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Preface 

We believe that the group-theoretic approach to spectral techniques and, in particu- 
lar, Fourier analysis, has many advantages, for instance, the possibility for a unified 
treatment of various seemingly unrelated classes of signals. This approach allows 
to extend the powerful methods of classical Fourier analysis to signals that are de- 
fined on very different algebraic structures that reflect the properties of the modelled 
phenomenon. 

Spectral methods that are based on finite Abelian groups play a very important 
role in many applications in signal processing and logic design. In recent years the 
interest in developing methods that are based on Finite non-Abelian groups has been 
steadily growing, and already, there are many examples of cases where the spectral 
methods based only on Abelian groups do not provide the best performance. 

This monograph reviews research by the authors in the area of abstract harmonic 
analysis on finite non-Abelian groups. Many of the results discussed have already 
appeared in somewhat different forms in journals and conference proceedings. 

We have aimed for presenting the results here in  a consistent and self-contained 
way, with a uniform notation and avoiding repetition of well-known results from 
abstract harmonic analysis, except when needed for derivation, discussion and ap- 
preciation of the results. However, the results are accompanied, where necessary or 
appropriate, with a short discussion including comments concerning their relationship 
to the existing results in the area. 

The purpose of this monograph is to provide a basis for further study in abstract 
harmonic analysis on finite Abelian and non-Abelian groups and its applications. 

V 
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Fig. 0.7 Relationships among the chapters. 

The monograph will hopefully stimulate new research that results in new methods 
and techniques to process signals modelled by functions on finite non-Abelian groups. 

Fig. 0.1 shows relationships among the chapters. 

RADOMIR S. STANKOVIC, CLAUDIO MORAGA, JAAKKO T. ASTOLA 

NiS Dorrrniind. Tirrrpere 



Acknowledgments 

Prof. Mark G. Karpovsky and Prof. Lazar A. Trachtenberg have traced in a series 
of publications chief directions in research in Fourier analysis on finite non-Abelian 
groups. We are following these directions in our research in the area, in particular in 
extending the theory of Gibbs differentiation to non-Abelian structures. For that, we 
are very indebted to them both. 

The first author is very grateful to Prof. Paul L. Butzer, Dr. J. Edmund Gibbs, and 
Prof. Tsutomu Sasao for continuous support in studying and research work. 

The authors thank Dragan JankoviC of Faculty of Electronics, University of NiS, 
Serbia, for programming and performing the experiments partially reported in  this 
monograph. 

A part of the work towards this monograph was done during the stay of R. S. 
StankoviC at the Tampere International Center for Signal Processing (TICSP). The 
support and facilities provided by TICSP are gratefully acknowledged. 

R.S.S.,C.M, J.T.A. 

Vii  



This Page Intentionally Left Blank



Con tents 

Preface V 

Acknowledgments vii 

A crony ms xxiii 

I Signals and Their Mathematical Models 
1.1 Systems 
1.2 Signals 
1.3 Mathematical Models of Signals 

References 

2 Fourier Analysis 
2. I Representations of Groups 

2.2 
2.3 
2.4 

2.5 

2.1. I Complete reducibility 
Fourier Transform on Finite Groups 
Properties of the Fourier transform 
Matrix interpretation of the Fourier transform on 
jinite non-Abelian groups 
Fast Fourier transform on jinite non-Abelian groups 
References 

1 1  
12 
13 
18 
23 

26 
28 
35 

ix 



x CONTENTS 

3 Matrix Interpretation of the FFT 
3. I 

3.2 Illustrative examples 
3.3 Complexity of the FFT 

Matrix interpretation of FFT on jinite non-Abelian 
groups 

3.3. I 
3.3.2 

Complexity of calculations of the FFT 
Remarks on programming implementation of 
FFT 

3.4 FFT through decision diagrams 
3.4. I Decision diagrams 
3.4.2 
3.4.3 
3.4.4 
References 

FFT on Jinite non-Abelian groups through DDs 
MTDDs for the Fourier spectrum 
Complexity of DDs calculation methods 

4 Optimization of Decision Diagrams 
4. I 
4.2 Group-theoretic Interpretation of DD 
4.3 Fourier Decision Diagrams 

Reduction Possibilities in Decision Diagrams 

4.3. I Fourier decision trees 
4.3.2 Fourier decision diagrams 

4.4 Discussion of DiJjrerent Decompositions 
4.4. I 

4.5 Representation of Two-Variable Function Generator 
4.6 Representation of adders by Fourier DD 
4.7 Representation of multipliers by Fourier DD 
4.8 Complexity of FNADD 
4.9 Fourier DDs with Preprocessing 

Algorithm for optimization of DDs 

4.9. I Matrix-valued functions 
4.9.2 

4. I0 Fourier Decision Trees with Preprocessing 
4. I I Fourier Decision Diagrams with Preprocessing 
4.12 Construction of FNAPDD 
4.13 Algorithm for Construction of FNAPDD 

4.13. I Algorithm for representation 
4.14 Optimization of FNAPDD 

Fourier transform for matrix-valued functions 

37 

38 
41 
59 
62 

66 
66 
66 
68 
76 
76 
80 

85 
86 
93 
96 
96 

107 
108 
110 
I I0 
114 
117 
123 
129 
129 
130 
135 
136 
137 
151 
152 
153 

References 154 



CONTENTS X i  

5 Functional Expressions on Quaternion Groups 
5. I Fourier expressions on finite dyadic groups 

5. I .  I Finite dyadic groups 
5.2 Fourier Expressions on Q2 
5.3 Arithmetic Expressions 
5.4 
5.5 Arithmetic expressions on Qz  

Arithmetic expressions from Walsh expansions 

5.5. I Arithmetic expressions and arithmetic-Haar 
expressions 

5.5.2 Arithmetic-Haar expressions and Kronecker 
expressions 

5.6. I Fixed-polarity Fourier expansions in C(Q2) 
5.6.2 Fixed-polarity arithmetic-Haar expressions 
Calculation of the arithmetic-Haar coeficients 
5.7. I FFT-like algorithm 
5.7.2 Calculation of arithmetic-Haar coeflcients 

References 

5.6 Diflerent Polarity Polynomial Expressions 

5.7 

through decision diagrams 

6 Gibbs Derivatives on Finite Groups 
6. I Definition and properties of Gibbs derivatives on 

finite non-Abelian groups 
6.2 Gibbs anti-derivative 
6.3 Partial Gibbs derivatives 
6.4 Gibbs diflerential equations 
6.5 
6.6 

Matrix interpretation of Gibbs derivatives 
Fast algorithms for calculation of Gibbs derivatives 
on finite groups 
6.6. I Complexity of Calculation of Gibbs 

Derivatives 
Calculation of Gibbs derivatives through DDs 
6.7. I Calculation of partial Gibbs derivatives 
References 

6.7 

7 Linear Systems on Finite Non-Abelian Groups 
7. I 
7.2 

Linear shift-invariant systems on groups 
Linear shift-invariant systems on Jinite non-Abelian 
groups 

157 
158 
158 
158 
160 
161 
163 

166 

166 
167 
168 
169 
I 72 
I 72 

I 74 
180 

183 

I 84 
186 
187 
189 
190 

192 

I 98 
201 
203 
207 

21 1 
211 

213 



xii CONTENTS 

7.3 Gibbs derivatives and linear systems 
7.3. I Discussion 
References 

8 Hilbert Transform on Finite Groups 
8.1 

8.2 
8.3 

Some results of Fourier analysis onJinite nun-Abelian 
groups 
Hilbert transform on jnite nun-Abelian groups 
Hilbert transform in jnite Jields 
References 

214 
215 
21 7 

22 1 

223 
227 
23 I 
234 

Index 235 



0. I 

2. I 

2.2 

2.3 

3. I 

3.2 

3.3 

3.4 

3.5 

3.6 

3.7 

3.8 

3.9 

List of Figures 

Relationships among the chapters. 

FFT on the quaternion group Q2. 

Flow-graph for FFT algorithm for the inverse Fourier 
transform on Q8. 

FFT on the dyadic group of order 8. 

Structure of the flow-graph of the FFT on the group G2x8. 

Structure of the flow-graph for FFT on the group GS2. 

Structure of the flow-graph for FFT on the group G32 
through a part of fast Walsh transform. 

Structure of the flow-graph for FFT on the group G32 using 
FFT on Q2. 

Structure of the flow-graph for FFT on the group GGx6. 

Structure of the flow-graph for FFT on the group G 3 x ~ .  

Structure of the flow-graph for FFT on G24 

Structure of the flow-graph for FFT on S3. 

Structure of the flow-graph for FFT on G24 with FFT on S3. 

vi 

32 

33 

34 

46 

48 

49 

50 

53 

57 

58 

60 

61 

xiii 



xiv LIST OF FIGURES 

3. I0 

3.11 

3.12 

3.13 

3.14 

3.15 

3.16 

3.17 

3.18 

4. I 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

4.8 

4.9 

4.10 

4.11 

4.12 

4.13 

4.14 

4. I5 

Number of operations in FFT. 

Time requirements. 

Memory requirements. 

MTDD for f in Example 3.6. 

BDD for f in Example 3.7. 

MTBDD for the Walsh spectrum for f in Example 3.7. 

Calculation procedure for the Fourier transform. 

Calculation of the Fourier spectrum through MTDD. 

nvMTDD for the Fourier spectrum for f in Example 3.9. 

Shannon tree for n = 4. 

Subtrees in the Shannon tree for pairs of variables 

( a )  Subtree in the Shannon tree for a pair of variables 
(xz. I C ~ + ~ ) ,  ( b )  QDD non-terminal node. 

QDD for n = 4. 

Subtrees in the Shannon tree for xl ,  (x2, xg, xq). 

(u )  Subtree in the Shannon tree for ( ~ ~ - ~ , x ~ , x ~ + ~ ) ,  ( b )  
Non-terminal node with eight outgoing edges. 

Decision tree with nodes with two and eight outgoing edges. 

Subtree with the Shannon S2 and QDD non-terminal nodes. 

Decision tree for n = 4 with nodes with two and four 
outgoing edges. 

Decomposition of the domain group GIG = C;. 

Decomposition of the domain group G16 = Cz. 

Fourier decision diagram for f in Example 4.1. 

Complex-valued FNADD for Q2. 

Decision tree with the Shannon node S2 and FNADD 
nodes for Q2. 

One-level multi-terminal decision tree of f in Example 4.3 
on GG. 

(.1,x2), ( m 2 4 ) .  

63 

65 

65 

68 

69 

72 

73 

77 

78 

87 

88 

89 

89 

90 

90 

91 

91 

92 

93 

94 

100 

100 

/Of 

I03 



LIST OF FIGURES xv 

4.16 Two-level multi-terminal decision tree of f in Example 4.3 
on G6 = C2 x G3. 

4.17 Two-level Fourier decision tree of f in Example 4.3 on the 
Abelian group G6 = Cz x G3. 

4.18 One-level Fourier decision tree of f in Example 4.3 on 
non-Abelian group S3. 

4.19 Complex-valued Fourier DT on S3 with MTBDD for Sf(2). 

4.20 Complex-valued Fourier DT on S3 with Fourier DT for Sf(2). 

4.21 Decision tree on G36 = C2 x Cz x C3 x C3. 

4.22 Decision tree on (236 = C3 x C3 x C2 x C2. 

4.23 Complex-valued FNADT on G36 = C, x C3 x S3. 

4.24 Complex-valued FNADT on G36 = S3 x S3. 

4.25 Generalized BDD reduction rules. 

4.26 Arithmetic transform decision diagram for f in the 
Example 4.6. 

4.27 

4.28 

4.29 

4.30 

4.31 

4.32 

4.33 

4.34 

4.35 

4.36 

4.37 

4.38 

4.39 

4.40 

Two-variable function generator in Shannon notations. 

Two-variable function generator. 

ACDD representation of f ( z )  for TVFG. 

Matrix-valued FNADD representation of f ( z )  for TVFG. 

MTBDD representation of Sf(4) for TVFG. 

Complex-valued FNADD representation of f for TVFG. 

MTBDD representation of f for 2-bit adder. 

ACDD representation of f for 2-bit adder. 

Fourier DT of f for 2-bit adder. 

Matrix-valued FNADD of f for 2-bit adder. 

MTBDD representation of Sf(4) for 2-bit adder. 

Complex-valued FNADD of f for 2-bit adder. 

MTDD for the 3-bit multiplier on G64 = C, x C4 x C4. 

FNADD for the 3-bit multiplier on G64 = Qz x Q 2 .  

103 

I 03 

I 03 

104 

104 

105 

105 

106 

107 

108 

I l l  

112 

112 

113 

113 

115 

115 

116 

116 

118 

118 

119 

119 

12 1 

124 



xvi LIST OF FIGURES 

4.41 

4.42 

4.43 

4.44 

4.45 

4.46 

4.47 

4.48 

4.49 

4.50 

4.51 

4.52 

4.53 

4.54 

4.55 

4.56 

4.57 

5. I 

5.2 

5.3 

5.4 

5.5 

5.6 

6.1 

6.2 

BDD representation for XOr5. 

FNADD for XOr5. 

Matrix-valued FNAPDD for XOr5. 

FNAPDD for XOr5 with elements of mv nodes. 

Complex-valued FNAPDD for XOr5. 

BDD for f in Example 4.1 5. 

Matrix-valued FNADD for f in Example 4.15. 

Complex-valued FNADD for f in Example 4.1 5. 

Matrix-valued FNAPDD for f in Example 4.15. 

FNAPDD for f in Example 4.1 5 with elements of mv nodes. 

Complex-valued FNAPDD for f in Example 4.1 5. 

MTDD for f in Example 4.16 on G24 = C2 x C2 x C, x C,. 

MTDD for f in Example 4.16 on G24 = C4 x C6. 

mvFNAPDD for f in Example 4.1 6. 

FNAPDD for f in Example 4.1 6 with elements of mv nodes. 

ivFNAPDD for f in Example 4.1 6. 

Circuit realization of functions from FNAPDDs. 

FFT-like algorithms for n = 3. 

BDT for f in Example 5.1. 

BDD for F in Example 5.1. 

Calculation of arithmetic-Haar coefficients through BDT. 

Calculation of arithmetic-Haar coefficients for f in 
Example 5.2 through BDT. 

Calculation of arithmetic-Haar coefficients for f in 
Example 5.2 through BDD. 

a. The partial Gibbs derivative A: on Z9, b. The partial 
Gibbs derivative A: on Z,, C .  The Gibbs derivative D, on 2,. 

The flow-graph of the fast algorithm for calculation of the 
Gibbs derivative D, on 2,. 

138 

138 

139 

139 

140 

142 

142 

143 

143 

144 

144 

147 

147 

148 

148 

149 

151 

I 75 

I 76 

I 76 

I 78 

I 78 

179 

196 

197 



LIST OF FIGURES xvii 

6.3 The partial Gibbs derivative A:’ on G12. 200 

6.4 The partial Gibbs derivative A;’ on Glz. 200 

6.5 The Gibbs derivative DI2. 201 

202 

206 

6.6 

6.7 

The flow graph of the fast algorithm for calculation of the 
Gibbs derivative D12 on G12. 

Calculation of the partial Gibbs derivative with respect to 
x3 for f in Example 3.5. 

7. I Linear shift-invariant system. 212 

7.2 Classification of linear shift-invariant systems on groups. 213 



This Page Intentionally Left Blank



2. I 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8 

2.9 

2. I0 

3.1 

3.2 

3.3 

3.4 

List of Tables 

Group operation of S3. 21 

The unitary irreducible representations of S3 over C. 22 

The group characters of S3 over C. 22 

The set R k 3 ) ( x )  of S3 over C. 23 

Unitary irreducible representations of S3 over GF(11). 23 

The group characters of S, over GF(11). 24 

The set R $ ) ( x )  of S3 over GF(11). 24 

Group operation for the quaternion group Q2. 29 

Irreducible unitary representations of Q2 over C. 30 

The discrete Walsh functions wal(i, x). 33 

Summary of differences between the FFT on finite Abelian 
and finite non-Abelian groups. 42 

Group operation of G2x8. 44 

Unitary irreducible representations of GZx8 over C. 45 

The unitary irreducible representations of G6x6 over GF(11). 52 

xix 



xx CONTENTS 

3.5 

3.6 

3.7 Complexity of the FFT. 

3.8 Comparisons of domain groups. 

3.9 FFT for random functions. 

3.10 Comparison of the FFT for random functions. 

3.11 Sizes of MTDDs for f and nvMTDDs for Sf .  

4. I Truth-table for f in Example 4.1. 

4.2 Space-time complexity of DTs on GI6. 

4.3 Complexity of representation of TVFG in terms of the 
number of levels, non-terminal nodes (ntn), constant nodes 
(cn) and sizes. 

Complexities of representing the 2-bit adder in terms of 
levels, number of non-terminal nodes (ntn), constant nodes 
(cn), and sizes. 

Complexities of representing the 2-bit multiplier in terms of 
the number of levels, non-terminal nodes (ntn), constant 
nodes (cn) and sizes. 

Complexities of representing the 3-bit multiplier in terms of 
the number of levels, non-terminal nodes (ntn), maximum 
(max) and minimum (min) number of nodes per level, 
average number per level (av), constant nodes (cn), sizes 
(s), and maximum number of edges per level (e). 

4.7 SBDDs and FNADDs for benchmark functions. 

4.8 SBDDs and FNADDs for adders and multipliers. 

4.9 SBDDs, MTBDDs and FNADDs for adders and multipliers. 

4.10 Sizes of ACDDs, WDDs, CHTDDs and FNADDs. 

4.11 BDDs and FNADDs for Achilles’ heel functions. 

4.12 Labels of edges. 

4.13 Complexity of representation of XOr5 in terms of the number 
of levels, non-terminal nodes (ntn), constant nodes (cn), 
and sizes. 

The group operation of G3x6.  

The unitary irreducible representations of G3x6 over C 

4.4 

4.5 

4.6 

55 

56 

63 

64 

64 

64 

78 

99 

109 

115 

120 

121 

123 

125 

126 

127 

128 

128 

137 

141 



CONTENTS xxi 

4.14 

4.15 

5.1 

5.2 

5.3 

6.1 

6.2 

6.3 

6.4 

8. I 

8.2 

8.3 

8.4 

8.5 

Complexities of representing f in Example 4.1 5 in terms 
of the number of levels, non-terminal nodes (ntn), constant 
nodes, (cn), and sizes. 146 

Complexities of representing f in Example 4.16 in terms 
of the number of levels,non-terminal nodes (ntn), constant 
nodes (cn), and sizes. 

Different spectra for f .  

Different expressions for f .  

Number of non-zero coefficients. 

Group operation of 2 9 .  

The group representations of Z9 over C. 

The group operation of GI2. 

The representations of G12 over GF(11). 

The even and odd parts of the test function. 

Fourier spectrum of the test function over C. 

The even and odd parts of the test function. 

Fourier spectrum of the test function. 

Fourier spectrum of the test function in GF(11). 

152 

171 

i71 

I 73 

195 

195 

198 

199 

230 

230 

233 

233 

233 



This Page Intentionally Left Blank



Acronyms 

ACDD 
BDD 
BDT 
DD 
DT 
DFT 
FFT 
FDD 
FNADD 
FNADT 
FNAPDD 
FNAPDT 
KDD 
mvMTDD 
MTBDD 
MTBDT 
MDD 
MTDD 
MTDT 
nvMTDD 
PKDD 

SBDD 
TVFG 
WDD 

QDD 

Arithmetic transform decision diagram 
Binary decision diagram 
Binary decision tree 
Decision diagram 
Decision tree 
Discrete Fourier transform 
Fast Fourier transform 
Functional decision diagram 
Fourier decision diagram on finite non-Abelian groups 
Fourier decision tree on finite non-Abelian groups 
Fourier decision diagram on finite non-Abelian groups with preprocessing 
Fourier decision tree on finite non-Abelian groups with preprocessing 
Kronecker decision diagram 
Matrix-valued multi-terminal decision diagram 
Multi-terminal binary decision diagram 
Multi-terminal binary decision tree 
Multiple-place diagram 
Multi-terminal decision diagram 
Multi-terminal decision tree 
Number-valued multi-terminal decision diagram 
Pseudo-Kronecker decision diagram 
Quaternary decision diagrams 
Shared binary decision diagrams 
Two-variable function generator 
Walsh decision diagram 

xxiii 



This Page Intentionally Left Blank



1 
Signals and Their 

Mathematical Models 

Humans interact with their environment using various physical processes. For exam- 
ple, the basic means of communication is through sound waves that are generated in 
the vocal tract and sensed by the ear. Visual communication is done by electromag- 
netic radiation that can be sensed by the eye. These as well as physical or mechanical 
interaction can be viewed as processes where a quantity; air pressure, electromagnetic 
field, physical bodies or their positions are changing as a function of time. These can 
in a natural way be interpreted as signals, mathematically described as continuous 
signals, functions of a real variable, often standing for the time. Natural phenomena, 
such as sound waves as the term indicate, often possess a periodic structure that can 
be described and analyzed using the powerful tools of Fourier analysis and other 
sophisticated concepts of mathematical analysis. 

1.1 SYSTEMS 

Many phenomena can be processed as continuous systems. A typical example is 
the room audio system, where the microphone picks up the changes in air pressure 
and converts it to electric voltage or current variations that are amplified and feed to 
loudspeakers to produce the same sound, but larger in  volume. However, for long 
it has been known that under some reslrictions a signal can be exactly reproduced 
from just knowing the values of the signal (function) at discrete but dense enough time 
instants. With the advent of digital computers this opened the way todigital processing 
of signal in which many of the limitations of physical electronic components can be 
avoided. This leads to the case where a (discrete) signal can be treated as afunction on 

1 



2 SIGNALS AND THNR MATHEMATICAL MODELS 

a finite cyclic group instead of the fields of real or complex numbers. The fast methods 
of computing different representations of discrete signals have enabled digital signal 
processing that has made possible the modern telecommunication systems and many 
other wonders of modern life. 

Digital signal processing has leaped from its traditional area of processing digitally 
signals that used to be processed analogically to many new applications where the 
phenomena that are investigated can no more be represented as functions of a real 
or complex variable. The operations that are possible in the digital world are much 
more complicated than could be realized analogically. Also, the nature of signals 
may be very different from the original setting. A typical case is the investigation of 
logic functions using the same transforms as in digital signal processing and a more 
extreme example is the processing of the information coded in the DNA sequence 
using signal processing techniques. 

When we apply the methods of Fourier analysis to a natural or man-made signals, 
the measurements or the data generated is represented as functions from a set to 
another. In principle, we could embed these sets in any mathematical structures, 
groups, rings, etc., for which the tools of Fourier analysis have been developed. 
However, to get full benefit from this powerful theory, the underlying structures 
should reflect at least some of the "true" properties of the signals, just as the cyclic 
group fits naturally to periodicity. Similarly, the dyadic group and the Walsh transform 
are able to capture properties of logic functions, and so useful in their representations. 
When more complex phenomena are studied it may not be possible to fully utilize the 
power of Fourier type methods if we restrict the domain of the signal to be an Abelian 
group and in certain fields where non-Abelian groups occur most naturally, such as 
crystallography, Fourier type methods based on non-Abelian groups are routinely 
used. In signal processing these methods are still not fully developed, but there are 
plenty of sporadic examples of the power of the theory. 

In this book we concentrate in presenting (the theory of) Fourier methods over 
non-Abelian groups for signal processing and logic design. However, we believe that 
in due time there will be many more applications in  the vast range of topics in which 
signal processing methods are applied. 

1.2 SIGNALS 

When we observe physical signals, changes in  air pressure, electromagnetic field, 
etc., in  analog form using some recording device, the recorded signal is only an 
approximation of the original due to the errors inherent in any sensors. Likewise, even 
if we assume that the original physical signal satisfied the requirements of the sampling 
theorem for exact reproduction, our sampling devices have their inherent errors and, 
thus, only an approximation of the digital equivalent of the original physical signal 
can be captured. However, as long as the errors are smaller than the accuracy required 
for extracting the relevant information the system is fine for practical purposes, and 
a key clement in engineering practice is to balance the cost and performance of thc 
overall system. 
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1.3 MATHEMATICAL MODELS OF SIGNALS 

Since the signals are physical processes which spread in space-time they are best 
modelled by elements of some function spaces. To keep the connection to the real 
world we usually model the inaccuracies as random quantities (noise) following some 
probability distribution. Often it is necessary to view the "noisless" signal also as a 
random process that has a joint distribution with the noise process. There is an exten- 
sive literature on fundamentals of stochastic signals and the problems that are related 
to sampling and estimation of signals [27], [39]. Nevertheless the essence of what 
is now called the sampling theorem was also known to the earlier mathematicians. 
The reader is referred to [4], [ 161, [20], [50] for some discussions about the history, 
different formulations, extensions and generalizations of the sampling theorem. For 
the sampling theorem on the dyadic group see [35] and later [21]. The extension of the 
theory to arbitrary locally compact Abelian group is given in [26]. An interpretation 
of the sampling theorem in Fourier analysis on finite dyadic group is given in [31] 
and extended to arbitrary finite Abelian and non-Abelian groups in [47] and [50], 
respectively. 

In engineering practice the signals are modelled by complex functions of real vari- 
ables and usually called continuous signals. Those represented by discrete functions, 
i.e., by functions whose variables are taken from discrete sets, are called discrete sig- 
nals. These also are divided into two subclasses depending on the range of values the 
signals can take. 

The continuous signals of a real amplitude are analog signals, while the discrete 
signals whose amplitudes belong to some finite sets are digital signals. 

To take advantage of similar powerful mathematical machinery in dealing with 
discrete signals, it is necessary to impose some algebraic structure on their domain 
as well as range. In this setting the signals are defined as functions on groups into 
fields. Moreover, as it has been shown in [52] ,  the structure of a group is the weakest 
structure on the domain of a signal that still provides a practically tractable model for 
most of the signal processing and system theory tasks. 

We consider discrete signals that are defined on some discrete groups, usually 
identified with the group of integers 2, or with some group 2, of integers modulo p .  
In other words, the discrete signals are as functions f : Z -+ X ,  or f : 2, 4 Z,, 
where X may be the field of complex numbers C, the field of real numbers R, or the 
group of integers 2, or some finite field. For example, among Abelian groups, the 
dyadic group and finite dyadic groups G2,$, n E N ,  have attained a lot of interest, 
see for example [ 11, [ 3 ] ,  since the Walsh functions [ X I ,  the group characters of these 
groups [ 121, and their discrete counterparts, the discrete Walsh functions, take two 
values +l and -1 and, therefore, the calculation of the Walsh-Fourier spectra can be 
carried out without multiplication. 

However, there are real-life signals and systems which are more naturally modelled 
by functions and, respectively, relations between functions on non-Abelian groups. 
We will mention some related with electrical engineering practice. Some other ex- 
amples of such problems are discussed in [ 5 ] .  
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As is noted in [23], there are examples in pattern recognition for binary images, 
which may be considered as a problem of realization of binary matrices, in synthesis 
of rearrangeable switching networks whose outputs depend on the permutation of 
input terminals [ 151, [34], in interconnecting telephone lines, etc. An application 
of non-Abelian groups in linear systems theory is in the approximation of a linear 
time-invariant system by a system whose input and output are functions defined on 
non-Abelian groups [24]. See, also [41], [42], 1431, [44], [52]. 

The application of non-Abelian groups in filtering is discussed in [25], where a 
general model of a suboptimal Wiener filter over a group is defined. It is shown 
that, with respect to some criteria, the use of non-Abelian groups may be more ad- 
vantageous that the use of an Abelian group. For example, in some cases the use of 
the Fourier transform on various non-Abelian groups results in improving statistical 
performance of the filter as compared to the DFT. See, also [51]. 

The fast Fourier transform on finite non-Abelian groups [23], [38], has been widely 
used in  different applications [24], [25]. It may be said that for finite non-Abelian 
groups the quaternion group has a role equal to that played by the finite dyadic group 
among Abelian groups [50]. Similarly as with the Walsh transform, i.e., the Fourier 
transform on finite dyadic groups, the calculation of the Fourier transform on the 
quaternion does not require the multiplication. Regarding the efficiency of the fast 
Fourier transform on groups, it has been shown [38] for sample evaluations with 
different groups that in a multiprocessor environment the use of non-Abelian groups, 
for example quaternions, may result in many cases in optimal, fastest, performance of 
the FFT. Moreover, as is shown in [38], the quaternion groups as components of the 
direct product for the domain group G, in many cases, exhibit optimal performance 
in the accuracy of calculation. 

These performances have been estimated taking into consideration the number of 
arithmetic operations, the number of interprocessor data transfers, and the number of 
communication lines operating in parallel. In this setting, looking for a suitable finite 
group structure G which should be imposed on the domain of a discrete signal, it has 
been shown that the combination of small cyclic groups Cz and quaternion groups 
in the direct product for G results in groups exhibiting, in most cases, the fastest 
algorithms for the computation of the Fourier transform. 

In practical applications, we often refer to topological properties of the algebraic 
structures we use for mathematical models of signals and systems. The space-time 
topology of the produced solutions stems from the topology (in the mathematical 
sense) of thc related algebraic structures. It is intersting [ 141 that some important 
mathematical notions have been introduced first on more complicated structures, and 
then extended or transferred to the simpler cases. Differential operators could be 
mentioned as an example. Concept of Newton-Leibnia derivative, the notion was 
introduced first for real functions, although the continuum of the real line R is one 
of the most sophisticated algebraic structures (though the richness of the structure 
was not fully appreciated at that time). Extension of differentiation to the simple 
case of finite dyadic groups, was done about two centuries after the first vaguc ideas 
of differentiators and their applications in estimating the rate of change and the di- 
rection of change of a signal [ 131. Moreover, it was motivated by the requirements 
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of technology related to the interest in various applications of two-valued discrete 
Walsh functions in transmitting and processing binary coded signals and their real- 
izations within prevalent two-stable state circuits environment. The support set of 
finite dyadic groups, the n-th order direct product of the basic cyclic group of order 2, 
produces a binary coding of the sequence of first non-negative integers less than 2n, 
representing a base for the Boolean topologies often used in system design, including 
the logic design as a particular example of systems devoted the processing of a special 
class of signals, the logic signals [ 181, [ 191. The restriction of the order to 2n, and 
some other inconveniences of the Boolean topology, motivated the recent interest in 
topologies derived from the binary coding of Fibonacci sequences and their appli- 
cations [I], 181, [9], [lo], [17],[40]. Use of these structures permits introduction of 
new Fourier-like transforms [ 11, [7], [ 1 I ] ,  enriching the class of transforms appearing 
in Nature and computers [54], [56], [57]. Various extensions and generalizations 
of the representations of discrete signals and spectral methods in terms of different 
systems of not necessarily orthogonal basic functions on Abelian groups [2], and the 
use of non-Abelian groups in  signal processing and related areas, suggested probably 
first in the introduction of [22], offer new interesting research topics as is shown, for 
example, in [6], 1281, [29], 1301, 1321, 1331, [36]. For these reasons, we have found 
it interesting to study Fourier transforms on finite non-Abelian groups, and Fourier- 
like or generalized discrete Fourier transforms [24] on the direct product of finite not 
necessarily Abelian groups 1451, 1461, [48], 1491. Some recent results in this area are 
discussed in [37]. 

These transforms are defined in  terms of basic functions generated as the Kronecker 
product of unitary irreducible representations of subgroups in the domain groups. This 
way of generalizing the Fourier transform ensures the existence of fast algorithms for 
efficient calculation of spectral coefficients in terms of space and time. We call all 
these transforms Fourier transforms, with the excuse that efficient computation is, in  
many applications, stronger requirement, than possessing counterparts of all the deep 
properties of the Fourier transform on R. We also consider the Gibbs derivatives on 
finite non-Abelian groups, since they extend the notion of differentiation to functions 
on finite groups through a generalization of the relationship between the Newton- 
Leibniz derivative and Fourier coefficients in Fourier analysis on R. 
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Fourier Analysis on 
Non-Abelian Groups 

In this chapter, we present a brief introduction to the group representation theory 
and harmonic analysis on finite not necessarily Abelian groups. For more details the 
reader is referred to the voluminous literature on abstract harmonic analysis, e.g. [2], 
[61, [81, [171, [181. 

The main idea of abstract harmonic analysis is to decompose a complicated func- 
tion f into pieces that reflect the structure of the group G on which f is defined. The 
goal is to make some difficult analysis manageable [ 1 I ] .  

The most widely used groups probably are the real line R and the circle R/27rZ, 
where Z is the set of integers. 

In the case of the group G = R/27rZ, a given function f on ( - T ,  T )  is decomposed 
as 

n=-m 

and obviously the same representation extends to the periodic extensions of f .  

transforms 
For aperiodic functions on the real line R we have the direct and inverse Fourier 
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From the mathematical topology point of view, the real line R is a locally compact 
Abelian group and the theory of Fourier analysis can been extended to such groups 
if the exponential functions used in Fourier analysis on R are replaced by the group 
representations. Compact groups form a subset of the set of locally compact groups. 
In the following, we briefly introduce the basic concepts of group representations and 
Fourier analysis on finite groups, and then discuss in more details Fourier analysis 
on finite non-Abelian groups. We present the basic definitions and and properties as 
well as proofs of these properties. The purpose is to give the reader some insight to 
the representation theory in order to clarify the properties of the structures that we 
use later. 

2.1 REPRESENTATIONS OF GROUPS 

A representation of a group G on a complex vector space V is a correspondence 
between the abstract group G and a subgroup of the "concrete" group of linear trans- 
formations of V ,  that is, representation is a homomorphism of G into the group 
of invertible linear transformations on V. Often the group G and the space V are 
topologized and the group actions are then assumed to be continuous. 

In the case of finite groups, the linear transformations are usually identified with 
matrices. In this setting the following definition of group representations can be 
introduced. 

The general linear group GL(n, P )  is the group of (n  x n)  invertible matrices (n  
is a natural number) with respect to matrix multiplication, with entries in a field P 
that can be the field of complex numbers C or a finite field Fq where g is power of a 
prime p .  Thus, 

GL(n, P )  = {A E Pnx,i det(A) = IA/ # 0) 

Definition 2.1 (Group representations) 
A $finite dinierisional representation of a finite group G is a group homomorphism 
R : G 4 GL(n,  C) .  

Notice that for a given z E G, R(z) stands for an ( n  x n)  matrix R(z) = [R,.,], 
i, j = 1,. . . , n. The matrix entries Ri.j of R(z) are continuous functions in discrete 
topology, analogous to trigonometric functions on the circle or the exponential func- 
tions exp(27riln) in terms of which the classical Fourier analysis has been defined. 
Therefore, they will be used to define the Fourier transform on G. 

Because any finite group of order N is isomorphic to a subgroup of the symmetric 
group SAT, the group of permutations of N objects, the elements of which can be 
explicitly listed as N (unitary) ( N  x N )  permutation matrices, there are always 
nontrivial representations. 

Every finite-dimensional representation is equivalent (similar) to a representation 
by unitary matrices [8 ] .  Thus, if C: is a finite group, every representation is equivalent 
to a unitary representation. Recall that unitary matrices preserve the inner product 
defined for two vectors x and y in CT1 in a usual manner as (5 ,  y) = ZTy, where Z 
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is the complex-conjugate of z and T denotes the transposition. Thus, for a unitary 
matrix Q it holds (Qz, Qy) = ( 2 ,  y) for all z, y E C". We denote by U ( n )  the 
multiplicative group of ( n  x n)  unitary matrices, i.e., 

U ( n )  = {Q E GL(n, C)lQTQ = I}, 

where I is the identity matrix. 
Let R and S be representations of degree n. If there is a subspace W of C" such 

that SW C W and S(z)w = R(s )w for all 2 E G and 20 E W ,  we say that S is a 
subrepresentation of R. Clearly, then there is a basis of C" such that R(z) has the 
form 

A representation R(z) is called irreducible if its only subrepresentations are R 

Consider the space of complex functions on G, i.e., L = { f l f  : G + C} which 
and 0. 

is a vector space of dimension n = JG/ over C.  Define the convolution product * 

tEG tEG 

It is straightforward to check that * makes L into an algebra over C. 

Definition 2.2 Two representations S and R are called equivalent ifthere is a matrix 
T such that S = T- lRT.  

2.1 .I Complete reducibility 

Proposition 2.1 Suppose S : G --f U ( m )  is a subrepresentation of R : G + U ( n ) .  
Then R is equivalent to the representution 

Proof. Since R is unitary, it leaves the inner product (,) invariant. As S is a 
subrepresentation of R it follows that there is a subspace U1 5 U such that 

R(X)Ul c Ul, 
S(Z)U = R(X)U, 

for all z E G, u E U1. 
Define the orthogonal complement U? of IJ l  as 

U: = {u  E U I ( U , U ~ )  = o forallul  E u,}. 
Then, R(x)Uf C U f  and V(z) defined as thc restriction of R to lit is a 

subrepresentation of R. Since U = U1 @ U f ,  the proposition follows. 
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By induction R(x) is equivalent to 

We present the famous result called Schur lemma that is very useful in  establishing 
certain properties of representations. 

Lemma 2.1 (Schur) 
Let R : G 4 U ( n )  and S : G ---f U ( m )  be two representations arid dejine the space 
I(R, S) bY 

I(R, S) = {a : Cm 4 C"l@ is linear and Q, 0 S(x) = R(L) o QP, for all z E G}. 

that is, such linear operators that the following diagram is commutative for  all x 

c'" @ ,c" 
I I 

~ S(S) 1 R(-d 
I 

Then. 

1. The restriction of R to Kera is a subrepresentation ojR, and the restriction 
of S to ImQP is a subrepresentation of S. 

2. IfR and S are irreducible and Q, # 0, then Q, is an isomorphism. 

3. lfQ, E I(R,R), then there is X E C such that @v = Xu for  all 1) E C", i.e., 
QP = XI. 

4. I f  R and S are both irreducible, then 

1, 
0 otherwise. 

if R, S are equivalent, dirnl(R,S) = 

Proof, 

1. For 'u E Kera, we have QP(R(z)v) = S(z)QP,v = S(z)O = 0. Thus R(x)v E 
KerQP for all z E G and we have that 1) E KerQ,. Let w E ImQ, it follows 
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that w = CPv for some w E Cm. Therefore, S(z)w = S(z)CPu = CPR(z)v = 

CP(R(z)u) E ImCP implying that Im@ is a subrepresentation of S. 

2. If CP # 0, it follows that KerQ # C", and since R is irreducible, KerCP = {O}. 
Now, CP : C" ---f C" is one to one and since S is irreducible, Im@ = C" and 
m = n. 

3.  Let X be an eigenvalue of @ and define VX = { u  E CmlCPu = Xu}. Now, 
VX # (0) and R(z)Vx C VX for all z. Thus the restriction of R to V, is a 
subrepresentation. Since R irreducible, V, = C". Thus, @ = X I .  

4. Consider @, Q # 0, that belong to I(R, S). By 2. they are isomorphisms and 
it follows that @ satisfies WIS(z) = R(z)@-l for all z E G. 

c "' @,Y .~ ~ c" 

Thus, (@-'Q)R(z) = W1S(s)9 = R(x)(CP-~Q) for all z E G implying 
that WIQ E I(R, R). By 3 .  we have = X I ,  or equivalently 9 = XCP 
and so dimI(R, S) 5 1. 

Notice that an irreducible representation of an Abelian group has degree one. This 
can be seen as follows. 

Fix an element xo E G and consider the map ax(, : C" + C" where CPz,,u = 

R(zo)v. Since G is an Abelian group, Q,,, o R(z) = R(z) o for all x E G 
implying that QX,) E I(R, R), whence R(zo) = CPxll = X I  for some A. Thus, R(Q) 
is diagonal and R can be irreducible only if n = 1. 

Definition 2.3 (Character of a representation) 
The character X R  of a representation R is Tr(R) where TrA means the trace of A. 

Recall that the usual inner product in  the space of square integrable functions on 
G into C,  L2(G),  is in the case of a finite group G 

XEG 

Theorem 2.1 (Schur orthogonality relations) 

1. Let R : G U ( n )  and S : G + U ( m )  be inequivalent and irreducible 
representations of a group G. Then, 

(I&, Srs) = c R,, (z)S,,(z) = 0, for  all 2 ,  .?> r, 9 ,  

XEG 
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where Rj:)(z) denotes the i ,  j - th  entry of the matrix R ( z ) .  

2. In particular 

where I- is the degree of R. 

3. Let R and S be irreducible representations of G. Then, 

if R and S are inequivalent, 
( X R , X S )  = { ;GI, if R and S are equivalent. 

Proof. 

I .  Consider the matrix 

P = C R ( z ) C S - ~ ( X ) ,  
XEG 

where C is an (72 x m) matrix to be specified later. Now, P E I ( R ,  S) since 

R ( y ) P  = R ( y x ) C S ( F 1 )  
X € G  

= C R(w)CS(u- ly)  = PS(y). 
U E G  

Since R and S are irreducible and inequivalent, we have by claim 2. of Schur 
lemma that P = 0. Choosing C = E,,, the matrix having 1 in the entry s j  
and 0 elsewhere, we see that 

P,, = R a , ( ~ ) S r s ( ~ )  = 0. 
XEG 

2. Again, let C be any nonzero 71 x n matrix and write 

Now, by claim 3 .  of Schur lemma we have P = X I .  Setting C = E,, taking 
trace on both sides we obtain T r ( P )  = X71, = XI.. since trace is invariant under 
similarity transform we have 

X E G  X E G  

Thus. 
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Setting now C = Ej,, as above we obtain 

X E G  

3. Let R and S be inequivalent and irreducible. By definition, 

If R and S are equivalent, by invariance of trace and claim 2, 

Thus, we can say that if R and S are two representations of G and we have the direct 
sum representations 

where R, are irreducible representations of G. Then, 

and 

Definition 2.4 (Left regular representation) 
Let x E G and consider the permutation of elements of G, y --f x-'y and let L(x) 
be the corresponding (IGI x IGl) permutation matrix. The representation L(x) is 
called the left regular representation of G. 

Lemma 2.2 Let L(x) be the left regular representation of G. Then, 

lGl, 
x L ( x )  { 0, otherwise, 

i f x  = e, the identity of G, 

and every irreducible representation R E r is contained in L with the multiplicity r. 
Thus, if r = (R1, . . . , R k } ,  then L is similar to direct sum 

L ( T i ) R i  CB . . . CB ( T k ) R k ,  (2 .2)  
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and 

R, E r  

Proof. If z # e, then L(z)  is a permutation matrix that fixes no element. Thus, 
TrR(z) = 0. R(e) is the identity matrix and so TrR(e) = IGI. 

By ( 2 .  I ) ,  the multiplicity of R, in L is found by 

1 

(2.3) follows from (2.2). 

2.2 FOURIER TRANSFORM ON FINITE GROUPS 

Now we can collect the results above and define Fourier Analysis on Finite Groups. 
Let G be a finite group and r the dual object, i.e., set of all inequivalent irreducible 

representations of G. 
The matrix entries RzJ(x )  and as well RZ3(x- l ) ,  of the representations R E r 

as elements of L2(G) form a complete orthogonal set in L2(G). This statement is 
due to Weyl and his student Peter [I31 and usually called Peter-Weyl theorem, see 
for example, [8]. As above, denote by T the degree of R. By normalizing we find 
that ( T ~ G ~ - ~ ) ~ ~ ~ R ~ ~ ,  R E r, 1 5 i , j  5 T- form a complete orthonormal system in 
L2(G).  Thus we can expand 

f = C R E r  Cl<a.3<~ (T-lGl-1)1'2 (fi (T-IGl~l )1'2 R % ~  

and by Parseval relation 

lIf1l2 = ( f l f )  = c c ~ l ( f , R 2 J ) l 2 .  
R E T  l < a , j j r  

These relations imply that it is reasonable to define a Fourier transform on functions 
f E L2(G) in such a way that the structure of the non-Abelian group becomes 
expressed in thc transform, e.g. such that the familiar relations of usual Fourier 
transform with regard to convolutions hold for convolutions defined by the non- 
Abelian group structure. 

Definition 2.5 (Fourier transform) 
Let f : G + C be a function, rthe dual object of G, R E r and denote by r the 
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degree of R. The Fourier transform o f f  is dejined by 

F{ f )(R) = Sf(R) = ~-1Gl-l C f (z)R(z-'). 
XEG 

Thus, the Fourier transform at representation R is an ( r  x T - )  matrix where r is the 
degree of R .  By Peter-Weyl theorem the function f can be recovered by the inverse 
formula 

= c Tr(%(R)R(x)). 
REl- 

We will later give list of properties of Fourier transformations on finite groups. As 
an example, let us consider the convolution property. Let f ,  g E L2(g). Then 

rIGl-lF{f * gHR)  = F{f  j(R)F{g}(R), 

where the multiplication on the right-hand side is multiplication of ( r  x r )  matrices. 
This can be seen as in the Abelian case. 

xEG uEG 

U E G  xEG 

uEG vEG 

Here we will fix the notation that will be used later in the book. Let G be a finite, 
not necessarily Abelian, group of order g = G. We associate (permanently and 
bijectively) with each group element a non-negative integer from the set {0,1, . . . , g- 
l}, and 0 is associated with the group identity. Thus, each group element will be 
identified with the fixed non-negative integer associated with it and with no other 
element. We assume that G can be represented as a direct product of subgroups 
G1, . . . , G, of orders g l , .  . . , g,, respectively, i.e., 

G = x;=iGrt g = nr=2=,gt, 91 5 ~2 5 . . .  I gn. (2.4) 

The convention adopted above for the notation of group elements applies to the 
subgroups G, as well. Provided that the notational bijections of the subgroups and 
of G are consistently chosen, each x E G can be uniquely represented as 

n 

x = c a , ~ i ,  2, E G,, 5 t G, 
i=l 

(2.5) 
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with 

where g, is the order of G, and 0 5 x, < g,, i = 1,. . . , n. 

the subgroups G,, 2 = 1,. . . , n by 

0 

The group operation o of G can be expressed in terms of the group operations i of 

0 0 

~ O Y  = ( 5 1  1 ~ 1 ,  5 2  2 ~ 2 ,  . . .  xn g~yn), Z , Y  E G,  .‘~z,yz E ~ z .  (2.6) 

Denote by P the complex field or a finite field and by P(G) the space of func- 
tions f mapping G into P ,  i.e., f : G + P. Due to the assumption (2.4) and the 
relation (2.5), each function f E P(G)  can be considered as an n-variable function 
f(zi,...,zn), 5% EG,. 

We denote by K the cardinality of the dual object r or r ( G )  i.e. number of 
equivalence classes of irreducible representations of G over P. Each such equivalence 
class contains just one unitary representation. We shall denote the elements of r in  
some fixed order by Ro, RI, . . . , RK- 1 and by R,(x) the value of R at z E G. 
Because we now use subscripts to identify the representations, we, from now on, will 
use superscripts for the elements of the matrices of the representations e.g. R$”’(x), 
i , j  = 1 , 2  , . . . ,  r,. 

Notice that group representations may be used in different orders when this is more 
appropriate for particular applications. This is the same situation as in the case of 
Abelian groups , for example, the dyadic group where the group characters are Walsh 
functions [20], which are used in different orderings [9]. 

If the group G is representable in the form (2.4), then its unitary irreducible rep- 
resentations can be obtained as Kronecker products of the unitary irreducible rep- 
resentations of subgroups G,, i = 1, .  . . , n. Therefore, the number K of unitary 
irreducible representations of G is 

,=1  

where K, is the number of unitary irreducible representations of the subgroup G,. 

representation R, can be written as: 
Now, for a given group G of the form (2.4), the index 111 of each unitary irreducible 

n 

711 C b z w t ,  W ,  E {0,1,. . . , K, - l}, w E {0,1,. . . , K  - I}, 
2 = 1  

with 

where K, is the number of unitary irreducible representations of the subgroup G,. 
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Table 2.1 Group operation of SR. 

0 1 0  1 2 3 4 5 

0 1 2 3 4 5  
1 2 0 5 3 4  

2 0 1 4 5 3  

3 4 5 0 1 2  

4 5 3 2 0 1  

5 3 4 1 2 0  

We denote by W, the vector of length K of the values of w, considered as an 
n-variable discrete function. 

As noted above, the functions Rk’”(z), w = 0,1,. . . , K - 1, i, j = 1, . . . T ,  

form an orthogonal system in the space P(G) and the direct and the inverse Fourier 
transform of a function f E P(G)  are defined respectively by 

K-1 

f ( ~ )  = c T ~ ( S ~ ( W ) R , ( X ) ) .  (2.10) 
1u=O 

Here and in the sequel we shall assume, without explicitly saying so, that all 
arithmetical operations are carried out in the field P.  

Note that if in (2.4), there are two identical non-Abelian subgroups G, = G,, z # j ,  

then the Kronecker product of unitary irreducible representations of the subgroups 
does not produce the unitary irreducible representations of 6. However, the transform 
defined in terms of so generated a set of linearly independent functions is still denoted 
as the (generalized) Fourier transform, with the generalization achieved through the 
formal application of the decomposition used in FFT-like algorithms, see, for example, 
1141. 

Example 2.1 Let 5’3 = (0 ,  (132), (123), (12), (13), ( 2 3 ) ,  0) be the symmetricgroup 
of permutations of order 3. According to the convention adopted in this book, the 
group elements of 5’3 will be denoted by 0,1,2,3,4,.5, respectively. Using this notation 
the group operation of 5’3 is shown in Table 2.1. The unitary irreducible representa- 
tions of 5’3 over C are given in Table 2.2. The group characters and the set Rk”) of 
functions representing a basis in the space of complex functions on 5’3 are given in 
Table 2.3 and Table 2.4. 
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1 1 1 A  

2 1  I B  
3 1 - 1 c  

4 1 - 1 D  

Table 2.2 The unitary irreducible representations of S, over C.  

5 1  1 -1 E 

I = [  : ] ,  A = - 2 - ' [  & -TI, B = - 2 - ' [  1 v 5  ] 
-& 1 ' 

Table 2.3 The group characters of S, over C. 

3 1 - 1 0  

4 1 - 1 0  

5 1 - 1 0  
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2 

3 

4 

5 

Table 2.4 The set R?>’’(Z) of S, over C. 

0 1 1  1 0 0 1 
_ _  d3 _ _  I l l - -  1 

2 

2 

1 
2 

2 2 
1 h -  h _ -  1 

2 
1 1 -- -- 

1 -1 1 0 0 -1 
1 - d -  d3 1 -1 -- 

& 1 

1 
2 2 

2 2 

2 

2 2 
1 -1 -- 1 -- h -- 

Table 2.5 Unitary irreducible representations of S3 over GF(11). 

3 10 c 

10 E 

Example 2.2 The unitary irreducible representations of 5’:s over the Galois field 
GF(I1) are shown in Table 2.5. The group characters and the basis R:”’ of Ss over 
GF (1 1) are given in Table 2.6 and Table 2.7. 

2.3 PROPERTIES OF THE FOURIER TRANSFORM 

The main properties of the Fourier transform on finite non-Abelian groups are anal- 
ogous to those of the Fourier transform on Abelian groups, such as for example, the 
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0 1  1 1 0 0 1 

I 1 1  5 8 3 5 

2 1  1 5 3 8 5 

3 1 1 0  1 0 0 10 

4 1 1 0  5 8 8 6 

5 1 1 0  5 3 3 6 

Table 2.6 The group characters of S3 over GF(11). - 
3 1 1 0 0  

4 1 1 0 0  

5 1 1 0 0  

Table 2.7 The set R k J ) ( x )  of S, over GF(11). 
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Walsh transform [ 11, the Vilenkin-Chrestenson transform (41, [ 191, see also [9], [ 121, 
and in particular to that of the Fourier transform on the real line [3]. 

Theorem 2.2 The main properties of the Fourier transform on jinite non-Abelian 
groups are the following: 

1. Linearity: Forall a 1 , c ~  E P, f l ,  f i  E C(G),  

Sa,f,+a,,,(W) = a l S f l ( 4  + azSfz(w).  

2. Right group translation: For all r E G, 

3. Group convolution: For two functions f l  , f 2  E C(G)  the convolution is defined 
by 

( f l  * f 2 ) ( 7 )  = c fl(z)f2(r-14 
xEG 

4. Relative to the so dejined convolution, the Fourier transform exhibits the fol- 
lowing proper9 

T w s - l s ( f l * f , ) ( T ) ( w )  = Sfl ( W ) S f * ( W ) .  

It should be noted that unlike the Fourier transform on Abeliun groups, u dual 
statement cannot be formulated since the dual object f does not exhibit a group 
structure suitable for definition of a convolution of functions on r. 

5. Purseval theorem: For all f l ,  f 2  E P(G), 

where 7 denotes the complex-conjugate o f f ,  S;, (.) is the conjugate transpose 

o f s f , ( . ) ,  i.e., S;,(.) = ( S f , ( . ) ) T .  

6. The Wiener-Khinchin theorem: For two functions f l ,  f2  E P(G), the cross- 
correlation function is dejined by 

xEG 

The autocorrelation function is the cross-correlation function for f l  = f i . 

Denote by Fr: and FG1 the direct and inverse Fourier transform on G, respec- 
tively, and by F& the transform such that 
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With this notation the Wiener-Khinchin theorem on G is dejined by 

Bfl ,fi = gF,- ( r ,  F G  ( f l ) F >  ( f z ) ) .  

Proof. Properties 1,  2 and 3 follow immediately from the definition of the Fourier 
transform and its inverse. 

The Parseval theorem can be proved by using the orthogonality and the unitarity 
of Rw(.), i.e., 

9 C WSfl (")q2 ('UI)) 

R w  E r( G )  

ZEG 

The Wiener-Khinchin theorem follows from the unitarity of Rw (x), the definition 
of the Fourier transform and the convolution theorem. 

2.4 MATRIX INTERPRETATION OF THE FOURIER TRANSFORM ON 
FINITE NON-ABELIAN GROUPS 

In our further consideration we need the generalized matrix multiplications defined 
as follows. 

Definition 2.6 Let A be an (m x n )  matrix with elements a t j  E P, i E { 0,1, . . . , m- 
l}, j E {0,1,. . . , n - l}. Let [B]  be an (n  x r )  matrix whose elements b J k r  j E 

(0, .  . . , n ~ l}, k E {0,1,. . . , T- - l} are ( p  x q )  matrices with elements in P. 
These matrices have the same order within a column, and may have different order 
in different columns of [B]. We define the product A 0 [B] as the (nz x r )  matrix 
[Y]  whose elements Yak, i E { O , 1 , .  . . , m - I}, k E { O , 1 , .  . . , T - I} are ( p  x q )  
matrices with elements in P given by 

7L- I 

The product [B] 0 A is defined similarly. 

Definition 2.7 Let [Z] be an (m x n)  matrix whose elements z,? i E {0,1, . . . , m - 
I}, j E (0, I,. . . , n - 1) are square matrices of not necessarily mutually equal 
orders with elements in P. Let [B] be (n  x r )  matrix whose elements bjk, j E 
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{0,1,. . . , n - l), k t {0,1,. . . , r - l} are square matrices with elements in P. 
These matrices have the same order within a column, and may have different orders 
in different columns of [Z] and [B]. Under the condition that the matrices zij and 
bjk are of the same order or, if not, that one of them is of the order I ,  the product of 
matrices [Z] and [B] is dejined as the (m x T )  matrix Y = [Z] o [B] whose elements 
yik E P are given by 

n-1 

, =O 

Definition 2.8 Let [Z] be an (m x n) matrix whose elements z,], i E (0, 1, . . . , m - 
l}, j E {0,1,. . . , n - 1)  are ( p  x y) matrices with elements in P. Let [B] be an 
(n  x r )  matrix whose elements b,k, j E {0,1,. . . , n - I}, k E {0,1,. . . , r - 1) 
are ( s  x t )  matrices with elements in P. Both z,, and b,k are matrices that have 
the same order within a column, and may have different orders in different columns. 
The elementwise Kronecker product of matrices [Z] and [B] is dejined as the (m x r )  

matrix [v] = [z] 8 [B] whose elements v& are given by 
0 

n- I 

j = O  

where @ denotes the ordinary Kronecker product. 

The generalized matrix multiplication concepts, needed to describe the Fourier 
transform and its inverse on finite non-Abelian groups, were introduced in [15], [ 161. 
Although we have never met these definitions, we cannot be sure that they are not to 
be found in the voluminous literature on matrix calculus. 

By using the matrix operations thus introduced, the Fourier transform pair defined 
by (2.9) and (2.10) can be expressed as follows. 

Let f E P(G)  be given as a vector f = [ f ( O ) ,  . . . , f(g - 1)]*. Then its Fourier 
transform is given by 

[ S f ]  = g-l[R]-' 0 f ,  (2.1 1 )  

where [ S f ]  = [ S f ( O ) ,  . . . , S f ( K  - 1)IT, and [RIP' = [b,,] with b,, = rWRB1(q), 
s E {0,1, . . . ,  K - l}, 4 t {0,1, . . . ,  9 -  1). 

The inverse Fourier transform is given by 

f = [Rl 0 [ S f ] ,  (2.12) 

where (R] = [a,,] with at, = R3(i), i E {0,1,. . . , g - l), j E {0,1,. . . , K - 1). 
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2.5 FAST FOURIER TRANSFORM ON FINITE NON-ABELIAN GROUPS 

The formulation of the fast Fourier transform on a finite decomposable group G of 
the form (2.4) is based on the consideration of the Fourier transform on G as n- 
dimensional Fourier transform each of them relative to one of the n subgroups Gj of 
G. 

In this setting the Fourier transform can be written as: 

Step 2 

Step j 

During the step j ,  the variables 7111,.  . . , w - 1 ,  z3+1,. . . , .z, are fixed and the sum- 
mation is performed through the variable x3 E G, . 

The algorithm is probably best explained by an example. 

Example 2.3 Let G be the Quaternion (non-Abelian) group Q z  of order 8. This 
group has two generators a and b and the group identity is denoted by e. Ifthe group 
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0 0 1 2 3 4 5 6 7  

0 0 1 2 3 4 5 6 7  

1 1 2 3 0 5 6 7 4  

2 2 3 0 1 6 7 4 5  

3 3 0 1 2 7 4 5 6  

4 4 7 6 5 2 3 0 1  

5 5 4 7 6 3 2 1 0  

6 6 5 4 7 0 3 2 1  

7 7 6 5 4 1 0 3 2  

Table 2.8 Group operation for the quaternion group Q 2 .  

operation is written as abstract multiplication, the following relations hold fo r  the 
group generators: b2 = a2 ,  bab-' = a- l ,  a4 = e. I f the following bijection V is 
chosen 

x I e a a2 a3 b ab a2b a3b 

V ( x ) I O  I 2 3 4 5 6 7 

then the full group operation is described in Table 2.8. 

Table 2.9. 
All the irreducible unitary representations over the complex field C are given in 

For notation convenience, the entries of column Rq can be denoted as 

I, ZA, -I, ZB, C -iD E iD, 

where 

The dual object of Q 2  is of order 5, since there are five irreducible unitary 

Four of the representations are ]-dimensional and one is 2-dimensional. The 
representations of this group. 

Fourier transform matrix is 

1 1  1 1 1  1 1  1 
1 - 1  1 - 1 1 - 1 1  - 

1 -1 1 -1 -1 1 -1 1 
21 2iB -21 2iA 2E 2iD 2C -2iD 

1 1 1 1 -1 -1 -1 -; 1 ,  
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3 

4 

Table 2 9  Irreducible unitary representations of QZ over C. 

I -1 
1 -1 [ -;I 0 1  

1 1 
-1 -l [ Y  -:,I 

7 l  -1 -1 ' [ o  ;] 
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- - 
1 1  1 1 1  1 1  1 
1 -1 1 -1 1 -1 1 -1 1 

- 1 1  1 1 - 1 - 1 - 1  - 1 0  
1 -1 1 -1 -1 1 -1 1 

21 2iB -21 2iA 2E 2iD 2C -2iD 

- - 

- - 

r 

0 

0 
0 
P 
A 
0 
0 

a 

This function f is reconstructed from the spectrum [Sf] as 

- - 

- 
1 1 1 1  I 
1 -1 1 -1 iA 
1 1 1 1 - 1  
1 -1 1 -1 iB 
1 1 -1 -1 c 
1 -1 -1 1 -iD 
1 1 -1 -1 E 
1 -1 -1 1 iD - 

1 
8 

0 -  

- - 1 - 
8 

a + P + A  
- a + p - A  
a - p - A  
-(I - p + A 

ia 
2 

- (a  + /3 + A) + (-a + p - A) + (a  - p - A) + (-a - p + A) + 00 
(a  + p + A) - ( -a  + p - A) + (a  - p - A) - (-a - p + A) + a1 

(a  + p + A) + (-a + p - A) + (a  - p - A) + (-a - p + A) + a2 

(a + p + A) - (-a + p - A) + (a - p - A) - (-a - p + A) + a3 

(a  + p + A) - ( -a  + p - A) - (a  - p - A) + ( -a  - p + A) + 0.5 
(a  + p + A) + (-a + p - A) - (a - p - A) - (-a - p + A) + 0 6  
(a  + p  + A )  - (-a + p  - A) - ((1 - p - A) + (-a - p +  A) +a7 

(a  + p + A) + (-a + p - A) - (a  - p - A) - (-a - p+  A) + (rq 
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-J 

Fig. 2.7 FFT on the quaternion group Q2. 

where 

0 0  = 

01 = 

0 2  = 

0 3  = 

0 4  = 

0 5  = 

0 6  

0 7  = 

Tr(ISf(4)) = 0 

Tr(iASf(4)) = 4 a  

Tr(-ISf(4)) I= 0 

Tr(iBSf(4)) = -4a 

Tr(CSf(4)) = P 
Tr(-iDSf(4)) = 4X 

Tr(ESf(4)) = -4p 
Tr(iDSf(4)) = -4X. 

Direct computation of the Fourier transform requires 64 operations for  the quater- 
nion group G = Q2. Using the fast Fourier transform it can be computed by using 
20 additions. The multiplications by the complex unity i are not considered. The 
corresponding flow-graph is shown in Figure 2.1. 

Figure 2.2 shows the flow-graph of the FFT algorithm to calculate the inverse 
Fourier transform on Q 2 .  

The quaternion group Q 2  is a group structure which can be considered as the 
domain of signals defined on a set X8 of eight elements. Using the mapping 

2 

z = Cxz23--a,  2,  E (0, l}, 
i=O 

the same set can be equipped with the structure of the dyadic group of order 8. 
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i , x 0  

1 

2 

3 

4 

5 

6 

7 

i 

1 2  3 4 5 6 7 

0 1 1 1 1 1 1 1 1  

1 -1 1 -1 1 -1 1 -1 
I 1 -1 -1 1 1 -1 -1 

1 -1 -1 I 1 -1 -1 1 

I I 1 1 -1 --1 -1 -1 

1 -1 I -1 -1 1 -1 I 

I 1 -1 -1 -1 -1 1 1 

1 -1 -1 I -1 I 1 -1 

Fig. 2.2 Flow-graph for FFT algorithm for the inverse Fourier transform on Q8 

Table 2.70 The discrete Walsh functions wal(i, z). 

Recall that the dyadic group of order 2" consists of the set of binary 72-tuplex 
z = ( 2 1 , .  . . ,zn),  x1 E {0,1), under the componentwise addition modulo 2. 
Discrete Walsh functions, the discrete version of Walsh functions are the characters 
of the dyadic groups [7] and, therefore, form a basis in the space of complex functions 
on Xg. For n = 3 they are given in Table 2.10. 

The algorithm for the computation of the Fourier transform on Q 2  can be compared 
to the algorithm for computation of the Fourier transform on the dyadic group of 
order 8 shown in Figure 2.3. The number of additions and subtractions to compute 
the Fourier transform on this group is 24 compared to 20 operations on Q 2  and 4 
multiplications by the complex unity. The same algorithm can be used to calculate 
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Fig. 2.3 FFT on the dyadic group of order 8. 

the inverse Walsh transform, since it is a self-inverse transform up to the multiplicative 
constant 2-". 

A method for an optimal implementation of the Fourier transform on finite not 
necessarily Abelian groups in a multiprocessor environment is presented in [ 141. 

It is clear that the ordering of the subgroups Gj, indicated in (2.4), is not essential 
from the theoretical point of view. However, this order seems logical in some sense, 
and in our experience not only notationally convenient, but also useful in some prac- 
tical considerations. Moreover, as is documented in [ 141, for a fixed set of constituent 
subgroups G, their ordering as is required in (2.4) minimizes the number of data 
transfers in the implementation of the fast Fourier transform on G in a multiprocessor 
environment. 
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Matrix Interpretation of the 
Fast Fourier Transform 

There exist in each area of science some important concepts representing the corner 
stones of a whole theory and a corresponding practice, study of which, from differ- 
ent aspects, never goes out of interest. The algorithms for efficient computation of 
the discrete Fourier transform (DFT), generally known as the fast Fourier transform 
(FFT), form certainly such a concept in digital signal processing. Recall that the great 
practical application of the DFT and its importance in  signal processing stems from 
the publication of the famous work by Cooley and Tukey in  1965 [lo], though rel- 
atively recently interesting facts were discovered about the history of this algorithm 
[181. 

Presently there is variety of algorithms in the quite voluminous literature on FFT, 
each of them suitable with respect to some a priori assumed criteria of optimality. 
These criteria are very different and range from the reduction of the time and memory 
resources needed for the computation to the use of some particular properties of the 
functions whose DFT is to be determined, or the use of the properties of spectral 
coefficients which should be calculated. Note for example, the real or pure imagi- 
nary functions, the symmetric functions, the functions with a lot of zero values, and 
similarly for spectral coefficients. For more detail see, for example, [ I ] ,  [7],[31]. 

FFT algorithms are extended to be applicable to the calculation of the values of 
the generalized Fourier transform on finite Abelian groups 121, [8] including the DFT 
as a particular example. 

Some other particular examples of this theory, as the Walsh or Vilenkin-Chrestenson 
transform, found also some important applications in different areas (see, for exam- 
ple, [3], [ 171, [22], [30]). Together with that, FFT algorithms were a base for the 
formulation of fast algorithms for the implementation of other discrete transforms 
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on finite sets. Note as examples the discrete Haar transform, the slant transform, 
the discrete cosine transform (DCT), etc. More information about these algorithms 
can be found, for example, in [3] and the references therein. Moreover, the practical 
applicability of the discrete transforms mentioned above and many others is greatly 
supported by the existence of the fast algorithms for their implementation. 

The matrix calculus appears to be a convenient way for representing discrete trans- 
forms and for dealing with them from theoretical, practical and educational point of 
view as well. 

Among different discrete transforms, the Fourier transform on finite non-Abelian 
groups is recommended recently as the best choice in some particular applications 
[24], [25], [26], [54], [55]. As we already noted in Section 2.4, a fast algorithm for 
the implementation of this transform based on the classical Coley-Tukey FFT [3 11, 
is formulated in an analytical form in [23]. It seems that an earlier related result on 
this subject can be found in [ 1 I]. Matrix interpretation of FFT on finite non-Abelian 
groups has been given in [41]. 

The Fourier transform on finite non-Abelian groups can be studied in a unique 
setting with the Fourier transform on Abelian groups as well as the classical Fourier 
transform in the frame of abstract harmonic analysis on groups. However, in the case 
of Fourier transform on non-Abelian groups there are some important differences 
which must be appreciated at least in practical applications. According to this fact, 
our aim in  this chapter is twofold. First, we consider a matrix representation of the 
fast Fourier transform on finite non-Abelian groups introduced in attempting to keep 
the entire analogy with the Abelian case as much as that is possible in the shape of 
the derived corresponding fast flow-graphs, and, then, we point out and discuss the 
main differences of this transform with respect to the fast Fourier transform on finite 
Abelian groups. 

3.1 MATRIX INTERPRETATION OF FFT ON FINITE NON-ABELIAN 
GROUPS 

To obtain a fast algorithm for the computation of the Fourier transform on finite non- 
Abelian groups we use the Good-Thomas method as in  the case of the FFT on finite 
Abelian groups [ 151, [ 161, [52]. 

It is well known that the definition of the fast Fourier transform (FFT) on an 
Abelian group G (an algorithm for the efficient computation of the Fourier transform 
on G) is based upon the factorization of G into the equivalence classes relativc to 
the subgroups of G. This group theoretical approach to the derivation of fast Fourier 
transform in the matrix notation can be interpreted as follows. 

The disclosure of the FFT on a finite Abelian group G of the form (2.4) is based 
upon the factorization of the Fourier transform matrix into a product of sparse factors. 
Such a factorization is possible since the Fourier transform matrix on a given Abelian 
group G of the form (2.4) is representable as the Kronecker product of the Fourier 
transform matrices on its subgroups G,. As is noted in Section 2.1, the transforms 
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whose basic functions are generated as the Kronecker products of unitary irreducible 
representations of equal non-Abelian subgroups are also considered as the generaliLed 
Fourier, or short, Fourier transforms on groups [33]. 

Each of the factor matrices describes uniquely one step of the fast algorithm im- 
plementing the Fourier transform with respect to one particular coordinate z,, i = 
1, . . . , n, determined by (2.5). In other words, the i-th step of the FFT can be consid- 
ered as the restriction of the Fourier transform on the whole group G to the Fourier 
transform on its i-th subgroup G,. It follows that the i-th factor matrix can be repre- 
sented as the Kronecker product of the Fourier transformation matrix on G, of order 
g, at i-th position and the identity matrices of orders gJ, j E (1,. . . , n}\{i}, at all 
other positions into that Kronecker product. We will extend the same approach to the 
non-Abelian groups by using the concepts of the generalized matrix multiplications. 

The matrix [R] in the definition of the Fourier transform on finite non-Abelian 
groups is the matrix of unitary irreducible representations of G over P. Since G 
is representable in the form (2.4), the matrix [R] can be generated as the Kronecker 
product of (K ,  x 9,) matrices [R,] of unitary irreducible representations of subgroups 
G, i E (1, . . . ,  n},i.e., 

a = 1  

Thanks to the well-known properties of the Kronecker product, the same applies 
to the matrix [Rl-l, is., for this matrix holds 

n 

[RIP' = @[RZ]-'. 
o = l  

This matrix can be further factorized into the elementwise Kronecker product of 
n sparse factors [C,], i E { 1,. . . , n}  as 

r1 

[Ci] = @[s;], 2 = 1,. . . , n ,  
J=1 

where 

(3.1) 

and I,,, is an (u  x u )  identity matrix. 
Each matrix [Ci] describes uniquely one step of the fast Fourier transform per- 

formed in n steps. The algorithm is best represented by a flow-graph consisting of 
nodes connected with branches to which some weights are associated. 

The matrix representation and the corresponding fast algorithm obtained in  such 
a way is similar to the FFT on finite Abelian groups, but some important differences 
appear here. 
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As it is known, see, for example [22], the flow-graph of thc i-th step of the FFT 
on a finite Abelian group G of order g has g input and g output nodes. The output 
nodes of the (i - 1)-th step are the input nodes for the i-th step. The input nodes of 
the first step are the input nodes of the algorithm, and respectively, the output nodes 
of the n-th step are the output nodes of the algorithm except for the normalization 
with g- ' .  

In the case of non-Abelian groups, the number of input and output nodes is different 
for the each step of the algorithm. Only the number of input nodes of the algorithm, 
i.e., the number of input nodes for the first step of the algorithm equals g. The number 
of input nodes of the i-th step is glg2.. . gz-lgiKi+l . . . K,, while the number of 
output nodes is 9192 . . . gi-lKzh'z+l . . . K,. Accordingly, the number of output 
nodes of the algorithm is equal to K .  

The positions of non-zero elements of [CZ] determine which nodes will be con- 
nected. The weights associated to the branches are equal to the values of these 
elements. An important difference with respect to the FFT on Abelian groups is that 
in the case of non-Abelian groups the weights may be matrices, and therefore, accord- 
ing to the notation adopted in this book. will be denoted by bold letters. Denote by 
k (  i, j )  the branch connecting the output node j with the input node i in the flow-graph 
of the k-th step of the FFT on a finite group. The weight qk( i , j )  associated to this 
branch is determined by q'( i , j)  = C$-k , where CG-k is the (2 ,  j)- th clement of the 
matrix [ C T L p k ] .  The branches for which the weight is equal to zero, i.e., the branches 
corresponding to zero elements of [C"-']], do not appear in the flow-graph. 

Now let us give a brief analysis of the complexity of the algorithm described 
here. The number of calculations is usually employed as a first approximation to the 
complexity of an algorithm. 

Taking into account the g input nodes, the number of nodes in the flow-graph 
described, and hence, the number of basic operations L(G)  in the FFT on a finite 
non-Abelian group G based on this flow-graph, is equal to 

where a ,  = g192. . . g,-lKIK,+l . . . K,. 

given in  a general form by 
Here by a basic operation in the z-th step of the algorithm we mean the opcration 

C = ( A @ F ) +  ( B @  G )  

B' 

where A, B are matrices of order I I ~ : : T ~ ,  while thc weights F and G are matrices 
of order T,,, . To obtain the Fourier coefficients S j  as they are defined by (2.14), it is 
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needed to perform the normalization by g-' after the calculation in the n-th step of 
algorithm is carried out. 

Recall that in the case of Abelian groups, according to the definition of the unitary 
irreducible representations, all these matrices reduce to the numbers belonging to P ,  
and hcnce, in that case the Kronecker product and matrix addition in P appearing in 
the basic operation defined here, reduce to the ordinary multiplication and addition 
in P. 

Note that the flow-graph of the fast direct Fourier transform can be transformed into 
the flow-graph for the implementation of the inverse Fourier transform by a suitable 
mutual replacement of the input and output nodes, i.e., by considering the output 
nodes as the input nodes and vice versa. Clearly, the weights in this flow-graph are 
determined by the elements of the matrix [R] factorized as 

[R] = [D1] & [D2] & . . . & [D"], 

where 
n 

[Dz] = @[EI], i = 1,. . . 
j = 1  

with 

I ( K , X f 7 ) ,  3 < 1 ,  

IE)I = p 3 1 -  7 3 = 2 >  i I(S,XS,b 3 > 2 .  

The main differences of the FFT on finite non-Abelian groups relative to the FFT 
on finite Abelian groups are summarized in Table 3.1. 

3.2 ILLUSTRATIVE EXAMPLES 

As it is usually the case with problems like those considered here, the algorithm is 
best explained by some examples. 

Example 3.1 Let G 2 x ~  be a given group of order 16. The elements of this group will 
be denoted according to the convention adopted in this monograph by 0, I,..., 15. The 
identity of the group is 0, and the group operation is described in Table 3.2. All the 
unitary irreducible representations over the complex field C are given in Table 3.3. 
Note that in our notation, according to the definition of the inverse Fourier transfi)rm, 
the Table 3.3 defines the matrix [R] in (2.10). 

Note that the group Gax 8 dejined in this way can be considered as the directproduct 
of the cyclic group C2 of order 2 with modulo 2 addition as the group operation, and 
the quaternion group Q2 of order 8. pt 1, while these of the group Q 2  

are in the left upper ( 5  x 8 )  quadrant in Table 3.3 of group representations. The 

The group representations of Cz are [ 
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Table 3.1 Summary of differences between the FFT on finite Abelian and finite non- 
Abelian groups. 

Group G of order g 
non- Abelian 
dual object 
r-the set of unitary 

Abelian 
dual object 

{X}-the set of group 
irreducible representations characters 
r-does not have a group 
structure 

{ X}-has the structure 
of a multiplicative group 

Direct Fourier transform 

S,(w) = g - l r w  cz:: f (~)R,(z- ' ) ,  ?(W) = 9-l Cz!; f ( ~ ) T ( w , ~ )  
Number of spectral coefficients 

K 9 
Inverse Fourier transform 

Fourier transformation matrix 

Order of the Fourier transformation matrix 

Direct Fourier transform in matrix notation 

Inverse Fourier transform in matrix notation 

Number of steps of the fast algorithm 
T l  'I 1 

Number of input nodes 

f(.) = c::; W S , ( w ) R w ( z ) )  

[TI PI - 

K x 9  g x g  

f = g-"z]f 

f = [ZIT 

f(.) = c::; f ^ ( M W ,  3;) 

[S,] = 9-l  [RIP' C> f 

f = PI O [Sf1 

1 -st step g 9 
i-th step glg2 . . . gz-1g2Kt+1 . . . K,  
n-th step g1 K2 . . . K,  

I-st step g 9 
i-th step 9192.. . gr-lKiKi+l . . . K,  
n-th step K 9 

Y 
Y 

Number of output nodes 

9 

Weights in the flow-graph 
The values of unitary irreducible The values of group 
represen tations characters 

{r&- (.I} {x(.)} 
w E (0 , .  . . , K  - 1 } , 2  E ( 0 , .  . . , g  -- l} w, 2 E {0,1, . . . , g - 1) 

9-1 Y- '  

Factor of normalization after n-th step 



ILLUSTRATIVE EXAMPLES 43 

cardinality of the dual object r of GZx8 is K = 10, and, according to (2.7) can be 
represented as K = KlKz = 2 .5. 

Notice that the ordering of the columns in Table 3.3 is the result of the usage of the 
Kronecker product to build the representations (compare the first 8 rows of the first 
five colunins in Table 2.9). 

The transformation matrix of the Fourier transform on Gzx8 can be factorized as 
follows: 

where 

(3.2) 

(3.3) 

with [ & I r 1  as determined in Table 2.9 in Example 2.3. 
TheJEow-graph of the fast Fourier transform on GIs corresponding to this fac- 

torization is shown in Figure 3.1. For simplicity the weights corresponding to the 
branches of thisJEow-graph are not indicated in this jigure. As we noted above, 
these weights are determined by the values of the elements of the matrices (3.3) and 
(3.2) for the first and the second step of the flow-graph, respectively. For example, 
q1(5, 4) = 2iD/8 and q2(3, 2 )  = 0. 

Note that in the example considered above the Fourier transform on the quaternion 
group Q2 and Cz, is used as the basic module, and hence, is performed directly. In 
the examples below, we consider the Fourier transform on the symmetric group of 
permutations of order 3, 5'3, in the same way. However, the fast algorithms for the 
computation of Fourier transform on these groups can be used here at least for the 
calculation of the coefficients corresponding to the unitary irreducible representations 
of order 1 and using the matrix operations for the calculation of the remaining co- 
efficients. Of course, by a complete use of these fast algorithms, and therefore, by 
avoiding the matrix operations, the algorithms shown here can be easily translated 
into the ordinary-like FFT algorithms like those used in the case of Abelian groups. 
A discussion of this approach is given in [33]. 

The presented matrix interpretation of the FFT on finite non-Abelian groups re- 
quires the implementation of matrix operations in some branches of the algorithm. 
Therefore, the presented algorithms are cfficient providing that the elements of the 
corresponding matrices are calculated simultaneously on some multiprocessor ar- 
chitectures. In other words, the matrix interpretation assumes that the constituent 
subgroups G, of G are used as the basic modules, as in  the case of Abelian groups, 
the Fourier transform on G is decomposed into n Fourier transforms on G,, where it 
is implemented directly. 

However, if the calculation of matrix-valued Fourier coefficients is decomposed 
into the calculation of their matrix elements, extending in that way the size of each 
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Table 3.2 Group operation of GxR. 

0 I 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

1 2  3 0 5 6 7 4 9 1 0 1 1  8 1 3 1 4 1 5 1 2  

2 3 0 1 6  7 4 5 1 0 1 1  8 9 1 4 1 5 1 2 1 3  

3 0 1 2  7 4 5 6 1 1  8 9 1 0 1 5 1 2 1 3 1 4  

4 7 6 5 2 1 0  3 1 2 1 5 1 4 1 3 1 0  9 8 1 1  

5 4 7 6 3 2 1 0 1 3 1 2 1 5 1 4 1 1 1 0  9 8 

6 5 4 7 0 3 2 1 1 4 1 3 1 2 1 5  8 1 1 1 0  9 

7 6 5 4 1 0  3 2 1 5 1 4 1 3 1 2  9 8 1 1 1 0  

8 9 1 0 1 1 1 2 1 3 1 4 1 5  0 1 2  3 4 5 6 7 

9 1 0 1 1  8 1 3 1 4 1 5 1 2  1 2  3 0 5 6 7 4 

1 0 1 1  8 9 1 4 1 5 1 2 1 3  2 3 0 I 6  7 4 5 

1 1  8 9 1 0 1 5 1 2 1 3 1 4  3 0 1 2  7 4 5 6 

1 2 1 5 1 4 1 3 1 0  9 8 1 1  4 7 6 5 2 1 0  3 

1 3 1 2 l 5 1 4 1 1 l 0  9 8 5 4 7 6 3 2 1 0  

1 4 1 3 1 2 1 5  8 1 1 1 0  9 6 5 4 7 0 3 2 1 

1 5 1 4 1 3 1 2  9 8 1 1 1 0  7 6 5 4 1 0  3 2 
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Table 3.3 Unitary irreducible representations of Gzxs over C. 

- 
5 - 
0 

1 
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3 
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8 

9 

10 

11 

12 

13 

14 

1 5  - 

1 1 1 1  

1 -1 1 -1 

1 1 1 1  

1 -1 1 -1 

1 1 -1 -1 

1 -1 -1 1 

I 1 -1 -1 

1 -1 -1 1 

1 1 1 1  

1 -1 1 -1 

1 1 1 1  

1 -1 1 -1 

1 1 -1 -1 

I -1 -1 1 

1 1 -1 -1 

I -1 -1 1 

1 1 1 1 1  I 
iA  1 -1 1 -1 ZA 

- 1 1  I 1 1 - 1  

iB 1 -1 1 -1 ZB 
c 1 1 - 1 - 1  c 

ZD 1 -1 -1 1 -iD 

E I I -1 -1 E 

iD 1 -1 -1 1 ZD 
I -1 -1 -1 -1 -I 

ZA -1 I -1 1 ZB 
-I -1 -1 -1 -1 I 
iB -1 1 -1 1 iA  

c -1 -1 1 1 E 

ZD -1 1 1 -1 iD 
E -1 -1 1 1 C 

ZD -1 1 1 -1 -iD 
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Fig. 3.7 Structure of the flow-graph of the FFT on the group GZx8. 
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step of the FFT into g, the fast algorithms for the calculation of the FFT on some of the 
basic constituent subgroups can be applied by taking the advantage of some peculiar 
properties of group representations of the constituent subgroups. For example, the 
calculation of Fourier transform on the quaternion group Q2 can be done without 
multiplication except the multiplication by the imaginary unit i, see Example 2.3. 
The statement will be illustrated by the following example. 

Example 3.2 Let G32 be the direct product of two cyclic groups C2 of order 2 with 
modulo 2 addition as the group operation and the quaternion group Q 2  of order 8, 
i.e., G32 = C2 x Cz x Q2. The Fourier transformation matrix on this group over the 
complex field can be factorized as 

[R]-' = [C'] & [C2] 6 [C3] 

where 

with the matrix [ Q 2 ]  described in Example 2.3. 
The structure of the$ow-graph of the FFT on G32 derived according to this 

factorization is given in Figure 3.2. For simplicity, the weighting coeficients are not 
shown at the edges of the graph, and these values are determined by the values of the 
corresponding matrix elements in the factorization of transform matrices. 

In this algorithm the Fourier transforms on the cyclic groups C2 and the quaternion 
group Qz are used as the basic modules, and hence they are performed directly. The 
C2 is the simplest possible case, but the Fourier transform on Q 2  can be carried out 
by using the corresponding fast algorithm. If we do not like to work with matrix 
operations in a FFT flow-graph, and if we use the fast algorithm on Q 2 ,  the algorithm 
given in Figure 3.2 can be translated easily into an ordinary FFT like those used in 
the case of Abelian groups. In that order note that the first four rows of [&Iu1  are 
identical to some particular Walsh functions on the finite group of order 8, and, hence, 
some of the values representing the output from the first step of our algorithm can be 
calculated by using apart of the flow-graph of the corresponding fast Walsh transform. 
The remaining output values from the first step correspond to the group representation 
of order 2, and therefore they are (2 x 2) matrices. The elements of these matrices 
will be calculated independently and for efficiency we will use the fact that each of 
the matrices I, A, B, C, D, E contains two zero elements. In this way we derive 
the algorithm for the calculation of Fourier transform on G32 shown in Figure 3.3. 
This algorithm can be compared with the corresponding algorithm presented in [33]  
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Fig. 3.2 Structure of the flow-graph for FFT on the group C:32.  
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Fig. 3.3 Structure of the flow-graph for FFT on the group GS2 through a part of fast 
Walsh transform. 
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Fig. 3.4 Structure of the flow-graph for FFT on the group GS2 using FFT on Qz 
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shown in Figure 3.4. In this algorithm a different fast algorithm for the calculation 
of the Fourier transform on the quaternion group described in Example 2.3 is used. 

Example 3.3 Let S, = (0, (132), (123), (12), (13), (23),0) be thesymmetricgroup 
ofpermutations of order 3 defined in Example 2.1. Let G 6  x6 = S, x S, be the direct 
product of S, with i.e., G G ~ G  consists of pairs ( h l ,  h2) = g E Gex6, where 
hl ,  h2 E S3. The group operation of G 6 x 6  is specified as follows: for (h l ,  h2) = 

g E G6x6,  and (hi ,  h i )  = g' E G ~ i x 6 ,  we have (hl h i ,  h2 h i )  = g 09' E G6x6. 

The group operation table is large and we do not write it explicitly. I t  can be easily 
derivedfrom the group operation table for S,. The unitary irreducible representations 
Of G 6 x 6  over the Galois$eld G F ( f 1 )  are given in Table 3.4. 

The Fourier transform matrix on G 6 x 6  can be factorized as 

[R6x6]-1 = [C'] & [ C 2 ] !  

where 

[C'] = [S3] 8 [ I ~ x ~ I  > 

[c2] = [ I6x6 ]  @ [S3] > 

with 

[ S g ] - l  = 2 [ ; ; ; l'o l'o l'o ] 
21 2B 2A 2C 2D 2E 

with the notation as in Table 2.5 since A = BT, and C, D, E are symmetric matrices. 
TheJlow-graph of the fast Fourier transform on G 6 x 6  based on this factorization 

is shown in Figure 3.5. 

Example 3.4 Let Gax 6 be the direct product of the group Z, = ( 0 , l  , 2, i) of integers 
less than 3 with modulo 3 addition as the group operation, and the symmetric group 
ofpermutations of order 3,  S, described in Example 2.1. The group Z3 is an Abelian 
group, and therefore, their representations are given by the matrix of characters [ X I  
as follows: 

1 1  1 

1 e2 
[XI = [ 1 el z; ] 1 

where el = -2-'(1 - i f i ) , e 2  = -2-l(1 + za). The unitary irreducible rep- 
resentations of s, over C are given in Table 2.2. Hence, G s x 6  consists of pairs 
(h l ,  h2) = g E G 3 x 6  where hl E Z3 and h2 E S,. The group operation o of G3x6 

is specified as follows: for ( h l ,  h2) = g E GsxG and ( h i ,  hi) = g' E G 3 x 6  we have 

(hl i hi,  h2 hi)  = g o g1 E Gsx6 .  The group table of G 3 x 6  is given in Table 3.5, 
while the unitary irreducible representations of G s x 6  are given in Table 3.6. 
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I 

Table 3.4 The unitary irreducible representations of G,jx6 over GF(11). 

6 

7 

8 

9 

10 

1 1  

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 
33 

74 

35 - 

l I l l  1 

l A l l A  

I B I I B  

10 c 1 10 c 
10 D I 10 D 
10 E 1 10 E 
I I l l I  

R6 
I 
I 
I 
I 
I 
I 
A 

R7 
I 

I 
I 

101 

101 

101 

A 

1 I A I 1  A A A A @ A  
1 1  B I 1  B A A A @ B  
1 10 C 1 10 C A 10A A @ C  

I 10 D 1 10 D A IOA A B D  
I 10 E 1 10 E A IOA A R E  
I I I l l I B  

1 1 A 1 1 A B  

I l B l l B B  

1 1 0 C 1 1 0 C B  
1 1 0 D 1 1 0 D B  

1 1 0 E 1 1 0 E B  

I 1 I 10 10 I01 c 
1 1 A 10 10 IOA C 

1 1 B 10 10 JOB C 
1 10 c 10 1 IOC c 
I 10 D 10 1 IOD C 

1 10 E 10 I 10E C 
I I I 10 10 101 D 

1 1 A 10 10 IOA D 

1 1 B 10 10 IOB D 

1 10 C 10 1 1OC D 
I 10 D 10 1 10D D 
I 10 E 10 1 IOE D 
I 1 I 10 10 101 E 

1 1 A 10 10 IOA E 
I I B 10 10 IOB E 
1 10 C 10 1 1OC E 
1 10 D 10 1 10D E 
1 10 E 10 1 IOE E 

I, A, B, C, D, E as in Table 2.5. 

B 
B 
B 

I OB 

1 OB 

1 OB 

C 

C 
C 

1 oc 
1 oc 
1 OC 
D 
D 
D 

1 OD 

I OD 

1 OD 
E 
E 
E 

1 OE 

I OE 

1 OE 
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Fig. 3.5 Structure of the flow-graph for FFT on the group Gex6. 
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The Fourier transformation matrix on Gsx6 can be factorized as 

[RIP' = [C'] [C2], 

with 

1 [Sgl-'  = 1 [ 1 1 1 -1 -1 -1 
1 1 1 1 1 1  

' 21 2B 2A 2C 2D 2E 

The structure of the flow-graph of the fast Fourier transform on G3x6 derived 
according to this factorization is given in Figure 3.6. 

Example 3.5 Consider the group G24 = C2 x C2 x S3, where C2 is the cyclic group 
of order 2 and S3 is  the symmetric group of permutations of order three. 

Group representations of C2 over GF(11) are given by the columns of the matrix 

This matrix is self-inverse up to a multiplicative constant, and therefore, the Fourier 
transform on C2 is defined by the transform matrix 

W-'(l) = 6 [ l i ]  
Table 2.5 shows the group representations of S3 over G F (  11). The Fourier trans- 

form matrix on G ~ J  is defined by 

[R24]-l(3) = (W-l(l) 60 W-'(1) @ [S3]-'(1)) mod (11). 

[R24]-'(3) = [C'] & [C2] & [C'], 

where 
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0 __. 
0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 1  

12 

13 

14 

15 

16 

Table 3.5 The group operation of G3x6. 

17 17 15 16 13 14 12 5 3 4 1 2 0 1 1  9 10 7 8 6 

0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7  

0 I 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7  

1 2  0 5 3 4 7 8 6 11  9 1 0 1 3 1 4 1 2 1 7 1 5 1 6  

2 0 1 4  5 3 8 6 7 1 0 1 1  9 1 4 1 2 1 3 1 6 1 7 1 5  

3 4 5 0 1 2  9 1 0 1 1  6 7 8 1 5 1 6 1 7 1 2 1 3 1 4  

4 5 3 2 0 1 I 0 1 1  9 8 6 7 1 6 1 7 1 5 1 4 1 2 1 3  

5 3 4 I 2  0 1 1  9 1 0 7  8 6 1 7 1 5 1 6 1 3 1 4 1 2  

6 7 8 9 1 0 1 1  1 2 1 3 1 4 1 5 1 6 1 7 0  1 2  3 4 5 

7 8 6 11 9 1 0 1 3 1 4 1 2 1 7 1 5 1 6  I 2  0 5 3 4 

8 6 7 1 0 1 1  9 1 4 1 2 1 3 1 6 1 7 1 5 2  0 I 4  5 3 

9 1 0 1 1  6 7 8 1 5 1 6 1 7 1 2 1 3 1 4 3  4 5 0 I 2  

1 0 1 1  9 8 6 7 1 6 1 7 1 5 1 4 1 2 1 3 4  5 3 2 0 1 

11  9 1 0 7  8 6 1 7 1 5 1 6 1 3 1 4 1 2 5  3 4 1 2  0 

1 2 1 3 1 4 1 5 1 6 1 7 0  1 2  3 4 5 6 7 8 9 1 0 1 1  

1 3 1 4 1 2 1 7 1 5 1 6  1 2  0 5 3 4 7 8 6 11 9 10 

1 4 1 2 1 3 1 6 1 7 1 5 2  0 1 4  5 3 8 6 7 1 0 1 1  9 

1 5 1 6 1 7 1 2 1 3 1 4 3  4 5 0 1 2  9 1 0 1 1  6 7 8 

1 6 1 7 1 5 1 4 1 2 1 3 4  5 3 2 0 1 1 0 1 1  9 8 6 7 
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Table 3.6 The unitary irreducible representations of G s x 6  over C. 

X - 
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I 

2 
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10 

I 1  

12 

13 

14 

15 

16 

17 

1 

1 

1 

I 

1 

1 

1 

1 

1 

1 

1 

1 

I 

I 

I 

1 

1 

1 

1 

1 

I 

-1 

-1 

-1 

1 

1 

I 
-1 

-1 

-1 

1 

1 

1 

-1 

-1 

-1 

I 
A 

B 

C 
D 

E 
I 
A 

B 

C 
D 

E 
I 
A 

B 
C 
D 
E 

The notation as in  Table 2.2 
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Fig. 3.6 Structure of the flow-graph for FFT on the group GSx6. 



Fig. 3.7 Structure of the flow-graph for FFT on Gzs .  
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Figure 3.7 shows the jow-graph of FFT on G24 derived from this factorization of 
[R24]-l(3). In thispow-graph, the weights a f  the edges are elements of [&I( l), and 
of W(1). 

As described above, in Example 3.2, with FFT the calculation of one-dimensional 
Fourier transform on G of the form (2.4) is transferred into successive calculation of 
7% Fourier transforms on the constituent subgroups G, of G. Each block in the related 
flow-graph corresponds to a subgroup G,. In these blocks, calculation of the Fourier 
transform on G, is performed directly by definition of the transform. Some further 
reduction of computations can be achieved if it is possible to develop some FFT on 
the constituent subgroups [54]. 

The Fourier transform matrix on S3 written in terms of functions Rk'3)(x) shown 
in Table 2.7, is given by 

1 1 1 1 1 1  I 1 1 1 10 10 10 
2 10 10 2 10 10 

s ;1(1)=2/  0 5 6 0 5 6 

0 6 5 0 5 6  
2 1 0 1 0  9 1 1  I 

This matrix can be factorized as follows: 

S S ( 1 )  = 2 

1 0  0 1 0  0 0 
1 0 0 1 0 0  
0 1  0 0 1 0  0 
0 0  1 0  0 1 0  
0 0 1 0  0 0 1 0  
0 1 0 0 1 0  

1 1 1 0 0 0  
2 1 0 1 0  0 0 0 
0 5 6 0 0 0  
0 0 0 10 10 10 
0 0 0 9 1 1  
0 0 0 0 6 5  

mod (11). 

This factorization produces the FFT on S3 over GF(11). Figure 3.8 shows the flow- 
graph of this FFTon s,. In this figure, the ordering of elements of Sf(2) as S f  (2)(O.'), 
Sf(2)( l>l) ,  Sf(2)(l>'), Sf(2)(Ol1), makes the graph symmetric. 

Figure 3.9 shows the FFT on G24 derived by using FFT on ,573. In this flow- 
graph all the weights are numbers. The output is the vector of number-valued Fourier 
coefficients Sf(O),  S f (  l), and elements of the matrix-valued Fourier coefficients 
S;J)(~), i, j = 0, I, for f .  

3.3 COMPLEXITY OF THE FFT 

In this section, we compare efficiency of the FFT on finite dyadic groups and the 
quaternion groups. Rationales for this comparison can be found in  the following 
considerations. 

In some areas as, for example, the switching theory and logic design [36],  the 
application of spectral methods, although theoretically proven very efficient [ 11, [ 3 ] ,  
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Fig. 3.8 Structure of the  flow-graph for FFT on S3.  

[20], [ 191, 1221, [56] ,  is rather restricted in practice for the exponential complexity of 
the FFT and related algorithms. In these areas, it is often required to calculate with 
switching functions of a large number of variables, for example, n > 20 or more. 

In spectral methods, the switching functions, being dependent on two-valued vari- 
ables, are naturally considered as functions on the dyadic groups. At the same time, 
being two-valued functions, the set of all switching functions of n-variables is the 
dyadic group of order Ci" under the componentwise EXOR performed over truth- 
vectors. 

These basic features determine complexity of representations, manipulations and 
calculations with switching functions. If n is large, these features become a restrictive 
factor for many methods and techniques. For example, determination of coefficients in  
spectral transform representations, as for example, the Reed-Muller expressions and 
related Kronecker expressions [35] ,  1471, by FFT-like algorithms 141, [ 5 ] ,  expresses 
exponential complexity of O(2") and O(722") in terms of space and time. The same 
applies to arithmetic, Walsh, and other related representations of switching functions 
[Sl] .  Thus, if n is large, for example n > 30, such algorithms are hardly applicable 
on most of standard computer architectures. 

In [54], the following question is asked: "The ultimate purpose must be to find out 
whether this group (the quaternion 622) may be as significant for logic synthesis as i t  
seems to be for filtering and other signal processing tasks". 

The following considerations, based on 1451 and 1461, are an attempt towards 
approaching an answer to this question. The switching functions are considered as 
elements of vector spaces on the dyadic groups and the quaternion groups over C. 

We assume that in an wvariable switching function f ,  each triplet of variables 
zz, x3,zk, where each variable takes values in C,, is replaced by a variable X ,  on 
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Fig. 3.9 Structure of the flow-graph for FFT on G24 with FFT on &. 
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Q2. In that way, the domain group C? for f is replaced by Q:, for n = 3 k ,  by C2Q$ 
for n = 3k + 1, and by C4Q: for n = 3k + 2. C4 is the cyclic group of order 4. 

3.3.1 Complexity of calculations of the FFT 

We compare the space and time complexity of the FFT on dyadic and quaternion 
groups by the way of examples of mcnc benchmark functions used in logic design and 
random generated switching functions. Multiple-output functions f o  * f l  * . . . * fq- l  

are represented by the integer equivalents f i  determined by the mapping f z  = 

cpzt azfi. For hardware limitations, the comparison is restricted to small benchmark 
functions. For detailed theoretical considerations and further examples we refer to 
[451. 

The Walsh transform is the Fourier transform on dyadic groups. Calculation of 
the Walsh transform by FFT requires more operations than calculation of other spec- 
tral transform representations on dyadic groups, as for example, the Reed-Muller, 
Kronecker, or arithmetic expressions [ 141, since unlike these transforms, the Walsh 
transform matrix does not contain zero elements. Thus, it is enough to compare the 
complexity of calculations of Fourier transforms on dyadic and quaternion groups. 
The derived conclusions holds even stronger for other spectral transform represen- 
tations on dyadic groups. It is enough to compare the implementations through the 
FFT. In DDs based calculations, discussed in what follows, we actually implement 
the FFT. For a given f ,  efficiency may be achieved thanks to peculiar properties o f f ,  
permitting reduction in DDs. Therefore, for a fair comparison for arbitrary functions, 
we should refer to calculations through DTs. However, in that case, the number of 
operations is equal to that in the FFT. Thus, it is again enough to compare just FFTs. 

Figure 3.10 compares the number of operations in the FFT on dyadic groups of 
order and quaternion groups of order T .  It shows that for n > 10, the quaternion 
groups require fewer number of operations. For analytical expressions of the number 
of operations and details of implementation of the FFT on the compared groups, see 
[451. 

Table 3.7 shows the number of inputs n, time ( t ) ,  and space (m) required to perform 
the FFT on dyadic (d )  and quaternion groups (9 )  for some benchmark switching 
functions of different number of variables n. For rt = 8,9,10,14, we use the domain 
groups Cg, Cz, Cia, Ci4, and C4Q;, Q;, C2Q2, C d Q $ ,  respectively. Comparison 
of the considered groups is given in  Table 3.8 in terms of the ratio rt = t d / t q  and 
T, = rnd/rr iq  of the used time and space. Table 3.9 and Table 3.10 give the same 
information for random generated functions denoted by fun(n) for 71 = 9,10,12.14. 
Time unit is lmsec = lO-’sec. The space is given in  KBytes. Calculations were 
performed on a 133MHz Pcntium PC with 32MBytes of main memory. 

Figure 3.1 1 compares time required to perform the FFT on C;r and Q; for different 
values of T .  Figure 3.12 compares the corresponding space requirements. 

This consideration shows that quaternion groups permit faster implementation of 
the FFT for large switching functions than dyadic groups, at the price of a compara- 
tively small increase of the required space. For example, for n > 10 for at about ten 
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9 0.73 2.28 

10 1.04 2.30 

10 1.06 2.31 

10 0.50 2.26 

14 0.34 2.77 

14 0.09 2.77 

14 0.53 3.19 
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Table 3.9 FFT for random functions. 

Table 3.10 Comparison of the FFT for random functions. 

fun(l4) 0.10 2.80 
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Fig. 3.77 Time requirements. 
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times faster implementation of the FFT, three times more space is required. When 
the number of variables 71 grows, the advantages of quaternion groups increase. 

It follows that, compared to dyadic groups, the quaternion groups have advantages 
as domain groups for large switching functions. 

3.3.2 Remarks on programming implementation of FFT 

It should be noticed that besides the number of operations, the programming imple- 
mentation of a fast algorithm and the hardware used strongly affects its efficiency in 
terms of time. This aspect also requires some analysis in determination of a trans- 
form suitable for a particular application and taking into account also the hardware 
provided. 

For a given spectral transform different factorization formulas can be derived. 
These formulas are derived from the same given set of factorization rules for different 
specification of various parameters. The number of different formulas is large and 
dependent on the transform size. For example, as pointed out in  [38], there are 
possible 258400 and 1.8 x 1013 different formulas for the FFT of the size 25 and 
26, respectively. Several different factorizations may require the same number of 
arithmetic operations, however, the order of implementation of the operations may 
considerably influence the calculation time extending it from 2 to 10 times. In this 
respect, a lot of research work has been done in searching for the best implementation 
formulas for the intended hardware. For instance, methods for determination of the 
most efficient fast Walsh transform with respect to the implementation time has been 
considered in [21], [32]. Extensions and generalizations of these approaches to the 
derivation of algorithms that select the best implementation for a variety of signal 
processing algorithms have been proposed, for example, in [ 121, [38]. Related work 
for FFT is given, for example, in 1131, [27], [28]. 

3.4 FFT THROUGH DECISION DIAGRAMS 

FFT algorithms on either Abelian or non-Abelian groups are based upon the vector 
representations of discrete functions. It follows from the definition of the FFT and 
their matrix description that space complexity of the FFT on a decomposable group G 
of order g approximates O(g) .  The time complexity is O(ng).  Thus, the application 
of the FFT is restricted to groups of relatively small orders. This restriction can be 
overcome by performing FFT on the decision diagram representations of discrete 
functions in the same way as that has been done for various discrete transforms on 
finite Abelian groups. 

3.4.1 Decision diagrams 

A decision diagram (DD) is a data structure that can compactly represent discrete 
functions. It is derived from a Decision trec (DT) by merging decision routes that 
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lead to same final value. In this way they often require much less space that other 
representations. 

In this book, we use Multi-terminal decision diagrams (MTDDs) [29] to represent 
discrete functions on finite not necessarily Abelian groups. MTDDs are a general- 
ization of Multi-terminal binary DDs (MTBDDs) [9]. MTBDDs were defined as a 
generalization of Binary DDs (BDDs) [6] by permitting complex numbers as the val- 
ues of constant nodes. Thus, they can be used to represent complex-valued functions 
on dyadic groups. Multiple-place decision diagrams (MDDs) are a generalization of 
MTBDDs from dyadic groups to groups which are direct product of cyclic groups of 
order p ,  C,, [29], [39], [49], [50]. They are derived by allowing p outgoing edges 
for each node in the DD. MTDDs are a further generalization of MDDs derived by 
allowing that nodes at different levels in the MTDD may have different number of 
outgoing edges. 

MTDDs are derived by the reduction of Multi-terminal decision trees (MTDTs), 
which can be introduced through the following considerations. 

A function f(z) = f(z1,. . . , 2,) on G = GI x . . . x G,, where \GI = 91. . . g ,  
is defined by specifying its values on each (XI,. . . , z,) E G. This can be done in a 
recursive manner as decision tree as follows. Starting form the root node (level 0) we 
have gl branches for the choices of values for XI. From each of these g1 nodes (on 
level I ) ,  we have g2 branches for the y2 choices of the values for 2 2 .  From each node 
at level n - 1, we have gn branches to the leaves of the decision tree. Each leave gives 
the value of the function corresponding to the element (XI,. . . , 2,) of G leading to 
the leave. Thus derived decision tree is called Multi-terminal decision tree (MTDT), 
since each node has more than two outgoing branches usually called edges. 

A Multi-terminal decision diagram (MTDD) for a given f is derived from the 
MTDT by sharing isomorphic subtrees and deleting the redundant information in the 
decision tree [37]. Formally, a MTDD can be defined as follows. 

Definition 3.1 (Multi-terminal Decision Diagram) 
A MTDD for representation o f f  E P( G )  is a rooted directed acyclic graph D( V, E )  
with the node set V consisting of non-terminal nodes and terminal or constant nodes. 
A non-terminal node is labeled with a variable xz o f f  and has gz successors denoted 
by SUCCI, ( v )  E V with k t G,. A constant node v is labeled with an element from P 
and has no successors. 

In a MTDT, the i-th level consists of all the nodes to which the variable xi is 
assigned. In a MTDD, edges connecting nodes at non successive levels may appear. 
Cross points are points where such an edge crosses levels in the MTDD. Through 
cross points, the impact of the deleted nodes from the MTDT is taken into account. 
The concept of MTDD is explained and illustrated by the following example. 

Example 3.6 Consider a function f on GZ4 = C, x (22 x SB, described in the 
Example 3.5. I f f  is given by the truth-vector 

f = [0 ,6 ,2 ,1 ,0 ,0 ,2 ,1 ,1 ,0 ,0 ,0 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,2 ,2]~ ,  



68 MATRIX INTERPRETATION OF THE FFT 

then it can be represented by the MTDD showrz in Figure 3.13. I n  thisJigure, xa 
denotes that the variable xi takes the value j .  

,I f 

Fig. 3.13 MTDD for f in Example 3.6. 

3.4.2 FFT on finite non-Abelian groups through DDs 

From the theory of Good-Thomas FFT, t j e  calculation of the Fourier transform on a 
decomposable group G of order g,  can be performed through T L  Fourier transforms 
on the constituent subgroups G, of orders 9%. 

Calculation of Fourier and Fourier-like transforms through decision diagrams is 
possible thanks to the recursive structure of decision trees, which is compatible with 
the recursive structure of Kronecker product representable and related transform ma- 
trices. 

Calculation procedures based on decision diagrams representations of discrete 
functions have been proposed for various discrete transforms on Abelian groups 191, 
[49], [50], [53]. The decision diagrams methods on non-Abelian groups are exten- 
sions of these for Abelian groups. Therefore, before discussing decision diagram 
methods on non-Abelian, we first briefly explain by an example the calculation of 
spectral transform on Abelian groups. 

The following example illustrates the decision diagram methods for calculation of 
spectral transforms for the case of the Fourier transform on dyadic group of order 8, 
i.e., the Walsh transform for n = 3 whose FFT is shown in Figure 2.3.  There are 
several interpretation of such methods, most of them exploiting the recursive structure 
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of the Walsh matrix [9], [29], [47]. In this example, the method will be explained by 
pointing relationships to the FFT-like algorithm for the Walsh transform. 

If 

Fig. 3.74 BDD for f in Example 3.7. 

Example 3.7 For n = 3, the Walsh transform matrix is dejned as 

3 
1 

w(3)-' = 8 @ W(1), 
2 = 1  

where the basic Walsh matrix is W = [ 
culations the scaling factor 
pe$ormed after the spectral coeficients are calculated. 

product of three sparse matrices, i.e., 

-; 1. For simplicity, in further cal- 

will be omitted assuming that dividing by 8 will be 

Due to the properties of the Kronecker product, W(3) can be factorized into the 

where 

c1 = W(1) @ 1 2 x 2  63 1 2 x 2 ,  

c2 = 12x2  c3 W(1) 8 1 2 x 2 ,  

c3 = 1 2 x 2  63 1 2 x 2  @ W(I), 

where I z x 2  is the (2 x 2 )  identity matrix. 
The matrices C1, Ca, and C3 describe steps in the FFT-like algorithm for  the Walsh 

transform in Figure 2.3, pe$orming the Walsh trunsform with respect to the variables 
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2 1 ,  2 2  and 2 3 .  In a similar way, matrices C1, C2 and C3 describe processing of 
nodes in a binary decision tree fo r  n = 3 in Figure 3.14. The identity matrix means 
the identical mapping, thus, there is no processing of levels to which they correspond. 
Thus, C1 shows that we process the root node by W1, and nodes at the other levels 
remain unprocessed. Similarly, matrices C2 and C3 show that we process by W(1) 
nodes at levels to which x2 and x3 are assigned. Therefore, it follows that each node 
in the decision tree should be processed by W(1). The processing means that we 
perform calculations determined by W(1) over the subfunctions to which point the 
outgoing edges of the processed node. 

For a function represented by the decision tree in Figure 3.14 the calculations of 
the Walsh spectrum are performed as follows. 

1. The nodes at the level for  x3 are processed as follows: 

f o  + f l  

f 2  + f 3  

f 4  + f 5  

f 4  - f 5  

q3 , l  = w(1) [ ] [ f 2  - f 3  ] , 

f G  + f 7  

f G  - f 7  
43.3 = W(1) [ ; ] = [ ] 

2. The nodes for  2 2  are processed as 

3. The root node for  2 1  represents the Walsh spectrum since the calculations at 
this node are as follows: 
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- - 

f a  + f l  + f 2  + f 3  + f 4  + f s  + f s  + f7  - 
f a  - f l  + f 2  - f 3  + f 4  - f 5  + f f j  - f7  

f a  + f l  - f 2  - f 3  + f4 + f 5  - f 6  - f i  
f a  - f l  - f 2  + f 3  + f4 - f ;  - f 6  + f 7  

f a  + f l  + f 2  + f 3  - f 4  - f s  - f 6  - f7 

f a  + f l  - f 2  - f 3  - f 4  - f s  + fc  + f i  
f o  - f l  - f 2  + f 3  - f 4  + f 5  + f6 - f7 

f o  - f l  + f 2  - f 3  - f 4  + f 5  - f6  + f 7  

Thus, this is by definition of the Walsh transform, the Walsh spectrum in the Hadaniard 
order: After the calculations are petformed, we divide the thus calculated spectral 
coeficients by 8 to determine their proper values. If each step of the calculation is 
represented by a decision tree, the result is the decision tree for the Walsh spectrum. 
Figure 3.15 shows this calculation procedure. 

This example illustrates calculations of the Walsh spectrum over the decision tree, 
since decision trees has the same structure for all the functions for a given number of 
variables. However, for a given function f ,  the same calculations can be performed 
over the decision diagram for f .  The reduction of a decision tree into a decision 
diagram results in the appearance of cross points, which are processed as nodes 
whose both outgoing edges point to the same subfunction o f f .  

That approach can be extended to finite non-Abelian groups thanks to the matrix 
interpretation of the Fourier transform. Calculation through MTDDs consists in the 
processing of non-terminal nodes and cross points. 

A MTDD represents the vector F for f .  Each non-terminal node, or the cross 
point, in the MTDD can be considered as the root node of a subtree of the MTDD. 
Each subtree represents a subvector in F. In that way, the processing of nodes and 
cross points in the MTBDD means calculations over subvectors represented by the 
subtrees rooted at the nodes where arrive the outgoing edges of the processed nodes 
or the cross points. 

The calculations are performed through some rules that may be conveniently de- 
scribed by matrices. If this is an identity matrix, the processing reduces to the con- 
catenation of subvectors. 
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Fig. 3.75 MTBDD for the Walsh spectrum for f in Example 3.7 
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beg in  {procedure} 
for z = n to 1 

for k = 0 to Qz do 
Determine qz,k by using the rule (3.4). 

Store [S,] = g l .  
end{p7-OCedU7-e} 

Fig. 3.76 Calculation procedure for the Fourier transform. 

Definition 3.2 The operation of concatenation, denoted by 0, over an ordered set of 
n vectors { A1 , . . . , A,} of order rn is the operation producing a vector S of order 
nrn consisting of n successive subvectors A1 , . . . , ArL. 

Example 3.8 Application of the operation of concatemtion over the set of three 
vectors A = [ula2a3IT, B = [blb2/13]’, C = [ c l c 2 ~ 3 ] ~ ’  produces the vector D = 

A o B o C = [ n l a a ~ 3 b ~ b 2 b 3 c i ~ 2 c ’ 3 ] ~ .  

It follows that the calculation of the Fourier coefficients o f f  on a finite decom- 
posable group G of order g given by the decision diagram can be carried out through 
the following procedure. 

3.4.2.1 
G of the form (2.4). 

Calculation procedure Given 3 function f on the decomposable group 

1. Represent f by a MTDD. Denote by QL the number of non-terminal nodes at 
the 2-th level, i.e., the level corresponding to the variable 2, o f f ,  in  the MTDD. 

2. Descent the MTDD in  a recursive way level by level starting from the constant 
nodes at (11 + 1)-st level up to the root node at the level I .  

3. For 2 = 12 to 1, process the nodes and cross points by using the rule 

(3.4) 

easily derived from the matrix factorization of [RIP’. 

Figure 3.16 shows this procedure expressed in a programming pseudo code. 
It should be pointed out that there is no matrix computation, and only vector 

operations are used in  the computation of Fourier coefficients through this procedure. 
This ensures efficiency of the procedure. The vectors are represented by decision 
diagrams, which permits processing of functions on groups of large orders. The 
matrix-valued vector determined in the root node q1 is the Fourier spectrum o f f .  

The procedure is probably best explained through an example by using the matrix 
notation. 
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Example 3.9 Consider the function f in Example 3.6. The Fourier spectrum for f 
is calculated as 

[ S f ]  = [ R 2 4 ] - l ( 3 ) F  mod (11). 

Thus, 

where 

since the scaling factor 6 . 6 . 2 modulo I 1  reduces to 6. Finally, 

In (3. I ) ,  each matrix [C'] describes uniquely one step of the fast Fourier transform 
performed in n steps. In decision diagrams, the operation in the j-th step of FFT is 
performed over the nodes and cross points at the j - th  level in the decision diagrams. 
Therefore, the Fourier spectrum o f f  in Example 3.6 is calculated through MTDD in 
Figure 3.13 as follows. Note that in this example, all the calculations are in GF(11). 

1. The non-terminal nodes q3,0 ,  q3,1,q3.3 and the cross point q 3 , 2  are processed 
jirst by using the matrix [S3]- '  in [R]- '. The input data for the procedure are 
the values of constant nodes. In that way, it is determined 

q3.1 



FFT THROUGH DECISION DIAGRAMS 75 

3 
9 

-4 

[ a  ;] 

[; : l a  
9 
2 
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Thus, 

= Pfl. 
Thus, the Fourier spectrum o f f  is equal to the matrix-valued vector determined 

in q1 and it is equal to that calculated by definition of the Fourier transform. 
Each step of the calculation can be represented by a MTDD, which results in the 

MTDD for the Fourier spectrum o f f .  Figure 3.17 shows the MTDD for  the Fourier 
spectrum generated by using the proposed procedure. 

3.4.3 MTDDs for the Fourier spectrum 

A MTDD for the Fourier spectrum differs from that representing f in the same way 
as the FFT algorithms on Abelian groups differ from FFT on non-Abelian groups 
[41]. Decision diagrams representing the Fourier spectrum off on finite non-Abelian 
groups are matrix-valued, since the values of constant nodes are the Fourier coeffi- 
cients. The number of outgoing edges of nodes at the i-th level is determined by 
the cardinality h’, of the dual object r, of G,. In the MTDD for f ,  the number of 
outgoing edges of nodes at the i-th level is equal to the order g, of G,. 

Efficiency of the MTDD representation o f f  depends on the number of different 
values f can take. In the same way, the efficiency of DDs representation of the Fourier 
spectrum of f  depends on the number of different Fourier coefficients. In this way, i t  
depends indirectly on the number of different values o f f .  

In a matrix-valued MTDD (mvMTDD) for S f ,  the matrices representing values of 
constant nodes can be represented by MTDDs 1431, in the same way as any matrix can 
be represented by a MTDD [91. In that way, the number-valued MTDDs (nvMTDDs) 
are derived [43]. 

Figure 3.18 shows a nvMTBDD for S f  in Example 3.9. It is derived from the 
mvMTDD in Figure 3.17. The columns of matrices representing values of constant 
nodes are written as subvectors in a vector, which is then represented by a MTDD. In 
this figure, to make it clear, some constant nodes are repeated. 

Thanks to the spectral interpretation of DDs 1481, MTDDs for the Fourier spectrum 
of f  can be interpreted as Fourier DDs for f [42], [43], 1441. 

3.4.4 Complexity of DDs calculation methods 

The structure of a FFT is described by the number of levels and by connections of 
nodes within levels. For a given G, the structure of the FFT is determined by the 
assumed decomposition into the product of subgroups G, of smaller orders (2.4). 
For the assumed decomposition, the FFT on G has the same structure, thus the same 
complexity, for any f .  Therefore, in calculation of the Fourier transform through the 
FFT we do not take into account any peculiar properties a function may have. 
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6 1  

Fig. 3.17 Calculation of the Fourier spectrum through MTDD. 
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Compactness of a decision diagram for f is based upon deleting isomorphic parts 
in the decision tree for f .  Thus, in calculation of the Fourier transform through DD for 
f ,  we do not repeat calculations over identical subvectors in the vector representing 
values o f f .  In that way, unlike FFT, we take into account properties of the processed 
functions. 

At each node and the cross point at the i-th level, we perform calculations de- 
termined by the Fourier transform on G,. Thus complexity of calculations through 
DDs is proportional to the number of nodes and cross points in the DD for f ,  usually 
denoted as the size of the DD. If a function f has some peculiar properties, as for 
example symmetry, or decomposability, then the MTDD for f has smaller size, and 
calculation of the Fourier transform is simpler. In reporting experimental results, the 
size of a DD is usually considered as the number of non-terminal nodes. It is assumed 
that for an arbitrary function, the number of cross points is smaller than 30 - 40% of 
the number of non-terminal nodes [37]. 

The same as in the FFT, the complexity of calculations depends on the complexity 
of calculation rules derived from the Fourier transforms on G,. 

Table 3.1 1 shows the sizes of MTDDs for some mcnc benchmark switching func- 
tions and their Fourier transforms. In this table, the multi-output switching functions 
are represented by Shared binary DDs (SBDDs) [37]. The domain group is of the 
form C;. For non-Abelian groups, the assumed decompositions are shown. C2 and 
C4 are the cyclic groups of orders 2 and 4, and Q2 denotes the quaternion group of 
order 8.  The price for the reduced size is the increased number of outgoing edges of 
nodes. The advantage is the reduced depth of the decision diagrams. 
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4 
Optimization of Decision 

Diagrams 

In Section 3.4, MTDTs are used as a data structure which permits efficient calculation 
of the Fourier transform of functions defined on groups of large orders. In this 
Chapter, we discuss application of non-Abelian groups in the optimization of decision 
diagram representations for discrete functions, including switching and multiple- 
valued (MV) functions as particular examples. The presentation is mainly oriented 
towards decision diagrams for switching functions, since they are the most often met 
in practice. However, generalizations to multiple-valued, integer or complex-valued 
functions is simple. 

In the theory of decision diagram representations [ 171, [23], decision diagrams are 
derived by reducing the corresponding decision trees (DTs). The reduction is done 
by deleting or sharing redundant nodes in a DT depending on the equal or otherwise 
assignment of the decision variables assigned to the non-terminal nodes in the DT. 
Reduction is performed through rules suitably formulated depending on the range 
of represented functions and the nodes used in definition of the decision trees. In 
that respect, BDD reduction rules, zero-suppressed BDD reduction rules [ 161, and 
generalized BDD reduction rules [27] are distinguished. 

There are two general approaches to the optimization of decision diagram repre- 
sentations of switching functions reported in the literature: 

1. Given a switching function j ,  represent it by a binary decision diagram (BDD) 
[ 3 ] .  Do the optimization by changing the meaning of nodes , i.e., by choosing 
among the Shannon, positive and negative Davio nodes 1161. In that way 
BDDs are transferred into Kronecker or pseudo-Kronecker decision diagrams. 
In the spectral interpretation, that means the optimization by searching among 
different bases to define the decision tree best suited to the given f 1271. 
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2. Given a switching function j ,  represent it by a BDD. Do the optimization of 
the representation by coding pairs of binary variables by four-valued variables. 
In that way, the BDD representation is transferred into a Quaternary deci- 
sion diagram (QDD) representation [ 181. Further optimization can be done by 
applying the first approach of optimization to quaternary decision diagrams, 
which produces quaternary Kronecker and pseudo-Kronecker DDs \ 181. 

A disadvantage of the first method is that it does not permit reduction of levels 
in the decision tree, except in some special cases when the represented functions 
possess some particular symmetry properties. That was the motivation for the second 
approach based on recoding of subsets of variables [ 181. 

For reasons of the intended practical realizations, the method was restricted to 
pairs of variables [18], although the extension to any subset of variables can be 
directly given. Moreover, the method does not relate to the function values and can 
be generalized to decision diagrams for discrete functions, thanks to the extension of 
the concept of BDDs 131 into multi-terminal decision diagrams (MTBDDs) [ 5 ] .  

A drawback of this approach to the optimization of decision diagram represen- 
tations is that it requires nodes with many outgoing edges. Such nodes change the 
reduction possibilities in decision trees and usually increase the number of nodes per 
levels in the derived decision diagrams. The reduction of the number of levels and 
nodes per level in a decision diagram are thus two opposite requirements. 

In what follows, we first discuss the problem and give a group-theoretic interpre- 
tation of the optimization of decision diagrams by coding subsets of variables. Then 
we offer a solution of the problem by proposing the use of Fourier decision diagrams 
on finite non-Abelian groups. 

4.1 REDUCTION POSSIBILITIES IN DECISION DIAGRAMS 

Definition 3.1 of MTDDs can be further elaborated as follows. 

Definition 4.1 A decision diagram (DD) that represents an n-variable discretefilnc- 
tion f ( X I ,  . . . , x,) is a rooted acyclic graph G = (V, E )  with the edge set E and the 
node set V consisting of non-terminal and constant nodes. A variable x, is assigned 
to each non-terminal node v E V and is called the decision variable for  11. Ifx, takes 
gz different values, then u has g, outgoing edges labeled with the gz values. All the 
nodes assigned to the same variable X ,  form the i-th level in the DD, assuming the 
same order of variables along the paths from the root node to the constant nodes. 

Decision diagrams with the same order of variables in all the paths are usually 
called ordered decision diagrams. Notice that there are also defined Free binary 
decision diagrams (FBDDs) [2], where the order of variables along different paths 
may be different. However, the restriction that a variable cannot appear several times 
in a path is preserved in FBDDs. 

For a given function f ,  a decision diagram is derived by the reduction of the 
corresponding decision tree (DT) that is generated by a recursive application of some 
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Fig. 4.1 Shannon tree for n = 4. 

expansion rule with respect to each variable z, off .  The reduction is done by sharing 
the isomorphic subtrees in the decision trees and by deleting the redundant nodes in 
the decision trees. A node is redundant if all its outgoing edges point to the same 
node at a successing level in the decision tree. Therefore, a decision tree is the basic 
concept in  decision diagram representations of discrete functions. In the following 
discussion, the structure of a decision tree is an important concept [23]. 

Observation 4.1 The structure of a DT is determined by the number of levels and 
the number of outgoing edges of non-terminal nodes. 

Note that the number of outgoing edges of nodes at the i-th level uniquely deter- 
mines the number of nodes at the ( i  + 1)-st level in a decision tree. Therefore, we may 
alternatively say that the structure of the decision tree is determined by the number 
of levels and the number of nodes per levels. These two statements are equivalent. 

Binary decision diagrams (BDDs) are derived by the reduction of the Shannon 
trees (Figure 4.1) by BDD reduction rules [16]. For an n-variable function, the 
Shannon tree consists of n levels with non-terminal nodes with two outgoing edges. 
In Figure 4.1, and the following figures, the nodes where the Shannon decomposition 
or its generalizations are performed, are denoted by S,, with index i denoting the 
number of outgoing edges. The labels at the edges and the values of constant nodes 
are not shown in the figures, if their meaning is obvious form the context. 

Quaternary decision diagrams (QDDs) [ 181 are derived by recoding of pairs of 
switching variables by four-valued variables, (zi,zj) = X k ,  xi, z j  E (0 ,  I}, Xk E 

In the Shannon tree (schematic representation in Figure 4.2), that means the re- 
placement of each subtree shown in Figure 4.3(a) by a single node with four outgoing 
edges (Figure 4.3(b)). In that way, the Shannon tree (Figure 4.1) is replaced by the 

{0 ,1 ,2 ,3 ) .  
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Fig. 4.2 Subtrees in the Shannon tree for pairs of variables (21, z z ) ,  (~3~x4). 

quaternary decision tree (QDT) (Figure 4.4) with the number of non-terminal levels 
reduced to a half compared to the starting Shannon tree (two non-terminal levels 
in QDT instead of four non-terminal levels in the Shannon tree in this example). 
However, in QDDs nodes with four outgoing edges are required. 

The method can be extended to the coding of any subset of variables. For example, 
the Shannon tree for n = 4 may be decomposed into subtrees corresponding to ~1 

and ( 2 2 ,  2 3 , 2 4 )  = X2,  X z  E (0,. . . , 7) (Figure 4.5). In this way, the subtree in 
Figure 4.6(a) is replaced by a single node with eight outgoing edges (Figure 4.6(b)). 
Thus, the Shannon tree for n = 4 is replaced by the tree in Figure 4.7. In this 
tree, besides the number of levels, the number of non-terminal nodes is also reduced. 
However, nodes with eight outgoing edges are required. Alternatively, the subtree in 
Figure 4.6(u) may be replaced by the subtree in Figure 4.8 consisting of a node with 
two outgoing edges and two nodes with four outgoing edges. The resulting decision 
tree is shown in Figure 4.9. 

A drawback of this method for optimization of Decision diagram representations is 
the appearance of non-terminal nodes with considerable number of outgoing edges. 
In that way, by recoding subset of variables, we are changing the structure of the 
decision tree. 

Observation 4.2 In a decision tree, the number of outgoing edges of nodes at the 
i-th level determine the number of nodes at the ( i  + 1)-th level and in that w u y  
determine the reduction possibilities in the decision tree. By changing the structure 
of the decision tree, we change the reduction possibilities in the decision tree. 

To explain this statement, denote by 216 = [ z l ,  . . . , Z (  15)IT, the vector reprcsent- 
ing the values of the constant nodes in the Shannon tree for n = 4. A node at the 
4 t h  level, thus, corresponding to 2 4 ,  may be deleted if the corresponding subvector 
of 216,  Z, = [ Z O ,  Z I ] ~ ,  . . . ,Z7 = [ z I ~ ,  z15IT is a constant vector. A node at the 4-th 
level may be shared if the corresponding subvectors Z,, Z,, i # j ,  i, j E (0 , .  . . , 7 }  
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Fig. 4.3 (u)  Subtree in the Shannon tree for a pair of variables (z t .  2% 
non-terminal node. 

( b )  QDD 

f 
s4 

II 

s4 s4 

Fig. 4.4 QDD for n = 4. 
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Fig. 4.5 Subtrees in the Shannon tree for xl, (22: ~ 3 ~ x 4 ) .  

Fig. 4.6 ( a )  Subtree in the Shannon tree for ( X , - ~ , Z ~ , X ~ ~  1) ,  ( b )  Non-terminal node 
with eight outgoing edges. 
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f 

’ s 4 ,  

Fig. 4.7 Decision tree with nodes with two and eight outgoing edges. 

Fig. 4.8 Subtree with the Shannon Sz and QDD non-terminal nodes. 
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/ \ / \ 
s4 ’ s4 ’ s4  s4 

Fig. 4.9 Decision tree for n = 4 with nodes with two and four outgoing edges. 

are equal. We call this property as the reduction possibility of order 2. It is true 
generally for the nodes at the n-th level in  any decision tree whose structure is equal 
to the structure of the Shannon tree for any n. Examples are the positive Davio tree 
and Reed-Muller tree and other related decision trees [ 161. To delete or share a node 
at the level ( n  - 1) in such DT we should consider the reduction possibility of order 
4 defined as above, but for subvectors of order 4. Further we should consider the 
reduction possibility of order 2n-1 for the nodes at the second level in  the Shannon 
tree. 

In QDDs, the minimum reduction possibility is of order 4 at the n/2-th level, while 
in the decision tree in  Figure 4.9 we consider the reduction possibilities of orders 4 
and 8, respectively. In the reduction of non-terminal nodes in the decision tree in  
Figure 4.7 we should consider the subvectors of order 8 and, therefore, the minimum 
reduction possibility is of order 8. Thus, the reduction of this DT may be done in 
only a small number of functions having peculiar symmetry properties. The problem 
is much more obvious in the case of large functions, when decision trees consist 
of a considerable number of levels and non-terminal nodes. The problem is also 
very hard in  representations of discrete functions taking a large number of different 
values, thus, having many constant nodes. In this case, we often need almost coinplete 
multi-terminal decision tree (MTDT) to represent the function. 

Therefore, by reducing the number of levels in a decision tree by recoding the 
subsets of variables, i.e., by using the nodes with the increased number of outgoing 
edges, we decrease the probability to delete or share a non-terminal node in the 
decision tree. 

Looking in the opposite direction, from the top of the decision tree, wc are in- 
creasing the number of non-terminal nodes at the second level from 2 in the Shannon 
trees to 4 in QDDs. Since we are increasing the order of the reduction possibility, we 
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Fig. 4.10 Decomposition of the domain group GI6 = Ci. 

are increasing the number of non-terminal nodes per levels in the resulting decision 
diagram. It follows that the reduction of levels and the number of nodes per levels 
are contradictory requirements in the optimization of decision diagrams. 

The same consideration applies to the generalization of decision diagrams for 
switching functions into decision diagrams for discrete functions. BDDs are general- 
ized into multi-terminal binary decision diagrams (MTBDDs) by allowing integers or 
complex numbers as the values of constant nodes [ 5 ] .  Thus, BDD and MTBDDs are 
derived from decision trees of the same structure, but differ in the values of constant 
nodes. In the same way QDDs may be generalized to represent integer or complex- 
valued functions. The same can be done with other decision diagrams defined through 
coding of different subsets of variables. In that way we have multi-terminal decision 
diagrams (MTDDs) consisting of nodes with arbitrary number of outgoing edges. 

In what follows, we give a group-theoretic interpretation of decision trees for 
switching and discrete functions to express clearly where the problems in reduction 
of levels and nodes of a decision diagram originate from and to eventually find a way 
to solve them. 

4.2 GROUP-THEORETIC INTERPRETATION OF DD 

In decision diagram representation of an n-variable switching functions f by the 
Shannon tree, f is considered as a function on the finite dyadic group of order 2n,  
C; = X;=~C~, where C2 = ( ( 0 ,  l},cb), and @ denotes the modulo 2 addition 
(EXOR). Thus, for n = 4 the domain group G of f is G = C; = C, x C2 x CZ x C, 
(Figure 4.10). In QDD representation (Figure. 4.4), through the coding of pairs of 
variables we change the decomposition of the domain group G of f into the product 
of two cyclic groups of order four, i.e., G = C, x C, (Figure 4.1 1). 
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Fig. 4.11 Decomposition of the  domain group GI6 = C,". 

In the group theoretic approach to discrete functions, the structure of decision 
trees is determined by the structure of the group G on which a given f is considered. 
Therefore, the Statement 1 can be reformulated as follows. 

Observation 4.3 The structure of a MTDT is determined by the decomposition of 
the domain group G o f f .  The number of levels in the decision tree is equal to the 
number of subgroups G, into which the domain group G o f f  is decomposed as a 
direct product. The number of outgoing edges of nodes at the i-th level and, thus, 
the number of nodes at the ( i  + 1)-st level is determined by the order g L  of G,. The 
number of constant nodes is equal to the order g of G. 

In a decision tree, by changing the meaning of nodes, we change the order of 
elements in the vector 2, representing the values of constant nodes. In that way, we 
may increase the probability of finding identical subvectors in 2, and to reduce the 
number of nodes in the resulting decision diagram. However, we can not reduce the 
number of levels, since we do not change the structure of the basic decision tree we 
are starting from. 

The same applies to the MTBDDs, Walsh decision diagrams (WDDs), Arithmetic 
transform decision diagrams (ACDDs) [27] and binary moment decision diagrams 
(BMDDs) 141, which differ from ACDDs in the reduction rules [27]. 

As is noted above, the reduction of levels may be achieved by recoding the subset 
of variables, since i n  this way we are changing the structure of decision trees we 
are starting from. From Statement 4.3, in the group-theoretic approach we have the 
following statement. 

Observation 4.4 The number of levels in a decision diagram may be reduced by using 
different decompositions of the domain group G off into fewer but larger subgroups. 

For example, in QDDs we are using the subgroups C4 of order four (Figure 4.1 I ) ,  
instead the subgroups C, of order two (Figure. 4.10). Besides the thus achieved re- 
duction of levcls, further reduction may be done by changing the meaning of nodes. In 
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that way the quaternary pseudo Kronecker decision diagrams are introduced [ 1 81. The 
same can be done for decision diagrams corresponding to any other decomposition 
of G. 

However, as noted above, the use of large subgroups requires nodes with consid- 
erable number of outgoing edges. Such nodes decrease the probability for reduction. 

We recall the spectral interpretation of decision diagrams [27] to look for a solution 
of this problem caused by the contradictory requirements of reducing both levels and 
nodes per levels. 

In a decision diagram, the meaning of nodes determines the labels at the outgoing 
edges of the node. For example, the labels of outgoing edges of the Shannon, positive 
Davio and negative Davio nodes are {Tt ,  xi}, {l,x,} and { l , T i } ,  respectively [16]. 
In Walsh transform DDs (WDDs), the labels at the edges are { 1,1 - 2xi} [27] .  In 
QDDs, the labels at the edges are {X:,X,’ ,X,”,X;} ,  where X! denotes that X ,  
takes the value j [ 181. 

In spectral interpretation of decision diagrams, we refer to the labels at outgoing 
edges of nodes. We say that decision trees are the graphical representations of the 
Fourier and Fourier-like expansions on finite groups with respect to some particular 
bases. The basis functions are determined as products of labels at the edges in  each 
path from the root node to the constant nodes in the DT. We speak of the Fourier 
expansions if we use as basis functions the group characters for Abelian and unitary 
irreducible representations for non-Abelian groups. For any other basis we say the 
Fourier-like expansion. 

In this interpretation, the values of constant nodes in decision trees are the Fourier 
or Fourier-like spectral coefficients of f .  

A Fourier or Fourier-like spectrum can be considered as a function on the dual 
object r of G [lo], [ I  11. The Fourier transform on a finite decomposable group 
G of order g can be expressed as the composition of n Fourier transforms on the 
constituent subgroups Gi of orders g,. Therefore, we have the following observation 
for the Fourier decision diagrams. 

Observation 4.5 The number of constant nodes in a Fourier DT is equal to the 
cardinality K of the dual object r of G. The number of the outgoing-edges of nodes 
at the i-th level is equal to the cardinality K,  of the dual object rt of G,. 

This observation is not in contradiction with the Observation 4.4. MTBDDs and 
MTDDs are defined with respect to the identical mapping and, thus, in this case 
the domain group G and its dual object coincides. Moreover, the dual object r of 
any Abelian group is isomorphic to G. Therefore, the Statement 4.4 applies to any 
decision tree on Abelian groups. Statement 4.5 is a generalization involving various 
decision trees on both Abelian and non-Abelian groups as the domain groups for f .  

The advantages of decomposition of the domain group G into non-Abelian sub- 
groups are in the following. For non-Abelian groups, it is always K, < g,, since 
at least one of the unitary irreducible representations R, has the order T, > 1. 
Therefore, we can define the Fourier decision trees by using the unitary irreducible 
representations as the basis. In these decision trees, the number of outgoing edges of 
nodes at the i-th level is equal to K, instead of g ,  in the case of Fourier and any other 
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decision tree on Abelian groups. Therefore, with Fourier decision diagrams, derived 
by the reduction of Fourier decision trees, we can use large subgroups G, in the de- 
composition of G to reduce the number of levels. If these subgroups are non-Abelian 
groups, DT will consists of nodes with a smaller number of outgoing edges compared 
to any DT on Abelian groups. Thus, with Fourier decision diagrams on non-Abelian 
groups 1221, we can reduce both number of levels and nodes per levels in a decision 
tree. 

4.3 FOURIER DECISION DIAGRAMS 

4.3.1 Fourier decision trees 

As it was shown in Section 2.5, the Fourier transform on a finite group G decomposable 
in the form (2.4) may be considered as the n-dimensional Fourier transform on the 
constituent subgroups G,. Due to that, the fast calculation algorithm are defined, 
in which each step performs the Fourier transform on a constituent subgroup Gi of 
the domain group G. In Example 3.7, it is explained the relationship between steps 
of FFT-like algorithms and decision diagrams and it is shown how to perform FFT- 
like algorithms over decision diagrams. This relationship is exploited here in the 
opposite way, the steps of FFT-like algorithms define decomposition rules for a class 
of decision diagrams which we call the Fourier decision diagrams. Thus, the Fourier 
transforms on G'i define mappings used to associate a function to the Fourier decision 
tree. The labels for edges of these diagrams are determined from the inverse Fourier 
transforms on Gi as i t  follows from spectral interpretation of decision diagrams [25].  

Definition 4.2 Denote by S f  the Fourier transform coejficients on a finite non- 
Abelian group G representable in the form (2.4). These coeflcients are determined 
by using the relation (2.9). From (2.10), a Fourier decision tree on G is de$ned as 
the decision tree whose nodes a the i-th level represent functions 

xi E G,, f ( G )  = c T ~(Sf(w)Ru,;(:&)), 
w I  E r ,  

where r2 is the dual object of G,, and ELu,> are the unitary irreducible representations 
of G,. 

Clearly, the Fourier decision trees on Abelian groups are derived from these on 
non-Abelian groups as all the unitary irreducible representations are one-dimensional, 
i.e., reduce to the group characters. 

With this definition, Fourier decision trees are decision trees on G in which each 
path from the root node up to the constant nodes corresponds to a unitary irreducible 
representation of G. A node at the i-th level has K,  outgoing edges denoted by 
Rw, ( 7 ~ ) ~  u E F a .  In the figures of decision trees we use the short notation w: for 
Rw, ( j ) ,  or simply j where the context does not permit misunderstandings. 

For a given f ,  the values of constant nodes are the Fourier coefficients of .f. In that 
way, we perform the inverse Fourier transform in the determination off  represented 
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[RI-' = 

by a given Fourier decision tree by using the rule in Definition 4.2 and by following 
the labels at the edges in the decision tree. The same can be done with any spectral 
transform decision diagram (STDD) 1271. 

The following example illustrated Definition 4.2. 

Example 4.1 Consider a function f defined on the group G12 = Cz x S3 over the 
field GF( 11). Table 4.1 defines the values for  f .  The Fourier transforms on C, and 
S3 over GF( 11) are dejined by the transform matrices 

- 1  1 1  1 1  1 1  1 1  1 1  1 
1 1 1 10 10 10 1 1 1 10 10 10 

21 2B 2A 2C 2D 2E 21 2B 2A 2C 2D 2E 
1 1 1 1 1 1 10 10 10 10 10 10 
1 1 1 10 10 10 10 10 10 1 1 1 

- 21 2B 2A 2C 2D 2E 91 SB SA SC SD 9E 

W-'(l) = 6  [ 1h ] 

IS31 = 

- 
1 1 1 -  
1 1 A  
1 1 B  
1 10 c 
1 10 D 
1 10 E - -. 

The inverse transform matrices on C, und S3 are 
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1 1 1 1 1  I 
1 1 A l 1  A 
1 1 B 1 1  B 
1 1 o c 1 1 0  c 
1 1 0 D  1 1 0  D 
1 1 0 E 1 1 0  E 
1 1 I 10 10 101 
1 1 A 10 10 10A 
1 1 B 10 10 10B 
1 10 c 10 1 1oc 
1 10 D 10 1 10D 
1 10 E 10 1 10E 

The spectrum of the function f in Table 4. I is 

[Sfl = 

4 
9 

2 [ ;  :] 
[: :] 

0 
2 

The spectral coeflcients are the values of constant nodes in a Fourier decision 
diagram for  f .  The labels at the edges are determined from the matrices W( 1) and 
IS,]. The matrix [R] has a block structure that may be expressed as 

This structure is due to the Kroneckerproduct and originates in the decomposition of 
G12. I t  determines the structure of the Fourier decision trees for functions on G12. 

Figure 4.12 shows the Fourier decision tree for  f .  This tree represents f as 

The tree consists of two subtrees corresponding to the left and the right half of the 
matrix IR1-l. At each level, the transform with respect to the variable assigned to 
the level is pegormed. The leji FNA3 node corresponds to the calculation specijied 
by the submatrix [S,]-' in the upper part of leji hulf of [R]-'. When multiplied by 
the label 1 at the left outgoing edge of the node 5'2, the calculations are repeated to 
correspond to the lower part of the left half of [R]-l. Similarly, the right FNA3 
node corresponds to the upper sumbatrix [S3]-' in the right half of [RI-'. Notice 
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Table 4.7 Truth-table for f in Example 4.1 

0. 
1. 
2. 
3. 
4. 
5 .  
6. 
7. 
8. 
9. 

10. 
1 1 .  

00 
01 
02 
03 
04 
0s 
10 
1 1  
12 
13 
14 
1s 

1 
0 
0 
0 
0 
1 
0 
0 
0 
1 
1 
0 

that this part corresponds to x1 = 0, which results in the value 1 as the label at the 
right outgoing edge of the node S,. For x1 = 1, this label has the value 10. When 
multiplied by the value 10, the right FNA3 node performs calculations specified 
in the lower part of the right half of [Rl-l. In this way, the Kronecker product 
structure of [R]-l which determines steps of the FF7: is mapped to the recursive 
structure of the decision tree. It follows that to calculate values of constant nodes 
in the Fourier decision tree, we perform the Fourier transform. Conversely, through 
labels at the edges, we perform the inverse Fourier transform to read values of the 
function represented as stated in Dejriition 4.2, arid calculations are performed as 
FFT over the decision tree. 

As is noted above, the Fourier coefficients corresponding to the group represen- 
tations with orders T, > 1, w = 1,. . . K - 1, are (rU, x T,) matrices. Therefore, 
Fourier decision trees on finite non-Abelian groups are matrix-valued decision trees. 
The matrix-valued coefficients may be also represented by the decision trees by using 
the method of representation of matrices by the decision diagrams [S]. In that way, 
we derive the integer-valued or complex-valued Fourier decision trees on finite non- 
Abelian groups, depending on the values of {Rk’”} that are the values of constant 
nodes in these decision trees. In that case, thc number of constant nodes in a integer 
or complex-valued Fourier decision trees on a non-Abelian group is equal to that in 
Fourier or other decision trees on an Abelian group of the same order. Comparing 
to the matrix-valued Fourier decision trees, the number of levels in an integer-valued 
or complex-valued Fourier decision tree is increased to represent the matrix-valued 
constant nodes. However, some non-terminal nodes still may be saved, since not all 
the Fourier coefficients are matrix-valued. 
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Fig. 4.12 Fourier decision diagram for f in Example 4.1. 

fig. 4.13 Complex-valued FNADD for Qz.  
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Fig. 4.14 Decision tree with the Shannon node SZ and FNADD nodes for Q2.  

The non-terminal nodes in  Fourier decision trees are denoted by FA, for Abelian 
and FNA, for non-Abelian groups. The index i denotes the number of outgoing edges 
and it is equal to the cardinality K, of the dual object r, of G,. 

The following example illustrates the effect of the decomposition of the domain 
group o f f  into non-Abelian subgroups. 

Example 4.2 In a Shannon tree, a subtree of order 8 (Figure 4.6(a) and Figure 4.8) 
may be replaced by the Fourier subtree on QZ shown in Figure 4.13. Compared to the 
subtree in Figure 4.6(a), we have two levels and two non terminal nodes, but we keep 
the reduction possibility of order 4 for S4 nodes and 5 for FNA5 nodes. Compared to 
the subtree in Figure 4.8, we have a saving of one non-terminal node. 

Figure 4.14 shows the Fourier decision tree on GIG = Cz x Qz. Compared 
to the Shannon tree in Figure 4. I, we have reduction of both number of levels and 
total of nodes. Compared to the QDT in Figure 4.4, we have one level more, but 
reduced the number of nodes per levels. The number of nodes is increased, but the 
reduction possibilities and the number of outgoing edges per nodes are much better: 
The number of nodes per levels equals that in Figure 4.7. Compared to the decision 
tree in Figure 4.9, we have the same number of levels, but reduced number of non- 
terminal nodes. Thus, the Fourier DT in Figure 4.14 is a compromise between those 
in Figure 4.1 and Figure 4.4 and Figure 4.9 with respect to the number of nodes and 
number of nodes per level. Taking into account the reduction possibilities in Q 07: 
Fourier decision diagrams may offer more eficient representations that MTDDs. 

The following example illustrates the use of Fourier decision trees on both Abelian 
and non-Abelian groups in representation of discrete functions. 

Example 4.3 A function f defined on a set of six points can be represented by the 
truth-vector F = [f (0), f (l), f (2), f (3), f (4), .f(5)]". In a direct graphical rep- 
resentation F is shown in Figure 4.15. Thisfigure corresponds to the truth-vector 
representation o f f  over the cyclic group of order 6. 
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This function can be considered as a function f (21~x2) on the group G6 = C2 x 

Gs, where G3 = ({0,1,2}, 3). In that case it can be represented by the generalized 
multi-terminal decision tree shown in Figure 4.16. The group representations of Cz 
are the discrete Walsh functions and, thus are given by the basic Walsh matrix 

@ 

W(l)=A[ 2 1 -1 1 1  

The group representations of G3 are given by the matrix 

1 el e2 

where el = - !j (1 - i&) and e2 = - (1 + a&). Therefore, the Fourier transform 
on the Abelian group Gg = C2 x G3 is defined by the matrix 

where 63 denotes the Kronecker product. 

This decision tree represents function 
In that case, f can be represented by the Fourier decision tree shown in Figure 4.17. 

The function f can be considered as a function on the symmetric group of permuta- 
tions Ss and in that case can be represented by the Fourier decision tree shown in 
Figure 4.18. This tree represents the function 

f = ROSS (0) + RlSf (1) + T7-(R2Sj (2) ) .  

The value of the constant node corresponding to S f  ( 2 )  is a (2 x 2 )  matrix. Thus, 
this tree is a matrix-valued tree. If matrix-valued constant nodes are not allowed, 
S f ( 2 )  may be also represented by a tree. For that reason, we write S f ( 2 )  as 
a function q on the cyclic group G4 and represent it by the truth-vector Q = 

on G4. The corresponding Fourier decision tree is a complex-valued decision tree. 
This tree is shown in Figure 4.19. From thisfigure, even with complex-valued Fourier 
decision tree, we still have savings in non-terminal nodes comparing to the decision 
trees based on Abelian groups (Figure 4.16 and 4.17). We also have further possi- 
bilities for the reduction of this tree. Depending on the values of elements of S j  ( 2 )  
we can use the Fourier decision tree on Gq to represent it and to save eventually 
some of the nodes representing elements of S j ( 2 ) .  The corresponding decision trees 
representation o f f  is as in Figure 4.20. The values of constant nodes are the Fourier 
coeficients S, of q on G4. 

[S, ( 0 , O )  , S j  , Sg‘o’, Sy’ l ) ]T .  In that way, S2 can be represented by the MTBDDs 
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Fig. 4.15 One-level multi- 
terminal decision tree of f in 
Example 4.3 on GG. 

1-2\ 

FA 

Fig. 4.76 Two-level multi- 
terminal decision tree of f in 
Example 4.3 on GG = CZ x Gs. 

Fig. 4.1 7 Two-level Fourier de- Fig. 4-78 One-level Fourier de- 
cision tree of f in Example 4.3 on cision tree of f in Example 4.3 on 
the Abelian group G6 = Cz x G3. non-Abelian group S 3 .  
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fig. 4.19 Complex-valued Fig. 4.20 Complex-valued 
Fourier DT on S3 with MTBDD Fourier DT on S3 with Fourier 
for S f ( 2 ) .  DT for Sf(2) .  

The following example further elaborates the use of non-Abelian groups in  opti- 
mization of decision diagrams. 

Example4.4 A function f dejned on a set of 36 points can be considered as a 
function on a group G36 of order g = 36. This group can be decomposed in several 
different wajs, each providing a decision tree on Gs6 with different number of levels 
and nodes per levels. 

Figure 4.21 shows the decision tree on G36 corresponding to the decomposition 
G36 = Cz x C2 x C, x Cs, where C, denotes a cyclic group of order i. The DT 
consists of 19 non-terminal nodes. 

Figure 4.22 shows the decision tree corresponding to the same decomposition, but 
with different order ofthe constituent subgroups G36 = C3 x C:< x Cz x C2. This 
DT consists of 31 non-terminal nodes. 

Reduction possibilities in decision trees in  Figure 4.21 and Figure 4.22 depend 
on thc subvectors of orders 2k and 3k for nodes with two and three outgoing edges, 
respectively. 

Fourier decision trees on finite non-Abelian groups (FNADDs) take advantage of 
the matrix notation of group representations and, therefore, the spectral coefficients. 
The cardinality of the dual object I' of a non-Abelian group G is always smaller than 
the order y of G. The same is true if the cardinalities of the dual objects F a  and the 
orders of the constituent subgroups G, are compared. Note that in  the matrix nota- 
tion the group representations of G are generated through the generalized Kronecker 
product of the group representations of the constituent subgroups G,. Therefore, the 
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Fig. 4.21 Decision tree on G36 = CZ x CZ x C3 x C3. 

Fig. 4.22 Decision tree on G36 = Ga x C3 x Cz x C2 
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/ 

Fig. 4.23 Complex-valued FNADT on G36 = G2 x C3 x S3. 

number of nodes at intermediate levels is determined by the cardinality K, of I?,. It 
follows that some non-terminal nodes may be saved. In that way, FNADDs permit 
the reduction of both the number of levels and the number of nodes per levels in a 
decision tree. Unlike decision trees on Abelian groups, in FNADDs the use of large 
subgroups to reduce the number of levels does not increase the number of nodes per 
levels, since always K,  < 9%. With that motivation, Fourier decision diagrams on 
finite non-Abelian groups were introduced in [22]. 

The following example illustrates the reduction of the number of non-terminal 
nodes per levels by using FNADDs. 

Example 4.5 Consider FNADTs for  the decomposition of G36 by using non-Abelian 
groups. In Figure 4.23, G36 = C, x C, x S3, where Ss denotes the symmetric group 
of permutation of order 3 defined in Example 2.2. 

The FNADT corresponding to the decomposition G36 = S3 x Ss is shown in 
Figure 4.24. In this figure, the MTDDs on G4 are used to represent the matrix-valued 
nodes of order 2 and the complex-FNADT on GIG = C, x Q2 for  the node S f ( 8 )  
with MTDTs on G4 to represent the matrix-valued nodes in this sub-tree. This DT 
consists of 13 non-terminal nodes and the disadvantage is the incremented number 
of levels to 6 instead of 5. 

Compared to decision trees in Figure 4.21 and Figure 4.22, reduction possibilities 
in Figure 4.23 and Figure 4.24 are diferent. 

Example 4.5 shows that by using decision trees on non-Abelian groups, the number 
of non-terminal nodes may be drastically reduced without essentially decreasing 
reduction possibilities in the decision tree. 
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Fig. 4.24 Complex-valued FNADT on G36 = S3 x S3. 

4.3.2 Fourier decision diagrams 

Fourier decision diagrams are derived by reducing Fourier decision trees. The reduc- 
tion is done by using the generalized BDD reduction rules introduced for the reduction 
of WDDs [27]. 

Definition 4.3 (Generalized BDD reduction rules) 

1. Delete all the redundant nodes where both edges point to the same node and 
connect the incoming edges of the deleted nodes to the corresponding succes- 
sors. Relabel these edges as is shown in Figure 4.25(a). 

2. Share all the equivalent sub-graphs, Figure 4.25( b). 

Definition 4.4 Fourier decision diagrams are decision diagrams derived from the 
Fourier decision trees by using the generalized BDD reduction rules. A Fourier 
decision diagram is reduced iffurther reduction with the same rules is impossible. 

The discussion in Section 4.1 about the reduction possibilities applies to Fourier 
decision trees. 

The main difference with MTDDs is that the reduction possibilities in the Fourier 
decision tree depend on the relationships among the values of Fourier coefficients Sf 
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Fig. 4.25 Generalized BDD reduction rules. 

of f .  The order of the reduction possibility is determined by the cardinality K, of 
I', instead of gz of G,.  Thus, in  Fourier decision diagrams on non-Abelian groups 
(FNADDs) we have smaller reduction possibilities. 

If for a given assignment of values of a variable 2, = p z ,  p ,  E (0, . . . , g,}, there are 
equal subvectors of orders gk, k < i, in the vector [Sf] of the Fourier coefficients of 
f ,  then the corresponding nodes at the k-th level may be joined. Thus, the redundant 
nodes may be deleted. If the equal subvectors of orders g k ,  k < i, in [Sf] correspond 
to different assignments of values of x,, the corresponding nodes may be shared. 

4.4 DISCUSSION OF DIFFERENT DECOMPOSITIONS 

To estimate the complexity of a decision diagram representation for a given function 
f ,  the size of a decision diagram is defined as the number of nodes in the decision 
diagram. 

In decision diagrams based calculation procedures, some calculations should be 
performed at each non-terminal node. The time complexity of the calculation pro- 
cedure is, therefore, expressed as the size of decision diagram times the processing 
time per node. In some procedures where the processing of nodes differ, for example 
for nodes at different levels, we use the maximal or possibly average time per node. 

However, two additional parameters are important if wc consider the complexity 
of functions realizations derived from their decision diagram representations: 

1. area that the produced network occupies, 

2. propagation delay. 

Therefore, we should speak about the space-time complexity. In decision diagram 
based realbations, the time complcxity depends on the number of levels in the decision 
diagram. To estimate the space complexity, we can use the product of the number of 
levels and the number of nodes per level (the maximal number for the worst case and 
the average number of nodes per level otherwise). 

Therefore, the relevant parameters to estimate the spacc-time complexity of deci- 
sion diagram based realizations for a given function f are 
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Table 4.2 Space-time complexity of DTs on GIG. 

Decomposition Space-time complexity 

c, x c, x c2 x c, 
c 4  x c 4  4 . 4  

2 . 2 . 2 . 2  

c2 x C8 2 . 8  

c, x c, x c 4  

Q2 x Q 2  

2 . 2 . 4  

2 . (4 + 1 .4 )  = 2 . 4  + 2 . 1  . 4  

1. number of levels, 

2. maximal number of nodes per level, 

3. average number of nodes per level. 

Example 4.9 compares these parameters for the 3-bit multiplier representation by 
MTDDs and Fourier decision diagrams for different decompositions of the domain 
group. 

However, to study the effect of different decoding of variables, or in the group- 
theoretic interpretation, the effect of different decompositions of G, we normalized the 
space-time complexity with respect to the order of G. In this way, the decision trees 
in Figure 4.21, 4.22, 4.23 and 4.24 have all the normalized space-time complexity 
equal 16, since they all represent functions whose truth-vectors are of order 16. We 
represent the time complexity (expressed through the number of levels) by the number 
of factors in the decomposition of 16. We represent the space complexity of a level by 
the number of outgoing edges of the nodes the level consists of. Table 4.2 shows the 
space-time complexity of decision trees for different decompositions of GIG. In the 
first three decompositions we can speak about the multiplicative time complexities 
of orders 4, 2 and 2, respectively (number of factors). The space complexities are 
2, 4 and 8. With the Fourier decision diagram we have the decomposition of the 
complexity into two additive parts. The time complexities of these parts arc 2 and 
3,  respectively. The space complexities of them are 2, 5 and 4, that is simpler than 
in the other cases where the time complexity is equal to 2. The decomposition of 
the space-time complexity in  the Fourier decision diagram into two additive parts 
explains that we can save a non-terminal node in the replacement of the subtree of 
order 8 in Figure 4.6(a) and Figure 4.8 by the Fourier decision diagram on Q2. 

Combination of Abelian and non-Abelian groups of different orders provides de- 
cision diagrams of different complexity with respect to both number of levels and 
nodes. A suitable combination can provide an optimal representation with respect to 
both criteria. 

FNADDs permit a two-step optimization. First, we can use large non-Abelian 
subgroups G, to define a decision tree with a required number of levels and to reduce 
the number of non-terminal nodes per levels at the same time. Then, we can represent 
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the matrix-valued constant nodes by decision trees on Abelian groups and do the 
optimization by choosing among various possible decision trees on different Abelian 
groups. 

4.4.1 Algorithm for optimization of DDs 

From the above consideration the following algorithm for the optimization of decision 
diagrams representations of discrete functions may be formulated. 

Algorithm for  optimization of FNADDs representations 

1. Given a function f defined on a set D of d elements. Assume for  D the structure 
of a group G of order g = d. 

2. Determine the required number n of levels in the decision diagrams represen- 
tation o f f .  Determine possible decompositions of G into n subgroups G,. 

3. Try different group structures fo r  each G, by using the non-Abelian groups for  
the largest G, 's. Druw the matrix-valued FNADDs for each possible combina- 
tion of subgroups and calculate the number of non-terminal nodes and constant 
nodes. Chose the smallest size DD with the most planar structure. 

4. End of the algorithm, if matrix-valued FNADDs are allowed. Otherwise, try 
representations of matrix-valued constant nodes by corresponding generaliza- 
tions of MTBDDs and FNADDs. Chose the optimal representation fo r  each 
node. 

To reduce the number of possible combinations of various decompositions of G 
and to get a quick solution, it is a reasonable to use decomposition into the subgroups 
of increasing orders. This view is based upon the previous experience in  the closely 
related problem of efficient calculation of the Fourier transform on finite non-Abelian 
groups PI, [ l a .  

4.5 REPRESENTATION OF TWO-VARIABLE FUNCTION GENERATOR 

Therepresentationofthefunctionfgivenby thelruth-vectorF = [0,1,2,3,4,5,6,  7IT 
was used in [ 131 as an example to illustrate the efficiency of Edge-valued Binary De- 
cision diagrams (EVBDDs). We will use quite a similar example to illustrate the 
efficiency of FNADDs. 

Notice that EVBDDs are decision diagrams with attributed edges [25], which 
represent functions in the form of the arithmetic polynomials 12 11. Arithmetic spectral 
transform decision diagrams (ACDDs) [27] do not have attributed edges, the same 
as FNADDs, but also represent functions in  the form of arithmetic polynomials. 
Therefore, we will provide comparisons with ACDDs. Notice that definitions of the 
Arithmetic transform and arithmetic polynomials are considered in Section 5.3, and 
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f 

Fig. 4.26 Arithmetic transform decision diagram for f in the Example 4.6. 

here we briefly recall the definition of the Arithmetic spectral transform decision 
diagrams. 

Definition 4.5 1271 Arithmetic spectral transform decision diagrams (ACDDs) are 
binary decision diagrams, i.e., consists of nodes with two outgoing edges, where the 
values of constant nodes are the arithmetic spectral coeflcients. and labels at the 
edges are 1 and 2,. 

Example 4.6 Fora function f given by the vector F = [0,1,2,4,5,6,  7IT, the arith- 
metic spectrum is calculated by using the arithmetic transform matrix for n = 3 
defined in Example 5.3, thus, it is 

Af = A(3)F 

= [0,1,2,0,4,0,0,01T. 

Figure 4.26 shows the ACDD for f .  

Example 4.7 Realization of switching functions by logic networks containing gener- 
ators of all switching functions as basic design modules has been discussed already 
by Shannon 1201. 

A two-variable functions generator is eficiently applied as a design module also in 
present technologies, see for example [14], 1151. Figure 4.27 and Figure 4.28 show 
two-variable function generators in the notation by Shannon and with more recent 
symbols for elementary logic circuits [15]. 

The outputs of the two-variable function generator is described by the set of switch- 
ing functions {xy, xy, x, Zy, y, x @ y, x V y, % .  g, 2 @ y, G, x V Q, %, Z V y, It: V Q}. We 
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Fig. 4.27 Two-variable function generator in Shannon notations. 
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Fig. 4.28 Two-variable function generator. 
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~ 1 1  ~2~ 41  ( 0  8 1  

Fig. 4.29 ACDD representation of f (z )  for TVFG. 

I f ’  
W , 

1 , 1-2x, 

Fig. 4.30 Matrix-valued FNADD representation of f (2)  for TVFG. 
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represent the truth-vectors of these functions by their decimal equivalents. Together 
with the constants 0 and I ,  these functions can be represented as an integer function 
f given by the truth-vector 

F = [0,1,2,3,4,5,6,7,8,9,10,11, 12,13,14,15]'. 

Therefore, a MTBDD representing this f is the complete Shannon tree for switching 
functions of four variables. Thus, this representation o f f  requires 31 nodes in 5 
levels with 15 non-terminal nodes. 

The arithmetic spectrum o f f  is 

Af = P, 1,2 ,0 ,4 ,0 ,0 ,0 ,8 ,0 ,0 ,0 ,0 ,0 ,0 ,  OI', 

and it follows that f can be represented by the Arithmetic spectral transform decision 
diagram (ACDD) shown in Figure 4.29. This representation requires 15 nodes in 5 
levels with 10 non-terminal nodes. 

I f f  is considered as a function on GIG = C2 x Q 2  its Fourier spectrum is given 
by S f  = &[120, -8, -32,0, S f ( 4 ) ,  -64,0,0,0, S f (9 ) ] ' ,  with 

Therefore, f can be represented by the matrix-valued FNADD in Figure 4.30. The 
representation requires 9 nodes in 3 levels with 3 non-terminal nodes. 

The matrix-valued node Sf(4) can be represented by the MTBDD on G4 shown 
in Figure 4.31. The impact of the zero matrix for Sf ( 9 )  is equal to the ordinary zero- 
valued constant node. By using this MTBDD as a sub-tree, f can be represented by 
the complex-valued FNADD shown in Figure 4.32. This decision diagram requires 
12 nodes in 4 levels with 4 non-terminal nodes. 

The complexities of these different representations of two-variable function gen- 
erator are compared in Table 4.3 showing the number of levels, non-terminal nodes 
(ntn), constant nodes (en) and the size of the MTBDD defined as the number of 
non-terminal and constant nodes. 

4.6 REPRESENTATION OF ADDERS BY FOURIER DD 

In this section we illustrate the application of FNADDs to the representation of an 
n-bit adder. 

It is shown in [27] that the number of nodes to represent n-bit adder by a MTBDD 
is 0 ( 2 n )  and by an ACDD O(n).  The number of nodes to represent n-bit multiplier 
by a MTBDD is O(4")  and by an ACDD O(n2).  The number of levels in  MTBDDs 
and ACDDs is always equal to n. 

It is shown on the example of 2-bit adders and multipliers that FNADDs permit 
some considerable savings in both number of levels and non-terminal nodes. Besides 
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Number of 

MTBDD 

ACDD 

Matrix-valued 

FNADD 

Complex-valued 

WADD 

Table 4.3 Complexity of representation of TVFG in terms of the number of levels, 
non-terminal nodes (ntn), constant nodes (cn) and sizes. 

levels ntn cn size 

5 15 16 31 

5 10 5 15 Figure 4.29 

3 3 6 9 Figure4.30 

4 4 8 12 Figure4.32 

Fig. 4.31 MTBDD representation of Sf(4) for TVFG. 

Fig. 4.32 Complex-valued FNADD representation of f for TVFG. 
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Fig. 4.33 MTBDD representation of f for 2-bit adder. 

J' 
A 

I 

Fig. 4.34 ACDD representation of f for 2-bit adder. 
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that, the savings in  the total number of nodes compared to MTBDDs representations 
are achieved even with complex-valued FNADDs. In that case the total number of 
nodes is equal to that used with ACDDs. 

Example 4.8 The outputs of the 2-bit adder may be represented by the integer func- 
tion f given by the truth-vector F = [0 ,2 ,2 ,4 ,1 ,3 ,3 ,5 ,1 ,3 ,3 ,5 ,2 ,4 ,4 ,  6IT [14]. 
Therefore, it may be represented by the MTBDD shown in Figure 4.33. The repre- 
sentation requires 19 nodes over 5 levels. 

The arithmetic spectrum o f f  is Af = [0,2,2,0,1,0,0,0,1,0,0,0,0,0,0,0]'. 
Therefore, f may be represented by ACDD shown in Figure 4.34. The representation 
requires I I nodes in 5 levels. 

I f f  is considered as a function on theJinite non-Abelian group GIG = Cz x Q2, 

where C;L is the basic dyadic group and Q2 is the quaternion group, the Fourier 
spectrum o f f  is 

and Sf(9) = 1 - l + i  -1-2 
1-2  -1-i 

where Sf(4) = 

Therefore, it may be represented by the matrix-valued Fourier decision tree shown 
in Figure 4.35, that can be reduced into the matrix-valued Fourier decision diagrams 
shown in Figure 4.36. The representation requires 8 nodes in 3 levels. 

The value of the constant nodes Sf (4) and Sf(9) are ( 2  x 2 )  matrices. The impact 
of the zero matrix for Sf(9) is equal to the ordinary zero-valued constant node. 

I f  matrix-valued constant nodes are not allowed, that matrix can be considered as 
the function S f  = [-1+ i, 1 - i ,  -1 - i ,  -1 - z ] ~ .  Ifthis function S f  is consideredas 
a function on the cyclic group of order 4, Gq, it can be represented by the quaternary 
decision diagram QDD [18/ shown in Figure 4.37. By using this decision diagram, 
the complex-valued FNADD representing f jbr 2-bit adder may be derived as in 
Figure 4.38. 

The complexities of representing the 2-bit adder with these various decision dia- 
grams are compared in Table 4.4, where number of levels, non-terminal nodes (ntn), 
constant nodes (en), and sizes of decision diagrams are shown. 

4.7 REPRESENTATION OF MULTIPLIERS BY FOURIER DD 

The above method is applied to the optimization of the representation of multipliers by 
Fourier decision diagrams. For simplicity, the presentation is given on the examples 
of 2-bit and %bit multipliers. Similar conclusions may be derived in the general case. 

The following example considers the efficiency of representing the 2-bit multiplier 
by different decision diagrams. 
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Fig. 4.35 Fourier DT of f for 2-bit adder, 

.f 
W 
- 

1 , 1-2x, 
, 

Fig. 4.36 Matrix-valued FNADD of f for 2-bit adder. 
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/ ', 

I '  ! - ' + l  

Fig. 4.37 MTBDD representation of Sf(4) for 2-bit adder. 

1-2 x, 
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~- 

fig. 4.38 Complex-valued FNADD of f for 2-bit adder. 
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6 

Table 4.4 Complexities of representing the 2-bit adder in terms of levels, number of 
non-terminal nodes (ntn), constant nodes (cn), and sizes. 

10 Figure4.38 

Number of 

MTBDD 

ACDD 

Matrix-valued 

FNADD 

Complex- val ued 

FNADD 

levels ntn 

~ 

Figure 4.34 

Figure 4.36 

Example 4.9 The outputs of the 2-bit multiplier may be represented by the integer 
function f given by the truth-vector (141 

F = [O,O,0,4,0,0,2,6,0,2,0,6,  1,3,3,9IT. 

The MTBDD representation off requires 20 nodes over 5 levels. 
The arithmetic spectrum o f f  is Af = [O, O , O ,  4,0,0,2,0,0,2,0,0,1,0,0,0] ' .  

Therefore f may be represented by an arithmetic spectral transform decision diagrams 
(ACDD) with 1.5 nodes in 5' levels. 

Edge-valued binary decision diagrams (EVBDD) [ 131 representation of f for 
the 2-bit multiplier requires I0 non-terminal nodes over 5 levels with I 1  weighting 
coejticients. 

I f f  is considered as a function on the finite non-Abelian group G16 = C, x Q2, 

where C, is the basic dyadic group and Q 2  is the quaternion group, the Fourier 
spectrum o f f ( z )  is 

and Sf (9) = 1 1 8 - 24i -162 
162 -8-242 

where Sf(4) = 
L J L J 

Therefore, it may be represented by the matrix-valued Fourier decision diugruni 

The values of the constant nodes Sf(4) and Sf(9) are ( 2  x 2 )  matrices. 
Ifthe matrix-valued constant nodes are not allowed, that matrix can be considered 

asthefunction Sf = [16i, 8-242, -8-24 ,  -1GiIT. Ifthisfunction S f  isconsidered 
as a function on the cyclic group of order 4, G4, it can be represented by a quaternary 
decision diagram QDD [18]. By using this decision diagram, the complex-valued 
FNADD may be derived. This decision diagram representation of the 2-bit niultiplier 
requires 13 nodes in 4 levels. 

The complexities of representing the 2-bit multiplier with these various decision 
diagrams are compared in Table 4.5. 

which requires 8 nodes in 3 levels. 
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Number of 

MTBDD 

Table 4.5 Complexities of representing the 2-bit multiplier in terms of the number of 
levels, non-terminal nodes (ntn), constant nodes (cn) and sizes. 

levels ntn cn size 

5 13 7 20 

ACDD I 5  I 1 1 1 4 1 1 5 1  

EVBDD I 5  I 1 0 1 1 1 1 2 1 1  

FNADD 

Complex-valued 

FNADD 

Fig. 4.39 MTDD for the 3-bit multiplier on CG4 = C4 x C4 x C4. 

In the above example, the reduction of levels is achieved by using Fourier decision 
diagrams. The other decision diagrams on Abelian groups GIG = C, x C, x CZ x C, 
do not offer such possibility. The reduction of levels may be achieved with QDDs 
and their corresponding generalizations for different decompositions of the domain 
group G for f .  The following example studies the effect of different decompositions 
of the domain group G64 in the representation of 3-bit multiplier with MTDDs and 
compares these representations with a Fourier decision diagram representation. 
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Example 4.10 The outputs of the 3-bit multiplier may be represented by the integer 
function f given by the truth-vector [14] 

F = [0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,  

0,2,4,6,8,10,12,14,0,3,6,9,12,15,18,21, 

0,4,8,12,16,20,24,28,0,5,10,15,20,25,30,35, 

0,6,12,18,24,30,36,42,0,7,14,21,28,35,42, 49IT. 

I f f  is considered as a function on thefinite non-Abelian group G64 = Q2 x Q 2 ,  

where &a is the quaternion group, the Fourier spectrum off is 

1 
4 
-28,4,16,0,Sj(14),0,0,0,0, Sf(19)  

Sf 1 -[49, -7,28,0,Sf(4),  -7 ,1 ,4 ,0 ,Sf(9)  

s f ( 2 0 ) >  Sf (211, Sf (22), Sf(23) I sf(24)lr .  

I 1-2 - l + i  
- l + i  l + i  ' 

Sf(9) 1 Sf(21)  = 

1 1-2 - l + i  
- l + i  l + i  ' 

Sf(14) = Sf(22) = 4 

1 -1-i  
- l + i  1 l + i  

i 1-2 
Sf(24) = 2 I 

- l + i  -1 l + i  
We represent the matrix-valued nodes simply by MTDTs of the corresponding 

orders by taking the advantages from the properties of the matrix-valued Fourier 
coefficients'. In that way we produce the complex-valued Fourier decision diagrams 
representing the 3-bit multiplier [24/, [25]. 

The complexities of representing the -?-bit multiplier with MTDDs for different 
decompositions of G64 and complex-valued Fourier DD on G64 = Qz x Q2 are 
compared in Table 4.6. This table shows the number of levels, non-terminal nodes 
(ntn), muximum number of nodes per level (max), minimum number of nodes per level 
(min), average number of nodes per level (av), number of constant nodes(cn), total 
of nodes, i.e., the size (s), and the maximum number of edges per node (e). 

Fourier decision diagrams permit the use of nodes with negated edges (FNADD 
n.e. in Table 4.6) [24/, [25], which means that the number of constant nodes may be 

' In many cases, matrix-valued Fourier coefficients are symmetric, Hermitean or skew-Hermitean matrices. 
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considerably reduced. In this example, however; the negative edges can not be used 
with MTDDs. 

Figure 4.39 shows an MTDD for the 3-bit multiplierfor the decomposition G64 = 
C, x C, x C,. Figure 4.40 shows an FNADD for the 3-bit multiplier for the decom- 
position Gs4 = Q 2  x Q Z  [241, [251. 

Table 4.6 Complexities of representing the 3-bit multiplier in terms of the number 
of levels, non-terminal nodes (ntn), maximum (max) and minimum (min) number of 
nodes per level, average number per level (av), constant nodes (cn), sizes (s), and 
maximum number of edges per level (e). 

4.8 COMPLEXITY OF FNADD 

In this section, we compare various decision diagrams on dyadic groups with FNADDs 
on the quaternion groups. Multiple-output functions are represented by Shared BDDs 
(SBDDs), Multi-terminal binary decision diagrams (MTBDDs) [ 141, and FNADDs. 
For representation by MTBDDs and FNADDs, the benchmark functions are first 
represented by the integer-valued functions f .  Depending on the value of R, in 
FNADDs on quaternion groups CzQ; or C,Q;, we use as the root node the Shannon 
nodes with two or four outgoing edges. 

Table 4.7 compares sizes (s) and widths (w) of SBDDs and FNADDs for various 
benchmark functions. For FNADDs the values of non-terminal nodes (ntn) and con- 
stant nodes (cn) are shown separately. Thus, the size of FNADDs is the sum of these 
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0 2 13 15 5 8 10 9 11 

1 6  3 4  12 14 

c=w3 +w3 +w3 e=w3 +w3 +w3 p3 +w3 -3 

h=w3 +w3 d v 3  fw3 h=w3 +w3 

S,=1 i S,=l+i 

Fig. 4.40 FNADD for the 3-bit multiplier on Gfi4 = Q2 x Q 2 .  
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Table 4.7 SBDDs and FNADDs for benchmark functions. 

s w  a 

167 18 3006 

34 4 136 

25 6 150 

21 3 63 

53 6 318 

I 1  2 22 

- 

.f 
5xpl 

bw 

con 1 

rd53 

rd73 

xor5 

S 

90 

I16 

20 

25 

45 

11 - 

SBDD - 
W - 

25 

37 

5 
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10 

2 - 

- 
a 

2250 

4292 

1 00 

150 

450 

22 

ntn 

39 

9 

13 

7 

23 

5 

rn - 
0.35 

0.36 

1.83 

0.50 

0.70 

0.83 

two values. It is also shown the ratio of non-terminal and constat nodes T,  = ntn/cn. 
This table shows that, besides depth reduction, we get width reduction, except for 
5xpl. Except this function and conl, the area is also reduced. In FNADDs, the ratio 
of non-terminal and constant nodes T, is quite more convenient. For example, in xor5, 
where the size and width remain the same, this ratio T, is 5.5 and 0.83, respectively. 

Table 4.8 compares sizes of SBDDs and FNADDs for adders and multipliers. In 
this example, FNADDs provide the reduction of all three parameters, depth, size, 
and width and the reduction is considerable compared to SBDDs. The reduction 
possibilities in these decision diagrams are compared as the percentage of nodes used 
from the total of nodes in the corresponding decision trees. It may be seen that these 
values are comparable, thus, the possibility to do reduction in SBDDs and FNADDs 
is comparable. In FNADDs, the reduction of area is considerable and shows the 
advantage of them. 

Table 4.9 compares sizes of SBDDs, MTBDDs and FNADDs for adders and mul- 
tipliers. In SBDDs and MTBDDs, the domain group is C;. The domain group for 
FNADDs is shown in  the table, since depends on n. We can observe that, besides 
depth reduction, FNADDs permit reduction of width and size. At the same timc, 
FNADDs have smaller area and convenient ratio of non-terminal and constant nodes 
for applications where reduction of the number of non-terminal nodes at the price 
of constant nodes may be required. When n increases, these properties of FNADDs 
increase. 

Table 4.10 compares the FNADDs to some other decision diagrams based on 
spectral transforms. The Arithmetic transform DDs (ACDDs), Walsh transform DDs 
(WDDs) in (1, - 1) coding (271, and Complex-HadamardTransfom DDs [71 arc com- 
pared with FNADDs for some benchmark functions. ACDDs, WDDs, and CHTDDs 
arc DDs on Abelian groups. Therefore, the depth is equal to n. For rd53 and xor5, 
the sizes of FNADDs are equal to those of other DDs. However, the number of non- 
terminal nodes and the width are reduced. In other cases in this example, FNADDs are 
more efficient with respect to depth, width and ske. However, as for other decision 
diagrams, examples where FNADDs are not efficient certainly can be found. As an ex- 
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6 

Table 4.8 SBDDs and FNADDs for adders and multipliers. 

SBDD 

s w  % 

8 21 22.00 

57 20 42.86 

103 30 19.84 

226 62 10.98 

477 126 5.81 

adders 

a 

168 

1140 

3090 

14012 

60 102 

I 

a 

95 

945 

620 1 

5391 2 

151296 

ntn 

4 

6 

14 

18 

21 - 

- 
cn 

7 

7 

14 

16 

12 

- 

- 
multipliers 

S 

1 1  

13 

28 

34 

33 - 

FNADD - 
W - 
2 

4 

7 

7 

7 - 

% 

52.38 

3 1.70 

33.73 

8.31 

4.00 

22 0.57 

52 0.85 

196 1.00 

238 1.12 i 231 1.75 

FNADD 

94 22 
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6201 

39600 

770 

53922 

660672 

2392 

15 1296 

10624320 

2068 

Table 4.9 SBDDs, MTBDDs and FNADDs for adders and multipliers. 

78.50 

2.67 

0.52 

235.50 

2.92 

0.79 

393.00 

3.257 

0.92 

adders 

cn I s W a 

20 

14 

4 

1140 

7 84 

52 

27.5 

2.73 

0.86 

30 

30 

7 

3090 

4320 

203 

50.50 

3.64 

0.93 

62 

62 

7 

14012 

2 1824 

238 

112.00 

4.59 

1.12 

60102 

104832 

23 1 

228.50 

5.55 

I .75 

126 

I26 

7 

127 832 

12 33 

multipliers 

j-z 116 

rn - 
30.5 

2.15 

0.45 

39 

120 

11 

159 

46 

47 3 114 

496 

23 

1238 5270 

4: 1 7:: 

192 

2016 

22 
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n = 2 r  

4 

6 

8 

Table 4.10 Sizes of ACDDs, WDDs, CHTDDs and FNADDs. 

BDD FNADD 

worst best worst best decomposition 

8 6  13 12 C2 Q2 

12 8 37 25 Q$ 
14 10 71 40 C4Q; 

- 

f 
5xp 1 

bw 

con I 

rd53 

rd73 

xor5 - 

f 
5xp I 

bw 

con 1 

rd53 

rd73 

xor5 - 

CHTDDs ACDD - 
ntn 

38 

31 

40 

15 

27 

15 

- 

L_ 

- 
ntn 

37 

31 

48 

15 

28 

5 

__ 

- 

- 
cn 

11  

32 

5 

6 

6 

6 

- 

- 

- 

S - 
49 

63 

45 

21 

33 

21 - 

L 

W - 
10 

16 

10 

5 

6 

5 - 

- 

W - 
64 

16 

56 

5 

7 

2 - 

a rn 

3.45 

0.97 

8 

2.5 

4.5 

2.5 

- 

- 
__ 

rn - 
2.85 

0.97 

4.36 

3.00 

5.6 

2.50 

ntn cn S a 

I27 

31 

I15 

15 

27 

9 - 

128 

32 

42 

6 

8 

2 - 

255 

63 

157 

21 

36 

11 - 

0.99 

0.96 

2.74 

2.5 

3.37 

4.5 - 
- 

rn 

0.30 

0.36 

1.08 

0.50 

0.77 

0.83 

__ 

16320 

I008 

8792 

1 05 

252 

22 

a 

490 

I008 

450 

1 05 

188 

105 

WDD( 1 ,- 1) 
I 

FNADD - 
W 

- 
cn 

13 

32 

1 1  

5 

5 

2 

- 

- 

- 
S - 

50 

63 

59 

20 

33 

7 - 

__ 
S 

1 67 

34 

25 

21 

53 

I I  

18 

4 

6 

3 

6 

2 

3006 

136 

150 

63 

318 

22 

16 

13 

5 

7 

I 

008 

767 

1 00 

23 I 

7 
I 

Table 4.11 BDDs and FNADDs for Achilles’ heel functions. 

ample consider the Achille’s heel function f = 21 y1 V x 2 y ~  V -  . Table 4.1 I 
shows the sizes of FNADDs for Achille’s heel function for different values of n and for 
two different orderings XI, 22, . . . , xa,, y1, y2,. . . , ~2~ and XI, y1,x2, y2 , .  . . , xnyTL. 
This example shows that, as in any other decision diagrams, the sizes of FNADDs 
greatly depends on the ordering of variables. In this example, the depth reduction in  
FNADDs is achieved at the price of the increase the size of the FNADDs. 
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4.9 FOURIER DDS WITH PREPROCESSING 

Fourier decision diagrams on non-Abelian groups take advantages from matrix rep- 
resentations of the Fourier transform. In this section, we propose a method which 
permits to further exploit these properties in decision diagram representations of dis- 
crete functions. 

We first convert agiven number-valued function f into a matrix-valued function f m  
by splitting the vector F of function values for f into subvectors which are arranged as 
rows of some matrices representing elements of a matrix-valued vector F,, defining 
f m .  We represent f m  by a matrix-valued FNADD. Then, in the thus derived FNADD, 
we represent each matrix-valued constant node by a Shannon decision diagram. In this 
way, we obtain a number-valued decision diagram representing f in a very compact 
form. 

In what follows, we define the matrix-valued functions and the related Fourier 
transform. Then, we define the Fourier decision diagrams for matrix-valued functions. 
This transform is used to define the Fourier decision diagrams for representation of 
matrix-valued functions. We explain by examples how these decision diagrams can 
be used to represent number-valued functions. 

4.9.1 Matrix-valued functions 

A discrete function f t P(G)  is conveniently represented as a vector of its values at 
all the points of G, thus, f is given as F = [f (0), . . . , f (y - 1)IT. 

Definition 4.6 (Matrix-valued functions) 
A function f defined on G taking values in a set of (u x b)  matrices hI,,b over afield 
P is called a matrix-valued function on G. 

The space of all matrix-valued function on G over P is denoted by P,,b(G). A 
matrix-valued function f E P,~b(G) is conveniently represented by a vector F = 

[ f ( O ) .  . . . , f (y  - 1)IT, where f ( i )  are ( u  x b)  matrices over P. In this section mainly 
functions whose values are square matrices are considered, thus, a = h = r ,  where 
r,, is a given number [ 1 I]. This dimension will be given the value rW,  where T ,  is 
the dimension of the w-th unitary irreducible representation of G over P [ I  I ] .  

In this vector notation, a number-valued discrete function can be transferred into 
its matrix-valued equivalent by using the following obvious algorithms. 

Algorithm 4.1 (Vector to matrix transformation (by columns)) 

1. Given a vector F of order y = nr i .  Split F into subvectors consisting of r," 
successive elenients f ( i )  of F. 

2. Write as columns of a matrix the first r ,  successive subvectors Continue with 
the following r ,  subvectors until n matrices of order (I-?" x I-?,,) are generated. 

3. The vector [F,,] of order gn = n whose elements are the thus generated 
matrices f ( i )  represents the matrix-valued function f v L  corresponding to f .  
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Algorithm 4.2 (Vector to matrix transformation (by rows)) 
Algorithm 4.1, but with subvectors in 2 written as rows of the generated matrices. 

Conversely, an ( rw x r,) matrix can be considered as a function on a group of order 
r i  and, thus, represented by a vector generated by using the following algorithms. 

Algorithm 4.3 (Matrix to vector transformation (by columns)) 

1. Given an ( r ,  x r,) matrix M over P. 

2. Generate a vector V of order r i  by concatenating the columns of M. 

Algorithm 4.4 (Matrix to vector transformation (by rows)) 
Algorithm 4.3, but concatenating the rows of M in 2. 

4.9.2 Fourier transform for matrix-valued functions 

It is assumed that the conditions for the existence of the Fourier transform on G over 
P a r e  satisfied in P,,, , l u  (G). 

Denote by R,(z) the value of the w-th unitary irreducible representation R, of G 
over P at the point z E G. Thus, R,(z) stands for an r ,  by r,  matrix with elements 
R$.')(J.) E P, and a,.j E (0 , .  . . , r ,  - 1). 

The set of all unitary irreducible representations of G forms the dual object r 
of G. In the case of Abelian groups, all the unitary irreducible representations are 
one-dimensional and, thus, reduce to group characters. In that case r expresses the 
structure of a multiplicative group isomorphic with G. If G is decomposable in  the 
form (2.4), then the cardinality K of r can be written as K = ny=l K,, where K, is 
the cardinality of the dual object r, of G,. 

The orthogonality relation for the components of the matrix functions of the dual 
object r is 

where t u ,  u E r, 1 I i ,  k I r,, 1 I j ,  r 5 r,. The bar denotes complex conjugation 
and 6 is the Kronecker delta. 

The character xw of R,, is 

xw(z) = W R w ( x ) ) .  

The orthogonality relations for characters are 
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where p ,  is the number of elements in the conjugate class of G that contains 2. Recall 
that the number of conjugate classes of a group G is equal to the number of elements 
in the set I?. 

Definition 4.7 The direct arzd inverse Fourier transform off E Pk,,(G) are defined 
respectively by 

g-1 

S,(w) = (Sy”)(w)) = r,g-l f(”’j)(u)R,(u-l), (4.1) 
u=o 

K-l  

f ( s )  = (f(””)(s)) = C Tr(S~’”(w)R,(e)), (4.2) 
W=O 

where K is the number of unitary irreducible representations R, of G over P. 

Notice that for a function f E Pk ,(G) with group representations of order r, ,  

Here and in the sequel we shall assume, without explicitly saying so, that all 

In the matrix notation, the Fourier transform matrix on finite groups is given as 

the Fourier coefficients are in A&,, ,mr,, . 

arithmetical operations are carried out in the field P. 

follows [I 1 I. 

Definition 4.8 The Fourier transform on G is defined by the transform matrix [R]-’ 
inverse to the matrix of basis functions defined as group representations for G, i.e., 
[R] = Y [ R ~ , R ~ , . . . R K - ~ ] ,  where 

(9 - 1) 

RIP“) (0) . . .  

RY’”(0) . . .  

R:”-l O)(g  - 1) . . . 

(9 - 1) 
Rrtt pl>o)(g - 1) , . . RrZt - l % r u  

. . .  
. . .  

(9 - 1) 
(T, ‘  -1,r,, - 1 )  

1) ’ ’ ‘  R K - ~  

R K - ~  = 

where [R] E Mg,T: and Rk’”(.) denotes the ( i , J ) - t h  element ofR,(.), 1 I p , q  F 
r,. Thus, R E Idg,,. 
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Example 4.11 The Fourier transform on 5'3 over GF(  11) introduced in Example 2.2 
is given by 

[R]- '=-  1 1 1 -1 -1 -:I, " '  21 2B 2A 2C 2D 2E 

with notations as in Table 2.2 and Table 2.5, respectively. Notice that in the case of 
representations over GF(11), the normalization factor is 116 = 2. 

Example 4.12 The Fourier transform for  functions on Qz over C is defined by group 
representations in Table 2.5 and it was introduced in Example 2.3. For convenience, 
it is repeated here, thus, 

1 1  1 1 1  1 1  
1 -1 1 -1 1 -1 1 
1 1 1 1 -1 -1 -1 
1 -1 1 -1 -1 1 -1 

21 2iB -21 2iA 2E 2iD 2C -2iD 

with notations as in Table 2.9. 

Example 4.13 Function xor5 is afive variable function defined as xor5 = zl @a2 8 
x3 @ xq @ x5 and is given by the truth-vector 

F = [ 0 , l , l , 0 , l , 0 , 0 , l , l , 0 , O , l , 0 , l , l , 0 , l , 0 , 0 , l , 0 , l , l , O , 0 , l , l , 0 , l , 0 , 0 , l ] T .  

By using the algorithm 4.2, xor5 transfers into the matrix-valuedfunction f m  given 
by the vector 

1 0  0 1  
'Fm' = ": ;I,[ 0 1 ] 9 [ ;  : ' I . [  1 0 1 .  

1 0  0 1  1 0  [ 0 I ] > [ ;  &[ 1 0 ] & l  I l l 7  

The Fourier coeficients are calculated as 

2 
8 
+ f ( z  J)(3)Ru,(l) + f ( z 3 J ) ( 4 ) R w ( G )  + f("J)(5)Ru,(7) 

+f(z,'J)(G)Rw(4) + f("j)(7)RU,(5). 

S ~ ( L U )  = (Sf")(w)) = -(f('>j)(0)RW,(O) + f"'3)(1)Rw(3) + f'"J'(2)R,,(2) 

The Fourier spectrum of fm is given by 
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1 
Sf(4) = - 

4 -  

where 

1 I -1-2 - I b i  - l + i  l - i l  [ l + i  1 - i  

l S i  - l + i ]  [ -1-2 1-21 [ l + i  1 - i  -1-2 - l + i  ’ 

l $ - i  - l + i  

Sf(1) = S f ( 2 )  = Sf(3) = [: : I 7  

or in matrix notation 

1 
[Sfl = s 

1 
l + i  - l+Z]  [ -1- i  1 - i ]  

l + i  -1+ i  
-1- i  - l + i  l + i  1 - i  

l + i  I - i  -1 -1Si 

The function can be reconstructed by the application ofthe relation 4.2 as follows: 
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We will illustrate this procedure by calculating the value of the function f (0) and 

f(7). 

Tr(4.1) + Tr(0  ' 1) + Tr(O.1) + T r ( 0 .  1) 

-1-i 1-2 1 0 ++[ -1-2 -,,,I [ 0 1 1 )  

4 + O  + 0  + 0 - 4 = 0, 

Tr(4.1) + T r ( 0 . 1 )  + Tr(0  ' 1) + T r ( 0 .  1) 

l + i  - l + i  1 0 ++[ l + i  1-21  [ 0 11 )  
4 + 0  + 0 + 0 + 4  = 8, 

Tr(4.1) + Tr(O.1) + Tr(O. 1) + T r ( 0 .  1) 

l + i  - 1 + i  1 0 ++[ l + i  1-21  [ 0 1 1 )  
4 + 0 + 0 + 0 + 4  = 8, 

Tr(4 ' 1) + Tr(O.1) + Tr(O.1 )  + Tr(0 .  1) 

4 + 0 + 0 + 0 - 4 = 0  

Tr(4.1) + T r ( 0 .  (-1)) + T r ( 0 .  (-1)) + T r ( 0 . 1 )  

- 1 - 2  1-2 0 i ++[ -1-2 - l + i ]  [ i 0 1 )  

4 + 0 + O + 0 + 4  = 8 ,  

Tr(4. (-1)) + T ' r (0 .  (-1)) + Tr(0 ' 1) + T r ( 0 .  1) 

l + i  - 1 + i  0 i ++[ l + i  1 - i ] [  2 0 1 )  

4 + 0 + 0 + 0 - 4  = 0, 

Tr(4.1) + T r ( 0 .  (-1)) + T r ( 0 .  (-1)) + T'r(0 ' 1) 

l + i  - l + i  0 i ++[ l + i  1 - 2 1  [ i 0 1 )  
4 + 0 + 0 + 0  - 4  = 0, 

T r ( 4 .  I) + T r ( 0 .  (-1)) + T r ( 0 .  (-1)) + T'r (0 .  1) 

-1-2 1-2 0 i ++[ -1-i - l + i ]  [ i 0 1 )  
4 + 0 +  0 + 0 + 4  = 8. 

The other function values are determined in the same way. 



FOURIER DECISION TREES WITH PREPROCESSING 135 

4.1 0 FOURIER DECISION TREES WITH PREPROCESSING 

Decision trees are defined by using some function expansions [ 161. For example, the 
Shannon tree is defined by using the Shannon decomposition rule [3]. Walsh transform 
decision trees (WDTs) are defined by using the function expansion derived from the 
Walsh transform [27]. The discrete Walsh transform is the Fourier transform on the 
dyadic groups, since the Walsh functions are the group characters of the dyadic groups. 
Thus, WDDs are an example of Fourier DDs on these particular Abelian groups. The 
concept was extended to any finite not necessarily Abelian group through Fourier 
DDs [22] that were obtained by using the function decomposition determined by the 
Fourier transform on finite groups to define the Fourier transform decision trees. In 
this section we extend the approach to matrix-valued functions. 

The Fourier transform on a finite group G decomposable in the form (2.4) may 
be considered as the n-dimensional Fourier transform on the constituent subgroups 
G,. The Fourier transforms on G, will be used to define a mapping performed at the 
nodes of a Fourier decision tree to associate a function to the DT. 

Definition 4.9 Denote by S f  the Fourier transform coefficients on afinite not neces- 
sarily Abelian group G representable in the form (2.4). The Fourier decision tree on 
G over P is defined as the decision tree in which the nodes at the i-th level represent 
functions 

f(x,) = (f‘””’(x,)) = C ?‘r(S~’”)(w,)R,~(xi)), xi E Gi. 
W, E r ,  

This definition differs from Definition 4.1 in  the property that all the Fourier 
coefficients are matrix-valued. 

With this definition, Fourier decision trees are the decision trees on G in which each 
path from the root node up to the constant nodes corresponds to a unitary irreducible 
representation of G. A node at the i-th level has Ki outgoing edges denoted by 
Rwr ( j ) , j  E ri. In the figures of decision trees we use the short notation w! for 
Rwt ( j )  or simply j when the context does not allow misunderstandings. 

For a given f ,  the values of constant nodes in the Fourier decision diagrams are the 
Fourier coefficients o f f .  It follows that, as in decision diagrams on Abelian groups, 
we perform the inverse Fourier transform in the determination o f f  represented by a 
given Fourier decision tree by following the labels at the edges in the DT [211. 

In application of the thus defined Fourier decision trees to number-valued func- 
tions, these functions should be first transferred into their matrix-valued equivalents. 
Therefore, such decision trees will be called the Fourier decision trees on non-Abelian 
groups with preprocessing (FNAPDTs). 

The structure of matrix-valued FNAPDTs (mvFNAPDTs) is determined as follows. 
This statement points out the difference with decision trees on Abelian groups. 

Observation 4.6 The number of levels in a FNAPDTs is equal to the number of 
constituent subgroups Gi in the domain group G o f f .  The number of outgoing edges 
of nodes at the i-th level is determined by the cardinality K, of the dual object rz of 
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the corresponding subgroup G,. The number of constant nodes in FNAPDTs is equal 
to the cardindig of the dual object r of G. 

The difference with the FNADTs is that in FNAPDTs all the constant nodes are 
matrix-valued. In FNADTs most of the constant nodes are number-valued. Those 
corresponding to group representations of orders T, > 1 are the matrix-valued. That 
difference originates form the difference in definition of the Fouricr transform for 
number-valued and matrix-valued functions on non-Abelian groups. 

The matrix-valued coefficients in FNADTs and FNAPDTs may be also represented 
by decision trees by using the method of representation of matrices by the decision 
diagrams [ 5 ] .  In that way, we derive the integer-valued or complex-valued Fourier 
decision trees on finite non-Abelian groups, depending on the field P over which 
the group representations are taken. In that case, the number of constant nodes in 
a Fourier DT on a non-Abelian group is equal to g,, that is, it is the same as in any 
DT on Abelian group of the same order. Comparing to the matrix-valued Fourier 
decision trees, the number of levels in  an integer-valued or complex-valued Fourier 
DT is increased to represent the matrix-valued constant nodes. However, comparing 
to decision trees on Abelian groups, non-terminal nodes still may be saved, since 
always K, < g 2 .  

The non-terminal nodes in the Fourier decision trees are denoted by F, for Abelian 
groups and on non-Abelian groups by FA, and FNA, for decision trees with pre- 
processing. The index i denotes the number of outgoing edges and is equal to the 
cardinality K,  of the dual object of G,. 

4.1 1 FOURIER DECISION DIAGRAMS WITH PREPROCESSING 

Decision diagrams are defined by the reduction of the decision trees. The reduction 
rules are chosen depending on the range of the functions represented. Therefore, the 
Fourier decision diagrums with preprocessing (FNAPDDs) are defined as follows. 

Definition 4.10 Fourier decision diagrams with preprocessing are the decision dia- 
grams that are derived from the Fourier decision trees with preprocessing by using the 
generalized BDD reduction rules. A FNAPDDs is called reduced iffurther reduction 
with the same rules is impossible. 

By definition, Fourier decision trees are graphical representations of the Fourier 
expansion of a given function f .  Therefore, they are canonic representations since the 
Fourier expansions are canonic representations. The same applics to Fourier decision 
diagrams, since the generalized BDD reduction rules do not destroy or diminish the 
information content in  the decision trees. 

In decision diagram representations of integer-valued functions nodes with nega- 
tive edges are usually used to reduce the complexity of a decision diagram. A negative 
edge indicatcs that the value or subfunction 'u represented by the node where the edge 
points to, should be multiplied by -1. Thus, two nodes with values L' and -0 and 
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Table 4.12 Labels of edges. 

V I 1  

y + i z  

y - iz 
-y - iz 
-y + iz 

the incoming edges j and k ,  may be replaced by one node whose value is u and two 
incoming edges are labeled by j and -k.  

In various decision diagrams representing complex-valued functions on finite 
groups, as well as in Fourier decision diagrams over C for whatever integer or 
complex-valued function, there are nodes whose outgoing edges point to nodes rep- 
resenting pure imaginary values or nodes representing mutually complex-conjugate 
values. In these decision diagrams, by the same justification as for the nodes with 
negative edges, we can consider imaginary edges denoting the multiplication with 
the imaginary unity i. Thus, two nodes whose values are w and iv with the incoming 
edges labeled by j and k, respectively, can be represented by one node whose value 
is ti and the two incoming edges are labeled by j and ik. 

In a similar way, simplification of decision diagrams representations may be done 
by introduction of the node with complex-conjugate edges permitting to reduce nodes 
representing a value or subfunction v and its complex-conjugate I )* .  Labels of cor- 
responding imaginary and complex-conjugate edges are shown in Table 4.12. In this 
table, u denotes the value or subfunction represented by a node and 1 is the label at 
the edge corresponding to Rw, ( j )  for non-Abelian and 2, = j for Abelian groups. 
The last row in the table shows, that if there is a node showing the value z and another 
showing the imaginary value iz, which is pointed by an edge j ,  we can redirect j to 
the node z and change the label into i . j ,  where i = n. 

4.12 CONSTRUCTION OF FNAPDD 

FNADDs take advantage from the matrix notation and thus provide compact repre- 
sentation off in the spectral domain. In FNAPDDs the same advantages are extended 
to both original and spectral domain. 

If a given function f on a group G of ordcr ,y is transferred into a matrix-valued 
function on a finite non-Abelian group G, of order glL = y/r,,, where T, is the great- 
est order of the group representations of G,,, then, f is represented by the FNAPDD 
on G,. The elements of the matrix-valued constant nodes in this FNAPDDs may 
be considered as functions on an Abelian group of order r ,  and represented by the 
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0 I '  

Fig. 4.41 BDD representation 
for xor5. 

Fig. 4.42 FNADD for xor5. 

decision diagrams on this group. In that way a decision diagram with small depth 
and width may be produced for f .  

Construction of FNAPDDs is explained and these decision diagrams compared 
with FNADDs by the following examples. 

Example 4.14 Function xor5 is given by the truth-vector 

F = [ O , l , l , O , l , O , O , l , l , O , O , l , O , l , l , O , l , O , O , l , O , l , l , O , O , l , l , ~ , l , O , O , l ] T ,  

and can be represented by the BDD in Figure 4.41. xor5 can be considered as a 
function on the group G32 = C4 x Q 2 .  The group representations of C, over the 
complex field are given by the complex Walsh matrix 1; -; 1 1  -1 I] 

CW = 
-1 1 -1 

-1 - 2  

Since, CW-' = iCW, the Fourier transform on G32 = C4 x Q2 is defined by the 
matrix 

RYi = CW-'@Q:'. 
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. 

Fig. 4.43 Matrix-valued FNAPDD for xor5. 

Fig. 4.44 FNAPDD for XOr5 with elements of mv nodes. 



140 OPTIMIZATION OF DECISION DIAGRAMS 

Fig. 4.45 Complex-valued FNAPDD for xor5. 

The Fourier spectrum of xorS on this group is given by 

where 

Therefore, this function can be represented by the FNADD shown in Figure 4.42. 
In this figure, the number 118 before the rectangle around constant nodes denotes 
that all the values of constant nodes has to be scaled by 118. The same notational 
convention will be used in further examples. 

The Fourier spectrum for  xorS viewed as a matrix-valued function on Q 2  is deter- 
mined in Example 4.13. 

I t  follows that xorS may be represented by the matrix-valued FNAPDD in Fig- 
ure 4.43. 

By using the Algorithm 4.2, the matrix-valued nodes in Figure 4.43 can be repre- 
sented by Multi-terminal decision diagrams (MTDDs) on C: or Ci. From (4.2), to 
read the function values fo r  f ,  we should work with matrix elements of the niatrix- 
valued Fourier spectral coeficients, i.e., with submatrices S;;") ('uI) of order r , .  It 
follows, that in a mvFNAPDD, it is suflcient to represent the matrix-valued coefl- 
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Table 4.73 Complexity of representation of xor5 in terms of the number of levels, 
non-terminal nodes (ntn), constant nodes (cn), and sizes. 

cients until their submatrix elements of order r,. Howevel; these elements can be 
further represented by complex-valued decision diagrams. 

Therefore, xor5 may be represented by the complex-valued FNAPDD in Fig- 
ure 4.45. 

Complexity of representation of xor5 by BDD FNADD and FNAPDD is compured 
in Table 4.13. This table shows the depth (d), width (w), number of non-terminal 
nodes (ntn), constant nodes (cn), and the size ( s )  for different decision diagrams for 
xor5. 

Example 4.14 shows that compared to BDD and FNADD for xorfi, FNAPDD 
reduces the depth, width and size of the DD. The number of non-terminal nodes is 
also reduced. The price is the increased number of constant nodes. However, that 
saving of non-terminal nodes (7 instead 9 for BDD) is in some applications more 
important than the increase of the number of constant nodes (4 instead of 2). 

The following example illustrates the use of FNAPDDs when the domain group 
G is represented as the product of Abelian and non-Abelian groups. 

Example 4.15 Figure4.46showsBDDfortheswitchingfunction .f(xl,x2,~3,54, ~ 5 )  

given by the following truth-table (tuken from [14]). 
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Fig. 4.46 BDD for f in Example 4.1 5. 

Fig. 4.47 Matrix-valued FNADD for f in Example 4.15. 
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I f 
’ FA, 

Fig. 4.48 Complex-valued FNADD for f in Example 4.1 5. 

Fig. 4.49 Matrix-valued FNAPDD for f in Example 4.15. 
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1 .  f 

Fig. 4.50 FNAPDD for f in Example 4.15 with elements of mv nodes. 

Fig. 4.51 Complex-valued FNAPDD for f in Example 4.15. 
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This function can be alternatively considered as a function on the group G32 = 
C4 x Q2. The Fourier spectrum o f f  is thus given by 

S f  = -[19, -3,  -1,1,0, i ,  - i , i ,  -2, R, 1, -1, - 3 , 3 ,  V, -2, i ,  -2, i, -R]'r, 
1 

32 

where 

-4 - 6 i  42 -2 + 4i 
0 

o= 42 -4+6i 
.I J 

1 .  -4-2i 8-42 
-8-4i - 4 + 2 i  

v =  [ 
Therefore, this function can be represented by the matrix-valued FNADD shown in 
Figure 4.47. In this decision diagram, the matrix-valued nodes are transferred into 
functions on C4 by using the algorithm A2 and represented by the nodes S, with four 
outgoing edges. Figure 4.48 shows the thus derived complex-valued FNADD o f f .  

This function f can be transferred into the matrix-valuedfunction f m  on Q 2  given 
by the vector 

0 1  1 0  0 1  0 1  
[F7rJ = [[  1 0 1 4  1 1 ] 3 [  1 0 1 4  1 0 1 ;  

The Fourier spectrum of f i n  is giveri by 

where 

Sf(1) = S f ( 2 )  = S f ( 3 )  = - 8 [ -: -:I: 
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FNAPDD 

Complex-valued 

Table 4.14 Complexities of representing f in Example 4.15 in terms of the number 
of levels, non-terminal nodes (ntn), constant nodes, (cn), and sizes. 

Number of 

BDD 

Matrix-valued 

FNADD 

Complex-valued 

FNADD 

1 

4 
Sf(4) = - 

d ntn cn 

6 9 2  

3 4 6  

4 7 8  

S 

11 

10 

15 - 

4 - 

15 

It follows that f can be represented by the matrix-valued FNAPDD in Figure 4.49. 
Figure 4.50 shows FNAPDD with elements of matrix-valued nodes represented by 

matrix-valued MTDDs. If these elements are represented by decision diagrams, the 
function f can be represented by the complex-valued FNAPDD in Figure 4.51. Com- 
plex@ of representation of the considered function by BDD, FNADD and FNAPDD 
is compared in Table 4.14. 

In this example, FNAPDD permits reduction of the depth and the number of 
non-terminal nodes without exceeding the size of BDD for f .  This reduction is 
obtained as a trade-off between the complexity of the overall decision diagram and 
the complexities of the nodes of the decision diagram. 

The following example illustrates construction of FNAPDDs over finite fields. 

Example 4.16 Figure 4.52 shows MTDD representation of the function f given by 
the following truth-table (taken from [14]). 
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Fig. 4.52 MTDD for f in Example 4.16 on GZ4 = C2 x C2 x Cz x C3. 

a=w,o+w,p+w,4 e=w,0+w2'+w,3+w,S 
b=W,'+w;+w; pw,)+w,4 

C'W,O+W,'+W~ 2 3  fw, p2'+w,Z+w,4+w,S 
&W,s h=w;+wl 

Fig. 4.53 MTDD for f in Example 4.16 on G24 = C4 x C6. 
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Fig, 4.54 mvFNAPDD for f in Example 4.16. 

Fig. 4.55 FNAPDD for f in Example 4.16 with elements of mv nodes. 
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2 1 2 2 X 3 X q  

0000 

000 1 

0002 

0010 

0 0 1 1  

0012 

149 

f 2 1 2 2 x 3 2 4  f x 1 x 2 x 3 x q  f 
0 0100 0 1000 0 

1 0101 0 1001 0 

1 0102 0 1002 0 

0 0110 0 1010 1 

0 0111 0 1011 1 

I 0112 1 1012 0 

Fig. 4.56 ivFNAPDD for f in Example 4.16. r 
1110 

1111 0 

1112 0 

I f f  is regarded as a function on G24 = C4 x (36, where c, and C6 are the groups 
of orders 4 and 6, it can be represented by the MTDD with two-levels in Figure. 4.53. 

I f f  is transferred into the matrix-valued function f m  on the symmetric group of 
permutations S, over GF(  11) by using the Algorithm 4.1, it is given by 
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S f ( 2 )  = 

By using the Fourier transform for matrix-valued functions on Ss, the Fourier 
transform of fm on S, is given by 

9 10 2 10 
- [ l o  2 1  [ l o  6 1 -  

2 10 
- [: :] [ I  5 1 -  

[Sf 1 

where 
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~ LUT, I - p- 
FFT 

/” \ f 
- 

Fig. 4.57 Circuit realization of functions from FNAPDDs. 

represented. Figure 4.56 shows this FANPDD with matrix-valued nodes represented 
by decision diagrams, which are reduced to a node with four outgoing edges for  each 
submatrix. In this way, integer-valued FNAPDDs (ivFNAPDDs) are derived. 

Complexities of representing f by using MTDD for  G2j = C2 x C2 x C2 x C,, 
arid G24 = C, x CG and FNAPDD is compared in Table 4.15. 

Examples 4.14,4.15, and 4.16 are all considering binary-valued functions where 
BDDs and MTDDs have a starting advantage of 2 constant nodes, since they are 
defined with respect to the trivial basis. In the general case, for arbitrary discrete 
functions the number of different Fourier coefficients is not greater than the num- 
ber of different values a function can take. That means, FNADDs and FNAPDDs 
may have smaller number of constant nodes that MTDDs. That especially applies to 
the functions with so-called flat spectrum. FNAPDDs permits to represent a function 
through matrix-valued coefficients that can be recorded in a Look-up-table. It follows 
that FFT processors can be used to calculate the function values from spectral coeffi- 
cients. The same approach can be used for circuit realizations of discrete functions. 
Figure 4.57 shows the basic principle of realization of functions through FNAPDDs. 

4.13 ALGORITHM FOR CONSTRUCTION OF FNAPDD 

In practical applications of FNAPDDs representations, we assume that a library of 
finite Abelian and non-Abelian groups and their representations is provided. The 
groups whose orders are compatible to the class of functions that can be represented 
are taken in this library. The orders of the selected groups and their representations 
should be factors in the orders of vectors representing the targeted class of functions. 
For example, the quaternion group Q 2  is convenient in representation of switching 
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Table 4.75 Complexities of representing f in Example 4.1 6 in terms of the number 
of levels,non-terminal nodes (ntn), constant nodes (cn), and sizes. 

d Number of 

G24 = c, x c, x c, x c, 
ntn cn s 

5 7 2 9  

3 5 2 7  

2 1 3 4  

4 8 8 1 6  

G24 = C, x C, 

FNAPDD 

Number-valued 

FNAPDD 

functions, since has the order 8 = 2 ,  and the representations of order 2. Similar, 
the symmetric group of permutations 5’3 is suitable for representation of three-valued 
and four-valued functions, since it is of order 6 with representations of order 2. 

4.13.1 Algorithm for representation 

For agiven f ,  the FNAPDD representation is derived by using the following algorithm. 

Algorithm 4.5 (Determination of FNAPDD) 

1. Given a function f t P(G). Determine a non-Abelian group G, of order 
gn 5 g with representations of order r ,  by using the Algorithm 6. 

2. Transfer f into the corresponding matrix-valued function f T n  by using the 
Algorithm Apum. f, is represented by a vector [F,] of order y, whose 
elements are ( r ,  x r,) matrices. 

3. Represent f, by the matrix-valued FNAPDD on G,. 

4. Represent the matrix-valued nodes in FNAPDD of .fm by DDs on groups of 
order r;. 

5. Do the possible optimizations of this representation. 

Algorithm 4.6 (Generation of GJ 

I .  Assume that f may be represented by a vector G of order g 

2. Read the orders of available groups gr  and their representations Itwl in librury 
of jinite groups. Factorize g such that at least one factor of the form r i , g t  
appea rs. 
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3. Choose the corresponding non-Abelian group of order g ,  with representations 
of order rwg as a possible constituent subgroup G, in G,. 

4. Repeat 2 $possible, otherwise choose the remaining constituent subgroups in 
G,  among the available Abelian groups. In that, do a reasonable compromise 
between the number of levels and number of outgoing edges of nodes associated 
to the chosen subgroups G, in G,. 

5. Determine the structure of G, as a group of orderg, = $ with representations 

of order r,, = n,=, r w z ,  where k is determined in previous step and order the 
subgroups G, chosen in 3 and 4 in the increasing order: 

k 

6. Determine the Fourier transform matrix R on G, as the Kronecker product of 
the Fourier transform matrices on the constituent subgroups G,. 

4.14 OPTIMIZATION OF FNAPDD 

There are several possibilities for the optimization of FNAPDDs. 

1. Choose the best suited group G, depending on the possible factorizations of 
the order g of G on which f is initially given. 

2. Do the optimization in generation of f m  from f by choosing between algorithms 
A1 and Az. 

3 .  Do the optimization by choosing among DTs of various structures for the rep- 
resentation of the matrix-valued nodes in the matrix-valued FNAPDD. DDs on 
both Abelian or non-Abelian groups may be used. 

4. Do the optimization in transferring the matrix-valued nodes into functions on 
the corresponding subgroups by choosing arbitrarily between the algorithms 
Aarnv by columns and by rows. 

5. In representation of multi-output functions shared FNAPDDs may be used. 
These DDs are defined in the same way as Shared binary decision diagrams 
(SBDDs) and Shared multi-terminal binary decision diagrams (SM'IBDDs) are 
defined [I].The optimization may be done as with SBDDs and SMTBDDs by 
ordering of the variables in generation the integer-valued counterpart f ( z )  and 
by pairing of outputs. 
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Functional Expressions on 
Quaternion Groups 

In this chapter, we discuss arithmetic expressions on the quaternion groups [ 191 corre- 
sponding to the arithmetic expressions on C; . The interest in arithmetic expressions 
on Q; is motivated by the renewed recent interest in arithmetic expressions on CX; 
originating in their properties and applications 

1. Parallelization of algorithms for large switching functions [9], [ 101; 

2. Single expression for multi-output switching functions [ 141; 

3. Some word-level decision diagrams are graphic representations of arithmetic 
expressions for discrete functions [ 171, [ I  81, 1201; 

4. Different applications of arithmetic expressions such, as for example, checking 
of error probability in logic networks [9], [22]. 

We extended a method for derivation of polynomial expressions from Walsh 
(Fourier) expansions on CX; to non-Abelian groups by using as the example the group 

(n-1) /3  2 (n- -2) /3  
Q 2 .  For other values of n, we use the groups QT’3, C2Q2 , and C2Q2 . 
In this case, the arithmetic expressions are generated by the Kronecker product of the 
arithmetic matrices on C2 and Q 2 .  We consider groups of orders 2n, therefore, it is 
possible to derive arithmetic expressions on quaternion groups in  terms of switching 
variables. Extension to groups of arbitrary orders is possible by allowing variables 
to take values in arbitrary finite sets. An example of such generalizations for groups 
Cpn, for example p = 3, is given in [ 121. 

157 



158 FUNCTIONAL EXPRESSIONS ON QUATERNION GROUPS 

5.1 FOURIER EXPRESSIONS ON FINITE DYADIC GROUPS 

5.1.1 Finite dyadic groups 

Group representations for Cz are given by the basic Walsh matrix 

W ( l ) =  [ 1 -1 1 1  . 

The group representations of the finite dyadic group Cg are given by the Walsh matrix 
of order n defined as 

where @ denotes the Kronecker product. 
We denote by C(C;) the space of functions f : Cg ---f C,  where C2 is the cyclic 

group of order 2 ,  and C is the complex-field. Assume that f E C(C;) is given by 
the vector F = [ f ( O ) ,  . . . , f (2n - 1)IT. 

If the Walsh (Fourier) spectrum for f is represented by a vector of spectral coeffi- 
cients S,,f = [S,,f(O), . . . , S,,f(2n - 1)IT, then 

S , , f  = 2-nW(n)F ,  

and 

since the Walsh matrix is a self-inverse matrix over C with the scaling factor 2-". 

Example 5.1 The Walsh spectrum ofa three-variable switchingfunction f (51, x2,x3) 

given by the truth-vector F = [I, O , O ,  O , O ,  1,1, 1IT is given by vector of coe#cients 
S,,f = [4 ,0 ,0 ,0 ,  -2,2,2,2]'. Thus, 

where w,(x) represent the columns of the corresponding Walsh matrix. 

5.2 FOURIER EXPRESSIONS ON Q2 

The Fourier transform on Q 2  is defined in terms of the group representations given 
by the columns of the matrix whose entries are determined from Table 2.9. From 
this table, the set offunctions R$')(x) used to define the Fourier transform on Q 2  is 
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represented by the columns of the following matrix 

Q2 = 

1 1 1 1 1 0 0 1  
1 1 -1 -1 i 0 0 -2 

1 1  1 1 - 1  0 0 - 1  
1 1 - 1 - 1 - i  0 0 i 
1 - 1  1 - 1  0 - 1  1 0  
1 -1 -1 1 0 -2 -2 0 
1 - 1  1 - 1  0 1 - 1  0 
1 - 1 - 1  1 0  i i 0 

Notice that in this matrix, the order of group representations is a bit different 

The Fourier transform matrix is given by the matrix inverse to Q 2 .  Thus, 
compared to Table 2.9, in particular, R1 and R2 are permuted. 

1 1 1 1 1 1 1 1  
1 1 1 1 -1 -1 -1 -1 
1 -1 1 -1 1 -1 1 -1 
1 -1 1 -1 -1 1 -1 1 
2 -2i -2 22 0 0 0 0 
0 0 0 0 -2 22 2 -22. 
0 0 0 0 2 2i -2 -2i 
2 2i -2 -2i 0 0 0 0 

We denoted by C(Q2) the space of functions f : Q 2  ---f C. 
For a function f E C(Q2) given by the vector 

F = [f (01, f ( l ) ,  f ( 2 ) ,  f ( 3 ) ,  f (4), f (51, f (61, f ( 7 ) I T ,  

the Fourier spectrum given in the matrix notation by the vector of spectral coefficients 

S,.f = [S,.f(O), S , , f ( l )> S,.f(2), S,,.f(3), S,,f(4), S,,f(5), S,,f(G), Sq.f(7)IT, 

is determined as 

and 

F = Q2Sq,f. 

Example 5.2 I f f  in Example 5.1 is considered as a function on Q 2 ,  then the Fourier 
spectrum f o r  f is given by S , , f  = i [ 4 ,  -2 ,0 ,2 ,2 ,2  - 2,2]'. Thus, 

1 
f ( x )  = p ( 4 q 0 ( ~ )  - 2ql(z) + 2q3(z) + 2q4(x) + 2 q d z )  - %(x) + 2q7(x)), 

where qi (x) are columns of the matrix Q 2 .  
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5.3 ARITHMETIC EXPRESSIONS 

In the matrix notation, the arithmetic expressions for functions in C(CF) are defined 
as 

with 

F = [ f ( 0 ) ,  . . . , f ( 2 “  - l)IT, and 

n 

where A( 1) is the basic arithmetic transform matrix given by 

If the elements of X, are interpreted as logic values 0 and 1, then this matrix is 
referred to as the Reed-Muller matrix or the conjunctive transform matrix [2],[3]. It 
defines a self-inverse transform in  GFz(CF) denoted as the Reed-Muller transform, 
or the conjunctive transform. In this context, the arithmetic transform in C(C2) 
is denoted as the inverse conjunctive transform [2]. For more details on arithmetic 
expressions, see for example, [2],[91, [lo], [151, [221. 

Example 5.3 For 11 = 3, the arithmetic transform in C(C,”) is defined by the matrix 

A(3) = 

1 0 0 0 0 0 0 0  
-1 1 0  0 0 0 0 0  
-1 0 1 0  0 0 0 0  

1 - 1 - 1  1 0  0 0 0  
-1 0 0 0 1 0  0 0  

1 - 1  0 0 - 1  1 0 0  
1 - 1  0 0 - 1  1 0 0  
1 0 - 1  0 - 1  0 1 0  

-1 1 1 -1 1 -1 -1 1 

For f in Example 5. I ,  the arithmetic spectrum is given by 

T Af = [l, -1, -1,1, -1,2,2,  -21 . 

Therefore, 
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5.4 ARITHMETIC EXPRESSIONS FROM WALSH EXPANSIONS 

Let G = C; and P = C. Each x E G can be expressed by x = (XI, x2), XI, x2 E 

(0,l) .  Fourier expansions for functions f E C(C,”) are defined in terms of Walsh 
functions given by the columns of Walsh matrix 

The set of Walsh functions wz, i = 0,1,2,3 can be represented in terms of switch- 

1. wg = 1, 

2. w1 = 1 - 2x2, 

3 .  w 2  = 1 - 2x1, 

4. 1113 = (1 - 221)(1 ~ 2x2). 

ing variables as 

In symbolic notation, W ( 2 )  can be written as 

x(2) = [ ‘(110 7111 1U2 2113 ] . 
From (5.2), the Walsh expression for ,f E C(C;) is defined by 

f = X(2)SWl.f 
= [ 1 1 - 2x2 1 - 2x1 (1 - 2x1)(1-222) ] S f ,  

where S , , f  = [S,,f(O), SW,f(l), S , J ( ~ ) ,  Sw, , f (3)]T  is the vector of Walsh spectral 
coefficients. 

With this notation, the orthogonal Walsh series expression transfers into the Walsh 
polynomial expressions in terms of switching variables. It is assumed that switching 
variables are coded by ( O , l ) c ; ~ ( ~ )  --+ (0,l)z. Therefore, 

f = 1 ’ S , J j O )  + (1 ~ 2Z2)SW,f(l) + (1 - 2Zl)SW,f(2)  

+(1 - 221)(l  - 222)SW,f(3). (5.3) 

In (5.3), i f  the multiplications are performed, then the polynomial expression for 
f is derived. 

f = I . Zg ~ 22122 - 2 X 2 Z 1  f 4X12223. (5.4) 

where 

20 = S,.f(O) + S, , f ( l )  + S,,.f(2) + %,I . f (3) ,  

z1 = S,,f(l) + SW.f(3) ,  

22  = SWJ(2)  + SW.f(3), 

ZC( = S W J  (3).  
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Note that in this relation, indices of variables and coefficients are ordered in a way 

If Walsh (Fourier) coefficients are expressed in terms of the function values for f ,  

In this example, 

that corresponds to the Hadamard ordering of Walsh functions [8]. 

these polynomial representations become the arithmetic expressions for f .  

1 

1 

1 

1 

S W , f ( O )  = , ( f ( O )  + f ( 1 )  + f ( 2 )  + f ( 3 ) ) .  

S W , f P )  = ,(f(O - f ( 1 )  + f ( 2 )  - f ( 3 ) ) ,  

SUJ.f(2) = , ( f ( O )  + f ( 1 )  - f ( 2 )  - f ( 3 ) ) ,  

5L,f(3) = ,(f(O - f ( 1 )  - f ( 2 )  + f ( 3 ) ) .  

Therefore, 

After replacement of z,  in (5.4), we get the arithmetic expressions for f E C(C,”) 

f = 1 . a0 + x1u2 + X Z U I  + x1x2a3, 
where 

If further 

1 .  Binary values 0 and 1 for variables are considered as the logic values 0 and I ,  

2. The addition and subtraction in C are replaced by the addition in GF(2) ,  

3. Values of coefficients are calculated modulo 2, 

then, the arithmetic expressions become the Reed-Muller expressions for f ,  
In this example, the Reed-Muller expression is given by 
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where ~i E (0 ,  l}, are 

To  = f ( O ) ,  

T I  = f (0) @ f ( l ) ,  

1-2 = f (0) @ f (4, 
7-3 = f ( 0 )  @ f ( 1 )  63 f (2) @ f (3) 

Example 5.4 For ri = 3, the Walsh functions in the Hadamard ordering can be 
represented as 

r f  we replace these relations in (5.1 J, then 

which is the arithmetic expression fo r  f .  

by EXOR, we get the Reed-Muller expression for f 
If we reduce the coeficierirs modulo 2, and replace the addition and subtraction 

f = 1 @ 2 1  (ij 2 2  a 2 3  @ 22x3. 

5.5 ARITHMETIC EXPRESSIONS ON Qz 

Let G be the Quaternion (non-Abelian) group Q2. The columns of the matrix Q 2  

in terms of which the Fourier transform on Q 2  is defined can be represented by the 
following set of functions in terms of switching variables 

1. qo = 1, 

2. q1 = (1 - 22, ) ,  

3. q2 = (1 - 2x3), 

4. q3 = ( 1  - 22, ) (1  - 253), 
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5 .  q4 = Zl(1 - 252)(s3 + 2 5 3 ) ,  

6. q5 = - ~ 1 ( 1  - 252)(23 + Z Z ~ ) ,  

7. q6 = x1(1 - 2 2 2 ) ( 3 3  - 2 x 3 ) ,  

8. q7 = Zl ( l  - 222)(33 - 2x3) .  

Each f E C(Q2) can be represented as a linear combination of these functions. 

Expressions,Arithmetic on non-Abelian groups 
The coefficients in  this expression are the Fourier coefficients on Q 2  over C. 

Example 5.5 Consider a three-variable switchingfunction f as a function on Q2. If 
f is given by the truth-vector F = [l, O , O ,  O , O ,  1,1, 1IT, then the Fourier coeficients 
for f are given by the vector Sf = ;[4, -2 ,0 ,2 ,2 ,2 ,  -2,2]’. Therefore, 

1 
-(4 - 2(1 - 221) + 2(1 - 25 l ) ( l  - 252) 
8 f = 

+2Zl(1 - 2rC2)(33 + iz:3) - 221(1 - 2zz)(c3 + 2 2 3 )  

-251(1 - 2 2 2 ) ( : 3  - 2x3) + 221(1 - 222)(T3 - 2 5 3 ) ) .  

Finally, 

1 
8 

f = -(4 - 453 + 85153 + 4213 - 451%3 - 8z122z3 + 8 2 1 X 2 c 3 ) .  (5.5) 

I n  a general case, 

f = YOSq, f (O)  + 41Sq,f(l) + 4 2 S q A 2 )  + Q3Sq.f(3) 

+44sq,f(4) + 45sq. f (5)  + 46sq. f (6)  + q7sq.f(7). 

From the matrix of the group representations on Q 2 ,  the Fourier coefficients on Q 2  

are given by 

1 

1 

1 

1 

1 

1 

8 

Sq,f(O) 

Sq,f(l) = 

S q J ( 2 )  = 

Sq..f (3) = 

= , ( f ( O )  + f(1) + f ( 2 )  + f ( 3 )  + f ( 4 )  + f (5)  + f ( G )  + f ( 7 ) )  

, ( f ( O )  f f ( 1 )  + f ( 2 )  + f ( 3 )  - f ( 4 )  - f ( 5 )  - f ( G )  - . f ( 7 ) )  

, ( f ( O )  - f(1) + f ( 2 )  - f ( 3 )  + f ( 4 )  - f ( 5 )  + f (6 )  - f ( 7 ) )  

, ( f ( O )  - f(1) + f ( 2 )  - f ( 3 )  - f ( 4 )  + f ( 5 )  - f ( 6 )  + f ( 7 ) )  

SqJ(4) = p o l  - 2 i f ( l )  - 2”f(2) + 2 i f ( 3 ) )  

sq.f(5) = -(-2f(4) + 2 i f ( s )  + 2 f ( 6 )  - aif(7))  

1 
Sq,f(G) = - ( 2 f ( 4 )  + 2 i f ( 5 )  - 2f(6) - 2 i f ( 7 ) )  

Sq, f (7)  = - ( 2 f ( 0 )  + Z i f ( 1 )  - 2 f ( 2 )  - 2 2 f ( 3 ) )  

8 
1 
8 
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- 
1 0 0 0  1 0  0 0 
1 1 0 0  0 1 0  0 
1 0 0 0 - 1  0 0 0 
1 1 0 0  0 - 1  0 0 
1 1 1 1  0 0 1 0 .  
1 0 1 0  0 0 0 1 
1 0 1 0  0 0 - 1  0 
1 1 1 1  0 0 0 - 1  - 

From there. 

1 0  1 0  0 0  0 0 -  
-1 1 - 1  1 0 0  0 0 
-1 0 - 1  0 1 0  1 0  

1 -1 1 -1 -1 1 -1 1 
1 0 - 1  0 0 0  0 0 '  
0 1 0 - 1  0 0  0 0 
0 0 0 0 1 0 - 1  0 
0 0 0 0 0 1  0 - 1  - 

x, = 

r f f  E C(Q2) is given by a vector F = ( f ( 0 ) ,  . . . , f (7)IT, then the coeficients 
Qf = [qo ,  . . . , q7IT in the expansion for f with respect to the basis given by X, are 
determined as 

Qf = Xi lF ,  

where Xp' is the matrix inverse for X, over C. Thus, 

This matrix can be considered as a transform matrix de$ned with respect to the 
basic functions represented by columns of the matrix X,. Thus, this matrix defines 
the inverse transform. We call this transform the Arithmetic-Haar transform, since 
the matrix X i 1  exhibits a form similar to that of the Ham transform matrix [8]. 
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Example 5.6 For f in Example 5.1, the arithmetic-Haar coeficients are given by the 
vector sf = $11, -1,0, 2 ,1 ,0 ,  -l,oIT. Therefore, 

Extensions of the arithmetic-Haar expressions from Q 2  to Q g ,  'n = 3r, can be 
done through the Kronecker product of the basic transform matrices on Qz in the 
same way as in the case of the arithmetic expressions and Walsh series expansions. 
Generalization to other values for n is easy, by using combinations of the basic 
arithmetic transform matrices. For example, if for a four variable switching function, 
the domain group is chosen as G = C2 x Q2, then the arithmetic-Haar transform 
matrix is defined as the Kronecker product of A( l )  and X,. 

5.5.1 Arithmetic expressions and arithmetic-Haar expressions 

In derivation of arithmetic-Haar expressions, we have exploited the correspondence 
between the order of C; and Qy'3. Due to that, we express the basic functions in 
arithmetic-Haar expressions in terms of switching variables, similar as that is done for 
the arithmetic expression on Cg. Therefore, it is natural to establish a relationship 
between the arithmetic expressions on Ci and the arithmetic-Haar expressions on 
Q;l3. 

The arithmetic-Haar expression for a given function f ,  converts into the arithmetic 
expression for f if we replace Z, -+ (1 - xz), and then recalculate the coefficients 
and assign them to the basic functions used in the arithmetic expressions. 

Example 5.7 For f in Example 5.6, the arithmetic-Haar expression is converted into 
the arithmetic expression as follows: 

Arithmetic-Haar expressions and Kronecker expressions 

If we use a different representations for functions 40, . . . , q 7 ,  we will derive different 
arithmetic expressions for functions in  C(Q2). We use the above given representa- 
tions, since they 

1 .  Resemble representations of Walsh functions in terms of switching variables, 

2. Provide the transform matrix similar to the Haar transform. 
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Arithmetic expressions in C(C,”) are series expansions in terms of basic functions 
generated as 

If the values for variables are considered as the logic values, then the same basic 
functions are used in the definition of the Reed-Muller expressions. These basic 
functions can be generated by the recursive application of the positive Davio (pD) 
expansion defined as f = 1 . fo 8 z,(fo f l ) ,  where f o  = f ( x z  = 0), and f l  = 

Arithmetic-Haar expressions are series expansions in terms of the basic functions 
f (2% = 1). 

given by the symbolic matrix 

[1 2 3  2 1  21x3 
xq = z1?&(1 - 222) z123(1 - 252) qz’3(1- 222) 2123(1- 2 4 1 .  

These basic functions can be considered as a combination of two sets of basic 
functions in C(C:). First four basic functions are generated by the pD-expansion for 
variables x1 and 5 3 .  The other four basic functions are generated by the Shannon 
(S) expansion defined by f = Z,fo 69 zzfl for z1 and 2 3 ,  with multiplication by 

Thus, we generate the first four basic functions in the arithmetic-Haar expressions 
(1 - 252). 

as 

[ I  .1]@[1 2 3 ] = [ 1  2 3  21 21x31.  

For other four basic functions we first use the S-expansion and get 

[ 2 1  21 ] @ [ 2 3  2 3  ] [ 21x3 5 1 2 3  1 .  
Then, we multiply the generated terms by (1 - 222). 

and S-expansions are denoted as Kronecker expressions [ 131. In this setting, the 
arithmetic-Haar expressions are modified integer counterparts of the Kronecker ex- 
pressions for switching functions. 

For functions in GF2 (C;), expressions generated by combination of pD-expansions 

5.6 DIFFERENT POLARITY POLYNOMIAL EXPRESSIONS 

Switching variables take values in Ca. Negative literals of switching variables are 
defined as E = 2 @ 1. The fixed-polarity Reed-Muller expressions are defined by 
freely choosing between z and z for each variablc in  f [ 141. It is assumed that a 
particular variable appears as the positive or the negative literal, but not both in  the 
same expressions for f .  For a given f ,  fixed-polarity Reed-Muller expressions differ 
in the number of non-zero coefficients. 

The polarity of variables chosen in an expression is conveniently expressed by the 
polarity vector H = (h l ,  . . . , hn),  h, E (0, I}. It is assumed that if h, = 1, then the 
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QFol) = 

i-th variable is represented by the negated literal z. Thus, h, = 0, shows that the i-th 
variable appears as z,. The polarity where h, = 0 for each i = 1, . . . , n is denoted 
as the zero-polarity. For a given class of expressions and a given f ,  the polarity for 
which the expression has the minimal number of non-zero coefficients is denoted as 
the optimal polarity. 

In Fourier expansions for functions in C(Q2), the basic functions can be expressed 
in terms of switching variables. Thanks to that, the same method can be used to 
define fixed-polarity Fourier expansions C(Qa), and the arithmetic-Haar expression 

for functions in C(C,") and C(Q;/'), C2Q2 (n-1)/3 2 ( n - 2 ) / 3  
, and C2Q2 . 

r l  -1 -1 1 0 7 -2 0 
1 - 1  1 - 1  0 1 1  0 
1 - 1 - 1  1 0 - 2  7 0 
1 -1 1 -1 0 -1 -1 0 
1 1 -1 -1 7 0 0 --I 

1 1  1 1  1 0  0 1 
1 1 -1 -1 - 1  0 0 2 

1 1 1 1 -1 0 0 -1 - 

5.6.1 

Fixed-polarity Fourier expansions on Q 2  will be introduced through the example for 

Fixed-polarity Fourier expansions in C(  Q2) 

H = (101). 

Example 5.8 The use of negated literals for variables XI and 2 3  transfers the husic 
futictions for the Fourier transform on Q2 into 

1. q p  = 1, 

2. q y  = 1 - 221, 

4. qhl"l) = (1 - 2:1)(1 - 223) .  

6. q k l O 1 )  = -Z1(1 - 2x2)(53 + E 3 ) ,  
7. q p  = :rl(l - 2 2 2 ) ( 2 3  - izy), 

8. q i l O 1 )  = D', (1 - 2 5 2 ) ( 5 3  - 2.3). 

Thus, the matrix ofbasic,functions Qz for the Fourier transform in C(Q2) for the 
polaritj H = (101) is given by 
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- 
1 1 1 1 1 1 1 1  

-1 -1 -1 -1 1 1 1 1 
-1 1 -1 1 -1 1 -1 1 

1 -1 1 -1 -1 1 -1 1 
0 0 0 0 2i  -2 -22 2 

2i -2 -2i 2 0 0 0 0 
-2i -2 2i 2 0 0 0 0 

0 0 0 0 -22 -2 2i 2 - 

It follows that the colunins of QFol) are given by qo, -ql, -q2 ,  q3, iq6, iq7, 
-iq4, iq5. This permutation and change of columns in Qgol) requires apermutatiori 
arid charzge of rows in QY1. Wefirst transform rows in QT1 in the same way as we 
transform the columns in Qz to get Qgol). In this way we get 

- - 
1 1 1 1 1 1 1 1  

-1 -1 -1 -1 1 1 1 1 
-1 1 -1 1 -1 1 -1 1 

(101) -1 - 1 1 -1 1 -1 -1 1 -1 1 
‘ ( Q z  ) - S  0 0 0 o -2i 2 2i -2 

-2i 2 2i -2 0 0 0 0 
2i 2 -2i -2 0 0 0 0 
0 0 0 0 2i 2 -2i -2 - - 

(Q8’)’ = 

1 
8 

SLtf”” = -[4,2,0.2,22, -2 i i  22. -2iIT. 

Therefore, 

1 
f = -(4 + 2(1 - 2T1) + 2(1 - 2T1)(1 - 2Z3) + 2iz1(1 - 2x2)(x3 + iZ3) 

8 
-22T1(l - 252)(53 + iZ3) + 2iz1(1- 222)(x3 - iz3) 

-2iXl(1 - 252)(X3 - ZZ3)). 

5.6.2 Fixed-polarity arithmetic-Haar expressions 

The matrix of basic arithmetic-Haar functions does not have complex values, and 
therefore, the transformation of this matrix into the matrix for the given polarity H 
is simpler than in the case of the Fourier transform. 

We will introduce the fixed-polarity arithmetic-Haar expressions in C(Q2) with 
the example for H = (101). 
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Xt01) = 

- 
1 0 1 0  0 0 0 1 
1 1 1 1  0 0 1 0  
1 1 1 1  0 0 0 - 1  
1 0 1 0  0 0 - 1  0 
1 1 0 0  0 1 0  0 
1 0 0 0  1 0  0 0 
1 1 0 0  0 - 1  0 0 
1 0 0 0 - 1  0 0 0 - 

0 0 0 0 0 1 0 1  
0 0 0 0 1 - 1  1 - 1  
0 1 0  1 0 - 1  0 - 1  
1 -1 1 -1 -1 1 -1 1 
0 0 0 0 0 1 0 - 1  
0 0 0 0 1 0 - 1  0 
0 1 0 - 1  0 0 0 0 
1 0 - 1  0 0 0 0 0 

For f in Example 5.1, the arithmetic-Haar expression for the polarity H = (101) 
is given by 

This expression requires six coeficients instead offive coeficients in the zero-polarity 
arithmetic-Haur expression for  f .  

Table 5.1 shows diferent spectra for f in Example 5.1, for the zero-polarity and 
the polarity H = (101). Table 5.2 shows the corresponding expressions for f .  

Table 5.3 compares the number of non-zero coefficients in some mcnc benchmark 
functions used in logic design for the Walsh (W), the arithmetic (A), the Fourier 
on Qz (F), and the arithmetic-Haar (AH) transform. For multiple-output functions, 
each output is considered as a separate switching function, and in this table, fun-i 
denotes the i-th output of fun.  This table shows that for each transform we can find 
a function where this transform provides a spectrum with fewer number of non-zero 
coefficients. In the most cases, the arithmetic and the Walsh transform are the most 
efficient, since are applied to binary-valued functions. However, even the complex- 
valued Fourier transform although applied to binary-valued functions can produce 
simpler spectrum than these transforms. For example, for sao2-2, i = 1,2,3,4,  
the Fourier transform is more convenient than both the arithmetic and the Walsh 
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Table 5.7 Different spectra for f 

SDectrum 

i1,1,1,1,1 ,0 ,0 ,0 ,  I T  
i1 ,1 ,0 ,1 ,1 ,0 ,0 ,  1IT 
[l, -1, -1,1, -1,2,2,  -2]T 

[I, - l , O ,  1, -1,2,0,  -2]T 
' 1  2[1, -1 ,0 ,2 ,1 ,0 ,  -1,OlT 

' 3 2 ,  -1, -2,2,0,  - l , O ,  l ]T  

Table 5.2 Different expressions for f 
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transform. However, in  this case, the arithmetic-Haar transform further reduces the 
number of non-zero coefficients. Conversely, for a given function, we should try 
different transforms to determine a spectrum with minimum number of non-zero 
coefficients. For example, for rd84-2 and rd84-3, the Fourier transform produces 
spectra with fewer non-zero coefficients than the arithmetic and the Walsh transform, 
respectively. For rd84-3, the arithmetic-Haar spectrum is comparable to the most 
efficient transform. For %ym, the arithmetic-Haar transform requires fewer non- 
zero coefficients than the arithmetic transform, and the Walsh transform is the most 
efficient. For Sxpl-2, the arithmetic-Haar transform is more efficient than the Walsh 
transform, and the arithmetic transform is the most efficient. However, for 5xp 1-3, the 
arithmetic-Haar transform is the most efficient. For all the outputs of sao2, the Fourier 
transform requires fewer products than either Walsh or the arithmetic transform, and 
the arithmetic-Haar transform is the most efficient. 

We consider this analysis as a justification for introduction and use of different 
transforms, supported by a requirement that these transforms may share some useful 
properties of existing transforms. In that respect, the arithmetic-Haar transform is 
derived from the Fourier transform on Qk in a uniform way as the arithmetic transform 
is derived from the Walsh transform on CF. It eliminates the complex values in 
the Fourier transform and the corresponding transform matrix expresses a structure 
similar to the structure of the Haar matrix. 

Example 5.10 Assume the I6bits binary representation fo r  integers x and y. Then, 
the function y = 21Gszn(i/216) can be consideredas 16-variable 16-output switching 
function f .  y'we petjorm the addition of outputs multiplied with weighting coefficients 
2', z = 0 , .  . . . 15, we determine an integer-valued equivalent function f i  f o r  f .  
Table 5.4 shows the number of non-zero coefficients f o r  y in the Fourier spectrum 
and the arithmetic-Haar spectrum on C2Q5, and the Walsh spectrum, the arithmetic 
spectrum and the Huar spectrum on Ci6. I t  is interesting to note that the complex- 
valued Fourier spectrum requires the fewer number of non-zero coefficients. Among 
them 5248 are real, the 5120 are the imaginary, arid 7776 are the complex-valued 
coeficients. 

5.7 CALCULATION OF THE ARITHMETIC-HAAR COEFFICIENTS 

5.7.1 FFT-like algorithm 

The arithmetic-Haar transform matrix X, has a form similar to that of the Haar 
transform matrix. Thanks to that property, it is possible to derive a FFT-like algorithm 
for calculation of the arithmetic-Haar coefficients. This algorithm is based upon the 
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Table 5.3 Number of non-zero coefficients. 

f 
5xpl-1 

5xpl-2 

5xpl-3 

5xpl-4 

5xp 1-5 

5 ~ ~ 1 - 6  

5xp 1-7 

5xpl-8 

5xp 1-9 

5xpl- 10 

9sym 

rd84- 1 

rd84-2 

rd84-3 

rd84-4 

sao2- I 

sao2-2 

sao2-3 

sao2-4 

F A H  W A 

96 26 

122 50 

124 34 

70 56 

84 36 

64 44 

56 32 

28 20 

24 8 

64 10 

464 300 

220 189 

160 52 

48 4 

237 166 

202 200 

275 269 

348 297 

80 18 

128 33 

65 41 

33 27 

17 17 

9 9  

5 5  

2 3  

2 2  

128 7 

256 465 

256 191 

2 255 

256 1 

256 163 

1024 380 

640 768 

856 578 

322 216 1024 936 
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- 
1 0 0 0  0 0 0 0  

- 1 1 0 0  0 0 0 0  
0 0 1 0  0 0 0 0  
0 0 0 1  0 0 0 0  
0 0 0 0  1 0 0 0  
0 0 0 0 -1 1 0  0 
0 0 0 0  0 0 1 0  
0 0 0 0  0 0 0 1  

following factorization of X i 1  

X i ’  z 

- - 
1 0 0 0 0 0 0 0  
0 1 0 0 0 0 0 0  
1 0 0 0 1 0 0 0  
0 1 0 0 0 1 0 0  
0 0 1 0 0 0 0 0  
0 0 0 1 0  0 0 0 
0 0 0 0 0 0 1 0  
0 0 0 0 0 0 0 1  

1 0  1 0 0 0  0 
0 1  0 1 0 0  0 
1 0 - 1  0 0 0  0 
0 1  0 - 1 0 0  0 
0 0  0 0 1 0  1 
0 0  0 0 0 1  0 
0 0  0 0 1 0 - 1  
0 0  0 0 0 1  0 

- - 
0 
0 
0 
0 
0 .  
1 
0 

-1 - 

Figure 5.1 compares the flow-graphs of the fast algorithms for calculation of the 
Walsh, the arithmetic, the Fourier, and the arithmetic-Haar coefficients for functions 
in f E C(Cz, and f E C(Q2). 

5.7.2 Calculation of arithmetic-Haar coefficients through 
decision diagrams 

Decision diagrams (DDs) are an efficient data structure for compact representation of 
discrete functions [ I ] ,  [4], [ 141. Among many other applications, DDs are efficiently 
used to calculate different spectral transforms. From spectral interpretation of DDs 
[20], it was easy to show that in calculation of spectral transforms through DDs 
we actually perform basic operations in FFT-like algorithms. However. in DDs, 
calculation of the spectrum for f is not based on the vector of function values, but 
is performed over the DD for f .  That permits to use the particular properties o f f ,  
which provides the computation efficiency and possibility to process large functions 

Calculation of the coefficients in arithmetic expressions of switching functions 
through DDs was considered in several papers, see for example 161, [7], [ 1 11. 

In this section, we present a method to calculate arithmetic-Haar coefficients 
through decision diagrams (DDs) [ 13, [4]. The method is derived as a suitable modi- 
fication of the corresponding method for calculation of the Haar spectrum [ 161. 

We assume that a given f E C(Q5) is alternatively considered as a function 
in C(C,”), n = 3r, and represented by a Binary DD [ I ] ,  [4], or a Multi-terminal 
binary DD (MTBDD) [S], depending on the function values taken in G F ( 2 )  or C ,  
respectively. 

[SI, 1141,1211. 
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Arithmetic Walsh 

Fourier 
Arithmetic-Haar 

Fig. 5.1 FFT-like algorithms for 71 = 3 .  
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f ig .  5.2 BDT for f in Example 5.1. 

The method will be first explained on decision trees (DTs), since DDs are derived 
by the reduction of DTs [14]. 

Example 5.11 Figure 5.2 shows BDT f in Example 5.1. Figure 5.3 shows the cor- 
responding DD. In this DD, two cross points [20] are shown. 

Fig. 5.3 BDD for b' in Example 5.1. 

We will present the method in a general form for functions in C(Q$),  but we 
illustrate the method by the example of functions f E C(Q2). 
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We assign to each node two fields, where we write the result of calculation through 
DDs. Calculations consist of processing the nodes in the DT for f .  In the case of 
DDs, cross points [20] should be also processed. 

In a DD, the leftmost node at a level is the node which can be reached by the path 
labeled by a product of variables consisting of negated literals. 

In a DT, values of constant nodes are function values for f .  We assume that at the 
level (n  - 1) in the DT for f ,  the paths T,-~:IL,~ and x,-~x, are permuted. Thus, 
in the vector F representing f ,  the pairs of adjacent elements, starting from f (  1) are 
permuted. 

For 7% = 3, f is given by F = [ f (o) , f ( l ) ,  f ( 2 ) ,  f ( 3 ) ,  f ( 4 ) ,  f ( 5 ) ,  f ( G ) ,  f(7)I7’. 
Afier the mentioned reordering, the values of constant nodes in the DT for  f are 

The nodes at the level X, are processed by using the rules described by rows of 
the matrix W(1). The values of the left and the right fields arc determined by using 
the first row and the second row of W ( 1 ) ,  respectively. The values of both fields for 
the nodes at all other levels are determined by using the rule described by the matrix 
[-1,1]. The input data for calculation of values of left and right fields are determined 
as follows. 

At the i-th level in the DT, ifthe node is pointed by the edge labeled with the negated 
literal T f ,  the input data for the left and right fields are reached by the subpaths ?E,?E,+l 
and ?f7xL+1,  respectively. If the node is pointed by the edge labeled with the positive 
literal, then the input data for the left and right fields are reached by the subpaths 
x , Z , + ~  and x,T,+.~, respectively. 

The coefficient S a , f ( 0 )  is shown in the left field assigned to the leftmost nodc at 
the level x,. The values of left fields assigned to the other nodes at this levcl are 
used in further calculations. The right fields of nodes at the level :c, show values 
of arithmetic-Haar coefficients S,,J(~‘”-’) to Sa,f(2” ~ 1). For n = 3, these are 
coeficients S,,f(4), S, , f (5) ,  S,,f((i), and S,,f(7). 

The other coefficients are shown in the left and right fields of the leftmost nodes 
from the level 11. - 1 to the root node. These coefficients are shown in  the increasing 
order. Thus, the leftmost node at the level :xTL-l shows ScL.f(l). while the right field 
of this node shows S,, f(2).  The root node shows the coefficient S,,f(2’”-’ - 1). For 
[ I ,  = 3, the leftmost nodes at level 5‘2 shows the values ofS,,f(l) and S,.f(2). The 
root node shows Sa, f (3) .  

Example 5.12 Figure 5.4 shows calculation qf urithmetic-Huur coeficientsfilr f t 
C( Q2) though 07: Figure 5.5 shows calculation qf arithmetic-Huar coeflcients for 
f in Exunzple 5.2 through BDT Figure 5.6 shows the same calculution through BDD. 
Note that in this example, perrriutution ofpaths ?E:zn::3 and Z.LS:< dozs riotpermute values 
qfconstant nodes, since f(1) = , f (2 )  = 0, f ( 3 )  = f(4) = 0. and f ( 5 )  = f ( G )  = 1. 

This algorithm can be used to calculate arithmetic-Haar coefficients of complex- 

- 

ordered as F, = m), f(21,  m, .m, f ( 4 ~  fw, f ( 5 ~  f(7)iT. 

- 

valued functions if instead of BDDs, we use MTBDDs. 
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Fig, 5.4 Calculation of arithmetic-Haar coefficients through BDT 

I +l)  + 1 = 2 

LX2 SJ7) 
, 

1 + 1 = 2  1 - l = O ;  

Fig. 5.5 Calculation of arithmetic-Haar coefficients for f in Example 5.2 through BOT. 
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Fig. 5.6 Calculation of arithmetic-Haarcoefficients for f in Example 5.2 through BDD. 
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Gibbs Derivatives on 
Finite Groups 

Differential operators are a very powerful tool for the mathematical modeling of 
natural phenomena. Usually the differentiation is with respect to time or to a spatial 
coordinate, modeled by the real line R. In this setting, using the differential operators, 
the direction, as well as the rate, of change of a quantity can be adequately described. 
Moreover, by forming linear differential equations with constant coefficients, we get 
a very convenient way of expressing the principle of superposition inherent in many 
natural phenomena. Linearity offers an easily tractable model, usually sufficiently 
good as a first approximation. 

Fourier analysis, having linearity and the superposition principle in its essence, is 
another very efficient tool used for the same purposes. 

It is known from classical analysis that there is a strong relationship between the 
Newton-Leibniz derivative f’  of a function f on R and its Fourier transform, which 
can be expressed by 

where F’ and F denote the Fourier transforms of f‘ and f ,  respectively. 
Replacing the real group R by a locally compact Abelian, or acompact non-Abelian 

group extends classical Fourier analysis into abstract harmonic analysis. In this setting 
it has been natural to think about differentiation on groups in a way preserving as many 
as possible of the useful properties of Newton-Leibniz differentiation. 

The Gibbs derivatives on groups [4], [8], [ 101, [20], [241, [.331, [341, [401 form a 
class of differential operators extending the relation (6.1) to the functional spaces on 
other groups. In this more general context the role of the Euler functions exp(jtz) 
(the characters of the real group R)  is taken over by the characters of locally compact 

183 
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Abelian groups 141, 161, 181, [ 101, 1181, [20], or by the unitary irreducible representa- 
tions of compact non-Abelian groups [22]. In this book attention is focused on Gibbs 
derivatives on finite, not necessarily Abelian, groups. We consider in detail one of 
the matrix representations suggested in [ I  11, which is suitable for the numerical eval- 
uation of Gibbs derivatives of a given function. Using this matrix representation we 
present some FFT-like algorithms for calculation of the values of Gibbs derivatives 
on finite groups [29]. 

For a review of Gibbs differentiation see [30] and for some particular examples 
the bibliography 1121 given in  131. Some very recent results are reviewed in [30] and 
1381, 1391. 

6.1 DEFINITION AND PROPERTIES OF GIBBS DERIVATIVES ON 
FINITE NON-ABELIAN GROUPS 

As is noted above, Gibbs differential operators on Abelian groups are defined as linear 
operators having the group characters as their eigenfunctions, see for example [lo]. 
Since the group characters are the kernels of Fourier transforms on locally compact 
Abelian groups, i t  is very convenient to characterize the Gibbs derivatives by Fourier 
coefficients. Moreover, the strong relationship between the Gibbs derivatives and 
Fourier coefficients is somewhere used as the starting point for introduction of Gibbs 
derivatives on some particular groups, see for example 11 81. By using the same 
approach the Gibbs derivatives on finite non-Abelian groups are defined in  terms of 
Fourier coefficients as follows 1221. 

Definition 6.1 Gihhs derivative D f of a furictiori f t P(  G )  whose Fourier trurisforni 
is Sf is defined by 

As is noted in  1221 this definition is unique only by virtue of the fixed order 
adopted for the clcments of r. If a different notation was adopted, then (6.2), though 
unchanged in appearance, would define a distinct differentiator. This phenomenon 
is already present in  the definition of the dyadic Gibbs derivative [7] which dcpcnds 
upon the order assumed for thc Walsh functions. The same applies to all other Gibbs 
derivatives on various groups. 

In what follows the Gibbs derivatives will be denoted by D f  or, alternatively, by 

An interpretation ofthe Gibbs derivative on finite non-Abelian groups can be given 
by following the approach used in [ 171 for the finite dyadic Gibbs derivative and later 
in 1.311 for the Gibbs derivatives o n  finite Abelian groups. 

f ( U .  

Define the partial sum f,(z). p 5 K by 

D- 1 

(6.3) 
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Define also the Fejkr sum as 

4 

adz) = 4-1 c fP(.). 
p= 1 

Substituting (6.3) into (6.4) we have, after a simple calculation, 

(6.4) 

K -  1 

f ( z )  - CTK(Z) = K-' C wT~(S~(W)R,(Z)) .  
w=o 

The left member of this equality is the error in the approximation off  by its Fejkr 
sum a ~ ( z ) .  Thus, the Gibbs derivative on a finite non-Abelian group G can be 
interpreted as that error multiplied by K .  

The chief properties of Gibbs derivatives are analogs to the corresponding proper- 
ties of the classical Newton-Leibniz derivative, and they are given by the following 
theorem. 

Theorem 6.1 I f f  E P(G),  then 

I .  D(aifi + a 2 f 2 )  = a i D f i  + ~ 2 D f 2 ,  W , Q ~  E P , f l , f 2  E P(G). 

2. D f = 0 t P iff f is a constant function. 

3. I f  the Fourier transform off is Sf,  then that off  ( l )  is given by Sf(" ( w )  = 

This property can be interpreted as the fact that the set { R;") (x)} is the set 
of eigenfunctiotis of the Gibbs derivative, i.e., 

U I S ~ ,  w = 0, .  . . , K  ~ 1. 

From that, thanks to the linearin, of Gibbs derivatives, 

D?'rR,(z) = wTrR,(x). 

4. From the property 3, it easily follows that 

D(fi * f 2 )  = (ofi) * f 2  = f l  * ( D f i ) ,  f 1 , f 2  E P(G). 

where * denotes the convolution on G 

5. The Gibbs derivative commutes with the translation (shift) operator T on G 
dejned by (T ' f ) ( z )  = f ( r  o z-'), i.e., 

D ( T ' f )  = T ' ( D f ) ,  for each r t G. 

6. It is known that the Gibhs differential operators do not obey the product rule. 
The same applies to the Gibbs derivatives on Jitiite non-Abelian groups, i.e., it 
is false that for each f l  and f 2  

D(flf2) = f l ( D f 2 )  + (DfIlf2 
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The Gibbs derivatives can be extended to an arbitrary complex order k by way of 
the definition of the delta function: 

K - l  

6(2)  = y p  c r,TrR,(x). 
w=o 

The &function thus defined has the property 

1, 2 = 0, c 0, x # 0. 
O(2) = 

The Gibbs derivative of order k of the &function is obtained by a direct application 
of Property 3 

K-1 

6("(2) = 9-1 c wkr,,TrR,(x). 
w=o 

By using Property 4 of Theorem 2.2: 

K-1 

( D k f ) ( z )  = ( (D'h)  * f ) ( ~ )  = c u P T T T ( S , ~ ( ~ ) R ~ ( ~ ) ) .  
w=o 

6.2 GIBBS ANTI-DERIVATIVE 

In this section we consider the determination of the values of a function from the 
values of its Gibbs derivative. 

It is obvious from (6.5) that the Gibbs derivative can be considered as a convolution 
operator on P(G).  More precisely, if we introduce a function W k  defined by its 
Fourier coefficients as 

where IT,, is the (ru, x rw) identity matrix, then from (6.5) the Gibbs derivative of 
order k of a function f E P(G)  is given by 

(Df) (w)  = (tVk * f)(.). 

From here we immediately deduce thc concept of the Gibbs anti-derivative. 
Introduce a function TV-k defined in the transform domain by 

After the inverse Fourier transform 

K-1 

CV-k(Z) = 1 + c w - krwTr( R, (x)) 
71) = 1 
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Functions of this kind for the particular case of the dyadic group were apparently 
first investigated in [37] in  the Walsh-Fourier multiplier theory. Such functions were 
later used for the dyadic derivatives in [4] for the same purposes as those considered 
here. To be consistent with these particular definitions we omitted the factor g-' the 
appearance of which could be expected from the convolution theorem. 

By using the function 1V-k we introduce an inverse operator called the Gibbs 
anti-derivative on finite non-Abelian groups [23] 

Definition 6.2 Fora function f E P(G) the Cihhs anti-derivative of order k,  denoted 
by I k ,  is dejined by 

The Gibbs anti-derivative can be considered as a Fourier multiplier operator, thus 
having all properties characteristic for these operators. Therefore, there is no need 
for any particular consideration of these properties here. 

Having the concept of Gibbs anti-derivative, we can deduce a theorem which shows 
how to determine the values of a function f from the values of its Gibbs derivative of 
order k .  

Theorem 6.2 Let f E P(G)  be such that S f ( 0 )  = 0. Then, 

ol; equivalently, 

f(.) = y-lD"P f)(.). 

Here the factor 9-l appears at the right hand side of the above equations since it 
was omitted in the dejinition of SW-C.  

Note that Theorem 6.2 can be regarded as a kind of counterpart of the so-called 
fundamental theorem for dyadic analysis due to Butzer and Wagner [4]. Moreover, 
as is noted in [2], see also [21], theorems of this kind are a kind of counterpart of the 
fundamental theorem of the Newton-Leibniz calculus in  abstract harmonic analysis. 

6.3 PARTIAL GlBBS DERIVATIVES 

As we noted above, a given function f E P(G) ,  G-decomposable group, can be 
viewed as a function of several variables f(z1, . . . , xn), z, E G,. Therefore, partial 
Gibbs derivative o f f  with respect to the variable 5, can be defined [26]. 

From Definition 6.1 and some well-known properties of unitary irreducible repre- 
sentations 

w=o u=o 
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From the invariance under translation of the Haar integral 

it follows 

u=o w=o 

which suggests the following definition. 

Definition 6.3 Partial Gibbs derivative (A, f )  (x) at a point 
x = ( X I , .  . . , x,-1, x,, x,+l,. . . , x,) E G with respect to the i-th variable x, of a 
furiction f t P(G) is deJined as the Gibbs derivative (D f,)(z,), at x,, of the function 
f , ( Y )  = f(xlr.'.,x2-lrY,xz+l,.-.,5n)). Thus, 

U ,  w=o 

where g, is the order of G,, K ,  denotes the number of nonequivalent unitary irre- 
ducible representations of G,, and rb is the dimerision of the representation RL of 
G,. 

Actually, the partial Gibbs differentiator A, thus defined is the restriction on G, 
of the Gibbs differentiator on G. It follows that the partial Gibbs derivatives have 
properties corresponding to those of the Gibbs derivative. 

Theorem6.3 Let f E P(G), Then, 

1. A, f = 0 i f f  is a constant on G,, i.e., if f has the same value for  each 
X I  E G,. Moreover, A,c = 0 for any constant c E P(G). 

2. A,(clfl + ~ 2 f i )  =clAzfl + ~ A z f ~ r  C I I C ~  E P, f 1 , f z  P(G). 

3. Ifthe Fourier transform o f f  t P(G)  is S J ,  then that of A, f is given by 

s&,(w) = B,(W)Sf(W), w = 0, .  . . . K  = 1, 

where B,(w) is given by the vector of order y of the form 

T B,(w) = [O, 1 , .  . . ,K ,  - 1,o. 1,. . . ,I<? - 1,.  . . ,o ,  1,. . . ,K ,  - 11 . 
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6.4 GlBBS DIFFERENTIAL EQUATIONS 

Relation (6.5) introduces the Gibbs derivative of an arbitrary complex order. The 
Gibbs derivative of a positive integer order n can be defined recursively by Dn+lf = 

D ( D n f ) ,  n = 1 , 2 , .  . .. This permits linear equations with constant coefficients 
in terms of Gibbs derivatives to be defined and solved. These equations can be 
considered as a particular case of the generalized linear equations studied in [ 161. 

Definition 6.4 A linear Gibbs discrete differential equation with constant coeficients 
is an equation of the form 

n rn 

k=O k=O 

where a k ,  bk  are real numbers, f E P(G)  and y is the required solution. 

As in the case of ordinary differential equations we get the general solution, y, of 
the equation (6.6) as the sum of the solution yzz of the homogeneous equation and 
the partial solution yzs of the inhomogeneous equation, i.e., 

Y = Yzz + Yzs.  (6.7) 

In order to find yzz one looks for roots of the characteristic equation of (6.6) 

n 

k=O 

Now, we have the following theorem. 

Theorem 6.4 Ifthe roots { zz}, i = 0, . . . , n of the characteristic equation are distinct 
and belong to the set ( 0 , .  . . , K - 1}, then the homogeneous solution of (6.6) is 

n c  

z=O j , k = l  

where the constants c ; ~  depend on the boundary conditions. 

There are some important differences encountered in solving linear Gibbs discrete 
differential equations with constant coefficients compared to solving of ordinary dif- 
ferential equations. A homogeneous equation of order 'n does not always have n 
linearly independent solutions. The following statements are, in  a way, often taken 
for granted, however, we could not find a proof for these statements, anywhere. 

If t roots of the characteristic equation are repetitions of the other roots, then 
the number of linearly independent solutions of a linear Gibbs discrete differential 
equation of order k is rz, , provided that each root of the characteristic equation 
is in the set (0 , .  . . , K - l}. 
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If s of the roots are not in this set, then the number of linearly independent solutions 
of the given equation is Ctz:-t rf, . This is not any peculiarity of the case considered 
here. A corresponding statement for so-called logical differential equations with 
Gibbs derivatives on the dyadic group is given in [9]. Moreover, it seems that an 
analogous statement is valid more generally, as it is noted without proof in [ 161. 

To get the particular solution of (6.6) we apply the Fourier transform on both sides 
of (6.6), and with property 3 of Theorem 6.1 we obtain: 

n m 

k=O k=O 

From there, providing that equation (6.8) is compatible, that is, S f  (0) = 0 for all 
w E { z z } , i  = 0, .  . . ,R ,  we have 

P 
SS,(W) = -sf ( w ) ,  Q 

where 
m rn 

k=O k=O 

By introducing the notation 

P 
H ( w )  = r ,g- l -  

Q '  
we have 

SY(W) = .,lH(W)Sf (w ) .  (6.10) 

From (6.10) by using the convolution property, the inverse Fourier transform pro- 
duces the particular solution 

g-1 

Yzs(X)  = c h(u)f(zu- ' ) .  (6. I 1) 
u=o 

It follows that (6.6) has a general solution of the form 

n m  

6.5 MATRIX INTERPRETATION OF GlBBS DERIVATIVES 

In this section we will consider a matrix representation of Gibbs differential operators 
suitable for their numerical evaluation. One of the main properties characterizing 
Gibbs derivatives is given by 

S D f ( w ) = W S f ( w ) ,  W E { O , l ,  . . . '  K - l } ,  (6.12) 
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where S f (w)  are the Fourier coefficients of a function f E P(G) ,  while S D ~ ( W )  
denotes the Fourier coefficients of its Gibbs derivative D,f. Moreover, a wish to have 
a differential operator satisfying this property motivated the introduction of the class 
of differential operators considered here. In this setting, the relation (6.12) is used 
by some authors as a starting point for defining certain Gibbs derivatives on groups 
in terms of formal Fourier series (see, for example, [181,[241, 1251, [401, [MI, [341). 
Using this approach, the Gibbs derivative on a finite group can be defined in  matrix 
notation as follows. 

Definition 6.5 The Gibbs derivative D,  on a finite, not necessarily Abelian, group 
G of order g is dejned [15], [29] as 

D, = g-'[R] o G 0 [RI-', 

where [R] is the matrix of unitary irreducible representations of G over P, i.e., 
[R] = [ai3] with aij = Rj(i), j E {0,1,. . . , g  - 1}] j E {0,1,. . . , K - l}, G is 
a diagonal ( K  x K )  matrixgiven by G = diag(0,1, .  . . , K - l), and [R]-' = [bsq] 
with b,, = ~ , R L ~ ( Q ) ~  s E {0,1,. . . , K  - l}, q E {0,1,. . . , g  - 1). 

For a function f ( z )  = f ( z1 , .  . . , 5,) E P we define the partial Gibbs derivative 
with respect to the variable xi E G as a restriction on Gi of the previously introduced 
Gibbs derivative on G. 

Definition 6.6 Let G be representable in the form (2.4). The partial Gibbs derivative 
Ai with respect to the variable 3:i is dejined as: 

n 

a, = @Aj,  
2 = 1  

with 

where I(g7 xg,) is a (g3 x g J )  identity matrix, and 8 denotes the Kronecker product. 

Note that, using the representation (2.13) for the first K non-negative integers 
{0,1, . . . , K - l}, the matrix G can be cxpressed as: 

where, 

n 

Qi = @ 23, 
i=l 
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with 

where G, is a diagonal (K,  x K,) matrix given by G, = drag(0, b,, b,, . . . , b,) 
with b, defined by (2.13). 

Recall that the matrix [R] is the matrix of unitary irreducible representations of G 
over P. Since G is representable in  the form (2.4), the matrix [R] can be generated as 
the Kronecker product of ( K ,  x 9,) matrices [R,] of unitary irreducible representations 
of subgroups G,, 2 = 1,. . . . n, i.e., 

7L 

PI = @IR.LI. 
z = 1  

Thanks to the well-known properties of the Kronecker product, the same applies 
to the matrix [RI-', i.e, for this matrix holds 

n 

[R]-' = @[R,]-l. 
,=l 

By using the representations introduced above for the matrices [R]. [R]-l and 
G, the matrix D, of the Gibbs derivative can be rewritten as 

After a short calculation, by using well-known properties of the Kronecker product 
we prove the following. 

Proposition 6.1 The matrix D, representing the Gibbs derivative on aj in i te group 
G of order y can be expressed in terms of partial Gibbs derivatives as 

n 

2 = 1  

where the coeficients b, are dejned by (2.8). 

6.6 FAST ALGORITHMS FOR CALCULATION OF GIBBS DERIVATIVES 
ON FINITE GROUPS 

In this section we will disclose fast algorithms for computation of Gibbs derivatives 
on finite groups. As is noted in 1291, the application of Definition 6.5 leads to an algo- 
rithm for the computation of Gibbs derivatives of which the complexity is obviously 
approximately equal to the complexity of calculation of one direct and one inverse 
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Fourier transform. The advantage is that the application of fast Fourier transform 
on groups is immediately possible without any considerable modification. However, 
from the computational point of view a more efficient algorithm for the computation 
of Gibbs derivatives on finite groups can be disclosed defining the Gibbs derivative in 
terms of partial Gibbs derivatives, that is, starting from the relation (6.13). Moreover, 
the algorithm thus obtained is quite suitable for a parallel implementation. The idea 
comes from the following facts. 

As is noted in Section 3.1, the definition of the fast Fourier transform (FFT) on 
group G is based upon the factorization of G into the equivalence classes relative to 
some subgroups of G. On the other hand, the i-th partial Gibbs derivative on a group 
G representable in the form (2.4) is defined as the restriction of Gibbs differentiation 
on G to the differentiation on G,. Therefore, it is natural to search for a fast algorithm 
for the computation of Gibbs derivatives through the partial Gibbs derivatives. 

Note that the i-th partial Gibbs derivative is defined (Definition 6.6) by a relation 
of the form (3.1). Therefore, comparing the matrices Ai, i E (1,. . . , n}, for a 
given group G with the matrices [ C Y k ]  appearing in the factorization of the Fourier 
transformation matrix, we infer a strong similarity. It follows that the algorithm for 
the computation of i-th partial Gibbs derivative will be similar to the i-th step of the 
FFT, and, hence, may be described by a flow-graph similar to that describing the i-th 
step of the FFT. Naturally, the similarity is less strong in the case of non-Abelian 
groups than in the case of Abelian groups, for the dual object r of a non-Abelian 
group G does not have the structure of a group isomorphic with G as is the case for 
Abelian groups. More precisely, the cardinality of r is not equal to the order of G, and 
the consequence is that in the case of non-Abelian groups the number of input nodes 
in the flow-graph is different for each step of the FFT, as we noted above, while all 
partial Gibbs derivatives are by definition applicable to the vector f whose order is y. 
Nevertheless, the similarity in the overall structure of the corresponding flow-graphs 
is retained and can be efficiently used for the disclosure of the fast algorithms for the 
computation of partial Gibbs derivatives. 

As we noted above, the flow-graph for the computation of the k-th partial Gibbs 
derivative of a function f on a finite group G of order g consists of g input and g 
output nodes of which some are connected by branches. It is determined by the overall 
structure of the matrix Ak which nodes will be mutually connected, as in the case of 
the FFT. More precisely, the output node j will be connected with the input node i 
iff the element di,  of A, describing the k-th partial Gibbs derivative is not equal to 
zero. As in the case of the FFT, a weighting coefficient is associated to each branch. 
However, all weights in the fast algorithm for the computation of Gibbs derivatives are 
numbers belonging to P even for non-Abelian groups, which is another considerable 
difference relative to FFT for this case. Denoting by k ( i ,  j )  the branch connecting the 
output node i with the input node j, the weight w'((i,j) associated with this branch 
is given by w ( i , j )  = d,,, where d t j  is the (i , j)- th element of A,. 

Having the fast algorithms for the computation of partial Gibbs derivatives, one 
obtains the fast algorithm for the computation of the Gibbs derivative of a function 
f E P(G)  according to (6.13) simply by adding the output nodes of the flow-graphs 
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for the calculation of partial Gibbs derivatives multiplied by the weight coefficients 
b, defined by (2.13). 

Now, we give a brief analysis of the complexity of the algorithm described above. 
The number of calculations is usually employed as a first approximation to the 

complexity of an algorithm. 
It is obvious from Definition 6.6 that the number of calculations required to calcu- 

late A, f is equal to gg,, since there are at most g, non-zero elements in each row of 
the matrix A,. According to (6.13), the number of operations needed to calculate the 
Gibbs derivative D, f is equal to g(Cr=l g,) followed by (n  - l )g  multiplications 
with the weighting factors b, and n g  additions. Recall that the number of calculations 
in an FFT to which our algorithm can be compared is g(c:=l g 2 ) .  

However, to confirm the efficiency of the algorithm proposed it is important to 
give at least a rough estimate of its overall time complexity. 

It is obvious from Definition 6.6 that, unlike the FFT, which is a sequential algo- 
rithm in its essence for the input to one stage is the output from the preceding stage, 
the fast algorithm for the calculation of Gibbs derivatives (FGD) is quite suitable for 
a parallel implementation, since the calculation of the partial Gibbs derivatives can be 
carried out simultaneously. This parallelism is over and above the parallelism in each 
step of the calculation of each A, as in the corresponding step of the FFT. It follows 
that the time complexity of the FGD does not depend on the number of subgroups of 
G as is the case with the FFT. The FGD is considerably faster than the corresponding 
FFT, since it can always be implemented in only two steps, compared with the 7~ steps 
required in the FFT. Of course, the price is the number of processors operating in  
parallel and the memory storage requirements, which in this case should certainly be 
greater for the FGD than for the FIT. 

A more accurate analysis of the complexity of the FGD is certainly needed, but to 
be correct it may only be done after rather precise specification ofthe facilities used 
for the implementation. 

As is usually the case in the study of problems like that considered here, the 
procedure for the numerical calculation is best explained by some examples. We 
shall therefore consider two examples, the first for Abelian groups and the second for 
non-Abelian groups. 

Example 6.1 Let G = 2, = ({0,1,2,3,4,5,6,7,8}, 0 )  be the group of non- 
negative integers less than 9 with componentwise addition modulo 3 of 3-adic expan- 
sions of group elements as the group operation. For convenience the group operation 
is shown in Table 6.1. The group representations of Z g  over the complex$eld are the 
Vilenkin-Chrestenson functions shown in a matrix form in Table 6.2. Note that the 

group 29 can be considered as the product 29 = 2 3  x 2 3  where 2 3  = ({0,1, a}, 3 )  
is the group of non-negat66ive integers less than 3 with addition modulo 3 as group 
operation. Therefore, any complex-valued function f on Z g  ran be considered as a 
two-variable function f (21, x2), x1,22 E 2 3 .  

The matrices A: and A; of the partial Gibbs derivatives relative to the variables 
x1 and x2, respectively, and the matrix D g  of the Gibbs derivative on Z g  calculated 
according to (6.13) as Dg = 3A: + A: are shown in Figure 6.1 a, b , c, respectively. 
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7 7 8 6 1 2 0 4 5 3  

8 8 6 7 2 0 1 5 3 4  

Table 6.1 Group operation of Z9. 

0 1 0  1 2  3 4 5 6 7 8 

1 2 0 4 5 3 7 8 6  

2 0 1 5 6 7 8 6 7  

3 4 5 6 7 8 0 1 2  

4 5 3 7 8 6 1 2 0  

5 3 4 8 6 7 2 0 1  

6 7 8 0 1 2 3 4 5  
I 

Table 6.2 The group representations of Z9 over C. 

Thepow-graph of the fast algorithm for the computation of the Gibbs derivative D g  

of a complex-valued function f on Z g  given by its truth vector f = [ f ( O ) ,  . . . , f ( 8 ) l T  
is shown in Figure 6.2. 

Now, let us consider as the second example the calculation of the Gibbs derivatives 
of functions defined on the non-Abelian group of binary matrices described in [ 151. 

Example 6.2 Let G be the multiplication group of the twelve ( 3  x 3) matrices t = 

[t,,], i ,  j = 0,1,2,  over the complexfield represented in Table 6.4. For convenience 
the group operation is explicitly shown in Table 6.3. Note that G is isomorphic to 
the direct product of the cyclic group C2 = ( ( 0 ,  l}, 0 )  of order 2 with generating 
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- 1  0 0 a 0 0 b 0 0 
O l O O a O O b O  
O O l O O a O O b  
b O O l O O a O O  

O O b O O l O O a  
a O O b O O l O O  
O a O O b O O l O  

- O O a O O b O O l  

l a b O O O O O O  
b l a O O O O O O  
U b l O O O O O O  
0 0 0 1 a b 0 0 0 

O O O a b l O O O  
O O O O O O l a b  
O O O O O O b l a  

- O O O O O O a b l  - 

- 

A:= O b O O l O O a O ,  

a. 

A:= O O O ~ ~ U O O O ,  

b. 
- 4  a b 3 a O  0 3 b 0  0 

b 4 a 0 3 a O  0 3 b 0  
a b 4 0 0 3 a O  0 3b 
3 b 0  0 4 a b 3 a O  0 

0 0 3 b a  b 4 0 0 3a 
3a 0 0 3b 0 0 4 a b 
0 3 a O  0 3 6 0  b 4 a 
0 0 3 a O  0 3 b a  b 4 

- 

D g =  0 3 6 0  b 4 a 0 3 a O  

- - 

Fig. 6.7 a. The partial Gibbs derivative A: on Zs ,  6. The partial Gibbs derivative A; 
on Z s ,  c. The Gibbs derivative Ds on Z9. 

, 
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Fig. 6.2 The flow-graph of the fast algorithm for calculation of the Gibbs derivative 
Dg On Z g .  
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o 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0 1 2  3 4 5 6 7 8 9 1 0 1 1  

0 1 2  3 4 5 6 7 8 9 1 0 1 1  

1 2  0 5 3 4 7 8 6 1 1  9 1 0  

2 0 1 4  5 3 8 6 7 1 0 1 1  9 

3 4 5 0 1 2  9 1 0 1 1  6 7 8 

4 5 3 2 0 1 1 0 1 1 9 8 6 7  

5 3 4 1 2  0 1 1  9 1 0  7 8 6 

6 7 8 9 1 0 1 1  0 1 2  3 4 5 

7 8 6 1 1  9 1 0  1 2  0 5 3 4 

8 6 7 1 0 1 1  9 2 0 1 4  5 3 

9 1 0 1 1  6 7 8 3 4 5 0 1 2  

1 0 1 0 1 1  9 8 6 7 4 5 3 2 0 I 

1 1 1 1  9 1 0  7 8 6 5 3 4 I 2  0 

element 1 arid the symmetric group of permutations S3 (see Table 2.1 and Table 2.5). 
Table 6.4 lists also all absolutely irreducible representations for  the given group 
G = C2 x S3 over the Galois field GF(1 I )  (GF( 1 I )  is a splitting field for G). A 
given function f G + GF(11) can be considered as a two-variable function 

The matrices Ai2 and Ai2 ofpartial Gibbs derivatives with respect to the variables 
X I  and 2 2  are shown in Figure 6.3 and Figure 6.4, respectively. For the given group 
G the number of unitary irreducible representations is K = K1KZ with K1 = 

2 ,  K2 = 3, and, therefore, the matrix D12 of the Gibbs derivative may be calculated 
according to (6.13) as D12 = 3Ai2 + Ah2. This matrix is shown in Figure 6.5. 

Thepow-graph of the fast algorithm for  the calculation of the Cibbs derivative of 
a function f mapping G into GF(l1)  is shown in Figure 6.6. 

f ( 5 1 , 5 2 ) r  x1 E {(All, 5 2  E {0,1,2,3,4,5).  

6.6.1 

There are different approaches to efficiently calculate the Gibbs derivatives on finite 
groups. From Definition 6, the Gibbs derivatives can be rcgarded as convolution op- 
erators and, therefore, can be calculated through convolution algorithms [ 191. These 
algorithms can be derived in analogy to the convolution algorithms defined in terms of 
FFT [ 13, [ 191. For Gibbs derivatives in P(G), time and space complexity approximate 
to O(2n + 1), and O(g), respectively, if in-place computation [35] is assumed. 

FFT-like algorithms for calculation of Gibbs derivatives are derived through the 
application of the Good-Thomas factorization [ 131, [36], to the matrix representing 
the Gibbs derivative on a given group G [29]. Unlike the algorithms for calculation 

Complexity of Calculation of Gibbs Derivatives 
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Table 6.4 The representations of G12 over GF(l1). 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 1  

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

10 

10 

10 

I 

I 

1 

10 

10 

10 

1 

1 

I 

1 

1 

I 

10 

10 

10 

10 

10 

10 

1 

1 

1 

10 

10 

10 

10 

10 

10 

1 

1 

1 
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6 0 0 0 0 0 5 0 0 0 0 0  
0 6 0 0 0 0 0 5 0 0 0 0 
0 0 6 0 0 0 0 0 5 0 0 0  
0 0 0 6 0 0 0 0 0 5 0 0  
0 0 0 0 6 0 0 0 0 0 5 0  
0 0 0 0 0 6 0 0 0 0 0 5  
5 0 0 0 0 0 6 0 0 0 0 0  
0 5 0 0 0 0 0 6 0 0 0 0 
0 0 5 0 0 0 0 0 6 0 0 0 
0 0 0 5 0 0 0 0 0 6 0 0  
0 0 0 0 5 0 0 0 0 0 6 0  
0 0 0 0 0 5 0 0 0 0 0 6  

Fig. 6.3 The partial Gibbs derivative Ai2 on G I ~ .  

7 5 5 9 9 9 0 0 0 0 0 0  
5 7 5 9 9 9 0 0 0 0 0 0  
5 5 7 9 9 9 0 0 0 0 0 0  
9 9 9 7 5 5 0 0 0 0 0 0  
9 9 9 5 7 5 0 0 0 0 0 0  
9 9 9 5 5 7 0 0 0 0 0 0  
0 0 0 0 0 0 7 5 5 9 9 9  
0 0 0 0 0 0 5 7 5 9 9 9  
0 0 0 0 0 0 5 5 7 9 9 9  
0 0 0 0 0 0 9 9 9 7 5 5  
0 0 0 0 0 0 9 9 9 5 7 5 
0 0 0 0 0 0 9 9 9 5 5 7  

Fig. 6.4 The partial Gibbs derivative A;’ on G12, 
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3 5 5 9 9 9 4 0 0 0 0 0  
5 3 5 9 9 9 0 4 0 0 0 0  
5 5 3 9 9 9 0 0 4 0 0 0  
9 9 9 3 5 5 0 0 0 4 0 0  
9 9 9 5 3 5 0 0 0 0 4 0  
9 9 9 5 5 3 0 0 0 0 0 4  
4 0 0 0 0 0 3 5 5 9 9 9  
0 4 0 0 0 0 5 3 5 9 9 9 
0 0 4 0 0 0 5 5 3 9 9 9  
0 0 0 4 0 0 9 9 9 3 5 5  
0 0 0 0 4 0 9 9 9 5 3 3 
0 0 0 0 0 4 9 9 9 5 5 3 

Fig. 6.5 The Gibbs derivative DI2. 

of Fourier transform on groups, the steps in  FFT-like algorithms for Gibbs derivatives 
can be performed simultaneously. That approach reduces the time complexity at the 
price of the space complexity. Gibbs derivative on any finite group can be calculated 
in two steps. However, the space complexity approximates to O(ng + 9). 

6.7 CALCULATION OF GlBBS DERIVATIVES THROUGH DDS 

Both convolution and FFT-like algorithms for Gibbs derivatives are based upon the 
truth-vector representation of a given function f on G. Therefore, their complexity is 
determined by the order y of G. In practical applications that limits the use of these 
algorithms to functions of a relatively small number of variables. Algorithms based 
on MTDDs permit calculation of Gibbs derivatives of functions of a considerable 
number of variables. 

A procedure to calculate Gibbs derivatives is based on decomposition of Gibbs 
derivative into the linear combination of partial Gibbs derivatives in (6.13). It is de- 
rived as a generalization of the procedure for calculation of the Fourier transform on 
non-Abelian groups and as a modification of the procedure for calculation of Gibbs 
derivatives on finite Abelian groups through DDs [32]. The procedure consists of the 
following steps. 

Procedure for  calculation of Gibbs derivatives 

1. Represent f by the MTDD. 

2. Determine partial Gibbs derivatives. 

3. Determine the Gibbs derivative as the linear combination of partial Gibbs deriv- 
atives. 
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- - 
7 5 5 9 9 9  
5 7 5 9 9 9  

6 5  5 5 7 9 9 9  

9 9 9 5 7 5  
9 9 9 5 5 7  

6 1 .  Ds3= 9 9 9 7 5 5 

- - 

The partial Gibbs derivatives are calculated through MTDD for f and represented 
again by MTDDs. The Gibbs derivative is determined by adding MTDDs representing 
the partial Gibbs derivatives. 

’ 

6.7.1 Calculation of partial Gibbs derivatives 

The procedure for calculation of partial Gibbs derivatives is similar to that for FFT. 
The difference is in the processing rules applied at the nodes and cross points in the 
MTDD for f .  For the partial Gibbs derivative with respect to zi, the nodes and cross 
points at the i-th level are processed by the rule determined by Di. The nodes and 
cross points at the other levels are processed by the rules determined by the identity 
matrices of the corresponding orders as determined in Definition 6.6. We assume that 
the 21 is assigned to the root node, and the other variables are assigned to the other 
levels in the increasing order. 

Procedure for calculation of partial Gibbs derivative Di 
Given a function f on the decomposable group G of the form (2.4). 

1 .  Represent f by the MTDD. 

2. Process the nodes and cross points in the MTDD in a recursive way level by 
level starting from the nodes at the level to which z, is assigned up to the root 
node. 

3. For j = n to 1, process the nodes and the cross points at the j-th level by using 
the rule determined by DG, if j = i, I(g, xg,) if j < i, and I ( K , ~ K , )  if j > i .  
The output from the processing of the root node is the partial Gibbs derivative 
of f  with respect to the variable 5,. 

The procedure for calculation of the Gibbs derivatives through MTDDs is explained 
and illustrated by the following example. 

Example 6.3 The Gibbs derivative for functions on the group G24 in Example 3.5 
is dejned by Df = 6D1 + 3 D 2  + D3, where the partial Gibbs derivatives are 
given by D1 = D c ~  8 I ( 2 x 2 )  63 I ( 6 x 6 ) J  DZ = I ( 2 x 2 )  63 Dc, @ I ( 6 x 6 ) .  D3 = 
I ( 2 x 2 )  @3 I ( 2 x 2 )  c3 Dsy with 
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To calculate the partial Gibbs derivative with respect to 23 we perform calculations 
determined by dejinition of Ds3 at the nodes q3,o. q3.1, q3,3 and the crosspoint 9 3 , ~ .  In 
the nodes at the levels corresponding to 5 2  and 21, we perform the identical mapping 

To calculate the partiul Gibbs derivative with respect to 2 2 .  we perform the iden- 
tical mapping determined by I ( 6 x 6 )  at the nodes and cross point at the level for  2 3 ,  

the calculations determined by Dc, at the nodes fo r  2 2  and the identical mapping 
determined by I ( z x 2 )  at the root node. 

Similar; to calculate partial Gibbs derivative with respect to 2 1 ,  we perform Dc, 
at the root node, while at the other nodes and the cross points the identical mappings 
I ( 2 x 2 )  are performed. 

dejined by I ( 2 x 2 ) .  

1. Partial Gibbs derivative with respect to 2 3 :  

q3,o = DsJ [0,6,2,1,0,  = [5,6, 9,2,0,  0IT , 
q3.1 = Dsl [2,1,1,0,0,  OIT = [2 ,0 ,0 ,3 ,3 ,  31T 

43,3 = DsJ [I, 1 ,1 ,1 ,2 ,  2IT = [7,7,7,10,1,  1IT. 

q3,2 = DS, 1, 1, 1, 1, = [o, 0,0, 0, 0 ,0 lT ,  

Q ~ , I  = I ( z X 2 )  [ ] = [0,0,0,0.0,0,  7,7,7,10. 3,3IT 
q3,3 

= [5 ,6 ,9 ,2 ,0 ,0 ,2 ,0 ,0 ,3 ,3 ,3 ,0 ,0 ,0 ,0 ,0 ,0 ,7 ,7 ,7 ,10,  1,1IT. 

2. Partial Gihhs derivative with respect to 2 2 :  

= [O, 0, 0, 0,5,5,0,0,0,0,6, 6]T. 
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= [lO,S,G,S,O,O, 1,3,5,5,0,0,0,0,0,0,5,5,0,0,0,0,6,6]T. 

3. Partial Gibbs derivative with respect to 2 1 :  

43,0, q3,1, q3,2, and 43,3 are as in calculation of D2, 

q2,1 = 1 0 x 2 )  [ q3,2 ] = [l , l ,  l , l , l ,  1 ,1 ,1 ,1 ,1 ,2 ,2 ]?  
43.3 

= [5 ,8 ,G,0,5,5,S,0,O,5, l0 , lO,6,3,5,0,6,6 ,5 ,0 ,0 ,6 , l , l ]T.  

The ref0 re, 

D24 = GD1+3Dz+D3 

= [10,1,8,9,S,S,S,9,4,4,8,8 ,3 ,7 ,8 ,0 ,7 ,7 ,4 ,7 ,7 ,2 ,3 ,3]*.  

Each step of calculation can be represented through MTDDs. For example, Fig- 
ure 6.7 shows calculation of the partial Gibbs derivative with respect to x3 for f .  
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, for D, for D, 

~ 0+1+2+3+4 

fig. 6.7 Calculation of the partial Gibbs derivative with respect to 1c3 for f in Exam- 
ple 3.5. 
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7 
Linear Systems and 

Gibbs Derivatives on 
Finite Non-Abelian Groups 

Linearity is a property very often used in providing mathematical models of physical 
phenomena. In that setting, linear shift invariant systems and in particular, linear 
convolution systems on groups are efficiently used in mathematical modeling of real 
life systems. For example, in  that general ground linear time-invariant systems can 
be regarded as systems on the real group R. Similarly, linear discrete-time-invariant 
systems are an example of systems defined on the additive group of integers 2. The 
use of some other groups different from R and 2 offers some advantages in particular 
applications, see for example [ 131, [ 141. 

Differential operators are used in linear systems theory to describe the change 
of state of a system. The systems on R described by linear differential equations 
with constant coefficients in terms of the Newton-Leibniz derivative are probably 
the most familiar example. However, group theoretic models of systems and Gibbs 
derivatives on groups, in particular on the dyadic and groups Cpn, have attained some 
considerable attention [ 181, [151, [81. 

In what follows we will first give a short account of background to linear systems 
on groups and then discuss systems on finite non-Abelian groups described by discrete 
differential equations using Gibbs derivatives. 

7.1 LINEAR SHIFT-INVARIANT SYSTEMS ON GROUPS 

In this section, we briefly discuss linear convolution systems with whose input and 
output signals are deterministic signals on groups, and point out the relationship 
between Gibbs differentiators and linear convolution systems. 
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Fig. 7.1 Linear shift-invariant system. 

Definition 7.1 A lineur invariant system S over a group G is defined as a quadruple 
S = (U,  Y ,  h, *) where the operation * is deJined for any u E U, y E Y as follows: 

(7.1) 

i.e., * is the operation of group convolution of two functions h, 11; 2-l is the inverse 
of x in G and o denotes the group operation. 

Worded differently, the system S consists of the set U of input signals and the set Y 
of output signals defined respectively, as the mappings u : G - X and y : G + Y ,  
and the impulse function h defined as the mapping h : U + Y .  If ( 7.1) is true for a 
given system S, and given u E U, y E Y ,  then that system computes the inputloutput 
pair (u, y). 

Figure 7.1 shows a general model of a linear shift-invariant system on groups. 
Note that from the system theory point of view, S is a linear input/output system 

whose input and output are defined over an arbitrary group G. By using different 
groups, various systems studied by several authors can be obtained. For example, 
if G is the dyadic group, the dyadic systems ware introduced by Pichler and further 
studied in a series of papers by this and by several other authors; see [ 121 for a 
bibliography up to 1989. For more recent result, we refer to [7], [8], [21]. 

The systems where input and output signals are modeled by functions mapping 
infinite cyclic group of integers into Galois fields of order 2q,  q E N ,  GF(24)  were 
considered by Tsypkin and Faradzhev [32]. A generalization of the concept was given 
in [23] where it was shown that both cyclic and dyadic convolution systems on finite 
groups can be regarded as special classes of permutation-invariant systems. In a more 
general setting, systems over locally compact Abelian groups were considered by Falb 
and Friedman [91. Some aspects of the theory were extended also to non-Abelian 
groups by Karpovsky and Trachtenberg [ 131, [ 141. 

Recall that systems over finite groups can be regarded as a special class of digital 
filters [28], [29] [3O] or a special class of discrete-time systems with variable structure 
[16] over a finite interval [0, g - 11, see also [31]. 

It may be said that in last few years the theory of linear invariant systems on groups 
has been well established by several authors, although a lot of further work is still 
needed. Regarding the applications of these systems note that they can be used as 
models of both information channels (for example to represent an encoder, a digital 
filter, or a Wicncr filter if K is the field of complex numbers and u is a stochastic 
signal), and computation channels if K is a finite field. For example, different criteria 
for the approximation of linear time-invariant systems by linear convolution systems 
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Fig. 7.2 Classification of linear shift-invariant systems on groups. 

on groups were discussed in [31]. Figure 7.2 shows a classification of linear shift- 
invariant systems with respect to the domain groups for input and output signals. 

7.2 LINEAR SHIFT-INVARIANT SYSTEMS ON FINITE NON-ABELIAN 
GROUPS 

In the case of systems on finite non-Abelian groups the Definition 7.1 can be stated 
as follows. 

Definition 7.2 A scalar linear system A over a jn i t e  not necessarily Abelian group 
G is dejned as a quadruple ( P ( G ) ,  P(G) ,  h, *) where the input-output relation * is 
the convolution product on G, 

i.e., 

So, an ordered pair ( f ,  y) E P(G)  x P(G)  is exactly then an input-output pair of 
A i f f  and y fulfill equation (7.2). The function h E P(G)  is the impulse response 
of A. 

It is easy to show that the system A is invariant against the translation of input 
function. By that we mean that if y is the output to f ,  then T'y is the output to T'f, 
for all T E G. Therefore, we denote the system A as a linear translation invariant 
(LTI) system. 



214 LINEAR SYSTEMS ON FINITE NON-ABELIAN GROUPS 

It is apparent that when G is the dyadic group, the Definition 7.2 reduces to the 
dyadic systems introduced in [ 171 and further studied in [ I81 and a series of papers 
of that and other authors. If G is the group Zprr we obtain the systems studied in [4], 
[6], and [ 151. 

The dyadic and p-adic systems are closely related with Gibbs differentiators on 
the corresponding groups see, for example [ 1.51, [ 181. A corresponding relationship 
can be established between LTI systems and Gibbs derivatives on finite non-Abelian 
groups [24]. 

First of all, note that (6.5) shows that the Gibbs differentiator Dk of order k is a 
LTI system having an impulse response h given by h = 6(’)), see [24]. 

The Gibbs discrete differential equation (6.6) can be interpreted as an input-output 
relation of a system A belonging to a linear combination of Gibbs derivatives on a 
finite non-Abelian group. 

From (6.7), the general output function of this system is represented as the sum of 
the zero-input response of the system yza and the zero-state response yzs has the form 
identical to (7.2). Therefore, we infer that the scalar linear system A associated with 
(7.2) is a LTI system for which (6.7) represents an input-output-state relation and 11 

is the impulse response of A to the unit impulse S(z). Since h is the inverse Fourier 
transform of H ( w ) ,  the transfer function of A is given by (6.9). 

7.3 GlBBS DERIVATIVES AND LINEAR SYSTEMS 

The relationship between linear convolution systems on locally compact Abelian and 
finite non-Abelian groups discussed above can be considered and summarized in a 
general setting as follows. 

In a general ground the Gibbs differentiator of order k of a function f E K(G) ,  
which we denote by Dk f ,  is considered as the linear operator in K(G)  satisfying the 
relationship [27 1 

where F denotes the Fourier transform operator in K(G).  
In most cases ~ ( w ,  k )  = wk, but in some cases a scaling factor should be applied, 

while in  a few particular cases the function q differs and is related to the order of 
group G. For example, in the case of the extended Butzer-Wagner dyadic derivative 
[ I  J q(w, k )  = ( w * ( w ) ) ~ ,  where 

w*(w) = - y - 1 ) b a 2 2 ,  
z=o 

w, being the coefficients in the dyadic expansion of tu E P. In the case of Gibbs 
derivatives on Vilenkin groups [35],  [36], [371, the function p ( w ,  k )  is a function 
from the so-called symbol class S& [ 3 5 ]  defined as p (w ,  k )  = ( k ) 7 n ,  m 2 0, where 
(x) = max{l, l l ~ l l ) .  
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It should be pointed out in attempting to determine a relationship between Gibbs 
derivatives and linear convolution systems that 

1. Thanks to the relation (7.3) and the convolution theorem in the Fourier analysis 
on groups, the Gibbs differentiator of order k can be considered as a con- 
volution operator and, therefore, can be identified with a linear convolution 
system whose impulse response function h is given in the transform domain 
by ( F ( h ) ) ( w )  = p(w, k ) .  For example, in the case of the Gibbs derivative 
on finite not necessarily Abelian groups, as well as in the case of dyadic and 
groups Cpn, p(w, k )  = wk by definition and, therefore, h is the k-th Gibbs 
derivative of the &function defined as S(z) = 1 for z equals the unit element 
of G, and S(s) = 0 otherwise. 

2. A considerable class of linear systems on groups can be described by Gibbs 
differential equations in a way resembling the use of classical differential equa- 
tions with constant coefficients in the linear system theory on the real group 
R. In the other words, a linear Gibbs differential on a group is defined as a 
polynomial in the Gibbs differentiator with real coefficients. The linear Gibbs 
differential operators form a subset of the group convolution operators realized 
by the corresponding subset of the group convolution systems. 

As we noted above such linear systems over dyadic groups were discussed in  [ I  11, 
[22], and for the infinite dyadic groups in [ 181. Recall that an extension of the theory 
to p-adic groups, the finite Vilenkin groups, was given in [6], [ 151. A generalization 
to finite non-Abelian groups was given in [24], see also [26] and for p-adic systems 
with stochastic signals in [8]. 

Note that the use of systems modeled by Gibbs differential equations in the process- 
ing of two-dimensional signals was suggested in  [ 191, [20]. 

7.3.1 Discussion 

As is known, the dyadic derivative is especially adapted to functions having many 
jumps and possessing just a few and short intervals of constancy. Even functions 
having adenumerable set of discontinuities like the well-known Dirichlet function can 
be dyadically differentiable on [0,1]. In the case of finite groups, the Gibbs derivatives 
also provide a mean to differentiate functions on those groups. In one word, through 
the family of Gibbs differentiators, the advantage of the use of differential calculus 
extends to the theory of systems whose inputloutput signals are piecewise constant, 
or discrete functions. 

In order to point out some possible advantages of linear systems on groups modeled 
by the Gibbs differential equations, recall that the use of Fourier analysis in linear sys- 
tems theory is based upon the convolution theorem and the relationship between the 
Newton-Leibniz derivative. Thanks to the first property, the Fourier transform maps 
the convolution into ordinary multiplication, while the second permits the translation 
of differential equations into the algebraic ones. As in many other areas, the applica- 
tion of Fourier analysis in linear systems theory is further supported by the existence 
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of the fast Fourier transform, FFT, and related algorithms for efficient calculation of 
Fourier coefficients and some other parameters useful in practical applications. 

The Gibbs derivatives possesses the most of the useful properties of Newton- 
Leibniz derivative, except the product rule and, therefore, their role in  the theory of 
linear systems on groups can be compared to that of Newton-Leibniz derivative in 
classical linear systems theory on R. At the same time, the Gibbs derivatives are 
efficiently characterized by the Fourier coefficients on groups. 

The matrices representing Gibbs derivatives are Kronecker product representable 
in  the case of finite decomposable groups, (see Section 4.7), and, therefore, the fast 
algorithms for the calculation of the values of Gibbs derivatives on these groups can 
be defined, (see Section 4.8). 

It may be said that the Gibbs differentiation shares some of very useful properties 
of both Fourier analysis and differential calculus. 

Thanks to these properties the Gibbs derivatives could be very promising for the 
use in the theory of linear systems on groups. Some recent results and extensions of 
the theory are given in [7], [21]. 
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Hilbert Transform on 
Finite Groups 

In theory of real variable functions the Hilbert transform is defined in the following 
way. 

Definition 8.1 The Hilbert transform f" of a function f E LP, 1 # p # M is 
de$ned, see fo r  example [2] ,  /9], by 

where the notation u.p. means that the integral is understood in the sense of Cauchy 
principal value. 

The functions belonging to L2 are the most widely exploited in  practice, since they 
represent the finite energy signals. The following holds for these functions, see for 
example [2], [9]. 

Denote by F ( w )  the Fourier transform of a function f E L2.  Then, the Fourier 
transform of its Hilbert transform, F"(ui), is given by 

F"(w) = -sign(w)F(w) a e . ,  (8.2) 

where 

-1, w < 0, 
(8.3) 

The relation (8.3) can be regarded as an alternative definition of the Hilbert trans- 
form. The formula holds for p = 1 if f" E L1, in which case it holds everywhere. 
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Note that there are functions from l1 whose Hilbert transforms defined by (8.2) do 
not belong to l l .  An example is f(x) = & as is noted in [2]. 

Recall that 

-2i Lrn s i n r x )  
t1.p. (1 /m  exp (*dx)) = lim - dx 

Jz;; --03 t-0 Jz;r 

From there it can be written at least formally: 

(8.4) 

where F is the Fourier transform operator, * denotes the convolution product on R, 
and the convolution integral is understood in the sense of Cauchy principal value. 

In the case of periodic functions with the period equal to 27r the convolution kernel 
used to define the corresponding Hilbert transform is {cot ;}. 

The approach of defining the Hilbert transform in transform domain as the mul- 
tiplication by a sign function, that is by employing the relation (8.3) was used as 
the starting point for the introduction of a discrete Hilbert transform, i.e., the Hilbert 
transform for functions on finite Abelian groups. It is important to note that defini- 
tions appearing in [3] and [ I ]  [4], [ 5 ] ,  [6] are based upon the differently defined sign 
functions and they coincide only in the case of cyclic groups. 

Recalling that the real line R exhibits the structure of a locally compact Abelian 
group, it can be concluded that the Hilbert transform for real-variable functions and 
the discrete Hilbert transform can be considered uniformly as the Hilbert transform 
on Abelian groups. However, the above discussed group-theoretic approach of intro- 
ducing the Hilbert transform on Abelian groups through the product in the transform 
domain by a suitably defined sign function, can hardly be used further to extend the 
concept to finite non-Abelian groups. That fact becomes obvious if we recall that 
unlike Abelian groups, the domain r of the Fourier transform S f  of a function f on a 
finite not necessarily Abelian group G may not have any algebraic structure suitable 
to define a multiplication in it which in turn can be mapped into a convolution in the 
group. Therefore, we have suggested in [ 8 ]  just the opposite way, we have defined 
a Hilbert transform on a finite non-Abelian group as the pointwise multiplication of 
a given function by a suitably defined sign function in the group. As was shown in 
[8], an analysis of the properties of the thus defined transform justifies to consider 
it as a proper counterpart of the Hilbert transform on R or on finite Abelian groups. 
Therefore, we are encouraged to suggest this "opposite way to be actually a "proper" 
way to define a Hilbert-like transform for functions on both Abelian and non-Abelian 
groups permitting the considerations of these two cases in a uniform way. Recall that 
the same approach was already used for Hilbcrt transform on R in some particular 
engineering applications as for example signal filtering. 

In that way two aims are reached. First, the main properties of the "classically" 
defined Hilbert transform on Abclian groups are preserved by the "new" transform, 
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and the concept is extended to finite non-Abelian groups. Further, as it will be 
shown below, the same approach can be used to introduce a Hilbert-like transform 
for functions mapping a given finite non-Abelian group into a finite field admitting 
the existence of a Fourier transform. 

8.1 SOME RESULTS OF FOURIER ANALYSIS ON FINITE 
NON-ABELIAN GROUPS 

For the sake of completeness of presentation in this section we disclose several further 
results of Fourier analysis on finite non-Abelian groups which are somewhat restricted 
counterparts of the corresponding results on finite Abelian groups. Recall again that 
the Fourier transform SF is defined on r and, thus, cannot be regarded as a function on 
a group and, therefore, some of the properties valid on Abelian groups are non-existent 
when the group is no longer commutative. 

Recalling the bijection V from non-Abelian group G of order g onto the subset 
M = (0,. . . , g - l} of integers adopted in this monograph, note that the natural 
ordering "<" in M induces an ordering upon G via the inverse mapping V-l.  We 
keep the symbol "<" for the new ordering in G and define the following partition of 
G: 

P O S v  = {Z E Glx < z'}, S Y M v  = {Z E GIT = x'}, N E G v { z  E G J d  < z}, 

where x' is the inverse of x in G, i.e., x o x' = e and (x')' = x. The symbols o and 
e represent the group operation and the identity of G. Notice that both the set POS 
and NEG depend on the bijection V. 

Among the functions from P ( G )  we will not the following special classes. 

Definition 8.2 Let f E P(G). Then, with respect to the ordering of G introduced by 
V ,  we say: 

1. f is even iff f (x) = f ( x ' ) ,  Vx E G, 

2. f is odd i f f f ( x )  = - f (d) ,  VX E G, 

3. f is actual ifs f (x) = 0, V z  E G \ POSv ,  

4. f is coactual iff f (x) = 0,  Vx E POSv, 

5. f is virtual iff f (x) = 0, 'dx E G \ NEGv,  

6. f is covirtual iff f (x) = 0,  Vx E NEGv,  

7. f is axial iff f (x) = 0,  Yx E G \ S Y h I v ,  

8. f is coaxial iff f (x) = 0 ,  Vx E S Y M v .  

Notice that if f is odd, then f (x) = 0, 'dz E S Y M v ,  and if f is axial, then it is 
also even. 
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Definition 8.3 For all x E G, the function signv is dejined as follows 

1, x E POSV, 
signv(x) = -1, IC E NEG”, { 0, Ic € SYM”. 

It becomes apparent that signv is a coaxial function. 

Property 8.1 Let f E P(G). Then, 

1. f p ( x )  = i ( f ( x )  + f(x’)) dejines an even function, 

2. f O ( x )  = ;( f (2) - f(x’)) deJines an oddfunction, 

3. f(.) = fe(x) + fd.1. 
The sign minus in Property 8.1 as well as in Definition 8.2 is understood in the 

sense of subtraction in the field P. For the correctness of the notation, the derivation 
of the following properties will be restricted to the complex functions on G. The real 
functions will be considered as a subclass of these functions in which case we will use 
the notation R(G).  Note that the corresponding properties can be derived for function 
in finite fields, but the difference which should be appreciated is that in  that case the 
notion of imaginary unity and, consequently, the complex conjugate does not exist 
in the “classical” sense. Therefore, the concepts of Hermitean and skew-Hermitean 
matrix should be appropriately reformulated as it will be given in the corresponding 
section below. 
Proof. The statement is obvious from corresponding definitions. 

Property 8.2 Let f E R(G). Then f is odd iff its Fourier transform Sf is skew- 

Hermitean, i.e., ifffor each 0 # w # K - 1, Sf(w) = -Sf (w) = -S;(w), where 
ST denotes the transpose, sf the complex-conjugate, and S: the complex-conjugate 
transpose of S f .  

Proof. Assume first that f is odd, i s . ,  f(x) = -f(z’) ,Vx E G. Then, for w = 
0, .  . . , K - 1, we have 

-T 

ZEG xEG 

Since f is real we obtain 

Sf(w) = (-r,g-l f (x’)Rw) (x) = - S ; ( w ) .  
X t G  

Conversely, assume that Sf is skew-Hermitean, i.e., S, = -S;(w). Now, since f is 
real-valued, for each II: E G we have 

K-1 K -  1 

f ( x )  = C TT(S~(,U))R,(Z)) = C Tr(Sf(w)R,(x) )  
w=o w=o 
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w=o w=o 

K - l  K - l  c T T ( S T ( W ) R ~ ( ~ ) )  = - C Tr(Sf(w)RZ(z)) = 

w=o w=o 

K - l  

= - 1 TT(S~(W)R,(Z’)) = - f ( ~ ‘ ) .  
w = o  

Property 8.3 Let f E R(G). Then, f is even iff its Fourier transform Sf is Her- 
mitean, i.e., #for each 0 # w # K - 1, Sf (w)  = s; (~) .  
Proof. First assume that f is even, i.e., f(x) = f(z’),Vz E G. Then for all 
w == 0 , .  . ., K ~ 1 

S f ( ~ i )  = TWg-’ f(z)RE(z) = T w g u 1  C f(z’)R;(z) 
J E G  xEG 

T 

X E C  Z€G 

Thus, Sf is Hermitean. 
Conversely, assume that Sf is Hermitean, i.e., Sf(w) = SF(w) .  Then, since 

f E R(G),  we have 

W = O  w=o 

w=o w=o 

= f(x’) 

Property 8.4 Let f E R(G) and f ( z )  = f p ( x )  + fO(r) .  Then. 
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for each 0 # w # K - 1 and with Properties 8.2 and 8.3 we obtain 

s;w = S f L ( W )  ~ S . f O ( 7 U ) >  

from where the assertion follows directly. 
From there we have that Sf- is the Hermitean part of Sf and similarly, Sf<, is the 

skew-Hermitean part of Sf, which we denote by H ( S f )  and s H ( S f ) ,  respectively. 
This is a direct consequence of the linearity of Fourier transform and Properties 2 and 
3. 

Property 8.5 The Fourier transform of the sign function is given by 

Ssign(w) = rWg-' c (RL(z) - RW(z)). 
X E  POSV 

Proof. 

Ssign(w) = r,g-l c sign(x)RL(x) 
xEG 

TwY-l c (RL(X) - RL(X')) 

= rWg-l c (RL(z) - R W ( 2 ) ) .  

- - 

XEPOS" 

X€POSV 

Corollary 8.1 1. Let f E R(G)  be covirtual. A covirtual function has a trivial 
decomposition in an actual function ga = ge + go and an axial function gsym. 
Then we have 

2. Let f E R(G)  be coactual. A coactual function has a trivial decomposition in 
a virtual function gv = k ,  + k ,  and an axial function gsym. Then we have 

SH(Sf) = s k , , .  

Proof. Let f E R(G)  be covirtual. Define 

Yx E PO& 
ga(x) = i of(x). otherwise. 

Obviously, ga is actual and gsym is even. Moreover, f = ga + gsym, i.e., f = 

go + g P  + .qsym. Since the sum of two even functions is even, then go represents the 
odd part o f f  and the assertion follows from property 2 .  

Similarly if f is a coactual function. 
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8.2 HILBERT TRANSFORM ON FINITE NON-ABELIAN GROUPS 

As we noted above, the definition of the Hilbert transform based upon the relation 
(8.3) cannot be extended to functions defined on a non-Abelian group because the 
domain r of the Fourier transform S f  may not exhibit a suitable algebraic structure. 
For that reason we will use a reverse approach which leads to a definition holding 
uniformly for Abelian and non-Abelian groups. 

Definition 8.4 The Hilbert transform f" of a function f E P(G), where G is not 
necessarily an Abelian group, is dejned under a given ordering bijection V as the 
linear operator N :  P(G) 4 P(G)  given by 

f " ( x )  = - i s i g n v ( z ) f ( z ) ,  Vx E G. 

The main properties of the thus defined Hilbert transform are given in the following 
theorem which justifies to consider it as a proper counterpart of the Hilbert transform 
on R and on finite Abelian groups. 

Theorem 8.1 The main properties of the Hilbert transform are 

I .  For each f, h E C(G), and a ,  b E C 
(af + bh))"(z) = u f " ( x )  + bh"(z). 

2. I f f  E R(G), then f" is purely imaginary. Moreover; i f f  is even, then f is 
odd, and i f f  is odd, f " is even. 

__ 
3. For each f E C ( G ) ,  ( f ( x ) ) -  = - f - ( x ) ,  where f ( x )  denotes the complex 

conjugate of f ( x ) .  

4. For each f ,  h E C ( G ) , f " ( x ) h ( z )  = f (x )h"(z )  

5. The inverse Hilbert transform of a coaxial function f E C(G)  is given by 
f " ( f " ( x ) )  = - f ( x ) .  Notice that the actual and virtual functions are also 
coaxial functions, and it follows f ( x ) h ( x )  = - f"(z)h"(z) .  

6. Let fa E R(G) be actual. Then the Hermitean and skew-Hermitean parts of 
its Fourier spectrum S f  are related by the Hilbert transform as shown below: 
For each w E (0, .  . . , K - l} 

WSf,, (w)) = ( ( ( isH(S. f"  ) ) ) W T 1  (8.5) 
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where T and I denote the direct and the inverse Fourier transform, respectively. 

7. Let f t R(G) be covirtual. Then equation (8.7) is also valid. 
Let f E R(G) be coactual. Then equation (8.9) is also valid. 

8. Let f E R(G). Moreover, let Ev( f )  and Od( f )  denote the even and odd parts 
o f f ,  respectively. These parts are related by the Hilbert trunsform as follows: 
I f f  is actual, then 

and i f f  is virtual, then 

Ev( f (.)) = -i(Od( f (.)))-, (8.1 I )  

9. I f f  E R(G) is covirtual, then (8.11) is also valid. 
I f f  E R(G) is coactual, then (8.12) is also valid. 

Proof. The following parts of the proof are numbered as the assertions of the theorem. 

1 .  This assertion follows directly from definition of the Hilbert transform. 

2. Proof of the first part of the statement follows from definition of the Hilbert 
transform since the function sign is real. The second part follows from Prop- 
erties 5 and 3, respectively, since sign is an odd function. 

3. f" = -isign(.)(J) = isign(.)f = -(-isign(.)f) = -7. 
4. Proof follows directly from definition of the Hilbert transform. 

5. From definition 2 follows that sign2(.) is the identity coaxial function. It 
becomes apparent that since sign(.) = sign2(.) = 0 for each x E SYAlv, 
no inverse Hilbert transform exists for functions other than coaxial. Recall, 
however, that both actual and virtual functions are special kinds of coaxial 
functions. 

6. Since f a  is axial, from property I it  can be written as the sum of ge and go. 
Then from property 6 we have 
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and similarly 

The proof is analogous in the case of virtual functions. 

7. Let f be covirtual. Then f may be expressed as f = fa + gsym, where f a  is 
actual and gsym takes the same values as f for each z E SYhlv and is Lero 
otherwise. It becomes apparent that for each z E G, sign(x)gsym(z) = 0, 
since gsym is axial (and therefore also even). Particularly, ( g s ~ m ) ~ Y ~  = 0. 

It follows 

Similarly for f a coactual function. 

8. Since fa is actual, then fa = ge + go = E u ( f a )  + Od( fa ) .  From property 1 
follows that ge(z)  = sign(z)g,(z), hence: 

-wfa(z))  = sign(z)Od(fa(z)) 
= (-isign(z))(iOd(f,(z))) = ( iOd(fa)z)))-  

9. See the proof of assertion 7. 

Consider the following example for the illustration of the assertions of the theorem. 

Example 8.1 Let G be the quaternion group Qz defined in Example 2.3. Note that 
the function f considered in this example is an actual function and, therefore, will 
be denoted here by fa .  In Table 8.1 we list the values of the signv function on G 
and illustrate the decomposition of the given fa  into an even function ge and an odd 
function go by using assertion I of the Theorem 8.1. Their Fourier transforms Sgc and 
Sgc, are given in Table 8.2. It is apparent that Sg+ = H ( S f U )  and Sgc> = s H ( S f , L )  
as is stated in assertion 6 of the Theorem 8.1. 
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Table 8.1 The even and odd parts of the test function. 

x 5’ Signv(2) f a ( 2 )  yo(.) 

0 0  0 0 0 0 

I 3  I ff 

2 2  0 0 0 0 

3 1  -1 0 
- B - ? 

a - a - 
2 2 

a _ _  a - 
2 2 

4 6  I P 2 2 
x x 

2 2 

2 2 
x x 

2 2 

- - 5 7  1 x 
6 4  -1 0 

7 5  -1 0 

- P -- P 

_ -  - 

SYMv = {0,2}, POSv = {1 ,4 ,5} ,  N E G v  = { 3 , 6 , 7 }  

Table 8.2 Fourier spectrum of the test function over C. 
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8.3 HILBERT TRANSFORM IN FINITE FIELDS 

In this section we will consider the definition of the Hilbert transform on finite non- 
Abelian groups for functions taking their values in a finite field admitting the existence 
of a Fourier transform. 

Notice that some of the results from Section 8.2 have to be slightly modified so 
that they hold also in finite fields. However, some other no longer exists in this case. 
The main difference which should be appreciated is that the operation we denote by 
* simply reduces to the transposition. In this setting the concepts of Hermitean and 
skew-Hermitean matrix should be reformulated. 

Definition 8.5 For the Fourier spectrum Sf of a function f E P( G )  we define thefield 
Hermiteanpart by f H ( S j )  = Sf<,  andthe$eldskew-Hermiteanpartby f s H ( S f )  = 

Sfo, where the functions f e  and fo  are defined in property 1. 

Definition 8.6 The Hilbert transform f " of a function f E P(G), where G is a 
non-Abelian group, is defined under a given bijection V as the linear operator -: 
P(G)  + P ( G )  given by: 

f " ( z )  = sign(z) f (x), Vx E G ,  

with signv(.) as in Definifion 8.2. 

It can be shown that except for Property 8.3, all other properties from Theorem 8.1 
hold also in this case omitting simply thc imaginary unit. Therefore, we have the 
following theorem. 

Theorem 8.2 The main properties of the Hilbert transform for functions belonging 
to P(G) are 

I .  For each f ,  h E P(G),  and a ,  b E P 
( a  f + bh))" (x)  = a f " ( x )  + bh"(x). 

2. I f f  E P(G), is even, then f" is odd, and i f f  is odd, f 

3. For each f ,  h E P(G),  f " ( x ) h ( z )  = f ( z )h"(z )  

4. The inverse Hilbert transform of a coaxial function f E P(G)  is given by 

is even. 

f "( f " ( z ) )  = - f (x). Notice that the actual and virtual functions are also 
coaxial functions, and it follow~s 
f (z)h(x) = - f "(z)h"(s). 

5. Let f a  E P(G) be actual. Then the Hermitean and skew-Hermitean parts of 
its Fourier spectrum S j  are related by the Hilbert transform as shown below: 
For each w E (0 , .  . . , K  - 1) 

fH(Sf<&(W)) = ( ( ( f s H ( S f , , ) ) ) L ) " ) T ,  (8.13) 
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Let f E P(G)  be virtual. Then, 

(8.14) 

(8.15) 

(8.16) 

6. Let f E P(G)  be covirtual. Then equation (8.7) is also valid. 
Let f E P ( G )  be coactual. Then equation (8.8) is also valid. 

7. Let f E P(G).  Moreover. let Ew( f )  and Od( f )  denote the even and oddparts 
o f f ,  respectively. These parts are related by the Hilbert trarisform as follows: 
I f f  is actual, then 

arid if f is virtual, then 

Od( f ( x ) )  = -(Eu( f (2 ) ) )" .  (8.20) 

8. I f f  E P(G)  is covirtual, then (8.11) is also valid. 
I f  f E P(G)  is coactual, then (8.12) is also valid. 

It follows from the properties stated in this theorem that the transform introduced 
by Definition 8.5 can be regarded as the Hilbert transform for functions on finite 
non-Abelian groups into finite fields representing a proper counterpart of the Hilbert 
transform introduced by Definition 8.3 and, further, as a counterpart of the classical 
Hilbert transform in  L2 as well as the Hilbert transform on finite Abelian groups, see 
for example, [ I  I ,  [4]. 

Example 8.2 Let G be the group described in Example 6.2. In Table 8.3 the sign 
function, an actual function and its even and odd parts are shown. In Table 8.4 the 
Fourier spectrum of this function and in Table 8.3 of itsfield Hermitean andfield skew- 
Hermitean parts are given. We dejne the$eld Hermitean andjeld skew-Hermitean 
partsofthe Fourierspectrumrespectivelyby.fH(Sfu = Sf,Ae, and f s H ( S f a  = Sf,L,,, 
wheref,,(z) = ~ ( f ( . ) + f ( X ' ) ) a n d f , , ( z )  = i ( f ( x ) -  f ( d ) ) .  

Note that (Sf,L)T = S f u c  - Sfur, and that formulas (8.15) and (8. Ih )  are true. 
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Table 8.3 The even and odd parts of the 
test function. 

z x' signv(x) f a  fae fa0 

1 2  1 a q  2 

0 0  0 0 0  0 
a - 

a 0 cr _ _  2 1  10 

3 3  0 0 0  0 

4 4  0 0 0  0 

5 5  0 0 0  0 

6 6  0 0 0  0 
- P 

P 

9 9  0 0 0  0 

10 10 0 0 0  0 

1 1  1 1  0 0 0  0 

2 2 

7 8  1 P $ 2 

0 L! _ _  8 7  10 2 2 

Table 8.4 Fourier spectrum of 
the test function. 

w Sf 

0 Q + P  
1 a + @  

5rr+5p l001+10/3 

3 Q + lop 
4 Q + lop 

! [ lOcu:+p 6 ~ + 5 p  
5a+6 /3  1001+p 

Table 8.5 Fourier spectrum of the test function in GF(11). 

0 (1 + p 0 

1 a+P 0 

! 

1 5 [ 1001 + p O ]  [ 5a+6/!3 0 

Gcy + Gp 
0 1001 + lop O ]  [ : n + w  

0 
[ 

3 CI + l o g  
4 01 + l op  0 

10atp 6 t r f 5 P  
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