NMWILEY

Process-Aware
Information
Systems

Bric 1111_1_..5-1 People and Software through

I TOCCESS ||‘__ 11 'I|\'I] TN/

PROCESS-AWARE
INFORMATION SYSTEMS

TEAM LinG

PROCESS-AWARE

INFORMATION SYSTEMS
Bridging People and Software
Through Process Technology

Edited by
MARLON DUMAS

Queensland University of Technology

WIL van der AALST

Eindhoven University of Technology

ARTHUR H. M. ter HOFSTEDE

Queensland University of Technology

WILEY-
INTERSCIENCE

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic format. For information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Process-aware information systems : bridging people and software through
process technology / Marlon Dumas, Wil van der Aalst, Arthur ter Hofstede
(editors).

p. cm.
Includes bibliographical references.
ISBN-13 978-0-471-66306-5
ISBN-10 0-471-66306-9 (cloth : alk. paper)
1. Computer-aided software engineering. 2. Human-computer interaction. I.

Dumas, Marlon. II. Aalst, Wil van der. I1I. Ter Hofstede, Arthur, 1966—
QA76.758.P757 2005
005.1'0285—dc22

2005001369

Printed in the United States of America.

10987654321

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

To Inga and her admirable ability to marry
reason with emotion—Marlon

To Willem for showing that you do not have
to be smart to enjoy life—Wil

=mmm Contents

Preface

Contributors

PART 1 Concepts

1 Introduction
Marlon Dumas, Wil van der Aalst, and Arthur H. M. ter Hofstede

1.1 From Programs and Data to Processes
1.2 PAIS: Definition and Rationale

1.3 Techniques and Tools

1.4 Classifications

1.5 About the Book

References

Person-to-Application Processes: Workflow Management
Andreas Oberweis

2.1 Introduction

2.2 Workflow Terminology

2.3 Workflow Modeling

2.4 Workflow Management Systems

2.5 Outlook
2.6 Exercises
References

Person-to-Person Processes: Computer-Supported
Collaborative Work

Clarence A. Ellis, Paulo Barthelmess, Jun Chen, and Jacques Wainer

3.1 Introduction

3.2 Characterization of Person-to-Person Interactions
3.3 Characterization of Person-to-Person Systems
3.4 Example Systems

xiii

XV

21

21
22
24
24
32
34
35

37

37
37
45
49

vii

viii

CONTENTS

3.5 Summary and Conclusions
3.6 Exercises
References

Enterprise Application Integration and Business-to-Business
Integration Processes
Christoph Bussler

4.1 Introduction

4.2 Examples of EAI and B2B Processes
4.3 Concepts, Architectures, and Tools
4.4 Future Developments

4.5 Exercises

References

PART II Modeling Languages

Process Modeling Using UML
Gregor Engels, Alexander Forster, Reiko Heckel, and
Sebastian Thone

5.1 Introduction

5.2 Modeling Control Flow with Activity Diagrams
5.3 Modeling Objects and Object Flow

5.4 Modeling Organizational Structure

5.5 Modeling Business Partner Interactions

5.6 System-Specific Process Models

5.7 Summary
5.8 Exercises
References

Process Modeling Using Event-Driven Process Chains
August-Wilhelm Scheer, Oliver Thomas, and Otmar Adam

6.1 Introduction

6.2 Overview of EPC

6.3 The ARIS Business Process Meta-Model
6.4 How to Correctly Model EPCs

6.5 The ARIS Architecture

6.6 Future Extensions

6.7 Exercises

References

Process Modeling Using Petri Nets
Jorg Desel

7.1 Introduction
7.2 Petri Nets

56
57
58

61

61
67
71
71
78
82

85

85
86
94
100
107
110
114
115
116

119

119
120
127
132
137
140
141
144

147

147
148

10

7.3 Petri Net Classes and Behavior

7.4 Modeling Single Processes Without Resources
7.5 Modeling Processes with Resources

7.6 Behavior and Refinement

7.7 Analysis

7.8 Net Classes

Exercises

References

Patterns of Process Modeling

Wil van der Aalst, Arthur H. M. ter Hofstede, and Marlon Dumas

8.1 Introduction

8.2 Classification of Patterns

8.3 Examples of Control-Flow Patterns
8.4 Conclusion

8.5 Exercises

Acknowledgments

References

PART III Techniques

Process Design and Redesign
Hajo A. Reijers

9.1 Introduction

9.2 Methodologies, Techniques, and Tools

9.3 Business Process Performance Indicators
9.4 Redesigning Processes Using Best Practices
9.5 Information-Based Business Process Design
9.6 Conclusion

9.7 Exercises

References

Process Mining
Wil van der Aalst and A.J.M.M. (Ton) Weijters

10.1
10.2
10.3
10.4
10.5
10.6

Introduction

Process Mining: An Overview

Process Mining with the o Algorithm

Limitations of the Alpha Approach and Possible Solutions
Conclusion

Exercises

Acknowledgments
References

CONTENTS

ixX

154
157
162
167
169
172
176
176

179

179
181
183
197
199
201
201

207

207
208
209
212
226
231
231
233

235

235
237
241
246
253
253
253
254

X

11

12

13

14

CONTENTS

Transactional Business Processes
Gustavo Alonso

11.1 Introduction

11.2 Transactional Consistency

11.3 Atomicity

11.4 Infrastructure for Implementing Atomicity
11.5 Outlook

11.6 Exercises and Assignments
Acknowledgments

References

PART IV Standards and Tools

Standards for Workflow Definition and Execution
Jan Mendling, Michael zur Muehlen, and Adrian Price

12.1 Introduction

12.2 Standardization Bodies Relevant to PAIS

12.3 WIMC Reference Model and WEMC Glossary
12.4 Process Definition in XPDL

12.5 Process Invocation Using WF-XML

12.6 Trends

12.7 Exercises

References

The Business Process Execution Language for Web Services
Rania Khalaf, Nirmal Mukhi, Francisco Curbera, and
Sanjiva Weerawarana

13.1 Introduction to Web Services
13.2 BPEL4WS

13.3 Summary

13.4 Exercises

References

Workflow Management in Staffware
Charles Brown

14.1 Introduction
14.2 Architecture
14.3 Integration Tools
14.4 Methodology
14.5 Resourcing

14.6 Conclusion

14.7 Exercises
References

257

257
258
262
267
276
277
277
277

281

281
282
285
289
302
308
311
315

317

317
318
338
338
341

343

343
345
350
354
360
361
362
362

CONTENTS

15 The FLOWer Case-Handling Approach: Beyond Workflow
Management
Paul Berens

15.1 Outline

15.2 Overview of Case Handling and FLOWer
15.3 Conceptual Integrity of FLOWer

15.4 Golden Rules of Process Management
15.5 Conclusion

Acknowledgment

References

Appendix: Readings and Resources

Index

xi

363

363
364
375
390
392
392
393

397

403

=mmm Preface

Process-aware information systems are at the heart of an ongoing “silent revolu-
tion.” From the late 1970s to the early 1990s, the lion’s share of attention in the area
of information systems went to data. The focus was mainly on storing and retriev-
ing information and, hence, data models were often the starting point for designing
information systems, whereas database management systems were considered to be
the heart of the run time infrastructure. During the 1990s, a number of parallel
trends shifted the focus to processes. As a result, an increasing number of business
processes are now conducted under the supervision of information systems driven
by explicit process models. This shift of focus has resulted in a myriad of approach-
es to process engineering, modeling, and implementation, ranging from those sup-
ported by groupware and project management products to those supported by docu-
ment, imaging, and workflow management systems, which are now finding their
way into enterprise application-integration tools. The plethora of (sometimes subtly
different) technologies in this area illustrates the relevance of the topic but also its
complexity, and despite a number of discontinued and ongoing standardization ef-
forts, there is still a lack of an overarching framework for designing and implement-
ing process-aware information systems. Instead, process-awareness in information
systems manifests itself in various forms, with similar concepts appearing under
different names, in different combinations, and with varying levels of tool support.

The goal of this book is to provide a unifying and comprehensive overview of
the technological underpinnings of the emerging field of process-aware information
systems engineering. While primarily intended as a textbook, the book is also a
manifesto for process-aware information systems, insofar as it puts forward the re-
semblances (and differences) between a number of technologies that up to now
have evolved somewhat independently of one another. In this respect, it is hoped
that the book will raise awareness of the need to look at new trends in the area in
light of a broader perspective than has been employed up to now and to draw on the
large body of existing theoretical and practical knowledge. In terms of scope, it
should be mentioned that the focus of the book is on technical aspects, as opposed
to strategic and managerial aspects, which are covered in a number of other publica-
tions (many of which are referenced throughout the book).

xiii

Xiv PREFACE

The book is intended to be used both as a textbook for advanced undergraduate
and postgraduate courses and as reference material for practitioners and academics.
Consistent with the former purpose, the book contains exercises, ranging from sim-
ple questions to projects and possible assignment subjects. Sample solutions for
many of these exercises will be made available at a companion site, http://www.
wiley.com/WileyCDA/WileyTitle/productCd-0471663069.html. Further informa-
tion and material related to the book will be posted at: http://www.bpmcenter.org.

The book gathers contributions from a number of international experts and teams
from both academia and industry. We acknowledge the contributors for their en-
gagement and dedication in the preparation of their chapters and for their prompt
help in peer-reviewing each others’ chapters. It should be recognized that many of
the topics covered in the book are still emerging or even groundbreaking, and au-
thors had to put considerable effort into presenting them in a way that is accessible
to the broadest possible audience. We also acknowledge the financial support of the
Australian Research Council through its Discovery Projects scheme. Finally, we
thank Wiley’s editorial team, especially Val Moliere, for their support and patience
that contributed to turning the original book project into a reality.

MARLON Dumas
WIL VAN DER AALST
ARTHUR H. M. TER HOFSTEDE

Brisbane, Australia,
August 2005

= Contributors

Otmar Adam, Institute for Information Systems (IWi), German Research Center
for Artificial Intelligence (DFKI), Saarbriicken, Germany

Gustavo Alonso, Department of Computer Science, ETH Zentrum, Ziirich,
Switzerland

Paulo Barthelmess, Department of Computer Science, University of Colorado,
Boulder, Colorado

Paul J. S. Berens, Pallas Athena, Apeldoorn, The Netherlands
Charles Brown, Logica CMG, Milton, Australia

Christoph Bussler, Digital Enterprise Research Institute, National University of
Ireland, Galway, Ireland

Jun Chen, Department of Computer Science, University of Colorado, Boulder,
Colorado

Francisco Curbera, Component Systems Group, IBM T.J. Watson Research
Center, Hawthorne, New York

Jorg Desel, Catholic University, Faculty of Mathematics and Geography,
Eichstitt, Germany

Marlon Dumas, Centre for Information Technology Innovation, Queensland
University of Technology, Brisbane, Australia

Clarence A. Ellis, Department of Computer Science, University of Colorado
Boulder, Colorado

Gregor Engels, University of Paderborn, Faculty of Computer Science, Electrical
Engineering and Mathematics, Paderborn, Germany

Alexander Forster, University of Paderborn, Faculty of Computer Science,
Electrical Engineering and Mathematics, Paderborn, Germany

Reiko Heckel, University of Paderborn, Faculty of Computer Science, Electrical
Engineering and Mathematics, Paderborn, Germany

Rania Khalaf, Component Systems Group, IBM T.J. Watson Research Center,
Hawthorne, New York

XV

XVi CONTRIBUTORS

Jan Mendling, Vienna University of Economics, BA Department of Information
Systems New Media Lab, Wien, Austria

Greg Meredith, Microsoft, Seattle, Washington

Nirmal Mukhi, Component Systems Group, IBM T.J. Watson Research Center,
Hawthorne, New York

Andreas Oberweis, AIFB, University of Karlsruhe, Karlsruhe, Germany
Adrian Price, Versata, Inc., Oakland, California

Hajo A. Reijers, Eindhoven University of Technology, Department of Technology
Management, Eindhoven, The Netherlands

Michael Rosemann, Centre for Information Technology Innovation, Brisbane,
Australia

August-Wilhelm Scheer, Institute for Information Systems (IWi), German
Research Center for Artificial Intelligence (DFKI), Saarbriicken, Germany

Arthur H. M. ter Hofstede, Centre for Information Technology Innovation,
Queensland University of Technology, Brisbane, Australia

Oliver Thomas, Institute for Information Systems (IWi), German Research Center
for Artificial Intelligence (DFKI), Saarbriicken, Germany

Sebastian Thone, University of Paderborn, Department of Computer Science,
Paderborn, Germany

Wil van der Aalst, Department of Technology Management, Eindhoven
University of Technology, Eindhoven, The Netherlands

Alexander Verbraeck, Delft University of Technology, Faculty of Technology,
Policy, and Management, Systems Engineering Group, Delft, The Netherlands

Jacques Wainer, Instituto de Computagao, Universidade Estadual de Campinas,
Caixa, Campinas, Sao Paulo, Brazil

Sanjiva Weerawarana, Component Systems Group, IBM T.J. Watson Research
Center, Hawthorne, New York

A. J. M. M. Weijters, Department of Technology Management, Eindhoven
University of Technology, Eindhoven, The Netherlands

Michael zur Muehlen, Stevens Institute of Technology, Wesley J. Howe School
of Technology Management, Castle Point on Hudson, Hoboken, New Jersey

EEEN PART |

CONCEPTS

I CHAPTER 1

Introduction

MARLON DUMAS, WIL van der AALST,
and ARTHUR H. M. ter HOFSTEDE

1.1 FROM PROGRAMS AND DATA TO PROCESSES

A major challenge faced by organizations in today’s environment is to transform
ideas and concepts into products and services at an ever-increasing pace. At the
same time and following the development and adoption of Internet technologies, or-
ganizations distributed by space, time, and capabilities are increasingly pushed to
exploit synergies by integrating their processes in the setting of virtual organiza-
tions. These forces triggered a number of trends that have progressively changed
the landscape and nature of enabling technologies for information systems develop-
ment.

Figure 1.1 illustrates some of the ongoing trends in information systems [2]. This
figure shows that information systems consist of a number of layers. The center is
formed by the system infrastructure, consisting of hardware and the operating sys-
tem(s) that make the hardware work. The second layer consists of generic applica-
tions that can be used in a wide range of enterprises. These applications are typical-
ly used in multiple departments within the same organization. Examples of such
generic applications are a database management system (DBMS), a text editor, and
a spreadsheet editing tool. The third layer consists of domain-specific applications.
These applications are only used within specific types of organizations or depart-
ments. Examples are decision support systems for vehicle routing, computer-aided
design tools, accounting packages, and call center software. The fourth layer con-
sists of tailor-made applications developed for specific organizations.

In the 1960s, the second and third layers were practically missing. Information
systems were built on top of a small operating system with limited functionality.
Since no generic or domain-specific software was available, these systems mainly
consisted of tailor-made applications. Since then, the second and third layers have
developed and the ongoing trend is that the four circles are increasing in size, that
is, they are moving to the outside while absorbing new functionality. Today’s oper-
ating systems offer much more functionality, especially in the area of networking.

Process-Aware Information Systems. Edited by Dumas, van der Aalst, and ter Hofstede 3
Copyright © 2005 John Wiley & Sons, Inc.

4 DUMAS, VAN DER AALST, AND TER HOFSTEDE

system
infrastructure

generic
applications

domain-
specific
applications

tailor-made
applications

Figure 1.1 Trends relevant to business process management.

DBMSs that reside in the second layer offer functionality that used to be encoded in
domain-specific and tailor-made applications. Also, the number and complexity of
domain-specific and tailor-made applications has increased, driven by the need to
support more types of tasks and users. In addition, the advent of the Web has result-
ed in these applications being made accessible directly to customers and business
partners. The resulting proliferation of applications supporting various tasks and
users has engendered a need for a global view on the operation of information sys-
tems. Accordingly, the emphasis has shifted from application programming to ap-
plication integration. The challenge is no longer the coding of individual modules
but rather the seamless interconnection and orchestration of pieces of software from
all four layers.

In parallel with the trend “from programming to assembling,” another trend
changed the way information systems were developed. This trend is the shift “from
data orientation to process orientation.” The 1970s and 1980s were dominated by
data-driven approaches. The focus of information technology (IT) was on storing,
retrieving, and presenting information primarily seen as data. Accordingly, data
modeling was the starting point for building an information system. This led to scal-
able and robust techniques and tools for developing data-centric information sys-
tems. The modeling of business processes, however, was often neglected. As a re-
sult, the logic of business processes was spread across multiple software
applications and manual procedures, thereby hindering their optimization and their
adaptation to changes. In addition, processes were sometimes structured to fit the
constraints of the underlying information system, thus introducing inefficiencies
such as manual resource allocation and work routing, poor separation of responsi-
bilities, inability to detect work overflows and trigger escalation procedures, unnec-
essarily batched operations, and redundant data entry steps. Management trends in
the early 1990s such as business process reengineering (see Section 1.3.1) brought

INTRODUCTION 5

about an increased emphasis on processes. As a result, system engineers are resort-
ing to more process-driven approaches.

The last trend we would like to mention is the shift from carefully planned de-
signs to redesign and organic growth. Due to the widespread adoption of Internet
standards and the connectivity that this engendered, information systems are now
required to change within tight deadlines in response to changes in the organiza-
tion’s environment; for example changes in the business focus or the business part-
ners. As a result, fewer systems are built from scratch. Instead, existing applications
are partly reused in the new system. Consequently, there is a continuous trend to-
ward software componentization and dynamic and reuse-oriented software engi-
neering approaches—approaches aimed at rapidly and reliably adapting existing
software in response to changes in requirements. One of the most recent of these ap-
proaches, model-driven architecture (MDA), exploits automated code generation,
code refactoring, model transformation, and model execution techniques to achieve
a faster turnaround for propagating changes in the design into changes in the imple-
mentation.

The confluence of these trends, which are summarized in Figure 1.1, has set the
scene for the emergence of an increasing number of process-aware information sys-
tems (PAISs). PAISs are built on top of a technological infrastructure that can take
the form of separate applications residing in the second layer or integrated compo-
nents in the third layer. Notable examples of PAIS infrastructure residing in the sec-
ond layer are workflow management systems, process-aware groupware, and some
enterprise application integration (EAI) platforms (see discussion in Section 1.3).
The idea of isolating the management of processes in a separate component is con-
sistent with the three trends discussed above. PAIS infrastructures can be used to
avoid hard-coding the processes into tailor-made applications and thus support the
shift from programming to assembling. Moreover, process awareness in both manu-
al and automated tasks is supported in a way that allows organizations to efficiently
manage their resources. Finally, pulling away the process logic from application
programs and capturing this logic in high-level models facilitates redesign and or-
ganic growth. For example, today’s workflow management systems and EAI plat-
forms enable designers and developers to implement process change by working on
diagrammatic representations of process models, a practice consistent with MDA.
In addition, isolating the management of processes in a separate component is con-
sistent with recent developments in the domain of intra- and interorganizational ap-
plication integration (e.g., emergence of Web services and service-oriented archi-
tectures).

1.2 PAIS: DEFINITION AND RATIONALE

As illustrated by Figure 1.1, there has been a shift from data orientation to process
orientation, triggering the development of PAISs. Since PAISs can be seen as spe-
cial kinds of information system, we first discuss the term information system. Alter
[6] provides the following definition of the term information system: “An informa-

6 DUMAS, VAN DER AALST, AND TER HOFSTEDE

tion system is a particular type of work system that uses information technology to
capture, transmit, store, retrieve, manipulate, or display information, thereby sup-
porting one or more other work systems.” This definition uses two key terms: infor-
mation technology and work system. Alter defines information technology as “the
hardware and software used to [store, retrieve, and transfer] information,” and a
work system as “a system in which human participants perform a business process
using information, technology, and other resources to produce products for internal
customers.”

Figure 1.2 depicts Alter’s framework for information systems [6]. It shows an in-
tegrated view of an information system encompassing six types of entities: cus-
tomers, products, business process, participants, information, and technology. The
customers are the actors that interact with the information system through the ex-
change of products (or services). These products are being manufactured/assembled
in a business process that uses participants, information, and technology. Partici-
pants are the people that do the work. Information may range from information on
customers to information about the process. Technology is used in the business
process to enable new ways of doing work. Diagrams like the one shown in Figure
1.2 always trigger a discussion on the scope of an information system. Some will
argue that all six elements constitute an information system, whereas others will ar-
gue that only a selected subset (e.g., just business process, information, and tech-
nology) constitute an information system. In this chapter, we do not decide on a sin-
gle definition of “information system” but use the term in different (although
related) senses depending on the context. This book considers a specific type of in-
formation systems, that is, information systems that are process aware, and there-
fore link information technology to business processes. By process, we mean a way
for an organizational entity to “organize work and resources (people, equipment, in-

[Customers }

A
Y

[Products & Services

~

J

A
Y

~
[Business Processes
)

/ A \
Y
p
[Participants] [Information j Technology j
N

Figure 1.2 An integrated view of an information system.

INTRODUCTION 7

formation, and so forth) to accomplish its aims” [23]. Sometimes, processes within
an organization are hidden—they only manifest themselves in the way people and
application programs interact with each other, without being driven by an a priori
conception of the way work should be conducted. Other times, processes are cap-
tured as a priori defined (i.e., explicit) process models that are used to guide them or
even to automate them.

Given these considerations, this book adopts the following definition of a PAIS:
a software system that manages and executes operational processes involving peo-
ple, applications, and/or information sources on the basis of process models. Al-
though not part of the adopted definition, it can be noted that these process models
are usually represented in a visual language, for example, a Petri net-like notation
(Chapter 7). The models are typically instantiated multiple times (e.g., for every
customer order) and every instance is handled in a predefined way (possibly with
variations).

Given this definition, one can see that a text editor is not “process aware” insofar
as it is used to facilitate the execution of specific tasks without any knowledge of
the process of which these tasks are part. A similar comment can be made of an e-
mail client. A task in a process may result in an e-mail being sent, but the e-mail
client is unaware of the process it is used in. At any point in time, one can send an e-
mail to any person without being supported or restricted by the e-mail client. Text
editors and e-mail clients (at least contemporary ones) are applications supporting
tasks, not processes. The same applies to a large number of applications used in the
context of information systems.

The shift from task-driven to process-aware information systems brings a num-
ber of advantages:

® The use of explicit process models provides a means for communication be-
tween managers and business analysts who determine the structure of the
business process, and the IT architects, software developers, and system ad-
ministrators who design, implement, and operate the technical infrastructure
supporting these processes.

® The fact that PAISs are driven by models rather than code allows for chang-
ing business processes without recoding parts of the systems, that is, if an in-
formation system is driven by process models, only the models need to be
changed to support evolving or emerging business processes [3].

® The explicit representation of the processes supported by an organization al-
lows their automated enactment [1, 17, 20]. This, in turn, can lead to in-
creased efficiencies by automatically routing information to the appropriate
applications and human actors, prioritizing tasks according to given policies,
optimizing the time and resources required to deliver services to users, and so
on. Also, providing a global view on the operations supported by an informa-
tion system enables the reduction of redundant data entry tasks and provides
opportunities for interconnecting otherwise separate transactions.

® The explicit representation of processes enables management support at the
(re)design level, that is, explicit process models support (re)design efforts

8 DUMAS, VAN DER AALST, AND TER HOFSTEDE

[22]. For example, verification tools such as Woflan' allow for the verifica-
tion of workflow models exported from tools such as Staffware? (see Chapter
14), ARIS,? and Protos.* Other tools allow for the simulation of process mod-
els. Simulation is a useful tool for predicting the performance of new process-
es and evaluating improvements to existing processes.

® The explicit representation of processes also enables management support at
the control level. Generic process monitoring facilities provide useful infor-
mation about the process as it unfolds. This information can be used to im-
prove the control of the process, for example, moving resources to the bottle-
neck in the process. Recently, process monitoring has become one of the
focal points of BPM vendors, as reflected by product offerings such as ARIS
Process Performance Monitor (PPM) of IDS Scheer® and OpenView Business
Process Insight (BPI) of HP.® This trend has also triggered research into
workflow mining (Chapter 10) and process execution analysis and control [8,
25].

1.3 TECHNIQUES AND TOOLS

1.3.1 A Historic View of PAISs

To better understand the emergence and adoption of PAISs and their associated
techniques and tools, it is insightful to take a quick historic overview. An interest-
ing starting point, at least from a scientific perspective, is the early work on process
modeling in office information systems by Skip Ellis [10], Anatol Holt [16], and
Michael Zisman [24]. These three pioneers of the field independently applied vari-
ants of Petri net formalism (see Chapter 7) to model office procedures. During the
1970s and 1980s, there was great optimism in the IT community about the applica-
bility of office information systems. Unfortunately, few applications succeeded, in
great part due to the lack of maturity of the technology, as discussed below, but also
due to the existing structure of organizations, which was primarily centered around
individual tasks rather than global processes. As a result of these early negative ex-
periences, both the application of this technology and related research almost
stopped for nearly a decade. Hardly any advances were made after the mid-1980s.
Toward the mid-1990s, however, there was a renewed interest in these systems. In-
strumental in this revival of PAISs was the popularity gained (at least in managerial
spheres) by the concept of business process reengineering (BPR) advocated by
Michael Hammer [14, 15] and Thomas Davenport [9], among others. The idea pro-
moted by BPR is that overspecialized tasks carried across different organizational

Thttp://www.tmis.tue.nl/research/woflan
2http://www.tibco.com/company/staffware.jsp
3http://www.ids-scheer.com
“http://www.pallas-athena.com
Shttp://www.ids-scheer.com
Shttp://www.hp.com

INTRODUCTION 9

units need to be (re)unified into coherent and globally visible processes. In particu-
lar, IT should not only support the automation of individual tasks, but should also
be seen as an instrument for coordinating and interconnecting tasks and resources
(e.g., people, physical assets, software applications).

In the aftermath of the BPR wave, and despite some (sometimes well-founded)
criticisms and early failures in the implementation of the underlying concepts, the
importance of PAISs grew steadily. The early and mid-1990s saw the advent of
business process modeling tools such as Protos and ARIS, as well as workflow
management systems such as FlowMark [19]7 and Staffware. The number of PAIS-
related tools that have been developed in the past decade and the continuously in-
creasing body of professional and academic literature in this field of technology is
overwhelming. Today’s off-the-shelf workflow management systems and business
process modeling tools are readily available. However, their application is still lim-
ited to specific industries such as banking and insurance. As pointed out by Skip El-
lis [11], it is important to learn from the ups and downs of PAIS-related technolo-
gies. The failures in the 1980s can be explained by both technical and conceptual
factors. In the 1980s, networks were slow, expensive, or not present at all; the de-
velopment of suitable graphical interfaces was hindered by hardware limitations;
and application developers were concentrated on addressing other problems such as
scalable data storage and retrieval. At the same time, there were also more concep-
tual problems such as: (i) a lack of a unified way of modeling processes, (ii) a lack
of methods for seamlessly propagating changes in the requirements into changes in
the design and then into changes in the implementation, and (iii) the systems were
too rigid to be used by people in the workplace. Most of the technical limitations
have been more or less satisfactorily resolved by now. However, the more concep-
tual problems remain. In particular, widely adopted and unambiguous standards for
business process modeling are still missing, and even today’s workflow manage-
ment systems enforce unnecessary constraints on the process logic (e.g., processes
are made more sequential than they need to be). This book will discuss some of the
traditional process models (e.g., Petri nets) and some of the emerging standards
(e.g., BPEL). However, there is no consensus on which models and standards to
use. New paradigms such as case handling (see Chapter 15) and associated products
such as FLOWer offer more flexibility but still only provide a partial solution to the
many problems related to the alignment of people, processes, and systems.

1.3.2 PAIS Development Tools

There are basically two ways to develop a PAIS: (i) develop a specific process sup-
port system, or (ii) configure a generic system. In the first case, an organization
builds its own process support system “from scratch” with the specific aim of sup-
porting its processes. This organization-specific system can be as simple as a soft-

"FlowMark was later integrated into the message-oriented middleware platform MQSeries to become
MQSeries Workflow. Subsequently, this platform was renamed WebSphere MQ, so that the workflow
system is currently known as “Websphere MQ Workflow.”

10 DUMAS, VAN DER AALST, AND TER HOFSTEDE

ware library providing routines for incorporating process awareness into applica-
tions, or it can take the form of a process execution platform providing facilities for
defining, testing, deploying, executing, and monitoring a large class of processes.
This ad hoc approach ensures that the resulting system fits the needs of the organi-
zation and the specificities of its processes. However, the initial investment cost of
this approach may be too high for some organizations, and the resulting system may
not be scalable. As new processes are introduced, existing processes become more
sophisticated, and users develop higher expectations, it becomes difficult to adapt
the process support system to meet new demands.

Generic process support systems, on the other hand, are generally not developed
by organizations actually using a PAIS (although there are cases in which an orga-
nization-specific system has subsequently evolved into a system comparable to a
generic software product). A typical example of a generic software product is a
workflow management system (WFMS) such as Staffware. WFMSs are generic in
that they do not incorporate information about the structure and processes of any
particular organization. Instead, to use such a generic system, an organization needs
to configure it by specifying processes, applications, organizational entities, and so
on. These specifications are then executed by the generic system. In the case of a
WFMS, when certain types of events occur (e.g., arrival of a purchase order), an in-
stance of the relevant process (called a workflow) is triggered, and this results in one
or several tasks being enabled. Enabled tasks are then routed to people or applica-
tions who/which complete them. As tasks are completed, the WFMS proceeds by
dispatching more tasks as per the process specification, until the process instance is
completed.

At present, there are more than one hundred WFMSs. A typical workflow man-
agement system is composed of a design tool, an execution engine, a worklist man-
agement system, adapters for invoking various types of applications, and, in a few
cases, modules for monitoring, auditing, and analyzing existing workflow models.

Although the classical apparatus for developing PAISs is workflow technology,
“pure WFMSs” are far from being the only type of tool used for developing PAISs.
Process awareness is also supported in different ways by the following types of
tools:

Process-aware collaboration tools such as Caramba (see Chapter 2).
Project management tools such as AMS Realtime® and Microsoft? Project.

Tracking tools (e.g., for job, issue, or call tracking) such as JobPro Central.!”

Enterprise resource planning (ERP) and customer relationship management
(CRM) systems such as SAP!! and Peoplesoft,'? which incorporate a workflow
management system within a broader enterprise system management solution.

Shttp://www.amsrealtime.com
*http://www.microsoft.com
1%http://www.jobprocentral.com
http://www.sap.com
2http://www.peoplesoft.com

INTRODUCTION 11

® (Case handling systems such as FLOWer (see Chapter 15).
® Business process design and engineering tools such as ARIS and Protos.

® Enterprise Application Integration (EAI) suites such as TIBCO'? ActiveEn-
terprise and Microsoft BizTalk.

e Extended Web application servers (also called Web integration servers) such
as BEA'* WebLogic Integration and IBM!> Websphere MQ.

Furthermore, process support may be found in various forms outside the realm
of information systems. For instance, the emergence of process-centered software
engineering environments (PSEEs) [13] illustrates that process awareness can be
beneficial in other domains where people and applications need to interact in a co-
ordinated manner.

The plethora of similar but subtly different enabling technologies for process-
aware information systems is overwhelming. On the one hand, this demonstrates the
practical relevance of process support. On the other hand, it illustrates that process
support is far from trivial. At present, there is a “Babel of approaches” to deal with
process awareness in information systems. This is hindering the emergence and gen-
eral understanding of the common principles underlying these approaches.

1.4 CLASSIFICATIONS

A starting point from which to build a structured view on the landscape of support-
ing techniques, technologies, and tools for PAISs is to classify them according to
orthogonal dimensions. The following subsections introduce and illustrate some of
these dimensions.

1.4.1 Design-Oriented Versus Implementation-Oriented

Figure 1.3 summarizes the phases of a typical PAIS life cycle. In the design phase,
processes are designed (or redesigned) based on a requirements analysis, leading to
process models. In the implementation (or configuration) phase, process models are
refined into operational processes supported by a software system. This is typically
achieved by configuring a generic infrastructure for process-aware information sys-
tems (e.g., a WFMS, a tracking system, a case handing system, or an EAI platform).
After the process implementation phase (which encompasses testing and deploy-
ment), the enactment phase starts—the operational processes are executed using the
configured system. In the diagnosis phase, the operational processes are analyzed to
identify problems and to find aspects that can be improved.

Different phases of the PAIS life cycle call for different techniques and types of
tools. For example, the focus of traditional WFMSs is on the lower half of the PAIS

Bhttp://www.tibco.com
http://www.bea.com
Bhitp://www.ibm.com

12 DUMAS, VAN DER AALST, AND TER HOFSTEDE

Business
Process
Modeling
Tools

diagnosis process

) design
Project

Management
Tools process Workflow
enactment Management

process Systems
implementation

Figure 1.3 The PAIS life cycle.

life cyle. They are mainly aimed at supporting process implementation and execu-
tion and provide little support for the design and diagnosis phases. Indeed, although
WFMSs are able to log process-related data, they rarely provide tools for real-time
and offline interpretation of these data. There are some research proposals in the
area of process-related data analysis (e.g., the Process Data Warehouse [7] and the
Business Process Cockpit [8]) but these have made their way into commercial prod-
ucts only in a limited way (e.g., ARIS PPM and HP Openview BPI mentioned
above). Moreover, support for the design phase is limited to providing a graphical
editor, whereas model analysis (e.g., through simulation and static verification) and
methodological support are missing.

At the other end of the spectrum, business process modeling tools are design-ori-
ented, focusing on the top half of the PAIS lifecycle. For instance, ARIS (Chapter
6) supports a reuse-oriented design methodology by providing libraries of reference
models that may be adapted to meet the needs of specific organizations.

Other types of PAIS-related tools (e.g., project management tools) are hybrid in
the sense that they support both design (e.g., PERT and resource allocation analy-
sis) and execution (e.g., Web-based project tracking). However, these hybrid tools
tend to focus on very specific types of processes (e.g., projects, job handling in IT
help desks, customer call handling). In a way, these tools may be seen as “vertical
PAIS development tools,” in that they cover a large section of the PAIS develop-
ment life cycle, but do so by restricting their scope to specific problem domains.

1.4.2 People Versus Software Applications

Another way of classifying PAISs is in terms of the nature of the participants (or re-
sources) they involve and, in particular, whether these participants are humans or
software applications. In this respect, PAISs can be classified into human-oriented
and system-oriented [12] or, more precisely, into person-to-person (P2P), person-
to-application (P2A), and application-to-application (A2A) processes.

In P2P processes, the participants involved are primarily people, that is, the
processes primarily involve tasks that require human intervention. Job tracking,
project management, and groupware tools are designed to support P2P processes.
Indeed, the processes supported by these tools usually do not involve entirely auto-
mated tasks carried out by applications. Also, the applications that participate in

INTRODUCTION 13

these processes (e.g., project tracking servers, e-mail clients, video-conferencing
tools, etc.) are primarily oriented toward supporting computer-mediated interac-
tions.

At the other end of the spectrum, A2A processes are those that only involve
tasks performed by software systems. Such processes are typical in the area of dis-
tributed computing and, in particular, distributed application integration. Transac-
tion processing systems, EAI platforms, and Web-based integration servers are de-
signed to support A2A processes. It should be noted that sometimes the logic of
these processes is captured by explicit process models, and other times it is implic-
itly coded into the programs that participate in the process. As the resources partici-
pating in A2A processes are applications, and these may share common databases,
an important aspect that arises in this type of process is ensuring certain transaction-
al properties as defined in the realm of database management systems (DBMSs).
Techniques relevant to this aspect are presented in Chapter 11.

Finally, P2A processes are those that involve both human tasks and interactions
between people, and tasks and interactions involving applications that act without
human intervention. Workflow systems fall in the P2A category since they primari-
ly aim at making people and applications work in an integrated manner. Note that
since workflow systems support both people and applications, they can also be used
to support interactions between people only, as well as interactions between appli-
cations only. A workflow system can, in principle, be used as a platform to imple-
ment A2A processes, although it may be preferable in these situations to use a plat-
form specifically designed for this purpose. On the other hand, pure manufacturing
workflow may be considered to be P2P rather than P2A. However, most workflow
products nowadays support interactions between both people and applications and,
therefore, we consider workflow technology as a whole to be P2A.

The boundaries between P2P, P2A, and A2A are not crisp. Instead, there is a
continuum of techniques and tools from P2P (i.e., manual, human-driven) to A2A
(automated, application-driven). In particular, ad hoc process and case-handling
systems (see Chapters 2 and 15) can be placed in between the P2P and P2A cate-
gories. On the other hand, some tools target both A2A and P2A systems. For exam-
ple, the IBM Websphere MQ family supports both application integration and
workflow management.

1.4.3 Structure and Predictability of Processes

The degree of structure of the process to be automated (which is strongly linked to
its predictability) is frequently used as a dimension to classify PAISs. In this re-
spect, a traditional distinction is that between ad hoc, administrative, and produc-
tion processes [21, 12]. An ad hoc process is one in which there is no a priori iden-
tifiable pattern for moving information and routing tasks among people; for
example, a product documentation process or a process for preparing a response to
a complex tender. Administrative processes, on the other hand, involve predictable
processes with relatively simple task coordination rules. These rules may be revised
with some frequency or may be adapted to fit exceptional cases, but, in any case,

14 DUMAS, VAN DER AALST, AND TER HOFSTEDE

they capture the core of the process. Finally, production processes involve repeti-
tive and predictable tasks with more or less complex but highly stable task coordi-
nation rules.

The above classification mixes the predictability of the process with its complex-
ity. As process modeling has matured, it has become evident that some administra-
tive processes can be relatively complex. A slightly different classification that con-
siders only the predictability aspect is that between unframed, ad hoc framed, loosely
framed, and tightly framed processes [4]. A process is said to be unframed if there is
no explicit process model associated with it. This is the case for collaborative
processes supported by groupware systems that do not offer the possibility of defin-
ing process models. Unframed processes are out of the scope of this book, although
they are referenced in some parts (e.g., Chapter 2) insofar as unframed processes can
lead to framed ones, and there is no clear-cut boundary between these categories.

A process is said to be ad hoc framed if a process model is defined a priori but
only executed once or a small number of times before being discarded or changed.
This is the case in project management environments in which a process model (i.e.,
a project chart) is often only executed once. It is also the case in grid computing en-
vironments in which a scientist may define a process model corresponding to a
computation involving a number of datasets and computing resources, and then run
this process only once (a type of process also known as scientific workflows or grid
workflows). Chapter 2 provides an overview of a system designed to support ad hoc
processes (Caramba).

A loosely framed process is one for which there is an a priori defined process
model and a set of constraints, such that the predefined model describes the “normal
way of doing things” while allowing the actual executions of the process to deviate
from this model within certain limits. In other words, the trajectory of a process in-
stance is restricted by some upper and lower bound. Case handling systems such as
FLOWer support loosely framed processes by allowing implicitly specified routes.
Ad hoc workflow systems such as TIBCO InConcert allow for adaptations of a
process template or emerging processes such that every execution can be seen as
corresponding to a different process model. In other words, the a priori defined
process model is implicitly adapted to suit the requirements of each case.

Finally, a tightly framed process is one that consistently follows an a priori de-
fined process model. This is the case of traditional workflow systems, of which
Staffware (Chapter 18) is an example.

As with P2P, P2A, and A2A processes, the boundaries between unframed, ad
hoc framed, loosely framed, and tightly framed processes are not crisp. In particu-
lar, there is a continuum between loosely and tightly framed processes. For in-
stance, during its operational life a process considered to be tightly framed can start
deviating from its model so often and so unpredictably that at some point in time it
may be considered to have become loosely framed. Conversely, after a large num-
ber of cases of a loosely framed process have been executed, a common structure
may become apparent, which may then be used to frame the process in a tighter
way. Process mining techniques (see Chapter 12) provide a means for discovering
such a “common structure” in a large number of process cases.

INTRODUCTION 15

Figure 1.4 plots different types of PAISs and PAIS-related tools with respect to
the degree of framing of the underlying processes (unframed, ad hoc, loosely, or
tightly framed), and the nature of the process participants (P2P, P2A, and A2A).

1.4.4 Intraorganizational Versus Interorganizational

Initially, process-aware information systems were mainly oriented towards intraor-
ganizational settings. Focus was on the use of process support technologies (e.g.,
workflow systems) to automate operational processes involving people and applica-
tions inside an organization (or even within an organizational unit). Over the last
few years, there has been a push toward processes that cross organizational barriers.
Such interorganizational processes can be one-to-one (i.e., bilateral relations), one-
to-many (i.e., an organization interacting with several others), or many-to-many
(i.e., a number of partners interacting with each other to achieve a common goal).

The trend toward interorganizational PAISs is marked by the emergence of busi-
ness-to-business (B2B) integration standards that define collections of common
B2B integration processes (e.g., for procurement) or support the definition of such
processes (see Chapter 4). It is also apparent in the emergence of the notion of
(Web) service composition, whereby applications are exported as services and com-
posed by means of process models [5]. This notion is embodied in standards such as
(WS-)BPEL (see Chapter 13) and WS-CDL [18]. A number of tools implementing
these standards (or subsets thereof) are now emerging, and established tools for in-
traorganizational application and process integration are being extended to support
these standards.

The modeling of collaborative interactions as explicit process models is a central
issue in B2B integration (see Chapter 4). In this area, processes appear in two

4 . A2A & B2B
tightly tracking workflow integration
framed systems processes/
service
4 e case composition
loosely || | Process-aware handling/
framed collaboration flexible
tools workflow
/
ad hoc project ad hoc scientific
framed management workflow workflow
unframed process-unaware
\ groupware application integration
P2P P2A A2A

Figure 1.4 Types of PAISs and associated development tools.

16 DUMAS, VAN DER AALST, AND TER HOFSTEDE

forms: public and private. Public processes are those whose definitions are visible
to parties outside the organization which implements the process. On the other
hand, the definition of a private process is only visible to the organization that owns
it. The rationale behind this distinction is twofold. On the one hand, organizations
do not wish to expose the full details of their processes to other organizations. In-
stead, they would only expose the parts of the process that are relevant for estab-
lishing a given collaboration. On the other hand, it allows for partners to be re-
placed. An organization A partnering with an organization B in the context of an
interorganizational process is able to substitute B for another organization C, so
long as C provides a public process compatible with the requirements of A.

1.5 ABOUT THE BOOK

1.5.1 Goal and Intended Audience

The goal of this book is to provide a unifying and comprehensive overview of the
technological underpinnings of the emerging field of process-aware information
systems engineering. To achieve this goal, the book brings together contributions
from leading experts in related fields. These contributions have been selected be-
cause they complement each other and cover some of the most salient aspects of the
overall picture of process-aware information systems.

Building, deploying, and running a process-aware information system, especial-
ly in a mid- or large-scale environment, is a daunting task. It often involves a con-
siderable number of stakeholders. These range from the chief technology officers,
chief process officers, and/or managers who set the strategic directions for process
automation, (re-)deployment, change, or continuous improvement projects, through
the business analysts and IT architects who define the requirements and high-level
specifications of the system, down to the process designers and application devel-
opers who refine the higher-level specifications into a deployable system. To this
list should be added the most important actors: the users who interact with the sys-
tem in their everyday conduct of business, as well as the operations managers, sys-
tem administrators, and IT helpdesk assistants who ensure the day-to-day running
and ad hoc troubleshooting of the system. The variety of involved stakeholders
gives an idea of the multidisciplinarily nature of process-aware information systems
engineering. This book does not intend to cover all aspects of this field. Instead, it
focuses on technological aspects. Business and social aspects are only addressed
when required to illustrate possible uses of certain techniques, technologies, or
tools. Furthermore, the book does not directly address methodological issues al-
though it refers to best practices in applying specific techniques.

The book is primarily intended for advanced students specializing in information
systems technologies. It is designed to be used as a textbook for a one-semester,
topic-oriented course on business process management, business process engineer-
ing, or workflow. It may equally well serve as a reference book for a course on en-
terprise systems. The book is also targeted at professionals involved in projects re-
lated to process-aware information systems, including business process modeling,

INTRODUCTION 17

workflow, groupware and teamwork, enterprise application integration, and busi-
ness-to-business integration. In addition, since the book covers both practical and
theoretical approaches to process support, it should also be of great interest to re-
searchers and research students.

To support its pedagogic goal, chapters are structured in the style of tutorials.
They present general aspects before zooming into specific technical issues. In ad-
dition, the book contains numerous examples and graphical illustrations, and each
chapter includes a collection of thought-provoking questions and exercises of
varying degrees of difficulty, allowing the reader to review major concepts and
techniques. Solutions to most of these exercises are provided on the book’s com-
panion website. Finally, the book contains a list of resources including suggested
readings as well as pointers to relevant portals, standardization bodies, initiatives,
and consortia. These references complement those provided at the end of each
chapter.

1.5.2 Overview of Contents

The book is divided into four parts. Part I exposes and illustrates some foundational
concepts of PAISs. It also provides an overview of languages, techniques, standards
and tools, but without entering into the level of detail of subsequent parts. In addi-
tion to the present chapter, this part includes three other chapters corresponding to
the classification of PAISs according to the nature of the participants (i.e., P2A,
P2P, A2A) as discussed in Section 1.4.2. Chapter 2 opens with an overview of P2A
processes as embodied in WFMSs. This discussion of “mainstream” technology
lays the ground for the discussions on P2P processes (Chapter 3) and A2A and B2B
(Business-to-Business) processes (Chapter 4), which cover more “avant-garde”
technology, reflecting the fact that for a long time process-awareness in information
systems has been considered mainly in the setting of systems that intertwine human
and automated tasks and the focus is now progressively expanding into more
human-centric and system-centric processes.

Part II is dedicated to process modeling languages. Chapter 5 shows how UML,
a widely adopted object-oriented modeling standard, can be applied to (business)
process modeling. The authors demonstrate that the various types of diagrams in-
cluded in the UML standard provide the building blocks for modeling processes,
but that in order to apply them to the domain of process modeling, it is important to
understand their overlap and how they complement each other. Chapter 6 presents
the extended event-driven process chains (eEPCs) notation. In contrast to UML
which is general-purpose, eEPCs are specifically designed to support business
process modeling. They are supported by a well-known tool called ARIS, which
provides a range of functionality for designing and analyzing business processes.
To complement the overviews of UML and EPCs, two modeling languages widely
used in practice, Chapter 7 looks at a formal notation for process modeling, namely
Petri nets. This formal notation has been applied to a wide variety of domains such
as concurrent systems analysis, communication networks design, critical systems
verification, and workflow modeling. Several business process modeling and exe-

18 DUMAS, VAN DER AALST, AND TER HOFSTEDE

cution languages (or subsets thereof) have been given semantics in terms of Petri
nets, including UML activity diagrams (Chapter 5) and BPEL (Chapter 13). There
are also several products that directly support Petri nets, for example, workflow
systems such as COSA'® and Promatis'” INCOME as well as business process
modeling tools such as Protos. Part II closes with Chapter 8, which presents a set of
patterns that have been used to evaluate the capabilities and limitations of a number
of workflow specification languages (their original scope) but also process model-
ing and service composition languages.

Part III presents techniques relevant to the development of PAISs. As with the
rest of the book, the intention is not to be exhaustive in terms of coverage. Instead,
an in-depth presentation of techniques in selected areas is provided, namely process
design, process mining, and transactional process development. Chapter 9 deals
with issues at the frontier between the managerial and the technological views of
PAISs. The methods and techniques introduced in this chapter are notably relevant
in the design phase of the PAIS development lifecycle (Figure 1.3). When starting
from scratch, business requirements can be mapped into process models. For exist-
ing process models, their alignment with the requirements could be improved with
these techniques, in particular in terms of performance. Chapter 10 presents tech-
niques that are relevant to the diagnosis phase of the PAIS life cycle. Specifically, it
presents a set of techniques for automatically unveiling knowledge about the struc-
ture of process executions by analyzing event logs gathered during these execu-
tions. These techniques make it possible to identify discrepancies between the way
processes are expected to execute (as captured in the corresponding process mod-
els) and the way they actually execute. Part III closes with Chapter 11, which deals
with transaction management, and discusses how this aspect emerges in the context
of business process execution.

To close the book, Part IV focuses on the application of the concepts, modeling
approaches, and techniques presented in the previous parts by showing how some
of them are embodied in specific standards and tools. Chapter 12 provides an
overview of standards developed by the Workflow Management Coalition. These
standards consolidate a number of concepts, language constructs, and interfaces
supported by WFMSs. Chapter 13 presents a more recent standardization effort in
the area of A2A processes, namely the Business Process Execution Language for
Web Services (WS-BPEL or BPEL for short). Finally, Chapters 14 and 15 present
two PAIS development tools. The first one, Staffware, is a representative of tightly
framed P2A process development tools, whereas the second one, FLOWer, is in-
tended to support loosely framed P2A processes, with some features relevant for
P2P processes (in particular regarding work authorization and distribution). In line
with the spirit of the book, these closing chapters do not focus on how to use the
presented tools, but rather on how these tools provide realizations of general con-
cepts and principles, as well as how they may be used to address PAIS development
challenges.

IShttp://www.cosa.nl
http://www.promatis.de/english

INTRODUCTION 19

REFERENCES

10.

11.

12.

13.

14.

15.

16.

17.

18.

. W. M. P. van der Aalst and K. M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT Press, Cambridge, MA, 2002.

. W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske. Business Process Man-
agement: A Survey. In W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske, ed-
itors, International Conference on Business Process Management (BPM 2003), volume
2678 of Lecture Notes in Computer Science, pp. 1-12. Springer-Verlag, Berlin, 2003.

. W. M. P. van der Aalst and S. Jablonski. Dealing with Workflow Change: Identification
of Issues and Solutions. International Journal of Computer Systems, Science, and Engi-
neering, 15(5):267-276, 2000.

. W. M. P. van der Aalst, M. Stoffele, and J. W. F. Wamelink. Case Handling in Construc-
tion. Automation in Construction, 12(3):303-320, 2003.

. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Architec-
tures and Applications. Springer-Verlag, Berlin, 2003.

. S. Alter. Information Systems: A Management Perspective. Addison-Wesley, Reading,
MA, 1999.

. F. Casati. Intelligent Process Data Warehouse for HPPM 5.0. Technical Report HPL-
2002-120, HP Labs, 2002.

. M. Castellanos, F. Casati, U. Dayal, and M.-C. Shan. A comprehensive and automated
approach to intelligent business processes execution analysis. Distributed and Parallel
Databases, 16(3):239-274, 2004.

. T. H. Davenport. Process innovation: Reengineering Work through Information Tech-

nology. Harvard Business School Press, Boston, 1992.

C. A. Ellis. Information Control Nets: A Mathematical Model of Office Information

Flow. In Proceedings of the Conference on Simulation, Measurement and Modeling of

Computer Systems, pp. 225-240, Boulder, CO, 1979. ACM Press.

C. A. Ellis and G. Nutt. Workflow: The Process Spectrum. In A. Sheth, editor, Proceed-

ings of the NSF Workshop on Workflow and Process Automation in Information Systems,

pp. 140145, Athens, GA, May 1996.

D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Manage-

ment: From Process Modeling to Workflow Automation Infrastructure. Distributed and

Parallel Databases, 3(2):119-153, 1995.

V. Gruhn. Process-Centered Software Engineering Environments, A Brief History and

Future Challenges. Annals of Software Engineering, 14(1-4):363-382, 2002.

M. Hammer. Reengineering Work: Don’t automate, Obliterate. Harvard Business Re-

view, pp. 104—112, July/August 1990.

M. Hammer and J. Champy. Reengineering the Corporation: A Manifesto for Business

Revolution. Nicolas Brealey Publishing, London, 1993.

A. W. Holt. Coordination Technology and Petri Nets. In G. Rozenberg, editor, Advances

in Petri Nets 1985, volume 222 of Lecture Notes in Computer Science, pp. 278-296.

Springer-Verlag, Berlin, 1985.

S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture,

and Implementation. International Thomson Computer Press, London, UK, 1996.

N. Kavantzas, D. Burdett, and G. Ritzinger. Web Services Choreography Description

Language Version 1.0. W3C Working Draft, http://www.w3.org/TR/wscdl-10, 2004.

20 DUMAS, VAN DER AALST, AND TER HOFSTEDE

19. F. Leymann and W. Altenhuber. Managing Business Processes as an Information Re-

20.

21.

22.

23.

source. IBM Systems Journal, 34(2):326-348, 1994.

F. Leymann and D. Roller. Production Workflow: Concepts and Techniques. Prentice-
Hall PTR, Upper Saddle River, NJ, 1999.

S. McCready. There is More Than one Kind of Workflow Software. Computerworld,
2:86-90, November, 1992.

H. A. Reijers. Design and Control of Workflow Processes: Business Process Manage-
ment for the Service Industry, volume 2617 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 2003.

A Sharp and P. McDermott. Workflow Modeling: Tools for Process Improvement and
Application Development. Artech House, Norwood, MA, 2001.

24. M. D. Zisman. Representation, Specification and Automation of Office Procedures.

25.

Ph.D. thesis, University of Pennsylvania, Wharton School of Business, 1977.

M. zur Muehlen. Workflow-based Process Controlling: Foundation, Design and Appli-
cation of Workflow-driven Process Information Systems. Logos Verlag, Berlin, 2004.

I CHAPTER 2

Person-to-Application Processes:
Workflow Management

ANDREAS OBERWEIS

2.1 INTRODUCTION

Information systems provide users in organizations with computer support to ac-
complish certain tasks. The functionality of an information system includes the al-
location of resources such as data, communication services, or hardware devices to
the users. Single-user tasks usually belong to (business) processes that are executed
to realize a certain business objective. Typical examples of business processes in-
clude processing insurance claims, mortgage request handling, processing tax
forms, order fulfilment, or recruitment of employees.

An information system is called process-aware if it supports process enactment
by scheduling the activities according to the specified rules of the respective
process type (for a more precise definition and discussion of the term process-
aware information system, see Chapter 1). In this type of system users are expected
to perform tasks in a certain pre-defined order. In traditional information systems,
process support is either not available at all or is hard-coded in the programs. Main-
tenance of software systems in which application code is mixed with process logic
is expensive and prone to errors. During their lifetime, processes require adaptation
to changing organizational, technical, and environmental parameters. Changes in a
process that is to be supported by a specific software system require modifying the
source code, then compiling it, and, finally, reinstalling the software system. Each
modification of existing source code may lead to programming errors or unexpect-
ed results. Therefore, the central new principle of workflow management is the sep-
aration of process logic and application functionality. Changes in processes can be
made by using comfortable workflow tools without having to rewrite the source
code of the software system [11]. The same principle of removing generic function-
ality from application programs has been successfully applied in the field of data-
base management systems, in which data management functionality (such as query
processing, integrity control, or concurrency control) is taken out of application
programs.

Process-Aware Information Systems. Edited by Dumas, van der Aalst, and ter Hofstede 21
Copyright © 2005 John Wiley & Sons, Inc.

22 OBERWEIS

Figure 2.1 shows the simplified example process of order fulfilment in a company.
In this figure an incoming order is checked for availability of the ordered products. If
there is enough quantity on hand, then the order is confirmed by e-mail. Otherwise,
the customer is informed that the ordered products are out of stock. After the order is
confirmed, the products are delivered and the invoice is sent to the customer. Finally,
the customer’s payment is received and booked by the accounting system.

Tasks (or activities, represented as rectangles in Figure 2.1) involve interactions
with software applications or tools (represented as grey colored hexagons) such as
inventory control systems, billing software, or e-mail systems. In Figure 2.1, the
node inscribed with the symbol “\/” denotes a choice between two tasks (EXCLU-
SIVE OR), and the nodes inscribed with “/\” denote parallel execution of the tasks
in between (AND).! Arcs between hexagons and rectangles indicate that the respec-
tive software system is needed to perform the respective task.

A process-aware information system assigns users and other resources (e.g., ap-
plication programs) to tasks or, from another point of view, tasks and applications
are allocated to users. Furthermore, the information system controls the required
routing of tasks. This functionality can be provided by a workflow management
system that is integrated into or coupled to the information system.

This chapter presents some basic concepts of workflow management. The fol-
lowing section introduces the terminology. Section 2.3 considers aspects of work-
flow modeling. Section 2.4 surveys the functionality of workflow management sys-
tems. A reference architecture for workflow management systems is presented. The
chapter ends with a brief outlook on some important current and future develop-
ments in the field of workflow management.

Workflow management is introduced here as a generic concept. Concrete com-
mercial workflow management systems will not be considered in this chapter. For a
detailed description of a representative workflow system (namely Staffware), refer
to Chapter 14 of this book.

2.2 WORKFLOW TERMINOLOGY

Workflow is usually regarded as “the computerized facilitation or automation of a
business process, in whole or in part” [14]. It consists of a coordinated set of activi-
ties that are executed to achieve a predefined goal. Workflow management aims at
supporting the routing of activities (i.e., the flow of work) in an organization such
that the work is efficiently done at the right time by the right person with the right
software tool. It focuses on the structure of work processes, not on the content of in-
dividual tasks. Individual tasks are supported by specific application programs.
Workflow management links persons (end users, workflow participants, workflow
agents) to these applications in order to accomplish the required tasks (see Figure

In Figure 2.1, a general notation for process modeling is used. There exist many specific graphical lan-
guages for business process modeling. Some of them (UML, EPCs, Petri nets) are described in detail in
Chapters 5-7 of this book. Some elements of the notation used here were inspired by the EPCs notation
described in Chapter 6.

PERSON-TO-APPLICATION PROCESSES: WORKFLOW MANAGEMENT 23

Confirm Deliver
Order Products
Receive
Order Payment
> Check
Order Send
Invoice

Billing
Softw:

Figure 2.1 Order fulfillment example.

2.2). A workflow system is an information system based on a workflow manage-
ment system (WFMS) that supports a specific set of business processes through the
execution of a process specification. A process specification (or workflow schema)
describes a type of process that can be interpreted as a template for the execution of
concrete workflow instances.

There must be an organizational instance that is responsible for the specification
of the workflow schema and makes decisions about modifications of a given

Workflow
Management
System

[]
<
> Applications

Figure 2.2 A workflow management system as a link between users and applications.

24 OBERWEIS

schema. For each workflow instance, one organizational instance must be responsi-
ble. This instance initiates a workflow execution and makes decisions about devia-
tions from the given workflow schema and about termination.

Structural changes in process types can be made using comfortable workflow
tools without having to rewrite the application program. The use of workflow man-
agement systems simplifies application development because application compo-
nents can be reused and process enactment functionality, which is common to many
applications, is provided by the underlying workflow management system.

A workflow engine interprets the workflow description, which is represented in
a workflow programming (or modeling) language. Changes to the workflow
schema are directly reflected by the workflow execution.

Workflows are typically case-based, that is, every piece of work is executed for
a specific case. Examples of cases are mortgage applications, insurance claims, tax
forms, orders, or requests for information. A case defines an instance of a workflow
type and a workflow type is designed to handle similar cases.

A WFMS is a software package that provides support for the definition, manage-
ment, and execution of workflows, together with certain interfaces to its environ-
ment (e.g., to an application system or to another WFMS) and to its users. Work-
flow technology originates from earlier technologies such as office automation,
document management, database management, and electronic messaging systems.

2.3 WORKFLOW MODELING

2.3.1 Different Perspectives on Workflows

Workflow modeling is a prerequisite for planning workflow execution, and for ana-
lyzing, training, executing, modifying, and archiving workflows. In order to cope
with the complexity of workflow models, it is useful to look at them from different
perspectives [1, 16]. Furthermore, different persons in an organization might have
different views on a workflow. The different perspectives described in the follow-
ing are partially overlapping; for example, with respect to workflow management,
organizational units can also be regarded as resources.

Resources and Resource Management. Resources include all kinds of ob-
jects that are necessary to perform a workflow or a task. For each workflow, it must
be decided which resources are required for execution. At the schema level, re-
source classes are specified. At the instance level, concrete instances of resources
must be allocated to task instances. Some resources are shareable between different
tasks; others are for exclusive use only. There must exist rules according to which
conflicts are resolved if several task instances compete for the same resource at the
same time.

Organizational Units. Organizational units (such as departments, groups, and
roles in a company) might also be regarded as resources for a workflow. The de-

PERSON-TO-APPLICATION PROCESSES: WORKFLOW MANAGEMENT 25

scription of the organizational units includes the organizational structure (i.e., the
set of relationships between the units) and the individuals that belong to it, together
with their main attributes (competencies, responsibilities). For more information on
organizational issues of workflow management see [23].

Tasks and Task Management. The task view restricts itself to a description of
the tasks to be performed within a certain workflow and to the relationships be-
tween these tasks. Relationships between tasks mainly concern the routing of tasks.
This aspect is considered in more detail in Section 2.3.2.

Data and Data Flow. Data is a specific kind of resource. Several types of data
are relevant for workflow management and must be stored in respective databases:

® Application data is data that is specific to applications and is usually not ac-
cessible by the workflow management system. Documents such as invoices,
orders, delivery notes, and protocols, which might be stored in document
management systems, also belong to this type of data.

® Workflow schema data is data that specifies the structure of a workflow. This
type of data may be versioned, which means that there may exist different
versions of the same workflow type. Schemas of workflow types that are no
longer in use are archived.

® Historical data is data about past executions of workflows that is stored in or-
der to analyze and reorganize workflow types in the future.

® Internal data is administrative data which is only used internally by a work-
flow engine. This kind of data usually concerns the current status of active
workflow instances.

Temporal Aspects. This view includes information about deadlines and dura-
tions of activities, temporal distances between activities, availability times for re-
sources, working hours of employees, and other temporal restrictions that are to be
obeyed by workflow executions (e.g., “an activity A2 must not start earlier than 3
days after another activity Al has finished”). A given set of temporal restrictions
may be analyzed for consistency. Information about expected durations of activities
and about availability times of resources may be used to compute minimum/maxi-
mum durations of complete workflow executions. For a more detailed discussion of
temporal aspects related to workflow management see [7].

Applications. The applications view focuses on the application programs that are
used in order to perform certain tasks. Requirements concerning the invocation of
the applications, the format for input and output data, and behavior in exceptional
situations are documented.

Business Rules. Business rules represent policies or principles that are to be
obeyed in organizations independently of certain processes. In order to simplify the

26 OBERWEIS

maintenance of workflow models, it is useful to separate business rules from
process descriptions. Business rules usually have the form “If a certain event occurs
and a certain condition holds, then do something” (ECA-rules, which stands for
event, condition, action). An overview about modeling concepts for business rules
in the area of workflow management is given in [19].

Exception Handling. An important feature of workflow systems is that they
should support end users in case of exceptional situations. A workflow schema
usually describes the regular process execution. However, exceptional situations
may occur, for example, if resources are not available, if a deadline is missed, if
applications fail, or in case of technical faults. A workflow management system
should provide means for systematic recovery from these faulty situations. In
some cases, there exist predefined procedures for the handling of exceptional sit-
uations. Exceptional situations are defined by exceptional conditions (e.g., “a re-
source R1 is not available”) at design time of a workflow schema. An exception
is indicated for a given workflow state if the respective condition is fulfilled in
this state. For each exceptional condition, an exception handling mechanism must
be specified. A taxonomy of failures and exceptions together with an overview
about exception handling mechanisms in the area of workflow management is giv-
enin [9, 13, 22].

Interorganizational Cooperation. Workflows in the fields of supply chain
management and e-business cross the borders of organizations. One part of the re-
lated tasks is executed in one organization and the other part is executed in another
organization or organizations. This view concentrates on the interfaces between the
involved organizations, the respective data exchange formats, the fragmentation of
a workflow schema, and the rules for task allocation. For a detailed discussion of
these issues see [2, 8, 20].

2.3.2 Routing of Tasks

The routing definition for a workflow type specifies which tasks need to be execut-
ed and in what order. Basic routing patterns include sequential execution, choice, it-
eration, and parallel execution [1]:

® Sequential execution of tasks. Tasks are executed one after the other. Two
tasks A and B must be executed in sequential order if, for example, B con-
sumes an output object of A.

® Exclusive choice between tasks. A subset of a given set of tasks is selected to
be executed. Exclusive choice is required if, for example, two activities need
to access the same resource that can only serve one activity at the same time.
An exclusive choice between tasks also occurs if different cases require dif-
ferent treatment (e.g., “enough stock at hand” and “out of stock™ in an order
fulfilment process). In Figure 2.3 exclusive choice between activities Al and
B1 is expressed by a so-called XOR-split. The process is split into two alter-

XOR-Split Al

PERSON-TO-APPLICATION PROCESSES: WORKFLOW MANAGEMENT 27

\ 4

A2 OR-Join

- B

B2

\ 4

B1

Figure 2.3 Choice between tasks.

native branches. The two alternative branches of a process are again integrat-
ed by a so-called OR-join.
Iteration of tasks. A particular task is executed several times, either for a pre-

defined number of iterations or repeated until a certain termination condition
is fulfilled.

® Parallel execution of tasks. Two or more tasks are executed independently of

each other “in parallel.” This does not necessarily mean that the tasks are exe-
cuted at the same time. Parallel branching of processes is expressed by a so-
called AND-split, whereas an AND-join synchronizes parallel branches of a
process (see Figure 2.4). Usually, this type of relationship between activities
is called “parallelism.” The term “parallel,” in the sense of “at the same time,”
is not distinguished from “parallel” in the sense of “independently of each

other.”

A survey of other routing patterns relevant for process and workflow modeling is
given in Chapter 8 of this book.

2.3.3 Workflow Model

The workflow model (or workflow schema) specifies all aspects of a workflow that
are relevant for workflow execution. Each workflow schema defines a workflow
type. For each workflow type, many workflow instances (workflow executions)
may be created. A workflow schema contains at least information about tasks that
are to be executed, relationships between tasks, and conditions that enable tasks,

and resources and resource management rules.

Workflow modeling usually starts with a model of the underlying business
process, which is then adapted and refined to the specific requirements of workflow

AND-Split

RS

Al

A2

Bl

\ 4

B2

Figure 2.4 Parallel execution of tasks.

nnnsp

AND-Join

28 OBERWEIS

management. However, usually it is not appropriate to translate a business process
model directly into a workflow model. In general, it is more effective to reorganize
the complete process in order to exploit the full potential of process automation and
computer support. Recent approaches propose so-called workflow or process min-
ing to discover process models from available data about past process executions
(see [3, 4] and Chapter 10 of this book).

Several languages have been proposed for workflow modeling; some of them are
vendor proprietary and some are standardized. The spectrum of languages ranges
from textual languages in a programming or algebraic style to graphical notations,
enriched by iconographic representations of activities and resources for better un-
derstanding (see Chapters 5, 6, and 7). Some specific languages for workflow mod-
eling are described in [1, 16]. Reference [26] discusses quality issues for workflow
models and proposes to adapt metrics such as cohesion and coupling from the field
of software programming for workflow models.

2.3.4 Workflow Life Cycle

Each workflow type has a life cycle that covers different stages (see Figure 2.5).
The life cycle starts with the recognition of a need for a new workflow type in an
organization. The new workflow type is planned, its boundaries are clarified, and its
schema is modeled and evaluated. For each workflow type, an event that initiates
the workflow execution and an event that defines the end of the workflow execution
are defined. Formal analysis methods as well as simulation techniques may be ap-
plied at this stage of workflow design (activities related to process design and re-
design are considered in Chapter 9 of this book; for a detailed description about
concepts for process simulation see [10]). Future workflow participants are trained
to use the new workflow type and then the workflow type is deployed in an organi-
zation. At this stage, workflow instances are created and executed according to the
workflow schema. The deployment stage is either followed by a stage in which a

Workflow type
deployment

Need for
modification of
workflow type is
recognized

The workflow
schema is modeled
and evaluated

Workflow type
is versioned and
archived

Need for new
workflow type is
recognized

Figure 2.5 Life cycle of a workflow type.

PERSON-TO-APPLICATION PROCESSES: WORKFLOW MANAGEMENT 29

need for modification is recognized or by a terminating stage in which the work-
flow type is archived (e.g., for legal reasons). If a need for modification is recog-
nized, a new phase of modeling and evaluating starts. The modified workflow type
is deployed and the old schema is finally stored in a workflow schema repository.

Similarly, each workflow instance has a life cycle of its own that follows certain
templates of the underlying workflow type (see Figure 2.6; in [16] the term “execu-
tion model” is used instead of “life cycle” for a similar state transition diagram rep-
resentation). After a preparation stage, the life cycle starts with the initiation of the
workflow. Then the workflow is executed according to the specification of the un-
derlying workflow schema. Under certain conditions, the running workflow might
deviate from the schema. The workflow execution ends in a predefined termination
state, representing either successful termination or termination in an exceptional
manner. The execution is documented in a workflow instance archive (for later
analysis and for legal reasons). Usually, many instances of the same workflow type
might be active at the same time.

Reference [12] proposes methods and tools for comprehensive business process
life cycle management and also considers the impact of workflow technology on
the process life cycle.

2.4 WORKFLOW MANAGEMENT SYSTEMS

2.4.1 Basic Functionality

Workflow management systems support the definition and administration of work-
flow types (at design time) as well as the execution and monitoring of workflow in-
stances (at run time). We distinguish between autonomous and embedded workflow
management. This is again similar to database management systems, which might
also operate as (autonomous) standalone systems or as (embedded) components of
information systems. Autonomous workflow management is based on a standalone
workflow management system. Embedded workflow management means that a

Running
Workflow Instance
Suspended
Workflow Instance

Figure 2.6 Life cycle of a workflow instance.

Terminated
Workflow Instance
. . Workflow Instance
in Preparation

30 OBERWEIS

workflow engine and other system components are integrated in an information
system, for example, in an ERP system such as SAP R/3.2

Traditional groupware systems may also be used to support collaborative group
work (see Chapter 3). However groupware is usually not process-aware and process
enactment is not supported by groupware. Workflow management systems are
process-aware but in comparison to groupware they are also rather restrictive and
leave little room for individual user decisions and adjustments to individual prefer-
ences. There is usually a trade-off between flexibility and process support as well as
between flexibility and performance.

2.4.2 The WfMC Reference Model

The need for standardization in the field of workflow management is obvious, since
workflow management systems have to interoperate with their environment. The
Workflow Management Coalition (WfMC) is a nonprofit, international organiza-
tion whose role it is to standardize workflow management terminology and related
technology. Founded in 1993, the WfMC had more than 250 members in 2004, in-
cluding vendors and users of workflow products, analysts, and research organiza-
tions in the field of workflow management. The Web site of the WIMC? provides a
huge reservoir of material on the topic of workflow management, especially con-
cerning all relevant aspects of standardization in the field.

In the following, we survey the central concepts of the WIMC workflow refer-
ence model as introduced in [14]. This reference model includes the main compo-
nents of a generic workflow management system architecture (see Figure 2.7) to-
gether with a set of major standardized interfaces to its environment. More details
on some of the WIMC reference model components are given in Chapter 12.

2.4.3 Workflow Engine

Central to the reference architecture is the workflow enactment service, which in-
cludes one or more workflow engines. The workflow enactment service generates
new instances of a workflow type. A workflow engine is responsible for control and
execution of the workflow instances. It creates work items, matches capabilities
(skills, knowledge, and experience) of workflow participants with requirements of
tasks, und allocates work items to workflow users. The workflow engine also
records data about task and workflow instances.

2.4.4 Interfaces

A workflow management system provides five interfaces to components in its envi-
ronment. One of the Workflow Management Coalition’s objectives is to standardize
these interfaces.

2http://www.sap.com
Swww.wfme.org

PERSON-TO-APPLICATION PROCESSES: WORKFLOW MANAGEMENT 31

Process
Definition

Tools

Interface 1

Workflow API and Interchange Formats

Interface 4

Interface 5

Other Workflow
Enactment Service(s)

Workflow Enactment Service

Workflow
Engine(s)

Administration
& Monitoring
Tools

Workflow
Engine(s)

Interface 2 Interface 3

Workflow
Client
Applications

Invoked
Applications

Figure 2.7 W{MC workflow reference model-—components and interfaces.

Process Definition Tools. The underlying workflow is defined in the workflow
schema, which is edited by a process definition tool. This class of tools also in-
cludes components for the analysis and evaluation of workflows. Simulation is an
important method used to evaluate a workflow schema with respect to users’ re-
quirements. Formal analysis methods might be applied, for example, to check
whether a given workflow schema contains tasks that can never be executed,
whether deadlocks might occur in a given workflow under certain circumstances, or
whether there exist bottlenecks with respect to certain resources.

Each workflow editor usually supports one specific workflow modeling lan-
guage. The process definition tool must also include components for storage and
versioning of workflow schemas. The process definition tool is used by the work-
flow designer.

Workflow Client Applications. Workflow client applications provide an inter-
face to the workflow users who take part in the workflow execution. The basic con-
cept is the so-called worklist, containing the work items that are to be executed [1].
A worklist manager is a software component that manages the interaction between
workflow participants and a scheduling component. The basic functionality of a
worklist is to present tasks that may be executed to a workflow participant. It pro-
vides users with instance-specific information on the respective cases. The worklist
allows users to select tasks and to invoke application systems to execute the tasks.
A worklist might be based either on the push or on the pull principles. In push-
based worklists, the workflow participant is given the next task to perform; the

32 OBERWEIS

workflow participant does not have a choice. In pull-based worklists, a list of open
tasks to perform is presented to the workflow participant. The workflow participant
then has to select a task to execute. In push-based worklists, the workflow engine is
responsible for the scheduling of tasks; in pull-based worklists the workflow partic-
ipant himself does the scheduling.

Invoked Applications. Executing a task usually involves invoking an external
application. These software systems may be standardized office tools such as an ed-
itor or a spreadsheet program. They may also be software systems that are devel-
oped for a specific business function. Invoked applications include interactive ap-
plications as well as fully automated applications. The former type of application
includes interaction with users; for example, a user has to fill out a form. The latter
type of application automatically performs a task; for example, the calculation of a
bill or the search for data in a database.

Workflow Interoperability. This interface defines requirements for interoper-
ability with other workflow systems. For reasons of scalability or to connect sys-
tems of different organizations, a workflow system may be coupled to other work-
flow enactment services. Problems of heterogeneity, for example, concerning the
workflow languages or different enactment policies of the involved enactment ser-
vices, have to be solved.

Administration and Monitoring. This interface is for administrators and per-
sons who manage the execution of workflow instances. According to certain process
parameters, modifications of the underlying process schema might be proposed.

Administration of running workflows includes the addition or removal of re-
sources, for example, staff, and the modification of properties of resources. This
component also provides managers with information about the current status of an
ongoing process or of tasks being executed.

Process analysts can use the provided historical data as the starting point for a re-
organization of workflow schemas. Throughput times, for example, might serve as
a performance indicator for workflow executions. Service times, transport times,
and waiting times can be influenced and reduced. Other metrics may include the
percentage of rework, the percentage of errors, the number of defects, the number
of customer complaints, and so on.

2.5 OUTLOOK

This chapter has given a survey on workflow management. Workflow management
is a technology that links processes to persons and resources. However, several spe-
cific aspects on workflow management have not been considered. Due to space lim-
itations, we restrict ourselves here to referring the reader to other work on these top-
ics.

PERSON-TO-APPLICATION PROCESSES: WORKFLOW MANAGEMENT 33

® Flexibility in workflows [17]. Usually, a distinction is made between two lev-
els of flexibility in workflow systems; flexibility at the workflow schema lev-
el und flexibility at the workflow instance level. A workflow schema must be
modified if the underlying process is reengineered, for example, due to
changing requirements of the environment. A workflow instance, for exam-
ple, a running workflow, must be modified if there occurs an exceptional situ-
ation in the organization (for example, a resource is not available) such that
the workflow cannot be executed as planned.

® Workflow management in distributed and mobile environments [5, 6, 15, 24].
Distribution of workflow execution means that collections of tasks, that is,
workflow partitions, are executed at different sites in a network. Resources
(such as data) are also geographically distributed. Allocation of workflow par-
titions to nodes in a network depends on the availability of required resources
and on the workload at the respective node. There exist several strategies for
workflow allocation, ranging from static allocation of a workflow schema at
design time to dynamic allocation at execution time of a process [6].

Mobility of workflow agents during workflow execution causes additional
problems due to the limited computational power and the restricted resources
(display size, battery capacity, memory) of the mobile enduser devices (such
as PDAs or mobile phones) and due to unreliable wireless network connec-
tions. Reference [24] describes a prototypical architecture with which mobile
workflow users are connected to a central workflow engine via mobile de-
vices.

® Security aspects in workflows, such as authentication (ensures the identity of
a person performing a task, typically involving use of a password, a PIN, or
other information that can be used to validate the identity of a person), autho-
rization (the process of deciding whether a person is allowed to perform a
certain task), data privacy (a person is only allowed to access sensitive docu-
ments if this is required by a task he or she has to perform). Security con-
straints are specific rules that state the security requirements to be enforced
during the execution of a task [18]. Security constraints are guaranteed by re-
spective security control mechanisms. Violations of security constraints can
be treated as specific exceptional situations.

® Scheduling workflows under resource allocation constraints [27]. Resources
in workflow environments are typically not limitless and not sharable be-
tween different activities that are executed at the same time. Therefore,
scheduling workflow execution involves decisions as to which resources to
use and when. Scheduling workflows is a problem of finding a correct execu-
tion for the workflow tasks, such that the constraints of the underlying work-
flow type are fulfilled. Reference [27] proposes techniques for workflow
scheduling.

From a conceptual point of view, traditional workflow management systems ne-
glect the product that is to be created for the (internal or external) customer of the

34 OBERWEIS

business process. Due to the process focus of workflow management, products are
only implicitly considered. Future systems will, therefore, have to integrate product
management and workflow management. So-called product machines will allow
customization and personalization of digital products to meet the specific needs of a
customer. From the product model and a generic workflow model, the respective
customized workflow model will automatically be generated.

From a technical point of view, future workflow systems will not only be linked
to traditional application programs but also to so-called Web services that are pro-
vided via the Internet. Web services provide a specific functionality to support cer-
tain tasks that might be used in order to compose a complete workflow. For a dis-
cussion on this issue see [21] and [25].

EXERCISES

Exercise 1

(a) For the order fulfilment process presented in Section 2.1, describe which tasks
are to be performed manually, semi-automatically, and fully automatically.

(b) Give a list of resources that are needed for the order fulfilment process. Try to
classify the resources with respect to similar characteristics.

(c) What exceptional situations might occur during the order fulfilment process?
Describe exception handling mechanisms.

Exercise 2

(a) Give general requirements for a workflow modeling language. Think of differ-
ent groups of people that have to use this language.

(b) What aspects of a workflow should be expressible by a workflow modeling lan-
guage?

(c) Describe characteristics of a “good” workflow schema.

Exercise 3

(a) Compare workflow management systems and database management systems.
How are both types of systems related to each other? How does the availability
of workflow and database management systems influence the development of
information systems?

(b) Describe the functionality of the five interfaces provided by a workflow man-
agement system according to the Workflow Management Coalition.

Exercise 4

(a) Discuss aspects of flexibility for a workflow instance. Describe situations in
which a running workflow is to be modified. What kind of problems might oc-
cur?

(b) Describe situations in which a workflow schema is to be modified. Which prob-
lems have to be solved? Give examples.

PERSON-TO-APPLICATION PROCESSES: WORKFLOW MANAGEMENT 35

REFERENCES

10.

11.

12.

13.

14.

15.

16.

. W. M. P. van der Aalst and K. van Hee. Workflow Management. Models, Methods, and
Systems. MIT Press, Cambridge, MA, 2002.

. W. M. P. van der Aalst. Inheritance of Interorganizational Workflows to Enable Busi-
ness-to-Business E-Commerce. Electronic Commerce Research, 2, 195-231, 2002.

. W. M. P. van der Aalst and A. Weijters. Workflow Mining—Discovering Workflow
Models from Event-Based Data. In Proceedings of ECAI Workshop “Knowledge Discov-
ery from Temporal and Spatial Data (ECAI), Lyon, 2002, pp. 78-84.

. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Workflow
Logs. In Proceedings of the 6th International Conference on Extending Database Tech-
nology (EDBT), 1998, pp. 469-483.

. G. Alonso, B. Reinwald, and C. Mohan. Distributed Data Management in Workflow En-
vironments. In Proceedings of the 7th International Workshop on Research Issues in
Data Engineering (RIDE’97), 1997, pp. 82-90.

. T. Bauer, M. Reichert, and P. Dadam. Intra-Subnet Load Balancing in Distributed Work-
flow Management Systems. International Journal on Cooperative Information Systems,
12, 3,295-323,2003.

. C. Bettini, X. S. Wang, and S. Jajodia. Temporal Reasoning in Workflow Systems. Dis-
tributed and Parallel Databases, 11, 269-306, 2002.

. C. Bussler. The Application of Workflow Technology in Semantic B2B Integration. Dis-
tributed and Parallel Databases, 11, 163—191, 2002.

. F. Casati and G. Cugola. Error Handling in Process Support Systems. A. Romanovsky,

C. Dony, J. Lindskov Knudsen, and A. Tripathi (Eds.), Advances in Exception Handling

Techniques, pp. 251-270, Springer-Verlag, 2001.

J. Desel and T. Erwin. Modeling, Simulation and Analysis of Business Processes. W.

van der Aalst, J. Desel, and A. Oberweis (Eds.), Business Process Management, pp.

129-141, Springer-Verlag, 2000.

A. Elmagarmid and W. Du. Workflow Management: State of the Art Versus State of the

Products. In A. Dogac, L. Kalinichenko, M. Tamer Ozsu, and A. Sheth (Eds.), Workflow

Management Systems and Interoperability, pp. 1-17, Springer-Verlag, 1998.

D. Georgakopoulos and A. Tsalgatidou. Technology and Tools for Comprehensive Busi-

ness Process Lifecycle Management. In A. Dogac, L. Kalinichenko, M. Tamer Ozsu, A.

Sheth (Eds.), Workflow Management Systems and Interoperability, pp. 356-395,

Springer-Verlag, 1998.

C. Hagen and G. Alonso. Exception-Handling in Workflow Management Systems. /EEE

Transactions on Software Engineering, 26, 10, 943-958, 2000.

D. Hollingsworth. The Workflow Reference Model. Workflow Management Coalition,

Document Number TC00-1003, Winchester, 1995.

S.-Y. Hwang and C.-T. Yang. Component and Data Distribution in a Distributed Work-

flow Management System. In Proceedings of 5th Asia-Pacific Software Engineering

Conference (APSEC '98), pp. 244-253, Taipei, Taiwan. IEEE Computer Society, 1998.

S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture

and Implementation. International Thomson Computer Press, 1996.

. G. Joeris and O. Herzog. Towards Flexible and High-Level Modeling and Enacting of

36

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

OBERWEIS

Processes. In M. Jarke and A. Oberweis (Eds.), Proceedings of Advanced Information
Systems Engineering (CAiSE’99), pp. 88—102, Springer-Verlag, 1999.

K. Karlapalem and P.C.K. Hung. Security Enforcement in Activity Management Sys-
tems. In A. Dogac, L. Kalinichenko, M. Tamer Ozsu, and A. Sheth (Eds.), Workflow
Management Systems and Interoperability, pp. 165194, Springer-Verlag, 1998.

G. Knolmayer, R. Endl, and M. Pfahrer. Modeling Processes and Workflows by Busi-
ness Rules. In W. van der Aalst, J. Desel, and A. Oberweis (Eds.), Business Process
Management, pp. 16-29, Springer-Verlag, 2000.

K. Lenz, A. Oberweis. Interorganizational Business Process Management with XML
Nets. In H. Ehrig, W. Reisig, G. Rozenberg, and H. Weber (Eds.), Petri Net Technology
for Communication Based Systems, pp. 243-263, Springer-Verlag, 2003.

F. Leymann and K. Giintzel. The Business Grid: Providing Transactional Business
Processes via GRID Services. In M.E. Orlowska et al. (Eds.), Proceedings of the Interna-
tional Conference on Service Oriented Computing (ISCOC), pp. 256-270, Springer-Ver-
lag, 2003.

Z. Luo, A. Sheth, K. Kochut, and B. Arpinar. Exception Handling for Conflict Resolu-
tion in Cross-Organizational Workflows. Distributed and Parallel Databases, 13,
271-306, 2003.

M. zur Miihlen. Organizational Management in Workflow Applications—Issues and
Perspectives. Information Technology and Management Journal, 5, 3, 2004.

S. Miiller-Wilken, F. Wienberg, and W. Lamersdorf. On Integrating Mobile Devices into
a Workflow Management Scenario. In Proceedings of the 11th International Workshop
on Database and Expert Systems Applications (DEXA’00), pp. 186—192, 2000.

G. Piccinelli, W. Emmerich, S.L. Williams, and M. Stearns. A Model-Driven Architec-
ture for Electronic Service Management Systems. In M.E. Orlowska et al. (Eds.), Pro-
ceedings of the International Conference on Service Oriented Computing (ISCOC), pp.
241-255, Springer-Verlag, 2003.

H. A. Reijers and I.T.P. Vanderfeesten. Cohesion and Coupling Metrics for Workflow
Process Design. In J. Desel, B. Pernici, and M. Weske (Eds.), BPM 2004, pp. 290-305,
Springer-Verlag, 2004.

P. Senkul, M. Kifer, and I. H. Toroslu. A Logical Framework for Scheduling Workflows
Under Resource Allocation Constraints. In Proceedings of the 28th VLDB Conference,
pp. 694-705, Hong Kong, 2002.

I CHAPTER 3

Person-to-Person Processes:
Computer-Supported
Collaborative Work

CLARENCE A. ELLIS, PAULO BARTHELMESS, JUN CHEN, and
JACQUES WAINER

3.1 INTRODUCTION

Computer-based systems that support communication and collaboration among
people are an important category of tools for assisting computer-supported collabo-
rative work (CSCW). This chapter addresses some of the issues concerning these
systems and their underlying human communication processes. These systems and
processes are important because they focus on sociotechnical issues within infor-
mation systems. An increasingly large population of diverse humans is interacting
with technology these days; it is, therefore, increasingly important for systems to
address issues of human collaboration. The incorporation of these processes into
computerized systems is particularly challenging because people processes are
complex, semistructured, and dynamically changing. In this chapter, we argue that
these systems are important and intriguing because there is frequently a need for ex-
ception handling and dynamic change performed by humans. It is, thus, necessary
to take into account factors that impinge upon the organizational structures, the so-
cial context, and the cultural setting.

In this chapter, we explain and characterize person-to-person (P2P) processes
and systems. We discuss a class of systems, called process-aware systems, which
embed explicit representations of group processes. First, we discuss collective
work, its implications for collective technology, and its problems and pitfalls. We
then develop some concepts and language for describing P2P systems. We employ
this language to characterize and contrast five exemplary P2P systems. The chapter
ends with a summary, conclusions, exercises, and references.

3.2 CHARACTERIZATION OF PERSON-TO-PERSON INTERACTIONS
This section discusses issues related to collective work in a broad sense. It intro-
duces the complexity and variability of collective group interactions through exam-

Process-Aware Information Systems. Edited by Dumas, van der Aalst, and ter Hofstede 37
Copyright © 2005 John Wiley & Sons, Inc.

38 ELLIS, BARTHELMESS, CHEN, AND WAINER

ples, and discusses how structure can be identified in these interactions. Finally, it
explores the implications of technology and its problems and pitfalls.

3.2.1 People Working Together

It remains true that “how people work is one of the best kept secrets” (David Well-
man, cited by Suchman [44]). Collective work is characterized by its fluidity and
complex weaving of organizational, social, political, cultural, and emotional as-
pects. Interaction at work takes a wide variety of forms. Consider, for instance, the
following examples:

® Extreme Collaboration. Mark [28] describes a “war room” environment em-
ployed by the NASA’s Jet Propulsion Laboratory (JPL) to develop complex
space mission designs in a very short time—nine hours over a single week for
a complete and detailed mission plan. During these interaction sessions, six-
teen specialists are physically colocated in a room that contains a network of
workstations and public displays.

Collaboration is prompted by a complex combination of physical aware-
ness, by monitoring of the parallel conversations in the noisy environment,
and in response to data that is published through customized networked
spreadsheets that allow team members to publish data they produce and sub-
scribe to data published by others. Team members move around the room to
consult other specialists, or flock to the public display to discuss problems of
their interest. Their movements impart important awareness information to
others in the room, who may choose to join a group based on the perceived
dependencies of their own work on what a specific set of specialists is dis-
cussing. While working, team members are peripherally aware of multiple si-
multaneous conversations and react to keywords that concern their part of the
job by giving short answers from their workplace or moving to join a group.
Finally, data that is made available through the computerized spreadsheet sys-
tem may also trigger collaboration.

® Congressional Sessions. These are highly formalized interactions based on
the Robert’s Rules of Order [33]. Participants have very specific roles and du-
ties; for example, the Speaker of the House is the presiding officer, responsi-
ble for maintaining proper order of events, and the Chief Clerk is responsible
for day-to-day operation of the house. The structure of each session is prede-
fined—the allowable items of discussion are known to all in advance. There
are strict rules that determine how issues may be debated, including the order
of speakers (for and against), the time they are allowed to speak, and, to some
degree, the content of their addresses. Deliberation is based on voting, which
is regulated as well, for example, by rules that specify when a vote can be
called or waived, and the proportion of voters needed for approval in many
different situations.

® Policy Making and Design. Rittel and Webber [32] discusses the inherently
intractable nature of design and planning problems, which he names “wicked

PERSON-TO-PERSON PROCESSES: COMPUTER-SUPPORTED COLLABORATIVE WORK 39

problems.” This class of problems is characterized by their ill-defined na-
ture—in many cases it is not possible to separate the understanding of the
problem from the solution, as the formulation of the problem is equated to
statements of potential solutions [31]. Multiple solutions are, in general, pos-
sible, and it might be even hard to determine which solutions are superior to
others. Sometimes, these problems emerge as a result of conflicting interests,
for example, when deciding how to allocate a limited number of rooms to dif-
ferent individuals who might have coinciding preferences. Possible solutions
for these problems involve compromise—ideal solutions are replaced by ac-
ceptable ones.

Rittel and Kunz [31] propose tackling wicked problems through an argu-
mentative method in which questions are continually raised, and advantages
and disadvantages of multiple possible responses are discussed. The method,
called issue-based information systems (IBIS), is based on documenting and
relating issues, positions about issues, and arguments that either support a
position or object to it. Each separate issue is the root of a (possibly empty)
tree, with the children of the issue being positions and the children of the
positions being arguments [10]. Links among these three basic elements are
labeled; for example, issues and positions are connected by responds-to
links, and arguments are connected to positions either by supports or ob-
Jjects-to links.

An IBIS discussion starts with the elicitation of one or more (abstract) is-
sues, to which participants respond with positions and arguments and refine
them into more concrete subissues. Contradictory positions are resolved by
consensus or voting. The end result is a forest of linked elements that repre-
sent the evolution of the discussion, alternatives that were considered, and the
rationale for decisions.

In all the above examples, the actual interactions represent a small fraction of
a much larger interaction over time and space. The members of the extreme col-
laboration team at NASA have been working together for many years, and have
detailed knowledge of each others’ peculiarities and expertise. They also share
common engineering knowledge of their field, as well as the common approaches
and problem solving strategies that are part of the cultural heritage of their field.
Thus, a war room interaction session succeeds because the group has a larger in-
teraction context lasting over many years. Likewise, for the congressional ses-
sions, these formal meetings represent just the visible tip of the political iceberg.
Complex backstage negotiations shape the performance at the session and result
from economic and political pressures of a multitude of stakeholders. Finally, the
policy making and design based on IBIS is guided by a deep understanding of the
issues in discussion that the participants bring to the interaction based on a life-
time of experiences, shared or not, and by expert opinion and supporting docu-
mentation that is sought as part of the process. All these interaction contexts are
in turn embedded in larger societal settings, as parts of organizations, a govern-
ment, a nation, and so on.

40 ELLIS, BARTHELMESS, CHEN, AND WAINER

Although these examples are all extracted from work life, clearly, the complexi-
ty and variability exhibited here also extends to human interaction beyond work en-
vironments.

3.2.2 In Search of Structure

Although complete details of interactions and the intricate factors that govern them
are usually beyond what can be understood, constituting implicit processes that are
mostly inaccessible, certain emergent regularities and patterns of group behavior
can be observed. Rather than being unconstrained, interactions usually follow a
structure that is repetitively reproduced by participants at each new instance [26,
27]. This structure is a result of shared belief and value systems, and is frequently
learned from previous experiences of participants in similar situations. This struc-
ture reinforces the enacted behaviors, helping to shape future interactions. More
than repeating patterns, participants make implicit or explicit statements about/
through their actions, as they go about their activities. Participants exert “reflective
self-monitoring” [26] so as to act accountably, that is, in a manner that is “observ-
able and reportable” [23]. Acting accountably means acting explicitly (even if un-
consciously) according to values and rules shared by a social group, that get, at the
same time, instantiated and reinforced by actions of individuals [36].

Participation in interactions may be constrained by organizational rules, goals,
and norms. Participants are able to make sense of each other’s actions (and reorient
their own accordingly) because individual actions are recognizable by the group as
being one of the meaningful actions that are sensible within a context. Bittner [4]
suggests that “a good deal of the sense we make of things happening in our pres-
ence depends on our ability to assign them to the phenomenal sphere of influence of
some rule” (cited in [15]). Participation in interactions is further constrained to spe-
cific sets of behaviors that are associated with the roles played by participants (e.g.,
teacher, student, meeting chair, meeting participant). Roles to some extent deter-
mine the behaviors of any person occupying a certain position within a context, in-
dependently of personal characteristics [2, 3]. Some of these roles may be noninsti-
tutionalized and sometimes even pathological, for example, the devil’s advocate
and the scapegoat, respectively.

The linguistic interchanges among participants of an interaction can be seen as
forming an elaborate game as well, in which each speech act [39] constrains and di-
rects subsequent acts. Intuitively, the act of asking a question is bound to elicit
some response related to the nature of this question, even if indirectly. Searle [39]
and others associated with the language/action perspective (e.g., [21, 46, 13]) iden-
tify a set of illocutionary points that constitute the essential components of conver-
sations for actions. Individual acts are combined into acceptable “move sequences,”
so that, for example, a request by a participant can be accepted, declined, or coun-
teroffered. Each of these, in turn, has its possible continuations; for example, a
counteroffer can be accepted, the original request might be canceled, or a new
counteroffer might be generated [47]. Collective discourses thus display structure
and can be equated to an evolving process. In practical terms, that means that inter-

PERSON-TO-PERSON PROCESSES: COMPUTER-SUPPORTED COLLABORATIVE WORK 41

actions, even seemingly unstructured ones, are regulated by linguistic, social, and
cultural norms that dictate to a large extent the way interactions are “played out.” In
other words, interactions constitute social processes. Such processes take place at
many distinct levels, embedded within each other in a recursive structure. Debate
and voting, for instance, can be considered subprocesses within a meeting in which
they occur; meetings in turn are part of larger processes within organizations, which
are embedded within yet larger organizational and societal settings.

This chapter focuses upon person-to-person (P2P) interactions. These interac-
tions tend to have a high degree of human involvement, which poses special chal-
lenges to technological augmentation.

3.2.3 Formalized Interactions

Mature interactions develop into routines—“if social practice becomes reasonably
stable over time and space, then routines—practices in which actors habitually en-
gage—develop. Routines constitute the habitual, taken for granted character of the
vast bulk of the activities of day-to-day social life” [26, p. 376]. The stability asso-
ciated with routines brings about less need for clarification and amplification
among participants [30]. Awareness of the expectations and norms of an interaction
may eliminate the need for communication between interdependent parties and be-
tween superiors and subordinates [22]. Stability brings about a potential for en-
hanced efficiency by allowing participants to go about their work without engaging
in redundant discussions and negotiations. The maturity of interactions offers an en-
hanced opportunity for reflection, as a clearer understanding of roles may emerge,
and as practices become stable enough to grant better perception of their nature.
This reflection may result in (1) the definition of roles, which might receive specif-
ic denominations, such as “session chair” and “facilitator,” and be associated with
explicit duties; and (2) the definition of formalized rules that regulate interactions.

Reified roles and norms may dictate the acceptable form of individual interac-
tions, for example, by establishing specific forms of address or by requiring spe-
cific formal documents to be used (e.g., by requiring that all requests of a certain
nature be presented in writing). These rules may also impose limitations on the ac-
ceptable actions that each role is entitled to take depending on context. The iden-
tification of specific contexts of interaction might result in the emergence of a par-
tial ordering among activities. An interaction may contain potentially complex
patterns in which structured, recursively nested subinteractions are embedded
within interactions. This certainly is the case in the extreme collaboration example
presented earlier. In extreme collaborations, collaborative subinteractions are initi-
ated in response to participant’s perceptions and intuitions with respect to the per-
ceived state of the problem and the dependencies among its parts. Similarly, IBIS-
based interactions are composed of nested subinteractions that explore issues by
developing branches of the discussion trees. In congressional sessions, on the oth-
er hand, interactions are strictly choreographed and played out as participants
make use of their (restricted) rights to call for action (e.g., call for voting or ob-
ject to a motion).

42 ELLIS, BARTHELMESS, CHEN, AND WAINER

It is important to note that whereas formalized norms crystallize rules of interac-
tion, that does not imply that the whole of the interaction becomes mechanical (or
“mechanizable”). In fact, the very act of abstracting that is involved in formaliza-
tion implies omission of details. Formal norms just make explicit the structural
backdrop against which complex and diverse interactions unravel. Consider, for in-
stance, the example given previously of the formalized interaction that takes place
in houses of representatives. A congressional session is not restricted to the superfi-
ciality of the turn-taking and formal actions exercised by the representatives. These
are just the mechanisms through which very complex games are played. The rea-
sons that motivate these formal actions are still deeply connected to intertwined so-
cial, political, economic, and personal interests of a large number of stakeholders.

3.2.4 Implications for Collaboration Technology

In a later section of this chapter, we will discuss collaboration technologies that
have explicit embedded representations of group processes. Informally, we define
these technologies as being “process aware.” They are capable of capturing process
information, interpreting, presenting, and utilizing this information in various ways
to assist in the control, coordination, and execution of process activities. This tech-
nology can span a range from a passive information repository to a fully automated
process control and enactment system. We offer a more rigorous definition of
process and of process awareness in Section 3.3.

Process-aware collaboration technologies make statements about work, and op-
erate on abstracted representations of work. Both the advantages and the risks asso-
ciated with this kind of technology emerge from the explicit way the mechanisms of
work are addressed. The fundamental property associated with process-aware tech-
nologies is therefore the visibility of work it affords.

Dourish [15] relates the usefulness of process-aware technologies to the mecha-
nisms they provide for explaining work, in addition to coordinating it. Explaining
work requires that the myriad of actions that comprise work be associated with
identifiable abstract activities toward which these actions would have been applied.
This would correspond to the understandability criterion needed within organiza-
tions, and also to the intrinsic accountability mechanisms that play an important
role in group collaboration. Activities such as planning and control rely upon crite-
ria such as understanding and accountability, that in turn can be enhanced by pro-
viding visibility. Representations of work associated with process-aware technolo-
gies serve, then, as a rational structure within which individual actions can be made
sensible [15], making these actions visible in a meaningful way. In this sense,
process-aware technologies are “technologies of understandability and accountabil-
ity,” imposing rational order for the purpose of practical reasoning and action [42].
This reasoning and action takes different forms and serves various functions as they
are applied to representations of work made visible at different moments in time:

® Visibility of Past Work. Being able to examine representations of work per-
formed in the past affords accountancy functions to be performed. These

PERSON-TO-PERSON PROCESSES: COMPUTER-SUPPORTED COLLABORATIVE WORK 43

functions might encompass quality control measurements, auditing by tracing
back to determine how certain outcomes were achieved, or to guaranteeing
that outcomes did conform to organizational policies. These representations
are sometimes also used as interorganizational artifacts, for example, to allow
for financial compensation based on work performed in oil rigs shared by
multiple organizations [6], or by a print shop to demonstrate to its clients the
proper running of outsourced printing facilities [5, 15]. The articles refer-
enced above discuss workflow management systems, but the arguments are
applicable to process-aware systems and technologies in general.

® Visibility of Current Work. Visibility of work currently being/to be per-
formed serves purposes of orientation and guidance, and is associated with
the intrinsic function of coordination that is a concern of process-aware tech-
nologies. Making activities at hand explicit serves the purpose of making
clear to participants the objectives toward which actions ought to be taken.
Visibility of the current state of work has also consequences in terms of
overviewing [34]. By being able to examine a concise representation of state
of work, workers can identify potential problems (e.g., risk of missed dead-
lines) with further confidence.

® Visibility of Future Work. Process-aware technologies can maintain logs and
histories. These histories can be analyzed using predictive models. Thus, past
trends can be translated into future predictions. The ability to anticipate out-
comes of recurrent situations is an essential aspect of human activity [1].
Reflecting and planning are intrinsic to humans, and are related to the mecha-
nisms that make stable routines naturally emerge. Process-aware technology
creates an opportunity for innovative synthetic processes to be developed and
experimented with. Reflection may bring about new processes that would not
normally emerge from routines created over an extended period of time.
Consider, for instance, the processes implemented in group decision support
systems (GDSS). These artificial processes may avoid common meeting pitfalls
such as individual domination, sidetracking, and information overload [29], by
carefully organizing work around a few activities during which participants are
oriented (and constrained) towards some specific actions, for example, anony-
mous idea generation, followed by categorization, followed by voting.

3.2.5 Problems and Pitfalls

Because of the explicit nature in which work is addressed, process-aware technology
can impact negatively the fluid nature of actual work practices. Critics of process-
aware technology (e.g., Suchman [41, 43, 40] and Robinson [35]) point out that ab-
stracted representations of work are in principle incompatible with the rich situated
nature of work itself, in which variations are the rule. Abstracted representations of
work, the essential ingredient of process-aware technologies, do not account for this
rich variety and for the intertwined social and cultural aspects of work.

According to critics, action is situated, based on context, and often improvised.
“Offices do not follow procedures as their main purpose. On the contrary, offices

44 ELLIS, BARTHELMESS, CHEN, AND WAINER

have certain goals to obtain and the procedures are only a way to reach their goals.
The ‘smooth flow’ of office procedures is a result of how practitioners orient their
work—it is not the work itself” [41]. Plans would, therefore, be resources for re-
flecting about work, or for explaining it after is has been completed, but would be a
hindrance to the actual work performance, or would at least not provide necessary
resources for the performance of work. “Systems adopting procedural work flow
models only weakly support the cooperation, collaboration and coordination that
would greatly aid in achieving the goals of the system” [37].

There is, in fact, evidence (e.g., [25, 24, 5, 38]) that process-aware technology
might introduce obstacles to the fluid performance of work in certain situations. In
practical terms, technological hindrances result in work being performed around the
systems [25, 24], or through the use of “kludges” (e.g., inserting fictitious workers
used by participants working on two jobs, described in [5]), or through a reinterpre-
tation of the characteristics of technical objects (e.g., understanding zero hours as
meaning “incomplete” in the time sheets described in [6]). These mechanisms, nec-
essary for the actual performance of work, defeat the purpose of the technology, to
at the same time coordinate and make work visible in sensible terms, given that
workarounds by definition are invisible to the technology. The invisibility hinders
the explanatory function of the technology because part of the work cannot be ac-
counted for; the coordination function is crippled by its misfit with actual perfor-
mance requirements.

An important body of research in collaboration technology steers clear of the
process-related aspects of work, concentrating on offering collaboration tools
whose collective use must be regulated by their users themselves. These tools are
described as “process-unaware technologies.” The processes are thus kept implicit
from the perspective of the technology. This approach is indeed flexible, and allows
for unanticipated use [34], making these technologies more adaptable to different
peculiarities of work situations and, therefore, useful in a potentially larger number
of occasions. The downside of this “process-oblivious” approach is, of course, that
users of such technology have to bear the burden of structuring the interactions in a
sensible way themselves. That may not be so straightforward, if the mechanisms of-
fered are incompatible with the structuring that a group wishes to impose. That may
happen, for example, if a laborious mapping of tools is required to support simple
recurrent activities. Other criticism is related to the potential political role that rep-
resentations of work play [44]. Representations serve specific interests, as they
highlight (or hide) specific aspects of work. One concern is that if these politically
biased representations are incorporated into technologies, only the specific interests
served by the representation will be enforced, which might be at odds, again, with
the actual practices of the stakeholders whose perspective was not considered. The
main problem seems to be that stakeholders many times have an incomplete under-
standing of the complexity of work in which they are not directly involved. Work
performed at a distance, particularly if it is performed well, tends not to be visible,
except to those doing it. What appears to be menial “nobrains” work at a distance
might in fact involve complex, elaborated work (e.g., the filing job reported by
Suchman [44]).

PERSON-TO-PERSON PROCESSES: COMPUTER-SUPPORTED COLLABORATIVE WORK 45

The lack of proper understanding of the finer details of work and the consequent
incompatibility of representations with actual work practices is exacerbated when
the group responsible for the development of technology is detached from the users
of this technology [30, 44] (as is many times the case). In this case, there is a danger
that the technology will embody a vision of work that does not correspond to the
perspectives of any stakeholder, resulting in potentially negative results. Technolo-
gy-supported processes (automated or not) are by definition embedded in larger,
more complex systems; technology that is at odds with the systems within which it
is embedded becomes a source of potential disruption for these systems. Intuitively,
a synthetic process that differs too much from the environment in which it is intro-
duced is bound to cause problems.

3.3 CHARACTERIZATION OF PERSON-TO-PERSON SYSTEMS

3.3.1 CSCw

The field of CSCW (computer-supported collaborative work) is concerned with
theories and technologies to help groups to accomplish work tasks. This field use-
fully integrates social sciences and technical sciences. Journals and conferences in
this field [12] describe a plethora of computer-based tools to assist in group activity
coordination. These tools range from e-mail systems to real-time group editors
[e.g.: CoWord]. We refer to these computer-based tools and technologies as “per-
son-to-person systems” or P2P systems. Very few of these P2P systems have an ex-
plicit embedded representation of the underlying group process. This section devel-
ops concepts and language to describe different P2P systems with a particular
emphasis on P2P systems that are process-aware, that is, they do have explicit em-
bedded representations of group processes.

3.3.2 Definitions

A process is a set of (greater than one) activities carried out to attain some goals.
These activities are structured within a partial order such that some activities may
be required to precede others. Each activity may have many attributes (e.g.: input
data, persons performing activity, time constraints). Each activity may be composed
of lower-level subactivities (a subprocess), and may span a spectrum from totally
manual to totally automated execution. Decision-making activities and “branching
nodes” can be included, but are not discussed here.

A process-aware system is a computer-based system that contains an explicit
embedded representation of the underlying group process.

3.3.3 Examples

To illustrate the concepts of processes and process awareness, let us discuss two hy-
pothetical P2P systems. In each case, we describe a linear sequence of activities for
the process, and omit parallelism and decision activities.

46 ELLIS, BARTHELMESS, CHEN, AND WAINER

The first example is a software release control system (SRCS) used by a large
software company to release a new version of its software product every six
months. It is both an information repository for code, documentation, and mes-
sages, as well as a process control system that automatically initiates activities, runs
compilers, and distributes new versions of software. It is an asynchronous, always
available system that can be used by the software engineers anytime during the day
or night.

Activity 1 of the software release process is bug report activity, which lasts two
months. During this time, anyone can electronically submit software error reports
that are evaluated during this activity.

Activity 2 is bug repair activity, during which programmers fix errors in the soft-
ware product. This activity lasts for exactly two months, so fixes must be submitted
electronically before the fixed cutoff date.

Activity 3 is prerelease compilation and system testing, which lasts for one
month. This activity also includes patching of any faulty software uncovered during
testing.

Activity 4 is final release compilation and documentation, which occupies most
of the sixth month. During the final days of this month, the software is distributed
electronically to customers (activity 5).

Although this process control and management system (SRCS) exerts automatic
control over all five activities of the release process, it is categorized as a P2P sys-
tem because the work activities are labor intensive, demanding the collaboration of
many highly skilled knowledge workers. These five activities are rather high-level
activities. It is easy to envision that each of these activities has a subprocess of
finer-grained, detailed activities embedded within it.

The second example system is a hypothetical meeting system for structured
brainstorming and problem solving using the nominal meeting methodology [14].
This real-time distributed technology enables a group of people to have a decision-
making meeting over the Internet from their homes using their workstation, voice
connection, and a network.

This general category of systems, called a decision support system (DSS), has
been successfully used for technology assessment meetings [16]. It works as fol-
lows. A group of experts on some topic are paid (or volunteer) to participate in a
technology evaluation meeting. At a designated time, all participants connect to the
meeting system from their home computers. The meeting is conducted and con-
trolled by the meeting facilitator, a person trained in conducting meetings who is re-
sponsible for the smooth running of the meeting. He or she also controls availabili-
ty and usage of the tools during all activities of the meeting. In the nominal meeting
methodology, the facilitator leads the group through the following activities.

Activity 1 is issue exploration. The main question to be explored at the meeting
is introduced and clarified by the principal investigator using a presentation tool.

Activity 2 is solution brainstorming. Participants are all encouraged to submit
solutions. Others can request clarifications. The goal of this activity is to get a wide
variety of creative possible solutions, so no criticisms are allowed until later activi-
ties. The meeting system has a brainstorming tool that allows all participants to con-

PERSON-TO-PERSON PROCESSES: COMPUTER-SUPPORTED COLLABORATIVE WORK 47

currently type in solution ideas and clarification requests. The system then makes
these typed texts conveniently available to all group members.

Activity 3 is solution convergence. All solutions are discussed, debated, catego-
rized, and their feasibility is explored using a discussion tool.

Activity 4 is voting. Participants vote on which of the remaining solutions is
most workable. This activity is a complex, computer-controlled subprocess. The
meeting system provides a voting tool for this activity.

The meeting system provides the following set of tools:

A presentation tool for use during activity 1
A brainstorming tool for use during activity 2
A discussion tool for use during activity 3

A voting tool for use during activity 4

IS e

A voice conference tool

The facilitator decides on the appropriate time to begin and end each activity.
The facilitator has control of all tools, and can thus enable or disable any tool at any
time on all users” workstations. She will typically enable the correct tools for the
particular activity. All tools, except the voice conferencing tool, enable communi-
cation via typed nonverbal means. This information forms the formal record of the
session. When appropriate, the facilitator can enable the voice tool that allows any-
one to speak to the group at any time. This constitutes the second-level informal
group communication channel.

Meetings can be intensive people-interaction entities. Meeting systems are a
classic example of P2P systems. Most meeting systems are not aware that there is
any process. In this example, the meeting system is process-aware because the
meeting system knows the activities, and knows which activities are currently on-
going throughout the meeting via tool usage.

3.3.4 P2P Systems Characteristics

With these two systems in mind, let us define some terminology that will allow us
to describe and characterize P2P systems. One important attribute of P2P systems is
process awareness. A P2P system is process-aware if and only if it has an explicit
embedded representation of the process it supports. In the first example, the SRCS
system is clearly process-aware because it changes access rights, notifies individu-
als, and so on, during each activity change. The five activities are explicitly embed-
ded in the code composing the software control system. In other systems, the
process may be represented as a table, a set of rules, or (e.g., workflow systems) an
explicit internally stored model.

Note that workflow management systems, discussed extensively in other chap-
ters of this book, are salient examples of process-aware systems. Some of these sys-
tems have been quite productive and successful. In this book, we (arguably) classi-
fy workflow management systems as P2A systems.

48 ELLIS, BARTHELMESS, CHEN, AND WAINER

On the other hand, a P2P system such as a typical real-time group editor [11] has
no knowledge of and no internal representation of the editing process. Any process
(turn taking, section responsibility, or precedence of edits) is a process that is infor-
mally agreed upon by the group—not known to the system. In these cases, we say
that the system is process-unaware.

The activities of the process may be explicitly known by a P2P system, but not
used to control the system. In the case of the example meeting system, various tools
correspond to various activities, so the system has process awareness. The sequence
of tool invocations and usage times are recorded by the meeting tool, but not used to
control the system. If the process had been described in more detail, including ac-
tivities of reading the text and listening to the voice, then this meeting system would
only have partial process awareness. Note that the system can detect some activities
such as speaking and typing, but cannot detect other activities such as listening and
reading. If the facilitator injects other activities using the voice tool, the system will
never know about it. For many reasons, a system may be aware of some activities
but not others. In all of these cases, we say that the system has partial process
awareness.

Another important characteristic for categorizing P2P systems is precedence en-
forcement. If activity A is specified to be performed before activity B, then a
process-aware P2P system may enforce this precedence constraint. Alternatively,
the system may emphasize flexibility and require that precedence enforcement be
done by users. There are also hybrid systems in which some enforcement actions
are performed by the system and others are left to the users. The example software
control system is a precedence-enforcement system, whereas the meeting manage-
ment system is not precedence enforcing.

Related to enforcement are the concepts of activity initiation and activity termi-
nation. For each system, we can observe whether activities are forcibly terminated
(and initiated) by the system or controlled by users. As with enforcement, the possi-
bilities include system controlled, user controlled, or hybrid controlled. The soft-
ware control system is system controlled, but the meeting system is user controlled.

Humans are adept at handling exceptional conditions and problem solving.
Much human time and capital in the office is spent in exception handling. P2P sys-
tems have a high need for flexibility to handle exceptions and to encourage human
problem solving (typically higher than A2A and P2A systems). Thus, when a P2P
system has precedence enforcement, activity initiation, and activity termination all
controlled by the system, it is important to have reasonable, thoughtful system-
override mechanisms. In some systems, it simply requires a keystroke by a human.
In others, it requires reprogramming by the vendor.

Organizations are constantly changing. Thus, another particular need of P2P sys-
tems is dynamic change. This takes many forms and can be quite complex. We in-
vestigate systems according to the flexibility of their binding times. Different sys-
tems allow users to design or change processes easily at design time, at instantiation
time, and/or on the fly at execution time. The software control example system has
activities and durations of activities coded in at design time. We say that a system,
such as this, which buries the process in the tool, has an “embedded process.” It is

PERSON-TO-PERSON PROCESSES: COMPUTER-SUPPORTED COLLABORATIVE WORK 49

not very flexible for dynamic change. However, when a particular release cycle is
begun (called the instantiation time), managers can set the exact dates that various
activities must terminate. Thus, this system allows some dynamic change at instan-
tiation time.

When considering binding times, we particularly investigate the times at which
we can create new activities within a process, the time at which we can specify or
change the precedence relations between activities, and the times at which we can
specify or change the duration of activities. Activities have many other attributes
(persons associated, information inputs, etc.), so we investigate the time at which
these attributes can be changed.

Meeting facilitation is a demanding art and sometimes requires dynamic changes
of agenda to make it successful. In the meeting system, the meeting facilitator has
control of the tools that represent the activities. Thus, the duration of an activity, as
well as the ordering of activities, can be dynamically decided at execution time.
This is a very flexible system that allows binding at design time, at instantiation
time (when the meeting begins), and at execution time (during the meeting). The fa-
cilitator has the flexibility to skip an activity or repeat an activity if desired. Also,
the facilitator can use tools in unintended ways. Furthermore, the voice tool can be
used at any time to inject an unanticipated activity such as “introduce yourself” or
“question and answer.”

Since P2P systems emphasize communication and collaboration among people,
it is useful and frequent that tools are present allowing the users to efficiently per-
form activities. Thus, one parameter of characterization of P2P systems is con-
cerned with tool integration. A system may be composed of different tools (called
multitooled), or may be a single tool (called unitooled). Note that a single tool can
be present on multiple users’ screens simultaneously (e.g., a chat tool is on the
screen of all communicators simultaneously). The software control system appears
to the users as a single integrated tool; it is unitooled. However, the meeting system
appears as a suite of tools; it is multitooled.

Other parameters of characterization of P2P systems include activity execution
mode (defined as manual, automatic, or semiautomatic execution) and also process
visibility (characterized as past, present, and/or future). Visibility was defined and
discussed in Section 3.2. Other parameters are not related to process, and are thus
beyond the scope of this chapter.

3.4 EXAMPLE SYSTEMS

This section uses the terminology introduced previously to characterize five exem-
plary P2P systems: CoWord, WebEx Meeting Center, IPMM, LeadLine, and
Caramba. These five systems represent the state of the art of P2P systems. They
cover different applications, including coauthoring, online meeting, CASE, chat,
and virtual team. Processes in these five systems have different characteristics in
terms of complexity and dynamics. They are from different developers, including
Griffith University, WebEx, The Hong Kong Polytechnic University, Microsoft,

50 ELLIS, BARTHELMESS, CHEN, AND WAINER

and Caramba. All of them are recent and leading systems in their respective do-
mains.

A comparison among these five systems is given in Table 3.1. For each system,
we examine its process awareness, precedence enforcement, binding time, activity
execution mode, and process visibility. Detailed explanation is given in the follow-
ing sections.

3.4.1 CoWord (Griffith University, Australia)

CoWord (Collaborative Word) is a real-time, collaborative word processing system
that allows multiple users to edit the same Microsoft Word document at the same time
over the Internet [11]. From the user’s point of view, CoWord is Word plus some new
features that enable multiple users to perform and undo editing operations concur-
rently and consistently. For example, the semantics of CoWord undo commands is
richer than that of Word undo commands. In CoWord, an undo can be applied to op-
erations from a single user instead of those from all users. From the implementation
perspective, CoWord is implemented by adding a collaboration engine on top of
Microsoft Word to handle the concurrent behaviors and support new features.
CoWord is not aware of the editing process (e.g., turn taking, section responsi-
bility) among multiple users. The specification and enactment of the editing process
happen outside CoWord. CoWord is only aware of various editing actions, such as

Table 3.1 Comparison among five example systems

CoWord WebEx IPMM LeadLine Caramba

Domain Coauthoring ~ Online Project Chat Virtual Team
meeting management

Developer Griffith Univ. WebEx Hong Kong Microsoft Caramba
Polytechnic
Univ.

Process No No Yes Yes Yes

awareness

Precedence — — Hybrid System User

enforcement

Binding time — — Instantiation Instantiation Instantiation
time, time time,
Execution Execution
time time

Activity — — Semiautomatic =~ Manual Manual

execution

mode

Process — — Past, present Present Past, present

visibility

PERSON-TO-PERSON PROCESSES: COMPUTER-SUPPORTED COLLABORATIVE WORK 51

inserting a new word, deleting an old line, changing the size of the title, and undo-
ing the previous operation.

3.4.2 WebEx Meeting Center (WebEx™ Communications, Inc.)

WebEx Meeting Center is a general-purpose online meeting service supporting var-
ious types of meetings, such as departmental meetings, new customer calls, produc-
tion demonstrations, and document review meetings. WebEx Meeting Center pro-
vides meeting support via a set of tools, including a presentation tool, document
editing tool, application/desktop sharing tool, Web browser sharing tool, chat tool,
polling tool, participant awareness tool, meeting recording tool, and multimedia
support tool [45].

As explained above, a meeting often has a process. However, WebEx Meeting
Center does not provide any process support and thus is process-unaware. The
process resides within meeting participants’ minds, and the enactment of the meet-
ing process depends on the meeting facilitator who dynamically enables and dis-
ables tools for different activities. Since the meeting process is not explicitly speci-
fied in the system, WebEx Meeting Center could detect neither the current activity
nor the change from one activity to another.

3.4.3 IPMM (Hong Kong Polytechnic University, Hong Kong)

IPMM (Integrated Process and Project Management) is an integrated process and
project management tool for multisite software development [9]. Process manage-
ment and project management are two important tasks in software development. Al-
though processes and projects are related and share some characteristics in com-
mon, in the past, the management of them was separated. This leads to various
problems, such as efficiency, consistency, and costly communication.

For example, in Microsoft Project, tasks are defined with dependencies such as
A must finish before B starts. In a process management tool, there are definitions of
process steps such as route from programmer A to software manager B. IPMM for-
mally integrates these so that routing happens smoothly and automatically. The goal
of IPMM is to integrate process management and project management in order to
create a more effective software engineering environment.

IPMM is implemented on top of IBM’s Lotus Notes/Domino and Microsoft Pro-
ject. Users first define a process model, consisting of processes, activities, actors,
forms and their relationships, in a graphical editor. This process model is then ex-
ported into Microsoft Project, a project management tool. According to the map-
ping between process and project shown in Figure 3.1, one project is created for
each process object. Then users can manage projects in Microsoft Project. In the
meanwhile, IPMM keeps track of process execution status and automatically up-
dates project progress.

IPMM allows users to explicitly specify a process and thus is process-aware.
Precedence constraints are enforced by both systems and users. A process is defined
at instantiation time, but users can modify it at execution time. Although most tasks

52 ELLIS, BARTHELMESS, CHEN, AND WAINER

Process Project
Top-level process }4 1 :1—>‘ Project
Subprocess % 1 21—>‘ Subproject

Base process 1:1—»‘ Bottom-level project

A

Process definition

A

1 :1—»‘ Project plan

Process status F—»‘ Integrate status and timing data k—»‘ Project schedule

Process instance

1:1 =} Project instance

N

Activity

A

1 :1—»‘ Task

Route %—»‘ Transform dynamic route F—»‘ Dependence

Figure 3.1 Mapping between process and project [9]. Reproduced with permission from
Kluwer Academic Publishers.

are still executed manually, more and more tasks are being executed automatically.
Therefore, IPMM has semiautomatic execution. The process/project definition and
their status are visible from the user interface, supporting more effective process
and project management.

3.4.4 LeadLine (Microsoft)

LeadLine is a process-aware text chat tool [20]. Most chat tools are not process-
aware, under the assumption that chat is often informal and thus has no internal
structure. However, chat tools today are also frequently used in organizations for
business purposes, for which there often exists a process. LeadLine is designed to
meet such needs.

Figure 3.2 shows an example hiring process, in which a committee is required to
discuss three candidates for a technical writer position and pick one of them to hire
within 20 minutes. This process has five activities: position review, candidate #1
discussion, candidate #2 discussion, candidate #3 discussion, consensus, and deci-
sion. Each activity has an assigned time.

Users specify a process in LeadLine via two major concepts: script and scene.
The concept of script is similar to the concept of process, and the concept of scene

PERSON-TO-PERSON PROCESSES: COMPUTER-SUPPORTED COLLABORATIVE WORK 53

Position Review | Candidate #1 o Candidate #2
4.5 min o 3.5 min 3.5 min
Candidate #3 - Consensus Decision
3.5 min - 4 min 1 min

Figure 3.2 Hiring process.

is similar to the concept of activity. A script defines a set of roles and divides a ses-
sion into a sequential set of scenes. For each role and scene combination, the script
specifies instructions for users playing that role. Figure 3.3 shows the script for the
hiring process given above.

LeadLine supports simple and static processes. The script is preauthored at the in-
stantiation time and cannot be changed at the execution time. The system enforces

Structured Chat LeadLine Scenes

—The Position—
(scene 1: 4.5 minutes)
Your goal in the next 20 minutes is to discuss three candidates for the technical
writer position and come to a consensus about whom you will hire.

Before discussing the job candidates, it is important to review what are the important
traits and abilities needed to fill this position. You will have several minutes to discuss this.

—Candidate #1—
(scene 2: 3.5 minutes) Now you can discuss candidate #1. What do you think
are the strengths and weakness of this candidate?

—Candidate #2—
(scene 3: 3.5 minutes)
Now you can discuss candidate #2. What do you think are the strengths and
weakness of this candidate?

—Candidate #3—
(scene 4: 3.5 minutes)
Now you can discuss candidate #3. What do you think are the strengths and
weakness of this candidate?

—Concensus—
(scene 5: 4 minutes)
Now it is time to reach a concensus. You must decide who are your first
and second choices for the job.

—Decision—
(scene 6: 1 minute)
Please state your decison. Who are you going to hire?

Figure 3.3 Chat script for the hiring process.

54 ELLIS, BARTHELMESS, CHEN, AND WAINER

the precedence constraints according to the script. When the specified time of a scene
passes, LeadLine automatically moves to the next scene. However, LeadLine cannot
tell whether users are actually talking about the issues of this scene or not. In order to
do this, advanced conversation-understanding technology would be needed. All ac-
tivities in LeadLine are executed manually. In the user interface, LeadLine shows the
status of the current scene, such as what the current scene is about and the time left
for this scene. Users can also scroll up the chat window to see the chat history.

3.4.5 Caramba (Caramba Labs Software AG)

Caramba is a process-aware collaboration system for virtual teams [17, 8]. It is main-
ly concerned with the asynchronous collaboration among team members by provid-
ing a shared workspace for teams to communicate, cooperate, and coordinate their
work. Processes exist in virtual teams. However, different from processes in many
other working environments, processes in virtual teams are often ad hoc and dynam-
ic. Caramba supports both predefined processes and ad hoc processes. Process
awareness is enhanced by providing an identical process view to all team members.
Before introducing mechanisms used by Caramba for supporting processes, we
first give an ad hoc process example in virtual teams. As shown in Figure 3.4,

O

2. Request age information

Susan

O 1. Request a report Q

\J

3. Send age information

6. Send a report
Bob P Jim

4. Request writing

5. Send writing

Larry

Figure 3.4 An ad hoc process example.

PERSON-TO-PERSON PROCESSES: COMPUTER-SUPPORTED COLLABORATIVE WORK 55

manager Bob initiates a process by requesting Jim to write a report about the ag-
ing situation in Colorado within one week. Jim does not have the age information
about current Colorado residents and therefore contacts Susan. Susan collects the
age information, puts it in a document and sends the document to Jim. One week
is really too short for Jim to write such a nontrivial report that is expected to ad-
dress how the aging situation might affect Colorado in the next 10 years. Jim
knows that Larry is an expert about healthcare, so he asks Larry to help write the
section about “impact of aging on healthcare.” Larry agress to do it. Finally, Jim
puts everything together in the final report and sends it to Bob. This process is not
predefined. The decisions made by Jim and responses from Susan and Larry are
all ad hoc.

Caramba designers define the process in new way according to their real-world
experience. A Caramba process consists of a set of activities combined together
via a sophisticated coordination model (for detailed information about the coordi-
nation model, please refer to [17]). An activity is composed of work items, which
consist of one or several actions. In Caramba, a process can be predefined and
then enacted; a process can also be started with no underlying process model. For
a predefined process, Caramba enacts the process according to the process defini-
tion. For a nonpredefined process, Caramba tracks the relationships between ac-
tivities, work items, and individual actions, and the relationships between activi-
ties, resources, and artifacts. Therefore, the model for a nonpredefined process is
recorded at execution time.

Caramba allows users to explicitly specify a process and thus is process-aware.
Precedence constraints are enforced by users. Caramba supports flexible binding
time. For predefined processes, users design them at instantiation time and are al-
lowed to change them at execution time. For nonpredefined processes, users design
them at execution time. Activities are mostly executed manually. Process informa-
tion and status are visualizable to all team members. Figure 3.5 shows a view of the
ad hoc process given above.

Workcase:0001
Subject:Investigate Aging Situation
Started:2.9.2004

Sender:Bob

Addressee:Jim
Time Sender | Addressee | Recipient | Subject Status
5pm,2.13.2004 Jim Bob Bob Re:Investigate Aging Situation Done
2pm,2.13.2004 Larry Jim Jim Re:Aging Impact on Healthcare | Done
3pm,2.11.2004 Jim Larry Larry Aging Impact on Healthcare Done
10am,2.10.2004 | Susan Jim Jim Re:Aging Information Done
3pm,2.9.2004 Jim Susan Suaan Aging Information Done
2pm,2.9.2004 Bob Jim Jim Investiate Aging Situation Done

Figure 3.5 A process view.

56 ELLIS, BARTHELMESS, CHEN, AND WAINER
3.5 SUMMARY AND CONCLUSIONS

In summary, P2P processes are important because they focus on sociotechnical is-
sues within information systems. An increasingly large population of diverse hu-
mans is interacting with technology these days; it is, therefore, increasingly impor-
tant for systems to address issues of person-to-person collaboration. The
incorporation of P2P processes into computerized systems is particularly challeng-
ing because people processes are complex, semistructured, and dynamically chang-
ing. In this chapter, we have argued that P2P systems are important and intriguing
because there is frequently a need for exception handling and dynamic change per-
formed by humans. It is, thus, necessary to take into account factors that impinge
upon the organizational structures, the social context, and the cultural setting.

P2P processes exist at many levels. Thus, a voting subprocess may be nested with-
in a meeting process, which may exist within a complex software engineering pro-
ject, which itself is a higher-level process. Furthermore, the meeting, which may ap-
pear rather unstructured, may have very structured subdialog processes. For
example, a debate and then a voting process within the meeting can both be consid-
ered as lower-level processes nested within the meeting. We argue that modern tech-
nology and modern social science can be combined to effectively facilitate interac-
tion among people at many of these levels. However, most of the current CSCW
technology is aimed toward specific task assistance, and is not process-aware.

In this chapter, we explained and characterized person-to-person (P2P) process-
es and systems. First, we discussed collective work, its implications for collective
technology, and its problems and pitfalls. We then developed some concepts and
language for describing P2P systems. We defined and examined concepts of
process awareness, partial awareness, precedence enforcement, activity initiation
and termination, binding time, activity execution modes, and process visibility. We
categorized five salient P2P systems according to this ontology.

This leads to the question of “when should an organization move to process
aware technology?” There is an issue of goodness of fit of technology to process.
Examples have been observed of significant gains in efficiency and effectiveness
by the incorporation of process-aware P2P systems [17]. In some of these cases, the
ability of people to view the current state of the entire process has been extremely
valuable for exception handling. Examples have also been observed of cumbersome
inhibition of the work people do by overly inflexible information systems imposing
strict process orderings. In some of these cases, the ability of people to get their
work done in a timely fashion has been seriously impeded by unnecessary formality
and complexity introduced by the system [18]. In general, P2P process-aware tech-
nology is most useful in situations of nontrivial P2P processes that are standardly
followed within a structured, stable environment.

We envision many future benefits of P2P technology that are being investigated
in the research domain today. Role-based information systems can help to partition
complexity. Affective computing techniques enable virtual agents to actively par-
ticipate in group communications in a fashion that is familiar and natural to hu-
mans, rather than requiring people to learn details of the technology’s interface.

PERSON-TO-PERSON PROCESSES: COMPUTER-SUPPORTED COLLABORATIVE WORK 57

Multimedia and multimodal systems are becoming feasible, available, and useful.
As businesses become more distributed and intertwined, we see an increasing need
for intelligent process technology. We see exciting research progress and signifi-
cantly enhanced technology in the future. A thoughtful marriage of information
technology and social science is necessary to produce P2P systems that are organi-
zationally aware, socially aware, culturally aware, and truly process-aware.

3.6 EXERCISES

Exercise 1

Read the following description of CA-ForComments (adapted from [19]) and clas-
sify it according to the criteria discussed in Section 3.3.4. Classify this system ac-
cording to (1) process awareness, (2) precedence enforcement, (3) binding time,
and (4) activity execution mode, similarly to what is done in Section 3.4.

CA-ForComments [7] is a document editing system that supports certain forms
of collaborative use. It offers the textual objects “comment,” “revision,” and “dia-
log” (among others). Comments are supposed to contain the reviewer’s comment on
a sequence of lines of the original document. Thus, besides operations for creating
and editing of a comment, ForComments offers an operation for attaching a com-
ment to a sequence of lines in the original text. The revision is supposed to contain
a replacement text for a sequence of lines and, besides the creation and attachment
operations, the system provides an operation for replacing the text of the original
document with the text of the revision object attached to it. Dialog is a comment on
a comment and can only be attached to another comment.

CA-ForComments distinguishes a few different activities. In the activity of cre-
ating the document, for which the available objects are the components of the docu-
ment (e.g., lines, characters, etc.) and the available operations are the usual edit op-
erations on the document components, the goal is to create a draft of the document,
and the performer of this activity is the author. There are also review activities, one
for each reviewer. The many review activities, which follow the createdocument
activity, can be performed in parallel or in sequence, depending on how the system
is configured. The available objects for the review activities are the document, com-
ments, revisions, and dialogs. The operations available are read (but not modify) the
document components; create, modify, and attach comments and revisions to the
document components; and, possibly, read other reviewers’ comments and create,
modify, and attach dialogs to them. Finally, there is the activity of incorporating the
reviewers’ comments into the document, performed by the author. The author may
then choose to restart the review activities or declare that the document as finished.

Exercise 2

Read the description of the meeting example in Section 3.3.3. This example de-
scribes a meeting process composed of four activities: (1) issue exploration, (2)
brainstorming, (3) convergence to solution, and (4) voting. Also read the descrip-
tion of the process-unaware system (WebEx) described in Section 3.4.2.

58 ELLIS, BARTHELMESS, CHEN, AND WAINER

(a) Which of the tools available in WebEx would you activate to support each of
the four activities of the meeting process if you were the meeting facilitator respon-
sible for manually organizing a process as described in Section 3.3.3? Notice
thatWebEx does not provide the exact same tools listed in the Section 3.3.3 exam-
ple—there is no brainstorming or discussion. Your task is to decide how to map
available tools to support each of the four phases.

(b) Which phase presents the most marked differences in terms of tool use, when
you compare the description in Section 3.3.3 with what is available in WebEx?

Exercise 3

Consider three groups of people you have never met before that collaborate: (1) us-
ing an extreme collaboration style, (2) following Robert’s Rules of Order, or (3) us-
ing IBIS.

(a) Consider that you are given one day to prepare before you join one of the
three groups. Which group do you think you would be better prepared to join, given
the short preparation time?

(b) Which one would require the longest time before you could participate fully
in the collaboration?

Exercise 4
For the same groups described in Exercise 3, answer the following.

(a) If you were to develop a process-aware collaboration system, which of the
three groups do you think would provide the most benefit? Which would provide
the least?

(b) Assume that your system supports distributed collaboration, that is, it allows
people that are dispersed to collaborate, for example, by communicating through
the Internet from their homes or offices. Which of the three interaction styles would
fit your system best? Answer this question based on your perception of how impor-
tant it is for participants of each group to be in the same room, thus being able to
observe each other’s actions.

REFERENCES

1. J. Bardram. Plans as Situated Action: An Activity Theory Approach to Workflow Sys-
tems. In European Conference on Computer-Supported Cooperative Work—ECSCW’
97, pp. 3—14, Lancaster, UK, September 1997.

2. D. Berlo. The Process of Communication. Holt, Rinehart and Winston, New York, 1960.

3. B. Biddle and E. Thomas (Eds.). Role Theory: Concepts and Research. Wiley, New
York, 1966.

4. E. Bittner. The Concept of Organisation. Social Research, 32, 1965. (Reprinted in Turn-
er (Eds.), Ethnomethodology. Penguin, Harmondsworth, UK.

5. J. Bowers, G. Button, and W. Sharrock. Workflow from Within and Without: Technolo-
gy for Cooperative Work on the Print Industry Shopfloor. In Proceedings of the Euro-
pean Conference on Computer-Supported Cooperative Work (ECSCW), 1995.

10.

11.
12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.
23.
24.

25.

26.

PERSON-TO-PERSON PROCESSES: COMPUTER-SUPPORTED COLLABORATIVE WORK 59

. B. A. T. Brown. Unpacking a timesheet: Formalisation and representation. Computer
Supported Cooperative Work, 10(3—4): 293-315, 2001.

. Broderbund Software, San Rafael, California. CA-ForComments 2.5 PC User Guide,
1991.

. Caramba, http://www.carambalabs.com/eng/index.html, 2004.

. K. C. C. Chan and L. M. L. Chung. Integrating Process and Project Management for

MultiSite Software Development, Volume 14 of Annals of Software Engineering, pp.

115-144. Kluwer Academic Publishers, 2002.

J. Conklin and M. L. Begeman. gIBIS: A Hypertext Tool for Exploratory Policy Discus-

sion. ACM Trans. Infrastructure Systems, 6(4):303-331, 1988.

CoWord, http://reduce.qpsf.edu.au/coword/home content.html, 2004.

Computer Supported Cooperative Work, The Journal of Collaborative Computing.

Kluwer Academic Publishers, 1992-2004.

G. De Michelis and M. A. Grasso. Situating Conversations within the Language/Action

Perspective: The Milan Conversation Model. In Proceedings of the Conference on Com-

puter Supported Cooperative Work—CSCW, pp. 89-100, 1994.

A.L. Delbecq and A.H. Van de Ven. 4 Group Process Model for Identification and Pro-

gram Planning, Volume 7 of Journal of Applied Behavioral Sciences, pp. 466—492.

1971.

P. Dourish. Process Descriptions as Organisational Accounting Devices: The Dual Use

of Workflow Technologies. In Proceedings of the 2001 International ACM SIGGROUP

Conference on Supporting Group Work, pp. 52—-60. ACM Press, 2001.

Decision Support Systems, htt://dssresources.com.

S. Dustdar. Caramba—A Process-Aware Collaboration System Supporting Ad Hoc and

Collaborative Processes in Virtual Teams. Distributed and Parallel Databases,

15(1):45-66, 2004.

C. Ellis and G. Nutt. Multidimensional Workflow. In Proceedings of the Second World

Conference on International Design and Process Technology, Austin, TX, December

1996.

C. Ellis and J. Wainer. A Conceptual Model of Groupware. In Proceedings of the 1994

ACM Conference on Computer-Supported Cooperative Work, 1994.

S. Farnham, H. R. Chesley, et al. Structured Online Interactions: Improving the Deci-

sion-making of Small Discussion Groups. In Proceedings of CSCW 2000, pp. 299-308,

Philadelphia, 2000.

F. Flores and J. J. Ludlow. Doing and Speaking in the Office. In G. Fick and H. Spraque

Jr., (Eds.), Decision Support Systems: Issues and Challenges, pp. 95-118. Pergamon

Press, New York, 1980.

J. R. Galbraith. Organization Design. AddisonWesley, Reading, MA, 1977.

H. Garfinkel. Studies in Ethnomethodology. Prentice-Hall, Englewood Cliffs, NJ, 1967.
L. Gasser. The Intergration of Computing and Routine Work. ACM Transactions on Of-

fice Information Systems, 4:205-252, 1986.

E. M. Gerson and S. L. Star. Analyzing Due Process in the Workplace. ACM Transac-

tions on Information Systems, 4(3):257, 1986.

A. Giddens. The Constitution of Society: Outline of the Theory of Structuration. Polity

Press, 1984.

60

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,
45.
46.

47.

ELLIS, BARTHELMESS, CHEN, AND WAINER

M. A. K. Halliday. Language as Social Semiotic: The Social Interpretation of Language
and Meaning. University Park Press, Baltimore, MD, 1978.

G. Mark. Extreme Collaboration. Communications of the ACM, 45(6):89-93, June 2002.
J. F. Nunamaker, A. R. Dennis, J. S. Valacich, D. Vogel, and J. F. George. Electronic
Meeting Systems. Communications of ACM, 34(7):40-61, 1991.

W. Orlikowski. The Duality of Technology: Rethinking the Concept of Technology in
Organizations. Organization Science, 3(3):398-427, 1992.

H. Rittel and W. Kunz. Issues as Elements of Information Systems. Working paper 131,
Institut fur Grundlagen der Planung, University of Stuttgart, 1979.

H. Rittel and M. Webber. Dilemmas in a General Theory of Planning. Policy Sciences,
4:155-169, 1973.

H. M. Robert. Robert’s Rules of Order Revised for Deliberative Assemblies. Scott,
Foresman, 1915. Online edition at http://www.bartleby.com/176/.

M. Robinson. Design for Unanticipated Use. In C. Simone, G. de Michelis, and K.
Schmidt, (Eds.). Proceedings of the Third European Conference on Computer-Supported
Cooperative Work, pp. 187-202, Milan, Italy, September 1993. Kluwer Academic Pub-
lishers.

M. Robinson and L. Bannon. Questioning Representations. In Proceedings of 2nd Euro-
pean Conference on Computer Supported Cooperative Work, pp. 219— 233, Amsterdam,
Netherlands, September 1991.

J. Rose and R. H. Hackney. Towards a Structurational Theory of Information Systems:
A Substantive Case Analysis. In Proceedings of the Hawaii International Conference on
Systems Science, pp. 258-267, Honolulu, HI, 2003.

H. Saastamoinen. Exceptions: Three Views and a Taxonomy. Technical report, Depart-
ment of Computer Science, University of Colorado at Boulder, 1994.

H. Saastamoinen. On Handling Exceptions in Information Systems. Jyvéskyla studies in
Computer Science, Economics and Statistics, University of Jyvaskyld 1995.

J. Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge University
Press, Cambridge, UK, 1969.

L. Suchman. Office Procedure as Practical Action: Models of Work and System Design.
ACM Transactions on Office Information Systems, 1(4):320-328, 1983.

L. Suchman. Plans and Situated Actions: The Problem of Human—Machine Communica-
tion. Cambridge University Press, Cambridge, UK, 1987.

L. Suchman. Technologies of Accountability: Of Lizards and Aeroplanes. In G. Button
(Ed.), Technology in Working Order: Studies of Work, Interaction and Technology, pp.
113-126, Routledge, London, 1993.

L. Suchman. Do Categories Have Politics? The Language/Action Perspective Reconsid-
ered. Computer Supported Cooperative Work, 2(3):177-190, 1994.

L. Suchman. Making Work Visible. Communications of ACM, 38(9):56—61, 1995.
WebEx Meeting Center, http://www.webex.com/services onlinemeeting. html, 2004.

T. Winograd and F. Flores. Understanding Computers and Cognition: A New Founda-
tion for Design. Ablex, Norwood, NJ, 1986.

T. Winograd. A Language/Action Perspective on the Design of Cooperative Work. In

Proceedings of the 1986 ACM Conference on Computer-Supported Cooperative Work,
pp. 203-220. ACM Press, 1986.

I CHAPTER 4

Enterprise Application Integration
and Business-to-Business
Integration Processes

CHRISTOPH BUSSLER

4.1 INTRODUCTION

Organizations like businesses, governmental organizations, or others maintain
their business data in so-called legacy applications. A long time ago, one of these
legacy applications was enough in order to maintain all the data of an organiza-
tion. At that time, everybody in this organization who accessed the computing in-
frastructure did so through this unique centralized application system, and did the
data processing directly with it. Over time, however, an increasing number of
users gained access to the organization’s computing infrastructure and more and
more specialized applications were introduced inside the organization, each one
dealing with different business data. This need for specialization came from the
fact that business data became more complex in nature, but also because special-
ized applications were offered from software vendors and not self-built anymore
inside the organizations.

Due to the inherent relationship between the business data in the various legacy
applications, they have to communicate with each other to ensure proper data ex-
change and data synchronization. This integration of legacy application systems,
called enterprise application integration (EAI), will be discussed in more detail in
Section 4.1.1.

Organizations strive for efficiency in order to compete in the global marketplace.
One factor of efficiency is speed of operation within, but also between, organiza-
tions. Organizations found out quickly that utilizing computer networks for interor-
ganization data exchange contributes significantly to the speed of operation. Stan-
dards like EDI [5] and SWIFT! were put in place in the manufacturing and banking
industries over 30 years ago in order to accomplish efficiency by means of electron-

lwww.swift.com

Process-Aware Information Systems. Edited by Dumas, van der Aalst, and ter Hofstede 61
Copyright © 2005 John Wiley & Sons, Inc.

62 BUSSLER

ic data interchange. Although these industries have been pioneering this mode of
operation, virtually every industry today uses this approach. In recent times, this has
been called business-to-business (B2B) integration. B2B integration uses standards
for documents as well as conversational behavior to ensure interoperable data ex-
change. Section 4.1.2 will describe this type of integration between organizations in
more detail.

EAI and B2B integration are really two sides of the same coin. Currently, one
cannot exist without the other. Data that is maintained inside legacy applications
must be communicated across organizational boundaries in the general case. Still,
historically, EAI and B2B were considered different and this separation will be fol-
lowed in this chapter for didactical reasons. In the software industry, however, the
separation is disappearing.

Section 4.1 introduces EAI and B2B integration processes (or “B2B processes”
for short). Both are introduced separately from the viewpoint of requirements as
well as properties and functionality. In real integration scenarios, however, both are
relevant and require each others’ cooperation in order to not only integrate applica-
tion systems, but also businesses. A separate discussion about the cooperation of
EAI and B2B processes is provided. This allows showing not only their coopera-
tion, but also their differences.

After reading Section 4.1, the reader is expected to understand the need for the
two types of processes, their cooperation, and understand the business problems
that can be solved with the two types of processes.

This chapter can only introduce the basic concepts and approaches of EAI and
B2B integration. A comprehensive discussion, technical as well as historical, can be
found in [3].

4.1.1 Enterprise Application Integration (EAI)

Enterprise application integration (EAI) is concerned with the integration of enter-
prise applications. Enterprise applications are information systems that organiza-
tions use for their internal management and processing of data. Depending on the
specific domain, these can have many forms. A hospital will have patient record
management systems as well as lab systems; a manufacturing company will have
product planning, financial, supply ordering, and manufacturing systems; and all
organizations have an enterprise resource planning (ERP) system in one form or an-
other. All these systems together are synonymously called enterprise application
systems, information systems, or legacy application systems.

The term “legacy application system” requires some explanation. Application
systems or information systems are managing the data of an organization. The
structure and the meaning of data changes over time; however, one has to start at
some point in time with its implementation. In the past, organizations implemented
their application systems according to their needs at some point in time. Due to the
changing needs, application systems require modification. However, as it turns out,
modifying application systems is not that easy and, in many cases, it entails high
costs and unacceptable risks. Hence, they become legacy systems. Many organiza-

ENTERPRISE APPLICATION INTEGRATION AND BUSINESS-TO-BUSINESS INTEGRATION 63

tions acknowledge this fact by not modifying them anymore but introducing new
ones that complement the existing ones. This is one of the reasons why enterprises
have more than one application system installed.

Why do the legacy application systems in an organization have to be integrated?
If application systems manage different sets of data, it seems that there is no reason
for integration. However, in reality, there is overlap of the data as well as references
between them. The fact that data is managed by different application systems does
not mean that the data are disjoint. For example, a patient record system manages
patient data. Personal data, medical history, and so on, are part of the patient record
management system. The lab system of a hospital manages the different lab tests
and their results. It makes sure that no test gets lost and all tests are performed to
their completion. The relationship between the patient record management system
and the lab management systems is that lab test are performed for patients. A pa-
tient record contains a list of lab test that have been performed, are currently being
performed, and will be performed. Once a lab test is done, the patient record will be
updated with the results. If the patient record and the lab test data are in different
systems, then these need to be synchronized so that the patient record contains the
status of the currently ongoing lab tests.

The only way for an organization to avoid the integration of its application sys-
tems is to have all necessary data management implemented in one single applica-
tion system. Although this is an appealing thought, given the complexity of integra-
tion, in reality, it is not feasible due to the data complexity as well as the complexity
of the software itself.

Application systems are HAD (heterogeneous, autonomous, and distributed)
systems. “Heterogeneous” means that their underlying data model implements the
same and similar concepts in different schemas. For example, a patient address
might be defined differently in the patient record system and in the lab test system.
One might have one field for the patient’s address in form of a string, whereas the
other might have separate fields for street, city, and country.

“Autonomous” means that the state of the application systems can change inde-
pendently of each other. For example, a patient record can be added while at the
same time a lab test is marked invalid. None of the two systems involved have a di-
rect dependency that requires their direct synchronization. The updating of a record
and a lab test are completely independent of each other.

“Distributed” means that the state of the application systems is not shared be-
tween the application systems. Each application system has its own storage for
managing its state. Usually, database management systems are used for implement-
ing the particular storage an application system needs.

Heterogeneity is a problem that requires careful solutions if data are to be com-
municated from one application system to another one. A concept extracted from
one is represented in its own schema. If this is passed on to another application
system, this system expects the data to be represented in its schema. If the
schemas do not match, then the representation of one has to be transformed into
the representation of the other. This is called transformation or mediation. Of
course, the transformation must not change the semantic meaning of the data. In

64 BUSSLER

the example above, the address represented as one single string has to be trans-
formed into an address in which the different parts are called out separately in dif-
ferent fields. Whenever an address is communicated between the systems, then
transformation has to ensure schema compliance. This is applicable for both di-
rections of communication. In practical terms, this means that the string represen-
tation of an address needs to be split exactly in such a way that the separate fields
can be filled in, and vice versa.

Autonomy is a problem that needs to be addressed, too, when integrating appli-
cation systems. Data are not communicated randomly between application systems,
but based on state changes of application systems. For example, when an address is
updated, the update is communicated. Updates happen through state changes.
Whenever an application system changes its state, then the question arises whether,
due to the state change, data needs to be communicated to any other application sys-
tem. Since this is usually the case, state changes need to be detected in application
systems and data needs to be communicated accordingly. Data sent to an applica-
tion system might cause a state change in it as a consequence. Autonomy means in
this context that the state changes can happen at any time in any information system
independent of each other.

Distribution is less of a problem since the application systems manage their
state themselves. Since this state is internal to the application systems, the inde-
pendence is not visible to the integration in general. The only specific situation
when the distribution becomes relevant is that of distributed transactions. If trans-
action control is necessary, the distribution of the application systems’ state re-
quires distributed transaction execution. This, in turn, means that information sys-
tems in this case require data management systems that are capable of
participating in distributed transaction protocols. Some of these protocols are dis-
cussed in Chapter 15.

Fundamentally, EAI synchronizes the state changes of application systems. In
addition to data being heterogeneous, behavior is heterogeneous, too. One state
change in one application is not necessarily equivalent to one state change in anoth-
er application. A state change in one can cause many state changes in the other one.
The synchronization of state changes in application systems is called behavior inte-
gration.

In summary, EAI means data integration and behavior integration. Data integra-
tion requires extracting data from an application system, transforming it, and insert-
ing it into those application systems that require knowledge of the data. The data is
extracted upon state changes to an application system, and the insertion of data
might cause state changes in application systems. Section 4.3 will discuss in detail
the concepts of integration that can accomplish this functionality.

4.1.2 Business-to-Business Integration (B2B)

Business-to-business (B2B) integration is concerned with the exchange of electron-
ic documents between organizations of any type, commercial, governmental, pub-
lic, and so on. Electronic documents are exchanged over computer networks like

ENTERPRISE APPLICATION INTEGRATION AND BUSINESS-TO-BUSINESS INTEGRATION 65

the Internet or value added networks. These networks are, in general, unreliable,
unsecured, and do not guarantee a specific level of service quality. Whenever docu-
ments are communicated between organizations over networks, a clear agreement
has to be in place between the communicating organizations as to how to make the
transmission reliable and secure and how to achieve specific quality levels of trans-
mission.

Reliability is achieved through elaborate exchange protocols that can detect if a
document has been transmitted. Based on this, a single transmission can be
achieved. Security requires a set of technologies. Confidentiality and authentication
can be achieved through public and private keys for encrypting the document. In-
tegrity can be achieved with sequence numbers to avoid the loss, replay, or injec-
tion of messages. Nonrepudiation mechanisms are put in place that allow an organi-
zation to verify the receipt of a document from another organization. With all these
mechanisms in place, organizations can achieve confidentiality, nonrepudiation, in-
tegrity, and authentication [4].

The structure of documents has to be described in such a way that all organiza-
tions involved in a document exchange understand the structure unambiguously.
These document definitions can be in any form as long as common understanding is
achieved. Recent approaches are to use XML schemas [7, 9, 2], and future ap-
proaches might be to use ontology languages like OWL [6]. This common under-
standing is necessary for the organizations to interpret the structure and look for the
right fields in the right places within a document.

In addition to the document structure itself, the content of the document in terms
of values of business data has to be agreed upon. For example, a book identifier fol-
lowing the ISBN definition must be known to the communicating organizations to
be useful, or country codes identifying the countries of the world must be agreed
upon so that all organizations involved in a communication use the same values. It
would not be useful if one organization uses “Ireland” and another one expects the
value to be “EIR.” Fundamentally, every element of a document as defined by its
structure has to have a clear definition of its possible values so that the communi-
cating organizations know how to construct the document contents and what to ex-
pect.

Finally, the semantics of the document content has to be agreed upon. Agreeing
on possible values does not guarantee the same common understanding of what the
values mean. For example, a “ship date” can be interpreted in many ways. It can be
the estimated date of delivery on your doorstep or it can be the date when the goods
are given to the shipping company (and some days or months later it might arrive at
your doorstep). Another example is the price of goods on a purchase order. That
might be the price net of VAT (value added tax) or including VAT. This type of in-
terpretation of the value is called “semantics,” and the communicating organiza-
tions have to have the exact same understanding of it to avoid any miscommunica-
tion and incorrect action upon receipt of a document.

Documents are, in general, not sent in isolation as singular transmissions. In-
stead, usually a set of document exchanges together form a conversation between
organizations. For example, sending a purchase order to a supplier causes it to re-

66 BUSSLER

turn a purchase order acknowledgment that either confirms that the goods are going
to be shipped or that the goods cannot be provided. This example conversation con-
sists of two documents that both carry business data and are necessary for business-
es to agree on a deal.

However, in order to achieve the single transmission of each document, “helper
documents” might be necessary, like transmission acknowledgements. For exam-
ple, after a purchase order is sent, a transmission acknowledgement is returned ac-
knowledging that the purchase order has been received. At this point, no statement
is made about the fulfillment of the order. The only purpose of a transmission ac-
knowledgement is to let the sender know about a successful electronic transmission.
The same applies to the purchase order acknowledgement. This also will be ac-
knowledged by a transmission acknowledgement message. This means that, in to-
tal, four messages are sent—two with business data (purchase order and purchase
order acknowledgement) and two for stating that the low-level transmissions hap-
pened without any fault. If certain aspects of security need to be ensured, even more
document exchanges may be necessary.

If two organizations plan to exchange electronic documents, they have to agree
on everything that has been discussed so far: low-level messaging infrastructure en-
suring single, reliable, secure, and predictable transmission of documents; docu-
ment structure; content; semantics; as well as the set of documents that are sent
back and forth as a conversation. This is quite an effort and there is no real benefit
in defining all of this “from scratch” every single time organizations decide to en-
gage in B2B integration.

Therefore, standards have been developed over the years that specify all of the
above. This means that organizations only have to state which standard they will
comply to for B2B integration; they do not have to define their own documents and
protocols. Examples are EDI> SWIFT,?> and RosettaNet.* These standards are
maintained by standards organizations or groups of interested organizations for
their own benefit. Changes, adjustments, and mistakes are dealt with and, once in-
corporated, benefit the whole community. Also, establishing B2B integration is fa-
cilitated because standards also incorporate a huge set of past experience.

4.1.3 Cooperation of EAl and B2B Processes

At a first glance, EAI and B2B appear to be very different types of integrations.
One is solely concerned with integrating organization—internal application systems
with a variety of proprietary interfaces, whereas the other is concerned with integra-
tion of organizations through communication over public insecure and unreliable
networks according to B2B standards. However, this difference disappears when
looking more closely and turns into a complementary situation.

Internal application systems implement the business logic and business process-

Zwww.unece.org/trade/untdid/welcome.htm
3Swww.swift.com
4www.rosettanet.org

ENTERPRISE APPLICATION INTEGRATION AND BUSINESS-TO-BUSINESS INTEGRATION 67

es of an enterprise. As introduced earlier, this means to facilitate the integration of
application systems by means of exchange of data between them. In addition, some
of the business processes require communication with other organizations. For ex-
ample, purchasing a part requires sending a purchase order to a supplier. Exactly at
this point, the data become the events sent between organizations. At this point, the
data have to be passed over the public networks according to defined B2B standards
and according to a defined communication protocol. When the data are transmitted,
then in the receiving organization the data must be processed and that is going to
happen again in internal application systems.

Fundamentally, EAI and B2B cooperate in order to ensure that data are commu-
nicated not only between application systems within enterprises, but also between
enterprises. Without one, the other cannot fulfill its purpose.

Going one step further, one can observe that the integration concepts required to
implement EAI and B2B integration do not differ at all. The same integration con-
cepts can model and represent both types of integration. This is the reason why in
Section 4.3 the integration concepts are introduced without being attributed to ei-
ther EAI or B2B. In both EAI and B2B, the different communicating entities (appli-
cation systems or organizations) require data in their specific schema. This means
that in both environments transformation (mediation) is required. In both cases, net-
works are involved that, by nature, are unsecured, unreliable, and do not provide
guaranteed service levels. Not only organizations require a specific pattern of send-
ing and receiving data; application systems also do. There, too, data are sometimes
acknowledged through acknowledgement messages.

In summary, the nature of organizations and application systems are very similar
when viewed from the conceptual level of integration concepts. Although this is not
immediately visible when viewed from a higher level, it is visible when implement-
ing software systems providing integration functionality.

The next section will introduce some examples before the integration concepts
are introduced in Section 4.3.

4.2 EXAMPLES OF EAI AND B2B PROCESSES

Integration can assume very different forms depending on the specific situation.
The following examples introduce a variety of integration problems. The examples
show some specific integration solutions that can be commonly found and give
some basic insight into details.

4.2.1 Multiapplication System Business Processes

In general, organizations have several information systems that must be integrated
in order to implement the organization’s business processes. An example is an or-
dering process in which a customer orders a product that has to be custom manufac-
tured. A series of information systems has to play well together to achieve this, as
follows.

68 BUSSLER

A salesman finds a new customer who wants to buy a product that needs to be
custom built for him. The first activity of the salesman is to create a new customer
in the customer management system. The entry of the new customer automatically
triggers a credit check request that must be performed. Only upon a successful cred-
it check can products be ordered by the new customer. Credit checking is not done
in-house but requires contacting a credit bureau. Therefore, once the new customer
is created, an event is sent to the credit bureau asking for a credit check. The credit
bureau returns the result. The result is given to the customer management system
and, depending on the outcome, the new customer is rejected or accepted. The cred-
it bureau requires data in the form of a financial standard. This means that the orga-
nization has to transform its data into the standard’s definition. Upon receiving the
credit check result, the transformation process has to transform the data back into
the format required by the customer management system.

Once the credit check result has been sent back by the credit bureau, the credit
bureau sends an invoice to the organization asking for payment of the credit check
service used. The organization has to acknowledge the invoice and initiate payment
with its bank. This means that the credit bureau sends a message to the organiza-
tion, which then sends a payment notice to its bank. The bank, in turn, acknowl-
edges the payment. In both cases, financial standards are used as the underlying de-
finition of the data sent.

If the new customer is confirmed and the credit check went well, the salesman
talks to the new customer and gets the specifications of the product the customer
would like to order. The salesman creates a new order for the new customer in the
order management system by typing in the customer identification as well as the
product specification. The order management system contacts the customer man-
agement system first to check for the existence of the customer. This requires a
message sent to the customer management system and a message back acknowledg-
ing the existence of the customer. No external organizations are involved in this and
so0 no specific standard has to be used for this communication. Once the existence of
the customer is confirmed, the order management system checks the consistency of
the product specification. Assuming it is consistent, the order management system
has to be integrated with two other systems. One is an engineering system that can
draw up the engineering order and the other is the planning system that plans the
production and comes back with a production and delivery schedule. Again, the in-
tegration with these two systems is in-house and does not require any external com-
munication with another organization. Once the engineering order is drawn up, the
salesman gets a notification that it is possible to build the product. Once the plan-
ning system returns a result, the salesman is notified about estimated production
and delivery dates that he can share with the customer.

From the viewpoint of the order system, no external communication took place
(the engineering systems and the planning system are both internal application sys-
tems), but the planning system actually communicates with an external organiza-
tion. Since the product is not built in-house, potential suppliers of the product have
to be involved for planning purposes. So in order for the planning system to provide
a good schedule to the order management system, it contacts potential suppliers to

ENTERPRISE APPLICATION INTEGRATION AND BUSINESS-TO-BUSINESS INTEGRATION 69

find out what production schedules they could entertain. In this case, the external
integration was hidden from the order management system.

The example stops here although, in reality, the business process would continue
with a confirmation by the customer that he wants the specified product. An ad-
vance payment of a certain amount may have to be deposited so production can
start. The supplier of the product has to be selected, shipping arranged for, and final
payments made by the customer and to the supplier.

4.2.2 Business Data Replication

The example in Section 4.2.1 has clearly shown that both information systems as
well as external partner organizations provide functionality required to implement a
rather complex business process. The integration between these is actually part of
implementing the business process itself, making sure that the right application sys-
tem or organization is contacted at the right time, and sending and receiving the cor-
rect data according to the agreed upon standards and protocols. From a data view-
point, all systems and organizations exchange data for advancing their state and that
of the business process.

A different type of integration is business data replication. In this case, the infor-
mation systems and organizations are not integrated to implement a business
process, but to synchronize replicated data that all of them have to have. The re-
quirement is that all the data one has must also be stored at all the others locations.
Furthermore, any change in one system’s or organization’s data must be propagated
to all those that have the same data item.

The example in this section is that of customer data synchronization. This ex-
tends the example from Section 4.2.1. The salesman is responsible for a certain
area; let’s say EMEA (Europe, Middle East, and Asia). In addition, a second sales-
man is also responsible for the same area and both synchronize well. A third sales-
man is responsible for the United States alone. Both EMEA and the United States
have separate customer management systems. Each of the salesmen uses the sys-
tems of its area. However, one specific situation is that multinational customers
have offices located in both sales areas, EMEA and the United States. Based on
sales volume, discounts apply. In order to know if one company orders in both sales
areas, it was decided that each customer that is entered in one of the customer man-
agement systems has to be automatically entered in the other customer management
system. This means that once a customer is entered in EMEA, it has to be automati-
cally replicated in the U.S. system.

What happened “behind the scenes” is that once the salesman entered the new
customer in the example of Section 4.2.1, and once the customer was accepted
based on a successful credit check, the customer record was sent through the inte-
gration process to the U.S. system and automatically entered there, too.

The integration process has to fundamentally monitor both customer manage-
ment systems. Whenever a new customer is confirmed or an existing customer
changes, then the change in data has to be replicated in the other system. The same
must happen with deletions, of course.

70 BUSSLER

4.2.3 Request for Quotation with Incomplete Responses

The examples in Sections 4.2.1 and 4.2.2 were of point-to-point integrations. Two
information systems or two organizations were directly communicating with each
other and each event sent resulted in an event being sent back.

In specific circumstances, other integration patterns exist. This is best introduced
by extending the example in Section 4.2.1. The planning system has to contact oth-
er supplier organizations and find out if they can produce the specified product and
what the schedule for it will be. Later in the process, when the customer agrees to
purchase the product, a product price has to be determined, too. Therefore, the sup-
pliers have to be contacted and asked them for a quote in addition to a realistic pro-
duction schedule. One possible way to accomplish this would be to contact each
supplier in turn, waiting for a response from each of them. However, requesting a
quote does not mean that a supplier must respond with one. A supplier might not re-
spond at all.

So, instead of sending a request for quote separately to each supplier, a request
for quote is broadcast to all possible suppliers. A deadline is set for accepting the
quotes. Quotes coming in after that are rejected. Therefore, the organization waits
up to the deadline and collects all quotes. Once the deadline is reached, the quotes
are returned as a set of quotes and the selection process can continue.

From an integration perspective, a broadcast took place and there were an un-
known number of responses. The maximum number is the number of potential sup-
pliers. However, the exact number is not known until the deadline is passed. This
pattern of integration is called “scatter—gather” in [8].

4.2.4 Purchase Order Update

Another property of the example so far was that it was “forward progressing” in the
sense that the business process was constructively executed in order to achieve the
goals of selling a product (and making money in the end). However, sometimes de-
cisions have to be revised, causing parts of a business process to be repeated.

In terms of the example, it might be that the customer agreed on the product
price and delivery date. Consequently, the downpayment was made and the suppli-
er was formally dispatched a purchase order based on the quote he provided. The
supplier scheduled the production of the product and things progressed as expected.

What can happen is that the customer requires a change in the product specifica-
tion due to some late discovery of new or changed requirements. In this case, the cus-
tomer contacts the salesman and he, in turn, accesses the order management system
to organize the change. The interesting part in this case is that the impact of the
changes is different depending on the progress of the overall order. The extreme
cases are as follows. In the simplest case, the purchase order has not yet been dis-
patched to the supplier and the change is not going to change either price or schedule.
In the worst case, the product has been manufactured and has already been shipped.
The change requires the building of a new product and all negotiations have to start
from the beginning. Of course, there can be cases in between these extremes. For ex-

ENTERPRISE APPLICATION INTEGRATION AND BUSINESS-TO-BUSINESS INTEGRATION 71

ample, the purchase order has been dispatched and the manufacturing has been
scheduled but did not start yet. In this case, a change can be implemented relatively
easily. The schedule will be cancelled and the modified product rescheduled.

The important issue here is that the part of the business process that needs to be
executed again depends on its state. In the example, in one case the whole business
process has to be repeated from the beginning, whereas in the other case only an up-
dated engineering order has to be sent.

In summary, the examples introduced provided a glimpse of the integration
problems that require solutions. In [3], many more cases and details are discussed
and this reference is recommended for the reader who requires more insight.

4.3 CONCEPTS, ARCHITECTURES, AND TOOLS

Modeling integration is an involved task due to the complexity of the problems in-
volved. Looking back to the example in Section 4.2.4 (purchase order update), it is
apparent that expressive integration concepts have to be in place in order to be able
to define the real situation completely. This section will introduce the most impor-
tant concepts in detail; a complete set can be found in [3].

4.3.1 Integration Concepts

In the following, we introduce the individual integration concepts one by one.

Endpoint. An endpoint is either an information system or an organization. A user
usually interacts through a user environment. This is subsumed under information
systems. In this regard, a user can easily be part of any integration, be it B2B or
EAL In summary, information systems, organizations, as well as users are all equal-
ly modeled in the different types of integration through the concept of the endpoint.

An endpoint has a unique identifier and it is known if an endpoint is an organiza-
tion, user, or information system. With each of these three subclasses of endpoint
comes more detailed meta-data like phone numbers, public keys, and so on. This
meta-data is used at run time, for example, when data needs to be encrypted with
the public key of the receiving endpoint.

Event. An event carries data and is either sent to an endpoint or received from an
endpoint. For example, “create purchase order” or “check customer credit” are
events. In the example above, the customer management system sends a “check
customer credit” event to the credit check bureau that receives it. The return event
carrying the result is the “notify result customer credit check” and it is sent back
from the credit check bureau to the customer management system.

For each event, the syntax and semantics as well as the possible value of the var-
ious fields have to be defined. For example, in the “check customer credit” event,
the name and address of the new customer must be specified as well as the upper
amount of credit to be checked.

72 BUSSLER

Events have a source and target endpoint to specify from which endpoint they
are sent and to which endpoint they have to go. The integration infrastructure ac-
cesses this meta-data in order to deliver the events as requested.

Interface Process (also called Public or Abstract Process). Endpoints ex-
pose a specific interface behavior. This means that they send and receive events in
particular sequences. For example, the credit check bureau’s interface behavior is
that whenever they receive a “check customer credit” event they return a “notify re-
sult customer credit check” event. The interface process for this endpoint defines
this pattern. Another interface process of the credit bureau is the payment process,
in which they send a “pay invoice” event and expect back a “payment completed”
event from their bank. Of course, the customer management system has its own in-
terface processes. It sends out the “check customer credit” event and waits for the
“notify result customer credit check” event. This interface process is the comple-
mentary interface process, so to speak.

Interface processes define the publicly visible behavior of an endpoint. They de-
fine which events an endpoint expects, which events an endpoint sends out, and the
order in which they occur. Also, some event might be optional and only sent or re-
ceived in a specific case. The internal behavior of an endpoint is defined in another
type of process, discussed later on. This “private” process is not visible from out-
side the endpoint and implements the business logic.

Integration Process. An integration process defines the business logic of an end-
point, that is, the internal behavior of it. For example, once the credit bureau receives
the “check customer credit” event, it retrieves the customer data and the credit limit
from this event and starts determining the credit limit. The extraction as well as de-
termining the credit limit is the internal process of the credit bureau. This represents
the knowledge of this company and is private to it. From the outside, only the inter-
face process is visible, not the integration process. This scope limits the visibility and
allows endpoints to keep their internal logic hidden from the public.

Integration processes operate on events, as do interface processes. Whereas in-
terface processes are concerned about the exchange sequence of events from an in-
terface viewpoint, integration processes are concerned about implementing the
business logic. Integration and interface processes, therefore, have “touch points” at
which events are handed over. Once an interface process receives an event, it pro-
vides it to the appropriate integration process. Once an integration process requires
the sending of an event, it hands it over to the appropriate interface process. In this
sense, interface and integration processes are cooperating processes that are defined
independently, but are synchronized during execution time.

BPEL (see Chapter 14) is an example of a language intended to describe both in-
terface and integration processes (which in BPEL are called abstract and executable
processes, respectively).

Transformation. Transformation is the definition of rules that transform one
event into another event according to their syntax, values, and semantics. A trans-

ENTERPRISE APPLICATION INTEGRATION AND BUSINESS-TO-BUSINESS INTEGRATION 73

formation allows mediation between the event endpoints, send and receive, without
modifying the endpoints themselves. An example would be the transformation of an
address represented as a string to an address represented as individual fields.

Transformation can be used in either integration or interface processes for trans-
forming events from one schema to another. However, the most appropriate place to
use transformations is between the interface and integration processes. This allows
an integration process to be defined based on a schema and an interface process to be
defined based on another schema. The transformation between the events of the two
schemas is between the integration process and the interface process.

Now that the main integration concepts have been introduced, the example in
Section 4.2.1 can be represented in terms of these concepts. Figure 4.1 shows part
of the example graphically. The UML notation is used (see Chapter 5 for details).
The dashed arcs indicate the message flow, whereas the solid arcs indicate control
flow between activities. Each back-end application system or each business partner
has one or more interface processes defining its external behavior. The integration
processes are between the interface processes relating individual messages of those
processes with each other. A diamond-shaped activity denotes transformation be-
tween different syntactic as well as semantic message representations.

The integration in Figure 4.1 integrates the customer management system as a
back-end application with the credit check bureau as a business partner. This means
that an application and an external business partner are integrated. The flow of mes-
sages in this example is fairly simple—a request message is sent out and a response
message is received. According to the example, the message sent to the business
partner has to follow a particular financial standard. This requires a transformation
from the internal representation as provided by the customer management system to
the financial standard. The diamond shapes represent the transformation and the re-
sulting messages are in the appropriate representation. Also, the figure indicates
that the interface process of the customer management system and the integration
process operate on the same message representation, as there is no transformation
between them.

Interface

Process Integration Interface
Customer Process New Process
Management Customer Credit Check
System Credit Check Bureau
credit credit T ><>— < credit
e check [T===~=-—- check - => check 3
| request request request’ 1

result

Figure 4.1

result result’

Example defined with integration concepts.

Customer - Credit
Management Check
System Bureau
-7 credit credit credit T
L= check <=====-- check 3 C check -

74 BUSSLER

According to the example, once the credit check result is received by the cus-
tomer management system, the salesman will see if the new customer is accepted or
not, depending on his credit check.

Figure 4.2 shows the payment process for the customer credit check. Several ad-
ditional features of the integration concepts introduced above can be observed. First,
three systems are integrated: an ERP, the credit check bureau, and a bank. Second,
each of these three systems has its own interface processes that are integrated by the
integration process. As can be seen, there are three general communications going
on. (1) is the invoice communication in which the invoice is communicated. (2) is the
payment initiation and (3) is the payment notification. These three integrations are
separate in themselves and only the integration process orders them appropriately.

Furthermore, for the payment initiation, the transformation takes place before
the integration process, as in this situation the ERPs format must be transformed be-
fore the integration process.

4.3.2 Integration Architectures

In general, two types of integration architectures can be distinguished: component-
based and holistic. The component-based architecture implements integration by

Integration Interface
Process New Processes
Interface Customer Credit Check
Process ERP Credit Check Bureau and
System Payment Bank

credit credit r —<><—I credit

r-— check K--------+ check <= - check -

: invoice invoice invoice*

o J; v 3
|: invoice invoice invoice : !
> ek pmm--m---s > ack 1o C - ack’ --

1! - S - - 1
1! :
': payment payment payment :
=> notifica- F====== - -> notifica- = ,~>| notifica- [~~~
><>‘ - tion*
payment payment payment Bank
= > initiation‘ |- =1 C C > initiation + - ----- > | initiation [~ __
L -
payment .-<><— L] payment payment
-—- ok’ == - ok T-=—-=---- ok o

tion tion
|

Enterprise
Resource
Planning

—_—— e —— -

Figure 4.2 Example defined with integration concepts.

ENTERPRISE APPLICATION INTEGRATION AND BUSINESS-TO-BUSINESS INTEGRATION 75

combining base technologies like databases, workflow management systems,
queues, XML processors, XSLT processors, security systems, and so on. Therefore,
the integration architecture internally is a mix of existing smaller components, each
with its own architecture. Of course, these individual technology components have
to be integrated themselves. Therefore, “glue” code in form of the integration logic
has to be developed to define how these components work together in order to
achieve integration. Figure 4.3 gives an example of a component-based integration
architecture.

In Figure 4.3 the components are displayed individually. Events are produced
and consumed by the integration architecture through the transport system compo-
nent. From then on, the integration logic ensures that the individual components are
invoked in the correct order. It picks up the events from the transport system and in-
vokes the next component. This might involve putting the event in a queue to estab-
lish persistent storage and maintain the order of receipt. Then it checks with the
workflow management system to see if the incoming event is expected from an ex-
isting interface process or if a new interface process has to be launched. This might
involve the transformation system in order to transform the event before passing it
to an integration process for internal processing. The sending out of an event by an
integration process follows the opposite order of processing.

This approach of architecture has severe downsides. One is that each component
has its own conceptual model and its own implementation style and persistent stor-
age. This means that a constant rerepresentation takes place between the integration
concepts and the concepts of the components. At the same time, none of the compo-
nents implements the integration concepts directly. The integration logic layer has
to implement the integration concepts by using the components to give the appear-
ance that the integration architecture is genuine.

Integration Architecture

Integration Logic

Workflow Queueing XML Database

Management System Processing Management

System System System

Transport Security Transaction Transforma-

System System Processing tion System
System

Figure 4.3 Component-based integration architecture.

76 BUSSLER

The alternative architecture is the holistic style. In this type of architecture, all
components are developed directly following the integration concepts. No integra-
tion logic layer is necessary since the components directly implement the integra-
tion concepts. Figure 4.4 shows a graphical view of this type of architecture.

In the holistic architecture style, two types of components can be distinguished.
One set is the integration-specific set containing components like event manage-
ment, interface process management, integration process management, endpoint
management, and the transformation system. These components directly implement
the integration concepts introduced earlier and, therefore, no rerepresentation is
necessary as in the component-based architecture. Furthermore, it can be expected
that an implementation is more efficient and correct since all these components can
share the same representations.

The other set is a set of base technology components like security, transaction
processing, or transport that are independent of the integration concepts and have to
be in place for specific system-level functionality. This separation is indicated in
Figure 4.4 as two different layers.

4.3.3 Integration Systems and Tools

A large number of commercial systems providing integration functionality are of-
fered as products in this area. Each of these integration systems is based on a very
different model of integration so that a direct comparison is not possible. Also,
many commercial systems do not provide sufficient documentation publicly to ana-
lyze their concepts and architecture. Exceptions are systems from BEA, IBM, Mi-

Integration Architecture
Event Interface Integration Endpoint
Management Process Process Management
System System System System
Transforma-
tion System
Transport Security Transaction
System System Processing
System

Figure 4.4 Holistic integration architecture.

ENTERPRISE APPLICATION INTEGRATION AND BUSINESS-TO-BUSINESS INTEGRATION 77

crosoft, and Oracle. These companies provide the product documentation publicly
on their Web sites so that it is possible to read about their functionality and archi-
tectures. BEA’s product is called WebLogic Integration,’ IBM’s family of products
is called WebSphere,® Microsoft’s product is called BizTalk Server,” and Oracle’s
product is called Oracle Integration.®

The description of each of the products would require a chapter by itself since all
would have to be discussed in sufficient detail to show the precise functionality and
the differences. In [3] these and others are described in more detail.

4.4 FUTURE DEVELOPMENTS

Currently, integration solutions are either based purely on workflow management
systems or are systems put together based on middleware components like message
queues, databases, and XML processing. However, none of the integration solu-
tions is built on a holistic integration meta-model that provides all modeling con-
cepts necessary in order to model integration. Concepts as introduced in Section
4.3.1 and in more detail in [3] are not explicitly represented. The database manage-
ment systems’ schemas underlying the integration solutions are not based on inte-
gration concepts and holistic integration models but persistently stored for execu-
tion purposes. This situation leads to integration solutions that are difficult to
operate and hard to understand. Defining and executing integration becomes very
cumbersome in the absence of a conceptual integration model. Instead, different
technologies are put together and the modeler has to deal with each of those sepa-
rately.

Research efforts are ongoing that promise to address this situation by providing
explicit representations of integration concepts. An effort ongoing for some time is
DAML-S (DARPA Agent Modeling Language for Web Services).’ It is based on
the ontology language OWL [6]. A more recent effort was launched in Europe
called WSMO (Web Service Modeling Language).'® This effort has a wider scope
than DAML-S. A specific language, the Web Service Modeling Language
(WSML), was developed in order to define Semantic Web Services and integra-
tion.!! Finally, an interpreter for WSML has been built, called Web Service Model-
ing Ontology Execution (WSMX).!? WSMX allows one to compile WSML-defined
Web Services and executes them according to their semantic definition.

These efforts not only take the approach of defining a complete set of integration
concepts but also use ontology languages for the definition of the concepts them-

Shttp://bea.com/products/weblogic
Shttp://www.ibm.com/software/websphere
"http://www.microsoft.com/biztalk
8http://otn.oracle.com/products/integration
‘www.daml.org/services
1Owww.wsmo.org

'www.wsmo.org/wsml

R2www.wsmx.org

78 BUSSLER

selves. This means that at least the concepts are defined in semantically well-de-
fined languages. As underlying technology, both use Web Services [1].

Commercial implementations based on these new efforts are not yet in place, but
can be expected soon. It is possible to see the advantages of the approach to imple-
ment integration solutions based on semantically well-defined holistic integration
concepts.

4.5 EXERCISES

A few exercises are provided that allow the reader to become more familiar with the
introduced concepts in EAI and B2B integration. The exercises’ problems can be
found often in real integration projects and are, therefore, as realistic as possible.
The reader is encouraged to solve the problems and is invited to discuss possible so-
lutions with the author.

4.5.1 Integration State Inconsistency Resolution

The first part of this exercise requires an integration process that synchronizes
states of several different information systems.

® Assume three information systems, each with the same customer address data
(system 1, system 2, and system 3).

® The systems are connected by a B2B integration system. Any communication
or data exchange between the three systems is accomplished by the B2B inte-
gration system.

® Users can update customer addresses in each of the three information systems
independently of each other. This means that a user can update one customer
address in system 1, another user can update a customer address in system 2,
and yet another user can do so in system 3. All these updates are independent
of each other.

® Because of this possibility of independent updating, the list of customer ad-
dresses can start to differ between the three information systems.

® An integration process is needed (with appropriate interface processes) that is
executed from time to time and that ensures that the customer address lists in
the three information systems are identical. Whenever one list has a customer
address that the others do not have, the address is added to the others. What
does such an integration process look like?

The second part asks for a more elaborate integration process that takes deletions
of customer addresses into consideration.

® Users can delete customer addresses at any time. If a user deletes a customer
address in one of the information systems, the goal is to also have the address
deleted from the other two information systems.

ENTERPRISE APPLICATION INTEGRATION AND BUSINESS-TO-BUSINESS INTEGRATION 79

® The integration process from the first part of this exercise, however, will rein-
troduce the customer address (why?). If an address is missing in one informa-
tion system (because of the deletion) it will be added again since the other
two systems still have it in their list of customer addresses.

® An integration type is needed that detects that an address was deleted and will
delete it from all the other information systems. What does such an integra-
tion process look like?

The third part of this exercise deals with updates of customer addresses.

® In addition to inserting and deleting customer addresses, an address can be
updated. The integration process from the first part will not necessarily ensure
that a change in a customer address will be propagated to the other two infor-
mation systems (why not?).

® An integration process is needed that detects customer address updates and
propagates the changes to all the other information systems. What does such
an integration process look like?

The fourth and final part of this exercise deals with a varying number of infor-
mation systems that require customer address synchronization.

® In enterprises, the number of information systems can increase and decrease
over time. An additional information system should not require integration
processes to be changed. Instead, integration processes should be modeled in
such a way that adding or removing information systems will be independent
of the particular business logic.

® An integration process is required that can support the synchronization of cus-
tomer addresses between any number of information systems.

Hints:

® Jtis left to the reader to construct either one integration process for each of the
four parts of the exercise or a single one that provides all functionality. How-
ever, if four different integration processes are defined, there might be con-
siderable duplication in functionality.

® Detecting change and updating might be accomplished in many ways. An in-
formation system might send a customer address change event to the B2B in-
tegration system, it might maintain version numbers of addresses, or it might
maintain time stamps or other mechanisms that allow the detection of modifi-
cations. In the worst case, it would not maintain any meta-data and the integra-
tion process have to find out itself if a deletion, update, or insert took place. A
sophisticated integration process can deal with all mentioned forms of modifi-
cation detection.

® What was not discussed so far is the situation in which customer addresses
can change while the integration process is synchronizing the information

80 BUSSLER

systems. In this situation, the update and the synchronization are parallel ac-
tivities. If this concurrency happens, then the integration process might not
operate correctly. Please check your designs to see if they work under this
concurrency assumption.

4.5.2 Master/Slave Data Update

The previous exercise showed how difficult it is if two or more information systems
update their internal data autonomously. The difficulty is that the integration
process has to check the internal state of each of the information systems and act on
it. This situation can be drastically improved if updates of data are restricted to one
information system (acting as a master) only. Based on its state, all the other infor-
mation systems are updated in turn (acting as slaves).

An integration process is required that will recognize one information system as
the master. Changes in the master internal data will be picked up by the integration
process, which will then update all other information systems as needed.

Hint: this integration process is very similar to those of the first exercise except
that it listens only to one information systems instead of all of them.

4.5.3 Application Integration Extension

After the integration process has been implemented as in the previous exercise, the
synchronization of the information systems works flawlessly. After some time,
however, the company merges with another company. As it turns out, the newly ac-
quired company also has successfully implemented a master/slave integration
process internally. Now there are two environments that require integration. You
are put in charge of combing the two environments. Fundamentally, you have two
sets of information systems and each works perfectly with a master/slave integra-
tion process in operation. The task at hand is now to integrate the two with the goal
of having a perfectly synchronized set of information systems again. Alternatively,
you could implement a third master/slave integration process that replaces the two
existing ones. The choice is up to you.

® One possibility is to redefine one of the two master/slave processes in such a
way that the master becomes a slave. Then there will be only one master re-
maining.

® However, the acquired company is in a time zone 12 hours away and they
have to update the customer addresses during their working hours. The solu-
tion has to be adjusted so that two masters exist, one in each time zone. This
requires the integration of the two separate mater/slave integration processes
so that both are cooperating to synchronize the information systems.

Hint: for each master, all the other information systems are slaves. So, depending
on the master, the other master takes the role of a slave.

ENTERPRISE APPLICATION INTEGRATION AND BUSINESS-TO-BUSINESS INTEGRATION 81

4.5.4 B2B Process Termination

Imagine that your company and one of its suppliers exchange events for quite some
time successfully. An integration process as well as the interface processes are set
up and run successfully for a while. However, recently problems emerge with the
termination of the integration processes. For some unknown reason, it happens
more and more often that the processes with your supplier do not terminate any
more but stop processing in the middle of the execution. You suspect a deadlock sit-
uation, but you cannot confirm this yet. Whenever you start the processes again,
they execute fine for a while, even on the same datasets. However, terminating the
stopped processes is quite difficult and restarting them is not easy either. You need
an easier way to do this until you find the reason for the stopping of processes.

® The integration processes have to be modified so that it is possible to termi-
nate them by sending an event to them. Add process logic to one of the previ-
ous exercise results that can receive a “terminate” event. Upon receiving the
terminate event, the integration process must be terminated.

® A further improvement of this change is to restart the same process before the
stopped process is terminated. The stopped process starts a separate integra-
tion process based on the same start event.

After this addition, it is possible for you to send a terminate event to a stopped
process that also causes a new integration process to be started based on the same
start event. This allows you to keep your business going while you can continue to
figure out the cause of the problem.

4.5.5 Event Mediation

Imagine that you are working in the travel industry and have linked a travel agency
with a hotel provider. Both are using different standards for defining the event types
and you have successfully implemented the required event mediation. More specif-
ically, you implemented a hotel room request event that is sent by the travel agency
to reserve a room for a person at certain dates in a specific hotel.

The hotel now upgrades to that 5-Star level and, as a consequence, different
types of rooms are introduced. The hotel notifies you that they will upgrade their
reservation system soon to reflect the different types of rooms. This means that they
will change the hotel room request event definition by adding one more field that
specifies the room type. This in consequence means that you have to change the
event mediation rules so that the hotel room request event contains a valid hotel
room type.

® In this short time frame, it is not possible to change any reservation system
the travel agency uses. Therefore, it is not possible to ask the customers for
their preferred room types. A new set of mediation rules is required that pop-
ulates the room type field of the hotel room request event.

82 BUSSLER

® However, as it turns out, the travel agency is willing to upgrade their reserva-
tion system in order to reflect the room types. But they only allow you to use
existing fields like a comment field for achieving this. What do the mediation
rules look like in this case?

4.5.6 Trading Partner Extension

The travel agency from the previous exercise decides to engage with another hotel
chain to improve their services for their customers by providing a bigger selection
of hotel rooms. This additional hotel chain is also at the upper end of the scale and
has different room types. However, the room types of this additional hotel chain are
different than those of the already existing hotel provider.

® In this situation, two different solutions are possible. One solution is to best-
effort map the existing room types to the new room types. A travel agent
serving a customer only has one set of room types available for selection. The
mediation takes care of mapping those to the appropriate ones for the differ-
ent hotel chains. However, this best effort might not reflect the real situation
in terms of the room types.

® The other solution would be to teach the travel agents that different hotel
chains have different room types and, consequently, they have to type in the
appropriate room types in the comment field. What would the mediation rules
look like in this case?

REFERENCES

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services Concepts, Architectures
and Applications, Springer-Verlag, Berlin, 2004.

2. P. Biron, and A. Malhotra, (Eds.). XML Schema Part 2: Datatypes. W3C Recommenda-
tion, 2001.

3. C. Bussler, B2B Integration. Springer-Verlag, Berlin, 2003.

4. W. Caelli, D. Longley, and M. Shain. Information Security Handbook. Macmillan, New
York.

5. Data Interchange Standards Association, Inc. ASC X12 Workbook. 2004. Available from
https://webster.disa.org/apps/workbook (restricted access).

6. M. Dean and G. Schreiber (Eds.). OWL Web Ontology Language Reference. W3C Rec-
ommendation, 2004.

7. D. Fallside (Ed.). XML Schema Part 0: Primer. W3C Recommendation, 2001.

8. G. Hohpe, and B. Woolf. Enterprise Integration Patterns. Addison-Wesley, Reading,
MA, 2003.

9. H. Thompson, D. Beech, M. Maloney and N. Mendelsohn (Eds.). XML Schema Part 1:
Structures. W3C Recommendation, 2001.

EEEE PART I

MODELING
LANGUAGES

I CHAPTER 5

Process Modeling Using UML

GREGOR ENGELS, ALEXANDER FORSTER, REIKO HECKEL,
and SEBASTIAN THONE

5.1 INTRODUCTION

The Unified Modeling Language (UML)! is a visual, object-oriented, and multipur-
pose modeling language. Primarily designed for modeling software systems, it can
also be used for business process modeling.

Since the early 1970s, a large variety of languages for data and software modeling
like entity-relationship diagrams [2], message sequence charts [5, 10], state charts
[9], and so on, have been developed, each of them focusing on a different aspect of
software structure or behavior. In the early 1990s, object-oriented design approaches
gained increasing attention, for instance, in the work of James Rumbaugh (Object
Modeling Technique or OMT [21]), Grady Booch [1], and Ivar Jacobson [12].

The UML emerged from the intention of Rumbaugh, Booch, and Jacobson to find
a common framework for their approaches and notations. Furthermore, the language
was also influenced by other object-oriented approaches like that of Coad and
Yourdon [3]. The first version, UML 1.0 [20], was released in 1997 and accepted as
a standard by the Object Management Group (OMG)? the same year. The OMG,
which took over the responsibility for the evolution of the UML from then on, is a
consortium from both industry and academia and is also responsible for other well-
known initiatives like CORBA, MDA, and XMI. OMG specifications have to under-
go a sophisticated adoption process before being agreed upon as a standard by the
OMG members. Since many important tool builders and influential software compa-
nies are involved in the OMG, UML has quickly been accepted by the software in-
dustry, especially since version UML 1.3 appeared in 1999. When writing this book,
the current UML version was UML 2.0 [18], a major revision of the language.

UML is a conglomeration of various diagram types. Therefore, the challenge is
to provide a uniform framework for all these heterogeneous diagram types and ac-
counting for relationships between them. In UML, this is solved by a common
meta-model that formally defines the abstract syntax of all diagram types. The

'www.uml.org
Zwww.omg.org

Process-Aware Information Systems. Edited by Dumas, van der Aalst, and ter Hofstede 85
Copyright © 2005 John Wiley & Sons, Inc.

86 ENGELS, FORSTER, HECKEL, AND THONE

meta-model is defined with the help of the OMG Meta-Object Facility (MOF) [16].
Such a declarative meta-model is an alternative to grammars usually used to define
formal languages.

Besides the meta-model and a notation guide defining a concrete syntax for the
meta-model elements, the UML specification also informally describes the meaning
of the various meta-model elements. In the past, this informal semantics description
has raised many issues about how to interpret certain details of the language. Even
in the latest revision, UML 2.0, there are still a number of contradictions and ambi-
guities to be found in the specification. At some points, the UML 2.0 specification
is intentionally left incomplete, providing so-called variation points that allow tool
builders and modelers to interpret the language according to their specific purposes.

This chapter provides an introduction to UML, focusing especially on those
parts relevant for process modeling. It covers five major aspects of process models,
namely (1) actions and control flow, (2) data and object flow, (3) organizational
structure, (4) interaction-centric views on business processes, and (5) system-
specific process models used for process enactment. Although not every detail of
the language can be presented, we intend to provide at least the most important con-
cepts required for UML-based process models.

For discussing the various process modeling aspects, we use activity diagrams as
fundamental tools for process modeling with UML. Section 5.2 explains the control
flow concepts of activity diagrams, and Section 5.3 extends the process models by
integrating object flow. Aspect (3), the modeling of underlying organizational struc-
tures, is covered by Section 5.4 with the help of class and object diagrams. Section
5.5 then covers aspect (4) and deals with a different view of business processes, fo-
cusing more on the interactions among involved business partners. To model such an
interaction-centric view, we introduce sequence diagrams. To facilitate process en-
actment according to aspect (5), system-specific models should describe how to re-
late existing software components to the desired process activities. Thus, Section 5.6
introduces structure diagrams for describing available software systems and for
specifying provided operations, which are then integrated into the considered
process models. The chapter is concluded by a summary and exercises of varying
degrees of difficulty.

Throughout the chapter, the different diagram types are illustrated by a running
example that deals with an e-business company selling hardware products. For sim-
plicity reasons, the company’s product range is limited to monitors and computers
only. It processes incoming orders by testing, assembling, and shipping the de-
manded products.

5.2 MODELING CONTROL FLOW WITH ACTIVITY DIAGRAMS

The basic building block of a process description in UML is the activity. An activi-
ty is a behavior consisting of a coordinated sequencing of actions. It is represented
by an activity diagram. Activity diagrams visualize sequences of actions to be per-
formed, including control flow and data flow. This section deals with the control
flow aspect of process models in UML.

PROCESS MODELING USING UML 87

5.2.1 Basic Control Flow Constructs

Figure 5.1 shows a first small example of an activity. This activity describes a busi-
ness process of our exemplary e-business company, which sells computer hardware
products. The activity is visualized by a round-edged rectangle. If the activity has a
name, it can be displayed in the upper-left corner of the rectangle. The name of the
example activity in Figure 5.1 is “Sell computer hardware.” Inside the activity rec-
tangle we find a graphical notation consisting of nodes and edges that represents the
activity’s internal behavior. There are two kinds of nodes to model the control flow:
action nodes and control nodes.

As a first step in the formulation of a business process, we need to model what
tasks the process has to perform while executing. In an activity diagram, this is de-
scribed by actions. An action stands for the fact that some transformation or pro-
cessing in the modeled system has to be performed. Activities represent the coordi-
nated execution of actions. Action nodes are notated as round-edged rectangles,
much like that of an activity, but smaller. Actions have names that are displayed in-
side the action symbol, for instance, “check order” or “get products” in our exam-
ple. Actions can manipulate, test, and transform data or can be calls to another ac-
tivity. What has to be done when executing an action can be described by the name
of the action such as “check order.” Actions can also be specified using program-
ming language expressions such as c: =a+b or formal expressions. The execution of
actions takes place over a period of time.

Actions need to be coordinated. This coordination of actions within an activity is
expressed by control flow edges and control nodes. The most fundamental control
structure is the sequence, in which one action can start executing when another ac-
tion stops executing. A simple example of a sequence of actions can be seen in Fig-
ure 5.2. The arrows between the action nodes are called activity edges and specify
the control flow.

In UML 2.0, the semantics of activities are defined based on token flow. Tokens
can be anonymous and undistinguishable; in that case, they are called control to-

/Sell computer hardware \
o— check get
pmdUCts
<<decisionInput>>
Product.type
Y

test <—< _______ |
computer >_

save order infor-
mation in archive
[Computer]
—

assemble
bundle —_—
test
monitor
—

Figure 5.1 First example: computer hardware sales.

[Monitor]

88 ENGELS, FORSTER, HECKEL, AND THONE

get products]—)[test computer assemble bundle

Figure 5.2 Sequence of actions.

kens. Tokens can also reference data objects. These tokens are called object tokens.
See Section 5.3 for an introduction to the concept of object flow.

Tokens flow along the control edges, thus determining the dependencies in the ex-
ecution of the actions. Actions can only begin execution when tokens are available
from all preceding actions along the incoming edges (step 1 in Figure 5.3). When the
execution of the action starts, all input tokens are consumed and removed from the
incoming control flow edges simultaneously (steps 1 and 2 in Figure 5.3). After com-
pletion of the action, tokens are offered to all outgoing edges simultaneously (step 3).

In a control flow, actions sometimes have to be executed alternatively depending
on conditions. This corresponds to the control structure often called “XOR-split” or
“simple choice” (see Chapter 8), which is represented in activity diagrams by deci-
sion nodes, merge nodes, and guards. The diamond symbol in Figure 5.4 represents
a decision node if one edge enters the node and multiple edges leave it. In the oppo-
site case, if multiple edges enter the diamond symbol and one leaves it, it is a merge
node, which corresponds to an “XOR-join.” Diamond symbols with both multiple
edges entering and multiple edges leaving them are combined decision and merge
nodes.

In order do describe the conditions for the choice of the alternative control flows,
the edges leaving a decision node are usually annotated by guards. Guards are logi-
cal expressions that can differentiate true from false. They can be formulated using
natural language, programming language constructs, or formal expressions such as
mathematical logic or OCL. OCL stands for Object Constraint Language [17],
which was also developed by the OMG. It is a language for describing constraints
whenever expressions over UML models are required. In an activity diagram,
guards have to be enclosed in square brackets. An edge can only be traversed if the
guard attached to that edge, if any, is true.

If a guard expression becomes very lengthy, one can also attach a <<decision-
Input> note box to the diamond containing the text of the guard condition. This

®

\ @

-

Action 2

Figure 5.3 Token flow.

PROCESS MODELING USING UML 89

[a<0]

lelse]

decision node with merge node combined decision/merge node
multiple outgoing edges
and guards

Figure 5.4 Decision node notations.

note box is connected to the decision node with a dashed line, as in Figure 5.1. In
the example, a product is either a computer or a monitor. As there exist two differ-
ent test facilities for monitors and computers, the control flow has to be split into
two different alternatives.

A special case of a guard is [else], which is true if and only if all other guards on
all other edges leaving the same node are false. The use of guards is not restricted to
edges leaving decision nodes. As a general rule, control edges can only be traversed
if their guard conditions are true.

In process models, one frequently has to model concurrent control flows. Con-
currency in activity diagrams can be expressed by using fork and join nodes. They
are equivalent to the concept of “AND-splits” and “AND-joins” described in Chap-
ter 8. A thick-lined bar is a fork node if one edge enters it and multiple edges leave
it, as in Figure 5.5. At a fork node, the control token becomes duplicated and the
control flow is broken into multiple separate control flows that execute in parallel.
In order to simplify the model, one can also draw multiple outgoing edges leaving
an action node (implicit fork). In our example in Figure 5.1, the action “save order
information in archive” can be executed in parallel with the action “get products”
and the product tests, as indicated by the fork node.

A join node is used to combine the concurrent control flows. It is represented by
a thick-lined bar with multiple edges entering it and one edge leaving it. It synchro-
nizes the control flows at the incoming edges since the execution is stopped until
there are tokens pending along all incoming edges. A thick-lined bar with multiple
incoming and outgoing edges is a combined join and fork node, as depicted in Fig-
ure 5.5. Actions with multiple incoming edges represent implicit joins as the action

£+ *

fork node join node combined fork/join node

Figure 5.5 Fork/join node notations.

920 ENGELS, FORSTER, HECKEL, AND THONE

Action

Figure 5.6 Action with multiple incoming and outgoing edges and implicit fork/join.

“assemble bundle” in our example in Figure 5.1. Figure 5.6 shows an action with
implicit fork and join.

In Figure 5.1, there are two more control nodes. A solid circle indicates an initial
node, which is the starting point for an activity. A solid circle surrounded by a hol-
low circle is the final node, indicating the end of the control flow. It is possible to
have more than one final node in one activity. In that case, the first final node
reached stops all flows in the activity. A detailed analysis of control structures in
workflow models can be found in [13].

5.2.2 Advanced Concepts

Pre- and Postconditions. In process models, it is often required to formulate
assertions and conditions that need to hold locally at certain points in the control
flow, at the overall beginning of an activity, or at its end.

In order to express global conditions for an activity, the activity can be con-
strained with pre- and postconditions. Whenever the activity starts, the precondition
is validated. Whenever the activity ends, the postcondition has to be fulfilled. Both
pre- and postconditions are modeler-defined constraints. They are indicated by the
keywords <precondition> and <postcondition>, typically in the upper part of an
activity box, as in Figure 5.7a.

Local pre- and postconditions can be attached to actions. They are displayed
as note boxes containing the keywords <localPrecondition> or <local-Postcondi-
tion>, as in Figure 5.7b. A token can only traverse an edge when it satisfies the
postconditions of the source node, the guard condition for the edge, and the precon-

<<localPrecondition>>
constraint
T

P i . I
activity name <<precondition>> constraint 1

<<postcondition>> constraint . [guard] .
action action

<<localPostcondition>>
constraint

(a) (b)

Figure 5.7 Pre- and postconditions.

PROCESS MODELING USING UML 91

ditions for the target node all at once. The constraints can be formulated in natural
language, programming language expressions, or any formal language like OCL,
mathematical logic, and so on.

Hierarchical Process Composition. Business processes can easily become
very complex. It is advantageous for a process description language to allow hierar-
chical nesting in order to reduce the complexity. Thus, actions as part of a UML ac-
tivity can be calls to other activities. The nesting of activities results in a call hierar-
chy in which activities can be found on different levels of abstraction. An action
that calls another activity is symbolized by a hierarchy fork within the action sym-
bol (see action “test computer” in Figure 5.8.)

Edge Weights. In business processes, it is sometimes necessary to describe a sit-
uation in which a defined number of objects or tokens have to accumulate at a cer-
tain point in the process before the execution can continue. In our example, one
needs to collect all monitors and computers of an order before they can be bundled
for shipment. With activity diagrams, it is possible to describe such situations.
Edges can carry multiple tokens at the same time. They can also have weights that
are displayed by writing {weight=n} next to an edge. The weight expression by
which n is replaced determines the number of tokens that are consumed from the
source node on each traversal. The traversal of the edge is delayed until the required
number of tokens is offered by the source node.

Connectors. If edges cross large parts of a diagram, one can use connectors to
split a control flow edge into two parts (see Figure 5.9). Connectors are circles con-
taining a label. The label has to match uniquely with the label of one other connec-
tor.

Process Interaction and Signaling. 1f the modeled system contains multiple
threads of control or different activities or instances of activities running at the

~

ﬂest computer

visual inspection

test mechanical
construction

[test computer |‘|‘|]

Figure 5.8 Example of an activity call.

92 ENGELS, FORSTER, HECKEL, AND THONE

—>(a) (a—

Figure 5.9 Example of an activity edge split into two parts by a labeled connector.

same time, process interaction may be required to coordinate the execution between
these control flows. Process interaction can be facilitated by sending and receiving
signals. In activity diagrams, there are two special nodes representing this function-
ality, as shown in Figure 5.10: send signal action and receive signal action.

If a token reaches the send signal action, it triggers the emission of the signal.
Signals can be received by receive signal actions. Corresponding send and receive
actions can be determined by the signal name and optionally by a dashed line con-
necting sender and receiver. As soon as the signal is sent, the control token can pass
on.

Receive signal actions may be included in the control flow, that is, they have an
incoming control edge. In that case, they become activated as soon as there is a to-
ken available along their incoming edge. When the incoming signal is received, the
execution can continue and the control token will be passed on. Receive signal ac-
tions without incoming edges become activated as soon as the activity starts execu-
tion. After that, activities can always receive signals.

Constructs to Model Exception Handling. The UML provides constructions
for exception handling. A common problem is that in part of a process an excep-
tional condition can arise that requires actions to be performed apart from the regu-
lar workflow. This situation can be reflected in activity diagrams by introducing an
interruptible activity region. Such a region contains one or more actions. It is dis-
played by a round-edged dashed rectangle surrounding the actions that form the in-
terruptible region. A lightning-bolt-shaped edge called the interrupting edge leaves
the interruptible region. The semantics of this construction is that if the interrupting
edge is traversed, all other actions within the region are canceled and all remaining
tokens within the interruptible region become abandoned. Two alternative notation
options are available for the interrupting edge, as shown in Figure 5.11.

Another exception handling situation occurs when an exceptional condition aris-
es within one single action. For example, the action could be a mathematical divi-

y

_______ > receive signal "a"

Figure 5.10 Signal send and receive actions.

send signal "a"

PROCESS MODELING USING UML 93

Figure 5.11 Two alternative notations for an interruptible activity region.

sion operation, possibly leading to a division by zero. In activity diagrams, an ex-
ception handler can be attached to single actions, as in Figure 5.12. In this case, the
exception handler is a behavior that is executed whenever a predefined exception
occurs while an action is being executed.

Multiple exception handlers can be attached to catch different types of excep-
tions. The execution of the exception handler substitutes for the execution of the ac-
tion during the time it is running. After the execution of the exception handler has
terminated, the control flow is continued, at the point where the execution was trig-
gered.

The exception handler does not have own incoming and outgoing control edges
since it only replaces the execution of the interrupted action. In the cases in which
an exception cannot be caught, it becomes propagated to the next-higher nesting
or abstraction level; that is, if the action raising the exception is part of an activi-
ty A that has been called by an activity B, then the exception is propagated to B

Exception
handler1

exception
type1

Exception
handler2

exception
type2

Figure 5.12 Exception handler.

94 ENGELS, FORSTER, HECKEL, AND THONE

if it is not caught by A. If no exception handler can be found, the system behav-
ior is undefined.

5.3 MODELING OBJECTS AND OBJECT FLOW

All processes perform operations on physical objects. For example, goods are pro-
duced from raw materials or logical objects like information and data. With UML,
it is possible to model the types, properties, and states of those objects as well as to
integrate corresponding object flows into the activities.

For instance, consider the order handling process of our computer hardware
company (see Figure 5.1), which comprises the packing of product bundles for in-
coming orders. This process involves two basic object types, namely, hardware
products and order forms. From this simple scenario, we can derive the following
three requirements for modeling objects and object flow:

1. We want to model data structures, objects types (in object-oriented languages
called classes), and relationship types in order to classify objects, define
common properties, restrict possible relationships, and explain internal struc-
tures. For instance, we want to describe that order forms always contain a list
of order items and that each item refers to a certain product type. For this pur-
pose, we will introduce UML class diagrams.

2. We want to represent individual objects with their concrete properties and re-
lationships. For instance, we want to describe pending orders and available
products at a particular point in time. For this purpose, we will introduce
UML object diagrams.

3. We want to define the dependencies between objects and actions occurring in
activities, in particular input and output relationships as well as object flow
dependencies. For instance, we want to describe that our packaging process
requires a new order as input and how this order is processed at the different
stages of the process. For this purpose, we will explain object flow concepts
as part of UML activity diagrams.

5.3.1 Object Types and Instances

Since UML is an object-oriented language, objects and their types are fundamental
concepts of the language. They can be used to represent physical entities like prod-
ucts or persons, information like data or documents, as well as logical concepts like
product types or organizations. Object types, also called classes, are defined in
UML class diagrams. Objects are instances of these types, and they are represented
in UML object diagrams.

Figure 5.13 summarizes the basic constructs that can be used within a class dia-
gram. In principle, each class diagram is a graph with classes as nodes and relation-
ships as edges. A class defines a set of common properties, also called attributes,
that all instances of the class assign concrete values to. A property is defined in the

PROCESS MODELING USING UML 95

0.1 4 associationname 1 abstract
Classname superclass
property1: data type ZF
property2: data type |1 aggregation name .,
<> subclass

Figure 5.13 Basic class diagram constructs.

second compartment of a class symbol by a property name and a property type like
string, integer, and so on.

Besides the classes as object types, a class diagram can contain three different
kinds of relationship types (see Figure 5.13):

® A generalization relationship (depicted as a triangle-shaped arrow) is used to
factorize common properties of different classes in a common superclass. The
subclasses inherit all the properties and associations of their superclasses. If it
is not intended or meaningful to create own instances of the superclass; it can
be declared to be an abstract class (indicated by its name printed in italics).

® An association (depicted as a line between classes) is used to define possible
links between objects. The usual form are binary associations between exact-
ly two classes. Besides a name, an association has cardinality constraints at its
ends, which are given as a fixed value or as a range of lower and upper
bounds (the symbol * means “unbounded”). For each association end, the car-
dinality constraint restricts the number of objects that can be associated to an
instance of the opposite association end. A small solid arrowhead next to the
association name can be used to indicate a reading direction for ambiguous
association names.

® An aggregation (depicted as an association with a diamond symbol next to
the container class) is a special association indicating a containment relation-
ship. It is used to model object types that have other objects as parts.

Coming back to our example, consider the class diagram in Figure 5.14. It states
that every Order is submitted by a Customer and that it is composed of one or more
Orderltems. The Producttype class and its subclasses Computertype and Monitor-
type are used to describe the product range of the company. Every Orderltem refers
to a Producttype that the customer wants to order. The Product class and its subclass-
es Computer and Monitor are used to describe the physical products to be sold. The
association isOfType between Product and Producttype is used to assign a type to
every product. Both Product and Producttype are abstract classes so that only their
subclasses can have instances. Due to the generalization, the subclasses inherit the
isOfType association and the name attribute. Products can be aggregated to a Bundle.

Objects, being instances of the defined classes, have unique identifiers and con-
crete values for their properties. A snapshot of the objects existing at a certain point

96 ENGELS, FORSTER, HECKEL, AND THONE

Customer
name: String
contains
1.%
orders b
- 1 Producttype
name: String

=

1 1
Computertype Monitortype | Computer | | Monitor

processor: String size: Integer

Figure 5.14 Class diagram example.

in time is modeled by a UML object diagram, as shown in Figure 5.15 for our appli-
cation example. In contrast to classes, objects are depicted with underlined identi-
fiers and type names. Objects that are parts of composite objects can be shown
within the rectangle of the container object.

5.3.2 Extending Activities with Object Flows

In Section 5.2, we introduced UML activities that focus solely on the control flow
aspect. Now, we can combine the control flow with object flow.

mt1:Monitortype

cul:Customer

name = “R. Jackson” size =19

mt2:Monitortype m34:Monitor

submits name = “CRT 21"

%/ size =21 isOfTvpe
01:Order .
ct1:Computertype b1:Bundle

i1:Orderltem - ,
orders | name=“PC standard”| icqfryne m27:Monitor

- — processor = 3.1 GHz \L{

i2:Orderltem

c11:Computer
ct2:Computertype

name = “PC deluxe” | iSOfType
processor = 4.5 GHz

c32:Computer

Figure 5.15 Object diagram example.

PROCESS MODELING USING UML 97

In UML activities, we use object nodes to model the occurrence of objects at a
particular point in the process. If we expect objects of a certain type only, we can
typify object nodes by one of the classes defined in the class diagram. Since busi-
ness processes usually perform transformations on physical objects or data objects,
it is often useful to add information about the current state in the object life cycle to
an object node. In general, an object node is depicted as a rectangle containing the
type name and, in square brackets, the state information, as shown in Figure 5.16a.

In order to also capture object flow, the token flow semantics of activity dia-
grams is extended by object tokens. An object token behaves like a control token,
but, in addition, it carries a reference to a certain object. Edges between object
nodes represent flows of such object tokens. If the target object node of such an
edge has a type, it can only accept tokens with objects that are instances of this type.
Thus, the modeler has to consider type compatibility, and an object flow edge is
only allowed if the type of the target object node is the same as or a supertype of the
type of the source object node.

Whenever an object token arrives at an object node, it is immediately offered
along outgoing edges to downstream nodes. If the node has more than one outgoing
edge, they have to compete for the object token and only one of them can retrieve it.
If no guard condition is given, the winning edge is determined nondeterministically.
Otherwise, if we want to allow all downstream nodes to have concurrent access to
the object, we can insert an explicit fork node since this causes a duplication of the
object token. Then, each downstream node receives a token referring to the same
object.

However, if none of the downstream nodes is ready to accept tokens, the object
node can temporarily store the tokens and pass them on in the same order (FIFO or
“first in first out”). Instead of FIFO, one can also specify a different kind of queuing
order like LIFO (“last in first out”), “by priority,” and so on by a suitable <selec-
tion> note as shown in Figure 5.16b. Moreover, an upper bound can be given that
restricts the number of tokens allowed to accumulate in an object node. Object to-
kens cannot flow into the node if that limit has already been reached.

With the help of object nodes and object flows, we can model how objects are
directed through the different actions of an activity and how they are assigned to the
input and output parameters of the various actions. To facilitate the latter, object
nodes can also appear in the form of input pins and output pins, which are directly
attached to an action node. Input pins are assigned to the input parameters of the ac-

«selection» DY
‘by priority’
1

1
Order Order ! check |Qrder Order
B get check get
[checked] [checked] order | [| products order Order oroducts

{upperBound=10}

(a) (b) (c) (d)

Figure 5.16 Object nodes (a and b), connected pins (c), and stand-alone notation (d).

98 ENGELS, FORSTER, HECKEL, AND THONE

tion, and output pins to its output parameters. As shown in Figure 5.16c, pins are
depicted as small hollow squares with their types written above the square.

An action can start execution only if all its input pins hold an object token. Then,
the action consumes the tokens from its input pins and, after completion, places
new object tokens on all of its output pins. Figure 5.16c shows two actions whose
output and input pins are connected by an object flow edge. If the connected output
and input parameters have the same name and type, the standalone notation can be
used instead of the two pins, as shown in Figure 5.16d.

In the following paragraphs, we show how these object flow concepts apply to our
example business process of Figure 5.1, and we explain the different usages of object
nodes in more detail. The resulting extended activity model is shown in Figure 5.17.

Similarly to the individual actions, the overall activity can have input and output
parameters, too. Those activity parameters are modeled with object nodes playing
the role of activity parameter nodes. In our order process, for instance, each arrival
of an “Order” object places a corresponding object token at the input parameter
node of the activity. From there, the token is directed to the first action, and the
process is executed until the last action places a token with the “Bundle” object at
the output parameter node.

The first action “check order” of the process validates an incoming “Order” ob-
ject and, if successful, passes it on through its output pin. Since the downstream ac-
tions require “Order” objects in the state “checked,” too, we can use the standalone
notation for object nodes here.

If the check is not successful, we want the process to terminate and to reject the
invalid order. We can model this as an exception output parameter: Both actions
and activities can have such output parameters, which are used only when an excep-

Order | A\

[rejected]
7 \
A

— Product
heck ord get
s reer roducts
Order order [checked] P
isi N
save order infor- }2e «datastore» ;deccllsmntlrlput»
mation in archive Order archive ro “C\- ype
b ~
Computer Computer Y
test u >
| computer [Computer]
Product
Bundle assemble «centralBuffer» .
bundle {weight = Product [Monitor]

\\ no_of_order_items} Monitor, E Monitor /

Figure 5.17 Example activity with object flow.

PROCESS MODELING USING UML 99

tion occurs. As shown for “check order” in Figure 5.17, the output pins and output
parameter nodes for exceptions are indicated by a small triangle. A token is placed
there only after an abnormal termination. Otherwise, if the action or activity com-
pletes successfully, it does not place any object token there.

According to the control flow model of Figure 5.1, the downstream actions are
divided into two parallel paths. Since both of them need information from the “Or-
der” object, we let the fork node duplicate the object token. One copy of the token
goes to the “get products” action and another copy to the “save order information in
archive” action.

The “get products” action takes the “Order” object and retrieves the ordered
products from the warehouse. The resulting “Product” objects are placed on the out-
put pin of the action. Since this is the only output pin of the action, the first “Prod-
uct” token placed on that pin would cause the termination of the action. However,
we want the action to continue until it has provided individual tokens for all “Prod-
uct” objects to be retrieved.

To generalize the problem, we require special input and output pins that associ-
ate incoming and outgoing tokens to the same execution of an action. In UML ac-
tivity diagrams, this is done by declaring pins a stream (depicted by a filled square).
For instance, the output pin of the “get products” action in Figure 5.17 is a stream.
Actions with streaming output pins can continue to place tokens there while they
are executing. Similarly, actions with streaming input pins can continue to accept
new input tokens while a single execution of the action is running.

Coming back to our example, we want the subsequent testing actions to treat the
retrieved “Product” object tokens separately because each product has to pass its own
quality test. Consequently, the pins of the testing actions are not declared as streams
again. Since different tests are required for computers and monitors, a decision node
is used to direct the products to the right test action. As shown in the example, we can
use information about objects and their attributes in the branching conditions.

After the quality test, the products should be collected again before they are as-
sembled into bundles. We can model this by a central buffer node, which is a spe-
cial object node (labeled as <<centralBuffer>) that can be used to manage object
flows of various incoming and outgoing edges. Central buffer nodes are not directly
connected to actions but to other object nodes or pins. Thus, they provide addition-
al, explicit means for queuing object tokens. In our example, the buffer type “Prod-
uct” is compatible with both upstream types “Computer” and “Monitor” since they
are subtypes according to the class diagram of Figure 5.14.

The “save order information in archive” action has to store statistical informa-
tion about the order in an archive. If we want to model such persistent storage of
data, we can use data store nodes, which are specialized central buffer nodes (la-
beled as <<datastore>). In contrast to central buffer nodes, a data store node keeps
all tokens that enter it, copying them when they are chosen to move downstream.

Eventually, the “assemble bundle” action packages all “Product” objects into a
“Bundle” object and passes it to the output parameter node of the activity. The ac-
tion must not start execution unless all ordered products have finished the quality
test and are available from the central buffer. This can be guaranteed by the weight

100 ENGELS, FORSTER, HECKEL, AND THONE

expression, which delays the object flow until as many “Product” tokens are avail-
able as order items are contained in the “Order.”

5.4 MODELING ORGANIZATIONAL STRUCTURE

The actions included in activities that describe business processes are executed by
specific persons or automated systems within a company. Companies are complex
sociotechnical organizations. It is necessary to link the underlying organizational
structure of a company to the activities of its business processes in order to describe
which actions have to be performed by which organizational entities. This corre-
sponds to the resource and organizational perspectives of workflow modeling dis-
cussed in Chapter 2. This section describes how UML can be used to address the
following key requirements for modeling organizations and resources:

1. Companies consist of a multitude of organizational entities such as persons,
machines, and systems. Actions, for example, in an activity diagram, can be
associated with any of these organizational entities. To build a coherent mod-
el of a company, all these different organizational entities should be de-
scribed in one single model together with their specific properties and rela-
tionships. Examples of such relationships are leadership hierarchies,
ownership and shareholder relationships, department affiliation, project
group affiliation, and communication structures. We will use UML object di-
agrams to model concrete organizations.

2. The organizational structures in companies usually follow typical patterns,
such as hierarchically organized leadership structures, functional division of
labor in departments, or matrix organizations. With UML, it is possible to flex-
ibly model the majority of these general organizational structures in such a
way that concrete organizations can be treated as instances of these structures.
General organizational structures can be modeled by UML class diagrams.

3. Finally, the control and object flow description contained in activity diagrams
and the organizational view expressed in class and object diagrams have to be
linked to each other because actions and activities need to be assigned to the
organizational entities that are responsible for their execution. For this pur-
pose, we will introduce the concepts of activity partitions and swim lanes in
activity diagrams.

A general introduction to UML object and class diagrams has been presented in
Section 5.3. In this section, we will focus on the usage of object and class diagrams
for organizational modeling.

5.4.1 Modeling Organizational Structures with Object and Class
Diagrams

Figure 5.18 shows an example of an object diagram describing the concrete organi-
zation of our exemplary computer hardware sales company. Object diagrams are al-

‘uorjeziuesio 9ja10u0o ojdwis € JurqrIosop weiderp 109[q0 §1°S N3

000'G¢$ = Arejes
uononpoud, = uonisod

38A0[dWT.SIaD0Y T\

101

000'6Z$ = Alefes 000'G2$ = Alejes 000°'62$ = Aleles 000'Ge$ = Arejes
uononpoud, = uomsod uononpoud, = uomysod Jueyunodoy, = uomisod Jueyunodoy, = uonisod
99hojdw3:Aejoleg iy 99A0|dw3:sauor SI 99A0|dWIYIWSIA
10§ SHIOMNJOJ SHIOM Joy syiom 10§ SHIOM 10§ SHIOM

000'0€$ = Aejes

000°0€$ = Arejes Bununooge Jo pesp, = uoysod

JabBeuew uononpoid, = uonisod

SoA0|dWT:UMOIG ST\

98A0|dWT SSOY I\

,_o\vmwsww\ Jo peays|
10J7SYIOM 6 Sylom
Py 4omo] ‘g-},, = Uoeao| Py 4omo] ‘g-1,, = uopedo|
JUsWeda (] UooNpoId %1G = 8Ieys jUsweda BunuN0oy

JaUMQ:IBLIOd I\

102 ENGELS, FORSTER, HECKEL, AND THONE

ways instances of corresponding class diagrams. In this diagram, there are objects
of three different classes:

® Objects of the class Employee for concrete persons
® Objects of the class Department for departments

® Objects of the class Owner for legal persons that own an equity stake of the
company

These three classes represent three types of organizational entities in our example
company. Different organizational entities can have a different set of properties. In
UML, these properties are described by attributes. By associating different kinds of
organizational entities with different classes, one can have different attribute sets for
each kind of organizational entity. This is reflected in our example in Figure 5.18.
Employees have the attributes “position” and “salary.” Departments have the at-
tribute “location” and owners have the attribute “share,” describing the equity share
they own of the company. These observations lead us to the corresponding class dia-
gram as in Figure 5.19, which describes the general organizational structure of the
company. The object diagram in Figure 5.18 is an instance of this class diagram.

To show the full potential of organizational modeling with class diagrams, we
make some more observations about our example company:

® Departments have a number of employees that work for them. The organiza-
tional structure consists in our simplified example only of departments.

® Each department has exactly one employee or one owner as head of the de-
partment.

® The company has a board of directors that consists of the owners of the com-
pany.

® The owners of the company form the board of directors.

® Each employee can work for either another employee or an owner.

Department Owner
location: String 1 | share: float
* | is_head_of
works_for
1 *
Employee
works_for

position: string
salary: float 1

Figure 5.19 Class diagram representing a simple organizational structure.

PROCESS MODELING USING uML 103

Figure 5.20 shows a class diagram that integrates all the observations about our
example organization. Now there are classes for the organizational entities: Em-
ployee, Owner, CompanyMember, BoardOfDirectors, and Department.

In the version of the class diagram in Figure 5.19, “Employee” has two distinct
associations called “works_for.” Employees can either work for another employee
or an owner. It is possible to introduce an abstract superclass, “CompanyMember,”
making “Employee” and “Owner” subclasses of “CompanyMember.” Then the
class diagram can be optimized by having only one association called “works_for,”
from “Employee” to “CompanyMember.”

With the abstract superclass “CompanyMember,” it is also possible to model the
fact that owners as well as employees can be the head of a department by changing
the association “is_head_of” to be between “Department” and the new class “Com-
panyMember.” As “CompanyMember” is an abstract class, in an object diagram
describing a concrete organization, an “Employee” or an “Owner” has to take the
place of the “CompanyMember.” The cardinality “1” at the association
“is_head_of” expresses that there has to be exactly one head of a department. The
hierarchy of the company is built up by the departmental structure of the organiza-
tion and by the association “works_for.”

In the class diagram of Figure 5.20, we introduce a new class representing the or-
ganizational unit “BoardOfDirectors.” The board of directors is built from the set of
owners, which is reflected by the aggregation relationship “belongs_to” symbolized
by the association line with the diamond symbol. The “Department” class has an
aggregation relationship to the class “Employee” because departments consist of
employees who work for the department. The cardinality “1” expresses that every
employee belongs to exactly one department.

We can now describe the complete concrete organizational structure of our ex-
ample. If we add the “BoardOfDirectors” and the “belongs_to” associations to the
object diagram of Figure 5.18, we get the diagram in Figure 5.21.

Additional Remarks. The structure of the class diagram in Figure 5.19 indicates
that, in principle, every employee can be subordinate to every other employee or
owner, but every employee can only belong to one department. Therefore, the class
diagram stipulates a hierarchical department structure.

is_head_of 1

Department . ; CompanyMember
location: String
works_for
belongs_to | ! % BoardOfDirectors
* 0.1

Employee Owner belongs_to
* | position: string share: float *

salary: float

Figure 5.20 More sophisticated organizational structure.

‘Auedwoos odwrexs ayy 105 weaderp 103[qo ojdwo)

000'62$ = Arejes
uononpoud, = u

msod

9oR0|dWT:SIB0Y I\

000'62$ = Arejes
uononpoud, = uonisod

000'6z$ = Aejes
uononpoud, = uonisod

B WERVIERRIT

dafodwI Aepieg iy

10§ SyIom

0§ SYIom

oy "sylom

0y sBuojaq

000'0€$ = frejes
Jabeuew uononpold, = uonisod

50R0[AWT SSOY I\

o) sbugjeq

ho|nmm;|m\

«'PY 48M01 °g-},, = UOEIO|

justeds@:uononpoid

0y sbuojaq

10§ sylom

1T°S 3131

UBJUNODDY, = Uonisod

000'6z$ = Aejes

000'6z$ = Atejes
Juejunoooy, = uonisod

99A0[0WT-S8UO[SI\

ERERIITST

%G = aleys

TOUMQISHOg I\

0y sbuojaq

Jeaug 1eniep ‘z}., = uojeao]

SIopaIIIOpIE0g:

0} Sylom

Joj”SyIom

000'0¢$ = Arejes
Bununoooe jo peay, = uonisod

38R0[AWT.UMOIG ST\

10 peays|

oy sbuojaq | oysbuojeq

.PY Jemo] ‘g-}, = uoneoo)

juswyeds:BuRUN0ddY

104

PROCESS MODELING USING UML 105

It is also possible to describe organizational structures other than hierarchies. For
example, many companies have on the one hand functional departments like “pro-
duction,” “accounting,” and “development,” and on the other hand departments for
different product lines. This leads to a two-dimensional matrix organization. To
model such an organizational structure, the cardinality “1” between “employee”
and “department” has to be changed to “2.” Sometimes, not every position in the
matrix is staffed. For example, some employees fulfill the same function for differ-
ent products. In that case, the cardinality between “employee” and “department”
can be changed to “2..*” for a two-dimensional matrix. Figure 5.22 shows an exam-
ple of an excerpt of an object diagram for a matrix organization with two product
lines for monitors and computers. Some objects and associations are left out in the
diagram to account for clear arrangement. In this example, we added the depart-
ment “Procurement” and the employee “Mr.Taylor.” Mr. Taylor is responsible for
the procurement for both product lines, so the corresponding class diagram can be
the same as in Figure 5.20, but the cardinality between “employee” and “depart-
ment” has to be “2..*%.”

5.4.2 Integration of Organizational Structures in Activity Diagrams

Now that we have seen how organizational structures can be modeled using class
diagrams and concrete organizations can be described using object diagrams, we
have to connect these organizational models to the process models. In UML, this
connection is done within an activity diagram using the notational elements activity
partition and swim lane.

Activity partitions divide the set of nodes within an activity into different sec-
tions. Their use is not restricted to modeling organizational units. For example, they
can also be used to constrain other resources among the nodes of an activity.

Activity diagram nodes can belong to none, one, or more partitions at the same
time. Partitions can be divided into subpartitions. Partitions can be visualized in two
different ways. The partition name can be written in brackets over the action name
within the action symbol as is Figure 5.23a. The other possibility is the use of swim
lanes as in Figure 5.23b.

Swim lanes are lines that are drawn through the activity diagram dividing it into
different sections. The name of the partition is displayed on the top of the swim
lane. In our case, that would be the name of the organizational unit that is responsi-
ble for execution of the actions in that partition.

With swim lanes, simple organizational structures can be reflected. In the previ-
ous section, we introduced hierarchical and matrix organizations. Simple situations
of the two organizational structures can also be displayed by swim lanes. They can
be hierarchically structured as shown in Figure 5.24a. Swim lanes can also intersect
each other, as in Figure 5.24b, to represent example matrix organizations. Then the
actions are associated with multiple partitions at the same time.

The model of the organizational structure can now be integrated into the busi-
ness process models of our running example. The activity depicted in Figure 5.17
contains a number of actions that have to be executed either by the accounting de-

"uoneZIUBSIO XINEW B 10§ }d100X0 weiderp 103[q0 77'S 3In3iy

000°'GZ$ = Alejes
uononpoud, = uonisod

«PY JaMm0 'g-},, = Uoneao|

JUBWEd8(.UoloNpOId

000'G2$ = Arejes
Juejunogoy, = uonisod

3BA0[AWT U0 S\

0y sBlojaq

o) sBuojeq

«PY J8M0] 8-}, = Uoneao|

justeds@:BuRUNOdDY

0} sBuojaq
000'2$ = Asefes o sBuoRg
uononpoud, = uonisod
dokojdwTAepeg I
- 0)~sBuojaq
000'2§ = Aefes 0} sBuojaq
Juelunoooy, = uonisod
000'62$ = Asejes 0} sBuojaq

JUB]SISSE JUsLIaIND0Ld, = Uonisod

38RO[AWT-IORB LI\

Py Jamo] ‘g-|,, = uoneao|

JUSWIIEda(]-SIONUO)

oy sbuojaq 0y sBuojaq 0} sbuojeq

0} sBuojaq

Py Jamo] ‘g-}, = Uoneoo|

INEENERIRI W)

. PY Jamo] ‘g-|,, = uoneao)|

juslupeda@uswWaIniold

106

PROCESS MODELING USING uML 107

/_l—\ Partition 1 Partition 2

(Partition 1) AN

~

T
) L]
(Partition 2)
Action B
(a) Partition written on a specific activity (b) Swim lane notation

Figure 5.23 Actions associated with activity partitions.

partment or the production department. In Figure 5.25, swim lanes are included in
the activity diagram to describe that the actions “check order” and “save order in-
formation in archive” are performed by the accounting department and the other ac-
tions are performed by the production department.

5.5 MODELING BUSINESS PARTNER INTERACTIONS

So far, we have concentrated on modeling the various dependencies between the
different actions of a business process. However, a complementary view of busi-
ness processes is more centered around the interactions that take place between dif-
ferent participants. Such interactions occur, for example, among the employees of a
certain department as well as across department and company borders. In a supply
chain, for instance, the involved business partners have to interact in order to coor-
dinate demand and supply of certain materials.

Partition 1 Partition 1 Partition 2

Partiion 1.1 | Partion12 | on 2 E

C]

Partition B | Partition A

Figure 5.24 Simple organizational structures and swim lanes.

108 ENGELS, FORSTER, HECKEL, AND THONE

Accounting:Department Production:Department

Order | A\

[rejected] \
A

Product
heck Order
che
roducts
Order order [checked] P

SR
save order infor- }25°" [«datastoren ;dei\ismnthlput»
mation in archive Order archive| roduct.type

~

~

Computer Computer h
P test — P S >
[| computer [Computer]

Bundle

Product
assemble «centralBuffer»,
bundle {weight = Product [Monitor]

no_of_order_items} Monitor, test Monitor
d monitor /

Figure 5.25 Exemplary activity with swim lane notation for the organizational entities.

In such cases, the involved participants have to agree on the way they will inter-
act. An interface process, as defined in Chapter 4, constitutes an approach to define
the interactions between partners, represented by their provided endpoints. In an in-
terface process, interactions are described from the perspective of one of the in-
volved endpoints. As shown in Chapter 4, an interface process can be described
through an activity diagram in which the activities produce or consume interaction
events. In some situations however, a more interaction-centric (rather than activity-
centric) view of the relevant processes is more appropriate. This view allows mod-
elers to focus on the interactions themselves, and provides a more global perspec-
tive on how multiple partners interact, as the description does not focus on the
events produced or consumed by a specific participant.

For this purpose, UML provides so-called sequence diagrams. They comprise
the participants involved in an interaction. Each of them has a lifeline representing
its progress in time (usually from top to bottom). Arrows between the lifelines indi-
cate the passing of a message. The sequence of arrows along the lifelines represents
the order of message exchanges.

As an example, we consider the interactions of a hardware sales company with
its customers, its warehouse, and a shipping service that is in charge of delivering
ordered products to customers. Figure 5.26 shows the corresponding sequence dia-
gram.

This sequence diagram is named “order interactions” and comprises a
“Customer,” the “Company,” its “Warehouse,” and the “ShippingService” as partic-
ipants. Every participant is depicted as a rectangle that contains the name of the par-

PROCESS MODELING USING uML 109

sd order interactiong J

c:Customer :Company :‘Warehouse | [:ShippingService

1 submit order S 1
1

: |check order
1

1
alt ! get products 3
[check = ok] 1 1
1 roducts 1
1 1
1

: ship bundle (c)

}

1

1
—_——_—————_——

1

1

2 reject order |
1

\2

) I W I 7

bundle

<

[else]

-f----1-F-F

Figure 5.26 Sequence diagram for interactions related to order processing.

ticipant and its type. In contrast to the notation of objects in object diagrams, these
names and types are not underlined because they represent a certain role rather than
a concrete instance. At process enactment time, the role names have to be bound to
concrete entities of the specified type. For instance, a concrete customer submits the
order and a specific shipping service is selected. If the role name is not referenced lat-
er in the diagram, one can also omit it and specify just the role type.

The messages attached to the arrows represent, for example, a request for some
provided service, a response to the requester, the transmission of a certain signal, the
sending of a certain return value, the transportation of some objects, and so forth. As
with action names in activities, there are different degrees of formalization possible,
starting from simple keywords down to operation calls with formal parameters.

In UML sequence diagrams, one distinguishes between synchronous (filled ar-
rowhead) and asynchronous (open arrowhead) message passing. The synchronous
mode means that the sender stops its activity after sending the message and waits
until the corresponding response message arrives. In our example, we use only
asynchronous message passing, meaning that the partners remain active after hav-
ing sent a message independent of the response.

In our example, the “Customer” at first submits the order, which is then checked
by the “Company.” Although one should usually abstract from internal actions like
“check order” and concentrate on external interactions in sequence diagrams, we
can still model such internal actions as self-related messages if they have an impact
on the remaining part of the interaction. In our example, this is the case because the

110 ENGELS, FORSTER, HECKEL, AND THONE

downstream interactions are divided into two alternative interaction fragments (in-
dicated by the keyword “alt” and the subdivided rectangle) which are chosen ac-
cording to the outcome of the check order action. Either the order is valid and the
products can be retrieved from the “Warehouse” and delivered by the “Ship-
pingService,” or the order is not valid and rejected by the “Customer.”

Besides the “alt” operator for alternatives, sequence diagrams also provide other
interaction operators that can be used in combination with interaction fragments,
for example, the “loop” operator that indicates that a certain fragment is repeated as
long as a certain condition holds, or the “par” operator that indicates that several
fragments are executed in parallel. Different fragments can also be nested to model
more complex interactions.

Such interaction models provide a complementary view on the business process-
es modeled before. In contrast to the activity diagrams, they usually hide internal
actions that do not affect other participants (e.g., the testing actions of Figures 5.1
and 5.17). Nevertheless, the two different views of the business process must be
consistent with each other, which means that they have to preserve the order of
overlapping actions and events. For example, in both Figure 5.1 and Figure 5.26,
the “check order” action comes before the “get products” action.

5.6 SYSTEM-SPECIFIC PROCESS MODELS

The business process models presented so far can be used for design, analysis, or
documentation purposes. However, another purpose of process models is to support
process enactment. In this case, they have to be refined into activities with atomic
actions that are not further subdivided. These actions can then either be performed
by humans or executed by machines and computers.

At this point, we want to focus on the latter case, in which processes mainly
transform information and can, therefore, be enacted with the help of computer sys-
tems (i.e., application-to-application processes). We model the available software
components of an enterprise and relate their services to the actions of our process
model. Thus, we receive a refined, system-specific model that can be used for
process enactment. In the terminology introduced in Chapter 4, this type of model
corresponds to an integration process.

In principle, such system-specific process descriptions can be used in two ways.
The first option is to feed them into a central process engine that has access to all
available software components and invokes their services according to the process
description (see Figure 5.27a). Thus, the process engine is responsible for managing
the various process instances, the control flow, and the object flow.

The second option is to take the more local point of view of a single component
that realizes a new service by using a set of services provided by other components.
Then, the process model can be used to describe how the invocations of the required
services are coordinated in order to realize the desired service (see Figure 5.27b).

For instance, service-oriented architectures consist of distributed software com-
ponents that make use of existing third-party services in order to provide new ser-
vices. Since this usually involves components of different business partners,

PROCESS MODELING USING uML 111

provided services

(a) process description | (b)

‘1’ process-driven
coordination

process engine / xx\ required services

%t A Vi

software components

Figure 5.27 Central process engine (a) and process-driven service coordination (b).

process descriptions are needed to adjust the invocation behavior among the differ-
ent partners. The Business Process Execution Language for Web Services (see
Chapter 12) is a textual language for implementing such architectures in which
process-driven coordination of services takes place.

As an example of system-specific models, we refine the “check order” action
used in the order processing activity of Figure 5.17 and specify how existing ser-
vices are combined to realize this action. For this purpose, we have to break the ac-
tion down into atomic subtasks like evaluating the customer’s credit rating and
checking the available product supplies. We assume that there are software compo-
nents such as warehouse and customer management systems that provide services
for these tasks. This leads to the following requirements:

1. We require a model of available systems and components that abstracts from
their internal computations but specifies their provided and required services.
For instance, we want to describe that there is an order management system
that provides the service to check incoming orders, and, in order to do so, it
requires certain warehouse and rating services. For this purpose, we will in-
troduce UML structure diagrams and interface descriptions.

2. Having specified the provided and required services, we want to integrate
them into our process models in order to coordinate their invocation. For in-
stance, we want to describe in which way the services required by the order
management system are invoked in order to realize the provided order check-
ing service. Since inputs required by one service might be provided as out-
puts by other services, we have to consider both control and object flow de-
pendencies. The resulting system-specific process models should serve as a
basis for computer-based process execution.

UML structure diagrams provide a high-level view of existing information sys-
tems, as shown in Figure 5.28. Components are depicted as boxes, omitting details
about their internal computations. Provided and required services, in UML called
operations, are summarized as interfaces of the components. Provided interfaces

112 ENGELS, FORSTER, HECKEL, AND THONE

OrderServices (O~_| Order- H]

ManagementSystem

(P RatingServices (P W@

Customer- E] Financial E] Warehouse-E]

ManagementSystem Services ManagementSystem

CustomerServices

Figure 5.28 Structure diagram example.

are depicted as a circle connected to the providing component, and required inter-
faces as a half-circle connected to the requiring component.

For each required interface, another component is needed that can provide a
matching interface. In our case, the CustomerManagementSystem provides Cus-
tomerServices to the OrderManagementSystem, the FinancialServices component
provides the RatingServices interface, and the WarehouseManagementSystem pro-
vides the WarehouseServices interface.

Interfaces are specified in a simple form of class diagram, as shown in Figure
5.29. In contrast to classes used for modeling object structures, the focus is not on
structural properties and relationships but on operations. An operation signature is
defined in the second compartment of the interface symbol by a name and a set of
input and output parameters. If there is no more than one output parameter, we can
list the input parameters in parentheses and append the output parameter as the re-
turn type of the operation at the end. Otherwise, we have to distinguish input and
output parameters by the keywords “in,” “out,” or “inout” (see, e.g., the “checkO-
rder” operation of the “OrderServices” interface).

In contrast to ordinary classes, interfaces cannot be instantiated but can only be
used to indicate that a class or component either provides or requires the set of op-
erations defined in the interface. In order to integrate the invocation of these opera-
tions in our process models, we introduce call actions for activity diagrams.

In general, call actions represent the invocation of certain behaviors defined in
accompanying diagrams. In our case, we use them to call operations of component

«interface» «interface» «interface» «interface»
CustomerServices RatingServices WarehouseServices OrderServices

getCustomer (0:Order): Customer| | getRating (c:Customer): Integer checkStock (0:Order): Report | | checkOrder (inouto:Order,
logOrder (0:Order): Order out re:Order {exception})

Figure 5.29 Interface specifications.

PROCESS MODELING USING uML 113

interfaces, as shown in the system-specific “checkOrder” activity (Figure 5.30). In
contrast to ordinary action nodes, the node symbol contains the exact name of the
operation to be called. Below, the operation name, the name of the interface or com-
ponent type providing the operation, is added in brackets. All input and output para-
meters defined in the operation signature are transformed into input and output pins
of the action node. Thus, when defining the control flow between the call action
nodes, one has to consider object flow dependencies that arise from the operation’s
input and output behavior.

Since, according to the interface description in Figure 5.29, the “checkOrder”
operation has an inout parameter of type “Order,” the activity gets a corresponding
input parameter node, too. From there, incoming “Order” objects are passed on to
the action nodes of the activity until they are eventually placed on the output para-
meter node shown at the bottom of Figure 5.30.

If any of the involved checks returns a negative result, then the “Order” is reject-
ed and placed at the second output parameter node (shown at the top of Figure
5.30), which is an exception, as indicated by the small triangle. Note that exactly
this arrangement of parameter nodes is required if we want to use the activity as an
refinement of the “checkOrder” action of Figure 5.17.

The activity involves two checks that can be performed in parallel: First, the cus-
tomer’s credit rating should have a positive value, and second, the available product
supplies of the warehouse should be sufficient to satisfy the demand. Since the “ge-

| Order

ejected
OrderManagementSystem::checkOrder frej !
Order A
= ©

Customer

getCustomer

Customer

Order (CustomerServices::)

[Report.result = false]

- —————

Ord Report
e checkStock cho
|| (WarehouseServices::)

logOrder
K (WarehouseServices::)
Order

[checked]

Figure 5.30 System-specific activity diagram for the checkOrder service.

114 ENGELS, FORSTER, HECKEL, AND THONE

tRating” operation of the “RatingServices” interface requires a “Customer” object
as input parameter (see Figure 5.29), we have to insert an action calling the “get-
Customer” operation first. This “CustomerManagementSystem” operation retrieves
the corresponding “Customer” object from an associated database, which is then
passed on to the “getRating” operation.

The two parallel action flows for order checking are enclosed in an interruptible
region so that any negative result prevents further effort and directly leads to the
“reject order” action causing an exception. However, if both parallel checks are
successful, the interruptible region is left, and the “logOrder” operation of the
“WarehouseServices” interface is invoked to update the product information stored
in the “WarehouseManagementSystem.” Eventually, the checked “Order” is re-
turned as output to the superior process.

As revealed by this example, system-specific process models refine actions and
activities of more abstract, business-level process models. Given a mapping of the
interfaces to real components with physical addresses (also called deployment de-
scription), such system-specific process models can be used for process enactment
and coordination of the involved software components. For related work about us-
ing activity diagrams in order to integrate applications and software components,
the interested reader is referred to [6] and [22].

5.7 SUMMARY

Modeling processes require the description of a number of different perspectives of
the process [11, 4]. We have covered five major perspectives of process modeling
with UML diagrams: the description of actions and control flow, data and object
flow, organizational structure, interaction-centric views, and application integration
through system-specific, refined process models for process enactment. Table 5.1
summarizes which UML diagrams we have employed to describe these process
modeling perspectives.

For further studies of the UML, the interested reader can find detailed insights
into the language concepts in the book by Pender [19]. How to apply the UML for
developing information systems from requirements analysis to system design is de-
scribed, in the work by Maciaszek [14].

Table 5.1 Overview of the different UML diagrams

Activity Class Object Sequence Structure
diagram diagram diagram diagram diagram
Actions and control flow X
Data and object flow X X X
Organizational structure X) X X
Interaction-centric view X

System-specific models X X) X

PROCESS MODELING USINGUML 115

There are strong efforts underway to further increase the usability of UML for
process modeling. The recent revision, UML 2.0, has already improved, among oth-
er things, the suitability of activity diagrams. In order to further extend the language
according to business process modeling requirements, one can also use the built-in
extension mechanisms of UML. These extensibility features allow designers to
adapt certain parts of the language to their domain-specific needs while still remain-
ing within the framework of the UML meta-model. For this purpose, so-called
stereotypes can be defined that describe semantic extensions as well as syntactical
modifications of dedicated meta-model elements. A set of related stereotype defini-
tions forms a UML profile.

Work in progress includes the development of a specialized business process de-
finition profile by the OMG [15]. The objective is to allow groups using a variety of
process models, including UML activity diagrams and other process modeling nota-
tions, to map to a common meta-model and thus facilitate communication among
themselves.

Among others, there are efforts underway to increase the support for collaborat-
ing business processes, business process patterns, runtime implications of process
definitions, resource assignments, access control, and so on. The extensibility fea-
ture of UML will facilitate the efforts to further develop extensions of the UML for
business process modeling in order to make it even more powerful and user-friend-

ly.

5.8 EXERCISES

1. Consider the “test computer” and “test monitor” actions in Figure 5.17 and
model the case when such a product test fails. For this purpose, you could,
e.g., add output pins returning a test report. If the report reveals a negative
test result, a substitute product has to be retrieved from the warehouse and the
test has to be redone.

2. As preparation for modeling the internals of the testing actions, extend the
class diagram of Figure 5.14 as follows. A checklist is associated to each
product type. Every such list contains a set of items that describe the proper-
ties to be checked for the associated product type. Each item has a property
name and a reference value as attributes.

3. Now, refine the “test computer” action of Figure 5.17 into an activity, show-
ing the internals of the action. Model the input and output parameter nodes of
the activity according to the pins of the corresponding action node. The activ-
ity should contain an archive for all the checklists for the various product
types. Whenever a new computer object arrives, the right checklist has to be
selected from the archive. You can then freely design your own control and
object flow to realize the testing activity.

4. Extend the interaction model of Figure 5.26 with the company’s bank as ad-
ditional business partner. After ordered products have been delivered to the

116 ENGELS, FORSTER, HECKEL, AND THONE

customer, the company sends a bill to the customer containing a reference to
the bank. Then, the customer can transmit the payment to the company’s
bank account. In a second step, try to model that the delivery of the products
and the payment can also happen in parallel.

5. Consider the object diagram for the example company in Figure 5.21 and the

matrix organization excerpt in Figure 5.22. What would a complete object di-
agram of the company look like if you combined the two existing diagrams?

6. In the matrix organization in Figure 5.22, we use the organizational entity

“Department” both for the functional entities of the company like procure-
ment and accounting, and for the product-oriented entities like monitors and
computers. Devise an organizational structure that contains departments and
product lines as two distinct organizational entities. Extend the organization-
al model developed in Section 5.4 with the necessary additional classes.
What additional associations have to be defined? How would the object dia-
gram in Figure 5.22 be affected?

7. In Figure 5.21, Mr. Ross is an employee. Now assume that Mr. Ross is not

only an employee but also an owner of the company at the same time. How
could this be modeled in the class diagram? (Hint: consider multiple inheri-
tance.) How would the object diagram in Figure 5.21 be affected?

REFERENCES

1.

10.

G. Booch. Object-Oriented Analysis and Design with Applications, 2nd ed. Addison-
Wesley, 1994.

. P. Chen. The entity-relationship model—Toward a Unified View of Data. ACM Trans-

actions on Database Systems, 1, 1:9-36, 1976.

. P. Coad and E. Yourdon. Object-Oriented Analysis, 2nd ed. Yourdon Press, 1991.
. B. Curtis, M. I. Kellner, and J. Over. Process Modeling. Communications of the ACM,

35(9), 1992.

. W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts. Formal

Methods in System Design, 19(1):45-80, 2001.

. R. Depke, G. Engels, M. Langham, B. Liitkemeier, and S. Thone. Processoriented, con-

sistent integration of software components. In /EEE Proceedings of the 26th Internation-
al Computer Software and Applications Conference (COMPSAC), pp. 13—18, 2002.

. G. Engels, R. Heckel, and J. M. Kiister. The Consistency Workbench: A Tool for Con-

sistency Management in UML-Based Development. In Proceedings UML 2003—The
Unified Modeling Language, Springer LNCS 2863:356-359, 2003.

. A. Forster. Quality Ensuring Development of Software Processes. In European Work-

shop on Software Process Technology (EWSPT), Springer LNCS 2786:62—73, 2003.

. D. Harel. Statecharts: A Visual Formalism For Complex Systems. Science of Computer

Programming, 8(3):231-274, June 1987.

ITU-TS, Geneva. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC),
1996.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

PROCESS MODELING USING uML 117

S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture
and Implementation. International Thomson Computer Press, London, 1996.

I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented Software
Engineering—A Use Case Driven Approach. Addison-Wesley, 1992.

B. Kiepuszewski, A.H.M. ter Hofstede, and W.M.P. van der Aalst. Fundamentals of
Control Flow in Workflows. Acta Informatica, 39(3):143-209, 2003.

L. A. Maciaszek. Requirements Analysis and System Design: Developing Information
Systems with UML. Addison-Wesley, 2001.

Object Management Group. Business Process Definition Metamodel RFP. http://www.
omg.org/docs/bei/03-01-06.pdf.

Object Management Group. Meta-Object Facility (MOF) Specification, Version 1.4.
http://www.omg.org/cgi-bin/doc?formal/2002-04-03.

Object Management Group. UML 2.0 OCL 2nd revised submission. http: //[www.
omg.org/cgi-bin/doc?ad/2003-01-07.

Object Management Group. UML 2.0 Superstructure Final Adopted specification.
http://www.omg.org/cgi-bin/doc?ptc/2003-08-02.

T. Pender. UML Bible. Wiley, 2003.

J. Rumbaugh, G. Booch, and I. Jacobson. Unified Modeling Language, Notation Guide,
Version 1.0. Rational Software Corporation, Santa Clara, 1997.

J. E. Rumbaugh, M. Blaha, W. J. Premerlani, F. Eddy, and W. Lorensen. Object-Orient-
ed Modeling and Design. Prentice-Hall, 1990.

S. Thone, R. Depke, and G. Engels. Process-oriented, Flexible Composition of Web Ser-
vices with UML. In Proceedings of the International Workshop on Conceptual Modeling
Approaches for e-Business (eCOMO 2002), Springer LNCS 2784:390—401, 2002.

I CHAPTER 6

Process Modeling Using
Event-Driven Process Chains

AUGUST-WILHELM SCHEER, OLIVER THOMAS, and OTMAR ADAM

6.1 INTRODUCTION

The event-driven process chain (EPC) was developed in 1992 in an R&D project
involving SAP AG' [9, 7] at the Institute for Information Systems (IWi) of the Uni-
versity of Saarland, Germany. It is the key component of SAP R/3’s modeling con-
cepts for business engineering and customization [10, 8, 11] and has also been inte-
grated in SAP’s NetWeaver System. It is also the modeling notation supported by
the ARIS Process Platform, which provides an integrated toolset for designing, im-
plementing, and controlling business processes.?

In the 1990s, and following the evolution of the ARIS toolset, the basic EPC no-
tation has been extended with a number of symbols corresponding to various as-
pects of business modeling. This has led to what is known as the extended EPC (or
eEPC) notation, which is the subject of this chapter. In the rest of the chapter, we
will not make a distinction between the basic and the extended EPC notation, as the
extended version encompasses the basic one. Accordingly, the term EPC will be
used to refer to the original EPC notation and its extensions.

EPC is based on the concepts of stochastic networks and Petri nets (see Chapter
7). However, using the EPC notation does not require a strong formal framework,
among other things, because the notation does not rigidly distinguish between out-
put flows and control flows or between places and transitions, as these often appear
in a consolidated manner. Perhaps it was precisely this kind of simplification that
led to the successful adoption of EPCs in practical applications.

The chapter is structured as follows. Section 6.2 introduces EPC through a work-
ing example, showing how a business process model can be obtained by combining
several views. Section 6.3 introduces a meta-model of EPC that forms the basis of

thttp://www.sap.com
Zhttp://www.ids-scheer.com

Process-Aware Information Systems. Edited by Dumas, van der Aalst, and ter Hofstede 119
Copyright © 2005 John Wiley & Sons, Inc.

120 SCHEER, THOMAS, AND ADAM

the ARIS toolset. Section 6.4 discusses methodological issues, providing guidance
on how to design processes using EPC. Section 6.5 then discusses the ARIS archi-
tecture for business process design and implementation. Finally, the chapter con-
cludes with an exposition of relevant trends.

6.2 OVERVIEW OF EPC

Generally speaking, a business process is a continuous series of enterprise activi-
ties, undertaken for the purpose of creating output. The starting point and final
product of the business process is the output requested and utilized by corporate or
external “customers.” Business processes often enable the value chain of the enter-
prise as well as help to focus on the customer when creating output. Business
process models are the core objects when improving the outputs (and their creation)
of a company and can be seen as a starting point for IT development.

In the following, we explain the key issues in modeling business processes using
event-driven process chains with a simple example from customer order processing
[14]. First, let us outline the scenario.

A customer wants to order several items that need to be manufactured. Based on
customer and item information, the feasibility of manufacturing these items is stud-
ied. Once the order has arrived, the necessary materials are obtained from a suppli-
er. After arrival of the material and subsequent order planning, the items are manu-
factured according to a work schedule and shipped to the customer, along with the
appropriate documentation.

This scenario is now discussed from various points of view. As we have already
seen in system theory [2, 16, 12], we can distinguish between system structures and
system behavior. The starting point is the description of the responsible entities and
relationships involved in the business process; then, by means of function flows, we
will describe the dynamic behavior. Output flows describe the results of executing
the process; information flows illustrate the interchange of documents involved in
the process.

Functions, output producers (organizational units), output, and information ob-
jects are illustrated by various symbols. Flows are depicted by arrows.

6.2.1 Responsible Entities and their Relationships

Figure 6.1 depicts the responsible entities (organizational units) involved in the
business process, along with their output and communication relationships, illus-
trated as context or interaction diagrams. The sequence in which processes are car-
ried out is not apparent. Nevertheless, this provides an initial view of the business
process structure. In complex processes, the myriad interchanges among the various
business partners can become somewhat confusing. In addition to the various inter-
actions, it is also possible to enter the activities of the responsible entities. This has
been done in only a few places.

- u1ssad01d 19p10,, $$9001d ssouIsnq Yy Jo wWeideIp uonorINU] [°9 AINSIY

nun jeuon
-ezjuebiQ

uonoeso| &———

:pusber

way| sieneg

sainoejnuUep
‘sue|d

Buunjoenuely

way| sienleq J8pIQ ue saoe|d

spun4 shed

siepI0

eLsie
slanjeQ

v puewaq

e sjoday

soleg v spun4 sfed

18pJQ ue saoe|d

121

122 SCHEER, THOMAS, AND ADAM

6.2.2 Function Flow

Figure 6.2 describes the same business process by depicting the activities (func-
tions) to be executed, as well as their sequence. In contrast to the interaction dia-
gram, the focus is not the responsible entities but the dynamic sequence of activi-
ties. For illustration purposes, the organizational units are also added in Figure 6.2.
Being function sequences for creating output, function flows characterize the busi-
ness process. The output flows themselves will be displayed individually.

6.2.3 Output Flow

The purpose of a business process is the creation of an output in order to receive an
equivalent. In our example, the output of the enterprise process is to execute the
customer order and the equivalent is the receipt of funds. In addition, within the en-
terprise itself intermediate output is created because of executing functions.

The designation “output” is very heterogeneous. Business output is the result of
a production process, in the most general sense of the word. Output can be physical
(material output) or nonphysical (services). Whereas material output is easily de-
fined, for example by the delivery of material, manufactured parts or even the fin-
ished product, the term “services” is more difficult to define because it comprises
heterogeneous services, for example, insurance services, financial services, and in-
formation brokering services. Figure 6.3 illustrates this simplified classification of
“output,” which can also be “input,” as a hierarchical diagram.

Concerning our business process example, the result of the function “manufac-
ture item” in Figure 6.4 is the material output, defined by the manufactured item.

Quality checks are carried out and documented during the manufacturing
process. All data pertinent to the customer is captured in “order documents.” This
collection of data is a service by virtue of the information it provides. After every
intercompany function, an output is defined that indicates the specific deliverable
entering the next process as an input. To avoid cluttering the diagram, the organiza-
tional units involved are not displayed. It is not possible to uniquely derive the func-
tion sequence from the illustration of the output flow.

6.2.4 Information Flow

In addition to information services, also other kinds of information, used as envi-
ronment descriptions during the business processes, are components of the ordering
process. Figure 6.5 illustrates the information objects of our business process exam-
ple, along with the data interchanged among them.

Objects listed as information services have double borders. Information objects
describing the environment of the business process are shown as well; for example,
data regarding suppliers, items, or work schedules. This data is necessary to create
information services. For example, when checking orders, the customer’s credit is
checked and inventory is checked for availability.

Due to the fact that data flow is triggered by the functions that are linked to the
information objects, it is more or less possible to read the function flow in Figure

. Suissoooid 10p10,, $S0001d SSouIsnq oY) JO MO[J UOOUN,] 7°9 INSIY

ﬁ junowy diys 4

ﬁ ERIETEY Moy uoneziuebio

spun4 jdaooy /d

ANV,
1de00y Jojessdo uojouny MOJ4 uopouNy ——
|eaibo
:puabar]

Buunjoenuepy
ueld

Buunjoeynuepy Buunjoenuepy m/\ 1OpIQ Yo9UD 4 ﬁ 1OpIO JOWT
spun4 1deooy 18pIQ $58001d 18pIQ Jeyug v v

way| diys wey| aInjoenueyy

123

124 SCHEER, THOMAS, AND ADAM

Output/Input

Material

Output/Input Services

Information Other
Services Services

Figure 6.3 Types of inputs and outputs.

6.5. However, if multiple functions are applied to an information object or if multi-
ple data flows are requested by a function, the function process cannot be uniquely
deduced.

Besides information flow modeling, the (static) description of data structures is a
very important modeling task. Static enterprise data models are used to develop
proper data structures in order to implement a logically integrated database. Chen’s
Entity Relationship Model (ERM) [5] is a widespread method for the conceptual
modeling of data structures.

6.2.5 Consolidated Business Process Model

Building various views serves the purpose of structuring and streamlining business
process modeling. Splitting up views has the advantage of avoiding/controlling re-
dundancies that can occur when objects in a process model are used more than
once. For example, the same environmental data, events, or organizational units
might be applied to several functions. View-specific modeling methods, which
have proven to be successful, can also be used. Particularly in this context, view-
based approaches are easier to handle than more system-theoretical modeling con-
cepts, in which systems are divided into subsystems for reducing complexity. In
principle, however, every subsystem is depicted in the same way as the original sys-
tem. This is why it is not possible to use various modeling methods in the same sys-
tem.

It is important to note that none of the flows (organization, function, output, and
information flow, respectively) illustrated above is capable of completely modeling
the entire business process. We must, therefore, combine all these perspectives. One
of the views should be selected as a basis and then integrated into the others. The

. 8urssaoo1d 19pI0,, sseo01d ssoursng ayy Jo mofy ding 9 3Ny

way| way|
diys alnjoejnuely uonoun4
18pI0 SjusLINY0Q nding Mol Indino &
wswdiys 18pI0
:pusbar
juswAed way| way| Buunjoeinuep 19pI0 19pI0
puss diys alnjoejnuely ue|d 308y Jajug
swhed way| Jo wo ueld 19pI0 18pI0
Jawojsng wswdiys I Buinioenuep payosy) Jawojsn)
fed 19pI0 189pIO
$5990.d J9ug
swhed e 19pI0

Jaiddng

125

JUNOWY 8010AU|

INNOOJY

eleq
JuswAed

LININAVd
Y¥3noLsnd

. 8urssa001d 10pI10,, $59901d SsauISNq 9y} JO MO[J UOTLWIOJU] §'9 AINTI
19lq0 109[qQ seoInIeS
Ewa_ Q_cm uoljewou] 18yl uonewloju|
43040 3INa3HOS _ Lonund _ Mol4 uoRBULO| {———
INJWNDISNOD WHOM _ _
JINYN JNYN
:puaban
ejeq Buun eleq
-Joejnuep uoesado
Bunjoejnuely eleq J1apIQ aseyoind
Ueld ejeq Japio 49PI0 34D 18pI0 8SEYaINg dn ayum
ejeq buun NV1d]
SININND0A d30d0 ¥3QH0
NES weynue || ONOLOVS ¥INOLSND ¥INOLSNO
sjuswalinbay
ejeq Jepl0 |eusjely SSulyHONyIpeId
JapIQ 8seyaIng
dn aym
eje(Joyddng H3aY0 eje([eusjely Aiojuanu)
¥3I7ddNsS ¥3nddns IVIH3LYIN N3LI d3NOLSND

126

PROCESS MODELING USING EVENT-DRIVEN PROCESS CHAINS 127

function view is closest to the definition of a business process and is, therefore, typi-
cally used as a starting point. However, in the context of object-oriented enterprise
modeling, information flows (see Chapter 5) can serve as a starting point as well.

Figure 6.6 provides a detailed excerpt of our business process example, focusing
on the function “manufacture item” with all flows described above.

Figure 6.6 shows the consolidated process model in the EPC notation. In this no-
tation, function flows are enhanced by event and message controls. This makes it
possible to better describe the process sequence. Events describe condition changes.
They can characterize the result of an activity, in turn triggering the next function. In
addition to simple events, there are also compound events. For example, for the func-
tion “manufacture item,” planning needs be concluded and the necessary parts need
to be available. This is expressed by the logical “AND” operator between the events.

Control flows regulate how events are triggered in accordance with sensible
process logic. Sequential, parallel, alternative, and merged methods, along with log-
ical links, may be used. Control flows are executed by events and messages that
they trigger, after which information regarding the beginning of the event is trans-
ferred to the next entity. In the illustrations, messages are depicted by letter sym-
bols. They determine how functions react to events. Messages can also contain ad-
ditional attributes besides information regarding the beginning of the event.

After the events “manufacturing plan completed” and “(supplier) order
processed” have triggered the function “manufacture item” by means of messages,
the event “item completed” is created. Then the process is concluded. This event
activates successive events by means of messages.

Only events pertinent for the continuation of the business process are illustrated
here. These events are known as relevant events.

6.3 THE ARIS BUSINESS PROCESS META-MODEL

Business process models can be designed at various abstraction levels. The previ-
ously discussed business process models were based on an order processing appli-
cation. This example did not describe the procedure of an order for a certain cus-
tomer but, rather, the generic order processing process, which is an abstraction of
several actually realized processes. This kind of description is known as a business
process type.

Figure 6.7 illustrates an excerpt of the manufacturing process of an individual
order processing process. Here, every object involved in the business process is in-
stantiated by the affixed name or names. Individual business process models are
used for controlling individual processes. In manufacturing, this is customarily car-
ried out by creating work schedules as the manufacturing process descriptions for
individual parts or manufacturing orders.

In office management, individual business process models are executed through
workflow control systems (see Chapter 3). Workflow systems control document
flows and work flows electronically. Therefore, they must have access to informa-
tion regarding the respective control structure and responsible entities or devices for

. Suissaooid 10p10,, $sa001d ssoursnq oy jo 3d100xa pa[reIdg 979 dInSig

|lojuo) pue Buiuue|d uononpold = Odd
@ L
&Mﬂmﬂ@ aiempieH Ul N yun [euon Indno mol4 INdinO [eudleN € - = —
|eo1607 -‘_mSnEoo o ol . -ezuebio uewnH MO|] SODIAIOS UOHEWIOU| & — — —
MO|4 UOIBULIOJU| &+ »vreve
| osemyos | ©ied sbessen \ h MO| [0jU0D) &———
| t&w I indino |ejusw usng uonoun4
| uoneol <_ -uoJiaug m L) MO|H 921N0SaY / MO|4 uoneziuebio
‘pusba
T T e @
| |
ndo washs uoneys
[[eNilielo} BUIYoEN “ Odd “ SO Joyesado
O 1 1
wa)| €=
|
|
|
Lo
pajojdwo) Iﬁ way /i pajo|dwo) ueld
way| e ainjoejnuep Buunjoenuepy
|
|
Y e
|
. g —d e e |
| .
I _
| |
[.
|
|
syuswnooq ! Aueno 8|Npayos pesseaold ueld
18pIO - uBIH SO [BUSIEN opio 71| Buumoenuep
(+o11ddng) i

128

*90UB)SUI JOPIO UE JO [opow ss9001d ssouisng L' 3AnS1

|Jo;juoD pue Buluueld uononpold = Odd

[&]
»ANV. alempieH co nun jeuon ndin mo|4 Indino eusiey € - — - —
‘ojeiedo J1endwo) SUILREN 1209 -eziuebio NAno
|eoibo . o ol uewnH MO|{ SODIAISS UoNBewIoU| €— — —
MO uonewIoju] &«
T T eje oBessaly (N 2
| aiemyos | indino _Eﬂcmn_E Juang uonoun4 fnold 108400
“ uopeayddy “ -uoJIAUg m L) MO|4 801n0saY / Mol4 uoneziuebio
pusba]
g ® T T
v 00 loveaniivo | z4 I (g ueld)
NdO 104u00 | f90dd uoneISHIoMm Jopeiedo doys 1w
o ° (@] 1 1
ove d
way| K=
v d paje|dwon
1o} ¢l dIN 10} ueld
way| Buunoenuepy
LY O ove d passad0.d
z1 CEN ¢l diN 10} ueld
sjuswinooQ — oouels|o] desyy 8|npayos [euslely Z€ W 43plo BuLnoeNUE]y
19pI0 SOM (Jonddng)

129

130 SCHEER, THOMAS, AND ADAM

every single business event. Individual business processes are known as instances.
There is a class—instance relationship between the business process type in Figure
6.6 and the process instance in Figure 6.7.

All individual order processes make up the class or type “order processing busi-
ness process.” The individual processes are instances (elements) of this class.
Classes take on the characteristics of the elements, although the individual instances
are abstracted.

Type levels are the most important levels in business process modeling. In order
to support (re)organization measures, not only is know-how regarding each busi-
ness process necessary, but also know-how regarding the entire general process
structure. After all, the organizational changes are carried out in order to improve
the process as a whole. Instances, thus, proceed according to the new schema. Due
to exception handling regarding the process structure, individual variances of the
instances can be taken into account.

The illustration of instances is known as description level 1, whereas type levels
are known as description level 2. Levels 1 and 2, thus, have the same relationship as
instances and classes. Every class is characterized by its name and the enumeration
of its attributes, by which the instance is described. For example, the class “cus-
tomer” is characterized by the attributes “customer number,” “customer name,” and
“payment period.” The instances of these characteristics are the focus of the de-
scriptions at level 1. Figure 6.8 depicts a few examples of levels 1 and 2.

Grouping classes is always a complex task. Therefore, when defining order des-
ignations, we will only abstract specific properties of cases 4711 or 4723 (see Fig-
ure 6.8), respectively, leading to the classes “completed order” or “finished order.”
At level 2, we will abstract the “completed” and “finished” properties and create the
parent class “order” from the subset. This operation is known as generalization and
is illustrated by a triangular symbol.

When quantities are generalized, they are grouped as parent quantities. This
makes order instances of level 1 instances of the class “order” as well. The class
“order” is characterized by the property “order status,” making it possible to allo-
cate the process state “completed” or “finished” to every instance. Materials and
items are also generalized, making them “parts” and “resources.”

Thus, level 2 contains application-related classes of business process descrip-
tions. On the other hand, with new classes created from similar classes of level 2 by
abstracting their application relationships, these are allocated to level 3, the meta-
level, as illustrated in Figure 6.8. Level 2 classes then become instances of these
meta-classes. For example, the class “material output” contains the instances “ma-
terial” and “item” as well as the generalized designation “part.” The class “informa-
tion services” contains the class “order,” along with its two child designations and
the class “certificate.” The creation of this class is also determined by its purpose.
Thus, either the generalized classes of level 2 or their subclasses can be included as
elements of the meta-classes.

When creating classes, overlapping does not have to be avoided at all costs. For
example, from an output flow point of view, it is possible to create the class “infor-
mation services” from the classes “order” and “certificate.” Conversely, from the

PROCESS MODELING USING EVENT-DRIVEN PROCESS CHAINS 131

Level 4

(72
Q
@
ol Object Type
o ject Typ
©
@
2 \
Abstraction o
Modeling Contents
Level 3
(72
Q
@
g Data Objects Output Resource
£ .
[®, S
= NN
. . \, \\
Environmental Data Prqcessmg Data Material Output Infornjaﬂon N S
Objects Services \
N AN
\\
Abstraction of ~
Application Contents ™\ \\
\
3
§ Customer Supplier Part Order Certificate Resource
5 A
o
2
®
2 Tool Machine Robot
o
o
<<
aterial tem Completed Finished
Order Order il Drill
Abstraction o
Instance Properties ™\
(7]
3 [Level 1 |
s
2 Completed Finished
£ |) | |__Completex inishe L wi
B Customer 3842 Material M 32 Item P 340 Order 04711 —Order O 4711 Mill MA 12
[=
]
= Customer 72181 L, . L |__Completed Finished L v
ﬁ Material M 42 - Item P 520 Order 04723 —Order O 4723 Mill MA 11

Figure 6.8 Abstraction levels in modeling.

132 SCHEER, THOMAS, AND ADAM

data point of view, these are also data objects, making them instances of the class
“data objects” as well.

This leads to the general ARIS business process meta-model at level 3, depicted
in Figure 6.9. This figure contains the general description classes of business
processes, along with their relationships. The relationships depicted by arrows
could also be expressed as classes (relationship classes). For simplification, this has
been avoided. When we subsequently speak of meta-classes, we mean every repre-
sentation object (classes and relationships).

In addition to the relationships displayed here, other relevant relationships be-
tween the classes are feasible. It is also possible to create subclasses from the class-
es of the meta-level. The model in Figure 6.9 shows the essential objects necessary
for illustrating business processes, although this figure is not necessarily complete.

Thus, the classes at modeling level 3 define every object necessary for describ-
ing the facts at level 2. These objects make up the building blocks for describing the
applications at level 2. Objects at level 3 are also the framework for describing the
individual business processes, as the classes at level 2 comprise the terminology at
level 1.

This abstraction process can be continued by once again grouping the classes at
level 3 into classes, which are then allocated to the second meta-level. Next, the
content-related modeling views are abstracted. In Figure 6.8, the general class “ob-
ject type” is created, containing all the meta-classes as instances.

6.4 HOW TO CORRECTLY MODEL EPCs

Each EPC must follow some simple design rules to avoid or reduce undesirable be-
havior like deadlocks right from the beginning. Therefore, no rigorous and complex
system of rules and design patterns is proposed, as avoiding all possible conflicts
would limit the user too much. The rules are:

1. The three core nodes of an EPC are activities, events, and connectors.

2. The name of an event should reflect its characteristic as a point in time, for
example, “item completed.” It is represented by a hexagon.

3. The name of an activity should consider the time-consuming perspective of
the accomplished task, for example, “manufacture item.” An activity is rep-
resented by a rectangle with rounded edges.

4. Connectors are represented by a circle. Within the circle, the type of con-
nector is defined through the corresponding symbol. The connector can be
split into an upper and lower part, reflecting differences between incoming
and outgoing connection rules.

5. To clearly define when a business process is intended to begin and what is
the final result, each EPC starts and ends with one or more events.

6. An EPC contains at least one activity.

7. An EPC can be composed of several EPCs.

‘[opow-elow ss001d ssoursnq SNV [BI0Ud3 oYL, ¢°9 9N

wn
|euoneziuefiQ

jusAZ [eqiu|

s1ab61 |

~

T T ® O
“ SIENIIO “ alempleH 80In0SSaYy
I "Ios I Joindwo) auIyoep ndinQ uewny
1 1 ° o o
& &
) 2
w\o.S\OQ < £2) @ R
mSow\,\
S
ﬁ abessa|y
JuaAgInsay uoroun4 m
-
-
- -~ ~
_ - '~ T~
— = 00 . bUioR= ~
- @909 " N ~. 106y =~ ~ <
S90IMBS -=" . -’ RN .
\ - - NN ~.
|eroueulq < e ANEEN ~.
) i ~ Vi N, N ~.
- e // SN ~.
- e \ ~ ~.
- e NN, ~.
* N
-7 \\\0,.%, s AN ZNN
.7 ’ Ve @@/ Vi ~ awwv/ll
ndinp - RPN Vi N D,
L Pl K 4 N Av» S
[EIREN L 7 S RGN
4 ~ ~,
. ’ g, 3 o *
L AR 4 (AN
\\ \\ II
e Vi N
e e \
Vi - N
[ERIINETS 1’ 7 \
Jsylo
d
4
’
\\
/
i ~/
4
4
\\
[ERIINETS P 209 ejeq
uoljew.ou| |EJUSWOIIAUT

$80IN0SSAY
|elouBUl4

indino
[eLoje

$90IMBS
BYio

S90INIBS
uonewo|

133

134 SCHEER, THOMAS, AND ADAM

8. Edges are directed and always connect two elements corresponding to the
sequence of activation.

9. An event cannot be the predecessor or the successor of another event.
10. An activity cannot be the predecessor or the successor of another activity.

11. Each event and each activity have only one incoming and/or one outgoing
edge.

As mentioned above, connectors describe the links between events. A distinction
is made between the combination of inputs into an operator and the combinations of
outputs. Inputs as well as outputs can be linked by logical “AND” (/\), “OR” (\/),
and “exclusive OR” (x) relationships. The node for representing the linking opera-
tors for input and output is divided. The upper area contains the logical symbols for
the input links; the lower level, those for the output links. If only one input and/or
output occurs, a logical symbol is eliminated. If only one input and one output exist,
the node is eliminated.

Figure 6.10 shows several cases of conceivable process structures. In Figure
6.10(d), which contains an “OR” link to the successors, the rule governing selection
can be represented as an independent (decision) function, as shown in Figure 6.10(e).
Function F contains the rules for making decisions in an “OR” scenario, which leads
to the intermediate events E3 and E4, which are followed by functions F1 or F2.

When more complex relationships exist between the completed and the starting
activities, for example, different logical relationships between groups of functions,
a connector can be backed by input and output decision tables. Linking different op-
erators is also permissible, as the example in Figure 6.10(f) shows. The logical rela-
tionships between functions and events can be explained by analogy to the links be-
tween events and functions, as in the example shown in Figure 6.10(d).

In computer science, control flows can be described by ECA (event—condi-
tion—action) rules. This technique can be transferred to business processes. An
event denotes a fact regarding what and when something happens. For events that
represent a point in time, both aspects are combined into one. The condition defines
circumstances under which an event is relevant for further steps. If such a setting of
circumstances occurs, the action part determines the next activities.

In business process models, events are the output of activities or are externally
produced. At the time of modeling an EPC, the relevant events for certain actions
can be defined and linked to subsequent activities. Thus, only those events that are
relevant for the further steps are used in the model. The condition is combined with
the event so that the ECA rule can be reduced to the EA rule. Thus, the representa-
tion shown in Figure 6.10(e) is the preferred form.

Instead of defining an event “Order value known” and subsequently checking
the condition “Order value >= 5.000 EURO” in Figure 6.11(a), the relevant events
are identified and modeled as two different outputs of the preceding activity [Figure
6.11(b)].

By following these basic rules, most of the modeling problems can be avoided.
Furthermore, using a standardized procedure to analyze natural-language descriptions

"SOINIONIS MO[J-[ONU0S OISt (]'9 dInSIg

uae} S| 3 Jo €3 Juana
JBY}Ie JO HE}S 8y} UO UOoISIOap au}
UDIYM Ul SHE]S | 4 UOI}ouny uoisiosp ay)
‘AN220 Z3J JO L3 sjuaAa ayy 4| (8)

€d cd
suels g4 uonouny
£IND00 €3 JUSAS ay] pue (g3 Jo L 3) Juana ayy Ji
‘syels |4 uonouny 3 e3
‘AND20 g3 4O |3 SJUSAL8 3y} §| (4)
suaddey z3 juans \VAJ

3y} JO |3 JudAL By} Jayye ‘pajejdwod 24 14
Sl g4 40 L4 uonouny ayy 4| (B)

<
_ _ L&
z4 = €3 [£] 13 z3

SHe)s Z4 1O | 4 uonouny Jayyle Hels Zz4 pue | 4 suonouny ayy Sue)s | 4 uonouny SHE)S | 4 uonouny
‘AN220 z3 Jo L3 syuana ayy 4| (p) ‘AN220 z3J pue |3 sjuaAa ayy | (9) ‘AN220 z3 Jo L3 spuana ayy 4 (q) ‘AN220 Z3 pue L3 sjuaaa ayy 4| (e)

T T T

Ve-a)) X N

XK _ _ 2 _ ALK
c3 13 c3a A =]

=]

J
&

¢

135

136 SCHEER, THOMAS, AND ADAM

Check order Check order

%Y

Order value
defined

Order value
>= 5000 EURO

Order value
<5000 EURO

Check condition
>= 5000 EURO

> < > X

Process Get signature of Process Get signature of
order supervisor order supervisor

(a) (b)

Figure 6.11 Example for the reduction of the ECA rule to the EA rule in EPCs.

of business processes helps to manage this task in a structured way. As mentioned be-
fore, the complexity of business processes can be reduced by splitting the real-world
descriptions into views. To model EPCs, you can use the following guidelines:

® Determine the exact name of the business process to be modeled. This is a
simple but very important step, as it must be clear which process is meant.
Thus, choose a title everybody involved in this modeling task agrees on.

® From this definition, derive the initial event(s) (when or under which circum-
stances does this business process start?), as well as the final event(s) (when
does it stop?).

® Now, fill the space between the initial and final events with the basic control
flow. In this context, use the function view models, especially the function
flow. To do so, look for all relevant verbs in the process description (e.g., by
underlining them). Then, transfer these verbs into activities (rectangles with
rounded edges) and order them according to their execution procedure. Where
appropriate, you should use adequate connectors (AND, OR, XOR).

® Determine one or more events for each transition from one activity to the next
one. Ensure that each event is produced by the preceding activity and that the
same event triggers the execution of the next activity. If this is not fulfilled,
think about whether the event is not correctly named or whether you need an
additional activity in between.

PROCESS MODELING USING EVENT-DRIVEN PROCESS CHAINS 137

® Go through the whole control-flow model again and test its compatibility with
the eleven abovementioned structural rules so that you have modeled a cor-
rect control flow. In this stage, it is recommended to get the approval of peo-
ple who are involved in executing the modeled process, so that you have also
modeled the correct process.

® Now, add all relevant entities from the other perspectives. The best way is to
start with the organizational view by adding the responsible entities like de-
partments, roles, or employees to the activities. Afterwards, the data view as
well as the output view should be added.

6.5 THE ARIS ARCHITECTURE

In practice, business processes are highly complex. To cope with this complexity,
the process is divided into different views, as shown in the starting paragraphs of
this chapter. This makes it possible to describe individual views by using special-
ized methods without having to incorporate the corresponding relationships into the
other views. Ultimately, however, the relationships between the views are reintro-
duced. At this point, the EPC is used as the core modeling method, integrating dif-
ferent perspectives in the control view. To get a better understanding of this frame-
work, its two basic principles—the view concept and the life-cycle phases—are
presented in the following. They build the ARIS architecture and, thus, can serve to
position the EPC method.

Figure 6.12 shows the ARIS house, in which the views are visualized [13, 14]. In
addition to this division, the second basic thrust of ARIS involves the concept of
different descriptive levels. Information systems can be described with respect to
their proximity to information technology. Development of a phase concept ensures
a consistent description from the business problem all the way to implementation.

The implementation of business processes with the aid of information technolo-
gy is generally described by differentiated life-cycle models in the form of levels or
phases. In ARIS, however, the life cycle does not have the meaning of a procedural
model for developing an information system; rather, it defines the different levels
based on their proximity to information technology. This follows a three-tiered
model (see Figure 6.13).

The description of the operational business problem is the starting point in sys-
tems development. This step incorporates the information technology options for
supporting business processes and decisions through ICT-oriented business admin-
istration. The description encompasses rough business processes that are oriented
very closely to user objectives and user language. Therefore, only semiformal de-
scriptive methods are used to represent the description of the business problem. Be-
cause of their lack of detail and their highly technical vocabulary, they cannot serve
as a starting point for a formalized translation into implementation.

The requirements definition has to describe the business application to be sup-
ported in such formalized language that it can be used as the starting point for a
consistent translation into information technology. The requirements definition is

138 SCHEER, THOMAS, AND ADAM

Organization

Data Control Function

Output

Figure 6.12 ARIS house view of a business process.

very closely associated with the problem description, as expressed by the width of
the double-headed arrow in Figure 6.13.

At the design specification level, the conceptual environment of the require-
ments definition is transferred to the categories of the data processing conversion.
The modules or user transactions that execute the functions are defined, instead of
the functions themselves. This level can also be thought of as an adaptation of the
requirements description to general information technology interfaces. The re-
quirements definition and the design specification should be loosely linked. This
means that a design specification can be changed without modifying the require-
ments definition. This loose link should not mean, however, that the requirements
definition and the design specification can be developed in isolation from one an-
other. After completing the requirements definition, it is much more important
that the business content be determined in such a way that ICT-oriented consider-
ations such as system output do not have an influence on the requirements con-
tent.

In the third step, the implementation description, the design specification is
transferred to concrete hardware and software components, thus establishing the
physical link to information technology.

The levels are characterized by different update cycles (see Figure 6.13). The up-
dating frequency is highest at the information technology level and lowest at the re-
quirements definition level.

The implementation description is very closely linked to the development of in-
formation technology and is, thus, subject to ongoing revision as a result of techno-

PROCESS MODELING USING EVENT-DRIVEN PROCESS CHAINS 139

Typical Designations:

Corporate Goals, Phase 1

Critical Success Factors IS-oriented
Weak Spots Strategic Application
CIM, MMS Concepts

Phase 2 \
Entity Types, Functions, Requirements
ég: Organizational Units, Definition
Q@ Application Systems, (Semantic Models)
o Types of Output
8
o

i

T

&
o . . Phase 3
g Relationships, Modules,
,g Network Topologies, IS Concept Buildtime
> Triggers
2

£

3

A~

“o
2
@O' Access Paths Phase 4 Phase 5 (run time)
('7 Network Protocols, Implementation 1 Operation and
Program Code Description]— Maintenance

Information and

Innovations Communication
Technology

Figure 6.13 The ARIS phase model.

logical changes such as the development of new database systems, networks, and
hardware.

The requirements definition level is particularly significant because it is both a
long-term repository of collective business knowledge and, at the same time, a
point of departure for further steps in generating the implementation description.
For this reason, emphasis is placed on the view of developing requirements defini-
tions or semantic models.

The focus is, therefore, on creating requirements definitions, since they possess
the longest life cycle within the information system and, through their close affinity
to the description of the business problem, they also document the heaviest use of

140 SCHEER, THOMAS, AND ADAM

the information system. The requirements definition is the link between users and
the initial implementation of their problem description into a data processing lan-
guage.

The ARIS architecture is developed using the division process (views) and the
descriptive levels (phases), including the initial business problem (see Figure 6.14).

6.6 FUTURE EXTENSIONS

EPCs are widely used as a modeling method to analyze and design business
processes. They are basis for the optimization of manual and automated procedures,
serve as the foundation for implementing ERP systems, and enable customer-cen-

| Strategic Business Process Analysis and |
I Target Conceptual Design :
|

equirements
Definition

Design Specification

Implementation
Description

Organization

Requirements Requirements Requirements
Definition Definition Definition
Design Specification Design Specification Design Specification ARIS House
Implementation Implementation Implementation
Description Description Description
Data Control Function

Requirements Definition

Design Specification

Implementation Description

\ Output j

Information and |
Communication Technology |
|

Figure 6.14 The ARIS architecture.

PROCESS MODELING USING EVENT-DRIVEN PROCESS CHAINS 141

tered service offers in global enterprises and public authorities. Two trends are hav-
ing a major influence on the further development of the EPC.

First, business process modeling will enable seamless integration between enter-
prises, leading to collaborative business scenarios [17]. The emergence of dynamic
business networks and virtual enterprises as well as extended supply chain scenar-
ios has strengthened the research field of business integration. New business appli-
cation systems like collaboration-ready ERP software, called ERP II, have been de-
veloped [4]. The necessity for interoperability between modeling methods has led
to representations of business process models in open standards like BPMI’s Busi-
ness Process Modeling Language (BPML) [15]. Thus, business processes can be
designed in distributed, decentralized environments and can be exchanged between
process participants. The first approaches incorporate an ontology into the model-
ing techniques to define common or compatible semantics between cooperation
partners. In these scenarios, the automatic configuration of interfaces between IT
systems by using Web service technology is targeted. EPCs can be enriched with
technology-oriented parameters or can be extended with elements explicitly consid-
ering process interfaces to cooperating partners on a business level. This implies
that EPCs are mediators between the business perspective and the system perspec-
tive.

Second, business process modeling is becoming more intuitive, adaptive, and in-
telligent. The original idea of introducing a semantic business process modeling
technique was aimed at bridging the gap between employees who have the knowl-
edge to fulfill their business task, method experts who can optimize procedures, for
example, through simulation or activity-based costing, or IT experts who can build
IT systems to support the business task. In order to fully incorporate human knowl-
edge about procedures and to make models more flexible, the rigorous character of
decision rules, the claim for static validity of a model over a longer period of time,
and monolithic approaches must be dissolved. Intuitive, adaptive, and intelligent
modeling can be reached through the integration of artificial intelligence in process
models. Traditional concepts like fuzzy set theory to handle vagueness, learning
with neural networks, and managing complexity with multiagent systems are being
applied to business process modeling [1, 2, 6].

6.7 EXERCISES

Exercise 1. Modeling in General, ARIS Concept

Debacle Plc. is an internationally operating large-scale enterprise headquartered in
Saarbruecken. According to a management decision of 1 January 2004, the most
important business processes are to be reorganized and supported by IT. The chair-
man of the board charges you, an external consultant, with the development of a
frame concept for the implementation of a respective information system. This in-
formation system should refer to the presentation of the basic business information
as well as point out possibilities for the operational management of business
processes. Today’s board meeting expects you to provide models of this system.

142 SCHEER, THOMAS, AND ADAM

® At the beginning of your presentation, state why you think that modeling of
business information is such an essential part of the project and the aims
which it pursues.

® Explain by means of different viewpoints and layers of the ARIS architecture
how it provides the basis for a complete description of information systems.

Exercise 2. Function Structure

The sales figures of myLibro Plc. are not as profitable as desired. After a detailed
analysis concerning the sales module of myLibro Plc., you come to the conclusion
that the system used up to now does not meet the present requirements at all. A
number of weak points exist that considerably prolong the processing times for or-
ders. The order entry, surprisingly, takes four times as long as the order processing.
To get an overview over the functions incurred in the scale of sales logistics, you
ask the head of the sales department, Sabrina Roofer, for an appointment. Because
she is on a business trip in Huerth, near Cologne, at the moment, you conduct the
conversation with the sales assistant, John Carpenter. During the conversation, you
were able to take some notes, as follows:

® The area sales has these basic functions: issue of an offer, book an order, pur-
suance of an order, dispatch, invoice, and receipt of payment.

® In context of booking an order, the order registration takes place in a first
step. In a second step, the order processing, which is composed of costing and
reservation of the ordered items, takes place.

® The pursuance of an order includes the processing of an inquiry and a re-
minder.

® In the dispatch department, the quality check of the delivery note, product
picking, route planning, and booking of products are carried out.

® Invoicing consists of registration, issuing an invoice, and booking following
the dispatch of the invoice.

lustrate the facts described above using a function tree. Identify, thereby, elemen-
tary functions, subfunctions, functions, as well as function bundles.

Exercise 3. Target Structure
On the occasion of the semiannual strategy meeting of the management and the
heads of departments you, as consultant, are asked to depict the aims mentioned in
the meeting in a well-structured diagram, which also elucidates the relations be-
tween the aims.

This is an excerpt from the minutes of the strategy meeting:

Everybody unanimously stated that for myLibro Plc. the main goal is the optimization
of its enterprise profits. This is to be accomplished in the following ways: increase of
domestic market share, opening up new markets, and cost reduction are considered es-
sential. Concerning the increase of domestic market share, necessary measures should

PROCESS MODELING USING EVENT-DRIVEN PROCESS CHAINS 143

be taken that particularly aim at the increase in customer satisfaction by improvement
of product quality and reduction of throughput time.

What would the diagram look like?

Exercise 4. Organization View

Dr. Percy, manager of myLibro Plc., would like to have a depiction of the current
organizational structure because, due to rapid growth, function processing is all
haywire at the moment. You have to depict the hierarchical organization using an
organizational chart. Your interview with Dr. Percy produces the following infor-
mation.

Management is in charge of the company. All strategic decisions are made by manage-
ment. The sales, marketing, IT development, and finance departments are subordinate
to management. Sabrina Roofer is in charge of the sales department. This department
has the subdepartments customer service and logistics subordinate to it. A further
breakdown did not seem necessary because of the size of the enterprise. The sales as-
sistant, John Carpenter, is in charge of the logistics department. Mr. Carpenter fre-
quently stands in for Ms. Roofer because she also works for a start-up in San Francis-
co. Customer service thereby takes care of booking customer orders, processing, as
well as customer support. The person in charge of the customer service department is
Alexander Barkeeper. Marketing requires creative heads. Experience has shown that
for this area it is necessary to have a combination of Internet marketing specialists as
well as classic product managers. We are lucky to have Manuela Hangover for this de-
manding job. Zlatko Shakesbier is in charge of IT development. He is in charge of
three programmers and one web designer. Because he, an IT freak, does not have a
clue about the requirements that the business demands of its systems, he has to rely on
the specification booklets of Ms. Hangover. John Endemol, the meticulous bookkeep-
er, is in charge of the finance department. In addition to these standard activities we
also carry out projects. Now we have the project “Virtual Book Community” going,
which is setting up a virtual magazine subscription club on the Internet. This project is
headed by Mr. Shakesbier and Mrs. Hangover.

What will your diagram of the organization look like?

Exercise 5. Control View—EPC

As a consultant to myLibro Plc., you were engaged to reorganize the process con-
cerning business trips. For a basis, you first want to ascertain the actual process.
Therefore, you question not only Ms. Roofer, who does a lot of traveling because
of her job in the sales department, but also the young secretary, Ms. Kermit, who
receives the requests of employees for approval by the manager. Model the
process as an event-driven process chain (EPC). Use the modeling rules from
Chapter 3.

The interview with Mrs. Roofer follows.

When a business trip is necessary, I make an application for a business trip, which I
hand in at the secretary’s office for approval. The application is normally approved by

144 SCHEER, THOMAS, AND ADAM

the manager after a while, and approval comes back to my post box. Then I ask around
to see whether our company car is available. If it is available, I book it, otherwise I or-
der a rental car. Then I make the business trip, and after it is over the accounting takes
place. If a business trip is not approved, I check whether I have to abandon it or inte-
grate it into another business trip at some other time. Otherwise, I go over my report
and hand it in at the secretary’s office.

The interview with Ms. Kermit follows.

If an employee places a request for a business trip, I check at first to see whether the
business trip is in accordance with the requirements for business trips at myLibro Plc.
Then I hand in the request with a note at the manager’s office. Only if the business trip
is accepted do I make a note of the employee and date of the business trip in the file. I
put the request, approved or rejected, into the mailbox of the employee.

What will your diagram of the business trip process look like?

REFERENCES

1. O. Adam, O. Thomas, and G. Martin. Fuzzy Workflows—Enhancing Workflow Man-
agement with Vagueness. In EURO/INFORMS Istanbul 2003 Joint International Meet-
ing, 2003, July 6-10. Istanbul, 2003. URL: http://www.tk.uni-linz.ac.at/EUROIN-
FORMS2003_Workflow/rc30_1.pdf [14.07.2003].

2. W.R. Ashby. General Systems Theory as a New Discipline. General Systems, 3 pp. 1-6,
1958.

3. M. B. Blake. Forming Agents for Workflow-Oriented Process Orchestration. URL:
http://www.cs.georgetown.edu/~blakeb/pubs/blake_ICEC2003.pdf [05.03.2004].

4. B. Bond, Burdick, D. Miklovic, K. Pond, and C. Eschinger. C-Commerce: The New Are-
na for Business Applications. Stamford, CT: Gartner Research, 1999.

5. P. P.-S. Chen. The Entity-Relationship Model—Toward a Unified View of Data. TODS,
11,9-36, 1976.

6. E. Denti, A. Ricci, and R. Rubino. Integrating and Orchestrating Services upon an Agent
Coordination Infrastructure. URL: http://www.ai.univie.ac.at/~paolo/conf/ESAWO03/ pre-
proc/E0011.pdf [05.03.2004].

7. W. Hoffmann, J. Kirsch, and A.-W. Scheer. Modellierung mit Ereignisgesteuerten
ProzeBketten: Methodenhandbuch; Stand, Dezember 1992. In Scheer, A.-W. (Ed.):
Veroffentlichungen des Instituts fiir Wirtschaftsinformatik, no. 101, Saarbruecken: Uni-
versitit des Saarlandes, 1992 (in German).

8. G. Keller, A. Lietschulte, and T. A. Curran. Business Engineering mit den R/3-Referenz-
modellen. In A.-W. Scheer and M. Niittgens (Eds.): Electronic Business Engineering.
Heidelberg: Physica, 1999 (4. Internationale Tagung Wirtschaftsinformatik 1999), pp.
397-423 (in German).

9. G. Keller, M. Niittgens, and A.-W. Scheer. Semantische ProzeBmodellierung auf der
Grundlage “Ereignisgesteuerter ProzeBketten (EPK).” In A.-W. Scheer (Ed.): Verdf-
fentlichungen des Instituts fiir Wirtschaftsinformatik, no. 89, Saarbruecken: Universitét

10.

11.

12.

13.

14.
15.

16.

17.

PROCESS MODELING USING EVENT-DRIVEN PROCESS CHAINS 145

des Saarlandes, 1992. URL http://www.iwi.uni-sb.de/Download/iwihefte/heft89.pdf
[20.02.2003] (in German).

G. Keller and T. Teufel. SAP R/3 prozeforientiert anwenden: lIteratives Prozef3-Proto-
typing zur Bildung von Wertschopfungsketten, 2nd ed. Bonn: Addison-Wesley, 1998 (in
German).

G. Keller and T. Teufel. SAP R/3 prozessorientiert anwenden: Iteratives Prozess-Proto-
typing mit Ereignisgesteuerten Prozessketten und Knowledge Maps, 3rd ed. Bonn: Addi-
son-Wesley, 1999 (in German).

A. Rapoport. General System Theory: Essential Concepts and Applications. Tunbridge
Wells: Abacus Press, 1986.

A.-W. Scheer. Architektur Integrierter Informationssysteme: Grundlagen der Un-
ternehmensmodellierung. Berlin: Springer-Verlag, 1991 (in German).

A.-W. Scheer. ARIS—Business Process Modeling, 2nd ed. Berlin: Springer, 1999.

H. Smith and P. Fingar. Business Process Management: The Third Wave. Tampa, FL:
Meghan Kiffer Press, 2003.

L. von Bertalanffy. General System Theory: Foundations, Development, Applications.
New York: Braziller, 1968.

T. Whitney. Collaboration Meets Process Integration. Transform Magazine, 10, 9, 32—
37, 2001. URL: http://www.transformmagazine.com/db_area/archs/2001/09/tfm0109f1.
shtml?enterprise_468 [01.01.2004].

I CHAPTER 7

Process Modeling Using Petri Nets

JORG DESEL

7.1 INTRODUCTION

Petri nets can be seen as a modeling language and formalism, as a methodology
supported by toolsets developed by commercial vendors and by academic institu-
tions, as a theory with a long tradition and hundreds of theorems, as a scientific dis-
cipline, and, sometimes, even as a philosophy. This chapter is about process model-
ing using Petri nets, so not all the aspects mentioned above will be addressed, but
only those relevant in the context of processes and information systems. However,
instead of just providing the necessary definitions and notions, I also try to present
the underlying ideas—the “spirit of Petri nets”—and provide some illustrative ex-
amples.

The title of this chapter includes the word “using” rather than “in,” “by,” or “by
means of.” This is due to the fact that Petri nets are employed in process modeling
in different ways. Process models can be directly expressed as Petri nets, and there
are numerous examples of successful applications of Petri net models in practice.
Since Petri nets do not only have a nice and intuitive graphical notation but also a
sound mathematical foundation, including deep results regarding the relations be-
tween process models and their behavior, they are a frequent choice as a reference
formalism for other languages that share some common principles with them. This
applies in particular to numerous Petri net variants, which are sometimes tailored
for specific application domains. It also applies to notations that are not termed
“Petri nets,” but share some similarities with them, such as UML activity diagrams!'
or event-driven process chains presented in previous chapters of this volume. Fur-
thermore, Petri nets share some fundamental similarities with process algebras.

Section 7.2 gives a very short introduction to Petri nets. Since Petri nets will be
considered as a semantical foundation and as a modeling language in their own
right, we distinguish the mathematical, graphical, and programming views.

'As discussed in Chapter 5, activity diagrams in UML 2.0 have a semantics informally defined in terms
of Petri net concepts.

Process-Aware Information Systems. Edited by Dumas, van der Aalst, and ter Hofstede 147
Copyright © 2005 John Wiley & Sons, Inc.

148 DESEL

Section 7.3 shows how single processes can be modeled by elementary Petri nets.
In this section, phenomena like choice, concurrency, and deadlocks are discussed.
Resources play no important role for single processes, but do for sets of processes
that compete for resources, as will be shown in Section 7.4. In Section 7.5, we in-
troduce high-level Petri nets for single models of multiple processes and for the in-
tegration of data. Section 7.6 is devoted to behavioral aspects and refinement. A
short introduction to analysis issues is given in Section 7.7. Finally, we introduce
structurally restricted net classes in Section 7.8. Workflow nets, defined in this lat-
ter section, will be employed in the three subsequent chapters, namely Chapter 8
(on process patterns), Chapter 9 (on process design), and Chapter 10 (on process
mining). At the end of this chapter, five exercises are provided.

7.2 PETRINETS

Petri nets are models of distributed and concurrent discrete dynamic systems for
which local consequences of operations and local influences of object states play
the most important roles. In particular, Petri nets are useful for modeling systems
for which behavior is dominated by the flow of information, objects, control, and so
on, that is, by give and take operations. In contrast, read and write operations are
not representable in a canonical way, though they can be simulated by Petri nets.?

Petri nets allow the illustrative and precise representation, simulation, and analy-
sis of information and control flow of concurrent components and of synchroniza-
tion phenomena. Applications include systems and processes in the area of auto-
matic control, distributed algorithms solving synchronization problems in
communication systems, and information systems, together with their business
processes. In this chapter, emphasis is on the last topic.

Carl-Adam Petri’s Doctoral Thesis, published in 1962, was the foundation of what
was later called Petri net theory. Since then, numerous variants of Petri net classes
have been established. The general popularity of Petri nets in science and in practice
is due to the simple and mathematically sound language, the uniform graphical rep-
resentation of Petri nets, and the formal semantics of Petri net models, which is a pre-
requisite for simulation and analysis methods. Extensions of the original Petri net
model allow one to express specific phenomena of the various application areas.

For a general introduction to Petri net theory, see [19, 20, 15, 16, 8]. Application
of Petri nets in the area of business processes can be found in [18, 3, 5] and in books
on business process management [2, 4, 14]. Performance analysis is relevant to
business process modeling when throughput times, average load, and so on are con-
sidered. To this end, Petri nets equipped with time or stochastic time distributions
are employed. See [6] for an introduction to stochastic (timed) Petri nets and [17]
for a survey on results of the class of generalized stochastic Petri nets. Reference [3]
provides some examples for the application of stochastic nets in the area of business

2Other formalisms like abstract state machines [7] are primarily based on read and write operations on
variables and can express give and take operations only indirectly.

PROCESS MODELING USING PETRINETS 149

process models. For links to bibliographies on Petri nets, see the virtual world of
Petri nets’ on the Web.

The distinction between Petri nets as a visual language, as a mathematical theo-
ry, and as a formal language is important when Petri nets are compared or combined
with other approaches. Taking Petri nets as a modeling language, they are viewed
as a visual language. When Petri nets are used as an underlying semantics of anoth-
er language, then the mathematical theory of Petri nets is considered. Applications
need a computer-supported representation of Petri nets to apply simulation and
analysis techniques. Therefore, Petri nets have to be given as a formal language in
this area. No matter how a Petri net appears, there are some dominant underlying
principles that make a net a Petri net. These aspects will be explained in the remain-
der of this section, after presenting an introductory example. For a deeper discus-
sion, see [12].

7.2.1 Introductory Example

Let us consider a very simple business process of a company that deals in cars. The
process is always initiated by the request of a customer who wants to buy a car with
some specification (task inif). The company has a department U for available used
cars and another department N for new cars that have to be ordered. For simplicity,
we assume that, for each specification, either a used car exists or a new car can be
ordered that matches the specification. So we have the task find used, performed by
an employee of department U, which, after successful termination, is followed by
the task sell used. Analogously, an employee of department N can execute the task
find new, possibly followed by order new.

To reduce waiting time for the customer, the tasks find used and find new are en-
abled concurrently after the initial task init. As soon as find used terminates suc-
cessfully, sell used is executed. Execution of the latter task also requires and re-
moves the request from department N, that is, it disables find new. Similarly, the
task order new can be executed after successful termination of find new, and it re-
moves the request from department U.

The normal and successful execution sequences of this process are init, find used,
sell used, and init, find new, order new. The reader might have noticed that, due to the
concurrent find tasks, two more execution sequences might happen, namely, init, find
used, find new and init, find new, find used. After these sequences, the task sell used
is not enabled because it requires the request from department N, which is no longer
available. Similarly, order new is also not enabled because it requires the request
from department U. Therefore, the process got stuck in a deadlock.

It is very possible that the reader does not agree with the above observation be-
cause he or she might have a different understanding of the process description.
Hence, it is necessary to formulate this description in a more precise way. The main
aim of business process modeling is to provide formal means for a precise descrip-
tion of business processes, using languages with formal syntax and semantics.

3http://www.informatik.uni-hamburg.de/TGI/PetriNets/

150 DESEL

Moreover, the models defined in such a language should be both easy to generate
and to understand, that is, they should support the communication of business
process models. Another aim is the identification of possible flaws in process de-
scriptions, such as the possible deadlock in the example above. Furthermore, formal
process models can be used for performance analysis, for resource planning, and as
inputs for workflow management systems.

There are several ways to describe the above process description in a formal
way. Concentrating only on the tasks and their respective order would lead to the
picture shown in Figure 7.1. The facts that sell used can only occur if find new did
not occur and that order new can only occur if find used did not occur is not repre-
sented in this figure because the representation of the requests is missing.

If we emphasize states instead of tasks, then we might come up with the picture
shown in Figure 7.2. In this representation, the deadlock is clearly depicted. How-
ever, the information about the concurrency of find used and find new is lost. It
rather looks like there was a decision made right after the initial task to start either
with find used or with find new (in both cases, it would be easy to disallow the sub-
sequent occurrence of the other task).

Petri nets represent tasks by transitions (rectangles) and distributed states by sets
of places (circles). A Petri net picture of our example is given in Figure 7.3. An arc
leads from a place to a transition representing a task if this place represents a pre-
condition for the execution of the task. Similarly, arcs from transitions to places in-
dicate the set of postconditions. Places can carry a token, as is the case for the place
customer request initially. The occurrence rule states that a transition can occur if
(and only if) all its preconditions carry a token. The occurrence removes a token
from each precondition and adds a token to each postcondition. In our example, ini-
tially only the transition representing the task init is enabled, and its occurrence
leads to the state in which the places request for U and request for N carry one to-
ken each (and all other places are unmarked). At this state, both transitions repre-
senting the find tasks are enabled. They are enabled concurrently because they do
not share a common precondition, that is, they do no not compete for a token. If
both transitions occur, then afterward no transition is enabled and we reach a dead-
lock. Otherwise, execution of find used and sell used leads to the state successful
termination, and so does execution of find new and order new.

7.2.2 Petri Nets as a Visual Language

There is no need to argue that the two dimensions provided by a graphical language
have significant advantages for specifying, communicating, and understanding con-
cepts and ideas in general, compared to one-dimensional textual languages. Specifi-
cation and communication of dynamic systems is one of the main applications of
Petri nets in practice.

A typical definition of a Petri net based on its graphical appearance is:

A Petri net is a directed graph with two different types of nodes: places,
represented by circles (or ellipses), and transitions, represented by rec-

PROCESS MODELING USING PETRINETS 151

find sell
used used

N

find order
new new

Figure 7.1 Representing the tasks and their order.

used car
found

find used sell used

successful
termination

customer
request

requests for

U and N deadlock

find new order new

new car
found

Figure 7.2 Representing the states and state transitions.

request find used car sell
for U used found used

successful
termination

request find newcar order
for N new found new

Figure 7.3 Representing the business process by a Petri net.

152 DESEL

S1

Q

So

® -

e

S2
1O
S3 sS4

Figure 7.4 A Petri net.

tangles (or bold bars). Petri nets are bipartite, that is, no arc connects two
places or two transitions. Nodes and arcs can have various annotations.

Figure 7.4 shows the same Petri net as Figure 7.3. Here we consider the Petri
net more formally, without referring to the previous interpretation as a business
process of a car vendor company. Places and transitions of the Petri net are anno-
tated by their names, s,, s, 55, 53, S4, S, and a, b, ¢, d, e. Since all names are dif-
ferent, that is, since the annotation mapping is injective, we can identify the places
and transitions with their names. In other words, the net has places s;, . .., s, and
transitions 4, . . ., e. The places also have annotations representing a marking. The
place s; carries one token and all other places carry no token. Arcs have no anno-
tations in this example.

Petri nets are not only supported by graphics but each Petri net is a special di-
rected (sometimes annotated) graph. In general, annotations play an important role,
but they can often be replaced by graphical means. Formal annotations have to be
distinguished from informal decorations that might help understanding the compo-
nents of a Petri net (as is the case for the net shown in Figure 7.3). In contrast to
semiformal languages, in Petri net theory there is always a very clear distinction be-
tween elements belonging to the language (and hence having influence on behav-
ior) and formally irrelevant comments.

In some sense, we just confused mathematical graphs with graphical notations.
Mathematical graphs do not indicate the relative position of nodes, the style of arcs,
and the like. This is the case for Petri nets, too.* However, the topology of a drawn
Petri net is important from a pragmatic perspective.

7.2.3 Petri Nets as Mathematical Structures

Mathematically, a Petri net graph is given by two sets of nodes (places and transi-
tions) and a binary relation representing the arcs. So a typical mathematical defini-
tion of a Petri net is:

“In contrast, graphical languages such as SADT [21] distinguish arcs touching a node at its right, left, up-
per, or lower sides.

PROCESS MODELING USING PETRINETS 153

A Petri net consists of two disjoint sets S (places) and T (transitions)
and a binary relation F C (S x T) U (T x S) (flow relation).

The letter S for places is from the original German word “Stelle” for “place.” Often,
P is used instead.
In the above example, we have

S = {Sh 815 82, 83, S45 SO}
T= {a’ bs ¢, d9 e}

F= {(Sb a)a (Sln b)a (Sl’ 6), (S29 C), (S39 C), (S3n d)a (S4’ e)’ (aa Sl)n (aa SS))
(ba S2)7 (Ca So)’ (d’ S4)> (es So)}

For technical convenience, it is often required that the sets S and T are finite and
not empty. Moreover, it is useful to consider connected Petri nets, that is, Petri nets
satisfying (F U F-)* = (S U T) x (S U T). Graphically speaking, a connected Petri
net is a Petri net that cannot be drawn as two nets without connection, both having
at least one node.

When are two nets identical? Taking nets as mathematical structures, two nets
are identical if their sets of places, transitions, and arcs coincide. However, the
graph layout of two identical nets might be completely different. Conversely, two
drawn Petri nets that look identical might differ because the nodes of the nets repre-
sent different sets of places and transitions. If a drawn net has no annotations repre-
senting names of nodes, then it refers to a class of isomorphic nets, where isomor-
phism is defined by suitable bijections between places and between transitions such
that the flow relation is preserved.

Usually, a Petri net can be equipped with markings, where a marking is a map-
ping from the set of places to some domain. The definition of a Petri net frequently
includes one initial marking. This marking is often denoted by m,, and it is depicted
in the graphical representation of the net.

7.2.4 Petri Nets as a Formal Language

Formal languages and mathematical structures are not the same. A formal language
syntactically describes a mathematical structure, which has its identity on a seman-
tic level. To understand the difference, consider the two character strings {1, 2, 3}
and {3, 2, 1}. They are syntactically different but describe the same set of three
numbers. Since the only way to talk or write about mathematical structures is to use
some kind of syntactically defined language, the distinction between the semantical
and the syntactical level is often neglected. In fact, the previous section also used
syntactical means to describe a mathematical structure.

A usual way to formalize Petri nets, which is relevant only on the syntactical lev-
el, is to present their components in triplets: N = (S, T, F'). The initial marking is in-
cluded in the definition if we use a 4-tuple: N = (S, T, F, my).

In general, there are many ways to describe Petri net components syntactically

154 DESEL

such that this representation can be in- and output to Petri net tools. For example,
the Petri net markup language PNML [22] is based on XML. Sometimes, the infor-
mation about the graphical layout of a Petri net is included in the syntactical repre-
sentation, and sometimes it is not.

Petri nets and similar languages are often used as a process description language
in workflow systems [3]. In this application area, a Petri net is input to a workflow
management system that executes the automatized business process, based on the
process description (see Chapter 2).

7.2.5 Principles of Petri Net Theory

Different Petri net classes allow modeling on different abstraction levels. Indepen-
dent from the concrete net class and from representation issues, the Petri net com-
ponents have a clear interpretation:

® A place represents one or many objects. Each object is always in some state.

® A transition represents one or many operations, which are only possible at
specific states of objects and which change the state of specific objects.

® The occurrence rule determines under which object states a transition is en-
abled to fire (enabling condition), that is, the respective operation can occur,
and which state changes are caused by the firing of the transition.

® By the principle of locality, the enabling condition of a transition and the state
changes caused by its firing concerns only places that are directly connected
to the transition by an arc (in either direction). Conversely, a state of a place
only influences transitions in the immediate vicinity of the place, and it can
only be changed by firings of these transitions.

The last item is of particular importance. In large and complex systems with in-
creasing indirect dependencies, it seems that everything is somehow related to
everything and no detail can be understood. This holds in particular for graphical
models based on automata, where each node represents a global state. For Petri
nets, the local vicinity of each node corresponds to the logical or physical vicinity
of the represented object or task, which is usually bounded even for complex sys-
tems. So the local vicinity of net elements does not increase in general. Hence, even
large Petri net models, composed from many components, remain comprehensible
because, for each detail, emphasis is on the local relations between elements.

7.3 PETRI NET CLASSES AND BEHAVIOR

Before discussing Petri net models of business processes in the next sections, we
provide some general definitions for the behavior of elementary Petri nets and high-
level Petri nets.

The following notations will be useful. We will always consider a net with S be-
ing the set of places, T the set of transitions, and F'the set of arcs.

PROCESS MODELING USING PETRINETS 155

For a transition ¢, the preset of ¢ is the set of places s from which a directed arc
leads to ¢. It is denoted by °t, that is, *r= {s| (s, #) € F'}. Similarly, t* = {s | (¢, 5) €
F} is the postset of t. The elements in the preset of a transition are called precondi-
tions, the elements in the postset postconditions. Analogously, *s and s°® denote the
pre- and postset of a place s.

A path of a net is a sequence of net elements (places and transitions) such that
each element except the first one is in the postset of its predecessor in the sequence.
A path is a cycle if its last element is identical to its first element.

7.3.1 Elementary Petri Nets

Elementary Petri nets are the original variant of Petri nets.> Tokens on a place of an
elementary Petri net cannot be distinguished. Therefore, in an elementary Petri net
the state of a place is given by a nonnegative integer, representing the number of to-
kens on the place. Consequently a marking, representing a global state, is a map-
pingm: S— {0,1,2,...}.

Graphically, a marking m is depicted by m(s) black dots in the place s, for each
place s. Mathematically, if some order is defined on the set of places, a marking can
also be represented by a vector. For example, (1, 0, 0, 0, 0, 0) is the marking of a net
with six places s;, s, . . ., 84, 5, Which assigns one token to the place s; and no token
to the other places (compare Figure 7.4).

The enabling condition requires that a transition # is only enabled at (or by) a
marking m if each place in the preset of ¢ carries at least one token, that is, m(s) > 0
holds for each place s in °t. By the occurrence rule, the firing of t at m yields the
marking m' (notation: m 1> m"), defined by

m(s)—1 ifs € *tand s & ¢*
m'(s)=19 m(s) + 1 ifs € *tand s € ¢*
m(s) otherwise

In the example, the marking (1, 0, 0, 0, 0, 0) enables transition a. Firing a leads
to the marking (0, 1, 0, 1, 0, 0), which enables transitions b and d. Firing b at this
marking yields (0, 0, 1, 1, 0, 0).

An occurrence sequence, enabled at a marking m, is a sequence 7=1¢,t, t5 . . . t,,
n = 0, of (not necessarily distinct) transitions such that

holds for suitable markings m,, m,, ..., m, (notation: m--> m,). For n = 0 the se-
quence T is the empty sequence, enabled at any marking.

A marking m' is reachable from a marking m if there exists an occurrence se-
quence T satisfying m > m'. Given two markings m and m’ of a Petri net, it is de-

SThe name elementary Petri net should not be confused with elementary net systems. We consider ele-
mentary net systems as well as place/transition Petri nets to be elementary.

156 DESEL

cidable whether m’ is reachable from m (this is far from trivial and it was an open
problem for many years).
Now we are ready to give the necessary formal definitions:

An elementary Petri net is a Petri net equipped with an initial marking
that assigns to each place a nonnegative integer.

The set of reachable markings of an elementary Petri net is the set of
markings reachable from the initial marking.

An elementary Petri net is called bounded if for each place s there is a natural
number k such that m(s) = k for each reachable marking m. If the set of places of
the net is finite, boundedness coincides with finiteness of the set of reachable mark-
ings.

7.3.2 High-Level Petri Nets

At this point, the reader might wish to jump to Section 7.4 if he or she is not yet in-
terested in the more involved definitions for high-level Petri nets, and come back
here later.

In a high-level Petri net, a place can carry different tokens, which can be distin-
guished. Graphically, instead of drawing black dots, tokens are represented by suit-
able symbols for elements of the respective domains. A place can also carry the
same element more than once. Since colors can be used to distinguish tokens, vari-
ants of high-level Petri nets are also called colored Petri nets [16].

Each place s has an associated domain dom(s), which is the underlying set for
the possible tokens on that place. Formally, the current state of a place s is given by
a finite bag of tokens, that is, a mapping m: dom(s) — {0, 1, 2, . . .} satisfying m(x)
0 only for finitely many x in dom(s) (which ensures that no place carries infinite-
ly many tokens). Elementary Petri nets occur as a special case. The domain of each
place of an elementary Petri net is the singleton set {®}.

A marking, representing a global state, is given by the states of all places. Taking
dom(S) as the union of all domains of places, a marking is formally defined by a
mapping m: S — (dom(S) — {0, 1, 2, . . .}) satisfying, for each place s: m(s)(x) # 0
only for x in dom(s), and only for finitely many x in dom(s). As for elementary nets,
a high-level net is equipped with an initial marking.

A transition of a high-level net can fire in different firing modes. In each firing
mode, specific tokens are moved from and to the places in the pre- and postset of
the transition. The enabling condition requires for a firing mode that the corre-
sponding tokens exist in the preconditions of the transition. Formally, a mapping
assigns for each firing mode of a transition, and for each pre- and postcondition, a
finite bag over the domain of the place (see the above definition of the place’s
state). When the transition occurs in a given mode, then tokens are removed or
added to the respective place, according to this mapping.

Whereas high-level Petri nets have been defined mathematically, predicate/tran-
sition nets are syntactical variants that combine formal language with a graphical

PROCESS MODELING USING PETRINETS 157

Petri net representation. Each arc (from or to a place s) is annotated by a term that
might include variables. By assigning suitable values to these variables, the terms
are evaluated to bags over the domain of the place s. A firing mode of a transition is
given by a complete and consistent assignment of values to all variables appearing
at arcs in the vicinity of the transition, such that the domains of the respective places
in the pre- and postset are respected. The mappings mentioned in the previous para-
graph on firing modes correspond to the interpretation of the terms. Additionally, a
logical expression using the same variables can restrict legal assignments of vari-
ables. This so-called guard of a transition must evaluate to #rue for a variable as-
signment to enable the transition. An example for a predicate/transition net will be
given in Section 7.5.2.

7.4 MODELING SINGLE PROCESSES WITHOUT RESOURCES

Now we turn to modeling of processes. Since we aim at providing a suitable model-
ing language, we have to discuss what we mean by a process first.

A process consists of tasks that have to be executed. These tasks can be
in some order (sequentially), stating that one task can only be executed
after the execution of another task is finished. If two tasks are not or-
dered, then they can be executed concurrently. Tasks can also be alter-
native, that is, if one task is executed, then the other task is not executed
and vice versa. Tasks can be executed more than once in general.

A process can be in different states. A process starts with an initial state
(which is not necessarily unique) and might end with a final state
(which is also not necessarily unique). Usually, it passes through sever-
al intermediate states.

In this definition, we did not consider usual ingredients of process definitions
that have to do with business issues because they will not be represented in our first
model. However, one should bear in mind that each process run (or process execu-
tion) should eventually reach a final state because the final state represents success-
ful termination of the process. Other issues, partly addressed in later sections, con-
cern the usage of resources and performance aspects.

According to [1], we call the execution of a task an activity. Therefore, a process
consists of tasks, whereas each possible run of the process consists of activities re-
ferring to the tasks. The order between tasks mentioned in the above definition car-
ries over to activities in runs; activities can be ordered, concurrent, or exclude each
other in case of alternative tasks.

7.4.1 Elementary Building Blocks

The order between tasks is constituted by conditions. If one task can only be exe-
cuted after another task, then a postcondition of the former task is a precondition of

158 DESEL

the latter. We will employ particular elementary Petri nets to model single process-
es. Tasks are represented by transitions and activities by transition occurrences.
Pre- and postconditions of tasks are modeled by places that are in the post- and pre-
sets of the respective transitions. The idea is that for ordered tasks, the first transi-
tion occurrence produces a token on the place, whereas the second transition is only
enabled after this token is produced, and it consumes the token (see Figure 7.5).

Since places play the role of conditions now, they can only be in two distinct
states: frue and false. Therefore, a place should have only two possible states,
marked (with one token) and unmarked. In other words, we require that the elemen-
tary Petri net is not only bounded but has the bound 1 for all places. Petri nets en-
joying this property are called /-safe (or just safe).

Unfortunately, it is not obvious to see (though decidable) whether a given ele-
mentary Petri net is 1-safe or not because, by definition, all reachable markings
have to be considered. Therefore it makes sense to demand 1-safety for each place.
We just do not allow a transition firing that would add a second token to a place
(this is called a contact situation). Alternatively, we can modify each elementary
Petri net in such a way that the resulting net is 1-safe, which is discussed next.

For each place s which might violate 1-safety, we add a complement place s with
*s =s°*s and 5°= *s\s*® (see Figure 7.6). The initial marking m, is extended to the
additional places by my(s) = 1 — mq(s). It is not difficult to observe that, in this en-
larged net, every reachable marking m satisfies m(s) + m(s) = 1. Hence s carries at
most one token. Moreover, a transition is enabled at a marking in the original net
(respecting contacts) if and only if the transition is enabled at the corresponding
marking in the extended, contact-free, net. The behavior is not changed by the mod-
ification.

Concurrency and alternatives are also easily represented by transitions and
places. Alternative tasks are modeled by transitions that share a common place in
their presets.

The transitions can only be enabled when the place is marked. Since it carries at
most one token, the occurrence of one transition disables the other transition. So
there is a choice (or conflict) between the transitions. Sometimes, the forward-
branching place is called an OR-split. Corresponding OR-joins are modeled by
backward-branching places (see Figure 7.7). Nothing is said about the actual choice
taken in a particular run. This might happen alternatingly, with some given proba-
bilities, always in favor of one transition, or following any other strategy.

Concurrent tasks are modeled by transitions with disjoint pre- and postsets,
which are both enabled at some marking. Figure 7.8 shows a forward-branching
transition (an AND-split) distributing tokens to two places such that both subse-

HHOHH

Figure 7.5 Sequence of tasks.

PROCESS MODELING USING PETRINETS 159

- s

s

Figure 7.6 Adding a complement place.

quent transitions are enabled concurrently. Concurrency comes with synchroniza-
tion, the backward-branching transition can only fire after both the upper and the
lower lines of tasks have finished (an AND-join).

7.4.2 More-Involved Building Blocks

As a process should have an initial state, so should its model. We could choose any
initial marking as a representation of the initial state. However, it is convenient to
have one special input place s; with an empty preset. This place (and no other place)
carries a token initially. Therefore, only transitions in s; are enabled initially. Like-
wise, the final states are represented by markings assigning a token (only) to a spe-
cial output place s, which has an empty postset.

The example shown in Figure 7.4 represents a process in its initial state (only
place s; marked). After firing transition a, representing an initial task, transitions b
and ¢ can fire sequentially and, alternatively, d and e. Both sequences lead to a
marking in which only s, is marked, representing the legal final state. As discussed
in the introduction, there are more runs of this process: After firing a, transitions b
and d are enabled concurrently. After firing both, a marking is reached that enables
no transition and does not mark the place s,. Hence, this run never reaches a final

Figure 7.7 Choice.

160 DESEL

Figure 7.8 Concurrency.

state but, rather, a deadlock. The process is considered ill-designed because a dead-
lock can be reached.

In the following, we suggest four possible solutions to repair the process, at the
same time explaining some modeling building blocks of Petri nets.

The first solution, shown in Figure 7.9, adds arcs (s;, d), (d, s,), (s3, b), and (b,
s3). For the sake of readability, these two small loops are depicted by arrows with
two arrowheads. Due to the loops, transition d is no longer enabled after b has fired,
and vice versa. So the bad run is excluded.

In the second solution, shown in Figure 7.10, the additional place s5 ensures that,
after firing transition a, transitions b and d are in a conflict situation. So only one of
both can occur, and we are done.

The third solution adds the transition d’, the complement to transition d (Figure
7.11). This transition ensures that after reaching the deadlocked state, the effect of
transition d can be reversed, and ¢ can become enabled again, leading to the final
state. In this solution, the number of possible runs is infinite, because transitions d
and d' can always continue to fire alternatingly. It is even possible that d always
fires after d’, and vice versa, so that the final state is never reached. Since either ¢ or
e is also enabled infinitely often during the sequence, fairness assumptions ensure
that eventually one of these transitions fire. Another solution to this problem is to

s

Cc

So

Q

® -

S2
JRORE
S3 S4

Figure 7.9 Adding loops.

PROCESS MODELING USING PETRINETS 161

s1

So

S3

Figure 7.10 Adding a conflict.

assume priority of transition c. If both transitions ¢ and d are enabled, then only ¢
should fire.

Figure 7.12 shows the last solution. Here, the possible behavior is restricted.
Transitions b and e occur alternatingly, and so do transitions ¢ and d. The depicted
initial marking will lead to consequences of d and e, whereas for the next run of the
process transitions b and ¢ will occur. In this example, the initial marking not only
marks s; but also either of the two additional places (and similarly for the final
markings and s,,).

7.4.3 Modeling Repetitive Processes

In the previous example, we talked about a subsequent run after the first run. In oth-
er words, we added a new token to the initial place s; after the first token was con-
sumed for the first run. Hence, it makes sense to add an input transition ¢, to s; that
generates input tokens, and, similarly, an output transition ¢, to s, (see Figure 7.13).

In this Petri net, transition ¢, can fire arbitrarily, spoiling 1-safety. Moreover,
deadlocks cannot be identified anymore. After firing the occurrence sequence
t; a b d (which previously led to a deadlock), now transitions ¢; a ¢ t, e t, can occur,

s1 s2

O

So

d!

Figure 7.11 Adding a complement transition to d.

162 DESEL

S1 S2

So

%

s3 sS4

Figure 7.12 Adding places for alternation.

leading back to the empty marking. So the input transition should only occur again
after the first run has come to an end. Therefore, we glue input and output transi-
tions, and this way close the circuit between s, and s,. This is shown in Figure 7.14
for the Petri net of Figure 7.12.

The obtained Petri net has a property that is important in Petri net theory: it is
live. Liveness means that not only every reachable marking enables some transition,
but also enables a sequence containing all transitions. In other words, every transi-
tion can always become enabled again. Liveness together with safety is called
soundness for a slightly restricted class of Petri nets in [1]; see Subsection 7.8.4.

7.5 MODELING PROCESSES WITH RESOURCES

Tasks of processes need resources to be executed. Resources can be humans, ma-
chines, computing time, and so on. Resources can be grouped in resource classes.
The execution of a task needs specific numbers of resources from respective re-
source classes. Typically, a single resource cannot be used by more than one task si-
multaneously.

Several processes might compete for resources. That is, during the execution of
several processes, resources are assigned to tasks. Some tasks might not be exe-
cutable yet because necessary resources are missing. This appears only for scarce

so to

Q

Si

b—»@—»c
%

Figure 7.13 Adding input and output transitions.

PROCESS MODELING USING PETRINETS 163

O

Si

So

O

Figure 7.14 Adding a transition closing the circuit.

resources, that is, resources of some resource class that are not available in a suffi-
cient number to handle all concurrent tasks of all processes. Conversely, resources
that are always sufficiently available are not relevant in this sense (they are impor-
tant when cost aspects are considered; see [11, 13]).

Resource competition might also occur for single processes if two concurrent
tasks need the same resource. More severe problems arise when many processes run
concurrently, using the same restricted set of resources.

7.5.1 Modeling Resources with Elementary Petri Nets

The most obvious way to model resources with elementary Petri nets is to use addi-
tional places, one place for each resource class. The initial marking of such a re-
source place is the number of resources available for the class. Then, a complete
Petri net model consists of a number of Petri nets representing the concurrent
processes, partially connected by the resource places. These processes can be iden-
tical (if several instances of one process run concurrently) or different.

Figure 7.15 shows an example. We have two instances of the same process and
one instance of a different process. Transitions «,, a,, and d cannot occur concur-
rently because they access a resource which is available only twice. The resource
used by by, b,, and f'is available only once. It is easy to observe that the resource
places are always bounded but, in general, not 1-safe. In fact, they never change
their number of tokens.

In this example, we have two disjoint resource classes. In real processes, how-
ever, it often appears that resource classes are not disjoint. Consider, for example, a
task that needs to be performed by a male employee and a concurrent task that
needs an employee who is not older than 55 years. Then, the resource class of all
employees of the company involved has to be divided in four disjoint subclasses:
young males, old males, young females, and old females. The former task accesses
a resource from young males or from old males, whereas the latter accesses a re-
source from young males or from young females. See Figure 7.16, where ym stands
for young males, om for old males, yffor young females and of for old females.

164 DESEL

O

OO L
o RORDEON -

Figure 7.15 Adding resource places.

Until now, we modeled access to resources by a transition representing a task
and by places representing the corresponding resource classes. The semantics of
this approach is that either all necessary resources are taken simultaneously or none
of them are allocated. The matter becomes more complicated if the resources are al-
located in some order, which is a more realistic setting. Then, a refined view of a
task requiring two resources could look like that in Figure 7.17.

Combining two processes that compete for the same two resources may lead to
the Petri net shown in Figure 7.18.

After firing transitions « and e, no transition is subsequently enabled. The Petri
net reached a deadlock, due to the resources. This phenomenon appears for all sys-
tems of processes that access resources concurrently. It is called the resource allo-

om yf of

Figure 7.16 Four resource classes.

PROCESS MODELING USING PETRINETS 165

allocate resource1 allocate resource2 release resource1 release resource2

Figure 7.17 Separate allocation and release of resources.

cation problem. Many solutions to avoid deadlocks or to identify and solve a dead-
lock by resetting a resource allocation have been suggested in the literature.

The same problem occurs when resources are not allocated to single tasks but to
sets of tasks in a single process. For example, it might make sense to allocate a hu-
man resource for three subsequent tasks of a process, without releasing the resource
after each task execution. The danger of deadlocks is always present when a process
can demand an additional resource while it is already utilizing a resource.

7.5.2 Modeling Processes and Resources with High-Level Petri Nets

Modeling several instances of the same process by separate elementary Petri nets,
as shown in Figure 7.15, is clumsy and leads to huge nets that are not easy to under-
stand in general. The same holds for resources with multiple classification, as in
Figure 7.16. A very elegant way to model the same behavior in a more compact
way is to use high-level Petri nets. Figure 7.19 provides a predicate/transition net
model for four process instances py, ..., ps, Where p; and p, refer to the same
process and p and p, refer to the same process. The resource place contains all em-
ployees in terms of pairs, where the first component is m for males and f for fe-

allocate resource1 allocate resource2 release resourcel release resource2

allocate resource2 allocate resourcel release resourcel release resource2

Figure 7.18 Deadlock caused by resource allocation.

166 DESEL

Employees, containing
initially several copies of
(m.y), (m,0), (fy), and (f,0)

Figure 7.19 Modeling with high-level Petri nets.

males, whereas the second component is y for young employees and o for old ones.
Then, transition @ can only fire for males and transition d only for young employ-
ees.

An elementary Petri net for the process representation with two (black) tokens in
the initial place does not serve the same purpose. In the above model, after firing
transition d for p; and transition e for p,, transition f'is not enabled, because the two
tokens on its input places do not match—none of the two processes have completed
the tasks represented by d and e. Taking an elementary Petri net instead, the tokens
in the preset of transition f'could not be identified as mismatched, and so the transi-
tion f'would be enabled, which is not desired.

Another advantage of high-level Petri nets for modeling a collection of process-
es is the ability to create new process instances during run time. Adding an input
transition to the initial place of a process, new and different instances are created
with every occurrence of the transition (see Figure 7.20). To ensure that new
process instances are represented by different high-level tokens, we chose increas-
ing natural numbers as names. This input transition could also be triggered by tran-
sitions of other processes.

Since high-level Petri nets can also be used to assign data to tokens, they allow
an integrated view of processes and data. In [18], each place is considered a relation
scheme and each marking of a place a relation with tokens being tuples. In contrast,

OO] O

n+1 n Si So

Figure 7.20 Creation of process instances.

PROCESS MODELING USING PETRINETS 167

[1] assigns only the part of data to tokens that is necessary to make choices (routing
information). For example, if an alternative in a process depends on some number
relevant to the process instance, then this number—but not all data of the process
instance—is represented by the token. Guards at the conflicting transitions make
sure that, according to the value of the number, always only one of the conflicting
transitions can occur.

7.6 BEHAVIOR AND REFINEMENT

We mentioned runs of processes in Section 7.4, and we defined sequences of transi-
tion occurrences called occurrence sequences in Section 7.3.1. We claim that these
two notions do not really agree, although, in most contributions in this area, occur-
rence sequences are used for formalizing behavior of Petri nets. Since an occur-
rence sequence is just a sequential representation of behavior, causality and concur-
rency are not expressed explicitly. In other words, if some transition appears after
another transition in an occurrence sequence, then it might be causally dependent
on the previous transition occurrence (that is, it uses a token produced by the first
transition), or both transitions occur concurrently and appear in the sequence in an
arbitrary order. In this section, we argue that runs are more appropriately modeled
by particular Petri nets called causal nets.

7.6.1 Causal Nets

As an example, let us consider the net shown in Figure 7.15 again. In each possible
run of all three processes, two of the three transitions, a,, a,, and d, occur concur-
rently. Now, consider the case in which a; and a, occur concurrently, whereas d
uses the resource token after a,. Moreover, b,, b,, and e share one resource and
have, thus, to be ordered in a run. Let us assume that this resource is first used by b,,
then by b;, and finally by f. The net shown in Figure 7.21 represents this run.

Each transition of a causal net represents a transition occurrence of the Petri net
modeling the process. Each place represents a token that either exists initially (these
places of the causal net are initially marked) or is produced by a transition occur-
rence. Formally, a causal net is a 1-safe elementary net that has no cycles. Its flow
relation represents immediate causality. The partial order given by the transitive
closure of the flow relation is the causality relation. In other words, a transition oc-
currence depends on another transition occurrence if both are connected by a se-
quence of directed arcs. Since transitions of a Petri net representing a process can
occur more than once, there might be several copies of such transitions in a causal
net. Since each token is produced by at most one transition occurrence and is con-
sumed by at most one transition occurrence, places of causal nets are neither for-
ward nor backward branched. In particular, if the Petri net (the process model) con-
tains a choice represented by a forward-branching place, then at most one of its

SWe avoid the usual term process net here because it is easily confused with a Petri net modeling a
process.

168 DESEL

Figure 7.21 A causal net.

output transitions appears in the postset of a respective place of a causal net, that is,
conflicts caused by choices are solved in runs. Finally, a transition occurrence pre-
cisely follows the specification given by the preset and postset of a transition. The
preset of a transition in a causal net corresponds to the preset of the corresponding
transition in the Petri net representing the process, and similarly for postsets.

The token game can be played for causal nets as for the original nets. Every oc-
currence sequence of a causal net is also an occurrence sequence of the original net.
Conversely, for each occurrence sequence of the original net there exists a causal
net possessing the same occurrence sequence. So this partial-order semantics agrees
with the previously defined sequential semantics.

One main advantage of causal nets is the efficient representation of runs, com-
pared to occurrence sequences. If there are many concurrent transitions, then their
concurrent firing is expressed by only one causal net but corresponds to many dif-
ferent occurrence sequences, where concurrent transition occurrences are arbitrarily
interleaved. Moreover, causal nets distinguish causality and concurrency very clear-

ly.

7.6.2 Refinement

As single tasks can be divided into subtasks, transitions can be refined to subnets.
Each subnet contains transitions, but it might also contain places constituting the or-
der of these transitions [11]. It is useful to consider only transition refinements with

PROCESS MODELING USING PETRINETS 169

b’

ORE 7O
ROROECN

Figure 7.22 A net representing a process.

distinguished input and output transitions such that the preset of the input transition
equals the preset of the refined transition, and the postset of the output transition
equals the postset of the refined transition.

Figure 7.22 shows an elementary net representing a process. Figure 7.23 shows
the refinement of transitions b and c. Figure 7.24 shows one causal net of the origi-
nal net, and Figure 7.25 a causal net of the refined net. The interesting point is that
this last net can also be obtained by refining the transition occurrences of the causal
net shown in Figure 7.24 by causal nets of the refinement nets.

7.7 ANALYSIS

This chapter on Petri nets does not focus on analysis issues, although most contribu-
tions in Petri net theory concern analysis. Instead of discussing analysis methods in
detail, we only give a rough classification of analysis methods and some examples.

7.7.1 Simulation

Simulation means creation of runs. Hence, a simulation tool can either construct oc-
currence sequences or causal nets. The runs are either visualized or undergo further
investigation. If one is only interested in properties of runs, then the created runs
can automatically be analyzed with respect to these properties and the results of this

Figure 7.23 Refinement nets.

Figure 7.24 A causal net.

analysis are shown to the user. Most approaches are based on occurrence se-
quences. Simulation by construction of causal nets is done in the VIP tool [10].”

Simulation can be used to find (and repair) design errors. Conversely, simulation
cannot prove that a Petri net is free of errors unless all possible runs are created.

Simulation is particularly useful when the performance of processes is investi-
gated based on their models. To this end, the models must have time annotations or
timing distribution functions. There is a large research field on timed Petri nets and
stochastic Petri nets; see [6, 17]. Also, probabilistic assumptions on conflict resolu-
tions belong to this area.

A combination of causal net simulation and performance analysis is given in
[13].

7.7.2 Model Checking

Model checking means entering a model and a specification into some program that
outputs positively if the model has the properties formulated in the specification, or
otherwise presents a counterexample to the specification in terms of a violating run.
Specifications can either be expressed in terms of some logical formulae or can be
standard properties such as liveness or 1-safety. Usually, model checking is a very
complex task, especially for high-level nets.

Most algorithms are based on the construction of all reachable markings and the
reachability graph of a Petri net. The nodes of this graph are the reachable mark-

7See http://www.informatik ku-eichstaett.de/projekte/vip.

Figure 7.25 A causal net of the refined net.

PROCESS MODELING USING PETRINETS 171

ings of the net, with distinguished initial marking. For each reachable marking m
and each transition occurrence m 1> m’, the reachability graph has a directed arc
leading from the node m to the node m’, annotated by 7. For elementary Petri nets,
the reachability graph is finite if and only if the Petri net is bounded. It is acyclic if
and only if the Petri net has no infinite run. It has a node without an exiting arc
(which does not represent an intended final state) if and only if it is not deadlock -
free. It is strongly connected if and only if the initial marking can always be reached
again.

The reachability graph of the elementary Petri net shown in Figure 7.4 is given
in Figure 7.26.

7.7.3 Proofs

Often, an automatic proof is hard to find for a model checker, but the process de-
signer can provide a short proof of desired properties. Proofs are hard to find but
easy to verify once they are found.

The most prominent example for this kind of proof method is given by place in-
variants. A place invariant assigns a weight to each place such that the weighted
sum of all tokens is not changed by any transition occurrence. A place invariant as-
signing a positive number to each place proves that an elementary net is bounded.

In the example net of Figure 7.4, the assignment of the number 2 to the places s;
and s, and the number 1 to the places s, to s, is a place invariant. Since the weight-
ed sum of tokens is initially 2, it will always be 2. This place invariant proves that
the net is bounded. It also proves that, whenever s, is marked, all other places are
unmarked (because one token on s, multiplied by the weight 2 yields the sum 2).

Transition invariants are assignments of numbers to transitions such that when-
ever each transition occurs as often as this number indicates, starting with a given
marking, this occurrence sequence leads back to the same marking. Hence, transi-
tion invariants correspond to occurrence sequences reproducing a marking. In the
example given in Figure 7.14, the only way to reproduce the initial marking is to
fire transitions a and ¢ twice and transitions b, ¢, d, and e once. The corresponding

S2 S3

S154

Figure 7.26 The reachability graph of the net of Figure 7.4.

172 DESEL

transition invariant assigns the number 2 to ¢ and to ¢, and the number 1 to the other
transitions. If some transition does not have a positive assignment for each nonneg-
ative transition invariant, then this transition does not occur in any occurrence se-
quence from the initial marking back to the initial marking. If we consider process
models with a transition closing the circuit from the output place s, to the input
place s;, such a transition indicates that there is a modeling error. For live and
bounded nets, no such transition can exist.

Place and transition invariants can be interpreted as solutions to homogenous
equation systems based on the so-called incidence matrix of a Petri net. For these
and more linear algebraic approaches to Petri net analysis, see [9].

A trap is a set of places that remains marked (i.e., contains a marked place) once
it is marked. This is ensured by the defining condition of a trap, which demands that
each transition removing a token from a place of the trap also adds a token to a
place of the trap. Similarly, a co-trap is a set of places that remains unmarked once
has it lost its last token, because each transition having a place of the co-trap in its
postset also has a place of the co-trap in its preset. More on traps and co-traps can
be found in [8].

In the example of Figure 7.4, the set of places {s,, sy, 53, 5,} constitutes a co-trap.
After firing transitions a, b, and d, this co-trap is unmarked, and will always remain
unmarked. At this marking, a deadlock is reached. For this reason, co-traps are
sometimes called deadlocks. In the net of Figure 7.9, the same set of places is also a
trap. So here, these places cannot loose all their tokens. Therefore, the marking with
only one token on s, and one token on s, is not reachable in this net.

7.8 NET CLASSES

We conclude this chapter with some classes of Petri nets. Each class is defined by a
structural restriction that has some semantical interpretation. For more information
about state machines, marked graphs, and free-choice nets see [8]. More on work-
flow nets can be found in [3].

7.8.1 State Machines

A state machine is a Petri net in which each transition has exactly one precondition
and exactly one postcondition. Moreover, state machines have initially one marked
place (which carries only one token). In a state machine, the single token can be
passed from place to place in the direction of the arcs. Sequence and choice can be
modeled, but there is no concurrency and no synchronization. Each state machine is
1-safe, that is, bounded with the bound 1.

A place of a state machine can be marked if and only if there is a path from the
initially marked place to this place. State machines are very simple to analyze. Re-
moving the places that can never be marked and all transitions in their postset yields
a state machine with the very same behavior. Its marking graph is obtained by re-
placing each transition together with its ingoing arc and outgoing arc by a single

PROCESS MODELING USING PETRINETS 173

@

oF .
(O

Figure 7.27 A state machine.

arc, annotated by the name of the transition. Hence, a state machine is live if and
only if it is strongly connected, and in this case the initial marking can always be
reached again.

The example shown in Figure 7.27 is a state machine modeling a simple process.
Each place can become marked but there is more than one terminating state.

7.8.2 Marked Graphs

In a marked graph, each place has exactly one transition in its preset and exactly
one transition in its postset. Therefore, transitions cannot compete for tokens and
choice cannot be modeled. Marked graphs can model sequence and concurrency. A
marked graph is live if and only if each cycle has at least one marked place initially.
Since the number of tokens on cycles is not changed by transition occurrences in
marked graphs, this condition remains true for all reachable markings.

A live marked graph is bounded if and only if it is strongly connected. It is,
moreover, 1-safe if and only if each place is contained in a cycle with exactly one
token. Figure 7.28 shows a live and safe marked graph. In this example, it is not

Figure 7.28 A marked graph.

174 DESEL

possible to mark, for every cycle, only one place of the cycle without destroying
liveness. However, the marked graph is covered by 1-token cycles.

7.8.3 Free-Choice Nets

Free-choice nets generalize state machines and marked graphs. They allow model-
ing of choice by branching places and modeling of concurrency by branching tran-
sitions. However, they are structurally restricted in the sense that a (marked) for-
ward-branching place always models choice between all the transitions in its
postset—hence the name “free choice.” The formal definition of a free-choice net
requires that, if a place is in the preset of more than one transition, then it is the only
place in all these presets. In other words, an “N” pattern as shown in Figure 7.29
(left-hand side) does not occur. The definition of free-choice nets given in [8] is
slightly more general. It requires that if such an “N” occurs, then there are arcs from
all places to all transitions of the “N” (see Figure 7.29, right-hand side). This class
of nets is often called extended free choice.

For free-choice nets, there is a rich body of theory including efficient analysis
methods for behavioral properties. The most prominent result is that a free-choice
net is live if and only if each nonempty co-trap includes a trap with an initially
marked place (remember that co-traps and traps are sets of places). Its proof is not
trivial. For the combination of liveness and boundedness, there exist characteriza-
tions based on the rank of the incidence matrix that can be checked very efficiently
(in polynomial time with respect to the size of the net).

The restriction given in the definition of free-choice nets might be considered
quite artificial. For a better motivation, consider the examples given in Figures 7.4,
7.9,7.10,7.11, and 7.12. All these nets are not free choice. For the net of Figure 7.4,
the forward-branching place s, does not model a free choice because transition e is
only enabled after d has occurred, whereas b is enabled immediately. In Figure 7.9
we have additional loops such that s, branches even to three transitions. Transition
d can only occur when s, is marked. Such a conditional split demands forward-
branching places with transitions controlled by other places via loops. So condition-
al splits can not be modeled with free-choice nets.

Another example is given by Figure 7.12. Here transitions b, ¢, d, and e are con-
trolled by an additional cycle carrying only one token. Also, such regulation cycles
destroy the free-choice property. Modeling shared resources by additional places

Figure 7.29 In free-choice nets, the left-hand structure is not allowed.

PROCESS MODELING USING PETRINETS 175

with free-choice nets is also not possible because the resource place itself is branch-
ing but the choice depends on the requests of the considered processes.

However, free-choice nets do properly model sequence, choice, and concurren-
cy. Many Petri net models of business processes without resources are free choice.

In a free-choice net, one can imagine that every choice is made within branching
places (that is, process elements modeled by these places). In Figure 7.30, a modi-
fied version of our running example of Figure 7.4 is shown. The choice of firing
transition b or transition e’ is made in s;; the choice of firing d or ¢’ is made inde-
pendently in s;. Hence, there is one more possible deadlock, reached after the oc-
currence of transitions a, e’, and ¢'.

7.8.4 Workflow Nets

Workflow nets are nets modeling business processes without resources and without
any history. In particular, a workflow net is intended to describe the behavior of a
single workflow case in isolation. Any case handled by the procedure represented
by the workflow net is created when it enters a workflow management system and
is deleted once it has completed (see Chapter 2). When a workflow net is executed
twice, for two cases, then the second case will run through exactly the same process
specification as the first.

A workflow net has a distinguished input place s; and a distinguished output
place s,, such that s; has no ingoing arc and s, has no outgoing arc. This condition is
met by our examples shown in Figures 7.4, 7.9, 7.10, 7.11, 7.12, and 7.30.

The execution of a workflow net should lead from the marking assigning only a
token to s; to the marking assigning only a token to s,. Our net from Figure 7.12 is
different because it has initially one more token; the other examples satisfy this
condition as well. One more condition for workflow nets is that each place and each
transition lies on a path from s; to s,. This condition holds true for all examples
mentioned above. Figure 7.27 shows a counterexample.

Ss2
S1 b ,()
C
Si @—' a So
e
— p 4@/
s4

Figure 7.30 A free-choice variant of the running example.

176 DESEL

A workflow net is considered correct if it is sound, a property formally defined
as follows: the net is 1-safe and from each reachable marking the final marking as-
signing only a token to the output place s, should be reachable. As a (nontrivial)
consequence, there is no other marking assigning a token to s,,. Considering the net
with an additional transition connecting s, to s; (see Figure 7.14), this net is live and
safe if and only if the workflow net is sound.

EXERCISES

Exercise 1. Consider the following process description: After an initial task a, task
b and either task c or d are performed concurrently. After b, the sequence e b of
tasks is performed an arbitrary number of times. Finally, the process can reach a fi-
nal state by performing task f.

a. Do you recognize any ambiguities in the text?

b. Draw an elementary Petri net modeling the described process.

c. Draw the reachability graph of this elementary Petri net.

Exercise 2. Add a resource to the Petri net of Exercise 1 that is available only once
and is used by tasks e and d.

Exercise 3. Create a predicate/transition net by adding annotations and a suitable
initial marking to the net of Exercise 1 such that the process runs for initial tokens p
and ¢, task c is only performed for p, and task d is only performed for g.

Exercise 4. Why did we not define the complement s of a place s simply by *s=s°
and 5°= °s?

Exercise 5. Prove that, in the net of Figure 7.10, a marking assigning tokens only
to the places s, and to s, is not reachable, by employing a suitable place invariant.

REFERENCES

1. W. M. P. van der Aalst. The application of Petri nets to workflow management. Journal
of Circuits, Systems and Computers 8(1), 21-66 (1998).

2. W. M. P. van der Aalst, J. Desel, and A. Oberweis (Eds.). Business Process Manage-
ment: Models, Techniques and Empirical Studies. LNCS 1806, Springer-Verlag (2000).

3. W. M. P. van der Aalst and K. van Hee. Workflow Management—Models, Methods and
Systems. MIT Press (2000).

4. W. M. P. van der Aalst, A. ter Hofstede, and M. Weske (Eds.). Proceedings of Business
Process Management (BPM 2003). LNCS 2678, Springer-Verlag (2003).

5. W. M. P. van der Aalst. Business process management demystified: A tutorial on mod-
els, systems and standards for workflow management. In J. Desel, W. Reisig, and G.
Rozenberg (Eds.). Lectures on Concurrency and Petri Nets, LNCS 3098, Springer-Ver-
lag (2004), pp. 1-65.

~N O

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.
20.

21.

22.

PROCESS MODELING USING PETRINETS 177

. F. Bause and P. S. Kritzinger. Stochastic Petri Nets, 2nd ed., Vieweg (2002).

. E. Borger and R. Stirk. Abstract State Machines—A Method for High-Level System De-
sign. Springer-Verlag (2003).

. J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge University Press (1995).

. J. Desel. Basic linear algebraic techniques for place/transition nets. In W. Reisig and G.
Rozenberg (Eds.), Lectures on Petri Nets I: Basic Models, LNCS 1491, Springer-Verlag
(1998), pp. 257-308.

J. Desel. Validation of process models by construction of process nets. In W.M.P. van
der Aalst, J. Desel, and A. Oberweis (Eds.). Business Process Management: Models,
Techniques and Empirical Studies. LNCS 1806, Springer-Verlag (2000), pp. 108—126.
J. Desel and T. Erwin. Modelling, simulation and analysis of business processes. In W.
M. P. van der Aalst, J. Desel, and A. Oberweis (Eds.). Business Process Management:
Models, Techniques and Empirical Studies. LNCS 1806, Springer-Verlag (2000), pp.
127-139.

J. Desel and G. Juhas. What is a Petri net? Informal answers for the informed reader. In
H. Ehrig, G. Juhas, J. Padberg, and G. Rozenberg (Eds.), Unifying Petri Nets, LNCS
2128, Springer-Verlag (2001), pp. 1-25.

J. Desel and T. Erwin. Quantitative engineering of business processes with VIPbusiness.
In H. Ehrig, W. Reisig, G. Rozenberg, and H. Weber (Eds.), Petri Net Technology for
Communication-Based Systems, LNCS 2472, Springer-Verlag (2003), pp. 219-242.

J. Desel, B. Pernici, and M. Weske (Eds.). Proceedings of Business Process Manage-
ment (BPM 2004). LNCS 3080, Springer-Verlag (2004).

J. Desel, W. Reisig, and G. Rozenberg (Eds.). Lectures on Concurrency and Petri Nets.
LNCS 3098, Springer-Verlag (2004).

K. Jensen. Coloured Petri Nets. Volumes I-111. Springer-Verlag (1992—-1997).

M. Ajmone Marsan, G. Balbo, S. Donatelli, and G. Franceschinis. Modelling with Gen-
eralized Stochastic Petri Nets. Wiley (1995).

A. Oberweis and P. Sander. Information system behavior specification by high-level
Petri nets. ACM Transactions on Information Systems 14(4), 380—420 (1996).

W. Reisig. A4 Primer in Petri Net Design. Springer-Verlag (1992).

W. Reisig and G. Rozenberg (Eds.). Lectures on Petri Nets. I: Basic Models. Lectures on
Petri Nets. 11: Applications. LNCS 1491/1492, Springer-Verlag (1998).

D. T. Ross. Structured Analysis (SA): A language for communicating ideas. /EEE
Transactions on Software Engineering, SE-3, 1, 16-34 (1977).

M. Weber and E. Kindler. The Petri net markup language. In H. Ehrig, W. Reisig, G.
Rozenberg, and H. Weber (Eds.), Petri Net Technology for Communication-Based Sys-
tems, LNCS 2472, Springer-Verlag (2003), pp. 124-144.

I CHAPTER 8

Patterns of Process Modeling

WIL M. P. van der AALST, ARTHUR H. M. ter HOFSTEDE,
and MARLON DUMAS

8.1 INTRODUCTION

The previous chapters have presented different languages for and approaches to
process modeling. In this chapter, we review some issues in process modeling from
a more language-independent perspective. To this end, we rely on the concept of
pattern: an “abstraction from a concrete form which keeps recurring in specific non-
arbitrary contexts” [18]. The use of patterns is a proven practice in the context of
object-oriented design, as evidenced by the impact made by the design patterns of
Gamma et al. [10].

Process-aware information systems (PAISs) address a number of perspectives.
Jablonski and Bussler [11] identify several such perspectives in the context of
workflow management. These include the process perspective (describing the con-
trol flow), organization perspective (structuring of resources), data/information per-
spective (to structure data elements), operation perspective (to describe the atomic
process elements), and integration perspective (to “glue” things together).! In a typ-
ical workflow management system, the process perspective is described in terms of
some graphical model, for example, a variant of Petri nets (see Chapter 7), the orga-
nization perspective is described by specifying and populating roles and organiza-
tional units, the data/information perspective is described by associating data ele-
ments to workflow instances (these may be typed and have a scope), the operation
perspective is described by some scripting language used to launch external appli-
cations, and the integration perspective is described by some hierarchy of processes
and activities. In principle, it is possible to define design patterns for each of these
perspectives. However, the focus of this chapter is on patterns restricted to the
process (i.e., control-flow) perspective. This perspective is the best understood as
well as the dominant perspective of workflow. Patterns for the data perspective
have been reported in [20], whereas patterns for other perspectives (e.g., resource

'Note that in [11], different terms are used.

Process-Aware Information Systems. Edited by Dumas, van der Aalst, and ter Hofstede 179
Copyright © 2005 John Wiley & Sons, Inc.

180 VAN DER AALST, Ter HOFSTEDE, AND DUMAS

perspective) are the subject of ongoing efforts. In addition, it is worthwhile men-
tioning that the control-flow patterns do not pay too much attention to issues related
to exception handling.

The control-flow perspective is concerned with enforcing control-flow depen-
dencies between tasks?; for example, sometimes tasks need to be performed in or-
der, sometimes they can be performed in parallel, sometimes a choice needs to be
made as to which task to perform, etc. There is an abundance of approaches to the
specification of control flow in PAISs in general, and workflow management sys-
tems in particular. Many commercial workflow management systems and academic
prototypes use languages with fundamental differences. Concepts with similar
names may have significantly different behavior, different languages may impose
different restrictions (e.g., with respect to cycles), and some concepts are supported
by a select number of languages only. The reader is referred to [12, 13, 14] for a
fundamental discussion of some of these issues. This work identifies a number of
classes of workflow languages, which are abstractions of approaches used in prac-
tice, and examines their relative expressive power. The workflow patterns initiative
took a more pragmatic approach, focusing on suitability.

The workflow patterns initiative, which this chapter reviews, started in 1999. It
aimed at providing a systematic and practical approach to dealing with the diversity
of languages for control-flow specification. The initiative took the state of the art in
workflow management systems as a starting point and documented a collection of 20
patterns, predominantly derived from constructs supported by these systems. The
patterns provided abstractions of these constructs as they were presented in a lan-
guage-independent format. The patterns consist of a description of the essence of the
control-flow dependency to be captured, possible synonyms, examples of concrete
business scenarios requiring the control-flow dependency, and, for the more complex
ones, typical realization problems and (partial) solutions to these problems.

There are a number of applications of the workflow patterns. The patterns can be
used for the selection of a workflow management system. In that case, one would
analyze the problem domain in the context of which future workflow management
system is to be used; that is, analyze the needs in terms of required support for vari-
ous workflow patterns and subsequently match the requirements with the capabili-
ties of various workflow management systems (this could be termed a suitability
analysis). Additionally, the patterns can be used for benchmarking purposes, exam-
ining relative strengths and weaknesses of workflow products. Such examinations
may be the basis for language development and adaptations of workflow manage-
ment systems. Another use of the patterns can be found in the context of prescribing
a particular workflow tool and certain patterns that need to be captured. Here, the
workflow pattern collection acts as a resource for descriptions of typical
workarounds and realization approaches for patterns in different workflow systems.
It should also be remarked that although the patterns were developed in the context
of P2A processes (e.g., workflow and case handling systems; see Chapter 1), they
can also be applied to P2P and A2A processes. At least two languages aimed at de-

2In this chapter, the terms “task” and “activity” are used interchangeably.

PATTERNS OF PROCESS MODELING 181

scribing A2A processes (BPEL and BML, see references below) have been evaluat-
ed in terms of the patterns. This having been said, some of the patterns may be less
relevant for P2P and A2A processes than they are for P2A processes, and an exact
characterization of which patterns are more relevant for which types of processes
remains an open question.

The first paper related to the workflow patterns initiative® appeared in the CoopIS
conference in 2000 (see [2]). The main paper appeared in 2003 in the Distributed and
Parallel Databases Journal (see [5]). Apart from a description of the complete set of
patterns, this latter paper contains an analysis of 13 commercial workflow manage-
ment systems and two academic prototypes in terms of their support for the patterns.
The patterns have been used for analyses of UML Activity Diagrams version 1.4 (see
[8]); BML (Business Modeling Language) an approach used in the context of
Enterprise Application Integration (see [24]); and various approaches and proposed
standards in the area of Web service composition, such as BPEL4WS (see [23] for
this evaluation and Chapter 12 for an introduction to BPEL4WS). The workflow pat-
terns formed the starting point for the development of YAWL* (Yet Another
Workflow Language). This language extends Petri nets with constructs for dealing
with some of the patterns in a more straightforward manner. Though based on Petri
nets, its formal semantics is described as a transition system (see [4]) and YAWL
should not be seen as a collection of macros defined on top of Petri nets. A first de-
scription of the design and implementation of the YAWL environment can be found
in [1]. In this chapter, the YAWL notation will be used to explain various patterns.

The goal of this chapter is to take an in-depth look at a selection of the patterns
as presented in [5] from a more didactic perspective. The organization of this chap-
ter is as follows. A classification of the patterns is discussed, followed by a detailed
discussion of a selection of patterns organized according to this classification. The
chapter concludes with a brief summary and outlook. Note that whenever products
are referred to in this chapter, their version corresponds to the version which was
used for the evaluation in [5] unless stated otherwise.

8.2 CLASSIFICATION OF PATTERNS

As mentioned earlier, the patterns initiative has led to a set of 20 control-flow pat-
terns. These patterns range from very simple patterns such as sequential routing
(Pattern 1) to complex patterns involving complex synchronizations such as the dis-
criminator pattern (Pattern 9). These patterns can be classified into six categories:

1. Basic control-flow patterns. These are the basic constructs present in most
workflow languages to model sequential, parallel, and conditional routing.

2. Advanced branching and synchronization patterns. These patterns transcend
the basic patterns to allow for more advanced types of splitting and joining be-

3Swww.workflowpatterns.com
4www.yawl-system.com

182

VAN DER AALST, TEr HOFSTEDE, AND DUMAS

havior. An example is the synchronizing merge (Pattern 7), which behaves like
an AND-join, XOR-join, or combination thereof, depending on the context.

. Structural patterns. In programming languages, a block structure that clearly

identifies entry and exit points is quite natural. In graphical languages allow-
ing for parallelism, such a requirement is often considered to be too restrictive.
Therefore, we have identified patterns that allow for a less rigid structure.

. Patterns involving multiple instances. Within the context of a single case

(i.e., workflow instance), sometimes parts of the process need to be instanti-
ated multiple times; for example, within the context of an insurance claim,
multiple witness statements may need to be processed.

. State-based patterns. Typical workflow systems focus only on activities and

events, not on states. This limits the expressiveness of the workflow language
because it is not possible to have state-dependent patterns such as the mile-
stone pattern (Pattern 18).

Cancelation patterns. The occurrence of an event (e.g., a customer canceling
an order) may lead to the cancelation of activities. In some scenarios, such
events can even cause the withdrawal of the whole case.

Figure 8.1 shows an overview of the 20 patterns grouped into the six categories.

This classification is used in the next section to highlight some of the patterns.

Basic Control Flow Patterns
* Pattern 1 (Sequence)

o Pattern 2 (Parallel Split)

* Pattern 3 (Synchronization)
* Pattern 4 (Exclusive Choice)
o Pattern 5 (Simple Merge)

Advanced Branching/Synchronization Patterns
o Pattern 6 (Multi -choice)

* Pattern 7 (Synchronizing Merge)

o Pattern 8 (Multi- merge)

o Pattern 9 (Discriminator)

Structural Patterns
e Pattern 10 (Arbitrary Cycles)

o Pattern 11 (Implicit Termination)

Cancellation Patterns
* Pattern 19 (Cancel Activity)
e Pattern 20 (Cancel Case)

State-based Patterns
* Pattern 16 (Deferred Choice)

* Pattern 17 (Interleaved Parallel
Routing)

* Pattern 18 (Milestone)

Patterns involving Multiple Instances

e Pattern 12 (Multiple Instances Without
Synchronization)

e Pattern 13 (Multiple Instances With a Priori
Design Time Knowledge)

e Pattern 14 (Multiple Instances With a Priori
Runtime Knowledge)

e Pattern 15 (Multiple Instances Without a Priori
Runtime Knowledge)

Figure 8.1 Overview of the 20 workflow patterns described in [5].

PATTERNS OF PROCESS MODELING 183
8.3 EXAMPLES OF CONTROL-FLOW PATTERNS

This section presents a selection of the various control-flow patterns using the clas-
sification shown in Figure 8.1.

8.3.1 Basic Control-Flow Patterns

The basic control-flow patterns essentially correspond to control-flow constructs as
described by the Workflow Management Coalition’ (see, e.g., [9] or [22]). These
patterns are typically supported by workflow management systems and as such do
not cause any specific realization difficulties. It should be pointed out, though, that
the behavior of the corresponding constructs in these systems can be fundamentally
different. In this section, the sequence pattern is discussed in terms of the format
used for capturing patterns, whereas the other four patterns are discussed in a less
structured manner.

Pattern 1 (Sequence)

Description: An activity should await the completion of another activity within the
same case before it can be scheduled.

Synonyms: Sequential routing, serial routing.

Examples:
After the expenditure is approved, the order can be placed.
The activity select_winner is followed by the activity notify_outcome.

Implementation: This pattern captures direct causal connections between activities
and is supported by all workflow management systems. Graphically, this pattern
is typically represented through a directed arc without an associated predicate. []

There are four other basic control-flow patterns, two of which correspond to
splits and two of which correspond to joins.

The XOR-split corresponds to the notion of an exclusive choice (Pattern 4). Out
of two or more outgoing branches, one branch is chosen. Such a choice is typically
determined by workflow control data or input provided by users of the system. In
some systems (e.g., Staffware) there is explicit support for XOR-splits, whereas in
some other systems (e.g., MQSeries/Workflow) the designer has to guarantee that
only one outgoing branch will be chosen at run time by providing mutually exclu-
sive predicates.

In the YAWL environment, predicates specified for outgoing arcs of an XOR-
split may overlap. If multiple predicates evaluate to true, the arc with the highest
preference (which is specified at design time) is selected. If all predicates evaluate
to false, the default arc is chosen. This solution is similar to Eastman’s solution (see
[21], pp. 144-145); in which a rule list can be specified for an activity, and these
rules are processed after completion of that activity. Among others, this list may
contain rules for passing control to subsequent activities. Control is passed to the

Swww.wime.org

184 VAN DER AALST, Ter HOFSTEDE, AND DUMAS

first activity occurring in such a rule whose associated predicate evaluates to true. A
default rule can be specified that does not have an associated predicate and, there-
fore, should be last in such a list ([21], p. 145). As an example of an XOR-split con-
sider the case in which purchase requests exceeding $10,000 are to be approved by
head office, while purchase requests not exceeding this amount of money can be ap-
proved by the regional offices.

The converse of the XOR-split is the XOR-join or simple merge (Pattern 5). An
XOR-join is enabled when one of its preceding branches completes. The definition
by the Workflow Management Coalition (WfMC) requires that the XOR-join
(called OR-join by the WfMC) is not preceded by parallelism, that is, no two or
more preceding branches of the XOR-join run in parallel at any point in time. The
pattern incorporates this requirement, which can be seen as a context assumption.
Without this assumption substantial differences between various workflow prod-
ucts would become apparent, but we will treat this as a different pattern, the multi-
merge, to be discussed in the next section. In some cases, XOR-joins should have
corresponding XOR-splits (e.g., Visual WorkFlo), which, combined with other sim-
ilar restrictions, may guarantee that no parallelism occurs in branches preceding
XOR-joins. Such structured workflows are discussed in [12, 14]. As an example of
an XOR-join, consider the activity report_outcome, which is to be executed after
activity finalize_rejection or activity finalize_approval completes. It is assumed
that these two latter activities never run in parallel.

The AND-split can be used to initiate parallel execution of two or more branches
(Pattern 2). It should be remarked that the description in [5], which was adapted from
the original formulation by the WfMC, left open the possibility that no true paral-
lelism takes place, so that these branches could only be executed in an interleaved
manner. This interpretation is convenient, as it can be used in contexts in which oth-
er constraints (e.g., on resources) do not permit activities of different branches to be
executed at the same time, but where the specification should be flexible enough to
allow the execution environment to decide for itself which activity of which branch
should be scheduled next (hence, one should not be forced to make an arbitrary deci-
sion at design time). An example of an AND-split could be in the context of an ap-
plication process in which, after short-listing of candidates, referee reports need to be
obtained and interviews need to be held. For a particular candidate, these activities
could be done in parallel or in any order. In terms of implementation, sometimes the
AND-split is supported in an implicit manner (e.g., MQSeries/Workflow), in which
predicates are required to be specified for all outgoing branches. In those cases, the
AND-split can be realized by associating the predicate #rue to all outgoing branches.

The AND-join is the converse of the AND-split and synchronizes its incoming
branches (Pattern 3). All incoming branches of an AND-join need to be completed
before the AND-join can proceed the flow. For example, a decision for particular
candidates can only be made once their referee reports have been received and they
have been interviewed. Again, there is a context assumption for this pattern. It
should not be possible for a branch to signal its completion more than once before
all other branches have completed, so the AND-join only needs to remember
whether a particular branch has completed or not. Note that it is possible that a com-

PATTERNS OF PROCESS MODELING 185

S B b

Sequence

—> —>

—> >
—> —>

AND-split task AND-join task
—> —

—] —>
—> —]

XOR-split task XOR-join task

Figure 8.2 Some basic symbols used in YAWL.

pletion signal is never received for a particular branch, in which case the AND-join
causes a deadlock.

Figure 8.2 provides an overview of the graphical constructs in YAWL that can
be used to capture the basic control-flow patterns. In this figure, boxes denote
“tasks,” whereas circles denote “conditions.” These correspond to the notions of
transition and place in Petri nets, respectively (see Chapter 7). These YAWL con-
structs do not require the context assumptions of some of the patterns presented in
this section and, as such, have a broader interpretation than these patterns (e.g., the
simple merge can be realized by the YAWL XOR-join, but this XOR-join also real-
izes the multimerge pattern discussed in the next section).

8.3.2 Advanced Branching and Synchronization Patterns

The patterns presented in this section deal with less straightforward split and join
behavior and, though not uncommon in practice, pose more difficulties in terms of
their support by contemporary workflow management systems. The multichoice
(Pattern 6) and the synchronizing merge (Pattern 7) will be looked at in depth, the
other patterns will be discussed more briefly.

Although only one outgoing branch is chosen in case of an XOR-split, the OR-
split or multichoice allows a choice for an arbitrary number of branches.

Pattern 6 (Multichoice)

Description: Out of several branches, a number of branches are chosen based on
user input or data accessible by the workflow management system.

Synonyms: Conditional routing, selection, OR-split.

®Note that in the YAWL representation of the sequence (which appears in the figure), the condition does
not need to be explicitly shown.

186 VAN DER AALST, Ter HOFSTEDE, AND DUMAS

Examples: After the execution of activity determine_teaching_evaluation, execu-
tion of activity organize_student _evaluation may commence as well as execution
of activity organize_peer_review. At least one of these two activities is executed,
and possibly both.

Problem: Workflow management systems that allow for the specification of predi-
cates on transitions support this pattern directly. Sometimes, however, the multi-
merge needs to be realized in terms of the basic patterns (e.g., Staffware supports
AND-splits and XOR-splits, but nothing “in between”).

Implementation: As mentioned above, this pattern is directly supported by systems
that allow for predicates to be specified for transitions (as is the case for Verve,
Forté Conductor, and MQSeries/Workflow). As stated in the previous section,
such systems provide implicit support for XOR-splits and AND-splits. However,
their approach also allows for splits that are neither (selection of more than one
branch, but not all). The multimerge may be considered a generalization of the
XOR-split and the AND-split.

An OR-split in YAWL is shown in Figure 8.3. It should be noted that in the
YAWL environment, at least one outgoing transition needs to be chosen, which
makes its OR-split slightly less general than the pattern. In YAWL, the selection
of at least one branch is guaranteed by the specification of a default branch,
which is chosen if none of the predicates evaluate to true (including the predicate
associated with the default branch!).

For those languages that only support the basic XOR-splits and AND-splits,
there are two solutions:

® Transform the n-way multichoice into an AND-split followed by n bina-
ry XOR-splits, each of which checks whether the predicate of the corre-
sponding branch in the multichoice is true or not. If a predicate evaluates
to true, the corresponding activity needs to be executed; otherwise, no
action is required.

® Transform the n-way multichoice into an XOR-split with 2" outgoing
branches. Each of these outgoing branches corresponds to a particular
subset of outgoing branches that may be chosen as part of the multi-
choice (AND-splits would be used for those subsets that consist of at
least two outgoing branches). The associated predicate should capture

/0178

A organize_peer_review

determine_teaching_evaluation o C

organize_student_evaluation

Figure 8.3 Multichoice in YAWL.

PATTERNS OF PROCESS MODELING 187

the fact that the corresponding predicates of these branches are true, but
that this does not hold for any of the predicates associated with the other
branches (note that this solution indeed guarantees mutual exclusion of
the outgoing branches of the XOR-split). This solution is exponential in
terms of the number of outgoing transitions as opposed to the previous
solution.

These solutions are illustrated in YAWL in Figure 8.4, where it should be not-
ed that, contrary to YAWL’s semantics, we assume that the multichoice of Fig-
ure 8.3 also allows none of the branches to be executed (to be in line with the de-
scription of the pattern). [

Although the multichoice does not cause too many problems in contemporary
workflow management systems, the same cannot be said for the so-called synchro-
nizing merge (Pattern 7), which, in a structured context, can be seen as its converse.
Consider the YAWL schema of Figure 8.5. After activity A (determine_teaching_
evaluation), either B (organize_peer_review) or C (organize_student_evaluation)
or both B and C will be executed (note that as mentioned before, in YAWL the mul-
tichoice has to choose at least one of the outgoing branches). The synchronization

/ °

organize_peer_
review

\ .

organize_student_
B evaluation
C1 C1&cC2

organize_peer_
C18&~C2 B
organize_peer_

review

\
~C1
A A review
determinex C2 determinemﬁ C
teaching_ | » C teaching_
evaluation evaluation organize_student_

organize_student_ evaluation
evaluation
~C2 ~C1 & ~C2

Figure 8.4 Expanding a multichoice in terms of simple choice and parallel split (illustrated
in YAWL). “~C” stands for “not C.”

188 VAN DER AALST, Ter HOFSTEDE, AND DUMAS

/ B \
A organize_peer_review D
determine_teachingm, C %t'erpret_results

organize_student_evaluation

Figure 8.5 Illustration of the synchronizing merge in YAWL.

prior to the execution of activity D (interpret_results) should now be such that only
active threads should be waited upon. In particular, if activity B is not triggered af-
ter the OR-split, then the OR-join should not wait for it and the same goes for activ-
ity C. This is achieved through the use of an OR-join in YAWL. The use of an
AND-join here may lead to a deadlock in case either B or C was chosen (but not
both), whereas the use of a synchronization construct that executes D upon comple-
tion of any of the incoming branches (multimerge) may lead to executing this activ-
ity twice if both B and C were chosen.

In the description of the synchronizing merge, a more general approach will be
taken, in line with the formalization in YAWL, than the one described in [5].

Pattern 7 (Synchronizing Merge)

Description: A form of synchronization in which execution can proceed if and only
if one of the incoming branches has completed and, from the current state of the
workflow, it is not possible to reach a state in which any of the other branches has
completed.

Synonyms: Synchronizing join, OR-join.

Examples: Consider again the example presented in Pattern 6 (multichoice). After
activities organize student evaluation and organize_peer_review have finished,
activity interpret results could be scheduled. This activity should only await
completion of those activities that were actually executed and itself be performed
once.

Problem: The main challenge of achieving this form of synchronization is to be
able to determine when more completions of incoming branches are to be expect-
ed. In the general case, this may require an expensive state analysis.

Implementation: In workflow systems such as MQSeries/Workflow and InConcert
the synchronizing merge is supported directly because of the evaluation strategy
used. In MQSeries/Workflow, activities have to await signals from all incoming
branches. Such a signal may indicate that a certain branch completed and that the
associated predicate is true, or it indicates that a certain branch was bypassed or
that the associated predicate is false. Depending on the particular combination of
signals received and the evaluation of the join predicate, the activity is or is not
executed and a corresponding signal is propagated. In InConcert, activities just

PATTERNS OF PROCESS MODELING 189

await signals from all incoming branches and the evaluation of a precondition
(not the value of these signals) will determine whether they themselves will be
executed or not. In either case, no deadlock will occur as neither MQSeries/
Workflow nor InConcert allows cycles.

The interpretation of the OR-join in YAWL (as formalized in [4]) is such that
it is enabled if and only if an incoming branch has signaled completion and
from the current state it is not possible to reach a state (without executing any
OR-join) in which another incoming branch signals completion. Although this
can handle workflows of a structured nature it can also handle workflows such
as the one displayed in Figure 8.6. As a possible scenario, consider the situation
in which after completion of activity 4 both activities B and C are scheduled. If
activity C completes and activity B has not completed, then activity D can not
be executed as it is possible that activity ' will be chosen after completion of
B. In this case, if after completion of activity B, activity E is chosen, activity D
can be scheduled for execution as it is not possible to reach a state in which ac-
tivity F will be scheduled. So the OR-join guarantees that activity D has to
await completion of activity C if it was scheduled, and if activity B was sched-
uled, activity D has to at least await the outcome of the decision after comple-
tion of activity B. If activity E was subsequently chosen, it does not need to
wait for completion of activity F, but if activity F was chosen it will have to
await completion of that activity. Current work with respect to the OR-join in
YAWL is reconsidering the treatment of other OR-joins in the reachability
analysis required for determining whether a certain OR-join is enabled, and is
examining algorithmic solutions for this analysis.

As stated in [21] (p. 109), “non-parallel work items routed to Join worksteps
bypass Join Processing” and an XOR-split followed by an AND-join in East-
man’s solution does not necessarily lead to a deadlock. Hence, joins have infor-
mation about the number of active threads to be expected. The situation captured
by the YAWL workflow in Figure 8.5 would not cause any problems in East-
man’s solution as the OR-join would know whether to expect parallel execution
of B and C or not. Although this solution works fine in a structured context in
which information about active threads initiated after a split can be passed on to a
corresponding join, this does not work so well in a context in which workflows
are not fully structured. Consider again the YAWL workflow depicted in Figure
8.6. In Eastman’s solution, this specification leads to a deadlock if B was chosen
and after completion of B a choice for activity £ was made. The OR-join would
then keep waiting for the completion of activity F.

In the context of EPCs (see Chapter 6), there exists a body of research examin-
ing possible interpretations of the OR-join [3, 7, 15, 19].

If there is no direct support for the OR-join, it may require some work to cap-
ture its behavior (and without the use of the data perspective and under a certain
notion of equivalence, it may not always be possible; see [13, 12]). In a struc-
tured context, a multichoice could be replaced as indicated in the two solutions in
its pattern description and synchronization could then be achieved in a straight-
forward manner. O

190 VAN DER AALST, Ter HOFSTEDE, AND DUMAS

/E
/B\‘F\
—

Figure 8.6 Another illustration of the synchronizing merge in YAWL.

The multimerge (Pattern 8) does not make the context assumption specified for
the XOR-join in the previous section. It will execute the activity involved as many
times as its incoming branches signal completion. This interpretation allows these
incoming branches to execute in parallel. The YAWL XOR-join corresponds to the
multimerge.

The discriminator’ (Pattern 9) provides a form of synchronization for an activity
in which, out of a number of incoming branches executing in parallel, the first
branch to complete initiates the activity. When the other branches complete, they do
not cause another invocation of the activity. After all branches have completed, the
activity is ready to be triggered again (in order for it to be usable in the context of
loops). In YAWL, one of the ways to capture the discriminator involves the use of
cancelation regions (cf. [4]). The discriminator is specified with a multimerge and a
cancelation region encompassing the incoming branches of the activity. In this real-
ization, the first branch to complete starts the activity involved, which then cancels
the other executing incoming branches. This is not in exact conformance with the
original definition of the pattern (as it actually cancels the other branches), but this
choice is motivated by the fact that it is clear in this approach what the region is that
is in the sphere of the discriminator, giving it a clearer semantics. The discriminator
is a special case of the n-out-of-m join (sometimes referred to as a partial join [6]),
as it corresponds to a 1-out-of-m join.

8.3.3 Structural Patterns

This section briefly examines two so-called structural patterns: arbitrary cycles and
implicit termination. Structural patterns deal with syntactic restrictions that some
languages impose on workflow specifications.

Some workflow systems only allow the specification of loops with unique en-
try and exit points. Arbitrary cycles, in which there are multiple ways of exiting
from the loop or multiple ways of entering the loop, are not allowed. Sometimes,
this is enforced in an explicit manner, for example, in languages that are struc-

"The term discriminator originates from Verve Workflow.

PATTERNS OF PROCESS MODELING 191

tured (see, e.g., [14]), whereas sometimes the restriction comes about through the
fact that iterative behavior can only be specified through postconditions on de-
compositions (as, e.g., in MQSeries/Workflow). The process specified in the de-
composition is to be repeated until the postcondition evaluates to true. In the case
of MQSeries/Workflow, this more implicit way of specifying loops is a direct
consequence of the evaluation strategy used—incoming signals are expected from
all incoming branches of an activity. Obviously, cycles in a specification would
then cause a deadlock. YAWL allows for the specification of arbitrary cycles. In
[12, 14], expressiveness issues in relation to structured workflows are investigat-
ed. It is shown that not all arbitrary cycles can be converted to structured cycles
(in the context of a given equivalence notion and without considering the data per-
spective).

At least two different termination strategies can be distinguished for work-
flows. In one approach, a workflow execution is considered completed when no
activity can be scheduled anymore (and the workflow is not in a deadlock). This
is referred to as implicit termination (e.g., supported by MQSeries/Workflow and
Staffware). In the other approach, the workflow is considered completed if a des-
ignated endpoint is reached. Though other activities may still be executing, they
are terminated when this happens. Although the two approaches are different, in
some cases workflows following one approach may be converted to workflows
conforming to the other approach. In [13], it is shown how so-called standard
workflows, which do not contain a deadlock and do not have multiple concurrent
instances of the same activity at any stage, can be transformed into equivalent
standard workflows with a unique endpoint so that when this endpoint is reached,
no other part of the workflow is still active. YAWL does not support implicit ter-
mination, so workflow designers are forced to carefully think about workflow ter-
mination.

8.3.4 Patterns Involving Multiple Instances

The patterns in this section involve a phenomenon that we will refer to as multiple
instances. As an example, consider the reviewing process of a paper for a confer-
ence. Typically, there are multiple reviews for one paper, and some activities are at
the level of the whole paper (e.g., accept/reject), whereas others are at the level of a
single review (e.g., send paper to reviewer). This means that inside a case (i.e., the
workflow instance, in this example a paper) there are sub-instances (i.e., the re-
views) that need to be dealt with in parallel (i.e., in parallel, multiple reviewers may
be reviewing the same paper). Multiple-instance patterns are concerned with the
embedding of subinstances in cases (i.e., workflow instances). From a theoretical
point of view, the concept is relatively simple and corresponds to multiple threads
of execution referring to a shared definition. From a practical point of view, it
means that an activity in a workflow graph can have more than one running, active
instance at the same time. As we will see, such behavior may be required in certain
situations. The fundamental problem with the implementation of these patterns is
that, due to design constraints and lack of anticipation for this requirement, most of

192 VAN DER AALST, Ter HOFSTEDE, AND DUMAS

the workflow engines do not allow for more than one instance of the same activity
to be active at the same time (in the context of a single case).

When considering multiple instances, there are two types of requirements. The
first requirements has to do with the ability to launch multiple instances of an activ-
ity or a subprocess. The second requirement has to do with the ability to synchro-
nize these instances and continue after all instances have been handled. Each of the
patterns needs to satisfy the first requirement. However, the second requirement
may be dropped by assuming that no synchronization of the instances launched is
needed.

If the instances need to be synchronized, the number of instances is highly rele-
vant. If this number is fixed and known at design time, then synchronization is
rather straightforward. If, however, the number of instances is determined at run
time or may even change while handling the instances, synchronization becomes
very difficult. Therefore, Figure 8.1 names three patterns with synchronization. If
no synchronization is needed, the number of instances is less relevant: Any facility
to create instances within the context of a case will do. Therefore, Figure 8.1 names
only one pattern for multiple instances without synchronization.

In this section, we highlight only one of the four multiple instance patterns. This
is the most complex of these patterns since it requires synchronization and the num-
ber of instances can even vary at run time.

Pattern 15 (Multiple Instances Without a Priori Runtime Knowledge)
Description: For one case, an activity is enabled multiple times. The number of in-
stances of a given activity for a given case is not known during design time, nor
is it known at any stage during run time, before the instances of that activity have
to be created. Once all instances are completed, some other activity needs to be
started. It is important to note that even while some of the instances are being ex-
ecuted or already completed, new ones can be created.
Examples:
® Consider the reviewing process of a paper for a conference when there are are
multiple reviews for one paper. The number of reviewers may be fixed initial-
ly, say three, but may be increased when there are conflicting reviews or
missing reviews. For example, initially three reviewers are appointed to re-
view a paper. However, halfway through the reviewing period, a reviewer in-
dicates that he will not be able to complete the review. As a result, a fourth re-
viewer (i.e., the fourth instance) is appointed. At the end of the review period,
only two reviews are returned. Moreover, the two reviews are conflicting
(strong accept versus strong reject). As a result, the PC chair appoints a fifth
reviewer (i.e., the fifth instance).
® The requisition of 100 computers involves an unknown number of deliveries.
The number of computers per delivery is unknown and, therefore, the total
number of deliveries is not known in advance. After each delivery, it can be
determined whether a next delivery is to come by comparing the total number
of goods delivered so far with the number of the goods requested. After pro-
cessing all deliveries, the requisition has to be closed.

PATTERNS OF PROCESS MODELING 193

® For the processing of an insurance claim, zero or more eyewitness reports
should be handled. The number of eyewitness reports may vary. Even when
processing eyewitness reports for a given insurance claim, new eyewitnesses
may surface and the number of instances may change.

Problem: Some workflow engines provide support for generating multiple in-
stances only if the number of instances is known at some stage of the process.
This can be compared to a “for” loop in procedural languages. However, these
constructs are of no help in processes requiring “while” loop functionality. Note
that the comparison with the “while” construct may be misleading since all in-
stances may run in parallel.

Implementation: YAWL directly supports multiple instances. Figure 8.7 shows a
process in which there may be multiple witnesses processed in parallel. Compos-
ite activity B (process_witness_statements) consists of three steps (D, E, F) that
are executed for each witness. Figure 8.7 does not show that the number of in-
stances of B may be changed at any point in time, even when the processing of
witness statements has already started. This is a setting of B.

FLOWer (see Chapter 15) is one of the few commercial systems directly sup-
porting this pattern. In FLOWer, it is possible to have dynamic subplans. The
number of instances of each subplan can be changed at any time (unless specified
otherwise).

If the pattern is not supported directly, typical implementation strategies in-
volve a counter indicating the number of active instances. The counter is incre-
mented each time an instance is created and decremented each time an instance is
completed. If, after activation, the counter returns to 0, then the construct com-
pletes and the flow continues. Consider for example, Figure 8.7. In activity 4, the
counter is set to some value indicating the initial number of witnesses. While ex-
ecuting instances of composite activity B, new instances may be created. For
each created instance, the counter is incremented by 1. Each time F is executed
for some instance (i.e., B completes), the counter is decremented. If the value of

process_
register_ witness_
witnesses statements archive

12y

>
A 4

D » E » F

check_ check_ record_
id record statement

Figure 8.7 Illustration of the multiple instances pattern in YAWL.

194 VAN DER AALST, Ter HOFSTEDE, AND DUMAS

the counter equals 0, no more witnesses can be added and C is enabled. Note that
the counter only takes care of the synchronization problem. In addition to the
counter, the implementation should allow for multiple instances running in paral-

lel. |

Multiple instances are not only interesting from a control-flow point of view.
Note that each instance will have its own data elements but, at the same time, it may
be necessary to aggregate data. For example, in Figure 8.7 each witness may have
an address; that is, each instance of B has a case attribute indicating the address of
the witness. However, in C it may be interesting to determine the number of wit-
nesses living at the same address. This implies that it is possible to query the data of
each instance to do some calculations.

8.3.5 State-Based Patterns

In [17], supporting evidence from a number of sources is collected with respect to
the time spent waiting as a percentage of the total execution time (i.e., cycle/flow
time) averaged over workflow instances in areas dealing with insurance and pen-
sion claims, and tax returns. In the five sources mentioned, this average percentage
is at least 95% (and in three of these sources at least 99%), which implies that work-
flow instances are typically in a state awaiting processing rather than being
processed. Many computer scientists, however, seem to have a frame of mind, typi-
cally derived from programming, in which the notion of state is interpreted in a nar-
rower fashion and is essentially reduced to the concept of data or a position in the
queue of some activity. As this section will illustrate, there are real differences be-
tween work processes and computing and there are business scenarios in which an
explicit notion of state is required.

To illustrate two of the state-based patterns, consider Figure 8.8. This is again
a YAWL diagram. However, in contrast to the earlier diagrams, Figure 8.8 ex-
plicitly shows the states’ in-between activities. Note that YAWL uses a Petri-net-
like notation to model states (i.e., places). The initial state of the case (i.e., process
instance) is modeled by start. The final state is modeled by end. If there is a to-
ken in start, the first activity 4 can be executed. The last activity / will put a to-
ken in end. In between A (register) and / (archive) two parallel processes are exe-
cuted. The upper part models the logistical subprocess, whereas the lower part
models the financial subprocess. In the logistical subprocess, there is an exclusive
choice (Pattern 4) modeled by B. If the ordered goods are available, B wil put a
token in c¢5. If the ordered goods are not available, a replenishment order is
planned (token in place c4) or the missing goods have already been ordered (to-
ken in place c¢3). In the financial subprocess, (i.e., lower part) there is also a
choice. After sending the bill (F) there is a choice between the decision to send a
reminder (activity H) and the receipt of the payment (activity G). Note that this
decision is not made by F; that is, after completing activity F, the choice between
H and G is not fixed but depends on external circumstances. For example, H may
be triggered by a clock (e.g., after four weeks), whereas G is triggered by the cus-

PATTERNS OF PROCESS MODELING 195

update |
E
c3 c
B replenish
cl c4
check_availability c7,
D
c5 ship_goods
O~ -0
start register c6 archive end
H G
-) c8
c2 reminder receive_payment
F
send_bill

Figure 8.8 An example illustrating state-based patterns.

tomer actually paying for the ordered goods. Note that the choice modeled by c6
is different from the choice modeled by B; in c6 there is a “race” between two ac-
tivities H and G, whereas after executing B, the next activity is fixed by putting a
token in ¢3 (E), ¢4 (C), or ¢5 (D). As indicated, the construct involving B corre-
sponds to the traditional exclusive choice (Pattern 4) supported by most systems
and languages. The construct involving c6 corresponds to the deferred choice
(Pattern 16) described in this section. Figure 8.8 also shows another state-based
pattern, the milestone (Pattern 18). This is the construct involving H and c7. Note
that H is an AND-split/AND-join and therefore it can only occur if there is a to-
ken in ¢7. This implies that it is only possible to send a reminder if the goods have
been shipped. The purpose of the milestone pattern is to be able to test the state in
another parallel branch. If H would always occur exactly once, this construct
would not be needed, that is, the two arcs representing the milestone could be re-
placed by a new place connecting D to H. However, for some cases H is not exe-
cuted at all (that is, the customer is eager to pay), whereas for other cases H is ex-
ecuted multiple times (that is, the customer is reluctant to pay). Therefore, this
alternative solution does not work properly. Note that in this case, the deferred
choice and milestone are connected. In general this is not the case since both pat-
terns can occur independently. There is a third state-based pattern (Pattern 17, in-
terleaved parallel routing). The pattern is used to enforce mutual exclusion with-
out enforcing a fixed order. A discussion of this pattern is beyond the scope of
this chapter. Instead we restrict our attention to the deferred choice.

196 VAN DER AALST, Ter HOFSTEDE, AND DUMAS

Pattern 16 (Deferred Choice)

Description: A point in the workflow process where one of several branches is cho-
sen. In contrast to the XOR-split, the choice is not made explicitly (e.g., based on
data or a decision) but several alternatives are offered to the environment. How-
ever, in contrast to the OR-split, only one of the alternatives is executed. This
means that once the environment activates one of the branches, the other alterna-
tive branches are withdrawn. It is important to note that the choice is delayed un-
til the processing in one of the alternative branches is actually started, that is, the
moment of choice is as late as possible.

Synonyms: External choice, implicit choice, deferred XOR-split.

Examples:

® See the YAWL diagram shown in Figure 8.8. After sending the bill (F) there is
a choice between the decision to send a reminder (activity H) and the receipt of
the payment (activity G). This decision is not made by F but is resolved by the
“race” between H and G, that is, a race between a time trigger (end of a four-
week period) and an external trigger (the receipt of the payment).

® At certain points during the processing of insurance claims, quality assurance
audits are undertaken at random by a unit external to those processing the
claim. The occurrence of an audit depends on the availability of resources to
undertake the audit, and not on any knowledge related to the insurance claim.
Deferred choices can be used at points at which an audit might be undertaken.
The choice is then between the audit and the next activity in the processing
chain. The activity capturing the audit triggers the next activity to preserve
the processing chain.

Problem: Many workflow management systems support the XOR-split described in
Pattern 4 (exclusive choice) but do not support the deferred choice. Since both
types of choices are desirable (see examples), the absence of the deferred choice
is a real problem. The essence of the problem is the moment of choice, as illus-
trated by Figure 8.9. In Figure 8.9(a), the choice is as late a possible (i.e., when B
or C occurs), whereas in Figure 8.9(b) the choice is resolved when completing 4.

A A
N
Fr—————————— ———a F——— e ———— = -
: (a) Deferred choice (Pattern 16) : : (b) Exclusive choice (Pattern 4) :
e e =] e e e e —]

Figure 8.9 The moment of choice in the Patterns 4 (exclusive choice) and 16 (deferred
choice).

PATTERNS OF PROCESS MODELING 197

Implementation:

® COSA is one of the few systems that directly supports the deferred choice. Since
COSA is based on Petri nets, it is possible to model implicit choices, as indicated
in Figure 8.9(a). YAWL is also based on Petri nets and, therefore, also supports
the deferred choice. Some systems offer partial support for this pattern by offer-
ing special constructs for a deferred choice between a user action and a time out
(e.g., Staffware) or two user actions (e.g., FLOWer).

® Although many workflow management systems have problems dealing with de-
ferred choice, emerging standards in the Web services composition domain have
no problems supporting the patterns. For example, BPEL offers a construct
called pick that directly captures this pattern.

® Assume that the workflow language being used supports cancelation of activities
(Pattern 19) through either a special transition (e.g., Staffware) or through an
API (most other engines). Cancelation of an activity means that the activity is re-
moved from the designated worklist as long as it has not been started yet. The
deferred choice can be realized by enabling all alternatives via an AND-split.
Once the processing of one of the alternatives is started, all other alternatives are
canceled. Consider the deferred choice between B and C in Figure 8.9(a). This
could be implemented using cancelation of activities in the following way. After
A, both B and C are enabled. Once B is selected/ executed, activity C is canceled.
Once C is selected/executed, activity B is canceled. Note that the solution does
not always work because B and C can be selected/executed concurrently.

® Another solution to the problem is to replace the deferred choice by an explicit
XOR-split, that is, an additional activity is added. All triggers activating the al-
ternative branches are redirected to the added activity. Assuming that the activity
can distinguish between triggers, it can activate the proper branch. Note that the
solution moves part of the routing to the application or task level. Moreover, this
solution assumes that the choice is made based on the type of trigger.]

8.3.6 Cancelation Patterns

When discussing possible solutions for the deferred choice pattern, we mentioned
the pattern Cancel activity (Pattern 19). This is one of two cancelation patterns. The
other pattern is Cancel case (Pattern 20). The cancel activity pattern disables an en-
abled activity, that is, a thread waiting for the execution of an activity is removed.
The cancel case pattern completely removes a case, that is, workflow instance,
(even if parts of the process are instantiated multiple times, all descendants are re-
moved). Both constructs are supported by YAWL through a more generic construct
that removes all tokens from a given region. A more detailed discussion of the can-
celation patterns is outside the scope of this chapter.

8.4 CONCLUSION

This chapter introduced several control-flow patterns that can be used to support
modeling efforts, to train workflow designers, and to assist in the selection of work-

198 VAN DER AALST, Ter HOFSTEDE, AND DUMAS

flow management systems. Although inspired by workflow management systems,
the patterns are not limited to workflow technology but applicable to process-aware
information systems (PAISs) ranging from EAI platforms and Web services compo-
sition languages to case-handling systems and groupware. For example, the patterns
have not only been used to evaluate several commercial and academic workflow
management systems [5, 4] but also several standards including UML [8], BML [24],
and BPEL4WS [23]. For more information on these evaluations and interactive ani-
mations for each of the patterns we refer the reader to www.workflowpatterns.com.

Throughout this chapter we used YAWL diagrams to illustrate the patterns.
YAWL [4] demonstrates that it is possible to support the patterns in a direct and in-
tuitive manner. YAWL is an open-source initiative and supporting tools can be
downloaded from www.yawl-system.com. Current research aims at further devel-
oping YAWL and developing patterns and pattern languages for other perspectives
besides control flow (notably the resource perspective; a collection of data patterns
was recently reported in [20]).

Note that the 20 patterns mentioned in this chapter are not complete. Therefore,
we invite users, researchers, and practitioners to contribute. Moreover, some systems
and languages have limitations not adequately addressed by the patterns. For exam-
ple, in Staffware it is not permissible to connect an exclusive choice/XOR-split to a
wait step (i.e., synchronization/AND-join). Moreover, an exclusive choice in
Staffware is always binary, that is, to model a choice involving three alternatives, two
exclusive choice elements are needed. For most of these limitations there are simple
workarounds. However, this is not always the case as is illustrated by the following
example. Consider the Petri net shown in Figure 8.10. This model shows a simple
classical Petri net with 8 transitions. First, 4 is executed, followed by B and E in par-
allel. B is followed by C. However, F has to wait for the completion of both £ and C,
and so on. Finally, H is executed and all transitions have been executed exactly once.
Although the Petri net is very simple (e.g., it does not model any choices, only paral-
lelism), process algebras like Pi calculus [16] have problems modeling this example.
To understand the problem, consider the Petri net shown in Figure 8.10 without the
connection between C and F'. In that case the sequences B. C. D and E. F. G are exe-
cuted in parallel in between 4 and H. In terms of Pi calculus (or any other process al-
gebra), this is denoted as 4. (B. C. D|E. F. G), H. In this notation, the “.” is used to de-

(O e >)—
©-L 1O
»(—_— > —> G

Figure 8.10 How would one model this in terms of Pi calculus?

PATTERNS OF PROCESS MODELING 199

note sequence and the “|” denotes parallelism. Indeed this notation is elegant and al-
lows for computer manipulation. Unfortunately, such a simple notation is not possi-
ble if the connection between C and F is restored. The linear language does not allow
for this, whereas for a graph-based language like Petri nets this is not a problem. Note
that the claim is not that Pi calculus cannot model the process shown in Figure 8.10.
However, it illustrates that even powerful languages like Pi calculus have problems
supporting certain patterns. This is particularly relevant in the domain of Web ser-
vices, in which Pi calculus is being put forward as a starting point for developing (fu-
ture versions of) languages for describing service-based processes.

“‘n

8.5 EXERCISES

Exercise 1 (identification of patterns in an informal description)
Consider the following informal description of a process for insurance claim han-
dling. When a claim is received, it is first registered. After registration, the claim is
classified, leading to two possible outcomes: simple or complex. If the claim is sim-
ple, the insurance is checked. For complex claims, both the insurance and the dam-
age are checked independently. After the check(s), an assessment is performed,
which may lead to two possible outcomes: positive or negative. If the assessment is
positive, the garage is phoned to authorize the repairs and the payment is scheduled
(in this order). In any case (whether the outcome is positive or negative), a letter is
sent to the customer and the process is considered to be complete. At any moment
after the registration and before the end of the process, the customer may call to
modify the details of the claim. If a modification occurs before the payment is
scheduled, then the claim is classified again, and the process is repeated from that
point on. If a modification occurs after the payment is scheduled and before the let-
ter is sent, a “stop payment” task is performed and the process is repeated starting
with the classification of the claim.

Which tasks can be identified in this scenario, and which workflow patterns link
these tasks?

Exercise 2 (identification of patterns in an existing model)

Consider the YAWL specification in Figure 8.11. Which patterns occur in this
specification and where? For example, the “AND-split” pattern can be found be-
tween tasks “register,” “send form,” and “evaluate.”

Exercise 3 (identification of patterns in an existing model)

Consider the UML activity diagram shown in Figure 5.1 (Chapter 5). Which pat-
terns occur in this model and where? Answer the same question for the ARIS func-
tion flow in Figure 6.2 (Chapter 6).

Exercise 4 (pattern implementation)
Figures 8.5 and 8.6 feature two YAWL specifications illustrating the multichoice
(OR-split) and the synchonizing merge (OR-join) patterns. Translate these YAWL

200 VAN DER AALST, Ter HOFSTEDE, AND DUMAS

process_form
send_form C1 Cc3

L
/ time-out \
Q—' evaluate C5 4’@

start register\ > archive ready

/.
OO

C2 Pprocess_complaint check_proc

Figure 8.11 YAWL specification for Exercise 2.

specifications into classical Petri nets (see Chapter 7). In other words, expand the
YAWL OR-split and OR-join constructs in terms of places and transitions (possibly
labeled with empty tasks).

Exercise 5 (pattern implementation)
Figure 8.12 contains a YAWL specification in which the edges are labeled with
Boolean expressions C1, C2, C3, and their negations. This specification contains an
arbitrary loop in which tasks B and C can be repeated multiple times in alternation
until the process completes. A possible execution of this process specification is
AB, that is, task A4 is executed, then predicate C1 is true so B is executed, after
which predicate C2 is false so the process terminates. Other possible executions in-
clude AC, ABC, ACB, ABCB, ACBC, etc.

Some process modeling or process execution languages only provide constructs
for structured loops [e.g., constructs of the form while (boolean expression)
{fragment of process to be repeated}], asin contemporary imperative pro-

B
V | ~C2
Cc2
A
C3
c ~C3

Figure 8.12 YAWL specification for Exercise 5.

PATTERNS OF PROCESS MODELING 201

gramming languages such as C and Java.® How could the specification in Figure 8.12
be expressed in a language that provides “while” loops, conditional statements of the
form if (boolean expression) {fragment of process}, and simple se-
quencing between tasks (which can be denoted using a semicolon “;”), but does not
support arbitrary loops. Consider each of the following two cases:

1. The language in question supports “break” statements, allowing one to exit a
“while” loop in the middle of its body, as in contemporary imperative pro-
gramming languages such as C and Java.

2. The language in question does not support “break” statements. Hint: You
may introduce one or several auxiliary Boolean variable(s). When a predicate
is evaluated, it can be assigned to a Boolean variable, and this variable can be
used in the Boolean expressions of the “if” and “while” statements.

Exercise 8.6 (evaluation of PAIS development platforms)

Select a tool for PAIS development (see, for example, the tools mentioned in Chap-
ters 1-4). Evaluate the selected tool in terms of the patterns. The evaluation should
state, for each of the patterns presented in this chapter, whether the tool provides
“direct support” for that pattern or not. If the answer to this question is positive for a
given pattern, briefly explain how the pattern is supported. Otherwise, provide (if
possible) a workaround solution to capture the pattern in question. Some sample
evaluations of tools can be found in [5].

ACKNOWLEDGMENTS

We would like to thank Bartek Kiepuszewski, Alistair Barros, and Petia Wohed for
their contribution to the research involving workflow patterns, and Lachlan Aldred
for his contribution to the YAWL initiative.

REFERENCES

1. W. M. P. van der Aalst, L. Aldred, M. Dumas, and A. H. M. ter Hofstede. Design and
Implementation of the YAWL System. In A. Persson and J. Stirna (Eds.), Proceedings of
the 16th International Conference on Advanced Information Systems Engineering
(CAiSE), volume 3084 of Lecture Notes in Computer Science, pp. 142—159, Riga, Latvia,
June 2004. Springer-Verlag.

2. W. M. P. van der Aalst, A. P. Barros, A. H. M. ter Hofstede, and B. Kiepuszewski. Ad-
vanced Workflow Patterns. In O. Etzion and P. Scheuermann (Eds.), Proceedings of the
7th International Conference on Cooperative Information Systems (CooplS), volume
1901 of Lecture Notes in Computer Science, pp. 18-29, Eilat, Israel, September 2000.
Springer-Verlag.

8This is the case for example of BPEL, as discussed in Chapter 13.

202 VAN DER AALST, Ter HOFSTEDE, AND DUMAS

3.

10.

11.

12.

14.

15.

16.

W. M. P. van der Aalst, J. Desel, and E. Kindler. On the Semantics of EPCs: A Vicious
Circle. In M. Niittgens and F. J. Rump (Eds.), Proceedings of the EPK 2002: Business
ProcessManagement using EPCs, pp. 71-80, Trier, Germany, November 2002.
Gesellschaft fiir Informatik, Bonn, Germany.

. W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: Yet Another Workflow Lan-

guage. Accepted for publication in Information Systems, and also available as QUT
Technical report FIT-TR-2003-04, Queensland University of Technology, Brisbane,
Australia, 2003.

. W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.

Workflow Patterns. Distributed and Parallel Databases, 14(1):5-51, 2003.

. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Conceptual Modelling of Workflows. In M.

P. Papazoglou (Ed.), Proceedings of the 14th International Object-Oriented and Entity-
Relationship Modelling Conference (OOER), volume 1021 of Lecture Notes in Comput-
er Science, pp. 341-354, Gold Coast, Australia, December 1998. Springer-Verlag.

. J. Dehnert and P. Rittgen. Relaxed Soundness of Business Processes. In K. R. Dittrich,

A. Geppert, and M. C. Norrie (Eds.), Proceedings of the 13th International Conference
on Advanced Information Systems Engineering (CAiSE’01), volume 2068 of Lecture
Notes in Computer Science, pp. 157170, Interlaken, Switzerland, June 2001. Springer-
Verlag.

. M. Dumas and A. H. M. ter Hofstede. UML activity diagrams as a workflow specifica-

tion language. In M. Gogolla and C. Kobryn (Eds.), Proceedings of the 4th International
Conference on the Unified Modeling Language, Modeling Languages, Concepts, and
Tools (UML), volume 2185 of Lecture Notes in Computer Science, pp. 76-90, Toronto,
Canada, October 2001. Springer-Verlag.

. L. Fischer (Ed.). Workflow Handbook 2003, Workflow Management Coalition, Future

Strategies. Lighthouse Point, FL, USA, 2003.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture,
and Implementation. International Thomson Computer Press, London, 1996.

B. Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow Model-
ling in Workflows. PhD thesis, Queensland University of Technology, Brisbane, Aus-
tralia, 2003. Available via http://www.workflowpatterns.com.

. B. Kiepuszewski, A.H. M. ter Hofstede, and W. M. P. van der Aalst. Fundamentals of

Control Flow in Workflows. Acta Informatica, 39(3):143-209, 2003.

B. Kiepuszewski, A. H. M. ter Hofstede, and C. Bussler. On structured workflow model-
ling. In B. Wangler and L. Bergman (Eds.), Proceedings of the 12th International Con-
ference on Advanced Information Systems Engineering (CAiSE), volume 1789 of Lecture
Notes in Computer Science, pp. 431-445, Stockholm, Sweden, June 2000. Springer-Ver-
lag.

P. Langner, C. Schneider, and J. Wehler. Petri Net Based Certification of Event driven
Process Chains. In J. Desel and M. Silva (Eds.), Application and Theory of Petri Nets
1998, volume 1420 of Lecture Notes in Computer Science, pp. 286-305, Lisbon, Portu-
gal, June 1998. Springer-Verlag.

R. Milner. Communicating and Mobile Systems: The Pi-Calculus. Cambridge University
Press, Cambridge, UK, 1999.

17.

18.

19.

20.

21.

22.

23.

24.

PATTERNS OF PROCESS MODELING 203

E. A. H. Platier. A Logistical View on Business Processes: BPR and WFM Concepts (in
Dutch). PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands,
1996.

D. Riehle and H. Ziillighoven. Understanding and Using Patterns in Software Develop-
ment. Theory and Practice of Object Systems, 2(1):3—13, 1996.

P. Rittgen. Modified EPCs and their Formal Semantics. Technical report 99/19, Univer-
sity of Koblenz-Landau, Koblenz, Germany, 1999.

N. Russell, A. H. M. ter Hofstede, D. Edmond, and W. M. P. van der Aalst. Workflow
Data Patterns. QUT Technical report FIT-TR-2004-01, Queensland University of Tech-
nology, Brisbane, Australia, 2004.

Eastman Software. RouteBuilder Tool User’s Guide. Eastman Software, Inc, Billerica,
MA, 1998.

WIMC. Workflow Management Coalition Terminology and Glossary, Document Num-
ber WFMC-TC-1011, Document Status—Issue 3.0. Technical report, Workflow Man-
agement Coalition, Brussels, Belgium, February 1999.

P. Wohed, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede. Analysis of
Web Services Composition Languages: The Case of BPEL4WS. In I.Y. Song, S.W. Lid-
dle, T. W. Ling, and P. Scheuermann (Eds.), Proceedings of the 22nd International Con-
ference on Conceptual Modeling (ER), volume 2813 of Lecture Notes in Computer Sci-
ence, pp. 200215, Chicago, IL, USA, October 2003. Springer-Verlag.

P. Wohed, E. Perjons, M. Dumas, and A. ter Hofstede. Pattern-Based Analysis of EAI
Languages—The Case of the Business Modeling Language. In O. Camp, J. Filipe, S.
Hammoudi, and M. Piatinni (Eds.), Proceedings of the 5th International Conference on
Enterprise Information Systems (ICEIS), pp. 174-182, Angers, France, April 2003. Es-
cola Superior de Tecnologia do Instituto Politécnico de Setubal, Setubal, Portugal.

EEEEE PART Il

TECHNIQUES

I CHAPTER 9

Process Design and Redesign

HAJO A. REIJERS

9.1 INTRODUCTION TO PROCESS (RE)DESIGN

A little over a decade ago, a new way of looking at business emerged in industry. It
contrasted sharply with the traditional emphasis on functional business areas within
companies, such as the procurement, manufacturing, and sales departments. Ham-
mer [5] and Davenport and Short [4] were the first to report on more or less system-
atic approaches to consider and improve entire business processes. The major in-
gredients in this approach were the application of information technology and a
drastic restructuring of the process. The latter part of this approach, process re-
design, is the subject of this chapter. Clearly, when a process has to be designed
from scratch, process design would be a more accurate term. However, because this
only applies for a minority of occasions—start-ups and entirely new products and
services of existing organizations—we will generally speak of process redesign
throughout this chapter.

Process redesign has been embraced by companies all over the world, although
the success of the approach varies from company to company and from process to
process. The drivers behind the popularity of process redesign are manifold. In the
first place, companies feel the increasing pressure of a globalizing market. Cost re-
duction has become necessary to survive and process redesign has turned out be an
effective cost cutter. Second, the historically strong position of suppliers in many
markets is becoming less dominant compared to that of the customer. To keep cus-
tomers coming back, companies have to please them by shortening their lead times
or by increasing their product quality. These are typical objectives of redesign pro-
jects. The last major change driver is the rise of process-aware information systems,
which facilitate the execution, analysis, and monitoring of entire business process-
es. Because a thorough process analysis must precede the implementation of a
process-aware information system, it often goes hand in hand with process redesign
efforts.

In short, “process-thinking” and process redesign have become mainstream
thinking in industry in the 21st century. But surprisingly, it is not very clear how to

Process-Aware Information Systems. Edited by Dumas, van der Aalst, and ter Hofstede 207
Copyright © 2005 John Wiley & Sons, Inc.

208 REIJERS

redesign a process so that it becomes a substantial improvement on the current
process layout. At best, most textbooks give directions to manage the organization-
al risk that is involved with designing or redesigning processes. Even the classic
work of Hammer and Champy [6] devotes only 14 out of a total of over 250 pages
to this issue, of which 11 pages are used for the description of a case. As Sharp and
McDermott [10] commented more recently: “How to get from the as-is to the to-be
[in a process redesign] isn’t explained, so we conclude that during the break, the fa-
mous ATAMO procedure is invoked—And Then, A Miracle Occurs.”

This chapter aims to provide more concrete guidance in designing or redesigning
business processes. First, an overview will be sketched of existing theory. Then, as
a prelude to the discussion of two concrete process redesign methods, the perfor-
mance indicators that usually drive process redesign projects are described. The
process redesign methods are described next; one of them can be characterized as
being based on heuristic redesign best practices, whereas the other exploits an infor-
mation processing perspective on business processes. Finally, the chapter concludes
with a short conclusion and a set of exercises.

9.2 METHODOLOGIES, TECHNIQUES, AND TOOLS

Much has been said and written about the subject of process redesign. A plethora of
methods, approaches, and guidelines exist, all of which seem to deal with process
redesign. The classification of Kettinger et al. [7] is helpful in this respect. There
are three levels of abstractions for methods with respect to process redesign:
methodologies, techniques, and tools.

A methodology, the highest level of abstraction, is defined as a collection of
problem-solving methods governed by a set of principles and a common philosophy
for solving targeted problems. This is primarily the field of consulting firms who
develop proprietary methodologies covering in detail all phases in a redesign pro-
ject, from the early diagnosis until the implementation and aftercare. Research-
oriented methodologies or initiatives for methodologies do exist, but there are rela-
tively few of them. In saying this, we ignore mere lists of activities that should take
place within a redesign project without describing in some detail: the activities
themselves, the dependencies between these activities, the techniques that should
be applied, and the deliverables of the activities. An important aspect to differenti-
ate between various redesign methodologies is whether a clean sheet approach is
adopted, that is, the process is designed from scratch, or whether an existing process
is taken as a starting point, which is gradually refined. There is considerable discus-
sion between practitioners and researchers alike as to which approach is preferable
(see O’Neill and Sohal [8]). In general, clean sheet approaches tend to be more
risky as they break away from existing, known procedures, but also tend to deliver
higher benefits when they succeed, as inefficiencies can be rooted out.

At the next level of abstraction, a technique is defined as a set of precisely de-
scribed procedures for achieving a standard task. Among the often encountered
techniques for process diagnosis—one of the phases in a redesign project—are, for

PROCESS DESIGN AND REDESIGN 209

example, fishbone diagramming, Pareto diagramming, and cognitive mapping. To
support the activity of redesigning, creativity techniques like out-of-box-thinking,
affinity diagramming, and the Delphi method (brainstorming) are available. For the
modeling and/or evaluation of business processes, techniques available use such as
flowcharting, IDEF, speech act modeling, data modeling, activity-based costing,
time—motion studies, Petri nets, role playing, and simulation.

At the lowest, most concrete level, a fool is defined as a computer software pack-
age to support one or more techniques. The majority of the business process re-
design (BPR) tools focus on the modeling of a business process, be it existing or
new. A large number of tools are also available for the evaluation of business
process models, in particular through simulation. Fewer tools are available to struc-
turally capture knowledge about the redesign directions or to support existing cre-
ativity techniques. Tools are often presented as “intelligent” or “advanced,” al-
though hardly any of those actively design business processes.

Obviously, methodologies, techniques, and tools can be linked in different ways.
Clearly, a choice of redesign techniques influences the choice for an appropriate re-
design methodology and vice versa. In this chapter, the emphasis is on two sets of
redesign techniques, either of which may be incorporated in an overall redesign
methodology. The actual integration of these techniques in a methodology or the
development of tools to support these techniques, however, is not within the scope
of this chapter.

Before the two types of techniques are discussed, some background is given on
the performance indicators of a process redesign effort.

9.3 BUSINESS PROCESS PERFORMANCE INDICATORS

Before the start of any redesign project, it should be clear which performance as-
pects of the business process are targeted for improvement. A useful conceptual
framework for this purpose is the devil’s quadrangle [2], which is depicted in Fig-
ure 9.1. The framework distinguishes four main performance dimensions along
which the effects of redesign can be measured: time, cost, quality, and flexibility. In
most circumstances, it would be ideal if a redesign of a business process decreases
the time required to handle cases, decreases the required cost of executing the busi-
ness process, improves the quality of the service delivered, and improves the ability
to change the business process to react to variation. The nasty, yet realistic, proper-
ty of the devil’s quadrangle is that, in general, improving upon one dimension may
have a weakening effect on another. For example, reconciliation tasks may be
added in a business process to improve the quality of the delivered service, but this
may produce negative effects on the timeliness of the service delivery. This type of
difficult trade-off explains the ominous name of the quadrangle.

For each project and each business process, it will be necessary to formulate ex-
actly how the various performance dimensions of the quadrangle will be measured
to establish and determine the goals of the redesign effort. Notwithstanding the pop-
ularity of process redesign, different studies have indicated that a large number of

210 REIJERS

Quality

Flexibility

Figure 9.1 The devil’s quadrangle.

BPR programs fail. Some failure estimates are up to 70% (e.g., [1, 3]). Although
falling short of the intended performance objectives is an obvious mark of failure, it
is likely that in many cases no clear objectives have been formulated at all. In other
words, without setting the performance goals for a redesign effort or without mea-
suring the respective performance indicators both at the start and the end of a pro-
ject, it is impossible to determine whether the redesign is a success.

Subsequently, a short overview will be given of some of the most common is-
sues in making the various performance dimensions of the devil’s quadrangle oper-
ational.

9.3.1 Time

An important performance concept of a business process is its lead time (also
known as cycle time, throughput time, etc.). It involves the time that it takes to han-
dle a case from start to end. Although it is usually the aim of a redesign effort to re-
duce the lead time, there are many different ways of further specifying this aim. For
example, one can aim at a reduction of the average lead time or the maximal lead
time over a certain period of time. Both of these entities are absolute measures. It is
also possible to focus on the ability to meet lead times that are agreed upon with a
client at run time. This is a more relative interpretation of the lead time dimension.
Yet another way of looking at the lead time is to try and limit the lead time’s varia-
tion, so that delivery of service becomes more reliable.

Other aspects of the time dimension come into view when considering the con-
stituents of lead time, which are as follows:

® Service times—the time that resources spend on actually handling the case.

® Queue times—the time that a case spends waiting in queue because there are
no resources available to handle it.

PROCESS DESIGN AND REDESIGN 211

® Wait times—all other time a case spends waiting; for example, because syn-
chronization must take place with another process.

In general, there are different ways of measuring each of these constituents. An
interesting phenomenon is that the major part of lead time consists of wait and
queue time (up to 95%). Decreasing the lead time should, therefore, primarily focus
on reducing these components.

9.3.2 Cost

The most common performance targets for redesign projects are of a financial na-
ture. Although the devil’s quadrangle mentions “cost,” it would also have been pos-
sible to put the emphasis on turnover, yield, or revenue. Obviously, an increase of
yield may have the same effect on an organization’s profit as a decrease of cost.
However, redesign is more often associated with reducing cost and not so much
with increasing yield.

There are different perspectives on cost. In the first place, it is possible to distin-
guish between fixed and variable cost. Fixed costs are overhead costs that are (al-
most) unaffected by the intensity of processing. Typical fixed costs follow from the
use of infrastructure and the maintenance of information systems. Variable cost is
positively correlated with some variable quantity, such as the level of sales, the
number of purchased goods, the number of new hires, etc.

A cost notion that is closely related to productivity is operational cost. Opera-
tional costs can be directly related to the outputs of a business process. A substantial
part of operational cost (typically 60%) is labor cost, the cost related to human re-
sources in producing a good or delivering a service. Within a redesign effort, it is
very common to focus on reducing operation cost, particularly labor cost. The au-
tomation of tasks is often seen as an alternative for labor. Obviously, although au-
tomation may reduce labor cost, it may cause incidental cost involved with develop-
ing the respective application and fixed maintenance cost for the lifetime of the
application.

9.3.3 Quality

The quality of a business process can be viewed from at least two different angles:
from the client’s side and from the worker’s side. This is also known as the distinc-
tion between external quality and internal quality.

External quality can be measured as the client’s satisfaction with either the prod-
uct or the process. Satisfaction with the product can be expressed as the extent to
which a client feels that his specifications or expectations are met by the delivered
product. A client’s satisfaction with the business process concerns the way it is exe-
cuted. A typical issue is the amount and quality of the information that a client re-
ceives during execution on the progress being made.

The internal quality of a business process involves the condition of working in
the business process. Typical issues are: the extent to which a worker feels he or she

212 REIJERS

is in control of the work performed, the level of variation experienced, and whether
working in the particular business process is felt to be challenging.

It is interesting to note that there are various direct relations between quality and
other dimensions. For example, the external process quality is often measured in
terms of time, for example, the lead time.

9.3.4 Flexibility

The criterion most often ignored in measuring the effect of redesign is the involved
business process’s flexibility. Flexibility can be defined as the ability to react to
changes. These changes may concern various parts of the business process as fol-
lows:

® The ability of resources to execute different tasks.

® The ability of a business process as a whole to handle various cases and
changing workloads.

® The ability of the business’s management to change the structure of the
process and/or the allocation of resources.

® The organization’s ability to change the structure and responsiveness of the
business process to meet the wishes of the market and business partners.

Another way of approaching the flexibility issue is to distinguish between run
time and build time flexibility. Run time flexibility concerns the possibilities of han-
dling changes and variations while executing a specific business process. Build time
flexibility concerns the possibility of changing the business process structure.

It is important to distinguish the flexibility of a business process from the other
dimensions, as will be clear from the discussion of the redesign approach based on
best practices in Section 9.4.

9.4 REDESIGNING PROCESSES USING BEST PRACTICES

In this section, a redesign technique is discussed that is based on a large survey of
the literature on process redesign (see [9]). From this body of literature, which often
expresses the experiences that large companies or consultancy firms have gathered
over the years, some 30 best practices can be gathered. In the last 20 years, best
practices have been collected and applied in various areas, such as business plan-
ning, healthcare, manufacturing, and software development. A best practice is often
seen as some sort of pattern, expressing the best way to treat a particular problem,
which can be replicated in a similar situation or setting (for other types of patterns
see Chapter 8). A best practice often needs to be adapted in a skillful way in re-
sponse to prevailing conditions.

The redesign technique that is based on redesign best practices can now be de-
scribed as follows. Assuming a number of clearly established performance goals, a

PROCESS DESIGN AND REDESIGN 213

team of redesigners uses the list of redesign best practices to evaluate and improve
an existing process. Depending on the fit of a specific best practice with the perfor-
mance objectives and the feasibility of applying it to the process under considera-
tion, a new, gradually improved version of the process can be derived. This proce-
dure can be continued, repeated, and reiterated until a desired process redesign
emerges. Clearly, this approach blends rather well with a redesign methodology in
which an existing process is taken as the starting point.

It is noteworthy that the various redesign best practices often lack a quantitative
justification in the sources in which they are originally mentioned. They are,
nonetheless, “advertised” because they seemed to be working in the past in several
situations. In this sense, the presented redesign technique in this section is of a
rather heuristic nature.

What follows now is a brief introduction of the various best practices and their
(supposed) effectiveness. For each best practice, an acronym will be given (in capi-
tals, between parentheses), followed by its general formulation, desirable effects,
and possible drawbacks in terms of the devil’s quadrangle. The following classifi-
cation for discussing the best practices will be used:

® Task best practices, which focus on optimizing single tasks within a business
process

® Routing best practices, which try to improve upon the routing structure of a
business process

® Allocation best practices, which involve a particular allocation of resources
within the business process

® Resource best practices, which focus on the types and number of resources

® PBest practices for external parties, which try to improve upon the collabora-
tion and communication with the client and third parties

® [ntegral best practices, which apply to the business process as a whole

Note that this distinction is not mutually exclusive. In other words, it is to some de-
gree arbitrary to which category a best practice is assigned.

9.4.1 Task Best Practices

Task Elimination (ELIM). The task elimination best practice is to eliminate un-
necessary tasks from a business process (see Figure 9.2). A task is said to be unnec-

N /

—_ 1 X 3 >

7 N

Figure 9.2 Task elimination.

214 REIJERS

essary when it adds no value from a client’s point of view. Typically, control tasks
in a business process do not do this; they are incorporated in the model to fix prob-
lems created or not resolved in earlier steps. Control tasks often take the form of it-
erations or reconciliation tasks. The aims of this best practice are to increase the
speed of processing and to reduce the cost of handling a case. An important draw-
back may be that the quality of the service deteriorates.

Task Composition (COMPOS). The purpose of the task composition heuristic
is to combine small tasks into composite tasks and divide large tasks into workable
smaller tasks (see Figure 9.3). Combining tasks should result in the reduction of set-
up time, that is, the time that is spent by a resource to become familiar with the
specifics of a case. By executing a large task that used to consist of several smaller
ones, some positive effect may also be expected on the quality of the delivered
work. Making tasks too large may result in (a) decreased run-time flexibility and (b)
lower quality, as tasks may become unworkable. Both issues are addressed by di-
viding tasks into smaller ones. Obviously, smaller tasks may result in longer setup
times.

Task Automation (AUTO). The task automation best practice is to consider au-
tomating tasks (see Figure 9.4). The positive result of automating tasks may be that
they can be executed faster, with less cost, and with a better result. An obvious dis-
advantage is that the development of a system that performs a task may be costly.
Generally speaking, a system performing a task is also less flexible in handling
variations than a human resource. Instead of fully automating a task, automated
support of the resource executing the task may also be considered. This best prac-
tice is a specific application of the technology best practice, which will be discussed
later on.

9.4.2 Routing Best Practices

Resequencing (RESEQ). The resequencing best practice is to move tasks to
more appropriate places (see Figure 9.5). In existing business processes, actual or-
derings of tasks do not strictly reflect necessary dependencies between those tasks.
Therefore, it is sometimes better to postpone a task and carry out another so that,
perhaps, its execution may become superfluous. This saves cost. A task may also be
moved into the proximity of a similar task, in this way diminishing setup times.
Specific applications of the resequencing best practice are the knockout best prac-

— 142 3 >

Figure 9.3 Task composition.

PROCESS DESIGN AND REDESIGN 215

Figure 9.4 Task automation.

Figure 9.5 Resequencing.

tice, control relocation, and parallelism best practice, which will subsequently be
discussed.

Knockout (KO). The knockout best practice is to order knockouts in an increasing
order of effort and in a decreasing order of termination probability (see Figure 9.6).
A typical part of a business process is checking various conditions that must be satis-
fied to deliver a positive end result. Any condition that is not met may lead to termi-
nation of that part of the business process, the knockout. If there is freedom in choos-
ing the order in which the various conditions are checked, the condition that has the
most favorable ratio of expected knockout probability versus the expected effort to
check the condition should be pursued, then, the second-best condition is pursued,
and so on. This way of ordering checks yields on average of the least costly business
process execution. There is no obvious drawback to this best practice, although it
may not always be possible to freely order these kinds of checks. Implementing this
best practice also may result in all or part of a business process having a longer lead
time than one in which all conditions are checked in parallel.

Control Relocation (RELOC). The control relocation best practice means mov-
ing controls toward the client (see Figure 9.7). Different checks and reconciliations
that are part of a business process may be moved toward the client. By having
clients check information themselves with forms or software, the bulk of errors may

Figure 9.6 Knockout.

216 REIJERS

—\/ 2 3 >

Figure 9.7 Control relocation.

be eliminated. This would also improve client satisfaction. A disadvantage of mov-
ing a control toward a client is higher probability of fraud, resulting in less yield.

Parallelism (PAR). The parallelism best practice is to consider whether tasks
may be executed in parallel (see Figure 9.8). The obvious effect of applying this
best practice is that the lead time may be considerably reduced. A drawback of in-
troducing more parallelism in a business process that incorporates possibilities of
knockouts is that the cost of business process execution may increase. The manage-
ment of business processes with concurrent behavior can also become more com-
plex, which may introduce errors (reducing quality) or restrict run time adaptations
(reducing flexibility).

Triage (TRI). The main interpretation of the triage best practice is to consider the
division of a general task into two or more alternative tasks (see Figure 9.9). Its op-
posite (and less popular) formulation is to consider the integration of two or more
alternative tasks into one general task. When applying the best practice in its main
form, it is possible to design tasks that are better aligned with the capabilities of re-
sources and the characteristics of the case. Both of these improve the quality of the
business process. Distinguishing alternative tasks also facilitates a better utilization
of resources, with obvious cost and time advantages. On the other hand, too much
specialization can make processes become less flexible, less efficient, and cause
monotonous work with repercussions for quality. This is resolved by using the al-
ternative interpretation of the triage best practice.

A special form of the triage best practice is to divide a task into similar instead of
alternative tasks for different subcategories of the case type. For example, a special
desk may be set up for clients with an expected low processing time.

Figure 9.8 Parallelism.

PROCESS DESIGN AND REDESIGN 217

ﬁ 71
L n -

Figure 9.9 Triage.

The triage best practice is related to the task composition best practice in the
sense that it is concerned with the division and combination of tasks, but differs
from it in the sense that only alternative tasks are considered.

9.4.3 Allocation Best Practices

Case Manager (MAN). The case manager best practice is to make one person
responsible for the handling each case—the case manager (see Figure 9.10). The
case manager is responsible for the case, but he or she is not necessarily the only re-
source that will work on work items for this case. The most important aim of this
best practice is to improve upon the external quality of a business process. The busi-
ness process will become more transparent from the viewpoint of a client if the case
manager provides a single point of contact. This positively affects client satisfac-
tion. It may also have a positive effect on the internal quality of the business
process, as someone is accountable for correcting mistakes. Obviously, the assign-
ment of a case manager has financial consequences as capacity must be devoted to
this job.

Case Assignment (ASSIGN). The case assignment best practice is to let the
same workers perform as many steps as possible in a case (see Figure 9.11). This
best practice is different from the case manager best practice. Although a case man-
ager will be responsible for a case, he or she does not have to be involved in execut-
ing the business process. By using case assignment in its most extreme form, for
each work item a capable person is selected who has worked on the case before.
The obvious advantage of this best practice is that this person will already be ac-
quainted with the case and will need less setup time. An additional benefit may be

Figure 9.10 Case manager.

218 REIJERS

Figure 9.11 Case assignment.

that the quality of service is increased. On the negative side, the flexibility of re-
source allocation is seriously reduced. A case may experience substantial queue
time when its case manager is not available.

Customer Teams (TEAM). The customer team best practice is to consider com-
posing teams of different workers from different departments that will take care of
the complete handling of specific sorts of cases (see Figure 9.12). This best practice
is a variation of the case assignment best practice. Depending on its exact desired
form, the customer team best practice may be implemented by the case assignment
best practice. One could also consider a customer team of workers with the same
qualifications.

Advantages and disadvantages are similar to those of the case assignment best
practices. In addition, teamwork may improve the attractiveness of the work and
provide a better understanding of it, which are both quality aspects.

Flexible Assignment (FLEX). The flexible assignment best practice is to assign
resources in such a way that maximal flexibility is preserved for the near future (see
Figure 9.13). For example, if a work item can be executed by either of two available
resources, assign it to the most specialized resource. In this way, the availability of
the more general resource to take on the next work item is maximized.

The advantage of this best practice is that the overall queue time is reduced be-
cause it is less probable that a case has to await the availability of a specific re-
source. Another advantage is that the workers with the highest specialization can be
expected to take on most of the work, which may result in a higher quality. The dis-
advantages of this best practice can be diverse. For example, work load may be-

Figure 9.12 Customer teams.

PROCESS DESIGN AND REDESIGN 219

Figure 9.13 Flexible assignment.

come unbalanced, resulting in less job satisfaction. Possibilities for specialists to
evolve into generalists are also reduced.

Resource Centralization (CENTR). The resource centralization best practice
is to treat geographically dispersed resources as if they are centralized (see Figure
9.14). This best practice is explicitly aimed at exploiting the benefits of process-
aware information systems. After all, when a process-aware information system
takes care of handing out work items to resources, it has become less relevant where
these resources are located geographically. In this sense, this best practice is a spe-
cial form of the technology best practice. Moreover, it can also be seen as the oppo-
site of the customer teams best practice. The specific advantage of this best practice
is that resources can be committed more flexibly, which leads to a better utilization
and, possibly, better lead time. The disadvantages are similar to that of the technol-
ogy best practice.

Split Responsibilities (SPLIT). The split responsibilities best practice is to
avoid assignment of task responsibilities to people from different functional units
(see Figure 9.15). The idea behind this best practice is that tasks for which different
departments share responsibility are more likely to be a source of neglect and con-
flict. Reducing the overlap in responsibilities should lead to a better quality of task
execution. A higher responsiveness to available work items may also be developed,
so that clients are served quicker. On the other hand, reducing the effective number
of resources that is available for a work item may have a negative effect on its lead
time, as more queuing may occur.

Figure 9.14 Resource centralization.

220 REIJERS

-0 -@ -

Figure 9.15 Split responsibilities.

9.4.5 Resource Best Practices

Numerical Involvement (NUM). The numerical involvement best practice is to
minimize the number of departments, groups, and persons involved in a business
process (see Figure 9.16). Applying this best practice should lead to fewer coordi-
nation problems. Less time spent on coordination makes more time available for the
processing of cases. Reducing the number of departments may lead to less shared
responsibilities, with similar pros and cons as the split responsibilities best practice.
In addition, smaller numbers of specialized units may prohibit expertise building (a
quality issue) and acquiring a routine (a cost issue).

Extra Resources (XRES). The extra resources best practice is to consider in-
creasing the number of resources in a certain resource class if capacity is not suffi-
cient (see Figure 9.17). This straightforward best practice speaks for itself. The ob-
vious effect of extra resources is that there is more capacity for handling cases,
reducing queue time. It may also help to implement a more flexible assignment pol-
icy. Of course, hiring or buying extra resources has its cost. Note the contrast of this
best practice with the numerical involvement best practice. Also note that it deals
with the number of people actually involved in a process, not with the priority with
which they receive work (as in the flexible assignment best practice).

Specialist-Generalist (SPEC). The specialist—generalist best practice is to con-
sider making resources more specialized or more generalized (see Figure 9.18). Re-
sources may be turned from specialists into generalists or the other way round. A
specialist resource can be trained for other qualifications; a generalist may be as-

Figure 9.16 Numerical involvement.

PROCESS DESIGN AND REDESIGN 221

Figure 9.17 Extra resources.

o -® d
A& T

Figure 9.18 Specialist-generalist.

signed to the same type of work for a longer period of time, so that his other qualifi-
cations become obsolete. When the redesign of a new business process is consid-
ered, application of this best practice comes down to considering the specialist-gen-
eralist ratio of new hires.

A specialist builds up a routine more quickly and may have more profound
knowledge than a generalist. As a result, he or she works quicker and delivers high-
er quality. On the other hand, the availability of generalists adds more flexibility to
the business process and can lead to a better utilization of resources. Depending on
the degree of specialization or generalization, either type of resource may be more
costly.

Note that this best practice differs from the triage concept in the sense that the
focus is not on the division of tasks.

Empower (EMP). The empower best practice is to give workers most of the deci-
sion-making authority and reduce middle management (see Figure 9.19). In tradi-
tional business processes, substantial time may be spent on authorizing work that is
to be done by others. When workers are empowered to make decisions indepen-
dently, the result may be smoother operations with lower lead times. The reduction
of middle management involvement in the business process also reduces the labor
cost spent on the processing of cases. A drawback may be that the quality of the de-

AL . A

Figure 9.19 Empower.

222 REIJERS

cisions may be lower and that obvious errors are no longer found. If bad decisions
or errors result in rework, the cost of handling a case may actually increase com-
pared to the original situation.

9.4.6 Best Practices for External Parties

Integration (INTG). The integration best practice is to consider the integration
with a business process of the client or a supplier (see Figure 9.20). This best prac-
tice can be seen as exploiting the supply chain concept known in production. In
practice, the application of this best practice may take different forms. For example,
when two parties have to agree that the quality of a product they commonly produce
is sufficient, it may be more efficient to perform several intermediate reviews than
to perform one large review when both parties have completed their part.

In general, integrated business processes should render a more efficient execu-
tion, both from a time and cost perspective. The drawback of integration is that de-
pendence grows and, therefore, flexibility may decrease.

Outsourcing (OUT). The outsourcing best practice is to consider outsourcing a
business process in whole or in part (see Figure 9.21). Another party may be more
efficient in performing the same work, so they might as well perform it. The out-
sourcing best practice is similar to the business process integration best practice in
the sense that it reflects on business processes of other parties.

The obvious aim of outsourcing work is that it will reduce cost. A drawback may
be that quality decreases. Outsourcing also requires more coordination efforts and
will make the business process more complex.

Interfacing (INTF). The interfacing best practice is to consider a standardized in-
terface with clients and partners (see Figure 9.22). The idea behind this best prac-
tice is that a standardized interface will diminish the probability of mistakes, incom-
plete applications, unintelligible communications, and so on. A standardized
interface may result in fewer errors (higher quality), faster processing (reduced
time), and less rework (decreased cost). The interfacing best practice can be seen a

— 1 2 3 —
— 1 2 3 —

Figure 9.20 Integration.

PROCESS DESIGN AND REDESIGN 223

Figure 9.21 Outsourcing.

& %

¢

Figure 9.22 Interfacing.

specific interpretation of the integration best practice, with similar advantages and
disadvantages.

Contact Reduction (REDUC). The contact reduction best practice is to reduce
the number of contacts with clients and third parties (see Figure 9.23). The ex-
change of information with a client or third party is always time-consuming. Espe-
cially when information exchanges take place by regular mail, substantial wait
times may be involved. Each contact also introduces the possibility of introducing

Figure 9.23 Contact reduction.

224 REIJERS

errors. Reducing the number of contacts may, therefore, decrease lead time and
boost quality. Note that it is not always necessary to skip certain information ex-
changes, but that it is possible to combine them with little extra cost. A disadvan-
tage of a smaller number of contacts might be the loss of essential information,
which is a quality issue. Combining contacts may result in the delivery or receipt of
too much data, which involves cost.

Note that this best practice is related to the interfacing best practice in the sense
that they both try to improve on the collaboration with other parties.

Buffering (BUF). The buffering best practice is to buffer information by sub-
scribing to updates instead of requesting information from an external source (see
Figure 9.24). Obtaining information from other parties is a major, time-consuming
part of many business processes. By having information directly available when it
is required, lead times may be substantially reduced. This best practice can be com-
pared to the caching principle that microprocessors apply. Of course, the subscrip-
tion fee for information updates may be rather costly. This is especially so when an
information source may contain far more information than is ever used. Substantial
cost may also be involved with storing all the information.

Note that this best practice is a weak form of the integration best practice. In-
stead of direct access to the original source of information—the integration alterna-
tive—a copy is maintained.

Trusted Party (TRUST). The trusted party best practice is to use results of a trust-
ed party instead of determining information oneself (see Figure 9.25). Some deci-
sions or assessments that are made within business processes are not specific for the
business process they are part of. Other parties may have obtained the same informa-
tion in another context, which, if it were known, could replace the decision or assess-
ment part of the business process. An example is the creditworthiness of a client that
bank A wants to establish. If a client can present a recent creditworthiness certificate
from bank B, then bank A will accept it. Obviously, the trusted party best practice re-
duces cost and may even cut back lead time. On the other hand, the quality of the
business process becomes dependent upon the quality of some other party’s work.
Some coordination effort with trusted parties is also likely to be required.

Note that this best practice differs from the outsourcing best practice. When out-
sourcing, a work item is executed at run time by another party. The trusted party
best practice allows for the use of a result from the recent past. It is different from
the buffering best practice because the business process owner is not the one obtain-
ing the information.

& 013

Figure 9.24 Buffering.

PROCESS DESIGN AND REDESIGN 225

L. L.

Figure 9.25 Trusted party.

9.4.7 Integral Business Process Best Practices

Case Types (TYP). The case types best practice is to determine whether tasks are
related to the same type of case and, if necessary, distinguish new business process-
es and product types. One should take care of subflows that are not specifically in-
tended to handle the case type of one’s umbrella business process (the superflow).
Ignoring them may result in less effective management of this subflow and lower
efficiency. Applying this best practice may yield faster processing times and lower
cost. Distinguishing common subflows of many different flows may also yield effi-
ciency gains. Yet, it may also result in more coordination problems between the
business process (lower quality) and fewer possibilities for rearranging the business
process as a whole (decreased flexibility).

Note that this best practice is in some sense similar to the triage concept. The
main interpretation of the triage concept can be seen as a translation of the case type
best practice on a task level.

Technology (TECH). The technology best practice is to try to elevate physical
constraints in a business process by applying new technology. In general, new tech-
nology can offer all kinds of positive effects. For example, the application of a
process-aware information system may result in less time spent on logistical tasks.
A document management system will open up the information available on cases to
all participants, which may result in a better quality of service. New technology can
also change the traditional way of doing business by giving participants completely
new possibilities.

Technology-related development, implementation, training, and maintenance ef-
forts are obviously costly. In addition, new technology may instill fear in workers
or may result in other adverse effects; this may decrease the quality of the business
process.

Exception (EXCEP). The exception best practice is to design business process-
es for typical cases and isolate exceptional cases from the normal flow.
Exceptions may seriously disrupt normal operations. An exception will require
workers to get acquainted with a case even though they may not be able to handle
it. Setup times are then wasted. Isolating exceptions, for example, by a triage, will
make the handling of normal cases more efficient. Isolating exceptions may pos-
sibly increase the overall performance as specific worker expertise can be gained
by working on the exceptions. By filtering out all exceptions, it may be possible
to offer straight-through-processing, that is, completely automated processing. The

226 REIJERS

price paid for isolating exceptions is that the business process will become more
complex, possibly decreasing its flexibility. Also, if no special knowledge is de-
veloped to handle the exceptions (which is costly), no major improvements are
likely to occur.

Case-based Work (CASEB). The case-based work best practice is to consider
removing batch processing and periodic activities from a business process. Al-
though business processes in the service industry are essentially case based and
make to order, several features may be present in real-life business processes that
are in disagreement with these concepts. The most notable examples are (a) the pil-
ing up of work items in batches and (b) periodic activities, depending on computer
systems that are only available for processing at specific times. Getting rid of these
constraints may significantly speed up the handling of cases. On the other hand, ef-
ficiencies of scale can be reached by batch processing. The cost of making informa-
tion systems permanently available may also be costly.

9.5 INFORMATION-BASED BUSINESS PROCESS DESIGN

Instead of focusing on the existing process structure and improving it using a set of
best practices, it is also possible to take a step back and consider what the essence of
a business process is. A new design can then be derived from a clean sheet, taking
into account the essential functions of the business process and the performance ob-
jectives. An advantage of this approach may be that the new process redesign will
not incorporate all the superfluous tasks that have entered the existing process, for
example, to respond to historic incidents. Also, the actual ordering of tasks in the
current design will not play a role in ordering the tasks in a new design. In practice,
business processes are often sequential by nature, which decrease the possibilities
for parallelization or resequencing.

In this section, we present a redesign technique that adopts an information pro-
cessing perspective on a business process. It is particularly applicable in the setting
of administrative products, such as mortgages, insurance, and permits. Using the
desired characteristics of the end product of a business process, an attempt is made
to reason backward on what the ideal process should look like to make this end
product. The technique that we will discuss fits rather well in a clean-sheet redesign
methodology. It resembles the way a so-called bill of material is used to determine
assembly lines in manufacturing processes.

To see how an information processing perspective may work for process re-
design, consider the processing of insurance claims. The product to be delivered
on the basis of an actual claim is basically a decision: either the claim is accept-
ed—followed by a payment—or rejected. All kinds of information elements may
play a role in making this decision, like the amount of damage, the claim history
of the claimant, and the coverage of the insurance. For example, one of the stan-
dard conditions of the insurance policy may specify that if (i) the amount of dam-
age is below a certain threshold, (ii) the claimant has not issued a claim for over

PROCESS DESIGN AND REDESIGN 227

a year, and (iii) the damage is covered, then the claim is accepted and the damage
paid for. This hypothetical condition can be seen as a part of the product specifi-
cation of the insurance. The information elements can be seen as raw materials or
subassemblies for the production of a decision. The business process should “as-
semble” the decision by distinguishing tasks to retrieve and asses the required in-
formation elements, while taking criteria such as average lead time, service level,
handling costs, and product quality into account. The latter are typically not char-
acteristics of the product, but performance targets that should be specified at the
beginning of the project.

In the Section 5.1 we will discuss rather informally the information-based re-
design technique using the hypothetical case of the Air Force Test Agency.

9.5.1 The Air Force Test Agency

Among other duties, the Air Force Test Agency is concerned with testing candi-
dates who have applied for the job of helicopter pilot. The procedure for this test
has been conducted in the same form for many years, but Air Force management
has recently been confronted with serious budget reductions by the government.
Also, there has been an increasing stream of complaints from tested individuals
who state that the procedure takes an excessive amount of time considering the
mild complexity of the test procedure. This has triggered the initiative for a re-
design of the helicopter pilot test procedure. The Air Force has asked a team of
graduate students from the nearby university to come up with a redesign of the
test procedure.

Instead of trying to improve the existing business process, the redesigners try to
understand the process in terms of its information processing. From studying the
formal requirements as issued by the Air Force in various regulations, they establish
that the suitability of a candidate can be directly determined on the basis of any of
the following:

1. By examining the outcomes of a psychological test and a physical test. If both
scores are sufficiently high, the candidate can be approved.

2. By considering the outcome of the latest helicopter pilot test, if any, of the
candidate: If the test has been executed within the last two years and the can-
didate was rejected, the candidate must be rejected again.

3. The eyesight quality of the candidate: If this is under a certain threshold, the
candidate can be directly rejected.

Just as in the general case, these business rules are related. The eyesight test
from business rule 3 is but one of the parts of the physical test mentioned in busi-
ness rule 1. So, if a candidate’s eyesight is below the quality threshold, that same
candidate can never pass the physical test.

From a further analysis, the redesigners distill some more business rules and
conclude that there are six important pieces of information that play a role in the
test process:

228 REIJERS

The candidate’s suitability to become a helicopter pilot

The candidate’s psychological fitness

The candidate’s physical fitness

The latest result of the candidate’s suitability test in the previous two years
The candidate’s quality of reflexes

A S o

The candidate’s quality of eyesight

The redesigners specify these information elements as well as their dependencies
according to the established business rules in an information element structure (see
Figure 9.26).

In the information element structure, the individual information elements are
depicted as rectangles. The business rules are depicted as directed arrows, com-
bining one or more information elements, of which the values are needed as in-
puts, to determine the value of another information element—the business rule’s
output. So, from the three incoming arrows in the information element structure
of Figure 9.26, it can be seen that there are three ways to come up with a final de-
cision on a candidate’s suitability to become a helicopter pilot (information ele-
ment a). One of these ways involves the combination of the test results on both
physical and psychological fitness, that is, information elements » and ¢. Four in-
formation elements, that is, b, d, e, and f, are not output elements of any business
rule, which means that they can be established in absence of any further informa-
tion.

The redesigners proceed to gather additional information on the established busi-
ness rules. In particular, they want to know what are the constraints, performance
characteristics, and execution probabilities of these business rules. They interview
the various involved professionals from the test agency and come up with the data
shown in Table 9.1.

a
AAA
]
b c d
A
[]
e f

Figure 9.26 Helicopter pilot information element structure.

PROCESS DESIGN AND REDESIGN 229

Table 9.1 Performance parameters

Index X constr(x) cst(x) flow(x) prob(x)
1 (a, {b, c}) true 80 1 1,0
2 (a, {d}) *d € {suitable, not suitable} 10 1 0,1
3 (a, {1}) *¥f<=3,00r*>43,0 5 1 0,4
4 (b, D) true 150 12 1,0
5 (c, {e,f}) true 50 1 1,0
6 d, D) true 10 16 1,0
7 (e, D) true 60 4 1,0
8 (, D) true 60 4 1,0

Each business rule in Table 9.1 is represented as a pair of an information ele-
ment inputs and a set of information element outputs. So, (a, {c, c}) refers to the
business rule mentioned earlier, in which the outcome of the psychological test ()
can be combined with the outcome of the physical test (c) to determine the candi-
date’s suitability (a). There are no constraints on applying the business rule, aside
from the availability of relevant values for b and c¢. The cost of executing this
business rule is roughly 80 Euros, the average lead time is 1 working hour, and it
will produce a result with probability 1. The probability, however, of using an ear-
lier test result to come up with a decisive conclusion on a candidate’s suitability
is only 0.1. For the sake of simplicity, it is assumed that all values are indepen-
dent of each other.

Based on this analysis, the redesign team comes up with two alternative business
process designs. They are represented as workflow (WF) nets in Figure 9.27. To
many of the tasks in each of the models, a label is associated that indicates the busi-
ness rule that is evaluated when executing the specific task. Tasks with no labels are
incorporated for routing reasons. See Chapter 7 for a further explanation of the
modeling technique.

The redesign team took much care to design both alternatives in such a way that
the models addressed the following properties:

® Soundness (see Chapter 7),
® Completeness—each business rule is incorporated in the model

® Conformity—each business rule is associated with a task such that it is guar-
anteed that all its inputs have been determined in preceding tasks

The process model on the left-hand side of the figure is presented to Air Force
management as an alternative with a very favorable expected lead time. After all,
much emphasis is put on determining the values of many information elements in
parallel, even though some of the information may turn out to be superfluous if the
suitability of the candidate can be determined early. The process model on the right-
hand side is presented as the alternative with a very favorable expected execution
cost. The process is purely sequential and it avoids the computation of information

(@, 2) . 2)

Y Y
(6, 9) (e, D)
(a{d}) (@{f}

Y % % Y
a not yet determined a determined

©{ef
(@i b, c})

Figure 9.27 Process designs.

230

a determined

>

<O+ 5 O

(a,{d})

a not yet

determined

O 5 O

(@{f})

a not yet

determined

<O

a determined

(e, D)

®,9)

@ f{ef})

(@{b,c})

PROCESS DESIGN AND REDESIGN 231

that is not strictly necessary. As soon as a decision can be made, the processing
stops.

Management is very impressed with results, but dumbfounded at the same time.
They have two process designs, but find it difficult to choose between them.

9.5.2 Applicability

Although the Air Force Test Agency case is a simplified one, it contains all essen-
tial elements of an information-centered approach to process redesign. The ap-
proach has been applied in industry twice, within a financial institution and a social
security agency. These typically reflect environments in which the processing of in-
formation is the core of the business process. Those who are interested in the de-
scriptions of these cases or a formal description of the approach are referred to [9].

9.6 CONCLUSION

Process redesign is a very popular subject in industry, but concrete redesign tech-
niques are scarce. This chapter gave the essential ideas behind two different re-
design approaches. It was shown that process redesign is closely linked to process
modeling techniques and simulation.

Regardless of the type of approach that is chosen in a particular situation, it is al-
ways wise to explicitly formulate the redesign goals in tangible, measurable terms.
Only then it is possible to establish the effectiveness of process redesign after it has
been implemented.

Currently, many organizations are enabling their business processes for interac-
tion with their clients, suppliers, and third parties through electronic media such as
the World Wide Web, a movement referred to as e-commerce or e-business. Much
emphasis is on the construction of flashy Web sites and the creation of contact e-
mail addresses. However, if the underlying business processes are to live up to the
expectations of doing business in the high-speed age of the electronic highway, this
may require considerable redesign of the complex, sequential, paper-based business
processes that are essentially behind these Web interfaces. This will ensure a bright
future for process redesigners.

9.7 EXERCISES

Exercise 1
Can you explain the three drivers behind the popularity of process redesign?

Exercise 2

Some redesigners favor a so-called “clean sheet” approach to process redesign.
a) What is meant by approach?

b) What are the advantages of this approach?

¢) What is the opposite of this approach?

a not yet

(a) Qdetermined (b)

@{f}
(a,{d})
,) (184%))]
: a determined
b, D) #} é) (e, D)
@ (afd}) @{f})
©{ef}) a not yet determined a determined
v
e {ef})
(a,{c})
(af{b,c})

Figure 9.28 Alternative process designs.

PROCESS DESIGN AND REDESIGN 233

Exercise 3

Explain at least one difference between the following redesign best practices in
terms of the dimensions of the devil’s quadrangle.

a) ASSIGN versus INTF

b) PAR versus KO

Exercise 4

As explained in the Air Force case, the Air Force management finds it difficult to
decide between the two alternatives that the redesign team comes up with. Can you
offer two possible reasons why this difficulty arises?

Exercise 5

Consider the two design alternatives that the redesign team decides on (see Figure

9.27), with the associated performance parameters (see Table 9.1). You may as-

sume that executing a check will always consume the standard costs, independent

of the task’s outcome. Moreover, assume an infinity of resources so that no queuing

takes place.

a) For both alternatives, determine the expected cost and the expected lead time of
an execution of the process.

b) Develop an improved process design for the alternatives in (a) with the lowest
expected lead time, such that the expected lead time is even further reduced.

¢) Develop an improved process design for the alternatives in (a) with the lowest
expected cost, such that the expected cost is even further reduced.

Exercise 6

The Air Force management decides to develop two other process design alterna-
tives themselves, which they consider improvements of the designs presented to
them (see Figure 9.28). They are rather happy with themselves; however, can you
indicate what is wrong with these designs?

REFERENCES

1. S. Bradley. Creating and Adhering to a BPR Methodology. Gartner Group Report, 1-30,
1994.

2. N. Brand and H. van der Kolk. Workflow Analysis and Design. Kluwer Bedrijfsweten-
schappen, 1995. (In Dutch)

3. J. Champy. Reengineering Management. HarperCollins, London, 1995.

4. T. H. Davenport and J. E. Short. The New Industrial Engineering: Information Technol-
ogy and Business Process Redesign. Sloan Management Review, 31(4):11-27, 1990.

5. M. Hammer. Reengineering Work: Don’t Automate, Obliterate. Harvard Business Re-
view, 70-91, 1990.

6. M. Hammer and J. Champy. Reengineering the Corporation; A Manifesto for Business
Revolution. Harper Business, New York, 1993.

234 REIJERS

7. W. J. Kettinger, J. T. C. Teng, and S. Guha. Business Process Change: A Study of
Methodologies, Techniques, and Tools. MIS Quarterly, 21(1):55-80, 1997.

8. P. O’Neill and A. S. Sohal. Business Process Reengineering: a Review of Recent Litera-
ture. Technovation 19(9): 571-581, 1999.

9. H. A. Reijers. Design and Control of Workflow Processes: Business Process Manage-
ment for the Service Industry. Springer-Verlag, Berlin, 2003.

10. Sharp and P. McDermott. Workflow Modeling: Tools for Process Improvement and Ap-
plication Development. Artech House Publishers, Boston, 2001.

I CHAPTER 10

Process Mining

WIL van der AALST and A. J. M. M. (TON) WEIJTERS

10.1 INTRODUCTION

The basic idea of process mining is to extract knowledge from event logs recorded
by an information system. Until recently, the information in these event logs was
rarely used to analyze the underlying processes. Process mining aims at improving
this by providing techniques and tools for discovering process, control, data, orga-
nizational, and social structures from event logs. Fueled by the omnipresence of
event logs in transactional information systems (cf. WFM, ERP, CRM, SCM, and
B2B systems), process mining has become a vivid research area [4, 5]. In this chap-
ter we provide an overview of process mining techniques and tools and discuss one
algorithm (the « algorithm) in detail.

As explained in Chapter 1, many information systems have become process-
aware. This awareness can be used in various ways; for example, the process-aware
information system may enforce a specific way of working but may also just monitor
the process and suggest alternative ways of working. Workflow management (WFM)
systems such as Staffware, IBM MQSeries, COSA, and so on (see Chapter 2) can be
used to enforce a specific way of working but may also allow for predefined choices
based on human judgment, properties of the case being handled, or a changing con-
text. Case handling (CH) systems such as FLOWer (see Chapter 15) allow for more
flexibility by enabling alternative paths that are implicitly defined (e.g. the ability to
skip, roll back, or change the order of activities). Both for WFM and CH systems,
there is an explicit process model that is actively used to support the process. In many
other process-aware systems, the process model plays a less explicit role. For exam-
ple, although ERP (enterprise resource planning) systems such as SAP, PeopleSoft,
Baan, and Oracle offer a workflow component, process models are often hard-coded
or used in a passive way. SAP supports a wide variety of processes. Parts of these
processes are hard-coded in the software, whereas other parts of the process are only
described in so-called reference models. These reference models describe how peo-
ple should use the system. Although process models in a WFM are used actively,
these reference models are only used passively. Another example is a hospital infor-

Process-Aware Information Systems. Edited by Dumas, van der Aalst, and ter Hofstede 235
Copyright © 2005 John Wiley & Sons, Inc.

236 VAN DER AALST AND WEIJTERS

mation system (HIS) supporting clinical guidelines. These guidelines describe the
treatment of a patient having a specific health problem and can be used in an active
way (e.g., automatically suggest actions to the medical staff) or a passive way (e.g.,
the medical staff can consult the clinical guideline when needed). Other process-
aware information systems such as CRM (customer relationship management) soft-
ware, SCM (supply chain management) systems, B2B (business to business) appli-
cations, and so on may use process models actively or passively and these models
may be hard-coded in the software, implicit (as in a CH system), or explicit (as in a
WEFM system). Despite the different ways in which models are used, most of these
systems log events in some way. In this chapter, we do not focus on the design of
these models but instead on techniques for moniforing enterprise information sys-
tems (i.e., WFM, ERP, CRM, and SCM-like systems).

As mentioned, many of today’s enterprise information systems store relevant
events in some structured form. For example, workflow management systems typ-
ically register the start and completion of activities [2]. ERP systems like SAP log
all transactions; for example, users filling out forms and changing documents.
Business-to-business (B2B) systems log the exchange of messages with other par-
ties. Call center packages and general-purpose CRM systems log interactions with
customers. These examples show that many systems have some kind of event log,
often referred to as “history,” “audit trail,” “transaction log,” and so on [4, 7, 10,
16]. The event log typically contains information about events referring to an ac-
tivity and a case. The case (also named process instance) is the “thing” that is be-
ing handled, for example, a customer order, a patient in a hospital, a job applica-
tion, an insurance claim or a building permit. The activity (also named task,
operation, action, or work item) is some operation on the case. Typically, events
have a time stamp indicating the time of occurrence. Moreover, when people are
involved, event logs will typically contain information on the person executing or
initiating the event—the originator. Based on this information, several tools and
techniques for process mining have been developed [1, 3, 6, 7, 8, 11, 12, 14, 16,
19].

It is important to note that all enterprise information systems allow for some
form of freedom and that the system is not able to control the entire process. Even
in a WFM system, there is some degree of freedom; for example, work items are
not allocated to a single user but to a group of users, and the routing may be deter-
mined by the user or by the arrival of external triggers (e.g., a cancellation by the
customer). Note that a WFM cannot completely control its environment; for exam-
ple, if work is offered to a user, then the user will determine when and how to per-
form it. Other systems typically offer even more freedom. In many systems, the
user can deviate from the predefined process model; for example, in an ERP system
the user does not need to follow the reference model completely (it is just a guide-
line). The fact that all systems allow for some form of freedom makes it interesting
to see how people actually work. This motivates the use of process mining tech-
niques as discussed in this chapter.

Process mining is useful for at least two reasons. First of all, it could be used as a
tool to find out how people and/or procedures really work, that is, for process dis-
covery. Consider, for example, processes supported by an ERP system like SAP (e.g.,

PROCESS MINING 237

a procurement process). Such a system logs all transactions but does not (complete-
ly) enforce a specific way of working. In such an environment, process mining could
be used to gain insight into the actual process. Another example would be the flow of
patients in a hospital. Note that in such an environment all activities are logged but
information about the underlying process is typically missing. In this context, it is im-
portant to stress that management information systems typically provide information
about key performance indicators like resource utilization, flow times, and service
levels, but not about the underlying business processes (e.g., causal relations, order-
ing of activities). Second, process mining could be used for delta analysis, that is,
comparing the actual process with some predefined process. Note that in many situ-
ations there is a descriptive or prescriptive process model. Such a model specifies
how people and organizations are assumed/expected to work. By comparing the de-
scriptive or prescriptive process model with the discovered model, discrepancies be-
tween both can be detected and used to improve the process. Consider, for example,
the so-called reference models in the context of SAP. These models describe how the
system should be used. Using process mining it is possible to verify whether this is
the case. In fact, process mining, could also be used to compare different depart-
ments/organizations using the same ERP system.

Process mining can be used to monitor coordination in enterprise information
systems. Some of the coordination is done by humans, whereas other coordination
tasks are done by software. As indicated, similar interaction patterns occur at the
level of software components, business processes, and organizations. Therefore,
process mining can be done at many levels.

The topic of process mining is related to management trends such as business
process reengineering (BPR, see also Chapter 9), business intelligence (BI), busi-
ness process analysis (BPA), continuous process improvement (CPI), and knowl-
edge management (KM). Process mining can be seen as part of the BI, BPA, and
KM trends. Moreover, process mining can be used as input for BPR and CPI activi-
ties. Note that process mining is not a tool to (re)design processes. The goal is to
understand what is really going on. Despite the fact that process mining is not a tool
for designing processes, it is evident that a good understanding of the existing
processes is vital for any redesign effort.

The remainder of this chapter is organized as follows. In Section 10.2, we intro-
duce process mining. Using an example, we illustrate the concept of process min-
ing, discuss the information required to do process mining, and show the various
perspectives that can be mined (process perspective, organizational perspective, and
case perspective). Section 10.3 focuses on the process perspective and provides a
concrete algorithm: the « algorithm. In Section 10.4 we discuss some limitations of
the a-algorithm and possible solutions. To conclude, we provide exercises in Sec-
tion 10.6.

10.2 PROCESS MINING: AN OVERVIEW

The goal of process mining is to extract information about processes from transac-
tion logs [4]. We assume that it is possible to record events such that (i) each event

238 VAN DER AALST AND WEIJTERS

refers to an activity (i.e., a well-defined step in the process); (ii) each event refers to
a case (i.e., a process instance); (iii) each event can have a performer, also referred
to as originator (the person executing or initiating the activity); and (iv) events have
a time stamp and are totally ordered. Table 10.1 shows an example of a log involv-
ing 19 events, 5 activities, and 6 originators. In addition to the information shown in
this table, some event logs contain more information on the case itself, that is, data
elements referring to properties of the case. For example, the case handling system
FLOWer logs every modification of some data element.

Event logs such as the one shown in Table 10.1 are used as the starting point
for mining. We distinguish three different perspectives: (1) the process perspec-
tive, (2) the organizational perspective, and (3) the case perspective. The process
perspective focuses on the control flow, that is, the ordering of activities. The goal
of mining this perspective is to find a good characterization of all possible paths,
for example, expressed in terms of a Petri net [15] (see Chapter 7) or event-driv-
en process chain (EPC) [13, 12] (see Chapter 6). The organizational perspective
focuses on the originator field—which performers are involved and how they are
related. The goal is to either structure the organization by classifying people in
terms of roles and organizational units or to show relations between individual
performers (i.e., build a social network [17]). The case perspective focuses on
properties of cases. Cases can be characterized by their path in the process or by
the originators working on a case. However, cases can also be characterized by the
values of the corresponding data elements. For example, if a case represents a re-

Table 10.1 An event log

Case id Activity id Originator Time stamp
case 1 activity A John 9-3-2004:15.01
case 2 activity A John 9-3-2004:15.12
case 3 activity A Sue 9-3-2004:16.03
case 3 activity B Carol 9-3-2004:16.07
case 1 activity B Mike 9-3-2004:18.25
case 1 activity C John 10-3-2004:9.23
case 2 activity C Mike 10-3-2004:10.34
case 4 activity A Sue 10-3-2004:10.35
case 2 activity B John 10-3-2004:12.34
case 2 activity D Pete 10-3-2004:12.50
case 5 activity A Sue 10-3-2004:13.05
case 4 activity C Carol 11-3-2004:10.12
case 1 activity D Pete 11-3-2004:10.14
case 3 activity C Sue 11-3-2004:10.44
case 3 activity D Pete 11-3-2004:11.03
case 4 activity B Sue 11-3-2004:11.18
case 5 activity E Clare 11-3-2004:12.22
case 5 activity D Clare 11-3-2004:14.34

case 4 activity D Pete 11-3-2004:15.56

PROCESS MINING 239

plenishment order, it is interesting to know the supplier or the number of products
ordered.

The process perspective is concerned with the “How?” question, the organiza-
tional perspective is concerned with the “Who?” question, and the case perspective is
concerned with the “What?” question. To illustrate the first two, consider Figure
10.1. The log shown in Table 10.1 contains information about five cases (i.e., process
instances). The log shows that for four cases (1, 2, 3, and 4) the activities A, B, C, and
D have been executed. For the fifth case, only three activities have been executed: ac-
tivities A, E, and D. Each case starts with the execution of A and ends with the exe-
cution of D. If activity B is executed, then activity C is also executed. However, for
some cases, activity C is executed before activity B. Based on the information shown
in Table 10.1 and by making some assumptions about the completeness of the log
(i.e., assuming that the cases are representative and a sufficiently large subset of pos-
sible behaviors has been observed), we can deduce the process model shown in
Figure 10.1(a). The model is represented in terms of a Petri net. The Petri net starts
with activity A and finishes with activity D. These activities are represented by tran-
sitions. After executing A, there is a choice between either executing B and C con-
currently (i.e., in parallel or in any order) or just executing activity E. To execute B
and C in parallel, two nonobservable activities (AND-split and AND-join) have been
added. These activities have been added for routing purposes only and are not present
in the event log. Note that for this example, we assume that two activities are con-
current if they appear in any order. By distinguishing between start events and com-
pletion events for activities, it is possible to explicitly detect parallelism.

Figure 10.1(a) does not provide any information about the organization, that is, it
does not use any information concerning the people executing activities. Information

|

[

[

| (a) The control-flow structure/efkpressed in terms ofa Ifetn net.
{
! -
|
!
!
|
\

///

John Sue
role X role Y role Z / \
John ue M/ke Carol Pete Clare Pete Carol

Figure 10.1 Some mining results for the process perspective (a) and organizational per-
spective (b and c) based on the event log shown in Table 10.1.

240 VAN DER AALST AND WEIJTERS

about performers of activities, however, is included in Table 10.1. For example, we
can deduce that activity A is executed by either John or Sue; activity B is executed by
John, Sue, Mike, or Carol; C is executed by John, Sue, Mike,or Carol; D is executed
by Pete or Clare; and E is executed by Clare. We could indicate this information in
Figure 10.1(a). The information could also be used to “guess” or “discover” organi-
zational structures. For example, a guess could be that there are three roles: X, Y, and
Z. For the execution of A, role X is required and John and Sue have this role. For the
execution of B and C, role Y is required and John, Sue, Mike, and Carol have this
role. For the execution of D and E, role Z is required and Pete and Clare have this role.
For five cases, these choices may seem arbitrary, but for larger data sets such infer-
ences capture the dominant roles in an organization. The resulting “activity—role—
performer diagram” is shown in Figure 10.1(b). The three “discovered” roles link ac-
tivities to performers. Figure 10.1(c) shows another view of the organization based
on the transfer of work from one individual to another. It does not focus on the rela-
tion between the process and individuals but on relations among individuals (or
groups of individuals). Consider Table 10.1. Although Carol and Mike can execute
the same activities (B and C), Mike is always working with John (cases 1 and 2) and
Carol is always working with Sue (cases 3 and 4). Carol and Mike probably have the
same role but, based on the small sample shown in Table 10.1, it seems that John is
not working with Carol and Sue is not working with Carol.!

These examples show that the event log can be used to derive relations between
performers of activities, thus resulting in a sociogram. For example, it is possible to
generate a sociogram based on the transfers of work from one individual to another,
as is shown in Figure 10.1(c). Each node represents one of the six performers, and
each arc represents that there has been a transfer of work from one individual to an-
other. The definition of “transfer of work from A to B” is based on whether, in the
same case, an activity executed by A is directly followed by an activity executed by
B. For example, in both case 1 and 2 there is a transfer from John to Mike. Figure
10.1(c) does not show frequencies. However, for analysis purposes these frequen-
cies can be added. The arc from John to Mike would then have weight 2. Typically,
we do not use absolute frequencies but weighted frequencies to get relative values
between 0 and 1. Figure 10.1(c) shows that work is transferred to Pete but not vice
versa. Mike only interacts with John and Carol only interacts with Sue. Clare is the
only person transferring work to herself.

Besides the “How?” and “Who?” questions (i.e., the process and organization
perspectives), there is the case perspective that is concerned with the “What?” ques-
tion. Figure 10.1 does not address this. In fact, focusing on the case perspective is
most interesting when data elements are also logged, but these are not listed in
Table 10.1. The case perspective looks at the case as a whole and tries to establish
relations between the various properties of a case. Note that some of the properties
may refer to the activities being executed, the performers working on the case, and
the values of various data elements linked to the case. Using clustering algorithms,

IClearly the number of events in Table 10.1 is too small to establish these assumptions accurately. How-
ever, real event logs will contain thousands or more events.

PROCESS MINING 241

it would, for example, be possible to show a positive correlation between the size of
an order or its handling time and the involvement of specific people.

Orthogonal to the three perspectives (process, organization, and case), the result of
a mining effort may refer to logical issues and/or performance issues. For example,
process mining can focus on the logical structure of the process model [e.g., the Petri
net shown in Figure 10.1(a)] or on performance issues such as flow time. For mining
the organizational perspective, the emphasis can be on the roles or the social network
[cf. Figure 10.1(b) and (c)] or on the utilization of performers or execution frequen-
cies. To illustrate the fact that the three perspectives and the type of question (logical
or performance oriented) are orthogonal, some examples are given in Table 10.2.

To address the three perspectives and the logical and performance issues, we have
developed a set of tools including EMIT [1], Thumb [19], and MinSoN [3]. These tools
share a common XML format. Recently, the functionality of these three tools have
been merged into the ProM Framework. The ProM tool not only supports variants of
the a-algorithm; it also supports alternative approaches, for example, approaches
based on genetic algorithms. For more details, refer to http://www.processmining.org.

10.3 PROCESS MINING WITH THE a ALGORITHM

In this chapter, we focus on the process perspective. In fact, we consider a specific al-
gorithm: the « algorithm. Before describing the algorithm, we first discuss the input
format.

10.3.1 Input

Table 10.1 shows an event log. The basic algorithm only considers the case id and the
activity id and not the timestamp and originator of the event. For the « algorithm, the
ordering of events within a case is relevant, whereas the ordering of events among

Table 10.2 Some examples of properties that may be investigated using process mining

Examples of

Examples of

Perspective logical properties performance properties

Process Activity A is always followed The average processing time of

perspective by B; activities C and D may activity A is 35 minutes; activity A is
be executed in parallel. executed for 80% of the cases.

Organizational ~ John and Mary are on the same John handles on average 30 cases

perspective team; Pete is the manager of per day; Mary and Pete work together
department D. on 50% of the cases.

Case Cases of more than 5000 euros 80% of cases of more than 5000 euros

perspective are handled by John; activity A are handled within 2 days; the

is only executed for private
customers.

average flow time of cases handled by
John and Mary is 2 weeks.

242 VAN DER AALST AND WEIJTERS

cases is of no importance. In Table 10.1, it is important that for case 1, activity A is
followed by B within the context of case 1, and not that activity A of case 1 is fol-
lowed by activity A of case 2. Therefore, we define an event log as follows. Let 7T be
a set of activities. o € T* is an event trace—an arbitrary sequence of activity identi-
fiers. W C T* is an event log—a set of event traces. Note that since W is a set and not
a multiset (bag), every event trace can appear only once in a log. In an event log like
the one shown in Table 10.1, this is not the case. However, for inferring the structure
of'a process with the « algorithm, the frequency of an event trace is irrelevant; it does
not add information. In more practical mining tools as presented in Section 10.4.2,
frequencies become important. If we use this notation to describe the log shown in
Table 10.1, we obtain the set W = {ABCD, ACBD, AED}. Note that cases 1 and 3
have event trace ABCD, cases 2 and 4 have trace ACBD, and case 5 is the only one
having trace AED. Also note that when dealing with noise, frequencies are of the ut-
most importance (see Section 10.4.2 and [18]). However, for the moment we abstract
from noise and simply look at the presence of a trace rather than its frequency.

To find a process model on the basis of an event log, the log should be analyzed
for causal dependencies. For example, if an activity is always followed by another
activity it is likely that there is a causal relation between both activities. To analyze
these relations, we introduce the following notations. Let # be an event log over 7,
thatis, W C T*. Leta, b € T:

® a>p biffthereisatrace o=ttt;...t,andi € {l,...,n—1} suchthat o €
Wandt,=aandt,,=b

® a—ybiffa>yband b Fya

® gttybiffabybandb #ya

® aqllpbiffa>yband b >y a

Consider the event log W = {ABCD, ACBD, AED} (i.e., the log shown in Table
10.1). Relation >, describes which activities appeared in sequence (one directly fol-
lowing the other). Clearly, 4 >y B, A>3 C,A >y E, B>, C,B>; D, C>y, B, C>y D,
and E >y, D. Relation —, can be computed from >, and is referred to as the (direct)
causal relation derived from eventlog W. A —B,A—,, C,A—>yE,B—;D,C—y,
D, and E —, D. Note that B 4>, C because C >, B. Relation ||, suggests concurrent
behavior, that is, potential parallelism. For log W activities, B and C seem to be in par-
allel, that is, B || C and C || B. If two activities can follow each other directly in any
order, then all possible interleavings are present and, therefore, they are likely to be in
parallel. Relation #, gives pairs of transitions that never follow each other directly.
This means that there are no direct causal relations and parallelism is unlikely.

10.3.2 The Algorithm

The « algorithm uses notions such as >y, —, ||y, and #; to obtain information
about the underlying process. The « algorithm represents the discovered process in
terms of a Petri net. Let be an event log over 7. a(W) is defined as follows:

WO =

PROCESS MINING 243

. Tyw={t € T|3,ent € o} (the set of activities appearing in the log)

. Ty={t € T| 3,ept =first(o)} (the set of initial activities)

. To={t € T|3,ent =last(c)} (the set of final activities)

X={A, B AC Ty NBC Ty NV Vyepa =y b N\ Va[,azEAal #yay /\

VY, .esbi #y by} (all causality relations)

. Y={(4,B) E X |V zyexA CA' NBC B =>(4,B)=(4', B')} (only the

minimal causality relations)

. Py =A{pup |, B) € Y} U {iy, oy} (the set of places in the resulting Petri

net, p4) is a place connecting transitions in 4 with transitions in B, i is the
unique input place denoting the start of the process, and oy, is the unique out-
put place denoting the end of the process)

. Fy= {(Q,P(A,B)) |(4,B) € YNa edy U {(p(A,B)a b)|(4,B) e YN\b €EB} U

{Gw,)|t € T;} U {(t, o) | t € Ty} (the set of connecting arcs in the result-
ing Petri net)

. (W) = (Py, Ty, Fy) (the resulting Petri net with places Py, transitions Ty,

and arcs Fy).

The « algorithm transforms a log W into a Petri net (Py, Ty, Fyy). The algorithm
only uses basic mathematics, the relations >y, —, ||, and #,, and the functions
first and last to get the first and last element from a trace.

To illustrate the « algorithm, we show the result of each step using the log W =
{ABCD, ACBD, AED} (i.e., a log like the one shown in Table 10.1):

B =

. Ty=1{4,B,C,D,E}

T;=1{4}
To=1{D}

- X={({4}, {B}), ({4}, {C}), ({4}, {E}), ({B}, {D}), ({C}, {D}), ({E}, {D}),

({4}, {B, E}), ({4}, {C, E}), ({B, E}), ({D}), ({C, E}), ({D})}

- Y=A{({4}, {B, E}), ({4}, {C, E}), (1B, E}, {D}), ({C, E}, {D})}

Py = {iy, oy, Pay (B.EY) P({a},(C.E})> P({B,E},{D}) p({C,E},{D})}

- Fy={(iy, A), (Anp({A},{B,E}))a (p({A},{B,E})a By...,(D,op)}
. (W)= (Py, Ty, Fy) (as shown in Figure 10.2)

It is interesting to note that a(W) shown in Figure 10.2 differs from the Petri net
shown in Figure 10.1. This may suggest that the result is not correct. However,
from a behavioral point of view, Figure 10.2 and Figure 10.1(a) are equivalent if we
abstract from the AND-split and AND-join. Note that every event trace in W =
{ABCD, ACBD, AED} can be realized by Figure 10.2. Also, every possible firing
sequence corresponds to an event trace in W. Therefore, we conclude that although
Figure 10.2 and Figure 10.1(a) differ, the « algorithm is able to correctly mine the
log shown in Table 10.1.

244 VAN DER AALST AND WEIJTERS

@—»A c D@

Figure 10.2 Another process model corresponding to the event log shown in Table 10.1. In
Section 10.4, we will discuss the problem of “invisible activities”—activities that are not
recorded in the log.

10.3.3 How Does it Work?

The fact that the « algorithm is able to “discover” Figure 10.2 based on the event
log W= {ABCD, ACBD, AED} triggers the question: How does it work? To under-
stand the basic idea of the « algorithm, consider Figure 10.3. The algorithm as-
sumes that two activities x and y (i.e., transitions) are connected through some place
if and only if x —, y [Figure 10.3(a)]. If activities x and y are concurrent, then they
can occur in any order; that is, x may be directly followed by y or vice versa. There-
fore, the « algorithm assumes activities x and y are concurrent if and only if x || y.
This is illustrated by Figure 10.3(b). If x —, y and x —, z, then there have to be
places connecting x and y on the one hand and x and z on the other hand. This can
be one place or multiple places. If y ||; z, then there should be multiple places to en-
able concurrency [cf. Figure 10.3(b)]. If y #;, z, then there should be a single place
to ensure that only one branch is chosen [cf. Figure 10.3(c)]. Note that in the latter
case, y and z never follow one another directly, as expressed by y #,z (i.e., y #y z
and z %y y). Figure 10.3(d) shows the AND-join [i.e., counterpart of the AND-split
shown in Figure 10.3(b)] and Figure 10.3(e) shows the XOR-join [i.e., counterpart
of the XOR-split shown in Figure 10.3(c)].

The basic relations shown in Figure 10.3 are the starting point for the « algo-
rithm. Note that the relations do not always hold, that is, one can think of them as
heuristics. For example, it is assumed that the log is complete with respect to >.
(Note that —y, ||, and #j, are derived from >,.) This implies that if one activity
can be followed by another, this should happen at least once in the log. We will re-
turn to the issue of completeness in Section 10.4.2.

10.3.4 Examples

Figure 10.4 is an example of a Petri net in which an AND-split and OR-split are em-
bedded in an AND-split. Given a complete event log, this kind of nesting will not
harm the « algorithm in rediscovering the original Petri net.

PROCESS MINING 245

x>y »
XY, X >Z,
and yllz -

XY, X >Z,
and y#z

S
> , - ,
Xanz >}<Illy ‘

VEH A S

X=>Z,y >2,
and x#y

Figure 10.3 Relating the log-based relations >y, —y, ||, and #;, to basic Petri net con-
structs.

Figure 10.4 An example of a Petri net with nested AND/XOR-splits correctly mined by the
« algorithm.

246 VAN DER AALST AND WEIJTERS

In Figure 10.5, an example of a Petri net with loops is given. Note that an event
log with all possible event traces of this Petri net is an infinite set. However, a com-
plete event log does not need to contain all possible traces. A sufficiently large sub-
set with, on a binary level (i.e. with respect to >;), all possible pairs is sufficient. If
we have such a complete event log, the « algorithm will, without any problem, cor-
rectly rediscover the Petri net of Figure 10.5.

The Petri net of the last example (Figure 10.6) is less abstract and specifies the
interactions between a contractor and a subcontractor. First, the contractor sends an
order to the subcontractor. Then, the contractor sends a detailed specification to the
subcontractor and the subcontractor sends a cost statement to the contractor. Based
on the specification, the subcontractor manufactures the desired product and sends
it to the contractor. There is no clear owner of the resulting interaction process, but
the combined information registered by both parties contains enough information to
mine the process (i.e., the process itself and other aspects of it).

10.4 LIMITATIONS OF THE « APPROACH AND
POSSIBLE SOLUTIONS

In this chapter, we only consider the basic « algorithm to illustrate the concept of
process mining. The « algorithm focuses exclusively on the process perspective (i.e.,
control flow). As indicated in Section 10.2, process mining can be used to analyze
other perspectives (to answer “Who?”” and “What?” questions). Despite its focus, the
basic « algorithm is still unable to successfully discover some processes. In this sec-
tion, we identify two classes of problems: logical problems and problems resulting
from noise (incorrectly logged data), exceptions (rare events not corresponding to the
“normal” behavior), and incompleteness (i.e., too few observations).

10.4.1 Logical Problems

In [6], a formal characterization is given for the class of nets that can be mined cor-
rectly. It turns out that assuming a weak notion of completeness (i.e., if one activity

Figure 10.5 Example of a more complex Petri correctly mined by the a algorithm.

1onpoud diys

1030e1U0dqNS pue 1039e1jUOI U39M)3(q UOI)IRINUI Y T,

1onpoud
slpuey

M\
W,

Juswielels
1500 8je8ld

1odsuen
asedaud

9°01 dIn31y

uoneoioads
ssao0.d

19pIo 8A8l08l

Juswaiels
1500 ssaoo0.d

A

uoneoyoads
a1eaI0

Juswielels
1S00 9ABI081

1epIo pues

247

248 VAN DER AALST AND WEIJTERS

can be followed by another this should happen at least once in the log), any so-
called SWF net without short loops and implicit places can be mined correctly.
SWF nets are Petri nets with a single source and sink place satisfying some addi-
tional syntactical requirements such as the free-choice property. In this chapter, we
will not elaborate on formal characterizations of the class of processes that can be
successfully mined. Instead, we focus on the practical limitations of the « algo-
rithm, that is, the problems encountered when dealing with invisible activities, du-
plicate activities, short loops, and so on.

10.4.1.1 Invisible Activities. One of the basic assumptions of process mining
is that each event (i.e., the occurrence of an activity for a specific case) is registered
in the log. Clearly, it is not possible to find information about activities that are not
recorded. However, given a specific language, it is possible to register that there is a
so-called “hidden activity.” Consider, for example, Table 10.1, where A, B, and C
are visible but the AND-split in between A and B and C is not. Clearly, the basic «
algorithm is unable to discover activities not appearing in the log. Therefore, the
Petri net shown in Figure 10.2 is different from the Petri net shown in Figure
10.1(a). However, both nets are equivalent if we abstract from the AND-split and
AND-join. Unfortunately, this is not always the case. Consider, for example, Figure
10.2, where activity E is not visible. The resulting log would be W = {4BCD,
ACBD, AD} and the « algorithm would be unable to construct the correct model;
thatis, a(W) = ({iw, 0w, Ppay 8y Pitay.icy» Pasyioys Pacy.ioyy Poay.ionds 14, B, G,
Dy, {(iws A), (A, piay.iy)s > As Paay.ion)s Pay.oyy D), (D, op)}). The result-
ing net is shown in Figure 10.7, that is, the original net shown in Figure 10.2 with-
out E but with an additional place connecting A and D. Note that the resulting mod-
el does not allow for the event trace AD.

10.4.1.2 Duplicate Activities. The problem of duplicate activities refers to
the situation in which one can have a process model (e.g., a Petri net) with two
nodes referring to the same activity. Suppose that in Table 10.1 and Figure 10.1, ac-
tivity E is renamed to B (see Figure 10.8). Clearly, the modified log could be the re-
sult of the modified process model. However, it becomes very difficult to automati-

O

OxE o\ @

Figure 10.7 If activity E is not visible, the algorithm returns an incorrect model because it
does not allow for 4D.

PROCESS MINING 249

o
O

¥

Figure 10.8 A process model with duplicate activities.

cally construct a process model from Table 10.1 with E renamed to B because it is
not possible to distinguish the “B” in case 5 from the “Bs” in the other cases. Note
that the presence of duplicate activities is related to hidden activities. Many
processes with hidden activities but with no duplicate activities can be modified
into equivalent processes with duplicate activities but with no hidden activities.

10.4.1.3 Non-Free-Choice Constructs. Free-choice Petri nets are Petri nets
in which there are no two transitions occupying the same input place but one has an
input place that is not an input place of the other [9]. This excludes the possibility of
merging choice and synchronization into one construct. Free-choice Petri nets are a
well-known and widely used subclass of Petri nets. However, many processes can-
not be expressed in terms of a free-choice net. Unfortunately, most of the mining
techniques (also those that do not use Petri nets) assume process models corre-
sponding to the class of free-choice Petri nets. Non-free-choice constructs can be
used to represent “controlled choices,” situations in which the choice between two
activities is not determined inside some node in the process model but may depend
on choices made in other parts of the process model. Clearly, such nonlocal behav-
ior is difficult to mine with mining approaches primarily based on binary informa-
tion (a >y, b) and may require many observations.

Figure 10.1 is free-choice since synchronization (activity AND-join) is separated
from the choice between B and C, and E. Figure 10.9 shows a non-free-choice con-
struct. After executing activity C, there is a choice between activity D and activity
E. However, the choice between D and E is “controlled” by the earlier choice be-
tween A and B. Note that activities D and E are involved in a choice but also syn-
chronize two flows. Clearly, such constructs are difficult to mine since the choice is
nonlocal and the mining algorithm has to “remember” earlier events.

To illustrate that there are also non-free-choice constructs that can be mined cor-
rectly using the « algorithm, we consider Figure 10.10. Now, the choice can be de-
tected because of the two new activities, X and Y. Note that X may be directly fol-
lowed by D but not by E. Hence, the place in between X and D is discovered.

10.4.1.4 Short Loops. In a process, it may be possible to execute the same ac-
tivity multiple times. If this happens, this typically refers to a loop in the corre-

250 VAN DER AALST AND WEIJTERS

v
>

T
@)

® =O—{ -

Figure 10.9 A process model with a non-free-choice construct.

sponding model. Figure 10.11 shows an example with a loop. After executing activ-
ity B, activity C can be executed arbitrarily many times; possible event sequences
are BD, BCD, BCCD, BCCCD, and so on. Loops like the one involving activity C
are easy to discover. However, loops can also be used to jump back to any place in
the process. For more complex processes, mining loops is far from trivial since
there are multiple occurrences of the same activity in a given case. Some techniques
number each occurrence; for example, Bl C1 C2 C3 D1 denotes BCCCD. These
occurrences are then mapped onto a single activity.

As illustrated by Figure 10.11, there is a relation between loops and duplicate ac-
tivities. In Figure 10.11, activity A is executed multiple times (i.e., twice) but is not
in a loop. Many mining techniques make some assumptions about loops that restrict
the class of processes that can be mined correctly.

The logical problems described all apply to the a algorithm. Some of the prob-
lems can be resolved quite easily by using a more refined algorithm. Other prob-
lems are more fundamental and indicate theoretical limits [6].

10.4.2 Noise, Exceptions, and Incompleteness

The formal approach presented in the preceding section presupposes perfect infor-
mation: (i) the log must be complete (i.e., if an activity can follow another activity

Y
>

®

09 ¢
0 7 ¢

Figure 10.10 A process model with a non-free-choice construct that can be mined correctly.

PROCESS MINING 251

v
>
Y

] O
y
>

LT

Figure 10.11 A process model with a loop.

directly, the log should contain an example of this behavior) and (ii) we assume that
there is no noise in the log (i.e., everything that is registered in the log is correct).
However, in practical situations logs are rarely complete and/or noise free. Espe-
cially, the differentiation between errors, low-frequency activities, low-frequency
activity sequences, and exceptions is problematic. Therefore, in practice, it be-
comes more difficult to decide if between two activities, say A and B, one of the
three basic relations (i.e., 4 — B, A #; B, or 4 ||y B) holds. For instance the
causality relation as used in the « algorithm (4 — > B) holds if and only if in the log
there is a trace in which A is directly followed by B (i.e., the relation 4 >, B holds)
and there is no trace in which B is directly followed by A (i.e., not B >, 4). Howev-
er, in a noisy situation one erroneous example can completely mess up the deriva-
tion of a correct conclusion. Even if we have thousands of log traces in which A is
directly followed by B, then one B >, A example based on an incorrect registration
will prevent a correct conclusion. As noted before, frequency information is not
used in the formal approach. For this reason, heuristic mining techniques are devel-
oped that are less sensitive to noise and the incompleteness of logs.

As an illustration of a heuristic approach, we briefly discuss the ideas to discov-
er the causality relation as implemented in the heuristic mining tool Little Thumb
[18]. In this approach, a frequency-based metric is used to indicate how certain we
are that there is truly a causal relation between two events A and B (notation 4 =,
B). The calculated =, values between the events of an event log are used in a
heuristic search for the right relations between events (i.e., 4 >y B, A #;; Bor 4 ||
B). Below, we first define the =, metric. After that, we will illustrate how we can
use this metric in a simple heuristic in which we search for reliable causal relations
(the 4 —;, B relation).

Let W be an event log over 7, and a, b € T. Then |a >y, b| is the number of times
a >y b occurs in W, and

|a >y b — b >y al)

a= b—(
T Nlasy b+ b>yal+ 1

First, note that the value of a =, b is always between —1 and 1. Some simple ex-
amples demonstrate the rationale behind this definition. If we use this definition in

252 VAN DER AALST AND WEIJTERS

the situation that, in five traces, activity A is directly followed by activity B but the
other way around never occurs, the value of 4 =, B = 5/6 = 0.833, indicating that
we are not completely sure of the causality relation (there are only five observa-
tions, possibly caused by noise). However, if there are 50 traces in which A is di-
rectly followed by B but the other way around never occurs, the value of 4 =, B =
50/51 = 0.980 indicates that we are pretty sure of the causality relation. If there are
50 traces in which activity A is directly followed by B and noise caused B to follow
A once, the value of 4 =, B is still 49/52 = 0.94, indicating that we are pretty sure
of a causal relation.

A high 4 =, B value strongly suggests that there is a causal relation between
activity A and B. But what is a high value? What is a good threshold to make the
decision that B truly depends on A (i.e., 4 — B holds)? The threshold appears to
be sensitive for the amount of noise, the degree of concurrency in the underlying
process, and the frequency of the involved activities.

However, it appears unnecessary to use a threshold value. After all, we know
that each noninitial activity must have at least one other activity that is its cause,
and each nonfinal activity must have at least one dependent activity. Using this in-
formation in a heuristic approach, we can limit the search and take the best candi-
date (with the highest A =, B score). This simple heuristic helps us enormously in
finding reliable causality relations, even if the event log contains noise. As an ex-
ample, we have applied the heuristic to an event log from the Petri net of Figure
10.1. Thirty event traces are used (nine for each of the three possible traces and
three incorrect traces: ABCED, AECBD, AD). We first calculate the =-values for
all possible activity combinations. The result is displayed in the matrix below.

=y A B C D E
A 0.0 0.909 | 0.900 | 0.500 | 0.909
B 0.0 0.0 0.0 0.909 | 0.0
C 0.0 0.0 0.0 0.900 | 0.0
D | -0.500 | —0.909 | —0.909 | 0.0 ~0.909
E 0.0 0.0 0.0 0.909 | 0.0

As an illustration, we now apply the basic heuristic to this matrix. We can recog-
nize the initial activity A; it is the activity without a positive value in the A column.
For the dependent activity of A, we search for the highest value in row A of the ma-
trix. Both B and E are high (0.909). We arbitrarily choose B. If we use the matrix to
search for the cause for B (the highest value of the B column), we will again find A
as the cause for B. D is the dependent activity of B (D is the highest value of the B
row). The result of applying the same procedure on activities B, C, and E is present-
ed in Figure 10.12. Note that only the causal relations are depicted in a so-called de-
pendency graph. The numbers in the activity boxes indicate the frequency of the ac-
tivity, the numbers on the arcs indicate the reliability of each causal relation, and

PROCESS MINING 253

0,909/20 | 0,900/20 0,909/11

20 20 11

0,909/20 | 0,900/20 0,909/11

30

Figure 10.12 A dependency graph resulting from application of the heuristic approach to a
noisy log based on the Petri net of Figure 10.1.

the numbers on the nodes indicate the frequencies. In spite of the noise, the causal
relations are correctly mined.

The illustrated heuristic procedure is not complete. For example, we need
searching procedures for the other basic relations (i.e., a #,, b and a || b). Given the
correct basic relations, we can use the « algorithm to construct a Petri net. In [18],
the experimental results of such an approach to noisy data are presented.

10.5 CONCLUSION

This chapter introduced the topic of process mining by first providing an overview
and then zooming in on a specific algorithm for the process perspective (i.e., control
flow)—the « algorithm. It is important to realize that this algorithm only tackles
one of the cells shown in Table 10.2 (the top-left one). For the other cells, other ap-
proaches are needed. However, even within this single cell there are many chal-
lenges, as demonstrated in this chapter. The wide applicability of process mining
makes is worthwhile to tackle problems such as noise and incompleteness. For
more information and to download mining tools, refer to http://www.processmin-
ing.org.

ACKNOWLEDGMENTS

The authors would like to thank Boudewijn van Dongen, Ana Karla Alves de
Medeiros, Minseok Song, Laura Maruster, Eric Verbeek, Monique Jansen-Vullers,
Hajo Reijers, and Peter van den Brand for their ongoing work on process mining
techniques and tools at Eindhoven University of Technology. Parts of this chapter
have been based in earlier papers written with these researchers.

254 VAN DER AALST AND WEIJTERS

(o)

004
227
:

Figure 10.13 A simple parallel Petri-net.

10.6 EXERCISES

Excercise 1

Consider the Petri net shown in Figure 10.13. (1) Determine the event log W with
all possible traces. (2) Try to determine a >-complete event log W', with W’ a real
subset of W (W' C W).

Excercise 2
Given an event log W= {AFBCGD, AFCBGD, AED}, use the eight steps of the «
algorithm to construct an accompanying Petri net.

Excercise 3

Consider the following log W = {ABCDE, ABDCE, ACBDE, ACDBE, ADBCE,
ADCBE} originating from the Petri net of Exercise 1. Determinate 4 =, B and B =
C.

Excercise 4

Given the following event log W = [ABCDE, ABDCE, ACBDE, ACDBE, ADBCE,
ADCBE, ABCDE, ABDCES$, ACBDE, ACDBE, ADBCE, ADCBE],?> which originat-
ed from the Petri net of Exercise 2. Follow the heuristic of Subsection 10.4.2 to con-
struct a dependency graph as presented in Figure 10.12.

REFERENCES

1. W. M. P. van der Aalst and B. F. van Dongen. Discovering Workflow Performance
Models from Timed Logs. In Y. Han, S. Tai, and D. Wikarski (Eds.), International
Conference on Engineering and Deployment of Cooperative Information Systems (EDCIS
2002), volume 2480 of Lecture Notes in Computer Science, pp. 45-63. Springer-Verlag,
Berlin, 2002.

2. W. M. P. van der Aalst and K. M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT Press, Cambridge, MA, 2002.

3. W. M. P. van der Aalst and M. Song. Mining Social Networks: Uncovering Interaction

2To express the multiple appearance of traces, we formally have to use the bag or multiset notation in-
stead of the set notation.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

PROCESS MINING 255

Patterns in Business Processes. In J. Desel, B. Pernici, and M. Weske, (Eds.), Interna-
tional Conference on Business Process Management (BPM 2004), volume 3080 of Lec-
ture Notes in Computer Science, pp. 244-260. Springer-Verlag, Berlin, 2004.

. W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and A. J.

M. M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data and
Knowledge Engineering, 47(2):237-267, 2003.

. W. M. P. van der Aalst and A. J. M. M. Weijters, (Eds.). Process Mining, Special Issue

of Computers in Industry, 53, 3, 2004.

. W. M. P. van der Aalst, A. J. M. M. Weijters, and L. Maruster. Workflow Mining: Dis-

covering Process Models from Event Logs. I[EEE Transactions on Knowledge and Data
Engineering, 16(9):1128-1142, 2004.

. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Workflow Logs.

In Sixth International Conference on Extending Database Technology, pp. 469—483, 1998.

. J.E. Cook and A. L. Wolf. Discovering Models of Software Processes from Event-Based

Data. ACM Transactions on Software Engineering and Methodology, 7(3):215-249, 1998.

. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts in The-

oretical Computer Science. Cambridge University Press, Cambridge, UK, 1995.

D. Grigori, F. Casati, U. Dayal, and M. C. Shan. Improving Business Process Quality
through Exception Understanding, Prediction, and Prevention. In P. Apers, P. Atzeni, S.
Ceri, S. Paraboschi, K. Ramamohanarao, and R. Snodgrass, (Eds.), Proceedings of 27th
International Conference on Very Large Data Bases (VLDB’01), pp. 159—168. Morgan
Kaufmann, 2001.

J. Herbst. A Machine Learning Approach to Workflow Management. In Proceedings
11th European Conference on Machine Learning, volume 1810 of Lecture Notes in
Computer Science, pp. 183—194. Springer-Verlag, Berlin, 2000.

IDS Scheer. ARIS Process Performance Manager (ARIS PPM): Measure, Analyze and
Optimize Your Business Process Performance (white paper). IDS Scheer, Saarbriicken,
Gemany, http://www.ids-scheer.com, 2002.

G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation. Addison-Wesley,
Reading MA, 1998.

M. zur Miihlen and M. Rosemann. Workflow-based Process Monitoring and Control-
ling—Technical and Organizational Issues. In R. Sprague (Ed.), Proceedings of the 33rd
Hawaii International Conference on System Science (HICSS-33), pp. 1-10. IEEE Com-
puter Society Press, Los Alamitos, CA, 2000.

W. Reisig and G. Rozenberg, (Eds.). Lectures on Petri Nets I: Basic Models, volume
1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

M. Sayal, F. Casati, U. Dayal, and M.C. Shan. Business Process Cockpit. In Proceedings
of 28th International Conference on Very Large Data Bases (VLDB’02), pp. 880—883.
Morgan Kaufmann, 2002.

J. Scott. Social Network Analysis. Sage, Newbury Park, CA, 1992.

A.J. M. M. Weijters and W. M. P. van der Aalst. Workflow Mining: Discovering Work-
flow Models from Event-Based Data. In C. Dousson, F. Hoppner, and R. Quiniou,
(Eds.), Proceedings of the ECAI Workshop on Knowledge Discovery and Spatial Data,
pp. 78-84, 2002.

A.J. M. M. Weijters and W. M. P. van der Aalst. Rediscovering Workflow Models from
Event-Based Data Using Little Thumb. Integrated Computer-Aided Engineering,
10(2):151-162, 2003.

I CHAPTER 11

Transactional Business Processes

GUSTAVO ALONSO

The other terror that scares us from self-trust is our consistency; a reverence for our
past act or word, because the eyes of others have no other data for computing our orbit
than our past acts, and we are loath to disappoint them.

—Ralph Waldo Emerson

11.1 INTRODUCTION

Since its inception, the transaction concept has played a fundamental role in all
forms of information systems. Business processes are no exception and it is not rare
to find the term transactional attached to that of business processes. Unfortunately,
there is quite a lot of confusion about what transactional means in this context. This
confusion that translates into a rather chaotic set of competing specifications and a
wide range of entirely different products that, at least in theory, should be solving
the same set of problems. This chapter tries to offer a broader perspective on trans-
actional processes. A perspective that goes beyond existing products and specifica-
tions and tackles the essence of the problem and the range of available solutions. To
achieve this, we start by clarifying what transactional means when applied to busi-
ness processes and what are the basic techniques needed to support transactional
processes. Keeping in mind that the transactional nature of many processes is ad
hoc and determined by the programmer, the chapter will also explain how a basic
set of design primitives can be used to implement a variety of transactional con-
structs.

The chapter opens with an overview of the notion of transactional consistency
(Section 11.2), starting with the traditional view developed in the realm of databas-
es and showing how this view applies outside the database domain. Next, Section
11.3 explores the concept of atomicity, which is considered to be the transactional
property that is most applicable in the area of workflow and business process man-
agement. Section 11.4 then describes specific realizations of this concept in the
context of system development platforms and standardization initiatives. The chap-
ter closes with an overview of trends (Sections 11.5). Exercises and assignment

Process-Aware Information Systems. Edited by Dumas, van der Aalst, and ter Hofstede 257
Copyright © 2005 John Wiley & Sons, Inc.

258 ALONSO

subjects are provided in Section 11.6. Most of these assignments require the reader
to refer to external sources and put them in context with respect to the concepts in-
troduced throughout this chapter.

11.2 TRANSACTIONAL CONSISTENCY

The notion of transactional consistency is typically captured by the acronym ACID
(atomicity, consistency, isolation, and durability). These four properties cover all
possible aspects of transactional consistency. In practice, however, the ACID prop-
erties have a meaning only within the context of a transaction model and there are
many such models in which some of these properties are ignored. Hence, when
talking about transactional consistency, we first need to clarify under what model
we are operating and what properties are being enforced. The history of transaction-
al support for different applications is not so much how each property is treated and
implemented within each model, but how each transactional model reflects the
characteristics of the application.

11.2.1 The ACID Model

The best known and most widely used transaction model is the one used by data-
base management systems to implement concurrency control, recovery, enforce-
ment of constraint, and disaster recovery. This model is discussed in much detail in
numerous textbooks [3, 11] so we will concentrate here on a few relevant aspects of
this database transaction model.

The database transaction model is based on a closed-world assumption. It as-
sumes, in the first place, that transactions can only exchange information by reading
or writing to the database. In other words, all communication between transactions
happens under the control of the transaction engine. Moreover, transactions are
seen as functions that take the database from one state to another. The database state
is defined as the values of all the relevant data items and system parameters of the
database; this state changes only as a result of the execution of transactions. The
correctness criteria and the properties enforced by the database transaction model
aim at guaranteeing that the states that are produced by the concurrent execution of
transactions are consistent. The model also defines what “to be consistent” actually
means.

In the database transaction model, the ACID properties can be formulated as fol-
lows:

® Consistency guarantees that any transaction that (1) starts from a consistent
state, (2) executes by itself (no other concurrent transaction in the system), (3)
is completely executed (the whole transaction is completed), and (4) executes
without failures will produce a consistent state. Consistency in database en-
gines is enforced through integrity constraints that check the values written
by a transaction and will abort the transaction if any rules are violated.

TRANSACTIONAL BUSINESS PROCESSES 259

® [solation guarantees that transactions will behave as if they were alone in the
system, even when other transactions are being executed concurrently. Isola-
tion allows running of transactions in parallel while still preserving consisten-
cy. In abstract terms, the need for isolation can be explained in terms of con-
sistency (i.e., a transaction must start from a consistent state). If we assume
that the database is in a consistent state, executing one transaction at a time
guarantees that the database remains consistent. If transactions are executed
in parallel, a transaction may actually read an inconsistent state because it has
access to the intermediate result of a concurrent transaction. Note that the
property of consistency guarantees that a transaction produces consistent re-
sults if completely executed. It does not say anything about the state of the
database if the transaction is executed only halfway through. If a transaction
reads the intermediate state of another transaction rather than a consistent
state of the database, the conditions for consistency are not met and that trans-
action may actually leave the database in an inconsistent state. Isolation is en-
forced through concurrency control mechanisms that enforce a particular or-
dering in the execution of transactions.

® Atomicity is the property that makes sure transactions always leave the data-
base in a consistent state. As the consistency property implies, this can only
happen if the transaction is executed in its entirety. Hence, atomicity guaran-
tees that the transaction is either executed to completion (and, hence, leaves
the database in a consistent state) or not executed at all (and, hence, the data-
base remains in the initial consistent state). Atomicity is enforced through re-
covery mechanisms that undo transactions that need to be aborted (e.g., be-
cause they violate integrity constraints or isolation rules, or because the
transaction could not be completed due to a database failure).

® Durability is a fuzzier property that, nevertheless, makes a lot of practical
sense. It can be interpreted in many different ways but, for most intents and
purposes, it can be seen as the guarantee that, if a transaction successfully
completes its execution, the changes it has performed will not be lost. De-
pending on what type of failures are considered, it can be far from trivial to
enforce durability, as this might involve using backup systems, replicated
databases, and so on.

For our purposes here, the important aspect of these properties is that, as they
have been defined, they make sense only within the context of a conventional data-
base engine. Once we are outside databases, many of the ideas built around the
ACID principles no longer apply.

11.2.2 Transactions Outside Databases

When we talk about transactional business processes, we are talking about a trans-
actional model that is very different from the one found for database engines.
Processes describe operations that are far more complex and varied than the opera-
tions considered for the database engine. For instance, an activity within a process

260 ALONSO

may involve an entire transaction or even several transactions against a database. In
other cases, the activities may not involve transactions at all, but calls to operations
such as sending or receiving messages, printing documents, or getting approval
from a manager for a particular business operation. As a result, most of the ACID
properties are not considered in models of transactional processes.

In the context of process management, it does not make sense to assume that all
communications among processes (or the activities of different processes) are under
the control of a single transaction engine or take place only through reading and
writing to a common database. Real business processes interact in many different
ways, most, if not all, of them outside the control of the system that executed the
processes. Hence, in general, isolation is not a good way to make sure things are
correct in the context of processes. For one thing, we may not be able to isolate
processes from each other. For another, often we do not even want to isolate
processes from each other in the way transactions are isolated from each other.
Hence, isolation is not a property that is considered in relation with models of trans-
actional processes (although this does not mean that it never makes sense or that it
is not possible to so [9]).

For the same reason, consistency is much less clear when processes are involved.
Unlike database transactions, processes may terminate in many different ways, all
of them correct. For transactions, consistency is enforced by the system through in-
tegrity constraints, concurrency control, and recovery mechanisms, all of them
identical for all transactions and orthogonal to the transactions themselves. For
processes, consistency is typically the responsibility of the process itself. If a
process does not reach a given point, then it must clean up whatever needs to be
cleaned up to make sure things are consistent (we will see later on in the chapter
what this implies). In practice, that means that consistency is not a property en-
forced by the system or a property of the model, but a characteristic that needs to be
programmed by the process designer. Hence, although some of the concepts look
very similar, the properties and behavior of the transactional process model and
those of the database transaction model are very different. As a result, models for
transactional processes do not consider consistency in the same way as database
transactions. Consistency typically becomes a programmable feature rather than a
system property.

Finally, durability is even fuzzier in transactional processes than it is in database
transactions. Typically, durability in the context of processes refers both to the per-
sistence of the process execution (the ability to resume execution from the point
where it was interrupted after a failure) and the execution traces that are often re-
quired for post-execution analysis and auditing (if necessary, it must be possible to
reconstruct the steps taken by the process). Both aspects are very important in prac-
tice but differ significantly from the notion of durability considered in databases. As
with isolation and consistency, durability is also not part of most models of transac-
tional processes.

In practice, the only property that is really relevant in the context of transaction-
al processes is atomicity, although not for the same reasons as in the database trans-
action model. Much of the rest of this chapter will be devoted to examining what

TRANSACTIONAL BUSINESS PROCESSES 261

atomicity means for transactional processes and how it is implemented in practice.
But before we get there, it is important to understand how atomicity is implemented
in general as, for better or for worse, these same ideas are the basis for implement-
ing atomicity in transactional processes.

11.2.3 Atomicity in Database Transactions

Atomicity in the database transaction model has two sides. One affects transactions
executing in a single database and it is enforced using a variety of mechanisms that
can undo the effects of a transaction at any given point in time. The other affects
distributed transactions that involve more than one database. In the latter case, the
internal recovery mechanisms of each database are not enough, as the different
databases need to be coordinated to make sure that the transaction is executed in its
entirety in all databases or not at all in any of the databases. These two sides of
atomicity are similar to those used in transactional processes. In the first case (in-
traprocess atomicity), the concepts are similar, although the mechanisms used to
implement them are very different. In the second case (interprocess atomicity), both
the concepts and the implementation mechanisms are almost identical.

Atomicity of a Transaction. Transaction recovery is a very complex problem
that is still not understood in its entirety. It is far less formalized than concurrency
control since it is highly dependent on the underlying implementation of the data-
base. Yet, its basic concepts are relatively easy to understand. To make sure trans-
actions are atomic in their execution, we need to make sure that the transaction can
be undone if something goes wrong. Isolation already guarantees that the transac-
tion will see a database that will appear as if no other transaction would be running
at the same time. Hence, before the transaction modifies any data item in the data-
base, we make a copy of that item. If the transaction successfully completes, then
the new values that it has written are committed and we can forget about the old val-
ues. If the transaction needs to be canceled, we restore the state of the database be-
fore the transaction started making any changes by copying back the values of the
data items that were saved before each update took place. Once these values have
been copied back, the database appears exactly as it was before the transaction was
executed (i.e., the transaction has not been executed at all). The huge advantage of
the database model, particularly for relational databases, is that these recovery pro-
cedures can be implemented independently of what the transaction does. That is, all
transactions follow the same recovery procedure independently of what they modi-
fy in the database.

Atomicity of a Distributed Transaction. A distributed transaction is run on
several databases. Within each database, recovery takes place as just discussed.
However, each database cannot do recovery on its own. All of them need to agree
whether to commit or abort the transaction. For this purpose, an atomic commitment
protocol is needed. The current standard protocol for this purpose is 2 Phase Com-
mit (2PC). As the name implies, 2PC works in two phases. In the first phase, all

262 ALONSO

participants (the databases where the transaction has run) agree on whether the
transaction is going to be committed or not. This is commonly done by having a co-
ordinator requesting and collecting votes. If the coordinator sees that all partici-
pants want to commit, then it enters the second phase and sends a message indicat-
ing to the participants that they can go ahead and commit the transaction. Simple as
it may seem, there are many details and subtleties behind 2PC and much work has
been done to understand the problem and come up with optimized solutions [11].
Fortunately, these details are not that important for transactional processes so we
will just ignore them in the rest of the chapter and simply use 2PC to imply an
atomic commitment protocol like the one just described.

11.3 ATOMICITY

The problem of how to make complex sequences of operations atomic, whether de-
scribed as a process or not, has been addressed in many different ways. Most of this
work was done in the context of advanced transaction models [5]. In general, how-
ever, the vast majority of these ideas have never been used in real settings. In this
section, we cover the most relevant ones and discuss how they have been adapted to
modern process modeling languages.

11.3.1 Problem Description

Although the mechanisms used to maintain atomicity within a transactional process
are conceptually identical to those used in database transactions, the practical imple-
mentation is very different. To start with, it is very rare to be in situations in which
the entire process must be atomic. Certainly, we want processes to terminate but we
do not necessarily want them to disappear without a trace if they do not succeed.

A simple example can be used to illustrate the differences with database transac-
tions. In a database, the application semantics are ignored. That is, if the transaction
encounters any problems, it is simply aborted. Typically, this is done by undoing
any changes done by the transaction, a procedure that is done at a very low level
(e.g., by replacing images of memory pages) and in a manner that is completely or-
thogonal to the transaction. At the process level, things are very different. First, the
process actually corresponds to the application that submits transactions. It is here
where one must react to transactions that abort. It will not do to just kill the process
and undo all partial results. Second, even in those cases in which the process must
terminate, termination cannot be implemented by undoing the whole process. In the
vast majority of cases, the termination can only occur by taking additional steps as
part of the process. That is, atomicity is not guaranteed by a low-level mechanism
orthogonal to the process but as part of the normal logic of the process. Consider,
for instance, a purchase order process. The buyer can cancel the order at any time
by sending the appropriate message [see Chapter 9, patterns 19 (cancel activity) and
20 (cancel case)]. If the cancel message is received, the process does not just abort
and undo all its steps. Canceling the order involves, for example, creating new

TRANSACTIONAL BUSINESS PROCESSES 263

records that register the cancellation, may involve partial charges if the cancellation
arrived late in the process, and requires sending additional cancellation notices to
those involved in the purchase (inventory control, production chain, billing, deliv-
ery, etc.). In many cases, canceling the order might be as complex as the processing
of the purchase order.

The main problem with transactional processes is that the mechanisms necessary
to implement atomicity, independently of the type of atomicity chosen, are neces-
sarily programming mechanisms. Thus, the problem of intraprocess atomicity
needs to be solved by providing appropriate programming constructs for program-
mers and process designers to incorporate the necessary transactional guarantees
within their processes. In what follows, we outline the most important program-
ming concepts for intraprocess atomicity and how they are used in modern business
process modeling languages.

11.3.2 Compensation—Sagas

One of the earliest programming models for dealing with what we now call transac-
tional processes is sagas [6]. In their simplest form, sagas assume a process where
each step is an independent transaction (in the conventional database sense) that is
executed sequentially or in parallel. In the case of a sequential saga, the execution
can be represented as the sequence

TT,...T,, T,

Atomicity in the context of sagas is achieved through compensation. Sagas as-
sume that for each step in the process there is a compensating action. That is, if the
effects of the step need to be undone, there is another compensating step that takes
care of it. That is, for each step 7; in the normal process, there is a compensating
step T;!. The compensation can take many forms and sagas do not impose any par-
ticular form of compensation. It can be a low-level compensation such as the mech-
anisms used in databases, or it can be a high-level compensation based on the se-
mantics of the step to be compensated. An example of the latter is a step that places
a purchase order by sending a particular document to an e-mail address; this step
that can be compensated for by sending another e-mail to the same address cancel-
ing the purchase order. The sending of the cancellation message is what constitutes
the compensating step.

Using sagas, a process designer can ensure the atomicity of a process by indicat-
ing a compensating step for every normal step. If at a certain point the process needs
to be undone, the compensating steps for all steps that have been completed are exe-
cuted. The compensating steps are executed in the reverse order of the normal steps
to ensure that after the execution of every compensating step, the state of the process
is semantically equivalent to having been executed only to that point. That is, to com-
pensate for a saga that has been executed until step £, the execution has the sequence

... T, T ... T35 T

264 ALONSO

Conceptually, the main contribution of the saga concept to transactional process-
es are the notion of compensation associated to each step and the undoing of a
process by executing the compensating actions in the reverse order. Based on these
ideas, many different combinations of this basic model can be derived. For instance,
rather than associating with compensating step for every step, a compensating step
could be associated to a group of steps. That is, the compensating step undoes not a
single step but a group of them. Another example are optimized compensation se-
quences for Sagas with an arbitrary partial order between the steps. In general, these
extension add more flexibility to the use of compensation but do not alter the basic
underlying idea behind sagas.

For a programmer, designing a process as a saga facilitates implementing atom-
icity by simply defining the compensating steps. The underlying execution engine
can then keep track of which steps have been executed and, if needed, trigger the
execution of the compensating steps in the proper order. This frees the programmer
from having to extend the normal control flow with the compensating control flow.
The main ideas behind sagas have been incorporated in many programming and
specification languages (see Chapter 5 on how UML allows designers to associate
compensations with single actions, or Chapter 13 on how compensation is treated in
BPEL)

11.3.3 Alternatives—Semiatomicity

Sagas impose a rather rigid structure on the compensation; that is, either the process
terminates successfully or it is compensated. This is due to the context in which
sagas were proposed—the model of atomicity mirrored that of classic database
transactions. In long-lived business processes, it might make sense to be able to
undo or roll back part of the process until a given point and then continue from
there without compensating the entire process.

This basic idea is taken up by the notion of semiatomicity proposed for flexible
transactions [17]. The idea behind semiatomicity is to extend the basic model of
sagas with the possibility of providing alternative execution paths. That is, within a
process, there might be different ways to proceed. If one of these options fails,
whatever part of this alternative has already been completed is compensated for fol-
lowing an approach identical to sagas. Then, an alternative execution path is select-
ed. From a formal point of view, this model is based on differentiating between
three types of steps within a process: compensatable, pivotal, and retriable. A step
is compensatable if it has similar semantics to that in a saga; that is, there is a com-
pensating step for it. A step is retriable if it is guaranteed to succeed if its execution
is retried a sufficient number of times. A step is pivotal if it is neither compensat-
able nor retriable. Based on these three elements, it is possible to construct process-
es that provide a great deal of flexibility when dealing with failures. The basic rule
that needs to be observed is that the resulting combination of steps needs to be such
that there is always the possibility of either compensating back to the beginning (as
in sagas) or to finish the process by retrying steps. Without getting into the details
of the formalism, this implies that once a pivot is executed, there must always be an

TRANSACTIONAL BUSINESS PROCESSES 265

execution path that ensures the process will terminate (i.e., a path of retriable steps).
Similarly, before a pivot is executed, all steps must be compensatable since failure
of the pivot implies having to roll back either to the beginning or to a previous alter-
native path.

These ideas illustrate very well the advantages and disadvantages of advanced
transaction models. On the one hand, they apparently provide more flexibility and
allow one to automate the navigation over the process by clearly indicating what
needs to be done at each point in the execution. For instance, if a pivot fails, then
the process needs to be compensated for back to the beginning as in a saga or up to
an alternative execution path if any is available. If alternative execution paths are
available, it is possible to assign priorities and automatically try each alternative in
the proper order until one succeeds. All this can be specified and then navigation
proceeds automatically. On the other hand, the programming complexity increases
significantly. The designer needs to identify steps as compensatable, retriable and
pivotal, combine them accordingly, and establish alternative paths that lead to a
well-formed process. Although automatic tools can be used to check the resulting
structure, it is the programmer’s responsibility to make sure the structure is correct.
The problem in doing this is that it might be very difficult to cast the semantics of a
process into a correct process structure. In addition, if the process involves steps
outside the control of the process designer (e.g., services provided by other compa-
nies), it might be impossible to determine the nature of these steps (whether they are
compensatable, retriable, or pivotal).

The main contribution of semiatomicity is the idea of using alternative execu-
tions paths that can be followed after a given path fails. As with sagas, it is possible
to automate the selection of these alternatives, thereby greatly simplifying the de-
sign of processes while having more sophisticated recovery and failure handling ca-
pabilities. For a programmer, semiatomicity adds to the advantages of sagas the
possibility of compensating only parts of a process and of using alternative execu-
tion paths to avoid having to discard work already done if something goes wrong at
a later point in time.

11.3.4 Mapping to Workflow Processes

Although most advanced transaction models were developed independently of
workflow management systems and process modeling languages, the close relation
between them was shown long ago [7, 2]. In fact, the three key ideas discussed
above—compensation, undoing by reversing the sequence of execution with com-
pensating steps, and alternative paths—can all be easily mapped to almost any form
of workflow language. The mapping can be manual or automatic.

In case of manual mapping, it is the process designer who uses constructs in the
process representation language to build a process that can recover from failures by
implementing either sagas, semiatomicity, or combinations thereof. In the case of
manual mapping, the actual model used is not that relevant. The programmer is free
to combine many different possibilities. Because of this, the underlying infrastruc-
ture and execution engine does not need to be aware of what the programmer in-

266 ALONSO

tends to do. It just executes what has been specified without being aware of whether
a given step is a normal step, a compensating step, an alternative path, and so on.

In the case of automatic mapping, the workflow system can offer one or more
transactional models and apply them to the process described by the programmer
based on certain rules. In practice, this is feasible only for simple models like sagas,
in which, as indicated above, the programmer writes the process and gives compen-
sation steps for each step in the process. Then the system can automatically undo a
process by executing compensations in the reverse order of the forward steps. For
more complex models, automatic derivation of the compensation procedures is typ-
ically not feasible. In addition, any given model restricts the freedom of the pro-
grammer in terms of what can be expressed. Thus, automatic mapping is seldom
used in practice and only for relatively simple, well-defined cases.

Using a very simple and schematic workflow model, it is possible to show how
to implement sagas using standard programming constructs of workflow languages.
The idea is to define steps and compensating steps as activities of the process and
then include the corresponding control flow based on whether forward activities
successfully complete or o not. Figure 11.1 shows how this is done for the simple
case of linear sagas. Similar approaches can be taken to implement alternative
paths, compensation of subprocesses, and so on.

11.3.5 Atomicity in Process Modeling Languages

Over the years, the concepts discussed above have appeared and disappeared as part
of a number of different systems and platforms (e.g., advanced transaction models,
workflow systems, composition in object request brokers). As a result, these ideas

LINEAR SAGA
-
WORKFLOW PROCESS
success success
failure failure failure

Y Y Y
success
comp success | comp § § comp
T1 T2 Tn

Figure 11.1 A linear saga mapped to a workflow process.

TRANSACTIONAL BUSINESS PROCESSES 267

have been assimilated by many developers and programmers and have crystallized
into a number of basic primitives that can be found in many process modeling lan-
guages. An example is BPEL (also discussed in this book), which contains specific
constructs to support these ideas.

In BPEL, the most relevant constructs for transactional purposes are the fault
and compensation handlers, in addition to the standard primitives for implementing
different forms of control flow. The fault handlers are a set of steps within the
process that will be executed if a failure occurs within a given scope (see Chapter
13 for the definition of scope in BPEL and a detailed description of the types of
faults considered in BPEL). Fault handlers are one way to implement alternatives in
case there is a problem with a particular service or with a particular execution path
within the process. They are, however, not the only way to implement such func-
tionality since similar effects can be achieved by using explicit control flow. Com-
pensation handlers have similar semantics as in sagas and are executed if a particu-
lar step or group of steps need to be compensated.

These programming primitives show how the notion of transactional behavior
within a process has become a matter of programming the necessary behavior rather
than having automatic support. This makes perfect sense since there is no model
that fits all possible types of business processes, not even a majority of them.
Hence, today support for intraprocess atomicity means supporting the process de-
signer in specifying how the process should behave when different events take
place, for example, failures, exceptions, unsuccessful attempts to perform an opera-
tion, and cancellations.

11.4 INFRASTRUCTURE FOR IMPLEMENTING ATOMICITY

11.4.1 Atomicity in the Context of Middleware

The notion of atomicity once outside the database revolves around 2PC and how to
integrate it with the applications running the transactions. A common simplifying
assumption made in textbooks about distributed transactions is that the transaction
has a single origin; for example, a program calls first one database, and then anoth-
er, and so forth. In practice, this is not the always the case. In many architectures
where databases are hidden behind higher-level interfaces, transactions are the re-
sult of the execution of programs. Distributed transactions arise when a program
that itself runs one transaction on one database also calls up a second program that
then runs another transaction on another database. In general, these two programs
are aware that the other program also calls up a transaction.

This scenario is very common in business processes; in fact, more common than
the one in which a single program calls several databases within a single transac-
tion. The practical problem that it creates is, who will be in charge of coordinating
the execution of the necessary 2PC protocol. The Object Transaction Service (OTS)
of CORBA [8] is a good example of how this is done in practice. As shown in Fig-
ure 11.2, assume that we have two applications, A and B, each one working on top

268 ALONSO

of a different database. Application A starts executing and since it knows that it will
run transactions against its own database, it informs the OTS module that it wants to
begin a transaction (Figure 11.2, part 1). The OTS then assigns a transaction identi-
fier and a context to that transaction so that application A can refer to the transac-
tion and the OTS module can keep track of all the operations associated to that
transaction. After application A obtains the transactional context from the OTS
module, it registers its database with the OTS module (Figure 11.2, part 2). In this
way, the OTS module knows where to go when running the 2PC protocol (as it is

[—

\ ORB \

Service

Object Transaction ‘

(1) begin transaction

[—

\ ORB \

Service

Object Transaction ‘

(5) register database

— —

\ ORB \

Object Transaction
Service

(2) register database

— —

\ ORB \

Object Transaction
Service

(6) execute transaction (no commit)

— [

\ ORB \

Object Transaction
Service

(3) execute transaction (no commit)

— [

\ ORB \

Object Transaction
Service

(7) commit transaction

— —

| ‘

| ors

Object Transaction
Service

(4) call APPB

Figure 11.2

— —

\ ORB \

Object Transaction
Service

(8) run 2PC

A transactional interaction in CORBA’s OTS.

TRANSACTIONAL BUSINESS PROCESSES 269

the database in charge of the atomicity of the transaction run by application A). Af-
ter these two steps (obtaining the transactional context and registering the database)
are completed, application A can execute its transaction against its database (Figure
11.2, part 3).

Now, assume that application A also wants to call application B and it wants its
transaction and whatever B does to be an atomic operation (Figure 11.2, part 4). Let
us assume that application A has already executed its transaction on its database
and then calls B through whatever interface B makes available. When A calls B, it
adds to the call the transactional context it got from the OTS. When B receives the
call, it realizes that it is being invoked within the context of a transaction. Since B
knows it will run another transaction in its own database, it will repeat the steps of
A. First, it will register its database with the OTS module, adding the transactional
context it got from A (Figure 11.2, part 5). That way, the OTS module knows that
the transaction initiated by A has also ramifications in B and also gets from B the
information on how to contact the corresponding database. Once this is done, B can
run its transaction against its database and return the results to A (Figure 11.2, part
6). A will then want to finish the transaction and inform the OTS module that the
transaction should be committed (Figure 11.2, part 7). The OTS will then commit
the transaction by running 2PC among the two databases involved in the exchange
(Figure 11.2, part 8). In this case, the OTS module will act as the coordinator and
the two databases as the participants. Once the 2PC protocol terminates, the OTS
module informs application A of the outcome.

This mechanism is not exclusive to CORBA. With small differences, it is used
essentially in all forms of middleware that support transactions and it illustrates
very well what is needed for maintaining atomicity of distributed transactions. First,
we need a transactional context so that the different participants in the transaction
know on behalf of whom they are working. Second, there must be a registration
procedure to tell the coordinator who will be in charge of running 2PC once the
transaction completes. Third, the participants must support an interface that allows
them to run 2PC or a similar protocol under control of the coordinator. Fourth, we
need somebody who acts as the coordinator and can both assign transactional con-
texts and run 2PC. As we will see in what follows, transactional processes use a
very similar infrastructure to implement interprocess atomicity.

11.4.2 XA Interface

The XA interface specifies the interfaces necessary to implement the type of inter-
action just described [15]. Although a process designer will typically not interact
with an XA interface, it is explained here since it constitutes the conceptual basis
(and often the actual physical basis) for transactional specifications targeting busi-
ness processes.

The model behind the XA interface is shown in Figure 11.3. It contains an appli-
cation program, which is the program that decides to start and end a transaction us-
ing the transaction manager (TM). The application program communicates with the
resource managers (RM) (typically databases) to execute operations, but relies on the

270 ALONSO

APPLICATION PROGRAM
A A
Y

[
[Y
Resource - »| Transaction
Manager - > Manager
RM)] - (TM)

Figure 11.3 The model behind the XA interface.

transaction manager for all aspects of transactional control. The XA interface defines
how the transaction manager and the resource managers communicate with each oth-
er in order to enforce transactional consistency by running the 2PC protocol.

The most important services of the XA interface are shown in Table 11.1. The
interface also contains additional features to deal with threads and other details that
are not relevant for the purposes of this chapter. The services shown in the table
correspond almost one to one with the ones described for the CORBA OTS: register
and unregister a resource manager with the transaction manager, start a transaction,
running 2PC, and so on. This is not surprising since the CORBA OTS is designed to
work precisely with resource managers that support the XA interface. The impor-
tant aspect of this interface is that any resource manager supporting it can now par-
ticipate in the execution of transactions that use the 2PC protocol (the XA interface
also defines the different states of the entities involved, the order in which the oper-
ations must be invoked, and so on).

11.4.3 WS-Coordination and WS-Transaction

For business processes operating over Web services, there is no direct way to use
the XA interface even if the systems involved support such an interface [1]. The

Table 11.1 Services within the XA interface

Name Description

ax reg Registers an RM with a TM

ax unreg Unregisters an RM with a TM

xa open Initializes an RM for use by an application

xa close Terminates the use of an RM by an application

xa start Starts or resumes a transaction associating a transaction ID to it
xa prepare Tells the RM to prepare to commit a transaction

xa commit Tells the RM to commit a transaction

xa rollback Tells the RM to roll back (abort) a transaction

TRANSACTIONAL BUSINESS PROCESSES 271

problem is that a Web service front end is needed for the the XA interface to be able
to operate using the mechanisms of Web service interactions (SOAP messages).
Moreover, since business processes might be distributed across many companies
and might be long lived, using 2PC is not always a good idea.

Thus, in the context of Web services, the ideas behind the XA interface have
been generalized to operate in that setting without changing the underlying princi-
ples. This generalization involves two steps. The first one is related to the fact that
distributed business processes like those used in electronic commerce cannot rely
on a single transaction manager for executing 2PC or whatever protocol is used.
The other step consists of modularizing the transactional protocol itself so that it is
not only 2PC that can be run (as it is the case with the XA interface). That way, ad-
ditional protocols can be defined without having to change the infrastructure to run
them.

These two steps have been formalized in two specifications: WS-Coordination
[12] for the task of the transaction manager, and WS-Transaction [13] for the trans-
actional protocols. The WS-Transaction specification has recently been divided into
WS-Atomic Transaction and WS-Business Activity.

WS-Coordination defines a generic infrastructure for the coordination of termi-
nation and commitment protocols between Web services (and by extension, be-
tween the business processes running atop such Web services). Its main goal is to
serve as a generic platform for implementing 2PC and variations of it. The behavior
of WS-Coordination is quite similar to that of an XA interface but adapted to Web
services. Figure 11.4 shows the structure of the coordinator described in the speci-
fication. The activation service is a Web service that allows an application to create
a context for a particular interaction. This is similar to obtaining a transaction ID

Start a coordination Register for a
protocol coordination protocol
Y Y
Activation Registration
service service
COORDINATOR
Coordination Coordination
protocol ces protocol
A B
Y Y
Operations of Operations of
coordination protocol coordination protocol

Figure 11.4 Structure of the coordinator in WS-Coordination.

272 ALONSO

from the TM in the XA interface. In the case of Web services, the context is richer
and includes information such as URL of the registration service of that coordinator
and the type of protocol being used. Once the application has obtained a context, it
includes the context in the header part of SOAP messages to other Web services. A
second, remote Web service, upon receiving a request with a context attached to it,
will ask for another context from its own coordinator. When it obtains that context,
it passes information to its local registration service about the address of the regis-
tration service of the invoking Web service. The registration services then talk to
each other to synchronize and set up the coordination protocol that has been chosen.
This procedure is similar to the registration procedures in the XA interface except
that the registration services also need to agree on the protocol they will use and set
up the addresses to use for the interactions, which will typically take place as Web
service operations. The second application can use the context it has obtained to
forward it to other Web services and the procedure will be repeated again. In this
way, it is possible to link together several coordination protocols.

WS-Transaction is designed to use WS-Coordination as the underlying infra-
structure. WS-Transaction specifies a set of coordination protocols that can be used
between Web services. The first of these protocols is now part of the WS-Atomic
Transaction specification and it covers interactions similar to 2PC, very much in the
same way the XA interface implements 2PC. The other two protocols are part of the
WS-Business Activity specification and includes the business agreement with par-
ticipant completion protocol (a simplified form of commitment that supports can-
celing and compensating), and the business agreement with coordinator completion
protocol (similar to the previous protocol but with an additional step in the protocol
for completing the work that resembles the tentative hold protocol discussed be-
low).

11.4.4 WS-CAF (Web Services Composite Application Framework)

The area of transactional processes in Web services is still a very active arena in
which many different groups are competing to dominate the standardization
process. WS-Coordination and WS-Transaction have been proposed by a set of
vendors, but an alternative, conceptually similar specification has been proposed by
another set of vendors. The Web Services Composite Application Framework (WS-
CAF) comprises three specifications [14]:

® Web Service Context (WS-CTX). WS-CTX is the lowest-level specification
and covers basic elements like the generation of context information and the
propagation of this information as Web services invoke each other. The idea
is that these basic elements and notions will be augmented and tailored by the
other two specifications. As such, it supports interfaces that allow an applica-
tion to create a context, define the demarcation points for an activity (e.g., for
a transaction), register Web services so that they can participate in an activity
with the same context, and propagate the context as needed when invocations
are made.

TRANSACTIONAL BUSINESS PROCESSES 273

® Web Service Coordination Framework (WS-CF). WS-CF specifies a coor-
dinator, similar to WS-Coordination, but it is built on top of the WS-CTX
specification. The main elements of WS-CF are a coordinator (which extends
the notion of activity from WS-CTX to a set of set of tasks with a set of relat-
ed coordination actions), a participant (including the operations involved in
the coordination process), and a coordination service (defining the behavior
of the coordination protocol; instances of the coordination service could be
2PC, sagas, etc.)

® Web Service Transaction Management (WS-TXM). WS-TXM is used to
define concrete instances of the coordination service of WS-CF (i.e., indicat-
ing how the coordinator and the participants must behave) and to augment the
distribution context of WS-CTX. Similarly to WS-transactions, WS-TXM
provides three different transaction models: ACID transactions (following
conventional 2PC), long-running actions (which include the possibility to
compensate), and business process transactions (which extend the notion of
compensation to interactions based on business processes rather than individ-
ual steps). The latter model is included to be able to deal with those processes
in which compensation does not necessarily happen in an automatic manner
but might involve off-line work to restore a consistent state.

WS-CAF explicitly recognizes the fact that there are two forms of transactional
interactions that Web services need to support. One involves conventional middle-
ware platforms and enterprise application integration efforts, in which transactional
behavior is covered by 2PC and the mechanisms reflected by the XA interface. The
other one involves business processes in which 2PC is not the best way to imple-
ment transactional behavior and the coordination procedures are more oriented to-
ward compensation, either following the same model as sagas, semiatomicity, or
combinations thereof. WS-Transaction also makes this distinction but in a rather
implicit manner. Nevertheless, it is not by accident that both specifications propose
three coordination protocols or services: one for 2PC-like interactions (presumably
for systems based on the XA interface), one for compensation-based consistency
(like sagas), and one for more flexible compensation approaches (like semiatomici-
ty or programmer-defined models).

11.4.5 Tentative Hold Protocol

The Tentative Hold Protocol [10] is an interesting case and a contrast to the previ-
ous proposals. The protocol addresses more semantic issues than low-level transac-
tional mechanisms and, in fact, heavily depends on the nature of the process and the
actual business process being adapted for this type of protocol. The main idea is to
allow a nonbinding reservation for a particular item. This reservation is not binding
either for the requester or the provider; that is, it can be revoked by sending a mes-
sage notifying of the fact.

The advantage of the tentative hold protocol lies in allowing one to place a reser-
vation on one or more items while a decision is being made. If the item becomes un-

274 ALONSO

available, the provider sends a message indicating that this is the case and the re-
quester can then proceed with other options. That way, both sides are informed
about the possible future use of that item but without having to block it until the de-
cision is actually made. As an example of where this idea can be applied, consider a
company interested in receiving a set of offers for different components that will be
used to build a single product. The company may want to obtain offers from differ-
ent subsets of companies so that there are different combinations of price, quality,
delivery dates, and so on, and then eventually decide on a particular combination.
The Tentative Hold protocol allows the company in question to place tentative
reservations for the different components with different providers without actually
committing to purchasing those components. That way, and unlike what happens
with conventional transactions, the items are not blocked while a decision is being
made. If any of the providers changes the available offer, it notifies the company of
the fact, which can then remove that offer from the current options. Once the com-
pany decides on a given option, it notifies the providers that the components are no
longer on tentative hold.

The Tentative Hold protocol is not so much a protocol for guaranteeing transac-
tional consistency but a practical approach to indicate that, later in time, a transac-
tion may actually arrive that will request a particular item or resource. As such, it
can be used in combination with WS-CAF or WS-Coordination/WS-Transactions.
First, interest in a given item is expressed using the Tentative Hold protocol and
then a transaction, run with any of the approaches described above, will actually re-
quest the item in a binding manner. Notice, nevertheless, that the proposals in WS-
Transactions (business agreement with completion) and WS-CAF (business process
transactions) can be used to implement processes with behavior very similar to that
proposed in the Tentative Hold protocol. The difference is that the Tentative Hold
protocol, if accepted as a standard, would then provide an accepted framework for
tentative reservations. In WS-Transactions and WS-CAF, there is a possibility of
implementing a similar behavior but not in a standard manner, as tentative holds
would be one of the many possibilities for such business agreements or business
process transactions.

11.4.6 Transactional Processes in Electronic Commerce

An often forgotten fact behind the notion of transactional business processes is that
the type of transactional characteristics associated with the process depend very
much on the programming abstractions used as part of the process. All the ideas and
specifications discussed address, almost exclusively, processes in which invoca-
tions take place through RPC-like mechanisms (and that includes RMI, J2EE, and
most current Web services). Similarly, and as seen in WS-Transactions and WS-
CAF, ideas like 2PC are still very much at the top of the list in terms of what it
means to have a transactional business process. That has the big advantage that the
new specifications fit very well with existing infrastructures (like the XA interface,
by now widely used by almost all forms of middleware). Yet, a problem that is be-
coming increasingly obvious in practice is that business processes that involve re-

TRANSACTIONAL BUSINESS PROCESSES 275

mote systems—and not typical middleware or Enterprise Application Integration
scenarios—do not use this programming model. Most electronic commerce com-
merce today is based on the interaction between business processes of different
companies through the exchange of documents [4]. In most cases, these exchanges
take place through queues and using asynchronous messages. In such systems, the
notions of transaction, compensation, and coordination have a very different mean-
ing. In many cases, it is not even clear how to apply transactional notions to pure
document exchanges.

Here, it is worth mentioning that some of the ideas developed in the context of
message-oriented middleware and persistent queuing [1] can be very useful. A per-
sistent queue is a way of exchanging messages so that instead of going directly
from sender to receiver, they are deposited in a queue. That way, the sender and the
receiver are completely decoupled from each other as the sender only needs to put
messages in the queue and the receiver to read them from that queue. When the in-
teraction is between business processes of different companies, the queuing system
typically involves two queues. A sending queue is used to store the messages of the
sender until they are successfully transmitted to the receiver. At the receiver side, a
queue is used to store all incoming messages until the application retrieves them. As
Figure 11.5 shows, these interactions can be made transactional by using simplified
versions of 2PC, thereby ensuring that messages are not lost and that operations
within each process can actually tie the processing of the messages to actual trans-
actions.

In these systems, the notion of transactional process acquires a different meaning
as the transactional parts are the interactions between the participants to ensure the
receipt of certain documents. These systems do not use transactional mechanisms
within the process itself to enforce consistency. Rather, consistency is part of the
process logic itself, as the following example, taking from the xCBL library [16]
shows:

The xCBL 4.0 ChangeOrder document is a buyer-initiated document that can be used
to change an existing Order already received and responded to by a seller. The docu-
ment can be used to make changes to header level information, change line items, can-
cel line items or entire orders, add line items, etc. Note that if an OrderResponse has

APP A APPB

_ [

output queue

_ [

input queue

Figure 11.5 Document exchanges using transactional queues.

276 ALONSO

not been received for a given Order, a ChangeOrder is not necessary (an Order with a
purpose of “Replace” should be used). Similarly, if an entire order is to be canceled
and an OrderResponse has not been received an Order with a purpose of “Cancella-
tion” can be used. However, if an OrderResponse has been received, a ChangeOrder
with a ChangeOrder/ChangeOrderHeader/ChangeType/ChangeTypeCoded = “Can-
cel” should be used to cancel the entire Order.

The above paragraph describes a standard way of dealing with purchases orders
that includes cancellation. It does not say what needs to be done at each end as part
of the cancellation. In fact, it is possible that each process, for example, on the sell-
er side, actually reacts to the arrival of such a message by using some sort of com-
pensation mechanism such as those available in BPEL (although it is less than
straightforward to express the logic above in BPEL). Yet, what is clear from this
description is that there is no coordination protocol between both sides. Cancella-
tion or changes occur as part of the normal processing logic and not as part of a
global transaction encompassing the processes of buyer and seller. An interesting
problem that will need to be clarified in the short and medium term is how to recon-
cile specifications like WS-Transactions or WS-CAF (and the models behind them)
with processes based on document exchanges like those being developed by xCBL
or ebXML [4].

11.5 OUTLOOK

The notion of transactional business processes is anything but new and has been ap-
plied in a wide variety of settings: advanced transaction models with more or less
conventional transactions, workflow systems, conventional middleware platforms
such as transaction processing monitors, modeling languages for processes based
on Web services, and so on. In this chapter, we have described the background for
most of the ideas used today and discussed the relevance of each one of the existing
solutions.

The most important distinction made in the chapter is between mechanisms that
are used to guarantee the internal consistency of a given process (typically compen-
sation), and mechanisms used to guarantee the consistency of several business
processes that interact with each other (using a variety of models, from 2PCto busi-
ness transactions). The two aspects are not entirely independent but they should not
be confused, as they require and use different mechanisms. Internal consistency has
today become a programming problem—how to help a programmer to express
complex recovery logic as part of a business process. This question is of vital im-
portance since, as the xCBL example shows (Section 11.4.6), depending on the
mechanisms used, it may not be necessary to use distributed coordination protocols.
Consistency between processes is today still seen as a problem largely similar to
that of transactional consistency using mechanisms like the XA interface. The intro-
duction of other coordination possibilities is interesting and tied to the use of com-
pensation as part of the process logic. Yet, it remains to be seen to what extent these

TRANSACTIONAL BUSINESS PROCESSES 277

advanced mechanisms will be used in practice and how they can be combined with
interactions such as document exchanges.

11.6 EXERCISES AND ASSIGNMENTS

1. Using the process representation format of your choice, describe the behavior
of a ChangeOrder document exchange such as the one described in Section
11.4.6.

2. Read reference [2]. Using the process description language of your choice,
describe how to implement sagas and other advanced transaction models us-
ing that particular format. Is there any construct missing? Are there any pro-
gramming primitives that would make the whole design easier?

3. Read reference [6]. Extend the ideas in that paper to sagas to allow (a) arbi-
trary partial orders between the activities and (b) nesting of activities. Can
you represent the resulting mechanisms using a process modeling language?

4. Read reference [17]. Using the process description language of your choice,
describe how to implement flexible transactions and other advanced transac-
tion models using that particular format. Is there any construct missing? Are
there any programming primitives that would make the design easier?

5. Construct (using the process description language of your choice) two
processes, one corresponding to the buyer and one corresponding to the sell-
er, that internally use compensation but communicate using the procedure de-
scribed in the xCBL excerpt of Section 11.4.6.

6. Construct two processes, one for the buyer and one for the seller, that interact
through direct invocations (e.g., RPC or Web service operations) and use the
Tentative Hold protocol to reserve a particular item before placing the final
order.

ACKNOWLEDGMENTS

I would like to thank Claus Hagen, Amaia Lazcano, Win Bausch, Cesare Pautasso,
Heiko Schuldt, Daniel Jonnsson and Biorn Biornstad. All of them Ph.D. students at
one time or another at the Department of Computer Science at ETH Ziirich and who
have worked with me during the last years on topics related to those discussed in
this chapter.

REFERENCES

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Architec-
tures and Applications. Springer-Verlag, 2003.

2. G. Alonso, D. Agrawal, A. El Abbadi, M. Kamath, R. Guenthoer, and C. Mohan. Ad-

278 ALONSO

10.

11.

13.

14.

15.

16.

17.

vanced Transaction Models in Workflow Contexts. In Proceedings of the 12th Interna-
tional Conference on Data Engineering, New Orleans, LA, Feb. 26-March 1, 1996.

. P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in

Database Systems. Addison-Wesley, Reading, MA, 1987.

. ebXML Technical Architecture Specification v1.04. http://www.ebxml.org/specs/in-
dex.htm.

. A. K. Elmagarmid (Ed.). Transaction Models for Advanced Database Applications.
Morgan Kaufmann, 1992.

. H. Garcia Molina and K. Salem. Sagas. In Proceedings of ACM SIGMOD, May 1987,
pp- 249-259.

. F. Leymann. Supporting Business Transactions via Partial Backward Recovery in Work-

flow Management Systems. In GI-Fachtagung Datenbanken in Buero Technik und Wis-
senschaft—BTW’95. Dresden, Germany. March 1995.

. Object Management Group. Transaction Service. http://www.omg.org/technology/docu-

ments/formal/transaction service.htm.

. H. Schuldt, G. Alonso, C. Beeri, and H.-J. Schek. Atomicity and Isolation for Transac-

tional Processes. In ACM Transactions on Database Systems (TODS), Volume 27, No. 1,
March 2002.

J. Roberts and K. Srinivasan. Tentative Hold Protocol. W3C Note 28 November 2001.
http://www.w3.org/Submission/2001/11/.

G. Weikum and G. Vossen. Transactional Information Systems: Theory, Algorithms,
and the Practice of Concurrency Control and Recovery. Morgan Kaufmann, 2001.

. F. Cabrera et al. WS-Coordination. http://www-106.ibm.com/developerworks/library/

Ws-coot/.

F. Cabrera et al. WS-Transaction. http://www-106.ibm.com/developerworks/webser-
vices/library/ws-transpec/.

Web Services Composite Application Framework (WS-CAF). OASIS WS-CAF Techni-
cal Committee. http://www.arjuna.com/standards/ws-caf/.

Distributed Transaction Specification: The XA interface. The Open Group. http://www.
opengroup.org/onlinepubs/009680699/toc.pdf.

XML Common Business Library (xCBL), version 4.0. http://www.xcbl.org/xcbl40/
xcbl40.html.

A. Zang, M. Nodine, B. Bhargava, and O. Bukhres. Ensuring Relaxed Atomicity for
Flexible Transactions in Multidatabase Systems. In Proceedings of the ACM SIGMOD
Conference on Management of Data, Minneapolis MN, June 1994.

EEEE PART IV

STANDARDS
AND TOOLS

I CHAPTER 12

Standards for Workflow
Definition and Execution

JAN MENDLING, MICHAEL zur MUEHLEN, and ADRIAN PRICE

12.1 INTRODUCTION

Process-aware information systems (PAISs) are increasingly used as building
blocks of application software architectures as well as embedded components in
larger application systems, such as ERP packages. This, ultimately, may lead to
the coexistence of several PAISs within an organization. In addition, the use of
PAISs and PAIS development tools has been extended to automate business
processes beyond organizational boundaries. With an increasing number of trading
partners using PAISs, the individual negotiation of system-to-system interoper-
ability aspects becomes cumbersome as the number of interfaces in the network
increases geometrically. Accordingly, the use of general standards for process in-
tegration purposes becomes economically desirable. Standardization groups in the
area of workflow have two purposes. First, the standardization of integration in-
terfaces promises reduced implementation effort and better reuse of workflow
components when PAISs have to be integrated with the existing information sys-
tem infrastructure of an organization. Second, in the field of cross-organizational
processes (e.g., in supply chain scenarios), the standardization of invocation inter-
faces and messaging formats improves the development of plug-and-play solu-
tions and reduces the risk of using proprietary technology for participants in such
process chains. To date, several standardization groups dedicated to different as-
pects of PAISs exist. Other, nonspecialized standardization bodies have published
specifications that relate to aspects of PAISs as well. In this chapter, we give an
overview of the different standardization bodies relevant to the development of
PAISs, and we present two PAIS-related standards in detail: XPDL, which is an
XML-based process description language, and Wf-XML, which is an interoper-
ability protocol for process-aware applications.

Process-Aware Information Systems. Edited by Dumas, van der Aalst, and ter Hofstede 281
Copyright © 2005 John Wiley & Sons, Inc.

282 MENDLING, zur MUEHLEN, AND PRICE
12.2 STANDARDIZATION BODIES RELEVANT TO PAIS

12.21 WfMC

In the early 1990s, the commercial workflow market took a significant upswing.
New vendors entered the marketplace, and existing imaging, document manage-
ment, and messaging software vendors extended their products with workflow ca-
pabilities. In mid-1993, a group of large software users organized in the Black For-
est Group realized that they would have to make arrangements to deal with the
proliferation of multiple workflow management systems in their organizations.
They chartered workflow vendors with the task to develop interoperability stan-
dards between their systems. Following this challenge, an initial group of vendors
and consultants under the leadership of IBM founded the Workflow Management
Coalition (WfMC) in August 1993. To date, membership of the WIMC is com-
prised of more than 250 vendors, users, consultants, and research institutions with
an interest in the field of workflow management. WfMC is split into two sections:
In Technical Committee meetings, technology representatives, such as the archi-
tects of workflow vendors discuss the specification of the different WIMC stan-
dards, whereas the External Relations Committee is comprised mostly of marketing
and public relations representatives, and discusses the publication and dissemina-
tion of standards documents. WfMC standards are treated as recommendations for
workflow vendors, but there is no obligation for participating members to actually
implement the WIMC specifications. In addition, there is no formal conformance
testing in place; vendors’ claims of support for WfMC standards rely on self-certifi-
cation, not on an independent conformance evaluation.

12.22 OMG

The Object Management Group (OMG), a standardization body with a focus on
software engineering, has published a Workflow Management Facility specification
as a component of the Common Object Request Broker Architecture (CORBA).
The workflow facility represents a high-level CORBA facility, which allows an ob-
ject request broker to enable the communication of application components under
the control of a process management service. The coordination of business objects
using the workflow management facility enables application designers to create
workflow-enabled business applications, without the need to implement or integrate
a dedicated workflow engine. The creation of the workflow management facility is
closely linked to the WfMC.

In 1996, the OMG decided to adopt existing WIMC standards and initiated a
fast-track process. However, this move was criticized by some researchers who pre-
ferred a less engine-centric and more distributed approach to process automation
[19]. As a result, the fast-track process was canceled and a longer request for pro-
posal process was initiated [15]. This request for proposal was answered by two
groups: a proposal backed by 19 workflow vendors (all WIMC members, since the
WIMC as a body was not eligible to submit a proposal), and a proposal backed by a

STANDARDS FOR WORKFLOW DEFINITION AND EXECUTION 283

single vendor and a university (Nortel and the University of Newcastle upon Tyne).
After a review and revision period of more than 12 months, the 19 vendor proposal
was selected over the alternative submission [17]. The OMG requires vendors who
propose a standard to provide an implementation of the standard within a year after
the adoption of their proposal [16]. However, the workflow management facility
was not implemented by any of the submitters, and the popularity of Web Services
Choreography standards (see e.g., [13]) and Wf-XML (see Section 12.5) makes it
unlikely that this standard will have any commercial significance in the future.

12.2.3 BPMI

The Business Process Management Initiative (BPMI), founded in 2000, is an indus-
try consortium of approximately 200 companies in the workflow, business process
modeling, and systems integration areas. It has the mission of developing an XML-
based business process modeling language, a matching notation, and a repository
for models specified in this language. The initiative is led by Intalio, which pro-
duces a BPMI-compliant business process management system and controls much
of the regular BPMI operations. The standards defined by BPMI are the Business
Process Modeling Language (BPML) [4] and a matching Business Process Model-
ing Notation (BPMN) [25]. A query language to control the operations of a PAIS at
run time, the Business Process Query Language (BPQL), has been discussed as a
BPMI effort but, currently, no specification for such a language exists.

BPML was designed as a modeling language for transactional, discrete business
processes. Besides entities such as elementary and complex activities, connectors,
and events, the BPML meta-model offers a number of entities for the management
of data at run time (e.g., definition of an activity context, which may contain shared
data). In addition, elements for exception handling, such as message, time-out, and
failure event handlers are provided. Constructs for the modeling of transactional as-
pects of processes, along the lines of the compensation mechanisms of sagas pre-
sented in Chapter 11, are available as well. Based on an early draft of the BPML
specification, BPMI members submitted a proposal to the World Wide Web Con-
sortium (W3C), called the Web Services Choreography Interface (WSCI), with the
hope of influencing the development of a Web Services Choreography language
[5].

Parallel to the development of BPML a working group was established to devel-
op a corresponding visual notation. Two different levels of abstraction of this Busi-
ness Process Modeling Notation (BPMN) are defined. On the one hand, an execu-
tion-level notation will represent the BPML semantics completely. On the other
hand, a business-level notation will serve as a “lean” notation for organizational
modeling, leaving out details that are relevant for the automation of the modeled
processes. Whereas the execution-level notation contains elements such as fault,
compensation, transaction, and context, the business-level notation is designed with
the intention of providing a comprehensible graphical diagram that allows the
grouping of elements through swim lanes or participant lanes, respectively. A first
version of the BPMN specification was published in 2004 [25].

284 MENDLING, zur MUEHLEN, AND PRICE

12.2.4 OASIS

The Organization for the Advancement of Structured Information Standards (OA-
SIS) is an industry group focused on the development of XML-related standards in
the area of Web Services and business-to-business processes. Relevant to the devel-
opment of PAISs, OASIS hosts three working groups that define standards for
process interoperability:

® The Asynchronous Services Access Protocol (ASAP) is a protocol for the in-
vocation of long-running services at remote locations, with functionality to
query the status of a remote service and manipulate its state [21]. ASAP is a
direct descendant of the Simple Workflow Access Protocol, and represents a
generic version of the WIMC W{-XML standard, which is discussed in detail
in Section 12.5.

® The Business Process Execution Language for Web Services (BPEL4WS) is
an XML-based specification language for business processes that provides
powerful constructs for the modeling of a long-running orchestration of Web
services [3] (see Chapter 13).

® The ebXML framework consists of standards that describe the structure and
access mechanisms of a central registry for Web services, as well as mecha-
nisms to describe these services in a standardized manner. Part of these speci-
fications is a high-level process specification schema standard (BPSS) [23],
which describes the interaction between two parties in an ebXML scenario.
ebXML is a joint effort of UN/CEFACT and OASIS. UN/CEFACT was the
original standardization body for the UN/EDIFACT standard, which found
widespread adoption in the commercial world. ebXML is targeted at organi-
zations for which the traditional UN/EDIFACT standard is too expensive to
implement.

OASIS is a popular standardization organization for software vendors because
its organizational structure allows for the fast setup of working groups and its by-
laws provide protection of a vendor’s intellectual property (IP) rights, whereas oth-
er standards bodies (e.g.,W3C) require submitters of standards proposals to give up
the IP rights in their submissions.

12.25 W3C

Whereas WIMC, BPMI, and OASIS can be classified as industry consortia, the
World Wide Web Consortium (W3C) has the character of a vendor-neutral standards
body, similar to the Internet Engineering Task Force (IETF). The W3C is working on
the standardization of World-Wide-Web-related technologies and protocols. Most
standards that relate to Web services are developed by W3C working groups. The
abovementioned WSCI has the status of a W3C note; it is an input document for the
W3C working group that develops a Web Services Choreography Definition
Language (WS-CDL). Furthermore, W3C has published several standards that are

STANDARDS FOR WORKFLOW DEFINITION AND EXECUTION ~ 285

utilized by other standards in the area of PAISs, such as the Simple Object Access
Protocol (SOAP),! Web Service Description Language (WSDL),? and XML.

12.3 WFMC REFERENCE MODEL AND WFMC GLOSSARY

One of the main tasks undertaken by the WfMC is the development of a common
understanding of what a workflow management system is and what functionality it
should provide. This led to the WEMC Glossary and Reference Model briefly out-
lined in Chapter 2. In this section, we describe them in more detail.

12.3.1 W{MC Glossary

Due to the increasing number of workflow vendors by the middle of the 1990s,ven-
dor-specific terminology for workflow constructs had led to an inconsistent vocabu-
lary of workflow terms. In order to counter this trend, the first goal of the WfMC was
to establish a common terminology for workflow concepts, which led to the publica-
tion of the WIMC Terminology & Glossary [27]. Today, the WIMC Glossary covers
most workflow concepts and gives definitions for terms such as activity, workflow
management system, and participant. Although not all workflow vendors use stan-
dard terminology, the WfMC vocabulary has found widespread acceptance in prac-
tice. It is perceived as a valuable aid for the system selection process, since propri-
etary terms used by different vendors can be transformed to a common standard, thus
enabling a comparison of systems on the basis of a single vocabulary.

Figure 12.1 illustrates the central terms of the WfMC Glossary. The following
list gives their definition according to the WfMC Glossary [27].

® A Business Process is a “set of one or more linked procedures or activities
which collectively realize a business objective or policy goal, normally with-
in the context of an organizational structure defining functional roles and re-
lationships.”

® A Process Definition is the “representation of a business process in a form
which supports automated manipulation, such as modeling, or enactment by a
workflow management system. The process definition consists of a network
of activities and their relationships, criteria to indicate the start and termina-
tion of the process, and information about the individual activities, such as
participants, associated IT applications and data, etc.”

® A Workflow is the “automation of a business process, in whole or part, during
which documents, information or tasks are passed from one participant to an-
other for action, according to a set of procedural rules.”

® A Workflow Management System is a “system that defines, creates and man-
ages the execution of workflows through the use of software, running on one

thttp://www.w3.org/TR/soap/
2http://www.w3.org/TR/wsdl/

286 MENDLING, zur MUEHLEN, AND PRICE
Business Process
(what is intended to happen)
is managed by
is defined by Workflow Management System

(controls automated aspects
of the business process)

via

>
used to create
and manage

Process Instances
(representation of what

Process Definition
(representation of what

is intended to happen) is actually happening)
Sub-Processes composed of
Include one
or more
Activities

which may be

or
y
Manual Activities Automated Activities ——® Activities Instances
(which are not managed as
part of the Workflow System) which
include

AAM\

Work Items Invokes Applications
(tasks allocated to a (computer tools or
workflow participant) applications used to

support an activity)

Figure 12.1 Important terms of the WfMC Glossary [27].

or more workflow engines, which is able to interpret the process definition,
interact with workflow participants and, where required, invoke the use of IT
tools and applications.”

® An Activity is a “description of a piece of work that forms one logical step
within a process. An activity may be a manual activity, which does not sup-
port computer automation, or a workflow (automated) activity. A workflow
activity requires human and/or machine resources(s) to support process exe-
cution; where human resource is required an activity is allocated to a work-
flow participant.”

® An Instance (of a process or an activity) is the “representation of a single en-
actment of a process, or activity within a process, including its associated
data. Each instance represents a separate thread of execution of the process or

STANDARDS FOR WORKFLOW DEFINITION AND EXECUTION ~ 287

activity, which may be controlled independently and will have its own inter-
nal state and externally visible identity, which may be used as a handle, for
example, to record or retrieve audit data relating to the individual enactment.”
The Process Instance is the “representation of a single enactment of a
process”; and the Activity Instance is the “representation of an activity within
a (single) enactment of a process, i.e. within a process instance.”

® A workflow Participant is a “resource which performs the work represented
by a workflow activity instance. This work is normally manifested as one or
more work items assigned to the workflow participant via the worklist.”

® A Work Item is the “representation of the work to be processed (by a work-
flow participant) in the context of an activity within a process instance.”

® The Worklist is a “list of work items associated with a given workflow partic-
ipant (or in some cases with a group of workflow participants who may share
a common worklist). The worklist forms part of the interface between a work-
flow engine and the worklist handler.”

12.3.2 WfMC Reference Model

The WIMC Reference Model was introduced in 1995 as a means to group typical
interfaces of a PAIS according to their purpose and constitutes one of the most in-
fluential workflow frameworks to date [8]. A global view of the reference model
was given in Chapter 2. Here, we discuss some of the elements of this model in
more detail, as they are relevant for the rest of this chapter.

The WIMC reference model is composed of five interfaces, each of which is
specified individually through an abstract specification that describes its generic
functionality. Depending on the functionality of the interface, one or more interface
bindings are provided as illustrations of how an interface can be implemented using
particular languages or technologies. All five interfaces are grouped around the ex-
ecution core of a PAIS, the workflow enactment service, which encapsulates one or
more workflow engines. A system may consist of several workflow engines, for ex-
ample, if it is implemented in a distributed manner. The communication between
the workflow enactment service and outside systems is provided through an appli-
cation programming interface (API), the Workflow API (WAPI). The following
sections present the individual interfaces in detail.

12.3.2.1 WfMC Interface 1. The WfMC Interface 1 (Process Interchange)
provides a generic process description format, the Workflow Process Definition
Language (WPDL). The purpose of WPDL is the exchange of workflow specifica-
tions between different workflow systems, or between business process modeling
tools and workflow management systems. For this purpose, WPDL provides a com-
mon subset of elements found in most workflow management systems. WPDL is
specified using an extended Backus—Naur Form (EBNF) and a plain text descrip-
tion, but is independent of a particular system implementation. In 2002, an XML
representation called XPDL was published as the successor of WPDL, which has

288 MENDLING, zur MUEHLEN, AND PRICE

been implemented in a number of open-source workflow projects. It is discussed in
detail in Section 12.4.

12.3.2.2 WfFMC Interfaces 2 and 3. The WIMC Interfaces 2 (Workflow
Client Applications) and 3 (Invoked Applications) form the core of the WAPI
specification. Interface 2 specifies the communication between a workflow engine
and client applications that are used by workflow participants to interact with the
workflow management system. This concerns mainly the presentation of the work
list, the selection of work items, and the notification of workflow participants in
the event of overdue activities and/or processes. Interface 3 specifies the API
functions for the integration of invoked applications. This relates mainly to the
passing of data between the workflow engine and a remote application, and the
handling of application return codes. Whereas Interface 2 defines the invocations
of a workflow participant that demands a work item from a workflow engine for
further processing, Interface 3 specifies the invocations of a workflow engine that
demands another application to execute operations. Although initially separated,
the close relationship between the two interfaces ultimately led to a merger of the
specifications. This abstract specification defines on one side the operations that
external systems can invoke on a workflow engine, and on the other side the op-
erations a workflow management system performs on an outside system. These
operations include the instantiation, starting, manipulation, and stopping of work-
flow instances.

12.3.2.3 WfMC Interface 4. The WfMC Interface 4 (Interoperability) speci-
fies the communication across different workflow engines in the sense of a process-
to-process interaction. The first version of this interface was published in 1996; the
current version 2.0 was published in 1999. The specification of Interface 4 consists
of an abstract description of interoperability functions (e.g., instantiating a work-
flow; starting, stopping, and aborting a workflow instance, etc.), as well as bindings
to different messaging protocols and transport mechanisms. The first published ver-
sion allowed for the realization of cross-organizational workflows using e-mail and
MIME messages. Operational implementations of this binding were presented in
the course of an interoperability challenge by three workflow vendors (DST,
FileNet, and Staffware) in March 1999. More recently, the interoperability of PAIS
is the focus of several standardization groups in the Web Services Choreography
area, and the WfMC has published an interaction protocol that relies on XML mes-
sage encoding and HTTP as a transport protocol—Wf-XML. This interaction proto-
col is discussed in more detail in Section 12.5.

12.3.2.4 WfMC Interface 5. The WIMC Interface 5 (Management and Audit)
describes the format of the run time protocol produced by a workflow enactment
service, the so-called audit trail [30]. Initially designed for recovery purposes, simi-
lar to a database redo/undo-log, the audit trail of workflow systems is becoming in-
creasingly interesting for purposes such as process mining (see Chapter 10) or
process monitoring and controlling [31]. The current version of the WfMC Inter-

STANDARDS FOR WORKFLOW DEFINITION AND EXECUTION 289

face 5 (2.0) describes the data format of log entries as well as the state changes re-
sponsible for creating these log entries.

12.4 PROCESS DEFINITION IN XPDL

12.4.1 Purpose of XPDL

The XML Process Definition Language (XPDL) has been proposed by WIMC as a
standard for interchanging process definitions between process definition tools and
workflow management systems (Interface 1). XPDL aims to facilitate the import
and export of process definitions by specifying an XML-based interchange format
that can be used by process-aware information systems.?> XPDL has evolved from
the Workflow Process Definition Language (WPDL) [26].

When a process definition has to be moved from one workflow management sys-
tem to another, the process definition needs to be exported to a file conforming to
an interchange format that the target system can import. Many vendors offer propri-
etary interchange formats to support such data transfer between different installa-
tions of their software. When process definitions have to be moved between tools of
different vendors, an interchange format is needed that both tools understand. Fur-
thermore, there may be the desire to represent a process definition using another
process modeling technique. Different techniques for process modeling (see Chap-
ters 5-8) have individual sets of syntax elements and related semantics. In some
cases, it is difficult to define mappings between different techniques; see Dehnert
[6] for discussion on mappings between event-driven process chains (EPC) and
Petri nets. Moreover, tools serve different purposes. There are specialized tools for
process modeling via graphical editors, for process simulation using a simulator, for
process execution via an execution engine, or for process monitoring and auditing.
Each of these specific tools requires different information to be included in the
process model.

XPDL aims to serve as an XML-based lingua franca for representation and inter-
change of process definitions between tools from different vendors, tools using dif-
ferent modeling techniques, or tools that serve different purposes (see Figure 12.2).
However, XPDL has been designed around a consensual minimal set of constructs
found in the workflow domain. As a consequence, a particular tool will most proba-
bly need to store data that is not defined by XPDL. In such a situation, XPDL al-
lows one to define so-called extended attributes. Those can be used to attach arbi-
trary information to a process or process-related objects. However, these extended
attributes will not be understood by other tools. Nevertheless, there is a need for ex-
tensibility that is also recognized by academic standardization efforts like Petri Net
Markup Language (PNML) [24] or EPC Markup Language [14] to provide for flex-
ible customization and future evolution. Yet, extensibility does not lead to a lingua
franca [1]. The minimal-set approach of XPDL contrasts with the workflow pat-
terns and the YAWL initiatives (see [2] and Chapter 8) that aim at identifying a su-

3See http://www.wfmc.org/standards/XPDL.htm for a list of software supporting XPDL.

290 MENDLING, zur MUEHLEN, AND PRICE

Vendor B
Vendor A Vendor C
Declare workflow :}Jﬁ%
name=2Order?
application
if $order
- XPDL Import
XPDL Import and Export XPDL Import
and Export 4 and Export

A
XPDL Document

<?xml version="1.0" encoding="utf-8"?>
<Package xmIns="http://www.wfmc.org/2002/XPDL1.0"
xdm[%ﬁzxpdl:“th://wwwAwfmc.org/2002/>(PDL1 .0"

Name="sample workflow process">
<PackageHeader/>
<XPDLVersion>0.09</XPDLVersion>
<Vendor>Workflow N.N.</Vendor>
<Created>6/18/2002 5:27:17 PM</Created>
</PackageHeader>
<ConformanceClass/>
<Script Type="text/javascript/>
<TypeDeclarations/>
<Participants/>
<Applications/>
<DataFields/>
<WorkflowProcesses>
<WorkflowProcess
ld="1"
Name="Order"
AccessLevel="PUBLIC">

%
A

XPDL Import ' XPDL Import
and Export XPDL Import and Export
and Export
Simulation Engine Monitoring Engine
Execution Engine

Figure 12.2 Interchanging XPDL process definitions.

perset of control-flow concepts and constructs supported by existing systems. The
WIMC is aware of these limitations and encourages vendors to submit proprietary
extension attributes to be included in future versions of the XPDL specification.

12.4.2 An Introduction to XPDL

In this section, we assume that the reader has some familiarity with XML and XML
Schema. The reader not familiar with these languages is referred to [18]. The syntax
of XPDL is defined by an XML Schema* document. Its main concepts are the pack-
age, applications, participants, data fields and data types, workflow processes, ac-
tivities, and transitions. Figure 12.3 illustrates the relationships between these enti-
ties via a meta-model. In the following, we will first describe elements common to
multiple concepts. Afterward, we introduce a use case that will serve as a working
example, and then each XPDL concept with its individual elements. We will intro-
duce most of XPDL’s elements, but not all. For a complete presentation of XPDL,
refer to the specification [29].

“http://www.w3.0rg/TR/xmlschema-1/ and http://www.w3.org/TR/xmlschema-2/.

‘Jopow-eowl JAdX €°TT AN

[weihs |

uoIPUOD Ul plelJeieq Sesn

jHun_jeuoneziuebio

S80UBIB}R) * 224n0say

> uolyisued) | . uonealddy |- Sioroweied sesn

189S @9Inosay

o) wouj | S

adAnsn

uonomsey juedionted sdALAeny
uolysuel) ¥

. adAjuonesawnug

[edAiuown]
ploidereq K H{ edAipiooey |

x

2oualajey|euaxy

-
*
*

ajnoy I adAj ewayss

oN o SOMOAUI adA} pasejoag

Aq pawiojiod sesn adA]oise
1
[100 H{> uonejuawajdw > Auanoy ———

moj4ans " "
Aunnoyyoolg — L [(O (I

$5990.d

19sAnnnoy abeyoed

; MO

291

292 MENDLING, zur MUEHLEN, AND PRICE

12.4.2.1 Common Elements. There are three general (or common) elements
that can be used in conjunction with different XPDL entities: extended attributes,
formal parameters, and external references:

® Extended attributes can be used in all XPDL elements. They capture vendor-
specific information that cannot be represented by standard elements. Extend-
ed attributes are modeled as name—value pairs.

® Formal parameters can be used to represent input and output parameters of
workflow processes and applications. A formal parameter has an identifying
Id. Its mode attribute defines the semantics of parameter passing.

® External references can be used with data types, participants, and applica-
tions. An external reference gives the URI of an external specification in its
location attribute. This specification document may be, for example, an
XML Schema or a Java class. The xref attribute states the name of the entity
in the linked document. In particular, external references can be used to refer
to Web services.

12.4.2.2 New Employee Use Case. The XYZ organization requires a work-
flow process for engaging a new employee. When a new employee is due to join the
company, the following actions must be taken by staff in the appropriate depart-
ments. The human resources department first has to prepare office accommodation
and order items from a checklist where necessary. Then, this department has to is-
sue a “preinduction information pack” containing company policy documents.
Then, a place on the next scheduled induction course has to be booked. The IT de-
partment has to procure and configure a computer for the employee. Then, a net-
work user ID and temporary password have to be allocated. Afterward, an e-mail
account has to be set up. Then, an extension number has to be assigned and the em-
ployee has to be entered into the corporate telephone directory. Finally, access
rights have to be granted to the appropriate corporate resources. The finance depart-
ment has to enter the personnel details of the new employee into the salary system.
The process has to be supported by a workflow management system. The workflow
management system of the XYZ organization requires the process to be defined as
an XPDL document.

12.4.2.3 XPDL Package. The package is the root element of an XPDL docu-
ment. The package serves as a container to store multiple workflow processes and
common information about data fields, application declaration, and participant
specification. Accordingly, XPDL can be used to interchange both single process
definitions and also a whole repository of process definitions.

Figure 12.4 illustrates the package element with a code snippet from the new
employee use case. Every package is identified via a mandatory unique 14 attribute
and an optional Name attribute. In our example, the name of the process is “New
Employee.” Packages have a header (element PackageHeader) to capture general
information like XPDL version, vendor and name of the tool that generated the

STANDARDS FOR WORKFLOW DEFINITION AND EXECUTION ~ 293

<?xml version="1.0" encoding="UTF-8"?>
<Package Id="new-employee"

Name="New Employee"
xmlns="http://www.wfmc.org/2002/XPDL1.0"
xmlns:xpdl="http://www.wfmc.org/2002/XPDL1.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.wfmc.org/2002/XPDL1.0
http://wfmc.org/standards/docs/TC-1025_schema_ 10_xpdl.xsd">
<PackageHeader>

<XPDLVersion>1.0</XPDLVersion>

<Vendor>Open Business Engine</Vendor>

<Created>2004-07-25 18:14:19</Created>
</PackageHeader>
<RedefinableHeader

PublicationStatus="UNDER_TEST"/>
<ConformanceClass

GraphConformance="NON_BLOCKED" />
<Script Type="text/x-xpath"

Version="1.0"/>
<WorkflowProcesses>

<WorkflowProcess AccessLevel="PUBLIC"

Id="new-employee" Name="New Employee">

Figure 12.4 Example of an XPDL package.

XPDL file, or creation time. The RedefinableHeader element covers general in-
formation that may be redefined for each workflow process contained in the pack-
age, for example, publication status. The conformance class imposes restrictions on
the network structure of the process definition. There are three classes of confor-
mance: NON-BLOCKED (used in the example) indicates that there is no restric-
tion, LOOP-BLOCKED means that the network structure must be acyclic, and
FULLBLOCKED means that each split has to be matched with a corresponding
join. Split-join blocks may also be nested. The distinction between these confor-
mance classes is important because cycles may result in undefined semantics (see
Kindler for a thorough discussion [10]). As a consequence, some workflow vendors
do not allow arbitrary cycles in their workflow systems (see, e.g., [11]). The
Script element identifies a scripting language that is used in expressions of transi-
tion conditions. The example process uses XPath’ (defined in the Type attribute).
Moreover, a package can contain multiple data fields, participants, applications,
and workflow processes (see Figure 12.4). Figure 12.4 does not include data fields,
participants, and applications because they are defined local for the workflow
process definition of the “new employee use case.”

12.4.2.4 Data Fields and Data Types. Data fields represent variables that
capture workflow-relevant data. They can be used in the specification of deadline
conditions of activities, in transition conditions, or they can be referenced in formal

Shttp://www.w3.0org/TR/1999/REC-xpath-19991116

294 MENDLING, zur MUEHLEN, AND PRICE

parameters that are passed from activities to subflows or applications. Data fields
are described within DataField elements that can be defined on the package level
with global scope or with local scope on the workflow process level.

A data field is identified by a unique I4 attribute and an Name attribute. Further-
more, it has an IsArray attribute whose default value is FALSE. Moreover, an
Initialvalue can be defined. A data field has also a DataType. XPDL offers
nine data types (see Figure 12.5). ArrayType, EnumerationType, ListType,
RecordType, and UnionType are deprecated, that is, they are included only to
provide compatibility with WPDL. It is recommended to use SchemaType instead.
It may contain an XML Schema describing the data. An ExternalReference re-
ferring to an external document can be used for the same purpose. Furthermore, the
DeclaredType defines a type by referencing a type declaration within the package
element. Finally, an XPDL BasicType can be used to specify the data field. There
are seven basic types including string, float, integer, reference, datetime, Boolean,
and performer. Most of them are self-explanatory but some need further remarks.
First, as the reference type is now deprecated, it is recommended to use an external
reference instead. Second, the datetime refers to an instance of time, but it does not
define a specific date format. Finally, the performer type is a data field that contains
a reference to a declared workflow participant.

12.4.2.5 Participants. Participants represent resources that can perform activi-
ties of a workflow process. The information relevant to a participant is defined in a
Participant element, which is a child element of a package or a workflow process
just like the data field element. A participant declared in the package has global
scope; others have local scope within the workflow process in which they have
been defined. Note that policies for assigning participants to activities are defined in
each activity.

Figure 12.6 gives the declaration of the HR department of the new employee use
case. A participant is identified by a mandatory unique 1d attribute (“HR” in the ex-

— STRING
H FLOAT
— SchemaType | H INTEGER
ﬂ ExternaIReference| —| REFERENCE

_|

_|

_|

ul BasicType |<]—

— DeclaredType |

DataField k< H{ RecordType | DATETIME
ﬂ UnionType |

BOOLEAN
PERFORMER

ﬂ EnumerationType |

ﬂ ArrayType |
= ListType |

Figure 12.5 Portion of the XPDL meta-model relevant to data fields.

STANDARDS FOR WORKFLOW DEFINITION AND EXECUTION ~ 295

<Participant Id="HR" Name="Human Resources Dept.">
<ParticipantType Type="ORGANIZATIONAL_UNIT" />
</Participant>

Figure 12.6 Example of a participant declaration in XPDL.

ample); optionally, a Name attribute can be added. Furthermore, a participant type
has to be declared. XPDL offers six predefined types. RESOURCE SET denotes a
set of resources. RESOURCE describes a specific resource agent. ROLE defines a
functional role that a person can have within an organization. A coordination mech-
anism may be needed to identify an individual having a role that is assigned to a
certain activity. ORGANIZATIONAL UNIT refers to a department or other units
within an organization. This type is used in the example for the HR department.
HUMAN is an individual user who interacts with a process. Finally, SYSTEM de-
scribes an automatic agent.

12.4.2.6 Application. The information needed to invoke operations of an ap-
plication is included in an Application element, which should appear within the
package or a workflow process element. When an application is defined on the
package level, it has a global scope and can be referenced from all workflow
process definitions. Otherwise, it has local scope within a workflow process. Activ-
ities may invoke applications and applications use data.

Figure 12.7 gives an example of an application in the context of the new employ-
ee use case. The application is identified by a mandatory, unique Id attribute (“cre-
ateNetworkUser”). Optionally, a Name attribute can be added. Beyond the optional

<Application Id="createNetworkUser"

Name="Create Network User">
<Description>Creates a network user. The userID is generated
from the user name, and the temporary password assigned is
the userID.</Description>
<FormalParameters>
<FormalParameter Id="userName" Mode="IN">
<DataType>
<BasicType Type="STRING"/>
</DataType>
<Description>The user©s full name</Description>
</FormalParameter>
<FormalParameter Id="userID" Mode="OUT">
<DataType>
<BasicType Type="STRING"/>
</DataType>
<Description>The generated user ID.</Description>
</FormalParameter>
</FormalParameters>

</Application>

Figure 12.7 Example of a Web service declaration in XPDL.

296 MENDLING, zur MUEHLEN, AND PRICE

Description, an application may have FormalParameters to define input and out-
put parameters. The application takes a string “userName” as input, and returns the
“userID” of the generated network user, which is also a string. Web services can be
defined using the external reference element. For details, see the XPDL specifica-
tion [29].

12.4.2.7 Workflow Process. A workflow process is defined by a workflow-
Process element, which is a child element of Package. A workflow process ele-
ment acts as a container for other elements that are relevant to the description of a
workflow process. Similar to the package element, it may contain a ProcessHead-
er, a RedefinableHeader, DataTypes, and DataFields, as well as Partici -
pants and Applications. Furthermore, a workflow process contains multiple
ActivitySets, Activities, and Transitions to represent the tasks and con-
trol flow of a process definition (see Figure 12.8).

Figure 12.9 gives an example of how a workflow process is defined in XPDL. A
workflow process is identified by a mandatory unique 14 attribute (“new-employ-
ee”’) and an optional Name attribute (“New Employee™”). The AccessLevel at-
tribute set to PUBLIC indicates that the process may be invoked by external appli-
cations; if it may only be invoked as a subflow, the access level is set to PRIVATE.
When a workflow process serves as an implementation of a subflow activity, it may
define multiple FormalParameters.

The control flow of a workflow process definition is defined by activities and con-
trol flow transitions between them. In the example, there are five transitions from the
activity “Allocate user ID” to other activities. These transitions are referenced in the
Split element of the first activity (a5). The type attribute is set to AND; that is, the
transitions represent concurrency: each activity a6, a8, a7, a4, and a9 may be execut-
ed in parallel. Activity a5 is executed automatically (start and finish mode are set to
“automatic”) via a procedure of the tool “createNetworkUser.” The performer ele-
ment indicates that the IT department is responsible for this activity.

Package LI ActivitySet
Process
? 1
Activity
* from to
DataField Participant Application "1 Transition

Figure 12.8 Portion of the XPDL meta-model relevant to workflow processes.

</u9®,=0L

IddX Ul uoneIe[oap ssooo1d moppiom e jo ojdwexy 6 g 2In3Lg

:COHuHmQGHE:H®EMZ :MU:H@H uGeu=WwoI4q COﬂMHMC@HEV
<SUOT3TSURIL>
<S®T3TATIOV/>

<A3TATIOY/>
<SUOT3}DTIISDOYUOTITSURILL/ >
<UOT3IDTIISOYUOTITSURILL/>
<3T1ds/>
<SJOYUOTITSURILL/>
</u8T3Iu=PI FOYUOTITSURIL>
</uGZ3u=PI IFSYUOTIJFTISULRIL>
</w€TIn=PI JFSYUOTITSURIL>
</uw%3Iu=PI 3ISYUOTITSURIIL>
</u€3Iu=pPI FOYUOTITSURIL>
<SJISYUOTITSURIL>
<uaNVu=2dAL 3TTdS>
<UOT3DTIISOYUOTITSURIL>
<SUOT3}DTIISOYUOTITSURIL>
<OPOWYSTUTA/></DTIRUWOINY><SPONYS TUTA>
<9PON3IILIS/></DOTIPWOINY><OPONIILIS>
<JI2UIOFIDG />LI<IDUWIOFIDI>
<uoT3ejusWO TAWT />
<TOOL/>
<sIojsweiedTenioy/>

<SI93jsweIRd TeN}OV>

<uHYNAED0Ud w=9dAL ,ISSN}{IOM]ISNS3©eSID, =PI TOOIL>

<uoTlejuswe TdwI>
<udI I9SN 93eDOTIVw=SWeN ,Ge,=PI AITATIOV>
<SOTITATIOV>
<pyo2koTdug MaN,=2wWeN ,29A0Tdws-maUu,=pPI
WOITdNd =TOADTSSOODY SS9D0IJMOT FHIOM>

<S9SS9D0IIMOT IHIOM>

6e

ye

/e

ge

oe

s|lelep
Alejes Jajug

Ja1ndwod
ainbuon

uoIsualIxa
auoyd
ubissy

Gai

81}

aj Jesn

sybu
$S900.
el

1UNnoddYy

'eNd
8jealn

€hH

12

91e00||Y/

€l

Ge

297

298 MENDLING, zur MUEHLEN, AND PRICE

12.4.2.8 ActivitySet and Activity. The work to be performed in a workflow
process is defined by a set of activities (elements ActivitySet and Activity),
which are child elements of the workflow process element). Activity sets may con-
tain multiple activities and transitions that link them. An activity set is identified by
an Id attribute and can be executed by so-called block activities, which are special
kinds of activities explained below. An activity represents a task that is executed
within a workflow process. Its execution may involve data fields, participants, and
applications. Activities are linked by transitions (see Figure 12.10).

An activity is identified by a mandatory unique Id attribute and an optional
Name attribute (see Figure 12.9). Any activity element may contain multiples of
general elements. We give a short description of deadlines, limits, simulation infor-
mation, start and finish modes, performer information, and transition restrictions.
Furthermore, there are elements specific for the different types of activities.

Deadline is a general element for the specification of a deadline condition. It
includes the name of an exception that is raised on the arrival of the deadline and an
Execution attribute to describe whether the activity continues after raising the ex-
ception (ASYNCHR) or whether the activity is completed abnormally (SYNCHR).
The Limit element is also related to execution time of an activity. It defines an ex-
pected duration that may be used for tool-specific escalation mechanisms. The
SimulationInformation element is also partly related to time. It can include in-
formation about average cost and estimated time subdivided into waiting time,
working time, and total duration of an activity. For each activity, a start mode and a
finish mode can be defined (elements StartMode and FinishMode, respectively).
Automatic mode denotes that start or end of the activity is controlled by the work-
flow management system. Manual mode requires user interaction to start or end an
activity. Start and finish modes may be defined independently from another. The
Performer element represents an assignment made by giving a link to a partici-
pant who is either declared on the workflow process or on the package level. At run
time, this participant assignment may result in an empty set of resources or in mul-

; *
Workflow ActivitySet
Process —
1
! 1 BlockActivity
. * SubFlow |
- Activity Implementationk_]
performed by
invokes| 0-1
Route
v v Y from to *
DataField | | Participant | | Application " | Transition Restictior
Restriction

Figure 12.10 Portion of the XPDL meta-model relevant to activities.

STANDARDS FOR WORKFLOW DEFINITION AND EXECUTION 299

tiple resources. XPDL does not make any statement about run time resolution of
these cases. Finally, TransitionRestrictions is another general element that
may be used by all activity types. It defines how multiple transitions are evaluated
before starting the activity and after completing the activity (for details, see the Sec-
tion 12.4.2.9). In the example of Figure 12.9, we have seen a transition restriction of
an AND split.

XPDL distinguishes three types of activities: route, block activity, and imple-
mentation (see Figure 12.10). An activity element includes one of these three ele-
ments. The Route element identifies a so-called dummy activity. It has neither a
performer nor an application and it does not affect any data field. Its only purpose is
to represent complex routing conditions via its transition restrictions. The Block-
Activity element is related to an activity set. It executes the activities mentioned
in the activity set, starting from the first activity. After the exit activity has been
reached, the output transitions of the block activity are followed. Implementa-
tion refers to an activity that is either not automatically executed by the workflow
system (denoted by a No element), executed by a program or application (Tool), or
implemented as a workflow subprocess (SubFlow). Figure 12.9 contains a tool ele-
ment used to define an automatic execution.

A No implementation represents an activity whose execution is not supported by
the workflow management system. This may be a manual activity or a so-called im-
plicit activity. The latter refers to pre- and postprocessing in a workflow process for
initializing data or writing data to the archive. Its start and finish modes would be
set to automatic. Tool describes an activity that is implemented by a tool that may
be invoked using the Workflow Client Application API of WfMC’s Interface 2. Its
14 attribute identifies the tool, which may be a Type application or procedure. A set
of parameters can be defined in the ActualParameters element, which is of the
type list. Element SubF1low corresponds to the third implementation type, covering
the case in which the activity is implemented by another workflow process. Its 1d
attribute identifies the invoked workflow process. There is also the option to speci-
fy a set of ActualParameters. The Execution attribute can be set to synchro-
nous (SYNCHR) or asynchronous (ASYNCHR). Synchronous execution refers to a
suspension of the activity until the invoked process instance is terminated. In the
case of asynchronous execution, the activity is continued after the subflow has been
instantiated. If there is a need for a later synchronization with the subflow mecha-
nisms, events have to be used in a vendor-specific way, because they are not de-
fined in XPDL.

12.4.2.9 Transition. Transition is a child element of workflow process and ac-
tivity set. Transitions define the conditions that enable and disable activities during
a workflow execution. They represent control flow via directed edges between ac-
tivity nodes in a workflow process. XPDL transitions coupled with the split and join
elements provide direct support for the first five patterns presented in Chapter 8. A
detailed analysis of XPDL in terms of the workflow patterns can be found in [1].
Figure 12.11 gives an example of different transitions. A transition is identified
by an 1d and an optional name attribute. The From and the To attributes capture the

300 MENDLING, zur MUEHLEN, AND PRICE

<Transitions>
<Transition Id="1" From="Actl" To="Act2">
<Condition Type="CONDITION">salary > 1000</Condition>
</Transition>
<Transition Id="2" From="Actl" To="Act3">
<Condition Type="OTHERWISE"/>
</Transition>
<Transition Id="3" From="Actl" To="Act4d">
<Condition Type="EXCEPTION">Expl-Exception</Condition>
</Transition>
<Transition Id="4" From="Actl" To="Act5">
<Condition Type="DEFAULTEXCEPTION"/>
</Transition>
</Transitions>

Figure 12.11 Portion of the XPDL meta-model relevant to transitions.

identifiers of the source activity and the target activity. Each transition contains a
Condition element, which may contain multiple Xpression elements. Such ex-
pressions can refer to data fields; they are stated in the scripting language defined
for the package in the script element (i.e., XPath in the new employee use case). A
condition may be of four different types (see Figure 12.11). Type CONDITION in-
dicates that the transition is executed if the condition is true. Type OTHERWISE
defines the transition that is executed when no other conditions are met. Type EX-
CEPTION defines a transition that is executed in the case when an exception condi-
tion is met. Type DEFAULTEXCEPTION specifies the transition that is executed
if an exception occurs but no exception condition is met.

Beyond transition conditions, there can be TransitionRestrictions attached
to activities that influence control flow. The Join element of a transition restriction
defines which multiple incoming transitions are synchronized (AND) and which are
not synchronized (XOR). The split element specifies which outgoing transitions
are executed. AND denotes that the transitions mentioned in the TransitionRefs
list are executed in parallel, as long as there is no transition condition associated with
the transition that evaluates to false. XOR defines alternative execution paths de-
pending on the conditions of the transitions listed in the TransitionRefs element.

12.4.3 XPDL in Practice

12.4.3.1 Example implementation—The Open Business Engine. The
Open Business Engine is an open source workflow project hosted at SourceForge.6
OBE is a flexible, modular, standards-compliant Java workflow engine. It is fully
J2EE compliant and supports several J2EE application servers, operating systems,
and databases. It implements five of the WfMC standards and offers a variety of ex-
tensions and enhancements. OBE is equally well suited to embedded or standalone

%http://sourceforge.net/projects/obe

STANDARDS FOR WORKFLOW DEFINITION AND EXECUTION 301

deployment. OBE is configurable and extensible, and many aspects can be cus-
tomized. The run-time engine relies upon pluggable services to provide authentica-
tion, authorization, persistence, task assignment, inbound event handling, and out-
bound integration capabilities. OBE provides a comprehensive workflow life-cycle
event notification framework to support deep integration with workflow-enabled
applications. OBE supports automated, manual, and mixed workflow processes,
and has extensible work item allocation and activity completion algorithms. Activi-
ties are automated through an extensible system of tool agents, which enable the in-
vocation of external logic defined in Java classes, EJBs, native executables, scripts
in arbitrary scripting languages, Web services, and so on. Human interactions are
managed through work items, which can be manual or can provide the means to in-
voke the appropriate software tools. OBE provides a worklist API and worklist
clients to manage work items. OBE supports the following WfMC standards:

® Interface 1—XPDL, the XML Process Definition Language
® Interface 2/3—WAPI, the Workflow and Tool Agent APIs
¢ Interface 4—W{-XML, Workflow Interoperability’

® [nterface 5—Audit Audit Data Specification

The OBE project was originated by Anthony Eden. In late 2002, OBE was
adopted and, over a period of two years, substantially rewritten by Adrian Price,
then of Zaplet, Inc., a Californian software company specializing in collaborative
business process management. OBE has been embedded in several commercial ap-
plications including Zaplet’s own, which is in use in a variety of industries and U.S.
government departments, including the CIA and the Terrorist Threat Information
Center. The OBE implementation has revealed several weaknesses and ambiguities
of XPDL that are described in the following subsection.

12.4.3.2 XPDL Weaknesses and Ambiguities. The XPDL 1.0 Final Draft
Specification [29] and its associated XML Schema and Sample Workflow Process
contain a number of ambiguities and contradictions of which it is important to be
aware. These issues exemplify the pitfalls of defining a formal specification without
ratifying it through a reference implementation. We discuss them here and, where ap-
propriate, provide guidance for minimizing their impact on the semantic portability
of processes expressed in XPDL. The issues fall into four categories: missing de-
faults, undefined semantics, schema errors and ambiguities, and schema omissions
and inconsistencies. In the following, we provide some examples of these issues.?

® Missing Defaults: These are cases where the XPDL XML schema defines an
element or attribute as optional but does not specify the default value. For
clarity and portability, it is advisable for XPDL instance documents to specify

7At the time of writing (September 2004), OBE’s W{-XML support is still under development.
8The reader is referred to http://www.openbusinessengine.org/wiki/Wiki.jsp?page=XPDLIssues for a
full list.

302

MENDLING, zur MUEHLEN, AND PRICE

explicit values for such attributes. An example of this is the AccessLevel at-
tribute of the WorkflowProcess element. Here, you should specify an ex-
plicit value of PUBLIC or PRIVATE. Another example is the Execution at-
tribute of the SubFlow element where also an explicit value of SYNCHR or
ASYNCHR should be specified.

Undefined Semantics: These are cases in which neither the specification nor
the schema provide a clear and unambiguous definition of semantics. The
Xpression element is such an example. The schema permits multiple
Xpression elements within a Condition element of a transition, but the
specification does not define the behavior when more than one Xpression
occurs. For semantic portability, avoid using multiple Xxpression elements.
Another example is the TransitionRestriction element. The schema
permits multiple occurrences of a TransitionRestriction element with-
in a single activity. Each TransitionRestriction can contain a Split, a
Join, or both, but the specification does not define the semantics if more than
one split or join is present. To avoid confusion, do not specify more than one
split and one join per activity.

® Schema Errors and Ambiguities: These are cases in which the schema and the

specification reference undefined items, or where the definition is weak or
ambiguous. Consider the Limit element. The schema incorrectly defines the
Limit element as type xsd:string, whereas, in fact, it is required by the
specification to follow the pattern defined for buration (i.e., an integer fol-
lowed by an optional duration unit Y, M, D, h, m, or s). Furthermore, the
schema defines the Created element to be xsd: string; it is actually a date
type but lacking a format definition and, therefore, ambiguous. To ensure
portability, do not rely upon the Created element. To use it, be aware of
your engine’s supported date formats.

® Schema Omissions and Inconsistencies: These are cases in which the schema

uses XML schema ineffectively or inconsistently. The Identifier Length is an
example of this case. Unlike WPDL, XPDL does not enforce maximum
lengths for any of the identifying strings, but the corresponding identifiers in
WIMC Interfaces 2/3 (Workflow/ToolAgent APIs) do. To avoid buffer over-
run problems in systems that support WfMC Interfaces 1, 2, and 3, ensure that
XPDL identifiers do not exceed 64 characters in length. Moreover, references
are used inefficiently. Many elements cross-reference each other, but the
schema does not model these relationships using XML schema’s keyref fea-
ture, nor does it enforce key value uniqueness with the key feature.

12.5 PROCESS INVOCATION USING WF-XML

12.5.1 Purpose of Wf-XML

The initial mandate of the WfMC was to create interoperability between workflow
engines of different vendors. Wf-XML is the most recent specification for work-

STANDARDS FOR WORKFLOW DEFINITION AND EXECUTION 303

flow interoperability, and its functionality extends beyond the coupling of work-
flow engines to the remote invocation of a process service by other clients (not nec-
essarily workflow engines). Wf-XML aims to facilitate the remote invocation and
manipulation of processes through a lightweight interface that is modeled after the
principles of the Hypertext Transfer Protocol. Version 1.1 of Wf-XML relied on a
proprietary message format that did not support Web Services [28] but Version 2.0
[20] introduces support for the Simple Object Access Protocol (SOAP) and builds
on the Asynchronous Service Access Protocol (ASAP) [21], which is a domain-
neutral protocol for the control and monitoring of long-running services. Since
ASAP is being standardized within OASIS, but by the same people responsible for
WE-XML, Wf-XML 2.0 can be seen as a specific implementation of ASAP for pur-
poses of workflow management. The following section illustrates Wf-XML Ver-
sion 2.0.

12.5.2 An Introduction to Wf-XML

The history of Wf-XML goes back to the Simple Workflow Access Protocol
(SWAP). This protocol was devised by WIMC members in 1998 as a lightweight
alternative to the more complex MIME Interface 4 specification and the OMG
Workflow Facility. Although SWAP never became an official standard, its authors
pursued the underlying principles in the WfMC Technical Committee, which re-
leased the Wf-XML 1.0 specification in 2000 and a revised Version 1.1 in October
2001. In parallel with the development of Wf-XML, SWAP was modified to be ap-
plicable to generic long-running services (beyond the workflow domain) and a
working group at OASIS was founded to standardize the Asynchronous Service
Access Protocol [32]. Wf-XML, like ASAP, describes an interface to an asynchro-
nous process that is based on the architectural principles of Representational State
Transfer (REST), a guiding principle for Web applications developed by Roy Field-
ing [7]. The fundamental concept at the heart of REST is that a client can navigate a
service using the standard HTTP commands GET, PUT, POST, and DELETE, without
much context information about the service offered. In other words, a client needs
the initial address of the service, and can obtain additional interaction possibilities
by requesting via GET a copy of the service description. This copy may contain
pointers to other services or commands that the client is allowed to use. In essence,
a client does not need to know much about the service operations, because these op-
erations are exposed as the interaction between the client and the service progress-
es. This loose coupling of client and server forms a contrast to the tight coupling of
process partners in approaches such as BPEL4WS, and is one of the distinguishing
features of Wf-XML.

ASAP and Wf-XML extend the basic HTTP operations with commands that are
more specific to the world of workflows and Web services.? In the context of work-
flow, the main service is a process factory, which can spawn process instances upon

9Some REST purists argue that ASAP and Wf-XML violate the purity criteria of the original REST prin-
ciples, whereas the authors of the specification maintain that this is an acceptable compromise.

304 MENDLING, zur MUEHLEN, AND PRICE

request. Note that a process factory is distinct from a workflow management sys-
tem. A workflow management system can in fact host many process factories, one
for each process model that the workflow management system implements. A
process factory represents an asynchronous service. An operation of this asynchro-
nous service is started by a request, and the result is later communicated to the
client in a separate request. As a service may operate from a few minutes up to a
few months, an asynchronous way of interaction is required. ASAP defines opera-
tions to monitor, control, and receive notifications about the state of a service.
ASAP distinguishes different types of resources. In essence, a resource is a service
identified by a URI. In ASAP, a Factory resource creates instances of an asynchro-
nous service, and an Instance resource executes the work. Clients may specify an
Observer resource, which is able to receive notifications from the instance. Usually,
the Observer matches the client that has requested an Instance from the Factory, but
a client can also designate other parties as Observers. Wf-XML extends the basic
ASAP resource model specifically for the interaction of workflow engines.

In W-XML, there are five resource types: The Service Registry, the Factory, the
Instance, the Activity, and the Observer. Well-defined service interfaces permit in-
teraction with these resources and their properties. A property represents an at-
tribute that captures relevant data of a resource. A method is defined by two corre-
lated SOAP messages—a request from the client and a response from the server.
The request message includes context data. This is XML data that represents the pa-
rameters of a method. The response message returns result data to the client, that is,
XML data created by the successful completion of a method. Beyond these con-
cepts, Wf-XML defines fault messages and a list of error codes. Figure 12.12 gives
an overview of Wf-XML services and methods.

12.5.2.1 Service Registry. The Service Registry serves as a directory of avail-
able processes and allows an administrator to add and remove process definitions to
and from the server. It is an extension of Wf-XML and not included in ASAP. Each
process definition listed in the registry is represented by a distinct process factory.
The Service Registry has the properties Key, referring to the URI of the registry,
Name to carry the name of the registry, a Description that is human readable, Ver-
sion of the registry, and Status. It offers six access methods. Four of them are dedi-
cated to the search, discovery, and creation of process definitions: ListDefinition,
GetDefinition, SetDefinition, and NewDefinition. Furthermore, the methods Get-
Properties and SetProperties allow administrators to query and manipulate the
properties of a process definition.

Consider, for example, the GetDefinition method illustrated in Figure 12.13. It is
initiated by a client who sends a SOAP message to the Service Registry containing
a GetDefinition.Reqguest element in the message body. In addition, a
ProcessLanguage can be defined. All Wf-XML-compliant implementations have
to support XPDL as a process definition language, and additional process definition
languages may be supported in the future. The Service Registry will then return a
SOAP message containing a GetDefinition.Response element in the message
body. This way, the client receives the Wf-XML profile of the requested process

STANDARDS FOR WORKFLOW DEFINITION AND EXECUTION 305

Wif-XML Asynchronous
ListDefinitions GetProperties Web Service
GetDefinitions SetProperties
SetDefinitions

NewDefinition

Service Registry

Manages
Listinstances GetProperties |
Createlnstance SetProperties
P =| Factory
GetProperties ListActivites
SetProperties |
Subscribe ChangeState
Observer Unsubscribe Terminate Creates

J* v
g Instance

StateChanged

GetProperties |
Creates
Activity

GetProperties

SetProperties

CompleteActivity

Figure 12.12 Service model of Wf-XML 2.0.

definition (i.e., the address of the process factory and, possibly, context data that is
required to create a process instance) and the XML representation of the requested
process definition.

12.5.2.2 Factory. The Factory is a dedicated handler for one specific process de-
finition and is an ASAP-compliant service. The Factory provides methods to create
new process instances and to search for existing instances. Searching for process in-
stances is an important service because, if the URI of a process instance is lost due to
a communication error, the client can query the factory to retrieve the missing ad-
dress. Key identifies the resource via a URIL. Name provides a human-readable iden-
tifier. Subject briefly describes the purpose of the process. Description offers a long
description of the process represented by the Factory. ContextDataSchema and

'soessow YOS PoIE[l PUB POYISIA UONIULR(IRD) €1°TT NS

<odoTaAUud : AUD />
<Apog:aus/>
<9su0dsoy ' UOTITUTIDAISD :XIM/>
<obeyoed: Tpdx/>

<obeyoed: Tpdx>
<9suodsoyY UOTITUTIOAIOD I XIM>
<Apog:aus>
<IDPESH:AUD />

<JISpeoH: AUSD>
<odoTaAUd : AUD>
<iTux-opnasde>

9suodsay *UOTITUTFSAIDD

Ansibay aoinias

uald

<2doT2AUd I AUD />
<Apog:aus />
<3sonbey UOT3TUTISAISD 1 XIM/>
<obenbueIssoD0Id i XIM/>
Tadx<obenbuerIssonord i XJm>
<3s9NbaY UOTITUT ISAISD : XIM>
<Apogd :Aus>
<ISpESH:AUSD />

<ISpPESH:AUD>
<odoTaAUd : AUD>
<iTux-opnasde>

3seonbey UOT3TUTFSAIOD

306

STANDARDS FOR WORKFLOW DEFINITION AND EXECUTION 307

ResultDataSchema are XML Schema representations of the data required to instanti-
ate a process and the data that will be returned by the process instance after comple-
tion. Finally, Expiration defines a minimum period of time the service will be avail-
able. There are four methods offered by Factories: GetProperties to retrieve process
properties, Createlnstance to create a process instance using the context data provid-
ed in the method request, and List/nstances to retrieve all process instances created
by this factory. In addition, SetProperties can be used to manipulate the attributes of
the Factory.

12.5.2.3 Instance. The Instance is a Web service that represents a process in-
stance that performs the requested work. It is defined by ASAP and included in Wf-
XML. In the context of Wf-XML, Instances are also called process instances. The
methods of this interface permit the monitoring and control of a process instance.
Each Instance has the following properties. Key identifies the resource via a URI.
State contains the current state of the process instance (e.g., open.running or
closed.completed). Name provides a human readable identifier. Subject offers a
short description of the process instance, whereas Description contains a long de-
scription. Furthermore, a list of ValidStates is provided, so a client can determine
which states a process instance can transition to. For instance, if the list of ValidStates
contains closed.cancelled, a client could stop the instance by sending a state
change request. The FactoryKey provides a reference to the URI of the instance’s
factory. Observer contains URIs that have been registered as observers. ContextData
and ResultData define data that an instance expects for initialization, which it returns
after completion using XML Schemas. Furthermore, a Priority can be specified.
Modifications and history are stored in LastModified and History, respectively.
Moreover, Instance offers the ASAP methods GetProperties, SetProperties,
Terminate, Subscribe, and Unsubscribe, and a Wf-XML-specific ListActivities.

12.5.2.4 Activity. The Activity resource represents a single step in a complex
process instance. This resource is a Wf-XML extension of ASAP. It represents a
situation in which a process waits for external input. This may be the case when a
manual activity is performed by a human user, or if an external service is invoked
and needs to complete before the process can continue. An activity has the proper-
ties Key holding a URI of the activity, State to capture its current status, Name to
store a human-readable identifier, a text Description, ValidStates to hold a list of
permitted state transitions, /nstanceKey to refer to the URI of the process instance,
Remotelnstance to store the URI of the service the activity is waiting for, the
StartedDate of the activity, a DueDate when it is expected to complete, and Last-
Modlfied to represent the date of last modification. Beyond that, it offers the meth-
ods GetProperties and SetProperties for management of properties, and a Com-
pleteActivity to be invoked by the performer to signal the completion of the activity.

12.5.2.5 Observer. The Observer is a resource that can receive events about
state changes of an activity or a process instance. Wf-XML uses the Observer as de-
fined by ASAP. It has the property Key to capture the URI that identifies it. This

308 MENDLING, zur MUEHLEN, AND PRICE

URI may be different from the URI of the client that has requested the process in-
stance. The Observer offers the methods GetProperties, similar to that of the other
services, and Completed and StateChanged to notify the Observer that the requested
process instance has completed or has changed state, respectively.

12.5.3 Wf-XML in Practice

W{-XML represents a lightweight protocol for the discovery and invocation of
processes that are provided by a remote workflow engine. By standardizing the op-
erations that can be invoked on a remote process, it is suitable for the interaction
with virtually any processes that an organization might wish to expose, because
clients can discover the interaction options available to them as they go along. In
contrast, invoking a BPEL4WS process requires the designer of the client applica-
tion to know exactly the operations that are to be performed on the remote process.
This difference is best illustrated by an example. In an insurance claim scenario, a
customer might want to create an instance of a damage claim process, schedule a
meeting with an appraiser, and be notified about the outcome of the assessment. In
a typical Web services implementation, the insurance would expose interfaces that
reflect the insurance-specific operations that can be invoked, for example, cre-
ateDamageClaim, scheduleAppraiser, and queryDamageClaimStatus. These inter-
faces have fixed locations for all instances of the damage claim process, and the ref-
erence to any particular instance will be given in the body of a SOAP message that
is sent to either of these interfaces. In Wf-XML, the damage claim process is repre-
sented by a Factory, which in turn would be stored in the Service Directory of the
insurer. A client would query the Service Directory for the definition of the Dam-
ageClaim factory. Using the context data definition received and the URI of the fac-
tory, the client then requests a new instance of the DamageClaim process, of which
the Factory returns the URI to the client. By querying the instance, the client can
monitor the status of the damage claim and is notified when it is time to schedule
the appraisal (including the URI of the activity that waits for the user input).

Both approaches have advantages and disadvantages. Although Wf-XML re-
quires minimum a priori knowledge about the remote process to be invoked, it relies
on more complex document types for data exchange between client and server, and
the interaction is difficult to test and debug. Links might get lost at run time and need
to be retrieved through the factory. Approaches such as BPEL4WS rely on a tight
coupling of client and server, which is easier to test and debug. However, clients need
to know exactly which operations a specific process supports, and what the seman-
tics of these operations are. Each approach has its respective place, and it would not
be surprising if ASAP/Wf-XML and BPEL4WS coexisted peacefully in the future.

12.6 TRENDS

Technology standardization moves from more elementary technology layers, such
as networking protocols and data-encoding formats, to higher-level areas such as

STANDARDS FOR WORKFLOW DEFINITION AND EXECUTION 309

messaging patterns and process descriptions. Over the last 10 years, we can observe
that standardization has moved up from the lower layers of the technology stack
(see Figure 12.14).

In 1994, it was common to have multiple alternatives for the encoding, packag-
ing, transportation, and presentation of data, but today these differences have been
widely eliminated through the proliferation of XML, HTTP, and HTML. Current
standardization efforts deal with the representation of functional invocation
(WSDL), the publication of services (UDDI), and essential service properties such
as security and reliability. Although there is consensus in many of these areas, the
standardization of process modeling languages, interoperability patterns, and man-
agement interfaces is less clear. Half a dozen standardization groups compete with-
in this area for the best solution, and although battles about technical merits and
economic benefits are being waged, the dominant winner in the marketplace has yet
to be determined.

One of the problematic aspects of PAIS standardization is the lack of agree-
ment on how PAIS standards fit into a larger architectural schema, such as the
WIMC reference model. In the course of the Web services movement, individual

r - Y N
1994 2004
BPM Layer BPM Layer /\
many choices many choices
Presentation Format Presentation Format
many forms
technologies HTML
Message Format Message Format -
IIOP, many £
structures SOAP 9
3
Data Format Data Format g
©
CSV, text, binary XML 0
Packet Layer Packet Layer
TCP, Novell TCP, HTTP
Network Network
Ethernet, Token Eth
Ring thernet
. VRN L - J

Figure 12.14 Standards evolution [22].

310 MENDLING, zur MUEHLEN, AND PRICE

functions that were covered in the WAPI specification have been separated and
replaced by more specialized specifications. Figure 12.15 shows a classification
of current standardization efforts according to their system coverage (compare

(31D

PAIS-related standards can be grouped into standards that describe the inner
workings of a PAIS development tool and standards that describe the externally ob-
servable behavior. The former standards describe process modeling capabilities and

Process Definition (Internal

Process Patterns

Workflow Patterns

Design Patterns

UML

Process Definition
Language

XPDL

Process Execution
Language

BPEL4WS

Process Definition (External)

B2B Patterns

RosettaNet

PIP HL7

OAGIS HIPAA

Notation

BPMN

Interaction Definition

BPSS | CPA/CPP

Choreography Definition
Language

WS-CDL

End Point Definition

WSDL

Encoding
SOAP

Data Format

XML

Process Execution (External)

Repository & Discovery
UDDI/DISCO

Runtime B2B Interaction
WH-XML

ASAP

Context and Transaction

WS-CAF

Reliable Messaging

ebXML-
AM WS-RM

Transport Layer

HTTP | JMS

Process Execution (Internal)

Process State Notation

WEMC Process and
Activity Models

Audit Format

WIMC IF5

Runtime Interaction Syntax

BPQL

Runtime Interaction Functions

WMC WAPI

Figure 12.15 Web Services Standards Stack.

STANDARDS FOR WORKFLOW DEFINITION AND EXECUTION 311

patterns; the latter messaging formats and communication protocols. The two
columns on the left in Figure 12.15 cover the specification of processes, both the
process parts internal to a PAIS, and the publicly visible parts of processes. The two
columns on the right contain standards that affect the run-time behavior of PAISs.
From the bottom up, the standards start with the most elementary building blocks of
modern information system architectures, such as XML for the formatting of data,
SOAP for the encoding of messages, and WSDL for the definition of service end-
points. In the top-left corner are patterns that can serve as high-level control flow
templates for the construction of processes. For the internal specification of
processes, the MIT process handbook [12] and the workflow patterns described in
Chapter 8 serve as high-level templates. For the specification of interorganizational
processes, domain-specific standards such as RosettaNet provide process frag-
ments.

Besides the standards defined by software vendors, a number of standardization
initiatives exist that provide process choreography as part of their overall standards
framework, but are not necessarily focused on choreography. Examples for these
initiatives are eb XML, ACORDE, OAGIS, HIPAA, RosettaNet, SWIFT, and HL7.
These groups are typically led by users of the standards, joined in industry coali-
tions. The integration of the process content of these domain-specific standards
with the generic process description standards developed by the likes of OASIS,
W3C, and WIMC remains a field for further study.

12.7 EXERCISES

Exercise 1. Workflow Glossary

Look at the WIMC Glossary document [27] that is available on the Web site of the
Workflow Management Coalition (http://www.wfmc.org). Give the synonyms
mentioned in the glossary for the terms included in Figure 12.1 and give examples
of your own to illustrate these terms.

Exercise 2. WIMC Reference Model

Describe the five interfaces of the WfMC Reference Model [8]. Consider which in-
terfaces are relevant for communication from outside systems, and which interfaces
are relevant for the communication fo outside systems. For system-to-system com-
munication, when would you use Interface 3, and when Interface 4?

Exercise 3. XPDL—Download Software
For the following exercises you will require an XPDL editor and an XPDL work-
flow engine. We recommend the following:

e XPDL Editor: JaWE (Java Workflow Editor), download from http://jawe.en-
hydra.org/

® XPDL Engine: OBE (Open Business Engine), download from http://source-
forge.net/projects/obe

312 MENDLING, zur MUEHLEN, AND PRICE

Note that OBE can run stand-alone or under a J2EE application server such as
JBoss. The following exercises can be run in stand-alone mode, apart from those
that require access to Web services.

Exercise 4. XPDL—New Employee Exercise

Use Case. Reconsider the new employee use case from Section 12.4.2.2. The XYZ
organization requires a workflow process for hiring a new employee. The work-
flow’s invocation signature should consist of a single XML document containing
the employee details (see below for the schema). When a new employee is due to
join the company, the following actions must be taken by staff in the appropriate
departments:

® HR Department:
Prepare office accommodation, ordering items from a checklist where nec-
essary.
Issue preinduction information pack containing company policy documents.
Book a place on the next scheduled induction course.
® IT Department:
Procure and configure a computer for the employee.
Allocate network user ID and temporary password, createNetworkUser
(IN STRING userName, IN STRING department, OUT STRING
userID)
Set up an email account, createEMailAccount (IN STRING user-
Name, IN STRING userID, IN STRING department)
Assign an extension number and enter the employee into the corporate tele-
phone directory.
Grant access rights to the appropriate corporate resources.
® Finance Department:
Enter personnel details into salary system.

Interfaces

® Input is a string containing an XML document that conforms to the following
schema:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema
targetNamespace="http://www.xyz.com/2004/Personnel /NewHire”
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema”
xmlns:xyz="http://www.xyz.com/2004/Personnel /NewHire"”
elementFormDefault="qualified”
attributeFormDefault="unqualified”>
<xsd:element name="new-employee”>

<xsd:complexType>

STANDARDS FOR WORKFLOW DEFINITION AND EXECUTION 313

<xsd:attribute name="name” type="xsd:string”

use="required” />

<xsd:attribute name="department” type="xsd:string”

use="required” />
<xsd:simpleType>

<xsd:restriction base="xsd:string”>

<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:schema>

® The following procedures will be needed:

value="ENGINEERING” />
value="FINANCE” />
value="HR" />
value="IT"/>
value="MARKETING” />
value="SALES” />
value="SUPPORT" />

createNetworkUser (IN STRING userName, IN STRING depart-

ment, OUT STRING userID)

createEMailAccount (IN STRING userName, IN STRING userID,

IN STRING department)

Hints

® Perform these activities as concurrently as possible, given the logical depen-
dencies between the various tasks (for example, the IT department cannot fin-
ish configuring the computer until the network user ID and e-mail addresses

have been assigned).

® To hold the workflow’s XML input document, define a FormalParameter
containing an ExternalReference with an href of “new-hire.xsd.”

® Use Xpath!? to extract required values from the input document.

Exercise 5. XPDL—Document Approval Chain Exercise

Use Case. The ABC Corporation regularly receives RFQs (requests for quotation)
for custom work from prospective clients. A salesperson is assigned to analyze the
client’s requirements and prepare a quotation document. Before the tender docu-
ment is submitted, a chain of approvals at various levels within the company is re-
quired. The following groups or persons are required to approve the document, in

this order:

1Ohttp://www.w3.0rg/TR/1999/REC-xpath-19991116

314 MENDLING, zur MUEHLEN, AND PRICE

Peer reviewers

The Vice President of Sales

The Director of Communications
The Chief Executive Officer

Each approver can either reject or approve the document, citing a reason. They
each have three working days in which to approve the document. If they have not
done so by then, the workflow system automatically routes the document to the next
approver. If the document is rejected, the workflow system reroutes it to the previ-
ous person in the chain.

Whenever such a proposal document is created, the electronic document man-
agement system automatically initiates a workflow process, passing on the HTTP
URL of the new document and the user ID of the creator. The participants of the
document approval process use the corporate standard office software to view and
edit the document via WEBDAV.!! The workflow management system is config-
ured with a tool agent to launch the office software.

Interfaces. The tool agent’s invocation interface is: start (IN STRING docUri).
Hints

® Model the peer review stage by assigning the activity to a group of individu-
als named “Sales.” This will create a work item (an assigned activity in-
stance) for each member of the group. Assume that the peer review activity
will automatically complete once all the work items are complete (or the ac-
tivity times out or is manually marked complete).

® The tool agent relies upon the operating system’s built-in shell file associa-
tions to launch the appropriate application for the document type in question.

® Use a synchronous deadline to implement the three-day time-out periods.

® Check out OBE’s pluggable work item assignment strategy, activity comple-
tion strategy, and business calendar facilities.

Question: What happens if the time-out period spans a weekend or holiday?

Exercise 6. Wf-XML—New Employee Exercise

Look again at the XML Schema of Exercise 12.7.4. Download an XML editor of
your choice and write a SOAP message that is sent to a workflow factory to instan-
tiate a new process. What kind of method has to be used and what kind of message?
How is the XML Schema of Exercise 12.7.4 related to the message and to the prop-
erties of the workflow factory? Look at the specification of Wf-XML [20] to make
sure you use the correct XML name spaces.

'WebDAV: Web-based Distributed Authoring and Versioning, an HTTP extension protocol supported
by word processors.

STANDARDS FOR WORKFLOW DEFINITION AND EXECUTION 315

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

W. M. P. van der Aalst. Patterns and XPDL: A Critical Evaluation of the XML Process
Definition Language. QUT Technical report, FIT-TR-2003-06, Queensland University
of Technology, Brisbane, 2003.

. W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.

Workflow Patterns, Distributed and Parallel Databases, 14(1):5-51, 2003.

. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D.

Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process Execu-
tion Language for Web Services, Version 1.1. OASIS, Needham, MA, 2003.

. A. Arkin. Business Process Modeling Language (BPML) Business Process Management

Initiative, Alameda, CA, 2002.

. A. Arkin, S. Askary, S. Fordin,W. Jekeli, K. Kawaguchi, D. Orchard, S. Pogliani, K.

Riemer, S. Struble, P. Takacsi-Nagy, 1. Trickovic, and S. Zimek. Web Services Choreog-
raphy Interface (WSCI) 1.0. W3C Note 2002-08-08, 2002.

. J. Dehnert. Making EPCs fit for Workflow Management. In M. Niittgens and F.J. Rump

(Eds.). Proceedings of the Ist GI Workshop EPK 2002, pp. 51-69, Gesellschaft fiir Infor-
matik, Bonn, 2002.

. R. T. Fielding. Architectural Styles and the Design of Network-based Software Architec-

tures. Doctoral Dissertation. Department of Computer Science, University of California,
Irvine, CA, 2000.

. D. Hollingsworth. The Workflow Reference Model, Document Number TC00-1003,

Document Status—Issue 1.1, 19-Jan-95, Workflow Management Coalition, 1995.

. D. Hollingsworth. The Workflow Reference Model: 10 Years On. In L. Fischer (Ed.),

Workflow Handbook 2004, Chapter 20, pp. 295-312, Workflow Management Coalition,
2004.

E. Kindler. On the semantics of EPCs: A framework for resolving the vicious circle. In J.
Desel, B. Pernici, and M. Weske (Eds.), Business Process Management: Second Interna-
tional Conference, BPM 2004, Volume 3080 of LNCS, pp. 82-97, Springer-Verlag,
Berlin, 2004.

F. Leymann and D. Roller. Production Workflow—Concepts and Techniques. Prentice-
Hall, Upper Saddle River, NJ, 2000.

T.W. Malone, W. Crowston, J. Lee, and B. Pentland,” Tools for Inventing Organiza-
tions: Toward a Handbook for Organizational Processes, Management Science,
45(3):425-443, 1999.

J. Mendling, G. Neumann, and M.Niittgens. A Comparison of XML Interchange For-
mats for Business Process Modelling. In F. Feltz, A. Oberweis, B. Otjacques (Eds.). Pro-
ceedings of the GI Workshop EMISA 2004, Volume 56 of LNI, pp. 129-140, Gesellschaft
fiir Informatik, Bonn, 2004.

J. Mendling and M. Niittgens. Exchanging EPC Business Process Models with EPML.
In M. Niittgens and J. Mendling (Eds.). Proceedings of the 1st GI Workshop XML4BPM,
pp. 61-79, Gesellschaft fiir Informatik, Bonn, 2004.

Object Management Group. Workflow Management Facility Request for Proposals. RFP
Document Number ¢f/97-05-03, OMG, Framingham, MA, May 7th 1997.

Object Management Group. Commercial Considerations in OMG Technology adoption.
Document Number omg/98-03-01, OMG, Framingham, MA, 1998.

316 MENDLING, zur MUEHLEN, AND PRICE

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Object Management Group. Workflow Management Facility Specification Version 1.2.
Document Number bom/00-05-02, OMG, Framingham, MA, 2000.

K. B. Sall. XML Family of Specifications: A Practical Guide, Addison-Wesley, Reading,
MA, 2002.

W. Schulze, M. Béhm, and K. Meyer-Wegener. Services of Workflow Objects and
Workflow Meta-Objects in OMG-compliant Environments. In Proceedings of the 1996
OOPSLA Workshop on Business Object Design and Implementation, San Jose, CA,
1996. http://jeffsutherland.com/oopsla96/schulze.html.

K. D. Swenson, M. D. Gilger, and S. Predhan. Wf~-XML 2.0 XML Based Protocol for
Run-Time Integration of Process Engines, Draft 2003.10.03,Workflow Management
Coalition, 2004.

K. D. Swenson and M. Silverstein. Asynchronous Service Access Protocol (ASAP),
Working draft 01, 09 September 2003, OASIS, 2003.

K. D. Swenson. Process Management Standards Overview. Presented at the AIIM Con-
ference, New York, April 2004.

UN/CEFACT and OASIS. ebXML Business Process Specification Schema. Version
1.01. 11 May 2001.

M. Weber and E. Kindler. The Petri Net Markup Language. In H. Ehrig, W. Reisig, G.
Rozenberg, and H. Weber (Eds.), Petri Net Technology for Communication-Based Sys-
tems—Advances in Petri Nets, Volume 2472 of LNCS, pp. 124-144, Springer-Verlag,
Berlin, 2003.

S. White. Business Process Modeling Notation (BPMN) Version 1.0. May 3, 2004,
BPMl.org, San Mateo, CA, 2004.

Workflow Management Coalition. Interface 1: Process Definition Interchange Process
Model. Document Number WfMC TC-1016-P, Document Status—Version 1.1 (Official
release). Issued October 29, 1999, Workflow Management Coalition, 1999.

Workflow Management Coalition. Terminology & Glossary, Document Number
WIMC-TC-1011, Document Status—Issue 3.0, Feb 99, Workflow Management Coali-
tion, 1999.

Workflow Management Coalition. Workflow Management Coalition Workflow Stan-
dard—Interoperability Wf-XML Binding. Document Number WfMC-TC-1023, 14-No-
vember-2001, Version 1.1,Workflow Management Coalition, 2001.

Workflow Management Coalition. Workflow Process Definition Interface—XML
Process Definition Language. Document NumberWfMC-TC-1025, October 25, 2002,
Version 1.0, Workflow Management Coalition, 2002.

Workflow Management Coalition. Audit Data Specification. Version 2. Document Num-
ber WEMC-TC-1015. Workflow Management Coalition, Winchester 1999.

M. zur Muehlen. Workflow-based Process Controlling. Foundation, Design, and Appli-
cation of Workflow-driven Process Information Systems. Logos, Berlin 2004.

M. zur Muehlen, J. V. Nickerson, K. D. Swenson. Developing Web Services Choreogra-
phy Standards—The Case of REST vs. SOAP. Decision Support Systems, 40(1):9-29,
2005.

I CHAPTER 13

The Business Process Execution
Language for Web Services

RANIA KHALAF, NIRMAL MUKHI, FRANCISCO CURBERA,
and SANJIVA WEERAWARANA

13.1 INTRODUCTION TO WEB SERVICES

The Web services paradigm [2, 5, 7] has emerged as a response to the shift in the IT
landscape away from isolated, tightly coupled, controlled systems to a highly dis-
tributed, heterogeneous environment. Web services are based on an extensible,
modular set of open XML specifications, enabling different providers to offer soft-
ware applications as services deployed on the Internet and intranets so that they
may be described, accessed, and composed in a loosely coupled manner.

Three Web services specifications initially set the stage: SOAP, WSDL, and
UDDI. SOAP provides a standardized XML messaging protocol for interacting
with services in a standardized manner, regardless of their internal implementa-
tions; WSDL provides a standardized way to describe the functionality provided
by a Web service and how and where it may be accessed; and UDDI provides a
global registry and defines how to publish, categorize and search for Web ser-
vices. From there, the Web services stack has expanded to include specifications
for defining quality of service policies, addressing schemes, and composition ca-
pabilities.

The composition of Web services may be carried out using BPEL4WS, the Busi-
ness Process Execution Language for Web Services [3], or BPEL for short. In this
chapter, we will illustrate the main concepts of the BPEL language and the usage of
its constructs to define business processes.

To aid in this task, we will use the example of a business process that models
pension disbursement and delivery in a corporation. Each different section will
present outtakes from this process to illustrate the particular concept(s) it is ad-
dressing. At a high level, this business process is controlled by the human re-
sources department of the company. The process calculates pension payments,
manages the funds to be transferred, and arranges for delivery of the correct
amount to the eventual recipient. In order to do so, the process also interacts with

Process-Aware Information Systems. Edited by Dumas, van der Aalst, and ter Hofstede 317
Copyright © 2005 John Wiley & Sons, Inc.

318 KHALAF, MUKHI, CURBERA, AND WEERAWARANA

a bank, an employee database, and a courier service. Our aim here is not to de-
scribe a complete working business process, but to use this scenario as a backdrop
against which we can develop meaningful examples. The reader is therefore dis-
couraged from assembling the different BPEL code snippets or diagrams into a
continuous picture.

13.1.1 Background of WSDL

BPEL’s composition model makes extensive use of the Web Services Description
Language, WSDL. It is therefore necessary to provide an overview of WSDL be-
fore going into the details of BPEL itself. A WSDL description consists of two
parts: an abstract part defining the offered functionality, and a concrete part defin-
ing how and where this functionality may be accessed. By separating the abstract
from the concrete, WSDL enables an abstract component to be implemented by
multiple code artifacts and deployed using different communication protocols and
programming models.

The abstract part of a WSDL definition consists of one or more interfaces, called
portTypes in WSDL. PortTypes specify the operations provided by the service, and
their input and/or output message structures. Each message consists of a set of
parts. The types of these parts are usually defined using XML Schema [8].

The concrete part of a WSDL definition consists of three parts. It binds the port-
Type to available transport protocol and data encoding formats in a set of one or
more bindings. It provides the location of endpoints that offer the functionality
specified in a portType over an available binding in one or more ports. Finally, it
provides a collections of ports as services.

13.2 BPEL4WS

BPEL4WS is a workflow-based composition language geared toward service-ori-
ented computing and layered as part of the Web services technology stack. BPEL
composes services by defining control semantics around a set of interactions with
the services being composed. The composition is recursive; a BPEL process itself is
naturally exposed as a Web service, with incoming messages and their optional
replies mapped to calls to WSDL operations offered by the process. Offering
processes as services enables interworkflow interaction, higher levels of reuse, and
additional scalability.

Processes in BPEL are defined using only the abstract definitions of the com-
posed services, that is, the abstract part (portType/operations/messages) of their
WSDL definitions. The binding to actual physical endpoints and the mapping of
data to the representation required by these endpoints is intentionally left out of
the process definition, allowing the choice to be made at deployment time, design
time, or during execution. Added to the use of open XML specifications and stan-
dards, this enables two main goals: flexibility of integration and portability of
processes.

THE BUSINESS PROCESS EXECUTION LANGUAGE FOR WEB SERVICES 319

13.2.1 Abstract and Executable Processes

The language is designed to specify both business protocols and executable process-
es. A business protocol, called an “abstract process” in BPEL, specifies the flow of
interactions that a service may have with other services. For example, one may ac-
company a WSDL description with an abstract BPEL process to inform parties using
it in what order and in what situations the operations in the WSDL should be called
(e.g., a call to a “request for quote” operation must precede a call to a “place order”
operation). An “executable process” is similar to an abstract process, except that it
has a slightly expanded BPEL vocabulary and includes information that enables the
process to be interpreted, such as fully specifying the handling of data values, and in-
cluding interactions with private services that one does not want to expose in the
business protocol. For example, when an order is placed, the executable BPEL
process might have to invoke a number of internal applications wrapped as services
(e.g., applications related to invoicing, customer relationship management, stock
control, and logistics), but these calls should not be visible to the customer and would
be omitted from the abstract process the customer sees. In the executable variant, the
process can be seen as the implementation of a Web service.

At the time of this writing, most work in BPEL has focused on the executable
variant of the language. Additionally, compliance testing between an executable
and a corresponding abstract process is still in its early stages.

Referring back to our example, one can see how an abstract process may be
used. Assume that the banking industry has an abstract process that standardizes
payment interactions with banks as a BPEL abstract process. Then, the process for
pension disbursement could use that to model its interactions with the bank accord-
ing to the banking protocol. Any bank complying with the standardized protocol
may then be used with the pension process. On the other hand, the pension process
may expose a BPEL abstract process to the courier that consists only of the part of
the process flow that the courier is involved with.

13.2.2 The BPEL Process Model

BPEL has its roots in both graph- and calculus-based process models, giving de-
signers the flexibility to use either or both graph primitives (nodes and links) and
complex control constructs creating implicit control flow. The two process model-
ing approaches are integrated through BPEL’s exception handling mechanism, de-
tailed in [6] and presented in the subsection on fault handling below.

The composition of services results from the use of predefined interaction activ-
ities that can invoke operations on these services and handle invocations to opera-
tions exposed by the process itself. The unit of composition in BPEL is the activity.
Activities are combined through nesting in complex activities with control seman-
tics, and/or through the use of conditional links. In contrast to traditional workflow
systems in which data flow is explicitly defined using data links, BPEL gives activ-
ities read/write access to shared, scoped variables. In addition to the main forward
flow, BPEL contains fault handling and roll-back capabilities, event handling, and
lifecycle management.

320 KHALAF, MUKHI, CURBERA, AND WEERAWARANA

Partners and PartnerLinks. A process defines a set of partnerLinks that speci-
fy the functionality it offers to and needs from any party it is interacting with. A
partnerLink specifies which portType must be supported by each of the parties it
connects, and which portType it offers to each of those parties. It is an instance of a
typed connector, known as a “partnerLinkType,” which specifies a set of roles and
the portType (interface) provided by each role. To specify that a set of services are
really represented by one party, they may be grouped in a “partner” element. Note
that partnerLinkTypes are defined in the WSDL of the process, not in the BPEL it-
self.

For example, in our pension process, the process interacts with four parties: the
Human Resources department, the company’s employee database, a bank, and a
courier service. Each interaction involves one of the parties (the process or the part-
ner), exposing some function via a portType, and the other party making use of that
functionality.

Four partnerLinks are created and named HR, EmployeeDB, Bank, and Courier.
The HR department acts as a pure client invoking operations on the process’s “pen-
sionPortType.” Therefore, the HR partnerLink specifies that the process’s role is
that of the “pensionDisburser,” defined on the partnerLinkType as offering the
“pensionPortType.” The employee database and the bank are modeled as pure ser-
vices used by the process. The process invokes their “employeeDataAccessPort-
Type” and “bankPortType.” Their corresponding partnerLinks specify only the
partner’s role on each link. Finally, the courier acts as both a client and a service. It
can invoke operations on the pension process to inform it whether the delivery was
successful. In this case, we use a partnerLink whose partnerLinkType has two roles,
as sender and deliverer. The courier partnerLink then specifies that the process’s
role (myRole) is that of the “sender” and the partner’s role (partnerRole) is that of
the “deliverer.” This setup is illustrated in Figure 13.1, with only the two-sided
courier partnerLink specifically highlighted.

The XML code snippets representing the courier partnerLinkType are shown in
Figure 13.2.

Activities. Activities in BPEL have predefined behavior and are split into two
main categories: structured and primitive. Structured activities impose behavioral
and execution constraints on a set of activities contained within them, such as spec-
ifying that they must be executed in sequential or parallel order, or in a loop. At the
leaves of all structured activities are primitive activities that perform such actions as
sending/receiving messages, invoking other services, waiting, and throwing faults.
BPEL’s process definition model is not strictly hierarchical since it is possible to
define conditional control links between activities. Such links may cross the bound-
aries of most structured activities. In the following, we first discuss BPEL’s sup-
ported structured and primitive activities and then the capabilities provided by con-
trol links.

Structured Activities. BPEL defines six different structured activities: sequence,
while, switch, pick, and flow. The use of these activities and their combinations re-

THE BUSINESS PROCESS EXECUTION LANGUAGE FOR WEB SERVICES 321

/

employeeDB

Business
Process

Figure 13.1 A business process interacting with four partners.

sult in enabling BPEL to support most of the workflow patterns described in Chap-
ter 8 and in [14].

The “sequence” activity contains one or more activities that are executed se-
quentially, and completes when the final activity in the “sequence” has completed.
The “flow” specifies that its activities run in parallel, with further control dependen-

WSDL snippet:
<plnk:partnerLinkType name="courierPLT">
<plnk:role name="sender’>
<plnk:portType name="tns:senderPT"/>
</pink:role>
<plnk:role name="deliverer’>
<plnk:portType name="tns:processPT"/>
</pink:role>
</pink:partnerLinkType>

BPEL snippet:
<process ...>
<partnerLinks>

<partnerLink name="courier” partnerLinkType="ns1:courierPLT”
myRole="sender” partnerRole="deliverer’/>

Figure 13.2 The courier partnerLink.

322 KHALAF, MUKHI, CURBERA, AND WEERAWARANA

cies between them defined using conditional links. It is imperative that the source
and target of the link both belong (at arbitrary levels of nesting) inside the flow on
which the link is defined. The “while” activity may contain one child activity whose
execution is repeated until the specified Boolean condition is no longer true.

The “switch” activity contains an ordered list of one or more conditional
branches. Only the activity of the first branch whose condition is true will run.
When the selected branch completes, the “switch” activity is complete. The
“switch” activity corresponds to the “simple choice” pattern presented in Chapter
8. On the other hand, the “pick™ activity corresponds to the “deferred choice” pat-
tern. It is used to express an exclusive choice based on either an incoming mes-
sage or an alarm. Each branch, therefore, contains either a message handler
(onMessage) or an alarm handler (onAlarm) with an activity. As in “switch,” only
one branch may execute.

The “scope” activity is the unit of recovery and event and exception handling in
BPEL, and will be covered in more detail the fault handling subsection.

Primitive Activities. There are three types of interaction activities: invoke, reply,
and receive. “OnMessage” is a “receive”-like construct used either in an event han-
dler or the message-waiting part of a “pick” activity, and is treated in much the
same manner as a “receive.” Interaction activities must specify the partnerLink
through which the interaction occurs, the operation involved, the portType in the
partnerLink that is being used, and the input and/or output variables. In the case of
an invoke activity, the operation and portType that are specified are that of the ser-
vice being invoked. On the other hand, for “receive” and “reply,” the same attribut-
es refer to the operation and portType of the business process that are exposed via
that partnerLink.

Specifying which Web service operation to invoke on an “invoke” activity is the
BPEL equivalent of assigning an activity implementation to an activity in workflow
models such as [11]. An “invoke” blocks while it waits for a response if it is calling
a request-response WSDL operation. “Receive” and “reply” are two separate activ-
ities that allow message exchanges with external partners. Both specify how they
are mapped to the external view of the business process that partners use for inter-
actions with it. The interaction activities also define which variables they will read
from or write to. Later, we present BPEL snippets for our scenario that include “in-
voke” activities for the process to interact with the bank, the employee database,
and the courier service. It also includes receive and reply activities to handle re-
quests from the HR department and the courier service.

The relation of the BPEL specification to the WSDL describing the functional-
ity offered by the process comes from the receive and reply activities the process
contains. These activities specify which of the process’s externally exposed
WSDL operations they relate to. A receive/reply pair must map to a request—re-
sponse operation. In such cases, any control flow between the receive and reply is
effectively the implementation of that operation. A receive with no corresponding
reply must map to an input-only operation. Multiple receive activities referring to
the same operation may be defined at different points in the process. There are

THE BUSINESS PROCESS EXECUTION LANGUAGE FOR WEB SERVICES 323

three scenarios in which this is desirable: a partner calling the same operation
more than once, different partners calling the same operation more than once, and
two or more exclusive branches of the process that can handle a call to the oper-
ation.

Two questions arise at this point. First, how does one disambiguate which of
these receive activities may actually consume the incoming message? Second, if
there are multiple reply activities, how does one distinguish which request to reply
to? The answers lie in two restrictions. First, BPEL does not allow two receive ac-
tivities to be active (ready to consume messages) at the same time if they have the
same partnerLink, portType, operation, and correlation set. Correlation sets are
used for routing messages to process instances. If this happens, a built-in fault
named “conflictingReceive” must be raised at run time. The second restriction is
that BPEL does not allow a request to come in to a request-response operation if an
active receive is found to consume it but a reply has not yet been sent to a previous
request with the same portType, operation, partnerLink, and correlation set. If this
occurs, a built-in runtime fault named the “conflictingRequest” fault is thrown. To
clarify the difference between the conflictingReceive/Request faults, think of the
first as the fault that happens if it is unclear which receive activity to send the input
message to. For the second, the process knows which receive to send the message to
but knows that it will not be able to match a downstream reply activity to the proper
outstanding request.

Aside from the interaction activities, a number of other activities also exist. The
“assign” activity is used for the manipulation of process data. It is also used to en-
able dynamic binding, wherein endpoint information may be copied between vari-
ables and the process instance’s references to itself and the parties it is interacting
with.

The rest of the primitive activities provide additional yet straightforward func-
tionality. These activities enable one to do nothing for a step (<empty/>), wait for a
time interval or until a deadline (<wait for/untilExpression?/>), signal a user-de-
fined fault (<throw faultName=? faultVariable?/>), and terminate the process (<ter-
minate/>).

Consider a very basic pension process. HR requests that the pension payment be
processed, the employee database is queried for information, the bank is asked to
cut a check, and the courier service is asked to deliver it. Once it is delivered, the
courier service invokes the process with the delivery confirmation. The BPEL rep-
resentation of such a process, whose control flow is simply governed by a top-level
sequence activity, is represented pictorially in Figure 13.3. Notice the receive/reply
mapping to the request-response operation, and that the blocking invokes calling
operations on the partners.

The BPEL snippet corresponding to this scenario is given in Figure 13.4, with
some sections omitted for clarity and replaced by ellipses. In particular, you may
note the reference to “correlations” and “correlation sets.” Ignore these for now.
Suffice it to say that these are required so the courier’s message can be routed back
to the correct process instance. The usage of correlation will be discussed in detail
further on in this chapter.

324 KHALAF, MUKHI, CURBERA, AND WEERAWARANA

Rev
R,op1

invoke :
DB, op2 <+
HR invoke
kank, op3
invoke : $
ourier,op4 bank
-—
receive
ourier,op5
Reply
HR,op1

/

employeeDB

i)

I

courier

Figure 13.3 A simple pension disbursement and distribution process.

Control Links. Having explained how control is managed in structured activities,
we now take a closer look at control links. Control links provide a means to express
control flow relations between activities, in addition to the control flow relations
captured by structured activities. A control link between two activities denotes a
conditional transition.

A BPEL activity requires two things to become active: control from its enclosing
structured activity and the satisfactory firing of all its incoming links. For example,
if the links of the second activity in a sequence have all fired, it cannot run if the
first activity in that sequence has not yet completed.

When an activity completes successfully, it activates the control links that origi-
nate from it with the value from evaluating each link’s transition condition. A tran-
sition condition is a Boolean expression relating the values of data fields and other
states of the process. On the other hand, an activity that is the target of links con-
tains a join condition, a Boolean expression in terms of the link values that must be
true for the activity to run. The join condition also serves as a synchronization point
in the process, since it can only be evaluated once the values of all links coming into
the activity are known.

Two link restrictions are important to mention. First, links may only create
acyclic graphs. The “while” activity is the only way to create loops. Second, a link
may not cross a loop boundary as that would lead to an inconsistent state.

A section of a process more involved than the one in Figure 13.3 is now present-
ed to illustrate the usage of more complex control semantics. Assume that whether
the employee’s age is past a threshold affects the amount to be paid. Next, assume

THE BUSINESS PROCESS EXECUTION LANGUAGE FOR WEB SERVICES 325

BPEL snippet:
<process ...>
<partnerLinks> ... </partnerLinks>

<variables> ... </variables>
<correlationSets> ... </correlationSets>
<sequence>

<receive partner="HR” portType="tns:processPT” operation="op1” variable= ... createlnstance="yes” />
<invoke partner="employeeDB” portType= ... operation ="op2" inputVariable=... outputVariable=.../>
<invoke partner="bank” portType=... operation="0p3" inputVariable=... outputVariable=.../>
<invoke partner="courier” portType=... operation="op4" inputVariable=... outputVariable=...>
<correlations>...</correlations>
</invoke>
<receive partner="courier” portType="tns:processPT” operation="op5" variable=... >
<correlations>...</correlations>

</receive>
<reply partner="HR” portType="tns:processPT” operation="op1” variable =.../>

</sequence>

</process>

Figure 13.4 BPEL snippet of simple pension process in Figure 13.3.

that the bank would send a wire transfer if the employee’s bank information is
available in the database. Only if that is not the case would the process actually ask
for a check. In Figure 13.5, this is represented using a “switch” activity.

Again, we include the relevant BPEL snippet in Figure 13.6. Notice how control
flow may be defined using either links or structured activities (a “switch”). At the
end of a switch or pick, any links leaving unexecuted branches must have their sta-

<flow>
<assign>
amount= haveWirelnfo
salary*seniorCoeff
Invoke
age<T bank
processWireTransfer
<invoke>
DB, lookup Employee haveAddress
Info
age>=T . .
amount=
salary*juniorCoeff %

Figure 13.5 Using links and structured activities.

326 KHALAF, MUKHI, CURBERA, AND WEERAWARANA

BPEL snippet:
<flow suppressJoinFailure = “true”>
<links>
<link name="senior"/> <link name="junior"/> <link="senior2switch”/> <link="junior2switch”/>
</links>
<invoke partner="DB” portType= ... operation ="lookupEmployeelnfo"
inputVariable=... outputVariable="employeelnfo”>
<source linkName="senior”
transitionCondition="bpws:getVariableData(employeelnfo, age)> 65"/>
<source linkName="junior”
transitionCondition="bpws:getVariableData(employeelnfo, age)<= 65"/>

</invoke>
<assign>
<copy>
<from expression="bpws:getVariableData(paymentinfo, amount)*bpws:getVariableData(seniorCoeff)"/
>
<to variable="paymentinfo” part="amount”/>
</copy>
<target linkName="senior"/>
<source linkName="senior2switch”/>
</assign>
<assign>
<copy>
<from expression="bpws:getVariableData(paymentinfo, amount)*bpws:getVariableData(juniorCoeff)”/>
<to variable="paymentinfo” part="amount”/>
</copy>
<target linkName="junior"/>
<source linkName="junior2switch”/>
</assign>
<switch>
<case condition="bpws:getVariableData(employeelnfo, haveWirelnfo)">
<invoke partner="bank” portType= ... operation="processWireTransfer’/>
</case>
<case condition="bpws:getVariableData(employeelnfo, haveAddress)”>
<invoke partner="bank” portType= ... operation="cutCheck”/>
</case>
<otherwise> <throw ... /> </otherwise>
</switch>
</flow>

Figure 13.6 BPEL snippet of the <flow> in Figure 13.5.

tus set to false so that acitivities downstream that have a control dependency on
them do not end up waiting forever. The mechanics of this will become clear later
in this chapter, in the section on Dead Path Elimination.

Data—YVisibility and Manipulation. Business processes are stateful. The state
of the process includes

1. Application data that is consumed by back-end applications driven by the
business process.

THE BUSINESS PROCESS EXECUTION LANGUAGE FOR WEB SERVICES 327

2. Context data that is of special importance to middleware and may not be visi-
ble to applications, such as transaction IDs and session tokens.

A portion of this state is opaque to the business process, in the sense that those
data values have no relevance for the logic of the business process since they are
not examined or manipulated by the process. The bulk of application data falls into
this category. Context data that is manipulated by middleware layers separate from
the business process (such as security headers) are also opaque. The remainder of
the state is used within the process to make data-driven decisions. These data values
are visible to and often manipulated by the process logic; they are not relevant to
applications. Such data is termed transparent. Note that the distinction between
opaque and transparent data is a logical one. In practice, a single piece of data, say a
Social Security number, may be used by applications and may also be used in the
process logic (for correlation for example).

Data Representation. Since BPEL4WS is meant to be used in conjunction with
other standards, the concept of a message, prevalent in WSDL, is reused. Thus, a
message that flows to or emanates from a BPEL4WS process is in fact defined us-
ing WSDL. Interested readers can look at the WSDL specification [4] for a detailed
discussion on messages. Briefly, messages consist of a set of named parts, each of
which is typed, generally using XML Schema as the type system.

WSDL messages are used in all exchanges between a business process and its
constituent back-end services, and also between services provided by business part-
ners and the process itself. Typically, a message is a single representation for both
application data and context data. The parts of the message referring to context data
are implicit and usually added by middleware logic, in a manner similar to the addi-
tion of middleware-specific headers in distributed protocols such as HTTP. These
message parts are not meant to be manipulated by applications.

BPEL4WS extends WSDL by allowing the definition of message properties,
which are used to represent transparent data.

In Figure 13.7, the HRPensionRqstMsg is shown with three message parts: an
employee record, a timestamp, and a delivery acknowledgement. The latter two are
context data that are processed by middleware responsible for reliable message de-
livery. The employee record is application data. This is a complex schema type that
consists of a number of elements. Of these, the age and employeelD are both used
in our scenario to make data-driven decisions and for correlation, so they are trans-
parent. The other parts of the employee record are opaque.

Message Properties. A message property definition creates a globally unique
name and associates it with a schema type. Consider the piece of data representing
an employee’s age within our scenario. This data might be used within a process
specification to make decisions, as we have already seen. An employee’s age, in
fact, might be carried within many message types. By associating it with a global
property name, we give an employee’s age, irrespective of what type of message it
appears in, the semantic significance necessary for the process logic. All transpar-

328 KHALAF, MUKHI, CURBERA, AND WEERAWARANA

<schema...>
<complexType name="employeelnfoType”...>
<element name="name” type="string”.../>

<element name="address” type="x:addressType”.../> > opaque data
<element name="employeelD” type="long”.../> \
<element name="age” type="integer”.../> \k’
</complexType> Transparent data
</schema>

i / Application data
<wsdl:message name="HRPensionRqstMsg”.../>
<part name="employeeRecord” type="x:employeelnfoType”.../>

<part name="timeStamp” type="dateTime”.../> / Context data
<part name="deliveryAck” type="dateTime”.../> _—

</wsdl:message>

Figure 13.7 Data representation using WSDL messages.

ent data that are manipulated by the process are associated with a property name.
The property name acts as a shorthand for referring to that type of data and, as we
will see, simplifies the syntax for creating expressions for querying and manipulat-
ing the data. Figure 13.8 shows an example declaration of an employeelD property.

Aliasing. Message properties are merely shorthand for a type. The property values
are instantiated within messages. In order to identify a property value, we need to
map a global property to a portion of a message type. BPEL4WS has defined syntax
for expressing such a mapping, using the notion of aliasing. A message property is
seen as an alias for a message part and location. In Figure 13.8, we have defined a
property alias for the employeelD property. It is mapped to the employeelD ele-
ment of the employeeRecord part within the HRPensionRqstMsg message. Note
that we can alias the same property more than once, so if the employeelD was car-
ried in another message type, we could use our property as an alias for that data as
well.

Variables. Variables are the syntactic elements provided by the BPEL4WS lan-
guage to define containers that can hold data. This data encompasses messages ex-
changed between the process and its partners as well as intermediate data private to
the process. Variables are typed using WSDL message types, XML schema simple
types, or XML schema elements. Thus the data contained within a variable is a
WSDL message or XML snippet whose type is well defined.

Consider the example below. We define a variable called empData that is typed
using the WSDL message type employeeData, defined above. The messageType at-
tribute in the variable definition can be replaced with a #ype attribute or element at-
tribute to refer to an XML schema simple type or XML schema element, respective-
ly. Note that if a variable is meant to hold data that is typed using a user-defined

THE BUSINESS PROCESS EXECUTION LANGUAGE FOR WEB SERVICES 329

Process

Instance
X

processPension

—.. employeelD 001 ...

Receive processPension
from HR

correlation: employeelD

Fault Handler:

O (terminate)

Receive complete
from HR
correlation: employeelD

complete

... employeelD 001 ...

Process
Instance

Figure 13.8 Correlating on the employee ID number.

(complex) XML schema type, it is first necessary to define a schema element of that
type, and then define a variable in terms of that element.

Variables are defined within a scope, and are said to belong to that scope. Vari-
ables belonging to the global process scope are global variables; other variables are
local variables. BPEL4WS follows lexical scoping rules; thus, a variable defined in
some scope is visible within that scope and all scopes that are nested within it. Ad-
ditionally, it is possible for a local variable to hide a variable that is defined in an
outer scope if the same name is used.

Assignment. Each “assign” activity consists of a series of separate assignments.
Each assignment copies data from one location to another. The source of the copy
(specified using the from attribute) and its target (specified using the fo attribute)
must be type compatible. The BPEL4WS specification provides a complete set of
possible assignment types; here we describe three common uses of assignment:

1. Data construction. Data is assigned from an XPath expression or from a prop-
erty to part of a variable. Variables and their parts are identified by name. A
property value is looked up by examining a variable; it is assumed that the
property is aliased to some part of that variable.

2. Copying data. Data is assigned from part of a variable to a part of another
variable.

330 KHALAF, MUKHI, CURBERA, AND WEERAWARANA

3. Copying references. A partner reference is copied from the reference associ-
ated with a particular role of a partner link to another partner link.

Figure 13.6 shows an example of the first type of assignment.

Expressions. BPEL4WS uses expressions of four types to define business
processes:

1. Boolean-valued expressions may be used to express transition conditions,
join conditions, and conditions within “while” and “switch” activities.

2. Deadline-value expressions may be used within onAlarm event handlers and
“wait” activities.

3. Duration-valued expressions may be used within onAlarm event handlers and
“wait” activities.

4. General expressions are used within the “assign” activity.

BPEL4WS provides an extensible mechanism for specifying the language that is
used to specify expressions. The language used within a particular process defini-
tion is declared in the expressionLanguage attribute of the process element. The
language used must have facilities to query data from variables, extract property
values from variables, and query the status of links. XPath 1.0 [15] is the default
language used. Figure 13.6 shows examples of Boolean-valued expressions (used in
a “switch” activity and transition conditions in this case) and general expressions
(used in “assign” activities). Figure 13.10 shows a duration-valued expression used
within an onAlarm activity.

Process Life cycle. Life-cycle management of a BPEL4WS process consists of
two aspects. The first is the creation and destruction of processes, and the second is
the routing of messages to the correct running instance of a process.

Recall from Chapter 12, that in Wf-XML, process execution lifecycle manage-
ment is supported through dedicated operations (e.g., create process instance,
change state of running process instance, etc.). In contrast, BPEL handles process
life-cycle management and, in particular, process creation, in an explicit manner. A
new instance may be created by the activities that receive messages and that are
tagged with the ability to create a new instance (creatlnstance="yes”). These activi-
ties need to come at or near the beginning of the process model such that the
process instance can navigate to them once it is created. Upon receiving a message,
an existing instance that can consume it is searched for. If none is found and the
message can be consumed by such a tagged activity, a new instance of the process
is created. Multiple instances of any deployed processes may be running at any
time.

Once created, the instance runs based on the prescribed flow of control, stopping
at times to wait for incoming messages. Finally, the instance ends when its top-lev-
el activity completes successfully. It may also end if the process throws a fault it
cannot handle, or if it is explicitly terminated through the “terminate” activity.

THE BUSINESS PROCESS EXECUTION LANGUAGE FOR WEB SERVICES 331

The second aspect of of process lifecycle management in BPEL, namely, routing
messages to the correct instance, is handled through the built-in “correlation” mech-
anism, basically using specially marked fields in incoming messages to route mes-
sages to existing instances of a business process. These fields are often part of the
main application data, such as a person’s Social Security number, a purchase order
ID, a last name, or a combination of the above. Contrast this to the use of opaque to-
kens generated and managed by the middleware. “Correlation sets” are defined by
naming specific combinations of certain fields in a process’s messages. That set
may then be referenced from and initialized by receive, reply, invoke, or pick activ-
ities.

In order to distinguish between instances to route an incoming message to, the
values of its fields denoted by relevant correlation sets are matched against values
initialized earlier in each instance’s life cycle. The correlation sets are defined using
sets of properties and aliased to parts of different messages. If a match is found, the
message is routed to that instance. Note that once an instance is created and the cre-
ating message reaches its designated receive activity, all other receive activities in
that instance that have createlnstance set to “yes” lose their creation ability. If an
existing instance cannot be found, the process definition is checked for the ability to
create one based on the message and activities with createlnstance set to “true.”

In our example, the courier has to send back a confirmation of having success-
fully delivered the payment for a particular employee. Assume we run one instance
of the process for each employee. In its interactions with the HR department, the

WSDL snippet:

<bpws:property name="employeelD" type="xsd:long"/>

<bpws:propertyAlias propertyName="tns:emplyeelD" messageType="tns:HRPensionRqgstMsg"
part="employeeRecord" query="/employeeRecord/employeelD"/>

BPEL snippet:
<process ...>
<partnerLinks> ... </partnerLinks>
<variables> ... </variables>
<correlationSets>
<correlationSet name="employeeNum" properties="tns:employeelD"/>
</correlationSets>
<sequence>
<receive partner="HR” portType="tns:processPT” operation="processPension” variable="request
createlnstance="yes">
<correlationSets> <correlations set="employeeNum” initiate="yes"/></correlationSets>
</receive>

»

<receive partner="HR” portType="tns:processPT" operation="complete” variable ="completioninfo”>
<correlationSets> <correlations set="employeeNum” /></correlationSets>
</receive>
</sequence>
</process>

Figure 13.9 BPEL and WSDL snippets for Figure 13.8.

332 KHALAF, MUKHI, CURBERA, AND WEERAWARANA

<scope.../>
<onMessage partner="HR” portType="tns:processPT”
operation="cancel” variable
="cancellationInfo”>
<correlationSets>
<correlations set="employeeNum” />
</correlationSets>
<sequence>
<invoke partner="EmployeeDB”
portType="employeeDataAccessPortType”
operation="logCancellation”
variable="cancellationInfo”/>
<assign>
<copy>
<from expression="true’/>
<to variable="flagValue’ part="state’/>
</copy>
</assign>
<invoke partner="EmployeeDB”
portType="employeeDataAccessPortType”
operation="flagRecord”
variable="flagValue”/>
</sequence>
</onMessage>

<onAlarm for="P40D"">
<throw fault="DeliveryConfirmationMissing”/>
</onAlarm>

</scope>

Figure 13.10 Using event handlers.

process specifies that it will use the employee’s ID number as the correlation infor-
mation. The ID number is part of every message sent by the HR department. HR
sends the first message and an instance is created for Bob’s pension. The process
saves his ID number as the value of a correlation set for the instance. This way, all
subsequent messages from HR relating to Bob will be routed to the proper process
instance as shown in Figure 13.8. In this figure, we have abstracted most of the
process model. The instantiating “receive” has a thick border, and one can see mes-
sages from HR being routed to the correct instances based on the employee 1D
number. Instances of this process will end either once the final activity is reached,
or the terminate activity runs due to a fault in the core of the process instance. The
corresponding BPEL and WSDL snippets are shown in Figure 13.9.

On the other hand, the process specifies that it will use the package tracking
number as the correlation set in its interactions with the courier. This is excluded
from the figure for clarity. The courier returns this as part of its answer to the ship-
ping request. Another correlation set for Bob’s process instance gets created. Sub-

THE BUSINESS PROCESS EXECUTION LANGUAGE FOR WEB SERVICES 333

sequent calls from the courier with that tracking number will now also be routed to
Bob’s instance, without the courier knowing about Bob or his ID number.

Event Handlers. Business processes have a need to specify logic to deal with
events that take place while the process is running. BPEL4WS provides this func-
tion through the use of event handlers. Event handlers are associated with scopes,
and specify one or more events followed by an activity. The activity is invoked con-
currently when the corresponding event occurs. For that reason, links may not cross
the boundaries of event handlers. BPEL4WS allows any type of activity, except
compensate activities, to handle events. There are two event types allowed in
BPEL4WS:

1. onMessage events are triggered by the arrival of a message. The message that
triggers the event is identified by the partner link from which the message ar-
rives, the portType, operation, and optional correlation set. The semantics of
the onMessage is similar to the “receive” activity. When the event is trig-
gered, the corresponding activity within the onMessage handler is called up.
If this message is part of a synchronous (request-—response) operation called
by a partner, the event handling logic is expected to have a reply activity in
order to fulfill the requirements of the operation. If the incoming message is
the input for an asynchronous (one-way) operation, a reply is not needed. on-
Message event handlers remain active as long as the scope within which they
are defined are active. As long as they are active, they can be triggered multi-
ple times, resulting in the concurrent invocation of the handling code each
time. The semantics of simultaneous onMessage events from the same part-
ner, port type, operation, and with the same correlation set are undefined. The
reader may recall that receive activities have a similar constraint. Unlike re-
ceive activities, however, onMessage events cannot create process instances.
An event handler is capable of processing events only once an instance has
been created; it is not enabled prior to the creation of an instance.

2. onAlarm events have two forms. The first specifies a duration within the
“for” attribute, and allows for signaling of timeouts. In this form, a timer is
started when the scope that includes the onAlarm event handler is activated.
As soon as the specified duration is reached, the corresponding activity in the
handler is executed. In the second form, a time is specified as the value of the
“until” attribute. As soon as this time is reached, an event is signaled and the
handler is executed. Unlike onMessage events, it must be noted that onAlarm
events can be signaled at most one time for an active scope.

In the example in Figure 13.10, we have two event handlers associated with a
scope. The first handles the arrival of a cancel message. The intent is to cancel the
processing of the identified employee’s pension disbursement. The event handler
invokes Web services to log the cancellation and add a flag to the employee’s
record. The second event handler is set to signal an event 40 days after a pension
check has been mailed. If the enclosing scope is still active after this time period,

334 KHALAF, MUKHI, CURBERA, AND WEERAWARANA

the resulting state is an error state, since it indicates that the check has not been
cashed. The handler raises a fault to indicate this abnormal state.

Fault Handling and Compensation. Fault handling, especially in long-run-
ning business processes, enables a process to recover locally from possible antici-
pated faults that may arise during its execution. Compensation enables a process to
undo already completed actions (see the concept of sagas discussed in Chapter 11).
BPEL combines the two in a complementary fashion such that one may undo previ-
ously completed actions in a scope before executing a fault handling routine. For
example, consider a fault caused by an expired credit card in an ordering process.
Compensation could be used to take out a discount that was already given because
the initial credit card was enrolled in a special member’s program. The fault may
then be handled by requesting the information for a new credit card, without having
to restart the entire process.

Fault Handling. Fault handling has been common practice in business process
modeling and in programming languages for many years. For graph-oriented
processes, the Opera [9] system introduced a structured programming approach in
which blocks and subprocesses are connected with control links. For strictly struc-
tured models like XLANG [13], fault handlers could be attached to a specialized
construct that is always strictly nested in the process hierarchy.

BPEL introduces structured fault handling for both structured processes and ar-
bitrary (acyclic) graphs such that the process control structure does not have to fol-
low the strict nesting of the exception handling constructs. BPEL fault handlers
may be defined on arbitrarily nested scopes and, most importantly, control links
may cross the boundaries of these scopes. However, no links may have their target
inside a fault handler if the target lives outside the handler. The converse is not true.
A link may leave the fault handler’s boundary.

There are three kinds of faults in BPEL4WS. The first two are usually user-de-
fined, whereas the last consists of a set of built-in faults defined in the BPEL speci-
fication:

1. Application/service faults, generated by services invoked by the process and
defined as part of those services’ WSDL definitions

2. Process defined faults, explicitly generated by a process using the “throw”
activity

3. System faults, consisting of faults that must be thrown by the process engine
when it encounters any of a set of error conditions defined in the specifica-
tion, such as the conflictingReceive and conflictingRequest faults introduced
earlier, datatype mismatches, and asynchronous termination

A fault thrown in a scope is either caught by one of the fault handlers defined on
that scope or rethrown to the scope’s parent scope. Either way, the scope must stop

THE BUSINESS PROCESS EXECUTION LANGUAGE FOR WEB SERVICES 335

all activities that have not completed within it, and send out negative status on all
unevaluated links starting inside the scope but whose targets lie outside of it. It must
also trigger compensation on successfully completed nested scopes in order to undo
their actions. If a handler was found to catch the fault, the activity in the exception
handler will run. Execution will then continue from the boundary of the scope that
handled the fault. Clearly, if no scope in the hierarchy could catch it, then the fault
would reach the process root and terminate the entire process.

Note that links leaving from the boundary of a scope that successfully handled
an exception are evaluated normally and are not automatically set to negative.

Dead Path Elimination. Incorporating structured process modeling semantics
into a graph-based model, as in BPEL, has a number of advantages. Structured con-
trol artifacts provide a simple first-class expression of some common control pat-
terns that would otherwise result in a set of complex graph constructs. Structured
exception handling provides a clean way to deal with errors, all the while maintain-
ing familiar graph-based approaches.

The operational semantics, however, of the two approaches do not fully align.
Specifically, the graph-oriented semantics uses the “dead path elimination” tech-
nique (DPE) to automatically skip or disable activities when it is known that they
are along a path that will never be reached, for example, if an activity upstream has
failed. In such cases, DPE propagates the disabled state transitively across the
process graph to all activities waiting on it. This ensures process termination by
making sure activities with more than one incoming link do not have to wait forev-
er if it is known that one of the paths being joined will no longer be followed. On
the other hand, in purely structured processes, the effects of an evaluation can only
propagate vertically through the nesting hierarchy.

To integrate the two process models, BPEL had to solve this mismatch by being
able to propagate such information vertically (using structured activity nesting) as
well as horizontally (using the links). This was done through the combined usage of
fault handling that propagates up the scope hierarchy and the definition of a system
fault known as a “joinFailure,” to be thrown whenever the joinCondition of an ac-
tivity is false. A Boolean-valued attribute known as “suppressJoinFailure” was
made optional on all activities. From a behavioral perspective, it is equivalent to
surrounding the activity with a scope containing an empty fault handler for joinFail-
ures. As a result, DPE semantics could be easily reproduced by specifying that all
activities in the process should have this attribute set to “true.” This may either be
done by specifying it on each activity individually or on the process as a whole. Its
default value is “false.”

Consider how suppressing the join failure allows dead path elimination to occur.
One example has already been presented in Figure 13.6, as you can tell from exam-
ining the “flow” activity. If you look closely, you will realize that one of the links
leaving the left-most “invoke” activity must fire negatively. The target of that activ-
ity will throw a joinFailure during execution. If one had not suppressed the join fail-
ure, this would have always caused the entire process to fail.

336 KHALAF, MUKHI, CURBERA, AND WEERAWARANA

v

Fault Handler:
joinFailure

Fault Handler:
joinFailure

X
s
X

Fault Handler:
joinFailure

Figure 13.11 DPE semantics shown after expanding the suppressJoinFailure on B, C, and
D.

A more interesting example is illustrated in Figure 13.11, in which activity D can
continue processing although B has failed. In this figure, activities with sup-
pressJoinFailure set to “true” are illustrated using the “desugared” version, replac-
ing the attribute with a scope with an empty fault handler.

Assume that activity A has completed, sending its link status down to
positive/true. Activity B has received the values of its incoming links, so it evalu-
ates the join condition (&) to find that it is false. A “joinFailure” is thrown, dis-
abling B and setting the value of its outgoing link to false. The fault is caught by the
handler, activating its “empty” activity, which acts as a no-op. Now, the scope itself
completes and the negative link status reaches activity C, which also faults, dis-
ables, and sets its link value negative; then the second fault handler runs. Finally,
consider activity D. It has to wait until the status of both its links are known before
it can react. The link from A is already known to be positive, and after some time
the link from C arrives. Its value is negative. Activity D, however, can continue due
to its “or” join condition, which is now “true.”

THE BUSINESS PROCESS EXECUTION LANGUAGE FOR WEB SERVICES 337

Dead-path elimination in BPEL is, therefore, simply a special case of BPEL’s
fault-handling mechanism. By enabling the use of links in combination with scopes,
and allowing these links to cross scope boundaries, the mechanism shown here can
be generalized for more advanced behavior that goes beyond “plain vanilla” DPE.
For example, putting a link at the boundary of a scope that suppresses a join excep-
tion results in anti-DPE behavior; synchronization will occur, but the processing con-
tinues normally regardless of the value of the join condition. For a more detailed look
into possible uses of the suppressJoinFailure attribute, we refer the reader to [6].

Compensation. Compensation also has a long history in transaction processing
and workflow systems (see Chapter 11). The compensation model in BPEL, de-
fined at the scope level, is based on the concept of partial backward recovery intro-
duced by using compensation spheres in [12].

In BPEL, the actions for undoing the work of a completed scope are defined us-
ing activities set in a compensation handler. For example, the compensating action
for a financial debit is a credit. The compensation handler is then attached to the
scope. A handler may also be attached to “invoke” activities, resulting in behavior
equivalent to wrapping the “invoke” in a scope with that compensation handler at-
tached to it. This shortcut for “invoke” is also true for fault handlers. Once a scope
completes, its compensation handler is installed and the data the scope has access to
is snapshotted for use when running the handler. The handler remains dormant, ac-
tivating if compensation is triggered on that scope.

There are two kinds of compensation in BPEL: explicit and default. Explicit
compensation is triggered when a “compensate” activity is reached. A “compen-
sate” may only be nested either in fault handlers or other compensation handlers,
and it explicitly starts a handler on a named completed scope. On the other hand,
default compensation occurs either if a scope with no explicit handler is asked to
compensate, or when a fault is thrown. When a fault is thrown to a scope, the scope
must (among other things) run the compensation handlers of its direct children, in
reverse order of completion. If a child has no handler, it performs default compen-
sation itself and the compensation request propagates down the scope hierarchy un-
til it bottoms out at scopes with explicit handlers.

Returning to our example, assume that a fault occurs before the courier has com-
pleted shipment, but after the check has been given to the courier to be mailed. So
far, the following actions have been completed: employee information look-up
from the database, calculation of pension payment, request to bank to cut a check,
and sending the check to the courier. Assume the last two are in the same scope. A
fault handler on that scope is supposed to try wiring the money instead. Before it
can do so, however, it needs to undo the payment and the mailing.

In reverse order, the process first compensates sending the check to the courier
by running its handler. The handler asks the courier to return the package. Once the
check is returned, handler completes. The next handler to execute will be the com-
pensator of requesting the check from the bank. This handler asks the bank to can-
cel the check. Finally, the fault handler runs its routine and invokes the bank again,
asking for the completion of a wire transfer for the same amount.

338 KHALAF, MUKHI, CURBERA, AND WEERAWARANA
13.3 SUMMARY

BPEL’s composition model is characterized [15] by its flexible integration model in
which services are composed based on their abstract descriptions; recursive compo-
sition, in which a process is exposed as (one or more) Web services; the support for
both the strictly hierarchical and the conversational patterns of composition; and, fi-
nally, its support for life-cycle management using correlation sets. BPEL is also ex-
tensible, enabling proprietary or domain-specific extensions to be defined for use in
specialized environments.

In this chapter, we have presented the core concepts of the BPEL language after
a brief introduction to the Web services paradigm. With roots in prior work on tra-
ditional workflow for more tightly coupled systems, BPEL is a composition and
workflow language geared specifically to the highly dynamic and heterogeneous
networked world of today.

The BPEL4WS language is currently undergoing standardization by the OASIS
consortium. The resulting standard will be renamed WS-BPEL.

13.4 EXERCISES

Exercise 1
How are backend applications viewed by BPEL4WS processes? How are
BPEL4WS processes viewed by external partners?

Exercise 2

BPEL4WS processes refer to partners only via the abstract function they offer, that

is, using portTypes and operations, as opposed to actual deployments of services.

How does this impact:

® The software engineering process used to develop an executable business
process

® The complexity of developing a software product that supports the BPEL4WS
language

Exercise 3

Object-oriented languages such as Java and C++ allow for the specification of
nonexecutable program specifications using language constructs such as interfaces,
abstract classes, or virtual classes. Compare such object-oriented language features
with BPEL4WS’s facility to allow the specification of abstract and executable busi-
ness Processes.

Exercise 4
Consider the following fragments of a BPEL4WS process definition:

<sequence>
<receive .../>

THE BUSINESS PROCESS EXECUTION LANGUAGE FOR WEB SERVICES 339

<invoke .../>
<reply.../>
</sequence>
(a) Rewrite this process definition, replacing the sequence construct with a flow
construct containing control links.

(b) Assume the flow construct we defined in (a) has a set of incoming links, and the
join condition for the flow activity evaluates to false at runtime. Describe what
happens next; specifically, how this affects the activities contained within the
flow.

(c) If we had a “while” construct instead of the sequence in the above snippet, could
we replace this with a flow as well? If so, demonstrate this; otherwise, explain
why not.

Exercise 5

(a) Define the partnerLink between a business process and the external billing ser-
vice required to capture their interaction. In this relationship, the business
process plays the role of the requestor, and the billing service plays the role of
the bookkeeper. The requestor role is defined by a single port type, called
bs:BillingConfirmationPortType. The bookkeeper is defined by two port types:
bs:BillPortType and bs:MonitorBillPortType.

(b) BPEL partnerLinks are limited to describing two-party relationships. Discuss
the issues involved in describing n-party relationships.

Exercise 6
Consider the following business process definition:

<process...>
<receive partnerLink="seller” portType="tns:sellerPT”
operation="submit” variable="sellerInfo” createln-
stance="yes"”>
<correlations>
<correlation set="token” initiate="yes”/>
</correlations>
</receive>
<receive partnerLink="buyer” portType="tns:buyerPT”
operation="submit” variable="buyerInfo

29

createln-
stance="yes”>
<correlations>
<correlation set="token” initiate="yes”/>
</correlations>
</receive>

</process>

340 KHALAF, MUKHI, CURBERA, AND WEERAWARANA

Describe what happens when the BPEL4WS runtime engine within which this
process is deployed first receives the following messages in this order:

® A message from the buyer, via the buyerPT port type and submit operation. As-
sume the message contains some data D associated with the token correlation
set.

® A message from the seller, via the sellerPT port type and submit operation. As-
sume the message contains data D, identical to that in the previous message, as-
sociated with the token correlation set.

® A message from a buyer, via the buyerPT port type and submit operation. As-
sume the message contains some data D’ associated with the token correlation
set.

® Assume that the buyerInfo and sellerInfo variables each have an integer part
called offer and askingPrice respectively. Additionally, assume the existence of a
WSDL message type called “result,” with a single string part named “outcome.”
Complete the process definition with logic that compares these two prices. If the
offer is higher than or the same as the askingPrice, populate the outcome field of
the result message with “success.” If the offer is less, populate the outcome mes-
sage with “failure.” Reply to each of the partners with the outcome.

Exercise 7
This exercise involves defining an interaction between two BPEL4WS processes.

(a) Create a business process definition B1 consisting of receive, invoke, and reply
activities that are executed in sequence.

(b) Sketch the definition of the portTypes and operations that need to be defined on
the external WSDL interface of B1, as viewed by its partners.

(c) Create a business process definition B2, in which B1 is defined as a partner. De-
fine an appropriate partnerLink between B2 and B1. Define an invoke activity in
B2’s logic, which invokes the request-response operation offered by B1’s exter-
nal WSDL interface.

(d) Comment on whether we can describe B2 as being a subprocess of B1.

Exercise 8
Write a BPEL4WS snippet that does the following:

Declares a variable that is of message type “mycompany:OrderStatus.” This message
type has two parts. The first part is an integer and is named “orderNumber.” The sec-
ond is a string and is named “status.” The process then populates this variable with
data as follows [note that to complete parts (a) and (b) you will need to write assign
statements involving XPath expressions]:

(a) orderNumber should be set to the “id” property of the variable “OnlineOrder.”

(b) Check the value of the part “paymentMade” within the variable “BillingInfor-
mation.” If the value is true, the status part of the OrderStatus variable should be
set to “OK,” otherwise it should be set to “Pending.”

THE BUSINESS PROCESS EXECUTION LANGUAGE FOR WEB SERVICES 341

(c) Assume the assign statement(s) you wrote for parts (a) and (b) above are within
the scope of a “while” activity. Describe what happens to the value of the vari-
able at the following points in the life cycle of the “while” activity:

® Before it is enabled

® When it is enabled, but before the assign activities are enabled
® After assignment

® When the “while” activity begin another iteration

® After the “while” activity completes

Exercise 9

Define a business process that is instantiated by the arrival of a message containing
a single integer part, representing the number of orders to be processed. The busi-
ness process includes an event handler that assumes that the employee handling the
orders takes 30 minutes to process each order. If the employee has not finished pro-
cessing orders in the expected time, the handler must send an e-mail message say-
ing “Get moving slowpoke” to the employee (assume there is a partner service that
is capable of sending e-mail messages, given the content and destination e-mail ad-
dress). Use appropriate message definitions and other BPEL4WS constructs in your
process definition.

Exercise 10

In the business process we defined in the above exercise, generate a fault called
“process:WorkloadExcess” if the number of orders an employee is expected to
process exceeds 14. Write a global fault handler to catch this fault and invoke an ex-
ternal Web service that has a port type “AdjustWorkload” with an operation called
“reduce.” Use appropriate message definitions and other BPEL4WS logic in your
process definition.

REFERENCES

1. W. M. P van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros,
“Workflow patterns home page,” Available at http://www.tm.tue.nl/it/research/patterns/.

2. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services. Springer-Verlag,
2004.

3. IBM Inc., Microsoft Corp., BEA Inc., SAP AG, and Siebel Systems Inc. The Business
Process Execution Language for Web Services, version 1.1. Published on the World
Wide Web at http://www.ibm.com/developerworks/library/ws-bpel/, 2003.

4. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description
Language (WSDL) 1.1. Published on the World Wide Web by W3C at http://www.w3.
org/TR/wsdl, March 2001.

5. F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana. Unraveling
the Web Services Web—An Introduction to SOAP, WSDL, and UDDI. [EEE Internet
Computing 6(2): 86-93, April 2002.

6. F. Curbera, R. Khalaf, F. Leymann, and S. Weerawarana. Exception Handling in the

342 KHALAF, MUKHI, CURBERA, AND WEERAWARANA

10.

11.

12.

13.

14.

15.

BPEL4WS Language. In Proceedings of the International Conference on Business
Process Management, Eindhoven, The Netherlands, June 2003, pp. 276290, Springer-
Verlag.

. F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana. The Next Step in Web

Services. Communications of the ACM, 46(10):29-34, 2003.

. D. C. Fallside. XML Schema Part 0: Primer. W3C Recommendation, published on the

World Wide Web at http://www.w3.org/TR/xmlschema-0/, 2001.

. C. Hagen and G. Alonso. Flexible Exception Handling in the OPERA Process Support

System. In Proceedings of the International Conference on Distributed Computing Sys-
tems (ICDCS), pp. 526-533, 1998. Amsterdam, The Netherlands, May 1998. IEEE Com-
puter Society.

R. Khalaf, N. Mukhi, and S. Weerawarana. Service-Oriented Composition in
BPEL4WS. In World Wide Web 2003 Conference, Web Services Track, Budapest, Hun-
gary, May 2003. Amulett Kft Publishers.

F. Leymann and D. Roller. Production Workflow: Concepts and Techniques, Prentice-
Hall, 2000.

F. Leymann. Supporting Business Transactions Via Partial Backward Recovery in
Workflow Management Systems. In Proceedings of Datenbanksysteme in Biiro, Technik
und Wissenschaft (BTW), pp. 51-70. Desden, Germany, March 1995. Springer-Verlag.
S. Thatte. XLANG. Published on the World Wide Web by Microsoft Corp. at
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm, 2001.

P. Wohed, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede. Analysis of
Web Services Composition Languages: The Case of BPEL4WS. In Proceedings of the
22nd International Conference on Conceptual Modeling (ER), pp. 200-215. Chicago IL,
October 2003. Springer-Verlag.

World Wide Web Consortium. XML Path Language (XPath), version 1.0. Published on-
line at http://www.w3.org/TR/xpath , 1999.

I CHAPTER 14

Workflow Management in Staffware

CHARLES BROWN

14.1 INTRODUCTION

Carefully designed and robustly implemented process-aware information systems
(PAISs) are an essential part of many successful businesses. They help control op-
erational costs and ensure productivity while helping organizations cope with rapid
change. They also help in breaking down undesired barriers between departments,
applications, and systems by linking all the resources required to perform key busi-
ness processes and focusing them on end results.

Implementing PAISs, however, is generally a complex and delicate endeavor.
The processes supported by a PAIS can be very complex with an incredible number
of details that need to be taken into account and should be automated as far as pos-
sible. In addition, PAISs usually bring together significant numbers of heteroge-
neous software applications and organizational resources. Finally, strong require-
ments are placed on the time frame to complete the implementation and
deployment, and it is often expected that deployment occurs with minimal disrup-
tions to day-to-day business operations.

On the other hand, a significant part of the functionality expected from PAISs re-
curs from one system to another and can, therefore, be packaged into generic tools
(or toolsets). As pointed out in Chapter 2, this is the case, in particular, in the area of
workflow management. For example, activity dispatching and process monitoring
are features required in most (if not all) workflow implementations.

A representative toolset in the area of workflow management is the Staffware!
suite. This toolset was developed by a company with the same name, until 2004
when it was acquired by TIBCO,? a vendor of application integration solutions. It is
expected that as a result of this acquisition, some of the functionality of the
Staffware suite will be integrated with other TIBCO products. However, the essen-
tial parts of Staffware, which are outlined in this chapter, are likely to remain in one

thttp://www.staffware.com
Zhttp://www.tibco.com

Process-Aware Information Systems. Edited by Dumas, van der Aalst, and ter Hofstede 343
Copyright © 2005 John Wiley & Sons, Inc.

344 BROWN

form or another as they correspond to recurrent needs in the context of
workflow/business process implementation.

As discussed in Chapter 1, the characteristics of a business process can vary wide-
ly, from the one extreme where work is processed without any set structure in a peer-
to-peer or ad-hoc manner, such as communication between people via e-mail, to the
other extreme being where the processes are highly structured and need to be sup-
ported by technology that is robust, scalable and rich in connectivity. The diagram in
Figure 14.1 plots a sample list of the PAIS-related processes, including Staffware,
with respect to the classification proposed in [3] and briefly presented in Chapter 1.

No one product can be considered appropriate for the whole continuum, so an or-
ganization needs to determine the appropriate product for its needs, even if this
means selecting more than one. The author has had first-hand experience of unwant-
ed results, on more than one occasion, where a product suited to one end of the range
is used for applications with the characteristics of the other end. Because a product’s
description contains the word “workflow,” one should not assume that it will fulfill
the needs of an organization across the complete spectrum of its potential require-
ments.

Figure 14.1 shows that Staffware is aimed at the “production” end of the contin-
uum with the ability to cater to “administrative” processes. It may not be appropri-
ate for the two categories on the left side of the spectrum. It is worth noting, howev-
er, that it is more feasible for a production workflow to make available elements of
ad-hoc and collaborative functionality than it is for a workflow tool at the left end
of the spectrum to emulate the characteristics of a tool designed for production-
style processes.

This chapter describes the issues associated with the implementation of work-
flow/BPM applications in general, with a focus on the use of the Staffware suite of
workflow development tools. It looks at the considerations a potential IT decision
maker should make in the selection of an appropriate product for a given work-

Automation Continuum

Less More

Structure of processes

| Production workflow |

| Administrative workflow |

| Collaborative workflow | Websphere MQ WF

Ad hoc workflow BizFlow Staffware P/iPS
Staffware PS

BizFlow Tibco/Inconcerl

Livelink Domino Ultimus FileNet P8
Domino HP ChangeEngine

Panagon

Figure 14.1 The automation continuum.

WORKFLOW MANAGEMENT IN STAFFWARE 345

flow/BPM implementation project. It then explores the attributes and components
of such a toolset, using Staffware as the example and the guidelines of the approach
or methodology that should be applied. Key in this is a description of the so-called
10 “golden” rules and the presentation of a framework in which to implement solu-
tions to a set of business process requirements. The chapter then finishes with a de-
scription of the type and style of resources required for workflow implementation
and a concluding summary.

14.2 ARCHITECTURE

14.2.1 The Components of Staffware

As stated above, Staffware is delivered as a toolset, as opposed to a turnkey applica-
tion. Upon installation, the toolset is used to build an application that can then be
used by the business to manage its processes. At the heart of Staffware is a work-
flow engine (see Chapters 2 and 12) that executes a process application, built using
the toolset, that delivers work to participating people and applications via the medi-
um of choice (rich client, Web browser, or mobile). Multiple instances of the engine
can be installed to support geographical separation, scalability, and desired techni-
cal architecture.

The coarse-grained view of Staffware’s architecture is shown in Figure 14.2. It
consists of three main components arranged according to a three-tier architectural
approach. These components are:

1. Staffware process server(s)
2. Staffware process objects (SPO)
3. Staffware clients (shown with a darker background in Figure 14.2)

The following sections detail each of these three components in turn.

Staffware Process Server(s). There are, in fact, two process servers that differ
in the ability to handle throughput and integration capabilities, and, of course, price.
They are called the Process Server (PS) and the iProcess Server (iPS), respectively.

The Process Server, also known as the Process Engine, is designed to cater to the
needs of small-to-medium enterprises that are using workflow management to sup-
port processes directed mainly at human actors, typically requiring imaging and
document management support and relatively modest integration to external appli-
cations and other software systems. It consists of a single-threaded “background”
process communicating with a number of “foreground” processes managing user
log-ins and work queue and work items servers through a FIFO message box
(MBOX) architecture. The background process is the “engine” that interprets work
arriving from people or other applications, determines the action(s) to be taken and
the next participant(s) in the workflow process from the process definition devel-
oped as part of the application build and stored in the supporting database, and de-
livers work item(s) up to the foreground processes.

346 BROWN

Staffware
Server

Custom
Browser Client
Work Queue 3 ¥
Server Avolicati
. 1cation
Work Item Servers Web SCI'VCI' JavaScrlpt pp cat
Std. APIS VBScript Server
Client et [
Invoking
SPO Server [SPO Client JESUCSCICIN SPO Client

Objects

Figure 14.2 Staffware architecture.

The second engine is designed to cater to the needs of large organizations in
which a true BPM approach is being taken having the following characteristics:

® High volumes of core business activity

® An end-to-end, straight-through processing model (STP), meaning that sever-
al automated steps are chained to achieve a given user goal

® Deep connectivity through a messaging layer

These characteristics do not preclude the iProcess Engine from carrying out
those more traditional workflow processes as does the first engine, but such require-
ments would not be why the iProcess would have been selected. The iProcess En-
gine adds a multithreaded background set of processes. The number of threads is
configurable and can be made to operate across a number of hardware partitions
(i.e., on more than one box). This offers virtually linear scalability. Doculabs® con-
ducted tests on a 64-CPU Sun Unix server with Staffware configured for eight
background processes that accepted log-ons for 30,000 users and processed more
than 1.5 million transactions in an hour [2]. Communication with the foreground is
carried out by a secure (asynchronous) messaging service such as Oracle Advanced
Queueing* or Microsoft Message Queuing (MSMQ),> depending on the platform.
The iProcess Engine provides a step-type process that has been specifically de-

3http://www.doculabs.com
“http://www.oracle.com
Shttp://www.microsoft.com

WORKFLOW MANAGEMENT IN STAFFWARE 347

signed to support complex integration into middleware, XML, SOAP, and Web ser-
vices environments; it is not particularly aligned to either .NET and J2EE architec-
tural environments but can operate in both.

Both versions of the Process Engine are supported by a database, which can be
either Oracle or SQL Server, depending on platform and preference. The database
contains two key elements of data: the current state of work in progress and data as-
sociated with each “case” travelling through a process and its audit information.
The database also tracks triggers for events such as the expiry of a deadline, initiat-
ing escalations as required. Figure 14.3 gives a view of the components of the
iProcess Engine.

Staffware Process Objects. The Staffware Process Objects (SPO) layer sits
between the Server and any application serving up the user interface or providing
the link to an integrated system. It consists of two components: the SPO Server,
which sits alongside the Staffware server and thus has to be on the same platform as
Staffware; and the so-called SPO Client that sits alongside the client application,
such as a Web server or other application server. This can be on a completely sepa-
rate platform utilizing a different operating system, if required. The SPO Client can
also sit on the desktop, if directly supporting an application running on the desktop.

Staffware
Clients
FOREGROUND
Y
RPC RPC Pool Login Work Item| WIS MBOX
Listener Server Daemon Server | Daemon
MSMQ
Message
Y Layer
MBOX SET ----- PR |y Mbox Mbox Staffware
Sentinel Set 1 Set 2 saQL
Schema
Mbox Daemon
Deadline
BACKGROUND ¢ Manager
Case Instruction
Processor(s)

Figure 14.3 Staffware iProcess Engine.

348 BROWN

The Process Objects layer provides access to the functions of the Process en-
gines through an object model utilizing any programming language that can invoke
COM and COM+ objects or Java classes. The use of the model provides a means of
rapidly developing code to allow the user to log on, view work queues, open work
items in another user interface such as a Web browser, or other custom application.

The potential functionality provided through the object model outstrips that of-
fered by the standard client; however, both access the server through the Staffware
Application Programming Interface (API) layer, so, to the server, both the standard
client and the SPO layer look the same, and both means can be used simultaneously
by the one user, which has its advantages.

The root of the Process Objects model is the concept of Enterprise User (SWEn-
tUser), which can log on to one or many Staffware Nodes (SWNode) and retrieve
information about work queues (SWWorkQ) and the work items (SWWorklItem)
that they contain. The user can also retrieve the state of a case (SWCase) associated
with a workflow procedure (SWProc). The outline of the Process Objects model is
depicted in Figure 14.4. In addition to the objects provided in this figure, there are
many other objects that provide access to audit information, form definition, user
and group attributes, among others.

Staffware Clients. Staffware provides two “out-of-the-box™ clients: the tradi-
tional client-server or “rich” client and a “web” client that operates utilizing the
SPO architecture described above in both COM and Java forms.

“Rich” Client. This client application provides users with a richly functional view
of their workflow delivered tasks, in a manner that is configurable to a degree, but

Each object consists of a set of
Properties and Methods that

/ allow the developer to access

SWEnterprise data and initiate actions
SWEntUser SWNodelnfo
SWNode SWProc
SWuUser SWCase
SWWorkQ SWWorkltem

Figure 14.4 High-level Process Object view.

WORKFLOW MANAGEMENT IN STAFFWARE 349

nonetheless is a “one size fits all” approach. However, it provides for the vast ma-
jority of functionality the normal user requires to participate in a workflow process,
provides support for silent roll-out, and has been tested many times for compatibili-
ty within an SOE. It remains the quickest and simplest way to get users up and run-
ning using applications developed in Staffware, despite the preference of most ar-
chitects for a browser-based solution. It also provides, as an install option, a set of
administrative functions for managing Staffware instances (see Figure 14.5).

“Thin” Client. Staffware’s “out-of-the-box” thin client offers less functionality
that the client/server offering but, nevertheless, still provides for the basic needs of
the workflow participant. However, as most organizations have fairly set standards
as to the look and feel of applications delivered over their intranet/extranet, it is
likely that, at the very least, the style sheet would need to be modified and logos
changed on some of the key pages.

The thin client generates the forms from the standard Staffware rich client forms,
as these definitions are accessible through SPO. Although out-of-the-box, it does
not support some of the more complex features of the standard Staffware form such
as complex conditional statements, form commands, and table look-ups (see Figure
14.6).

The section on methodology below will describe the practical impacts of the
above and will identify how most organizations deploying the technology are cater-
ing to the needs of a rich user interface at lowest cost of development and ownership.

S Staffware Process Client Charles Brown : Divisional Manager - Work Ttems

In
= B EEE

Work Dueves Py [Stdus CassRef. |Case Dascipbon |Siep Desorp |nival Time: Deadine

Tools Window Queue WorkItem(s) Optiors Hel

@ User Queves] ' Chase up Deveioper A1/20031213
L § CrersBiomn] g 3317 Patk Hystl Demo Chase up Develper A0A1/2003 1505

eﬂ Group Queues

8 Commuricalion

b Cornections Team

—dfh Dispatch Tean

— Geneid Manage - 05

o R

@ Test Queuss

[~ CrarlesBrown

- L iznal Mariagel

& TeamLeadsr - Corneck:

5 Quaus Advinizirafion

=& Jomes Biown

=& MailynMcConachy

& PadCalet

& Sootwad

— & SwstenAdvinkiato

| | 0

| Queuse: Diviiorsal Manager 5 10 [FF mWa Item: 1 of 2

Figure 14.5 Staffware “rich” client.

350 BROWN

2 Staffware Web Client 9.0{0.0) - Microsoft Internet Explorer
Fle Edt View Favorkes Joos Hep
e QA AAEEI I EHE

|ngdrassﬁmrﬁp:uu-eumwmwmtclw.hm | P |LIn1<5 H

Yarra Valley Water Work Queues f vorr Valy Warer

LT ATy

* Work Queue: Team Leader - Connects
Yarrd Valley

Water Case |Procedure | Step [, . Case Priority . MO Wo Wo Wo
Description| Mame |Name SRl N“"f_“' 0Tt rametert |Parameter2|Parameter3{Parameterd
Bl Test# PROPHAND STEPY 1 a0
gk WA propHAND STERY o

MW

¥ Work Queues
@ Charles Brown
@ Divisional Manager
& Team Leader - Connects
i Charles Brown
% Commurication
ﬁ Comnections Team
ﬂ Dispateh Team
ﬁ General Manager - C5
& SMSBroker

» Audit Trail

» Case Start

[fons | Unopened | '\ | Deadines | Page [V
? 2 0 0 [R

&) oone [T [ecalintranet 4

Figure 14.6 Modified Staffware thin client.

14.3 DEVELOPMENT TOOLSET

14.3.1 Process Definer

The Staffware Process Definer (SPD) has one primary objective—to make the
analysis and documentation of business processes as simple and intuitive as
possible. It is aimed at a nontechnical audience that understands their business.
This primary orientation is crucial in eliciting the business community’s involve-
ment procedure definition. Failure to do this could seriously jeopardize the suc-
cess of the final project. The SPD builds on the familiar flowchart metaphor to
show, in an unambiguous manner, the flow of work for a particular business

process.

WORKFLOW MANAGEMENT IN STAFFWARE 351

The SPD stores the rules defined graphically, in effect creating a “program” that
can then be deployed across a wide-ranging hardware architecture.
A major advantage of the SPD is its two-way link to the Staffware Server. This
means that the Graphical Toolset may be used to create and maintain live work-
flows. This is in stark contrast to some other flowchart tools that can only be used to
define a procedure in the first instance with no ability to reload an operational
workflow procedure. This assists in the cycle of:

® Analyzing the business

® Defining the business process

® Automating the business process

® Collecting metrics on the operational business process

® Feeding the data from the live environment back for further analysis

A business process is made up of one or more Staffware procedures. Procedures
are defined, using the SPD, by creating a flowchart diagram, consisting of steps
linked together with lines (denoting transitions) and interspersed with diamonds
(conditional splits as defined in Chapter 8) and other control-flow constructs. Once
the diagram is complete, it is “saved” (like a Word document) and may be run in ei-
ther the Test or Released environments.

There are a number of different kinds of steps.

® Normal Steps, for normal user interaction and for Staffware Brokers
® Automatic Steps, which run programs on the server
® Event Steps which are used to coordinate with external events

® Open Client Steps, used mainly to deliver work via third-party systems such
as Microsoft Exchange

® EAI Steps for enterprise application integration (EAI)
® Subprocedure Steps called both statically and dynamically

These are connected in relation to:

® Lines

® Routers

® Complex routers

® Condition boxes

® Rendezvous points/waits
® Stop signs

The SPD is also used to create Fields, Staffware Scripts and EIS Reports.

There is no technical limit to the size of a Staffware procedure, although we sug-
gest that Processes of more than about 50 steps should be broken down into several
subprocedures for ease of use.

352 BROWN

Point-and-click subprocedure functionality allows SPD users to drill down from
one procedure to the next (subprocedure), selecting the data to be passed to and
from, and assigning a deadline to an entire subprocedure. This brings subprocedure
definition and use entirely into the realm of the business analyst. It also facilitates
the creation of corporate process libraries, through which common processes are
made reusable across the business.

When a “normal step” is defined, the SPD provides links to the Staffware User
(Group, Role) database, the Staffware Graphical Forms Definer (to create Staffware
or VBA Forms), and Deadline and Priority functions.

Readability of the SPD is enhanced by annotations (notes that may be placed
anywhere on the chart), user-definable icons for each step and a setup option cover-
ing line colours, size, and so on.

14.3 Integration Tools

Integration from Staffware to External Applications. A well-rounded
process management product must integrate fully with the other systems that are
used in the business in order to optimize productivity, data accuracy, and consisten-
cy. Integration must be possible via automated server processes as well as via inter-
active applications running on the desktop. Staffware has a comprehensive set of
tools to facilitate this integration.

Server-based integration—or, more accurately, the automation of a step in a
process, without any user intervention—is most typically achieved by components
in the Staffware Process Integrator module of the Staffware Process Suite, namely
Staffware Broker applications and EAI Steps.

Staffware Broker applications are half “out of the box,” because Staffware pro-
vides the Staffware Integration Broker as framework in which these applications
can run. It is then necessary to develop broker tasks (implemented as Dynamic Link
Libraries or DLLs) that can run in this framework. Many template broker applica-
tions are provided in the Staffware Process Definers Kit, but these will not include
any code that implements third-party API’s because of copyright issues.

Figure 14.7 illustrates how a broker interacts with a work item placed in a queue
to which a broker has access to carry out a call to a middleware layer.

EALI Steps provide a server-based mechanism to invoke third-party applications
via an adapter. Staffware currently provide Oracle, SQL Server, Java, Tuxedo,
TCL, XML, and COM+ adapters. This range will be extended according to cus-
tomer demand.

Figure 14.8 illustrates how a number of EAI steps within a process orchestrate
the sequence of integration points between a number of systems required to support
the workflow application. The figure shows a process (or procedure) model at the
top that contains “EAI steps” that link the process with external systems (namely
Maplnfo,® Trim,” and SAP?®) through “adapters.” The key point here is that

Shttp://www.mapinfo.com
http://www.towersoft.com/ap/
Shttp://www.sap.com

WORKFLOW MANAGEMENT IN STAFFWARE ~ 353

Work Queue Manager

Broker

Middleware

adapter

Middleware/EAI

Figure 14.7 Staffware broker.

Staffware manages this system interaction with a very visible tool that a business
analyst can use, external to both the applications themselves and the middleware
layer itself.

The products identified above are for illustrative purposes only, and do not con-
stitute a limitation or any prescribed architecture.

Integration from External Applications to Staffware. 1t is a typical re-
quirement to be able to integrate with Staffware from external applications, either to
start a new case of a process or to resume an existing case that is suspended and
awaiting further information. The information that starts or resumes a case may
come from many sources; for example, when a report is generated by a mainframe,
when a message is written to an MQ Series message queue, when a Web page is
completed, when an e-mail is delivered to a specific mailbox, or when a piece of
correspondence is scanned and indexed.

Staffware can interface to all these sources of information via custom integra-
tion components, referred to as Workflow Triggers. These components typically
implement Staffware Process Objects in order to communicate with Staffware.
Cases of a process can also be started or events in cases can be triggered using a
command line interface to a server utility program and a DDE interface to a client
utility program.

In addition to triggering Staffware in this way, it is also sometimes required to
embed Staffware functionality (such as access to Work Items in Work Queues, ac-
cess to audit trails, or user administration) into a custom GUI application. This inte-

SAP

Maplinfo Trim

Figure 14.8 EAI steps and middleware.

gration is made possible through Staffware Process Objects, which give access to
all Staffware client functionality.

14.4 METHODOLOGY

This section does not constitute a specific methodology to be followed to the letter
but, rather, a set of guidelines to help the implementer of workflow/BPM systems
avoid some of the pitfalls and be aware of issues that are likely to arise before, dur-
ing, and after development. In respect of this section, the assumption is made that
the traditional business analysis tasks of documenting the requirements, determin-
ing the as-is status and its move to the to-be status, and a definition of the scope
have been done using whatever tools the organization is familiar with.

14.4.1 The Ten “Golden” Rules

Over many years of developing and implementing workflow/BPM solutions, a cer-
tain pattern for maximizing the possibility of a successful result has emerged. This
pattern has been codified into a set of “golden” rules. These rules form a useful set

WORKFLOW MANAGEMENT IN STAFFWARE 355

of guidelines. Note that they are a set and have a collective strength, so taking any
one rule on its own may not be particularly valuable.

Rule 1—Keep it Simple. Experience shows that the success of an IT project is
inversely related to the complexity of the project. The greater the number of compo-
nents in a project, the greater will be the amount of effort needed to complete the
project and the greater will be the risk that the project will (a) go over budget and
(b) fail to meet requirements. This is the golden rule. It is particularly valid for
workflow projects, because in most cases the organization deploying a workflow
system has no prior experience of workflow technology (which directly contributes
to risk).

Rule 2—Deliver Quick Wins. This rule is another way of expressing the golden
rule. A Staffware workflow system is designed primarily to automate processes, not
to manage documents or data. Unlike documents or data, an organization’s process-
es will change on a regular basis, according to the pace of change of the market in
which the organization operates. Staffware makes the definition and change of busi-
ness processes a relatively easy task. It is fruitless to spend many months analyzing,
defining, and implementing the perfect process, because a dynamic organisation
may have changed its processes (as a result of the introduction of new products or
services) before its original (and now incorrect) processes have been automated. It
is far better to define a narrow project scope and focus on key business problems in
order to deliver short-term benefits.

Rule 3—Prepare for Change. Workflow is a unique technology in the way
that it forces people to change the way they work. This change particularly affects
those people who are responsible for managing work (identifying the types of work
to be done, allocating the work to an appropriate work group, making sure the work
gets done, and monitoring productivity), because many of the management tasks
will be performed automatically by the workflow system. To try to define a perfect
automated workflow procedure based on the requirements of the people who oper-
ate the current manual process is like trying to draw a picture with a blindfold on.
Only by implementing and using a workflow system will a business really under-
stand how it wants to use a workflow system.

Rule 4—Define the Scope. The previous rules may seem to encourage a re-
laxed approach to scoping a workflow project, but a well-defined scope is actually
as important for a workflow project as it is for any other IT project, and the previous
rules are intended to assist in making the scope realistic and effective.

Rule 5—Define the Goal. There is a tendency when implementing a workflow
system to make the automation of an existing process a goal in its own right. This
may be acceptable when the primary goal is to improve the efficiency of an existing
process and efficiency gains are expected by virtue of replacing manual tasks (such
as the allocation of work) with automatic processes. A business may, however, have

356 BROWN

many other reasons for implementing a workflow system; for example, to make
processes easier to change, to deskill processes so that resource costs are reduced,
and to reduce elapsed times from start to end of a process in order to improve cus-
tomer service. If the goals are not defined, they are unlikely to be achieved.

Rule 6—Define a Plan. Once you know the scope of a workflow project (rule 4)
and you have defined the goal of the system to be implemented (rule 5), the task of
defining a project plan is greatly simplified, but the importance of defining a project
plan is by no means reduced. Because Staffware encourages an iterative, prototyp-
ing approach to development of workflow procedures, and because many workflow
projects are set up as pilots, before attempting “the real thing,” there is danger that
project planning will be considered unnecessary. This is, of course, not the case.
The well-known axiom applies to all types of workflow projects as much as it does
to any other IT project: “If you fail to plan, you plan to fail.”

Rule 7—Involve the Business, Appropriately. This is another rule that is
common to all IT projects but which has particular relevance to workflow projects
because of the profound impact that workflow will have on the way people work. If
the people involved in current processes do not participate in the design of work-
flow procedures, those procedures are unlikely to support the day-to-day processing
requirements, and when the workflow procedures are implemented, existing users
may actively seek ways to make them fail. However, if the goal of a workflow sys-
tem is to radically change existing ways of working, which may also imply the need
for fewer people with less skill, overreliance on assistance from current users may
be considered to be not only inappropriate but also unethical.

Rule 8—Measure the Results. Even when rule 5 is remembered, and the goal
of a workflow system is the preeminent factor in the design of the system, rule 8 is
often forgotten. If the goal is to increase productivity by 50%, but the productivity
before and after implementation of the system is not measured, the success of the
system cannot be quantified. Consequently, it is difficult to learn lessons that pro-
vide feedback and influence the implementation of the next automated business
process.

Rule 9—Cultivate a Business Sponsor. A business sponsor—perhaps a bet-
ter name is a “business champion”—is essential to see through the implementation
of a workflow system. During the course of this implementation, job roles will be
challenged, power bases will be threatened, and substantial change will be intro-
duced; in short, many potentially terminal challenges will arise. Without an influen-
tial, committed business champion who keeps focused on the goals of the workflow
system, the chance of failure is high.

Rule 10—Use Known and Proven Components. 1t is wise to avoid building
any reliance into a workflow system on a component that has never been used be-
fore, or never been used in the same way before. This applies as much to the

WORKFLOW MANAGEMENT IN STAFFWARE 357

Staffware toolkit itself, which offers increasing functionality over time, as it does to
the middleware components with which Staffware will be integrated. In order to
minimize the risk of unproven components, they should, if possible, be evaluated in
a technical test project before they become a critical component of a production
system.

14.4.2 Rapid Application Development

The concept of rapid application development (RAD) in the Staffware environment
consists of a development approach that involves the swift development and evolu-
tion of a process prototype using the Staffware Process Definer. This phase of the
workflow application development life cycle is relatively short, and in an environ-
ment in which the business analysts/workflow developers have some experience,
this should take no more than a month. Experience has shown that it generally takes
three evolutions of the prototype to get it to the stage where the business process
owners can state that they are happy that the scope, the participants and their struc-
ture, the process flow, and the functionality offered (but not yet built) are more or
less correct. This is sufficient to commence the next phase—applying the prototype
to the process framework.

The development of the prototype should go hand in hand with the development
of a functional specification that lays out, in business terms, a written definition of
each step in the process and the actions arising, the participants reporting, and other
administrative requirements and how those functions are met.

The RAD phase must incorporate the following characteristics:

High business involvement. The prototypes should be reviewed through a se-
ries of workshops at which the active attendance of the key stakeholders in
the business process is essential. They must feel they have ownership of what
is being developed.

Three D’s: Design, Develop, and Discuss. This phase consists of close interac-
tion between the development team and the business analysts/developers on
an iterative basis.

Get it wrong quickly. As per rule 3 above.

Integration is not advised (but can be mapped). The prototype will not contain
any real integration but will be simulated, or at least flagged, in order that the
workshop attendees can see where in the process such integration takes place.

Three stages of development. These are
Stage 1 (the how). Map the business process flow. How does a piece of work
travel through the process? What are all the steps required to take a case form
beginning to end?

Stage 2 (the what and who). What data is required at each step of the
process? What people are needed to process each step?

Stage 3 (the when). Escalation and deadline settings. Where are the integra-
tion points?

358 BROWN

14.4.3 Reference Process Framework

The Risks of Large-scale Workflow Implementations. For some significant
users of the Staffware product suite, there are multiple, concurrent workflow appli-
cation developments across many parts of the organization in progress and planned
at any one time. If a framework approach is not used, the following risks are taken:

® Each team evolves its own way of development, reinventing the wheel
® Integration methodology is uncontrolled

There is severely diminished scope for reuse
Business cases are harder to justify and costs are higher
Realization of fewer benefits for the business

A potential management nightmare!

The Staffware Universal Process Framework (UPF). The concept of the
UPF is a multitiered design to fit a wide range of typical workflow applications. Its
purpose is to construct a means of providing a structure within which (most) admin-
istrative and production workflow processes can be developed to reduce the effort re-
quired during the build phase and cater to the need to standardize the design approach.

The implementation of a process within the UPF is carried out after the develop-
ment of the final prototype, developed during the rapid application development
phase described above. The Universal Process Framework (see Figure 14.9):

® Is supplied as a generic framework that is tailored to the needs of the organi-
zation.

® [s based on and can utilize the complete functionality of the Staffware toolset.

® Contains process maps, common brokers/utilities, and data definitions that
provide a horizontal framework applicable to the majority of Workflow im-
plementations.

® Provides highly functional process infrastructure for accelerated implementa-
tion of Workflow projects.

® [s a robust, production-ready environment with built-in exception and error
handling routines.

A description of each level in the UPF structure follows.

Coordinator Process. The single top-level process that coordinates all incoming
events, starts new cases, and triggers to existing cases. This process includes ele-
ments that vary by channel; for example, an incoming scanned document may be
handled slightly differently from an incoming e-mail.

Line of Business Process. This is a customer-specific process intended to be
transparent to a subject matter expert and able to be specified and created by a busi-
ness analyst who has had Staffware training. This process can be a user interactive,

WORKFLOW MANAGEMENT IN STAFFWARE 359

Customer L Customer Channel

Interaction e

Coordinator
Process

Line of
Business
Processes

Case Worker HoEe _ i _ & [Ay .
Processes 2 = 7] | e e e R e g
System Interface A - : T
sup-process [[[

Back End | Imaging & Document . Customer |
Systems = Management Application System Database }|::

Figure 14.9 The structure of the Universal Process Framework.

a straight-through process, or a mixture of both. Essentially, the line of the business
process reflects the business view of the overall process that is being automated,
and would be based on the final prototype developed during the rapid application
development phase described above. It consists of a series of calls to the Case
Worker processes (see below), with business logic determining routing and actions
following the return from each Case Worker.

Case Worker Process. This is a process structure designed to support user and
integration activities. It is a subprocess with a series of user interaction options that
provides the Line of Business Process a measure of ad-hoc processing. Where users
are involved, a work item is delivered to the appropriate recipient, identifying what
it is and the function to be carried out. Under rules defined at build time, the user
can choose to undertake a number of functions:

Process (release)
Defer (keep)
Diarize for a period of time

Initiate document creation and transmission

Escalate to a superior
® Route to a colleague
® Close

360 BROWN

The above are provided with the template; however, the developer is free to add
whatever other functionality is required within any one particular Case Worker sub-
process.

Integration Process. This is a reusable subprocess that includes a step in which a
component such as a broker performs an integration function. It can be called from
the coordinator, line of business, or case-worker process, Whichever is appropriate.
Examples of such subprocesses include document create and print, e-mail send, and
middleware adapter call. Functions delivered with the process template are as fol-
lows:

® Step/queue for broker

® Error checking

® Branch to exception subprocess on error return code
® Retry loop

The broker, middleware adapter, EJB, COM object, or other entity that performs
the integration would have to be developed by an appropriately experienced techni-
cal resource. This can, however, be done in isolation from the business process de-
velopment and called upon by the process developer when required.

14.5 RESOURCING

Two broad areas of resourcing are required to support the development and imple-
mentation of a workflow/BPM solution. Such a project should primarily be busi-
ness-led, with the willing help of the IT department. It should not be an IT-led pro-
ject as the business is far less likely to take ownership if it feels a system is being
imposed upon it. The emphasis should be given to ensuring that the right level of
knowledge is made available to the project team and that the project as a whole is
being given support at the highest possible level.

14.5.1 Business

The key members of a workflow/BPM project are the business analysts who form
the team to establish the requirements and build the workflow applications using
the Staffware toolset. The term business analyst (BA) covers a broad range of skills,
and although the Staffware product is designed for the use of BAs, it cannot be con-
sidered as simple as that, as not all BAs are the best candidates for the sort of work
required in using the toolset. The best description of an appropriate resource would
be a technical business analyst, one who, though not a programmer or technical spe-
cialist, can show an interest and capability in using process modeling tools such as
ARIS (see Chapter 6). Familiarity with scripting tools such as Excel macros and an
ability to detect and correct logic problems would be a further asset. Although all

WORKFLOW MANAGEMENT IN STAFFWARE 361

BAs need to be able to listen and apply form to business activities, experience has
shown that not all BAs can grasp the concept of being an effective user of a process
automation toolset. At the very least, attendance at the standard Staffware Process
Definer’s course will show whether an individual is a suitable candidate. Comple-
tion of this course does not, however, make the attendant an expert in the product.
They will be able to use the toolset and construct workflow processes, but they will
not have enough experience to build well-designed, production-ready workflow ap-
plications. They should be mentored by an experienced workflow developer over a
period of at least three months, adhere to the methodology being used by the orga-
nization, and utilize a framework approach to development as described in the set of
guidelines in the section on methodology above.

14.5.2 Technical

The specific skills required by the technical members of a workflow application de-
velopment team will vary from project to project but, probably more normally,
from site to site. Increasingly, organizations tend to embrace a particular technolo-
gy platform, be it .NET, J2EE, or any other approach that, usually, is mandated by
their technical architects. Interestingly, there seems to be no clear senior manage-
ment involvement as to which is an appropriate approach regarding the technology
platform; thus, the environment that a workflow developer works in can be arbi-
trary. Nevertheless, the following key attributes for technical support of a work-
flow/BPM development and implementation environment can best be categorized
as follows, though not necessarily inclusively:

® J2EE

e NET

® VB/C++/Delphi

® Active Server Pages (ASP)

® Web Service Technologies

® SQL (Oracle & SQL Server)

® Middleware adapters: Tibco, MQ, Tuxedo, WebMethods, and so on

The role of the technician in a workflow application environment can be separat-
ed from a project role. The technician’s role is to create the technical environment
that can be used and reused by the (specialist) BAs developing the workflow appli-
cations.

14.6 CONCLUSION

The key messages that need to be conveyed and understood by all organizations
that currently use or plan to implement workflow/BPM solutions are as follows:

362 BROWN

® Implementation of a workflow/BPM solution is not a trivial exercise, so pro-
vide sponsorship at a senior level.

® Involve the process owners within the business as closely as possible; they
have to feel they have ownership of the resulting application.

® Manage the people for change; workflow/BPM will dramatically alter the way
they work and if the effects of change are not managed, the application will fail.

The returns from the implementation of such a solution can be dramatic; for a so-
lution comprising more traditional workflows involving people and imaged docu-
ments, a minimum of a 30% return can be expected. Where more significant au-
tomation has been achieved at the production end of the continuum, returns of up to
200-300% usually can be realized. Ensure that the organization understands the
means by which it can make such project outcomes successful.

14.7 EXERCISES

Exercise 1

Explain the differences between the Process Server and the iProcess Server. With
respect to the classification introduced in Chapter 1 (i.e., person-to-person, person-
to-application, and application-to-application processes), which type(s) of process
does each of these two engines aim at supporting?

Exercise 2

What are the basic building blocks of a procedure definition in Staffware? Compare
these elements to those found in UML Activity Diagrams (Chapter 5) and EPCs
(Chapter 6).

Exercise 3
What is the relationship between line of business processes and case worker
processes of Staffware’s “Universal Process Framework™?

Exercise 4

According to the golden rules and the resourcing framework discussed in this chap-
ter, what should be the involvement of senior management and business analysts in
a workflow design and implementation project, and why?

REFERENCES

1. M. Ader. Workflow Comparative Study. Workflow and Groupware Strategies, 2001.
2. Doculabs Inc. Performance Assessment of Staffware Process Suite—Executive Summa-
ry, 2002. http://www.tibco.com/resources/mk/doculabs_executive_summary.pdf

3. S. McCready. There is More than One Kind of Workflow Software. Computerworld, 2,
86-90, November 1992.

I CHAPTER 15

The FLOWer Case-Handling Approach:
Beyond Workflow Management

PAUL BERENS

15.1 OUTLINE

This chapter gives an overview of the basic principles of the FLOWer case-han-
dling system developed by Pallas Athena in The Netherlands.

Today, high demands are made on staff regarding expertise, communication
ability, and commercial skills. More and more, they have become knowledge work-
ers. With automation, the purely routine aspects of a process can be supported more
and more effectively or can even be omitted altogether. Organizations are constant-
ly trying to improve the quantity and the quality of products and services and to
lower costs. Flexibility is an essential condition for product development, process
control, automation, and especially for the staff. This does not take away the fact
that parts of the process can or even should be regarded as an actual production
process. In this context, we speak of production workflow [4, 20] as discussed in
Chapter 1. This also needs to be adequately supported.

The keyword, therefore, is flexibility [11, 16]. If we highlight this with regard to
process control and management, we will see that flexibility is essential in every
area:

® Process design

® Integration with information systems
® Organizational design

® Work allocation

® Execution or runtime environment

® Management and control

Furthermore, the “conceptual integrity” of these diverse areas should be main-
tained. FLOWer satisfies these requirements. FLOWer is based on an “informa-
tion-driven” approach and takes the process as its focal point, whereas traditional

Process-Aware Information Systems. Edited by Dumas, van der Aalst, and ter Hofstede 363
Copyright © 2005 John Wiley & Sons, Inc.

364 BERENS

workflow management systems (WfMS) [33, 34] are based on the routing of ac-
tivities from work tray to work tray, leading to inflexibility and context tunneling.
FLOWer focuses on handling the case as a whole, and not only on the routing of
activities. This routing is merely regarded as derivative. In this chapter, it is
shown that case handling is not just another paradigm, but a more powerful and
more comprehensive paradigm; see also [9, 10]. This means that the FLOWer
case-handling system allows you to manage effectively not only flexibly struc-
tured processes but also offers the functionality necessary for production work-
flow. It, therefore, allows for managing a broader set of business processes than
traditional WfMS.

In Section 15.2, we give an overview of case handling and FLOWer in com-
parison to traditional WfMS. In Section 15.3, we will focus on the conceptual in-
tegrity of the FLOWer case-handling paradigm. In other words, is all required
functionality present and is it present at the right place? We take the complete life
cycle of a process as our starting point and describe how it is mapped onto the
FLOWer case-handling system. This will give a detailed description of the func-
tional components of FLOWer. In Section 15.4, we give eight golden rules of
process management.

The exercises are part of the sections. They focus not only on the modeling of
processes, but also on the other aspects and the relations between these aspects, en-
suring that the reader understands the conceptual integrity of FLOWer.

156.2 OVERVIEW OF CASE HANDLING AND FLOWer

In this section, we describe the concept of case handling implemented by FLOWer.
We do this by comparing case handling and workflow on the basis of the definitions
of the workflow management coalition (WfMC) [33, 34]. Per topic, the related part
of the definition is put in bold text. As our starting point we choose a simple process
with 10 sequential activities, as illustrated in Figure 15.1. The activities are called
activities 1 to 10 and should be handled in that order.

15.2.1 Basic Element for Control
The WEMC gives the following definition of WfM:

The automation of a business process, in whole or part, during
which documents, information or tasks are passed from one partici-
pant to another for action, according to a set of procedural rules.

It is interesting that the WIMC refers to tasks (or steps or activities) that are passed
from one person to another. In other words, the basic paradigm is routing. A
process, therefore, consists of a collection of “processing stations,” that need to do
“processing” in a particular order, fully determined by the routing rules. What actu-
ally happens in such a processing station, that is, which activities need to be carried

THE FLOWer CASE-HANDLING APPROACH: BEYOND WORKFLOW MANAGEMENT 365

ROLE A ROLE B ROLE C

Figure 15.1 A simple process consisting of 10 activities.

out and in which order, does not appear to be relevant here, even if it forms a large
part of the process. In other words, the control must be included in an application
that can be invoked; thus, the control is outside the traditional WfMS. Therefore,
nothing has changed with regard to the past; the control is still hard-coded in the ap-
plications. Assuming three processing stations, the process in Figure 15.1 would be
illustrated in a traditional WfMS as in Figure 15.2.

Indeed, in practice, this process is often modeled in the three “steps.” One could
say this is “routing-based modeling,” that is, the routing determines the process de-
sign. In a traditional WfMS, one could, of course, actually model the process as a
process consisting of 10 activities. This is “activity-based modeling,” that is, the in-
dividual activities determine the modeling. But that will not do. As soon as an activ-
ity is completed, for example activity 1, the traditional WfMS will calculate the
next activity (activity 2) and will determine who will get it, that is, in which user’s
work tray the activity should be placed. It usually will be the same employee who
carried out the previous activity. This can be “forced” by explicitly including in the
process design instructions that this employee should get this activity. It solves the
problem of other employees possibly getting the activity. In the example, this per-
son is the employee with role A. But she still needs to go to the work tray, look up
activity 2, and start it again. This, in turn, can also be solved by having activity 2
start up automatically as soon as activity 1 is closed. These changes place a consid-
erable restriction on the behavior of the system—in all cases of this process after
activity 1, activity 2 will be automatically started up with the same person who car-
ried out activity 1. Exceptions are no longer possible. Furthermore, this means that
activity 2 is explicitly allocated to the employee with role A. If the person with role

366 BERENS

A 4

‘E

step 3

ROLE B ROLE €

Figure 15.2 The granularity of a workflow management system, based upon routing.

A, for whatever reason, cannot carry out activity 2, this activity will have to be re-
distributed.

The traditional WfMS partly acknowledges this problem. Some offer modules or
have announced modules in which the control flow within a step can also be includ-
ed in the design [12, 28]. The system behaves in exactly the same way, however, as
the one described above—the next activity (for example, 2) is started up immediate-
ly for the employee who carried out activity 1, or is placed in his or her work tray
only. This, therefore, also fails to provide a full solution. An employee with role A
and role B, for example, is not helped by this solution. In principle, this person
should be able to carry out activities 1 to 7, but these were already split into two
steps. So the employee now needs to pick step 2 (involving activities 4, 5, 6, and 7)
from his or her work tray before another colleague takes it. A solution for the em-
ployee with role A and role B would be to include activities 1 to 7 in a single step,
but this would then cause problems for employees who only have role A or role B.
The problem really boils down to the routing-based paradigm of the traditional
WIMS.

Exercise 1. Suppose there are three roles, A, B, and C. Role C is higher than A and
B, meaning an employee with role C can do all the work an employee with role A or
an employee with role B can do. A and B are not related hierarchically. Now visual-
ize for the three roles A, B, and C the routing-based approach for the simple process
depicted in Figure 15.3. Is there any routing-based breakdown possible, other than
routing between each and every activity?

THE FLOWer CASE-HANDLING APPROACH: BEYOND WORKFLOW MANAGEMENT 367

a A

.2<_
7/

w

IaX:

]

—
P
>

A

B

A

@
)
w

~

AN

[%2]
~

\m,/

}~c
—°
— 0

ﬂm

Figure 15.3 A simple process with a decision. Roles are shown at the upper right-hand cor-
ner.

The above situation is definitely not fictitious. A knowledge worker is expected
to be able to carry out a large part of the process [3, 4, 16]. This growing demand
for flexibility is becoming increasingly urgent. So the number of processing stations
is declining while the need for process control for knowledge workers is increasing.

In case handling, we use activity based modeling, see Figure 15.4. Case handling
is based on controlling all elementary activities; the routing is derived from this, as
described in the following subsection.

368 BERENS

o

-

ROLE A ROLE B ROLE C

Figure 15.4 The granularity of a case-handling system. The activities form the basis of the
system.

15.2.2 Implicit and Explicit Routing

Based on what we described in the previous subsection, we can determine the
consequences of a process change. We refer yet again to the definition of the
WIMC:

The automation of a business process, in whole or part, during which
documents, information or tasks are passed from one participant to
another for action, according to a set of procedural rules.

This basis has serious consequences for a process change. Suppose that we have
to redistribute the four activities (activities 4 to 7) in the process in Figure 15.1 due
to a change in legislation or due to an organizational change like the empowerment
of roles A and C. In routing terms, this would mean, “We remove the routing step
(step 2) and distribute its contents over step 1 (activity 4 and activity 5) and step 3
(activity 6 and activity 7).” This would result in the following (see Figures 15.5,
15.6, and 15.7).

Figure 15.5 illustrates the starting situation. Figure 15.6 shows the new situation.
In Figure 15.7, the dashed lines indicate what changes are necessary because of
these apparently simple and frequently occurring adjustments. Both steps need to be
adjusted, as does the sequence of activities within the step. In case handling, the
change is minimal. Case handling controls the processing of all elementary activi-
ties, with the distribution being a derived, implicit function that can be adjusted sep-

THE FLOWer CASE-HANDLING APPROACH: BEYOND WORKFLOW MANAGEMENT 369

A 4
A 4

step 1 step 3

step 2

ROLE A ROLE B ROLE C

Figure 15.5 Starting situation in a traditional WfMS—three steps.

A 4

==

step 1 step 3

ROLE A ROLE C

Figure 15.6 The two remaining routing points in a traditional WfMS.

370 BERENS

ROLE A ROLE C

Figure 15.7 The changes necessary to remove the second routing step.

arately from the process definition. From this aspect, the process would be as
shown in Figure 15.8.

It will be clear that a routing-based WfMS leads to considerable control prob-
lems. But a WMS based on 10 activities will also encounter problems, as shown in
Figure 15.2—the behavior of the system requires subsequent activities to be rigor-
ously allocated to the same employee and also automatically started up. But this
again leads to control problems and the need for additional functionality to allow
for the redistribution of the activities (see Figure 15.9).

15.2.3 The Work in Hand

In the previous two subsections, the importance of the entire object, the case or the
“work object” has not been emphasized. In case handling, we assume that the entire
case is, in principle, available to the employee working on the case. The “work in
hand” for the employee is, therefore, the entire case. Depending on the role of the
employee, he or she can process and see the information. In a traditional WIMS, we
find a limitation that leads to what has been called context tunneling [3]. Although
most systems support the notion of “work cases,” only information that is required
for the current activity within the work case is available. The full context of the case
is difficult to access or not present at all. The context consists of the status of the
case, both in terms of the process and the available information. It includes the case
history and the information gathered so far. It also includes access to possible future
activities or tasks. This allows for processing information belonging to an activity

THE FLOWer CASE-HANDLING APPROACH: BEYOND WORKFLOW MANAGEMENT 371

h 4

ROLE B ROLE C

Figure 15.8 The adjustment of the implicit routing in a case-handling system.

ROLE A ROLE B ROLE €

Figure 15.9 The adjustments (dashed lines) in a case-handling system.

372 BERENS

not due yet, for example, one provided by a customer during a phone call. Of
course, this should be controlled using proper authorization mechanisms, like the
ones described in the FLOWer data handling model (see subsection 9.3.1 on
process design).

For the WIMC, the information is regarded as being external to the process:

The automation of a business process, in whole or part, during which
documents, information, or tasks are passed from one participant to
another for action, according to a set of procedural rules.

In Figures 15.10 and 15.11 the differences are illustrated. The information be-
longing to an activity is available only when the step is being processed.

The information belonging to all activities is available all the time. It will be
obvious that the employee has a much better overview here of what has already
happened and what still needs to happen. This means he or she can communicate
with the customer more effectively. Moreover, this approach also offers the possi-
bility [within the authorization rules of the role(s) of the employee] of carrying out
activities or skipping and/or doing them again. It is also possible to enter data that
is already known, even if the activity to which the data logically belongs is not yet
due to be handled. In our view, information in the form of data elements and doc-
uments, for example, is of crucial importance for the status and progress of a case
(see Section 15.3 on the conceptual integrity of FLOWer). This does, however, go

1 1

L4 L4
information and information and information and
applications applications applications
for step 1 for step 2 for step 3

ROLE A ROLE B ROLE C

Figure 15.10 Context tunneling in workflow management (WfM). The step as the basis for
the process.

THE FLOWer CASE-HANDLING APPROACH: BEYOND WORKFLOW MANAGEMENT ~ 373

o et B e el I ey

information and
applications
for ALL activities

ROLE B ROLE C

Figure 15.11 The case as the basis for the process.

against the popular view of a strict division between data and processes, but this
boundary is impossible to uphold in practice. Data (information) can and most
probably will play a role in the content as well as in the process. Progress made
in a process instance normally is due to the gathering of information [2, 3, 8, 24,
25, 26, 27]. Using a case as the work in hand, follows the practice in administra-
tive and service environments. Employees refer to cases, not to activities. A case
is passed on, advice is requested from a colleague about a case, a case progresses
through the organization. So we can speak of office activities as being centered
around cases. It is, therefore, logical to use cases in the electronic representation
as well.

15.2.4 Direct Allocation Versus Indirect Allocation

Another important difference between WfM and case handling is the way in which
the system deals with work allocation. The WfMC definition says:

The automation of a business process, in whole or part, during which
documents, information, or tasks are passed from one participant to
another for action, according to a set of procedural rules.

This definition does allow for how and when tasks are passed on to the next em-
ployee, but things are different in practice. As soon as an activity has been complet-
ed, the next activity or activities that can be carried out, as well as who can perform

374 BERENS

them, are calculated, all in accordance with the process design. The activity is then
allocated to exactly those employees. All other employees do not even see the activ-
ity. From this we can conclude that there is a very strict link between the process
design and the execution. It is not possible, for example, to arrange for allocation
based on a department or regional office. If a person satisfies the “execution rule”
attached to an activity, he will get the activity in his in-tray or work list. An em-
ployee only sees those activities that are due to be handled and that can actually be
handled by him or her under the rules of the process design. This means that there is
no separation between authorization aspects (“What may I do?”) and distribution
aspects (“What can I see?”).

In fact, the traditional WMS behaves in a rather panic-stricken way. An activity
(within the case) is dropped like a hot potato directly onto the plate of employees
who are authorized to carry out the activity now due to be processed. There is no
way of specifying that certain employees can view an activity (or, even better, a
case). Furthermore, nothing more can be changed in the method of allocation. The
employees that satisfy the rules receive the activity; all the others do not. This ap-
proach is far too rigid for most organizations. In order to resolve these problems to
some extent, tremendously complicated rules relating to work allocation are being
created as part of the process design, not in the organization modeling. In these
rules, authorization and distribution aspects are all jumbled together. This violates
the conceptual integrity. Most traditional WfMSs offer a large range of functionali-
ties to reverse the allocation, for example, in the event that an employee is tem-
porarily absent. And with every application of these systems, customized solutions
are developed to allow insight into the current cases, to search for a case on the ba-
sis of a client’s query, and so on.

In case handling, a different paradigm is followed. Logically, the information
that is relevant for the allocation is gathered for each process type. This could re-
late, for example, to the role needed to carry out an activity, to interesting process
control data that is used to distribute the work (Zip Code, regional code, etc.), or to
time-related information. By filtering and combining this information, it is possible
to define a work list or queue of work. As the filter can be easily adjusted and is not
part of the process design, there is optimal flexibility. The problems referred to
above do not arise if the case-handling paradigm is used because:

® The link between design and allocation is not strict, but runs through a sepa-
rate control environment in which the filters can be defined.

® There is a separation between authorization aspects (“which role do I need to
carry this out?”) and distribution aspects (“which cases does this filter pro-
vide me with?”).

The flexibility does have a drawback—more design and control work is re-
quired. The extra functionality, however, more than compensates for this. More-
over, we shall see in Section 15.3 on conceptual integrity of FLOWer that, while re-
taining flexibility, FLOWer can automatically generate standard work trays for
each employee containing exactly those cases they can carry out (i.e., cases for

THE FLOWer CASE-HANDLING APPROACH: BEYOND WORKFLOW MANAGEMENT ~ 375

which there are now activities they can carry out), according to their profiles. These
profiles combine what employees can carry out (authorization) and what they can
view (distribution).

15.2.5 Summary

Based on the WIMC definition of workflow management, we can conclude as fol-
lows:

® WM involves the routing of steps that, in turn, consist of a number of ele-
mentary activities. Case handling is based on processing elementary activi-
ties—the routing is derived from this.

® WM routes external objects. With case handling, all information is accessi-
ble except those parts that an employee is not authorized to see.

® WfM has rigid routing. A distribution change results in a radical process
change. With case handling, authorization and distribution are separated.
Also, the distribution is set up separately from the process design.

® Wi{M has a strict link between design and execution. There is limited scope
for different allocations for each organizational unit. Case handling allows for
this difference.

® Wi{M causes context tunneling. Case handling allows the complete context to
be seen at all times.

® Normally, WfM has few, if any ad hoc retrieval functions; only the activity
that happens to be in the work tray of an employee is available. In practice,
retrieval functionality is developed from scratch each time it is required. Case
handling does have ad-hoc retrieval, if necessary. Again, it is restricted on the
basis of organizational design.

A word of caution is required here. Each of the above-mentioned points has been
addressed by workflow management systems by adding functionality to the basic
paradigm, which is routing of steps. The combination of points, however, is hard to
implement using that basic paradigm.

15.3 CONCEPTUAL INTEGRITY OF FLOWer

In Section 15.2, we looked at the main differences between case handling and tradi-
tional routing-based workflow management. In this section, we will focus on the
conceptual integrity of the FLOWer case-handling paradigm. In other words: is all
required functionality present and is it present at the right place? We shall, there-
fore, look at aspects in a broader framework, namely the complete life cycle of a
process driven by the FLOWer case-handling system (see also [13, 17]). This
brings us to the functional division of the components of FLOWer. We shall review
the following (see Figure 15.12):

376 BERENS

adjust organisation

adapt
definition

Process design
Integrate IT - determine
- control

/U\
<
L~

adjust design

analysis/plannin,
Organisation design Y / P g

design-time

run-time

_D—l—‘ Execution
management

./. (. information
Work distribution

adjust organisation *

adjust execution

adjust work distribution adapt
operation

Figure 15.12 Design and operational use of processes.

Process design
Organizational design
Work distribution
Process execution

It is beyond the scope of this chapter to provide more details on the integration fa-
cilities. Today, most tools offer a wide range of integration functionality, both to the
outside world and by means of API sets to the tool itself. If the above-mentioned
components are present and integrated in a conceptually sound way, it will be possi-
ble, using measurement and analysis, to set in motion a cycle of continuous im-
provement.

We shall discuss the various parts of Figure 15.12, starting from the top right,
anti-clockwise. The starting point is that an organization will develop a process
based on its objectives.

The definition takes place in the upper half of the circle in Figure 15.12, the op-
eration in the lower half. Designing the organizational aspects is found in both
halves: part of this can or will be defined at the definition time, the rest can or will
be designed at the operational level. In addition we provide an overview how
FLOWer supports the functionality.

The FLOWer components are shown in Figure 15.13.

THE FLOWer CASE-HANDLING APPROACH: BEYOND WORKFLOW MANAGEMENT 377

adjust organisation adapt
definition

FLOWer adjust design
Integration STUDIO
functionality

analysis/planning
FLOWer CFM

— [o] [7] FLOWer CASE guide
Queues/queries

oL
E B

FLOWer
Management Info
Case History Logging

FLOWer CFM

adjust execution

v
adapt

adjust work distribution operation

adjust organisation T

Figure 15.13 The different FLOWer components.

15.3.1 Process Design

The process is modeled in the process design component, called the Studio in
FLOWer. Among other things, one defines activities, roles (authorizations) need-
ed to carry out an activity, subprocesses, triggers, data for control and distribution
purposes, and processing sequences. There are huge differences between the sev-
eral products on the market. Three important aspects have to be taken into ac-
count:

1. The supported modeling constructs
2. The capability to define exceptions
3. The robustness of the design against changes

The supported modeling constructs can be evaluated on the basis of the well-
known workflow patterns (see Chapter 8) and the research carried out world-wide
(see [1, 5, 6, 15, 19, 21, 30, 31]). In [6] many different WEMS products, including
FLOWer, are evaluated. Please note that this research is restricted to the process
modeling or design environment. This, however, does not limit its value. As far as
the process modeling environment is concerned, it is currently the only in-depth
evaluation on how frequently occurring workflow patterns are supported. But it ob-
viously does not account for several other components, nor does it evaluate how

378 BERENS

these components interact. These other aspects are also important and should be
taken into account as well. Or in other words, a high score on the supported patterns
is a necessary but not a sufficient condition for successful implementations.

One of the striking elements in administrative processes is the frequent occur-
rence of exceptions, [7, 14, 29, 32]. The capability to define exceptions is, there-
fore, of utmost importance. Most processes, except for the very few extremely
structured processes, contain many exceptions. In fact, exceptions are the rule.
Without a proper mechanism to model exceptions on another level of abstraction
than by simply drawing more arcs in the flow, one has to model each and every ex-
ception, leading to spaghetti-like flows. Or, alternatively, one has to model on an
aggregate level, taking large pieces of the process together in one “activity,” there-
by, of course, losing the connection between the previously present activities.
FLOWer has tackled this problem by offering an easy to use model to handle ex-
ceptions, namely, the role model.

The FLOWer Role Model. FLOWer uses the hierarchical relationships in the
role graph to determine what a user can do based on his roles. In Figure 15.14, a
simple role graph is depicted, with roles A, B, C, and D. A is a higher role than B,
C, and D, but B, C, and D are not related hierarchically. If role R1 is higher than
role R2, a person with role R1 is authorized to do all operations for which role R1 is
required or for which role R2 is required. A person with role R2 is not authorized to
do operations for which role R1 is required.

The FLOWer role model requires the process designer to define three roles for
each process object (like activity, milestone, etc.):

® Execute role
® Redo role
® Skip role

The execute role is the role necessary to carry out an activity or to start a sub-
process. This role is consistent with what the WfMC calls a role ([33, 34]).

The redo role of an activity is the role necessary to return the case to a status for
which that activity is due. Suppose, in a case such as “Settle Motor Claim,” an em-

NN SO N

Figure 15.14 A simple role graph.

THE FLOWer CASE-HANDLING APPROACH: BEYOND WORKFLOW MANAGEMENT ~ 379

ployee wants to redo an activity carried out earlier, such as “Register Claim Data.”
This means that all the intermediate activities also need to be carried out again. The
employee may only do this if he or she has a role that is at least equally high as all
the redo roles of the intermediate activities and the “Register Claim Data” activity
itself. Also, the employee must then at least have the execute role of “Register
Claim Data” in order to handle this activity again.

The skip role is necessary to pass over an activity. In order to skip two consecu-
tive activities, for example, the employee must have a role that is at least equal to
the skip role of those two activities.

The three roles are a very powerful mechanism for modeling a wide range of ex-
ceptions. The redo role ensures a very dynamic (as it is dependent on the role of the
employee and the status of the case) and flexible form of a loop. We note that
FLOWer has two additional mechanisms to model loops. One is the dynamic sub-
process or subplan to model multiple independent occurrences of parts of the
process. The other is the sequential subplan to model parts of a process repeating in
sequence.

The skip role takes care of a range of exceptions that would otherwise have to be
modeled explicitly (drawn) in the process flow in order to pass over activities. Of
course, there are ways of avoiding undesirable effects—you can define the “no-
one” or “nobody” role in every process that is higher than all the other roles and that
no user can perform. You can also define an “everyone” role that is lower than all
others. An activity with the “no-one” redo role can never be undone again and it
would then also not be possible to go back to a predecessor of that activity. This ef-
ficiently models a “point of no return.” An execute role everyone means that the ac-
tivity can be carried out by anyone who at least has a role in that process (because
his role is then at least equal to the role everyone).

How the role model works is demonstrated in Figure 15.15. We have used the
role graph from Figure 15.14 to create this figure. The case is right at the start, that
is, the first activity (step 1) is due.

Execute ROLE B

Redo ROLE A

v Execute ROLE C
ROLE B |_ROLE D Redo ROLE A
v Execute ROLE C

Redo ROLE A

v Execute ROLE B

Redo ROLE A

Figure 15.15 The options for an employee with role B.

380 BERENS
Exercise 2. Give the options for an employee with:

® Role C
® Role D
® Role A
® Role Cand B

Exercise 3. Suppose the FLOWer role model is not used. Draw the different arrows
between the steps and provide the (role-dependent) conditions set by the redo and
skip roles. In Figure 15.16, one such condition is given in pseudocode.

The example used may seem rather artificial, but does demonstrate the power of
the model. It will be clear that it offers tremendous flexibility. If we want to model
this relatively simple process model with only an execute role (WfMC), we have to
define all role expressions as decisions and, thus, more arcs appear in the process
flow. Also, the dynamic behavior whereby the employee’s role determines which
exceptions are allowed is lacking. In practice, we see the process models in a tradi-
tional WfMS becoming unreadable or we see much of the control hidden in the ap-
plications that are accessed. In a more complicated process model than this simple
sequential process flow, with parallel paths, subprocesses, and so on, it would be-
come even more complicated.

In the first part of this chapter, we indicated that flexibly structured processes are
common. The process design functionality should support this. This means, for ex-

Execute ROLE
Skip ROLE
Redo ROLE

A

v

Execute ROLE
<« | Skip ROLE
Redo ROLE

Added condition:

IF user has ROLE C AND user NOT has ROLE A

IF user selects step 3 -ﬁ

e e e

THEN Execute ROLE
THEN goto step 3 — Skip ROLE
ELSE goto step 2
N Redo ROLE

ELSEIF user has ROLE A
IF user selects step 3
THEN goto step 3 Execute ROLE
ELSEIF user selects step 4 ‘@ Skip ROLE
THEN goto step 4 o\

ELSE goto step 2 Redo ROLE

ENDIF
ELSE

goto step 2
END IF

Figure 15.16 Added condition between step 1 and step 2 if no skip or redo roles are sup-
ported.

THE FLOWer CASE-HANDLING APPROACH: BEYOND WORKFLOW MANAGEMENT 381

ample, that possible exceptions can be included without having to draw incompre-
hensible process flows.

The FLOWer Data Handling Model. Apart from the role model, FLOWer is
also information driven; the information present for a case determines, to a large ex-
tent, its status. In administrative processes, the progress is determined by the infor-
mation that is present (see [2, 3, 8, 24, 25, 26, 27]). Some of this information is
purely process control data that can be used, for example, in decisions. In this way,
for example, labeling a case as “straightforward” or “complex” determines the sub-
sequent activities. Other data are purely content-related, such as the telephone num-
ber of a client. Some data objects include both aspects and are relevant both for the
content and the control. An example is “claim amount,” which determines the con-
trol (high amounts go the experienced claim handlers) and is also stored in a prima-
ry information system.

FLOWer has extensive possibilities for defining data, including structures and
arrays. It is possible to define all data in FLOWer. But this is not necessary, of
course. One could store data in the primary systems only.

Data important for process control or for management information is defined in
FLOWer. For control within a case, FLOWer utilizes the data handling model ex-
plained below. For work distribution, in fact, part of the control between cases and
all data objects of a process can be used. It is sufficient to label a data object for
publishing (see the FLOWer publishing model in this subsection). This approach
makes the work distribution extremely flexible. For data objects that are used for
management information, it is sufficient to label them as such in the process design.

To explain the basics of the data handling model, note the following. The status
of a case is (at runtime) represented by the status line (also called the time line or
wave front). The status line shows all activities that are due now. A user can carry
out the activities on the status line, provided he has the proper role (the execute
role). These activities are visible in color; the other activities are visible in gray. Ac-
tivities that have already been carried out (completed or skipped) are behind the sta-
tus line, the others are in front of the line. A data object within a process can be con-
nected to zero or more activities. The nature of this connection determines the
importance of the data object for the activity. We distinguish three forms:

1. Free. The value of the data object can always be entered or changed, as long
as the employee has written authorization for the case. An example is a
client’s telephone number.

2. Mandatory for one or more activities. In order to complete an activity, it is
necessary (but not sufficient; see below) that all mandatory data objects of
the activity have a value. The value of the data object can only be entered or
changed if the employee has a role that is equal to or higher than the execute
role in at least one of the activities for which the data object is mandatory. It
is, therefore, not necessary that one of these activities is the next one due to
be carried out at that moment, that is, it is on the status line. An example of
this is entering the policy number of a client.

382 BERENS

3. Restricted to one or more activities. The value of the data object can only be
entered or changed if one of the activities is, in fact, the next one due to be
carried out at that moment, that is, it is on the status line. An example is the
“Approved?” data object that can only be carried out if the “Authorize” activ-
ity is due to be carried out.

These relationships are necessary to determine whether an activity has been
completed. An activity is completed if:

® All previous activities have been completed (or skipped)
® All mandatory data objects of the activity have a value

® The so-called completion condition of an activity is true. This condition is
normally set to “TRUE,” which means that it is sufficient to give all mandato-
ry data objects a value.

If an employee wants to give a value to a restricted data object, the accompany-
ing activity must be due to be carried out (that is, be positioned on the status line) or
the employee must move the status line by skipping the activities that are in be-
tween, or by redoing the activity again. This is only possible if he has the appropri-
ate role, as described in the FLOWer role model.

Redoing influences the activities that have already been carried out and are now
in front of the status line again. These now have to be carried out once more. It is
not required to give all involved data objects a value again. Suppose only a small
typo has to be corrected. FLOWer remembers the value entered earlier and gives
the data objects the special status “to be confirmed.” The user can then confirm the
value for each data object.

The FLOWer data handling model in combination with the role model results in
an extremely flexible model with which the user, depending on his or her role, can
process a very large number of exceptions. On the other hand, by using restricted
data objects and the “nobody” role, it is also relatively simple to force a straightfor-
ward sequential order of handling.

From the above, we can conclude that one of the striking differences between
FLOWer and traditional WfMS systems is the semantics of the order of activities or
plan elements. FLOWer requires that all previous plan nodes have been done (i.c.,
closed, skipped, or refused in the case of decisions) before a plan node can be fin-
ished, but one can start plan elements even if the predecessors have not been fin-
ished yet. This is very different from the more common notion, supported by other
tools [4, 33, 34], that a plan element can only be started if its predecessors have all
been done. In other words, FLOWer allows for “prefilling.” Of course, this can eas-
ily be avoided if required by the circumstances, since this is both role dependent
and data dependent. So one can easily block a decision for sending a payment check
if it is made prematurely, but one can just as easily decide that certain data elements
can be changed at will, irrespective of the state the case is in, as long as it is not
closed yet.

THE FLOWer CASE-HANDLING APPROACH: BEYOND WORKFLOW MANAGEMENT 383

The FLOWer Publishing Model. The third part of the FLOWer Studio supports
the FLOWer publishing model. The FLOWer publishing model forms the main part
of the interface between the process modeling environment and the organization
modeling environment, FLOWer Configuration Management. In order to distribute
work, it is essential to know the status of the cases. A frequently occurring status
that is of interest for work distribution is, of course, that an activity is “due to be
carried out”; in other words, it is on the status line. In a traditional WfMS, it also
stops here—only that status is available. Moreover, the activity is only allocated to
those people who have the role that belongs to that activity. FLOWer offers a more
powerful solution. In FLOWer, every status and every data object can be published.
You could publish, for example, that a specific activity has already taken place or
has not yet taken place and, furthermore, is not yet due to be carried out. You can
also indicate which role or roles should be published as well. This does not need to
be the execute role. It can, for example, also be a manager. And, finally, you can
publish a data object with its value. Also, the model is not panic driven (see Section
15.2.4 on direct allocation versus indirect allocation). Note that actual work distrib-
ution to users does not take place as yet; the status is published but it is only in the
FLOWer configuration management that the work trays are prepared by utilizing
these published statuses. How this works is explained in subsections 15.3.2 and
15.3.3. A few examples of publishing are listed below.

® The most obvious situation is publish all activities on the status line with
role equal to the execute role of the activity. FLOWer allows you to fill a
standard work tray for each employee based on his or her roles. Take, for
example, employee Jan with the “Handler” role for the “Settle Motor
Claim” process. Jan’s standard work tray contains all cases in which an ac-
tivity is on the status line and the execute role is the same as “Handler.”
With publishing, it is possible to use FLOWer to imitate the behavior of a
traditional WIMS. Of course, you can restrict the standard work tray using
the distribution aspects. So you can arrange to give Jan only those cases that
took place in the “North” region. Simply publish the data element “region”
from the process model.

® You can also publish those motor claims in which a specific activity, such as
“Request Police Report,” has been skipped and the amount payable is greater
than 10,000 Euros. These activities can be published with the “Manager” role.
This allows you to give the manager or another role an overview of these spe-
cial cases. He or she can then determine what should be done. Of course, an-
other role could receive these cases, or this can also be restricted using a re-
gional code.

® Jtis possible to publish all data objects that are of interest for distribution.

It will be clear that this publishing approach is extremely flexible. Publishing
can be compared to stocking a pool with various kinds of fish. A work tray is noth-
ing more or less than a net to catch the right fish. You then only need to give the

384 BERENS

right employees the right net. This is done in FLOWer configuration management,
as explained in the next subsection.

15.3.2 Organizational Design

The organizational design is the next item to be dealt with. As mentioned above,
this aspect is on the borderline between the definition and the operation. Depending
on the policy of the organization, there is a choice of placing the emphasis on the
definition (for example, in centrally controlled organizations) or on the operational
level (in decentrally controlled organizations). It is common practice that the main
outlines of the design are generally valid and are, therefore, defined during the defi-
nition phase, and the details are defined at the operational level. It is possible, for
example, to determine during the design phase which (large) organizational units
there should be, and that cases should be distributed among these organizational
units according to, for example, a Zip Code or region. It can also be decided during
the design phase what criteria should be available for work distribution. But after-
wards, the manager of an organizational unit can then take over control of the de-
sign of the unit, divide it into teams, determine the allocation, and decide on the
available criteria to do this, as long as he or she stays within the boundaries set dur-
ing design.

Next, the authorizations for each employee should be established. In order to
guarantee the necessary flexibility, a distinction should be made here between au-
thorization aspects and distribution aspects. An employee, for example, acts as a
“Claims Handler” for the “Settle Motor Claim” process and works in the depart-
ment that handles cases for region “North.” The authorization aspects are deter-
mined in terms of roles (“Claims Handler”). The department, in fact, forms a distri-
bution unit; the work that satisfies certain criteria should be distributed to this
department. An employee, thus, receives a work profile by being allocated a num-
ber of roles and being included in a unit to which work is allocated. This should, of
course, be done in such a way that it remains easy to manage. FLOWer can do this.

We note that the above approach ensures a proper division of the various units.
The process design produces a number of roles and criteria that could be of interest
for the work distribution, whereas the employees are identified during the organiza-
tional design. It is then possible to compose a number of work profiles. This is the
basis for the work distribution, discussed in the next subsection.

15.3.3 Work Distribution

In the previous subsection, we defined work profiles for employees. These work
profiles already contain all the roles and are already connected to distribution pro-
files. To complete the work distribution, all we need to do now is to indicate the
values of the criteria for the distribution profiles. We need to indicate, for example,
that for the North department, the value of the region criterion should be “North.”
In this way we define work profiles whereby employees are allocated work for
which they are authorized and that also belongs in their organizational unit. Every

THE FLOWer CASE-HANDLING APPROACH: BEYOND WORKFLOW MANAGEMENT 385

employee, therefore, has a standard work tray containing the cases he or she can
process. That is, cases that can be processed in that employee’s organizational unit
and for which he or she can carry out activities. If desired, the cases can be sorted
and prioritized. Allocation can also be arranged so that it is for a single user (“push”
distribution) or a group (“pull” distribution). For pure production work, the work al-
location has now been arranged.

This is, however, not sufficient. The employees should be able, for example, to
look up a case in the event of questions from a client. A team leader or manager
must have insight into the open cases. It boils down to the fact that, besides a stan-
dard work tray, other queries should be available. This functionality is particularly
important for a front-office environment or a call center.

We note yet again that this aspect is also difficult to define entirely centrally, let
alone to handle in the process modeling environment. For example, one department
divides the work differently from other departments, or provides the employees
with different overviews. In one department or in one workgroup, a sudden rush of
work will mean that the work allocation needs to be changed temporarily. Of
course, the freedom of scope is centrally defined. This is one of the aspects of oper-
ational flexibility, which means that the operational environment can be adapted
without having to change the design or the centrally defined organizational design.
In this context, we can speak of operational flexibility in the work distribution. But
operational flexibility also means that the boundaries, set out in the design or the
central organizational design, may not be crossed. So operational flexibility does
not mean that the employee or manager themselves can determine everything. See
[17] for more information on dynamic work distribution in W{MS.

FLOWer Configuration Management. In FLOWer, the functionality is of-
fered through FLOWer Configuration Management (CFM). FLOWer CFM can be
used centrally and/or decentrally. This allows you to divide up the organizational
design task between all those involved. In practice, the outlines are usually set out
centrally first; the managers of the various units can then fill in the details for their
employees.

In FLOWer CFM, the following can be defined:

® Users

® Distribution profiles
® Work profiles

® Function profiles

® Queues

® Queries

In Figure 15.17, the different elements are shown.

A user is assigned to one or more work profiles. A work profile is a combination
of one or more function profiles and one or more distribution profiles. A function
profile can be compared to a function. Roles can be grouped into a function profile.

386 BERENS

Authorization | Distribution

Queries/Queues
templates

Astribution aspect/value

Function profile Distribution profile

Work profile

Users

Figure 15.17 The different elements of FLOWer Configuration Management.

A role is always defined in the context of a process, as described earlier. Once the
function profiles have been attached to the work profile, it is determined what the
user can do, that is, what he or she is authorized to do. But it does not determine
what a user can see. This is done using distribution profiles.

A queue definition or queue template contains a recipe for the selection of cases.
This recipe can use data objects such as “regional code,” “priority,” “amount,” and
so on. These data objects must be published in the process design. The queue tem-
plate can then be related to a distribution profile. A queue is formed by defining the
value(s) of the data objects in the queue template. In this way a “North” distribution
profile is created, for example, to which the queue “all motor claims with regional
code North” is related. Of course, other queues can be connected to this “North”
distribution profile. This distribution profile can then be related to the work profile
“Claims for North.”

Also, the function of “Motor Claims Correspondent” is related to this work pro-
file, and the role of “Claims Handler” for the “Settle Motor Claim” process is relat-
ed to this function. In this way, authorization and distribution are properly separated
and can be set up very flexibly.

FLOWer bases the content of the queue that the employee sees on the work pro-
file of that employee. The queue or work tray contains exactly the cases that the em-
ployee can see and for which he is authorized (both selected on the basis of the pub-
lishing model). The employee, therefore, can, in fact, actually work on every case in
this work tray.

As you can also publish roles other than the execute role, you can also create
work trays in this way containing cases that the employee can see but not necessar-
ily work on. This could be very well suited to on-line management information.

Finally, it is also possible to define queries that also produce cases. The query
can make use of all the published data. This data can also be offered as a parameter

EEINT3

THE FLOWer CASE-HANDLING APPROACH: BEYOND WORKFLOW MANAGEMENT 387

for the user of the query. For example, the postal code of the client could be includ-
ed as a parameter in a query. This would allow a call center or a front office to find
cases quickly and inform the client of its status. Queries, like queues, can also be
connected to work profiles (via their relation with distribution profiles).

In both queues and queries, various setting options are possible, such as only
opening read-only files, or opening the case automatically on a specific form. This
also allows the production workflow elements of a process to be very effectively
driven.

FLOWer Configuration Management is also available at the operational level in
order to introduce further refinements such as:

® Making detailed profiles for teams or individual employees

® Defining specific queries, for example, for on-line management information
® Managing users in your own environment

® Adapting features such as queues and queries

In short, flexibility of design as well as work distribution can really be achieved at
the operational level but, naturally, within the boundaries set out by the organization.
The conceptual integrity of the different environments, process modeling, organiza-
tional modeling, and work distribution is preserved. Optimal flexibility is the result.

Exercise 4. Describe the effect of the following changes on the process design if no
abstraction of teams/workgroups is available in the process modeling environment,
so only roles are supported or roles and teams are defined using the same mecha-
nism. In other words, suppose there is a direct coupling between the “execution
condition,” that is, the role expression, of an activity and the runtime environment.
A user then simply gets all activities if his profile obeys the execution condition.

Suppose a process is being handled in 25 different offices, having from 5 to 50
employees. In the smaller offices, employees have many roles; in the larger offices,
employees have only one or at most three roles. In addition, in some offices, inde-
pendent of their size, a pull-type work distribution is in use; in other offices, a push-
type distribution is used.

® Add a new office.
® Split one office into two offices.

o Allow for special treatment of cases that are due; that is, make for each office
a special work tray with due cases.

® Reorganize completely. The process stays the same, but now we have 25
small front offices and one large back office.

15.3.4 Execution of Work

Finally, we come to the execution—the handling of work. Employees get work on
the basis of their profiles. This work is presented in the employees’ standard work

388 BERENS

trays or queues, which contain the cases the employees can process. The employees
can also look up cases through the “queries” allocated to them. It could be that the
respective employee can only “view” a particular case. In that case, he or she does
not have the role or permission to execute an activity but can, for example, provide
information about the case to a customer.

Suppose that the employee opens a case for which he or she has a role that al-
lows processing. We are then at the process-control level within a single case.
FLOWer gives the employee an overview of the entire case, not only the activity or
activities that can be executed now. The information of the case is also shown. It is
possible, of course, to hide certain parts of the case and the related information. An
example is the “Process Medical Examination” subprocess that can only be viewed
by employees having been assigned the role of “Medical Adviser” directly, that is,
not assigned the role because they have a higher role than “Medical Adviser.”

Previously, we described the importance of flexibly structured processes. Within
the limitations set at design time (in the process modeling and organizational mod-
eling environments), the employees should be able to make their own choices,
process exceptions, apply their knowledge optimally, and so on. This is a second as-
pect of operational flexibility—the ability to adapt the processing of the case.

For more information on the process execution environment, please refer to the
Pallas Athena Website, http://www.pallas-athena.com.

15.3.5 Maintenance

In the previous subsections, we described process design, organizational design,
and the execution of cases. Subsequently, it should be possible change the design.
This requires powerful management and maintenance functionality [7, 14, 32]. In
other words, it should be possible to effectively adapt the process design, the inte-
gration with other information systems, the organizational design, the work distrib-
ution, and the execution. It cannot be overstated that conceptual integrity is crucial.
So the available functionality must be complete and available at precisely the right
spot. To state it bluntly, one can automate each and every process, provided one
does enough programming and has a large budget, but both cost and elapsed time
will be far beyond any reasonable level without proper maintenance functionality.

15.3.6 Management Information

One important aspect necessary to achieve continuous improvement is still lack-
ing—management information. Only with good management information can one
analyze how a process can be improved. In addition, logging management informa-
tion may be a legal obligation or required by a company’s internal auditors. An ef-
fective process management system should, therefore, record the essential basic in-
formation that shows who did what and when. Preferably, the relevant details
should also be recorded. On this basis, the results can be analyzed and then changes
can be identified and implemented on all levels named in the previous Subsection
15.3.5.

THE FLOWer CASE-HANDLING APPROACH: BEYOND WORKFLOW MANAGEMENT 389

We make a distinction, however, between on-line management information and
off~line management information. On-line management information provides direct
information about the current situation and provides the opportunity for immediate
intervention. A few examples are:

® An overview for a team leader of the current cases of each employee in his
team, on the basis of which he can reallocate work

® An overview of high-priority cases in a department

® A departmental overview of cases that need to be completed within two
weeks

With the mechanisms available in FLOWer Configuration Management, de-
scribed earlier, on-line management reports can be prepared easily. The on-line
property plus the representation in the form of cases allows for direct intervention,
like reallocating cases.

The off-line management information is suitable for elaborate analysis, possibly
and most often combined with information gathered in other systems. This makes it
possible, for example, to use off-line management information for simulation pur-
poses.

FLOWer offers a wide range of options in the area of management information.
The off-line management information in FLOWer consists of two parts:

1. Management information relating to process objects, also called case node
logging

2. Management information relating to data objects, also called case data log-
ging

Case Node Logging. Normally, FLOWer will log all changes in the status of a
case. In a database, it logs which process objects have changed, when they changed,
who changed them, why the change occured, the processing time since the previous
status change, and the new status. FLOWer also logs when the case was created,
opened, or closed and by whom. It also logs the time passed between the moment of
opening of the case and the moment the user actually begins to process it, that is,
starts keying in information or invoking an application. From this, the time required
to make the context switch from one case to another can be measured.

The stored management data that can be converted into management reports us-
ing a report generator.

Case Data Logging. As we stated earlier, data is crucial for administrative
processes [3, 10, 24, 27]. FLOWer can log case data in a database. When doing this,
FLOWer only logs the data objects that were labeled as management information
during the process design (FLOWer Studio). In general, this involves data that is
crucial for management information, such as the amount of a claim and results of
decisions. This information, too, is stored in database tables. In combination with

390 BERENS

case node logging and/or information from the primary systems or an information
warehouse one can generate reports.

Case Instance History. Apart from the management information mentioned
above, FLOWer also records the entire history of a case. This information is record-
ed in a file and contains information about the execution of a case such as both sta-
tus and data changes, timestamps, and people involved. This information can be
read by those employees who are authorized to do so, using the Activity Log View-
er. So, if required the entire history of the case is available. During the design phase
(FLOWer Studio) the information to be included in the case history is determined.

15.3.7 A Process of Continuous Improvement

If the elements mentioned in the previous subsections are present, a process of con-
tinuous improvement can be started. This forms an integral part of the required flex-
ibility—processes and products must be adaptable in the shortest possible time and
at the lowest possible cost. This is crucial for every organization in today’s market
[7, 14]. Therefore, conceptual integrity should be one of the most important dis-
criminators in selecting a tool.

We conclude this section with an exercise involving some of the FLOWer com-
ponents.

Exercise 5. Describe how the FLOWer role model and data handling model should
be used to turn a FLOWer process model into a traditional workflow model. Also,
describe using the FLOWer publishing model, how to define a work tray for an em-
ployee containing precisely those cases for which there are activities on the status
line with an execute role equal to one of the roles of the employee.

15.4 GOLDEN RULES OF PROCESS MANAGEMENT

We conclude this chapter with eight golden rules of process management. The list is
limited to what we believe are the most important ones that are at least in some way
typical for process management.

1. Process management is complex. Do not oversimplify. Through the years,
most existing business processes have become too complex, especially the ones that
are not controlled by dedicated software. In most situations, they can be simplified.
To avoid the risk of suboptimizing, one should start remodeling the business
process instead of simply automating the current process. But most business
processes will still turn out to be complex, even if the modeling is done properly.
Some managers, however, have a tendency to downplay the complexity of the
work, because the standard cases are indeed easy to handle. They also take a high-
level perspective, thereby ignoring the exceptions. But, in practice, the world is
more complex. To oversimplify, therefore, exposes one to real risk.

THE FLOWer CASE-HANDLING APPROACH: BEYOND WORKFLOW MANAGEMENT 391

2. The impact of process management is high. Process management influences
the way people work more than the data management applications (legacy, registra-
tion of data, etc.). The latter focus on automating data-handling tasks and thus influ-
ence only some aspects of the daily work. Process management influences the way
processes are handled; that is, almost all other aspects of the daily work. Therefore,
implementing process management should be done with great care. It is not just an-
other application supporting a few tasks in a process but an application automating
the processes themselves. Make sure the users are involved right from the begin-
ning and appoint a dedicated and experienced change manager.

3. Don’t design a production line The main reason for the failure of using the in-
dustrial production line paradigm in office processes is that this paradigm simply
does not fit. The best proof for that is that it has almost never been applied success-
fully, even after decades of trying. Implementing a process on the basis of industri-
al/logistic production principles only is not good enough. Another paradigm is re-
quired. Therefore, take advantage of the lessons learned in industrial production
lines and logistics; there is certainly much to be gained by applying some of the
principles, but it is not the only source of knowledge.

4. Prototyping leads to higher quality in less time. As it is very difficult to fully
comprehend a process specification and its impact on the organization (see the first
rule), it is of utmost importance to develop prototypes. The information gathered
from prototyping sessions is valuable for further development and, in addition, pro-
totyping will help determine the right expectations for users and their management.
Products allowing for rapid prototyping, like FLOWer itself or those used in combi-
nation with the Pallas Athena process modeling tool PROTOS, deliver higher qual-
ity, shorten development time, and reduce costs.

5. Develop incrementally. By developing incrementally, one can combine the ben-
efits of prototyping and traditional development. For process management, with its
heavy impact on the way people work, this is important.

6. Make the process itself a starting point, not the routing. Do not make routing
the basis of a process. The activities of the process are the basis. If one makes routing
the basis, one will soon conclude that the process flow within a routing step must ei-
ther be supported in a separate module or must be built once again in the business ap-
plications. As shown in Subsection 9.2.1, the basic element of control—a separate
module—is no real solution. The latter solution, incorporating parts of process flow
in the business application, obviously is no improvement since it violates the very ba-
sis of workflow management: the separation of process and business applications.

7. Exceptions are the rule. Accept the notion that not everything can be determined
beforehand. Exceptions are the rule in processes. Determine what has to be obeyed at
all times, but leave other parts to the workers, allowing them to make decisions de-
pending on their skills (and roles). Keep in mind that the mere fact that humans are

392 BERENS

involved indicates that human skills are required. What can be automated will be au-
tomated, now or in the near future; what cannot, should be left to the workers. That
is, system should support these workers to make the right decision, depending on
their roles and the boundaries set by process modelers and management.

The benefits from supporting exceptions, that is, not solely focusing on the
straight-through processes, are real. In most processes, except for the very few pro-
duction processes without exceptions, the number of cases with exceptions is high.
Twenty percent or more is a good estimate. Note that these 20% of the cases take
about 80% of the time, and they take even more than 80% of the cost since the ex-
ceptions are handled by experienced staff. The straightforward cases take 20% of
the time. So, obviously, you can achieve high benefits by improving on the difficult
cases.

8. Never compromise the conceptual integrity. The chosen product must support
conceptual integrity. The cost of maintenance will be exceptionally high without it.
Keep in mind that the full circle of improvement must be supported to be able to
adapt rapidly to changes, not the least to changes affecting the (business) environ-
ment, like new products from competitors and new legislation. During all system
development phases, regularly analyze where changes can occur and what their na-
ture is. Ensure that these changes are indeed limited to the component they logical-
ly belong to. For example, a change in the organization like adding a second claims-
handling department, adding some staff to a team, or changing the way work is
distributed to certain employees, should not affect the process design. Make sure
the system is as robust to changes as possible.

15.5 CONCLUSION

In this chapter, we have given an overview of the FLOWer case handling approach to
process management. We have shown how FLOWer differs from traditional work-
flow management systems. We have provided an overview of the different aspects of
process management and the way they are implemented in FLOWer. In doing so, we
have demonstrated the conceptual integrity of the FLOWer case-handling paradigm
for process management. Case handling is a powerful paradigm for process manage-
ment. The FLOWer case handling system allows you to manage effectively not only
flexibly structured processes, but straightforward production workflow. FLOWer of-
fers organizations a process management functionality, allowing them to respond ef-
fectively and successfully to the needs of their clients in today’s constantly expand-
ing and highly competitive market. For more information on FLOWer, see [23].

ACKNOWLEDGMENT

The contents of this chapter, apart from Section 15.4, are part of the FLOWer posi-
tion paper [22], copyright Pallas Athena, The Netherlands, and available on the Pal-
las Athena Website, http://www.pallas-athena.com.

THE FLOWer CASE-HANDLING APPROACH: BEYOND WORKFLOW MANAGEMENT 393

REFERENCES

1.

10.

11.

12.

13.

14.

15.

W. M. P. van der Aalst. The Application of Petri Nets to Workflow Management. The
Journal of Circuits, Systems and Computers, 8(1):21-66, 1998.

. W. M. P. van der Aalst. On the Automatic Generation of Workflow Processes Based on

Product Structures. Computers in Industry, 39(2): 97-111, 1999.

. W. M. P. van der Aalst and P. J. S. Berens. Beyond Worklow Management: Product-

Driven Case Handling. In S. Ellis, T. Rodden, and I. Zigurs (Eds.), International ACM
SIG-GROUP Conference on Supporting Group Work (GROUP 2001), pp. 42-51. ACM
Press, New York, 2001.

. W. M. P. van der Aalst and K. M. van Hee. Workflow Management: Models, Methods,

and Systems. MIT Press, Cambridge, 2002.

. W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros. Ad-

vanced Workflow Patterns. In O. Etzion and P. Scheuermann (Eds.), Seventh Interna-
tional Conference on Cooperative Information Systems (CooplS 2000), volume 1901 of
Lecture Notes in Computer Science, pp. 18-29. Springer-Verlag, Berlin, 2000.

. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Work-

flow Patterns. Distributed and Parallel Databases, 14(1):5-51, 2003.

. W. M. P. van der Aalst and S. Jablonski. Dealing with Workflow Change: Identification

of Issues and Solutions. International Journal of Computer Systems, Science, and Engi-
neering, 15(5):267-276, 2000.

. W. M. P. van der Aalst, H. A. Reijers, and S. Limam. Product-driven Workflow Design.

In W. Shen et al. (Eds.), Proceedings of the Sixth International Conference on Computer
Supported Cooperative Work in Design 2001, pp. 397-402. NRC Research Press, Ot-
tawa, 2001.

. W. M. P. van der Aalst, M. Stoffele, and J. W. F. Wamelink. Case Handling in Construc-

tion. Automation in Construction, 12(3):303-320, 2003.

W. M. P. van der Aalst, M. Weske, and D. Griinbauer. Case Handling: A New Paradigm
for Business Process Support. Data and Knowledge Engineering, 2004.

A. Agostini and G. De Michelis. Improving Flexibility of Workow Management Sys-
tems. In W. M. P. van der Aalst, J. Desel, and A. Oberweis (Eds.), Business Process
Management: Models, Techniques, and Empirical Studies, volume 1806 of Lecture
Notes in Computer Science, pp. 218-234. Springer-Verlag, Berlin, 2000.

BPi. Activity Manager: Standard Program—Standard Forms (Version 1.2). Workflow
Management Solutions, Oosterbeek, The Netherlands, 2002.

F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Conceptual Modeling of Workflows. In M.
P. Papazoglou (Ed.), Proceedings of the OOER’95, 14th International Object-Oriented
and Entity-Relationship Modelling Conference, volume 1021 of Lecture Notes in Com-
puter Science, pp. 341-354. Springer-Verlag, 1995.

C. A. Ellis and K. Keddara. A Workflow Change Is a Workflow. In W. M. P. van der
Aalst, J. Desel, and A. Oberweis (Eds.), Business Process Management: Models, Tech-
niques, and Empirical Studies, volume 1806 of Lecture Notes in Computer Science, pp.
201-217. Springer Verlag, Berlin, 2000.

K. M. van Hee and H. A. Reijers. Using Formal Analysis Techniques in Business
Process Redesign. In W. van der Aalst, J. Desel, and A. Oberweis (Eds.), Business
Process Management, Lecture Notes in Computer Science 1806, pp. 142—-160. Springer-
Verlag, Berlin, 2000.

394 BERENS

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

T. Herrmann, M. Hoffmann, K. U. Loser, and K. Moysich. Semistructured models are
surprisingly useful for user-centered design. In G. De Michelis, A. Giboin, L. Karsenty,
and R. Dieng (Eds.), Designing Cooperative Systems (Coop 2000), pp. 159-174. 10S
Press, Amsterdam, 2000.

S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture
and Implementation. International Thomson Computer Press, 1996.

A. Kumar, W. M. P. van der Aalst, and H. M. W. Verbeek. Dynamic Work Distribution
in Workflow Management Systems: How to Balance Quality and Performance? Journal
of Management Information Systems, 18(3):157-193, 2002.

B. Kiepuszewski, A. H. M. ter Hofstede, and C. Bussler. On Structured Workflow Mod-
elling. In B. Wangler and L. Bergman (Eds.), Proceedings of the Twelfih International
Conference on Advanced Information Systems Engineering (CAiSE’2000), volume 1789
of Lecture Notes in Computer Science, pp. 431-445, Stockholm, Sweden, June 2000.
Springer-Verlag.

F. Leymann and D. Roller. Production Workflow: Concepts and Techniques. Prentice-
Hall PTR, Upper Saddle River, New Jersey, 1999.

G. Meszaros and K. Brown. A Pattern Language for Workflow Systems. In Proceedings
of the 4th Pattern Languages of Programming Conference, Washington University
Technical Report 97-34 (WUCS-97-34), 1997.

Pallas Athena. Case Handling with FLOWer: Beyond workflow management. Pallas
Athena BV, Apeldoorn, The Netherlands, 2002.

Pallas Athena. FLOWer Manuals. Pallas Athena BV, Apeldoorn, The Netherlands,
2001-2004. www.pallas-athena.com.

H. A. Reijers. Product-Based Design of Business Processes Applied within the Financial
Services. Journal of Research and Practice in Information Technology, 34(2):34—46,
2002.

H.A. Reijers, S. Limam, and W.M.P. van der Aalst. Product-based Workflow Design.
Journal of Management Information Systems, 20(1):229-262, 2003.

H. A. Reijers and K. Voorhoeve. Optimal Design of Process and Information Systems: A
Manifesto for a Product Focus. Informatie, 42(12):50-57, 2000. (In Dutch)

N. Russell, A. H. M. ter Hofstede, D. Edmond, and W. M. P. van der Aalst. Workflow
Data Patterns CITI Technical Report, FIT-TR-2004-01, QUT, 2004; see
http://www.citi.qut.edu.au/pubs/technical.jsp.

Staffware. Staffware Case Handler—White Paper. Staffware PLC, Berkshire, UK,
2000.

D. M. Strong and S. M. Miller. Exceptions and Exception Handling in Computerized In-
formation Processes. ACM Transactions on Information Systems, 13(2):206-233, 1995.
K. de Vries and O. Ommert. Advanced Workow Patterns in Practice (1): Experiences
Based on Pension Processing (in Dutch). Business Process Magazine, 7(6):15-18,
2001.

K. de Vries and O. Ommert. Advanced Workflow Patterns in Practice (2): Experiences
Based on Judicial Processes (in Dutch). Business Process Magazine, 8(1):20-23, 2002.
M. Weske. Formal Foundation and Conceptual Design of Dynamic Adaptations in a
Workflow Management System. In R. Sprague (Ed.), Proceedings of the Thirty-Fourth
Annual Hawaii International Conference on System Science (HICSS-34). IEEE Comput-
er Society Press, Los Alamitos, CA, 2001.

THE FLOWer CASE-HANDLING APPROACH: BEYOND WORKFLOW MANAGEMENT 395

33. WFEMC. Workflow Management Coalition Terminology & Glossary, Document Number
WFMC-TC-1011, Document Status—Issue 3.0, February. Technical report, Workflow
Management Coalition, Brussels, 1999.

34. WFMC. Workflow Management Coalition, The Workflow Reference Model, Document
Number TC00-1003, Document Status—Issue 1.1, January 1995, Author: David
Hollingsworth.

EEEE APPENDIX

Readings and Resources

This appendix includes lists of references to sources of further information regard-
ing various aspects of process-aware information systems. It is not intended to be
exhaustive. In particular, direct references to Web sites of commercial software
tools are not included.

URLs are current as of October 2004. The descriptions and comments included
reflect the book editors’ understanding and viewpoints. The editors do not make
any warranties or representations regarding the accuracy, suitability, completeness,
currency, or correctness of the provided information.

BOOKS

B2B Integration by Christoph Bussler (Hardcover, 400 pages, Springer-Verlag,
2003). Presents an overview of software architectures for business-to-business
integration. Emphasis is on general principles and concepts rather than products
or standard-specific features. Many of the concepts and principles described are
relevant to the design and implementation of application-to-application process-
es within and across organizational boundaries. The book constitutes an excel-
lent source of complementary material for readers interested in the topics cov-
ered by the same author in Chapter 4 of this book.

Design and Control of Workflow Processes: Business Process Management for the
Service Industry by Hajo Reijers (Paperback, 320 pages, Springer-Verlag, 2003).
Addresses issues related to the design and redesign of workflow processes as
discussed by the same author in Chapter 9 of this book. Focus is on performance
of business processes rather than their technical realization. Among other things,
the book looks at resource allocation in workflow processes (addressing Gol-
dratt’s conjecture), product-based workflow design (looking at the essential data
rather than the existing way of doing things), and redesign heuristics. Most of the
examples are taken from the service industry.

Production Workflow: Concepts and Techniques by Frank Leymann and Dieter
Roller (Paperback, 479 pages, Prentice-Hall, 1999). Provides a relatively com-
prehensive presentation of workflow systems, addressing three key questions:
what is a workflow system? how does one use a workflow system? and, to a less-

Process-Aware Information Systems. Edited by Dumas, van der Aalst, and ter Hofstede 397
Copyright © 2005 John Wiley & Sons, Inc.

398 APPENDIX

er extent, how does one build a workflow system? Although the authors attempt
to be “product-neutral” in their treatment of the topic, a significant part of the
discussions and examples refer to IBM’s MQSeries Workflow (later renamed
IBM Websphere MQ Workflow) and its associated flow definition language,
which ultimately influenced the design of the Business Process Execution Lan-
guage for Web Services presented in Chapter 13 of this book. Also, the work-
flow system architecture presented reflects the design and technological choices
incorporated in this product.

Web Services: Concepts, Architectures and Applications by Gustavo Alonso, Fabio
Casati, Harumi Kuno, and Vijay Machiraju (Hardcover, 354 pages, Springer-
Verlag, 2003). Provides a conceptual overview of the technology and design
techniques associated with Web services. Especially relevant to the topic of
process-aware information systems is the second part of the book, which, among
other things, introduces the notions of Web service coordination and composi-
tion, which together constitute a paradigm for application-to-application integra-
tion. Consistent with the style of the book, the discussion on Web service com-
position is mainly placed at a conceptual level, and the Business Process
Execution Language for Web Services (see Chapter 13 of this book) is presented
as a particular realization of this notion. The book also covers transactional as-
pects of middleware in general, and Web services in particular, expanding on
some of the considerations of Chapter 11 of this book.

Workflow Management: Modeling Concepts, Architecture and Implementation by
Stefan Jablonski and Christoph Bussler (Paperback, 351 pages, International
Thomson Computer Press, 1996). One of the earliest books on workflow man-
agement covering a broad range of topics including, among others, available tool
support (both research prototypes and commercial products), a treatment of vari-
ous identified perspectives on workflow management, and implementation as-
pects. As a general approach to workflow management, the MOBILE model and
system presented in this book provide a context in which applicable concepts
and approaches are seamlessly brought together.

Workflow Management: Models, Methods, and Techniques by Wil van der Aalst
and Kees van Hee (Hardcover, 374 pages, MIT Press, 2002). Presents a mod-
el-driven approach to process-aware systems. The focus is on workflow tech-
nology and the modeling and analysis of workflow processes. As a modeling
language, a variant of Petri nets (better known as “workflow nets”) is used, and
at the end of each chapter there are exercises. The book has a supporting Web
site with interactive examples and lecture material, http://www.workflow-
course.com.

Workflow-based Process Controlling: Foundation, Design, and Application of
Workflow-driven Process Information Systems by Michael zur Muehlen (Paper-
back, 315 pages, Logos, Berlin, 2004). Focuses on the use of workflow models
and data collected from workflow executions (i.e. audit trails) for the purpose of
decision making. It presents a reference model for representing workflow appli-
cations and their audit trails, and provides a comprehensive overview of organi-

READINGS AND RESOURCES 399

zational aspects of process management. The book also includes thorough back-
ground information on workflow technology and related standards (including
those discussed in Chapter 12). Among others, a historic view into the evolution
workflow tools is provided, covering both research prototypes and commercial
tools. More information about the book as well as an electronic version of it can
be found at http://www.workflow-research.com.

PORTALS AND WEB SITES OF INTEREST

AAIM—Association for Information and Image Management (http://www.aiim.
org). The main Web site of an association dedicated to the promotion of tech-
nologies for content management in general, with an emphasis on content man-
agement for process automation. Among other things, AAIM organizes and ad-
vertises professional development events (e.g., online and traditional seminars)
and publishes a magazine targeted at professionals (44IM E-DOC Magazine).

BP Trends (http://www.bptrends.com). This portal is dedicated primarily to man-
agerial aspects of business processes but also covers technology-related topics,
especially regarding process modeling, analysis, and simulation tools as well as
standardization efforts. Among other activities, it disseminates a newsletter and
maintains lists of relevant events and resources.

BPM Center (http://www.bpmcenter.org). This site is jointly maintained by the re-
search groups with which the editors of this book are affiliated: the BPM Group
of the Queensland University of Technology, Australia, and the Department of
Technology Management at Eindhoven University of Technology (TU/e), The
Netherlands. These associated groups conduct research across a broad spectrum
of business process management topics. Among other activities, the site main-
tains information about ongoing activities and a series of technical reports.

BPM Institute (http://www.bpminstitute.org). This portal aims at facilitating ex-
changes between practitioners of business process management (BPM). Like the
BPM Institute, it is mainly oriented toward managerial aspects but also covers
technological issues. Among other activities, it disseminates white papers and
articles, hosts discussions forums and round tables, and maintains a directory of
vendors of BPM solutions.

e-Workflow (http://www.e-workflow.org). Associated with the WIMC, WARIA,
and BPMI standardization initiatives (see below), this portal is dedicated to
workflow technologies. It maintains a collection of case studies, a repository of
white papers, and hosts a discussion forum.

Workflow Patterns (http://www.workflowpatterns.com). This site provides full de-
scriptions, documentation, and animations for the workflow patterns introduced
in Chapter 8, as well as other patterns covering different perspectives of work-
flow modeling. The site also features a “Vendors Corner” where commercial
workflow vendors post reports describing how their tools support these work-
flow patterns.

400 APPENDIX

Workflow Research (http://www.workflow-research.com) This portal provides in-
formation about academic activities in the area of workflow and business
process management. It includes listings of research groups, universities and
other institutions offering relevant courses, bibliography listings, and an open
discussion forum.

STANDARDIZATION INITIATIVES

Workflow Management Coalition—W{MC (http://www.wfmc.org). This indus-
try-driven coalition is devoted to the development of standards for workflow
management, including the WfMC reference model and glossary, the XML
Process Definition Language (XPDL), and the Workflow XML protocol (Wf-
XML) presented in Chapter 12 of this book.

Object Management Group—OMG. This organization produces standards in a
wide range of areas related to object-oriented technology. It is responsible,
among others things, for the Unified Modeling Language (see Chapter 5) and
has launched a number of standardization initiatives directly related to
process-aware information systems (see http://www.omg.org/bp-corner/
introduction.htm).

Business Process Management Initiative (BPMI). This industry consortium is
mainly devoted to the development and promotion of standards in the area of
Business Process Management. It promotes, among others things, the Busi-
ness Process Modeling Notation (BPMN), a notation with a scope similar to
UML activity diagrams (see Chapter 5) and Event Process Chains (see Chap-
ter 6). Note that the BPMN initiative has its own Web site (http://
www.bpmn.org).

RosettaNet (http://www.rosettanet.org). This consortium is dedicated to the de-
velopment of standards for electronic business, with an emphasis on procure-
ment and supply chain management processes. Among other activities,
RosettaNet defines interface processes (see Chapter 5) for specific electronic
business activities (e.g., placing a purchase order). These processes are called
Partner Interface Protocols (PIPs).

Organization for the Advancement of Structured Information Standards (OASIS).
This organization is dedicated to the development and promotion of standards
in the area of information systems in general, and process-aware information
systems in particular. Among other activities, it hosts the Technical Committee
on Web Services Business Process Execution Language (WS-BPEL), which is
responsible for the development of the language presented in Chapter 13. It
also cooperates with the United Nations Centre for Trade Facilitation and
Electronic Business (UN/CEFACT) in the development of the electronic busi-
ness XML standard, ebXML (http://www.ebxml.org), which, among other
things, includes a language for describing collaboration protocols (a notion
closely related to that of interface processes discussed in Chapter 4).

READINGS AND RESOURCES 401

World Wide Web Consortium (W3C)—Web Services Choreography Working
Group (http://www.w3.0rg/2002/ws/chor). This group works toward defining
a model and a language for describing collaboration protocols involving Web
services. These collaboration protocols are called service choreographies. A
service choreography captures the way a collection of services interact with
each other without taking the viewpoint of any of the services involved, un-
like interface processes (see Chapter 5), which would adopt the viewpoint of
one of the services.

TOOLS

Call Center, Bug Tracking, and Project Management Tools for Linux (http:/
linas.org/linux/pm.html). This site maintains a annotated list of tools covering a
large portion of the PAIS landscape (see Chapter 1), with a focus on tools that
may run on top of the Linux operating system. It provides critical comments re-
garding the overlap and complementarity of various types of tools and briefly
discusses their suitability in different settings.

jBPM (http://www.jbpm.org). This open-source initiative develops a workflow exe-
cution engine supporting a modeling language based on UML activity diagrams
(see Chapter 5). In October 2004, jBPM joined the JBoss Professional Open
Source Federation and was renamed “JBoss jBPM.”

OBE—Open Business Engine (http://www.openbusinessengine.org). The main
Web site of the open-source workflow engine, implementing the XPDL and Wt-
XML standards (see Chapter 12).

ProductWatchlist—Process Integration (http://www.jenzundpartner.de/Resources/
Product_Watchlist/product_watchlist.htm). Maintained by consultancy firm
Jenz & Partner, this Web site provides a list of tools related to process-aware in-
formation systems development, with an emphasis on tools for process modeling
and tools for application-to-application processes.

Process Modeling Tools (http://is.twi.tudelft.nl/~hommes/tools.html). List of busi-
ness process modeling (and related) tools maintained at the Information Systems
Algorithms Department, Delft University of Technology.

Project Management Tools (http://www.startwright.com/projectl.htm). Web site
maintained by StarWright, with a list of project management tools and related
links.

Topicus Open Source Workflow Initiatives (http://www.topicus.nl/topwfm). Main-
tained by Dutch consulting company Topicus, this site provides a list of open-
source initiatives in the area of workflow management systems.

Yet Another Workflow Language—YAWL (http://www.yawl-system.com). Web
site of the YAWL workflow language and system briefly discussed in Chapter 8.

= INdex

Abstract class, 95
Abstract process, 319
Abstract process (see Interface process)
Action, 87, 236
Action node, 87
Activation service, 271
Activity, 43, 45, 55, 86, 122, 132, 157, 180,
236, 238, 272, 286, 298, 307, 319,
320
duplicate, 248
instance, 287
invisible, 248
Activity diagram, 86
Activity edge, 87
Activity parameter node, 98
Activity partition, 105
Ad hoc process, 13, 54, 344
Administration, 32
Administrative process, 13, 344
Aggregation, 95
o algorithm, 241, 242, 243
Alternative, 157
AND-join, 89, 159, 184, 239
AND-split, 89, 158, 184, 239
Application, 295
Application-to-application (A2A) process,
12
Arbitrary cycle, 190
ARIS, 8, 119, 137, 360
house, 137
meta-model, 132
Assertion, 90
Association, 95
Asynchronous message passing, 109
Atomicity, 258
Attribute, 94
Audit trail, 288

Autonomy, 64

B2B integration (see Business-to-business
integration)
Behavior integration, 64
Best practice, 212
allocation, 213
external parties, 213
integral, 213
routing, 213
task, 213
BPEL, 9, 15, 72, 181, 197, 198, 267, 284,
317,320
aliasing, 328
assign, 323, 329
control link, 324
correlation, 331
dead path elimination, 335
empty, 323
event handler, 333
expressions, 330
flow, 321
invoke, 322
join condition, 324
mapping to WSDL, 322
message, 327
message properties, 327
onAlarm, 322, 333
onMessage, 322, 333
pick, 322
process state, 326
receive, 322
reply, 322
scope, 322
sequence, 321
switch, 322
terminate, 323

Process-Aware Information Systems. Edited by Dumas, van der Aalst, and ter Hofstede 403

Copyright © 2005 John Wiley & Sons, Inc.

404 INDEX

BPEL (continued)
throw, 323
transition condition, 324
variables, 328
wait, 323
while, 322
BPMI (see Business Process Management
Initiative)
BPMN (see Business Process Modeling
Notation)
BPQL (see Business Process Query
Language)
Business agreement, 272
Business analyst, 360
Business data replication, 69
Business logic, 66
Business process, 6, 21, 27, 66, 120, 149,
267, 285, 344, 351
instance, 130, 287
life cycle, 330
multiapplication system, 67
type, 127
Business process analysis, 207, 237
Business process controlling, 288
Business process design, 11
Business Process Management Initiative,
283
Business process model, 149, 209
Business process modeling, 4
tool, 12
Business Process Modeling Notation,
283
Business process monitoring, 288
Business Process Query Language, 283
Business process redesign, 209
Business process reengineering, 4, 8, 237
Business process transaction, 273
Business rule, 25, 227

business-to-business integration, 15, 17, 61,

62, 64

Call action, 112

Cancel activity, 197

Cancel case, 197

Caramba, 54

Case, 24,217, 236, 238, 347, 353
Case handling, 9, 11

Case handling system, 236

Case perspective, 238

Causal net, 167

Causality relation, 167

Central buffer, 99

Choice, 26, 158

Class, 94

Class diagram, 94

Clean sheet approach, 208

Collaboration technology, 42, 44

Collaborative business scenario, 141

Commitment, 261

atomic, 261

Compensation, 337

Compensation handler, 263, 267, 334

Completeness, 244, 246

Component-based architecture, 74

Components, 111

Computer-supported collaborative work,
37,45

Concurrency control, 259

Concurrent, 157

Conflict, 158

Congressional session, 38, 41

Connector, 91, 132, 134

Consistency, 258

Context, 271

Continuous process improvement, 237

Control flow, 127, 296

Control node, 87

Control token, 87

Control-flow perspective, 179, 180

Coordination, 43

coordinator, 271

CORBA, 267

Co-trap, 172

Co-word, 50

CSCW (see Computer-supported
collaborative work)

Customer relationship management, 10,
236

DAML-S (see DARPA Agent Modeling
Language for Web Services)

DARPA Agent Modeling Language for
Web Services, 77

Data integration, 64

Data perspective, 179

Data store node, 99

Data structure, 124

Data/information perspective, 179

Database management system, 3, 13, 21,
258

Database management system, 347

DBMS (see Database management system)

Decision node, 88

Decision support system, 3, 43, 46

Deferred choice, 195, 196

Delta analysis, 237

Deployment description, 114

Description level, 130

Design specification, 138

Devil’s quadrangle, 209

Discriminator, 190

Distribution, 64

Document definition, 65

Document semantics, 65

Durability, 258

Dynamic change, 48

EAI (see Enterprise application integration)
ECA rule, 134
Edge weight, 91
EDI, 61, 66
Electronic document, 64
Endpoint, 71
Enterprise application, 62
enterprise application integration, 5, 11, 17,
61,62, 351
Enterprise resource planning, 10
Entity relationship model, 124
EPC (see Event-driven process chain)
ERP, 236
ERP system, 140
Event, 71, 132
Event log, 236, 242
Event-driven process chain, 119, 147
design rules, 132
markup language, 289
Exception handler, 93
Exception handling, 26, 56, 92, 226, 334
Exception output parameter, 98
Exclusive choice, 195
Executable process, 319
Extended free choice net, 173
Extreme collaboration, 38, 41

Factory, 305
Fairness, 160
Fault handler, 267, 334

INDEX 405

Final node, 90
Flexibility, 33

Flow relation, 153
FLOWer, 197

Fork node, 89
Free-choice net, 173, 249
Function flow, 122

Generalization, 95, 130
Groupware, 12, 17
Guards, 88

Heterogeneity, 63
Holistic architecture, 76

IETF (see Internet Engineering Task Force)
Implementation description, 138
Implicit fork, 89
Implicit join, 89
Implicit termination, 191
Incidence matrix, 172
Industry consortium, 284
Information object, 122
Information processing perspective, 226
Information system, 3, 5, 6, 62

Alter’s framework, 6

office, 8
Inheritance, 95
Initial node, 90
Input, 122
Input pin, 97
Instance, 286, 307
Integration architecture, 74
Integration process, 72, 110, 360
Integrity constraint, 258
Interaction diagram, 120
Interaction fragment, 110
Interaction operator, 110
Interface, 111
Interface description, 111
Interface process, 72, 108
Internet, 65
Internet Engineering Task Force, 284
Interoperability, 288
Interprocess atomicity, 261
Interruptible activity region, 92
Intraprocess atomicity, 261
Invoked application, 32
IPMM, 51

406 INDEX

Isolation, 258
Iteration, 26

Job tracking, 12
Join node, 89

Knowledge management, 237

Language/action perspective, 40
LeadLine, 52

Legacy application, 61

Legacy application system, 62
Lifeline, 108

Long-running action, 273

Marked graph, 173
Marking, 152

initial, 153

reachable, 155
Mediation, 63
Meeting system, 47
Merge node, 88
Message queue, 275
Message queuing, 346
Meta-class, 130
Meta-model, 85
Meta-object facility, 86
Methodology, 208
Microsoft Project, 51
Middleware, 267
Milestone, 195
Mobility, 33
Model checking, 170
Model-driven architecture, 5
MOF (see Meta-object facility)
Monitoring, 32, 236
Multichoice, 185, 187
Multimerge, 190
Multiple instance, 191, 192

OASIS (see Organization for the
Advancement of Structure
Information Standards)

Object, 94

Object constraint language, 88, 91

Object diagram, 94

Object life cycle, 97

Object Management Group, 282

Object node, 97

Object token, 88, 97
Object transaction service, 267
Observer, 307
Occurrence rule, 154
OCL (see Object constraint language)
Office procedure, 44
OMG (see Object Management Group)
Open Business Engine, 300
Operation perspective, 179
Organization for the Advancement of
Structured Information Standards,
284
ASAP, 284, 303
BPSS, 284
ebXML, 284
Organizational perspective, 179, 238
Organizational unit, 8, 24, 105, 120, 238,
295
Originator, 236, 238
OR-join, 158, 188
OR-split, 134, 158, 185
Output, 122
Output pin, 97
OWL, 77

PAIS (see Process-aware information
system)
Parallel execution, 26, 216, 321
Participant, 287, 294
Partner, 320
Pattern, 179
Performance Indicator, 209
cost, 211
flexibility, 212
lead time, 210
quality, 211
queue time, 210
service time, 210
wait time, 211
Person-to-application, 12
Person-to-person process, 12, 37
Petri net, 8, 9, 119, 147, 148, 194, 239
1-safe, 158
analysis, 169
bounded, 156
colored, 156
connected, 153
contact, 158
contact-free, 158

elementary, 155
high-level, 156
isomorphic, 153
live, 162
markup language, 154, 289
predicate/transition, 156
refinement, 168
safe, 158
simulation, 169
sound, 162
Pi calculus, 198
Place, 151
resource, 163
Place invariant, 171
Postcondition, 90, 155
Precondition, 90, 155
Principle of locality, 154
Priority, 161
Private process, 16
Process, 40, 45, 55, 157
evolving, 40
group, 42
social, 41
Process-aware collaboration tool, 10
Process-aware information system, 5, 7, 8,
16,21, 179, 281, 343
development tool, 9
interorganizational, 15
intraorganizational, 15
life cycle, 11
Process-centered software engineering
environment, 11
Process definition, 285
Process design, 207
Process discovery, 236
Process enactment, 110
Process execution analysis, 8
Process management tool, 51
Process mining, 235
Process model, 7, 14, 147
Process modeling, 179
Process modeling language, 265
Process perspective, 179, 238
Process redesign, 207
Process-related data analysis, 12
Production, 344
Production process, 13
Project management, 12
Project management tool, 10

INDEX 407

ProM Framework, 241

Protos, 8

Public process, 16

Public process (see Interface process)

Queuing order, 97

RAD (see Rapid application development)
Rapid application development, 357
Reachability graph, 170

Receive signal action, 92

Recovery, 259

Redesign best practice, 212

Reference model, 235

Representational state transfer, 303
Requirements definition, 137

Resource, 162, 217

Resource allocation, 4, 217

Resource allocation problem, 164
Resource class, 162

Resource management, 24

Resource manager, 269

REST (see Representational State Transfer)
Role, 24, 40, 109, 238, 240, 285, 295
RosettaNet, 66, 311

Routing, 4, 13, 26, 51, 359

Routing information, 167

Saga, 263
SAP, 236
Scheduling, 33
Scientific workflow, 14
Security, 33
Semiatomicity, 264
Send signal action, 92
Sequence diagram, 108
Sequential execution, 26, 157, 183, 321
Service registry, 304
Service-oriented architecture, 5, 110
Signaling, 91
Simple choice, 88
Simple Object Access Protocol, 303
Simulation, 31
SOAP, 317
Sociogram, 240
Staffware, 8, 10, 343
client, 345
Graphical Forms Definer, 352
iProcess server, 345

408 INDEX

Staffware (continued)
Process Definer, 350
Process Definers Kit, 352
process object, 345
process server, 345
Universal Process Framework, 358
Standard, 281
Standard terminology, 285
State, 97
State machine, 172
Step, 264
compensatable, 264
pivotal, 264
retriable, 264
Stereotype, 115
Straight-through processing, 346
Stream, 99
Subclass, 95
Superclass, 95
Supply chain management, 236
SWIFT, 61, 66
Swim lane, 105
Synchronization, 159
Synchronizing merge, 188
Synchronous message passing, 109

Task, 5, 22, 51, 87, 149, 157, 180, 211, 213,
236, 273, 285, 348

Task management, 25

Technology stack, 309

Tentative Hold Protocol, 273

TIBCO, 14, 343, 361

Time stamp, 236, 238

Tracking tool, 10

Transaction, 257, 264

flexible, 264

Transaction manager, 269

Transaction model, 258, 262

Transactional consistency, 257

Transactional process, 257

Transformation, 63, 72

Transition, 151, 157,299

guard, 157

Transition invariant, 171

Transmission acknowledgement, 66

2PC (see Two-phase commitment)

Two-phase commitment, 261

UDDI, 309, 317

UML activity diagram, 147, 362
UML extension mechanism, 115
UML profile, 115

UML structure diagram, 111
UN/CEFACT, 284

Value added network, 65
View, 124
VIP tool, 170

W3C (see World Wide Web Consortium)

Web integration server, 11

Web service, 5, 15,270, 317

composition, 15

Web Service Modeling Language, 77

Web Service Modeling Ontology
Execution, 77

Web Services Choreography Definition
Language, 284

WebEx Meeting Center, 51

WIMC (see Workflow Management
Coalition)

WEMS (see workflow management system)

Wi{-XML, 281, 302

Woflan, 8

Work item, 55,217, 287, 348

Work queue, 348

Workflow, 22, 285, 344
instance, 29
interoperability, 32
life cycle, 28
sound, 176
type, 28

Workflow client, 31

Workflow engine, 24, 30, 287, 345

Workflow implementation, 343, 358

Workflow management, 21, 343
autonomous, 29
embedded, 29

Workflow Management Coalition, 30, 184,

282

glossary, 285
Interface 1, 287
Interface 2, 288
Interface 3, 288
Interface 4, 288
Interface 5, 288
reference model, 285
SWAP, 303

WAPI, 288
WPDL, 287
Workflow management system, 5, 10, 22,
29, 43, 150, 236, 285
Workflow net, 175
Workflow pattern, 180
Workflow project, 355, 356, 358, 360
Workflow schema, 23, 27
Workflow system, 23, 266, 354
Worklist, 31, 287
World Wide Web Consortium, 284
WS-atomic transaction, 271
WS-BPEL (see BPEL)
WS-business activity, 271
WS-CDL (see Web Services Choreography
Definition Language)
WS-coordination, 271
WSDL, 309, 317
binding, 318
port, 318

INDEX

portType, 318
service, 318
WSML (see Web Service Modeling
Language)
WSMO (see Web Service Modeling
Language)
WSMX (see Web Service Modeling
Execution)
WS-Transaction, 271

XA interface, 269

XML, 75, 241, 276, 281, 290
electronic business, 276

XML schema, 65, 290

XOR-join, 88, 184

XOR-split, 88, 184, 185

XPDL, 281, 289

YAWL, 181, 189, 194, 198

409

