal samples taken from the products of these two firms gave empirical
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Fig. 4. Hypothetical distribution of tensile strength.

frequency distributions like those shown in Fig. 4, it is clear that the prod-
uct of only one of the firms would satisfy the purchaser’s requirement.
Since the mean tensile strength was 100 pounds in each sample, the pur-
chaser would have had no basis for making a decision if the variation in
tensile strength had been ignored.

It is customary to assume that variation means variation of the data
about a measure of location. Since the mean is being used as the measure
of location here, it is necessary to introduce moments about the mean in
order to obtain a measure of variation from moments, Empirical mo-
ments about the mean are defined as follows:

(5) DEFINITION: The kih moment about the mean of an empirical frequency
distribution is given by
R
my =23 (o, — By,

ni=1
Now it will be shown that the second moment about the mean, n1,, can be
considered as a measure of variation. Since it is often convenient to have
a measure of variation in the same units of measurement as for the data,
Vmy is usually selected instead. This quantity is called the standard
deviation and is denoted by s; hence

© =23 -,

The second moment about the mean, s%, which is more convenient than
the standard deviation as a measure of variation in certain situations, is
called the variance. Some authors define these two quantities with »
replaced by n — 1. Their definitions have certain advantages for later
work but seem quite unnatural here. This matter is considered in Chapter
9. :

If one considers the computation of s for two distributions of differing
spread, such as those whose histograms are given in Fig. 4, it should be
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clear that s does measure relative variation or spread for these distribu-
tions. The distribution with the large tails will have a relatively larger
value of s because the large deviations ¢, — #, when squared and multi-
plied by their relatively large frequencies f.» will contribute heavily to
the value of the sum and will more than compensate for the larger fre-
quencies for small deviations in the concentrated distribution. The
interpretation of the standard deviation as a measure of absolute variation
is presented a few paragraphs later. At present it is merely a number in
the same units as # which seems to measure the relative extent to which
data are concentrated about the mean and which becomes larger as the
data become more dispersed.

The calculation of the standard deviation from its definition (6) becomes
inaccurate unless an accurate value of Z is used, and then the computa-
tions usually become tedious. The change of variable introduced for
computing the mean is also useful for obtaining a short method of com-
puting the standard deviation for frequency tables having equal class
intervals. From (3) and (4) it follows that

x;, — % = c(u, — 1)
Consequently,

1S (o — 2pf = L 3, — 0,
n n

Tl .
== 3 W - 2uu + udf,
n
— Cz(z u;%; — 2 uufi + azZ_._f_i)
n n n

The short method for computing the standard deviation is therefore given
by _
2
M s = cA/Z——”ff*' —
n

Hereafter, as in this derivation, the indicated range of summation will be
omitted from the summation sign whenever the range is obvious.

For data that have not been classified, it is assumed in (5) that ,
represents the ith observation, that all the f;are equal to 1, and that 4 equals
n. The application to this case of the algebraic manipulations used to
obtain (7) from (6) will yield the formula

S=N/Zﬁ2_§2
n
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This form is often more convenient than (6) for unclassified data,k‘particu—
larly when the #; contain at most two digits each. §
Table 3 illustrates the technique for computing s for the data of Table 2.

TABLE 3

f u uf W
49.5 6 —4 —24 96
149.5 28 -3 —84 252
249.5 88 -2 —176 352
349.5 180 -1 —180 180

449.5 247 0
549.5 260 1 260 260
649.5 133 2 266 532
749.5 42 3 126 378
849.5 11 4 44 176
949.5 5 5 25 125
Totals 1000 257 2351

When (7) is applied to Table 3,

s =100 Jﬁil — (257 = 151
1000
correct to the nearest integer.

In order to interpret the standard deviation as a measure of variation,
it is necessary to anticipate certain results of later work. For a set of
data that has been obtained by sampling a particular type of population
called a normal population it will be shown that the interval (z — s, % + 5)
will usually include about 68 per cent of the observations and that the
interval (Z — 25, Z + 25) will usually include about 95 per cent of the
observations, provided that n is large. A sketch of a particular normal
distribution is shown in Fig. 5, Chapter 5.

As an illustrative example of this property, consider the data for which
the standard deviation was just computed. Previous calculations gave
T = 475 and 5 = 151, correct to the nearest integer; consequently, the
foregoing two intervals are (324, 626) and (173, 777), respectively. The
number of observations lying within these intervals may be found approxi-
mately by interpolating as though the observations in a given ‘interval
were dispersed uniformly throughout the interval. This assumption
implies that on the histogram any fractional part of a class interval will
include the same fractional part of the frequencies in that interval. For
ease of interpolation, the histogram for this frequency distribution is
shown in Fig. 5. If interpolation is carried to the nearest unit, it will be
found that the interval (324, 626) will include 136 + 247 + 260 + 35
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Fig. 5. Histogram for the distribution of 1000 telephone conversations.

measurements, which is 67.8 per cent of them. The interval (173, 777)
excludes 6 + 21 + 9 + 11 + 5 measurements, which is 5.2 per cent.
For a histogram as irregular as this, these results are unusually close to
the theoretical percentages. However, even for histograms possessing a
considerable lack of symmetry, the actual percentages are often surpris-
ingly close to the theoretical percentages, primarily because the large
percentage of measurements in the short tail included by such an interval
is compensated to a considerable extent by the small percentage of
measurements in the long tail which are included.

For certain common types of data the standard deviation is superior
to other common measures of variation, some of which are considered
briefly later. The superiority rests partly on its greater stability in re-
peated sampling experiments and partly on its convenience for developing
statistical theory. The situation with respect to other measures of varia-
tion is very much like that of the mean with respect io other measures of
focation.

4.4.3 Higher Moments

The two preceding sections were designed to give a statistical inter-
pretation or meaning to the first two moments. It is more difficult to
give satisfactory statistical meanings to the moments of higher order.
Any general interpretation is likely to fail for even fairly reasonable
kinds of distributions.
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The principal use of empirical moments beyond the second has been
in fitting theoretical frequency distributions to empirical distributions,
and this use has been restricted largely to the third and fourth moments

about the mean. In such fitting problems it is ¢ustomary to calculate the
quantities

(8) a3=ﬂ3 and a, = —=

and then use the four quantities Z, s, a,, and a, to describe the empirical
distribution. The reason for using a; and a, rather than m, and m, is that
the former are independent of the units of measurement and the latter
are not. The quantity a, is often called a measure of skewness because
its value is O for a symmetrical distribution and is likely to be a large
positive number for a distribution with a large right tail such as that in
Fig. 3. The value of a; may be zero, however, for a nonsymmetrical
distribution so that care must be used in interpreting a; as a measure of
skewness. The quantity g, is occasionally given an interpretation as a
measure of the peakedness of the distribution, but this interpretation is
rather vague and of questionable value. It should suffice to use the first
four moments as quantities which usually describe empirical distributions
fairly well without necessarily giving these moments geometrical inter-
pretations.

In the next chapter, when theoretical frequency distributions are con-
sidered, it will be found that the higher moments play an essential role in the
theory. The reason for this is that it is often necessary to know the values
of all the theoretical moments before a theoretical frequency function is
completely determined. Thus moments beyond the second may be very
important theoretically in determining frequency distributions even
though empirical moments are not used a great deal to describe empirical
frequency distributions. )

4.4.4 Other Descriptive Measures

Among the other common measures of location are the median, mode,
and geometric mean. i

For a set of measurements arranged in order of magnitude the median
is defined as the middle measurement, if there is one, otherwise as the
interpolated middle value. Thus for the set of measurements 2, 3, 3, 4,
5,5,6,6,7, 7,7, 9 the median is 5.5. For classified data the median is
defined as the abscissa which divides the area of the histogram into two
equal parts, Some workers prefer the median to the mean when the
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distribution is heavily skewed because they feel that it is more representa-
tive of what a measure of location should be than the mean is under such
circumstances. They might, for example, prefer the median when dis-
cussing the notion of average wage of a community because a few very
large incomes would produce a mean wage higher than the notion
of average wage implies, whereas the median wage would not be so
affected.

The mode of a set of measurements is defined as the measurement with
the maximum frequency, if there is one. For the set of measurements in
the preceding paragraph, the mode is 7. If there is more than one measure-
ment with the maximum frequency, no completely satisfactory definition
exists. The mode is used occasionally in situations similar to those for
which the median might be selected. Since the mode is of questionable
value in descriptive statistics, it will not be considered further here.

The geometric mean of a set of measurements, assuming that they are

positive, is defined as Vz, 1,2+ - - @,/n. If the data are classified, «; rep-
resents the ith class mark; otherwise it represents the ith measurement,
in which event all the f; equal 1. It will be observed that the logarithm of
the geometric mean is equal to the arithmetic mean of the logarithms.
This measure is used principally in working with business index numbers,
for which it possesses certain advantages.

Among the more common measures of variation are the range and
mean deviation. The range, which is the difference between the largest
and smallest measurement in the set, is used as a measure of variation
largely because of its ease of computation. It is often applied in certain
industrial engineering work. It has two important disadvantages. First,
its value usually increases with » because there is a better chance of
obtaining extreme measurements if a large sample of data is taken than if
a small sample is taken. It is possible, however, to make allowance for
this growth and thus eliminate this disadvantage of the range. Second,
the range is usually quite unstable in repeated sampling experiments of
the same size when » is large; consequently, its use is ordinarily restricted
to sets of data containing less than 10 observations each. Because of its
importance in various fields, the range will be studied more fully in a
later chapter.

The mean deviation is defined as X |z, — Z| f;/n, where the absolute
values, that is, the positive values of deviations, are employed. This
measure of variation is often used because it appears to be easier to cal-
culate and understand than the standard deviation. It will be found,
however, that the short method of calculating the standard deviation is
about as fast as calculating the mean deviation, when # is large.
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Consideration was given to these other measures of location and
variation only because they appear quite often in certain fields of applica-
tion and the student of statistical methods should be acquainted with
them. However, for the present, moments will be selected as the preferred
set of descriptive measures unless there are valid reasons for doing other-
wise. 7

An interesting example of a theoretical distribution for which moments
are a poor choice of descriptive measures is the distribution whose fre-
quency function is

9} o
9) &) = T

For this distribution, which is known as the Cauchy distribution, it turns
out that the theoretical moments, which are defined in the next chapter,
are all infinite. It also turns out that the mean of a sample of 1 observa-
tions is no better than a single observation for estimating the parameter
6. The median here is a much better measure of location than the mean.
This example illustrates the fact that there are no universal methods for
solving all statistical problems.
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EXERCISES

1. Weights of 300 entering freshmen ranged from 98 to 226 pounds, correct
to the nearest pound. Determine class boundaries and class marks for the first
and last class intervals.

2. The thickness of 400 washers ranged from .421 to .563 inch. Determine
class boundaries and class marks for the first and last class intervals.

3. Given the following frequency table of the heights in centlmcters of 1000
students, draw its histogram, indicating the class marks.

x | 155-157 158-160 etc.

f‘ 4 8 26 53 89 146 188 181 125 92 60 22 4 1 1
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4. Given the following frequency table of the diameters in feet of 56 shrubs
from a common species, () draw its histogram and (b) guess by merely inspecting
the histogram the values of Z and s.

x 1 2 3 4 5 6 7 8 9 10 11 12

f‘l 7 11 16 8 4 5 2 1 0 0 1

5. For the data of problem 4 calculate # by (a) definition and (b) the short
method.

6. For the data of problem 4 calculate s by (a) definition and (b) the short
method.

7. Given the frequency function

f@ =[5z (5 —)NH*E)5= 2 =01, ,5,
multiply f(x) by 243 and treat the resulting numbers as observed frequencies
for the corresponding « values. (@) Calculate & by definition. () Calculate s
by the short method.

8. Given the frequency function f(x) = (4*11, v =1,2,3, - -, multiply
f(@) by 1000 and treat the resulting numbers, after rounding off to the nearest
integer, as observed frequencies. (@) Calculate . (b) Calculate s.

9. For the histogram of problem 4, using the results in problems 5 and 6,
calculate the approximate percentages of the data that lic within the intervals
# 5 and & £ 2s5. Explain why these percentages are fairly close to normal
distribution percentages in spite of the obvious non-normality of this distribution.

h

10. Show that z (z;, — &) f; =0.
i=1

11. If stature of adult males may be assumed to possess a normal distribution,
what would you guess the standard deviation of stature to be if you estimate a
2-standard deviation interval about the mean through your knowledge of male
stature ?

12. If the scores on a set of examination papers are changed by (a) adding 10
points to all scores and (b) increasing all scores by 10 per cent, what effects will
these changes have on the mean and standard deviation?

13. What would you judge a distribution to be like if the variable can assume
only positive values and the mean and standard deviation are equal ?

14. Show that formula (6) in the text is equivalent to the formula m, =
my — my’

15. By expanding the binomial in formula (5) in the text and summing term by
term, derive a formula for calculating the £th moment about the mean in terms
of the 4th and lower-order moments about the origin.

16. Suppose only the 2 means Z; and #, are available from 2 sets of observa-
tions of sizes #; and n, made on the variable . Show that the mean of the com-
bined set @ is given by & = (n;; + nyo)/(n; + ny).

17. If the 2 standard deviations s, and s, are also available in problem 16,
show that the standard deviation of the combined set s can be obtained from
s? = (g% + mpsyd)/(ny + ny) + myng(®y — B f(ny + np).
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18. For the data of problem 3, (@) calculate # and s by the short method,
(b) calculate the approximate percentages of the data that lie in the intervals
@ 4 sand & £+ 25 and compare with normal distribution percentages, (¢) calcu-
late the crude median and mode, and (d) estimate the range for the data.

19. Given the following 4 mass points, calculate the mean and third moment
about the mean and explain what this example shows concerning the third
moment about the mean as a measure of symmetry. A mass of 5 atz = —4;
amass of 10 at « = —1; a mass of 10 at x = 2; and a mass of 2 at x = 5.

20. Sketch a histogram for which you believe the value of s will be large, yet
for which most of the distribution will be concentrated near the mean, so that
the interval  + 2s will include at least 99 per cent of the data.




CHAPTER 5

Theoretical Frequency Distributions of
One Variable

5.1 Introduction

The purpose of this chapter is to introduce a few of the commonly
used theoretical frequency distributions as models for empirical distri-
butions. As pointed out and illustrated in 4.1, in some problems one
knows from theoretical considerations what model should be used. In
other' problems one must rely on samples and experience to determine
a satisfactory model. Ordinarily the sample is not large enough to deter-
mine the population distribution with much precision; however, there
is often enough information in the sample, together with information
obtained from other sources, to suggest the general type of population
distribution involved.

In many problems it suffices to consider certain properties of a distribu-
tion rather than to study the entire distribution. In particular, it often
suffices to know the low-order moments of a distribution. This chapter,
therefore, is concerned with theoretical moments as well as with theoretical
frequency distributions. '

5.2 Discrete Variables

Most of the discrete variables that occur in statistical experiments
are the counting type. For example, the variable might be the number of
accidents a car owner has per year or the number of insects surviving a
spraying. Variables such as these assume only non-negative integral
values. The discrete random variables that are considered here are
variables of this type, that is, those that assume non-negative integral
values only.

82
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5.2.1 Moments

Before considering particular theoretical frequency distributions for
discrete variables, a brief discussion of theoretical moments is given
because of the importance of theoretical moments in determining models
and in deriving statistical theory. ’

Theoretical moments for a discrete variable of the type being considered
are defined as follows:

(1) DEFINITION: The kth moment about the origin of a theoretical Jre-
quency distribution with frequency function f(x) is given by

a0

= E xkf(x)

@=0

If this definition is compared with that of an empirical frequency distribu-
tion as given by (1), Chapter 4, it will be noted that the probability f(x)
takes the place of the observed frequency ratio f;/» in that definition.

The kth moment of a distribution is also commonly ealled the kth
moment of the random variable whose distribution is being studied.
Thus one may speak of u,’ as being the kth moment of z or as the kth
moment of the distribution of =. ,

Since theoretical moments about the mean are used extensively, they
also need to be defined. As before, it is assumed that the random variable
z can assume only non-negative integral values.

(2) DEFINITION:  The kth moment about the mean of a theoretical Jre-
quency distribution with frequency function f () is given by

)

pe= 2 (& = p)f(x)

2=0 ;
This definition is the theoretical analogue of the corresponding definition
for empirical distributions as given by (5), Chapter 4.

Since the first moment about the origin, which is the theoretical mean,
and the square root of the second moment about the mean, which is the
theoretical standard deviation, are both used so often, they are given
special symbols, namely x and ¢. Thus u = u," and ¢ = \/;4;.

In evaluating u, it is usually more convenient to evaluate the first two
moments about the origin and then calculate u, from them rather than
evaluate w, directly from definition (2). This is accomplished by ex-
panding the binomial in (2) for & = 2 in the following manner.

pe= 3 (= WY@

= 3 Y@ =2 3 af )+ 3 1@

z=0




84 INTRODUCTION TO MATHEMATICAL STATISTICS
But from (1) this may be written

o = py’ — 2pp + p
Combining terms, the desired formula is obtained, namely

©) Po = My — %

5.2.2 Moment Generating Function

Even though the direct computation of theoretical moments from
definition (1) may be easy, it is convenient for later theory to be able to
calculate such moments indirectly by another method. This method is
introduced here and used throughout several chapters for proving theorems.
It involves what is known as the moment generating function. As the
name implies, the moment generating function is a function that generates
moments. It is defined as follows:

(4) DerINITION: The moment generating function of a random variable
@ with frequency function f(x) is given by

0

M) = 3 @)

This series is a function of the parameter 0 only, but the subscript is
placed on M(0) to show what variable is being considered. The param-
eter 0 has no real meaning here; it is merely a mathematical device intro-
duced to assist in the determination of moments.

In order to see how M,(0) does produce moments, assume that f(x)
is a frequency function for which the series in (4) converges. Now expand

€% in a power series and sum term by term. Since the power series for e* is
2 3

2"
| =1+4+z+ N + ; + -
it follows from (4) and (1) that

®  MO=3 [1+e +E+fx—3+ Jf(x)

o0 o)

2@+ 620 of (@) + 5 gong(w) +

3

_1+0 I+22 I+€_ ,‘E""'
= faal 2!:“2 3!‘“3

It will be observed that the coefficient of 6%/k! in this expansion is the kth
moment about the origin; consequently, if the moment generating func-
tion can be found for a variable z and can be expanded into a power series
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in 0, the moments of the variable can be obtained by merely inspecting
the expansion. If a particular moment is desired, it may be more con-
venient to evaluate it by computing the proper derivative of M,(0) at
6 = 0, since repeated differentiation of (5) will show that :
, _ d'M

6" o=

Applications of the preceding definitions are begun in the next séction.

(6) My =

5.2.3 Binomial Distribution

Consider an experiment of the repetitive type in which only the occur-
rence or nonoccurrence of an event is recorded, Suppose the probability
that the event will occur when the experiment is performed is p. Let
g = 1 — p denote the probability that it will fail to occur. If the event
occurs at a given trial of the experiment, it will be called a success, other-
wise a failure. Let n independent trials be made and denote by « the num-
ber of successes obtained in the n trials. Then consider the problem of
determining the probability of obtammg precisely  successes in # trials
of the experiment. A formula for this probability would be needed, for
example if one knew that the probability of a marksman hitting a target
is % and if one wished to calculate the probability of getting at least
two hits in taking 20 shots at the target.

For the purpose of deriving the desired formula, first determine the
probability of obtaining x consecutive successes followed by n — x
consecutive failures. These n events are independent; therefore, by (10},
Chapter 2, this probability is

T n—x
U SR e

pprprqrgrg=pqT

The probability of obtaining prec1se]y x successes and n—x fallures in
some other order of occurrence is the same as in this particular order
because the p’s and ¢’s are merely rearranged to correspond to the other
order. In order to solve the problem, it is therefore necessary to count
the number of orders.

The number of orders is the number of permutations posmble with »n
letters of which « are alike (p’s) and the remaining 7 — = are alike (¢’s).
But by formula (18), Chapter 2, the number of such permutations is equal
to

n!
@ z! (n — x)!
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Now, by (4), Chapter 2, the probability that one or the other of a set of
mutually exclusive events will occur is the sum of their separate proba-
bilities; consequently it is necessary to add p“g"* as many times as
there are different orders in which the desired result can occur. Since (7)
gives the number of such orders, the probability of obtaining x successes
in some order is therefore given by multiplying p%¢"~* by the quantity in
(7). The resulting probability, which is that of obtaining » successes in
n independent trials of an experiment for which p is the probability of
success in a single trial, defines what is known as the binomial or Bernoulli
frequency function. Consequently,

(8) BiNOMIAL DISTRIBUTION: f(#) = —n pq" "
z! (n — )!

Bernoulli was one of the first mathematicians to develop probability
theory for discrete variables; hence this distribution has been named after
him. The more commonly used name of binomial distribution comes from
the relationship of (8) to the following binomial expansion.
®  @+p"=q"+na""p+ 11("2——1)q”‘2p2 +o 4

_ < n, x Nn—x
,go 2! (n — w)!p g

From (8) it is clear that (9) may be written

@+p = 3 S

Thus the various terms in the binomial expansion of (¢ + p)” give the
probabilities of the various possible results in their natural order.

The binomial frequency function is an example of a mathematical
model that can be applied to many real-life problems involving a discrete
variable. In any given application it is necessary to know or to estimate
the values of the two parameters p and » before (8) can be used.

5.2.3.1 Ilustrations. Asillustrations of the direct application of formula
(8), first consider two impractical problems related to the rolling of a die.
If a true die is rolled five times, what is the probability that precisely two
of the rolls will show 1’s? Here success consists in obtaining a 1; hence
P =1%9 =% and n = 5. When (8) is applied, the solution is

o= S 0 -

If the die is rolled five times, what is the probability of obtaining at
most two 1’s? To answer this question it is necessary to compute the
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probabilities of obtaining precisely no 1’s, one 1, and two 1’s. Apply-

ing (8), F0) = %(é)" (2)5 = 40

o= 25 - 0

Since these three possibilities are mutually exclusive events, it follows that
Plz < 2} = £(0) + f(1) + f(2) = 96 |

As a somewhat more earthy problem, consider the one mentioned just

before the derivation of (8), namely, that of calculating the probability

- of getting at least two hits on a target in taking 20 shots at it if the prob-
ability of a hit for a single shot is #,. Here p = & and n = 20; hence

Ple 22} =1—f(0) - f(1)

== ) =G G
10 10/ \10
=1-.122 - .270
= .608
The validity of using the binomial model in the last illustration is not
so obvious as it is in the first two illustrations. The derivation of the
binomial formula was based on independent trials with p constant from
trial to trial. If the same man takes repeated shots at the same target, it
might be expected that his chances of making a hit would increase some-
what with practice. If a different man were used each time, p would
undoubtedly change from trial to trial. Possible deviations in the basic
assumptions should be taken into account when interpreting a resulting
probability such as .608.
5.2.3.2 Binomial Moments. The first two moments of the binomial
distribution will be needed shortly; therefore consider their computation.
In order to illustrate the two methods for computing moments, these
moments are calculated directly from definition and indirectly by means
- of the moment generating function. ‘
If (1) is applied to (8) and if a few algebraic manipulations are made,
it will be seen that
n!

M=

10) w= r ——————— pPg" "
( @=0 x!(n——x)!pq
n !
— z z ____n________ pqu—a:
z=1 21 (n — x)!
—_ i n! pmqn*w

Il

1(z— D! (n— 2!

@2
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If n and p are factored out, this becomes

" — '
U= np Z (n 1) x—1 n—x
e=1(x — D! (n — 2)!

Letting ¥y = « — 1, the right side can be written

_ K (n — 1)! y n—1—y
# nngoy!(n—-—l——y)!pq
But by (8) the quantity being summed is the probability of y successes in
n — 1 trials. Since the sum is over all possible values of y, the sum must
equal one; hence u = np.
The second moment is calculated in a similar manner by using the
identity 22 = a(x — 1) + ». From (1) and (10), it follows that

’ < 2 n! T N T
= 7
e wgo zl(n — x)! P
< n! 2 n—u
=3 [a(z — 1) + ¢] ———— pq
2=0 z! (n — m)!
n !
=3 a(@— 1)~ %" ps
2=0 z! (n — x)!

Since the terms for # = 0 and « = 1 are equal to 0 because of the factor
a(r — 1), the summation can begin with = 2; hence

n

! £ N
gy = 3 a(e — 1) ———— """ + p
z! (n — z)!

x=2
< n! .
— x "N +
Py #
If n(n — 1)p? is factored out, this becomes

. > % (n —2)!
p = nln=1Lp wgz(x—Z)!(n—x)!

Letting z = « — 2, the right side can be written as

’ "R n—2)! z n—2—z
Mz=n(n—1)p22——————( ey
=0zl (n — 2 —2)!

pm—zqn—m + u

The quantity being summed is the probability of z successes in n — 2
trials. Since the sum is over all possible values of 2, its value must be one.
Using this result and the earlier result that u = np, p,’ reduces to

(11 py = nin — 1p? + np
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If formula (3) is applied to the results just obtained for the binomial
distribution, "
Mo = n(n — p* 4+ np — n2p?
= —np® + np
= npq
These calculations show that the mean and the standard deviation of a
binomial distribution are given by the formulas ;

u=np
(12) —

o = Vnpq
Now consider the computation of these moments by means of the

moment generating function. If (4) is applied to (8),
n !
M0) = 3 o — 1 prgne
e=0 ! (n — x)!

— i n! (peﬂ)mqn—m
a=0 z! (n — 2)! ‘
But from (9) this sum can be written as a binomial raised to the nth power
because the expansion is purely algebraic and need not be interpreted in
terms of probabilities. Hence

(13) M(0) = (q + pe’)"

The desired moments may be obtained by applying (6). If (13) is differen-
tiated twice with respect to 6 and terms are combined,

M'(9) = npe’(q + pe’)"™*
~and
M'(6) = npe’(q + pe)""*(q + npe’)

The values of these derivatives at § = 0 are np and mp(q + np), respec-
tively; hence they are the values of x and p,’ respectively. If ¢ is replaced
by 1 — p, it will be observed that u,’ here agrees with the value obtained
in (11). For this problem the moments are easier to obtain indirectly by
- means of the moment generating function than directly from definition.

5.2.4 Poisson Distribution

If the number of trials n is large, the computations involved in using
formula (8) become quite lengthy; therefore, a convenient approximation
to the binomial distribution would be very useful. It turns out that for
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large n there are two well-known frequency functions that give good ap-
proximations to the binomial frequency function: one when p is very
small and the other when this is not the case. The approximation that
applies when p is very small is known as the Poisson frequency function
and is defined by

€

(14) Po1ssoN DISTRIBUTION:  f(z) = ewf"
x.

It will presently be seen that the parameter xis the mean of the distribution;
hence, it is proper to label it u. Although the Poisson distribution is
being introduced here as an approximation to the binomial distribution,
it is a well-known and useful distribution in its own right and therefore
should not be regarded as merely an approximation for the binomial
distribution. It has been named after another pioneer in the theory of
probability.

52.4.1 Poisson Approximation to the Binomial. In order to verify the
fact that (14) does serve as a good approximation to the binomial distri-
bution for very large n and very small p, consider what happens to the
binomial frequency function when n becomes infinite and p approaches
zero in such a manner that the mean g = np remains fixed.

First, rewrite (8) as follows:

fy = M= D= 2D ey — gy

If numerator and denominator are multiplied by »” and the indicated

algebraic manipulations are performed,

(15) floy="0 D=2 E D e gy

n"x!

=n(n—-1)~-‘(n—x+1)

n'n-*'n

(1= (=2 (- )ga -
-39 (-5

— B e
= 1= x!(l p)

Next, express (1 — p)" in the form

1 1
(1—pr=[1—-p) 27 =[1-p ?]*

Eaq—pype
x!

I
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Now, from the definition of e, 7
lim (1 4+ z)é = e
hence, letting 2 = —p, o
lim [(1 = p) 7]+ =
»—0

ey ey
n o 1= py

because p—> 0 as n— co when np = y is fixed. By applying these two
results to the right side of (15), it will be seen that

Furthermore,

&

lim f(a) = “”

k(mdieel
This result may be expressed as a theorem.

THEOREM 1: If the probability of success in a single trial p approackes
0 while the number of trials n becomes infinite in such a manner that the
mean yi = np remains fixed, then the binomial distribution will approach the
Poisson distribution with mean u.

Figures 1 and 2 were constructed to indicate how rapidly the binomial
distribution approaches the Poisson distribution. The broken lines rep-
resent the fixed Poisson distribution for u chosen equal to 4 and the
solid lines the binomial distribution for p =% and p = A, respectwely
- It appears from inspecting these graphs that the Poisson approximation

1 ==

[ il LT_-—-‘ -
I | ] I | 1 [ | h -L—_.‘
0 1 2 3 4 5 6 7 8 9 10

Fig. 1. Binomial (—-—) and Poisson (- — -) distributions for # = 4 andpgt= L
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I t | ! | 1 1 | ke i ] ==

0 1 2 3 4 5 6 7 8 9 10

Fig. 2. Binomial (——) and Poisson (- — -) distributions for y = 4 and p = &
should be sufficiently accurate for most applications if n > 100 and
p < .05

5.2.4.2 Applications. As an illustration of the use of the Poisson dis-
tribution as an approximation to the binomial distribution, consider the
problem of calculating the probability that at most five defective fuses
will be found in a box of 200 fuses if experience shows that 2 per cent of
these fuses are defective. Here w = np = 200(.02) = 4; hence, using
(14), the approximate answer is given by

e~44m

x!

5
Ple<Si=3
=0

_ 42 48 4t 8
=e 1 +4+—+—+— )
‘ ( R 2T 1o

= .785

Lengthy calculations using (8) yield the answer .788; hence the approxi-
mation is very good here.

As an illustration of an empirical distribution that may be thought of
as possessing Poisson characteristics, consider the data of Table 1 on the
distribution of yeast cells in the 400 squares of a hemacytometer.

The procedure for obtaining the observed frequencies consists in diluting
the yeast cells in a liquid, thoroughly mixing the dilution, filling a counting
chamber that has been ruled into 400 squares with the mixture, and then
counting the number of yeast cells on each square under a microscope.
It is possible to conceive of these data as having come from a binomial
population by reasoning in the following manner. If the mixture is
thought of as consisting of yeast cells and groups of molecules of the
liquid about equal in size to the yeast cells, the yeast cells will constitute
only a very small percentage of such units of volume; nevertheless, the
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total number of such units on one square of the hemacytometer is so
large that several yeast cells may be found among them. The number of
trials here corresponds to the total number of units on a square, and the
number of successes corresponds to the number of yeast cells on the
square. If the mixing has been thorough, one would expect the yeast
cells to be distributed uniformly throughout the mixture and the umts on
a square to constitute a set of independent trials.

TaBLE 1

No. cells (#) per square 0 1 2|13 (4|5(6|7]|8|9]|10

Observed frequency 103 | 143 | 98 | 42 814)12(0]0[0] O

Expected frequency 107 | 141 |93 |41 {14 |4]11]0}070 | O

T

The mean of x for the empirical distribution given in Table 1 will be
found to be Z = 1.32. If it is assumed on the basis of the preceding
discussion that x possesses a Poisson distribution and if the value of u
is approximated well by 7, the frequencies that would be expected here
may be obtained to a good approximation from (14) by computing the
successive values of

—1.32 x
(16) 400 U2
Z.

The results of such computations correct to the nearest unit are given in
the third row of Table 1. There appears to be excellent agreement here.
By the expected frequency for a given value of « is meant the mean number
of successes for that value of @ when the problem is treated as a binomial
problem in which 7 = 400 and p = e~ "u"/x!, hence in which (16) gives
np for the binomial problem when u = 1.32.

If there had been poor agreement between the observed and expected
frequencies here, the Poisson model would have been considered un-
acceptable. Since any errors introduced by replacing the unknown u by
its sample estimate Z would be very small because z is based on 400
observations and the Poisson approximation to the binomial model as
described above is certainly excellent, any disagreement between observed

and expected frequencies would have been attributed to the binomial

assumptions not being satisfied. Thus, if the yeast cells had not been
mixed thoroughly, or if there had been a tendency for the yeast cells to
cluster, the binomial assumptions would have been questioned. Since
experience has shown that the Poisson model is a valid model er many
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techniques of this kind, the Poisson distribution can be used to check on
the soundness of these techniques.

The preceding illustration is an example of a spatial type distribution.
Variables distributed over time or space can often be assumed to possess
Poisson distributions. For example, the Poisson distribution has been
found to be a satisfactory model for the number of disintegrating atoms
from a radioactive substance, or for the number of telephone calls on a line,
in a fixed time interval. The number of meteorites found on an acre of
desert land is another spatial variable to which the Poisson distribution is
applicable.

If one assumes that the number of events occurring in a time interval
is independent of the number that occurred in earlier time intervals and
one makes a few other plausible assumptions, then it can be shown that
the number of occurrences will possess a Poisson distribution. The
same type of derivation can be applied to the number of events occurring
in a region in space. Thus the Poisson distribution is a useful distribution
independent of its use as an approximation for the binomial distribution.

In Chapter 3 it was stated that point estimates of parameters would
usually be obtained by applying the maximum likelihood principle given
by (11), Chapter 3. In the preceding illustration of how yeast cells are
distributed, Z was used to estimate the parameter x4 of a Poisson distribu-
tion. To verify that Z is the maximum likelihood estimator of u, calculate
the likelihood function using (10), Chapter 3, and (14). Thus

— T o — M, T — i, 2,
L—e ute /"'2_._8 wr
! 25! Z,!

7

pIEE

e*ngc[ull

Taking logarithms and differentiating,

Q.IOLL= _n'{"sz"_
ou 1 U

log L
O

0
The maximum likelihood estimator £ is given by setting equal to

0 and solving for u, which gives

EIZE
B

=
Il
I
Kl

n
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.53 Continuous Variables

In the preceding sections two particular discrete frequency functions
were studied. In the next few sections two particular continuous fre:quency
functions will be studied. Since it will be necessary to calculate the
moments of these distributions, the definition of the kth moment for
continuous distributions is considered first. "

1

5.3.1 Moments

Let f(x) be a continuous frequency function which is zero outside some
finite interval (a, b). Figure 3 gives the graph of such a function. Let
the interval (g, b) be divided into n equal subintervals and let z; be the
midpoint of the ith subinterval. Form the sum

(17) S o}(n) Av

i=1

where Az is the width of a subinterval, The quantity f(x,) Az is the
area of the shaded rectangle; hence x/f(x;) Ax represents the approxi-
mate kth moment of this rectangular area about the origin and (17)
represents the sum of such approximate kth moments of area. Since
the rectangles approximate the area under the curve, the natural pro-
cedure is to define the kth moment of f(x) as the limit of this sum as the
width of the subinterval approaches 0. Thus thekth moment of a con-
tinuous distribution with frequency function f(z) is defined by

b
as) w = | ) de
@

It is often desirable to calculate moments of a function of z, say g(z),
rather than of x itself. For example, if g(x) = x — u, then the &th mo-
ment of g(z) would be the kth moment of x about its mean. A general
definition in terms of an arbitrary function g(x) will enable one to shift

f(x)

Fig. 3. A continuous frequency function.

e
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from moments about the origin to moments about the mean and also
to consider various other useful changes of variable. Such a definition is
the following:

(19) DerNITION: If f (%) is the frequency function of the random variable
x, the kth moment of the function g(x) is given by

oty = f ? SH@)f (@) do

If f() is positive for all values of , the limits — oo and oo are required;
however, if f(z) is zero over part of the z axis, there is still no harm done
in using these limits,

5.3.2 Moment Generating Function

The moment generating function for a continuous variable is defined
by analogy with (4) to be

(20) M,(6) = f ? () da

If ¢* is expanded in a power series and if the integration is performed
term by term, it will be found that M,(6) will assume the same expanded
form as that in (5); hence (20) generates moments in the same manner
as (4) does.

In order to be able to generate moments of the type given by (19), it is
necessary to generalize the definition of the moment generating function.
From the manner in which M,(0) generates moments, it is clear that
moments of g(z) will be generated if €% is replaced by e®® in (20). The
desired definition is the following:

(21) DrriNiTioN: If f(2) is the frequency function of the random variable
x, the moment generating function of g(x) is given by

M,y (0) = f " 9 () da

This generalized form of the moment generating function is used to
derive a number of theorems, but in such derivations two properties of
moment generating functions are needed; therefore, consider those
properties now.

Let ¢ be any constant and let /() be a function of « for which the moment
generating function exists. Then, since g(x) in (21) represents an arbitrary
function, g(x) may be chosen as g(z) = ch(x); consequently,

My (6) = f " f0) de = Mi(00)

-
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The second property is obtained by choosing g(x) = A(x) + c. Then

Mh+c(9) =f°° ee[h(m)+c]f(x) dx

0

— eecf eek(ac) f(.’E) dx

= ¢"M,(6)

If h(z) is replaced by g(z), these results may be summarized in two impor-
tant formulas. b

(22) PrOPERTIES: If c is any constant and g(x) is any function for which
the moment generating function exists,

(l) Mcg(w)(e) = My(w)(ce)
(”) Mrj(w)+c(6) = eceMg(m)(e)

These two properties enable one to dispose of a bothersome constant ¢
which multiplies, or is added to, a function g(z). By replacing integrals
by sums it is easily shown that these formulas apply to discrete variables
also. It is assumed that g(z) and f(x) are such that the integral“in 21,
or the corresponding sum, is finite. This implies that all the moments of
g(x) are finite. Applications of the preceding formulas are made in the
following sections.

5.3.3 Rectangular Distribution

Perhaps the simplest continuous frequency function is the one that is
constant over some interval (a, b) and is O elsewhere. This frequency
function defines what is known as the rectangular or uniform distribu-
tion; hence .
1/b—a), ala<b

0 , elsewhere
The graph of a typical rectangular distribution is given in Fig. 4.

(23) RECTANGULAR DISTRIBUTION: f() = !

f(x)

3

a b
Fig. 4. A rectangular distribution.
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The rectangular distribution arises, for example, in the study of round-
ing errors when measurements are recorded to a certain accuracy. Thus,
if measurements of daily temperatures are recorded to the nearest degree,
it would be assumed that the difference in degrees between the true
temperature and the recorded temperature is some number between
—.5 and .5 and that the error is uniformly distributed throughout this
interval. : »

The kth moment of the rectangular distribution is easy to compute.
For example, if @ = 0 and & = 1, application of (18) to (23) gives

’ ! o3 1
wo=[ = g

The moment generating function is also easy to compute. Application

of (20) to (23) gives

1 o _
MA®=f<de=e 1
o 0

If one wished to obtain the kth moment from M,(0), it would be necessary
to expand ¢’ and simplify as follows:

M@ =1+0+2 50

=g 21 31 -

0, 0 0"
atntter ot

Since .y, is the coefficient of 0%/k!, it will be seen from this expansion that
' = k![(k + 1)! = 1/(k + 1), which agrees with the preceding result.
This computation was made for the purpose of becoming familiar with
the moment generating function and not as a suggested method for com-
puting the moments. The direct computation is obviously much simpler
here.

The rectangular frequency function is of somewhat limited use as a
model for real-life distributions; however, it is of considerable theoretical
value and is the simplest continuous frequency function on which to illus-
trate general formulas.

5.3.4 Normal Distribution

The histogram shown in Fig. 1 and Fig. 5 of Chapter 4 are examples
of distributions whose general characteristics are encountered rather
often. These two distributions are quite symmetrical, die out rather
quickly at the tails, and possess a shape much like that of a bell. A
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mathematical model that has proved very useful for distributions such as
these, and which presently will be seen to be very important theoretically,
is a distribution called the normal or Gaussian distribution. Tt is defined
as

_l(x_—_z)z
(24) NORMAL DISTRIBUTION:  f(2) = ce 2\ °?

Here a, b, and ¢ are parameters that make f(z) a frequency function.
For example, ¢ must be such that the area under the graph of f(x) is equal
to one. :
5.3.4.1 Moments. The graph of a typical normal curve is given in
Fig. 5. From (24) it is clear that the curve is symmetrical about the line
@ = a; hence by symmetry the mean must be given by = a.
Instead of finding the moments directly, they may be found indirectly
by means of the moment generating function. Furthermore, since it is
easier here to find moments about the mean than about the origin, con-
sider the evaluation of M,_ (6). From definition (21), with g(x) chosen
equal to & — u,
o -3
M, (6)= cf e g 2N 0 gy

Letz = (@ - p)/b; then dx = b dz and

22
Mx—u(a) = bCf eﬂbZhEdZ

—ao0

Complete the square in the exponent as follows:

22 1 1
Obz — — = — Z(z — 0b)2 + = 62p2

> 2( )+2

f(x)
| | | | ! x
3 & N 2 N & ”
+

S = Lt

Fig. 5. Typical normal distribution.
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Then,
1 1
2622 ((® —Z(z—0h)2
M,_ (6) = bce® f e ? dz

— 0

If f = 2z — 0b, then dz = dt and
1

Loz foo *_t_z
(9)-—bce6’f e 2dt

xﬂ,

The value of this integral can be found in any standard table of integrals.
Or it may be evaluated directly by the following device. Let

12

I=f e 2dt
0
w _2 peo U
I? = f e zdxf e 2dy
a:7‘+_,l
—j f T2 e dy

In polar coordinates this double mtegral assumes the form

72 ——
I = f f rdrd@
=f _ .z
Jd&———
0 2

Then

[N

d@

feed

0

[SIEY

Hence .
on ev%dt =V2r

and -

(25) M, (6) = 2n be™

From (5) it follows that for any moment generating function M(0) = 1;

hence from (25) it follows that A2 be = 1 and that

)_..

26) M, O)=e

If this exponential is expanded in a power series,
4

a:u(g)‘_'l_}'bz +b4 + o
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Since the odd powers of § are missing, the odd moments of x about its
mean g must be 0, which of course is true for any symmetrical distribu-
tion possessing such moments. The coefficient of 622! is the second
moment of z about its mean; therefore, b2 = Mz = 0% or b = o. Since

V27 be = l,e=1 /a\/ E-r; consequently, (24) can be written in the form

1 Ly
@7 f@) =—"=e ()

T

This result shows that a normal distribution is completely determined
by specifying its mean and standard deviation. It should be noted that
the only difference between (24) and (27) is that the parameters in (24)
have now been reduced to two independent parameters which have been
given statistical meaning. '

A formula for M,(6), expressed in terms of statistical parameters, will
be needed in subsequent sections. It can be obtained from (26) by replacing
b* with ¢® and using the second of the two properties in (22) with gy ==
and ¢ = ~u. These substitutions yield the result '

ne +%ozﬁ2

29 M 0) = e

For the purpose of interpreting the standard deviation geométrically,
consider the points of inflection of a normal curve. When (27) is dif-
ferentiated twice,

fl= =% —nf
o

- 4]

From the first derivative it is clear that there is but one maximum point,
which occurs at « = u. From the second derivative it follows that points
of inflection occur at # = u =+ o. Geometrically, then, the standard
deviation is the distance from the axis of symmetry to a point of inflection.

In Chapter 4 meaning was given to the standard deviation as a measure
of variation by stating that for histograms approximating a normal
curve the interval Z + 5 included about 68 per cent of the data; # 4 2s
included about 95 per cent of the data. This property will now be verified.

For (27) the probability that « will fall in the interval u -0 is given by

J‘,u+a 1_—_ eﬁ%(x;u)zdx
#

t~0 O 277‘
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When ¢ = (z — w)/o, then dv = ¢ dt and

M L ey L[
—— ¢ dx:—-:“ e‘ l‘=2—:.J‘e‘d[
J;L—c oV 2 Vorloa V2 Jo

The value of the last integral multiplied by the factor 1 V2w, found in
Table II in the back of the book, is .3413. Hence the value of the desired
integral is .68, correct to two digits. For the limits 4 £ 20 one may verify
that t = =42 and that the area between is .95. The unit of measurement

given by t = (v — p)fo is called a standard unit. Table 11 is therefore a

table for the normal distribution with 0 mean and unit standard devia-
tion, that is, for standard units.

5.3.4.2 Fitting to Histograms. Consider the problem offittinganormal
curve to a histogram. If one has reasons for believing that a set of data
represents a random sample from some normal population, then the fitted
normal curve would serve as an approximation to the population curve.
Since a normal distribution is completely determined by its mean and
standard deviation and these quantities can be rather accurately estimated
for n fairly large, one would have considerably more confidence in the
fitted normal curve as representing the population distribution than in
the histogram of the data as doing so. There is not much occasion to fit
normal curves to histograms. Frequency curve fitting is important in
some statistical fields; however, for most statistical purposes it is princi-
pally an exercise to acquaint the student with the normal curve and with
the extent to which normal data are found in statistical practice.

As an illustration of the technique of fitting a normal curve to a histo-
gram, consider once more the data of Table 2, Chapter 4, for which the
histogram is shown in Fig. 5, Chapter 4. These data are also given in

TABLE 2
Area for
Class © —475  Areato intervalto  Theoretical
boundaries 151 left of ¢ left of ¢ frequency Observed
2 t A AA nAA frequency
99.5 —2.49 .0064 .0064 6.4 6
199.5 —1.82 .0344 .0280 28.0 28
299.5 —1.16 1230 .0886 88.6 88
399.5 —0.50 .3085 1855 185.5 180
499.5 0.16 .5636 2551 255.1 247
599.5 0.82 7939 .2303 230.3 260
699.5 1.49 9319 1380 138.0 133
799.5 2.15 .9842 .0523 52.3 42
899.5 2.81 9975 .0133 13.3 11

999.5 3.47 9997 .0022 2.2 5
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Fig. 6. Normal curve fitted to histogram.

Table 2 of this chapter, and the histogram is shown in Fig. 6. Since p
and ¢ are unknown, they must be estimated from the data. The methods
explained in Chapter 3 show that the maximum likelihood estimators of
w and o are given by 4 = Z and ¢ = s; therefore, the estimates # = 475
and s = 151 are used. Then, by (27), the desired fitted normal frequency
function is
475
e”é( 151 )

151V 27

The graph of this function, of course, has unit area, hence f(x) must be
multiplied by the total area of the hlstogram if it is to fit the hlstogram
However, except for the purpose of seeing how well the curve fits, it is
not necessary to calculate ordinates, since the agreement between the
fitted curve and the histogram is determined by comparing the corre-
sponding areas under the curve and the histogram for the various class
intervals. In the fitting technique it is therefore convenient to work with
percentage areas under the normal curve. These percentage arcas for
the various class intervals of the histogram are calculated systematically
by starting with the first class interval. Now, to any value of z, say ,,
for the curve (29) there corresponds a value 7, = (z, — 475)/151 for the
standard normal curve

29) @ =

t‘.!

2

\/271'

(30) J =
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such that the percentage of area to the left of z, in (29) is the same as the
percentage of area to the left of ¢, in (30). For, since 1 = (x — 475)/151,
dr = 151 dt and

x—475\2 12

1
J*xo e*é(”ﬁ“ p J*t(, e 2
—_— 4 = —
~o 151V2n v
The value of this integral can be obtained from Table II. The procedure
for finding these normal curve frequencies is illustrated in Table 2.

The agreement seems to be excellent except for the rather large dif-
ference between 230.3 and 260. The extent of such discrepancies is more
readily realized by comparing the graphs of the histogram and the fitted
normal curve as shown in Fig. 6. The question whether the fit may be
considered satisfactory is considered in a later chapter.

5.3.4.3 Applications. The interesting and important applications of
normal distributions are considered in later chapters after further essential
theory has been developed. Here, only one simple illustration of its direct
applicability is given.

Many college instructors of large classes assign letter grades on examina-
tions by means of the normal distribution. The procedure followed is
to ignore that part of the distribution lying outside the interval g + 2.50,
or u =+ 30, and then divide this interval into five equal parts corresponding
to the letter grades F, D, C, B, and A. If u 4 2.5¢ is used, each interval
will be ¢ units in length; consequently, the six values of  determining
these five intervals will be u — 2.5¢0, ¢ — 1.50, u — 0.50, u + 0.50,
u + 1.50, and p + 2.50. The corresponding values of ¢ = (z — p)fo
will be —2.5, —1.5, —0.5, 0.5, 1.5, and 2.5. From Table II it will be
found that the areas within these five intervals are .06, .24, .38, .24, and
.06, respectively. Since these percentages do not total 100 per cent, it is
customary to allow the two end intervals to extend to infinity. Then the
percentages of students who will be assigned the corresponding letter
grades are 7 per cent F, 24 per cent D, 38 per cent C, 24 per cent B, and
7 per cent 4.

5.3.4.4 Normal Approximation to Binomial. In 5.2.4.1 the Poisson
distribution was introduced as an approximation to the binomial distribu-
tion when 7 is large and p is small. It was stated there that another dis-
tribution gives a good approximation for large #» when p is not small.
The normal distribution is the distribution with this property. Before
investigating the nature of this approximation in general, consider a
numerical example.

Let n = 12 and p = % and construct the graph of the corresponding
binomial distribution. This is hardly a large value of #, so that a good
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normal approximation is not to be expected here. Since f(z) is to be
computed for all values of = from 0 to 12, it is easier to compute each
value, after the first, from the preceding one rather than to compute each
value by itself. Here, by (8), '

o= et

It is easily verified that for this frequency function
12 — =
z+1

After £(0) was computed, this relationship was used to obtain the f&)liowing
values.

1(0) = 007707 f(T) = 3f (6) = 047687

f() = 6f(0) = .046242 S®) =+%f (7) = .014902

f) =1 (1) = 127166 f®) = 2f (8) =.003312
3D f) = §f2)=.211943  f(10) =% f (9) = .000497"

f@ = 27(3) = 238436  f(11) = - £(10) = .000045

S = £f(H =.190749  f(12) = #; f(11) = .000002

f(6) = 1% f(5) = .111270 :
Since f(0) was computed correct to four digits only, the remainiﬁg values
would not be expected to be correct to more than four digits, even though
they have been recorded to six decimals for the sake of appearances.
The graph of this binomial distribution is shown in Fig. 7. It appears
that this histogram could be fitted fairly well by the proper normal curve.

i

S+ 1) =

1
Ef(x)

250 —
225 212
.200 |- 191
175
150 -
125
.100 —

075
050} 046 048

.238

127

111

025 g8 015
PN s T T S A O A S i 2 =N R Y™
: 0 1 2 3 4 5 6 7 8 9 10 11 12°

Fig. 7. Binomial distribution, p = §, n = 12.
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Since a normal curve is completely determined by its mean and standard
deviation, the natural normal curve to use here is the one with the same
mean and standard deviation as the binomial distribution. Hence,
because of (12), choose

u=12-%=4
and
c=412-%-% =163

As a test of the accuracy of the normal curve approximation here and
as an illustration of the use of normal curve methods for approximating
binomial probabilities, consider a few problems related to Fig. 7.

If the probability that a marksman will hit a target is § and if he takes 12
shots, what is the probability that he will score at least six hits? The
exact answer is obtained by adding the values of f(x) from v = 6 to v = 12,
which, by using (31), is .178, correct to three decimal places. Geometri-
cally, this answer is the area of that part of the histogram in Fig. 7 lying
to the right of @ = 5.5. Therefore, to approximate this probability by
normal curve methods, it is merely necessary to find the area under that
part of the fitted normal curve which lies to the right of 5.5. Since the
fitted curve has 4 = 4 and ¢ = 1.63, it follows that

x—u 55-—4
o 1.63

But, from Table 11, the area to the right of ¢ = 0.92 is .179, which, com-
pared to the correct value of .178, is in error by only about § per cent.

To test the accuracy of normal curve methods over a shorter interval,
calculate the probability that a marksman will score precisely six hits in
the 12 shots. From (31) the answer correct to three decimals is £(6) = .111.
To approximate this answer, it is merely necessary to find the area under
the fitted normal curve between » = 5.5 and z = 6.5. Thus

t = = 0.92

6.5—4

ty = = 1.53, A, = .4370
1.63

t, = 33— 4 0.92, 4, =.3212
1.63

Therefore the required area is .116, which is in error by about 5 per cent.
From these two examples it appears that normal curve methods are quite
accurate, even for some situations such as that considered here in which
7 is not very large.

Thus far the fact that the binomial distribution can be approximated

well for large n by the normal distribution with y = np and o = v @5
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has been made plausible by numerical examples. Now consider the
verification of this fact by means of the moment generating function.
Here it is convenient to use the variable

,_t—p_x—np
o \/npq
From properties (22) and (13), it follows that

o =, ()

—_ G_F(q +p€;)”

Taking the logarithm of both sides to the base e gives

ub ¢
log M,(0) = — - +nloglg + pe”)
0

Expanding ¢ and replacing ¢ + p by 1 yields

5 3 b
comin= ~ninfi o[ )+ 3+ 3+

If n is chosen sufficiently large, ¢ = V/npg can be made so large that for
any fixed value of 6 the sum of the series in brackets will be less than 1
in absolute value. If p times this sum is denoted by z, then for sufficiently
large n it follows that |2| < 1. Since the logarithm on the right may be
treated as of the form log {1 + 2}, where |2| < 1, the expansion

22 3 4

Z

_|_...

EaR R

may be applied to give
(32) log M) = 1~
[
N R [CRTE A o
+n{p[(g)+2!<0) * 2L\0 +2! o} + +
Collecting terms in powers of 0 gives

2 2
log M(6) = (_§+”;_”)@+n(£2_1’)0 4+

o o?/ 2!
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But, since np = u and o® = npgq, the coefficient of 6 vanishes and the
coefficient of 62/2! reduces to 1; consequently,

2

log M(6) = % + termsin 0%, k=234, -

From an inspection of (32), which shows how terms in 0 arise, it is clear
that all terms in 6* contain n/s* as a common factor. The other factor
for each such term is a constant times a power of p. Since this other
factor does not involve n and since

n n

I

[k

(npq)
with k& = 3 here, all such terms will approach zero as n becomes infinite.

This 1mphes that
2
lim log M,(8) = —

which in turn implies that
62

(33) lim M(0) = ¢®

P>
A justification of these expansions and limits would require a knowledge
of advanced calculus methods and therefore is not considered here.

Now consider the moment generating function of a normal variable
as given by (26) with b = ¢. Using property (22) once more, it follows
that for a normal variable

ﬁ

A comparison of this result and (33) shows that the modified binomial

variable = (¢ — np)/V/npg has a moment generating function that
approaches the moment generating function of the normal variable whose
mean is 0 and whose standard deviation is 1. This implies that all the
moments of this variable approach those of the standard normal variable.

In order to complete this discussion, it is necessary to introduce two
very important theorems of advanced theoretical statistics.

The first theorem states that a distribution function is uniquely deter-
mined by its moment generating function when it exists. For example
if the moment generating function of some variable z is found to be et
then z must be a standard normal variable.

The second theorem states that if a variable, which depends upon #,
has a moment generating function that approaches the moment generating
function of a second variable, then the distribution function of the first
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variable must approach the distribution function of the second variabie
as n— oo, j

The preceding theorems insure that the distribution of the modified
binomial variable (z — np)/V/ Ep_q will approach that of a standard normal
variable because by (33) its moment generating function approaches the
moment generating function of a standard normal variable. A precise
statement of these two theorems, including conditions under which they
hold, is not made here; however, these theorems are used on several
occasions. A direct application of these theorems to (33) yields the follow-
ing important result.

THEOREM 2: If z represents the number of successes in n independent
trials of an event for which p is the probability of success in a single trial,
then the variable (x — np)/\/ np—q has a distribution that approaches the
normal distribution with mean O and standard deviation 1 as the number
of trials becomes increasingly large. '

This theorem justifies the use of normal curve methods for approxi-
mating probabilities related to successive trials of an event when 7 is
large. Experience indicates that the approximation is fairly good as long
asnp > Swhenp < §,and ng > 5Swhenp > 1. A very small value of p,
together with a moderately large value of n, would yield a small mean
and thus produce a skewed distribution. Similarly, if p is very close to
one and 7 is only moderately large, most of the distribution will be piled
up close to @ = n, thus preventing a normal curve from fitting well. If
the mean is at least five units away from either extremity, the distribution
has sufficient room to become fairly symmetrical. Figures 8 anéi 9 indi-

cate how rapidly the distribution of the variable (x — )|V n—_p—“g apioroaches

I | | | | !
-2 -1 0 1 2

Fig. 8. Binomial distribution of (x — np)/\/@ forp=4andn = 24
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L 1 1 ! |
-2 -1 0 1 2

Fig. 9. Binomial distribution of (= — np)/Vpq for p = § and n = 48.

normality when p = %, and n = 24 and 48, respectively. The common y
scale for these two graphs is approximately 17 times that for the 2 axis.
There are numerous occasions when it is more convenient to work with
the proportion of successes in n trials than with the actual number of
successes. Since
X

x — np _; B
Jrpa  /pajn

the following useful corollary to Theorem 2 may be obtained.

(34) COROLLARY: The proportion of successes x[n will be approximately
normally distributed with mean p and standard deviation Vpgln if n is
sufficiently large.

The two approximations that have been considered for the binomial
distribution, namely the Poisson and normal distributions, are sufficient
to permit one to solve all the simpler problems that require the compu-
tation of binomial probabilities. If » is small, one uses formula (8)
directly because the computations are then quite easy. Tables of fac-
torials and logarithms are helpful here. If # is large and p is small or
large, the Poisson approximation may be used. If n is large and p is not
small or large, the normal approximation may be used. Thus all possi-
bilities have been covered.

5.3.4.5 Applications. Certain types of practical problems dealing with
percentages can be solved by means of the normal approximation to the
binomial distribution. As a first illustration, consider the following genet-
ics problem. According to Mendelian inheritance theory, certain crosses
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of peas should give yellow and green peas in a ratio of 3:1. In an experi-
ment 176 yellow and 48 green peas were obtained. Do these conform to
theory? .

This problem may be considered as a problem of testing a statistical
hypothesis. The 224 peas may be treated as 224 trials of an experiment
for which the probability of obtaining a success, that is a yellow pea, in a
single trial is §. Thus the number of yellow peas « is treated as a bi-
nomial variable and the hypothesis to be tested is

Hy:p=2%
Under H,,

p=np=168 and 0 = Vnpg = 6.5

From the experimenter’s point of view an experiment corroborates theory
if its results are sufficiently close to expectation. In this problem it is
therefore a question of deciding whether 176 is sufficiently close to 168.
Since poor experimental results correspond to large deviations from the
mean, whether positive or negative, the experimenter would naturally
choose the two tails of the binomial distribution for his critical region.
If a critical region of size .05 is selected, which is the size that is almost
always selected in this book, it is necessary to determine how fdr out on
the tails of the binomial histogram to go so that the areas of the two
extremities will total .05. Since # is sufficiently large to yield an excellent
normal curve approximation to the binomial histogram, it will suffice
to determine how far out on the tails of the fitted normal curve to g0 so
that the areas of the two extremities will total .05. Because lt] =2, where
t = (x — p)/o, corresponds to an interval of two standard deviations on
both sides of the mean and this interval includes 95 per cent, to the nearest
per cent, of the normal curve area, it is customary to go out a distance of
two standard deviations to determine the desired critical region rather
than the more accurate Table 1I value of |f| = 1.96. For this problem,
therefore, the critical region will consist of the two tail intervals .

x < u—20=168 — 13 = 155
and

2> pu+ 20 =168 + 13 = 181

If an experimental value should fall in this critical region, the hypothesis
H, would be rejected, which means that the experimental value would
not be considered as compatible with Mendelian theory. Such an experi-
mental value would be said to be significant because it signifies that some
other theory is needed to explain the experimental outcome. On the
other hand, if the experimental value should fall in the acceptance region,
then the experimental value would be considered as corroborating the
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theory. Since the experimental value of 176 falls within the acceptance
interval of 155-181, there is no reason on this basis for doubting that
Mendelian inheritance is operating here.

In solving this problem, the mathematical model selected was the bi-
nomial frequency function with n = 224 and p = §. The normal fre-
quency function was used only as an approximation to determine the
critical region for testing the hypothesis H,,.

Because of the nature of his problem, the experimenter would un-
doubtedly choose as his alternative hypothesis

Hy:p # %

This type of alternative is similar to that considered in 3.2.2, which gave
rise to the power function. The approximate power function could be
obtained here by using the normal approximation to the binomial. By
means of the power function one could tell how effective the choice of
the two equal tails as the critical region is for detecting various possible
alternative values of p. It can be shown by methods that are considered in
Chapter 9, that there is no choice of critical region that is best for all
possible alternative values of p. However, it can also be shown that the
choice of the two equal tails is an excellent compromise, thereby justifying
the selection made on intuitive grounds.

As a second illustration, consider the following problem. From past
experience the manufacturer of parts finds that when a machine is func-
tioning properly 5 per cent of the parts are defective on the average.
During the course of a day’s operation by a certain operator 400 parts
are turned out, 30 of which are defective. Is the operator running the
machine properly?

The answer to this question depends upon what is meant by the word
properly. Here it will be assumed that properly means that the number of
defective parts should not be greater than what could be reasonably
attributed to chance for a normal operator. If the operator in question
is considered normal, the 400 parts may be thought of as 400 trials of an
experimentfor which the probability of obtaining a defective part in a single
trial is .05. The number of defective parts x is treated as a binomial
variable and the problem then becomes a problem of testing the statistical
hypothesis

Hy:p = .05

Since the employer would be interested only in knowing whether this
operator is normal, as contrasted to being worse than normal, he would
be interested in knowing what the probability is that a normal operator
will turn out 30 or more defective parts in a lot of 400. This probability

.....
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could be obtained by using (8) with n = 400 and p = .05 to calculate
the successive values of f(30), f(31), - - -, f(400) and then addmg these
probabilities. It is much easier, to put it mildly, to approximate the sum
of these probabilities by finding the area to the right of 29.5 under the
approximating normal curve. Since ‘

p=np=20and ¢ = Vnpg = 436
it is merely necessary to find the area in Table II to the right of the value

@ —p 295 —20
o 4.36

This area is .015; consequently, the probability is approximately .015
that a normal operator will turn out 30 or more defective parts in a lot of
400. Now this day’s experience may be thought of as but one of an in-
definite sequence of similar days’ experiences for normal operators.
The result may therefore be interpreted by stating that a normal operator
would have a day as bad or worse than this only about 15 days in every
1000, on the average. From the employer’s point of view this operator
has undoubtedly turned out more defective parts than can be 1eai’sonably
attributed to chance; consequently, he would be accused of not runnmg
the machine properly

The critical region for testing H,, here would be chosen to be the right
tail of the binomial distribution, rather than both tails as in the preceding
illustration, because the logical alternative hypothesis here from the
employer’s point of view is

t = = 2.18

Hy:p> .05

If, as is customary, a critical region of size .05 had been selected, the value
of x = 30 would have been judged significant, hence H, would have been
rejected in favor of H;. By computing the probability of .015, however,
it was possible to determine how small a type I error could have been
used and still have H, rejected.

If the normal approximation is used, it can be shown by the methods
of Chapter 9 that the power curve for the foregoing choice of critical
region is nowhere exceeded by the power curve of any other critical region
of size .05 for p > .05; consequently, the foregoing test is the best possible,
based on the normal approximation.

The practical reasonableness of the decision made in this problem
depends upon the extent to which the mathematical model used here
- represents the actual situation. If the successive parts turned out by
normal operators do not behave like independent trials of an experlment
for which p is constant from trial to trial, then theoretically one is not
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Fig. 10. Control chart for fraction defective.

justified in applying these methods, although practically they may give
good results. It might happen, as it often does, that the variability of

normal operators is much larger than that given by ¢ = Vnpq or that
the percentage of defective parts varies with the day of the week or the
condition of the machine.

As a third illustration, consider the problem just alluded to of deter-
mining whether daily percentages of defectives may be treated as inde-
pendent trials of an experiment for which p is constant from trial to trial.
Industrial experience has shown that most production processes do not
behave in this idealized manner and that much valuable information is
obtained concerning the process if the order in which data are obtained
is preserved. A simple graphical method, called a quality-control chart,
has been found highly useful in the solution of this problem. Such a
chart for the proportion of defectives is illustrated in Fig. 10. The middle
line is thought of as corresponding to the process proportion defective,
although it is usually merely the mean of past daily proportions. The
other two lines serve as control limits for daily proportions of defectives.
From (34) it will be observed that these two control lines are spaced
three standard deviations from the mean line. The time units for successive
samples are recorded along the « axis. If now the production process
behaves in the idealized manner and if the normal approximation to the
binomial distribution may be used, the probability that a daily proportion
when plotted on this chart will fall outside the control band is approxi-
mately equal to the probability that a normal variable will assume a value
more than three standard deviations away from its mean, which, from
Table II, is .003. Because of this small probability, it is reasonable to
assume that the production process is no longer behaving properly when
a point falls outside the control band; consequently, the production
engineer checks over the various steps in the process when this event
occurs. From an inspection of Fig. 10 it will be observed that the process
in question went out of control on the twelfth day.
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Industrial experience shows that only rarely does a production process
behave in this idealized manner when the control-chart technique is first
applied. Nevertheless, the technique is highly useful because it enables
one to discover causes of a lack of control and thus to improve on the
productlon process until gradually statistical control has been obtained.

This illustration and discussion of a quality-control chart gives an
incomplete picture of how quality-control methods operate Such
methods constitute an extensive field of applied statistics, and numerous
articles and books concerning them are available. ;

As a final illustration, consider the problem of determining how large
a sample of university students should be taken if it is desired to estimate
the proportion of students who work part time to within .04 units of the
true proportion. Since the accuracy of estimates cannot be guaranteed
unless most of the population is sampled, it is customary to express the
accuracy of an estimate by stating the probability that the error of esti-
mate will not exceed a fixed amount. In this problem let the probability
be .95 that the error of estimate will not exceed .04. From a geometrical
point of view, this means that 95 per cent of the time the estimate x/n
should fall within .04 units of the true proportion p. Since p is obviously
not very small nor very large here and a fairly large sample is going to be
needed, it may be assumed that «/n is approximately normally distributed.
Now, for a normal variable, the variable will fall within .04 unit of the
mean with a probability of .95 only if .04 unit is equal to two ‘standard
deviations of the variable; hence it is necessary that

20, = .04
- n
But, from (34), o, = Vpg/n; hence it is necessary that
n
2V pg/n = .04
or, solving for #, that
(35 n = 2500 pq

Since p is unknown, it is necessary to estimate p in some manner. It is
easy to show by calculus methods that the function pg = p(l — p) assumes
its maximum value for p= 1; hence, if this value of p is used, the maxi-
mum possible sample size will be obtained. Thus, if n = 625, the sample
will certainly be large enough. A more economical approach would be
first to take a preliminary sample of, say, 100, estimate p from it, ‘and then
use this estimate in (35) to estimate total n, For still greater accuracy one
would take only part, say 4, of the sample indicated by the estimated value
of n, combine the two preliminary samples to obtain a new estimate of p,
and use this estimate in (35) to obtain a final estimate of total n,
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5.4 Other Distributions

This section defines and discusses very briefly two other discrete dis-
tributions that are important in statistical work, and in addition it dis-
cusses the problem of transforming continuous non-normal distributions
so that they become approximately normal. Thus the purpose of this
section is to extend somewhat the methods of the preceding sections to a
wider class of problems.

5.4.1 Hypergeometric Distribution

The binomial distribution was derived on the basis of n independent
trials of an experiment; however, if the experiment consists of selecting
individuals from a finite population of individuals, the trials will not be
independent. For example, if a sample of 20 students is to be chosen from
a group of 100 students for the purpose of studying the extent to which
students work part time, it is clear that the probability of selecting a
student who works part time need not remain fixed as successive individ-
uals are selected for the sample. For large finite populations the error
arising from assuming that p is constant and the trials are independent,
when sampling the population, is very small and it may be ignored, in
which case the binomial model is satisfactory. However, for problems in
which the population is so small that a serious error will be introduced in
using the binomial distribution it is necessary to apply a more appropriate
distribution known as the hypergeometric distribution. 1t can be derived
as follows.

Let N denote the size of the population from which a sample of n is
to be drawn. Let the proportion of individuals in this finite population
who possess, say, property 4 be denoted by p. If « is the random variable
corresponding to the number of individuals in the sample of n who
possess property A, then the problem is to find the frequency function of
z. Since the # individuals must come from the Np individuals in the
population with property 4 and the remaining » — # individuals must
come from the N — Np who do not possess the property, it follows
from the methods illustrated in 2.8.4 that the desired frequency function
will be given by the following formula.

(N p) (N - N p)
(36)  'HYPERGEOMETRIC DISTRIBUTION: f(z) = d h—=

(")
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Calculations with this formula will show that when » is only a small
percentage of N the value of N must be quite small before there will be
any appreciable difference between the values given by this formula and
the binomial formula in (8). As an illustration, suppose a population
consists of 100 individuals, of whom 10 per cent have high blood pressure.
Then calculations will show, for example, that the probability of getting
at most two individuals with high blood pressure in a sample of 10 is

(10)( 90 )
2 : J\10 —
Pla<2 =S /T8 g4
=<2} wzo 100

10

If the binomial formula (8) is used, additional calculations will show that
one then obtains

Plr<=3 100 (i)w(i)lw ~ .93

Zo 2! (10 — 2)1\10

The hypergeometrlc distribution will not be needed until a later chapter
however, it is introduced here to show how one can employ a more re-
fined model than the binomial distribution for binomial-type problems
when the binomial assumptions are not strictly realized.

5.4.2 Multinomial Distribution

The binomial distribution is capable of solving only those successive
trials problems in which each outcome can be classified as either a success
or a failure. Problems frequently arise, however, in which it is desirable
to have more than two categories of classification. For example, in
studying blood types it is necessary to use four groupings in order to treat
such problems adequately. One can always reduce more than two cate-
gories to only two by combining them, but this procedure is likely to
throw away much valuable information; therefore it would be desirable
to have a distribution that takes account of all such categories. Such a
distribution exists in what is known as the multinomial distr rbun(m It is
obtained in the following manner.

Consider an experiment in which there are k mutually exclusive possible
outcomes Ay, 4y, -+, 4, Let p; be the probability that event A, will
occur at a trial of the experiment and let n trials be made. Then the
probabxhty that event A, will occur #, times, event 4, will occur z, times,

etc., where ch = n, may be calculated by using the same reasoning as
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that used in deriving the binomial distribution. In this connection, con-
sider the particular sequence of events given by

T3 T2 r
. . B —

A]’...’A]’Ag’...’A2,...,Ak’...’Ak

Since the trials are independent, the probability of obtaining this partic-
ular sequence of events is

(3’7) plﬂl‘lpz.’ﬂg .. .Pkﬂﬂk

Now every arrangement of the preceding set of 4’s has this same prob-
ability of occurring and satisfies the conditions of the problem; con-
sequently, it is necessary to count the number of arrangements. But
this is merely the number of permutations of # things of which 2, are alike,
, are alike, etc., which by (18), Chapter 2, is equal to

n!

(3%)

PN !
2! a,! 2!

Since all these arrangements are the mutually exclusive ways in which
the desired event can occur and since each of them has the probability
given by (37), the desired probability is obtained by multiplying the
quantities given in (37) and (38). This result may be summarized as
follows.

(39) MULTINOMIAL DISTRIBUTION

n!
f(xla Lo, """y ‘EL) = \ \ ’plm1
alwyl e xy!

T2 .. Tr

b2 " Pr
This name is given to the distribution because (39) represents the
general term in the expansion of the multinomial function

Pr+pat-+p)

just as the binomial frequency function represents the general term in
the expansion of the binomial function (g 4+ p)".

As it stands, the multinomial distribution is not very convenient for
calculating probabilities unless » is small. The problem of finding an
approximation here is considerably more difficult than in the case of the
binomial distribution. As in the case of the hypergeometric distribution,
this distribution will not be needed until a later chapter, but it is intro-
duced here to show how the binomial distribution model can be gener-
alized to treat more complicated problems of the repeated-trials-counting

type.
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5.4.3 Change of Variable

The normal distribution is a very useful model for continuous variables
that possess empirical distributions resembhng the one shown in Fig. 1,
Chapter 4; however, somethmg different is needed for empirical distri-
butions like the one in Fig. 3, Chapter 4. There are numerous techniques
that can be used to solve(statisqtipgl problems when the basic distribution

differs from that of a normal variable. Some of them are discussed in

later chapters. One of them is discussed here to point out how methods
based on the assumption of an underlying normal distribution actually
have a wider range of applicability than might otherwise be assumed. The
technique that is explained here is that of transforming the basic variable.

Suppose one has a random variable 2 whose frequency function f(x)
differs considerably from that of a normal variable. Is it possible to find
a change of variable, say y = A(z), such that the frequency function of
y will be approximately normal? If one thinks of what this means geo-
metrically, one would surmise that the answer is yes. In this connection,
compare the graph of a particular frequency function, f(2), glven in Fig.
11, with that of a standard normal variable, g(y), shown in the same
sketch.

To any value of , say w,, one can find a corresponding value of y,
denoted by y,, such that the areas to the left of these values under the
corresponding frequency curves will be equal. If one chooses a large
number of values of x and obtains the corresponding values of y by means
of Table II, then this set of ® and y values will yield a functional rela-_
tionship which may serve as a change of variable that transforms the
non-normal /() into the normal g(y). This relationship is a numerical
one and therefore is only an approximation of the complete relationship.
If the complete relationship y = /() were known, one could transform
any z value over to its corresponding ¥ value and treat it as an observa-
tion taken from a standard normal variable population.

f(x) gly)

o ’ L4t yo -

Fig. 11. Graphs of two frequency functions.
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y

¢ ¥y =h(x)

T

Fig. 12. The graph of an increasing function.

One can reverse the preceding process by starting with a given frequency
function f(z) and a given change of variable ¥ = A(x) and ask for the
frequency function g(y) of the new variable. If g(y) should turn out to
be a normal variable, or approximately so, then the transformation
y = h(x) would have accomplished the desired objective. Now it is
relatively easy to find g(y) if the function A(z) in the transformation is an
increasing function of z, or a decreasing function, throughout the range
of @ values. The technique for doing this, which is now demonstrated, is
based upon finding the distribution function of 7.

It follows from formula (32), Chapter 2, that the distribution function
of ¥, which is denoted by G(y), satisfies the relations

(40) Gty =Ply <1} = Ph(z) < 1},

where ¢ is any desired value. Now the inequality () <  can be expressed
as an inequality on . The relationship between y and « where A(z) is an
increasing function is like that shown in Fig. 12. For such a relationship
there is a unique value of « to each value of y. Here the value of z cor-
responding to the value ¢ for ¥ has been denoted by 7; consequently,
since A(z) < tif, and only if, z < 7,

P < i =Pr<d = j@a
Thus from (40) . o
G(t) = f f(z) dx
Now, as shown in Chapter 2, a continuous frequency function can be
obtained by differentiating thecorresponding distribution function. In view

of the fact that = is a function of ¢, it follows from the calculus formula
for differentiating an integral with respect to its upper limit that

d6(t) _ dG(dr _ . dr
dt dr dr S )dt
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Since ¢ and = were any pair of corresponding values of y and #, respec-
tively, and were introduced to keep from confusing upper-limit variables
with dummy variables of integration, this relationship may be rewrltten

dG(y)

m —f()

But in view of the relationship between a distribution function and its
frequency function, the left side is the frequency function of ¥; hence the
desired formula is

g(y) = f() %”9
Y

If one follows through this derivation for a change of variable y = A(x)
in which A(z) is a decreasing function, he will obtain the negative of this
result. Since dz/dy will be negative in this case, a formula that is valid
for both cases will be given by

@1) o) = () j—

Before this formula can be applied, it is necessary to replace « in f(x)
by its value in terms of y, which means that it is necessary to solve the
relation y == A(x) for z in terms of y. One can calculate dx/dy from this
inverse relationship, or else calculate dy/dx from the original relatlonslnp
y = h{x) and take its reciprocal.

Because of the importance and usefulness of this formula for later
work, the result of this derivation is expressed formally.

(42) CHANGE OF VARIABLE TECHNIQUE: If y = h(x) is an mczeasmg or
decreasing function and f(x) is the frequency function of x, then g(y), the
[frequency function of y, is given by the formula

— £l | 9%
g(y) = f(x) y

in which x is to be replaced by its value in terms of y by means of the rela-
tion y = h(x).

Although formula (41) will not be valid unless /() is either an increasing
or a decreasing function, the procedure used to derive the formula can
be applied to more complicated problems.

As an illustration of the use of formula (41), consider the problem of
finding the frequency function of y if ¥y = Vz and fl@) =¢e* x> 0.
Since y = Vz is an increasing function of x, formula (41) may be applied
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f(x) g(y)

\ x | |y
1 2 3 1 2 3

Fig. 13. Distribution of = and y = a¥ for f(x) = e™, = > 0.

without the absolute value signs. The inverse relationship is z = #?;
hence

:{12

g(y) = e“‘zz—; = 2ye”

The relationship between these two frequency functions is shown geo-
metrically in Fig. 13. Incidentally, it will be observed that g(y) is con-
siderably more like a normal curve in appearance than is /().

As a second illustration, consider the problem of finding the frequency
function of the kinetic energy E = mu?/2, given the distribution of the
velocity v. The frequency function of v, the velocity for a gas molecule
with mass m, is given by

f(v) = avze™""

where v > 0, b is a constant depending on the gas, and a is determined
to yield unit area. Since E = mv?/2 is an increasing function of v for
positive values of v, formula (41) may be applied by choosing # = v

and y = E. Here the inverse relationship is v = V'2E[m; therefore

2F _BE 1
E)=a— o
8 m ° V2mE

or
1

g(E) = «E2e~FE

where o and 8 are constants depending upon a, b, and m.

5.4.3.1 Chi-Square Distribution. As mentioned in the preceding sec-
tion, the technique that was used to derive formula (41) can be used to
obtain g(y), even though the function /(z) is not increasing or decreasing
throughout its range of « values. This fact is illustrated by obtaining a
frequency function, known as a chi-square function, which has many
important uses in statistical theory and practice.
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Toward this end, consider the problem of finding g(y) when y = a2
2 .

&
and f(z) = e 2/V 2. Here one starts with a standard normal variable «
and wishes to find the distribution of the variable 22, The function y = «?
is certainly not increasing or decreasing for all values of «; therefore
formula (41) cannot be employed directly. Proceeding as in the deriva-
tion of (41),
G)=Py<t}=P@*<t}=P—Vi<a<Vi
But
P Vi 1 v 2 2 Ve o=
Pl—Vi<ae< t=~:f ezdxz——zf e % dx
{ S#sVY V2 v V2 Jo _
Since this integration cannot be performed, it is necessary to differentiate
at this stage. Thus, using the same calculus formulas as before,
. Lt
dG(1) 2 -Lavi % ®
= — e = p——
it N2m At V2m

The desired frequency function is now obtained by replacing ¢ by y Thus

1y
Y Ee 2
(43) g =—=, y>0

e ‘

This function defines what is known as the chi-square distribution with
one degree of freedom because it is a special case of a more general chi-
square distribution. The more general frequency function depends on a
parameter, called the number of degrees of freedom, and (43) is obtained
by setting the parameter equal to 1. The preceding result can be stated
by saying that the square of a standard normal variable possesses a chi-
square distribution with one degree of freedom. This result is used on a
number of occasions in later chapters.
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A number of other interesting applications of the binomial and Poisson distributions
may be found in W. Feller, An Introduction to Probability Theory and Its Applications,
John Wiley and Sons.

For binomial problems in which # is sufficiently large to yield a good normal or
Poisson approximation much computational labor may be saved by using tables giving
sums of binomial probabilities. Such tabulated sums are available in the National
Bureau of Standards, AMS 6, Tables of the Binomial Probability Distribution. Tables for
sums of Poisson probabilities are available in E. C. Molina, Poisson’s Exponential
Binomial Limit, D. Van Nostrand Co.

EXERCISES

1. Calculate the mean and variance for z, the face number that comes up when
rolling an honest die.

2. A die is loaded so that the probability of a given face turning up is pro-
portional to the number on that face. Calculate the mean and variance for z,
the face number showing.

3. Calculate the mean for , the sum of the face numbers that come up when
rolling 2 honest dice.

4. Calculate the mean for the distribution given in Table 2, Chapter 2, for the
2 altered dice.

5. A random variable can assume only the values 2 and 3. If its mean is
8, find the probabilities for those 2 points.

6. A and B match pennies. Calculate the mean and variance of @, where « is
the amount won by A after 2 matchings.

7. In problem 6 calculate the mean and variance if A quits after the first
matching, provided he wins it, but B does not employ this strategy. What does
this result say concerning A’s strategy ?

8. A coin is tossed until a head appears. If a head appears on the first toss,
the player receives $2 from the bank. If it appears for the first time on the
second toss, he receives $4. In general, if it appears first on toss number k, he
receives 2% dollars. If his payment exceeds $1,000,000, he receives only $1,000,000.
Calculate the mean amount to be won by the player of this game. What effect
would placing no limit on the amount to be won have on the mean?

9. If an urn contains 10 white and 5 black balls and 3 balls are drawn without
replacement, what is the mean number of black balls that will be obtained?
Calculate the mean by using definition (1) of the text, where » denotes the number
of black balls obtained.

10. Given f(2) = (§)*, © =1,2,3,- -+, and zero elsewhere, find its moment
generating function. Use it to calculate the mean and variance of x.

11. Eight dice are rolled. Calling a 5 or 6 a success, find the probability of
getting (@) 3 successes, (b) at most 3 successes.

12. Suppose a sample of 10 is taken from a day’s output of a machine that
normally produces 5 per cent defective parts. If the day’s production is inspected
100 per cent whenever the sample of 10 gives 2 or more defectives, what is the
probability that a day’s production will be inspected 100 per cent?
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13. Suppose that weather records show that on the average 3 of the 30 days
in November are rainy days. (a) Assuming a binomial distribution with each day
of November as an independent trial, find the probability that next November
will have at most 2 rainy days. (b) Give reasons why you may not be Justified
in using the binomial distribution in solving (a). ‘

14. In calculating binomial probabilities, it is convenient to calculate f (z + 1)
n—axp-

T+ ]'q‘; Show

from f(z) by the formula f(x + 1) = k() f(x), where k(z) =

that this formula is correct. :

15. If = has the frequency function f(z) =2, 0 < » < 2, calculate the
probability that (a) both of 2 sample values will exceed 1 and (5) exactlj} 20f4
sample values will exceed 1.

16. If = has the frequency function f@)=1,0<Lx <1, (@ what is the
probability that at least 2 of 3 sample values will exceed .67 (b) What value of «
is such that the probability is § that at least 2 of 3 sample values will exceed it?

17. Given that a binomial variable has mean 12 and variance 8, find P
and .

18. Experience shows that 10 per cent of the individuals reserving tables at a
night club will not appear. If the night club has 50 tables and takes 53 reserva-
tions, what is the probability that it will be able to accommodate everyone
appearing? o

19. In the world series for baseball, the series is concluded when 1 té:am has
won 4 games. Let p be the probability of team 4 winning a single game and
assume that this probability remains constant in the series. Show that the
probabilities of the series ending in 4, 5, 6, or 7 games are .125, .25, .31125; and
-3125, respectively, when p =}, and .21, .30, .27, and .22, respectively, when

20. Use the Poisson approximation to calculate the probability of gétting 9
successes in 1000 trials of an experiment for which p = .01.

21. Use the Poisson approximation to calculate the probability that at most 1
person in 500 will have a birthday on Christmas. Assume 365 days in the
year.

22. Assume that the number of particles emitted from a radioactive source
follows a Poisson distribution with an average emission of 1 particle per second.
(a) Find the probability that at most 1 particle will be emitted in 3 seconds. (b)
How low an emission rate would be necessary before the probability of getting
at most 1 emission in 3 seconds would be at least .80? '

23. Assume that the number of items of a certain kind purchased in a store
during a week’s time follows a Poisson distribution with x = 100. How large
a stock should the merchant have on hand to yield a probability of .99 that he
will be able to supply the demand ? - '

24. Suppose the number of telephone calls an operator receives from 9:00 to
9:05 follows a Poisson distribution with 4 = 3. (a) Find the probability that
the operator will receive no calls in that time interval tomorrow. () Find the
probability that in the next 3 days the operator will receive a total of 1 call in
that time interval.
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25. Solve problem 13, using the Poisson approximation to the binomial
distribution and compare answers to see how good the approximation is.

26. Assume that customers enter a store at the rate of 120 persons per hour.
(@) What is the probability that during a 2-minute interval no one will enter the
store? (h) What time interval is such that the probability is 4 that no one will
enter the store during that interval ?

27. (a) Given that « possesses a Poisson distribution with mean #, show that
the moment generating function of x is given by M(0) = erted=1), (b) By differen-
tiating M,(0), verify that the mean is ¢ and show that the variance is also equal
to u.

28. Show that the Poisson probabilities increase and then decrease unless
w# < 1. Determine what value of « (function of x) has maximum probability.
Consider the ratio of neighboring probabilities.

29. What is the probability that one will arrive at a red signal at an inter-
section if one’s time of arrival is by chance and the signal alternates from 20
seconds of green to 40 seconds of red?

30. Two students agree to meet at a restaurant between 6 and 7 p.M. Find the
probability that they will meet if each agrees to wait 10 minutes for the other
and they arrive independently at random times between 6 and 7.

31. Three points are chosen by chance on the circumference of a circle.
What is the probability that they will all lie on a semicircle?

32. Let ¢ denote the life of a radio tube in hours with frequency function
f(®) =ae™, t > 0. If a = 1}, for how many hours of life should the manu-
facturer guarantee his tubes if he wants the probability to be .90 that a tube will
satisfy the guarantee?

33. A random variable has the frequency function f(z) = a + bx? 0 <x <L 1.
Determine a and b so that its mean will be £.

34. If f(x) =1,0 <« < 1, find (4) the mean and variance of = and () the
mean and variance of 2.

35. Given that f(z) = ¢z, 0 <2 <1, find (@) ¢, (b) p; by integration, (c)
M, (0), (d) 11" from M,(0).

36. Given that f(z) = ce™®, x > 0, find (a) ¢, (b)) M(0), (c) " from M(6).

37. Given that f(x) = cx%™®, > 0, « a positive integer, find (@) ¢, using the

[+]
fact that %" de = o! for « a positive integer, (b) p,” from definition, (c)

0
M (), (d) ;' from M, (0).

38. Assume that the length of telephone conversations x has the frequency
function f(x) = ae™®. Show that the probability of a conversation lasting more
than #; + £, minutes, given that it has already lasted at least #; minutes, is equal
to the unconditional probability that it will last more than 7, minutes.

39. Find the moment generating function for the triangular distribution whose
frequency function is given by f(x) =2, 0 <2 <1, f(x) =2 — 2,1 <z £ 2.

40. If « is normally distributed with « = 1 and ¢ = }, find (@) P{z > 2} and
(b) P{0 <z < 1}.

41. If « is normally distributed with » = 1 and o = 2, find a number z, such
that (@) P{z > x,} = .10 and (b) P{z > —ay} = .20.
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42. Assume that the life in hours of a radio tube is normally distributed with
mean 200 hours. If a purchaser requires at least 90 per cent of them to have lives
exceeding 150 hours, what is the largest value that ¢ can have and still have the
purchaser satisfied ? ,

43. Assume that height of adult males is normally distributed with « = 69
inches and ¢ = 3 inches. What is the conditional probability that an individual
will be taller than 72 inches if it is known that he is taller than 70 inches? =~ ~

44. Fit a normal curve to the histogram for the data of problem 3, Chapter 4.

45. Find u, for the normal distribution by using the integral definition and
repeated integration by parts.

46. A coin is tossed 12 times. Find the probability, both exactly andi'by the
normal curve approximation, of getting (a) 4 heads and (b) at most 4
- heads. _

47. A die is tossed 12 times. Counting a 5 or 6 as a success, whai is the
probability, using the normal curve approximation, of getting (a) 4 successes and
(b) at most 4 successes ?

48. Given p = .4 and n = 1350 for the binomial variable z, use the normal
approximation to calculate (@) P{510 < @ < 560}, (b) P{z < 580}.

49. A die is tossed 90 times. Find the probability of gettmg 15 aces (q) using
the binomial formula and tables of factorials and (b) using the normal curve
approximation.

50. Find a number #, such that the probability of getting a number of heads
- between 500 — xy and 500 + «,, inclusive, in 1000 tosses of a coin is .90.
©51. A coin is tossed 400 times. Would 215 heads be considered a reasonable

result?

. 52. Experience shows that 20 per cent of a certain kind of seed germmates
" If 50 of 400 seeds germinated, would you reject the hypothesis that p '= .20?

53. About 9 per cent of the population of the country is between 20 and 24
years of age. A city of 12,000 has 1300 in this age group. Test to see if this city
is typical with respect to this age group.
~ 54. A manufacturer has found from experience that 3 per cent of his product

is rejected because of flaws. A new lot of 800 units comes up for inspection.
(a) How many units would reasonably be expected to be rejected? () What is
the approximate probability that less than 30 units will be rejected?

55. A manufacturer of cotter pins knows that 5 per cent of his product is
defective. If he sells cotter pins in boxes of 100 and guarantees that not more
- than 10 pins will be defective, what is the approximate probability that a box will
fail to meet the guaranteed quality ? B )

56. Suppose that you wish to construct a control chart for the proportion p”
~ of words incorrectly typed by a stenographer per hour. If she typed 1200 words
an hour, on the average, for 6 hours a day, for 10 days, and she misty}ied 360
words in that total period of time, what 2 numbers would you use for boundarles
- for the control chart?
© 57. In the manufacturing of parts, the following data were obtained for the
daily percentage defective for a production averaging 1000 parts a day. Con-
struct a control chart and indicate times when production was out of control.
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The data are to be read a row at a time.

2.2 2.3 2.1 1.7 3.8 2.5 2.0 1.6 1.4 2.6
1.5 2.8 2.9 2.6 2.5 2.6 3.2 4.6 3.3 3.0
3.1 43 1.8 2.6 2.1 2.2 1.8 24 24 1.6
1.7 1.6 2.8 3.2 1.8 2.6 3.6 4.2

58. A sample is to be taken in a city to estimate the percentage of families
willing to pay 200 dollars for a home freezer. It is desired to have, with a
probability of .95, an estimate correct to within 24 per cent absolute. Tentatively,
it is estimated that the true percentage is near 20 per cent. How large a sample
will be required ?

59. If you wished to estimate the proportion of Republicans in a certain
district and wanted your estimate to be correct within .02 unit with a probability
of .90, how large a sample should you take (a) if you know that the true pro-
portion is near .4, (b) if you have no idea what the true proportion is?

60. (a) If you rolled a dic 240 times and obtained 50 sixes, would you decide
the die was biased in favor of sixes? (b) If you repeated the experiment and
obtained 48 sixes, would you conclude that the second experiment justified your
decision in (@) or would you conclude differently ?

61. Assume that telephone calls coming into a switchboard follow a Poisson
distribution at the rate of 15 calls per minute. If the switchboard can handle at
most 25 calls per minute, what is the probability that in one minute the switch-
board will be overloaded? Use a normal approximation in your calculations
based on the results of problem 27.

62. Assuming that the number of white blood cells per unit of volume of
diluted blood counted under a microscope follows a Poisson distribution with
@ = 121, what is the probability, using a normal approximation, that a count
of 100 or less will be observed? Use the results of problem 27.

63. If the number of telephone calls coming in to a given switchboard during
a period of a minute follows a Poisson distribution with # = 10 and the switch-
board can handle at most 20 calls per minute, (a) what is the probability, using a
normal approximation, that during the next minute the switchboard will be
overtaxed? (b) What is the approximate probability that it will not be overtaxed
during an hour’s service if the numbers of calls in consecutive minutes are
assumed to be independently distributed ?

64. For n = 12 and p =}, plot on the same piece of graph paper (a) the
binomial histogram, (b) the Poisson histogram, and (c) the fitted normal curve
by ordinates. Note the extent to which (b) and (c) approximate the binomial.

65. A source of liquid is known to contain bacteria with the mean number of
bacteria per cubic centimeter equal to 3. Ten 1-cubic centimeter test tubes are
filled with the liquid. Assuming the Poisson distribution is applicable, calculate
the probability (a) that all 10 test tubes will show growth, that is, contain at least
1 bacterium each and 2(b) that exactly 7 test tubes will show growth.

&

66. If f(») = cazeﬁg, x > 0, find (a) ¢, (b) the mean of z, and (c) the variance

of x. '
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67. In firing at a target assume that the horizontal distance a shot hits from
the center line is normally distributed with o = 2 feet. (a) In 200 shots how many
would be expected to miss the target if it is 10 feet wide and sufficiently high?
(b) How many shots would you need to fire to be certain with a probab1hty of
.95 of getting 50 or more shots within 3 feet of the eenterline?

68. Fit a Poisson function to the following “famous” data on the number of
deaths from the kick of a horse per army corps per year, for 10 Prussian Army
Corps for 20 years. The total number of units here, an army-corps year, is 200.

z |0 1 2 3 4

f 1109 65 22 3 1

69. Fit a binomial function to the following data on the number of seeds
germinating among 10 seeds on damp filter paper for 80 sets of seeds.

» /0 1 2 3 4 5 6 7 8 9 10

f|16 2028 12 8 6 0 0 0 0 O

70. A sample of 2 is taken from a box of 10 articles. If 4 of the articles are
defective, what is the probability of getting no defectives in the sample?

71. In considering a lot of 100 items, a purchaser agrees to buy if a sample of
10 shows at most 1 defective. If the lot actually contains 10 per cent defectives,
what is the probability that the purchase will be made? Compare your result
with that based on a binomial approximation.

72. A box contains 100 items of which 5 are defective. Let 2 denote the
number of defectives found in a sample of 10. (a) Calculate the probability that
z = 2. (b) Use the binomial approximation to make the calculation. (c) Use the
Poisson approximation to make the calculation.

73. A bag contains 2 red, 3 green, and 4 black balls. If 4 balls are drawn in
succession with replacement each time, what is the probability of gettmg 1 red,
1 green, and 2 black balls?

74. Work problem 73 if there are no replacements of the drawn balls.

75. Calculate the probability of getting a total of 6 if 3 dice are thrown
simultaneously.

76. A game of chance consists in tossing a ball into boxes numbered 1, 2, 3,
and 4. If the probablhtles for landing in these boxes are 1%, -5, &, and 5,
respectively, and one receives in dollars the number on the box, what is the
probability of winning at least 5 dollars when taking 2 tosses ?

77. What is the probability in 12 rolls of a die that each side will come up
twice? Show that no other possible result has a higher probability of occurring.

78. Given f(x) = e, x > 0, find, by the change of variable technique, the
frequency function of the variable (@) ¥y = 1f» and (b) ¥ =log, =

x2

79. Given f(x) =ze 2,z >0, find the frequency function of the variable
@y=2z+1,By=2%(y =log,xz.
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80. Given that 0 is uniformly distributed over the interval —n/2 to =/2, find
the frequency function of z = A4 sin 6, where A4 is a constant.

81. Let = be a standard normal variable. Find the frequency function of
(a) 22 + 1, (b) 222 + 1.

82. Given that  is uniformly distributed over the interval —1 to 1, find the
frequency function of (@) 22, (b) — log, |=|.

83. Given f(z) = 2(1 — ), 0 <z < 1, find the distribution of z = a2,

84. Given that x has the continuous distribution function F(x), find expressions
for the distribution functions of the variables (@) ¥ = ¢®, (b) y = logz, (c)
y = F(x).

85. A variable z is said to have a log-normal distribution if ¥ = log, « is
normally distributed. Given that the mean and variance of ¥ are 0 and 1,
respectively, find the frequency function of .

86. Show that the Cauchy distribution given by (9), Chapter 4, does not
possess a mean.

87. Show that the mean of the hypergeometric distribution is x4 = np by

. L Np\  Np(Np—1
employing the relation ( v ) = _xfi( v -1 )

88. An experiment is to be conducted 100 times to determine whether a
possible outcome has probability p = .4 or p > .4. If @ denotes the number of
outcomes and if « > 48 is chosen as the critical region for testing Hy: p =4,
find an expression for the power function of the test.

89. In problem 88 use the normal approximation to find an expression for the
power function,

90. A box containing 100 items has an unknown but small proportion p of
defectives. If  denotes the number of defectives in a sample of 10 and one is
interested in testing the hypothesis Hy: p = 4 against p < 44 by using x < 2
as a critical region, find an expression for the power function of the test.

91. Assume that the number of persons per minute buying ferry tickets is 10.
Find an expression for the probability that at least # minutes will elapse before
50 tickets will be sold.




"CHAPTER 6

Elementary Sampling Theory for One
Variable

In Chapter 5 a beginning was made in testing hypotheses and esti-
mating parameters; however, the problems considered there were mostly
concerned with the binomial distribution. In the present chapter this
beginning is extended to other distributions, particularly to continuous

- distributions. Only a few of the simpler problems are considered here;
the more complicated problems will be studied in Chapter 11.

6.1 Random Sampling

In the applications of the binomial distribution in the preceding chapter
it was pointed out that the binomial model is strictly valid only if the trials
of the experiment are independent and p is constant from trial to trial.
In the language of sampling, this means that samples must be obtained by
a method that possesses these two properties. "

The theory that is about to be developed for continuous variables is
based on assumptions very similar to those used to derive the binomial
distribution. The first assumption is that the successive trials of the
experiment are independent and the second is that the frequency function
of the random variable remains the same from trial to trial. If the theory
is to be applicable to real experimental data, it is necessary that the data
be obtained by a sampling method that possesses these two properties.
In order to express these properties in a mathematical form, consider the
following notation and procedure. .

Let f(x) be the frequency function of the continuous random variable
x and let a sample of size n be drawn. The resulting sample values are
denoted by z;", x4/, - - -, ", If a second sample of size n were drawn, the
resulting sample values would be denoted by x,",2,",-+-,=,”, and
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similarly for additional samples. These values are conveniently arranged
as follows:

Ty, Ty PR 2%
" ” "
Y15 Lo H n
1 wis "r

Now consider the values in the first column. These values may be treated
as the values of a random variable ; with a frequency function fi(z;).
In the same manner the values in the second column may be treated as
the values of a random variable x, with frequency function fy(%,) and
similarly for the remaining columns.

In this notation the requirement that the frequency function of the
random variable z shall remain constant from trial to trial means that
the random variables #,, ,, - - + , , must possess the original frequency
function, that is, that

f@) = fil@w) = =f,) =[()

In this same notation the requirement that the trials shall be independent
means that the variables z;, @,, - - -, #, must be independent. A method
of sampling that possesses these two properties is called random sampling.
In view of formula (24), Chapter 2, and the preceding discussion, random
sampling may be defined mathematically in the following manner.

(1) DEFINITION: Random sampling is a method of sampling for which
f‘(xl’ x2: T, ‘L‘n) =f(1’1)f(x2) v 'f(xn)

where f(x) is the frequency function of the population being sampled and
where ay, %y, + , @, are random variables corresponding to the n trials of
the sample.

Although the variable z in the preceding discussion was treated as a con-
tinuous variable, definition (1) applies to both continuous and discrete
variables.

As an illustration of a continuous random variable for which the
sampling method approximates random sampling, let = be the distance
the end of a spinning pointer is from the 0 point, as measured along the
circumference, after it comes to rest. Figure 1 indicates the nature of this
variable. If a sample of size 5 were desired, the pointer would be spun
five times and the distances recorded. Now, if a pointer is spun repeatedly.
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)

Fig. 1. A game of chance.

and the resulting values of » are marked off into consecutive sets of five,
it will usually be found that the empirical distributions of the variables
y, + + -, #; will approach the rectangular distribution f(x) = 1/c, where ¢
is the circumference. It will also be found that tests of 1ndependence
which will be studied later, usually substantiate independence of trials
here.

It should be noted that definition (1) defines a method of sampling and
says nothing about particular samples. It is legitimate to call a sample a
random sample only if it has been obtained by a random sampling method.

It is frequently not feasible to check many real life sampling methods
for randomness because of the expense or difficulty of obtaining enough
data to test the properties in definition (1). Then one must rely on judg-
ment and experience to determine whether the method is sufficiently random
to permit the use of models derived on the basis of random sampling.

6.2 Moments of Multivariate Distributions

Since random sampling involves the frequency function f(2;, 2,, - - -, @,,),
it is necessary to study properties of this function. In particular, it is
" necessary to define moments and the moment generating function for
multivariate functions. The moment notation that was introduced in
Chapter 5 becomes quite cumbersome when it is applied to multivariate
situations. Furthermore, it lacks flexibility in deriving formulas; con-
sequently, a new type of notation involving an expected value symbol E
is introduced here. This notation is presented first for a single random
variable in order to show its relationship to earlier material, after WhICh it
~ is generalized to multivariate functions.

- If the continuous random variable « has the frequency funct1on f(@),
its expected value E[z] is defined as

5 E[+] = f " 2 f(@)de
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Thus the expected value of a random variable is its mean value. More
generally, if 4(x) is any function of , the expected value of h(x) is defined
as

3 E[h(z)] = f " h@) f(@) de

Moments and moment generating functions, as defined in Chapter 5,
can be expressed as expected values. For example, the kth moment of x
is obtained from (3) by choosing /(xz) = a* and therefore is given by

<K

o) = [ s

-0

Similarly, the moment generating function of « is given by

E[€"] =f " f(z) da

Corresponding expressions that are valid for a discrete random variable
can be obtained by merely replacing the preceding integrals by sums.

Since the expected value symbol E was designed to produce mean
values, the question naturally arises whether the expected value of a func-
tion of z, say h(¥), as given by (3), is really the mean value of that function.
To show that this is so, first let ¥ = /() in order to simplify the notation.
Since y is a random variable with a frequency function, say g(y), it follows
from (2) that its mean value is certainly given by the integral

4@ Ely] = f "y g dy

Now if h(x) is an increasing function of @, the change of variable technique
given in (42), Chapter 5, may be employed to yield the relation

gly) dy = f(x) dw

As a consequence, (4) may be written in the form
E[y] =f y f(@) de

Since y = h(x), this result is equivalent to (3). Although the equivalence
of (3) and (4) was shown for h(z) an increasing function, the equivalence
holds quite generally. The advantage of evaluating the integral given
in (3) rather than in (4) to find the mean value of A(z) lies in the fact that (3)
does not require one first to find the frequency function of A(x). When
h(z) is not an increasing, or decreasing, function of z, this may require
considerable effort.
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Now consider the generalization of these definitions to mui:tivariate
functions. In this connection let g(xy, 2y,  « -, ,) be any function of the
random variables z,, @,, - -, #, whose frequency function is Sy, 2y, - v
z,). Then the expected value of g(zy, x,, - * - , 2,) is defined by

(5) E[g] :f f g(xl’xZ"”axﬂn)f(.xlsxza'"’xﬁ)dxldx2”'dxn

>

The variables of which g is a function have been omitted on the left
side for notational convenience. Just as for one variable, it is possible
to demonstrate that the value given by (5) is the mean value of g and
therefore is the same as that obtained by finding the frequency function
of g and applying the elementary definition (2) to the random variable g.

The particular quantities that are needed in this chapter are the kth

moment of g(xy, zy, - -+, x,) and the moment generating function of
gy, @y, ++ -, ®,). In terms of expected values, the kth moment of
gy, xy, -+, 2,) is defined as

(6) E[gk] :ZJ‘ B .f gk(xl’ .’5‘2, T, xn)f(xl’ TR Q';n) dml dxz e dxn

Corresponding to this definition, the moment generating fun@tion of
glxy, @y, - - -, x,) is defined as

™
My(g) = E[eﬂg} =f N f eag(whmz’- . -’mN)f(xl’ Tos' 'y xn) dxl dxz tr dxn

That (7) generates moments in the same manner as (21), Chapter 5, is
easily verified by expanding ¢% and integrating term by term.

Since expected value methods are used to assist in the development of
the theory in this chapter, three of the most useful properties of the ex-
pected value symbol E are derived next. )

6.3 Properties of £

If ¢ is any constant, it follows directly from (5), after factoridg out ¢
from the integral on the right side, that

® Eleg] = cE[g]
Next, since the integral of a sum is equal.to the sum of the integrals,
it follows from (5) that

© Elg1 + &1 = Elgi] + Elg]
where g, and g, are any two functions of a set of random variables.




136 INTRODUCTION TO MATHEMATICAL STATISTICS

Finally, if g, and g, are independently distributed, which means that
their joint frequency function can be factored into the product of the two
individual frequency functions, one can write

(10) E[g1g.] = J.OO on 218 f1(8) fog2) dg1 dg,

Here f; and f, are the frequency functions of the random variables g; and
o, Tespectively. The formulation in (10) is in terms of the random vari-
ables g1 and gZ themselves and not in terms of the basic random variables
Xy, T, * ., as in (5). But the double integral in (10) can be written in
the product form

J"’O g1 /(g1 déﬁf00 22 f2(g2) dgs

Since this is the product of the individual expected values, it follows that
when g, and g, are independently distributed

(11) Elg.2:] = Elgi1] Elg.l

It should be noted that the expected value of a sum of random variables
is equal to the sum of their expected values, whether or not the variables
are independently distributed, whereas the expected value of a product
need not be equal to the product of the expected values unless the variables
are independently distributed.

As an illustration of expected value techniques, which at the same
time will illustrate how useful such methods are, consider the problem of
finding the mean and variance of a sum of independent variables.

Let @, @, " *, %, be a set of independent variables with means u,,
Us, * * * 5 M, and variances oy?, o,% - -, 0, and let

r=a;+ 2+ 0+ 2,

From formula (9) it follows that

n n
(12) u. = E[z] = 3 E[=] = 2 u
Next, write

z—‘“z={x1_.“1)+(”2_;“2)+"'+(xn"ﬂn)
Then

(2 — ) = E Z (2, — p)(z; —

i=14=1
Application of formula (9) will give

n

(13) Ee—p) =73 3 B — u)z, — 1)

i=137=1
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The bracket notation for expected values is usually omitted, as it is here,
when it becomes cumbersome and no confusion results from doing so.
Now, since the variables z, and %; are independent random variables
when i 5 j, formula (11) may be applied to give

E@, — p)(w; — #s) = E(w; — #)E@; — u)), L#j
But E(x; — u,;) = 0; therefore (13) reduces to

n
E(z — p,)* = '21 E(z; — )
Since E(x; — u,)? = 02, this result can be expressed as
(14) o= 3 o
=1

Formula (12) states that the mean of a sum of random variables is
equal to the sum of the means of the variables. The derivation of that
formula did not require the independence of the variables; therefore, as
stated before, the formula holds regardless of this assumption. Formula
(14) states that the variance of a sum of independent random variables is
equal to the sum of the variances of the variables.

As a particular application of these two formulas, consider the problem
of finding the mean and variance of a binomial variable. This problem
was solved in 5.2.3.2 by a direct application of moment definitions.

Let z,, 25, - - -, 2, be binomial variables corresponding to n independ-
ent trials of an experiment for which p is the probability of success in a
single trial. Thus x; = 1 if a success occurs and x; = 01if a failure occurs
on the ith trial. Next, let B

2=Q$1+Z‘2+"'+£€n

In view of the definition of x,, it follows that z is equal to the total number
of successes in the # trials of the experiment; consequently, the problem
is to find the mean and variance of 2.

For discrete variables definition (2) must be replaced by

Ex]= 3 «f(2)

=0
Since the variable x, can assume the values 0 and 1 only with probabilities
g and p, respectively, it follows from this last formula that

Efz] =0-g+1:p=p
This result, when applied to (12) gives
My = 1D
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The technique used to calculate E[x;] may be applied to obtain the value
of E(x; — p,)? = E(x; — p)®. Thus
of = E@ —plf=0—-pPqg+{d—-pPp=pq
As a result, formula (14) gives
0.t = npq

These two results, of course, agree with formulas (12), Chapter 5.

6.4 Sum of Independent Variables

A very useful formula for developing theory about sample means can
be obtained when the variables zy, @, - * *, %, are independent and when
g(wy, @y, * -+, ,) is the special linear function

g(mlaxZ:"'axn)=xl+x2+".+x7z
The moment generating function of this sum is

M, .. 10,0 = E[ebert ~+wn)]

—_ E[eb‘wl P L T eemn]
But because of the independence of these exponential functions, it follows
from (11) that
M{E1+“ .+wn(6) = E[egml] : E[eﬂwzj vt E[em"]

= M, (0) M, (6) - - - M, (0)
Since this result is used so often, it is stated in the form of a theorem.

THEOREM 1: The moment generating function of the sum of n independent
variables is equal to the product of the moment generating functions of the
individual variables, that is,

Mx1+' = .’E“(e) = M$1(6)M12(6) e Mxn(e)

6.5 Distribution of X from a Normal Distribution

In this section the distribution of a sample mean based on a random
sample of size n from a normal population is derived.

Let « be normally distributed with mean u and standard deviation o.
Consider a random sample of size n from this normal population. The
mean of such a sample,

I |
Z=- (ot tw)
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will be a random variable because the variables Ty, Xy, ** ¢, x, COITeE-
sponding to the 7 trials of the sample are random variables. After a
particular random sample has been taken, Z will be a number, but before
it has been drawn, it will be a random variable capable of assuming any
value that the original variable « can assume. For the purpose of finding
the frequency function of Z, consider its moment generating function.

If the first formula given in (22), Chapter 5, is used, it will follow that

0
M.Z(e) = -M%(acjﬂr' . '+mn)(0) = Ma:1+‘-~+xn(")

n
Since the sampling is random, the variables z;, @, * - - , z, are independent,
and therefore Theorem 1 may be applied to give

s = o Do (0)- o, (2)

But random sampling as given by definition (1) also implies that all
the variables @y, @,, - - -, x, have the same frequency function, ‘namely
that of z, hence the same moment generating function. Consequently, all
the M’s on the right are the same function, namely, the moment generating
function of the variable . Thus

(15) M) = MJ*(Q)

n
Now, from formula (28), Chapter 5, it is known that if  is nbrmally
distributed
,1611»10%2

(16) M) =e *

If this result, with 0 replaced by 0/n, is used in (15), that formula will
reduce to

0 1/0\2 n 1,,0%
M—+:(—) o2 uh 4502 —
Moy = [0 ] oo

Since the function on the right, when compared with (16), is seen to be
the moment generating function of a normal variable with mean 4 and
standard deviation o/V/n and since a moment generating function uniquely
determines a frequency function, this result proves the following theorem.

THEOREM 2: If @ is normally distributed with mean wu and standard
deviation o and a random sample of size n is drawn, then the sample mean

& will be normally distributed with mean u and standard deviation o/Vn.

This theorem shows how the precision of a sample mean for estimating
the population mean increases as the sample size is increased. Since
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Fig. 2. Normal distributions of « and & for n = 10.

the standard deviation of Z measures the variation of sample #’s about u
and may be treated as a measure of the precision of estimating p by
means of %, it is clear from the theorem that it is necessary to take four
times as large a sample if one wishes to double the precision of an estimate
at hand. Figure 2 shows the graph of a normal distribution with u = 3
and ¢ = 1, together with the graph of the distribution of  for samples of
size 10 drawn from it.

6.5.1 Applications

As an illustration of the application of the theorem, consider the
following problem. A manufacturer of string has found from past exper-
jence that samples of a certain type of string have a mean breaking
strength of 15.6 pounds and a standard deviation of 2.2 pounds. A time-
saving change in the manufacturing process of this string is tried. A
sample of 50 pieces is theén taken, for which the mean breaking strength
turns out to be 14.5 pounds. On the basis of this sample can it be con-
cluded that the new process has had a harmful effect on the strength of
the string? Now, experience indicates that the breaking strength of string
is approximately normally distributed. Hence it will be assumed that
the breaking strength « is normally distributed with u = 15.6 and 0 = 2.2.
This problem can be treated as the problem of testing the hypothesis

Hy:p =156
against the alternative hypothesis

Hy:p < 15.6
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In this form one is testing the hypothesis that no change has occurred in
the mean breaking strength against the possibility that the mean has been
lowered. If the sample is treated as a random sample of size 50 from the
original normal population, then, by Theorem 2, & will be normally dis-
tributed with

J50

The value of Z for this one sample of 50 is 14.5; hence the correspondm g
value of ¢ is
p T ps 145156
0 31

= —3.55

From Table II the probability of obtaining a value of t < —3.55, hence a
value of Z < 14.5, is only about .0002. Since this probability is much
smaller than the probability of .05 being used as the size of the critical
region for testing hypotheses the value 14.5 is certainly.significant and
accordingly the hypothesis is rejected.

By the methods of Chapter 9 it can be shown that the choice of the left

tail of the # distribution for the critical region is the best poss1b1e choice
from the point of view of Chapter 3.

In this problem, as with most applied problems, it is necessary to con-
sider the reasonableness of the model being used. The normality assump-
tion is usually difficult to verify, unless one has a large amount of data;
however, it will be seen very shortly that little harm usually results from

« not being normally distributed. The assumption that the samp’le of 50

is a random sample from the production process is a more serious assump-
tion, partly because the effect of nonrandomness on the theory is unknown
and partly because data obtained from an industrial production line are
seldom random. Defective items tend to come in groups because of a
poor batch of material or similar causes. If the randomness assumption
in the preceding problem is reasonable, then the practical implications of
this test are that the mean breaking strength has dropped. Whether the
drop is sufficiently great to give concern is outside the scope of the present
discussion.

For problems of the type just considered it is rather common in apphed
statistics to call a/\/ n the standard error of the mean. The name standard
error is also used in connection with random variables other than the mean,
being always the same as the standard deviation of that random variable.

The expression probable error is also fairly common in some circles. It

is related to the standard error by means of the appr0x1mate formula
P.E. = 6745 S.E. For a normal variable x the probability is § that z will




142 INTRODUCTION TO MATHEMATICAL STATISTICS

fall in the interval u 4+ P.E. Since it is more convenient to work with
standard deviations than with probable errors, the use of the probable
error is being abandoned.

As another illustration, consider the following problem. Since the
mean in the preceding problem was changed by the change in the produc-
tion process, the question how accurate the sample mean is as an estimate
of the new mean arises. As before, assume that « is normally distributed
with standard deviation 2.2 but with unknown mean u. Then Z will be
normally distributed with mean p and standard deviation .31; conse-
quently, the probability is .95 that # will not deviate from x by more than
.62 unit because this deviation corresponds to two standard deviations.
Thus one can feel quite certain that the sample mean Z = 14.5 does not
differ from the true mean by more than .62 pound.

As a final illustration, consider the problem of determining how large
an additional sample will be needed if one wishes to estimate the true
mean in the preceding problem to within § pound. As in the preceding
problem, it is assumed that # is normally distributed and that the standard
deviation was not affected by the change in production methods. For a
sample of size n, Z will then be normally distributed with mean x and
standard deviation 2.2/'\/;1. If, as in the last illustration of 5.3.4.5; one
wishes the maximum error to be exceeded only 5 per cent of the time, then
it is necessary that the maximum error of } correspond to two standard
deviations of Z. Therefore n must be such that

This is equivalent to

The solution of this equation to the nearest integer is n = 77. Since a
sample of size 50 is already available, only 27 additional observations
should be necessary.

It should be noted that the population standard deviation was as-
sumed known in these problems. In most problems the population
standard deviation is not known. Then the sample estimate of the stand-
ard deviation is often used in place of the unknown population value;
however, this procedure introduces an error. The error is not serious for
large samples, but for small samples a more refined procedure which does
not require such approximations is necessary. Such methods will be
studied in Chapter 11.
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Since many variables of interest possess distributions that are not even
approximately normal, it is important to know to what extent the theory
developed on the basis of assuming normality holds for other distribu-
tions. Here it is assumed that  is not normally distributed but does
possess a distribution for which the moment generating function exists.
Then it is shown that the distribution of Z approaches a normal distribu-
tion as the size of the sample increases.

Just as in the proof that the distribution of a binomial variable ap-
proaches that of a normal variable as n — oo, it is necessary to work with
standard variables, that is, variables with zero means and unit variances.
It is therefore necessary to find the mean and variance of # for non-nor-
mal variables before proceeding with the proof. This is done by means of
the expected value operator E. '

From properties (8) and (9) it follows that

12
E[Z] = E[l (7 + @+ + xn)} = - 2, E[x]
n i=1
But since the sampling is random, E[x;] = E[z] = p; consequeﬁﬂy,

R
E[zl]==-2 u=up
ni=1

This shows that the mean of % is the same as the mean of z, whether 2 is
a normal variable or not. ;»
Since nz =z, + @, + * -+ + 2, is the sum of » independent variables,
all of which have the same variance ¢%, it follows from formula (14) that
Opi? = No*

1

But the variance of a constant times a variable is equal to the square of
the constant times the variance of the variable; therefore '

2 - 252
Gna’, = N0y

Equating these two results yields the formula

This demonstrates that the variance of Z for  a non-normal variable is
the same as for 2 a normal variable. It is assumed, of course, that the
variable « possesses first and second moments.
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In view of the preceding results, it follows that the variable ¢ =
(& — w)V'nfo is a standard variable. This is the variable whose distribu-
tion will be shown to approach that of a standard normal variable; there-
fore, consider next the moment generating function of this variable. If
properties (22), Chapter 5, and formula (15) are applied, it follows that

M) = M(ﬁf—@)

_;4‘/7_1,8

=e MI(

=

_n¥no 7
—_ o n gl
=¢ M, (a\/n)

Taking logarithms of both sides to the base e gives

log M,(6) = — p/nf + nlog M, (ﬁ—,)
o o/n

After replacing M,(0/oV/n) by its expanded form, as given by (5), Chapter
5, it follows that

—6 7] 02
o (0) = = L8 o (14t T )

If n is chosen sufficiently large, the logarithm on the right may be treated
as of the form log [1 + 2] with |2| < 1 and then expanded in the same
manner as in (32), Chapter 5; hence

n 2
IOth(6)=—M+’l[(ﬂ1/i—+ﬂzl‘6—+)
o ‘ o\/n 20%n
s ot g )]
2 (#1 o/n M St
n o "2\ g2
= (_M + uy ﬂ)g + (fuz 2/“1 )__
o o o 2
+ termsin 6%, k >3
Since u," = p and o = u,’ — w2,

2

17 log M(0) = % + termsin 6%, k>3
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From an inspection of terms in 6%, it will be seen that the only function

®
—5+1
of n they contain is the factor n 2 . Since k& > 3, all such terms will
approach 0 as n becomes infinite; consequently,
2

lim log M(0) = —

which implies that

>
)

lim M,(0) = e?

The two theorems dlscussed in the paragraph 1mmed1ately precedlng
Theorem 2, Chapter 5, can now be applied to give the desired result.
Since the moment generatmg function of the variable ¢ = (z — ,u)\/ nlo
approaches the function e’*/2, which is the moment generating function
of a standard normal variable, these theorems insure that the variable ¢
possesses a distribution that is approaching the distribution of a standard
normal variable. This result may be stated as follows.

TrEOREM 3: If = has a distribution with mean u and standard devia-
tion o for which the moment generating function exists, then the variable
t = (& — W)V nfo has a distribution that approaches the standard normal
distribution as n becomes infinite.

This theorem is known as a central limit theorem. Such theorems
have been studied a great deal by mathematicians interested in proba-
bility. Although the preceding proof required the existence of the moment
generating function of z, a proof very similar to the preceding proof can
be constructed that requires only the existence of the first two moments;
however it requires a knowledge of complex variables. From a practlcal
point of view, this theorem is exceedingly important because it permits
the use of normal curve methods on problems related to means of the type
illustrated in the preceding section even when the basic variable = has a
distribution that differs considerably from normality. Of course the more
the distribution differs from normality, the larger » must become to

Fig. 3. Distribution of # from a rectangular distribution.
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Fig. 4. Control chart for the mean.

guarantee approximate normality for Z. Sampling experiments have
shown that for n > 50 the form of f(2) has little influence on the form of
f(@) for ordinary types of f(x). Figure 3 shows the empirical distribution
of % for 100 samples of size 10 each from the rectangular distribution given
by f(z) =1, 0 <« < 1, together with the fitted normal curve. The
convergence toward normality appears to be quite rapid here.

6.6.1 Applications

The control-chart technique introduced in 5.3.4.5 was designed to check
on successive sample proportions to determine whether they behaved
like random samples from a binomial population. A similar chart may
be constructed for sample means. Because of Theorem 3, it is not essential
that the basic variable be exactly normally distributed for such charts;
consequently, they are of wide applicability. Such a chart is shown in
Fig. 4. It will be observed that the process appears to be under control.
It should be noted that the control band is a three-standard deviation
band about the mean, and therefore for a normal variable the probability
should be only .003 that a point will fall outside this band. Since many
industrial variables are not normally distributed, and since the sample
means used in control charts are often based on only four or five measure-
ments, one could hardly expect the probability of .003 to be very realistic.
Three standard deviation control limits are chosen because industrial
experience has found them to be especially useful rather than because
they correspond to a desirable probability.

6.7 Distribution of the Difference of Two Means

A frequently occurring problem in science is that of determining
whether real differences exist between two sets of similar data. One
method of treating the problem is to test whether the means of the popula-
tions from which the data were obtained are essentially equal.
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Let Z and 7 be the sample means of two sets of data based on random
samples of size 7, and n,, respectively. Since the samples are random,
Z and § will be mdependently distributed. If # and y are normally dis-
tributed, or if n, and n, are sufficiently large to justify the practical impli-
cations of Theorem 3, Z and ¥ will be normally distributed or at least
approximately so. It is assumed therefore that  and 7 are normally
distributed. ‘

Now consider the moment generating function of the variable ¥ — 7.
If Theorem 1, property (22) of Chapter 5, formula (16), and Theorem 2
are applied in succession, it will be found that

M;_(0) = My(6)M _(0)

{OM(—0)
0262 65292
I+ g

- =22
L “v)'”(nm*‘n,, .

Since this function is the moment generating function of a normal variable,
this result proves the following theorem.

THEOREM 4: If % and § are normally and independently distributed,

then & — g is normally distributed with mean p, _; = p, — p, and standard
devtatwn 0y 5=V o2ln, + o 2n,.

6.7.1 Applications

Consider the following problem. A potential buyer of ligilt bulbs
bought 50 bulbs of each of two brands. On testing these bulbs, he found
that brand A had a mean life of 1282 hours with a standard deviation of
80 hours, whereas brand B had a mean life of 1208 hours with a standard
deviation of 94 hours. Can the buyer be quite certain that the twé') brands
do differ in quality? To answer this question, it will suffice” to test the
hypothesis
P Hy:p, = Ky
Hy:p, # py

Since Z and 7 are based on samples of 50, it is safe to assume that  and
¥ are normally distributed. The samples are obviously indeiﬁendent
hence Theorem 4 may be applied to yield the conclusion that Z—yis
normally distributed with

against the alternative

Hi_g = 0 and Og.5 = £ -+ —=
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Since o, and o, are unknown, it is necessary to estimate them by means of
their sample values. Such approximations introduce an error, but for
samples as large as 50 this error is not serious. It can be shown that the
error in o,_; very likely does not exceed 10 per cent here. With these
approximations

2 2
Uig=0 and oz_z= A/@—Q +(9ﬁ

=175
50 50
Hence
p o T —peg . T4 40y
o 17.5

Because of the choice of Hj, the critical region for this test is chosen to
consist of the two equal tails of the distribution of # — . This choice
for H, is made because there is no external reason for believing that one
brand should be better than the other. If, as usual, a critical region of
size .05 is selected, then a value of |¢| > 2 suffices to reject Hy. The value
t = 4.23 is certainly significant, and therefore H, is rejected. It seems
quite certain that the two brands differ in quality as far as mean burning
time is concerned and that brand A is to be preferred.

After a test has indicated a significant difference, it is usually of interest
to determine how large a difference in the population means may be
reasonably assumed to exist. This problem is considered in Chapter 11.
If only a point estimate of u, — u, is desired, it suffices to choose & — i =
74 as the estimate. This estimate is easily shown to be the maximum
likelihood estimate of u, — w, under the assumption that z and 7 are
independently normally distributed.

6.8 Distribution of the Difference of Two Proportions

If two sets of data drawn from two binomial populations are to be
compared, it is necessary to work with the proportion of successes rather
than with the number of successes, unless the number of trials in each set
is the same. For example, 40 heads in 100 tosses of a coin would not be
compared with 30 heads in 50 tosses unless they were both placed on a
percentage basis. Now, from (34), Chapter 5, it follows that the propor-
tion of successes p’ = x/n may be assumed to be normally distributed
with mean p and standard deviation v/ pq/n, provided that n is large.

Let p,’ and p,’ be two independent sample proportions based on 7y
and n, trials, respectively, from two binomial populations with proba-
bilities p, and p,, respectively, and assume that n, and n, are large enough
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to treat p,’ and p,” as normal variables. Then, if one proceeds with
pi’ — py, as was done in 6.7 for Z — 7, it follows that

v pe6) = M, (OM, (—0)

2
po+Ba® g Patsf®
=e 2ny . e 2nq

(1 —9p)0 + (’”ﬂ1 +1“2“2)6
e ™ 2

Since this is the moment generating function of a normal variable, these
results yield the following theorem.

THEOREM 5: When the number of trials n, and n, are suﬁiczentl 'y large,
the difference of the sample proportions p," — p,' will be approximately nor-

mally distributed with t,, . _,. = py — psando, . _, . = Vpgilng + Paga/ns.

Just as for the simple binomial distribution, the normal app1’0)iimation
will usually be satisfactory in apphcatlons if each n;p, exceeds 5 when
P: < % and n,q; exceeds 5 when p, > g

6.8.1 Applications

As a first illustration, consider the following problem. A railroad
company installed two sets of 50 red oak ties each. The two sets were
treated with creosote by two different processes. After a number of
years of service, it was found that 22 ties of the first set and 18 ties of
the second set were still in good condition. Is one justified in claiming
that there is no real difference between ‘the preserving propertles of the
two processes? To answer this question, let p, and p, denote the respective
probabilities that a railroad tie treated by the corresponding process
will be in good condition after this number of years of service. Then set
up the hypothesis

Hy:p, = pe
against the alternative

Hy:p, # p,

If the common value of p; and p, under H, is denoted by p, then by
Theorem 5 it follows that

pq+pq Jrq

M)~y =0 and Op) —py = 50 5

The value of p is unknown, and so its value must be estimated from sample
values. Since the hypothesis H, treats the two samples as though they
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l I
-.20 0 08 20

Fig. 5. Distribution of p;” — py".

were drawn from populations with the same p, the samples may be com-
bined into one sample of 100 for which there were 40 successes. Hence a
good estimate of p here is .40. With this estimate,

Ypy—py =0 and a, 10

Ly ==

The situation is described geometrically in Fig. 5.

Since p,;’ — p,’ = .44 — 36 = .08 lies well within a two-standard
deviation interval of the mean, the hypothesis H, will be accepted. The
fact that the value of p must be estimated from the sample values and
that p," — p,’ is only approximately normally distributed makes this
test somewhat inaccurate. Both samples are large enough in this illustra-
tion, however, to insure a fairly reliable test.

As a second illustration, consider a problem that arises frequently in
the construction of tests. A civil-service examination is given to a group
of 200 candidates. On the basis of their total scores, the 200 candidates
are divided into two groups, the upper 30 per cent and the remaining 70
per cent. Consider the first question on this examination. In the first
group, 40 had the correct answer; in the second group, 80 had the correct
answer. On the basis of these results, can one conclude that the first
question is no good at discriminating ability of the type being examined
here? To solve this problem, set up the hypothesis

Hy:py = ps

where p; and p, denote the respective probabilities of an individual from
each of the two groups getting the correct answer on the first question.
The natural alternative hypothesis here is

Hy:py > ps

because the better candidates would be expected to do at least as well as
the weaker candidates on all questions. As before, it follows that

pd ., pd
Poy—py =0 and o, = ’\/66 + m

[
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where p is the common value of p; = p, under H,. To estimate p, com-
bine the two groups to give 120 successes in 200 trials, or an estlmate of
.60. Using this estimate for p,

g, . Py’ == .076

P
Now, p," — p," = 40/60 — 80/140 = .10; therefore,
p=E " 13
Opy g

Since ¢ < 1.64, the hypothesis H, will be accepted. This implies that the
first question is not satisfactory for distinguishing between the stronger
and the weaker candidates and therefore should be deleted from the
examination. It might happen, however, that quite a few of the questions
will fail to show discriminating ability as judged by individual sigﬁiﬁcanee
tests such as this but when taken together will show such ability. Hence,
from a practical point of view, one does not always reject a questzon
merely because it does not reject the hypothesis H,,.

6.9 Chi-square Distribution

The techniques that have been developed in this chapter enable one to
solve certain problems relating to radial distances. As an example, sup-
pose a marksman is shooting at a circular target and suppose it may be
assumed that the horizontal and vertical components of his errors are
independently normally distributed with a common variance. If z and y
denote those errors, as shown in Fig. 6, then the radial error is given by

r=v2+ 2 The frequency function of r can be obtained by the
methods of this chapter.

y

(x,3)

r

-
NI

Fig. 6. A radial error problem.
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A similar problem in three dimensions would involve the sum of squares
of three random variables. Now, it is not much more difficult to treat n
variables than three variables; therefore, in order to have a general result
that will handle all such problems, the general situation is considered
here. Furthermore, it will be discovered later that this general result is
very useful in the development of certain branches of statistical theory.

It is a simple matter, by means of (42), Chapter 5, to find the distribu-
tion of the square root of a variable if one knows the distribution of the
variable itself; therefore it will suffice to find the distribution of the
variable

n
w= > x}
i=1
where the variables #;, z,, -+ +, , constitute a random sample from a

normal population with mean 0 and standard deviation 1. From the
formula of Theorem 1 in section 6.4, together with properties of random
samples, it follows that

Mw(e) = Ma:12+' . ‘+xn2(6)
(18) = M, 2()M,2(0) - - - M, x(0)

Now z is a standard normal variable; therefore

1 o . -2
M$2(6)=—:f e % dx

Vor Jow
1 @ —%fu—zn)
= —= e - dx
\/2ﬂf_w

Let y = V1 — 20; then this integral reduces to

11 e 2
M (0) = (1 — 26) 2\/2_77 f_ e 2dy

_1
=(1—26) 2
From this result and (18), it therefore follows that

(19) M) = (1 —26)

All that remains to be done is to find a frequency function correspond-
ing to this moment generating function and then apply the uniqueness
argument concerning frequency functions and moment generating func-
tions. In the method employed here the answer is written down and its
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correctness is verified. That is, a particular frequency function is written
down, and it is then shown that a variable having this frequency function
possesses the moment generating function given by (19). The frequency
function that corresponds to (19) defines what is known as the ch1 -square
distribution. A special case of this distribution was obtained in (43),
Chapter 5. Although it is a cumbersome variable to use, the basic vari-
able here is usually denoted by the Greek letter 42. In terms of thzs nota-
tion, the chi-square distribution is defined as follows:

(P e
2)
i

The symbol T'(x) denotes the gamma or factorial function of 2, which
has the property that I'(x+1) = 2T'(x). Because of this property,
table of values of the gamma function for 1 < » < 2 will'suffice to evaluate
the function for other positive values of «. If z is an integer, no tables
are needed because I'(1) = 1 and then I'(z 4+ 1) = &! The 11eces<;ary
tables for # not an integer can be found in any handbook of mathemaucal
tables. In particular, they show that I'(3) = /7.

The parameter v is called the number of degrees of freedom of the
distribution. This name is given to it because it is equal to the number of
independent variables occurring in w. If » is set equal to 1, it will be
observed that (20) reduces to the function obtained in (43), Chapter 5.
For the more general problem being considered here, the VaIue of v is
n. A graph of (20) for several values of » is given in Fig. 7.

(20) CHI-SQUARE DISTRIBUTION: f(4?) =

1 2 3 4 56 7 € 9 10 1I 17

Fig. 7. Distribution of y? for various degrees of freedom.
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For convenience in finding the moment generating function of a x?
variable, let the variable be denoted by z. Then the generating function
of * will be given by

M6) = f: & (z) dz

= — lv Lmeezz%_le_;‘ dz
]
()

- 1 _ J'we«%uf;w)zgq i
: 0
ap(Z
()
Let y = 2(1 — 26)/2; then dz = 2dy/(1 — 20) and

v

PN SR S
A= (v)ﬂe 1—20) 1T—20%
2

22r

1—20) 2(~ 2
= (_-—)-._J\ e—yy2 Idy

g

2

But, as shown in any standard set of mathematical tables, this integral is
the integral that defines I‘(%); hence the moment generating function
of % for » degrees of freedom is given by
1) Mp(0) = (1 — 26) 2

A comparison of this result with formula (19) shows that w has the
moment generating function of a 2 variable with »n degrees of freedom.
Since a distribution is uniquely determined by its moment generating
function, the preceding derivation proves the following theorem.

THEOREM 6: If'x is normally distributed with zero mean and unit variance,
the sum of the squares of n random sample values of x has a x* distribution
with n degrees of freedom.

As an illustration of the use of this distribution in radial error problems,
consider the problem of calculating the probability that an antiaircraft
shell designed to burst at a specified point in space will have a radial error
of at most 100 feet if it is assumed that the », ¥, and 2z errors of a co-
ordinate system with the origin at the specified point are independently
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normally distributed with a common standard deviation of 50 feet. For
convenience of notation, let #; = 2/50, z, = y/50, and x, = 2/50. Then
&, %y, 23 Will be independent, normally distributed variables Wfth zero
means and unit variances; consequently, by Theorem 6, ;2 + xz‘ + 42
will possess a * distribution with three degrees of freedom. Using (20),
one can therefore write

PVa? + 2 + 22 < 100} = P {o? + 42 + 22 < 1008
=Pz + 2 + 2 < 4}

1 4 1 w
" (3)L e
2 E

Although such tables are not presented in this book, there are statistical
tables that enable one to evaluate integrals of this type. Reference to
the proper tables will show that the preceding answer reduces to P = .72.

The x2 distribution was introduced here in connection wn;h radial
distance problems however, it is one of the most 1mportant theoretical
distributions in statistics and appears repeatedly in later chapters in
connection with various types of problems.

1
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EXERCISES

1. Suggest how to sample randomly from (a) students at a umver51ty, )]
households in a city, (¢) the adult public, (d) a carload of wheat.

2. Explain which features of random sampling are satisfied and which features
are not satisfled if you wish to estimate the distribution of students’ grade-point
averages and do so by taking a sample of 100 students from the registration files
by consultmg a table of random numbers corresponding to the enrollment but
always i 1gnormg any grade-point average less than .8. Assume that the student
enroliment is very large.

3. Show that E(x — ¢)? is a minimum when ¢ = E[«].
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4. Give an example of two random variables for which Efzy] ## E[x] Ely].

5. Given an example of 2 dependent random variables for which the variance
of their sum is (@) larger than the sum of their variances (b) smaller than the sum
of their variances.

6. Given f(z,y) = e "), 2 > 0,y 2> 0, (a) calculate the value of E[z] where
z =z +y, (b) calculate the value of E[2?%], (¢) find M (0).

7. By using moment generating function methods, show that the sum of 2
independent binomial variables with the same parameter p is also a binomial
variable. How could you argue this result directly?

8. By using moment generating function methods and the result in problem
27, Chapter 5, show that the sum of 2 independent Poisson variables with means
4, and u, is also a Poisson variable with mean y; + u,.

9. Using the methods of problem 8, explain why the difference of 2 independent
Poisson variables will not be a Poisson variable.

10. Let = have the distribution f(x) = pg®, = = 0,1, 2, - -(@)Calculate E[x]
by using the formula 1/(1 —¢q) =1 +¢q +4¢*+¢® --- and its derivative.
(b) Calculate the variance of x by first calculating E[z(x — 1)] by means of
similar techniques. :

11. Cards numbered 1 through » are shuffled and laid out in a line. Let
25, = 1if the number on the kth card is smaller than the number on the (¥ + 1)th

. n—1
wﬂMMa=M%MmRM=EQMMMMMMMWMWMw

E=1
total number of increases in the sequence. Calculate the mean and variance of z.

12. If « is normally distributed with x = 20 and ¢ = 5, calculate the proba-
bility that (a) > 21, (b) £ > 21, if % is based on a random sample of size 25.

13. Past experience indicates that wire rods purchased from a company have
a mean breaking strength of 400 pounds and a standard deviation of 15 pounds.
(a) If 16 tods are selected, between what 2 values could you reasonably expect
their mean to be? (b) How many rods would you select so that you would be
certain with a probability of .95 that your resulting mean would not be in error
by more than 2 pounds?

14. If you wish to estimate the mean of a normal population whose variance
is 10, how large a sample should you take so that the probability is .80 that your
estimate will not be in error by more than .4 unit?

15. A research worker wishes to estimate the mean of a population by using a
sample large enough that the probability will be .95 that the sample mean will
not differ from the true mean by more than 25 per cent of the standard deviation.
How large a sample should be taken?

16. The following data represent the initial velocities in meters per second of
projectiles fired from the same gun. (a) Determine the accuracy of the sample
mean £ as an estimate of the true mean velocity. (b) Calculate the approximate
probability, using the value of s for the data in place of o, that a sample mean &
based on a sample of this size will deviate more than } unit from the true mean.
(¢) Why are the methods used in (a) and (b) not very satisfactory here?

455 454 450 453 452 451 450 454
451 451 452 454 450 454 454
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17. Suppose one mixes the ingredients for concrete to attain a mean breaking
test of 2000 pounds. If the mean drops below 1800 pounds, the composition will
be changed. How many tests will need to be made in order that « =05 and
B = .10 in testing the hypothesis H,:x = 2000 against H;:u = 1800 if ¢ = 200
and one assumes normality ?

18. Find an expression for the power function of the test when testing ??0 W o=
10 against H;:x > 10 for a normal variable with unit variance. Use the right
tail of the & distribution as critical region with » =25 and « = .10.

19. Have each member of the class perform the following experiment 10 times.
Select 10 one-digit random numbers from the table of random numbers in the
back of the book. Calculate the mean for each set of 10, Bring these 10 experi-
mental means to class, where the total set of such means may be clasmﬁed the
histogram drawn, and the mean and standard deviation computed. These
results shovld then be compared with those expected under Theorem 3. The
population here has # = 4.5 and ¢ = 2.87.

20. The same test was given to 2 classes. The first class of 20 students averaged
123 points with a standard deviation of 32 points; the second class of 30 averaged
130 points with a standard deviation of 24 points. Is it safe to conclude that the
second class is superior ?

21. Two sets of 100 students each were taught to read by 2 different methods.
After instruction was over, a reading test gave the following results: & = 73.4,
g =703, s, =8, 5, = 10. (a) Test the hypothesis that x, = x,. (b) Determine
the accuracy of & — ¢ as an estimate of u;, — p,. (c) Determine how Jl‘alrge an
equal-size sample from each group should have been used if it were desired to
estimate p, — 4, to within 1 unit with a probability of .95. 4 ‘

22. Suppose that you wish to test whether there is a tendency for an individual’s
right foot to be longer than his left foot. () Explain why it would be incorrect
to take a random sample of, say, 100 individuals and apply the usual technique
for testing u, = u,, where # and y correspond to the right and left foot,
respectively. (b) Explain how you could sample differently or handle the data
differently to overcome the difficulty here.

23. Suppose that £ and ¥ are the means of 2 samples of size » each from a
normal population with variance o2. Determine » so that the probabzhty will be
about .99 that the 2 sample means will differ by less than o.

24. Two different samplers X and ¥ were sent into the same forest to select
trees at random. Each sampler took a sample of 100 trees and measured their
diameters with the following results: & =19.2, # =203, 5, = 3.2, s, = 2.6.
(@) Does the smaller standard deviation for Y imply that he is a more accurate
sampler than X? (b) What conclusions can be drawn concerning the accuracy
of Xand ¥? (¢) If you knew that the true mean was 19.7, could you draw any
further conclusions ?

25. Suppose 4, — p, = §and o, = o, = 1 for 2 independent normal var;ables.
How large an equal-size sample from each population should be taken'so that
the probablllty of rejecting the false hypothesis Hy:u, = p, will be 90 if the
critical region is two-sided and « = .05.

26. In a large-scale experiment 2000 children were split into 2 groups ‘of 1000
each. One group received a serum for the prevention of a disease; the other
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group received no serum. The number of children in each group who contracted
the disease was 30 and 50, respectively. Treating these 2 numbers as sample
values of 2 Poisson variables which may be considered as approximately normally
distributed, test the hypothesis that p; = u,.

27. In a poll taken among college students, 46 of 200 fraternity men favored a
certain proposition, whereas 51 of 300 nonfraternity men favored it. Is there a
real difference of opinion on this proposition ?

28. A manufacturer of housedresses sent out advertising by mail. He sent
samples of material to each of 2 groups of 1000 women, but for 1 group he used
a white envelope and for the other group he used a blue envelope. He received
orders from 10 and 13 per cent, respectively. Is it quite certain that the blue
envelope will help sales? ‘

29. A civil service examination was given to 200 people. On the basis of their
total scores, they were divided into the upper 30 per cent, the middle 40 per cent,
and the lower 30 per cent. On a certain question, 39 of the upper group and 29
of the lower group answered correctly. Is this question likely to be useful for
discriminating the ability of the type being tested ?

30. If the percentage of defective parts turned out by the same machine on 2
consecutive days is 6 and 8 per cent and 500 parts were turned out on each of
those days, would the inspector be justified in claiming that the quality had
slipped ?

31. A test of 100 youths and 200 adults showed that 50 of the youths and 60
of the adults were poor drivers. Use these data to test the claim that the youth
percentage of poor drivers is larger than the adult percentage by 10 percentage
points, against the possibility of a still larger difference.

32. Two players each play a game of chance 100 times. If 1 dollar is paid
for every win and the probability of winning at a single trial is 3, what is the
approximate probability that the first player will finish with at least 5 dollars
more than the second player?

33. (a) Construct a control chart for & for the following data on the blowing
time of fuses, samples of 5 being taken every hour. Eachset of 5 has been arranged
in order of magnitude. Estimate o by first estimating ¢ by means of s calculated
for all 60 values. (b) Comment on whether production seems to be under control,
assuming that these are the first data collected.

42 42 19 36 42 51 60 18 15 69 64 61
65 45 24 54 51 74 60 20 30 109 91 78
75 68 80 69 57 75 72 27 39 113 93 94
78 72 81 77 59 78 95 42 62 118 109 109
87 90 81 84 78 132 138 60 84 153 112 136

34. Using moment generating function methods and the results of problem
6 (c) and of problem 37 (c), Chapter 5, find the frequency functionofz =z +y
given in problem 6.

35. Prove that if z and y are independent variables having the same rectangular
distribution with range 1 and mean § then & + y will not have a rectangular
distribution.
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36. Calculate P{x,® + 2,2 < 1} and P{z® + xz < 2} for a random sample of
size 2 from the frequency function (@) f(x) = 3, —1 <« <1, and (b) f@) =

g
4 2/\/277.

37. Find the frequency function of nz for a random sample of size » from the
population with frequency function f(x) = e™*, & > 0.

38. Prove that a lincar combination of independent normal vanables isalsoa
normal variable.

39. Use the moment generating function of a x? variable with » degrees of
freedom to find its mean and variance.

40. Use expected value operator methods on w = z 2 to find the niean and

variance of a x varlable with n degrees of freedom.

41. If a2y, - - -, x, is a random sample from the distribution with frequency
function f(x), calculate P{x, <t, ,#, <t} and use it to find the frequency
function of the variable z = max {11, -+, a,}. Express the result in terms of
[f(@) and its distribution function F(»).

42, Use the result in problem 41 to find the distribution of the lifetime of a
piece of electronic equipment that has n vital parts with lifetimes Ty, By
which are independently and identically distributed with frequency functlon
f@ =oae=*, & > 0,if it is assumed that one functioning vital part is sufficient

to operate the equipment.




CHAPTER 7

Correlation and Regression

The statistical methods presented thus far have been largely concerned
with a single variable « and its frequency function. Many of the problems
in statistical work, however, involve several variables. This chapter is
devoted to explaining some of the simpler methods for dealing with data
associated with two or more variables. The emphasis is on two variables.
Chapter 8 is concerned with the construction of models and other theo-
retical aspects of the problems brought up in this chapter.

In some problems the several variables are studied simultaneously to
see how they are interrelated; in others there is one particular variable
of interest and the remaining variables are studied for their possible aid
in throwing light on this particular variable. These two classes of prob-
lems are usually associated with the names of correlation and regression
respectively. They are considered in that order.

7.1 Linear Correlation

A simple correlation problem arises when an individual asks himself
whether there is any relationship between a pair of variables that interests
him. For example, is there any relationship between smoking and heart
ailments, between music appreciation and scientific aptitude, between
radio reception and sunspot activity, between beauty and brains?

Consider two random variables = and y and the problem of determining
the extent to which they are related. The investigation of the relationship
between two such variables, based on a set of n pairs of measurements
(@1, ), (25 ¥), - * +, (%, ¥,), usually begins with an attempt to discover
the approximate form of the relationship by graphing the data as n
points in the x,y plane. Such a graph is called a scatter diagram. By
means of it one can quickly discern whether there is any pronounced
relationship and, if so, whether the relationship may be treated as approxi-
mately linear.

160
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As an illustration, consider the data of Table 1 consisting of the scores
of 30 students on a language test x and a science test y. The maximum
possible score on each of these tests was 50 points. The choice of which

TaBLE 1
x iy x|y x|y
34 1 37 28 | 30 39| 36
37 | 37 30| 34 33129
36 | 34 32 | 30 30 | 29
32| 34 41 | 37 33140
32133 38 | 40 43 | 42
36 | 40 36 | 42 31129
35| 39 37 | 40 38 | 40
34 | 37 331 36 34 | 31
29 | 36 32 | 31 36 | 38
351 35 33 ] 31 34 | 32°

variable to call  and which to call y is arbitrary here. The scatter diagram
for these data is shown in Fig. 1. '

An inspection of this scatter diagram shows that there is a tendency
for small values of « to be associated with small values of y and for large
values of = to be associated with large values of y. Furthermore, the
general trend of the scatter is that of a straight line. For variables such
as these, it would be desirable to be able to measure in some sense the
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Fig. 1. Scatter diagram for language and science scores.
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Fig. 2. Scatter diagram for standardized scores.

degree to which the variables are linearly related. For the purpose of
devising such a measure, consider what properties would be desirable.

A measure of relationship should certainly be independent of the choice
of origin for the variables. The fact that the scatter diagram of Fig. 1
was plotted with the axes conveniently chosen to pass through the point
(25, 25) implies that the relationship was admitted to be independent of
the choice of origin. This property can be realized by using the variables
#, and y, in the forms #; — Z and y; — ¥ in the construction of the desired
measure.

A measure of relationship should also be independent of the scale of
measurement used for « and y. Thus, if the # and y scores of Table 1 were
doubled in order to make them appear like conventional test scores, the
relationship between the variables should be unaffected thereby. This
property can be realized by dividing » and y by quantities which possess
the same units as « and y. For reasons that will be appreciated presently,
the quantities that are chosen here are s, and s,. Both properties will
therefore be realized if the measure of relationship is constructed by using
the variables «; and ¥, in the forms u; = (x; — ®)/s, and v; = (y; — D8,
This merely means that the 2, and ¥, should be measured in sample
standard units.

The scatter diagram of the points (u;, v,) for the data of Table 1 is
shown in Fig. 2. It will be observed that most of the points are located
in the first and third quadrants and that the points in those quadrants
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tend to have larger coordinates, in magnitude, than those in the second
and fourth quadrants. A simple measure of this property of the scatter

n
is the sum > uw,. The terms of this sum that are contributed by points
i=1 .
in the first and third quadrants will be positive, whereas those corre-
sponding to points in the second and fourth quadrants will be negative.
A large positive value of this sum would therefore seem to indicate a
strong linear trend in the scatter diagram. This is not strictly true, however,
for if the number of points were doubled without changing the nature of
the scatter, the value of this sum would be approximately doubled. It is
therefore necessary to divide this sum by #, the number of pomts before

using it as a measure of relationship. The resulting sum, E uv/n, is the

desired measure of relationship. It is called the correlatzon coeﬁﬁczent
and is denoted by the letter r; hence, in terms of the original measure-
ments, r is defined by the following formula. ‘

i (z; — f)(% )

¢)) CORRELATION COEFFICIENT: p = =1

15,8,

Calculations will show that r = .66 for the data of Table 1. In order
to interpret this result and discover what values of r are likely to be ob-
tained for various degrees and types of relationship between z and y,
consider the scatter diagrams of Fig. 3. The first four diagrams corre-
spond to increasing degrees, or strength, of linear relationship. If these
diagrams were rotated about the y axis through 180° so that the scatters
appeared in the second quadrant, the scatters would have downward
trends rather than upward trends and the corresponding values of r
would be the negatives of the listed values. Thus the magnitude of r
determines the strength of the relationship, whereas the sign of r tells one
whether y tends to increase, or decrease, with #. The fifth diagram illus-
trates a scatter in which x and y are closely related but in which the
relationship is not linear. This illustration points out that r is a useful
measure of the strength of the relationship between two variables only
when the variables are linearly related.

The diagrams of Fig. 3, together with the associated values of r, make
plausible two properties of r, namely, that the value of r must satisfy
the inequality —1 < r < 1 and that the value of r will be equal to +1 if,
and only if, the points of the scatter lie on a straight line. A demonstra-
tion of these properties is somewhat lengthy and therefore will not be
undertaken here; however, it is available in the appendix.
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(a) (%

(c) (d)

()

Fig. 3. Scatter diagrams and their associated values of r.

7.1.1 Interpretation of r

The interpretation of a correlation coefficient as a measure of the
strength of the linear relationship between two variables is a purely
mathematical interpretation and is completely devoid of any cause or
effect implications. The fact that two variables tend to increase or de-
crease together does not imply that one has any direct or indirect effect
on the other. Both may be influenced by other variables in a manner that
will give rise to a strong mathematical relationship. For example, over a
period of years the correlation coefficient between teachers’ salaries and
the consumption of liquor turned out to be .98. During this period of
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time there was a steady rise in wages and salaries of all types and a general
upward trend of good times. Under such conditions, teachers’ salaries
would also increase. Moreover, the general upward trend in wages and
buying power would be reflected in increased purchases of liquor. Thus
this high correlation merely reflects the common effect of the upward
trend on the two variables. Correlation coefficients must be handled
with care if they are to give sensible information concerning relationships
between pairs of variables. Success with correlation coefficients requires
familiarity with the field of application as well as with their mathematical
properties.

7.1.2 Calculation of r

The formula in (1) that defines r is not always convenient for com-
putational purposes. A better form is obtained by mu1t1p1y1ng out
factors and inserting values for s, and s,

Sy — nxy
VIZa* — n@][Zy* — n7*]
@ _ nSey — SeSy |
VInZe® — CoflnIy® — Sy

This last form requires the sums of «, y, 2, y?, and zy, all of Wthh are
readily calculated with modern electric calculators

If the data are so numerous that the preceding computations would
become unduly lengthy even with a calculating machine, then it may be
worthwhile to classify the data with respect to both variables, just as
was done for one variable in Chapter 4 in calculating Z. When the data
have been so classified, the short method of computation used for finding
means may be employed to advantage in computing r. Let

Fo=

x; = U + %,
and
Yi = 0 + Yo

where ¢, and ¢, are class intervals and « and v are new integral variables.
Then, because of the property of being independent of the choice of
origin and choice of scale for # and y, the .value of r calculated for the
integral variables « and » will be the same as for z and y. This fact may
be verified directly by substituting these changes of variables in (1) and
simplifying.
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7.1.3 Reliability of r

In any given problem involving linear correlation, the value of r may
be thought of as the first sample value of a sequence of sample values
r1, 9y F3, * + + that would be obtained if repeated sets of similar data were
obtained. Such sets of data are thought of as having been obtained
from drawing random samples of size » from some population. For
example, the data of Table 1 are assumed to have been obtained from
drawing a random sample of size 30 from a population of students.

The population being sampled can be described with respect to the two
variables = and y by means of the frequency function f(x, y) of those
variables. Now, suppose that the function f(x, y) contains a parameter
p whose value serves to measure the extent to which « and y are linearly
related in a probability sense. Then r may be used to estimate the value
of p, just as a sample mean Z is used to estimate the population mean p.
The parameter p would, of course, be called the theoretical, or population
correlation coefficient.

Frequency functions of two correlated variables will be studied in
Chapter 8. In particular, a frequency function, called the normal fre-
quency function, which contains a parameter p of the type described in
the preceding paragraph, is introduced. It is shown in the next chapter
that  is the maximum likelihood estimator of p, provided that » and y
possess a normal frequency function. This demonstration constitutes
the justification for choosing r as given by (1) as a desirable measure of
linear correlation.

If it is assumed that @ and y possess a normal frequency function, then
it is theoretically possible to derive the frequency function of the random
variable r, just as it is possible to derive the frequency function of  from
that of «. Both the form and the derivation of this frequency function
are too complicated to be considered here. It turns out that the frequency
function of r depends only on the parameters p and n, where » is the
number of points in the scatter diagram. Graphs of the frequency func-
tion of r for p = 0 and for p = .8 when n = 9 are shown in Fig. 4.

It is clear from Fig. 4 that the distribution of r is decidedly non-normal
for large values of p; consequently it will not suffice to obtain the standard
deviation of r and use it to determine the accuracy of r as an estimate of
p. Fortunately, there exists a simple change of variable which transforms
the complicated distribution of r into an approximately normal distribu-
tion. The resulting normal distribution may then be used to determine
the accuracy of r as an estimate of p in the same way that the normal
distribution of  was used to determine the accuracy of # as an estimate
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of u. This change of variable is from r to z, where

3) z = }log,

1—-r

It can be shown that when the preceding assumptions are satlsﬁed z will
be approximately normally distributed with mean

—éb&1+p
I—p
and s_tandard deviation
1

7 Jn—=3

As an illustration, consider the following problem. Is a correlation
of r = .20 between the face index and the cephalic index of 50 members
of a certain race significant? Set up the hypothesis that p = 0. Then
the variable z will be approximately normally distributed with u, = 0
and o, = 1/V/47 = .15. Ifa significance level of .05 is taken and if the
two tails of this normal distribution are used as a critical region, a sample
value of r will be significant if it has a value of z such that zl > .30.
Here,

2 —_—
‘0.8

Since this value does not exceed the critical value, the value of r = .20 is
not significant. A value as large as this would be obtained fairly often in
random samples from a population in which the two variables : are un-
correlated.

As a second illustration, consider the problem of determmmg an
interval of values within which r could reasonably be expected to fall

.20

z=4log

L1 r
~1 =5 0 5 1

Fig. 4. Distribution of r for p = 0 and p = .8 whenn = 9,
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if p = .8 and if r is based on a sample of size 28. Let reasonably be under-
stood to mean with a probability of .95. The construction of such an
interval can be accomplished by first constructing such an interval for
z and then transforming it into an interval for . The simplest interval
for z that possesses the desired property is the interval with end points
2 = pu, — 20, and 2, = u_+ 20,. For p = .8 and n = 28, it follows
from (3) that these end points are

z1=%10g9—i .70

NE

22=%log9+%= 1.50

If r is expressed as a function of z in relationship (3), it will be found that
r is the hyperbolic tangent of z. From tables of this function, or from
tables of exponentials, it will be found that r; = .60 and , = .91. Thus
it can be stated that the probability is approximately .95 that the sample
correlation coefficient will satisfy the inequality .60 < r < .91 when r is
based on a sample of 28 and p = .8.

7.2 Linear Regression

In the introduction to section 7.1, it was pointed out that correlation
methods are used when one is interested in studying how two or more
variables are interrelated. It often happens, however, that one studies
the relationship between the variables in the hope that any relationship
he finds can be used to assist in making estimates or predictions of one
of the variables. Thus, if the two variables for Table 1 had been scores
representing college aptitude « and college success y rather than the
variables listed there, the relationship between @ and y would have been
useful for assisting one to predict a student’s college success from a knowl-
edge of his score on a college-aptitude test. The correlation coefficient
is not capable of solving such prediction problems; therefore, it is neces-
sary to introduce what is known as regression methods for handling those
problems. In this section linear regression methods for two variables
will be studied, whereas curvilinear regression and regression methods
for several variables will be introduced in later sections.

Consider the data of Table 2 on the amount of water applied in inches
and the yield of alfalfa in tons per acre on an experimental farm. The
graph of these data is given in Fig. 5. From this graph it appears that »
and y are approximately linearly related for this range of x values. For
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Fig. 5. Hay yield as a function of amount of irrigation.

the purpose of predicting y from 2, it should therefore suffice to use a
linear function of #. Thus the problem of prediction first requires one to
solve the problem of fitting a straight line to a set of points. )

7.2.1 Least Squares

The problem of fitting a curve to a set of points in some efficient manner
is essentially the problem of estimating the parameters of the curve in an
efficient manner. Although there are numerous methods for performing
the estimation of such parameters, the best known method is the follow-
ing, known as the method of least squares.

TABLE 2

Water (x) 12 18 24 30 36 42 48

Yield () | 527 568 6.25 7.21 8.02 8.71 842

Since the desired curve is to be used for cst1matmg, or predlctmg,
purposes, it is reasonable to require that the curve be such that it makes
the errors of estimation small. By an error of estimation, or predlctxon
is meant the difference between an observed value of ¥ and the corre-
sponding fitted curve value of y. If the value of the variable to be esti-
mated is denoted by y and the corresponding curve value by y’, then
the error of estimation, or prediction, is given by ¥ — »’. Since the errors
may be positive or negative and might add up to a small value for a poorly
fitting curve, it will not do to require merely that the sum of the errors
be as small as possible. This difficulty can be avoided by requiring that
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the sum of the absolute values of the errors be as small as possible. How-
ever, sums of absolute values are not convenient to work with mathe-
matically; consequently the difficulty is avoided by requiring that the
sum of the squares of the errors be a minimum. The values of the param-
eters obtained by this minimization determine what is known as the
best fitting curve in the sense of least squares,

Consider the application of this principle to the fitting of a straight
line to a set of n points. It is convenient to write the equation of any
nonvertical line in the form

@ Y =a+ b — %)

where b is its slope and q is the y intercept on the line x = Z. The y inter-
cept on the y axis is @ — bZ. It will be seen shortly why it is so convenient
to express the equation of an arbitrary line in this form rather than in the
slope-intercept form, ¥ = a + bz, of analytical geometry. The problem

now is to determine the parameters ¢ and b so that the sum of the squares
of the errors of estimation will be a minimum. If the coordinates of the

ith point are denoted by (z,, ¥,), this sum of squares will be Z (y; — v/ )"

When y,” is replaced by its value, as given by (4), it becomes clear that
this sum is a function of ¢ and b only. If this function is denoted by
G(a, b), then

Gla,b) = 3 [s;— a = b(w = DF

If this function is to have a minimum value, it is necessary that its partial
derivatives vanish there; hence a and b must satisfy the equations

— =3 2y—a—blx—2][-1]=0
)
2= 3oy — a - b — D[~ — D] =0

where the subscripts and range of summation have been omitted for con-
venience. When the summations are performed term by term and the
sums that involve y are transposed, these equations assume the form

an + b> (@ —7) =Dy
ax—T) + b — 7?2 =@ — )y
Since >:(x — %) = 0, the solution of these equations is given by

_ 2 — By
Z(x — ¥)*

©)

=4 and
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These values when inserted in (4) yield the desired least squares line. This
line is usuaﬂy called the regression line of y on #; hence the preceding
derivation gives the result

(7) REGRESSION LINE: ¥y’ — § = b(x — %), where b = M
S, — CL‘)“

A pioneer in the field of applied statistics gave the least squares line this
name in connection with some studies he was making on estunatmg the
extent to which the stature of sons of tall parents reverts or regresses to-
ward the mean stature of the population.

For computatlonal purposes, it is convenient to change the form of
b slightly in the following manner.

p— _ 2% — T3y
2t — 2Ty + Y
_ 2y — niy
- Sa? — nz®
Table 3 illustrates the computational procedure for the data of Table
2. Here (7) was used to calculate b instead of the suggested computmg

(8

TABLE 3
x Y X - (x — By (x — 3)*
12 5.27 —18 —94.86 324
18 5.68 -12 —68.16 144
24 6.25 —6 —37.50 36
30 7.21 0 0 0
36 8.02 6 48.12 36
42 8.71 12 104.52 144
48 8.42 18 151.56 324
210 49.56 103.68 1008

formula (8) because 7 is so simple. As a result of these computatlons
the equation of the regression line was found to be

= .10z 4 4.0

The graph of this line is shown in Fig. 5.

In ﬁttmg a straight line to a set of points, as in the preceding illustra-
tion, it is intuitively assumed that the resulting line is an estimate of a
theoretical line of regression. The problem of determining the accuracy
of the least- -squares line as an estimate of the theoretical line of regression
is considered in Chapter 11. Chapter 8, however, discusses theoretlcal
lines of regression as models for empirical lines of regression.
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There is an important difference between the scatter diagrams of Fig. 1
and Fig. 5 that should be noted. In Fig. 1 the points correspond to a
random sample of 30 students; consequently, both z and y are random
variables. In Fig. 5, however, the « values were chosen in advance, so
that y is the only random variable. Since least squares can be applied
whether the « values were fixed in advance or were obtained from random
samples, the regression approach to studying the linear relationship
between two variables is more flexible than the correlation approach.
The interpretation of r as a measure of the strength of the linear relation-
ship between two variables obviously does not apply if the values of «
are selected as desired because the value of r will usually depend heavily
on the choice of  values. In addition to being more flexible, regression
methods also possess the advantage of being the natural methods to use
in many experimental situations. The experimenter often wishes to change
« by uniform amounts over the range of interest for that variable rather
than take a random sample of « values. Thus, if he wanted to study the
effect of an amino acid on growth, he would increase the amount of amino
acid by a fixed amount, or factor, each time he ran the experiment.

7.3 Multiple Linear Regression

It happens quite often that the method of the preceding section for
estimating one variable by means of a related variable yields poor results
not because the relationship is far removed from the linear one assumed
there but because there is no single variable related closely enough to
the variable béing estimated to yield good results. However, it may
happen that there are several variables that, when taken jointly, will serve
as a satisfactory basis for estimating the desired variable. Since linear
functions are so simple to work with and experience shows that many sets
of variables are approximately linearly related, it is reasonable to attempt
to estimate the desired variable by means of a linear function of the
remaining variables. For this purpose let Y, X3, X, - - -, X, represent
the available variables and consider the problem of estimating the variable
Y by means of a linear function of the remaining variables. If the variable
used to estimate Y is denoted by Y’, the linear estimating function may
be expressed as

9 Y = ¢y + 1 X1 + e Xo + - -+ + Xy

where the ¢’s are to be determined by means of available data.
As in the case of two variables, the unknown coefficients are estimated
by the method of least squares. This implies that n sets of values of the
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k + 1 variables are available for obtaining the estimates. Geometrically,
. the problem is one of finding the equation of the plane which fits best, in
the sense of least squares, a set of # points in k + 1 dimensions.

The problem now is to find the set of ¢’s in (9) that will minimize the

7 H
sum > (Y; — ¥/)% As in the case of two variables, it is more convenient
=1 :
to work with variables measured from their sample means than with the
variables themselves; hence first let
y=Y—-Y
xj:Xj—Yj” j=1723-‘.’k
If y" is defined by ' = ¥’ — ¥, then
(10) Y=Y =y+Y~@+VN=y—y
If now the capital X’s and Y in (9) are expressed in terms of the small
#’s and y, that equation can be written in the form
(11) Y =ay+ a; + Ay + + 0+ g, i
where the a’s could be expressed in terms of ¥, the ¢’s, and the X’s if
so desired. However, from (10) it is clear that minimizing 3 (¥ — Y")%is
equivalent to minimizing ¥ (y — y)2; consequently one can just as well
determine the a@’s to minimize the latter sum, which because of (11) may
be written «
(12) Glag, a1, ) = 2[?/ — Gy — 4%y — o — g P (
If this function is to have a minimuni value, it is necessary ‘that its
partial derivatives vanish there; hence the a’s must satisfy the equations

96 oG _ G
8y da,  day
Differentiation of (12) produces the equations
22y — a — @xy = =] [-1] =0
22y —ay — aw, — - — %] [—xy] = 0
22[y — a, — Gy — = ar] [~ ] =0

If these equations are multiplied by %, the summations performed term
by term, and the first sum transferred to the right side, these equations
will assume the form

apn + @, 3@ + -0 + @D %, = 2y
(13) ap 2%, + ade? 4 4 @ 1y, = 2y

a >, + @2 axy + o+ @l = Dy
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Since Yz, = >(X, — X;) = 0 and Sy =3(Y— Y)=0, all terms in
the first equation, except the first term, vanish. This implies that ¢, = 0,
and thus the number of equations to be solved has been reduced by 1.
The advantage of using variables measured from their sample means to
simplify the notation and solution of equations like (13) should be clear
from this result. The problem is now reduced to solving the equations
a2 + a2y + 0+ a2 eT = 2Ty
(14) a2, + a2+ + @D Xty = 2Tl
@23y + Aty + 0 + a1k = 20y
Equations such as (13) or (14), which are obtained by the method of least
squares, are commonly called normal equations.

These equations are easily solved, provided that the number of equations
is small. For large sets of equations much time is saved by using one of
the compact computing schemes available for such problems. The most
widely known is probably the Doolittle method, to which references are
given at the end of this chapter.

The derivation of (14) did not require that all the n values of X;, nor of
the remaining variables, be different. It is necessary only that there be
a sufficient number of distinct values of the variables X;, Xy, **, Xj to
determine uniquely the least-squares plane. Ordinarily, this means that
k + 1 distinct values will suffice because a plane in k + 1 dimensions is
determined by k + 1 points, provided that the k + 1 points do not lie
in a lower dimensional plane. For example, a plane in three dimensions
is determined by three points, provided that the three points do not lie
on a straight line.

As an illustration of the preceding methods, consider the problem of
estimating the amount of hay from a knowledge of the spring rainfall
and temperature, based on the following data. Here Y denotes the amount
of hay in units of 100 pounds per acre, Xy the spring rainfall in inches,
and X, the accumulated temperature above 42°F in the spring. The data
gave the values

V=280, X,=491, X,=5%

lely = 3.872, lixzy = —149.6, ! Sayx, = —52.36
n n n

Lspe—121, L13u2=725
n n

The normal equations (14) then become, after multiplying through by n,
1.21a; — 52.36a, = 3.872
52.36a, — 7225a, = 149.6
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The solution of these equations is a, = 3.3 and a, =-.004; conse-
quently (11) becomes A
¥ = 3.3, + 004z,

This result when expressed in terms of the capital letters of formula )]
yields
Y' =94+ 33X, + .004X,

This equation indicates that if’ X, is held fixed the amount of hay will
increase about 330 pounds per acre with each inch increase in spring
rainfall. On the other hand, if spring rainfall is held fixed, the accumu-
lated spring temperature would have to increase about 250 units, which
will be observed to be about three standard deviations for variabie X,, in
order to increase the amount of hay by 100 pounds per acre. Thus it
appears that the spring temperature is relatively unimportant compared
with spring rainfall. Such conclusions, of course, are only approximately
true. They depend on the variables being approximately linearly related,
and they express only average relationships. They also assume that the
function in (9) is a satisfactory estimate of a “true” linear regression func-
tion for those variables. As in the case of linear regression for one inde-
pendent variable, the problem of the accuracy of the coefficients in the
least squares regression function as estimates of the coefficients in a
theoretical regression function is postponed to Chapter 11. :

7.4 Curvilinear Regression

If a scatter diagram in the .y plane indicates that a straight line will
not fit a set of points satisfactorily because of the nonlinearity of the
relationship, it may be possible to find some simple curve that wilf yield a
satisfactory fit. Since an investigator always strives to explain relation-
ships as simply as possible, with the restriction that his explanation be
consistent with previous knowledge, he will prefer to use a simple type of
curve. It follows, therefore, that the type of curve to use will jdepend
largely on the amount of theoretical information one has concerning -
the relationship and thereafter on convenience i

7.4.1 Polynomial Regression

If there are no theoretical reasons for expecting a curve of a certain
type to represent the relationship, polynomials are usually selected
because of their simplicity and flexibility. The lowest degree polynomial
that will suffice can often be determined by an inspection of the scatter
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diagram. After the degree has been determined, the best-fitting poly-
nomial of that degree may then be fitted by the method of least squares.

Let the degree of the polynomial be k and let the equation of the poly-
nomial be written in the form

(15) y=a,+ ar+ ax®+ -+ gzt

The normal equations here need not be derived because they can be
obtained from the normal equations (13) of multiple regression by using
the original variables rather than the variables measured from their
sample means and letting X, = 2*. This is permissible because the
derivation of equations (13) did not place any restriction on the nature
of the variables X;, X,, -+, X3, and therefore they may be related in
any manner desired. With this choice of the X’s, the normal equations
for polynomial regression become

agt + @ 3% + -+ @22 = Sy

aozx + alzxz R akzxrc-\-l — ny

.................................

aozxk + alzxk-i-l + - 4 akzx% _— zxky

As in the case of multiple linear regression, if the number of equations
is large, the equations should be solved by one of the compact computing
schemes for such problems. From the discussion following (14), it
follows that all n points of the scatter diagram for polynomial curve
fitting need not have distinct @ values. It will suffice to have k + 1 dis-
tinct « values, since a polynomial of degree k is uniquely determined by
k + 1 points. In evaluating sums such as Sam it is understood that the
sum is over all the z values and not over just the distinct « values.

If the investigator is not certain what degree polynomial should be used
in a given problem and wishes to compare different degree polynomials
for their adequacy, he would prefer a fitting technique that requires
little additional labor to increase the degree of the fitted polynomial by
one unit. Such a technique is available if one uses orthogonal polynomials.
These polynomials possess the desirable property of leaving unchanged
the coefficients of the previously fitted polynomial when a higher degree
term is added. If orthogonal polynomials are not used, the entire set of
coefficients would have to be recomputed. Orthogonal polynomials are
particularly convenient when there is but one value of ¥ to each value of &
and the » values are equally spaced. In the latter case, however, the
ordinary normal equations will simplify considerably if » is replaced by
x — 7 in (15) because then >(z — &)™ = 0 for m odd. The normal
equations (16) will then reduce to two sets of equations. Thus, if k=135,
the six normal equations will reduce to two sets of three equations each.

(16)




CORRELATION AND REGRESSION o

The odd-numbered equations will involve only the unknowns a,, a,, and
a4, whereas the even-numbered equations will involve only the unknowns
a,, a3, and a;. The technique of how to use orthogonal polynomxals may
be found in one of the references at the end of this chapter.

7.4.2 Other Regression Functions

In the preceding section it was pointed out that when there are no
theoretical reasons for preferring a certain type of regression function
polynomials are selected because of their simplicity and convenience.
There are numerous situations, however, in which the nature of the
relationship between two variables is known from theoretical considera-
tions. In such situations the fundamental regression problem is to ob-
tain estimates of the parameters that are needed to determine the equation
of the curve that represents the relationship. For example, the equation

pv¥ = constant

represents the relation between the pressure and volume of an 1deal gas
undergoing adiabatic change. Here y is a parameter whose value depends
on the particular gas and for which an estimate may be obtained from
experimental data.

Another cxample of a nonpolynomial regression function is the func-
tion often used in studying simple growth phenomena If it is assumed
that the rate of growth of a blologtcal population is proportxonal to its
size, then the regression function is a simple exponential function. To
verify this fact, let y denote the size of the population at time 7. Then the
assumption concerning the rate of growth can be written in the form

dy
a
where ¢ is the constant of proportionality. This equation is eqﬁiv?alent to
dy_ = cdt
Y
Integration of both sides will yield
logy =ct + k

where k is the constant of integration. Letting k = log b, this equatlon
simplifies to

17 y = be
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Suppose, now, that one is given a set of n points (£, #1), (fes ¥2)s **
(1,»9,) representing the size of a growing population at the times ?;, Z5,

-+ t,. If the parameters b and c are to be estimated by least squares,
it is necessary to minimize the function

G(b,¢) = 2, [y — be" T’
i=1

Calculating the partial derivatives with respect to b and ¢ and equating
them to 0 will yield the normal equations

STy, — be] [—e"]1 =0
Z[“/: — bei] [—beit;] = 0

These equations simplify to
b ethi — leecti
(19) I
by teh = Sytet

The solution of these equations is very difficult and requires tedious
numerical methods. This example illustrates what frequently occurs,
namely, that the method of least squares for nonpolynomial regression
often gives rise to normal equations that are difficult to solve.

There are numerous other methods of fitting a curve to a set of points
that can be employed when least squares gives rise to computational
difficulties. One such method is to introduce mew variables that are
functions of the old variables in an effort to obtain a more tractable rela-
tionship. Thus, in the preceding illustration, it is convenient to work
with the variable ¥ = log y rather than with y itself. If logarithms, to
the base e, of both sides of (17) are taken, then (17) becomes

logy = logb + ct

Then, letting ¥ = logy and a = log b, this relationship reduces to the

linear relationship
Y=a+ ¢t

The problem has now been reduced to the problem of fitting a straight
line to a set of points in the 7z, ¥ plane and thus to a simple problem in
least squares. These least squares estimates for ¢ and a may then be used
to yield estimates for ¢ and b. The estimates for ¢ and b obtained in this
manner differ, of course, from those obtained by solving the original least
squares equations (18); however, the differences are usually quite small.

In studying the problem of determining the accuracy of estimates of
regression parameters, it is essential to know how the errors of estimation
are distributed. The type of assumption made about their distribution
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will often determine whether to use direct least squares or to use least
squares on a modification of the relationship. The problem of the ; accuracy
of least squares estimates is considered in later chapters; however, it is
mentioned here to point out that least squares applied to a modification
of a regression relationship may sometimes be preferred to least squares
applied to the original relationship and therefore that such a modlﬁcatlon
does not necessarily yield inferior estimates.

For some types of regression functions it is not possible to mtroduce
changes of variables that will reduce the problem to one for which the
least squares equations become tractable. For example, in studying
growth phenomena of a somewhat more complex nature than those
implied by (17), the modified exponential function y = a + be“; is often
used as a regression model. Taking logarithms will not help here because
of the parameter a. For functions such as this, other fitting procedures
are often used. The simplest procedure is to select three points which
appear to represent the trend of the data-points and pass the curve through
those points. The three equations resulting from having the coordinates
of the points satisfy the equation would suffice to determine the three
parameters. There are other more refined methods that could also be
used here.

7.5 Linear Discrimiriant Functions

A problem that arises quite often in certain branches of science is that
of discriminating between two groups of individuals or ob}ects on the
basis of several properties of those individuals or objects. For example,
a botanist might wish to classify a set of plants, some of which belong to
one species and the rest to a second species, into their proper species by
means of three or four measurements taken on each plant. If the two
species were fairly similar with respect to all those measurements it
might not be possible to classify the plants correctly by means of any
single measurement because of a fairly large amount of overla.p in the
distributions of this measurement for the two species; however, 1t might
be possible to find a linear combination of those various measurements
whose distributions for the two species would possess very little overlap.
This linear combination could then be used to yield a type of index
number by means of which plants of two species could be differentiated
with a high percentage of success. The procedure for discrirﬁinating
would consist in finding a critical value of the index such that any plant
whose index value fell below the critical value would be clasmﬁeéi as be-
longing to one species, otherwise to the other species.
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The principal difference between a linear discrimination function and
an ordinary linear regression function arises from the nature of the
dependent variable. A linear regression function uses values of the
dependent variable to determine a linear function that will estimate
the values of the dependent variable, whereas the discriminant function
possesses no such values or variable but uses instead a two-way classifi-
cation of the data to determine the linear function.

Consider a set of k variables ;, @, * - = , %;, by means of which it is
desired to discriminate between two groups of individuals. Let
19) 2= Mty + Aoty + 000+ ATy

represent a linear combination of these variables. The problem then is
to determine the A’s by means of some criterion that will enable z to
serve as an index for differentiating between members of the two groups.
For the purpose of simplifying the geometrical discussion of the problem,
consider two variables with n; and 7, individuals, respectively, in the
two groups. The equation

z = My + Ay

then represents a plane in three dimensions passing through the origin
and having direction numbers 4;, 4,, and —1. If the two sets of points

¥4

<—————

x2

<o

e —f————-o

X

x1

*—Dc-x
*-—x

Fig. 6. Example of a discriminating plane.
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corresponding to the two groups of individuals are such that théy can be
separated by means of a plane through the origin, as shown in Fig. 6, it
is clear that the values of z corresponding to the two groups will assume
increasingly large negative and positive values as the separating plane
approaches perpendicularity to the «,,x, plane. At the same tirhe how-
ever, the variations of the values of z within a group becomes mcreasmgly
large for both groups; consequently the increase in the separation of the
values of z for the two groups occurs at the expense of an increase in the
separation of the values of z within each group. This situation corre-
sponds to that in which the means of two distributions are separating but
for which the standard deviations are increasing to such an extent that
greater discrimination between the two distributions does not necessarily
result. It would be desirable, therefore, to choose a plane that separates
the values of z for the two groups as widely as possible relative to the varia-
tion of the values of z within the two groups. As a measure of the separa-
tion of the two groups, it is convenient to use (5, — 2,)%, where z, and %,

are the means of the two groups. As a measure of the variation of the
N :

values of z within the two groups, it is convenient to use Z z (25 — 2%
t=1j=1 "

Here z;; denotes the z value of the jth individual in the ith group, where
i =1 or 2. Then the desired plane will be that plane for Wthh the X' are
determined to maximize the function

(20) G = (El - 22)2

Although the arguments leading to (20) were elucidated by means of
two variables and three-dimensional geometry, they hold equally well for
k variables; consequently the solution of the problem will be carrled out
for the general case.

Let z,;; represent the value of z, for the jth individual in the zth group
and let Z,, represent the mean value of z, for the n, mdmdua]s in that
group. Then from (19) it follows that

(21 B— 2= Ty — Tp) + -+ AlEy — Tye),
and
(22) 2y — B o= Iy — Ty) + -0 + 2l(@riy — Tny)

Ifd, = %, — &,,, it follows from (21) that
(G — %) = (hdy + - + hdy)?
k k
= 2 z lplqdpd(l

p=1qa=1
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When these values are inserted in (20), it reduces to
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Since the A’s are to be determined to make G a maximum, it is necessary
that 9G/d4, = O for r = 1, - - -, k at the maximizing point. This require-
ment may be expressed in the form

o4 _ 408
a—G=-—-————a}'T al’"=0, r=1, .k
04, B
which is equivalent to
0B 104
24 —_ ===, =1,k
@4 o Gen

For ease of differentiating, it is convenient to write out B in the form

B=/hSu+ -+ AALS,+ 0t InAr S

................................

Zah1S + 0+ AhpSpr ++ 00 F AehaSi
Tt will be observed that A, occurs as a common factor of both the rth row
and the rth column. Since S;; = S;;, it therefore follows that

JB
67 = 2(}'181'1 + -+ Aksrk)

r
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Similarly, A
5; = 2(AId'rdl + o+ Alcd'rdk)

= 2Akd; + - + Adi)d,
If these expressions are inserted in (24), it will reduce to
(25) WS+ AsSp + o 4 A4S = cd,, r=1,,k
where ¢ = [Ad; + - - - + 4,4,]/G is independent of r. ?‘

Since
2 ny
(26) Spe = 21 Zl (5 — i1011)('/"%7',1 - Z,)
i=14=
and
@7 =5,

are numerical quantities in any given problem, the necessary conditions
(25) constitute a set of k linear equations in the A’s. The solution of these
equations determines the A’s except for the unknown factor c. Although
‘¢ is actually a function of the 1’s here, so that the solution of these equa-
tions expresses each 1, as a constant times this function, the factor ¢

TABLE 4

Race 4

2y 524 512 536 5.64 5.16 5.56 5.36 4.96 5.48 560 5.08

@, 6.00 5.60 5.64 576 596 5.72 5.64 544 5.04 4356 5.48 576
Race B e

z, 4.88 4.64 4.96 4.80 5.08 5.04 4.96 4.88 4.44 4.04 420 4.80

cancels out from numerator and denominator of G when these values are
substituted in (23). Thus there is no unique set of A’s maximiziné G, and
any multiple of a set of A’s satisfying equations (25) will do just as well.
From (19) it is clear that such a multiple can be ignored because the two
sets of 2’s would merely be multiplied by this constant factor aj.nd thus
would be equivalent as far as discriminating between the two groups is
concerned. As a matter of fact, it is usually convenient to choose ¢ = 1,
solve the equations, and then reduce (19) to the form in which one of the
A’s, say ;, is unity.

As an illustration of the use of this function, consider the data of
"Table 4 on the mean numbers of teeth found on the proximal (z;) and
distal (2,) combs of two races of insects. The problem here is to dis-
criminate between members of the two races by means of the two indicated
variables.

@ 6.36 5.92 5.92 6.44 6.40 6.56 6.64 6.68 6.72 6.76 6.72
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Computations give S;; = 2.68, Sy, = 1.29, Sp = L.75, d; = 0915,
d, = 0.597; consequently if ¢ is chosen equal to 1, (25) becomes

2.684; + 1.294, = 0.915
1.294, + 1.752, = 0.597

The solution of these equations is 4, = 0.274 and 4, = 0.139. If these
values are used, the linear discriminant function (19) becomes

2 = 0.274z; + 0.1392,

For the purpose of computing values of z, it is more convenient to
choose ¢ so that either 4, or 4, equals 1. If ¢ is chosen to make 4, equal 1,
this discriminant function reduces to

2 = a, + 0.507x,

The values of 2z corresponding to the various members of the two races
given in Table 4 are as follows:

Race 4 |9.02 8.52 8.64 9.30 9.02 9.38 9.36 9.19 9.50 9.60 9.30

Race B | 8.47 7.95 8.15 8.19 8.54 8.28 8.15 7.91 7.29 6.61 7.61 8.19

It will be noted that the two races are segregated by means of z except
for the slight overlap found in the second entry for Race 4 and the fifth
entry for Race B.

As presented in this section, a linear discriminant function is construc-
ted for the purpose of classifying future observations into their proper
group. Thus the problem is essentially one of estimating the A’s. This
function could be used as a device for testing the hypothesis that the two
groups differ in the manner described earlier; however, there are other
more natural methods for treating the latter problem.

REFERENCES

Additional material on correlation and in particular on the z transformation may be
found in R. A. Fisher, Statistical Methods for Research Workers, Oliver and Boyd.

The Doolittle method for solving a set of linear equations may be found in the pre-
ceding reference or in Croxton and Cowden, Applied General Statistics, Prentice-Hall.

The technique of orthogonal polynomials is explained in the first reference above or in
Anderson and Bancroft, Statistical Theory in Research, McGraw-Hill Book Co.
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EXERCISES

1. Calculate the value of r for the following data on the heights (2) and weights
(y) of 12 college students.

x 63 72 70 68 66 69 74 70 63 72 65 71

y | 124 184 161 164 140 154 210 164 126 172 133 150

2. What interpretation would you make if told that the correlation’ between
the number of automobile accidents per year and the age of the driver is r =
—.60 if only drivers with at least 1 accident are considered ?

3. What explanation would you gwe if told that the correlation between
fertilizer added and profit made in raising vegetables on a certain experxmental
farm was only .20?7

4. What would be the effect on the value of r for the correlation between
height and weight of males of all ages if only males in the 20-25 age group were
sampled ? Observe what effect this restriction would have on the scatter dlagram

5. Explain why it would not be surprising to find a high correlation'between
the density of traffic on Wall Street and the height of the tide in Maine if observa-
tions were taken every hour from 6:00 A.M. to 10:00 .M. and high tide occurred
at 8:00 A.M. Plot a scatter diagram to assist in the explanation.

6. How large a correlation coefficient is needed for a sample of size 25 before
one is justified in claiming that p = 0?

7. Test the hypothesis that p = .7 if a sample of 50 gave r = .6. ;

8. Prove that r,, = r,, where u and v are the integral variables introduced in
7.1.2. ‘

9. For the data of problem 1, find the equation of the regression line of  on 2.

10. Derive the least-squares equations for fitting a curve of the type y =
wx + ffx to a set of n points.

11. Derive the least-squares equations for fitting y = aze~%®—9" to a set of n
points.

12. The following data are for tensile strength (1001b/in.%) and hardness
(Rockwell E) of die-cast aluminum. Find the equation of the regresslon line
with ¥ chosen as tensile strength.

Tensile strength () | 293 349 368 301 340 308 3354 313 322 334

Hardness () 53 70 84 55 78 64 71 53 82 67 ‘

Tensile strength (y) | 377 247 348 298 287 292 345 380 257 258

o

Hardness () "0 S6 8 60 72 51 88 95 “511 75
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Tensile strength (¥) 265 281 246 258 237 286 324 282 340

Hardness () 54 78 52 69 54 64 83 56 70

13. Show that the equation of the simple regression line can be written in the
formy” — G = r(s,/s; }(x — ).

14. Use the formula in problem 13 to show that the correlation coefficient
between the regression line values y,” and the observed values y; is equal
to r.

15. The following data are for the 3 variables honor points (Y), general
intelligence scores (X;), and hours of study (X,). Find the equation of the
regression plane of ¥ on'z; and #,, given

Dt =250, Sww, =33, Da? =36 Dazy=106 3y =22

16. Prove that s2_, = 5,2 + 5,2 — 2rs,s,.

17. Find an expression for s? for the first n positive integers by using a familiar
formula for the sum of the squares of those integers.

18. If # and v denote the ranks of an individual with respect to two characters
for a group of n individuals, derive the formula r = 1 — 6 X(x — ¥)*/n(n® — 1)
for the correlation of the 2 ranked variables by using the results in problems 16
and 17. Calculate ¥ by means of this formula for the data of Table 1 and compare
with the regular r value of .66. Replace tied ranks by the mean of the ranks
involved.

19. The following data are for intelligence-test scores, grade-point averages,
and reading-rates of students.

(a) Calculate r between 1.T. scores and G.P.A.

(b) Find the equation of the regression line of G.P.A. on L.T. scores.

(¢) Find the equation of the regression plane of G.P.A. on I.T. scores and R.R.

(d) By comparing errors of estimation, determine whether (¢) is considerably
better than () for estimating G.P.A.

IT. 295 152 214 171 131 178 225 141 116 173

G.PA. 24 .6 2 0 1 .6 1 4 0 2.6

R.R. 41 18 45 29 28 38 25 26 22 37

LT. 230 195 174 177 210 236 198 217 143 186

G.P.A. 2.6 0 1.8 0 4 1.8 .8 1 2 2.8

R.R. 39 38 24 32 26 29 34 38 40 27




- CORRELATION AND REGRESSION

187

134

151

231

LT 233 136 183 223 106 184 211

G.PA. i4 2 4 14 0 8 7.8 .8 '.4 | 2.2 .
R.R. 4 32 26 50 24 32 ’48 18 20 26 “
LT, 135 146 227 204 223 “142  176 238 ‘26?;‘ 1 63
G.P.A. 14 12 14 14 1.4 8 8 26 26 2
R.R. 260 19 35 2 18 22 23 "27‘ ‘46‘? 33

20. The following data give the velocity of the Mississippi River in feet per
second corresponding to various depths expressed in terms of the ratio D of the
measured depth to the depth of the river. (q) Fita parabola ¥V = a + bD + cD?
to the data, choosing a convenient origin. () Find ¥ when D = .9 (Observed
V' =2.976). (¢) When would you consider extrapolation as used in (b) a valid
procedure ? ‘

D 0 N 2 3 4 S .6 i .8

V. 13.195 3.230 3.253 3.261 3.252 3.228 3.181 ”3‘.1‘2‘7'"‘3.1:()”59‘””’

21. The following data are for a growing plant. (a) Plot the data on ordinary,
semilog, and log-log paper and verify that it is most nearly linear on semilog
paper. (b) Fit a simple exponential to the data by first taking logarithms of the
exponential equation,

Day 0 1 2 3 4 5 6 7 '8

Height

J5 0 120 175 250 3457074707620 895 1150

22. The pressure of a gas and its volume are related by an equation of the
form pv* =b. In a certain experiment the following values were obtained.
Determine a and b by least squares on the logarithmic equation. ‘

) 5 115 2 25 3

v 1.62 1 g5 .62 52 46

23. Suppose that the exponential y = ae®® is the proper curve to fit to a set of
points. If the parameters a and b are determined by least squares applied to the
logarithm of this equation and also by least squares directly, which method is
more likely to be heavily influenced by a point with an unusually large value of 7
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24, Derive the least-squares equations for fitting a modified exponential y =
¢ + ae®® to a set of n points and indicate why these equations would be difficult
to solve.

25. Explain how the least-squares equations for multiple linear regression are
also applicable if second-degree terms in addition to the first-degree terms in the
k variables are introduced in the regression equation.

26. Derive the equations that would need to be solved if one were to estimate
a and b in the equation of the regression line by requiring that the sum of the
squares of the perpendicular distances to the regression line be a minimum.

27. Classify the individuals of problem 19 into 1 of 2 groups on the basis of
having a G.P.A. less than or greater than .9. (@) Using the remaining variables,
find the equation of the discriminant function for classifying individuals into the
proper G.P.A. group. (b) Calculate the values of z for the individuals and note
whether the discriminant function does appreciably better than either variable
alone.

28. Two polynomials P,(x) and P,(x) of degrees i and j, respectively, are said

7

to be orthogonal on a set of points xy, @,, * - -, %,, provided that z P )Pix;) =
: k=1

n
0,i # j. A polynomial P;(x)is said to be normalized on the set if Z PA(xy) = 1.
=1

For the points z = 0, 1, 2, 3, 4, find an orthogonal normalized (orthonormal) set
of polynomials Py(x), Py(x), Py(x).

29. Assuming the properties defined in problem 28, obtain the least-squares
equations for the coefficients of the polynomial ¥ = aP(x) + a,Py(%) + - -+
+ a,Pi(%) and show that their solution for a particular coefficient a; is the same
regardless of the degree of the polynomial, provided, of course, that i < k.

30. For linear regression involving more than 2 variables, the multiple cor-
relation coefficient is defined as the correlation between the observed values y;
and their estimates ;”. It is designed to measure the extent to which the linear
regression function is capable of predicting the dependent variable y. Calculate
the value of the multiple correlation for the data of problem 19 if the answer to
19(c)isy’ = .0122; — .007z, — .97.

31. The partial correlation coefficient between variables x; and z; is defined as
the correlation between the values z; — »;” and z; — «;’, where x,” is the re-
gression value of «; on all variables except ; and ;" is the regression value of z;
on all variables except «;. It is designed to measure the correlation between the
variables x; and z; when the effects of the remaining variables have been elimi-
nated. Calculate the partial correlation between G.P.A. and R.R. for problem 19,
if the answer to 19(b) is ¥’ = .0116x, — 1.11. It will first be necessary to work
19(d) for R.R. and L.T.




CHAPTER 8

Theoretical Frequency Distributions For

Correlation and Regression

Frequency functions of two variables were defined in Chapter 2 for
both discrete and continuous variables. Although a number of their
properties were discussed there, it is now necessary to consider addi-
tional properties if mathematical models for empirical frequency dis-
tributions of two variables, such as those encountered in Chapter 7 under
correlation, are to be constructed. These properties will turn out to be
essential in the construction of regression models as well.

8.1 Continuous Distributions of Two Variables

Since correlation and regression as defined in the preceding chapter
involve pairs of continuous variables, it will be necessary to study prop-
erties of joint frequency functions for such variables. In this connection,
it will be found that theoretical moments are particularly useful for a
theory of correlation, whereas the notions of marginal and conditional
distributions are needed for a theory of regression. These two types
of distributions have already been defined for discrete variables in
Chapter 2. ‘

The geometrical representation of f(z, y) as a surface in three dimen-
sions as displayed in Fig. 12, Chapter 2, is convenient for interpreting
probability as a volume under the surface; however, in discussing correla-
tion, and marginal and conditional distributions, it is more convenient to
think of f(, y) as giving the density distribution of probability mass over
the z,y plane, with the total mass being equal to 1. This was easy to do in
2.12 for discrete variables because only a finite number of mass points
was involved. Here, however, it is necessary to conceive of a continuous
distribution of mass such as in a sheet of metal. The density of the metal

189
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| o x
1 2 3

Fig. 1. Probability density distribution.

S

sheet at a point (z, y) is given by f(z, ) and the mass of the entire sheet
is equal to 1. Figure 1 attempts to portray this density interpretation for
the frequency function that is graphed as a surface in Fig. 12, Chapter 2.

From the density point of view, the probability that a single sample
will yield a point (z, ¥) lying in a given rectangle is equal to the mass of
the rectangle. This interpretation of probability, as well as the volume
interpretation, clearly holds for regions other than rectangles in the 2,y
plane.

8.1.1 Marginal Distributions

Models for regression will be discussed before those for correlation
because correlation models require some of the material needed for regres-
sion. A general theoretical regression curve can be defined by means of a
conditional distribution. It in turn can be defined by means of a marginal
distribution; therefore consider such distributions for continuous vari-
ables next.

For the purpose of obtaining a formula for continuous variables
corresponding to (28), Chapter 2, let f(x, ¥) be the joint frequency func-
tion of any two continuous random variables and consider the following
inequalities.

P{o:<x<ﬁ}=P{or.<x<ﬁ,—oo<y<oo}
B rowo
= ['[" e ayas

= fﬁ h(z) dx

]

where, as indicated,

n) h(z) = f ® f ) dy
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Now, if « is considered independently of ¥, then by definition

B
P{a<x<ﬁ}=f f() da

where f() is the frequency function of « alone. If these two exﬁtessions
for P{o. < & < f8} are equated, '

@ f: h(x) dz =ij(x) dz

Since this equality is to hold for all intervals (o, B), o« may be held fixed
and § allowed to vary, in which event these integrals may be treated as
functions of §. By the well-known calculus formula that has been used
before, if

B
Fp) = f f(@) da
then *

dEp) _
a8 fB)
If both sides of (2) are differentiated with respect to g, this formula will
give

h(B) = f(B)

Since this is an identity in g, it follows that the function A(x) deﬁned by
(1) is the frequency function f(x). These arguments therefore show that
the marginal frequency function f() is given by the following formula.

3) MARGINAL DISTRIBUTION:  f(z) == f ? Sz, v) dy

This formula is the continuous analogue of formula (28), Chapter 2,
for the discrete case. In a similar manner the integration of f(z, ) with
respect to # from — oo to + oo will yield the y marginal frequency function
g(). From the density point of view f(z) may be thought of as giving
the probability density distribution along the w axis after the entire
probability mass in the 2,y plane has been projected perpendicularly onto
the @ axis.

As a simple illustration of how formula (3) applies, consider the joint
frequency function

—r—y O0<e<],0<y<1
0

2
C] f(z, y) =

, elsewhere
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Here, formula (3) gives

) f@=[e-s-pir=t-=
and ’

1
g(y>=f Qez—pde=3—1y
2

As a second illustration, consider the following frequency function:

oy, 0<2<2,0<y<x>
[z, y) =
0 , elsewhere
In this problem the sample space is the triangle bounded by the lines
x=2y =g and y = 0. Although the limits in formula (3) are written
— o0 and o, this is merely for notational convenience and it is understood
that when the limits are not infinite one must determine the limits from
the sample space boundaries. The limits of integration in this problem
certainly depend on the chosen value of ». Formula (3) gives
x .’)33
j@ =1 may=%, 0<w<2
0
Similarly,
2
s) = 1] ez =yt =), 0<y<2
Y

8.1.2 Conditional Distributions

Now that marginal distributions have been determined, it is possible
to proceed with the problem of defining conditional distributions for
continuous variables. For the purpose of obtaining a formula for con-
tinuous variables corresponding to (29), Chapter 2, consider the function

defined by
[z, )

6
© J(@)

If z is held fixed and is such that f(x) > 0, then (6) defines a non-negative
function of y for which, in view of (3),

S IC) PR B L
o @ f(x)f_mf(’y) Y

Thus, according to (31), Chapter 2, f(z, y)/f(x) has properties that enable
it to serve as a frequency function for y when = is fixed as indicated.
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Because of this property, f(z, y)/f(#) is called the conditional frequency
function of y for fixed 2 and is denoted by f(y | ). This definition may
be expressed as follows. ’

@) CONDITIONAL DISTRIBUTION:  f(y | 2) = f———-;z )y)
x

By going back to the definition of conditional probability for events as
given by (6), Chapter 2, and working with integrals, it is possible to derive
(7) directly in a natural manner; however (7) is treated here as a definition.
Formula (7) is identical with the corresponding formula for the discrete
case. As in the case of discrete variables, the conditional distribl;.;tion of
y as given by f(y | %) is sometimes called the array distribution. The
conditional frequency function of x for y fixed is defined in a similar
manner. ' .

From a density point of view f(y | #) may be thought of as giving the
probability density distribution along the vertical line in the .y plane
corresponding to the fixed value of z, the total mass of this line being equal
to 1. The frequency function f(x, y) as it stands could not be used as a
probability density function along such a line because by (3) it would not
give a total probability mass of one for the entire line unless f(x) happened
to be equal to 1. The factor 1/f(x) insures that the total mass of the line
will be 1.

In the surface representation of f(z, y) the conditional distribution of
y for z = x,, say, is represented by a modification of the curve of inter-
section of the surface and the plane whose equation is x = z,. Since the
area under the curve is ordinarily not equal to I, the ordinates of the curve
must be multiplied by the proper number to make the area equal 1 before
the curve will be the graph of a frequency function. The proper number,
of course, is 1/f(x,). Figure 2 indicates this geometrical interpretation
for the frequency function given by (4). "

For the problem discussed in (4), the equation for the conditional
frequency function is obtained by applying (7) to (4) and (5); hence for
this problem

—z—y

® Syl oy =22

g - X

For a fixed value of « this is a linear function of y; hence the graph of

Sy | x) must be a straight line, which of course is obvious from Fig. 2
and the geometrical interpretation of f(y | 2). It will be observed that the
only curve of intersection of the type being considered on the surface
z = f(x, y) that has unit area under it is the one for which z = 1. All
other curves of intersection must have their ordinates multiplied by
1/(3 — =) before they will possess unit area.
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Fig. 2. Geometrical representation of a conditional distribution.

8.1.3 Curve of Regression

This section is concerned with defining a theoretical regression curve
that will serve as a model for empirical regression curves, The preceding
material on marginal and conditional distributions was merely introduc-
tory for use in this section. A theoretical regression curve is basically
the graph of the mean of a conditional distribution f(y [ x). Here it is
convenient to use the density interpretation of f(y | ). Let x have the
fixed value #,. Then along the line # = , the mean value of y will deter-
mine a point whose ordinate is denoted by u,,. As different values of
« are selected, different mean points along the corresponding vertical lines
will be obtained. Thus the ordinate s, ,, of the mean point for any such
line is a function of the value of « selected. The locus of such mean points,
that is, the graph of u, |, as a function of x, will be a curve that is called
the curve of regression of ¥ on @. Analytically, the equation of the curve
of regression is given by the following formula.

) CURVE OF REGRESSION: 1, |, =fw yf(y | ©) dy

-

Because of (7), this formula may also be expressed in the form

(10) s = f y%’;? dy
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The curve of regression of « on y is defined in an analogous manner.
Figure 3 indicates the geometrical nature of the preceding deﬁmtlon of
the curve of regression for a general density distribution.
The frequency function given in (4) will be used to illustrate the pre-
ceding definition. From the result obtained in (8), a direct apphcatmn

of (9) gives
T2—a—
Mv|x=f yg—’ldy
0

9 — X

1
[te-ay-wa

%-—-x 0
_3x—4
6x — 9

This is the equation of a hyperbo}a The graph of this curve of regressmn
is shown as the crossed line in Fig. 2. ‘

The second illustration in 8.1.1 will be used here to illustrate the tech-
nique of finding the equation of a regression curve when the limits are
variable. From the results obtained there, it follows that T

1
fy] == -2
x X

4

In view of the triangular nature of the sample space, when = is fixed ¥
can range over the values from 0 to « only; consequently (9) becomes

A
l‘wz=;§f Yy dy = 3z

The fact that the regression curve is a straight line with slope § mlght
have been anticipated because of the nature of the density functlon and
the sample space.

Xa

Fig. 3. Curve of regression.
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8.1.4 Moments

The type of moments needed for correlation differ slightly from mo-
ments that have been defined previously. Although only low-order
moments are required, a general definition is given. These moments are
known as product moments and are defined as follows.

<) 0
(11) ProDUCT MOMENT: ' = E(2"y") =f f x®y® f(x, y) dy dx

Here p and ¢ are any non-negative integers. The corresponding product
moment about the mean is defined by the formula

(12)
e = E[(% — po)"(y — 10,)"] =f f (% — pu)"(y — p,)" (%, y) dy dx

It will be observed that these definitions are special cases of the general
definition for expected values given in (5), Chapter 6, in which g(z,, =,
-+, x,) is chosen as either the function @,%2,¢ or (x; — uy)?(¥; — Hx)%,
and n = 2.
The particular product moment g, which is called the covariance of
the two variables, is of special interest because the theoretical correlation
coefficient p between the two variables is defined in terms of it.

(13) THEORETICAL CORRELATION COEFFICIENT: p = aatl
Gxdﬂ

If (12) is compared with X(z — Z)(y — #)/n in (1), Chapter 7, it will be
observed that (12) with p = g = 1 is the theoretical counterpart of this
sum and that (13) is the theoretical counterpart of r.

By using formula (3) it is easily seen that the kth moment of z, say,
can be obtained from (11) by choosing p = k and ¢ = 0. Thus it follows
that

(14) poo’ = 1, phae” = s oy = Hys Hag = 05 fop = o}
As an illustration of how to calculate the theoretical correlation co-

efficient, consider the application of formula (13) to the problem first
considered in (4). By symmetry and (5), it follows that

= —J‘lx(é——-as)da:—i
My = [y s \2 0

Formula (12) yields

B
Moo = Moz \ AL 144
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Formula (12) applied to (4) gives

e[ =23
=J;1 (x——%) J;l (y—ls—z)(2—-x——y)dydx
[l

- L
144
Formula (13) applied to these results gives
_ —1/144 1
P= Tijiaa 1

An inspection of Fig. 2 shows that the regression curve has a inght nega-
tive slope throughout its range and therefore it is not surprising that p,
which measures linear correlation, turned out to be negative. '

8.2 Normal Distribution of Two Variables

The preceding sections have introduced theoretical counterparts of
empirical regression and correlation and to that extent have presented
mathematical models for those two statistical quantities. It is not possible,
however, to work problems of statistical inference with respect to them
unless one is supplied with a frequency function for doing so. From
the point of view of correlation the frequency function must be such that
the density distribution of points in the 2,y plane will indicate a linear
type relation between z and y because the correlation coefficient is useful
as a measure of relationship only when the relationship is approximately
linear. This places a considerable restriction on the type of frequency
function that can be selected as a model. Unless one wants a model for
linear regression only, there is no such restriction on the frequency function
necessary for regression models.

Now, since the normal frequency function has been shown to be a
useful mathematical model for distributions of a single continuous
variable, it is to be expected that a joint normal frequency function for
two continuous variables will also prove to be a useful model. If two
random variables « and y are normally distributed but in addition are
independently distributed, then their joint frequency function is easily
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written down because, from (24), Chapter 2, the joint frequency function
_is then the product of the two marginal frequency functions. In this case,

therefore, :
) ) ) ()]
(15) f(x9 y) = '\/E;T—o‘w . \/-2;.0"# = zﬁamay

If the variables = and y are not independently distributed, it is necessary
to modify (15) to take account of the relationship between x and ». This
is done by introducing a cross-product term in the exponent of (15) which
is such that its coefficient will be equal to 0 when « and y are independent.
The desired modification is accomplished by means of the following
definition.

(16) DEFINITION: The normal frequency function of two variables is
given by the following formula, where —1 < p < 1,

e_ﬁ[(x%:w)g—zp(%) (y—;ﬁ) + (1’—;"_“)2]

2mo,0,V1 — p?

S, y) =

If the same approach had been used here as for a normal distribution
of one variable, one would have defined a joint normal frequency func-
tion as an exponential function of two variables in which the exponent is
a quadratic function of those variables, and then one would have pro-
ceeded to show that the parameters defining the function can be expressed
in terms of familiar statistical parameters. The result of such an approach
is the expression given in (16). As a consequence, the function defined in
(16) possesses the properties of a joint frequency function and its param-
eters are consistent with the general moment properties given in (14) and
(13). This implies, for example, that the parameter p in (16) is actually
the theoretical correlation coefficient here, as defined in (13). These
facts can be verified by evaluating the necessary integrals.

8.2.1 Marginal Distribution
The marginal distributions of a joint normal distribution are obtained

by applying formula (3), and its y version, to (16). For example, the
marginal frequency function is given by

(17) f@) = f "ty dy
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where f(z, y) is given in (16). In order to simplify the integraéion, let
u = (¢ — pu,)/o, and introduce the change of variable v = (y — u)/o,.
Then dy = o, dv and (17) reduces to

1 © - —1—(u2—2pm) +o?)
2) = ———e | - dv
/@) 2ra V1 — pZLO

Adding and subtracting p*? to the exponent in order to complete the
square in v gives -

LY __1_ 2 2002 20,2 1.5/2
J‘ . 2(1_‘]2)(1) 2puv + p2u? — p2u? 4-y2) v
2J 0

SO = o T

02

2 e o] _______1__ — 2
- _i______f e H= TR L
2ra, V1 — p?

Now make the change of variable z = (v — pu)/vV/1 — p. Theh dv =
V1 — p? dz and f(z) reduces to ‘

—w

u2
f(x)=2w0mf_we dz

Substituting back the value of u in terms of 2 and inserting the value
V27 for this familiar integral, f(x) finally reduces to ’

Lir—p\2
. 505)

V2o,

Since the corresponding result for y follows from symmetfy, (18)
shows that the marginal distributions of a joint normal distribution are
normal. This result was to be expected, because one would certainly
have been unhappy with the definition of a joint normal distribution if
the individual variables had not been normally distributed. _

The result obtained in (18) is very convenient for demonstrating the
consistency of definition (16) with several of the general moment pro-
perties given in (14). For example, in order to demonstrate tf;at the
constant in (16) has been properly chosen, it is necessary to show that the

volume under the surface whose equation is given by (16) is equal to 1.
Hence it is necessary to evaluate the double integral., :

(18) J@) =

(19) f; fw f(@, ) dy da
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where f(z, ) is given by (16). But from (17) the result of integrating with
respect to ¥ is given by (18); therefore, the evaluation of (19) is reduced
to the integration of (18) with respect to x over all values of z. The value
of this integral, of course, is 1.

If one sets p = 0 in (16), it will be observed that (16) reduces to (15),
which is the frequency function of two independent normal variables.
This shows that if two normal variables are uncorrelated, they are in-
dependently distributed. From the discussion of correlation given in
section 7.1, particularly with respect to diagram (e) of Fig. 3, in Chapter
7, it should be clear that a lack of linear correlation does not ordinarily
guarantee a lack of relationship of every kind between the two variables.

8.2.2 Conditional Distribution

A joint normal distribution of two variables possesses conditional
distributions with interesting properties. In order to study these prop-
erties, it will suffice to examine the conditional frequency function
f@ ).

For ease of writing, let u = (x — u,)/o, and v = (y — w,)/o,. Then,
a direct application of definition (7) to (16) and (18), together with a few
algebraic reductions, will give
u2

(u? —2puv +02) —

1
2(1 —p%) 2

1@ = 2na,0,V 1 — p? Y 2na,

~é—(1—1ﬁ(vg —2puv -+ p2u?)
\/5,;0‘.1,\/1 — p?

i el
R

If the values of # and v in terms of = and y are inserted and if the value
of y is denoted by y, to show its dependence on the selected value of

x, f(y | ) will reduce to
1 y,,—urpz—;’(m—uw) 2
- e
vV 2770‘1,'\/1 — p?

Since z has a fixed value and y, is the random variable here, (20) shows
that ¥, possesses a normal distribution with mean u, + p(a,/o)(@ — u,)

e

(20) fy|o) =
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and standard deviation ¢,V/1 — p2. By symmetry a similar result holds
for z and y interchanged. Thus the conditional distributions of a joint
normal distribution are also normal. ;

Since by definition (9) a curve of regression is the locus of the means
of a conditional distribution, it follows from (20) that the curve of regres-
sion of y on  for « and y jointly normally distributed is the straight line
whose equation is

o
(21 My|w=ﬂy+Pf(x_Mx)

This property of a joint normal distribution, namely, that tlie curve
of regression of y on 2 is a straight line, helps to justify the frequent use
of linear regression because variables that are approximately normally
distributed are encountered frequently.

8.2.3 Normal Surface

Instead of thinking in terms of probability density in the plane, con-
sider now the geometry of (16), treating it as the equation of a surface in
three dimensions. If (7) and the particular results (18) and (20) are
applied, the equation of this surface may be written

1 [y —Hy— pz—:(w*m)} :
e
\/27ray\/ 1 — p? .

For the purpose of studying this surface consider its intersections
with planes perpendicular to the z axis. The equations of the intersecting
curves are obtained by replacing « with the constant values corresponding
to the cutting planes. From (22) it will be observed that these curves are
normal curves, although not the graphs of normal frequency functions

because the area under any such curve is not usually equal to one, with
their means lying on the regression line (21), all having the same standard

deviation 0,V'1 — p? and varying in maximum height according to the
factor f(x). The tallest such normal curve is the one lying in the cutting
plane z = u,, since this value makes JS(@) a maximum. By symmetry,
planes perpendicular to the y axis will intersect the surface in normal
curves with corresponding properties. A sketch of a normal correla-
tion surface which shows these various geometrical properties is given in
Fig. 4. j
Further information is obtained by considering the intersection of the
surface by planes perpendicular to the z axis. In this connection it is

22) 2= f@)<
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Fig. 4. Normal correlation surface.

more convenient to use the original form (16) with f(z, y) replaced by 2.
If z assumes different constant values, the quantity in brackets in the
exponent will assume corresponding values that can be calculated from
the constant values assigned to z. Hence the equations of such intersect-
ing curves may be written in the form ‘

. 2 — — — 2
() -l () () =
0y o, oy oy

where k corresponds to the selected value of z. Since this is a quadratic
function in x and ¥, these curves of intersection must be conic sections.
Furthermore, since the type of conic section depends only on the quad-
ratic terms, the discriminant for testing conic sections may be applied
directly to give

2
BZ-4AC=(2P)—4L—1-

O‘&‘O’Tl Gwz 61/2
4" — 1)
2.2 < O
a0,

This result shows that the intersecting curves are ellipses, because by
definition (16) p? < 1. Allowing k to assume different values will merely
change the sizes of these ellipses; consequently, these ellipses have the
same centers and the same orientation of principal axes. It will be found,
when rotating axes properly to eliminate the x5 term, that the principal
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axis of these ellipses is not parallel to a line of regression as miight be
supposed. The line of regression turns out to be parallel to the diameter
of the ellipses obtained by considering chords parallel to the y axis.

8.3 Normal Correlation

The normal frequency function defined in (16) appears to be fa satis-
factory model for correlation problems because it yields a probability
density distribution in the z,y plane for which the regression i§ linear
and because it possesses a parameter that measures the theoretical cor-
relation present. In addition, experience shows that many pairs of real-
life variables possess distributions of approximately this type.

In Chapter 7 the sample correlation coefficient » was introduced as a
measure of the degree to which two variables are linearly related. It was
stated there that the justification for choosing r as the preferred measure
rested upon the fact that it is the maximum likelihood estimator of the
theoretical correlation coefficient p when the two variables possess a
joint normal distribution. This property of  will now be verified.

Let (zy, y1), (@0, %), * *, (2,,, ¥,) represent a random sample of size n
from a normal population whose frequency function is given by (16).
The likelihood function for this sample s

L= 11/
i=
) -5 il,a) igl [(a:i ;;}I%Y k2p(:ci ;z!lx) (L‘i ;v#y) + (?/i ;y/ty) 2]
’(27r0'way\/ 1 - pE" -

For ease of differentiating, the logarithms of both sides are taken. Then
log L = —nlog 2wa,0,V'1 — p?

o () () + (]

In order to find the maximum likelihood estimators of the parameters,
it is necessary to differentiate log L with respect to w,, p,, 0,, 0,, and p,
and then to solve the five equations that are obtained by setting these
five derivatives equal to 0. It will be found on solving the first two of these
equations that the maximum likelihood estimators for M, and i, are; as was
to be expected, Z and 7. It is not possible to'solve the third and fourth
equations alone for the estimators for o, and o, because they involve p;
therefore, the remaining three equations need to be solved simultaneously.




204 INTRODUCTION TO MATHEMATICAL STATISTICS
Differentiating log L with respect to o, gives

dlogL_ _n 1 [—22(% =) 2p2 (2 — pro)(Y: — m)}
oo, o, 201 —p% 0, 0,l0,

A similar formula results from differentiating with respect to o,. Setting
these two derivatives equal to 0 will yield the equations

2.z - p) _ P25 = W =) g — g

Oy 040y

— 2 L — L — V
E(Z/i 21“’14) — Pz(xz lu’ﬂ'))(y’b ,u,,,) + n(l - p2)
G?! G(EGZI
If now p, and p, are replaced by Z and 7, which are the solutions of the

first two of the maximum likelihood equations, and if the notation
S, — T) (Y, — §) = Arss, is used, these equations will simplify to

2
S_ma=P'”s”—S“’+(1—P2)
Gm Gm Yy
5% pr 54 (1~ )
. Y Gw Y
This shows that
Sy _ S
Gﬂ Gw

and therefore, substituting into the first equation, that

Sy [
g, 1 —pr
The fifth maximum likelihood equation is obtained by differentiating

log L with respect to p. This differentiation, followed by some algebraic
simplification, yields the result

dlog L _ np2+ 1 22<x,--—,ux)(yi’“;“u)
op 1—p% 1—0p Oy G

Y

- s (] (et (1) + (5]

Setting this derivative equal to 0 and performing some simplifications
yields the equation

np(l —py+ 1+ pH2Y (“ ;M) (?/ — m)

Oy

-l (5
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Now, replacing u, and u, by # and 7 and sz/0, and s,/o, by
V(= A1 = pr),

this equation reduces to

1 — 2 1 — 2
pPL—p) +rl+ )L =0y TP
1 — pr 1 — pr

Since 1 — p* may be factored out, this equation is easily seen to possess
the solution § = r; consequently this proves that the maximum likeli-
hood estimator of p when = and y are jointly normally distributed is the
sample correlation coefficient r. 0

Incidentally, when p is replaced by r in the expression for s,/a,, it will
be observed that the maximum likelihood estimator of o, reduces to s,.
Thus the joint maximum likelihood estimators of u,, u,, o, o,, and p
are %, §, s,, 5,, and r, '

8.4 Normal Regression

In Chapter 7 the study of the relationship between two or more variables
was considered from two points of view, namely, that of correlation and
that of regression. Correlation methods were considered appropriate
when interest is centered on measuring the degree to which two variables
are linearly related and when both variables are randomly sampled. The
theory presented thus far in this chapter has been principally theory for
correlation because it has been the theory of two correlated random
variables. Some of this theory, however, is also useful in the construc-
tion of mathematical models for regression. Such a model is considered
next. o
In all the regression problems of Chapter 7 the independent variables
were considered to be fixed so that i was the only random variable present,
For example, in the illustration of linear regression given in Table 2,
Chapter 7, the values of = were selected by the experimenter to be equally
spaced over the range of x values of interest to him. Repeated experi-
ments of this type would require that the experimenter use the same
values each time. It is clear that the joint distribution of two variables is
not needed for a regression problem such as this. ‘

Although the joint distribution of x and ¥ is not needed for regression,
the conditional distribution of y for x fixed is needed if the accuracy
of the least-squares estimates of the regression coefficients obtained in
Chapter 7 is to be determined. In the notation of (7) this means that the
conditional frequency function f(y | ) must be known for all the fixed
z values. In the case of multiple regression = will be understood to
represent all the independent variables.
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Consider, first, the problem of deciding what type of conditional
frequency function f(y | #) would make a satisfactory model for simple
linear regression of y on z. Although the « values are fixed in regression,
@ usually possesses a continuous distribution under random sampling.
If 2 and ¥ possess a joint normal distribution, the regression curve will be
a straight line and f(y | ) will be given by (20). For two variables that
are approximately normally distributed one would therefore choose
f(y| ) to be a function having the properties of the function given by
(20). Hence f(y | z) is chosen to be a normal frequency function with its
mean, as a function of x, lying on a straight line and with its variance
independent of x,

Since the z’s are to be fixed, the conditional distribution of y for fixed
« is needed only for the y’s corresponding to the fixed = values. Thus,
denoting the set of sample values by (x5, ¥1), (%2, %2), """ (z,, ¥,), the
conditional frequency function f(y | «) is needed only for these n pairs of
values. If the equation of the straight line on which the means of the
conditional distributions lie is written in the form

Y=o+ fla—7

and the variance is denoted by o2, the desired conditional frequency

/TN

x;/ \ n

x,’/ i

y=a+B(x-3%)

Xn

\

Fig. 5. Distribution assumptions for linear regression.
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function is then given by
Sl o — e )]
V2o
A sketch ;llustratmg the precedmg assumption concerning the condmonal
distribution of the y’s is given in Fig. 5.

A second assumption is that the random Variables'yl, Yor ' * ' Yy aIC
mdependently distributed. This assumptzon is satisfied, for example in
the regression problem discussed in Section 7.2. It is not satisfied, how-

ever, for regression problems in which y;, y,, - * * , y,, represent, .say, the
heights of a growing plant on »n consecutive days '

202

(23) S ! z;) = 2

8.4.1 Estimation of a, B, and &

The model selected in the preceding section for simple linear regressxon
contains the three parameters «, §, and . In order to be able to apply
this model to a given problem, it is necessary to estimate these parameters
by means of available data. This is done by the method of maximum
likelihood. _

Since the random variables y;, y,, - -+, ¥, were assumed to be in-
~ dependently distributed, the likelihood function L for the sample (24, 49,

(@9, ¥9), * + +, (x,, 9,,) Is given by

n

L= S
;'];[1 vV 27o

1 -
5;’—2[11,- —o—plz; — )12

2 [y1 o —p(z; —%)])%

202

o™(2m)?

Taking logarithms and differentiating with respect to «, f, and o, respec-
tively, and setting the derivatives equal to 0, one obtains

alggL 2%[%—&-—5(1:—96)]-0
o 0% i=1
0 log 1 & _ L
(24) aﬂ ;§z§1 Y — o — Pz, — z))[x, — ] =0
BiogL

12 o
~ "+ 53 e — - DF=0
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Now, a comparison of the first two of these equations with the equations
of least squares as given by (5), Chapter 7, demonstrates the fact that the
least-squares estimates of the regression coefficients are precisely the same
as the estimates obtained by the method of maximum likelihood under
the stipulated normality and independence assumptions. Since estima-
tion by the method of least squares does not require the restrictive assump-
tions made in the maximum likelihood approach, it would seem to be a
more desirable method for estimating « and 8. However, as soon as one
tries to determine the accuracy of the estimates or to test hypotheses
about the parameters being estimated, he will discover that it is necessary
to make some distribution assumptions about the y’s. The normality
and independence assumptions made earlier are assumptions that enable
one to work such problems, in addition to estimating the regression
parameters. Least squares alone is capable of estimating the parameters
only. The problems of determining the accuracy of the estimates and
testing hypotheses about the parameters being estimated are considered
in Chapter 11.

If the estimates of « and 3 obtained from (24) and given by (7), Chapter
7 are denoted by & and B, the third equation in (24) will yield the follow-
ing estimate for ¢*:

& =

S =

é:l Ly, — & — 6(9% - 5‘_7)]2

A mathematical model for multiple linear regression can be constructed
in the same manner as simple linear regression. If there are k independ-
ent variables #;, @y, - * - , %, and all the «’s have fixed values, so that the
only random variables are ¥y, ¥2, * * * 5 ¥ then the conditional frequency
function of ¥, corresponding to (23) will become

sl Byl =)+ — Byl — B
(25) ez t Tygy s 0ty Byy) = —
V2o
The maximum likelihood estimates of the regression coefficients §y, * - -,

B, are the same as those obtained by least squares and are given by solving
the normal equations (13) of Chapter 7.

REFERENCES

Additional discussion and problems on the material of this chapter may be found in
A. M. Mood, Introduction to the Theory of Statistics, McGraw-Hill Book Co.
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EXERCISES

LI flw,) = 1,0 <2 £1,0 <y <1, find the probability that (a) x>.5
andy >.7;, W x>.5; Qz>y; z=y; (e x > .5 glventhaty .5
(fYz >y, giventhaty <.5; (9) 2z +y <1; and (W) 2% + 32 < 1.

2. If f(z,y) =e @), & >0, y >0, find the probability that (a) =z < 1;
(b)x < 1,giventhaty = 1; (c)= > y; (d)x +y <1; and(e) ® > y, given that
y <1

3. fw,9) =2, 0 <2 <1, 0 <y <x, find (a) the marginal frequency
functions; (b) the conditional frequency functions; and (c) the curve of regression
ofy onz. ;

4. Givenf(x,4) = clzy + ¢%),0 <@ < 1,0 <y < 1, (@) find the value of c;
(b) find f(»); and (c) determine whether = and y are independently distributed.

5. Given f(x,y) =2e*%t) 2 >0, y >0, find (a) the marginal frequency
functions; (b) the conditional frequency functions; and (c) the curve of regres-
sion of ¥ on =z,

6. Find the equation of the regression curve of ¥ on z, given that f (x, ) =
21+ + /1l + 24 +y)he >0,y >0. ‘

7. Givenf(z,y) = 1,0 <2 < 1,0 <y <1, find (@) p,,"; (B) p; and (¢) zy, o

8. Given f(x,y) = 2/a2, 0 <z <a,0 <y < find(@)p,,'; (B) p; and (¢) 4y o

9. Given f(»,%) = c in the two triangular regions bounded by the lines # =
—1,y =0,y = —zande =1,y =0, y =z, find (a) thevalueofc (b) the
equation of the regression curve of ¥ on x; and (c) the value of p.

10. Given f(z,y) = c(@? + ¥?), % + »? < 1, and zero elsewhere, find (@) the
value of ¢; (b) the equation of the regression curve of ¥ on«; and (c) the equdtlon
of the regression curve of = on y.

11. Find a nontrivial joint distribution of two variables = and y such that the
regression curve of y on # is the parabola y = 2.

12. Given f(z,y) =82y, 0 <= <1, 0 <y < =, show that » and y are not
independent random variables.

13. If the exponent in the normal frequency function of # and y is

—34x — 1) = 9.6(x — D(y + 2) + 16(y + 2)?]

find (@) u,, 1y, 04, 0y, p; (b) the marginal frequency function of x; and (¢) the
regression line of y on .

14. Assume that a bomber is making a bombing run in the direction along the
positive ¥ axis at a square target 200 feet by 200 feet, whose center is at the origin
and whose sides are parallel to the coordinate axes, Assume further that the »
and y errors in repeated bombing runs are normally distributed about 0. (@) If
the x and y errors are also independently distributed with o, = g, = 400 feet,
find the probability that the target will be hit on the first run. (b) Under the
conditions of (a), find the probability of getting at least 1 hit in 10 runs. (¢) Under
these same conditions, how many runs would be needed to make the probability
at least .9 of getting at least 1 hit on the target? (d) Show why it would be
difficult to work (a) if the « and y errors were correlated with, say, p = 1.
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15. How must the frequency function of a normal variable = be modified if »
is restricted to (@) values larger than x and (b) positive values?

16. If = and v are independently and normally distributed with p, = p, = 0
and 6, = o, = 1,(a)find the probability that a? + 32 < 1and () determine what
size circle with the center at the origin is such that the probability is .95 that the
sample point (2, ¥) will fall inside it.

17. If « and y are independently distributed, show that the curve of regression
will be a horizontal straight line.

18. If « and y are independent variables, find expressions for the mean and
variance of z = xy in terms of the means and variances of # and y.

19. Let n independent trials be made of an experiment for which p is the
probability of success in a single trial. Let @ equal the number of successes and
let ¥ equal the sum of the numbers of the trials at which successes occur. Write
®=w + -+, where z; =1 or 0, depending on success or failure, and
write ¥y =y, + - +y, where y; =i or 0, depending on success or failure.
Calculate E(z), E(y), E(zy), and ;.

20. Suppose that a binomial distribution is to be truncated by agreeing to
discard the valuez = 0 whenever it occurs. Find the resulting frequency function
of z, that is, find the conditional frequency function of binomialzwhenl < <n.

21. Suppose it is known that « and y are jointly normally distributed with
means u, =4, u, =2, 0, =0, =1, and p = 3. If you wish to estimate the
value of y for an individual whose = value is equal to 6, how will the size of the
variance of the error of this estimate differ from that when nothing is known
about his = value?

22. In problem 14 suppose the  and y errors are normally distributed about
the point of aiming rather than about the center of the target and that the z and y
coordinates of the aiming point are independently normally distributed about the
cénter of the target with o, = 0, = 100 feet. Lettingz =z + u andy = w + v,
where z and w are the aiming errors and u and v are the bombing errors, solve
part (a) of problem 14 by using the fact that  and y are independently normally
distributed because they are the sums of such variables.

23. Verify by integration that definition (16) is consistent with the general
moment properties given in (14) and (13).

24. Construct or describe a joint non-normal distribution of 2 variables whose
marginal distributions are both normal.

25. Find a nontrivial joint distribution of 2 variables such that both regression
curves are straight lines.

26. Prove that all vertical plane sections of a normal correlation surface are
normal curves.

27. Prove that & and # are the maximum likelihood estimators of u, and g,
for the bivariate normal frequency function.

28. Assume that p, = py =0 and o, = 0, = 1 for z and y jointly normally
distributed. Find an equation whose solution gives the maximum likelihood
estimate of p for a sample of size n. How does this result compare with that when
the means and variances are unknown?
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29. Show that the maximum likelihood estimates of the 8’s in (25) are the
same as the least-squares estimates given by (13), Chapter 7. o

30. Given the conditional distribution fly | x) = av¥e~2fy!, where y 1s discrete
and can assume the values y = 0,1,2, - -, and given f(x) = ™%, x > 0, show
that the marginal distribution of 7 is given by g(y) = 3. Use the factorial
property of the gamma function integral. . ,

31. The length of life » of a physical particle is a random variable whose
distribution depends on a parameter «. This parameter characterizes the type of
particle. A population of particles is made up of various types of particles with
the proportion having parameter value o given by g(a) = e, o > 0. If the
distribution of length of life for fixed « is given by f(z | ®) = ae™*, & > 0, find
the unconditional frequency function f(x).




CHAPTER 9

General Principles For Testing

Hypotheses and For Estimation

9.1 Testing Hypotheses

A large part of the material presented in the preceding chapters has
been concerned with testing various statistical hypotheses. These hypoth-
eses were tested by means of random variables such as Z, or p, which
seemed appropriate for the particular problem being considered. Thus
# was introduced because it appeared to be a satisfactory variable to use
for testing a theoretical mean. A random variable such as this, which is a
function of sample values, is often called a statistic. Now, not only was
the statistic for a given type of problem selected on intuitive grounds, but
the critical region for the statistic was also selected on an intuitive basis
rather than on any logical principle. Although such intuitive arguments
often yield highly efficient tests for testing the hypothesis in question,
some logical principle for selecting the proper test is necessary if one is to
be certain of always designing a good test. Such a principle was intro-
duced in Chapter 3 for testing a hypothesis H, against an alternative
hypothesis Hy. In this chapter the ideas introduced in Chapter 3 will be
studied more thoroughly and extended somewhat to include more general
problems.

9.1.1 Test of a Hypothesis

From (2) and (4), Chapter 3, it will be recalled that a statistical hy-
pothesis is defined as an assumption about the frequency function of a
random variable and that a test of a hypothesis is a procedure for deciding
whether to accept or reject the hypothesis.

In all the problems of testing hypotheses that have been considered

212
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thus far the procedure for dec:dmg whether to accept or reject the hypoth-
esis has consisted in selecting a statistic based on a sample of fixed size
n, calculating the value of the statistic for the sample, and then rejectmg
the hypothesls if and only if the value of the statistic corresponded toa
point in the chosen critical region.

A more general procedure that possesses strlkmg advantages in many
situations is one in which the random sample is obtained by selectmg one
individual at a time until a sufficiently large sample has been accumulated
to arrive at a reliable decision. This method of sampling, called sequen-
tial sampling, often arrives at a decision some time before the fixed-size
sample, with the same size type I and type II errors, is exhausted, and
thus it often decreases the cost of sampling. In the sequential procedure
one must decide at every stage of the sampling whether to accept the hy-
pothesis, to reject the hypothesis, or to continue sampling. The fixed-size
sample procedure does not permit any conclusions to be drawn until the
entire sample has been taken and does not permit additional sampling.
A sequential method for testing hypotheses is discussed in Chapter 14;
hence only fixed-size sample procedures are considered in this chapter.

9.1.2 Kinds of Tests

Most of the statistical hypotheses that one encounters are assump-
tions about the parameters of a frequency function. The hypotheses
tested in the preceding chapters have been of this kind. For the purpose
of describing them, let f(x; 0y, 0p, - - -, 0;) denote a known frequency
function that depends on k parameters. A statistical hypothesis then
becomes an assumption about the k parameters. In studying hypotheses
of this kind it is convenient to classify them into one of two types by
means of the following definition.

(1) DerINITION: If @ hypothesis specifies the values of all the parameters
of a frequency function, it is called a simple hypothesis; otherwise, it is
called a composite hypothesis. £

As an illustration, suppose the frequency function is
1fx—0y
sl
\/21792

If the hypothesis is H,:0; = 10, 0, = 2, then H, is a simple hypothesis.
If, however, the hypothesis is Hy:0, = 10, 6, < 2, then H, is composite.

The theory of how to design good tests for simple hypotheses is much
simpler than that for composite hypotheses. In the next two sections two

f(z; 6y, 0,) =
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methods for constructing good tests are discussed. The first method is
directly applicable to simple hypotheses only, although it sometimes solves
composite problems also, whereas the second method is applicable to
both simple and composite hypotheses.

9.1.3 Best Tests for Simple Hypotheses

In this section a method is given for constructing best tests, in the sense
of principle (7), Chapter 3, for simple hypotheses. In discussing the rela-
tive merits of different tests, this principle requires that only tests with an
agreed upon type I error size, denoted by «, be considered. Then a best
test is defined as a test in this set that minimizes the size of the type II
error, denoted by 5. The method of constructing a best test depends on
the use of a theorem that was first proved and used by the two statisticians
after whom it is named. The theorem, called the Neyman-Pearson
lemma, will be proved for a frequency function, f(x; 0), of a single con-
tinuous variable and a single parameter; however, by merely thinking of
« and 0 as vectors, the proof will be seen to hold for any number of ran-
dom variables and parameters. The variables x;, @, - - <, &, occurring in
the theorem are understood to represent a random sample of size » from
the population whose frequency function is f(z; 0). The theorem is con-
cerned with a simple hypothesis Hy:0 = 6, and a simple alternative
H,:6 = 0,. This is the type of problem discussed and illustrated in Chap-
ter 3 beginning with the illustration following (4), Chapter 3. One should
review that material before studying the following. In particular one
should recall that the phrase “critical region of size «” means that the
critical region is one for which the size of the type I error is «. In terms
of this language, the theorem may be expressed as follows.

(2) NEYMAN-PEARSON LEMMA: If there exists a critical region A of size
o and a constant k such that

1f[lf(x,;; o)

~ > kinside A
I_];f(”z» 6)

and
1—:1; f (xz 5 61)
1f{1f(xi; 60)

then A is a best critical region of size .

< k outside A
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To prove this lemma, let 4* be any other critical region of size o.
The regions 4 and 4* may be represented geometrically as the regions

interior to the indicated closed surfaces in Fig. 1. For simplicity of
notation, let '

L, = fgf(xi; 60)

denote the frequency function for the variables Xy, By, v, T, Wihen H,
is true, and let L, denote this function when H, is true. Further, write

f"'fl_[f(fvi;ﬂo)dxlwdxn =f L, dx
4 i=1 A

with a similar expression for L,.
Since 4 and 4* are both critical regions of size o,

3) f Lodxxf Lydx

Ja A o
But from Fig. 1 it is clear that the integral over b, which is the common
part of 4 and 4*, will cancel from both sides of (3) and reduce it to the
form

) fLde=fLodx
a ¢ W
Now, calculate the size of the type II error for both 4 and 4*. Since
the size of the type II error is the probability that the sample point will
fall outside the critical region when H, is true, which in turn is equal to

1 minus the probability that it will fall inside the critical region when H,
is true, these errors may be written in the form

ﬁ*=1—f L, dw
A*

Xn
A o /y

2

1

Fig. 1. Two critical regions.
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and

f)’=1—f L,dx
4

ﬁ*—ﬁ=f lex——f L, dx
4 A*

If the integral over the common part b is canceled, this difference will
reduce to

(5) /3*—;3=J;lex—J;lex

Consequently

Since region a lies in 4, it follows from the definition of 4 given in (2)
that every point of a satisfies the inequality

kL, < L,

ledekaodx

Similarly, since ¢ lies outside A4, every point of ¢ satisfies the second
inequality in (2), namely,

hence

kLy> Ly

ledxng‘Ledx

When these two results are used in (5), it follows that

hence

5*—ﬁ_>_ka0dx'— kJLOdac

a

But from (4) the right side must be equal to zero; hence
p* 2 p

Since f* is the size of the type II error for any critical region of size o,
other than A, the preceding analysis proves that 4 is a best critical region
of size «, where best is understood to mean a critical region with a mini-
mum size type II error.

The constant k of this lemma is chosen to make A a critical region of
size «. In most problems, as k goes from 0 to infinity, the size of 4
decreases from-1 to 0, thus making it possible to determine the proper
value of k.

The usefulness and meaning of this lemma is best explained by means
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of illustrations: consider first the problem that was discussed in fChapter
3, beginning with (3). For that problem '
f(z;0) = 0e7% 2> 0

In order to discuss a somewhat more general problem let the hypothesis
be Hy:0 = 6, and the alternative be H,:0 = 6, < by and assum;‘e that a
sample of size n is to be taken. The corresponding likelihood functions
are ' )

by 3 a;

n - -
Ly = Ilf(xzs ) = Op"e =1
and

n
6 2 2

L= I];f(%» 0)) = b;7e =1
According to (2), the region 4 is the region in wh_iéh
n,—0,Zx;
0y """ >k
aone—ooEwi
This inequality may be written in the form
e(el-aﬂ)za@- < 1(_9_1)"'
k\6,
Taking logarithms, the inequality becomes
0= 003 7, < log 1 (2]

0
Since H, specifies that 6; < 6, dividing both sides by 6, — 0, will reverse

the inequality and yield
x5
6) > > ——

=76, — 0,

Now the problem of Chapter 3 has n = 1, 6, = 2, and 6, = 1; hence
for that problem the best critical region, as given by (6), would be that
part of the = axis to the right of the point

log &

k0,
= = log 2k
X, P 5 og

0

1 0

where k is chosen to make the probability .135 that » will exceed .
Thus the right tail, which was shown in Chapter 3 to be better than the
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left tail for that problem, is now shown to be the best possible critical
region for that problem.

The derivation that led to (6) does not depend on the particular value
of 6,, provided that 6, < 6,. Thus the same critical region is used what-
ever the value of 6;, as long as 6, < 6,. The value of k necessary to pro-
duce the same «, for (6) will, of course, depend on the value of 6;. This
discussion shows that (6) gives the best critical region for testing the
hypothesis H,:6 = 6, against the composite alternative H;:0 < 0.
Thus the Neyman-Pearson lemma, although designed to test a simple
hypothesis against a simple alternative, can sometimes be used to solve a
problem in which the alternative hypothesis is composite. From this
result it follows that the critical region selected for the problem discussed
in Chapter 3 is the best critical region for testing H,:6 = 2 against
H,:0 < 2. This form of the alternative hypothesis would undoubtedly
be much more realistic and satisfying to the experimenter than the original
alternative H,:0 = 1.

As a second illustration, consider the problem of testing whether a
normal population with unit variance has a mean 6 = 6, or a mean
0 = 0, < 8,. Here

e—%(m—e)z
(x;0) = —
/ vV 2r
Then
n R
Ly = I—[l f(x,, bp) = 2m) e =1
e
and
" _g. _% .g (w;—0y)*
Ly =TT f(x;;0) = 2m) e 7!
i=1

The region 4 in (2) is therefore the region in which

e—émi—ooﬂ L5, —00)2 — S — 6)%]
[ —B)2 — Sz, —
= ¢ o Yi>k

— IS0y
o2

If logarithms are taken, this inequality will reduce to

Sz, — 0)2 — D(w; — 02 > 2logk
Simplification of the Teft side will produce the form
2(8; — 6>z, > 2logk + (6,2 — 6P)n
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If both sides are divided by 2n(f; — 0,), which is a negative number
because it was assumed that 0, < 0, this inequality will ﬁnally
reduce to
7 E< 2log k + (6, — 6,%n

2n(8; — o)

By choosing k properly, the quantity on the right can be made toi‘ have a
value %, such that the probability that Z will be less than Z, when H, is
true will be equal to, say, « = .05. Thus the best critical region here is
the left tail of the Z distribution. This is the region that was chosen on an
intuitive basis for the problem of this type discussed in 6.5.1.

As in the first illustration of this section, it will be observed that the
critical region obtained by applying (2) is the same for all alternative
values 0, provided that 6; < 6,, and is the best critical region for the
more general composite alternative H,:0 < 6. ‘

If 6, > 6, inequality (7) will be reversed; consequently the best critical
region will consist of the right tail of the Z distribution. This critical
region will also be best for the composite alternative H,:0 > 6.

If one wished to test Hy:0 = 6, against H,:6 # 0,, there would be no
best critical region for all possible alternative values 6, because when
0, < 0, the left tail will be best, whereas when 6; > 0, the right tail will
be best. The preceding result is typical; best critical regions usually
exist only if the alternative values of the parameter are suitably restricted.

As a final illustration, consider a discrete variable problem. Although
lemma (2) was proved for continuous variables, the same proof will
apply to discrete variables if one replaces integrals by sums. A certain
difficulty arises with discrete variable problems in that there may be very
few, or no other, critical regions having the same value of « as th”‘at fora
selected critical region. If this were true, it would be academic to say that
a certain critical region is a best critical region of size «. These pOSSIblhtleS
are considered in the following illustration.

Let  possess a Poisson distribution with mean y and let the hyf)'othesis
Hy:pu = py be tested against the alternative hypothesis Hy:u = p; < .
By proceeding as for continuous variables,

n X;
ITemtl
i Ta;
I_‘l. = = = @™o~ n) #
L n _ Ty
° TJe 1o Ho o
i=1 x,!

The inequality

en(ro— i) (&)m >k
Ho
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is equivalent to the inequality
> @ log™ > log k + n(u; — o)
o

Since log u/uy < 0 because it was assumed that u; < pg, the preceding
inequality can be written
Z z, < log k + n(uy — po)
log uy — log pg

It was shown in Chapter 6 that the sum of independent Poisson vari-
ables is a Poisson variable with its mean equal to the sum of the means;
it therefore follows that the variable z = Zx; is a Poisson variable with
mean nu. The critical region determined by the preceding inequality is
therefore equivalent to a critical region of the type z < z, for the Poisson
variable z where z, is chosen to make the region one of size «.

This is where the difficulty with discrete variable problems arises.
Since the sample space for a Poisson variable consists of the points
z=0,1,2, -, the critical region 2z < z, is constructed by starting with
the point z = 0 and adding successive points z = 1, z = 2, etc., until the
sum of the probabilities for those points under H, is equal to «. But it is
unlikely that this sum will exactly equal a previously specified « value.
This unsatisfactory state of affairs can be overcome by employing what
is known as a randomization device. Suppose, for example, that « = .05
and that the Poisson probabilities under H, corresponding to z = 0, 1,
2,--- are .018, .072, .144, - - -. Choosing z = 0 as the critical region
makes « = .018, whereas choosing it to consist of the two points z = 0
ahd z =1 makes o = .018 4 .072 = .091. The randomization device
that will yield a value of « = .05 consists in agreeing to reject Hy when
z = 0 but to reject H, only a certain proportion of the time when z = 1.
The proper proportion here is p, where p satisfies the equation .018 4 .072p
= .05. The solution of this equation is p = §; consequently, in carrying
out the test, one would consult a table of random numbers, or use some
game of chance that would yield successes § of the time, to determine
whether to place z = 1 in the critical region when the value z =1 is
obtained. By using such randomization devices, it is possible to discuss
best tests and to apply lemma (2) to discrete variable problems in much the
same manner as for continuous variables. In practical applications with
discrete variables one usually dispenses with these devices and chooses a
critical region whose size is possible and close to the desired « value.

9.1.4 Likelihood Ratio Tests

When the Neyman-Pearson lemma fails to yield a best test, or when
the hypothesis is composite rather than simple, it is necessary to place
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further restrictions on the class of tests and then attempt to find a best
test in this restricted class or to introduce some other principle for ob-
taining good tests. In this section a second principle for constructing
good tests is introduced and discussed. Since any method for testing
composite hypotheses will include the testing of simple hypotheses as a
special case, this principle is introduced from the point of view of com-
posite hypotheses. \

Suppose that the variable x has a frequency function f(x; 6, - -, 6,)
that depends on k parameters. Let the composite hypothesis to be tested
be denoted by Hy:0, = 6,/(i = 1,2, -, k), where 6, may or may not
denote a numerical value. Thus, if there are two parameters, HO might
be the hypothesis that 6; = 10 with 0, unspecified; then 6," ='10 and
0, = 0,. As a second illustratfon, H, might be the hypothesis that
b, = 0,; then 6" =6, and 0,' = 6,. With the aid of this notation,
SCe; 64, - -+, 6,) will denote the frequency function of  when H, is
true. '

Let §; denote the maximum likelihood estimator of 8, for the likelihood

function L(6) = H f(x;; 04, -+ -, 6,), where the likelihood function is

treated as a functlon of the parameters and the ; are fixed. S;mllarly
let 6, denote the maximum likelihood estlmator of 6, when H, is true;

that is, for the likelihood function I(f') = I'I f@;0),--,6,/ )7 Now,
form the ratio ‘ ,

_ L

~ L)

This is the ratio of the two likelihood functions L(6") and Z(f#) when
their parameters have been replaced by their maximum likelihood esti-
mators. Since the maximum likelihood estimators are functions of the
random variables x,, «,, - - -, #,, the ratio 1 is a function of Xy, Lyttt , X
only and is therefore an observable random variable.

The denominator of 4 is the maximum of the likelihood function with
respect to all the parameters, whereas the numerator is the maximum
only after some or all of the parameters have been restricted by Hy;
consequently it is clear that the numerator cannot exceed the denommator '
in value and therefore that A can assume values between 0 and 1 only.
Now the likelihood function gives the probability density (or probablhty
in case « is a discrete variable) at the sample point xy, ,, * + +, x,. There-
fore, if Zis close to 1, it follows that the probability density (or probablhty)
of the sample point could not be increased much by allowing the param-
eters to assume values other than those possible under Hy; consequently,
a value of A near 1 corresponds intuitively to considerable belief in the
reasonableness of the hypothesis H,. If, however, the value of 1i ;‘S close

8

n
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to 0, it implies that the probability density (or probability) of the sample
point is very low under Hj as contrasted to its value under certain other
possible values of the parameters not permitted under H,, and therefore
a value of 1 near O corresponds to considerable belief in the unreason-
ableness of the hypothesis. If increasing values of 4 are treated as corre-
sponding to increasing degrees of belief in the truth of the hypothesis,
then A may serve as a statistic for testing Hy, with small values of 4 leading
to the rejection of H,,.

Now suppose that Hj is true and the frequency function of the random
variable 1, say g(4), has been found. This is theoretically possible if the
explicit form of f(x; 6,’, - - -, 6,”) is known. Suppose, further, that g(1)
does not depend on any unknown parameters. Then one can find a value
of 4, call it A, such that

Ao
©) f o) di = o
0

The critical region of size « for testing H, by means of the statistic 4 then
is chosen to be the interval 0 < 4 < 4,.

The preceding explanation of how likelihood ratio tests are constructed
may be summarized in the following form.

(10) LixeLiHOOD RaTIO TESTS: To test a hypothesis H,, simple or com-
posite, use the statistic A given by (8) and reject Hy if, and only if, the sample
value of A satisfies the inequality 1 < Ay, where 1 is given by (9).

There is a great deal of similarity between the techniques used to obtain
a best test and a likelihood ratio test. They both use the ratio of the two
likelihood functions as'a basis for making decisions. This similarity may
be observed by comparing (2) and (8).

Although the use of A as a statistic for testing hypotheses has been
justified largely on intuitive grounds, it can be shown that such tests
possess several very desirable properties. These properties will be dis-
cussed briefly after a few illustrations have been given on how to construct
likelihood ratio tests.

Consider the second illustration of the preceding section, namely,
the problem of testing the hypothesis H,:0 = 0, where

1
"é(m —0)2

e
(#;0) = ———
/ o
Here
n LS g

L(O) = 2m) Ze *i=1
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Since L(6) will be maximized if log L(f) is maximized, it will suffice to
maximize log L(f). But :
dlog L) _ < (, — 6)
i 00 &
hence 0 = Z, and therefore

n 12 .
5 Ll(xi-w)z

L) = 2m) %e *i
Since there are no parameters to be estimated under Hj,

(@00t

| M=

NI

-1
2 s
e )

i

L@) = 1) = m)
Then 4, as given by (8), becomes

_}[ ‘:L: (x;—0, )2_ % (x,___i)zj
I = e

Upon simplifying the exponent, 4 reduces to

an P |

Now 7 and 6, are known constants; hence (11) expresses a relation-
ship between A and Z. By means of this relationship the critical value
J¢ can be determined without finding g(1). The nature of the relationship
expressed by (11) is most easily seen graphically, as in Fig. 2. To each
value of 4 correspond two values of Z, which are symmetrical with respect
to = ;. There are therefore two critical values of Z corresponding to
the critical value of A = 1,. Figure 2 also shows that increasingly small
values of A correspond to increasingly large values of |Z — 6. Therefore
the 5 per cent critical region for 2, consisting of the interval 0 < A < 4,
will correspond to the two 2} per cent tails of the normal # distribution.
Thus the 5 per cent critical region for the likelihood ratio test is equivalent
to the two equal tails of the # distribution given by the familiar inequality

A

M/] | [\
bo

®i

Fig. 2. Relationship between 1 and &.
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|# — 8,) Vn > 1.96. For this problem the likelihood ratio test is precisely
the same test as the two-tailed test selected on intuitive groundsin preceding
chapters.

The preceding illustration was concerned with testing a simple hypoth-
esis and was selected for the purpose of comparing the result of applying
the Neyman-Pearson lemma for best tests with that obtained by the
likelihood ratio approach. It will be recalled that a best test exists for this
problem only for one-sided alternatives, 6; > 6, or 6; < 6,; hence the
likelihood ratio test cannot be a best test. It serves as a compromise
test when there is no restriction placed on the alternative values of 0.

In the preceding illustration it was not necessary to find the distribu-
tion of A because it turned out that A was a simple function of  whose
distribution is known. In general, however, there is no assurance that
some such nice relationship to a familiar variable will exist. Then one
must use whatever tools he has available in an effort to find the distribu-
tion of 4. Fortunately, for large samples there is a good approximation
to the distribution of A which eliminates the necessity for finding the exact
distribution. This result from the advanced theory of statistics may be
expressed in the form of a theorem.

(12) THEOREM: Under certain regularity conditions, the random variable
—2log, 4, where 2 is given by (8), has a distribution that approaches that
of a x® variable as n becomes infinite, with its degrees of freedom equal to
the number of parameters that are determined by the hypothesis H,.

Since small values of A correspond to large values of —2log, 4, it
follows that the critical region for a test based on —2 log, 4 will consist
of large values of this variable. If the borderline of a critical region for
the 42 variable —2 log, 4 is denoted by y,%, then y,® must be a number
such that P{y? > %’} = «. Thus, in order to determine the critical
region for this approximate likelihood ratio test, it is necessary to have a
table of critical values, y,2. Table III in Appendix 2 enables one to find
such critical values. Since the 2 distribution as given in (20), Chapter 6,
depends on the parameter v, called the number of degrees of freedom,
any critical value will depend on ». Graphs of the y? frequency function
corresponding to several values of v are given in Fig. 7, Chapter 6.

According to theorem (12), the number of degrees of freedom in the
approximating %? distribution for the illustration considered earlier is
» = 1 because only a single parameter was determined by H,. Further-
more, from (11) the value of —2 log, 4 is n(Z — 6,)%. From (12) it there-
fore follows that the critical region for this approximate test is the region
in which n(Z — 6,)2 > x,2. This is the same critical region as that ob-
tained from the exact likelihood ratio test. It should be noted that
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V'n(% — 0,) is a standard normal variable because the standard deviation
of  is 1/V/n here; therefore from 5.4.3.1 its square is a y% variable with
1 degree of freedom. Thus this theorem is seen to check with the known
exact distribution here.

9.1.41 Testing the Equality of Variances. Consider an illustration
involving the testing of a composite hypothesis. Let x, ,, - - ‘L@, be k
independent normally distributed variables with means M1y Wos * * ', 1y, and
variances ¢,% 6,2 - -+, 032, Let random samples of sizes ny, ny, -+ -, n,
be drawn from these populations and let the hypothesis to be tested be

Hyof=o02 == 02
The random variable corresponding to the Jth observation for the variable

3
@; is represented by w,;. Thus there are altogether >n, = n random

variables. Since 1
1 (x’zfj - M:) 2

82 a;

(@igs iy 0) = e
f 2 2 ’\/27Tgi
the likelihood function may be written as

L& (xz’:"“/‘a‘)z
e Zi=1j=1\ o

i

(13) Liz; p, 0) =

n
2mPEom - g
When Hj is true, (13) reduces to

é,:: hy (:E,-‘—'#{)Z
i=1j=1 o

DOl

(14) Ly, o) =2 —~
2m)2o™ )

where o on the right side of (14) represents the common value of the g;.
In order to calculate A, it is necessary to maximize (13) and (14) with
respect to their parameters. This is accomplished by first taking logarithms
of both sides and then maximizing the logarithms. If (13) and (14) are
denoted by L and L,, respectively, then it will be found that

0log L 1 %
aj = '(;’5 P (% — “)
dlogL n, , 1 %
e e DT
0 [ 0; i=1
dlog L J
aj ? = ? zl (xz:f - Auz)
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From the first and third of these derivatives it follows that the maxi-
mum likelihood estimators for p; are in each case given by fi; = ;. From
the second and fourth of these derivatives, together with the results just
obtained, it follows that the respective maximum likelihood estimators
for the standard deviations are given by
62 = % M =52
i=1 n;

and

k =32

& = z g:(xia‘—xi) —

k nisi2

i=13j=1 n i=1 N

If these estimators are substituted in (13) and (14), respectively, L and
L, will become

L= e’
q (27T)§S1n1 cees
an
EO = ° n
n 2
5 N nksk2)
2m) ( o

The likelihood ratio given by (8) will then reduce to

s s

(15) )=

ol 3

(”1312 + R nkskz)
n

If now the frequency function g(1) were available under H, and g(4)
did not depend on any unknown parameters, it would be possible to find a
critical value 4, for deciding whether to accept or reject the hypothesis
that the k populations possess equal variances. However, because of
the complexity of the problem, it is necessary to resort to the approxima-
tion for the distribution of 1 given in (12).

If H, had specified that the variances all had a certain known value,
then the degrees of freedom here would have been k; however, the
variances are only assumed to be equal in value; therefore the number
of degrees of freedom is k& — 1.

Studies made on the accuracy of the x? approximation when applied
to (15) have shown that a more accurate test, particularly for small values
of the n,, can be constructed by altering (15) somewhat. Although this
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chapter is concerned with the general theory of testing hypotheses and
estimation, the problem of testing the homogeneity of variances arises so
frequently and is so important that it may be worthwhile to display the
more refined test here. The altered form of (15) consists in treating

(16) __—2log, u

1 E 1
1 (255
+3(k-—1) Zlnz.—l n—k

as a variable having a 2 distribution with k — 1 degrees of freedom, where
w is given by

n;—1

i)

i=1\n; — 1

= s —1

(S

As a numerical illustration of this test, consider the problem of testing
whether the variability of a manufactured product which is assumed to
be normally distributed has remained constant over a period of five
weeks as judged by the following five weekly sample variances based on
samples of five each: 5,2 = 237, 5,2 = 320, 5, = 853, 52 = 296, 5,2 = 141.
Here n,=5@( =1, -+,5); hence

_ TG  s"TIG»?
- (5 Z siz)lo - (z si2)1°

20

M

Then
2
log, u =23 log, s2 — 10 log, ZS—S’—
= —1.844

Further computations yield the value of 3.35 for (16). Since the 5 per cent
critical value of y2 for k — 1 = 4 degrees of freedom is 2o = 9;,5, this
result shows that the hypothesis of homogeneity is a reasonable one as
far as these data are concerned. The unimproved likelihood ratio test
given by (15) would have yielded a value of —2 log, 1 = 4.6. The fairly
large difference in the numerical values of these two variables, which are
assumed to possess the same approximate 42 distribution, is due to the
small values of the n,. :
Although the problem of testing hypotheses, both simple and composite,
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would appear to be completely solved for large samples, the question
whether likelihood ratio tests are good tests from the point of view of
type II errors still remains. Studies show that when best tests as given
by the Neyman-Pearson lemma do not exist, likelihood ratio tests are
often equivalent to tests that are known to be very desirable from the
type II error point of view, particularly for large samples. Thus, when
best tests do not exist, it is usually safe to employ a likelihood ratio test,
provided that the samples are fairly large.

9.2 Estimation

An introduction to the problem of estimating parameters of frequency
functions was given in Chapter 3. In that chapter maximum likelihood
estimation was introduced as a favorite method of many statisticians for
obtaining point estimates of parameters. In this chapter properties to be
desired in point estimates are considered, and estimation by means of
intervals is introduced.

9.2.1 Unbiased Estimates

Perhaps the first property of an estimate that one would think of as
being desirable is the property of the estimate converging, in some sense,
to the value of the parameter as the sample size becomes increasingly large.
Since almost any reasonable estimate will possess such a property, a closely
related property that is somewhat more restrictive is often considered
instead. This is the property of being unbiased. For the purpose of
defining this term, consider a random variable « whose frequency function
depends on a parameter . Let @y, , - - -, , represent a sample of size n
from the corresponding population and let #(zy, x,, * * - , #,,) be any statistic
being contemplated as an estimator of 6. Then the property of being
unbiased may be defined as follows.

(17) DerNITION: The statistic ¢ = t(xy, ¥, - -+, x,) is called an un-

2

biased estimate (or estimator) of the parameter 6 if E[t] = 0.

This property merely states that the random variable 7 possesses a
distribution whose mean is the parameter 6 being estimated. This prop-
erty was shown in section 6.6 to hold, for example, for ¢ = Z when
estimating the mean p of a distribution.

As an illustration of how the bias in a statistic may sometimes be
determined by means of expected value formulas, consider the expected
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value of a sample variance based on a random sample of size n From
propertles of E, and the definition of ¢2, it follows that

o — 7

s

(18) E[s*] = [

S =
S
p—

3
23

I
by

I
!—-li’.j ——
Mz 31~ I 1=
M=

[(z; — p) — (8 — W] }

.
It
-

(= 0 = & =

i=1
1 2 = 2
== 3 E(w~ 10 = £ — )
__:}Z 02— gz
ni=1
s 0
= 7 =—
n
n

This shows that s? is not an unbiased estimate of o2, which means that
if repeated samples of size n are taken and the resulting sample variances
are averaged the.average will not approach the true variance in value
but will be consistently too small by the factor of (n — 1)/n. For small
samples this factor becomes important; consequently, one must be
careful how he combines samples in making an estimate of the true
variance when an unbiased estimate is desired. In order to overcome the
bias in s?, it is merely necessary to multiply s? by n/(n — 1) and use the
resulting quantity as the estimate of o2 Then, because of (18),

E( " sz)= L _E[s}] = o
n—1

n—1

Since
n

D (#— 27

n =
32__1 1

n—1 n—1

it is clear that one can avoid the bias in estimating variances by d1v1dmg
the sum of squares of deviations by # — 1 rather than by #, as was the
practice in the preceding chapters. It is because of this property that
some authors define the sample variance as D (z; — )?/(n — 1).

As a second illustration, consider the problem of how to combine
several sample variances to obtain a single unbiased estimate of the
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population variance. Such a problem would arise, for example, in
quality-control work if one wished to obtain an unbiased estimate of the
variability of a manufacturing process as measured by ¢? and had avail-
able a number of daily estimates of the variability. Let s,2, - -+, 52
denote k sample variances based on samples of sizes ny, - - -, 1, respec-
tively. Then, if each sample variance is weighted with the size of the
sample on which it is based, the proper weighted average to use for esti-
mating o2 is given by

_mst 4 sy

a

t

where a is chosen to make this estimate unbiased. From properties of E
and the result in (18), it follows that

E[] = = [0 = Do* 4 -+ + (= 1)0°]

2

=%@d~”+w—@

In order that ¢ be unbiased, it is therefore necessary to choose a = n; +
+++ 4+ m, — k. Thus the desired estimate of ¢ is given by

T R
nA 4 —k

As an exercise to illustrate the convenience of using the operator E
for calculating mean values and at the same time to derive a useful for-
mula, consider the problem of expressing the variance of a linear combina-
tion of a set of variables in terms of the variances and correlations of the
variables. Let

(19)

z=ax + "+ @y,
be the function whose variance is desired. Then

Elz] = aypuy + - + @y
and
z— E[lz] = ay(@; — ) + - + alw, — )
Then, from the definition of the variance of a variable and this result,
Gzz = E[z - E(z)]z
= E[a)(z; — p) + -+ + aw, — w) P

= E[gl a’(x;, — 1“2‘)2 +2 125 a;a(z; — u)(@; — Bl

%
= Z aizE(xz' - Mi)2 + 2 g a;a;E(x; — pu)(%; — u;)
i=1 i<j
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Denoting the variance of the variable z; by o2 and the correla{ion co-
efficient between z; and z; by py; it follows from (12) and (13), Chapter 8,
that

E(x; — p)x; — py) = P:i0:0;

hence that
k
(20 o= 2 a0’ +2 D a,a;p,;00,
i=1 i<y .

When the variables z,, - * -, 2;, are uncorrelated, this formula red;uces to
the well-known formula

k
(21) o} = 2 afo?

i=1

which is essentially equivalent to formula (14), Chapter 6. Formulas
(20) and (21) are very useful for determining the accuracy of estimates of
means of populations when these estimates are constructed as linear com-
binations of other estimates. /

9.2.2 Best Unbiased Estimates

Although the property of being unbiased is a desirable one to seek
in an estimate, it is not nearly so important as the property of an estimate
being close in some sense to the parameter being estimated. Thus, if an
estimate 7 is consistently closer to 0 than another estimate ¢ in repeated
samples of the same size, then ¢ would certainly be preferred to ¢, even if
t were biased and ¢’ were unbiased. Because of the difficulty or impos-
sibility of determining whether one of two estimates is closer than the
other to 6 for any reasonable definition of closeness, it is customary to
substitute a measure of the variability of ¢ about 0 in place of closeness.
Since the variance, or the standard deviation, has been used to measure
variability throughout the preceding chapters, one would naturally think
of selecting one or the other of these measures; however, unless § happens
to be the mean of the distribution of 7, the variance will not measure the
variability about 6. This difficulty can be overcome by using the second
moment about 0 as the desired measure. When 8 is the mean of t,:'that is,
when ¢ is an unbiased estimate of 6, this measure reduces to the variance
of . :

If now ¢, and 1, are two estimates of 6 that are to be compared, this
can be done by comparing their second moments about 6. In this con-
nection, a statistic #, will be said to be better than the statistic ¢, for esti-
mating 6, provided that E(t, — 0)*> < E(t, — 0)? for all possible va}Iues of
6 and provided that the strict inequality holds for at least one value of 6.
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The problem of deciding whether an estimate is a good one in compari-
son with all other possible estimates is not quite so simple. The difficulty
is that a trivial estimate such as ¢t = ¢, where ¢ is some constant, will be
better as an estimate of the mean 6 of a normal population than Z when
6 happens to be equal to ¢. Thus one cannot expect to find a reasonable
estimate such as Z to possess a second moment about 6 that is a minimum
for all possible values of 6. In order to avoid such paradoxical results,
it is customary to limit the discussion of the goodness of an estimate to
unbiased estimates. Since the property of being unbiased is required to
hold for all possible values of 0, trivial estimates such as ¢ = ¢ are auto-
matically eliminated from consideration. In view of the preceding dis-
cussion, the following definition is introduced as a basis for choosing a
good estimate.

(22) DEFINITION: A statistic t = (%, %y, -+ , &) Will be called a best
unbiased estimate (estimator) of the parameter 0 if it is unbiased and if it
possesses minimum variance among all unbiased estimates (estimators).

This property must hold for all possible values of 0, that is, regardless
of what the true value of the parameter may be. Although there are other
definitions of a best estimate in use, the preceding definition is one that is
frequently used. It should be realized that the variance was selected in
(22) because it was considered to measure the concentration of the distri-
bution of 7 about 0. Since it is easy to construct an example of a distri-
bution in which most of the distribution is heavily concentrated about 8,
yet for which the second moment is extremely large, one must appreciate
that the second moment is not foolproof for giving the comparison of
estimates that one originally had in mind. Nevertheless, the same type
of criticism can be leveled at any other substitute; furthermore, ex-
perience and theory have shown that (22) is a very useful definition.

As an application of the preceding ideas, consider the problem of
determining whether some weighted average of a random sample from
a population can yield a better unbiased estimate of the population
mean than the sample mean. Let the two competing estimates be written

t1 = 1% +-+ Ay
and

tp=7%
The unknown a’s in #, are selected to make #, unbiased and to minimize
E(t; — 0)%. In order to determine the bias in #,, calculate

E(t)) = aqE(x) + - - + a,E(z,)
G
=(a1+.”+an)1u




The statistic 7, will be unbiased if the a’s are restncted to satlsfy _
a4+ +a,

This merely states that the sum of the coeﬁ"lments in £, must be 1 hence
the restriction can be ignored if ¢, is written in the form

t, = G% + 4z,
G+ -+,
Since #, is now unbiased, its second moment about x is merely its variance.
Because the variables #,, ,, - - - , z,, are independent and have the same

variance, it follows from formula (21) that the variance of ¢ is given‘ by

n
> el
=1

2
1 o 7 2
i=]

Now choose the ¢’s to minimize this expression. Using calculus methods,
the ¢’s must satisfy the equations

_a_ >’ _ (X2, — 2%222 %0
dey (Z ¢)* B (2 )t B

These equations reduce to

0y

(k=1,-"+,n)

2
ck=§ci (k=1,"",n)
This result shows that the best linear combination to use is the one in
which the coeflicients are all equal, since ¢, does not depend on k, in
which case 1, reduces to Z. Thus no linear combination of the sample
can yield a better unbiased estimate than the sample mean z If the
variable z is normally distributed, it can be shown that z is not only the
best linear combination of the sample values to use but the best functlon
of any kind to use, that is, Z minimizes E(t' — u)?, where ¢’ is any un-
biased estimate of u. A proof of this fact is given in the appendix as an
application of a formula that is derived there to enable one to determme
whether a particular estimate satisfies definition (22) for bemg a best
unbiased estimate.

9.2.3 Maximum Likelihood Estimates

In Chapter 3 maximum hkehhood estimation was mtroduced on the
grounds that it is a popular method for finding point estimates. This
popularity rests on the ease with which such estimates are usually obtamed
and with the desirable properties that they possess.




234 INTRODUCTION TO MATHEMATICAL STATISTICS

Among the desirable features of maximum likelihood estimates is
their property of often yielding best estimates. Examples can be found
for which the maximum likelihood estimate is a poor one; however, for
most applications it is either a best estimate or very nearly so.

A second desirable feature of maximum likelihood estimates is their
excellent large sample properties. If § denotes such an estimate, and if
some mild restrictions are placed upon the frequency function f(z; 0),
it can be shown that the variable

23) 6—0

a
Jn
possesses a distribution approaching that of a standard normal variable

as n — oo, The constant ¢ in the denominator depends on f(z; 6). The
situation here is very similar to that in 6.6, where it was shown that

(& — w) Vnjo possesses a distribution approaching that of a standard
normal variable. It is customary to call such limiting distributions
asymptotic distributions. Thus the maximum likelihood estimate 6 is said
to be asymptotically normally distributed. The quantity a/V'n in the
denominator of (23) is called the asymptotic standard deviation of §. Now
it can be shown that among all estimates that are asymptotically normally
distributed, the maximum likelihood estimate possesses minimum asymp-
totic variance. Thus, in the sense of possessing minimum asymptotic
variance, one can say that among all asymptotically normally distributed
estimates the maximum likelihood estimate is a best estimate.

It will be found that maximum likelihood estimates are often biased;
hence, if an unbiased estimate is desired, it may be necessary to multiply
the maximum likelihood estimate by a constant that depends on #, such
as was done with 52, in order to obtain an unbiased estimate. In some
problems it is not possible to adjust a maximum likelihood estimate in
this manner.

The preceding properties are the principal ones that justify the popu-
larity of maximum likelihood estimation,

9.2.4 Confidence Intervals

Thus far, only point estimates of parameters have been considered.
In many problems of estimation, however, one prefers an interval esti-
mate that will express the accuracy of the estimate as well. If the sample
is sufficiently large and the estimate is a maximum likelihood estimate,
one can use normal curve methods as indicated in the preceding section
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to find such an interval; however, in order to be able to treat more general
problems, a more general method is needed for constructing interval
estimates. Such a method, known as the method of confidence intervals,
is now described by means of a particular example. ‘

Suppose that a random sample of size 100 has been taken from a
population that is known to be normal and whose variance is known
to be equal to 16. Suppose, further, that the mean of this sample is 30.
Then the problem is to estimate the population mean x by the use of an
interval of values of z. Since o2 = 16, o; = cr/\/; = .4. Although
the value of s« is unknown, it is known from the theory of Chapter 6
that for repeated samples of the type being considered 7 will be normally
distributed about this value of # with a standard deviation of .4; con-
sequently, the fixed but unknown interval given by u + .8 will contain
95 per cent of such sample means in the long run. Since u is unknown
and is to be estimated, one would be tempted to replace u by % to obtain
the interval Z + .8 and to make the claim that the probability is .95 that
this interval will contain u. Such a claim actually is correct if one inter-
prets this probability in the following manner. i

If the interval Z 4 .8 is treated as a variable interval, changing with
each sample of 100, then in repeated sampling 95 per cent of such in-
tervals in the long run will contain u. This follows from the fact that if
95 per cent of sample means Z lie within .8 unit of #, in 95 per cent of
such samples u must lie within .8 unit of the corresponding Z. Thesituation
is represented geometrically in Fig. 3. _

Each point represents an Z based on a sample of 100. The upper
diagram corresponds to the case in which @ is assumed known and a
probability statement is made concerning #’s. The lower diagram cor-
responds to the case in which yu is assumed unknown and the variable
intervals Z 4 .8 are plotted. If a point lies inside the 95 per cent band
of the upper diagram, its interval in the lower diagram must necessarily
cover u, and not otherwise.

In practice, only one such 7 is available, so that only the first point and

e e e e L U L .
u+»§ A L . . '
u_8——~.~_—’——_—~.—_.;"’_—.._!———-——.:-——. ~~~~~ !

Fig. 3. Illustration of confidence interval methods,

e
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its corresponding interval of 30 + .8 is available. On the basis of this
one experiment, the claim will be made that the interval 30 &+ .8 contains
the population mean . If for each such experiment the same claim were
made for the interval corresponding to that experiment, then for these
experiments 95 per cent of such claims would be true in the long run. It
is in this sense that correct probability statements can be made concerning
population parameters. The interval 30 + .8 is called a 95 per cent
confidence interval for u. The end points of a confidence interval for a
parameter are called confidence limits for the parameter.

It should be clearly understood that one is merely betting on the
correctness of the rule of procedure when applying the confidence interval
technique to a given experiment. It is obviously incorrect to make the
claim that the probability is .95 that the interval 30 & .8 contains p.
The latter probability is either 1 or 0, depending on whether u does or
does not lie in this fixed interval. It is only when the random interval
% + .8 is considered that one can make correct probability statements of
the type desired.

The preceding illustration of a confidence interval was discussed from
a geometrical point of view. In most problems, however, one obtains
confidence intervals by analytical methods. Thus, for the preceding
example, one would first write

P{|z — u| < 8} = .95
This statement may be written in the form
P{—8<Z—p<8=.95
If the two inequalities are rearranged, the statement becomes
Pz —8<u<Z%+ .8;=.95

Since 7 is the random variable here, this statement must be interpreted
as saying that the probability is .95 that the random interval = 4 .8
will contain g in its interior. If Z is replaced by its observed sample
value, then the 95 per cent confidence interval 30 = .8 for u is obtained.

The preceding analytical method for finding confidence intervals is
used extensively in the following chapters for finding confidence intervals
for the more common statistical parameters. An examination of this
illustration and those in the following chapters will reveal that the method
for finding confidence intervals consists in first finding a random variable,
call it z, that involves the desired parameter f but whose distribution does
not depend on any unknown parameters. Thus z =% — is such a
variable. Next, two numbers, z; and z,, are chosen such that

Pzy<z<zy=1—ua
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where 1 — a is the desired confidence coefficient, such as .95. Then
these two inequalities are solved so that this probability statement as-
sumes the form

PO<O<O=1—«a

where f and § are random variables depending on z but not involving 6.
Finally, one substitutes the sample values in § and f to obtain a numerical
interval which is then the desired confidence interval. The preceding
technique does not always lead to a confidence interval because the re-
arrangement of the probability inequality may not yield an interval.
It is also clear that any number of confidence intervals can be constructed
for a parameter by choosing 2, and z, differently each time or by choosmg
different random variables of the z type. The problem of determmmg
which confidence interval is the shortest on the average in some sense,
hence to be preferred, is closely related to the problem of ﬁndzng best
tests of hypotheses. If one chooses a random variable z ‘that is known to
yield a good test for the hypothesis Hy:6 = 6,, then the confidence
interval based on z will turn out to be a good one also. The Liandom
variables discussed in Chapter 11 for testmg hypotheses are of thlS type;
hence there will be no discussion concerning the quality of the confidence
intervals obtained there.

As pointed out in the precedmg discussion, the analytical method for
finding confidence intervals requires that the proper type of random
variable z be available. When such a variable is not available, a more
general method may be employed to construct confidence intervals. The
method is explained for the case of a continuous variable whose fre-
quency function f(x; 6) depends on a single parameter 6.

Let 6% = 9*(x1, , ,,) be an estimator of @ that is based on a random
sample of size n frorn the population corresponding to f(z; 6), and let
g(0*; 6) be the frequency function of 6*. Theoretically, at 1east this
frequency function can be determined when f(z; 6) is given. Then a
95 per cent confidence interval for 6 may be constructed in the following
manner. :

Suppose that 6 is given any value whatever, say 0 = 6. Since g(6*; 6,)
is now completely specified, it would be possible to find two numbers 4,
and A, such that

h
(24) f " g(6%; 0,) do* = 025

and

(25) fw g(0%; 0,) do* = 025
h.

2
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These two numbers, of course, would depend on the particular value given
to 0; therefore, this dependence is indicated by writing A, and £, as
functions of 6, namely, /,(0) and hy(f). Now, consider the graphs of these
two functions of . A typical pair of such graphs is illustrated in Fig. 4.

After a random sample of size # has been drawn and the value of §*
calculated, draw a horizontal line 6* units above the § axis as indicated
in Fig. 4. If the two functions A,(#) and %) are increasing functions,
as shown in the sketch, then this horizontal line will cut each curve in
only one point. Let f; and 6, be the abscissas of these points of inter-
section. Then the interval from 0, to 0, on the 6 axis is the desired 95 per
cent confidence interval for 6 because of the following considerations.

Whatever the true value of 8 in f(z; 6) may be, call it 6, it follows
from the construction of A,(6) and /,(6) as given by (24) and (25) that

P{hy(8") < 0% < hy(0)} = .95

Geometrically, this means that the probability is .95 that the horizontal
line of Fig. 4 corresponding to the estimator 6* will cut the vertical line
through 0’ somewhere between the two curves. This is the situation
illustrated in Fig. 4. If this type of intersection does occur, then 8" must
lie inside the interval (6,, 6,), as shown. If this type of intersection does
not occur, then 6’ must lie outside the interval (0, 6;). Since the prob-
ability is .95 that an intersection of this type will occur, regardless of
what the true value, 6, may be, the probability is .95 that an interval
(6,, 0,) constructed in this manner will contain the true value 6'.

The preceding derivation assumed that the two functions hy(6) and
hy(6) were increasing functions of . In most applications this is the case.
The arguments, of course, apply equally well to decreasing functions
and for confidence coefficients other than 95 per cent. However, if the
curves corresponding to A,(6) and hy(6) are intersected in more than
single points by horizontal lines, the construction becomes more difficult
and the confidence interval becomes a set of intervals.

ho(6)
h1(6)
ai
/ /l/lv
| i
/ | ! 1 8

7 02 / o' 6

Fig. 4. Construction of confidence intervals.




GENERAL PRINCIPLES FOR TESTING HYPOTHESES AND FOR ESTIMATION 239

In many problems it is possible to find the confidence limits 6, and 6,
without explicitly finding the functions 4,(6) and Ay(6). It is clear from
inspecting Fig. 4 that 0, is the value of 6 for which /,(6) = 0* and that 6,
is the value of 0 for Wthh hy(0) = 0*. Thus, replacing 6* in (24) and
(25) by ¢, since 6* is merely a dummy variable of integration there, it
follows that 6, and 0, must be the values of 0 satisfying the equations

gi

f g(t; 6 dt = 025
(26) P
f g(t; 0,) dt = 025
a*

It is often possible to solve these equations for 6, and 6, and thus deter-
mine the desired confidence interval, _
Although this geometrical method of constructing confidence i’ntérva]s
was discussed for the case of a continuous variable, it has proved useful
for discrete variables as well. To illustrate the application of the method
to a discrete variable, consider the problem of finding a 95 per cent con-
fidence interval for binomial p if a sample of size 50 has yielded the estimate
P’ =.4. Here0 = pand 6* = p' = 4. Since the estimator p’ is a discrete
random variable, the integrals in (26) must be replaced by the appropriate
sums; hence the confidence limits p, and p, must satisfy the equatlons

S gt; py) = 025
@7 =0

"M"‘

(t Py = 025

t
where g(t; p) is the frequency function for the estimator ¢ = p’ and
the Values of ¢ for which terms exist are values given by ¢ = x/50 (x =
0,1,---,50). Now, because of this relationship,

P{x = k} = P{t = k[50} = g(k/50; p)

consequently, one can just as well work with the binomial variajale x as
with the variable p’. If equations (27) are expressed in terms of binomial
z, they will become i

g 50' p Icq 50—k _ 025
. ok! (50 — k)1 ‘
(2 ) 3 50’ k., 50— k

—— .025
k=220 k! (50 — k)! P
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It is possible to solve these equations by trial-and-error methods;
however, tables are available for sums of binomial probabilities to assist
one in the solution. Such tables yield the values p, = .26 and p; = .55,
which are therefore the desired confidence limits for p.

Although the variable p’ is a discrete variable, the problem was solved
as though the arguments for a continuous variable that led to equations
(26) were applicable to discrete variables also. Since the integrals in (24)
and (25) become sums for a discrete variable, it is not possible in general
to find numbers #,(p) and Ay(p) such that these sums exactly equal .025
for all values of p. It is customary, therefore, to choose 4, (p) and h,(p)
in such a manner that the corresponding sums come as close as possible
to but do not exceed .025. With this understanding, the arguments for
the continuous case will show that the probability will be at least .95
that the confidence interval constructed in the foregoing manner will
contain p.
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EXERCISES

1. Suppose that you are testing Hy:4# = 2 against Hy:u = 1 for the Poisson
distribution by means of a sample of size 2. Indicate by means of a sketch in
the sample space ,, 2, the part of the sample space you would choose for the
critical region. Give a justification for your choice.

2. Estimate the size of the type II error if the type I error is chosen to be « =
.16, if you are testing Hy:p = 7 against H;:# = 6 for a normal distribution with
o = 2 by means of a sample of size 25, and if the proper tail of the & distribution
is used as critical region.

3. In testing Hy:p = 20 for a normal distribution, what is the probability that
you will accept H,, when the mean is actually o/2 units above 20, if a sample of
size 9 is taken, and the critical region is chosen as the two 23 per cent tails of the
Z distribution ?

4. Under the 3 possible hypotheses H;, H,, and Hj, a discrete random variable
x has the following distributions:
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@ 1 2 3 4 5 6 7 8 9 10

[l | Hy) 0 S8 .02 05 03 11 01 .07 .04 .09

f|H,) | .60 0 06 .08 .03 01 .04 .12 .02 ‘ .04

(x| Hy) | .54 0 0 03 12 06 04 01 .08 .02
3 .

(@) Choose o = .10 and find a  best critical reglon for testmg H, agalnst H,.
(b) Determine whether there is a best critical region of size « = .10 for testmg Hy
against both H, and Hj.

5. Forty pairs of runners have been matched with respect to ability. Each
member of a pair is given a pill, with 1 member receiving a stimulant in his pill.
Races are run between each pair. Let x denote the number of races won by the
individuals who received the stimulant. Construct a best test for testing the
hypothesis H,:p = } against H;:p > 4, where p is the probablhty that a stimu-
lated runner will win an evenly matched race. Choose a critical region that makes
« as close to .10 as possible. Calculate the power of this test for p = .6.

6. Graph the power function, by plotting a few points on it, for testing the
hypothesis H,:x = 0 when using the two 2} per cent tails of the # distribution as
critical region, given that « is normally distrlbuted with ¢ = 1 and that a sample
of size 4 is used.

7. If x is normally distributed with ¢ = 10 and it is desired to test Ho u 100
against H,:pu = 110, how large a sample should be taken if the probability of
accepting Hy when H is true is to be .02 and if a critical region of size .05 is used ?

8. By means of the Neyman-Pearson lemma, prove that the best test for
testing the hypothesis Hy:o = o, against H,:6 = o; > ¢, for  normally dis-
tributed with 0 mean is given by choosing as critical region the region where

Z #;2 > ¢, where c is the proper constant.

9. Use the Neyman-Pearson lemma to determine the nature of a best critical
region based on a sample of size x for testing Hy:0 = 6, against H,:0 = 6; < 0,
if f(@; 0) = (1 + 007, 0 <z < 1.

10. Can the Neyman-Pearson lemma be applied to testmg Hy:6 = 1 against
H;:0 =2if f(x;6) = 1/6, 0 <z < 6 and a sample of one is to be taken?

11. Given f(z; p) = pg®, p = 1 — g, find a best test based on a sample of size
n for testing Hy:q = q, against Hy:q =q; > q, Is this test also best for
Hy:q > q0?

12. Given that « is normally distributed with mean 0 and variance 02 find the
expression for 4 for the likelihood ratio test for testing Hy:o = 1.

13. Work problem 12 if the mean is x rather than 0, with # unknown.

14. Construct a likelihood ratio test for testing Hy:0 = 1, given that f(x; 6) =
0e~%, 2 > 0. Carry your solution to the stage of obtaining Z as a function of &.

15. Construct a likelihood ratio test for testing Hy:p = p, by means of n
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observations of a binomial variable with probability p. Is this a best test for
some alternative value?

16. Work problem 15 if N such experiments are carried out with numbers of
SUCCESSES Ty, Ty, * * * , Ly

17. Construct a likelihood ratio test for problem 9.

18. Given the following 5 sample variances based on 10 observations each,
test the hypothesis that the 5 population variances are equal. The sample
variances are 22, 40, 30, 32, 12. Assume normal samples.

19. Using the fact that —2 log, 2 possesses an approximate y* distribution
with 1 degree of freedom for the likelihood ratio test of problem 14, use the
result of problem 14 and the following sample values to test the hypothesis
H,:0 = 1. The sample values are 1.5, 2, .8, 1.3,2.8,.9, 1.6, .6,4.2,3.1, 1.4, 2.2,
7, 1.6, .8.

20. Given that = is normally distributed and given the following 3 sample
values, (@) combine these 3 variances to yleld an unbiased estimate of ¢2 and
(b) show that (2s,® + 232 + 532)/5 is not an unbiased estimate of 2. The sample
values are 5,2 = 12, 5,2 = 10, 5,2 = 14, with n; = 10, n, = 10, ng = 5.

21. Using the expected value operator, derive an expression for the correlation
between u = ayx; + - + apwy and v = byx; + -+ + bywy, where the @’s and
b’s are constarits and the variables z;, - - -, x; are independently distributed.

22. Consider the variable z = (a2, + + * - + apz)/{a, + - -+ + ay), where the
variables x;, - - -, x; are independently distributed with 0 means and variances
6% - -+, 0,2, Prove that the variance of z will be minimized if the weight a; is
chosen inversely proportional to 6,2

23. Given that 6,2 =1, 6,2 =2, 6,2 =3, 0,2 =4, 0> =3, calculate the
variance of z in problem 22 when (&) @; is chosen inversely proportional to ¢/,
(b) a; is chosen equal to 1/k. (¢) Comment on the advantage of the weighting
used in (a).

24. Show that 2 is an unbiased estimate of 6 for f(z; 6) = 1/6,0 <« < 6.

25. Show that the distribution function of z = max {®,, 5, - - -, @,} is given
by (2/6)", when x has the distribution given in problem 24. In this connection
see problem 41, Chapter 6. Use the preceding result to show that (1 + 1/n)z is
also an unbiased estimate of 6 in problem 24.

26. Compare the variances of the two estimates of 6 obtained in problems
24 and 25.

27. A fisheries investigator catches fish from a lake until he has obtained =
fish of a certain species. His total catch then is N. Assuming that the lake has a
very large number of fish, show that the frequency function of the variable  is

N —1
given by (x _ l)p@(I —p)¥%, N =uz,a + 1, -, where p is the proportion

of this species in the lake. Use this result to show that (x — D/(N — 1) is an
unbiased estimate of p, and that 2/N is a biased estimate.

28. Find the maximum likelihood estimator of p for a binomial distribution
based on a total of » trials.

29. Find the maximum likelihood estimator of p for a binomial distribution
based on N experiments of » trials each and with successes z;, @5, = -, Zy.
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30. Find the maximum likelihood estimator of 0 for the frequency function

5,737
f@;0) = (2u6%) 2 2\0

31. Find the joint maximum likelihood estimators of x# and ¢ for a normal
distribution.

32. Given f(x) = ce~@* where « is a given positive integer and ¢ is a
constant depending on « but not x, what steps would be required to find the
maximum likelihood estimator of s ?

33. Find the maximum likelihood estimate of g for f(x; p) = = pq”, p 1 —gq,
x =1,2,---,if n experiments yielded the observations x, %y, - -, .’

34. Given f(x 6) = 6e~%% x > 0, (a) find the maximum likelihood estimator
for 6 and (b) find the maximum likelihood estimator for the mean value of .

35. Show that the situation occurring in problem 34 is typical, namely, that
the maximum likelihood estimator for a parameter of a frequency function is the
same as the estimator of that parameter when one expresses the parameter in
terms of the mean value of # and finds the maximum likelihood estimator of the
latter parameter.

36. Show that the maximum likelihood estimator of p,; in a multinomial
frequency function is given by p; = n,/n, where n; is the observed frequency in
the ith cell.

37. Find an 80 per cent confidence interval for the mean of a normal distribu-
tion if ¢ = 2 and if a sample of size 8 gave the values 9, 14, 10, 12,7, 13, 11, 12.

38. Assuming that  is large enough to justify the use of the normal approxima-
tion to the binomial distribution, show that a 95 per cent confidence interval
for binomial p is given by p; < p < p,, where p; and p, are solutlons of the
quadratic equation (p — p?(1.96)* = n(p’ — p)*.

39. A lake contains N fish. A netting experiment yielded « fish, which were
marked and released. A second experiment yielded y fish, of which z were
found to be marked. If y is small compared with N, show that the maximum
likelihood estimate of N is given, approximately, by N = xy/z.

40. Given that x is normally distributed with ¢ = 1, use the general method
for finding confidence intervals to find a confidence interval for p 1f E = 10 and
n =9, that is, construct a diagram similar to Fig. 4. .

41. Assume that = possesses a Poisson distribution with unknown ‘mean .
If 10 observations yielded the values 20, 23, 17, 16, 21, 22,19, 19, 25, 18, find an
approximate 90 per cent confidence interval for u. Use a normal approximation,
and base your interval on the sample mean only.

42. Apply the general method for finding confidence intervals to find a 90 per
cent confidence interval for 6 in f(x;0) = (1 + 0)2% 0 <« <1, if only the
single observed value # = .8 is available. ‘




CHAPTER 10

Testing Goodness of Fit

A problem that arises frequently in statistical work is the testing of
the compatibility of a set of observed and theoretical frequencies. For
example, if Mendelian inheritance suggests that four kinds of plants
should occur in the proportions 9:3:3:1 and if a sample of 240 plants
yielded 120, 40, 55, 25 in the four categories, one would like to know
whether these frequencies are compatible with those expected under
Mendelian inheritance.

This type of problem has already been discussed and solved for the
special case in which there are only two pairs of frequencies to be com-
pared. Then the binomial distribution may be applied as shown in the
first illustration of 5.3.4.5. When more than two pairs of frequencies
are to be compared, the multinomial distribution, which was derived in
5.4.2, is needed.

10.1 The 2 Test

The problem that is being considered here can be formulated quite
generally in terms of the notation that was introduced in 5.4.2. In this
connection, consider an experiment in which there are k mutually exclusive
possible outcomes Ay, Ay, * *, 4. Let p; be the probability that event
A, will occur at a trial of the experiment and let » trials be made. The
number of trials producing outcome A, will be denoted by n,. Since n;
is a binomial variable with probability p, with respect to the single out-
come A;, the mean, or expected value, of n, is given by

e, = E[n,] = np,
In terms of this notation, the problem is to determine whether the ob-
served frequencies ny, ny, * * *, n, are compatible with the expected fre-
quencies ey, €, * * *, e
An analysis of the preceding discussion will show that the problem is
244
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really one of testing a hypothesis because it is assumed that the multi-
nomial distribution is the proper model here and interest centers on
whether the postulated p’s are correct. Thus the problem can be treated
as a problem of testing the hypothesis

§3) Hy:p, = py, i=‘1’2,-..’k

where the p;y’s are the postulated values of the probabilities of a multi-
nomial distribution. - ,

The hypothesis expressed in (1) is a simple hypothesis, but unless
alternative values of the p’s are specified the alternative hypothesis is
composite. As a result, lemma (2) of Chapter 9 is not applicable; con-
sequently the likelihood ratio test is the natural test to employ here. Now
it will be found that the expression for 2 in this test is so complicated that
it is not feasible to find its distribution; therefore only the large sample
approximation given by theorem (12), Chapter 9, for a general likelihood
ratio test is ordinarily used. ‘ .

If the various steps involved in evaluating 4 in (8), Chapter 9, are
carried out, it will be found that R

) —2log,A=23 n,log, e
. . i=1

€

Now according to theorem (12), Chapter 9, this quantity possesses an
approximate y* distribution when # is large. The number of degrees of
freedom here is given by » = k — 1 because the multinomial distribution
is determined by only k — 1 parameters in view of the restriction that

k i
; pi = 1. The test of hypothesis H, therefore consists in choosing as

critical region the right tail of the 42 distribution with k — 1 degrees of
freedom. .

Although (2) does yield a valid large sample test for the hypothesis
(1), this test is not the one that.is customarily employed here. A modifica-
tion of it, which is based on approximating the right side of (2), is more
commonly used. This approximation is obtained by expanding the
logarithms and retaining only the dominating terms in much the same
manner as in the derivation of Theorem 3, Chapter 6. Since all other terms
converge to zero as n — oo, the results of such manipulations can be
expressed in the form of a theorem.

THEOREM: If ny, ny, -+, 0, and ey, ey, <+ -, e, are the observed and
expected frequencies, respectively, for the k possible outcomes of an
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experiment that is performed n times, then, as n becomes infinite, the distri-
bution of the quantity
' k — )2
(3) z (n'i ei)
i=1 e

will approach that of a y* variable with kt — 1 degrees of freedom.

The test procedure here is the same as for the test based on (2). Thus,
after calculating the value of the quantity given by (3), one determines
whether this value exceeds the critical value y,? that is obtained from the
table of critical values of the 2 distribution given in Table IIT in Appendix
2. Although this test was derived here as an approximate likelihood ratio
test, it was obtained by other methods many years before likelihood ratio
tests were introduced. Since statisticians were already familiar with the
preceding theorem when the test based on (2) was introduced, they con-
tinued using the test based on (3), known as the y? test for goodness of fit.

The derivation of the theorem given in connection with (3) as an appli-
cation of theorem (12), Chapter 9, is given in the appendix.

As a simple illustration of how to apply this theorem, consider a
typical problem. Suppose that a gambler’s die is rolled 60 times and a
record is kept of the number of times each face comes up. If the die is
an “honest” die, each face will have the probability § of appearing in
a single roll. Therefore, each face would be expected to appear 10 times
in an experiment of this kind. Suppose that the experiment produced
the following results, where the row labeled #, represents the observed
frequencies and the row labeled e, represents the expected frequencies.

Face 1 2 3 4 5 6

n; 15 7 4 11 6 17

e; | 10 10 10 10 10 10

As explained in an earlier paragraph, the problem is one of testing a
hypothesis about a multinomial distribution, namely, the hypothesis

@

Hypy=-"=pe¢=

Since » = k — 1 and k = 6 here, » = 5. If a critical region of size .05
is chosen, it will consist of those values of the approximate y* variable
given in (3) that exceed the value y,* which cuts off 5 per cent of the right
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tail of the 42 distribution with five degrees of freedom. From Table III
it will be found that y,2 = 11.1. Now calculations show that

6 2 2 2 2 P
(n,—e)?  (15—10* (7 —10)* (4 — 102 (11 — 10)

— _ + h

2 o 0 T 10 T 10
(6 — 10 (17 — 10)?

+ 10 + 10

= 13.6

Since this value exceeds the critical value y,2 = 11.1, it lies in the critical
region and therefore the hypothesis H, is rejected. Thus one would
conclude that the gambler’s die is *“dishonest.”” The error mtroduced in
using the approximate y? distribution here would be very small because
n is fairly large; consequently the y* test based on the theorem in (3) may
be applied with confidence to this problem.

10.2 Limitations on the 2 Test

Since the y? distribution is only an approximation to the exact distri-
bution of the quantity X(n, — e,)%/e;, care must be exercised that the 2
test is used only when the approximation is good. Experience and theo-
retical investigations indicate that the approximation is usually satisfactory,
provided that the e; > 5 and k > 5. If k < 5, it is best to have the e,
somewhat larger than 5. This limitation is similar to that placed on the
use of the normal curve approximation to the binomial frequency func-
tion in which np and ng were required to exceed 5.

If the expected frequency of a cell does not exceed 5, this cell should
be combined with one or more other cells until the above condition is
satisfied. For example, suppose that the gambler’s die of the pfeceding
section had been rolled only 24 times and the following results had been
obtained:

Face 1 2 3 4 5 6

Here none of the expected frequencies exceeds 5; therefore, it is necessary
to combine each cell with some other cell. If successive pairs of cells are
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combined, the preceding empirical rule will be satisfied and the following
table of values will be obtained:

Face { lor2 | 3or4 | S5oré6

n; 11 5 8

The application of the x? test will now yield a value of y? = 2.25 with
v = 2. From a theoretical point of view it is legitimate to combine cells
in any desired manner, provided that one is not influenced by the observed
frequencies. In many applications, however, there are practical reasons
for combining neighboring cells as in the preceding impractical illustra-
tion. ' '

10.3 Applications

In experiments on the breeding of flowers of a certain species, an
experimenter obtained 120 magenta flowers with 'a green stigma, 48
magenta flowers with a red stigma, 36 red flowers with a green stigma,
and 13 red flowers with a red stigma. Theory predicts that flowers of
these types should be obtained in the ratios 9:3:3:1. Are these experi-
mental results compatible with the theory?

This is a problem of testing the hypothesis

Hypr= &%, pa=1s Ps= e ‘P‘4 = is ‘
for a multinomial distribution involving four cells and for which n = 217.

Under H,, the expected frequencies, correct to the nearest integer, are
those in the second row of the following table.

n; 120 48 36 13

e; 122 41 41 14

Calculations give
2 2 . 2 _ 2
o (120 — 122)° | (48 — 41) i (36 — 41) " (13 — 14" _ 1.9
122 41 41 14

From Table TII the 5 per cent critical value of y2 for three degrees of
freedom is yq = 7.8; consequently the result is not significant. The
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hypothesis H,, is acceptable here and thus there is no reason on the basis
of this test for doubting that the theory is applicable to these data.

As a second apphcatlon consider the following problem. On the
basis of extensive experience with trainees, a training station determmed
four scores in marksmanship so that equal numbers of trainees would be
located in the resulting five categories of skill. A new group of 200
tramees is given the marksmanship test with the following results

Category 1 Im i v v

n | 54 44 40 35 27

e; 40 40 40 40 40

If the five categones are listed according to increasing ablltty, would you
be justified in claiming that the 200 trainees represent an mfenm group
of trainees with respect to marksmanshlp ?" This problem may be treated
as a problem of testing the hypothesis

Hyipy=""+=p;= -
for a multinomial distribution with n = 200. Calculauons gwe x = 10.1.
Since yo* = 9.5 for v = 4, this result is 51gn1ﬁcant hence one is justified
in claiming that the new group of trainees is not typical of past trainees.
Because of the excess frequencies at the lower end of the scale, the new
trainees undoubtedly are inferior marksmen.

10.4 Generality of the %2 Test

In the preceding applications the expected frequencies for the various
cells were known because the cell probabilities were assumed known;
however, many applications involve situations in which the ceﬂ prob-
abilities are functions of some unknown parameters. For example
suppose that one is interested in studymg the sex distribution of children
in families having eight children. If it is assumed that the probability is
p that a child selected at random from a family with eight children will be
a son, and if N such families are selected then the expected frequenc1es
for the nine cells correspondmg to 0,1,2,---,8 sons will be glven by
the successive terms in the expansion of the bmomlal N(g + p)8 Here
the probabilities for the various cells depend on the unknown parameter
p- Except for crude work, the difficulty cannot be overcome by assuming
that the two sexes are equally divided because experience has shown that
p is slightly larger than $.
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Fortunately, the x? test possesses a remarkable property that permits
it to be applied even when the cell probabilities depend on unknown
parameters as in this problem. This property, although very difficult
to prove, is very simple to state. It may be expressed as follows.

(4) PROPERTY: The x? test is applicable when the cell probabilities depend
on unknown parameters, provided that the unknown parameters are re-
placed by their maximum likelihood estimates and provided that one degree
of freedom is deducted for each parameter estimated.

It is assumed, of course, that the cell frequencies are large enough to
justify the use of the regular y? test. Since » = k — 1 when there are k
cells and the cell probabilities are known, it follows that v =k — 1 —/
when the cell probabilities depend on / parameters. The preceding prop-
erty enables the x? test to be applied to a wide variety of problems in-
volving the comparison of observed and expected frequencies. Some of
these applications are considered in the next few sections.

10.5 Frequency Curve Fitting

If a theoretical frequency function has been fitted to an empirical
frequency function, the question whether the fit is satisfactory naturally
arises. This question was asked, for example, in the exercise on fitting a
normal curve to a histogram in Chapter 5. When a normal curve is fitted
to a histogram, it is usually assumed that the data represent a sample
selected at random from a normal population and that the fitted normal
curve is an approximation to the population curve. Thus, the question
whether a fit is satisfactory can be answered only if one knows what sort
of histograms will be obtained in random samples from a normal popula-
tion.

‘Now, the #? test can be employed to give a partial answer to this
question. Since the x2 test is concerned only with comparing sets of
observed and expected frequencies, it is capable of testing only those
features of the fitted distribution that affect a lack of agreement in the
compared sets of frequencies. For example, the y* test is not capable
of distinguishing between the two curves shown in Fig. 1, in which the
x axis has been divided into six intervals to give six cells for the x* test
and in which the areas under the two curves for each of the six intervals
are equal.

With this understanding of the capabilities of the x? test, consider
the problem of testing the adequacy of the normal curve fit in Table
2, Chapter 5. The frequencies labeled theoretical frequencies were
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ﬁ%

Fig. 1. Two x* equivalent frequency functions.

obtained by integrating the fitted normal curve over the successive class
intervals of the histogram. The fitted normal curve was obtained by
replacing the parameters 4 and o by their sample estimates # and s. If
these frequencies are treated as the expected frequencies in the 4?2 test,
then the problem of comparing the observed and expected frequencies
is the type discussed in the preceding section because the cell Pprobabilities
depend on the two parameters x and ¢. Since Z and s are the maximum
likelihood estimates of u and o, the property stated in (4) permits the
application of the y® test, provided that one chooses v = 10 — | — 2 = 7.
Calculations here yield x* = 10.4. Since yo?= 14.1 for » =7, the
hypothesis that the data were obtained from sampling a normal popula-
tion is substantiated, as far as compatibility of corresponding pairs of
frequencies is concerned, and so the fit in Fig. 6, Chapter 5, would be
considered satisfactory from this point of view.

Since ey = 2.2 does not satisfy the empirical rule in 10.2, requiring
all e; > 5, one should combine the last cell with, say, the next to last cell
before applying the test; however, it is obvious that this procedure will
not alter the conclusions here, .

If a binomial distribution is fitted to an empirical frequency distribu-
tion by estimating the two parameters p and 7 in f(x) = n! /[z! (n — )] x
P*q"" from the data, the number of degrees of freedom in the 2 test will
bev=k—1—-2=Fk—3 just as in normal curve fitting; however, it
often happens in binomial problems that one or more of the parameters
will be specified from other considerations. For example, suppose that
one were interested in studying the sex distribution in families of eight
children. Here n = 8 is known; hence it is not obtained as a maximum
likelihood estimate from the data. Consequently the number of degrees
of freedom would be & — 2. If one were to assume that p = % rather
than estimate p from the observations, the number of degrees of freedom
would be & — 1.

Since the fitting of a Poisson distribution involves only the parameter
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4, the %2 test will possess k — 2 or k — 1 degrees of freedom, depending
on whether u is replaced by Z or is known from other considerations.

Property (4) of the y? test requires that the unknown parameters be
estimated by the method of maximum likelihood using the likelihood
function p,"ip," + - - p;™, corresponding to the multinomial distribution.
If one calculates the maximum likelihood estimates of u and o from this
likelihood function when fitting a normal curve to a histogram, the
resulting estimates will not be exactly equal to # and s, which are the
maximum likelihood estimates of 4 and o for ungrouped data; however,
they will ordinarily be very nearly the same. Thus, although theoretically
speaking one should calculate the maximum likelihood estimates for the
multinomial situation, it suffices to use the well-known maximum like-
lihood estimates for the continuous situation.

10.6 Contingency Tables

Another very useful application of the y? test occurs in connection
with testing the compatibility of observed and expected frequencies in
two-way tables. Such two-way tables are usually called contingency
tables. Table 1, in which are recorded the frequencies corresponding to
the indicated classifications for a sample of 400, is an illustration of a
contingency table.

A contingency table is usually constructed for the purpose of studying
the relationship between the two variables of classification. In particular,
one may wish to know whether the two variables are related. By means
of the y? test it is possible to test the hypothesis that the two variables
are independent. Thus, in connection with Table 1, the x? test can be
used to test the hypothesis that there is no relationship between an indi-
vidual’s educational level and his adjustment to marriage.

TaBLE 1
MARRIAGE-ADJUSTMENT SCORE

Very low Low High Very high Totals
g College | 18 (275 29 (39) 70 (64) 115 (102) 232
g High school | 17 (13) 28 (19 30 (32) 41 (51) 116
E ‘Grades only [ 11 (6) 10 (9) 11 (14) 20 (23) 52
Totals 46 67 111 176 400
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Before considering how the x2 test may be applied to this particular
problem, consider a general contingency table containing » rows and ¢
columns. Let p,; be the probability that an individual selected at random
from the population under consideration will be a member of the cell in
the ith row and jth column of the contingency table. Let p, be the prob-
ability that the individual will be a member of the ith row and let p.; be
the probability that the individual will be a member of the jth column.
Then the hypothesis that the two variables are independent can be written
in the form

i=1,-,r
H03Pz'j=pz'-p-ja{ }
j=1,"',C

If a sample of » individuals is selected and #,; of them are found in the
cell in the ith row and jth column, then 2 as defined by (3) will assume the
form

ﬁ i (ny; — np:y)*

1 np;;

But under the hypothesis H,, this expression will become

r ¢ — . 32
(5) Zz = Z z (ny np;.p-;)
i=1j=1 np;.p.;

Since the p,. and p.; are unknown, it is necessary to estimate them from
the sample. If the estimates are maximum- likelihood estimates, the
theory discussed in 10.4 will permit the y* test to be applied here, provided
that one degree of freedom is deducted for each parameter so estimated.

Since zpi.=1 and Zp,j= , there are r— 14 c—1=r4c —2
1 1

parameters that need to be estimated; hence the proper number of
degrees of freedom for testing independence in a contingency taBle of r
rowsand c columnsisgivenbyr =k — 1 — I =rc — 1 — (r+c — 2=

(r =1 = 1.

In order to complete the discussion, it is necessary to find the maxi-
mum likelihood estimates of the p,. and p.;. For this purpose let ;. de-
note the sum of the frequencies in the ith row and let n.; denote the sum
of the frequencies in the jth column. Since the variables n,; are discrete,
the likelihood of the sample is the probability of obtaining the sample
in the order in which it occurred. Thus the likelihood of the sample is
given by

L= H H i

i=1 7=
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But, because of H, and the definitions of n; and n,, this will reduce to

r [

L=1I.

t=1j=

@ip. )
1

Before differentiating L with respect to p,. for maximizing purposes, it
is necessary to express one of the p,’s, say p,., in terms of the remaining

,
ones through the relation > p, = 1. If this is done, L will assume the
form i=1

r—1 Np. T—1 4
L= (1 - g Pi-) II p.™ IIp.™
i=1 i=1

Taking logarithms,
r—1 r—1
log L= n,. log (1 - > p,.) + > n.logp. + K
1 i=1

where K does not involve the variable p,. Now, differentiating with
respect to p,. and setting the derivative equal to 0 for a maximum,
Di. 1— 3 p. bi
r—1 !
Since 1 — > p,. = p,., this equation is equivalent to
1
n,.
where A does not depend on the index i. Since this must hold for i = 1,
2, -, rand since

H

1=

HM\}

P =12 n.=1n
1

it follows that A = 1/n and that the maximum likelihood estimate of
P,’. is

b =—
n
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By symmetry the maximum likelihood estimate of p., is
n

A~ — .j
Py =—

If p,. and p.; in (5) are replaced by their maximum likelihood estimates,
22 will become

©) $=33

According to the theory of 10.4, this quantity may be treated as possessing
a x? distribution with (r — 1)(c — 1) degrees of freedom, provided that
n is sufficiently large and H, is true. :

Now, consider the application of (6) to testing independence in Table
1. To calculate the values of the n.n,/n in the ith row, it is merely neces-
sary to multiply the column totals »,; by the fraction n,/n. Thus the
values of n,n.;/n for the first row of Table 1 are obtained by multiplying
the column totals by 232/400 and similarly for the remaining rows: These
values, correct to the nearest integer, are inserted in parentheses in
Table 1. The calculation of y? is now like that for (3), with the values in
parentheses treated as the e,. It will be found that y? = 20.7. Since
Xt =126 for 3 — D@4 —-1)=6 degrees of freedom, this result is
significant and the hypothesis H, of independence is therefore rejected.
An inspection of Table 1 shows that individuals with some college educa-
tion appear to adjust themselves to marriage more readily than those with
less education.

10.7 Indices of Dispersion

It frequently happens that an experimenter has a set of data that he
believes can be treated as having been obtained from sampling a binomial
population, or possibly a Poisson population, but which contains so few
values that it is useless to attempt to fit a binomial, or Poisson, distribu-
tion to the observed distribution. In such situations one can often test
the hypothesis that the data came from a population of the assumed
type by testing whether the sample variance is compatible with the theo-
retical variance. This test can be obtained as a slight modification of the
%* test for contingency tables.

Let @), z,, - - -, 2, represent the number of successes for k samples of
n trials each taken from the same binomial population. Then B o— 2y,
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n — @, +,n — &, will represent the corresponding failures. These two
sets of numbers may be arranged in the following two-way table:

%, X e zy

Q)

n—x n— n — x,

If this table is treated as though it were an ordinary contingency table
and if the technique used to arrive at the maximum likelihood estimates
for the e, as in (6), is used, the estimates for the e, in the first row will
be given by

n=7% (i=12"-,k)

As a consequence, the estimates for the e, in the second row will become
n — % With these estimates, the value of x? as given by (6) will reduce to

k(2

p=3E=? +Z

(2, — ©)°

n—=x

&l

I
o
Kl

+
—
I
~——
M= -
P
R
I
5
o’
no

> (z — &)
I

5(1 - 3_5)
n

The contingency table on which this result is based differs slightly from
the ordinary contingency table treated previously. For the ordinary
table, successive observations are free to fall in any one of the cells;
however, for this table the first » observations must fall in either of the
two cells of the first column only, the second # observations must fall in
either of the two cells of the second column only, etc. The general theory
of 10.4 shows, however, that the y? test as applied in (6) is applicable to
this modified type of contingency table also; hence (8) may be assumed to
possess a x2 distribution with k& — 1 degrees of freedom.

It will be observed that the numerator in (8) is k times the sample
variance. For a binomial distribution the variance may be expressed in
the form

(®) =

npg = np(l — p)=u(1 —%)
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If u is replaced by the sample mean, it will be observed that the denomi-
nator in (8) is a second sample estimate of the variance. Thus %218 essen-
tially k times the ratio of two sample estimates of the binomial variance;
If the =; are from different binomial populations rather than from the
same binomial population, there will be a tendency for the numerator
estimate to be large relative to the denominator estimate and thus to give
rise to a significant value of x2 Thus the x? test essentially tests the
hypothesis that the data came from the same binomial population by the
device of checking on the variability of the data. Because of this property
of the test, the expression (8) is called the binomial index of dispersion.

As an illustration of the application of (8), consider the following data
giving the number of infected plants per plot of 90 plants, for 12 plots:
19, 6, 9, 18, 15, 13, 14, 15, 16, 20, 22, 14. The problem here is to deter-
mine whether it is reasonable to assume that the rate of infection is the
same over the 12 plots. This problem may be treated as the problem of
testing the hypothesis

Hypy=-""=pp

where p; denotes the probability that a plant selected at randorln from
the ith plot will be infected. Calculations applied to (8) give, to the in-
dicated accuracy, ' ‘

12
=151, >(x,— 2 =223, *=18
1

For 11 degrees of freedom, y,2 = 19.7; consequently, H, would be
accepted here. Since y* = 18 is so close to the critical value and since
the sample is so small, one would be tempted to suspend judgment here
until more data became available. For data of this type, it often happens
that the infection is localized and gradually spreads from such localized
centers of concentration. If such were the case, one would expect the
hypothesis of homogeneity to be rejected because some plots would have
a high rate of infection whereas others might still be largely untouched
by the infection, o

If the value of p is very small and the value of # is very large, the value
of Z/n, which is the sample estimate of p, will be very small; consequently,
the value of 1 — #/n will be very nearly equal to one. If this approxima-
tion is used in (8), the binomial index of dispersion reduces to what is
known as the Poisson index of dispersion, namely,

%(xi t 5)2
1 x
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1t would appear that the Poisson index is merely a special case of the
standard y2 test given in (3) for those situations in which the expected
frequencies are equal; however, there is a distinction in the nature of
the variables. The sum of the frequencies in the ordinary y? test represents
the total number of observations made, whereas in applications of the
Poisson index there are but k observations, each observation yielding a
result that happens to be an integer. It is important to distinguish between
these two types of problems in order to avoid the mistake of applying
the ordinary #? test to the first row only of the binomial frequencies in
(7). Such an application would be equivalent to assuming that the data
came from a Poisson rather than a binomial population.

As an illustration of the application of the Poisson index, consider the
problem of testing whether the following data on the number of defective
parts found in samples of 1000 parts each are homogeneous: 15, 13, 8,
6,11, 9, 14, 10, 16, 9, 12. Since the probability of a part being defective
is very small and # is very large, these frequencies may be treated as having
come from Poisson populations. The problem now is one of testing the
hypothesis

Hyipy =+ = piy

where u; is the mean of the Poisson population corresponding to the ith
sample. Calculations give

=2
=112, Y(z,— %) =976, Zﬁ__.?l =87
X

For 10 degrees of freedom x,? = 18.3; consequently the result is not
significant. Thus this test gives no reason for questioning the assumption
that the data came from the same Poisson population.
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EXERCISES

1. By integration, verify the .05 critical value of 52 given in Table ITT for v = 2.

2. Toss a coin 100 times and apply the x2 test to see whether the coin is
unbiased. |

3. In a breeding experiment it was expected that ducks would be hatched in
the ratio of 1 duck with a white bib to every 3 ducks without bibs. Of 86 ducks
hatched, 17 had white bibs. Are these data compatible with expectation ?

4. According to Mendelian inheritance, offspring of a certain crossing should
be colored red, black, or white in the ratios 9:3:4. If an experiment gave 72,
35, and 38 offspring in those categories, is the theory substantiated ?

3. The number of individuals possessing the 4 blood types should be in
the proportions ¢%:p? + 2pg:r2 + 2qr:2pr where p +q +r =1. Given the
observed frequencies 180, 360, 132, 98, test for compatibility with p = .4‘,‘ q =4,
and r = .2, S

6. According to the Hardy-Weinberg formula, the number of flies xésultiqg
from certain crossings should be in the proportions ¢*:2pg:p*, where g + p = 1.
If an experiment gave the frequencies 42, 52, 22, would the results be compatible
with this formula (a) if ¢ = .5, (b) if q is estimated from the data by using the

ny + nyf2
observed frequencies in the three categories ? :

7. Apply the y* test to the normal curve fit for the following 500 determinations
of the width of a spectral band of light. Here e denotes the fitted normal curve
frequencies obtained by estimating all the parameters.

maximum likelihood estimate é = , where ny, n,, and ng are the

0 5 12 43 61 105 103 89

e 5 14 36 71 102 109 85

8. Given the following data,

x 0 1 2 3 4 5

f 2 4 10 15 19 12

- state how many degrees of freedom you would probably use in the y2 test if you
attempted to fit the histogram with () a normal frequency function, (b) Poisson
frequency function, and (¢) binomial frequency function with theory suggesting
that » = 10, . i
9. Apply the x® test for goodness of fit to the results of problem 44, Chapter 5.
10. Apply the »* test for goodness of fit to the results of problem 68, Chapter 3.
H. Apply the x* test for goodness of fit to the results of problem 69, Chapter 5.
12. A certain drug is claimed to be effective in curing colds. In an experiment
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on 164 people with colds, half were given the drug and half were given sugar
pills. The patients’ reactions to the treatment are recorded in the following
table. Test the hypothesis that the drug is no better than sugar pills for curing
colds.

Helped Harmed No Effect

Drug 52 10 20
Sugar 44 12 26

13. In an epidemic of a certain disease 927 children contracted the disease.
Of these, 408 received no treatment, and, of those, 104 suffered aftereffects. Of
the remainder who did receive treatment, 166 suffered aftereffects. Test the
hypothesis that the treatment was not effective and comment about the conclu-
sion.

14. Ts there any relation between the mentality and weight of criminals as
judged by the following data?

Weight
Mentality 90-120 120-130  130-140 140-150  150-
Normal 21 51 94 106 124
Weak 15 18 34 15 15

15. The following data are for school children in a city in Scotland. Test to
see whether hair color and eye color are independently distributed.

Hair

Eye Fair Red Medium Dark Black
Blue 1368 170 1041 398 1
Light 2577 474 2703 932 11
Medium 1390 420 3826 1842 33
Dark 454 255 1848 2506 112

16. Show that for a 2 x 2 contingency table with cell frequencies a, b, ¢, and

d, respectively,
(@ +b +c+dad — be)?

=G T bye + b + da + o

17. The number of automobile accidents per week in a certain city were 12,
8, 20, 2, 14, 10, 15, 6, 9, 4. Assuming that such frequencies follow a Poisson
distribution, test the homogeneity of these frequencies with the Poisson index of
dispersion.

18. Five boxes of different brands of canned salmon containing 24 cans each
were examined for high-quality specifications. The number of cans below
specification were, respectively, 4, 10, 6, 2, 8. Can one conclude that the 5
brands are of comparable quality ?
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19. The following data give the number of colonies of bacteria that developed
on 15 different plates from the same dilution. Is one justified in claiming that
the dilution technique is satisfactory in the sense that the bacteria behave as
though they were randomly distributed in the dilution? The number of colonies
were 193, 168, 161, 153, 183, 152, 171, 156, 159, 140, 151, 152, 133, 164, 157.

20. Given the following set of fréquencies, 10,2,5,4,13,11,7, 12, 8, (a) test
to see if they may be treated as Poisson frequencies from the same population
and (b) determine whether the assumption that they are binomial fréquencies
would be more plausible.

21. Prove that the estimate used in problem 6 for ¢ is the maximum likelihood
estimate based on the multinomial distribution. :

22. On the basis of a given hypothesis, indicate why, if an experiment: yields a
value of x* = 4,2 slightly less than the critical value for » degrees of freedom and
if the experiment is repeated with approximately the same results, the two
experiments combined will yield a degree of confidence in the hypothesis different
from that given by the first experiment alone. o

23. Show that the method of Chapter 6 for testing the difference of percentages
is equivalent to the 2 test when applied to the 2 x 2 contingency table of
successes and failures. It is assumed that p is estimated from the combined
sample in the difference of percentages method.

24. Use the table of random numbers to sample from the population given by

x o - 1 2
f 4 4 2

Take samples of 25 each and perform 20 (or more) such sampling experiments.
For each sample of 25, calculate the value of #2 for observed and expected
frequencies in the 3 cells. Classify the 20 (or more) values of 32 into a frequency
table. Compare the resulting histogram with the »2 curve for » = 2. As a class
exercise, this is intended to make the z2 theory concerning the use of the contin-
uous y* distribution for the discrete 42 variable more plausible.




CHAPTER 11

Small Sample Distributions

Many of the statistical techniques considered in the preceding chapters
are applicable only when large samples are available. For example,
the method used in 6.7.1 for testing the hypothesis that two population
means are equal assumes that the samples are so large that population
variances may be replaced by their sample estimates without appreciably
affecting the validity of the test. In this chapter methods are developed
that do not require the assumption of large samples. Although such
methods are called small sample methods, they obviously apply to large
samples as well and might better have been called exact methods. Some
small sample methods require more information or assumptions than
the corresponding large sample methods; consequently, small sample
techniques cannot completely displace the techniques designed for large
samples.

11.1 Distribution of a Function of Random Variables

Tn developing small sample techniques it is often necessary to find the
distribution of a function of a single basic random variable or the distri-
bution of a function of several basic random variables. The technique
for solving the first of these two problems was developed in 5.4.3. In
this section methods are presented for solving the second problem.

Let « and y be two continuous variables with the frequency function
f(, y) and consider the problem of finding the frequency function of the
variable z = #(z, ), where ¢ is some function of interest. The particular
functions that are of interest in this chapter are t(x,y) =y — = and
(z, y) = y[x; however, it is desirable to have available a general method
of attack for such problems.

One method of approach is to adapt the change of variable technique
of 5.4.3 to functions of two variables by holding one of the variables
fixed. Toward this end, suppose the value of « is fixed so that the relation

262
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z = t(z, y) becomes a relation between the random variables z and ¥
only. Assume that #(z, %) is an increasing, or decreasing, function of Y.
Then, for « fixed, the relation z = 1(z, y) represents a change Offvariable
from y to z to which formula (42), Chapter 5, applies. If gy | 2) and
k(z | #) are used to denote the conditional frequency functions of y and ¢,
respectively, for x fixed, then by that formula :

g(y | @)
Tz]
oy

(D k(z | @) =

Next, write f(x, ) in the factored form
S, y) = f(=)gy | 2)

Similarly, if i(z, z) denotes the joint frequency function of « and z, one
can write

h(z, z) = f(®)k(z | x)

Taking the ratio of these two joint frequency functions and using: (1) will
then yield the formula

2) Wz, 2) = %—y_)

oy
In this formula it is necessary to replace y by its value in terms of z and
z by means of the relation z = #(z, ¥).

Formula (2) gives the joint frequency function of z and # in terms of
that of z and y. In order to obtain the frequency function of z, it is there-
fore merely necessary to integrate A(x, z) with respect to x over the entire
range of « values for 2 fixed. This follows from formula 3), Chzipter 8,
for marginal distributions.

As an application of this technique, consider the problem of finding
the frequency function of the ratio z = y/« when » and y are independently
distributed. Since f(z, y) = f(x) g(y) and 0z/0y = 1/x here, it follows
directly from formula (2) that )

h(z, 2) = || f(2) g(y)

= |2[ f(2) g(z2)
The frequency function of z, say ¢(2), is therefore given by
) 46 = [Is1 /) gCeo) da

where the integration is over the range of « values for z fixed.
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As a special case of (3), let f@)=e"2>0,andgy) =e", y > 0.
Then (3) yields

q(2) =jm xe Ye” ¥ dx

V]

‘The substitution w = a(1 + 2) will lead to the result

gz) = (1 4+ 2)72, z>0
As a second application of this general technique, consider the problem
of finding the frequency function of the difference z =y — 2. Here
0z/dy = 1; consequently (2) reduces to

h(z, 2) = f(w,y) = f(z, 2 + 2)

The frequency function of z is therefore given by

@) 4@) = f fla, @ + 7 do

where the integration is over the range of = values for z fixed.
The only real difficulty in finding the frequency function of a variable
z = t(x, y) by means of the preceding technique lies in selecting the proper
limits of integration when integrating the function A(z, z) with respect to
#. The following problem illustrates the nature of such difficulties.
“Let f(z,y) =8xy, 0 <2 <1, 0 <y <, and let z =« 4+ y. Then
0z/0y = 1 and (2) reduces to

W, 2) = [, 5) = f(, 2 — 7) = 82z — @)

Now when z is fixed, = can range over only those values that correspond
to points of the sample space lying on the line whose equation is2 +y =z
and whose graph is shown in Fig. 1. The sample space here is the triangle
bounded by the lines y =z, x = 1, and y = 0. If 2 is fixed at any value
satisfying z < 1, as indicated by line /; in Fig. 1, then the range of possible
# values is @ = z/2 to # = z. However, if z > 1, as shown by line /,, then
the range is # = z/2 to @ = 1. As a consequence, the frequency function
of z is given by the two formulas

k(z) =f 8x(z — x) dx = %25, 0<z2<1
3

1
=} 8x(z —2)dr = —%3 + 42 — §, 1<2<2

ol

The graph of this frequency function is shown in Fig. 2.
A somewhat more general problem arises when the joint distribution of
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bx+y=z
1 t—
hiix+y=z !
N I
.
o
|
|
|
| |
] I x
z EA 1. 2\
2 2

Fig. 1. Sample space corresponding to z= z -+ ¥.

two functions of the basic variables, say u = u(z,y) and v = v(x, y),
is desired. This corresponds to a change from the coordinate system x,y
to the coordinate system w,v. This is a familiar procedure in calculus, for
example, when performing a double integration and accomplishing it by
shifting to polar coordinates. The functions in that case are given by
F=vVa® + y?and 6 = tan—! y/x. Here the problem would be to find out
how r and 6 are distributed when given the distribution of z and v.
There exists a simple formula for finding the frequency function of such
transformed variables. It is obtained by applying probability considera-
tions to an advanced calculus formula for integration and involves the
Jacobian function. This formula can be extended to any number of
variables as well. The theory that is developed in this book does not

k(z)

1 2

Fig. 2. Graph of k(2) for 2=« + .
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require the use of these more general methods; however, a brief discus-
sion of them is given in the appendix for the benefit of those who are famil-
iar with advanced calculus methods and wish to become acquainted
with the general methods.

The methods that have been explained in this section are now used to
develop some of the theory of small samples.

11,2 The 2 Distribution

One of the most widely used continuous frequency functions in statis-
tical work is the x? function that arose in connection with radial error
problems in Chapter 6 and with the problem of testing goodness of fit
in Chapter 10. This function has many other applications as well. In
this section it is used to assist in finding the frequency function of the
sample variance when random samples are drawn from a normal popula-
tion.

11.2.1 Distribution of s

Let = be normally distributed with mean p and variance o® and let =
and s® be the usual sample estimates of these parameters based on a
random sample of size .

Now if the mean 4 were known, one would use the estimate Z(x, — p)*/n
for ¢2. It would be a simple matter to find the distribution of this esti-
mate because the quantity

) 3 (B4 - 2w

a

is the sum of squares of #n random sample values of a normal variable y
with zero mean and unit variance and therefore by Theorem 6, Chapter 6,
possesses a 2 distribution with » degrees of freedom. Then by the change
of variable technique developed in 5.4.3 one could find the frequency
function of Z(x;, — w)¥/n.

The difficulty in finding the distribution of s* arises from the presence
of # in place of u. In order to make allowance for Z, it is necessary to
carry out certain manipulations. After these have been made, it can be
shown by moment generating function methods that the x* distribution
is still applicable.

et
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Obvious algebraic operations will show that
nst = 3@, — B = J(x, — p) — (& — WP
= 2@ — @ — n(@ — py?

Because of the convenience of working with standard units, this i‘elation-
ship is divided by o2 and then written in the form

e ) s

or symbolically as

J+K=1L
If the moment generating function of both sides is taken,
6 My (0) = M (6)

Now it can be shown that  and s are independently distributed when
the basic variable 2 is normally distributed. A proof of this property is
given in the appendix. This fact is therefore assumed here. Since J is a
function of s* and X is a function of %, it follows from the independence
of # and s? that J and K are independently distributed. The independence
of Jand K permits the left side of (6) to be factored; therefore (6) may be
written in the form 3

M;O)YM (6) = M (6) :
Since s? is the variable of interest here, this relationship is written in the
form

™ My(0) = M0
M x(6)

From the discussion following (5), it follows that L. possesses a’ y2 dis-
tribution with » degrees of freedom. Now the variable @ — wV. njo is
anormal variable with zero mean and unit variance; thereforeit constitutes
a random sample of size 1 from such a variable. The same reasoning
as before shows that K possesses a x* distribution with one degree of
freedom. i

The moment generating function of a x? variable with » degrees of
freedom is given by formula (21), Chapter 6, namely

8) M(6) = (1 — 20) 2
Application of this formula to (7) will yield
1 — 20 T2 Yo
My = L2 (i
(1 —26) 2
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Because a frequency function is uniquely determined by its moment
generating function, this result together with (8) proves the following
theorem.

THEOREM 1: If @ is normally distributed with variance o® and s% is the
sample variance based on a random sample of size n, then ns*|o® has a y?
distribution with n — 1 degrees of freedom

Although the name “degrees of freedom” is merely a name given to the
parameter » in the y* distribution, it is well chosen because the parameter
v represents the number of independent variables whose sum of squares
is a »2 variable. Thus (5) has » = n because the n variables being squared
and summed are independent, whereas the # variables being squared and
summed in s contain only # — 1 independent variables because the sum
of the variables is 0.

11.2.2 Additive Nature of y*

An interesting and useful property of the y? distribution is that the sum
of two or more independent y? variables possesses a 2 distribution also.
This property is demonstrated now because it is needed in the next section.

Let y;% and y,2 possess independent x? distributions with and v,
degrees of freedom, respectively. Consider the variable w = 11+ el
From moment generating function properties and (8), it follows that

Mw(e) = Mylz(e)ng2(9)
_h -
=(1—20) 2(1 —20) *
1

=(1—-20)"

But this is of the same form as (8); therefore, the following theorem holds.

(v +72)

THEOREM 2: If %2 and y,® possess independent y* distributions with
v, and v, degrees of freedom, respectively, then y,* + x:2 will possess a y*
distribution with v, + v, degrees of freedom.

11.3 Applications of the x? Distribution

In this section Theorems 1 and 2 are used to test hypotheses about,
and obtain confidence limits for, the variance of a normal variable.

As a first illustration, consider a problem of testing a hypothetical
value of 0. If past experience with the quality of a manufactured product
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has shown that o = 7.5 for the quality variable in question, and if the
latest sample of size 25 gave a value of s = 10, would there be justification
for believing that the variability of the quality had increased? This
problem may be treated as a problem of testing the hypothesis

Hy:0=15
against the alternative hypothesis
Hi:0>15

From Theorem 1, ns?/o® possesses a 2 distribution with 24 degrees
of freedom. If the right tail of the 42 distribution is chosen as the critical
region for testing H, against H,, it will be found from Table IIT that the
critical value of »?% is given by y,2 = 36.4. Since

ns® 2510

o® (7.5)2
the hypothesis H,, is rejected in favor of H,, which implies that there is
justification for believing that the variability has increased. .

The solution of problem 8, Chapter 9, shows that the right tail of the
x* distribution is the best critical region for testing H, against H,, pro-
vided that the mean of z is 0. If the mean were w rather than 0, one would
use (x; — w)? > c in place of Tx,2 > ¢ to define the best critical region.
When the mean is not known, as in the problem just solved, it can be
shown by methods somewhat more complicated than those used to
solve problem 8 that X(z; — )2 > ¢, where ¢ is chosen properly, defines a
restricted type of best critical region for the problem being discussed.
Since ns*/o® > y,* is equivalent to T(x, — #)® > ¢, where ¢ =i0o2y2, it
follows that the test employed in solving this problem is a restricted type
of best test. v

If one were to test the hypothesis H,:o = o, against the alternative
H,:0 < 0,, one would use the left tail of the y2 distribution to bbtaiﬁ a
best test; however, if the problem were one of testing H,: ¢ = o,y against
H,:0 # o, then methods like those of Chapter 9 will show that,t}ierye does
not exist a best critical region in this case. For this last type of alternative
it is customary to use the two equal tails of the y2 distribution as the
critical region.

As a second application of the y2 distribution, consider the broblem ‘
of finding confidence limits for o2 Let 2 be normally distributed with
variance 0%, and let s be the sample variance based on a random sample
of size n. Then 95 per cent confidence limits for o® may be obtained by
using the analytical methods explained in 9.2.4 in the following manner.

From Table IIT for n — 1 degrees of freedom find two values of 22
namely, ;% and x,? such that the probability is .975 that 42 > 5,2 énd such

= 44
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that the probability is .025 that y® > x,% Then it follows from Theorem
1 that the probability is .95 that

2
ns
< — < 2"
o
or that

2
) <ot<
Y4 X1

These two numbers yield 95 per cent confidence limits for o2 From the
discussion in the section on confidence intervals it follows that in the
long run 95 per cent of the inequalities of this type that are computed
will be true inequalities. This method, of course, is not restricted to 95
per cent limits.

As a numerical illustration of the use of formula (9), consider once
more the data for the first illustration of this section. Since the hypo-
thetical value of o = 7.5 was rejected, one would use the sample value
s = 10, or the unbiased version of it, as the point estimate of ¢; however,
if one were interested in an interval estimate, (9) would be used. Here
n = 25 and ns* = 2500. A direct application of (9) and Table IIT will
show that 96 per cent confidence limits for 2 are given by

2500 _ , _ 2500
S ag

ns?
a2

40.27 11.99
This inequality is equivalent to
79 <0< 144

It is clear from this result that ¢ cannot be estimated with much precision
for such a small sample and such variable data.

As a third illustration, consider the problem of finding confidence
limits for o when several sample variances are available. In particular,
consider the data given just after (16), Chapter 9, namely, 5% = 237,
5,2 = 320, s55% = 853, 5,2 =296, and s;*> = 141. Since each of these
variances is based on a random sample of size 5, Theorem 1 shows that
the variables n,s2/0?, (i = 1,---,5), will possess independent y2 distri-
butions with four degrees of freedom each. By Theorem 2 their sum,
Sns?lo?, will therefore possess a x? distribution with 20 degrees of
freedom. Since Tn;s,2 = 9235, formula (9) and Table IIT will then yield
the following 96 per cent confidence limits for o%:

9235 _ , 9235

o
35.02 9.237
or

264 < ¢ < 1000
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For data of the type just considered, the technique of combining several
sample variances to obtain an estimate of o2 has certain advantages over
the customary method of combining all the data to obtain a single direct
estimate of 6% In the problem considered it may be that the variability
of the product is unchanged from day to day but that the mean has
changed. If all the data were combined, the change in the mean would
tend to increase the value of s* over what it would be if the mean were
stable from day to day. The sum of the daily values of 52, however, would
not be affected by such changes in the mean. Thus, by using the sums of
daily variances, one may be able to obtain a valid estimate of ¢%, even
though the product is not strictly under control. Here o® is understood

to be the population variance of the product when shifts in the ijnean do
not occur.

11.4 Student’s 7 Distribution

Consider the data of Table 1 on the additional hours of sleep gained by

TaBLE 1

Patient 1 2 3 4 5 6 7 8 9’ 10

Hours

: 07 -11 =02 12 01 34 37 08 18 20
gained

10 patients in an experiment with a certain drug. The problem is;to deter-
mine whether these data justify the claim that the drug does produce
additional sleep.

Assume that these patients may be treated as a random sample of
size 10 from a population of such patients. Furthermore, assime that
the number of additional hours of sleep that a patient obtains from the
use of this drug is a normally distributed variable. The problem may then
be treated as a problem of testing the hypothesis )

against the alternative
Hy:u>0

If this problem were treated in the traditional large-sample manner of
Chapter 6, the experimenter would use the data of Table | to obtain

z = 1.24 and s =145




272 INTRODUCTION TO MATHEMATICAL STATISTICS

Then he would calculate

and approximate its value by replacing o by s to obtain

. 1.24/10
’T‘ T e n—
1.45

From Table 11, the probability of obtaining a value of = > 2.70 is .0035;
consequently the hypothesis that u = 0 would be rejected here in favor
of the alternative that # > 0. The drug undoubtedly has a beneficial
effect with respect to sleep, even though it may be due to psychological
factors affecting the patient.

This method of solving the problem is subject to one serious objection.
For a sample as small as this, the sample standard deviation, s, will not
be an accurate estimate of ¢; consequently a serious error may be intro-
duced in the value of 7 in replacing ¢ by its sample estimate. In most
applied problems the true standard deviation is unknown. In order to
overcome this defect in the test, it is necessary to replace the random
variable 7 by a new random variable which involves the sample standard
deviation rather than the population standard deviation. Such considera-
tions will lead to what is known as Student’s ¢ distribution.

Although the ¢ distribution is being introduced here to solve a particular
problem, it has many other important applications. In its most general
form a Student 7 variable is a variable of the type

= 2.70

(10) N
v

where u is a standard normal variable and v? is a x? variable with » degrees
of freedom distributed independently of w.

The frequency function of # can be obtained by finding the frequency
functions of the numerator and denominator of ¢ and then applying
formula (3).

The numerator variable u\/;, which is denoted by ¥, is a normal
variable with mean zero and variance » because u is a standard normal
variable; consequently the frequency function of y, which is denoted by
k(y), is given by

_z

2v

(11) (¥) o

The denominator variable v is the square root of a x* variable; there-
fore its distribution can be found by using the change of variable technique
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that was explained in 5.4.3. Toward this end, let the variables » and y
of that section be set equal to # = ¢* and y = v. Then the requxred

change of variable is given by the relationship y = Vx. Apphcatlon of
formula (42), Chapter 5, then yields

g(vy = f(v¥)2v
But v® is a 2 variable with » degrees of freedom whose frequency function
is given by (20), Chapter 6; consequently

v 2

(12) glv) = a(v2)§_1e“2_ < 2

2
v
-1 =L

=2a0 e 2
Here a is the y? distribution constant 1/2"2[(»/2). :

In order to apply formula (3) to (10), it is necessary to associate the
variable v with # and the variable uV/y with 4 y. The function f ('c) of (3)
is therefore glven by replacing v by @ in (12). The function g(y) of (3) is
given by k(y) in (11). Finally, it is necessary to associate the variable ¢
with the variable z. After these substitutions in notation have been made,
formula (3) when applied to (10) will yield

(tr)®
x? 2w

) =f x-2ax le ¥ ——dr
g 0 V 2y

2
2a (= —1752(1#—)
= e * »/ du

2y Jo

Now let w = 2%(1 + 1%/+)/2; then dr = dw/V2wV'1 + /v and

1
—~5r+1) 1
2 2\ 2 0 Zy—1)
0-22(i )
% 0

v v

From the derivation in 6.9 it will be observed that this last mtegral is
equal to I'[(v + 1)/2]; consequently
*é(v+1)

)
=)

The preceding derivation proves the following theorem.

q(t) = c(f + ?)

where ¢ is the constant

2—;(1 v 41
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THEOREM 3: If u is normally distributed with zero mean and unit variance
and v* has a y? distribution with v degrees of freedom, and u and v are
independently distributed, then the variable

uV'y
f=—

v
has a Student’s t distribution with v degrees of freedom given by

1
—é(v—l—l)

12
) = c(l + —)
¥
where ¢ is the constant given in (13).
Now consider once more the problem that was introduced at the
beginning of this section in order to see how this theorem can remedy

the defect in the large sample method of solution. Since z is normally
distributed with 0 mean, the variable

N
g

(o

possesses the properties of u in Theorem 3. From Theorem 1 it follows
that

2

possesses the properties of v in Theorem 3 with » = n — 1. Since it is
known that  and s® are independently distributed, Theorem 3 may be
applied to give
‘= x\/n —1 _ 1.24\/9 257, »=09
s 1.45

From Table IV it will be found that the probability is approximately
.017 of obtaining a value of ¢ > 2.57. This result is therefore significant
at the 5 per cent significance level.

A comparison of the probability of P = .017 with that of P = .0035
obtained by the use of large sample methods shows that the large sample
method is not accurate for a sample as small as 10. It will be found that
the large sample method gives probabilities that are consistently too
small; consequently large sample methods will claim significant results
more often than is justified. The explanation for this bias on the part of
large sample methods is that the 7 distribution has a slightly larger dis-
persion than the standard normal distribution. The situation is shown
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Fig. 3. Standard normal and Student’s ¢ distributions.

graphically in Fig. 3, which gives the graphs of the standard normal dis-
tribution and Student’s ¢ distribution for four degrees of freedom.

The important feature of the ¢ distribution is that it does not depend
on any unknown population parameters, hence there is no necessity for
replacing parameter values by questionable sample estimates as there is in
the large sample normal curve method.

11.5 Applications of the ¢ Distribution
11.5.1 Confidence Limits for a Mean

Let x be normally distributed with mean u and variance o?. Let @
and s be their sample estimates based on a random sample of size n.
Then, as before, _

R

‘= al\/n

s ns®

V= —

0.2

and

satisfy the requirements of u and v in Theorem 3; consequently,

_(E=wyn—1
B s

(14) t

possesses a ¢ distribution with n — 1 degrees of freedom. If ¢, reépresents
the value of ¢ such that the probability is .05 that |¢| > ¢, then the

robability is .95 that _
P Y (@ —p)n—1
s

<tos
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or that

- s ~ s

(15) z t.os\/n_1<‘“<9v+‘.os\/n—_—i

This inequality determines a 95 per cent confidence interval for x. Since
the probabilities heading the columns of Table IV are for one tail only,
it is necessary to look in the column headed .025 in order to find the value
of 105 needed in (15). If some probability other than .95 is desired, it is
merely necessary to replace 45 by the corresponding value of ¢ from
Table IV, once more looking in the column headed with half the proba-
bility attached to ¢. The entries in the last row of Table IV, which are
those for a standard normal variable, enable one to observe how rapidly
Student’s ¢ distribution approaches that of a standard normal variable
as the sample size increases. They also enable one to select the correct
column in looking up critical values of 7 because of familiarity with large
sample normal curve critical values such as 1.64 and 1.96.

11.5.2 Difference of Two Means

The ¢ distribution may be used to eliminate the error in large sample
methods when testing the difference of two means in the same manner
as for testing one mean. Let « and y be normally distributed with means
. and g, and with the same variance o2 Let random samples of sizes
n, and n, be taken from these two populations. Denote the sample means
.and variances by z, 7, 5., and s,2. Then

OF_g

u
n, n,

will possess the required properties of u in Theorem 3. Furthermore

9
ot = NS + n,s,?
02

with » = n, + n, — 2 degrees of freedom, is easily seen to possess the
properties of v* in Theorem 3. This follows from Theorems 1 and 2
because

2
MaSe  and

a® o
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possess independent »? distributions with n, — 1 and n, — 1 degrees of
freedom, respectively. Consequently

(16) t = (ﬁ - -17) - (‘ux — Au"y) nwny(nm + n, — 2) ,
Vngs2 + n,s,’ ne + n,

v=n,4+n,—2

will have Student’s ¢ distribution with n, + n, — 2 degrees of freedom.
Then, to test the hypothesis that u, = u,, it is merely necessary to calculate
the value of 7 and use Table IV to see whether the sample vaiue of ¢
numerically exceeds the critical value. :

It will be noted that the value of 7 does not depend on any population
parameters as in the large sample method explained in 6.7.1. It will also
be noted, however, that the 7 test is less general than the large sample
method because here it is necessary to assume equality of the variances,
which was not true for the large sample approach. .

Formula (16) may also be used to detérmine confidence limits for
My — . 1fit has been shown that the hypothesis u, = u, is not af‘reason-
able one, it may be of interest to know how large or how small a difference
is reasonable. For a given probability, confidence limits for s, — ty
will give the desired answer. »

As a numerical illustration, consider the data of Table 2 on the yield
of corn in bushels per plot on 20 experimental plots of ground, half of
which were treated with phosphorus as a fertilizer. ‘

TABLE 2

Treated 62 57 65 6 63 58 57 6 6 5.8

Untreated | 5.6 59 56 57 58 57 6 535 sy sy

The problem is to decide whether the addition of ph'osphmﬁm will
improve the yield of corn. It may be treated as a problem of testing the
hypothesis ‘

H():rum = Hy
against the alternative
Hl:#a: > Hy

where z and y denote the yield on a treated and untreated plot, respec-
tively. It will be assumed that all the plots were treated alike, except for
the addition of phosphorus to half of them selected at random, and that
the yield of corn on a plot may be treated as a normal variable. It will
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also be assumed that o, = ¢,. These assumptions are sufficient to permit
formula (16) to be applied to this problem. Calculations here give

T=6, nys’=.64
g=57ns}2=.24
When (16) is applied,

t = _,;3____.N/100(18)== 3.03, »=18
.64 + 24 20

From Table IV the .005 critical value of ¢ is ¢ = 2.878, using only the
right tail because of H,; consequently, this result is certainly significant,
and the hypothesis of no increase in mean yield will be discarded.

If the assumptions of normality and equality of variances are reason-
able so that the experimenter can justifiably claim that this significant
difference is caused by a real difference in the population means, he will
undoubtedly want confidence limits for u, — . The same calculations
as before give

t='3_(‘u’m_/’%)
0989

Then, 95 per cent confidence limits are given by

.0989 '
which reduces to
092 < p, — p, <508

From this result it is clear that for a sample as small as 10 one cannot
promise with any great degree of certainty more than about .092 unit
increase in yield, which is only about a 2 per cent increase in the mean
yield of 7 = 5.7 because of the addition of this amount of phosphorus.

The preceding methods are valid only under the assumption that
6, = 0,. If 6, # o, but the values of ¢, and o, are known, one can test
the hypothesis y, = 4, by means of the standard normal variable

. ___(j - ?7) _ (‘u'w _ M'y)
o
=(E_g)'—(ﬂ‘m_”y)

2 2
9o 4 %

n, n,

The values of the two variances are seldom known; therefore it is usually




SMALL SAMPLE DISTRIBUTIONS ' 279

necessary to replace them by their sample estimates, just as was done for
the large-sample method in 6.7. The difficulty here is that only small
samples are assumed to be available. .

If 0,2 and o2 are replaced by their unbiased sample estimates, -

6_2

Ny 2 Ny
S (5 — #) S - ?
2= i=1 and 5'y2 -— 11 N

n, —1 n, —1

the resulting variable

(17) t=(f-— :‘7) "'(ru'w"':u'w)

A D A9
J&+&
n, n

12

can be shown to possess an approximate Student ¢ distribution. This is

not surprising in view of the fact that Student’s ¢ is obtained by replacing

the unknown variance by its unbiased sample estimate in the correspond-

ing expression for a single variable. The number of degrees of freedom

necessary to make (17) an approximate ¢ variable is given by a rather

elaborate formula, namely, ‘
(2]

L M
22 + 20
ng)  \ny

n,+1 n,+1

Although » is not likely to be an integer, it usually suffices to choose the
nearest integer value in looking up critical values of z. .

The foregoing problem is known as the Behrens-Fisher problem.
There has been much controversy over how it should be solved, and the
approximate solution here is but one version. .

11.5.3 Confidence Limits for a Regression Coefficient

The problem to be considered in this section is that of determining
whether the difference between the slopes of a sample and a theoretical
regression line might reasonably be caused by sampling variation. Let
X and Y denote the two variables, and let X;and Y;(i=1,2,---,n)
denote their sample values for a random sample of size 7. The corre-
sponding small letter is used to represent the variable measured from its
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mean. With this notation, the equation of the least-squares, or maximum
likelihood, regression line as given by (7), Chapter 7, is y' = b, where

2 &Y
h=1-

n
Z z?
1

The assumptions made in 8.4 are made here also. They consist in
assuming that repeated samples of size n are selected in such a manner
that the same set of X values as the original set is obtained each time and
that the ¥, are independently normally distributed about a true regression
line whose equation may be written in the form

Y =a+ fz

with the same variance o2, for all ¥,. Since the same set of X’s, hence the
same set of «’s, is obtained in each sample of #, the #’s may be treated
as constants with respect to the sampling. The value of Y, corresponding
to X,, however, varies with each sample of n in the manner just described.
Although the X’s and Y’s were assumed to be chosen at random, the X’s
need not be so chosen. In practice, one usually chooses them in advance
to cover adequately the range of X of interest and then selects the ¥’s
corresponding to these values of X in a random manner. This is discussed
more fully in 8.4,
For simplicity of notation let

(18) W= =
> xf
i=1

Then

b= 23 wY,
t=1

Since the », may be treated as constants with respect to the sampling,
the w; may also be so treated; hence b may be treated as a random
variable that is a linear function of the random variables Yy, Y5, -+ -, Y.
Now the solution of problem 38 of Chapter 6 shows that a linear combina-
tion of independent normal variables is also a normal variable; hence b
is a normal variable. Since the mean and variance of b will be needed,
consider their evaluations next.
Using expected values,

E[b] = EDw,Y;] = zw‘z’E[ Y]
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But from the assumption that the means of the Y, lie on the true regres-
sion line,

E[Y)]= o+ fa,
Hence

E[b] = 3wy + fr,) = a>w; + B wi;
Since Ta; = 0 because #; = X; — X, it follows from (18) that

ElbY = 3w, =

This shows that the mean value of the slope of the sample regression line
is equal to the slope of the population regression line, or in the language
of Chapter 9, that b is an unbiased esimator of . :

Since the Y; are statistically independent and have the same variances,
it follows from formula (21), Chapter 9, that

6, = dwloy? = 023 w2

0.2

2t

From the preceding results, it follows that the variable
_b=B_b-

S
! 5, o \/zx’

possesses the properties of the variable u in Theorem 3. In order to be
able to apply Theorem 3 to this problem, it is necessary to find an inde-
pendent y? variable to serve as v2. In the preceding applications of this
theorem such a variable was obtained by recognizing that ns%/o? possesses
a x* distribution. Since o for this problem is the variance of the devia-
tions of the ¥, from the true regression line, the quantity to use in place
of ns?, the sample estimate of no?, is 2(Y, — Y/)%. With this choice, one
would expect the variable

Substituting (18),

0% =

. 2 G-y
=

o?

to possess a x* distribution. It can be shown with considerable difficulty
that v® does possess a 2 distribution, but with n — 2, notn — 1, degrees
of freedom, and that « and ? are independently distributed. These facts
are assumed here. A direct application of Theorem 3 to the preceding
# and v variables will then show that

(19) (=) "E?;z_(_"’y'); D mn o2
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possesses a Student’s ¢ distribution with n — 2 degrees of freedom. By
means of (19) one can test hypothetical values of regression slopes and
find confidence limits for them.

As an illustration of how (19) is applied, consider the data of Table 3
on the relationship between the thickness of coatings of galvanized zinc
as measured by a standard stripping method ¥ and a magnetic method X.

If the magnetic method were reliable for measuring the thickness of
such coatings, it would be preferred to the standard stripping method
because it does not destroy the sample being measured and the standard

TARLE 3

vy | 116 132 104 139 114 129 720 174 312 338 465

X | 105 120 85 121 115 127 630 155 250 310 443

method does. Now suppose that the magnetic method yields the same
mean thickness as the standard method for thicknesses in the normal
range. Then the true regression line of ¥ on X will be the line ¥ = X.
Thus, under this assumption of the consistency of the two methods,
B = 1. If, contrary to the preceding supposition, the magnetic method
were biased in giving, say, too small a reading for thin coatings, then the
true regression line, provided that the regression curve is a straight line,
would have a slope greater than 1.

In view of the preceding discussion, consider the problem of testing
the consistency of the two methods for measuring the thicknesses of
coatings. The problem may be treated as a problem of testing the hy-

pothesis
Hy: =1

against the alternative hypothesis
Hy:f#1

If it is assumed that the necessary conditions for applying (19) are satis-
fied, then the data of Table 3 may be used to yield the information needed
in (19). It will be found that the equation of the least squares line fitted

to the data is
Y =112X — 1.79

It will also be found that
(X, — X)? = 301,826

and
Z(Yi — Y,/)? = 2766
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If these values are used in (19), then

1= 12200 g6,
: 2766

From Table IV in Appendix 2 the 5 per cent critical value of ¢ is 2.26;
consequently this value is significant. It appears that there is a slight bias
in the magnetic method of the type suggested earlier.

In the preceding problem interest was centered exclusively on the con-
sistency of the two methods. No attempt was made to consider the
precision of the magnetic method as a substitute for the standard method.
This problem can be solved by studying the variance of the errors of
estimation. If the magnetic method were sufficiently precise to justify
its use, then the preceding discussion and test would suggest that a larger
sample be taken to obtain an accurate estimate of § so that the bias
could be estimated accurately and a correction made for it.

The preceding method for finding confidence limits for the slope of a
regression line can be generalized to find confidence limits for the regres-
sion coefficients in multiple and curvilinear regression. It can also be
adapted to finding confidence limits for the ordinate of a regression
curve corresponding to any fixed value of . All of these problems give
rise to the ¢ distribution. References for these applications are given at
the end of the chapter. .

Thus far, Student’s # distribution has been justified only on the grounds
that it eliminates an inaccuracy of certain large sample methods. It is
conceivable that there are other tests which overcome this inaccuracy
and which at the same time are better tests than the ¢ test in the sense of
Chapter 9. It can be shown, however, that the tests using the ¢ distribu-
tion that have been considered possess optimum properties from this
point of view,

11.6 The F Distribution

It will be recalled that it was necessary to assume that ¢, = o, in order
to apply the 7 distribution to testing the difference between two means.
In order to check on this assumption, it is necessary to derive a frequency
function that can be used for testing the equality of two variances.” It will
be found that such a frequency function has many other uses as well.

Let u and v possess independent y2 distributions with », and v, degrees
of freedom, respectively. Then consider the problem of finding the
frequency function of the variable

(20) F = ulvy
vfv,
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Formula (3) can be used to solve this problem in much the same manner
as it was used to find the frequency function of Student’s ¢ variable. Since
u possesses a x2 distribution with », degrees of freedom, the distribution
of the numerator variable u/»; in (20) can be found by using the change
of variable technique given in (42), Chapter 5. For this purpose let
x =u and y = ufv,; then the change of variable is given by y = xfvy,
and formula (42), Chapter 5, gives

" 31 .
gy =f@m = —7= 2" e’
2 A
2 F(z)
1—‘1—1 —%yvl

= ay? e
where the constant a is given by

a=v}2 I‘—2-

The denominator variable v/v, in (20) will possess a corresponding fre-
quency function with a constant b that is obtained from the constant a
by replacing v, by v,.

Formula (3) may now be applied, provided z is replaced by F, to give

© oy 1 n_y g
q(F)=f z-be? e 2 '-a@F? e ? ‘do
0

”1 w 1 z
——1 S +re—2) —s(vg+n F)
= abF? f x* e ? dx

0
Let w = x(v, + »,F)/2; then dov = 2dw/(v, + »F) and

1
7y ~1 3(‘”1 +¢,2)

abF?% "2 o %(vl—Hz) -1
—_—T w
(1 +7y)

0

qg(F) = e %dw

(vy + nF)?
It will be observed that the value of this integral is I'[(v; + #,)/2]; con-
sequently ¢(F) reduces to

a_y
2
gF)=rc Co—
(vg + v, F)
where :
%‘1121’1’2”—; F(V———l + ’l)z)
2
(21) c =

B

This derivation proves the following theorem.
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THEOREM 4: If u and v possess independent y* distributions with v and
vy degrees of freedom, respectively, then >

Fe /vy

vfv,
has the F distribution with 1 and v, degrees of freedom given by )
Loy—2)

JF) = cF?
where ¢ is given by (21).

1
=5(vy +75)
(vg + nF) * '

11.7 Applications of the F Distribution

Since the F distribution was derived partly in order to justify the
assumption of the equality of variances which is needed in the ¢ test
when that test is applied to testing the difference between two_means,
consider the problem of testing the hypothesis :

Hy:0, = 0,
against the alternative
Hi:o, # 0,

under the assumption that 2 and y are normally distributed.

Let s5,* and 5,2 be sample variances based on random samples of
sizes n, and n,, respectively, from these two populations. Then, since
n,8,%0,? and nys,2/0,2 possess independent y? distributions, '

41 B (nw - 1)0'032
and

v n,s,?

—_ vy

vy (n, — o2

will satisfy the requirements for u/v; and vfv, in Theorem 4. Under
the hypothesis H,, o, = o,; therefore, by Theorem 4,

F = nwsmzll(na: - 1) )
nysf/(ny — 1)

|
<%

&8
[

by
0
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will possess the F distribution with #, — 1 and n, — 1 degrees of freedom.
Here 4,2 and 4,2 denote the unbiased estimates of 2 and ¢,2. This nota-
tion is introduced to point out the fact that the value of F to use in testing
0,2 = 0,2 is the ratio of the unbiased estimates of the two variances. This
test, like the 7 test, possesses the desirable feature of being independent of
population parameters.

As a numerical illustration, consider the problem that illustrated the
application of the ¢ distribution to the testing of the difference between
two normal means. From Table 2 and immediately following it,

2 nmswz —_ .071
Ry —

Qs
!

and

82 = = 027
n, — 1

Y
Therefore F = 2.63 with », = », = 9 degrees of freedom. It is necessary
to consult tables of critical values of the F distribution in order to decide
whether this value of F is unreasonably large or small. Such values are
to be found in Table V in Appendix 2.

Since the F distribution depends on the two parameters v and vy, a
three-way table would be needed to tabulate the values of F corresponding
to different probabilities and values of », and »,. As a consequence, only
the 5 and 1 per cent right-tail area points are tabulated corresponding
to various values of »; and »,. The technique in the use of Table V is
explained by means of the graph in Fig. 4, which illustrates the graph of
f(F) for a typical pair of values of », and 7, Let F; denote the value of
F for which P{F < F,} = .025. and F, the value for which P{F > F,} =
.025. If the sample value of F falls outside the interval (Fy, Fy), the
hypothesis of a common o® will be rejected. For convenience of notation,

R

; 777 : , F

F, 1 F
Fig. 4. A typical F distribution.
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let F'=1/F. Since F = 4,%/6,% with v and v, degrees of freeddﬁq, F’ =
6,%/6,* with v, and v, degrees of freedom. By means of the reciprocal
function F’, the probability of F < F, can be evaluated as follows:

11 1
025=PF<F}="Pl-> loplps L
F<h} {F>F1} { >F1}

This result shows that the left critical value of the F distribution corre-
sponds to the right critical value of the F’ distribution. As a result, it is
necessary to find only right critical values for F and F’ to determine
Fy and Fy. The reciprocal of the right critical value for F’ gives the left
critical value for F. Because of this property of F, only right critical
points for F are tabulated. Unfortunately, only the 5 and 1 per cent criti-
cal points have been tabulated in Table V; consequently, it is necessary
to interpolate between these two values in order to obtain an approximate
2% per cent critical point. ‘

In view of this reciprocal property, the procedure to be followed is
always to place the larger of the two unbiased variance estimates in the
numerator of F; consequently, 4,2 will always denote the larger of the
two estimates. If the hypothesis of a common o2 is rejected whenever
the sample value of this F exceeds its 2} per cent point, the hypothesis
will be rejected whenever the original F falls outside the interval (F,, Fy),
for, when F > 1, F, will serve as the critical value, and, when F < I,
F" will be used instead and F," will serve as the critical value. ‘But, as
demonstrated in the preceding paragraph, F,’ for F’ corresponds to F,
for F. i

If this procedure is applied to the numerical problem being discussed,
it will be found from Table V that the § per cent critical value is, by inter-
polation,

F, =45, Vy=v =9

The sample value of F = 2.63 is therefore not significant. This result
implies that the assumption of equal variances is a reasonable one and
that the significant value of ¢ obtained in connection with this problem
when testing the hypothesis u, = #, may not be reasonably attributed to
a lack of the assumption ¢, = o, being satisfied. This check on the
reasonableness of the assumption that ¢, = o, is usually carried out
whenever the ¢ test is used to test the difference between two means. It
does not follow, however, that if the hypothesis o, = ¢, is not substanti-
ated a significant value of 7 will be due to a lack of this assumption’s being
satisfied. ;

The preceding test is not a best test in the sense of Chapter 9, because
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it can be shown that there does not exist a best test for this problem;
however, it is known that this is a good test from the type II error point
of view.

Further applications of the F distribution are made in Chapter 12 on
what is known as analysis of variance techniques. Because of the import-
ance of such techniques in designing experiments, they have been incor-
porated in a separate chapter.

11.8 Distribution of the Range

In certain fields of applied statistics the amount of routine computa-
tion becomes burdensome unless methods are chosen that involve only a
small amount of it. In industrial quality-control work, for example, the
repeated computation of standard deviations as measures of the variability
of a product is undesirable. It is customary in such work to take the range
as the measure of variability. Not only is the range easy to compute, but
it is also simple to explain as a measure of variation to individuals without
a statistical background. For small samples from a normal population,
it can be shown that the range is nearly as efficient for estimating o as is
the sample standard deviation; consequently for small samples the range
is a highly useful statistic.

Consider a random sample, z,, #,’, - - -, #,/, drawn from the popula-
tion whose frequency function is f(x), which is assumed to be continuous.
Let these sample values be arranged in order of increasing magnitude and
denote the ordered set by zy, %, - -+, ¥,. Now, consider the problem
of finding the probability that the smallest value z, and the largest value
x, will fall within specified intervals. The frequency function of the range
can be found quite easily by means of this probability.

Let the z axis be divided into the five intervals (—oo, u), (¥, u + Au),
(u + Au,v), (v, v + Av), (v + Av, 0), where u < v are any two values
of . The probability that « will fall in any particular one of these inter-
vals is given by the integral of f(x) over that interval; hence the prob-
abilities corresponding to these five intervals can be written down even
though they cannot be evaluated unless the form of f(x) is known. In
this connection, let

u+Au v+ Ay
(22) p. =f f(x)dz, py= f(x)dz, py =f f(z) d=

u u+ Ay
and determine the probability that in a sample of » values of = one will
obtain no value in the first interval, 1 value in the second interval, n — 2
values in the third interval, 1 value in the fourth interval, and no value

4444
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in the fifth interval. This procedure is equivalent to finding the prob-
ability that the smallest value in the sample will fall between « and + Au,
whereas the largest value will fall between v and v + Av. The desired
probability can be obtained directly from the multinomial distribution
given by (39), Chapter 5, by treating « as a discrete variable which can
assume only one of five possible values corresponding to the five intervals.
If p, and p; denote the probabilities that « will fall in the first and fifth
intervals, respectively, the desired probability is given by

n!

)] 17!,—2-“1 0
0111 (n —2)l 1101 P P2Ps "Pabs

which reduces to

(23) n(n — 1)P2P4Pg*2

Expression (23) can be simplified somewhat by simplifying the integrals
of (22). Since f(z) is assumed to be a continuous function, the mean value
theorem for integrals may be applied here. This theorem states that if
Jf(2) is continuous on the interval (o, ), then

f @) de = (8 — ) £(%)

where X is some number in the interval (c, £). A direct application of
this theorem to (22) shows that ,

Pe=Au-flu+0,Au), 0<0, <1
and ‘
Pa=Av-flv+0,Av), 0<0,<1

The first of these two results when applied to Ps yields

Py = f " @) de = f ") de — f ) da

w+ Ay

- f " f(@) dz — Auf(u + 6, Au)

If these values for p,, p,, and p, are inserted in (23), it becomes
(24) n(n — Df(u + 0, Aw)f(v + 0, Av) ‘
x [ J £(2) do — Auf(u + 6, Au)]  AuAv

(2
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Xn

(u,v + Av) (u+ Au, v+ Av)

(u, v) (u + Au,v)

X1

Fig. 5. Sample space for smallest and largest values.

This expression is the probability that the smallest value of the sample
x, will liec between » and u + Au and at the same time that the largest
value of the sample z, will be between v and v + Av. Geometrically,
this expression gives the probability that the point (z,, ,,) will lie inside
the rectangle sketched in Fig. 5. In order to find the probability density
of the two variables @, and =, at the point (u, v), it is necessary to divide
the preceding probability by the area of the rectangle, namely Au Av,
and take the limit of the resulting quotient as Au and Av approach 0. If
this probability density is denoted by f(u, v), it follows from (24) that

v n—2
25) fGu,v) = n(n — 1)f<u)f(u)U @) dr]

‘Since f(u, v) is the probability density of the variables z, and =, at the
arbitrary point (u, v), (25) gives the desired joint frequency function of
the smallest and largest values of a sample of size n. These results may be
stated in the following theorem.

THEOREM 5: If u and v denote the smallest and largest values, respectively,
in a random sample of size n from the population with the continuous fre-
quency function f(x), then the joint distribution of u and v is given by

v n—2
fGu0) = ntn = D@ [ F@ o]
The frequency function for the range can be obtained very easily from

this result by means of formula (4). For this purpose it is necessary to
lety = v, * = u, and z = R. Then

¢(R) =ff(u, u + R)du
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where the range of integration is over possible values of u when R is fixed.
If the variable z ranges over the interval (g, b), the range of u with R
fixed will be from a to b — R. This upper limit arises from the fact that
the smallest measurement, », must be R units smaller than the largest
measurement, v, and v cannot exceed the upper limit b for . An expres-
sion for ¢(R) may now be obtained by inserting the value of f(u, v) given
in Theorem 5 and using the limits of integration that were just found.
The results of these operations are expressed in the form of a theorem.

THEOREM 6: If the continuous variable x has the frequency func?ifion S
and if « assumes values in the interval (a, b) only, then the Jrequency function
of the range q(R) for a random sample of size n is given by the Jormula

n—2

4(R) = n(n — 1) f " s+ B [ i) du

u

Unless the integral of f(«) is quite simple, this expression is likely to be
difficult to work with, even numerically. As an illustration of a simple

problem, consider the range for a sample of size n from the rectangular
distribution that is defined for 0 < = < 1 by f(z) = 1. Here

ut R ut R
f f(x) dz =f dr =R

3

Therefore, by Theorem 6,

1-R
q(R) = n(n — l)j R" ™% du
0

= n(n — HDR""*1 — R)

11.9 Applications of the Range

In the introduction to the last section it was remarked that the range
was useful as a substitute for the standard deviation as a measure of
variability in certain routine operations. It should therefore be of interest
to know what the relationship is between the range and the standard
deviation for, say, a normal distribution. This relationship may be found
by calculating the mean of R. Since

E(R) = f " Ra(R) dR

0
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it is clear from Theorem 6 that the evaluation of the desired relationship
will give rise to a complicated double integral. Unfortunately, when
f(x) is a normal frequency function, these integrations cannot be per-
formed directly for general n; therefore numerical methods of integration
are required. In spite of the complicated nature of the integral defining
E(R), it can be shown that E(R) is a constant, depending on n, times o.
Tables are available for the normal variable case that expresses E(R) =
y, in terms of g, for various values of n. Table 4 gives a few entries from
a table to indicate the nature of the relationship.

TABLE 4
n 2 3 4 5 10 50 100
d, = g— kI.IZS 1.693 2.059 2326 3.078 4.498 5.015

€

As an illustration of the use of such tables, consider once more the tech-
nique of constructing a quality-control chart for Z as givenin 6.6.1. There
a 30, band was constructed for controlling Z. If the range is taken

as the measure of variability, 30; = 36,/V n will be replaced by 3u R/dn\/ n,
where d, is the value obtained from the table, that is, the value of the ratio
10, corresponding to the given value of n. Now the value of uy can be
estimated by using the sample mean of the R values obtained for the
various samples of n each. For such charts n is usually chosen to be an
integer near 4 and a fairly large number of samples of this size is obtained
before the chart is drawn; consequently, up is usually estimated quite
accurately.

If » is chosen less than 10, the estimation of o, by means of the range
rather than the standard deviation of a sample is quite efficient. Investi-
gations have shown, for example, that the variance of the estimate of o,
based on the range of a sample of size 6 is only about 15 per cent larger than
the variance of the sample standard deviation for a sample of size 6. From
the point of view of Chapter 9, one can therefore conclude that the range
is nearly as good as the standard deviation as an estimator for o, for small
samples.
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EXERCISES

1. Given f(2) = e7=, z > 0, find, by moment generating function techniques,
the frequency function of z = 2nd. ;

2. Given that « is normally distributed and given the sample values & = 42,
§ =5, n = 20, () test the hypothesis that ¢ = 8, (b) find 98 per cent confidence
limits for o2, .

3. Work problem 2(b) for n = 40, using the normal approximation suggested
in Table IIT in Appendix 2.

4. A sample of size 8 from a normal population gave the values 9, 14, 10, 12,
7, 13, 11, 12. Find 90 per cent confidence limits for o.

5. Given the following sample values from a normal population, find 96 per
cent confidence limits for ¢® based on combining these sample values properly.
The sample variances are s,* =25, 5, = 36, 5,2 = 16, with n, =5, n, = 5,
ny = 10.

36. Given that » is normally distributed with mean z and variance c}:2, show
that the likelihood ratio test of the hypothesis H,:0* = 0,2 reduces to a z? test.

7. Find formulas for the mean and variance of a y* variable with » degrees of
freedom by integration.

8. Show that o.® = 20%/n, where 52 = Z2,%/n and z is normally distributed
with O mean and variance 6% Note that s* here is not the customary sample
variance because the true mean is known. Use the results of problem 7.

9. Find what value of & will make E(ks® — ¢®? a minimum, where 52 is
defined as in problem 8. What does this result imply about the unbiased estimate
s of 6% with respect to best estimates? Use the results of problem 7.

10. Determine what value of & will minimize E[k%(z; — £)2 — P if @ is
normally distributed with mean # and variance o2, '

11. For the data of problem 2, () test the hypothesis Hy:u = 45 and (b) find
99 per cent confidence limits for .

12. Given & =20, s = 4, n = 10, with @ normally distributed, find 95 per
cent confidence limits for w. ‘

13. Compare the confidence limits obtained in problem 12 with those that
would have been obtained if s had been treated as the true value of ¢ and normal
curve methods of Chapter 6 had been employed. '

14. Work problem 4 for u rather than o.

15. Show that E[t] = 0 for Student’s 7 distribution. .

16. The following data give the corrosion effects in various soils for coated

i
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and uncoated steel pipe. Taking differences of pairs of values, test the hypothesis
that the mean of such differences is 0.

Uncoated | 42 37 61 74 55 57 44 55 37 70

Coated 39 43 43 52 52 59 40 45 47 62

Uncoated | 52 55 60 48 52 44 56 44 38 47

Coated 40 27 50 33 56 36 54 32 39 40

17. Given 2 random samples of sizes 10 and 12 from 2 normal populations
with &, = 20, 7, =24, 5; = 5, 5, = 6, (@) test the hypothesis Hyipy = pp and
(b) find 95 per cent confidence limits for p; — s, assuming that o7 = 0,.

18. Work problem 17(a) without assuming that ¢, = 0, and compare your
result with that for problem 17(a).

19. Treating the data of problem 16 as random sample values from 2 normal
populations rather than as paired values, test the hypothesis Hy:py = sty
Explain why it is probably incorrect to apply this test to this problem.

20. The following data give the gains of 20 rats, half of which received their
protein from raw peanuts and half of which received their protein from roasted
peanuts. Test to see whether roasting the peanuts had any effect on their protein
value.

Raw 61 60 S6 63 56 63 59 56 44 6l

Roasted | 55 54 47 59 51 61 5T 54 62 S8

21. In an industrial experiment a job was performed by 30 workmen according
to method I and by 40 workmen according to method II. The following data
give the results of the experiment. Determine by means of 95 per cent confidence
limits for s, — u, how much time on the average could be expected to be saved
by using method I.

Time 50 51 52 53 54 55 56 57 58 59 60

1 1 3 5 4 7 5 3 1 1 0 0

It o 1 2 5 8§ 9 6 3 3 1 2

22. In estimating the mean of a normal population by means of a confidence
interval, how large a sample is needed so that the length of a 95 per cent con-
fidence interval will be less than ¢f10 if ¢ is known.

23. Prove that the likclihood ratio test of the hypothesis # = for a normal
population of unknown variance o® is equivalent to Student’s 7 test for this
hypothesis.
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24. Prove that the frequency function of the variable tapproaches the f":requency
function of the standard normal variable as the number of degrees of freedom
» becomes infinite. Assume that the constant approaches 1/V 27, )

25. Find a likelihood ratio test for testing the hypothesis H,:u, = 1y for two
normal populations with a common variance 2. Assume equal size samples are
taken from the two populations. R

26. For the data of problem 9, Chapter 7, find 95 per cent confidence limits
for the slope 4 of the theoretical regression line. ;

27. Samples of sizes 10 and 20 taken from two normal populations gave s, =
12 and s, = 18. Test the hypothesis Hy:0, = o0, o

28. The following table gives data on the hardness of wood stored outside
and inside. Test to see whether the variability of hardness is affected by weather-

ing. .
Outside Inside

Sample size 40 100

Mean 117 132

Sum of squares
about the mean 8,655 27,244

29. If one desires to have « = .05 and # = .05 in testing the equality of 2
normal variances when actually one variance is twice the other, how large an
equal size sample from each population should be taken if the right tail of
the F distribution is chosen as the critical region ?

30. Verify the .05 value of Ffor v, =2 and v, =2 by direct integration of the
frequency function of F. ;

31. Derive a formula for obtaining confidence limits for o1%/0?, where o, and
oy® are the variances of 2 normal populations, if samples of sizes n; and n,,
respectively, are taken from those populations. :

32. Find 90 per cent confidence limits for 0,/0, if 20 samples are taken from
each of 2 normal populations and if s,/s, = 3. ;

33. The time @ between recordings of certain types of radiation activity is
known to have the frequency function f(x) = ae=%, 2 > 0. How would you
proceed to construct a test of the hypothesis that the values of a for two different
experiments are the same ? .

34. Prove that the variable /2 with » degrees of freedom is a special case of
the variable F with »; = 1 and », = ». .

35. Given samples of sizes 7, and n,, respectively, from 2 normal populations
with zero means and variances ¢,2 and 0,2, construct a likelihood ratio test for
testing Hy:0,® = 0,2 and show that it is equivalent to an F test for this pfoblem.

36. Show that E[F] = v,/(v, — 2) for the F distribution. _

3. U f(z,y) = e @) 2 >0,y >0, find the frequency function of (@) z =
@ +y, (b) 2 = e~ Sketch the sample space to obtain the proper limits of
integration. )
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38. Givenf(z,y) =2(1 + = + )3, > 0,y > 0, find the frequency function
ofz =z + y.

39. Prove that if « and y are independent standard normal variables, then
z = y/x has a Cauchy distribution.

40. If f(x, ) =1, 0 L2 <1, 0Ky <1, find the frequency function of
(@ z=22 (b) 2 =2 +y, (c) 2 =y/x. Sketch the sample space to obtain the
proper limits of integration.

41. If z and y are independent standard normal variables, derive the frequency

function of z = V#? + y% The variable z represents a radial error in gunnery
problems in which @ and y represent independent coordinate axes errors with
equal variability.

42. Find boundaries for a quality-control chart for controlling variability if
samples of size 5 are taken every hour and if it is known from past experience
that o = 10. Use boundaries that will include 98 per cent of the sample values

5
of the variable > (z; — @)

1

43. Find the frequency function of R if « has the frequency function f(2) =
e x>0,

44. Find the probability that in a sample of size 10 from the horizontal
distribution f(z) = 1,0 <« < 1, the range will exceed .8.

45. Determine how large a random sample must be taken from the horizontal
distribution f(z) =1, 0 <2 L1 in order that the probability will exceed .95
that the range will exceed .90.

46. Suppose that samples of size 4 are taken from the distribution f(z) = ¢,
# > 0. (@) Calculate the mean value of R. (b) Calculate o and then compare the
ratio E(x)/o with that given by Table 4 for a normal variable. (c) Determine
limits R, and R, for R such that P{R < R;} = .025 and P{R > R,} = .025.

47. For a control chart for the sample mean of a normal variable with p = 40,
based on'samples of size 5, find control boundaries in terms of the range.

48. For problem 33, Chapter 6, find control boundaries in terms of the mean
of the sample ranges.

49, The random samples @y, Ty, * Ty and Yy, Ya, * * 5 Yn, ATC taken from
two standard normal populations. Find the frequency function of the variable 2

ny ny Ny
where z = z .Lf/ (z 2 + z 'yf) .
1 T 1

50. For a fixed value of «, find the distribution of the random variable Y, =
4§ + b(x — %) in 11.5.3.

51. Use the results in problem 50 to construct a Student ¢ variable for Y’
by means of which one can obtain confidence limits for E[Y,’]. Assume inde-
pendence of certain variables if necessary.

52. Use the general method for finding the distribution function of a function
of random variables to obtain a formula for the frequency function of z =
#*/(2* + y?), given that = and y are independent continuous variables with the
same frequency function f'and can assume any real value.




CHAPTER 12

Statistical Design in Experiments

It is a common occurrence for experimenters who are unacquainted
with statistical principles to seek statistical assistance when their experi-
ments fail to produce the results anticipated by them. In some experi-
ments the data were obtained in such a manner as to exclude any valid
conclusions of the type desired; in others, there is little that can be done
to extract further information from the data because the experiment was
not designed with a statistical analysis in mind. Only rarely are the
experiments that give valid conclusions as sensitive as they would have
been if a standard statistical design had been employed. Too many
experimenters do not seem to appreciate the obvious injunction that the
time to design an experiment is before the experiment is begun.

In this chapter, after a brief discussion of a few of the general principles
involved in the design of experiments, some of the common techniques
used in the design and analysis of experiments will be studied.

12.1 Randomization, Replication, and Sensitivity

In most experiments there are several variables in addition to the one or
more being investigated that need to be controlled if the experiment is to
give valid conclusions. In some cases these interfering variables can be
controlled by laboratory techniques; in others such control may be pos-
sible only by statistical design. As a simple illustration, consider an
agricultural experiment in which two different seed varieties are to be
tested on a piece of land. If the piece of land were divided into two equal
pieces and one variety planted on each, the difference in yields could not
be used as a valid estimate of the differential effect of the two seed varieties
because of the possible difference in the soil fertility of the two piéces.

Experiments can often be made valid by applying the principles of
randomization and replication. Thus, in the present illustration, if the
piece of land were divided into a number of small plots of equal size and
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if one variety of seed were planted on half of these plots and the other
variety on the remaining half, with the selection of the plots for each
variety determined by a random process, then the varying fertility of
the land would affect the two varieties approximately equally and there-
fore the difference in varietal yields would represent a valid estimate
of the differential effects of the two seed varieties.

Randomization by itself is not necessarily sufficient to yield a valid
experiment. For example, if one merely tossed a coin to determine which
half of the original piece of land should be planted with one of the seed
varieties, the selection would be random but it would not permit the two
seed varieties to be equally affected by any varying soil fertility. If the
two seed varieties were equally productive but the two halves of land
were markedly different in fertility, then regardless of the seed variety
selected for each half the conclusion would invariably be that the seed
varieties differed in productivity. In order to insure validity, it would
be necessary that the piece of land be divided into a sufficiently large num-
ber of similar plots so that the probability of having one of the seed
varieties largely located on the more fertile plots would be very small.
This repetition of an experiment or experimental unit is called replication.
Thus, to insure validity in an experiment, randomization should be
accompanied by sufficient replication.

Not only are randomization and replication useful techniques for
assisting in the construction of valid experiments, but they are often
essential to certain classes of experiments whose conclusions depend on
the use of statistical techniques. Since the frequency functions of the
various statistics considered in the preceding chapters were derived on the
basis of random sampling, it follows that the methods employed in
the preceding chapters are applicable to such samples only; consequently,
any experiment whose conclusions depend on these methods requires
randomization. Replication is also necessary for the application of any
method that obtains its measure of variability directly from the data
because at least two observations are needed to measure variation. For
example, the illustrative experiment just discussed requires randomiza-
tion and replication if the difference between mean yields is to be tested
by means of Student’s ¢ distribution because the # distribution is based on
random sampling and because sample variances are needed to evaluate 7.

The requirement of random samples for the applicability of most
statistical methods is not always easy to satisfy. For example, if the
product of a machine is sampled every hour for several days, it may easily
happen that the product of the machine changes during the day because
of the operator’s working pattern and also from day to day because of
machine wear. For situations such as this, in which observations are
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ordered with respect to time, one of the methods for testing randomness,
such as the method of runs discussed in Chapter 13, should be applied
before methods based on random samples are used. )

In the preceding illustration the techniques of randomization and
replication removed much of the danger of obtaining biased results;
however, these techniques did not remove the effect of differences in soil
fertility on the variability of yields. If the variation in fertility is increased,
the variation in yield is thereby increased. As a consequence, if Student’s
¢ distribution for testing the difference between two means were applied, a
considerably larger sample might be needed to produce a significant
difference if large fertility differences existed between plots than if the
plots were of uniform fertility because of the larger estimate of variance
involved in the denominator of 7. Such an experiment could therefore
be made more sensitive by selecting plots of uniform fertility. Very often,
however, it is not feasible to control the fertility in this manner. Now,
by arranging the plots into small homogeneous groups and applying
statistical design, it is often possible to eliminate statistically the greater
share of the fertility variability effects in the ¢ test and thereby Iﬁake the
experiment more sensitive, i

12.2  Analysis of Variance

One of the most useful techniques for increasing the sensitivity of an
experiment is designing it in such a way that the total variation of the
variable being studied can be separated into components that are of
experimental interest or importance. Splitting up the total variation in
this manner enables the experimenter to utilize statistical methods to
eliminate the effects of certain interfering variables and thus to increase
the sensitivity of his experiment. The analysis of variance is a technique
for carrying out the analysis of an experiment designed from this point
of view. .

In designing an experiment, the experimenter usually has in mind the
testing of a hypothesis or the estimation of some parameters. Although
the analysis of variance technique enables the experimenter to design
sensitive experiments for either of these basic problems, the explanation
of the technique is made largely from the point of view of testing
hypotheses. ‘

As an illustration of the type of problem for which the analysis of
variance is useful, consider a gunnery experiment in which four different
brands of shells are to be tested to see whether they are equally satisfactory
in quality. The experiment consists of having six different marksthen fire
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an equal number of rounds with each brand of shells and recording the
scores made by each marksman for each of the brands. These scores
may be arranged in a rectangular array containing six rows and four
columns; however, for the purpose of considering other problems also,
let the scores be displayed in a rectangular array containing a rows and
b columns as shown in Table 1.

TaBLE 1
11 Zig 15 T1b 51
o1 ag Loj Xy | By
T T xz’j Ty a_:z
Ta1 %oz Laj Tap ia
Ty g Z.; Ey | &

The entries in the margins of the table represent the means of the cor-
responding rows and columns. The location of the dot in the index
shows whether the mean is a row mean or a column mean.

Two well-known mathematical models are available for application
to experiments of the type being discussed. One of them is called the
“linear hypothesis” model; the other is known as the “components of
variance” model. The essential difference between the two models lies
in the assumptions made concerning the population of experiments of
which the given experiment is considered to be a random sample. Thus
the x;; in Table 1 are treated as a set of ab random variables, for which
the observed values are the values resulting from a single random
experiment.

12.2.1 Linear Hypothesis Model

This model assumes that the random variable z,; has a mean u,; which
can be written in the form
(]) Au’z')'=ai+bj+c

where ¢ denotes the expected value of #, a; denotes the expected value of
z, — @, and b; denotes the expected value of Z; — . Since Z is the
sample mean of both z; and Z.,,

i(@. — % =0 and 21 (Z,—3®=0
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Upon taking the expected value of each of these sums, it therefore follows
that

[ b
2 2 a,=0 and > b,=0
=1 i1

Assumption (1) essentially states that the mean of the variable #,; is the
sum of a general mean ¢, a row effect g;, and a column effect b;. Thus,
in the gunnery experiment, if the ith marksman were a superior marks-
man, his mean score would be expected to exceed the mean score for all
six marksmen by a positive amount, a;, whereas if he were an inferior
marksman, @; would be negative. Similarly, b; is a number, positive or
negative, that measures the superiority or mferlorlty of brand j with
respect to the brands being tested. Assumption (1) is more restrictive
than might appear at first glance, because in many practical problems it is
unrealistic to assume that the two variables of classification have their
effects additive in this simple fashion. For example, if the rows of Table
1 corresponded to different amounts of a chemical compound added to
the soil, whereas the columns corresponded to different amounts of a
second chemical compound added, one would not expect the effects of
these compounds on crop productivity to operate mdependently in this
manner.

In addition to assumption (1), the linear hypothesis model éssumes
that the variables z;; are independently and normally dxstrlbuted with
the same variances o2.

Since the analysis of variance is being introduced as a techmque for
increasing the sensitivity of an experiment for testing hypotheses, consxdel
the problem of testing the hypothesis that the theoretical column means
of Table 1 are equal. . For the illustration of marksmen and shell brands,
this would mean testing the hypothesis that the four brands of shells are
equally good, that is, that b; = b, =--- = b,. This hypothesis is a
generalization of the hypothesis 4, = u, considered in Chapter 11. In
terms of the notation introduced in (1), it follows from (2) that ‘the hy-
pothesis can be written in the form :

(3) Hy:b,=0 (j=1,2,-+-,b)

Under the foregoing assumptions and notation, the analysis of variance
technique proceeds as follows. Write the total sum of squares of devia-
tions of the variables «,; from their sample mean Z in the following form:

a b
E Z (% — %)?
t=14=1

= EGJ E [(F — &) +(F;, — @) + (2, — T. — i_j‘ +

i=1 j=1




302 INTRODUCTION TO MATHEMATICAL STATISTICS

If the trinomial on the right is squared and summed term by term, it will
be found that the sums involving cross-product terms vanish, hence that

4 Zl 2_ (2, — @)° = il gl(.@.. — 72
+ 212 (-’13 —x)2+ zl 21(.11”—.’): — ., +CU)

As a partial verification of the fact that the cross-product terms do
vanish, consider the evaluation of the second cross-product term. It is
convenient to sum with respect to j first; thus

i él(@_ — By, — Ty — Ty + T)
= él(@ — ) él (@; — & — T, + @)
But, summing term by term, it is clear from Table 1 that
il(x“ — T, — %;+ ) = b%,. — bT, — bT+ bT =0
i=

Formula (4) shows that the total sum of squares can be broken down
into three components, the first component measuring the variation of
row means, the second component measuring the variation of column
means, and the third component measuring the variation in the variables
x,,; after the row and column effects have been eliminated.

The purpose of the breakdown in (4) was to separate the total variation
into components that are of experimental interest and that can be used
in a significance test using the F distribution of Chapter 11. It will turn
out that the F value to use involves the ratio of two of the three sums of
squares on the right side of (4). It is clear that the second sum of squares
on the right should be used in the test because it measures the variation of
column means and this variation is likely to be excessively large when H,
is not true as compared to its value when Hy is true. The last sum of squares
should also be selected because it measures the variation of the z;; after
the variation due to row differences and column differences has been
eliminated, and therefore it should prove useful as a basis for comparison
for the second sum of squares. This technique of finding a measure of
variation that has eliminated the effect of an interfering variable, such as
plot fertility, and using it as a basis for comparison with the variation of
experimental interest, is a technique that often increases the sensitivity
of the experiment remarkably. With the selection of these two sums of
squares, the problem of testing H, is reduced to the problem of deter-
mining how to apply the F distribution to these two sums of squares.
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Consider, therefore, the method of converting these sums of squares into
x* variables. 5

The variable Z., is a normal variable because it is a linear conibination

of the basic.variables z,; which are assumed to be normal. The mean of
Z.;, because of (1) and (2), is given by :

E(z,) = E(l s as”)

ai=1

1 i E(z;;)

ai=1
] a

==2 (a;+ b; + ¢
ai=1

=b,+¢

But when Hj is true, it follows from (3) that E(%,) = c. The variance of
Z.; may be found by realizing that %, is the mean of @ independent vari-
ables having the same variances ¢2. Thus the variance of T, is equal to
o®/a. The variables Z, are independent because the %, are independent;
therefore, these results show that the variables Z.; are independently and
normally distributed with the same means, ¢, and the same variances,
o*/a, when H, is true. By Theorem 1, Chapter 11, it therefore follows that

(5) b @L_ §)2= a Zb: (E-j — E)Z

=1 o%a i=1/=1  ¢° (
will possess a y2 distribution with  — 1 degrees of freedom. This proves
that the second sum of squares on the right of (4), when divided by o2,
possesses a 2 distribution with 5 — 1 degrees of freedom, provided that
H, is true. .

The demonstration that the last sum of squares of (4) can be converted
into a ? variable is considerably more difficult than that just given for
the second sum of squares. Because of the length and difficulty of the
demonstration, the desired result is accepted without proof. Thus it is
accepted that

@ b
(6) —15 2 2 (2 — T — 7, + 7)°
0% i=1j=1 H

possesses a x? distribution with (@ — 1)(b — 1) degrees of freedor. The
reason for this number of degrees of freedom is that in the derivation
showing that (6) has a »2 distribution it is shown that the degrees of free-
dom on the left of (4) equal the sum of the degrees of freedom on the right.
Since the left side of (4), when divided by 62, would possess a x? distribu-
tion with ab — 1 degrees of freedom if the ty Were equal and since the
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first sum on the right has a — 1 degrees of freedom, it follows by subtrac-
tion that the last sum on the right must have

ab—1—=[a—D+G—=Dl=@—-HG-1)
degrees of freedom.

Finally, in order to be able to apply Theorem 4, Chapter 11, to (5)
and (6), it is necessary to know that (5) and (6} are independently dis-
tributed. The demonstration of this fact is quite difficult; hence the
independence of (5) and (6) is also accepted without proof.

In view of the preceding discussion and Theorem 4, Chapter 11, if
(5) is divided by (b — 1) and (6) is divided by (a — 1) (b — 1), the ratio
of the resulting quantities will possess an F distribution. This result may
be summarized in the following manner.

(7) LiNear HypoTHESIS F TesT: If the variables x,; are independently and
normally distributed with means p; = a; + b; + ¢ and variances o2, the
hypothesis Hy:b; =0 (j= 1, -, b) may be tested by using the right tail
of the F distribution as critical region, where
a [4
(a—12 zl(f_j — )

F = i=1 =

(x; — & — &, + @)

MQ
MG"

i=14=1

and where vy = b — Land v, = (a — 1) (b — 1).

The right tail of the F distribution is selected as the critical region
because the numerator of F is likely to be excessively large when Hj is
false. With this choice of critical region, the F test is known to be very
good from the type II error point of view.

The equality of row means can be tested in a similar manner by using
the first sum of squares on the right of (4) in the numerator of F and
changing the degrees of freedom accordingly. Although the numerator
in (7) can be written as a single sum, it is written as a double sum to remind
one of the simple manner in which F can be written down. All that one
needs to do is to write out the fundamental identity (4), divide the sums of
squares by their degrees of freedom, and take the proper ratio of two such
quantities. The proper ratio depends on whether one is testing the equality
of column means or the equality of row means.

i
1

12.2.2 Application of the Linear Hypothesis Model

For the purpose of illustrating the use of (7), consider the data of Table
2 on the yield of potatoes. Four plots of land were divided into five
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subplots each. For each plot, the five treatments were assigned aﬁ random
to the five subplots. The problem here is to test whether the five treat-
ments are equally effective with respect to mean yield. ‘

TABLE 2

Treatment

A B C D E

1 310 | 353 | 366 | 299 | 367

2 284 | 293 | 335 | 264 | 314

Plot

3 307 | 306 | 339 | 311 | 377

4 267 | 308 | 312 | 266 | 342

The numerator sum of squares in (7) is readily computed directly
from the means of the columns and the grand mean; however, the de-
nominator sum of squares is most easily computed indirectly by comput-
ing the other sums of squares in (4) and then solving for this sum of
squares. Calculations here yield the values "

5

(#; — %)% = 3178
i=1
4
> (% — 7)* = 1286
i=1
4 5
z Z (;; — 7)% = 21,530

I
oy
<.

1]
-

4), it follows that

—

Therefore, by formula
241 25:1 (x; — T — &,; + 7)% = 2388
= 4T

As a result, the F value in (7) becomes

F 3-4(3178)
2388

From Table V in Appendix 2 it is clear that this result is significant;
therefore, the five treatments undoubtedly differ in their effect on yield.

Since the preceding computations give the necessary sums of squares
for testing the hypothesis that the row means are equal, that is, for testing
the hypothesis

=160, », =4, »,=12

Hya; =0, (i=1,-"-,4a)
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this hypothesis will also be tested. The value of F now becomes
rod 5(1286) _
2388

This result is also significant, which means that the four plots undoubtedly
differ in fertility.

The computational results for analysis of variance problems are usually

displayed in table form. Table 3 illustrates this type of summary for

the problem just discussed.

108, », =3, vy =12

TaBLE 3
Source of  Sum of Mean F
variation  squares  d.f. square Value
Columns 12,712 4 3178 16.0
Rows 6,430 3 2143 10.8
Remainder 2,388 12 199
Totals 21,530 19

The entries in the second column are the sums of squares in the funda-
mental identity (4). The third column lists the corresponding degrees
of freedom, and the fourth column gives each sum of squares divided by
its degrees of freedom. These entries are the y* values needed for the F
ratios, which are displayed in the last column.

In order to observe the increased sensitivity obtained by eliminating
the variation due to differences in plot fertility when testing the hypoth-
esis that the treatment means are equal, consider how the hypothesis
would have been tested if the row classification were not available. This
would be the situation, for example, if the five treatments had been
assigned to the 20 subplots at random.

The fundamental identity (4) now reduces to

S S (o —P=3 3 (@, -+ 3 (- E

i=13i=1 i=14=1 i=17=1
It is easy to show that the second sum on the right, when divided by a2,
has a »? distribution with h(a — 1) degrees of freedom. Then accepting
the fact that this y2 variable and the y? variable given by (5) are independ-
ently distributed, it follows that the F distribution may be applied to

give

[

ba—1)3 3 (2, — 7
8) F= =1 /=1 S ow=b—1, vy=ba—1)

a b

(b—1) 2 Zl (2 — -%-1)2

i=14=
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The earlier calculations for Table 2 may be used to give the necessary
values here. It will be found that

_5-3(12,712)
4(8,818)

The 5 per cent and 1 per cent critical values are 3.06 and 4.89; hence
this F value is still significant at the 1 per cent significance level but only
barely so. A comparison of this result with the earlier result in which
= 16.0 shows that the segregation of plot differences in (4) gav‘é rise to
a much more sensitive experiment than that obtained by lgnormg them.
The preceding illustration may give one the impression that the experi-
menter can choose either one of the two F tests applied there to determine
whether a set of column means is equal. This is not strictly true, however,
because the two models differ somewhat. The earlier problem concern-

=54, py=4, v,=15

ing men and machines is a good one to illustrate the difference. The test

based on (7) assumes that six men are selected and each performs four
experiments, one with each brand of shells. The test based on (8) assumes
that 24 men are selected and each performs one experiment with the
brand of shells assigned him. In the first model the six men could have
been selected at random, or otherwise, from a population of workers;
however, it is assumed that in repetitions of the experiment the same six
men are used. In the second model it is assumed that a fresh set of 24
men is selected at random from a population of workers every time the
experiment is performed.

12.2.3 Components of Variance Model

This model makes a linearity assumption about the basic variable
z,; rather than about its mean, p,;, as was done in the linear hypothesw
model. In place of assumption (1), it is assumed that x,; can be expressed
in the form

)] Ty = u; + v; + owy

where the u;, v;, and w;; are independent normal variables. The u, are
assumed to possess the same normal distribution with mean u, and
variance ¢,?, the v, are assumed to possess the same normal dzstnbutxon
with mean u, and variance ¢,%, and the w,; are assumed to pOSSess the
same normal distribution with mean u, and variance o2, From these
assumptions, it follows that ‘

E(x;) = p, + 1, + 4,




308 INTRODUCTION TO MATHEMATICAL STATISTICS

and
2 . g2 2 2
O-a:ﬁ = 0, + %y + O

These results, together with (9), show that the variables x,; are normally,
but not independently, distributed with the same means and variances.
The lack of independence is obvious if one compares, say, the variables
®p = uy + vy + wyy and xy, = u; + v, + wy,. Since 2; and x;, contain
the common variable u,, with the remaining variables on the right being
independent, they must be correlated.

In the linear hypothesis model considered earlier, the variables z;;
were assumed to be normally, and independently, distributed wit<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>