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PREFACE 

Regression analysis has become one of the most widely used statistical tools for 
analyzing multifactor data. It is appealing because it provides a conceptually 
simple method for investigating functional relationships among variables. The 
standard approach in regression analysis is to take data, fit a model, and then 
evaluate the fit using statistics such as t ,  F,and R2. Our approach is much broader. 
We view regression analysis as a set of data analytic techniques that examine the 
interrelationships among a given set of variables. The emphasis is not on formal 
statistical tests and probability calculations. We argue for an informal analysis 
directed towards uncovering patterns in the data. 

We utilize most standard and some not so standard summary statistics on the 
basis of their intuitive appeal. We rely heavily on graphical representations of the 
data, and employ many variations of plots of regression residuals. We are not overly 
concerned with precise probability evaluations. Graphical methods for exploring 
residuals can suggest model deficiencies or point to troublesome observations. 
Upon further investigation into their origin, the troublesome observations often 
turn out to be more informative than the well-behaved observations. We notice 
often that more information is obtained from a quick examination of a plot of 
residuals than from a formal test of statistical significance of some limited null- 
hypothesis. In short, the presentation in the chapters of this book is guided by the 
principles and concepts of exploratory data analysis. 

Our presentation of the various concepts and techniques of regression analysis 
relies on carefully developed examples. In each example, we have isolated one 

xiii 



xiv PREFACE 

or two techniques and discussed them in some detail. The data were chosen to 
highlight the techniques being presented. Although when analyzing a given set of 
data it is usually necessary to employ many techniques, we have tried to choose the 
various data sets so that it would not be necessary to discuss the same technique 
more than once. Our hope is that after working through the book, the reader will be 
ready and able to analyze hisker data methodically, thoroughly, and confidently. 

The emphasis in this book is on the analysis of data rather than on formulas, 
tests of hypotheses, or confidence intervals. Therefore no attempt has been made 
to derive the techniques. Techniques are described, the required assumptions are 
given, and finally, the success of the technique in the particular example is assessed. 
Although derivations of the techniques are not included, we have tried to refer the 
reader in each case to sources in which such discussion is available. Our hope is 
that some of these sources will be followed up by the reader who wants a more 
thorough grounding in theory. 

We have taken for granted the availability of a computer and a statistical package. 
Recently there has been a qualitative change in the analysis of linear models, from 
model fitting to model building, from overall tests to clinical examinations of 
data, from macroscopic to the microscopic analysis. To do this kind of analysis 
a computer is essential and we have assumed its availability. Almost all of the 
analyses we use are now available in software packages. We are particularly 
heartened by the arrival of the package R, available on the Internet under the 
General Public License (GPL). The package has excellent computing and graphical 
features. It is also free! 

The material presented is intended for anyone who is involved in analyzing data. 
The book should be helpful to those who have some knowledge of the basic concepts 
of statistics. In the university, it could be used as a text for a course on regression 
analysis for students whose specialization is not statistics, but, who nevertheless, 
use regression analysis quite extensively in their work. For students whose major 
emphasis is statistics, and who take a course on regression analysis from a book 
at the level of Rao (1973), Seber (1977), or Sen and Srivastava (1990), this book 
can be used to balance and complement the theoretical aspects of the subject with 
practical applications. Outside the university, this book can be profitably used 
by those people whose present approach to analyzing multifactor data consists of 
looking at standard computer output ( t ,  F, R2, standard errors, etc.), but who want 
to go beyond these summaries for a more thorough analysis. 

The book has a Web site: http://www.ilr.cornell.eduThadi/RABE4. This Web 
site contains, among other things, all the data sets that are included in this book and 
more. 

Several new topics have been introduced in this edition. The discussion in Section 
2.10 about the regression line through the origin has been considerably expanded. In 
the chapter on variable selection (Chapter 1 l), we introduce information measures 
and illustrate their use. The information criteria help in variable selection by 
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balancing the conflicting requirements of accuracy and complexity. It is a useful 
tool for arriving at parsimonious models. 

The chapter on logistic regression (Chapter 12) has been considerably expanded. 
This reflects the increased use of the logit models in statistical analysis. In addition 
to binary logistic regression, we have now included a discussion of multinomial 
logistic regression. This extends the application of logistic regression to more 
diverse situations. The categories in some multinomial are ordered, for example in 
attitude surveys. We also discuss the application of the logistic model to ordered 
response variable. 

A new chapter titled Further Topics (Chapter 13) has been added to this edition. 
This chapter is intended to be an introduction to a more advanced study of regression 
analysis. The topics discussed are generalized linear models (GLM) and robust 
regression. We introduce the concept of GLM and discuss how the linear regression 
and logistic regression models can be regarded as special cases from a large family 
of linear models. This provides a unifying view of linear models. We discuss 
Poisson regression in the context of GLM, and its use for modeling count data. 

We have attempted to write a book for a group of readers with diverse back- 
grounds. We have also tried to put emphasis on the art of data analysis rather than 
on the development of statistical theory. 

We are fortunate to have had assistance and encouragement from several friends, 
colleagues, and associates. Some of our colleagues at New York University and 
Cornell University have used portions of the material in their courses and have 
shared with us their comments and comments of their students. Special thanks 
are due to our friend and former colleague Jeffrey Simonoff (New York Univer- 
sity) for comments, suggestions, and general help. The students in our classes on 
regression analysis have all contributed by asking penetrating questions and de- 
manding meaningful and understandable answers. Our special thanks go to Nedret 
Billor (Cukurova University, Turkey) and Sahar El-Sheneity (Cornell University) 
for their very careful reading of an earlier edition of this book. We also thank Amy 
Hendrickson for preparing the Latex style files and for responding to our Latex 
questions, and Dean Gonzalez for help with the production of some of the figures. 

SAMPRIT CHATTERJEE 
ALI S. HADI 

Brooksville, Maine 
Cairo, Egypt 



CHAPTER 1 

I NTROD UCTION 

1 .I WHAT IS REGRESSION ANALYSIS? 

Regression analysis is a conceptually simple method for investigating functional re- 
lationships among variables. A real estate appraiser may wish to relate the sale price 
of a home from selected physical characteristics of the building and taxes (local, 
school, county) paid on the building. We may wish to examine whether cigarette 
consumption is related to various socioeconomic and demographic variables such 
as age, education, income, and price of cigarettes. The relationship is expressed in 
the form of an equation or a model connecting the response or dependent variable 
and one or more explanatory or predictor variables. In the cigarette consumption 
example, the response variable is cigarette consumption (measured by the number 
of packs of cigarette sold in a given state on a per capita basis during a given year) 
and the explanatory or predictor variables are the various socioeconomic and de- 
mographic variables. In the real estate appraisal example, the response variable is 
the price of a home and the explanatory or predictor variables are the characteristics 
of the building and taxes paid on the building. 

We denote the response variable by Y and the set of predictor variables by 
X I ,  Xp, . . ., X,, where p denotes the number of predictor variables. The true 
relationship between Y and X I ,  Xp ,  . . . , X ,  can be approximated by the regression 
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2 INTRODUCTION 

model 
y = f ( X l 1  x21. . . , X,) + € 1  

where E is assumed to be a random error representing the discrepancy in the 
approximation. It accounts for the failure of the model to fit the data exactly. The 
function f(X1, X2, . . . , X,)  describes the relationship between Y and XI, X 2 ,  . . ., 
X,. An example is the linear regression model 

Y = Po + p1x1 + p2x2 + . . . + ppx, + E l  (1  .a 
where pol ,& . . . , ,LIP, called the regression parameters or coefficients, are unknown 
constants to be determined (estimated) from the data. We follow the commonly 
used notational convention of denoting unknown parameters by Greek letters. 

The predictor or explanatory variables are also called by other names such as 
independent variables, covariates, regressors, factors, and carriers. The name 
independent variable, though commonly used, is the least preferred, because in 
practice the predictor variables are rarely independent of each other. 

1.2 PUBLICLY AVAILABLE DATA SETS 

Regression analysis has numerous areas of applications. A partial list would include 
economics, finance, business, law, meteorology, medicine, biology, chemistry, 
engineering, physics, education, sports, history, sociology, and psychology. A few 
examples of such applications are given in Section 1.3. Regression analysis is 
learned most effectively by analyzing data that are of direct interest to the reader. 
We invite the readers to think about questions (in their own areas of work, research, 
or interest) that can be addressed using regression analysis. Readers should collect 
the relevant data and then apply the regression analysis techniques presented in this 
book to their own data. To help the reader locate real-life data, this section provides 
some sources and links to a wealth of data sets that are available for public use. 

A number of datasets are available in books and on the Internet. The book by 
Hand et al. (1994) contains data sets from many fields. These data sets are small 
in size and are suitable for use as exercises. The book by Chatterjee, Handcock, 
and Simonoff (1995) provides numerous data sets from diverse fields. The data are 
included in a diskette that comes with the book and can also be found in the World 
Wide Web site.' 

Data sets are also available on the Internet at many other sites. Some of the Web 
sites given below allow the direct copying and pasting into the statistical package 
of choice, while others require downloading the data file and then importing them 
into a statistical package. Some of these sites also contain further links to yet other 
data sets or statistics-related Web sites. 

The Data and Story Library (DASL, pronounced "dazzle") is one of the most 
interesting sites that contains a number of data sets accompanied by the "story" or 

' http://www.stern.nyu.edur jsirnonoWCasebook 
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background associated with each data set. DASL is an online library2 of data files 
and stories that illustrate the use of basic statistical methods. The data sets cover 
a wide variety of topics. DASL comes with a powerful search engine to locate the 
story or data file of interest. 

Another Web site, which also contains data sets arranged by the method used in 
the analysis, is the Electronic Dataset S e r ~ i c e . ~  The site also contains many links 
to other data sources on the Internet. 

Finally, this book has a Web site: http://www.ilr.cornell.eduThadi/RABE4. 
This site contains, among other things, all the data sets that are included in this 
book and more. These and other data sets can be found in the book's Web site. 

1.3 SELECTED APPLICATIONS OF REGRESSION ANALYSIS 

Regression analysis is one of the most widely used statistical tools because it 
provides simple methods for establishing a functional relationship among variables. 
It has extensive applications in many subject areas. The cigarette consumption and 
the real estate appraisal, mentioned above, are but two examples. In this section, we 
give a few additional examples demonstrating the wide applicability of regression 
analysis in real-life situations. Some of the data sets described here will be used 
later in the book to illustrate regression techniques or in the exercises at the end of 
various chapters. 

1.3.1 Agricultural Sciences 

The Dairy Herd Improvement Cooperative (DHI) in Upstate New York collects 
and analyzes data on milk production. One question of interest here is how to 
develop a suitable model to predict current milk production from a set of measured 
variables. The response variable (current milk production in pounds) and the 
predictor variables are given in Table 1.1. Samples are taken once a month during 
milking. The period that a cow gives milk is called lactation. Number of lactations is 
the number of times a cow has calved or given milk. The recommended management 
practice is to have the cow produce milk for about 305 days and then allow a 60- 
day rest period before beginning the next lactation. The data set, consisting of 
199 observations, was compiled from the DHI milk production records. The Milk 
Production data can be found in the book's Web site. 

1.3.2 Industrial and Labor Relations 

In 1947, the United States Congress passed the Taft-Hartley Amendments to the 
Wagner Act. The original Wagner Act had permitted the unions to use a Closed 

*DASL'S Web site is: http://lib.stat.cmu.edu/DASU 
3http://www-unix.oit.umass.edurstatdata/ 



4 INTRODUCTION 

Table 1.1 Variables for the Milk Production Data 

Variable Definition 

Current 
Previous 
Fat 
Protein 
Days 
Lactation Number of lactations 
I79 

Current month milk production in pounds 
Previous month milk production in pounds 
Percent of fat in milk 
Percent of protein in milk 
Number of days since present lactation 

Indicator variable (0 if Days 5 79 and 1 if Days > 79) 

Table 1.2 Variables for the Right-To-Work Laws Data 

Variable Definition 

COL 
PD 
URate 
POP Population in 1975 
Taxes Property taxes in 1972 
Income 
RTWL 

Cost of living for a four-person family 
Population density (person per square mile) 
State unionization rate in 1978 

Per capita income in 1974 
Indicator variable (1 if there is right-to-work laws 
in the state and 0 otherwise) 

Shop Contract4 unless prohibited by state law. The Taft-Hartley Amendments 
made the use of Closed Shop Contract illegal and gave individual states the right 
to prohibit union shops5 as well. These right-to-work laws have caused a wave 
of concern throughout the labor movement. A question of interest here is: What 
are the effects of these laws on the cost of living for a four-person family living 
on an intermediate budget in the United States? To answer this question a data set 
consisting of 38 geographic locations has been assembled from various sources. 
The variables used are defined in Table 1.2. The Right-To-Work Laws data are 
given in Table 1.3 and can also be found in the book's Web site. 

1.3.3 History 

A question of historical interest is how to estimate the age of historical objects 
based on some age-related characteristics of the objects. For example, the variables 

4Under a Closed Shop Contract provision, all employees must be union members at the time of hire 
and must remain members as a condition of employment. 
'Under a Union Shop clause, employees are not required to be union members at the time of hire, 
but must become a member within two months, thus allowing the employer complete discretion in 
hiring decisions. 
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Table 1.3 The Right-To-Work Laws Data 

City COL PD URate Pop Taxes Income RTWL 

Atlanta 
Austin 
Bakersfield 
Baltimore 
Baton Rouge 
Boston 
Buffalo 
Champaign-Urbana 
Cedar Rapids 
Chicago 
Cincinnati 
Cleveland 
Dallas 
Dayton 
Denver 
Detriot 
Green Bay 
Hartford 
Houston 
Indianapolis 
Kansas City 
Lancaster, PA 
Los Angeles 
Mi 1 waukee 
Minneapolis, St. Paul 
Nashville 
New York 
Orlando 
Philadelphia 
Pittsburgh 
Portland 
St. Louis 
San Diego 
San Francisco 
Seattle 
Washington 
Wichita 
Raleigh-Durham 

169 
143 
339 
173 
99 

363 
253 
117 
294 
29 1 
170 
239 
174 
183 
227 
255 
249 
3 26 
194 
25 1 
20 1 
124 
340 
328 
265 
120 
323 
117 
182 
169 
267 
184 
256 
381 
195 
205 
206 
126 

414 
239 
43 

95 1 
255 

1257 
834 
162 
229 

1886 
643 

1295 
302 
489 
304 

1130 
323 
696 
337 
37 1 
386 
362 

1717 
968 
433 
183 

6908 
230 

1353 
762 
20 1 
480 
372 

1266 
333 

1073 
157 
302 

13.6 
11 

23.7 
21 
16 

24.4 
39.2 
31.5 
18.2 
31.5 
29.5 
29.5 

11 
29.5 
15.2 
34.6 
27.8 
21.9 

11 
29.3 

30 
34.2 
23.7 
27.8 
24.4 
17.7 
39.2 
11.7 
34.2 
34.2 
23.1 

30 
23.7 
23.7 
33.1 

21 
12.8 
6.5 

1790128 
39689 1 
349874 

2147850 
411725 

3914071 
1326848 

162304 
164145 

701 525 1 
1381 196 
1966725 
2527224 

835708 
141 33 18 
4424382 

169467 
1062565 
2286247 
1 138753 
12901 10 
342797 

6986898 
1409363 
2010841 
748493 

9561089 
582664 

4807001 
2322224 
228417 

2 3 6 6 5 4 2 
1584583 
3 140306 
1406746 
3021801 

384920 
468512 

5128 
4303 
4166 
500 1 
3965 
4928 
447 1 
4813 
4839 
5408 
4637 
5138 
4923 
4787 
5386 
5246 
4289 
5134 
5084 
4837 
5052 
4377 
528 1 
5176 
5206 
4454 
5260 
4613 
4877 
4677 
4123 
4721 
4837 
5940 
5416 
6404 
4796 
4614 

296 1 
171 1 
2122 
4654 
1620 
5634 
7213 
5535 
7224 
61 13 
4806 
6432 
2363 
5606 
5982 
6275 
8214 
6235 
1278 
5699 
4868 
5205 
1349 
7635 
8392 
3578 
4862 

782 
5144 
5987 
751 1 
4809 
1458 
301 5 
4424 
4224 
4620 
3393 

1 
1 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
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Table 1.4 Variables for the Egyptian Skulls Data 

Variable Definition 

Year 

MB Maximum Breadth of Skull 
BH Basibregmatic Height of Skull 
BL Basialveolar Length of Skull 
NH Nasal Height of Skull 

Approximate Year of Skull Formation 
(negative = B.C.; positive = A.D.) 

in Table 1.4 can be used to estimate the age of Egyptian skulls. Here the response 
variable is Year and the other four variables are possible predictors. The original 
source of the data is Thomson and Randall-Maciver (1903, but they can be found 
in Hand et al. (1994), pp. 299-301. An analysis of the data can be found in Manly 
(1 986). The Egyptian Skulls data can be found in the book’s Web site. 

1.3.4 Government 

Information about domestic immigration (the movement of people from one state 
or area of a country to another) is important to state and local governments. It 
is of interest to build a model that predicts domestic immigration or to answer 
the question of why do people leave one place to go to another? There are many 
factors that influence domestic immigration, such as weather conditions, crime, tax, 
and unemployment rates. A data set for the 48 contiguous states has been created. 
Alaska and Hawaii are excluded from the analysis because the environments of these 
states are significantly different from the other 48, and their locations present certain 
barriers to immigration. The response variable here is net domestic immigration, 
which represents the net movement of people into and out of a state over the period 
1990-1994 divided by the population of the state. Eleven predictor variables 
thought to influence domestic immigration are defined in Table 1.5. The data are 
given in Tables 1.6 and 1.7, and can also be found in the book’s Web site. 

1.3.5 Environmental Sciences 

In a 1976 study exploring the relationship between water quality and land use, Haith 
(1 976) obtained the measurements (shown in Table 1.8) on 20 river basins in New 
York State. A question of interest here is how the land use around a river basin 
contributes to the water pollution as measured by the mean nitrogen concentration 
(mghter). The data are shown in Table 1.9 and can also be found in the book’s 
Web site. 
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Table 1.5 Variables for the Study of Domestic Immigration 

Variable Definition 

State State name 
NDIR 
Unemp 
Wage 

Crime 
Income 
Metrop 

Poor 

Taxes 
Educ 

BusFail 

Temp 

Region 

Net domestic immigration rate over the period 1990-1994 
Unemployment rate in the civilian labor force in 1994 
Average hourly earnings of production workers in manufacturing 
in 1994 
Violent crime rate per 100,000 people in 1993 
Median household income in 1994 
Percentage of state population living in metropolitan areas 
in 1992 
Percentage of population who fall below the poverty level 
in 1994 
Total state and local taxes per capita in 1993 
Percentage of population 25 years or older who have a high school 
degree or higher in 1990 
The number of business failures divided by the population of the 
state in 1993 
Average of the 12 monthly average temperatures (in degrees Fahrenheit) 
for the state in 1993 
Region in which the state is located (northeast, south, midwest, west) 

1.4 STEPS IN REGRESSION ANALYSIS 

Regression analysis includes the following steps: 

0 Statement of the problem 

0 Selection of potentially relevant variables 

0 Data collection 

0 Model specification 

0 Choice of fitting method 

0 Model fitting 

0 Model validation and criticism 

0 Using the chosen model(s) for the solution of the posed problem. 

These steps are examined below. 
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Table 1.6 First Six Variables of the Domestic Immigration Data 

State NDIR Unemp Wage Crime Income Metrop 

Alabama 
Arizona 
Arkansas 
California 
Colorado 
Connecticut 
Delaware 
Florida 
Georgia 
Idaho 
Illinois 
Indiana 
Iowa 
Kansas 
Kentucky 
Louisiana 
Maine 
Maryland 
Massachusetts 
Michigan 
Minnesota 
Mississippi 
Missouri 
Montana 
Nebraska 
Nevada 
New Hampshire 
New Jersey 
New Mexico 
New York 
North Carolina 
North Dakota 
Ohio 
Oklahoma 
Oregon 
Pennsylvania 
Rhode Island 
South Carolina 
South Dakota 
Tennessee 
Texas 
Utah 
Vermont 
Virginia 
Washington 
West Virginia 
Wisconsin 
Wyoming 

17.47 
49.60 
23.62 

53.17 
-38.41 

22.43 
39.73 
39.24 
71.41 

-20.87 
9.04 
0.00 

-1.25 
13.44 

-37.21 

- 13.94 
-9.770 
- 1.55 
- 30.46 
-13.19 

9.46 
5.33 
6.97 

41.50 

128.52 
-0.62 

-8.72 
-24.90 

29.05 

29.46 
-45.46 

-26.47 
-3.27 

7.37 
49.63 
-4.30 

-35.32 
11.88 
13.7 1 
32.1 1 
13.00 
31.25 
3.94 
6.94 

44.66 
10.75 
11.73 
1 1.95 

6.0 
6.4 
5.3 
8.6 
4.2 
5.6 
4.9 
6.6 
5.2 
5.6 
5.7 
4.9 
3.7 
5.3 
5.4 
8.0 
7.4 
5.1 
6.0 
5.9 
4.0 
6.6 
4.9 
5.1 
2.9 
6.2 
4.6 
6.8 
6.3 
6.9 
4.4 
3.9 
5.5 
5.8 
5.4 
6.2 
7.1 
6.3 
3.3 
4.8 
6.4 
3.7 
4.7 
4.9 
6.4 
8.9 
4.7 
5.3 

10.75 
11.17 
9.65 

12.44 
12.27 
13.53 
13.90 
9.97 

10.35 
1 1.88 
12.26 
13.56 
12.47 
12.14 
11.82 
13.13 
11.68 
13.15 
12.59 
16.13 
12.60 
9.40 

11.78 
12.50 
10.94 
11.83 
11.73 
13.38 
10.14 
12.19 
10.19 
10.19 
14.38 
11.41 
12.31 
12.49 
10.35 
9.99 
9.19 

10.51 
11.14 
11.26 
11.54 
1 1.25 
14.42 
12.60 
12.41 
11.81 

780 
715 
593 

1078 
567 
456 
686 

1206 
723 
282 
960 
489 
326 
469 
463 

1062 
126 
998 
805 
792 
327 
434 
744 
178 
339 
875 
138 
627 
930 

1074 
679 
82 

504 
635 
503 
418 
402 

1023 
208 
766 
762 
30 1 
1 I4 
372 
515 
208 
264 
286 

27196 
3 1293 
25565 
35331 
37833 
41097 
35873 
29294 
3 1467 
3 1536 
35081 
27858 
33079 
28322 
26595 
25676 
303 16 
39 I98 
40500 
35284 
33644 
25400 
30 190 
2763 1 
3 1794 
35871 
35245 
42280 
26905 
31 899 
301 14 
28278 
31855 
2699 1 
3 1456 
32066 
31928 
29846 
29733 
28639 
30775 
35716 
35802 
37647 
33533 
23564 
35388 
33140 

67.4 
84.7 
44.7 
96.7 
81.8 
95.7 
82.7 
93.0 
67.7 
30.0 
84.0 
71.6 
43.8 
54.6 
48.5 
75.0 
35.7 
92.8 
96.2 
82.7 
69.3 
34.6 
68.3 
24.0 
50.6 
84.8 
59.4 

100.0 
56.0 
91.7 
66.3 
41.6 
81.3 
60.1 
70.0 
84.8 
93.6 
69.8 
32.6 
67.7 
83.9 
77.5 
27.0 
77.5 
83.0 
41.8 
68.1 
29.7 
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Table 1.7 Last  Six Variables of the Domest ic  Immigrat ion Data 

State Poor Taxes Educ BusFail Temp Region 

Alabama 
Arizona 
Arkansas 
California 
Colorado 
Connecticut 
Delaware 
Florida 
Georgia 
Idaho 
Illinois 
Indiana 
Iowa 
Kansas 
Kentucky 
Louisiana 
Maine 
Maryland 
Massachusetts 
Michigan 
Minnesota 
Mississippi 
Missouri 
Montana 
Nebraska 
Nevada 
New Hampshire 
New Jersey 
New Mexico 
New York 
North Carolina 
North Dakota 
Ohio 
Oklahoma 
Oregon 
Pennsylvania 
Rhode Island 
South Carolina 
South Dakota 
Tennessee 
Texas 
Utah 
Vermont 
Virginia 
Washington 
West Virginia 
Wisconsin 
Wyoming 

16.4 
15.9 
15.3 
17.9 
9.0 

10.8 
8.3 

14.9 
14.0 
12.0 
12.4 
13.7 
10.7 
14.9 
18.5 
25.7 
9.4 

10.7 
9.7 

14.1 
11.7 
19.9 
15.6 
11.5 
8.8 

11.1 
7.7 
9.2 

21.1 
17.0 
14.2 
10.4 
14.1 
16.7 
11.8 
12.5 
10.3 
13.8 
14.5 
14.6 
19.1 
8.0 
7.6 

10.7 
11.7 
18.6 
9.0 
9.3 

I553 
2122 
1590 
2396 
2092 
3334 
2336 
2048 
1999 
1916 
2332 
1919 
2200 
2126 
1816 
1685 
2281 
2565 
2664 
2371 
2673 
1535 
1721 
1853 
2128 
2289 
230.5 
305 1 
2131 
3655 
1975 
1986 
2059 
1777 
2169 
2260 
240.5 
1736 
1668 
1684 
1932 
1806 
2379 
2073 
2433 
1752 
2524 
2295 

66.9 
78.7 
66.3 
76.2 
84.4 
79.2 
77.5 
74.4 
70.9 
79.7 
16.2 
75.6 
80.1 
81.3 
64.6 
68.3 
78.8 
78.4 
80.0 
76.8 
82.4 
64.3 
73.9 
81.0 
81.8 
78.8 
82.2 
76.7 
75. I 
74.8 
70.0 
76.7 
75.7 
74.6 
81.5 
74.7 
72.0 
68.3 
77.1 
67.1 
72.1 
85.1 
80.8 
75.2 
83.8 
66.0 
78.6 
83.0 

0.20 
0.5 1 
0.08 
0.63 
0.42 
0.33 
0.19 
0.36 
0.33 
0.31 
0.18 
0.19 
0.18 
0.42 
0.22 
0.15 
0.31 
0.31 
0.45 
0.27 
0.20 
0.12 
0.23 
0.20 
0.25 
0.39 
0.54 
0.36 
0.27 
0.38 
0.17 
0.23 
0.19 
0.44 
0.31 
0.26 
0.35 
0.1 1 
0.24 
0.23 
0.39 
0.18 
0.30 
0.27 
0.38 
0.17 
0.24 
0.19 

62.77 
61.09 
59.57 
59.25 
43.43 
48.63 
54.58 
70.64 
63.54 
42.35 
50.98 
50.88 
45.83 
52.03 
55.36 
65.91 
40.23 
54.04 
47.35 
43.68 
39.30 
63.18 
53.41 
40.40 
46.01 
48.23 
43.53 
52.72 
53.37 
44.85 
59.36 
38.53 
50.87 
58.36 
46.55 
49.01 
49.99 
62.53 
42.89 
57.75 
64.40 
46.32 
42.46 
55.55 
46.93 
52.25 
42.20 
43.68 

South 
West 
South 
West 
West 
Northeast 
South 
South 
South 
West 
Midwest 
Midwest 
Midwest 
Midwest 
South 
South 
Northeast 
South 
Northeast 
Midwest 
Midwest 
South 
Midwest 
West 
Midwest 
West 
Northeast 
Northeast 
Midwest 
Northeast 
South 
Midwest 
Midwest 
South 
West 
Northeast 
Northeast 
South 
Midwest 
South 
South 
West 
Northeast 
South 
Midwest 
South 
Midwest 
West 
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Table 1.8 Variables for Study of Water Pollution in New York Rivers 

Variable Definition 

Y 

X1 
x2 

x3 

x4 

Mean nitrogen concentration (mg/liter) based on samples taken 
at regular intervals during the spring, summer, and fall months 
Agriculture: percentage of land area currently in agricultural use 
Forest: percentage of forest land 
Residential: percentage of land area in residential use 
Commercial/Industrial: percentage of land area in either 
commercial or industrial use 

Table 1.9 The New York Rivers Data 

Row River Y X1 x2 x3 x4 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Olean 
Cassadaga 
Oatka 
Neversink 
Hackensack 
Wappinger 
Fishkill 
Honeoye 
Susquehanna 
Chenango 
Tioughnioga 
West Canada 
East Canada 
Saranac 
Ausable 
Black 
Schoharie 
Raquette 
Oswegatchie 
Cohocton 

1.10 
1.01 
1.90 
1 .oo 
1.99 
1.42 
2.04 
1.65 
1.01 
1.21 
1.33 
0.75 
0.73 
0.80 
0.76 
0.87 
0.80 
0.87 
0.66 
1.25 

26 
29 
54 
2 
3 

19 
16 
40 
28 
26 
26 
15 
6 
3 
2 
6 

22 
4 

21 
40 

63 
57 
26 
84 
27 
61 
60 
43 
62 
60 
53 
75 
84 
81 
89 
82 
70 
75 
56 
49 

1.2 
0.7 
1.8 
1.9 

29.4 
3.4 
5.6 
1.3 
1.1 
0.9 
0.9 
0.7 
0.5 
0.8 
0.7 
0.5 
0.9 
0.4 
0.5 
1.1 

0.29 
0.09 
0.58 
1.98 
3.11 
0.56 
1.11 
0.24 
0.15 
0.23 
0.18 
0.16 
0.12 
0.35 
0.35 
0.15 
0.22 
0.18 
0.13 
0.13 
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1.4.1 Statement of the Problem 

Regression analysis usually starts with a formulation of the problem. This includes 
the determination of the question(s) to be addressed by the analysis. The problem 
statement is the first and perhaps the most important step in regression analysis. 
It is important because an ill-defined problem or a misformulated question can 
lead to wasted effort. It can lead to the selection of irrelevant set of variables or 
to a wrong choice of the statistical method of analysis. A question that is not 
carefully formulated can also lead to the wrong choice of a model. Suppose we 
wish to determine whether or not an employer is discriminating against a given 
group of employees, say women. Data on salary, qualifications, and sex are 
available from the company’s record to address the issue of discrimination. There 
are several definitions of employment discrimination in the literature. For example, 
discrimination occurs when on the average (a) women are paid less than equally 
qualified men, or (b) women are more qualified than equally paid men. To answer 
the question: “On the average, are women paid less than equally qualified men?” 
we choose salary as a response variable, and qualification and sex as predictor 
variables. But to answer the question: “On the average, are women more qualified 
than equally paid men?” we choose qualification as a response variable and salary 
and sex as predictor variables, that is, the roles of variables have been switched. 

1.4.2 Selection of Potentially Relevant Variables 

The next step after the statement of the problem is to select a set of variables that 
are thought by the experts in the area of study to explain or predict the response 
variable. The response variable is denoted by Y and the explanatory or predictor 
variables are denoted by X I ,  X Z ,  . . . , X,, where p denotes the number of predictor 
variables. An example of a response variable is the price of a single family house 
in a given geographical area. A possible relevant set of predictor variables in this 
case is: area of the lot, area of the house, age of the house, number of bedrooms, 
number of bathrooms, type of neighborhood, style of the house, amount of real 
estate taxes, etc. 

1.4.3 Data Collection 

The next step after the selection of potentially relevant variables is to collect the data 
from the environment under study to be used in the analysis. Sometimes the data 
are collected in a controlled setting so that factors that are not of primary interest 
can be held constant. More often the data are collected under nonexperimental 
conditions where very little can be controlled by the investigator. In either case, the 
collected data consist of observations on n subjects. Each of these n observations 
consists of measurements for each of the potentially relevant variables. The data 
are usually recorded as in Table 1.10. A column in Table 1.10 represents a variable, 
whereas a row represents an observation, which is a set of p + 1 values for a single 
subject (e.g., a house); one value for the response variable and one value for each 
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Table 1.10 Notation for the Data Used in Regression Analysis 

Observation Response Predictors 

X P  Number Y X1 x 2  . . .  

1 
2 
3 

~~~ ~ 

X l P  

Q P  

5 3 P  

Y1 511 x12 . . .  
Y2 5 2 1  2 2 2  . . .  
Y3 5 3 1  2 3 2  . . .  

of the p predictors. The notation xij refers to the ith value of the j th  variable. 
The first subscript refers to observation number and the second refers to variable 
number. 

Each of the variables in Table 1.10 can be classified as either quantitative or 
qualitative. Examples of quantitative variables are the house price, number of 
bedrooms, age, and taxes. Examples of qualitative variables are neighborhood type 
(e.g., good or bad neighborhood) and house style (e.g., ranch, colonial, etc.). In 
this book we deal mainly with the cases where the response variable is quantita- 
tive. A technique used in cases where the response variable is binary6 is called 
logistic regression. This is introduced in Chapter 12. In regression analysis, the 
predictor variables can be either quantitative andor qualitative. For the purpose of 
computations, however, the qualitative variables, if any, have to be coded into a set 
of indicator or dummy variables as discussed in Chapter 5 .  

If all predictor variables are qualitative, the techniques used in the analysis of 
the data are called the analysis of variance techniques. Although the analysis of 
variance techniques can be introduced and explained as methods in their own right’, 
it is shown in Chapter 5 that they are special cases of regression analysis. If some 
of the predictor variables are quantitative while others are qualitative, regression 
analysis in these cases is called the analysis of covariance. 

1.4.4 Model Specification 

The form of the model that is thought to relate the response variable to the set 
of predictor variables can be specified initially by the experts in the area of study 
based on their knowledge or their objective andor subjective judgments. The 
hypothesized model can then be either confirmed or refuted by the analysis of the 
collected data. Note that the model need to be specified only in form, but it can 
still depend on unknown parameters. We need to select the form of the function 

‘A variable that can take only one of two possible values such as yes or no, 1 or 0, and success or 
failure, is called a binary variable 
’See, for example, the books by Scheffk (1959). Iversen (1976). Wildt and Ahtola (1978). Krishnaiah 
(1980), Iversen and Norpoth (1987), Lindman (1992). and Christensen (1996) 
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f ( X l ,  X2,  . . . , X,) in (1.1). This function can be classified into two types: linear 
and nonlinear. An example of a linear function is 

Y = p o + P l x l + E  (1 -3) 

while a nonlinear function is 

Y = po + efllXl + E.  (1.4) 

Note that the term linear (nonlinear) here does not describe the relationship between 
Y and X I ,  Xp,  . . . , X,. It is related to the fact that the regression parameters enter 
the equation linearly (nonlinearly). Each of the following models are linear 

Y = Po + PlX + p2x2 + E ,  

Y = P o + P l l n X + ~ ,  

because in each case the parameters enter linearly although the relationship between 
Y and X is nonlinear. This can be seen if the two models are re-expressed, 
respectively, as follows: 

Y = P o + P l x l + p 2 x 2 + ~ :  

Y = Po + P l X l + & ,  

where in the first equation we have X1 = X and X2 = X 2  and in the second 
equation we have X1 = In X .  The variables here are re-expressed or transformed. 
Transformation is dealt with in Chapter 6. All nonlinear functions that can be 
transformed into linear functions are called linearizable functions. Accordingly, 
the class of linear models is actually wider than it might appear at first sight because 
it includes all linearizable functions. Note, however, that not all nonlinear functions 
are linearizable. For example, it is not possible to linearize the nonlinear function 
in (1.4). Some authors refer to nonlinear functions that are not linearizable as 
intrinsically nonlinear functions. 

A regression equation containing only one predictor variable is called a simple 
regression equation. An equation containing more than one predictor variable is 
called a multiple regression equation. An example of simple regression would be 
an analysis in which the time to repair a machine is studied in relation to the number 
of components to be repaired. Here we have one response variable (time to repair 
the machine) and one predictor variable (number of components to be repaired). 
An example of a very complex multiple regression situation would be an attempt to 
explain the age-adjusted mortality rates prevailing in different geographic regions 
(response variable) by a large number of environmental and socioeconomic factors 
(predictor variables). Both types of problems are treated in this book. These two 
particular examples are studied, one in Chapter 2, the other in Chapter I 1 .  

In certain applications the response variable can actually be a set of variables, 
Yi, Y2, . . ., Yp, say, which are thought to be related to the same set of predictor 
variables, X I ,  X2, . . ., X,. For example, Bartlett, Stewart, and Abrahamowicz 
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(1 998) present a data set on 148 healthy people. Eleven variables are measured; six 
variables represent different types of measured sensory thresholds (e.g., vibration, 
hand and foot temperatures) and five a 'pnori selected baseline covariates (e.g., 
age, sex, height, and weight) that may have systematic effects on some or all of 
the six sensory thresholds. Here we have six response variables and five predictor 
variables. This data set, which we refer to as the QST (quantitative sensory testing) 
data, is not listed here due to its size (148 observations) but it can be found in the 
book's Web site. For further description of the data and objectives of the study, see 
Bartlett, Stewart, and Abrahamowicz (1998). 

When we deal only with one response variable, regression analysis is called uni- 
variate regression and in cases where we have two or more response variables, the 
regression is called multivariate regression. Simple and multiple regressions should 
not be confused with univariate versus multivariate regressions. The distinction be- 
tween simple and multiple regressions is determined by the number of predictor 
variables (simple means one predictor variable and multiple means two or more 
predictor variables), whereas the distinction between univariate and multivariate 
regressions is determined by the number of response variables (univariate means 
one response variable and multivariate means two or more response variables). In 
this book we consider only univariate regression (both simple and multiple, linear 
and nonlinear). Multivariate regression is treated in books on multivariate analysis 
such as Rencher (1995), Johnson and Wichern (1992), and Johnson (1998). In this 
book the term regression will be used to mean univariate regression. 

The various classifications of regression analysis we discussed above are shown 
in Table 1.1 1. 

1.4.5 Method of Fitting 

After the model has been defined and the data have been collected, the next task 
is to estimate the parameters of the model based on the collected data. This is 
also referred to as parameter estimation or model$tting. The most commonly used 
method of estimation is called the least squares method. Under certain assumptions 
(to be discussed in detail in this book), least squares method produce estimators with 
desirable properties. In this book we will deal mainly with least squares method 
and its variants (e.g., weighted least squares). In some instances (e.g., when one or 
more of the assumptions does not hold) other estimation methods may be superior 
to least squares. The other estimation methods that we consider in this book are 
the maximum likelihood method, the ridge method, and the principal components 
method. 

1.4.6 Model Fitting 

The next step in the analysis is to estimate the regression parameters or to fit the 
model to the collected data using the chosen estimation method (e.g., least squares). 
The estimates of the regression parameters Po, PI ,  . . . , Pp in (1 . l )  are denoted by 
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Table 1.11 Various Classifications of Regression Analysis 

Type of Regression Conditions 

Univari ate 
Multivariate 

Simple 
Multiple 

Linear 

Nonlinear 

Analysis of Variance 

Analysis of Covariance 

Logistic 

Only one quantitative response variable 
Two or more quantitative response variables 

Only one predictor variable 
Two or more predictor variables 

All parameters enter the equation linearly, possibly 
after transformation of the data 

The relationship between the response and some of 
the predictors is nonlinear or some of the parameters 
appear nonlinearly, but no transformation is possible 
to make the parameters appear linearly 

All predictors are qualitative variables 

Some predictors are quantitative variables and others 
are qualitative variables 

The response variable is qualitative 

bo, ,& , . . . , bp. The estimated regression equation then becomes 

y = bo + g,x1 + /%x2 + . . . + &XP. (1.5) 

A hut on top of a parameter denotes an estimate of the parameter. The value Y 
(pronounced as Y-hat) is called the fitted value. Using (lS), we can compute n 
fitted values, one for each of the n observations in our data. For example, the ith 
fitted value jji is 

j j i  = ,& + j1x i l+  b2xi2 + . . . + f i p x i p ,  i = 1 , 2 , .  . . ,n ,  (1.6) 

where q, . . . , xip  are the values of the p predictor variables for the ith observation. 
Note that (1.5) can be used to predict the response variable for any values of the 

predictor variables not observed in our data. In this case, the obtained Y is called the 
predicted value. The difference between fitted and predicted values is that the fitted 
value refers to the case where the values used for the predictor variables correspond 
to one of the n observations in our data, but the predicted values are obtained for 
any set of values of the predictor variables. It is generally not recommended to 
predict the response variable for a set of values of the predictor variables far outside 
the range of our data. In cases where the values of the predictor variables represent 
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Inputs outputs 
I I 

Subject matter theories 
Model Parameter estimates 

Confidence regions 
Test statistics 
Graphical displays 

I I 1 I 

Figure 1.1 A schematic illustration of the iterative nature of the regression process. 

future values of the predictors, the predicted value is referred to as the forecasted 
value. 

1.4.7 Model Criticism and Selection 

The validity of a statistical method, such as regression analysis, depends on certain 
assumptions. Assumptions are usually made about the data and the model. The 
accuracy of the analysis and the conclusions derived from an analysis depends 
crucially on the validity of these assumptions. Before using (1.5) for any purpose, 
we first need to determine whether the specified assumptions hold. We need to 
address the following questions: 

1. What are the required assumptions? 

2. For each of these assumptions, how do we determine whether or not the 
assumption is valid? 

3. What can be done in cases where one or more of the assumptions does not 
hold? 

The standard regression assumptions will be specified and the above questions will 
be addressed in great detail in various parts of this book. We emphasize here that 
validation of the assumptions must be made before any conclusions are drawn from 
the analysis. Regression analysis is viewed here as a iterative process, a process 
in which the outputs are used to diagnose, validate, criticize, and possibly modify 
the inputs. The process has to be repeated until a satisfactory output has been 
obtained. A satisfactory output is an estimated model that satisfies the assumptions 
and fits the data reasonably well. This iterative process is illustrated schematically 
in Figure 1.1. 

1.4.8 Objectives of Regression Analysis 

The explicit determination of the regression equation is the most important product 
of the analysis. It is a summary of the relationship between Y (the response 
variable) and the set of predictor variables X I ,  X2, . . . , X,. The equation may be 
used for several purposes. It may be used to evaluate the importance of individual 
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predictors, to analyze the effects of policy that involves changing values of the 
predictor variables, or to forecast values of the response variable for a given set 
of predictors. Although the regression equation is the final product, there are 
many important by-products. We view regression analysis as a set of data analytic 
techniques that are used to help understand the interrelationships among variables 
in a certain environment. The task of regression analysis is to learn as much as 
possible about the environment reflected by the data. We emphasize that what is 
uncovered along the way to the formulation of the equation may often be as valuable 
and informative as the final equation. 

1.5 SCOPE AND ORGANIZATION OF THE BOOK 

This book can be used by all who analyze data. A knowledge of matrix algebra 
is not necessary. We have seen excellent regression analysis done by people who 
have no knowledge of matrix theory. A knowledge of matrix algebra is certainly 
very helpful in understanding the theory. We have provided appendices which 
use matrix algebra for readers who are familiar with that topic. Matrix algebra 
permits expression of regression results much more compactly and is essential for 
the mathematical derivation of the results. 

Lack of knowledge of matrix algebra should not deter anyone from using this 
book and doing regression analysis. For readers who are not familiar with matrix 
algebra but who wish to benefit from the material in the appendices, we recommend 
reading the relatively short book by Hadi (1996), Matrix Algebra As  a Tool. We 
believe that the majority, if not all, of our readers can read it entirely on their own 
or with minimal assistance. 

There are no formal derivations in the text and readers interested in mathematical 
derivations are referred to a number of books that contain formal derivations of the 
regression formulas. Formulas are presented, but only for purposes of reference. 
It is assumed throughout the book that the necessary summary statistics will be 
computer generated from an existing regression package.8 

The book is organized as follows: It begins with the simple linear regression 
model in Chapter 2. The simple regression model is then extended to the mul- 
tiple regression model in Chapter 3. In both chapters, the model is formulated, 
assumptions are specified, and the key theoretical results are stated and illustrated 
by examples. For simplicity of presentation and for pedagogical reasons, the anal- 
ysis and conclusions in Chapters 2 and 3 are made under the presumption that 
the standard regression assumptions are valid. Chapter 4 addresses the issue of 
assumptions validation and the detection and correction of model violations. 

‘Many commercial statistical packages include regression analysis routines. We assume that these 
programs have been thoroughly tested and produce numerically accurate answers. For the most part 
the assumption is a safe one, but for some data sets, different programs have given dramatically 
different results. 
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Each of the remaining chapters deals with a special regression problem. Chapter 
5 deals with the case where some or all of the predictor variables are qualitative. 
Chapter 6 deals with data transformation. Chapter 7 presents situations where a 
variant of the least squares method is needed. This method is called the weighted 
least squares method. Chapter 8 discusses the problem that arises when the ob- 
servations are correlated. This problem is known as the autocorrelation problem. 
Chapters 9 and 10 present methods for the detection and correction of an important 
problem called collinearity. Collinearity occurs when the predictor variables are 
highly correlated. 

Chapter 1 1 presents variable selection methods -computer methods for selecting 
the best and most parsimonious model(s). Before applying any of the variable se- 
lection methods, we assume in this chapter that questions of assumptions validation 
and model violations have already been addressed and settled satisfactorily. 

The earlier chapters dealt with the case where the response variable is quantita- 
tive. Chapter 12 discusses logistic regression, the method used when the response 
variable is categorical. Logistic regression is studied because it is an important tool 
with many applications. Beside binary logistic regression, we have now included 
a discussion of multinomial logistic regression. This extends the application of 
logistic regression to more diverse situations. The categories in some multinomial 
are ordered, for example in attitude surveys. We also discuss the application of the 
logistic model to ordered response variable. 

The book concludes with Chapter 13 entitled Further Topics. Two topics are 
discussed in this chapter. One extends the concept of linear models so that regression 
and logistic models are all viewed as special cases of the linear model. This extends 
the range of applications of linear models to more diverse situations. We also discuss 
Poisson regression, often used to model count data. A brief discussion of robust 
regression with illustrative examples is also given in this chapter. 

We recommend that the chapters be covered in the same sequence as they are 
presented, although Chapters 5 to 12 can be covered in any order after Chapter 4, 
as long as Chapter 9 is covered before Chapter 10, and Chapter 7 is covered before 
Chapters 12 and 13. 

EXERCISES 

1.1 Classify each of the following variables as either quantitative or qualitative. 
If a variable is qualitative, state the possible categories. 
(a) Geographical region 
(c) Price of a house 
(e) Temperature (0 Fuel consumption 

(g) Employment rate 

(b) Number of children in a family 

(d) Race 

(h) Political party preference 
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1.2 Give two examples in any area of interest to you (other than those presented 
in Chapter 1) where regression analysis can be used as a data analytic tool to 
answer some questions of interest. For each example: 

(a) What is the question of interest? 
(b) Identify the response and the predictor variables. 

(c) Classify each of the variables as either quantitative or qualitative. 

(d) Which type of regression (see Table 1 .I 1 )  can be used to analyze the data? 
(e) Give a possible form of the model and identify its parameters. 

1.3 In each of the following sets of variables, identify which of the variables 
can be regarded as a response variable and which can be used as predictors? 
(Explain) 

(a) Number of cylinders and gasoline consumption of cars. 
(b) SAT scores, grade point average, and college admission. 

(c) Supply and demand of certain goods. 
(d) Company’s assets, return on a stock, and net sales. 
(e) The distance of a race, the time to run the race, and the weather conditions 

(f) The weight of a person, whether or not the person is a smoker, and whether 

(g) The height and weight of a child, hisher parents’ height and weight, and 

at the time of running. 

or not the person has a lung cancer. 

the sex and age of the child. 

1.4 For each of the sets of variables in Exercise 1.3: 
(a) Classify each variable as either quantitative or qualitative. 

(b) Which type of regression (see Table 1.11) can be used in the analysis of 
the data? 



CHAPTER 2 

SIMPLE LINEAR REGRESSION 

2.1 I NTRO DU CTlO N 

We start with the simple case of studying the relationship between a response vari- 
able Y and a predictor variable X I .  Since we have only one predictor variable, 
we shall drop the subscript in X I  and use X for simplicity. We discuss covariance 
and correlation coefficient as measures of the direction and strength of the linear 
relationship between the two variables. Simple linear regression model is then 
formulated and the key theoretical results are given without mathematical deriva- 
tions, but illustrated by numerical examples. Readers interested in mathematical 
derivations are referred to the bibliographic notes at the end of the chapter, where 
books that contain a formal development of regression analysis are listed. 

2.2 COVARIANCE AND CORRELATION COEFFICIENT 

Suppose we have observations on n subjects consisting of a dependent or response 
variable Y and an explanatory variable X .  The observations are usually recorded 
as in Table 2.1. We wish to measure both the direction and the strength of the 
relationship between Y and X .  Two related measures, known as the covariance 
and the correlation coeficient, are developed below. 

21 
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Table 2.1 Notation for the Data Used in Simple Regression and Correlation 
~~~ ~ ~ 

Observation Response Predictor 
Number Y X 

1 Y1 XI 

2 Y2 x2 

n Yn Xn 

On the scatter plot of Y versus X ,  let us draw a vertical line at 2 and a horizontal 
line at j j ,  as shown in Figure 2.1, where 

are the sample mean of Y and X, respectively. The two lines divide the graph into 
four quadrants. For each point i in the graph, compute the following quantities: 

0 yi - j j ,  the deviation of each observation yi from the mean of the response 
variable, 

0 zi - 2, the deviation of each observation xi from the mean of the predictor 
variable, and 

0 the product of the above two quantities, (yi - fj) (xi - 2 ) .  

It is clear from the graph that the quantity (yi - y) is positive for every point in the 
first and second quadrants, and is negative for every point in the third and fourth 

Figure 2.1 A graphical illustration of the correlation coefficient. 
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quadrants. Similarly, the quantity (xi - Z )  is positive for every point in the first and 
fourth quadrants, and is negative for every point in the second and third quadrants. 
These facts are summarized in Table 2.2. 

Table 2.2 Algebraic Signs of the Quantities (yz - I) and (2, - 3)  

Quadrant Yi - Y xi - z (Y i  - $(.i - 2 )  
~ 

1 + 
3 
4 

+ + 

If the linear relationship between Y and X is positive (as X increases Y also 
increases), then there are more points in the first and third quadrants than in the 
second and fourth quadrants. In this case, the sum of the last column in Table 2.2 
is likely to be positive because there are more positive than negative quantities. 
Conversely, if the relationship between Y and X is negative (as X increases Y 
decreases), then there are more points in the second and fourth quadrants than in 
the first and third quadrants. Hence the sum of the last column in Table 2.2 is likely 
to be negative. Therefore, the sign of the quantity 

COV(Y,X) = 2=1 1 (2.2) n - 1  

which is known as the covariance between Y and X, indicates the direction of the 
linear relationship between Y and X. If Cov(Y, X )  > 0, then there is a positive 
relationship between Y and X, but if Cov(Y,X) < 0, then the relationship is 
negative. Unfortunately, Cov(Y,X) does not tell us much about the strength of 
such a relationship because it is affected by changes in the units of measurement. For 
example, we would get two different values for the Cov(Y, X )  if we report Y and/or 
X in terms of thousands of dollars instead of dollars. To avoid this disadvantage 
of the covariance, we standardize the data before computing the covariance. To 
standardize the Y data, we first subtract the mean from each observation then divide 
by the standard deviation, that is, we compute 

where 

(2.4) 

is the sample standard deviation of Y. It can be shown that the standardized 
variable 2 in (2.3) has mean zero and standard deviation one. We standardize X in 
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a similar way by subtracting the mean Z from each observation zi then divide by 
the standard deviation sx. The covariance between the standardized X and Y data 
is known as the correlation coeflcient between Y and X and is given by 

Cor(Y,X) = - 
n - 1 .  

Equivalent formulas for the correlation coefficient are 

Cov(Y, X) 
Cor(Y,X) = 

s y s x  

Thus, Cor(Y, X) can be interpreted either as the covariance between the standard- 
ized variables or the ratio of the covariance to the standard deviations of the two 
Variables. From (2.5), it can be seen that the correlation coefficient is symmetric, 
that is, Cor(Y, X) = Cor(X, Y). 

Unlike Cov(Y, X), Cor(Y, X) is scale invariant, that is, it does not change if we 
change the units of measurements. Furthermore, Cor(Y, X) satisfies 

(2.8) 

These properties make the Cor(Y,X) a useful quantity for measuring both the 
direction and the strength of the relationship between Y and X .  The magnitude of 
Cor(Y, X) measures the strength of the linear relationship between Y and X .  The 
closer Cor(Y, X) is to 1 or -1, the stronger is the relationship between Y and X .  
The sign of Cor(Y, X )  indicates the direction of the relationship between Y and X .  
That is, Cor(Y, X) > 0 implies that Y and X are positively related. Conversely, 
Cor(Y, X) < 0, implies that Y and X are negatively related. 

Note, however, that Cor(Y, X) = 0 does not necessarily mean that Y and X are 
not related. It only implies that they are not linearly related because the correlation 
coefficient measures only linear relationships. In other words, the Cor(Y, X )  can 
still be zero when Y and X are nonlinearly related. For example, Y and X in Table 
2.3 have the perfect nonlinear relationship Y = 50 - X2 (graphed in Figure 2.2), 
yet Cor(Y, X )  = 0. 

Furthermore, like many other summary statistics, the Cor(Y,X) can be sub- 
stantially influenced by one or few outliers in the data. To emphasize this point, 
Anscombe (1973) has constructed four data sets, known as Anscombe’s quartet, 
each with a distinct pattern, but each having the same set of summary statistics (e.g., 
the same value of the correlation coefficient). The data and graphs are reproduced 
in Table 2.4 and Figure 2.3. The data can be found in the book’s Web site.’ An 
analysis based exclusively on an examination of summary statistics, such as the 
correlation coefficient, would have been unable to detect the differences in patterns. 

-1 5 Cor(Y,X) 5 1. 

’ http://www.ilr.corneIl.eduThadi/RABE4 
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Y X Y X 
1 -7 46 -2 

14 -6 49 -1 
25 -5 50 0 
34 -4 49 1 
41 -3 46 2 

Y X 
41 3 
34 4 
25 5 
14 6 

1 7 

-4 0 4 
.I 

A 

Figure 2.2 A scatter plot of Y versus X in Table 2.3. 

Table 2.4 
Statistics 

Anscombe’s Quartet: Four Data Sets Having Same Values of Summary 

Yl XI 
8.04 10 
6.95 8 
7.58 13 
8.81 9 
8.33 11 
9.96 14 
7.24 6 
4.26 4 

10.84 12 
4.82 7 
5.68 5 

y2 x2 

9.14 10 
8.14 8 
8.74 13 
8.77 9 
9.26 11 
8.10 14 
6.13 6 
3.10 4 
9.13 12 
7.26 7 
4.74 5 

y 3  x3 

7.46 10 
6.77 8 

12.74 13 
7.1 1 9 
7.81 11 
8.84 14 
6.08 6 
5.39 4 
8.15 12 
6.42 7 
5.73 5 

Source: Anscombe (1 973). 

y4 x4 

6.58 8 
5.76 8 
7.71 8 
8.84 8 
8.47 8 
7.04 8 
5.25 8 

12.50 19 
5.56 8 
7.91 8 
6.89 8 
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4 6 8 10 12 14 4 6 8 10 12 14 
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M 

x4 

4 8 12 16 20 

Figure 2.3 Scatter plots of the data in Table 2.4 with the fitted lines. 

An examination of Figure 2.3 shows that only the first set, whose plot is given 
in (a), can be described by a linear model. The plot in (b) shows the second 
data set is distinctly nonlinear and would be better fitted by a quadratic function. 
The plot in (c) shows that the third data set has one point that distorts the slope 
and the intercept of the fitted line. The plot in (d) shows that the fourth data set 
is unsuitable for linear fitting, the fitted line being determined essentially by one 
extreme observation. Therefore, it is important to examine the scatter plot of Y 
versus X before interpreting the numerical value of Cor(Y, X ) .  

2.3 EXAMPLE: COMPUTER REPAIR DATA 

As an illustrative example, consider a case of a company that markets and repairs 
small computers. To study the relationship between the length of a service call 
and the number of electronic components in the computer that must be repaired 
or replaced, a sample of records on service calls was taken. The data consist of 
the length of service calls in minutes (the response variable) and the number of 
components repaired (the predictor variable). The data are presented in Table 2.5. 
The Computer Repair data can also be found in the book's Web site. We use this 
data set throughout this chapter as an illustrative example. The quantities needed 
to compute tj, 1, Cov(Y, X ) ,  and Cor(Y, X )  are shown in Table 2.6. We have 
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Row Minutes Units 
1 23 1 
2 29 2 
3 49 3 
4 64 4 
5 74 4 
6 87 5 
7 96 6 

Row Minutes Units 
8 97 6 
9 1 09 7 
10 119 8 
11 149 9 
12 145 9 
13 154 10 
14 166 10 

N 

50 100 150 

Units 

Figure 2.4 Computer Repair data: Scatter plot of Minutes versus Units. 

n c (Y i  - 9(.i - 5) 
Cov(Y,X) = Z=l - - -- 1768 - 136, 

n - 1  13 
and 

= 0.996. 
1768 

J 27768.36 x 114 
- - C(Yi - y)(.i - 2) Cor(Y, X )  = 

JC(Yi - Y)2 C(.i - $ 2  

Before drawing conclusions from this value of Cor(Y, X ) ,  we should examine the 
corresponding scatter plot of Y versus X .  This plot is given in Figure 2.4. The 
high value of Cor(Y, X )  = 0.996 is consistent with the strong linear relationship 
between Y and X exhibited in Figure 2.4. We therefore conclude that there is a 
strong positive relationship between repair time and units repaired. 

Although Cor(Y, X) is a useful quantity for measuring the direction and the 
strength of linear relationships, it cannot be used for prediction purposes, that is, 
we cannot use Cor(Y, X) to predict the value of one variable given the value of the 
other. Furthermore, Cor(Y, X) measures only pairwise relationships. Regression 
analysis, however, can be used to relate one or more response variable to one or 
more predictor variables. It can also be used in prediction. Regression analysis 
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Table 2.6 
Between the Length of Service Calls, Y ,  and Number of Units Repaired, X 

Quantities Needed for the Computation of the Correlation Coefficient 

1 23 1 
2 29 2 
3 49 3 
4 64 4 
5 74 4 
6 87 5 
7 96 6 
8 97 6 
9 109 7 

10 119 8 
11 149 9 
12 145 9 
13 154 10 
14 166 10 

-74.21 
-68.21 
-48.21 
-33.21 
-23.21 
-10.21 

-1.21 
-0.21 
1 1.79 
21.79 
51.79 
47.79 
56.79 
68.79 

-5 
-4 
-3 
-2 
-2 
- 1  

0 
0 
1 
2 
3 
3 
4 
4 

5507.76 
4653.19 
2324.62 
1103.19 
538.90 
104.33 

1.47 
0.05 

138.90 
474.62 

268 1.76 
2283.47 
3224.62 
473 1.47 

25 
16 
9 
4 
4 
1 
0 
0 
1 
4 
9 
9 

16 
16 

37 1.07 
272.86 
144.64 
66.43 
46.43 
10.21 
0.00 
0.00 

11.79 
43.57 

155.36 
143.36 
227.14 
275.14 

Total 1361 84 0.00 0 27768.36 114 1768.00 

is an attractive extension to correlation analysis because it postulates a model that 
can be used not only to measure the direction and the strength of a relationship 
between the response and predictor variables, but also to numerically describe that 
relationship. We discuss simple linear regression models in the rest of this chapter. 
Chapter 3 is devoted to multiple regression models. 

2.4 THE SIMPLE LINEAR REGRESSION MODEL 

The relationship between a response variable Y and a predictor variable X is 
postulated as a lineaI-2 model 

Y = Po + p1x + E ,  (2.9) 

where Po and PI,  are constants called the model regression coeficients or purum- 
eters, and E is a random disturbance or error. It is assumed that in the range of 
the observations studied, the linear equation (2.9) provides an acceptable approxi- 
mation to the true relation between Y and X. In other words, Y is approximately 
a linear function of X ,  and E measures the discrepancy in that approximation. 

'The adjective linenr has a dual role here. It may be taken to describe the fact that the relationship 
between Y and X is linear. More generally, the word linear refers to the fact that the regression 
parameters, PO and PI,  enter (2.9) in a linear fashion. Thus, for example, Y = PO + PIX' + E is 
also a linear model even though the relationship between Y and X is quadratic. 
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In particular E contains no systematic information for determining Y that is not 
already captured in X .  The coefficient PI,  called the slope, may be interpreted 
as the change in Y for unit change in X .  The coefficient PO, called the constant 
coefficient or intercept, is the predicted value of Y when X = 0. 

According to (2.9), each observation in Table 2.1 can be written as 

yz = Po + P1.z + E i ,  i = 1 , 2 , .  . . ,n, (2.10) 

where yi represents the ith value of the response variable Y ,  xi represents the ith 
value of the predictor variable X, and ~i represents the error in the approximation 

Regression analysis differs in an important way from correlation analysis. The 
correlation coefficient is symmetric in the sense that Cor(Y,X) is the same as 
Cor(X, Y ) .  The variables X and Y are of equal importance. In regression analysis 
the response variable Y is of primary importance. The importance of the predictor 
X lies on its ability to account for the variability of the response variable Y and 
not in itself per se. Hence Y is of primary importance. 

Returning to the Computer Repair Data example, suppose that the company 
wants to forecast the number of service engineers that will be required over the next 
few years. A linear model, 

(2.1 1) 

is assumed to represent the relationship between the length of service calls and the 
number of electronic components in the computer that must be repaired or replaced. 
To validate this assumption, we examine the graph of the response variable versus 
the explanatory variable. This graph, shown in Figure 2.4, suggests that the straight 
line relationship in (2.1 1) is a reasonable assumption. 

of ya. 

Minutes = PO + P1 . Units + E ,  

2.5 PARAMETER ESTIMATION 

Based on the available data, we wish to estimate the parameters PO and PI.  This is 
equivalent to finding the straight line that gives the best f i r  (representation) of the 
points in the scatter plot of the response versus the predictor variable (see Figure 
2.4). We estimate the parameters using the popular least squares method, which 
gives the line that minimizes the sum of squares of the vertical distances3 from 
each point to the line. The vertical distances represent the errors in the response 
variable. These errors can be obtained by rewriting (2.10) as 

(2.12) Ez = yz - Po - p1xi, i = 1 , 2 , .  . . , n. 
The sum of squares of these distances can then be written as 

n n 

W O ,  P1) = c &4 = C(Yi - Po - P1xi)2. (2.13) 
i= 1 i= 1 

3An alternative to the vertical distance is the perpendicular (shortest) distance from each point to the 
line. The resultant line is called the orthogonal regression line. 
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The values of $0 and $1 that minimize S(/30, PI)  are given by 

(2.14) 

and 

po = g - ,813. (2.15) 

Note that we give the formula for $1 before the formula for $0 because ,& uses $1. 

The estimates ,& and $1 are called the least squares estimates of 00 and /31 because 
they are the solution to the least squares method, the intercept and the slope of the 
line that has the smallest possible sum of squares of the vertical distances from each 
point to the line. For this reason, the line is called the least squares regression line. 
The least squares regression line is given by 

Y = $0 + PIX.  (2.16) 

Note that a least squares line always exists because we can always find a line that 
gives the minimum sum of squares of the vertical distances. In fact, as we shall 
see later, in some cases a least squares line may not be unique. These cases are not 
common in practice. 

For each observation in our data we can compute 

jji=$o+$1xi, i = 1 , 2  ,..., n. (2.17) 

These are called the$tted values. Thus, the ith fitted value, jji, is the point on 
the least squares regression line (2.16) corresponding to xi. The vertical distance 
corresponding to the ith observation is 

e i = y i - y i ,  i = 1 , 2  ,..., n. (2.18) 

These vertical distances are called the ordinary4 least squares residuals. One 
properties of the residuals in (2.18) is that their sum is zero (see Exercise 2.5(a)). 
This means that the sum of the distances above the line is equal to the sum of the 
distances below the line. 

Using the Computer Repair data and the quantities in Table 2.6, we have 

- C(yi  - i j ) (x i  - Z) 1768 -- - 15.509, - - 
C(.i - Z)2 114 P1 = 

and 
$ - -  .. 0 - y - ,BIZ = 97.21 - 15.509 x 6 = 4.162. 

Then the equation of the least squares regression line is 

Minutes = 4.162 + 15.509 Units. (2.19) 

‘To be distinguished from other types of residuals to be presented later. 
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2 4 6 8 10 
Units 

Figure 2.5 Plot of Minutes versus Units with the fitted least squares regression line. 

This least squares line is shown together with the scatter plot of Minutes versus 
Units in Figure 2.5. The fitted values in (2.17) and the residuals in (2.18) are shown 
in Table 2.7. 

The coefficients in (2.19) can be interpreted in physical terms. The constant 
term represents the setup or startup time for each repair and is approximately 4 
minutes. The coefficient of Units represents the increase in the length of a service 
call for each additional component that has to be repaired. From the data given, 
we estimate that it takes about 16 minutes (15.509) for each additional component 
that has to be repaired. For example, the length of a service call in which four 
components had to be repaired is obtained by substituting Units = 4 in the equation 
of the regression line (2.19) and obtaining y = 4.162 + 15.509 x 4 = 66.20. Since 
Units = 4, corresponds to two observations in our data set (observations 4 and 5), 
the value 66.198 is the fitted value for both observations 4 and 5, as can be seen 
from Table 2.7. Note, however, that since observations 4 and 5 have different values 
for the response variable Minutes, they have different residuals. 

We should note here that by comparing (2.2), (2.7), and (2.14), an alternative 
formula for ,!?I can be expressed as 

(2.20) 

from which it can be seen that ,!?I, Cov(Y, X ) ,  and Cor(Y, X) have the same 
sign. This makes intuitive sense because positive (negative) slope means positive 
(negative) correlation. 

So far in our analysis we have made only one assumption, namely, that Y and 
X are linearly related. This assumption is referred to as the linearity assumption. 
This is merely an assumption or a hypothesis about the relationship between the 
response and predictor variables. An early step in the analysis should always be 
the validation of this assumption. We wish to determine if the data at hand support 
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i xi yi Ya ei 

1 1 23 19.67 3.33 

Table 2.7 
the Computer Repair Data 

The Fitted Values, yi, and the Ordinary Least Squares Residuals, ei, for 

i xi Yi $2 ei 

8 6 97 97.21 -0.21 
2 2 29 35.18 -6.18 
3 3 49 50.69 -1.69 
4 4 64 66.20 -2.20 
5 4 74 66.20 7.80 
6 5 87 81.71 5.29 
7 6 96 97.21 -1.21 

9 7 109 112.72 -3.72 
10 8 119 128.23 -9.23 
11 9 149 143.74 5.26 
12 9 145 143.74 1.26 

14 10 166 159.25 6.75 
13 10 154 159.25 -5.25 

the assumption that Y and X are linearly related. An informal way to check 
this assumption is to examine the scatter plot of the response versus the predictor 
variable, preferably drawn with the least squares line superimposed on the graph 
(see Figure 2.5). If we observe a nonlinear pattern, we will have to take corrective 
action. For example, we may re-express or transform the data before we continue 
the analysis. Data transformation is discussed in Chapter 6. 

If the scatter of points resemble a straight line, then we conclude that the linearity 
assumption is reasonable and continue with our analysis. The least squares estima- 
tors have several desirable properties when some additional assumptions hold. The 
required assumptions are stated in Chapter 4. The validity of these assumptions 
must be checked before meaningful conclusions can be reached from the analysis. 
Chapter 4 also presents methods for the validation of these assumptions. Using the 
properties of least squares estimators, one can develop statistical inference proce- 
dures (e.g., confidence interval estimation, tests of hypothesis, and goodness-of-fit 
tests). These are presented in Sections 2.6 to 2.9. 

2.6 TESTS OF HYPOTHESES 

As stated earlier, the usefulness of X as a predictor of Y can be measured informally 
by examining the correlation coefficient and the corresponding scatter plot of Y 
versus X .  A more formal way of measuring the usefulness of X as a predictor of Y 
is to conduct a test of hypothesis about the regression parameter PI. Note that the 
hypothesis PI = 0 means that there is no linear relationship between Y and X .  A 
test of this hypothesis requires the following assumption. For every fixed value of 
X ,  the E’S are assumed to be independent random quantities normally distributed 
with mean zero and a common variance 02. With these assumptions, the quantities, 
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bo and b1 are unbiased’ estimates of Po and PI, respectively. Their variances are 

Var(j3)) = a2 [A - + C(x2 22 - 2 ) 2  1 :  (2.21) 

and 

(2.22) 

Furthermore, the sampling distributions of the least squares estimates ,& and ,& 
are normal with means PO and P1 and variance as given in (2.21) and (2.22), 
respectively. 

The variances of j o  and b1 depend on the unknown parameter 02. So, we need 
to estimate a’ from the data. An unbiased estimate of 0’ is given by 

(2.23) 

where SSE is the sum of squares of the residuals (errors). The number n - 2 in 
the denominator of (2.23) is called the degrees of freedom (df). It is equal to the 
number of observations minus the number of estimated regression coefficients. 

Replacing g 2  in (2.21) and (2.22) by e2 in (2.23), we get unbiased estimates 
of the variances of bo and ,&. An estimate of the standard deviation is called the 
standard error (s.e.) of the estimate. Thus, the standard errors of ,& and ,& are 

2 2  

and 
u 

s.e.(Pl) = Jmz - ’ 

(2.24) 

(2.25) 

respectively, where 6 is the square root of e2 in (2.23). The standard errors of is 
a measure of how precisely the slope has been estimated. The smaller the standard 
error the more precise the estimator. 

With the sampling distributions of bo and PI,  we are now in position to perform 
statistical analysis concerning the usefulness of X as a predictor of Y .  Under the 
normality assumption, an appropriate test statistic for testing the null hypothesis 
Ho : p1 = 0 against the alternative H1 : # 0 is the t-test, 

(2.26) 

The statistic tl is distributed as a Student’s t with (n  - 2 )  degrees of freedom. The 
test is camed out by comparing this observed value with the appropriate critical 

‘An estimate 0 is said to be an unbiased estimate of a parameter 6’ if the expected value of 8 is equal 
to 8. 
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Figure 2.6 
for the t-test is the shaded areas under the curve. 

A graph of the probability density function of a t-distribution. The p-value 

value obtained from the t-table given in the Appendix to this book (see Table A.2), 
which is t(,-2,a/2), where (Y is a specified significance level. Note that we divide 
(Y by 2 because we have a two-sided alternative hypothesis. Accordingly, HO is to 
be rejected at the significance level cr if 

It1 I 2 + 2 , 4 2 )  > (2.27) 

where It11 denotes the absolute value of tl. A criterion equivalent to that in (2.27) 
is to compare the p-value for the t-test with (Y and reject HO if 

P(lt1l) 5 (2.28) 

where p (  It1 I), called the p-value, is the probability that a random variable having 
a Student t distribution with ( n  - 2) is greater than It11 (the absolute value of the 
observed value of the t-test). Figure 2.6 is a graph of the density function of a 
t-distribution. The p-value is the sum of the two shaded areas under the curve. 
The p-value is usually computed and supplied as part of the regression output by 
statistical packages. Note that the rejection of HO : p1 = 0 would mean that p1 is 
likely to be different from 0, and hence the predictor variable X is a statistically 
significant predictor of the response variable Y .  

To complete the picture of hypotheses testing regarding regression parameters, 
we give here tests for three other hypotheses that may arise in practice. 

Testing Ho: PI = Py 

The above t-test can be generalized to test the more general hypothesis HO : 
p1 = @, where p," is a constant chosen by the investigator, against the two-sided 
alternative H1 : p1 # 0:. The appropriate test statistic in this case is the t-test, 

(2.29) 

Note that when = 0, the t-test in (2.29) reduces to the t-test in (2.26). The 
statistic tl in (2.29) is also distributed as a Student's t with (n  - 2) degrees of 
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freedom. Thus, Ho : ,B1 = pf is rejected if (2.27) holds (or, equivalently, if (2.28) 
holds). 

For illustration, using the Computer Repair data, let us suppose that the manage- 
ment expected the increase in service time for each additional unit to be repaired to 
be 12 minutes. Do the data support this conjecture? The answer may be obtained 
by testing Ho : /31 = 12 against H1 : 01 # 12. The appropriate statistic is 

$1 - 12 tl = ~ 

4 1 )  0.505 
15.509 - 12 

= 6.948, - - 

with 12 degrees of freedom. The critical value for this test is t(n-2,a/2) - - 
t(12,0.025) = 2.18. Since tl = 6.948 > 2.18, the result is highly significant, 
leading to the rejection of the null hypothesis. The management’s estimate of the 
increase in time for each additional component to be repaired is not supported by 
the data. Their estimate is too low. 

The need for testing hypotheses regarding the regression parameter ,& may also 
arise in practice. More specifically, suppose we wish to test Ho : /30 = against 
the alternative H1 : 00 # f ig,  where is a constant chosen by the investigator. 
The appropriate test in this case is given by 

If we set 0; = 0, a special case of this test is obtained as 

(2.30) 

(2.31) 

which tests HO : Po = 0 against the alternative H I  : ,& # 0. 
The least squares estimates of the regression coefficients, their standard errors, 

the t-tests for testing that the corresponding coefficient is zero, and the p-values are 
usually given as part of the regression output by statistical packages. These values 
are usually displayed in a table such as the one in Table 2.8. This table is known 
as the coeficients table. To facilitate the connection between a value in the table 
and the formula used to obtain it, the equation number of the formula is given in 
parentheses. 

As an illustrative example, Table 2.9 shows a part of the regression output for 
the Computer Repair data in Table 2.5. Thus, for example, al = 15.509, the 
s.e.(al) = 0.505, and hence tl = 15.509/0.505 = 30.71. The critical value for 
this test using cy = 0.05, for example, is t(12,0.025) = 2.18. The tl = 30.71 is much 
larger than its critical value 2.18. Consequently, according to (2.27), Ho : = 0 is 
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Table 2.8 
Corresponding Formulas are Given in Parentheses 

A Standard Regression Output. The Equation Number of the 

~~ ~ ~~ 

Variable Coefficient (Formula) s.e. (Formula) t-test (Formula) p-value 

Constant bo (2.15) s.e.(/%) (2.24) to (2.31) PO 
X bi (2.14) s.e.(jl) (2.25) tl (2.26) Pl 

Table 2.9 Regression Output for the Computer Repair Data 

Variable Coefficient s.e. t-test p-value 

Constant 4.162 3.355 1.24 0.2385 
Units 15.509 0.505 30.71 < 0.0001 

rejected, which means that the predictor variable Units is a statistically significant 
predictor of the response variable Minutes. This conclusion can also be reached 
using (2.28) by observing that the p-value (p1 < 0.0001) is much less than cy = 0.05 
indicating very high significance. 

A Test Using Correlation Coefficient 

As mentioned above, a test of HO : = 0 against H1 : ,& # 0 can be thought 
of as a test for determining whether the response and the predictor variables are 
linearly related. We used the t-test in (2.26) to test this hypothesis. An alternative 
test, which involves the correlation coefficient between Y and X ,  can be developed. 
Suppose that the population correlation coefficient between Y and X is denoted 
by p. If p # 0, then Y and X are linearly related. An appropriate test for testing 
HO : p = 0 against H1 : p # 0 is given by 

(2.32) 

where Cor(Y, X )  is the sample correlation coefficient between Y and X ,  defined 
in (2.6), which is considered here to be an estimate of p. The t-test in (2.32) is 
distributed as a Student's t with (n - 2) degrees of freedom. Thus, Ho : p = 0 is 
rejected if (2.27) holds (or, equivalently, if (2.28) holds). Again if Ho : p = 0 is 
rejected, it means that there is a statistically significant linear relationship between 
Y and X .  

= 0. 
Consequently, the statistical tests for HO : p1 = 0 and HO : p = 0 should be 
identical. Although the statistics for testing these hypotheses given in (2.26) and 
(2.32) look different, it can be demonstrated that they are indeed algebraically 
equivalent. 

It is clear that if no linear relationship exists between Y and X ,  then 
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2.7 CONFIDENCE INTERVALS 

To construct confidence intervals for the regression parameters, we also need to 
assume that the E’S have a normal distribution, which will enable us to conclude 
that the sampling distributions of ,& and b1 are normal, as discussed in Section 2.6. 
Consequently, the (1 - a)  x 100% confidence interval for PO is given by 

a 0  f q n - 2 4 2 )  x s.e.(bo), (2.33) 

where t(n-2,cu/2) is the (1 - a/2) percentile of a t distribution with (n  - 2) degrees 
of freedom. Similarly, limits of the (1 - a )  x 100% confidence interval for ,& are 
given by 

A f q n - - 2 . 4 2 )  x s.e.(b1). (2.34) 

The confidence interval in (2.34) has the usual interpretation, namely, if we were 
to take repeated samples of the same size at the same values of X and construct for 
example 95% confidence intervals for the slope parameter for each sample, then 
95% of these intervals would be expected to contain the true value of the slope. 

From Table 2.9 we see that a 95% confidence interval for PI is 

15.509 f 2.18 x 0.505 = (14.408,16.610). (2.35) 

That is, the incremental time required for each broken unit is between 14 and 17 
minutes. The calculation of confidence interval for PO in this example is left as an 
exercise for the reader. 

Note that the confidence limits in (2.33) and (2.34) are constructed for each of 
the parameters PO and PI, separately. This does not mean that a simultaneous (joint) 
confidence region for the two parameters is rectangular. Actually, the simultaneous 
confidence region is elliptical. This region is given for the general case of multiple 
regression in the Appendix to Chapter 3 in (A.15), of which the simultaneous 
confidence region for ,f?o and 01 is a special case. 

2.8 PREDICTIONS 

The fitted regression equation can be used for prediction. We distinguish between 
two types of predictions: 

1.  The prediction of the value of the response variable Y which corresponds to 
any chosen value, ZO, of the predictor variable, or 

2. The estimation of the mean response PO, when X = 20. 

For the first case, the predicted value $0 is 

(2.36) 
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The standard error of this prediction is 

(2.37) 

Hence, the confidence limits for the predicted value with confidence coefficient 
(1 - a)  are given by 

Yo f t(n-2,ap) s.e.(Yoo>. (2.38) 

For the second case, the mean response po is estimated by 

bo = bo + 81x0. (2.39) 

The standard error of this estimate is 

(2.40) 

from which it follows that the confidence limits for po with confidence coefficient 
(1 - a)  are given by 

bo f t(n-2,ap) s.e.(bo). (2.41) 

Note that the point estimate of po is identical to the predicted response Go. This 
can be seen by comparing (2.36) with (2.39). The standard error of jio is, however, 
smaller than the standard error of yo and can be seen by comparing (2.37) with 
(2.40). Intuitively, this makes sense. There is greater uncertainty (variability) 
in predicting one observation (the next observation) than in estimating the mean 
response when X = 20. The averaging that is implied in the mean response reduces 
the variability and uncertainty associated with the estimate. 

To distinguish between the limits in (2.38) and (2.41), the limits in (2.38) are 
sometimes referred to as the prediction orforecast limits, whereas the limits given 
in (2.41) are called the conjidence limits. 

Suppose that we wish to predict the length of a service call in which four 
components had to be repaired. If 54 denotes the predicted value, then from (2.36) 
we get 

$4 = 4.162 + 15.509 x 4 = 66.20, 

with a standard error that is obtained from (2.37) as 

On the other hand, if the service department wishes to estimate the expected (mean) 
service time for a call that needed four components repaired, we would use (2.39) 
and (2.40), respectively. Denoting by p4, the expected service time for a call that 
needed four components to be repaired, we have: 

fi4 = 4.162 + 15.509 x 4 = 66.20, 
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with a standard error 

With these standard errors we can construct confidence intervals using (2.38) and 
(2.41), as appropriate. 

As can be seen from (2.37), the standard error of prediction increases the farther 
the value of the predictor variable is from the center of the actual observations. 
Care should be taken when predicting the value of Minutes corresponding to a 
value for Units that does not lie close to the observed data. There are two dangers 
in such predictions. First, there is substantial uncertainty due to the large standard 
error. More important, the linear relationship that has been estimated may not hold 
outside the range of observations. Therefore, care should be taken in employing 
fitted regression lines for prediction far outside the range of observations. In our 
example we would not use the fitted equation to predict the service time for a service 
call which requires that 25 components be replaced or repaired. This value lies too 
far outside the existing range of observations. 

2.9 MEASURING THE QUALITY OF FIT 

After fitting a linear model relating Y to X ,  we are interested not only in knowing 
whether a linear relationship exits, but also in measuring the quality of the fit of the 
model to the data. The quality of the fit can be assessed by one of the following 
highly related (hence, somewhat redundant) ways: 

1. When using the tests in (2.26) or (2.32), if HO is rejected, the magnitude of 
the values of the test (or the corresponding p-values) gives us information 
about the strength (not just the existence) of the linear relationship between 
Y and X .  Basically, the larger the t (in absolute value) or the smaller the 
corresponding p-value, the stronger the linear relationship between Y and X .  
These tests are objective but they require all the assumptions stated earlier, 
specially the assumption of normality of the E 'S .  

2. The strength of the linear relationship between Y and X can also be assessed 
directly from the examination of the scatter plot of Y versus X together with 
the corresponding value of the correlation coefficient Cor(Y, X )  in (2.6). 
The closer the set of points to a straight line (the closer Cor(Y, X )  to 1 or 
-l), the stronger the linear relationship between Y and X .  This approach is 
informal and subjective but it requires only the linearity assumption. 

3. Examine the scatter plot of Y versus Y .  The closer the set of points to a 
straight line, the stronger the linear relationship between Y and X .  One can 
measure the strength of the linear relationship in this graph by computing the 
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correlation coefficient between Y and Y ,  which is given by 

(2.42) C(Yi - id(5i - 5) Cor(Y, Y )  = Jc (Yi - $I2 c (52 - y)2 ’ 
where y is the mean of the response variable Y and y is the mean of the 
fitted values. In fact, the scatter plot of Y versus X and the scatter plot of 
Y versus Y are redundant because the patterns of points in the two graphs 
are identical. The two corresponding values of the correlation coefficient are 
related by the following equation: 

Cor(Y, Y )  = 1Cor(Y, X )  1. (2.43) 

Note that Cor(Y, Y )  cannot be negative (why?), but Cor(Y, X )  can be positive 
or negative (-1 6 Cor(Y, X )  5 1). Therefore, in simple linear regression, 
the scatter plot of Y versus Y is redundant. However, in multiple regression, 
the scatter plot of Y versus Y is not redundant. The graph is very useful 
because, as we shall see in Chapter 3, it is used to assess the strength of the 
relationship between Y and the set of predictor variables X I ,  X 2 , .  . . , X,. 

4. Although scatter plots of Y versus Y and Cor(Y, Y )  are redundant in simple 
linear regression, they give us an indication of the quality of the fit in both 
simple and multiple regression. Furthermore, in both simple and multiple 
regressions, Cor(Y, Y )  is related to another useful measure of the quality of 
fit of the linear model to the observed data. This measure is developed as 
follows. After we compute the least squares estimates of the parameters of a 
linear model, let us compute the following quantities: 

SSR = C(yi- 
SSE C(Y2 - Yd2, 

where SST stands for the total sum of squared deviations in Y from its mean 
3, SSR denotes the sum of squares due to regression, and SSE represents 
the sum of squared residuals (errors). The quantities (Gi - g), ($i - g), and 
(yi - @) are depicted in Figure 2.7 for a typical point (x2,yi). The line 
yi = PO + j l x i  is the fitted regression line based on all data points (not 
shown on the graph) and the horizontal line is drawn at Y = g. Note that 
for every point (xi, yi), there are two points, (52, &), which lies on the fitted 
line, and (xi, g )  which lies on the line Y = jj. 

A fundamental equality, in both simple and multiple regressions, is given by 

SST = SSR + SSE. (2.45) 

This equation arises from the description of an observation as 
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Figure 2.7 
line to data. 

A graphical illustration of various quantities computed after fitting a regression 

Yi = yz + ( ~ i  - k) 
Observed = Fit + Deviation from fit. 

Subtracting j j  from both sides, we obtain 

(Yz - ii) + (Yi - $2) 
- - Yz - Y 

Deviation from mean = Deviation due to fit + Residual. 

Accordingly, the total sum of squared deviations in Y can be decomposed 
into the sum of two quantities, the first, SSR, measures the quality of X as 
a predictor of Y, and the second, SSE, measures the error in this prediction. 
Therefore, the ratio R2 = SSR/SST can be interpreted as the proportion of 
the total variation in Y that is accounted for by the predictor variable X .  
Using (2.45), we can rewrite R2 as 

(2.46) 

Additionally, it can be shown that 

[Cor(Y, x)12 = [Cor(Y, Y)12 = R ~ .  (2.47) 

In simple linear regression, R2 is equal to the square of the correlation 
coefficient between the response variable Y and the predictor X or to the 
square of the correlation coefficient between the response variable Y and the 
fitted values Y .  The definition given in (2.46) provides us with an alternative 
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interpretation of the squared correlation coefficients. The goodness-of-jt 
index, R2, may be interpreted as the proportion of the total variability in the 
response variable Y that is accounted for by the predictor variable X .  Note 
that 0 5 R2 5 1 because SSE 5 SST. If R2 is near 1, then X accounts for a 
large part of the variation in Y. For this reason, R2 is known as the coeficient 
of determination because it gives us an idea of how the predictor variable X 
accounts for (determines) the response variable Y. The same interpretation 
of R2 will carry over to the case of multiple regression. 

Using the Computer Repair data, the fitted values, and the residuals in Table 
2.7, the reader can verify that Cor(Y, X )  = Cor(Y, Y )  = 0.994, from which 
it follows that R2 = (0.994)2 = .987. The same value of R2 can be 
computed using (2.46). Verify that SST = 27768.348 and SSE = 348.848. 
So that 

= 0.987. 
2 SSE 348.848 R =1- -=1-  

SST 27768.348 
The value R2 = 0.987 indicates that nearly 99% of the total variability in 
the response variable (Minutes) is accounted for by the predictor variable 
(Units). The high value of R2 indicates a strong linear relationship between 
servicing time and the number of units repaired during a service call. 

We reemphasize that the regression assumptions should be checked before draw- 
ing statistical conclusions from the analysis (e.g., conducting tests of hypothesis 
or constructing confidence or prediction intervals) because the validity of these 
statistical procedures hinges on the validity of the assumptions. Chapter 4 presents 
a collection of graphical displays that can be used for checking the validity of the 
assumptions. We have used these graphs for the computer repair data and found no 
evidence that the underlying assumptions of regression analysis are not in order. In 
summary, the 14 data points in the Computer Repair data have given us an infor- 
mative view of the repair time problem. Within the range of observed data, we are 
confident of the validity of our inferences and predictions. 

2.10 REGRESSION LINE THROUGH THE ORIGIN 

We have considered fitting the model 

Y = Po + p,x + E ,  (2.48) 

which is a regression line with an intercept. Sometimes, it may be necessary to fit 
the model 

Y = p,x + E ,  (2.49) 

a line passing through the origin. This model is also called the no-intercept model. 
The line may be forced to go through the origin because of subject matter theory 
or other physical and material considerations. For example, distance traveled as a 
function of time should have no constant. Thus, in this case, the regression model 
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in (2.49) is appropriate. Many other practical applications can be found where 
model (2.49) is more appropriate than (2.48). We shall see some of these examples 
in Chapter 7. 

The least squares estimate of p1 in (2.49) is 

c yzxz 
a1 = 

The ith fitted value is 
yz = &ir i = 1 , 2 , .  . . , n, 

and the corresponding residual is 

e i = y i - y i ,  i = 1 , 2 ,  . . . ,  n. 

The standard error of the $1 is 

where 

(2.50) 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

Note that the degrees of freedom for SSE is n - 1, not n - 2, as is the case for a 
model with an intercept. 

Note that the residuals in (2.52) do not necessarily add up to zero as is the case 
for a model with an intercept (see Exercise 2.1 l(c)). Also, the fundamental identity 
in (2.45) is no longer true in general. For this reason, some quality measures for 
models with an intercept such as R2 in (2.46), are no longer appropriate for models 
with no-intercept. The appropriate identity for the case of models with no intercept 
is obtained by replacing jj in (2.44) by zero. Hence, the fundamental identity 
becomes 

i=l  i=l i=l 

from which R2 is redefined as 

(2.55) 

(2.56) 

This is the appropriate form of R2 for models with no intercept. Note, however, 
that the interpretations for the two formulas of R2 are different. In the case of 
models with an intercept, R2 can be interpreted as the proportion of the variation in 
Y that is accounted for by the predictor variable X after adjusting Y by its mean. 
For models without an intercept, no adjustment of Y is made. For example, if we 
fit (2.49) but use the formula for R2 in (2.46), it is possible for R2 to be negative in 
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some cases (see Exercise 2.1 l(d)). Therefore, the correct formula and the correct 
interpretation should be used. 

The formula for the t-test in (2.29) for testing HO : p1 = ,@ against the two- 
sided alternative H1 : P1 # ,@, continues to hold but with the new definitions of 

and s.e.(bl) in (2.50) and (2.53), respectively. 
As we mentioned earlier, models with no intercept should be used whenever 

they are consistent with the subject matter (domain) theory or other physical and 
material considerations. In some applications, however, one may not be certain as 
to which model should be used. In these cases, the choice between the models given 
in (2.48) and (2.49) has to be made with care. First, the goodness of fit should be 
judged by comparing the residual mean squares (6’) produced by the two models 
because it measures the closeness of the observed and predicted values for the two 
models. Second, one can fit model (2.48) to the data and use the t-test in (2.31) 
to test the significance of the intercept. If the test is significant, then use (2.48), 
otherwise use (2.49). 

An excellent exposition of regression models through the origin is provided by 
Eisenhauer (2003) who also alerts the users of regression models through the origin 
to be careful when fitting these models using computer software programs because 
some of them give incorrect and confusing results for the case of regression models 
through the origin. 

2.1 1 TRIVIAL REGRESSION MODELS 

In this section we give two examples of trivial regression models, that is, regression 
equations that have no regression coefficients. The first example arises when we 
wish to test for the mean p of a single variable Y based on a random sample of 
n observations y1, y2, . . ., yn. Here we have HO : p = 0 against HI : p # 0. 
Assuming that Y is normally distributed with mean p and variance 02, the well- 
known one-sample t-test 

j j -0  - Y t = - - -  
s.e.(jj) s y / f i  ’ (2.57) 

can be used to test Ho, where sy is sample standard deviation of Y. Alternatively, 
the above hypotheses can be formulated as 

(2.58) 

where Po = po. Thus, Model 1 indicates that p = 0 and Model 2 indicates that 
p # 0. The least squares estimate of PO in Model 2 is 3, the ith fitted value is 
yi = jj, and the ith residual is ei = yi - g. It follows then that an estimate of u2 is 

Ho(Model 1) : Y = E against Hl(Mode2 2) : Y = PO + E ,  

(2.59) 

which is the sample variance of Y .  The standard error of $0 is then 6 1 6  = 
sy/f i ,  which is the familiar standard error of the sample mean jj. The t-test for 
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testing Model 1 against Model 2 is 

(2.60) 

which is the same as the one-sample t-test in (2.57). 
The second example occurs in connection with the paired two-sample t-test. For 

example, to test whether a given diet is effective in weight reduction, a random 
sample of n people is chosen and each person in the sample follows the diet for a 
specified period of time. Each person’s weight is measured at the beginning of the 
diet and at the end of the period. Let Y1 and Yz denote the weight at the beginning 
and at the end of diet period, respectively. Let Y = Y1 - YZ be the difference 
between the two weights. Then Y is a random variable with mean p and variance 
02. Consequently, testing whether or not the diet is effective is the same as testing 
Ho : p = 0 against H1 : p > 0. With the definition of Y and assuming that Y is 
normally distributed, the well-known paired two-sample t-test is the same as the 
test in (2.57). This situation can be modeled as in (2.58) and the test in (2.60) can 
be used to test whether the diet is effective in weight reduction. 

The above two examples show that the one-sample and the paired two-sample 
tests can be obtained as special cases using regression analysis. 

2.12 BIBLIOGRAPHIC NOTES 

The standard theory of regression analysis is developed in a number of good text 
books, some of which have been written to serve specific disciplines. Each provides 
a complete treatment of the standard results. The books by Snedecor and Cochran 
(1980), Fox (1984), and Kmenta (1986) develop the results using simple algebra 
and summation notation. The development in Searle (1971), Rao (1973), Seber 
(1977), Myers (1990), Sen and Srivastava (1 990), Green (1993), Graybill and Iyer 
(1994), and Draper and Smith (1 998) lean more heavily on matrix algebra. 

EXERCISES 

2.1 Using the data in Table 2.6: 
Compute Var(Y) and V a r ( X ) .  

Prove or verify that C (yi - jj) = 0. 

Prove or verify that any standardized variable has a mean of 0 and a 
standard deviation of 1. 
Prove or verify that the three formulas for Cor(Y, X )  in (2.3,  (2.6), and 
(2.7) are identical. 
Prove or verify that the three formulas for ,& in (2.14) and (2.20) are 
identical. 

n 

i= 1 
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2.2 Explain why you would or wouldn’t agree with each of the following state- 
ments: 
(a) Cov(Y, X )  and Cor(Y, X )  can take values between -m and +m. 

(b) If Cov(Y, X )  = 0 or Cor(Y, X )  = 0, one can conclude that there is no 

(c) The least squares line fitted to the points in the scatter plot of Y versus Y 

2.3 Using the regression output in Table 2.9, test the following hypotheses using 
a = 0.1: 

(a) HO : = 15 versus HI  : # 15 

(b) HO : P1 = 15 versus HI  : PI > 15 
(c) HO : PO = 0 versus H1 : PO # 0 
(d) HO : PO = 5 versus H I  : PO # 5 

2.4 Using the regression output in Table 2.9, construct the 99% confidence interval 
for PO. 
When fitting the simple linear regression model Y = PO + PIX + E to a set 

of data using the least squares method, each of the following statements can 
be proven to be true. Prove each statement mathematically or demonstrate its 
correctness numerically (using the data in Table 2.5): 

(a) The sum of the ordinary least squares residuals is zero. 
(b) The two tests in (2.26) and (2.32) are equivalent. 

(c) The scatter plot of Y versus X and the scatter plot of Y versus Y have 

(d) The correlation coefficient between Y and Y must be nonnegative. 

2.6 Using the data in Table 2.5, and the fitted values and the residuals in Table 
2.7, verify that: 
(a) Cor(Y, X )  = Cor(Y, Y )  = 0.994 
(b) SST = 27768.348 
(c) SSE = 348.848 

2.7 Verify that the four data sets in Table 2.4 give identical results for the following 
quantities:. 

(c) R2 (d) The t-test 

2.8 When fitting a simple linear regression model Y = PO + P I X  + E to a set 
of data using the least squares method, suppose that Ho : ,@ = 0 was not 
rejected. This implies that the model can be written simply as: Y = Po + E. 

The least squares estimate of PO is PO = g. (Can you prove that?) 
(a) What are the ordinary least squares residuals in this case? 

relationship between Y and X .  

has a zero intercept and a unit slope. 

2.5 

identical patterns. 

(a) Po and P 1  (b) Cor(Y,X) 
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Table 2.10 
Participation Rate of Women 

Variable Coefficient s.e. t-test p-value 

Regression Output When Y Is Regressed on X for the Labor Force 

Constant 0.2033 1 1 0.0976 2.08 0.0526 
X 0.656040 0.1961 3.35 < 0.0038 

n =  19 R2 = 0.397 R& = 0.362 6 = 0.0566 d . f .  = 17 

(b) Show that the ordinary least squares residuals sum up to zero. 

2.9 Let Y and X denote the labor force participation rate of women in 1972 and 
1968, respectively, in each of 19 cities in the United States. The regression 
output for this data set is shown in Table 2.10. It was also found that SSR 
= 0.0358 and SSE = 0.0544. Suppose that the model Y = PO + P I X  + E 

satisfies the usual regression assumptions. 
(a) Compute Var(Y) and Cor(Y, X ) .  
(b) Suppose that the participation rate of women in 1968 in a given city is 

45%. What is the estimated participation rate of women in 1972 for the 
same city? 

(c) Suppose further that the mean and variance of the participation rate of 
women in 1968 are 0.5 and 0.005, respectively. Construct the 95% 
confidence interval for the estimate in (b). 

(d) Construct the 95% confidence interval for the slope of the true regression 
line, PI.  

(e) Test the hypothesis: Ho : = 1 versus H I  : PI > 1 at the 5% 
significance level. 

(f) If Y and X were reversed in the above regression, what would you expect 
R2 to be? 

2.10 One may wonder if people of similar heights tend to marry each other. For 
this purpose, a sample of newly married couples was selected. Let X be 
the height of the husband and Y be the height of the wife. The heights (in 
centimeters) of husbands and wives are found in Table 2.1 1. The data can 
also be found in the book’s Web site. 
(a) Compute the covariance between the heights of the husbands and wives. 
(b) What would the covariance be if heights were measured in inches rather 

(c) Compute the correlation coefficient between the heights of the husband 

(d) What would the correlation be if heights were measured in inches rather 

than in centimeters? 

and wife. 

than in centimeters? 
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(e) What would the correlation be if every man married a woman exactly 5 
centimeters shorter than him? 

(9 We wish to fit a regression model relating the heights of husbands and 
wives. Which one of the two variables would you choose as the response 
variable? Justify your answer. 

(g) Using your choice of the response variable in (9, test the null hypothesis 
that the slope is zero. 

(h) Using your choice of the response variable in (0, test the null hypothesis 
that the intercept is zero. 

(i) Using your choice of the response variable in (f), test the null hypothesis 
that the both the intercept and the slope are zero. 

(j) Which of the above hypotheses and tests would you choose to test whether 
people of similar heights tend to marry each other? What is your conclu- 
sion? 

(k) If none of the above tests is appropriate for testing the hypothesis that 
people of similar heights tend to marry each other, which test would you 
use? What is your conclusion based on this test? 

2.11 Consider fitting a simple linear regression model through the origin, Y = 
PIX  + E ,  to a set of data using the least squares method. 
(a) Give an example of a situation where fitting the model (2.49) is justified 

by theoretical or other physical and material considerations. 
(b) Show that least squares estimate of is as given in (2.50). 

(c) Show that the residuals el ,  ep, . . . , en will not necessarily add up to zero. 
(d) Give an example of adata set Y and X in which R2 in (2.46) but computed 

from fitting (2.49) to the data is negative. 
(e) Which goodness of fit measures would you use to compare model (2.49) 

with model (2.48)? 

2.12 In order to investigate the feasibility of starting a Sunday edition for a large 
metropolitan newspaper, information was obtained from a sample of 34 news- 
papers concerning their daily and Sunday circulations (in thousands) (Source: 
Gale Directory of Publications, 1994). The data are given in Table 2.12 and 
can be found in the book’s Web site. 
(a) Construct a scatter plot of Sunday circulation versus daily circulation. 

Does the plot suggest a linear relationship between Daily and Sunday 
circulation? Do you think this is a plausible relationship? 

(b) Fit a regression line predicting Sunday circulation from Daily circulation. 

(c) Obtain the 95% confidence intervals for PO and PI. 
(d) Is there a significant relationship between Sunday circulation and Daily 

circulation? Justify your answer by a statistical test. Indicate what 
hypothesis you are testing and your conclusion. 
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Table 2.11 Heights of Husband ( H )  and Wife (W)  in (Centimeters) 

Row H W 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

186 
180 
160 
186 
I63 
172 
192 
170 
174 
191 
182 
178 
181 
168 
162 
188 
168 
183 
188 
166 
180 
176 
185 
169 
182 
162 
169 
176 
180 
I57 
170 
186 

175 
168 
154 
166 
162 
152 
179 
163 
172 
170 
170 
147 
165 
162 
154 
166 
167 
174 
173 
164 
163 
163 
171 
161 
167 
160 
165 
167 
175 
157 
172 
181 

Row H W 

33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 

180 
188 
153 
179 
175 
165 
156 
185 
172 
166 
179 
181 
176 
170 
165 
183 
162 
192 
185 
163 
185 
170 
176 
176 
160 
167 
157 
180 
172 
184 
185 
165 

166 
181 
148 
169 
170 
157 
162 
174 
168 
162 
159 
155 
171 
159 
164 
175 
156 
180 
167 
157 
167 
157 
168 
167 
145 
156 
153 
162 
156 
174 
160 
152 

65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 

Row H W 

181 175 
170 
161 
188 
181 
156 
161 
152 
179 
170 
170 
165 
165 
169 
171 
192 
176 
168 
I69 
184 
171 
161 
185 
184 
179 
184 
175 
173 
164 
181 
187 
181 

169 
149 
176 
165 
143 
158 
141 
160 
149 
160 
148 
154 
171 
165 
175 
161 
162 
162 
176 
160 
158 
175 
174 
168 
177 
158 
161 
146 
168 
178 
170 
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Table 2.12 Newspapers Data: Daily and Sunday Circulations (in Thousands) 

Newspaper Daily Sunday 

Baltimore Sun 
Boston Globe 
Boston Herald 
Charlotte Observer 
Chicago Sun Times 
Chicago Tribune 
Cincinnati Enquirer 
Denver Post 
Des Moines Register 
Hartford Courant 
Houston Chronicle 
Kansas City Star 
Los Angeles Daily News 
Los Angeles Times 
Miami Herald 
Minneapolis Star Tribune 
New Orleans Times-Picayune 
New York Daily News 
New York Times 
Newsday 
Omaha World Herald 
Orange County Register 
Philadelphia Inquirer 
Pittsburgh Press 
Portland Oregonian 
Providence Journal-Bulletin 
Rochester Democrat & Chronicle 
Rocky Mountain News 
Sacramento Bee 
San Francisco Chronicle 
St. Louis Post-Dispatch 
St. Paul Pioneer Press 
Tampa Tribune 
Washington Post 

391.952 
516.981 
355.628 
238.555 
537.780 
733.775 
198.832 
252.624 
206.204 
231.177 
449.755 
288.57 1 
185.736 

1164.388 
444.581 
4 12.87 1 
272.280 
781.796 

1209.225 
825.512 
223.748 
354.843 
5 15.523 
220.465 
337.672 
197.120 
133.239 
374.009 
273.844 
570.364 
391.286 
201.860 
321.626 
838.902 

48 8.506 
798.298 
235.084 
299.45 1 
559.093 

1 133.249 
348.744 
417.779 
344.522 
323.084 
620.752 
423.305 
202.614 

153 1.527 
553.479 
685.975 
324.241 
983.240 

1762.015 
960.308 
284.61 1 
407.760 
982.663 
557.000 
440.923 
268.060 
262.048 
432.502 
338.355 
704.322 
585.681 
267.781 
408.343 

1165.567 
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(e) What proportion of the variability in Sunday circulation is accounted for 
by Daily circulation? 

(f) Provide an interval estimate (based on 95% level) for the true average 
Sunday circulation of newspapers with Daily circulation of 500,000. 

(g) The particular newspaper that is considering a Sunday edition has a Daily 
circulation of 500,000. Provide an interval estimate (based on 95% level) 
for the predicted Sunday circulation of this paper. How does this interval 
differ from that given in (f)? 

(h) Another newspaper being considered as a candidate for a Sunday edition 
has a Daily circulation of 2,000,000. Provide an interval estimate for 
the predicted Sunday circulation for this paper? How does this interval 
compare with the one given in (g)? Do you think it is likely to be accurate? 



CHAPTER 3 

MULTIPLE LINEAR REGRESSION 

3.1 INTRODUCTION 

In this chapter the general multiple linear regression model is presented. The 
presentation serves as a review of the standard results on regression analysis. 
The standard theoretical results are given without mathematical derivations, but 
illustrated by numerical examples. Readers interested in mathematical derivations 
are referred to the bibliographic notes at the end of Chapter 2, where a number 
of books that contain a formal development of multiple linear regression theory is 
given. 

3.2 DESCRIPTION OF THE DATA AND MODEL 

The data consist of n observations on a dependent or response variable Y and p 
predictor or explanatory variables, X I ,  X2, . . . , X,. The observations are usually 
represented as in Table 3.1. The relationship between Y and X I ,  Xp,  . . . , X ,  is 
formulated as a linear model 

(3.1) 

where PO, PI, /32 ,  . . . , P, are constants referred to as the model partial regression 
coefficients (or simply as the regression coeficients) and E is a random disturbance 

53 

Y = Po + PlXl + P2X2 + . . . + ppxp + E ,  

Regression Analysis by Example, Fourth Edifion. By Samprit Chatterjee and Ali S. Hadi 
Copyright @ 2006 John Wiley & Sons, Inc. 
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or error. It is assumed that for any set of fixed values of X I ,  X 2 , .  . . , X, that 
fall within the range of the data, the linear equation (3.1) provides an acceptable 
approximation of the true relationship between Y and the X’s (Y is approximately 
a linear function of the X’s, and E measures the discrepancy in that approximation). 
In particular, E contains no systematic information for determining Y that is not 
already captured by the X’s. 

Table 3.1 Notation for the Data Used in Multiple Regression Analysis 

Observation Response Predictors 

Number Y X1 x 2  . . .  X P  

X l P  

Q P  

X3P 

1 Y1 X l l  2 1 2  . . .  
2 Y2 2 2 1  2 2 2  . . .  
3 Y3 x31 2 3 2  . . .  

X n P  n Yn X n l  X n 2  . . .  

According to (3.1), each observation in Table 3.1 can be written as 

yz = Po + P l X i l  + . . . + PpXip + E i ,  i = 1 , 2 , .  . . , n, (3.2) 

where yi represents the ith value of the response variable Y ,  xil, x i 2 ,  . . . , xi, 
represent values of the predictor variables for the ith unit (the ith row in Table 3.1), 
and ~i represents the error in the approximation of yi. 

Multiple linear regression is an extension (generalization) of simple linear re- 
gression. Thus, the results given here are essentially extensions of the results given 
in Chapter 2. One can similarly think of simple regression as a special case of 
multiple regression because all simple regression results can be obtained using the 
multiple regression results when the number of predictor variables p = 1. For 
example, when p = 1, (3.1) and (3.2) reduce to (2.9) and (2.10), respectively. 

3.3 EXAMPLE: SUPERVISOR PERFORMANCE DATA 

Throughout this chapter we use data from a study in industrial psychology (man- 
agement) to illustrate some of the standard regression results. A recent survey of 
the clerical employees of a large financial organization included questions related 
to employee satisfaction with their supervisors. There was a question designed to 
measure the overall performance of a supervisor, as well as questions that were re- 
lated to specific activities involving interaction between supervisor and employee. 
An exploratory study was undertaken to try to explain the relationship between 
specific supervisor characteristics and overall satisfaction with supervisors as per- 
ceived by the employees. Initially, six questionnaire items were chosen as possible 
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explanatory variables. Table 3.2 gives the description of the variables in the study. 
As can be seen from the list, there are two broad types of variables included in 
the study. Variables XI, X2, and X5 relate to direct interpersonal relationships be- 
tween employee and supervisor, whereas variables X3 and X4 are of a less personal 
nature and relate to the job as a whole. Variable x6 is not a direct evaluation of the 
supervisor but serves more as a general measure of how the employee perceives his 
or her own progress in the company. 

The data for the analysis were generated from the individual employee response 
to the items on the survey questionnaire. The response on any item ranged from 
1 through 5 ,  indicating very satisfactory to very unsatisfactory, respectively. A 
dichotomous index was created to each item by collapsing the response scale to 
two categories: {1,2}, to be interpreted as a favorable response, and {3,4,5}, 
representing an unfavorable response. The data were collected in 30 departments 
selected at random from the organization. Each department had approximately 35 
employees and one supervisor. The data to be used in the analysis, given in Table 
3.3, were obtained by aggregating responses for departments to get the proportion of 
favorable responses for each item for each department. The resulting data therefore 
consist of 30 observations on seven variables, one observation for each department. 
We refer to this data set as the Supervisor Pe$ormance data. The data set can also 
be found in the book's Web site.' 

Table 3.2 Description of Variables in Supervisor Performance Data 

Variable 

Y 
X1 
x2 

x3 

x4 

x5 

x6 

Description 

Overall rating of job being done by supervisor 
Handles employee complaints 
Does not allow special privileges 
Opportunity to learn new things 
Raises based on performance 
Too critical of poor performance 
Rate of advancing to better jobs 

A linear model of the form 

relating Y and the six explanatory variables, is assumed. Methods for the validation 
of this and other assumptions are presented in Chapter 4. 

' http://www.ilr.corneIl.eduThadi/RABE4 
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Table 3.3 Supervisor Performance Data 

Row Y X1 XZ x3 x4 x5 x6 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

43 
63 
71 
61 
81 
43 
58 
71 
72 
67 
64 
67 
69 
68 
77 
81 
74 
65 
65 
50 
50 
64 
53 
40 
63 
66 
78 
48 
85 
82 

51 
64 
70 
63 
78 
55 
67 
75 
82 
61 
53 
60 
62 
83 
77 
90 
85 
60 
70 
58 
40 
61 
66 
37 
54 
77 
75 
57 
85 
82 

30 
51 
68 
45 
56 
49 
42 
50 
72 
45 
53 
47 
57 
83 
54 
50 
64 
65 
46 
68 
33 
52 
52 
42 
42 
66 
58 
44 
71 
39 

39 
54 
69 
47 
66 
44 
56 
55 
67 
47 
58 
39 
42 
45 
72 
72 
69 
75 
57 
54 
34 
62 
50 
58 
48 
63 
74 
45 
71 
59 

61 
63 
76 
54 
71 
54 
66 
70 
71 
62 
58 
59 
55 
59 
79 
60 
79 
55 
75 
64 
43 
66 
63 
50 
66 
88 
80 
51 
77 
64 

92 
73 
86 
84 
83 
49 
68 
66 
83 
80 
67 
74 
63 
77 
77 
54 
79 
80 
85 
78 
64 
80 
80 
57 
75 
76 
78 
83 
74 
78 

45 
47 
48 
35 
47 
34 
35 
41 
31 
41 
34 
41 
25 
35 
46 
36 
63 
60 
46 
52 
33 
41 
37 
49 
33 
72 
49 
38 
55 
39 
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3.4 PARAMETER ESTIMATION 

Based on the available data, we wish to estimate the parameters PO, P I ,  . . . , Pp.  As 
in the case of simple regression presented in Chapter 2, we use the least squares 
method, that is, we minimize the sum of squares of the errors. From (3.2), the 
errors can be written as 

E i  = yi - Po - P1.2l - . . . - pplL.zp, 2 = 1 , 2 , .  . . ,n. (3.4) 

The sum of squares of these errors is 

i=l i=l 

By a direct application of calculus, it can be shown that the least squares estimates 
j o ,  P I , .  . . , &, which minimize S(P0, P I , .  . . , P p ) ,  are given by the solution of a 
system of linear equations known as the normal equations.2 The estimate j o  is 
usually referred to as the intercept or constant, and ,bj as the estimate of the (partial) 
regression coefficient of the predictor X j .  

We assume that the system of equations is solvable and has a unique solution. 
A closed-form formula for the solution is given in the appendix at the end of 
this chapter for readers who are familiar with matrix notation. We shall not say 
anything more about the actual process of solving the normal equations. We assume 
the availability of computer software that gives a numerically accurate solution. 

Using the estimated regression coefficients ,&, j l ,  . . . , bp, we write the fitted 
least squares regression equation as 

Y = bll + PIX,  + . . . + &xp. 
For each observation in our data we can compute 

$2 = j o  + /3lZZl + . . . + jp’2zp, i = 1 , 2 , .  . . ,n. (3.7) 

These are called the fitted values. The corresponding ordinary least squares resid- 
uals are given by 

e , = y i - & ,  i = 1 , 2  ,..., n. (3.8) 

An unbiased estimate of a’ is given by 

- 2  SSE 
a =  

n - p - 1 ’  

where 

i=l i=l 

(3.9) 

(3.10) 

’For readers who are familiar with matrix notation, the normal equations and the least squares 
estimates are given in the appendix to this chapter as (A.2) and (A.3), respectively. 
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is the sum of squared residuals. The number n - p - 1 in the denominator of (3.9) 
is called the degrees of freedom (d.f.). It is equal to the number of observations 
minus the number of estimated regression coefficients. 

When certain assumptions hold, the least squares estimators have several de- 
sirable properties. Chapter 4 is devoted entirely to validation of the assumptions. 
We should note, however, that we have applied these validation procedures on the 
Supervisor Performance data that we use as illustrative numerical examples in this 
chapter and found no evidence for model misspecification. We will, therefore, con- 
tinue with the presentation of multiple regression analysis in this chapter knowing 
that the required assumptions are valid for the Supervisor Performance data. 

The properties of least squares estimators are presented in Section 3.6. Based 
on these properties, one can develop proper statistical inference procedures (e.g., 
confidence interval estimation, tests of hypothesis, and goodness-of-fit tests). These 
are presented in Sections 3.7 to 3.10. 

3.5 INTERPRETATIONS OF REGRESSION COEFFICIENTS 

The interpretation of the regression coefficients in a multiple regression equation 
is a source of common confusion. The simple regression equation represents a 
line, while the multiple regression equation represents a plane (in cases of two 
predictors) or a hyperplane (in cases of more than two predictors). In multiple 
regression, the coefficient Po, called the constant coeficient, is the value of Y when 
X1 = X2 = . . . = X ,  = 0, as in simple regression. The regression coefficient 
&, j = 1 , 2 , .  . . , p ,  has several interpretations. It may be interpreted as the change 
in Y corresponding to a unit change in Xj when all other predictor variables are 
held constant. Magnitude of the change is not dependent on the values at which 
the other predictor variables are fixed. In practice, however, the predictor variables 
may be inherently related, and holding some of them constant while varying the 
others may not be possible. 

The regression coefficient ,/3j is also called the partial regression coeficient 
because Pj represents the contribution of X j  to the response variable Y after it has 
been adjusted for the other predictor variables. What does “adjusted for” mean in 
multiple regression? Without loss of any generality, we address this question using 
the simplest multiple regression case where we have two predictor variables. When 
p = 2, the model is 

Y = Po + 64x1 + PZXZ + E .  (3.1 1) 

We use the variables X I  and X2 from the Supervisor data to illustrate the concepts. 
A statistical package gives the estimated regression equation as 

Y = 15.3276 + 0.7803 X1 - 0.0502 X2. (3.12) 

The coefficient of X I  suggests that each unit of X1 adds 0.7803 to Y when the 
value of X2 is held fixed. As we show below, this is also the effect of X I  after 
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adjusting for X2. Similarly, the coefficient of X Z  suggests that each unit of X2 
subtracts about 0.0502 from Y when the value of X1 is held fixed. This is also the 
effect of Xp after adjusting for X I .  

This interpretation can be easily understood when we consider the fact that the 
multiple regression equation can be obtained from a series of simple regression 
equations. For example, the coefficient of X2 in (3.12) can be obtained as follows: 

1 .  Fit the simple regression model that relates Y to X I .  Let the residuals from 
this regression be denoted by ey.xl.  This notation indicates that the variable 
that comes before the dot is treated as a response variable and the variable 
that comes after the dot is considered as a predictor. The fitted regression 
equation is: 

Y = 14.3763 + 0.754610 X i .  (3.13) 

2. Fit the simple regression model that relates X2 (considered temporarily here 
as a response variable) to X I .  Let the residuals from this regression be 
denoted by ex2.xl. The fitted regression equation is: 

X2 = 18.9654 + 0.513032 X i .  (3.14) 

The residuals, ey.xl and ex2.xl are given in Table 3.4. 

3. Fit the simple regression model that relates the above two residuals. In this 
regression, the response variable is ey.xl and the predictor variable is ex2.x,. 
The fitted regression equation is: 

ky.xl = 0 - 0.0502 eXz.Xl .  (3.15) 

The interesting result here is that the coefficient of exz.xl in this last regression is 
the same as the multiple regression coefficient of X2 in (3.12). The two coefficients 
are equal to -0.0502. In fact, their standard errors are also the same. What’s the 
intuition here? In the first step, we found the linear relationship between Y and 
X I .  The residual from this regression is Y after taking or partialling out the linear 
effects of X I .  In other words, the residual is that part of Y that is not linearly 
related to X I .  In the second step we do the same thing, replacing Y by X2, so the 
residual is the part of X2 that is not linearly related to X I .  In the third step we 
look for the linear relationship between the Y residual and the X2 residual. The 
resultant regression coefficient represents the effect of X2 on Y after taking out the 
effects of X I  from both Y and X2. 

The regression coefficient & is the partial regression coefficient because it rep- 
resents the contribution of X j  to the response variable Y after both variables have 
been linearly adjusted for the other predictor variables (see also Exercise 3.4). 

Note that the estimated intercept in the regression equation in (3.15) is zero 
because the two sets of residuals have a mean of zero (they sum up to zero). The 
same procedures can be applied to obtain the multiple regression coefficient of X1 
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Row ey.x1 exz.x, 
1 -9.8614 - 15.1300 
2 0.3287 -0.7995 
3 3.8010 13.1224 
4 -0.91 67 -6.2864 
5 7.7641 -2.9819 
6 - 12.8799 1.8178 
7 -6.9352 - 1 1.3385 
8 0.0279 -7.4428 
9 -4.2543 10.9660 

10 6.5925 -5.2604 

12 7.3471 - 2.7473 
13 7.8379 6.2266 
14 -9.0089 2 1.4529 
15 4.5 1 87 -4.4689 

11 9.6294 6.8439 

Table 3.4 Partial Residuals 

Row eY.xl 
16 -1.2912 
17 -4.51 82 
18 5.3471 
19 -2.1990 
20 -8.1437 
21 5.4393 
22 3.5925 
23 - 11.1806 
24 - 2.2969 
25 7.8748 

27 7.0279 
28 -9.3891 
29 6.48 1 8 
30 5.7457 

26 -6.4813 

exz.x, 
- 15.1383 

1.4269 
15.2527 

19.2787 
-6.4867 

1.7397 
-0.8255 

4.0524 

7.531 1 
0.5572 

8.4269 

-8.8776 

-4.6691 

-4.208 2 

-22.0340 

in (3.12). Simply interchange X z  by X I  in the above three steps. This is left as an 
exercise for the reader. 

From the above discussion we see that the simple and the multiple regression 
coefficients are not the same unless the predictor variables are uncorrelated. In 
nonexperimental, or observational data, the predictor variables are rarely uncor- 
related. In an experimental setting, in contrast, the experimental design is often 
set up to produce uncorrelated explanatory variables because in an experiment the 
researcher sets the values of the predictor variables. So in samples derived from 
experiments it may be the case that the explanatory variables are uncorrelated and 
hence the simple and multiple regression coefficients in that sample would be the 
same. 

3.6 PROPERTIES OF THE LEAST SQUARES ESTIMATORS 

Under certain standard regression assumptions (to be stated in Chapter 4), the least 
squares estimators have the properties listed below. A reader familiar with matrix 
algebra will find concise statements of these properties employing matrix notation 
in the appendix at the end of the chapter. 

1. The estimator ,hj, j = 0,1, .  . . , p ,  is an unbiased estimate of ,6j and has a 
variance of a2cjj, where c j j  is the j th  diagonal element of the inverse of a 
matrix known as the corrected sums of squares and products matrix. The 
covariance between ,& and ,hj is a'cij, where ~j is the element in the ith row 
and jth column of the inverse of the corrected sums of squares and products 
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matrix. For all unbiased estimates that are linear in the observations the 
least squares estimators have the smallest variance. Thus, the least squares 
estimators are said to be BLUE (best linear unbiased estimators). 

2. The estimator &, j = 0, 1,. . . , p ,  is normally distributed with mean Pj and 
variance a2cjj. 

3. W = SSE/a2 has a x 2  distribution with (TI - p - 1) degrees of freedom, 
and $j’s and b2 are distributed independently of each other. 

4. The vector f i  = (boo, PI, . . . ! b,) has a ( p  + 1)-variate normal distribution 
with mean vector p = (Po,  P I , .  . . P,) and variance-covariance matrix with 
elements a2cij. 

The results above enable us to test various hypotheses about individual regression 
parameters and to construct confidence intervals. These are discussed in Section 3.8. 

3.7 MULTIPLE CORRELATION COEFFICIENT 

After fitting the linear model to a given data set, an assessment is made of the 
adequacy of fit. The discussion given in Section 2.9 applies here. All the material 
extend naturally to multiple regression and will not be repeated here. 

The strength of the linear relationship between Y and the set of predictors 
X I ,  X2 ,  . . . ! X ,  can be assessed through the examination of the scatter plot of Y 
versus Y and the correlation coefficient between Y and Y ,  which is given by 

(3.16) C(Y2 - i d ( $ i  - $1 Cor(Y, Y )  = 
J c ( Y 2  - Y)2 C(Yi - $12 ! 

where 9 is the mean of the response variable Y and $ is the mean of the fitted values. 
As in the simple regression case, the coefficient of determination R2 = [Cot-( Y! Y)I2 
is also given by 

(3.17) 

as in (2.46). Thus, R2 may be interpreted as the proportion of the total variability in 
the response variable Y that can be accounted for by the set of predictor variables 
X I ,  X2,  . . . , X,. In multiple regression, R = is called the multiple correla- 
tion coeficient because it measures the relationship between one variable Y and a 
set of variables X I ,  X2 , .  . . , X,. 

From Table 3.5, the value of R2 for the Supervisor Performance data is 0.73, 
showing that about 73% of the total variation in the overall rating of the job being 
done by the supervisor can be accounted for by the six variables. 

When the model fits the data well, it is clear that the value of R2 is close to unity. 
With a good fit, the observed and predicted values will be close to each other, and 
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C(yi - & ) 2  will be small. Then R2 will be near unity. On the other hand, if there 
is no linear relationship between Y and the predictor variables, X I , .  . . , X p ,  the 
linear model gives a poor fit, the best predicted value for an observation yi would 
be $; that is, in the absence of any relationship with the predictors, the best estimate 
of any value of Y is the sample mean, because the sample mean minimizes the sum 
of squared deviations. So in the absence of any linear relationship between Y and 
the X’s, R2 will be near zero. The value of R2 is used as a summary measure to 
judge the fit of the linear model to a given body of data. As pointed out in Chapter 
2, a large value of R2 does not necessarily mean that the model fits the data well. 
As we outline in Section 3.9, a more detailed analysis is needed to ensure that the 
model adequately describes the data. 

A quantity related to R2, known as the adjusted R-squared, R:, is also used for 
judging the goodness of fit. It is defined as 

SSE/(n - p - 1) R 2 = 1 -  
SST/(n - 1) ’ (3.18) 

which is obtained from R2 in (3.17) after dividing SSE and SST by their respective 
degrees of freedom. From (3.18) and (3.17) it follows that 

n - 1  
n - p - 1  

( 1  - R2). R,=1- 2 (3.19) 

R: is sometimes used to compare models having different numbers of predictor 
variables. (This is described in Chapter 11.) In comparing the goodness of fit of 
models with different numbers of explanatory variables, RZ tries to “adjust” for 
the unequal number of variables in the different models. Unlike R2, R: cannot be 
interpreted as the proportion of total variation in Y accounted for by the predictors. 
Many regression packages provide values for both R2 and R:. 

3.8 INFERENCE FOR INDIVIDUAL REGRESSION COEFFICIENTS 

Using the properties of the least squares estimators discussed in Section 3.6, one 
can make statistical inference regarding the regression coefficients. The statistic 
for testing HO : ,Bj = ,B; versus H1 : ,Bj # ,B;, where ,L$’ is a constant chosen by 
the investigator, is 

(3.20) 

which has a Student’s t-distribution with (n - p - 1) degrees of freedom. The 
test is carried out by comparing the observed value with the appropriate critical 
value t(n-p-l ,a/2),  which is obtained from the t-table given in the appendix to 
this book (see Table A.2), where a is the significance level. Note that we divide 
the significance level cr by 2 because we have a two-sided alternative hypothesis. 
Accordingly, HO is to be rejected at the significance level (Y if 

(3.21) 
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where J t j l  denotes the absolute value of t j .  A criterion equivalent to that in (3.21) 
is to compare the p-value of the test with Q and reject HO if 

(3.22) 

where p(lt31), is the p-value of the test, which is the probability that a random 
variable having a Student t-distribution, with (n  - p - l), is greater than l t j l  (the 
absolute value of the observed value of the t-test); see Figure 2.6. The p-value is 
usually computed and supplied as part of the regression output by many statistical 
packages. 

The usual test is for Ho : ,L$’ = 0, in which case the t-test reduces to 

t .  - 3 a. 
s.e.(j3;> ’ 3 -  (3.23) 

which is the ratio of j 3  to its standard error, s.e.(&) given in the appendix at the 
end of this chapter, in (A.lO). The standard errors of the coefficients are computed 
by the statistical packages as part of their standard regression output. 

Note that the rejection of Ho: P3 = 0 would mean that ,B3 is likely to be different 
from 0, and hence the predictor variable X, is a statistically significant predictor 
of the response variable Y after adjusting for the other predictor variables. 

As another example of statistical inference, the confidence limits for PJ with 
confidence coefficient Q are given by 

PJ f t(n-p-l ,a/2) x S 4 P A  (3.24) 

where t(n-p-l,a) is the (1 - a )  percentile point of the t-distribution with ( n  - p -  1) 
degrees of freedom. The confidence interval in (3.24) is for the individual coefficient 
PJ.  A joint confidence region of all regression coefficients is given in the appendix 
at the end of this chapter in (A. 15). 

Note that when p = 1 (simple regression), the t-test in (3.23) and the criteria in 
(3.21) and (3.22) reduce to the t-test in (2.26) and the criteria in (2.27) and (2.28), 
respectively, illustrating the fact that simple regression results can be obtained from 
the multiple regression results by setting p = 1. 

Many other statistical inference situations arise in practice in connection with 
multiple regression. These will be considered in the following sections. 

Example: Supervisor Performance Data (Cont.) 

Let us now illustrate the above t-tests using the Supervisor Performance data set 
described earlier in this chapter. The results of fitting a linear regression model 
relating Y and the six explanatory variables are given in Table 3.5. The fitted 
regression equation is 

Y = 10.787 + 0.613x1 - O.O73X2 + 0.320X3 + 0.081X4 + 0.038X5 - 0.217X6. 
(3.25) 
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Table 3.5 Regression Output for the Supervisor Performance Data 

Variable Coefficient s.e. t-test p-value 

Constant 10.787 1 1.5890 0.93 0.3616 
X1 0.613 0.1610 3.81 0.0009 
x2 -0.073 0.1357 -0.54 0.5956 
x3 0.320 0.1685 1.90 0.0699 
x4 0.08 1 0.2215 0.37 0.7 155 
x5 0.038 0.1470 0.26 0.7963 
x6 -0.217 0.1782 -1.22 0.2356 

n = 30 R2 = 0.73 Ri = 0.66 6 = 7.068 d.f .=23 

The t-values in Table 3.5 test the null hypothesis Ho : Pj = 0, j = 0,1, . . . , p, 
against an alternative H1 : pj # 0. From Table 3.5 it is seen that only the 
regression coefficient of X1 is significantly different from zero and X3 has a 
regression coefficient that approach being significantly different from zero. The 
other variables have insignificant t-tests. The construction of confidence intervals 
for the individual parameters is left as an exercise for the reader. 

It should be noted here that the constant in the above model is statistically not 
significant (t-value of 0.93 and p-value of 0.3616). In any regression model, unless 
there is strong theoretical reason, a constant should always be included even if the 
term is statistically not significant. The constant represents the base or background 
level of the response variable. Insignificant predictors should not be in general 
retained but a constant should be retained. 

3.9 TESTS OF HYPOTHESES IN A LINEAR MODEL 

In addition to looking at hypotheses about individual P’s, several different hypothe- 
ses are considered in connection with the analysis of linear models. The most 
commonly investigated hypotheses are: 

1. All the regression coefficients associated with the predictor variables are 
zero. 

2. Some of the regression coefficients are zero. 

3. Some of the regression coefficients are equal to each other. 

4. The regression parameters satisfy certain specified constraints. 

The different hypotheses about the regression coefficients can all be tested in the 
same way by a unified approach. Rather than describing the individual tests, we 
first describe the general unified approach, then illustrate specific tests using the 
Supervisor Performance data. 
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The model given in (3.1) will be referred to as thefill model (FM). The null 
hypothesis to be tested specifies values for some of the regression coefficients. 
When these values are substituted in the full model, the resulting model is called 
the reduced model (RM). The number of distinct parameters to be estimated in the 
reduced model is smaller than the number of parameters to be estimated in the full 
model. Accordingly, we wish to test 

HO : Reduced model is adequate against H I  : Full model is adequate. 

Note that the reduced model is nested. A set of models are said to be nested if 
they can be obtained from a larger model as special cases. The test for these nested 
hypotheses involves a comparison of the goodness of fit that is obtained when using 
the full model, to the goodness of fit that results using the reduced model specified 
by the null hypothesis. If the reduced model gives as good a fit as the full model, 
the null hypothesis, which defines the reduced model (by specifying some values 
of Pj) ,  is not rejected. This procedure is described formally as follows. 

Let iji and ijt be the values predicted for yi by the full model and the reduced 
model, respectively. The lack of fit in the data associated with the full model is the 
sum of the squared residuals obtained when fitting the full model to the data. We 
denote this by SSE(FM), the sum of squares due to error associated with the full 
model, 

SSE(FM)  = C ( y i  - &)2.  (3.26) 

Similarly, the lack of fit in the data associated with the reduced model is the sum 
of the squared residuals obtained when fitting the reduced model to the data. This 
quantity is denoted by SSE(RM), the sum of squares due to error associated with 
the reduced model, 

SSE(RM)  = C ( y i  - i jr )2 .  (3.27) 

In the full model there are p + 1 regression parameters (PO, PI, P 2 ,  . . . , PP) to be 
estimated. Let us suppose that for the reduced model there are k distinct parameters. 
Note that SSE(RM) 2 SSE(FM) because the additional parameters (variables) 
in the full model cannot increase the residual sum of squares. Note also that the 
difference SSE(RM) - SSE(FM)  represents the increase in the residual sum of 
squares due to fitting the reduced model. If this difference is large, the reduced 
model is inadequate. To see whether the reduced model is adequate, we use the 
ratio 

(3.28) 

This ratio is referred to as the F-test. Note that we divide SSE(RM) - SSE(FM)  
and SSE(FM) in the above ratio by their respective degrees of freedom to com- 
pensate for the different number of parameters involved in the two models as well 
as to ensure that the resulting test statistic has a standard statistical distribution. 
The full model has p + 1 parameters, hence SSE(FM) has n - p - 1 degrees of 
freedom. Similarly, the reduced model has k parameters and SSE(RM) has n - k 

[SSE(RM) - S S E ( F M ) ] / ( p  + 1 - k) 
S S E ( F M ) / ( n  - p - 1)  

F =  
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degrees of freedom. Consequently, the difference SSE(RM)  - SSE(FM) has 
(n  - k )  - (n  - p - 1) = p + 1 - k degrees of freedom. Therefore, the observed 
F ratio in (3.28) has F distribution with ( p  + 1 - k )  and ( n  - p - 1) degrees of 
freedom. 

If the observed F value is large in comparison to the tabulated value of F with 
( p  + 1 - k )  and (n  - p - 1) d.f., the result is significant at level a; that is, the 
reduced model is unsatisfactory and the null hypothesis, with its suggested values 
of P’s in the full model is rejected. The reader interested in proofs of the statements 
above is referred to Graybill (1976), Rao (1973), Searle (1971), or Seber and Lee 
(2003). 

Accordingly, HO is rejected if 

F L F(p+l-k,n-p-l;a), (3.29) 

or, equivalently, if 
p(F) 5 Q, (3.30) 

where F is the observed value of the F-test in (3.28), F(p+l-k,n-p-l;a) is the 
appropriate critical value obtained from the F table given in the appendix to this 
book (see Tables A.4 and AS), Q is the significance level, and p (F)  is the p-  
value for the F-test, which is the probability that a random variable having an F 
distribution, with ( p  + 1 - k )  and ( n  - p - 1) degrees of freedom, is greater than 
the observed F-test in (3.28). The p-value is usually computed and supplied as part 
of the regression output by many statistical packages. 

In the rest of this section, we give several special cases of the general F-test in 
(3.28) with illustrative numerical examples using the Supervisor Performance data. 

3.9.1 Testing All Regression Coefficients Equal to Zero 

An important special case of the F-test in (3.28) is obtained when we test the 
hypothesis that all predictor variables under consideration have no explanatory 
power and that all their regression coefficients are zero. In this case, the reduced 
and full models become: 

RM : Ho : Y = Po + &, (3.31) 

F M :  Hi : Y = P o + P I X l + . . . + P p X p + &  . (3.32) 

The residual sum of squares from the full model is SSE( F M )  = SSE. Because the 
least squares estimate of PO in the reduced model is 9, the residual sum of squares 
from the reduced model is SSE(RM) = C(y i  - j j ) 2  = SST. The reduced model 
has one regression parameter and the full model has p + 1 regression parameters. 
Therefore, the F-test in (3.28) reduces to 

F =  
[SSE(RM) - S S E ( F M ) ] / ( p  + 1 - k )  

S S E ( F M ) / ( n  - p - 1) 
- [SST - SSE]/p 
- 

SSE/(n - p - 1) ’ (3.33) 
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Table 3.6 The Analysis of Variance (ANOVA) Table in Multiple Regression 

Source Sum of Squares d . f .  Mean Square F-test 

SSR MSR F=m MSR = - P P 
Regression SSR 

SSE Residuals SSE n - p - 1  MSE=- n-p-1 

Because SST = SSR + SSE, we can replace SST - SSE in the above formula by 
SSR and obtain 

MSR - -- SSRIP F =  
SSE/(n - p - 1) MSE ’ (3.34) 

where MSR is the mean square due to regression and MSE is the mean square 
due to error. The F-test in (3.34) can be used for testing the hypothesis that the 
regression coefficients of all predictor variables (excluding the constant) are zero. 

The F-test in (3.34) can also be expressed directly in terms of the sample 
multiple correlation coefficient. The null hypothesis which tests whether all the 
population regression coefficients are zero is equivalent to the hypothesis that states 
that the population multiple correlation coefficient is zero. Let Rp denote the 
sample multiple correlation coefficient, which is obtained from fitting a model to n 
observations in which there are p predictor variables (i.e., we estimate p regression 
coefficients and one intercept). The appropriate F for testing HO : ,& = /32 = 
. . . = Pp = 0 in terms of Itp is 

R;lP F =  
(1 - R;)/(n - p - 1) ’ (3.35) 

with p and n - p - 1 degrees of freedom. 
The values involved in the above F-test are customarily computed and compactly 

displayed in a table called the analysis ofvariance (ANOVA) table. The ANOVA 
table is given in Table 3.6. The first column indicates that there are two sources of 
variability in the response variable Y .  The total variability in Y ,  SST = C(yi -Tj)2, 
can be decomposed into two sources: the explained variability, SSR = x($i - Tj)2, 
which is the variability in Y that can be accounted for by the predictor variables, and 
the unexplained variability, SSE = C ( y i  - $ i ) 2 .  This is the same decomposition 
SST = SSR + SSE. This decomposition is given under the column heading Sum 
of Squares. The third column gives the degrees of freedom (d.f.) associated with 
the sum of squares in the second column. The fourth column is the Mean Square 
(MS), which is obtained by dividing each sum of squares by its respective degrees 
of freedom. Finally, the F-test in (3.34) is reported in the last column of the 
table. Some statistical packages also give an additional column containing the 
corresponding p-value, p (  F ) .  

Returning now to the Supervisor Performance data, although the t-tests for the 
regression coefficients have already indicated that some of the regression coeffi- 
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Table 3.7 Supervisor Performance Data: The Analysis of Variance (ANOVA) Table 

Source Sum of Squares d . f .  Mean Square F-test 

Regression 3147.97 6 524.661 10.5 
Residuals 1149.00 23 49.9565 

cients ( P I  and p3) are significantly different from zero, we will, for illustrative 
purposes, test the hypothesis that all six predictor variables have no explanatory 
power, that is, = ,f32 = . . . = ,& = 0. In this case, the reduced and full models 
in (3.31) and (3.32) become: 

R M :  H o : Y = , &  + &, (3.36) 

FM : (3.37) 

For the full model we have to estimate seven parameters, six regression coef- 
ficients, and an intercept term PO. The ANOVA table is given in Table 3.7. The 
sum of squares due to error in the full model is SSE(FM) = SSE = 1149. Under 
the null hypothesis, where all the p’s are zero, the number of parameters estimated 
for the reduced model is therefore 1 (Po). Consequently, the sum of squares of the 
residuals in the reduced model is 

: Y = Po + Pixi + .. . + P6X6 + &. 

SSE(RM) = SST = SSR + SSE = 3147.97 + 1149 = 4296.97. 

Note that this is the same quantity obtained by C ( y i  - y)2. The observed F ratio 
is 10.5. In our present example the numerical equivalence of (3.34) and (3.35) is 
easily seen for 

= 10.50. 
- 0.7326/6 F =  R;/P - 

(1 - Rz)/(n - p - 1) (1 - 0.7326)/23 

This F-value has an F distribution with 6 and 23 degrees of freedom. The 1 % F 
value with 6 and 23 degrees of freedom is found in Table A S  to be 3.71. (Note that 
the value of 3.71 is obtained in this case by interpolation.) Since the observed F 
value is larger than this value, the null hypothesis is rejected; not all the P’s can be 
taken as zero. This, of course, comes as no surprise, because of the large values of 
some of the t-tests. 

If any of the t-tests for the individual regression coefficients prove significant, the 
F for testing all the regression coefficients zero will usually be significant. A more 
puzzling case can, however, arise when none of the t-values for testing the regression 
coefficients are significant, but the F-test given in (3.35) is significant. This implies 
that although none of the variables individually have significant explanatory power, 
the entire set of variables taken collectively explain a significant part of the variation 
in the dependent variable. This situation, when it occurs, should be looked at very 
carefully, for it may indicate a problem with the data analyzed, namely, that some 
of the explanatory variables may be highly correlated, a situation commonly called 
multicollinearity. We discuss this problem in Chapter 9. 
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3.9.2 Testing a Subset of Regression Coefficients Equal to Zero 

We have so far attempted to explain Y in the Supervisor Performance data, in 
terms of six variables, X I ,  X2, . . . X S .  The F-test in (3.34) indicates that all the 
regression coefficients cannot be taken as zero, hence one or more of the predictor 
variables is related to Y .  The question of interest now is: Can Y be explained 
adequately by fewer variables? An important goal in regression analysis is to arrive 
at adequate descriptions of observed phenomenon in terms of as few meaningful 
variables as possible. This economy in description has two advantages. First, it 
enables us to isolate the most important variables, and second, it provides us with a 
simpler description of the process studied, thereby making it easier to understand the 
process. Simplicity of description or the principle of parsimony, as it is sometimes 
called, is one of the important guiding principles in regression analysis. 

To examine whether the variable Y can be explained in terms of fewer variables, 
we look at a hypothesis that specifies that some of the regression coefficients are 
zero. If there are no overriding theoretical considerations as to which variables are 
to be included in the equation, preliminary t-tests, like those given in Table 3.5, 
are used to suggest the variables. In our current example, suppose it was desired 
to explain the overall rating of the job being done by the supervisor by means of 
two variables, one taken from the group of personal employee-interaction variables 
X I ,  X2, X s ,  and another taken from the group of variables X3,  X4,  X,, which are 
of a less personal nature. From this point of view X I  and X3 suggest themselves 
because they have significant t-tests. Suppose then that we wish to determine 
whether Y can be explained by X I  and X3 as adequately as the full set of six 
Variables. The reduced model in this case is 

RM : Y = Po + Pixi + P3X3 + E. (3.38) 

This model corresponds to hypothesis 

Ho : /32 = /34 = ,& = /36 = 0. (3.39) 

The regression output from fitting this model is given in Table 3.8, which includes 
both the ANOVA and the coefficients tables. 

The residual sum of squares in this output is the residual sum of squares for the 
reduced model, which is SSE(RM)  = 1254.65. From Table 3.7, the residual sum 
of squares from the full model is SSE(FM) = 1149.00. Hence the F-test in (3.28) 
is 

[1254.65 - 1149]/4 
F =  = 0.528, 

1149/23 
(3.40) 

with 4 and 23 degrees of freedom. 
The corresponding tabulated value for this test is F(4,23,0,05) = 2.8. The value 

of F is not significant and the null hypothesis is not rejected. The variables X1 and 
X3 together explain the variation in Y as adequately as the full set of six variables. 
We conclude that the deletion of X2, X4,  X5 ,  x6 does not adversely affect the 
explanatory power of the model. 
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Table 3.8 Regression Output From the Regression of Y on XI and XJ 

ANOVA Table 

Source Sum of Squares d . f .  Mean Square F-test 

Regression 3042.32 2 1521.1600 32.7 
Residuals 1254.65 27 46.4685 

Coefficients Table 

Variable Coefficient s.e. t-test p-value 

Constant 9.8709 7.0610 1.40 0.1735 
0.6435 0.1185 5.43 < 0.0001 XI 

x3 0.21 12 0.1344 1.57 0.1278 

n = 30 R2 = 0.708 R: = 0.686 6 = 6.817 d. f .  = 27 

We conclude this section with a few remarks: 

1. The F-test in this case can also be expressed in terms of the sample multiple 
correlation coefficients. Let Rp denote the sample multiple correlation co- 
efficient that is obtained when the full model with all the p variables in it is 
fitted to the data. Let R, denote the sample multiple correlation coefficient 
when the model is fitted with q specific variables: that is, the null hypothesis 
states that ( p  - q )  specified variables have zero regression coefficients. The 
F-test for testing the above hypothesis is 

In our present example, from Tables 3.7 and 3.8, we have R = 30, p = 6, q = 
2, Ri = 0.7326, and R; = 0.7080. Substituting these in (3.41) we get an F 
value of 0.528, as before. 

2. When the reduced model has only one coefficient (predictor variable) less 
than the full model, say ,Bj, then the F-test in (3.28) has 1 and n - p - 1 
degrees of freedom. In this case, it can be shown that the F-test in (3.28) is 
equivalent to the t-test in (3.21). More precisely, we have 

F = t? (3.42) 

which indicates that an F-value with 1 and n - p - 1 degrees of freedom is 
equal to the square of a t-value with n - p - 1 degrees of freedom, a result 
which is well-known in statistical theory. (Check the t- and F-Tables A.2, 
A.4, and AS in the appendix to this book to see that F( 1, u )  = t 2 (w) .>  

3 ’  
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Table 3.9 The Analysis of Variance (ANOVA) Table in Simple Regression 

Source Sum of Squares d . f .  Mean Square F-test 

MSR F=m Regression SSR 1 MSR = SSR 

SSE Residuals SSE n - 2  MSE= n-2 

3. In simple regression the number of predictors is p = 1. Replacing p by one 
in the multiple regression ANOVA table (Table 3.6) we obtain the simple 
regression ANOVA table (Table 3.9). The F-test in Table 3.9 tests the null 
hypothesis that the predictor variable X1 has no explanatory power, that is, 
its regression coefficient is zero. But this is the same hypothesis tested by 
the tl  test introduced in Section 2.6 and defined in (2.26) as 

(3.43) t1=-- - - - .  

Therefore in simple regression, the F and tl tests are equivalent, they are 
related by 

bl 
s.e.(&> 

F = t,. 2 (3.44) 

3.9.3 Testing the Equality of Regression Coefficients 

By the general method outlined in Section 3.9, it is possible to test the equality 
of two regression coefficients in the same model. In the present example we test 
whether the regression coefficient of the variables X1 and X3 can be treated as 
equal. The test is performed assuming that it has already been established that the 
regression coefficients for X2, X4, Xg. and x6 are zero. The null hypothesis to be 
tested is 

HO : P1 = P 3  I ( p 2  = P4 = p5 = p 6  = 0). (3.45) 

The full model assuming that P 2  = p4 = ,& = ,& = 0 is 

Y = Po + PlXl  + p3x3 + €. (3.46) 

Under the null hypothesis, where = p3 = pi, say, the reduced model is 

Y = p; + P i ( &  + X3)  + E.  (3.47) 

A simple way to carry out the test is to fit the model given by (3.46) to the data. 
The resulting regression output has been given in Table 3.8. We next fit the reduced 
model given in (3.47). This can be done quite simply by generating a new variable 
W = X1 + X3 and fitting the model 

Y = p ; + P : W + & .  (3.48) 



72 MULTIPLE LINEAR REGRESSION 

The least squares estimates of &,, pi and the sample multiple correlation coefficient 
(in this case it is the simple correlation coefficient between Y and W since we have 
only one variable) are obtained. The fitted equation is 

Y = 9.988 + 0.444W 

with R: = 0.6685. The appropriate F for testing the null hypothesis, defined in 
(3.4 1 ), becomes 

(Ri - Ri ) / (p  - q )  (0.7080 - 0.6685)/(2 - 1) 
= 3.65, - F =  - 

(1 - R;)/(n - p - 1) (1 - 0.7080)/(30 - 2 - 1) 

with 1 and 27 degrees of freedom. The corresponding tabulated value is F(1,27,0,05) = 
4.21. The resulting F is not significant; the null hypothesis is not rejected. The 
distribution of the residuals for this equation (not given here) was found satisfactory. 

The equation 
Y = 9.988 + 0.444 ( X i  + X3)  

is not inconsistent with the given data. We conclude then that X I  and X3 have the 
same incremental effect in determining employee satisfaction with a supervisor. 
This test could also be performed by using a t-test, given by 

b1 - b 3  

s.e . (A - b 3 )  
t =  

with 27 degrees of freedom.3 The conclusions are identical and follow from the 
fact that F with 1 and p degrees of freedom is equal to the square of t  with p degrees 
of freedom. 

In this example we have discussed a sequential or step-by-step approach to model 
building. We have discussed the equality of and p 3  under the assumption that 
the other regression coefficients are equal to zero. We can, however, test a more 
complex null hypothesis which states that ,& and P3 are equal and p2, p4, &,, p6 
are all equal to zero. This null hypothesis HA is formally stated as 

(3.49) 

The difference between (3.45) and (3.49) is that in (3.43, p2, ,&, p5 and ,& are 
assumed to be zero, whereas in (3.49) this is under test. The null hypothesis (3.49) 
can be tested quite easily. The reduced model under Hh is (3.47), but this model is 
not compared to the model of equation (3.46), as in the case of Ho, but with the full 
model with all six variables in the equation. The F-test for testing Hh is, therefore, 

HA : p1 = p3,h = p4 = p5 = p6 = 0. 

= 1.10, d.f. = 5,23. 
(0.7326 - 0.6685)/5 

0.2674123 
F =  

The result is insignificant as before. The first test is more sensitive for detecting 
departures from equality of the regression coefficients than the second test. (Why?) 

'The s .e . (a  - a) = J V a r ( B )  + Var(b3)  - 2Cov(b,,&). These quantities are defined in the 
appendix to this chapter. 
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3.9.4 Estimating and Testing of Regression Parameters 
Under Constraints 

Sometimes in fitting regression equations to a given body of data it is desired to 
impose some constraints on the values of the parameters. A common constraint 
is that the regression coefficients sum to a specified value, usually unity. The 
constraints often arise because of some theoretical or physical relationships that 
may connect the variables. Although no such relationships are obvious in our 
present example, we consider p1 + P3 = 1 for the purpose of demonstration. 
Assuming that the model in (3.46) has already been accepted, we may further argue 
that if each of X1 and X3 is increased by a fixed amount, Y should increase by that 
same amount. Formally, we are led to the null hypothesis HO which states that 

Ho : pi +P3 = 1 I (p2 =p4 =ps = P 6  = 0). (3.50) 

Since PI + p3 = 1, or equivalently, ,!?3 = 1 - PI, then under HO the reduced model 
is 

Ho : y = Po + PlXl + (1 - Pl)X3 + E .  

Ho : Y - x3 = Po + P1 (Xl - X3) + E ,  

Rearranging terms we obtain 

which can be written as 

Ho : Y’ = Po + p1v + E ,  

where Y’ = Y - X3 and V = X1 - X3. The least squares estimates of the 
parameters, p1 and P3 under the constraint are obtained by fitting a regression 
equation with Y’ as response variable and V as the predictor variable. The fitted 
equation is 

r;’ = 1.166 + 0.694 V, 

from which it follows that the fitted equation for the reduced model is 

Y = 1.166 + 0.694 Xi + 0.306 X3 

with R2 = 0.6905. 
The test for Ho is given by 

= 1.62, d.f. = 1,27, 
(0.7080 - 0.6905)/1 

0.2920/27 
F =  

which is not significant. The data support the proposition that the sum of the partial 
regression coefficients of X1 and X3 equal unity. 

Recall that we have now tested two separate hypotheses about /31 and 03, one 
which states that they are equal and the other that they sum to unity. Since both 
hypotheses hold, it is implied that both coefficients can be taken to be 0.5. A test 
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of this null hypothesis, = p3 = 0.5, may be performed directly by applying the 
methods we have outlined. 

The previous example, in which the equality of p1 and p3  was investigated, can 
be considered as a special case of constrained problem in which the constraint is 
p1 - p3 = 0. The tests for the full set or subsets of regression coefficients being 
zero can also be thought of as examples of testing regression coefficients under 
constraints. 

From the above discussion it is clear that several models may describe a given 
body of data adequately. Where several descriptions of the data are available, it is 
important that they all be considered. Some descriptions may be more meaningful 
than others (meaningful being judged in the context of the application and con- 
siderations of subject matter), and one of them may be finally adopted. Looking 
at alternative descriptions of the data provides insight that might be overlooked in 
focusing on a single description. 

The question of which variables to include in a regression equation is very 
complex and is taken up in detail in Chapter 11. We make two remarks here that 
will be elaborated on in later chapters. 

1. The estimates of regression coefficients that do not significantly differ from 
zero are most commonly replaced by zero in the equation. The replacement 
has two advantages: a simpler model and a smaller prediction variance. 

2. A variable or a set of variables may sometimes be retained in an equation 
because of their theoretical importance in a given problem, even though the 
sample regression coefficients are statistically insignificant. That is, sample 
coefficients which are not significantly different from zero are not replaced by 
zero. The variables so retained should give a meaningful process description, 
and the coefficients help to assess the contributions of the X’s to the value of 
the dependent variable Y .  

3.10 PREDICTIONS 

The fitted multiple regression equation can be used to predict the value of the 
response variable using a set of specific values of the predictor variables, xo = 
( ~ 0 1 , 5 0 2 ,  . . . , zap). The predicted value, $0, corresponding to xo is given by 

(3.51) 

and its standard error, s.e.(Yo), is given, in the appendix to this chapter, in (A.12) 
for readers who are familiar with matrix notation. The standard error is usually 
computed by many statistical packages. Confidence limits for $0 with confidence 
coefficient cy are 

$0 f t(n-p-1,42) s.e.@o). 

As already mentioned in connection with simple regression, instead of predicting 
the response Y corresponding to an observation xo we may want to estimate the 
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mean response corresponding to that observation. Let us denote the mean response 
at xo by po and its estimate by GO. Then 

F o  = bo + b l Q 1  + b2z02 + . . . + bp"cop, 
as in (3.51), but its standard error, s.e.(co), is given, in the appendix to this chapter, 
in (A.14) for readers who are familiar with matrix notation. Confidence limits for 
PO with confidence coefficient cy are 

Fo  f t(,-,-l,,/2)s.e.(Fo). 

3.11 SUMMARY 

We have illustrated the testing of various hypotheses in connection with the linear 
model. Rather than describing individual tests we have outlined a general procedure 
by which they can be performed. It has been shown that the various tests can also be 
described in terms of the appropriate sample multiple correlation coefficients. It is 
to be emphasized here, that before starting on any testing procedure, the adequacy 
of the model assumptions should always be examined. As we shall see in Chapter 4, 
residual plots provide a very convenient graphical way of accomplishing this task. 
The test procedures are not valid if the assumptions on which the tests are based do 
not hold. If a new model is chosen on the basis of a statistical test, residuals from 
the new model should be examined before terminating the analysis. It is only by 
careful attention to detail that a satisfactory analysis of data can be camed out. 

EXERCISES 

3.1 

3.2 

3.3 

Using the Supervisor data, verify that the coefficient of X1 in the fitted 
equation Y = 15.3276 + 0.7803 XI - 0.0502 X2 in (3.12) can be obtained 
from a series of simple regression equations, as outlined in Section 3.5 for the 
coefficient of X2. 

Construct a small data set consisting of one response and two predictor vari- 
ables so that the regression coefficient of X1 in the following two fitted 
equations are equal: Y = ,bo + blX1 and Y = &o + &X1 + &X2. Hint: 
The two predictor variables should be uncorrelated. 

Table 3.10 shows the scores in the final examination F and the scores in two 
preliminary examinations PI and P2 for 22 students in a statistics course. The 
data can be found in the book's Web site. 
(a) Fit each of the following models to the data: 

Model 1 : F = PO + P1 Pl + E  

Model 2 : F = PO + P2P2 + E 

Model 3 : F = PO + PIPI + P2P2 + E 
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Table 3.10 
Second Preliminary (P2) Examinations 

Examination Data: Scores in the Final ( F ) ,  First Preliminary (PI) ,  and 

Row F Pl p2 I Row F Pl p2 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

68 
75 
85 
94 
86 
90 
86 
68 
55 
69 
91 

78 
74 
82 
90 
87 
90 
83 
72 
68 
69 
91 

73 
76 
79 
96 
90 
92 
95 
69 
67 
70 
89 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

75 
81 
91 
80 
94 
94 
97 
79 
84 
65 
83 

79 
89 
93 
87 
91 
86 
91 
81 
80 
70 
79 

75 
84 
97 
77 
96 
94 
92 
82 
83 
66 
81 

(b) Test whether PO = 0 in each of the three models. 
(c) Which variable individually, PI or P2, is a better predictor of F? 
(d) Which of the three models would you use to predict the final examina- 

tion scores for a student who scored 78 and 85 on the first and second 
preliminary examinations, respectively? What is your prediction in this 
case? 

3.4 The relationship between the simple and the multiple regression coefficients 
can be seen when we compare the following regression equations: 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

Using the Examination Data in Table 3.10 with Y = F ,  X1 = PI and 
X2 = P2, verify that: 

(a) ,@ = ,& + b22&1, that is, the simple regression coefficient of Y on X1 
is the multiple regression coefficient of X1 plus the multiple regression 
coefficient of X2 times the coefficient from the regression of X2 on X I .  

(b) 6; = f i 2  + blh2, that is, the simple regression coefficient of Y on X2 
is the multiple regression coefficient of X:! plus the multiple regression 
coefficient of X I  times the coefficient from the regression of X1 on X2. 

3.5 Table 3.1 1 shows the regression output, with some numbers erased, when a 
simple regression model relating a response variable Y to a predictor variable 
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Table 3.11 Regression Output When Y Is Regressed on X I  for 20 Observations 

ANOVA Table 

Source Sum of Squares d . f .  Mean Square F-test 

Regression 1848.76 - 
Residuals - - 

Coefficients Table 

Variable Coefficient s.e. t-test p-value 

Constant -23.4325 12.74 - 0.0824 
X1 - 0.1528 8.32 < o.oO01 

Table 3.12 Regression Output When Y Is Regressed on X I  for 18 Observations 

ANOVA Table 

Source Sum of Squares d . f .  Mean Square F-test 

Regression - - - - 
Residuals - - - 

Coefficients Table 

Variable Coefficient s.e. t-test p-value 

Constant 3.43 179 - 0.265 0.7941 
X1 - 0.1421 - < o.Ooo1 

n = -  R2 = 0.716 Ri =-  6 = 7,342 d . f .  = -  

3.6 

3.7 

3.8 

X1 is fitted based on twenty observations. Complete the 13 missing numbers, 
then compute V a r ( Y )  and Var(X1). 

Table 3.12 shows the regression output, with some numbers erased, when a 
simple regression model relating a response variable Y to a predictor variable 
X1 is fitted based on eighteen observations. Complete the 13 missing numbers, 
then compute V a r ( Y )  and Var(X1) .  

Construct the 95% confidence intervals for the individual parameters p1 and 
,& using the regression output in Table 3.5. 

Explain why the test for testing the hypothesis HO in (3.45) is more sensitive 
for detecting departures from equality of the regression coefficients than the 
test for testing the hypothesis Hb in (3.49). 
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Table 3.13 Regression Outputs for the Salary Discriminating Data 

Model 1 : Dependent variable is: Salary 

Variable Coefficient s.e. t-test p-value 

Constant 20009.5 0.8244 2427 1 < 0.0001 
Qualification 0.935253 0.0500 18.7 < 0.0001 
Sex 0.224337 0.468 1 0.479 0.6329 

Model 2: Dependent variable is: Qualification 

Variable Coefficient s.e. t-test p-value 

Constant - 16744.4 896.4 - 18.7 < 0.0001 
Sex 0.850979 0.4349 1.96 0.0532 
Salary 0.836991 0.0448 18.7 < 0.0001 

3.9 Using the Supervisor Performance data, test the hypothesis Ho : P1 = P 3  = 
0.5 in each of the following models: 

(a) y = Po + PlXl + P3X3 + E .  

(b) y = Po + PlXl + P2X2 + +P3X, + E. 

3.10 One may wonder if people of similar heights tend to marry each other. For 

3.11 

this purpose, a sample of newly mamed couples was selected. Let X be 
the height of the husband and Y be the height of the wife. The heights (in 
centimeters) of husbands and wives are found in Table 2.1 1. The data can also 
be found in the book’s Web site. Using your choice of the response variable 
in Exercise f, test the null hypothesis that both the intercept and the slope are 
zero. 

To decide whether a company is discriminating against women, the following 
data were collected from the company’s records: Salary is the annual salary 
in thousands of dollars, Qualification is an index of employee qualification, 
and Sex (1, if the employee is a man, and 0, if the employee is a woman). 
Two linear models were fit to the data and the regression outputs are shown 
in Table 3.13. Suppose that the usual regression assumptions hold. 
(a) Are men paid more than equally qualified women? 

(b) Are men less qualified than equally paid women? 
(c) Do you detect any inconsistency in the above results? Explain. 
(d) Which model would you advocate if you were the defense lawyer? Ex- 

plain. 

3.12 Table 3.14 shows the regression output of a multiple regression model relating 
the beginning salaries in dollars of employees in a given company to the 
following predictor variables: 
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Table 3.14 Regression Output When Salary Is Related to Four Predictor Variables 

ANOVA Table 

Source Sum of Squares d.f. Mean Square F-test 

Regression 23665352 4 5916338 22.98 
Residuals 22657938 88 257477 

Coefficients Table 

Variable Coefficient s.e. t-test p-value 

Constant 3526.4 327.7 10.76 O.OO0 
Sex 722.5 117.8 6.13 0.000 
Education 90.02 24.69 3.65 0.000 
Experience 1.2690 0.5877 2.16 0.034 
Months 23.406 5.201 4.50 0.000 

n = 93 R2 = 0.515 R: = 0.489 6 = 507.4 d. f. = 88 

Sex 
Education 
Experience 
Months 

An indicator variable (1 = man and 0 = woman) 
Years of schooling at the time of hire 
Number of months of previous work experience 
Number of months with the company. 

In (a)-(b) below, specify the null and alternative hypotheses, the test used, 
and your conclusion using a 5% level of significance. 

(a) Conduct the F-test for the overall fit of the regression. 
(b) Is there apositive linear relationship between Salary and Experience, after 

accounting for the effect of the variables Sex, Education, and Months? 

(c) What salary would you forecast for a man with 12 years of education, 10 
months of experience, and 15 months with the company? 

(d) What salary would you forecast, on average, for men with 12 years of 
education, 10 months of experience, and 15 months with the company? 

(e) What salary would you forecast, on average, for women with 12 years of 
education, 10 months of experience, and 15 months with the company? 

3.13 Consider the regression model that generated the output in Table 3.14 to be a 
full model. Now consider the reduced model in which Salary is regressed on 
only Education. The ANOVA table obtained when fitting this model is shown 
in Table 3.15. Conduct a single test to compare the full and reduced models. 
What conclusion can be drawn from the result of the test? (Use o = 0.05.) 

3.14 Cigarette Consumption Data: A national insurance organization wanted to 
study the consumption pattern of cigarettes in all 50 states and the District of 
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Table 3.15 ANOVA Table When the Beginning Salary Is Regressed on Education 

ANOVA Table 

Source Sum of Squares d. f .  Mean Square F-test 

Regression 7862535 1 7862535 18.60 
Residuals 38460756 91 422646 

Table 3.16 Variables in the Cigarette Consumption Data in Table 3.17 

Variable 

Age 
HS 

Income 
Black 
Female 
Price 
Sales 

Definition 

Median age of a person living in a state 
Percentage of people over 25 years of age in a state who had 
completed high school 
Per capita personal income for a state (income in dollars) 
Percentage of blacks living in a state 
Percentage of females living in a state 
Weighted average price (in cents) of a pack of cigarettes in a state 
Number of packs of cigarettes sold in a state on a per capita basis 

Columbia. The variables chosen for the study are given in Table 3.16. The 
data from 1970 are given in Table 3.17. The states are given in alphabetical 
order. The data can be found in the book’s Web site. 
In (a)-(b) below, specify the null and alternative hypotheses, the test used, 
and your conclusion using a 5% level of significance. 

Test the hypothesis that the variable Female is not needed in the regression 
equation relating Sales to the six predictor variables. 
Test the hypothesis that the variables Female and HS are not needed in 
the above regression equation. 
Compute the 95% confidence interval for the true regression coefficient 
of the variable Income. 
What percentage of the variation in Sales can be accounted for when 
Income is removed from the above regression equation? Explain. 
What percentage of the variation in Sales can be accounted for by the 
three variables: Price, Age, and Income? Explain. 
What percentage of the variation in Sales that can be accounted for by the 
variable Income, when Sales is regressed on only Income? Explain. 

3.15 Consider the two models: 
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Table 3.17 Cigarette Consumption Data (1970) 
~~~~~~~~~~ 

State Age HS Income Black Female Price Sales 

AL 
AK 
Az 
AR 
CA 
co 
CT 
DE 
DC 
FL 
GA 
HI 
ID 
IL 
IN 
1A 
KS 
KY 
LA 
ME 
MD 
MA 
MI 
MN 
MS 
MO 
MT 
NB 
NV 
NH 
NJ 
NM 
NY 
NC 
ND 
OH 
OK 
OR 
PA 
RI 
sc 
SD 
TN 
TX 
UT 
VT 
VA 
WA 
wv 
WI 
WY 

27.0 
22.9 
26.3 
29. I 
28.1 
26.2 
29.1 
26.8 
28.4 
32.3 
25.9 
25.0 
26.4 
28.6 
27.2 
28.8 
28.7 
27.5 
24.8 
28. 
27.1 
29.0 
26.3 
26.8 
25.1 
29.4 
27.1 
28.6 
27.8 
28.0 
30.1 
23.9 
30.3 
26.5 
26.4 
27.7 
29.4 
29.0 
30.7 
29.2 
24.8 
27.4 
28.1 
26.4 
23.1 
26.8 
26.8 
27.5 
30.0 
27.2 
27.2 

41.3 
66.1 
58.1 
39.9 
62.6 
63.9 
56.0 
54.6 
55.2 
52.6 
40.6 
61.9 
59.5 
52.6 
52.9 
59.0 
59.9 
38.5 
42.2 
54.7 
52.3 
58.5 
52.8 
57.6 
41.0 
48.8 
59.2 
59.3 
65.2 
57.6 
52.5 
55.2 
52.1 
38.5 
50.3 
53.2 
51.6 
60.0 
50.2 
46.4 
37.8 
53.3 
41.8 
47.4 
67.3 
57.1 
47.8 
63.5 
41.6 
54.5 
62.9 

2948.0 
4644.0 
3665.0 
2878.0 
4493.0 
3855.0 
49 17.0 
4524.0 
5079.0 
3738.0 
3354.0 
4623.0 
3290.0 
4507.0 
3772.0 
375 1 .O 
3853.0 
3112.0 
3090.0 
3302.0 
4309.0 
4340.0 
4 180.0 
3859.0 
2626.0 
378 1 .O 
3500.0 
3789.0 
4563.0 
3737.0 
4701 .0 
3077.0 
47 12.0 
3252.0 
3086.0 
4020.0 
3387.0 
3719.0 
397 1 .0 
3959.0 
2990.0 
3123.0 
31 19.0 
3606.0 
3227.0 
3468.0 
3712.0 
4053.0 
3061.0 
3812.0 
3815.0 

26.2 
3.0 
3.0 

18.3 
7.0 
3.0 
6.0 

14.3 
71.1 
15.3 
25.9 

1 .o 
0.3 

12.8 
6.9 
I .2 
4.8 
1.2 

29.8 
0.3 

17.8 
3.1 

11.2 
0.9 

36.8 
10.3 
0.3 
2.7 
5.7 
0.3 

10.8 
1.9 

11.9 
22.2 
0.4 
9.1 
6.7 
1.3 
8 .o 
2.7 

30.5 
0.3 

15.8 
12.5 
0.6 
0.2 

18.5 
2.1 
3.9 
2.9 
0.8 

51.7 
45.7 
50.8 
51.5 
50.8 
50.7 
51.5 
51.3 
53.5 
51.8 
51.4 
48.0 
50.1 
51.5 
51.3 
51.4 
51.0 
50.9 
51.4 
51.3 
51.1 
52.2 
51.0 
51.0 
51.6 
51.8 
50.0 
51.2 
49.3 
51.1 
51.6 
50.7 
52.2 
51.0 
49.5 
51.5 
51.3 
51.0 
52.0 
50.9 
50.9 
50.3 
51.6 
51.0 
50.6 
51.1 
50.6 
50.3 
51.6 
50.9 
50.0 

42.7 
41.8 
38.5 
38.8 
39.7 
31.1 
45.5 
41.3 
32.6 
43.8 
35.8 
36.7 
33.6 
41.4 
32.2 
38.5 
38.9 
30.1 
39.3 
38.8 
34.2 
41 .O 
39.2 
40.1 
37.5 
36.8 
34.7 
34.7 
44.0 
34.1 
41.7 
41.7 
41.7 
29.4 
38.9 
38.1 
39.8 
29.0 
44.1 
40.2 
34.3 
38.5 
41.6 
42.0 
36.6 
39.5 
30.2 
40.3 
41.6 
40.2 
34.4 

89.8 
121.3 
115.2 
100.3 
123.0 
124.8 
120.0 
155.0 
200.4 
123.6 
109.9 
82.1 

102.4 
124.8 
134.6 
108.5 
1 14.0 
155.8 
115.9 
128.5 
123.5 
124.3 
128.6 
104.3 
93.4 

121.3 
111.2 
108.1 
189.5 
265.1 
120.7 
90.0 

119.0 
172.4 
93.8 

121.6 
108.4 
157.0 
107.3 
123.9 
103.6 
92.7 
99.8 

106.4 
65.5 

122.6 
124.3 
96.7 

114.5 
106.4 
132.2 
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(a) Develop an F-test for testing the above hypotheses. 

(b) Let p = 1 (simple regression) and construct a data set Y and X I  such that 
HO is not rejected at the 5% significance level. 

(c) What does the null hypothesis indicate in this case? 
(d) Compute the appropriate value of R2 that relates the above two models. 

Appendix: Multiple Regression in Matrix Notation 

We present the standard results of multiple regression analysis in matrix notation. 
Let us define the following matrices: 

The linear model in (3.1) can be expressed in terms of the above matrices as 

Y = x p + e ,  (A. 1 )  

where xi0 = 1 for all i. The assumptions made about E for least squares estimation 
are 

E ( E )  = 0, and V a r ( ~ )  = E ( E E ~ )  = a21,, 

where E ( e )  is the expected value (mean) of E ,  I, is the identity matrix of order 
n, and sT is the transpose of E .  Accordingly, E ~ ’ S  are independent and have zero 
mean and constant variance. This implies that 

E ( Y )  = xp. 
The least squares estimator fl of p is obtained by minimizing the sum of squared 
deviations of the observations from their expected values. Hence the least squares 
estimators are obtained by minimizing S(p), where 

s(p) = E T €  = (Y - X p ) T ( Y  - xp) 
Minimization of S(p) leads to the system of equations 

( X T X ) b  = X T Y .  

This is the system of normal equations referred to in Section (3.4). Assuming that 
( X T X )  has an inverse, the least squares estimates b can be written explicitly as 

/3 = ( X T X ) - I X T Y ,  (A.3) 

from which it can be seen that ,h is a linear function of Y .  The vector of fitted 
values Y corresponding to the observed Y is 

9 = xb = P Y ,  (A.4) 
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where 
P = x(xTx)-lxT, 

is known as the hat or projection matrix. The vector of residuals is given by 
A 

e = Y - Y = Y - PY = (I, - P)Y. (A.6) 

The properties of the least squares estimators are: 

1 .  is an unbiased estimator of p (that is, E ( 6 )  = p) with variance-covariance 
matrix V a r ( p ) ,  which is 

V a r ( p )  = E ( p  - p)(p - p)T = a2(X*X)-l = ,2c, 

where 
c = (xTx)-I ('4.7) 

Of all unbiased estimators of p that are linear in the observations, the least 
squares estimator has minimum variance. For this reason, 6 is said to be the 
best linear unbiased estimator (BLUE) of p. 

2. The residual sum of squares can be expressed as 

eTe = Y ~ ( I ,  - P ) ~ ( I ,  - P)Y = ~ ~ ( 1 ,  - P)Y. ('4.8) 

The last equality follows because (I, - P) is a symmetric idempotent matrix. 

3. An unbiased estimator of cr2 is 

YT(1, - P)Y 
('4.9) - - eTe 

8 2  = 
n - p - 1  n - p - 1  . 

With the added assumption that the Q'S are normally distributed we have the 
following additional results: 

4. The vector b has a (p+ 1)-variate normal distribution with mean vector p and 
variance-covariance matrix 02C. The marginal distribution of bj is normal 
with mean Pj and variance a2c j j ,  where c j j  is the j th diagonal element of C 
in (A.7). Accordingly, the standard error of Pj is 

s.e.(Pj) = 8&, (A. 10) 

and the covariance of ,& and & is Cov(&, &) = a2cij. 

of freedom. 
5.  The quantity W = eTe/cr2 has an x 2  distribution with (n  - p - 1) degrees 

6. b and 15~ are distributed independently of one another. 

7. The vector of fitted values Y has a singular n-variate normal distribution 
with mean E ( Y )  = Xp and variance-covariance matrix V a r ( Y )  = a2P. 
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8. The residual vector e has a singular n-variate normal distribution with mean 
E ( e )  = 0 and variance-covariance matrix Var(e)  = a2(I, - P). 

201 ,202 ,  . . ., Z O ~ ) ~ ,  with ZOO = 1 is 
9. The predicted value $0 corresponding to an observation vector xo = (ZOO, 

yo = x;p (A. 11) 

and its standard error is 

s.e.(yo) = bJ1+ X:(XTX)-~~~. (A.12) 

The mean response & corresponding to x: is 

j io  = x;@ (A. 13) 

with a standard error 

10. The l O O ( 1  - a)% joint confidence region for the regression parameters P is 
given by 

which is an ellipsoid centered at b. 



CHAPTER 4 

REGRESSION DIAGNOSTICS: 
DETECTION OF MODEL VIOLATIONS 

4.1 INTRODUCTION 

We have stated the basic results that are used for making inferences about simple 
and multiple linear regression models in Chapters 2 and 3. The results are based 
on summary statistics that are computed from the data. In fitting a model to a 
given body of data, we would like to ensure that the fit is not overly determined 
by one or few observations. The distribution theory, confidence intervals, and tests 
of hypotheses outlined in Chapters 2 and 3 are valid and have meaning only if the 
standard regression assumptions are satisfied. These assumptions are stated in this 
chapter (Section 4.2). When these assumptions are violated the standard results 
quoted previously do not hold and an application of them may lead to serious error. 
We reemphasize that the prime focus of this book is on the detection and correction 
of violations of the basic linear model assumptions as a means of achieving a 
thorough and informative analysis of the data. This chapter presents methods for 
checking these assumptions. We will rely mainly on graphical methods as opposed 
to applying rigid numerical rules to check for model violations. 
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4.2 THE STANDARD REGRESSION ASSUMPTIONS 

In the previous two chapters we have given the least squares estimates of the 
regression parameters and stated their properties. The properties of least squares 
estimators and the statistical analysis presented in Chapters 2 and 3 are based on 
the following assumptions: 

1. Assumptions about the form of the model: The model that relates the 
response Y to the predictors X I ,  X2) . . . , X, is assumed to be linear in the 
regression parameters PO, PI, . . . ) Pp,  namely, 

y = Po + PlXl + . . . + ppxp + E )  (4.1) 

which implies that the ith observation can be written as 

Yi = Po + P1.21 + . . . + P P X i P  + Ez, 2 = 1 , 2 , .  . . ) 12. (4.2) 

We refer to this as the linearity assumption. Checking the linearity assump- 
tion in simple regression is easy because the validity of this assumption can 
be determined by examining the scatter plot of Y versus X .  A linear scatter 
plot ensures linearity. Checking the linearity in multiple regression is more 
difficult due to the high dimensionality of the data. Some graphs that can be 
used for checking the linearity assumption in multiple regression are given 
later in this chapter. When the linearity assumption does not hold, transfor- 
mation of the data can sometimes lead to linearity. Data transformation is 
discussed in Chapter 6. 

2. Assumptions about the errors: The errors ~ 1 ,  ~ 2 ,  . . . , E~ in (4.2) are as- 
sumed to be independently and identically distributed (iid) normal random 
variables each with mean zero and a common variance 02. Note that this 
implies four assumptions: 

0 The error ~ i ,  i = 1 ,2 ,  . . . , n, has a normal distribution. We refer to this 
as the normality assumption. The normality assumption is not as easily 
validated especially when the values of the predictor variables are not 
replicated. The validity of the normality assumption can be assessed 
by examination of appropriate graphs of the residuals, as we describe 
later in this chapter. 

0 The errors ~ 1 ,  ~ 2 , .  . . , E~ have mean zero. 

0 The errors ~ 1 ,  ~ 2 , .  . . , E~ have the same (but unknown) variance 02. 

This is the constant variance assumption. It is also known by other 
names such as the homogeneity or the homoscedasticity assumption. 
When this assumption does not hold, the problem is called the hetero- 
geneity or the heteroscedasticity problem. This problem is considered 
in Chapter 7. 
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0 The errors €1, €2 ,  . . . , E~ are independent of each other (their pair- 
wise covariances are zero). We refer to this as the independent-errors 
assumption. When this assumption does not hold, we have the auto- 
correlation problem. This problem is considered in Chapter 8. 

3. Assumptions about the predictors: There are three assumptions concerning 
the predictor variables: 

0 The predictor variables X I ,  X z ,  . . . , X ,  are nonrandom, that is, the 
values xlj, x2j, . . . , xnj; j = 1,2,  . . . , p ,  are assumed fixed or selected 
in advance. This assumption is satisfied only when the experimenter 
can set the values of the predictor variables at predetermined levels. It 
is clear that under nonexperimental or observational situations this as- 
sumption will not be satisfied. The theoretical results that are presented 
in Chapters 2 and 3 will continue to hold, but their interpretation has to 
be modified. When the predictors are random variables, all inferences 
are conditional, conditioned on the observed data. It should be noted 
that this conditional aspect of the inference is consistent with the ap- 
proach to data analysis presented in this book. Our main objective is to 
extract the maximum amount of information from the available data. 

0 The values x l j ,  xzj, . . . , x,j; j = 1,2,  . . . , p ,  are measured without er- 
ror. This assumption is hardly ever satisfied. The errors in measurement 
will affect the residual variance, the multiple correlation coefficient, and 
the individual estimates of the regression coefficients. The exact mag- 
nitude of the effects will depend on several factors, the most important 
of which are the standard deviation of the errors of measurement and 
the correlation structure among the errors. The effect of the measure- 
ment errors will be to increase the residual variance and reduce the 
magnitude of the observed multiple correlation coefficient. The effects 
of measurement errors on individual regression coefficients are more 
difficult to assess. The estimate of the regression coefficient for a vari- 
able is affected not only by its own measurement errors, but also by the 
measurement errors of other variables included in the equation. 

Correction for measurement errors on the estimated regression coeffi- 
cients, even in the simplest case where all the measurement errors are 
uncorrelated, requires a knowledge of the ratio between the variances 
of the measurement errors for the variables and the variance of the 
random error. Since these quantities are seldom, if ever, known (par- 
ticularly in the social sciences, where this problem is most acute), we 
can never hope to remove completely the effect of measurement errors 
from the estimated regression coefficients. If the measurement errors 
are not large compared to the random errors, the effect of measurement 
errors is slight. In interpreting the coefficients in such an analysis, this 
point should be remembered. Although there is some problem in the 
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estimation of the regression coefficients when the variables are in error, 
the regression equation may still be used for prediction. However, the 
presence of errors in the predictors decreases the accuracy of predic- 
tions. For a more extensive discussion of this problem, the reader is 
referred to Fuller (1987), Chatterjee and Hadi (1988), and Chi-Lu and 
Van Ness (1999). 

0 The predictor variables X I ,  X Z ,  . . . , X ,  are assumed to be linearly 
independent of each other. This assumption is needed to guarantee 
the uniqueness of the least squares solution (the solution of the normal 
equations in (A.2) in the Appendix to Chapter 3). If this assumption 
is violated, the problem is referred to as the collinearity problem This 
problem is considered in Chapters 9 and 10. 

The first two of the above assumptions about the predictors cannot be val- 
idated, so they do not play a major role in the analysis. However, they do 
influence the interpretation of the regression results. 

4. Assumptions about the observations: All observations are equally reliable 
and have approximately equal role in determining the regression results and 
in influencing conclusions. 

A feature of the method of least squares is that small or minor violations of 
the underlying assumptions do not invalidate the inferences or conclusions drawn 
from the analysis in a major way. Gross violations of the model assumptions can, 
however, seriously distort conclusions. Consequently, it is important to investigate 
the structure of the residuals and the data pattern through graphs. 

4.3 VARIOUS TYPES OF RESIDUALS 

A simple and effective method for detecting model deficiencies in regression anal- 
ysis is the examination of residual plots. Residual plots will point to serious 
violations in one or more of the standard assumptions when they exist. Of more 
importance, the analysis of residuals may lead to suggestions of structure or point 
to information in the data that might be missed or overlooked if the analysis is 
based only on summary statistics. These suggestions or cues can lead to a better 
understanding and possibly a better model of the process under study. A careful 
graphical analysis of residuals may often prove to be the most important part of the 
regression analysis. 

As we have seen in Chapters 2 and 3, when fitting the linear model in (4.1) to a 
set of data by least squares, we obtain the fitted values, 

and the corresponding ordinary least squares residuals, 

(4.4) 
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The fitted values in (4.3) can also be written in an alternative form as 

9 2  = PilYl + pi2y2 + . . . + pmy,, i = 1 , 2 , .  . . , n, (4.5) 

where the pij’s are quantities that depend only on the values of the predictor 
variables (they do not involve the response variable). Equation (4.5) shows directly 
the relationship between the observed and predicted values. In simple regression, 
pi, is given by 

In multiple regression the pij’s are elements of a matrix known as the hat or 
projection matrix, which is defined in (AS) in the Appendix to Chapter 3. 

When i = j ,  pii is the ith diagonal element of the projection matrix P. In simple 
regression, 

(4.7) 

The value pii is called the leverage value for the ith observation because, as can be 
seen from (4.9, yi is a weighted sum of all observations in Y and pii is the weight 
(leverage) given to yi in determining the ith fitted value yi (Hoaglin and Welsch, 
1978). Thus, we have n leverage values and they are denoted by 

The leverage values play an important role in regression analysis and we shall often 
encounter them. 

When the assumptions stated in Section 4.2 hold, the ordinary residuals, e l ,  e2, 

. . ., en, defined in (4.4), will sum to zero, but they will not have the same variance 
because 

(4.9) 

where pii is the ith leverage value in (4.8), which depends on zil, xi2, . . ., xip. To 
overcome the problem of unequal variances, we standardize the ith residual ei by 
dividing it by its standard deviation and obtain 

(4.10) 

This is called the ith standardized residual because it has mean zero and stan- 
dard deviation 1. The standardized residuals depend on u, the unknown standard 
deviation of E. An unbiased estimate of a2 is given by 

C(Yi - B d 2  - SSE 
- 

- 2  ce5 - a =  - 
n - p - 1  n - p - 1  n - p - 1 ’  

(4.1 1) 

where SSE is the sum of squares of the residuals. The number n - p - 1 in the 
denominator of (4.1 I )  is called the degrees offreedom (d.f.). It is equal to the 
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number of observations, n, minus the number of estimated regression coefficients, 
p +  1. 

An alternative unbiased estimate of u2 is given by 

(4.12) 

where SSE(i) is the sum of squared residuals when we fit the model to the (n  - 1) 
observations obtained by omitting the ith observation. Both b2 and &ti) are unbiased 

estimates of u2. 
Using b as an estimate of c in (4. lo), we obtain 

ei r’ - 
a -  &JG’ 

whereas using &(i) as an estimate of u, we obtain 

ei Tf = 
a 8 ( 2 ) 4 E  ’ 

(4.13) 

(4.14) 

The form of residual in (4.13) is called the internally studentized residual, and 
the residual in (4.14) is called the externally studentized residual, because ei is 
not involved in (external to) &(i). For simplicity of terminology and presentation, 
however, we shall refer to the studentized residuals as the standardized residuals. 

The standardized residuals do not sum to zero, but they all have the same variance. 
The externally standardized residuals follow a t-distribution with n - p - 2 degrees 
of freedom, but the internally standardized residuals do not. However, with a 
moderately large sample, these residuals should approximately have a standard 
normal distribution. The residuals are not strictly independently distributed, but 
with a large number of observations, the lack of independence may be ignored. 

The two forms of residuals are related by 

(4.15) 

hence one is a monotone transformation of the other. Therefore, for the purpose of 
residuals plots, it makes little difference as to which of the two forms of the stan- 
dardized residuals is used. From here on, we shall use the internally standardized 
residuals in the graphs. We need not make any distinction between the internally 
and externally standardized residuals in our residual plots. Several graphs of the 
residuals are used for checking the regression assumptions. 

4.4 GRAPHICAL METHODS 

Graphical methods play an important role in data analysis. It is of particular 
importance in fitting linear models to data. As Chambers et al. (1983, p. 1) 
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Figure 4.1 
quartet. 

Plot of the data ( X ,  Y) with the least squares fitted line for the Anscombe’s 

put it, “There is no single statistical tool that is as powerful as a well-chosen 
graph.” Graphical methods can be regarded as exploratory tools. They are also an 
integral part of confirmatory analysis or statistical inference. Huber (1991) says, 
“Eye-balling can give diagnostic insights no formal diagnostics will ever provide.“ 
One of the best examples that illustrates this is the Anscombe’s quartet, the four 
data sets given in Chapter 2 (Table 2.4). The four data sets are constructed by 
Anscombe (1973) in such a way that all pairs (Y, X )  have identical values of 
descriptive statistics (same correlation coefficients, same regression lines, same 
standard errors, etc.), yet their pairwise scatter plots (reproduced in Figure 4.1 for 
convenience) give completely different scatters. 

The scatter plot in Figure 4.l(a) indicates that a linear model may be reasonable, 
whereas the one in Figure 4.1(b) suggests a (possibly linearizable) nonlinear model. 
Figure 4.1 (c) shows that the data follow a linear model closely except for one point 
which is clearly off the line. This point may be an outlier, hence it should be 
examined before conclusions can be drawn from the data. Figure 4.1 (d) indicates 
either a deficient experimental design or a bad sample. For the point at X = 19, the 
reader can verify that (a) the residual at this point is always zero (with a variance 
of zero) no matter how large or small its corresponding value of Y and (b) if the 
point is removed, the least squares estimates based on the remaining points are no 
longer unique (except the vertical line, any line that passes through the average of 
the remaining points is a least squares line!). Observations which unduly influence 
regression results are called injuential observations. The point at X = 19 is 
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therefore extremely influential because it alone determines both the intercept and 
the slope of the fitted line. 

We have used the scatter plot here as an exploratory tool, but one can also use 
graphical methods to complement numerical methods in a confirmatory analysis. 
Suppose we wish to test whether there is a positive correlation between Y and X 
or, equivalently, if Y and X can be fitted by a positively sloped regression line. The 
reader can verify that the correlation coefficients are the same in all four data sets 
(Cor(Y, X )  = 0.80) and all four data sets also have the same regression line (Y = 
3 + 0.5 X) with the same standard errors of the coefficients. Thus, based on these 
numerical summaries, one would reach the erroneous conclusion that all four data 
sets can be described by the same model. The underlying assumption here is that 
the relationship between Y and X is linear and this assumption does not hold here, 
for example, for the data set in Figure 4.l(b). Hence the test is invalid. The test 
for linear relationship, like other statistical methods, is based on certain underlying 
assumptions. Thus conclusions based on these methods are valid only when the 
underlying assumptions hold. It is clear from the above example that if analyses 
were solely based on numerical results, wrong conclusions will be reached. 

Graphical methods can be useful in many ways. They can be used to: 

1. Detect errors in the data (e.g., an outlying point may be a result of a typo- 

2. Recognize patterns in the data (e.g., clusters, outliers, gaps, etc.), 

3. Explore relationships among variables, 

4. Discover new phenomena, 

5. Confirm or negate assumptions, 

6. Assess the adequacy of a fitted model, 

7. Suggest remedial actions (e.g., transform the data, redesign the experiment, 

graphical error), 

collect more data, etc.), and 

8. Enhance numerical analyses in general. 

This chapter presents some graphical displays useful in regression analysis. 
The graphical displays we discuss here can be classified into two (not mutually 
exclusive) classes: 

0 Graphs before fitting a model. These are useful, for example, in correcting 

0 Graphs after fitting a model. These are particularly useful for checking the 

Our presentation draws heavily from Hadi (1 993) and Hadi and Son (1  997). Before 
examining a specific graph, consider what the graph should look like when the 
assumptions hold. Then examine the graph to see whether it is consistent with 
expectations. This will then confirm or disprove the assumption. 

errors in data and in selecting a model. 

assumptions and for assessing the goodness of the fit. 
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4.5 GRAPHS BEFORE FllTlNG A MODEL 

The form of a model that represents the relationship between the response and 
predictor variables should be based on the theoretical background or the hypothesis 
to be tested. But if no prior information about the form of the model is available, the 
data may be used to suggest the model. The data should be examined thoroughly 
before a model is fitted. The graphs that one examines before fitting a model to the 
data serve as exploratory tools. Four possible groups of graphs are: 

1.  One-dimensional graphs, 

2. Two-dimensional graphs, 

3.  Rotating plots, and 

4. Dynamic graphs. 

4.5.1 One-Dimensional Graphs 

Data analysis usually begins with the examination of each variable in the study. The 
purpose is to have a general idea about the distribution of each individual variable. 
One of the following graphs may be used for examining a variable: 

0 Histogram 

0 Stem-and-leaf display 

0 DotPlot 

0 Box Plot 

The one-dimensional graphs serve two major functions. They indicate the dis- 
tribution of a particular variable, whether the variable is symmetric or skewed. 
When a variable is very skewed it should be transformed. For a highly skewed 
variable a logarithmic transformation is recommended. Univariate graphs provide 
guidance on the question as to whether one should work with the original or with 
the transformed variables. 

Univariate graphs also point out the presence of outliers in the variables. Outliers 
should be checked to see if they are due to transcription errors. No observation 
should be deleted at this stage. They should be noted as they may show up as 
troublesome points later. 

4.5.2 Two-Dimensional Graphs 

Ideally, when we have multidimensional data, we should examine a graph of the 
same dimension as that of the data. Obviously, this is feasible only when the 
number of variables is small. However, we can take the variables in pairs and look 
at the scatter plots of each variable versus each other variable in the data set. The 



94 REGRESSION DIAGNOSTICS: DETECTION OF MODEL VIOLATIONS 

i 
0.434 

. .  

Xl 

-0.9 

. .  
.. 

.. .* 

Figure 4.2 The plot matrix for Hamilton's data with the pairwise correlation coefficients. 

purposes of these pairwise scatter plots are to explore the relationships between 
each pair of variables and to identify general patterns. 

When the number of variables is small, it may be possible to arrange these 
pairwise scatter plots in a matrix format, sometimes referred to as the draftsman's 
plot or the plot matrix. Figure 4.2 is an example of a plot matrix for one response 
and two predictor variables. The pairwise scatter plots are given in the upper 
triangular part of the plot matrix. We can also arrange the corresponding correlation 
coefficients in a matrix. The corresponding correlation coefficients are given in 
the lower triangular part of the plot matrix. These arrangements facilitate the 
examination of the plots. The pairwise correlation coefficients should always be 
interpreted in conjunction with the corresponding scatter plots. The reason for this 
is two-fold: (a> the correlation coefficient measures only linear relationships, and 
(b) the correlation coefficient is non-robust, that is, its value can be substantially 
influenced by one or two observations in the data. 

What do we expect each of the graphs in the plot matrix to look like? In simple 
regression, the plot of Y versus X is expected to show a linear pattern. In multiple 
regression, however, the scatter plots of Y versus each predictor variable may or 
may not show linear patterns. Where the presence of a linear pattern is reassuring, 
the absence of such a pattern does not imply that our linear model is incorrect. An 
example is given below. 
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Table 4.1 Hamilton’s (1987) Data 

Y 

12.37 
12.66 
12.00 
11.93 
11.06 
13.03 
13.13 
11.44 

X1 x2 

2.23 9.66 
2.57 8.94 
3.87 4.40 
3.10 6.64 
3.39 4.91 
2.83 8.52 
3.02 8.04 
2.14 9.05 

Y X1 x2 

12.86 3.04 7.7 1 
10.84 3.26 5.1 1 
11.20 3.39 5.05 
11.56 2.35 8.51 
10.83 2.76 6.59 
12.63 3.90 4.90 
12.46 3.16 6.96 

Example: Hamilton’s Data 

Hamilton (1 987) generates sets of data in such a way that Y depends on the predictor 
variables collectively but not individually. One such data set is given in Table 4.1. It 
can be seen from the plot matrix of this data (Figure 4.2) that no linear relationships 
exist in the plot of Y versus X I  (R2 = 0) and Y versus Xp (R2 = 0.19). Yet, when 
Y is regressed on X I  and X2 simultaneously, we obtain an almost perfect fit. The 
reader can verify that the following fitted equations are obtained: 

Y = 11.989 + 0.004 X i ;  
Y = 10.632 + 0.195 X2; 
Y = -4.515 + 3.097 X I  + 1.032 X2; 

t-test = 0.009; 
t-test = 1.74; 
F-test = 39222; 

R2 = 0.0, 
R2 = 0.188, 
R2 = 1.0. 

The first two equations indicate that Y is related to neither X I  nor X2 individually, 
yet X I  and X2 predict Y almost perfectly. Incidentally, the first equation produces 
a negative value for the adjusted R2,  R: = -0.08. 

The scatter plots that should look linear in the plot matrix are the plots of Y 
versus each predictor variable after adjusting for all other predictor variables (that 
is, taking the linear effects of all other predictor variables out). Two types of these 
graphs known as the added-variable plot and the residual plus component plot, are 
presented in Section 4.12.1. 

The pairwise scatter plot of the predictors should show no linear pattern (ideally, 
we should see no discernible pattern, linear or otherwise) because the predictors are 
assumed to be linearly independent. In Hamilton’s data, this assumption does not 
hold because there is a clear linear pattern in the scatter plot of X1 versus X2 (Figure 
4.2). We should caution here that the absence of linear relationships in these scatter 
plots does not imply that the entire set of predictors are linearly independent. The 
linear relationship may involve more than two predictor variables. Pairwise scatter 
plots will fail to detect such a multivariate relationship. This multicollinearity 
problem will be dealt with in Chapters 9 and 10. 
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Y 

Figure 4.3 Rotating plot for Hamilton’s data. 

4.5.3 Rotating Plots 

Recent advances in computer hardware and software have made it possible to 
plot data of three or more dimensions. The simplest of these plots is the three- 
dimensional rotating plot. The rotating plot is a scatter plot of three variables in 
which the points can be rotated in various directions so that the three-dimensional 
structure becomes apparent. Describing rotating plots in words does not do them 
justice. The real power of rotation can be felt only when one watches a rotating 
plot in motion on a computer screen. The motion can be stopped when one sees an 
interesting view of the data. For example, in the Hamilton’s data we have seen that 
X I  and X2 predict Y almost perfectly. This finding is confirmed in the rotating 
plot of Y against X I  and Xz.  When this plot is rotated, the points fall on an almost 
perfect plane. The plot is rotated until an interesting direction is found. Figure 4.3 
shows one such direction, where the plane is viewed from an angle that makes the 
scatter of points seem to fall on a straight line. 

4.5.4 Dynamic Graphs 

Dynamic graphics are an extraordinarily useful tool for exploring the structure 
and relationships in multivariate data. In a dynamic graphics environment the 
data analyst can go beyond just looking at a static graph. The graphs can be 
manipulated and the changes can be seen instantaneously on the computer screen. 
For example, one can make two or more three-dimensional rotating plots then use 
dynamic graphical techniques to explore the structure and relationships in more 
than three dimensions. Articles and books have been written about the subject, and 
many statistical software programs include dynamic graphical tools (e.g., rotating, 
brushing, linking, etc.). We refer the interested reader to Becker, Cleveland, and 
Wilks (1987), and Velleman (1999). 
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4.6 GRAPHS AFTER FITTING A MODEL 

The graphs presented in the previous section are useful in data checking and the 
model formulation steps. The graphs after fitting a model to the data help in 
checking the assumptions and in assessing the adequacy of the fit of a given model. 
These graphs can be grouped into the following classes: 

1. Graphs for checking the linearity and normality assumptions, 

2. Graphs for the detection of outliers and influential observations, and 

3. Diagnostic plots for the effect of variables. 

4.7 CHECKING LINEARITY AND NORMALITY ASSUMPTIONS 

When the number of variables is small, the assumption of linearity can be checked 
by interactively and dynamically manipulating the plots discussed in the previous 
section. The task of checking the linearity assumption becomes difficult when the 
number of variables is large. However, one can check the linearity and normality 
assumptions by examining the residuals after fitting a given model to the data. 

The following plots of the standardized residuals can be used to check the 
linearity and normality assumptions: 

1. Normal probability plot of the standardized residuals: This is a plot of 
the ordered standardized residuals versus the so-called normal scores. The 
normal scores are what we would expect to obtain if we take a sample of size n 
from a standard normal distribution. If the residuals are normally distributed, 
the ordered residuals should be approximately the same as the ordered normal 
scores. Under normality assumption, this plot should resemble a (nearly) 
straight line with an intercept of zero and a slope of one (these are the mean 
and the standard deviation of the standardized residuals, respectively). 

2. Scatter plots of the standardized residual against each of the predictor vari- 
ables: Under the standard assumptions, the standardized residuals are un- 
correlated with each of the predictor variables. If the assumptions hold, this 
plot should be a random scatter of points. Any discernible pattern in this plot 
may indicate violation of some assumptions. If the linearity assumption does 
not hold, one may observe a plot like the one given in Figure 4.4(a). In this 
case a transformation of the Y and/or the particular predictor variable may 
be necessary to achieve linearity. A plot that looks like Figure 4.4(b), may 
indicate heterogeneity of variance. In this case a transformation of the data 
that stabilizes the variance may be needed. Several types of transformations 
for the corrections of some model deficiencies are described in Chapter 6. 

3. Scatter plot of the standardized residual versus the3tted values: Under the 
standard assumptions, the standardized residuals are also uncorrelated with 
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Figure 4.4 Two scatter plots of residuals versus X illustrating violations of model 
assumptions: (a) a pattern indicating nonlinearity; and (b) apattern indicating heterogeneity. 

the fitted values; therefore, this plot should also be a random scatter of points. 
In simple regression, the plots of standardized residuals against X and against 
the fitted values are identical. 

4. Index plot of the standardized residuals: In this diagnostic plot we display 
the standardized residuals versus the observation number. If the order in 
which the observations were taken is immaterial, this plot is not needed. 
However, if the order is important (e.g., when the observations are taken over 
time or there is a spatial ordering), a plot of the residuals in serial order may 
be used to check the assumption of independence of the errors. Under the 
assumption of independent errors, the points should be scattered randomly 
within a horizontal band around zero. 

4.8 LEVERAGE, INFLUENCE, AND OUTLIERS 

In fitting a model to a given body of data, we would like to ensure that the fit is 
not overly determined by one or few observations. Recall, for example, that in 
the Anscombe’s quartet data, the straight line for the data set in Figure 4.l(d) is 
determined entirely by one point. If the extreme point were to be removed, a very 
different line would result. When we have several variables, it is not possible to 
detect such a situation graphically. We would, however, like to know the existence 
of such points. It should be pointed out that looking at residuals in this case would 
be of no help, because the residual for this point is zero! The point is therefore not 
an outlier because it does not have a large residual, but it is a very influential point. 

A point is an injuential point if its deletion, singly or in combination with others 
(two or three), causes substantial changes in the fitted model (estimated coefficients, 
fitted values, t-tests, etc.). Deletion of any point will in general cause changes in the 
fit. We are interested in detecting those points whose deletion cause large changes 
(i.e., they exercise undue influence). This point is illustrated by an example. 



LEVERAGE, INFLUENCE, AND OUTLIERS 99 

Table 4.2 New York Rivers Data: The t-tests for the Individual Coefficients 

Observations Deleted 

Test None Neversink Hackensack 
~ ~~ 

to  1.40 
tl 0.39 
t 2  -0.93 
t3 -0.21 
t4 1.86 

1.21 
0.92 

-0.74 
-3.15 

4.45 

~~~ 

2.08 
0.25 

4.08 
0.66 

- 1.45 

Example: New York Rivers Data 

Consider the New York Rivers data described in Section 1.3.5 and given in Table 
I .9. Let us fit a linear model relating the mean nitrogen concentration, Y ,  and the 
four predictor variables representing land use: 

y = Po + AX1 + pzx, + p3x3 + p4x4 + E .  (4.16) 

Table 4.2 shows the regression coefficients and the t-tests for testing the significance 
of the coefficients for three subsets of the data. The second column in Table 4.2 
gives the regression results based on all 20 observations (rivers). The third column 
gives the results after deleting the Neversink river (number 4). The fourth column 
gives the results after deleting the Hackensack river (number 5). 

Note the striking difference among the regression outputs of three data sets 
that differ from each other by only one observation! Observe, for example, the 
values of the t-test for p3. Based on all data, the test is insignificant, based on 
the data without the Neversink river, it is significantly negative, and based on the 
data without the Hackensack river, it is significantly positive. Only one observation 
can lead to substantially different results and conclusions! The Neversink and 
Hackensack rivers are called influential observations because they influence the 
regression results substantially more than other observations in the data. Examining 
the raw data in Table 1.9, one can easily identify the Hackensack,river because it 
has an unusually large value for X3 (percentage of residential land) relative to the 
other values for X3. The reason for this large value is that the Hackensack river is 
the only urban river in the data due to its geographic proximity to New York City 
with its high population density. The other rivers are in rural areas. Although the 
Neversink river is influential (as can be seen from Table 4.2), it is not obvious from 
the raw data that i t  is different from the other rivers in the data. 

It is therefore important to identify influential observations if they exist in data. 
We describe methods for the detection of influential observations. Influential 
observations are usually outliers in either the response variable Y or the predictor 
variable (the X-space). 
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4.8.1 Outliers in the Response Variable 

Observations with large standardized residuals are outliers in the response variable 
because they lie far from the fitted equation in the Y-direction. Since the standard- 
ized residuals are approximately normally distributed with mean zero and a standard 
deviation 1, points with standardized residuals larger than 2 or 3 standard deviation 
away from the mean (zero) are called outliers. Outliers may indicate a model failure 
for those points. They can be identified using formal testing procedures (see, e.g., 
Hawkins (1 980), Barnett and Lewis (1 994), Hadi and Simonoff (1 993), and Hadi 
and Velleman (1 997) and the references therein) or through appropriately chosen 
graphs of the residuals, the approach we adopt here. The pattern of the residuals 
is more important than their numeric values. Graphs of residuals will often expose 
gross model violations when they are present. Studying residual plots is one of the 
main tools in our analysis. 

4.8.2 Outliers in the Predictors 

Outliers can also occur in the predictor variables (the X-space). They can also 
affect the regression results. The leverage values pii, described earlier, can be used 
to measure outlyingness in the X-space. This can be seen from an examination of 
the formula for pii in the simple regression case given in (4.7), which shows that 
the farther a point is from Z, the larger the corresponding value of pii. This is also 
true in multiple regression. Therefore, pii can be used as a measure of outlyingness 
in the X-space because observations with large values of pii are outliers in the X- 
space (i.e., compared to other points in the space of the predictors). Observations 
that are outliers in the X-space (e.g., the point with the largest value of X4 in Figure 
4.1 (d)) are known as high leverage points to distinguish them from observations 
that are outliers in the response variable (those with large standardized residuals). 

The leverage values possess several interesting properties (see Dodge and Hadi 
(1 999) and Chatterjee and Hadi (1988), Chapter 2, for a comprehensive discussion). 
For example, they lie between zero and 1 and their average value is ( p  + l)/n. 
Points with pii greater than 2 ( p  + l ) /n  (twice the average value) are generally 
regarded as points with high leverage (Hoaglin and Welsch, 1978). 

In any analysis, points with high leverage should be flagged and then examined 
to see if they are also influential. A plot of the leverage values (e.g., index plot, dot 
plot, or a box plot) will reveal points with high leverage if they exist. 

4.8.3 Masking and Swamping Problems 

The standardized residuals provide valuable information for validating linearity and 
normality assumptions and for the identification of outliers. However, analyses that 
are based on residuals alone may fail to detect outliers and influential observations 
for the following reasons: 
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1. The presence of high leveragepoints: The ordinary residuals, ei, and leverage 
values, pi, are related by 

(4.17) 

2.  

where SSE is the residual sum of squares. This inequality indicates that high 
leverage points (points with large values of pii )  tend to have small residuals. 
For example, the point at X = 19 in Figure 4.l(d) is extremely influential 
even though its residual is identically zero. Therefore, in addition to an 
examination of the standardized residuals for outliers, an examination of the 
leverage values is also recommended for the identification of troublesome 
points. 

The masking and swampingproblems: Masking occurs when the data contain 
outliers but we fail to detect them. This can happen because some of the 
outliers may be hidden by other outliers in the data. Swamping occurs when 
we wrongly declare some of the non-outlying points as outliers. This can 
occur because outliers tend to pull the regression equation toward them, 
hence make other points lie far from the fitted equation. Thus, masking is 
a false negative decision whereas swamping is a false positive. An example 
of a data set in which masking and swamping problems are present is given 
below. Methods which are less susceptible to the masking and swamping 
problems than the standardized residuals and leverage values are given in 
Hadi and Simonoff (1993) and the references therein. 

For the above reasons, additional measures of the influence of observations are 
needed. Before presenting these methods, we illustrate the above concepts using a 
real-life example. 

Example: New York Rivers Data 

Consider the New York rivers data, but now for illustrative purpose, let us consider 
fitting the simple regression model 

y = Po + P4X4 + E ,  (4.18) 

relating the mean nitrogen concentration, Y ,  to the percentage of land area in either 
industrial or commercial use, X4. The scatter plot of Y versus X4 together with the 
corresponding least squares fitted line are given in Figure 4.5. The corresponding 
standardized residuals, ~ i ,  and the leverage values, pii, are given in Table 4.3 
and their respective index plots are shown in Figure 4.6. In the index plot of the 
standardized residuals all the residuals are small indicating that there are no outliers 
in the data. This is a wrong conclusion because there are two clear outliers in the 
data as can be seen in the scatter plot in Figure 4.5. Thus masking has occurred! 
Because of the relationship between leverage and residual in (4.17), the Hackensack 
river with its large value of pii = 0.67, has a small residual. While a small value 
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Figure 4.5 New York Rivers Data: Scatter plot of Y versus Xq. 

Table 4.3 
Leverage Values, p i i ,  From Fitting Model 4.18 

New York Rivers Data: The Standardized Residuals, ~ i ,  and the 

Row Ti Pii I Row T i  p12 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.03 
-0.05 

1.95 
- 1.85 

0.16 
0.67 
1.92 
1.57 

-0.10 
0.38 

0.05 
0.07 
0.05 
0.25 
0.67 
0.05 
0.08 
0.06 
0.06 
0.06 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

~ 

0.75 
-0.81 
-0.83 
-0.83 
-0.94 
-0.48 
-0.72 
-0.50 
- 1.03 

0.57 

~ 

0.06 
0.06 
0.06 
0.05 
0.05 
0.06 
0.06 
0.06 
0.06 
0.06 

of the residual is desirable, the reason for the small value of the residual here is not 
due to a good fit; it is due to the fact that observation 5 is a high-leverage point and, 
in collaboration with observation 4, they pull the regression line toward them. 

A commonly used cutoff value for pii is 2(p+ 1)/n = 0.2 (Hoaglin and Welsch, 
1978). Accordingly, two points (Hackensack, pii = 0.67, and Neversink, pii = 0.25) 
that we have seen previously stand out in the scatter plot of points in Figure 4.5, 
are flagged as high leverage points as can be seen in the index plot of pii in Figure 
4.6(b), where the two points are far from the other points. This example shows 
clearly that looking solely at residual plots is inadequate. 
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Figure 4.6 
leverage values, p,, . 

New York Rivers Data: Index plots of the standardized residuals, T,, and the 

4.9 MEASURES OF INFLUENCE 

The influence of an observation is measured by the effects it produces on the fit when 
it is deleted in the fitting process. This deletion is almost always done one point at 
a time. Let bo(i), bl(i), . . ., fiP~i) denote the regression coefficients obtained when 
the ith observation is deleted ( i  = 1 ,2 ,  . . . , n). Similarly, let j j q i ) ,  . . , G n ( { ) ,  
and &ti) be the predicted values and residual mean square when we drop the ith 
observation. Note that 

& ( a )  = bOo(2) + Pl(2)GrLl + . . . + & ( Z ) G n P  (4.19) 

is the fitted value for observation m when the fitted equation is obtained with the ith 
observation deleted. Influence measures look at differences produced in quantities 
such as (Pj -Pjci)) or (yj - Gjjci)). There are numerous measures of influence in the 
literature, and the reader is referred to one of the books for details: Belsley, Kuh, 
and Welsch (1980), Cook and Weisberg (1982), Atkinson (1983, and Chatterjee 
and Hadi (1 988). Here we give three of these measures. 

4.9.1 Cook’s Distance 

An influence measure proposed by Cook (1977) is widely used. Cook’s distance 
measures the difference between the regression coefficients obtained from the full 
data and the regression coefficients obtained by deleting the ith observation, or 
equivalently, the difference between the fitted values obtained from the full data 
and the fitted values obtained by deleting the ith observation. Accordingly, Cook’s 
distance measures the influence of the ith observation by 

(4.20) 
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It can be shown that Ci can be expressed as 

(4.21) 

Thus, Cook's distance is a multiplicative function of two basic quantities. The first 
is the square of the standardized residual, ri, defined in (4.13) and the second is 
the so-called potential function pi i / (  1 - pi i ) ,  where pii is the leverage of the ith 
observation introduced previously. If a point is influential, its deletion causes large 
changes and the value of Ci will be large. Therefore, a large value of Ci indicates 
that the point is influential. It has been suggested that points with Ci values greater 
than the 50% point of the F distribution with p + 1 and (n - p - 1)  degrees of 
freedom be classified as influential points. A practical operational rule is to classify 
points with Ci values greater than 1 as being influential. Rather than using a rigid 
cutoff rule, we suggest that all Ci values be examined graphically. A dot plot or an 
index plot of Ci is a useful graphical device. When the Ci values are all about the 
same, no action need be taken. On the other hand, if there are data points with Ci 
values that stand out from the rest, these points should be flagged and examined. 
The model may then be refitted without the offending points to see the effect of 
these points. 

4.9.2 Welsch and Kuh Measure 

A measure similar to Cook's distance has been proposed by Welsch and Kuh (1 977) 
and named DFITS. It is defined as 

i =  1 , 2  ) . " ,  72. 
Yi - Yi( i )  

6(i) 6 ' 
DFITSi = (4.22) 

Thus, DFITSi is the scaled difference between the ith fitted value obtained from 
the full data and the ith fitted value obtained by deleting the ith observation. The 
difference is scaled by 8(i) 6. It can be shown that DFITSi can be written as 

(4.23) Pii DFITSi = T,' - , i = 1 , 2  ,.", n, /-- 1 - Pii 

where r5 is the standardized residual defined in (4.14). DFITSi corresponds to 
when the normalization is done by using d( i )  instead of 6. Points with 

IDFITSiI larger than 2 d ( p  + l ) / ( n  - p - 1) are usually classified as influential 
points. Again, instead of having a strict cutoff value, we use the measure to sort out 
points of abnormally high influence relative to other points on a graph such as the 
index plot, the dot plot, or the box plot. There is not much to choose between Ci 
and DFITSi - both give similar answers because they are functions of the residual 
and leverage values. Most computer software will give one or both of the measures, 
and it is sufficient to look at only one of them. 
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4.9.3 Hadi’s Influence Measure 

Hadi ( 1  992) proposed a measure of the influence of the ith observation based on 
the fact that influential observations are outliers in either the response variable or 
in the predictors, or both. Accordingly, the influence of the ith observation can be 
measured by 

(4.24) 

where d, = e , / m  is the so-called normalized residual. The first term on the 
right-hand-side of (4.24) is the potential function which measures outlyingness 
in the X-space. The second term is a function of the residual, which measures 
outlyingness in the response variable. It can be seen that observations will have 
large values of H,  if they are outliers in the response andor the predictor variables, 
that is, if they have large values of r,, p Z z ,  or both. The measure H, does not 
focus on a specific regression result, but it can be thought of as an overall general 
measure of influence which depicts observations that are influential on at least one 
regression result. 

Note that C, and DFITS, are multiplicative functions of the residuals and leverage 
values, whereas H, is an additive function. The influence measure H, can best be 
examined graphically in the same way as Cook’s distance and Welsch and Kuh 
measure. 

Example: New York Rivers Data 

Consider again fitting the simple regression model in (4.1 8), which relates the mean 
nitrogen concentration, Y ,  to the percentage of land area in commercial/industrial 
use, Xq. The scatter plot of Y versus X4 and the corresponding least-squares 
regression are given in Figure 4.5. Observations 4 (the Neversink river) and 5 
(the Hackensack river) are located far from the bulk of other data points in Figure 
4.5. Also observations 7, 3, 8, and 6 are somewhat sparse in the upper-left region 
of the graph. The three influence measures discussed above which result from 
fitting model (4.18) are shown in Table 4.4, and the corresponding index plots 
are shown in Figure 4.7. No value of C, exceeds it cutoff value of 1. However, 
the index plot of C, in Figure 4.7(a) shows clearly that observation number 4 
(Neversink) should be flagged as an influential observation. This observation also 
exceeds its DFITS, cutoff value of 2 J ( p  + l ) / (n  - p - 1) = 2/3. As can be seen 
from Figure 4.7, observation number 5 (Hackensack) was not flagged by C, or by 
DFITS,. This is due to the small value of the residual because of its high leverage 
and to the multiplicative nature of the measure. The index plot of H, in Figure 4.7(c) 
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Row ci DFITSi Hi 

0.4 
...:** 
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Index Index 

Hi 1.0 
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Figure 4.7 
Ci, (b) Welsch and Kuh measure, DFITSi, and (c) Hadi’s influence measure Hi. 

New York Rivers data: Index plots of influence measures (a) Cook’s distance, 

1 0.00 
2 0.00 
3 0.10 
4 0.56 
5 0.02 
6 0.01 
7 0.17 
8 0.07 
9 0.00 

10 0.00 

0.01 0.06 
-0.01 0.07 

0.49 0.58 
-1.14 0.77 

0.22 2.04 
0.15 0.10 
0.63 0.60 
0.40 0.37 

-0.02 0.07 
0.09 0.08 

11 0.02 
12 0.02 
13 0.02 
14 0.02 
15 0.02 
16 0.01 
17 0.02 
18 0.01 
19 0.04 
20 0.01 

0.19 
-0.21 
-0.22 
-0.19 
-0.22 
-0.12 
-0.18 
-0.12 
-0.27 

0.15 

0.13 
0.14 
0.15 
0.13 
0.16 
0.09 
0.12 
0.09 
0.19 
0.11 
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Figure 4.8 New York Rivers data: Potential-Residual plot. 

indicates that observation number 5 (Hackensack) is the most influential one, fol- 
lowed by observation number 4 (Neversink), which is consistent with the scatter 
plot in Figure 4.5. 

4.10 THE POTENTIAL-RESIDUAL PLOT 

The formula for Hi in (4.24) suggests a simple graph to aid in classifying unusual 
observations as high-leverage points, outliers, or a combination of both. The graph 
is called the potential-residual (P-R) plot (Hadi, 1992) because it is the scatter plot 
of 

Potential Function Residual Function 

The P-R plot is related to the L-R (leverage-residual) plot suggested by Gray (1 986) 
and McCulloch and Meeter (1 983). The L-R plot is a scatter plot of pii versus d:. 
For a comparison between the two plots, see Hadi (1992). 

As an illustrative example, the P-R plot obtained from fitting model (4.18) is 
shown in Figure 4.8. Observation 5, which is a high-leverage point, is located by 
itself in the upper left comer of the plot. Four outlying observations (3,7,4, and 8) 
are located in the lower right area of the graph. 

It is clear now that some individual data points may be flagged as outliers, 
leverage points, or influential points. The main usefulness of the leverage and 
influence measures is that they give the analyst a complete picture of the role played 
by different points in the entire fitting process. Any point falling in one of these 
categories should be carefully examined for accuracy (gross error, transcription 
error), relevancy (whether it belongs to the data set), and special significance 
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Figure 4.9 A scatter plot of population size, Y ,  versus time, X .  The curve is obtained 
by fitting an exponential function to the full data. The straight line is the least squares line 
when observations 22 and 23 are are deleted. 

(abnormal condition, unique situation). Outliers should always be scrutinized 
carefully. Points with high leverage that are not influential do not cause problems. 
High leverage points that are influential should be investigated because these points 
are outlying as far as the predictor variables are concerned and also influence the 
fit. To get an idea of the sensitivity of the analysis to these points, the model should 
be fitted without the offending points and the resulting coefficients examined. 

4.1 1 WHAT TO DO WITH THE OUTLIERS? 

Outliers and influential observations should not routinely be deleted or automat- 
ically down-weighted because they are not necessarily bad observations. On the 
contrary, if they are correct, they may be the most informative points in the data. 
For example, they may indicate that the data did not come from a normal population 
or that the model is not linear. To illustrate that outliers and influential observations 
can be the most informative points in the data, we use the exponential growth data 
described in the following example. 

Example: Exponential Growth Data 

Figure 4.9 is the scatter plot of two variables, the size of a certain population, Y ,  
and time, X. As can be seen from the scatter of points, the majority of the points 
resemble a linear relationship between population size and time as indicated by the 
straight line in Figure 4.9. According to this model the two points 22 and 23 in 
the upper right comer are outliers. If these points, however, are correct, they are 
the only observations in the data set that indicate that the data follow a nonlinear 
(e.g., exponential) model, such as the one shown in the graph. Think of this as a 
population of bacteria which increases very slowly over a period of time. After a 
critical point in time, however, the population explodes. 
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What to do with outliers and influential observations once they are identified? 
Because outliers and influential observations can be the most informative obser- 
vations in the data set, they should not be automatically discarded without justifi- 
cation. Instead, they should be examined to determine why they are outlying or 
influential. Based on this examination, appropriate corrective actions can then be 
taken. These corrective actions include: correction of error in the data, deletion or 
down-weighing outliers, transforming the data, considering a different model, and 
redesigning the experiment or the sample survey, collecting more data. 

4.12 ROLE OF VARIABLES IN A REGRESSION EQUATION 

As we have indicated, successive variables are introduced sequentially into a regres- 
sion equation. A question that arises frequently in practice is: Given a regression 
model which currently contains p predictor variables, what are the effects of delet- 
ing (or adding) one of the variables from (or to) the model? Frequently, the answer 
is to compute the t-test for each variable in the model. If the t-test is large in abso- 
lute value, the variable is retained, otherwise the variable is omitted. This is valid 
only if the underlying assumptions hold. Therefore, the t-test should be interpreted 
in conjunction with appropriate graphs of the data. Two plots have been proposed 
that give this information visually and are often very illuminating. They can be 
used to complement the t-test in deciding whether one should retain or remove a 
variable in a regression equation. The first graph is called the added-variable plot 
and the second is the residual plus component plot. 

4.12.1 Added-Variable Plot 

The added-variable plot, introduced by Mosteller and Tukey (1 977), enables us 
graphically to see the magnitude of the regression coefficient of the new variable that 
is being considered for inclusion. The slope of the least squares line representing the 
points in the plot is equal to the estimated regression coefficient of the new variable. 
The plot also shows data points which play key roles in determining this magnitude. 
We can construct an added-variable plot for each predictor variable X j .  The added- 
variable plot for Xj is essentially a graph of two different sets of residuals. The first 
is the residuals when Y is regressed on all predictor variables except X j .  We call 
this set the Y-residuals. The second set of residuals are obtained when we regress 
X j  (treated temporarily as a response variable) on all other predictor variables. We 
refer to this set as the Xj-residuals. Thus, the added-variable plot for X j  is simply 
a scatter plot of the 

Y-residuals versus Xj-residuals. 

Therefore, if we have p predictor variables available, we can construct p added- 
variable plots, one for each predictor. 

Note that the Y-residuals in the added-variable plot for Xj represent the part 
of Y not explained by all predictors other than X j .  Similarly, the XJ-residuals 
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represent the part of Xj that is not explained by the other predictor variables. If 
a least squares regression line were fitted to the points in the added-variable plot 
for X j ,  the slope of this line is equal to j j ,  the estimated regression coefficient of 
Xj when Y is regressed on all the predictor variables including Xj. This is an 
illuminating but equivalent interpretation of the partial regression coefficient as we 
have seen in Section 3.5. 

The slope of the points in the plot gives the magnitude of the regression coef- 
ficient of the variable if it were brought into the equation. Thus, the stronger the 
linear relationship in the added-variable plot is, the more important the additional 
contribution of Xj to the regression equation already containing the other predic- 
tors. If the scatter of the points shows no marked slope, the variable is unlikely to 
be useful in the model. The scatter of the points will also indicate visually which of 
the data points are most influential in determining this slope and its corresponding 
t-test. The added-variable plot is also known as the partial regression plot.. We 
remark in passing that it is not actually necessary to carry out this fitting. These 
residuals can be obtained very simply from computations done in fitting Y on the 
full set of predictors. For a detailed discussion, see Velleman and Welsch (1981) 
and Chatterjee and Hadi (1 988). 

4.12.2 Residual Plus Component Plot 

The residual plus component plot, introduced by Ezekiel (1924), is one of the 
earliest graphical procedures in regression analysis. It was revived by Larsen 
and McCleary (1972), who called it a partial residual plot. We are calling it 
a residual plus component plot, after Wood (1973), because this name is more 
self-explanatory. 

The residual plus component plot for X j  is a scatter plot of 

where e is the ordinary least squares residuals when Y is regressed on all predictor 
variables and ,8j is the coefficient of Xj in this regression. Note that ,&Xj is the 
contribution (component) of the j th  predictor to the fitted values. As in the added- 
variable plot, the slope of the points in this plot is &, the regression coefficient of Xj. 
Besides indicating the slope graphically, this plot indicates whether any nonlinearity 
is present in the relationship between Y and Xj. The plot can therefore suggest 
possible transformations for linearizing the data. The indication of nonlinearity is, 
however, not present in the added-variable plot because the horizontal scale in the 
plot is not the variable itself. Both plots are useful, but the residual plus component 
plot is more sensitive than the added-variable plot in detecting nonlinearities in the 
variable being considered for introduction in the model. The added-variable plot 
is, however, easier to interpret and points out the influential observations. 
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Figure 4.10 Rotating plot for the Scottish Hills Races data. 

Example: The Scottish Hills Races Data 
The Scottish Hills Races data consist of a response variable (record times, in 
seconds) and two explanatory variables (the distance in miles, and the climb in 
feet) for 35 races in Scotland in 1984. The data set is given in Table 4.5. Since 
this data set is three-dimensional, let us first examine a three-dimensional rotating 
plot of the data as an exploratory tool. An interesting direction in this rotating 
plot is shown in Figure 4.10. Five observations are marked in this plot. Clearly, 
observations 7 and 18 are outliers, they lie far away (in the direction of Time) from 
the plane suggested by the majority of other points. Observation 7 lies far away in 
the direction of Climb. Observations 33 and 31 are also outliers in the graph but 
to a lesser extent. While observations 11 and 31 are near the plane suggested by 
the majority of other points, they are located far from the rest of the points on the 
plane. (Observation 11 is far mainly in the direction of Distance and observation 3 1 
is in the direction of Climb.) The rotating plot clearly shows that the data contain 
unusual points (outliers, high leverage points, and/or influential observations). 

The fitted equation is 

Time = -539.483 + 373.073 Distance + 0.662888 Climb. (4.25) 

We wish to address the question: Does each of the predictor variables contribute 
significantly when the other variable is included in the model? The t-test for the two 
predictors are 10.3 and 5.39, respectively, indicating very high significance. This 
implies that the answer to the above question is in the affirmative for both variables. 
The validity of this conclusion can be enhanced by examining the corresponding 
added-variable and residual plus component plots. These are given in Figures 
4.1 1 and 4.12, respectively. For example, in the added-variable plot for Distance 
in Figure 4.11 (a), the quantities plotted on the ordinate axis are the residuals 
obtained from the regression of Time on Climb (the other predictor variable), and 
the quantities plotted on the abscissa are the residuals obtained from the regression 
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Table 4.5 Scottish Hills Races Data 

Row Race Time Distance Climb 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I1 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

Greenmantle New Year Dash 
Carnethy 
Craig Dunain 
Ben Rha 
Ben Lomond 
Goatfell 
Bens of Jura 
Cairnpapple 

Traprain Law 
Lairig Ghru 
Dollar 
Lomonds of Fife 
Cairn Table 
Eildon Two 
Cairngorm 
Seven Hills of Edinburgh 
Knock Hill 
Black Hill 
Creag Beag 
Kildoon 
Meall Ant-Suiche 
Half Ben Nevis 
Cow Hill 
North Berwick Law 
Creag Dubh 
Burns wark 
Largo 
Criffel 
Achmon y 
Ben Nevis 
Knockfarrel 
Two Breweries Fell 
Cockleroi 
Moff at Chase 

Scolty 

965 
290 1 
2019 
2736 
3736 
4393 

12277 
2182 
1785 
2385 

1 1560 
2583 
3900 
2648 
1616 
4335 
5905 
4719 
1045 
1954 
957 

1674 
2859 
1076 
1121 
1573 
2066 
1714 
3030 
1257 
5135 
1943 

10215 
1686 
9590 

2.5 
6 
6 

7.5 
8 
8 

16 
6 
5 
6 

28 
5 

9.5 
6 

4.5 
10 
14 
3 

4.5 
5.5 

3 
3.5 

6 
2 
3 
4 
6 
5 

6.5 
5 

10 
6 

18 
4.5 
20 

650 
2500 
900 
800 

3070 
2866 
7500 
800 
800 
650 

2100 
2000 
2200 
500 

1500 
3000 
2200 
350 

1000 
600 
300 

1500 
2200 
900 
600 

2000 
800 
950 

1750 
500 

4400 
600 

5200 
850 

5000 
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Figure 4.11 The Scottish Hills Races Data: Added-variable plots for (a) Distance and 
(b) Climb. 

(a) 

5 10 15 20 25 

Distance 

2000 4000 6000 

Climb 

Figure 4.12 
Distance and (b) Climb. 

The Scottish Hills Races Data: Residual plus component plots for (a) 

of Distance on Climb. Similarly for the added-variable plot for Climb, the quantities 
plotted are the residuals obtained from the regression of Time on Distance and the 
residuals obtained from the regression of Climb on Distance. 

It can be seen that there is strong linear trend in all four graphs supporting 
the conclusions reached by the above t-tests. The graphs, however, indicate the 
presence of some points that may influence our results and conclusions. Races 
7, 11, and 18 clearly stand out. These points are marked on the graphs by their 
numbers. Races 31 and 33 are also suspects but to a lesser extent. An examination 
of the P-R plot obtained from the above fitted equation (Figure 4.13) classifies Race 
11 as a high leverage point, Race 18 as an outlier, and Race 7 as a combination of 
both. These points should be scrutinized carefully before continuing with further 
analysis. 
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Figure 4.13 The Scottish Hills Races Data: Potential-Residual plot. 

4.13 EFFECTS OF AN ADDITIONAL PREDICTOR 

We discuss in general terms the effect of introducing a new variable in a regression 
equation. Two questions should be addressed: (a) Is the regression coefficient of 
the new variable significant? and (b) Does the introduction of the new variable 
substantially change the regression coefficients of the variables already in the 
regression equation? When a new variable is introduced in a regression equation, 
four possibilities result, depending on the answer to each of the above questions: 

0 Case A: The new variable has an insignificant regression coefficient and 
the remaining regression coefficients do not change substantially from their 
previous values. Under these conditions the new variable should not be 
included in the regression equation, unless some other external conditions 
(e.g., theory or subject matter considerations) dictate its inclusion. 

0 Case B: The new variable has a significant regression coefficient, and the 
regression coefficients for the previously introduced variables are changed 
in a substantial way. In this case the new variable should be retained, but an 
examination of collinearity' should be carried out. If there is no evidence 
of collinearity, the variable should be included in the equation and other 
additional variables should be examined for possible inclusion. On the other 
hand, if the variables show collinearity, corrective actions, as outlined in 
Chapter 10 should be taken. 

0 Case C: The new variable has a significant regression coefficient, and the 
coefficients of the previously introduced variables do not change in any sub- 
stantial way. This is the ideal situation and arises when the new variable is 

'Collinearity occurs when the predictor variables are highly correlated. This problem is discussed in 
Chapters 9 and 10. 
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uncorrelated with the previously introduced variables. Under these condi- 
tions the new variable should be retained in the equation. 

0 Case D: The new variable has an insignificant regression coefficient, but the 
regression coefficients of the previously introduced variables are substantially 
changed as a result of the introduction of the new variable. This is a clear 
evidence of collinearity, and corrective actions have to be taken before the 
question of the inclusion or exclusion of the new variable in the regression 
equation can be resolved. 

It is apparent from this discussion that the effect a variable has on the regres- 
sion equation determines its suitability for being included in the fitted equation. 
The results presented in this chapter influence the formulation of different strate- 
gies devised for variable selection. Variable selection procedures are presented in 
Chapter 11. 

4.14 ROBUST REGRESSION 

Another approach (not discussed here), useful for the identification of outliers 
and influential observations, is robust regression; a method of fitting that gives 
less weight to points of high leverage. There is a vast amount of literature on 
robust regression. The interested reader is referred, for example, to the books by 
Huber (1981), Hampel et al. (1986), Rousseeuw and Leroy (1987), Staudte and 
Sheather (1990), Birkes and Dodge (1993). We must also mention the papers by 
Krasker and Welsch (1 982), Coakley and Hettmansperger ( 1  993), Chatterjee and 
Machler (1997), and Billor, Chatterjee, and Hadi (2006), which incorporate ideas 
of bounding influence and leverage in fitting. In Section 13.5 we give a brief 
discussion of robust regression and present a numerical algorithm for robust fitting. 
Two examples are given as illustration. 

EXERCISES 

4.1 Check to see whether or not the standard regression assumptions are valid for 
each of the following data sets: 
(a) The Milk Production data described in Section 1.3.1. 
(b) The Right-To-Work Laws data described in Section 1.3.2 and given in 

(c) The Egyptian Skulls data described in Section 1.3.3. 
(d) The Domestic Immigration data described in Section 1.3.4. 
(e) The New York Rivers data described in Section 1.3.5 and given in Table 

4.2 Find a data set where regression analysis can be used to answer a question of 
interest. Then: 

Table 1.3. 

1.9. 
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Table 4.6 
(Minutes) and Number of Units Repaired (Units) 

Expanded Computer Repair Times Data: Length of Service Calls 

Row Units Minutes I Row Units Minutes 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

1 
2 
3 
4 
4 
5 
6 
6 
7 
8 
9 
9 

23 
29 
49 
64 
74 
87 
96 
97 

109 
119 
149 
145 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

10 
10 
11 
11 
12 
12 
14 
16 
17 
18 
18 
20 

154 
166 
162 
174 
180 
176 
179 
193 
193 
195 
198 
205 

(a) Check to see whether or not the usual multiple regression assumptions 

(b) Analyze the data using the regression methods presented thus far, and 
are valid. 

answer the question of interest. 

4.3 Consider the computer repair problem discussed in Section 2.3. In a second 
sampling period, 10 more observations on the variables Minutes and Units 
were obtained. Since all observations were collected by the same method 
from a fixed environment, all 24 observations were pooled to form one data 
set. The data appear in Table 4.6. 
(a) Fit a linear regression model relating Minutes to Units. 
(b) Check each of the standard regression assumptions and indicate which 

4.4 In an attempt to find unusual points in a regression data set, a data analyst 
examines the P-R plot (shown in Figure 4.14). Classify each of the unusual 
points on this plot according to type. 

Name one or more graphs that can be used to validate each of the following 
assumptions. For each graph, sketch an example where the corresponding 
assumption is valid and an example where the assumption is clearly invalid. 

(a) There is a linear relationship between the response and predictor variables. 
(b) The observations are independent of each other. 
(c) The error terms have constant variance. 
(d) The error terms are uncorrelated. 
(e) The error terms are normally distributed. 

assumption(s) seems to be violated. 

4.5 
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Figure 4.14 P-R plot used in Exercise 4.4. 

(f) The observations are equally influential on least squares results. 

4.6 The following graphs are used to verify some of the assumptions of the 
ordinary least squares regression of Y on X I ,  X2 ,  . . . , X,: 
1 .  The scatter plot of Y versus each predictor X j .  
2. The scatter plot matrix of the variables X I ,  X2 , .  . . , X,. 
3.  The normal probability plot of the internally standardized residuals. 
4. The residuals versus fitted values. 
5. The potential-residual plot. 
6. Index plot of Cook’s distance. 
7. Index plot of Hadi’s influence measure. 

For each of these graphs: 
(a) What assumption can be verified by the graph? 
(b) Draw an example of the graph where the assumption does not seem to be 

(c) Draw an example of the graph which indicates the violation of the as- 

4.7 Consider again the Cigarette Consumption data described in Exercise 3.14 
and given in Table 3.17. 
(a) What would you expect the relationship between Sales and each of the 

other explanatory variables to be (i.e., positive, negative)? Explain. 
(b) Compute the pairwise correlation coefficients matrix and construct the 

corresponding scatter plot matrix. 
(c) Are there any disagreements between the pairwise correlation coefficients 

and the corresponding scatter plot matrix? 

(d) Is there any difference between your expectations in part (a) and what you 
see in the pairwise correlation coefficients matrix and the corresponding 
scatter plot matrix? 

violated. 

sumption. 
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Row Y X 

1 8.11 0 
2 11.00 5 
3 8.20 1s 
4 8.30 16 
5 9.40 17 
6 9.30 18 

118 

4.8 

4.9 

Row Y X 

7 9.60 19 
8 10.30 20 
9 11.30 21 
10 11.40 22 
11 12.20 23 
12 12.90 24 

(e) Regress Sales on the six predictor variables. Is there any difference 
between your expectations in part (a) and what you see in the regression 
coefficients of the predictor variables? Explain inconsistencies if any. 

(f) How would you explain the difference in the regression coefficients and 
the pairwise correlation coefficients between Sales and each of the six 
predictor variables? 

(g) Is there anything wrong with the tests you made and the conclusions you 
reached in Exercise 3.14? 

Consider again the Examination Data used in Exercise 3.3 and given in Table 
3.10: 
(a) For each of the three models, draw the P-R plot. Identify all unusual 

observations (by number) and classify as outlier, high leverage point, 
and/or influential observation. 

(b) What model would you use to predict the final score F? 

Either prove each of the following statements mathematically or demonstrate 
its correctness numerically using the Cigarette Consumption data described 
in Exercise 3.14 and given in Tab!e 3.17: 
(a) The sum of the ordinary least squares residuals is zero. 
(b) The relationship between d2 and &ti, is 

(4.26) 

4.10 Identify unusual observations for the data set in Table 4.7 

Table 4.7 Data for Exercise 4.10 

4.11 Consider the Scottish Hills Races data in Table 4.5. Choose an observation 
index i ( e g ,  i = 33, which corresponds to the outlying observation number 
33) and create an indicator (dummy) variable Ui, where all the values of Ui 
are zero except for its ith value which is one. Now consider comparing the 
following models: 

Ho : Time = Po + Distance + ,l32 Climb + E ,  (4.27) 
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HI  : Time = Po + p1 Distance + p2 Climb + PsUi + E .  (4.28) 

Let r,' be the ith externally standardized residual obtained from fitting model 
(4.27). Show (or verify using an example) that 

(a) The t-test for testing P3 = 0 in Model (4.28) is the same as the ith 
externally standardized residual obtained from Model (4.27), that is, 
t3 = rt .  

(b) The F-test for testing Model (4.27) versus (4.28) reduces to the square of 
the ith externally standardized residual, that is, F = rd2. 

(c) Fit Model (4.27) to the Scottish Hills Races data without the ith observa- 
tion. 

(d) Show that the estimates of PO, PI, and P2 in Model (4.28) are the same 
as those obtained in c. Hence adding an indicator variable for the ith 
observation is equivalent to deleting the corresponding observation! 

4.12 Consider the data in Table 4.8, which consist of a response variable Y and 
six predictor variables. The data can be obtained from the book's Web site. 
Consider fitting a linear model relating Y to all six X-variables. 

(a) What least squares assumptions (if any) seem to be violated? 
(b) Compute ri, Ci, DFITSi, and Hi. 
(c) Construct the index plots of ri, Ci, DFITSi, and Hi as well as the Potential- 

(d) Identify all unusual observations in the data and classify each according 
Residual plot. 

to type (i.e., outliers, leverage points, etc.). 

4.13 Consider again the data set in Table 4.8. Suppose now that we fit a linear 
model relating Y to the first three X-variables. Justify your answer to each 
of the following questions with the appropriate added-variable plot: 
(a) Should we add X4 to the above model? If yes, keep X, in the model. 

(b) Should we add Xg to the above model? If yes, keep Xg in the model. 
(c) Should we add XS to the above model? 
(d) Which model(s) would you recommend as the best possible description 

of Y ?  Use the above results andor perform additional analysis if needed. 

4.14 Consider fitting the model Y = PO + PlXl + PZXZ + P3X3 + E ,  to the data 
set in Table 4.8. Now let u be the residuals obtained from regressing Y on 
XI. Also, let X2 and u be the residuals obtained from regressing X3 on X1. 
Show (or verify using the data set in Table 4.8 as an example) that: 

n n 

i=l i=l 
(4 b3 = c W J i /  c u; 

(b) The standard error of b 3  is 6/ c u'. J n  i=l 
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Table 4.8 Data for Exercises 4.12-4.14 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

443 
290 
676 
536 
48 1 
296 
453 
617 
5 14 
400 
473 
157 
440 
480 
316 
530 
610 
617 
600 
480 
279 
446 
450 
335 
459 
630 
483 
617 
605 
388 
35 1 
366 
493 
648 
449 
340 
292 
688 
408 
461 

49 
27 

115 
92 
67 
31 

105 
114 
98 
15 
62 
25 
45 
92 
27 

1 1 1  
78 

106 
97 
67 
38 
56 
54 
53 
61 
60 
83 
74 
89 
64 
34 
71 
88 

112 
57 
61 
29 
82 
80 
82 

79 
70 
92 
62 
42 
54 
60 
85 
72 
59 
62 
11 
65 
75 
26 
52 

102 
87 
98 
65 
26 
32 

100 
55 
53 

108 
78 

125 
121 
30 
44 
34 
30 

105 
69 
35 
45 

105 
55 
88 

76 
31 

130 
92 
94 
34 
47 
84 
71 
99 
81 
7 

84 
63 
82 
93 
84 
82 
71 
62 
44 
99 
50 
60 
79 

104 
71 
66 
71 
81 
65 
56 
87 

123 
72 
55 
47 
81 
61 
54 

8 
6 
0 
5 

16 
14 
5 

17 
12 
15 
9 
9 

19 
9 
4 

11 
5 

18 
12 
13 
10 
16 
11 
8 
6 

17 
11 
16 
8 

10 
7 
8 

13 
5 
5 

13 
13 
20 
11 
14 

15 
6 
9 
8 
3 

11 
10 
20 

-1 
11 

1 
9 

13 
20 
17 
13 
7 
7 
8 

12 
8 
8 

15 
0 
5 
8 
8 
4 
8 

10 
9 
9 
0 

12 
4 
0 

13 
9 
1 
7 

205 
129 
339 
247 
202 
119 
212 
285 
242 
174 
207 
45 

195 
232 
134 
256 
266 
276 
266 
196 
I10 
188 
205 
170 
193 
273 
233 
265 
283 
176 
143 
162 
207 
340 
200 
152 
123 
268 
197 
225 

Source: Chatterjee and Hadi ( 1  988) 



CHAPTER 5 

QUALITATIVE VARIABLES AS 
PREDl CTORS 

5.1 INTRODUCTION 

Qualitative or categorical variables can be very useful as predictor variables in 
regression analysis. Qualitative variables such as sex, marital status, or political 
affiliation can be represented by indicator or dummy variables. These variables take 
on only two values, usually 0 and 1. The two values signify that the observation 
belongs to one of two possible categories. The numerical values of indicator 
variables are not intended to reflect a quantitative ordering of the categories, but 
only serve to identify category or class membership. For example, an analysis of 
salaries earned by computer programmers may include variables such as education, 
years of experience, and sex as predictor variables. The sex variable could be 
quantified, say, as 1 for female and 0 for male. Indicator variables can also be 
used in a regression equation to distinguish among three or more groups as well as 
among classifications across various types of groups. For example, the regression 
described above may also include an indicator variable to distinguish whether the 
observation was for a systems or applications programmer. The four conditions 
determined by sex and type of programming can be represented by combining the 
two variables, as we shall see in this chapter. 
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Table 5.1 Salary Survey Data 

Row S X E M I Row S X E M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

22 
23 

13876 
1 I608 
18701 
11283 
11767 
20872 
1 1772 
10535 
12195 
12313 
14975 
21371 
19800 
11417 
20263 
1323 1 
12884 
13245 
13677 
15965 
12336 
2 1352 
13839 

1 1 1 
1 3 0 
1 3 1 

1 2 0 
1 3 0 
2 2 1 
2 2 0 
2 1 0 
2 3 0 
3 2 0 
3 1 1 

3 2 1 
3 3 1 
4 1 0 
4 3 1 
4 3 0 
4 2 0 
5 2 0 
5 3 0 
5 1 1 
6 1 0 
6 3 1 
6 2 0 

24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

22884 
16978 
14803 
17404 
22184 
13548 
14467 
15942 
23174 
23780 
25410 
14861 
16882 
24 170 
15990 
26330 
17949 
25685 
27837 
18838 
17483 
19207 
19346 

6 2 1 
7 1 1 
8 2 0 
8 1 1 
8 3 1 
8 1 0 

10 1 0 
10 2 0 
10 3 1 

10 2 1 
11 2 1 

11 1 0 
12 2 0 
12 3 1 

13 1 0 
13 2 1 

14 2 0 
15 3 1 
16 2 1 

16 2 0 
16 1 0 
17 2 0 
20 1 0 

Indicator variables can be used in a variety of ways and may be considered 
whenever there are qualitative variables affecting a relationship. We shall illustrate 
some of the applications with examples and suggest some additional applications. It 
is hoped that the reader will recognize the general applicability of the technique from 
the examples. In the first example, we look at data on a salary survey, such as the 
one mentioned above, and use indicator variables to adjust for various categorical 
variables that affect the regression relationship. The second example uses indicator 
variables for analyzing and testing for equality of regression relationships in various 
subsets of a population. 

We continue to assume that the response variable is a quantitative continuous 
variable, but the predictor variables can be quantitative andor categorical. The case 
where the response variable is an indicator variable is dealt with in Chapter 12. 

5.2 SALARY SURVEY DATA 

The Salary Survey data set was developed from a salary survey of computer pro- 
fessionals in a large corporation. The objective of the survey was to identify and 
quantify those variables that determine salary differentials. In addition, the data 
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could be used to determine if the corporation’s salary administration guidelines 
were being followed. The data appear in Table 5.1 and can be obtained from the 
book’s Web site.’ The response variable is salary ( S )  and the predictors are: ( 1 )  
experience ( X ) ,  measured in years; ( 2 )  education (E) ,  coded as 1 for completion of 
a high school (H.S.) diploma, 2 for completion of a bachelor degree (B.S.), and 3 for 
the completion of an advanced degree; and (3) management ( M ) ,  which is coded 
as 1 for a person with management responsibility and 0 otherwise. We shall try to 
measure the effects of these three variables on salary using regression analysis. 

A linear relationship will be used for salary and experience. We shall assume that 
each additional year of experience is worth a fixed salary increment. Education may 
also be treated in a linear fashion. If the education variable is used in the regression 
equation in raw form, we would be assuming that each step up in education is 
worth a fixed increment to salary. That is, with all other variables held constant, the 
relationship between salary and education is linear. That interpretation is possible 
but may be too restrictive. Instead, we shall view education as a categorical 
variable and define two indicator variables to represent the three categories. These 
two variables allow us to pick up the effect of education on salary whether or not 
it is linear. The management variable is also an indicator variable designating the 
two categories, 1 for management positions and 0 for regular staff positions. 

Note that when using indicator variables to represent a set of categories, the 
number of these variables required is one less than the number of categories. For 
example, in the case of the education categories above, we create two indicator 
variables El and E2, where 

1, if the ith person is in the H.S. category, 
0, otherwise, 

and 

Ei2 = 
1, 
0, otherwise. 

if the ith person is in the B.S. category, 

{ 
As stated above, these two variables taken together uniquely represent the three 
groups. For H.S., El = 1, E2 = 0; for B.S., El = 0,  E2 = 1; and for advanced 
degree, El = 0, E2 = 0. Furthermore, if there were a third variable, Ei3, defined 
to be 1 or 0 depending on whether or not the ith person is in the advanced degree 
category, then for each person we have El + E2 + E3 = 1. Then E3 = 1 -El - E2, 
showing clearly that one of the variables is superfluous.’ Similarly, there is only 
one indicator variable required to distinguish the two management categories. The 
category that is not represented by an indicator variable is referred to as the base 
category or the control group because the regression coefficients of the indicator 
variables are interpreted relative to the control group. 

’ http://www.ilr.cornell.eduThadi/RABE4 
2Had El ,  Ez, and E3 been used, there would have been a perfect linear relationship among the 
predictors, which is an extreme case of multicollinearity, described in Chapter 9. 
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Table 5.2 
Management 

Regression Equations for the Six Categories of Education and 

Category E M Regression Equation 

s = (Po + 71) + PIX + & 

s = (Po + y1 + 61) + p,x + E 

s=  ( P O + % )  + P I X + E  
s = (Po + 7 2  + 61) + plx + & 

s = Po + P l X + &  
s = (Po + 61) + plx + & 

1 1 0 
2 1 1 
3 2 0 
4 2 1 
5 3 0 
6 3 1 

Table 5.3 Regression Analysis of Salary Survey Data 

Variable Coefficient s.e. t-test p-value 

Constant 11031.800 383.2 28.80 < 0.0001 
X 546.184 30.5 17.90 < 0.0001 
El -2996.2 10 41 1.8 -7.28 < 0.0001 
E2 147.825 387.7 0.38 0.7049 
M 6883.530 3 13.9 21.90 < 0.0001 

n = 46 R2 = 0.957 RZ = 0.953 6 = 1027 d.f.= 41 

In terms of the indicator variables described above, the regression model is 

S = Po +Pix + 7iEi + 72E2 + 6iM + E .  (5.1) 

By evaluating (5.1) for the different values of the indicator variables, it follows 
that there is a different regression equation for each of the six (three education and 
two management) categories as shown in Table 5.2. According to the proposed 
model, we may say that the indicator variables help to determine the base salary 
level as a function of education and management status after adjustment for years 
of experience. 

The results of the regression computations for the model given in (5.1) appear 
in Table 5.3. The proportion of salary variation accounted for by the model is 
quite high (R2 = 0.957). At this point in the analysis we should investigate 
the pattern of residuals to check on model specification. We shall postpone that 
investigation for now and assume that the model is satisfactory so that we can 
discuss the interpretation of the regression results. Later we shall return to analyze 
the residuals and find that the model must be altered. 

We see that the coefficient of X is 546.16. That is, each additional year of 
experience is estimated to be worth an annual salary increment of $546. The 
other coefficients may be interpreted by looking into Table 5.2. The coefficient 
of the management indicator variable, 61, is estimated to be 6883.50. From Table 
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5.2 we interpret this amount to be the average incremental value in annual salary 
associated with a management position. For the education variables, y1 measures 
the salary differential for the H.S. category relative to the advanced degree category 
and y2 measures the differential for the B.S. category relative to the advanced 
degree category. The difference, 72  - 71, measures the differential salary for the 
H.S. category relative to the B.S. category. From the regression results, in terms of 
salary for computer professionals, we see that an advanced degree is worth $2996 
more than a high school diploma, a B.S. is worth $148 more than an advanced 
degree (this differential is not statistically significant, t = 0.38), and a B.S. is worth 
about $3144 more than a high school diploma. These salary differentials hold for 
every fixed level of experience. 

5.3 INTERACTION VARIABLES 

Returning now to the question of model specification, consider Figure 5.1, where the 
residuals are plotted against X .  The plot suggests that there may be three or more 
specific levels of residuals. Possibly the indicator variables that have been defined 
are not adequate for explaining the effects of education and management status. 
Actually, each residual is identified with one of the six education-management 
combinations. To see this we plot the residuals against Category (a new categorical 
variable that takes a separate value for each of the six combinations). This graph is, 
in effect, a plot of residuals versus a potential predictor variable that has not yet been 
used in the equation. The graph is given in Figure 5.2. It can be seen from the graph 
that the residuals cluster by size according to their education-management category. 
The combinations of education and management have not been satisfactorily treated 
in the model. Within each of the six groups, the residuals are either almost totally 
positive or totally negative. This behavior implies that the model given in (5.1) does 
not adequately explain the relationship between salary and experience, education, 
and management variables. The graph points to some hidden structure in the data 
that has not been explored. 

The graphs strongly suggest that the effects of education and management status 
on salary determination are not additive. Note that in the model in (5.1) and 
its further exposition in Table 5.2, the incremental effects of both variables are 
determined by additive constants. For example, the effect of a management position 
is measured as 61, independently of the level of educational attainment. The 
nonadditive effects of these variables can be evaluated by constructing additional 
variables that are used to measure what may be referred to as multiplicative or 
interaction effects. Interaction variables are defined as products of the existing 
indicator variables (El . M )  and (E2. M ) .  The inclusion of these two variables on 
the right-hand side of (5.1) leads to a model that is no longer additive in education 
and management, but recognizes the multiplicative effect of these two variables. 
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. 
9 .  

. .  
I I I I 

5 10 15 20 

X 

Figure 5.1 Standardized residuals versus years of experience ( X ) .  

1 2 3 4 5  6 

Category 

Figure 5.2 Standardized residuals versus education-management categorical variable. 
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Table 5.4 Regression Analysis of Salary Data: Expanded Model 

Variable Coefficient s.e. t-test p-value 

Constant 1 1203.40 79.07 141.7 < 0.0001 
X 496.99 5.57 89.3 < o.oO01 
El - 1730.75 105.30 -16.4 < 0.0001 
E2 -349.08 97.57 -3.6 0.0009 
M 7047.41 102.60 68.7 < o.oO01 
El ' M - 3 066.04 149.30 -20.5 < 0.0001 
E2 . M 1836.49 131.20 14.0 < 0.0001 

n = 46 R2 = 0.999 R: = 0.999 3 = 173.8 d.f.= 39 

Tabie 5.5 
Deleted. 

Regression Analysis of Salary Data: Expanded Model, Observation 33 

Variable Coefficient s.e. t-test p-value 

Constant 1 1199.70 30.54 367.0 < 0.0001 
X 498.41 2.15 232.0 < 0.0001 
El - 1741.28 40.69 -42.8 < 0.0001 
E2 -357.00 37.69 -9.5 < 0.0001 
M 7040.49 39.63 178.0 < o.oO01 
El . M -3051.72 57.68 -52.9 < 0.0001 
E2 . M 1997.62 51.79 38.6 < 0.0001 

n = 45 R2 = 1.0 R; = 1.0 6 = 67.13 d.f.= 38 

The expanded model is 

s = Po + P1 x + % E l +  Y2E2 + 61M 
+ QI(EI. M )  + ~ 2 ( E 2 .  M )  + E .  (5.2) 

The regression results are given in Table 5.4. The residuals from the regression of 
the expanded model are plotted against X in Figure 5.3. Note that observation 33 
is an outlier. Salary is overpredicted by the model. Checking this observation in 
the listing of the raw data, it appears that this particular person seems to have fallen 
behind by a couple of hundred dollars in annual salary as compared to other persons 
with similar characteristics. To be sure that this single observation is not overly 
affecting the regression estimates, it has been deleted and the regression rerun. The 
new results are given in Table 5.5. 

The regression coefficients are basically unchanged. However, the standard 
deviation of the residuals has been reduced to $67.28 and the proportion of explained 
variation has reached 0.9998. The plot of residuals versus X (Figure 5.4) appears 
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to be satisfactory compared with the similar residual plot for the additive model. 
In addition, the plot of residuals for each education-management category (Figure 
5.5) shows that each of these groups has residuals that appear to be symmetrically 
distributed about zero. Therefore the introduction of the interaction terms has 
produced an accurate representation of salary variations. The relationships between 
salary and experience, education, and management status appear to be adequately 
described by the model given in (5.2). 

With the standard error of the residuals estimated to be $67.28, we can believe that 
we have uncovered the actual and very carefully administered salary formula. Using 
95% confidence intervals, each year of experience is estimated to be worth between 
$494.08 and $502.72. These increments of approximately $500 are added to a 
starting salary that is specified for each of the six education-management groups. 
Since the final regression model is not additive, it is rather difficult to directly 
interpret the coefficients of the indicator variables. To see how the qualitative 
variables affect salary differentials, we use the coefficients to form estimates of 
the base salary for each of the six categories. These results are presented in Table 
5.6 along with standard errors and confidence intervals. The standard errors are 
computed using Equation (A. 12) in the Appendix to Chapter 3. 

Using a regression model with indicator variables and interaction terms, it has 
been possible to account for almost all the variation in salaries of computer pro- 
fessionals selected for this survey. The level of accuracy with which the model 
explains the data is very rare! We can only conjecture that the methods of salary 
administration in this company are precisely defined and strictly applied. 

In retrospect, we see that an equivalent model may be obtained with a different set 
of indicator variables and regression parameters. One could define five variables, 
each taking on the values of 1 or 0, corresponding to five of the six education- 
management categories. The numerical estimates of base salary and the standard 
errors of Table 5.6 would be the same. The advantage to proceeding as we have 
is that it allows us to separate the effects of the three sets of predictor variables, 
(1) education, (2) management, and ( 3 )  education-management interaction. Recall 
that interaction terms were included only after we found that an additive model did 
not satisfactorily explain salary variations. In general, we start with simple models 
and proceed sequentially to more complex models if necessary. We shall always 
hope to retain the simplest model that has an acceptable residual structure. 

5.4 SYSTEMS OF REGRESSION EQUATIONS: COMPARING 
MI0 GROUPS 

A collection of data may consist of two or more distinct subsets, each of which 
may require a separate regression equation. Serious bias may be incurred if one 
regression relationship is used to represent the pooled data set. An analysis of this 
problem can be accomplished using indicator variables. An analysis of separate 
regression equations for subsets of the data may be applied to cross-sectional or time 
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X 
Figure 5.3 Standardized residuals versus years of experience: Expanded model. 

N 1 

I I I I 

5 10 15 20 

X 

Figure 5.4 Standardized residuals versus years of experience: Expanded model, 
observation 33 deleted. 

N 

1 2 3 4 5 6 

Category 

Figure 5.5 
Expanded model, observation 33 deleted. 

Standardized residuals versus education-management categorical variable: 
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Table 5.6 Estimates of Base Salary Using the Nonadditive Model in (5 .2 )  

Estimate of 95% Confidence 
Category E A4 Coefficients Base Salarya s.e.a Interval 

1 1 0 Po + Y 1  9459 31 (9398,9520) 
2 1 1 P o + 7 1 + 6 + a 1  13448 32 (13385,13511) 
3 2 0 Po + Y 2  10843 26 (10792, 10894) 
4 2 1 P O + Y 2 + 6 + + 2  19880 33 (19815,19945) 
5 3 0 Po 1 1200 31 (11139, 11261) 
6 3 1 P O + S  18240 29 (18183,18297) 

a Recorded to the nearest dollar. 

series data. The example discussed below treats cross-sectional data. Applications 
to time series data are discussed in Section 5.5. 

The model for the two groups can be different in all aspects or in only some 
aspects. In this section we discuss three distinct cases: 

1. Each group has a separate regression model. 

2. The models have the same intercept but different slopes. 

3. The models have the same slope but different intercepts. 

We illustrate these cases below when we have only one quantitative predictor 
variable. These ideas can be extended straightforwardly to the cases where there 
are more than one quantitative predictor variable. 

5.4.1 Models with Different Slopes and Different Intercepts 

We illustrate this case with an important problem concerning equal opportunity 
in employment. Many large corporations and government agencies administer a 
preemployment test in an attempt to screen job applicants. The test is supposed 
to measure an applicant's aptitude for the job and the results are used as part of 
the information for making a hiring decision. The federal government has ruled3 
that these tests (1) must measure abilities that are directly related to the job under 
consideration and (2) must not discriminate on the basis of race or national origin. 
Operational definitions of requirements (1) and (2) are rather elusive. We shall not 
try to resolve these operational problems. We shall take one approach involving 
race represented as two groups, white and minority. The hypothesis that there are 
separate regressions relating test scores to job performance for the two groups will 
be examined. The implications of this hypothesis for discrimination in hiring are 
discussed. 

'Tower amendment to Title VII, Civil Rights Act of 1964. 
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c 
White 

I 

Figure 5.6 Requirements for employment on pretest. 

Let Y represent job performance and let X be the score on the preemployment 
test. We want to compare 

Model 1 (Pooled) : 

Model 2 (White) : yZz = + P12zz2 + E,Z. 

yzJ = PO + PI ztJ + E ~ ~ ,  j = 1,2; a = 1,2, .  . . , nJ, 
(5.3) Model 2 (Minority) : yzl = pol + pllzzl + 

Figure 5.6 depicts the two models. In model 1,  race distinction is ignored, the data 
are pooled, and there is one regression line. In model 2 there is a separate regression 
relationship for the two subgroups, each with distinct regression coefficients. We 
shall assume that the variances of the residual terms are the same in each subgroup. 

Before analyzing the data, let us briefly consider the types of errors that could 
be present in interpreting and ipplying the results. If y0, as seen on the graph, 
has been set as the minimum required level of performance, then using Model 
1, an acceptable score on the test is one that exceeds X,. However, if Model 2 
is in fact correct, the appropriate test score for whites is X, and for minorities 
is X,. Using X, in place of X ,  and X, represents a relaxation of the pretest 
requirement for whites and a tightening of that requirement for minorities. Since 
inequity can result in the selection procedure if the wrong model is used to set 
cutoff values, it is necessary to examine the data carefully. It must be determined 
whether there are two distinct relationships or whether the relationship is the same 
for both groups and a single equation estimated from the pooled data is adequate. 
Note that whether Model 1 or Model 2 is chosen, the values X,, X,, and X ,  are 
estimates subject to sampling errors and should only be used in conjunction with 
appropriate confidence intervals. (Construction of confidence intervals is discussed 
in the following paragraphs.) 

Data were collected for this analysis using a special employment program. 
Twenty applicants were hired on a trial basis for six weeks. One week was spent in 
a training class. The remaining five weeks were spent on the job. The participants 
were selected from a pool of applicants by a method that was not related to the 
preemployment test scores. A test was given at the end of the training period and 
a work performance evaluation was developed at the end of the six-week period. 
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Table 5.7 Data on Preemployment Testing Program 

Row TEST RACE JPERF 

1 0.28 1 1.83 
2 0.97 4.59 
3 1.25 2.97 
4 2.46 8.14 
5 2.5 1 8.00 
6 1.17 3.30 
7 1.78 7.53 
8 1.21 1 2.03 
9 1.63 1 5.00 
10 1.98 1 8.04 

Row TEST RACE JPERF 

1 1  2.36 
12 2.1 1 
13 0.45 
14 1.76 
15 2.09 
16 1 S O  
17 1.25 
18 0.72 
19 0.42 
20 1.53 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

3.25 
5.30 
1.39 
4.69 
6.56 
3 .OO 
5.85 
1.90 
3.85 
2.95 

These two scores were combined to form an index of job performance. (Those 
employees with unsatisfactory performance at the end of the six-week period were 
dropped.) The data appear in Table 5.7 and can be obtained from the book's Web 
site. We refer to this data set as the Preemployment Testing data. 

Formally, we want to test the null hypothesis Ho : P11 = P12, ,801 = ,802 against 
the alternative that there are substantial differences in these parameters. The test 
can be performed using indicator variables. Let z i j  be defined to take the value 1 
if j = 1 and to take the value 0 if j = 2. That is, 2 is a new variable that has the 
value 1 for a minority applicant and the value 0 for a white applicant. We consider 
the two models, 

The variable (zi j  . xij) represents the interaction between the group (race) variable, 
2 and the preemployment test X. Note that Model 3 is equivalent to Model 2. This 
can be seen if we observe that for the minority group, xij = xi1 and zij = 1; hence 
Model 3 becomes 

921 = Po + P1.21 + y + 6Zil + Eil 

(Po + 7) + (P1+ 6 ) Z i l  + Eil 

,801 + PllXil + Eil, 

= 

= 

which is the same as Model 2 for minority with Pol = ,80 + y and pll = 
Similarly, for the white group, we have xij = xi2, zi j  = 0, and Model 3 becomes 

+ 6. 

~ i 2  = PO + ,&xi2 + ~ i 2 ,  

which is the same as Model 2 for white with Po2 = PO and = PI. Therefore, a 
comparison between Models 1 and 2 is equivalent to a comparison between Models 
1 and 3. Note that Model 3 can be viewed as a full model (FM) and Model 1 
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Table 5.8 Regression Results, Preemployment Testing Data: Model 1 

Variable Coefficient s.e. t-test p-value 

Constant 1.03 0.87 1.19 0.2486 
TEST (X) 2.36 0.54 4.39 0.0004 

n = 20 R2 = 0.52 Ri = 0.49 6 = 1.59 d.f.= 18 

Table 5.9 Regression Results, Preemployment Testing Data: Model 3 

Variable Coefficient s.e. t-test p-value 

Constant 2.01 1.05 1.91 0.0736 
TEST (X) 1.31 0.67 1.96 0.0677 
RACE (2) -1.91 1.54 - 1.24 0.2321 
RACE. TEST (X . 2) 2.00 0.95 2.09 0.0527 

n = 20 R2 = 0.664 R: = 0.601 6 = 1.41 d.f.= 16 

as a restricted model (RM) because Model 1 is obtained from Model 3 by setting 
y = 6 = 0. Thus, our null hypothesis Ho now becomes HO : y = 6 = 0. The 
hypothesis is tested by constructing an F-test for the comparison of two models as 
described in Chapter 3. In this case, the test statistics is 

[SSE(RM) - SSE(FM)]/2 
SSE(FM)/16 

F =  1 

which has 2 and 16 degrees of freedom. (Why?) Proceeding with the analysis of 
the data, the regression results for Model 1 and Model 3 are given in Tables 5.8 
and 5.9. The plots of residuals against the predictor variable (Figures 5.7 and 5.8) 
look acceptable in both cases. The one residual at the lower right in Model 1 may 
require further investigation. 

To evaluate the formal hypothesis we compute the F-ratio specified previously, 
which is equal to 

(45.51 - 31.81)/2 
F =  = 3.4 

31.81/16 

and is significant at a level slightly above 5%. Therefore, on the basis of this test 
we would conclude that the relationship is probably different for the two groups. 
Specifically, for minorities we have 

Yi = 0.10 + 3.31X1 

and for whites we have 
Y2 = 2.01 + 1.32x2. 
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Figure 5.7 Standardized residuals versus test score: Model 1 .  
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Figure 5.8 Standardized residuals versus test score: Model 3. 
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Figure 5.9 Standardized residuals versus race: Model 1 .  

Table 5.10 Separate Regression Results 

Sample 6 0  a1 t l  R2 6 d.f. 

Minority 0.10 3.31 5.31 0.78 1.29 8 
White 2.01 1.31 1.82 0.29 1.51 8 

The results are very similar to those that were described in Figure 5.5 when the 
problem of bias was discussed. The straight line representing the relationship for 
minorities has a larger slope and a smaller intercept than the line for whites. If 
a pooled model were used, the types of biases discussed in relation to Figure 5.6 
would occur. 

Although the formal procedure using indicator variables has led to the plausible 
conclusion that the relationships are different for the two groups, the data for the 
individual groups have not been looked at carefully. Recall that it was assumed 
that the variances were identical in the two groups. This assumption was required 
so that the only distinguishing characteristic between the two samples was the pair 
of regression coefficients. In Figure 5.9 a plot of residuals versus the indicator 
variable is presented. There does not appear to be a difference between the two 
sets of residuals. We shall now look more closely at each group. The regression 
coefficients for each sample taken separately are presented in Table 5.10. The 
residuals are shown in Figures 5.10 and 5.1 1. The regression coefficients are, of 
course, the values obtained from Model 3. The standard errors of the residuals are 
1.29 and 1.5 1 for the minority and white samples, respectively. The residual plots 
against the test score are acceptable in both cases. An interesting observation that 
was not available in the earlier analysis is that the preemployment test accounts 
for a major portion of the variation in the minority sample, but the test is only 
marginally useful in the white sample. 
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Figure 5.10 Standardized residuals versus test: Model 1 ,  minority only. 
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Figure 5.11 Standardized residuals versus test: Model 1, white only. 



SYSTEMS OF REGRESSION EQUATIONS 137 

Our previous conclusion is still valid. The two regression equations are different. 
Not only are the regression coefficients different, but the residual mean squares also 
show slight differences. Of more importance, the values of R2 are greatly different. 
For the white sample, R2 = 0.29 is so small (t = 1.82;2.306 is required for 
significance) that the preemployment test score is not deemed an adequate predictor 
of job success. This finding has bearing on our original objective since it should 
be a prerequisite for comparing regressions in two samples that the relationships 
be valid in each of the samples when taken alone. Concerning the validity of 
the preemployment test, we conclude that if applied as the law prescribes, with 
indifference to race, it will give biased results for both racial groups. Moreover, 
based on these findings, we may be justified in saying that the test is of no value 
for screening white applicants. 

We close the discussion with a note about determining the appropriate cutoff test 
score if the test were used. Consider the results for the minority sample. If Y, 
is designated as the minimum acceptable job performance value to be considered 
successful, then from the regression equation (also see Figure 5.6) 

where f io and f i1  are the estimated regression coefficients. X ,  is an estimate of the 
minimum acceptable test score required to attain Y,. Since X, is defined in terms 
of quantities with sampling variation, X ,  is also subject to sampling variation. 
The variation is most easily summarized by constructing a confidence interval for 
X,. An approximate 95% level confidence interval takes the form (Scheffi, 1959, 
P. 52)  

t(n-2,0/2) (&/.I 
a1 

X m  f > 

where t(n-2,cu/2) is the appropriate percentile point of the t-distribution and 62 is the 
least squares estimate of 02. If Y, is set at 4, then X ,  = (4 - 0.10)/3.31 = 1.18 
and a 95% confidence interval for the test cutoff score is (1.09, 1.27). 

5.4.2 Models with Same Slope and Different Intercepts 

In the previous subsection we dealt with the case where the two groups have distinct 
models with different sets of coefficients as given by Models 1 and 2 in (5.3) and 
as depicted in Figure 5.6. Suppose now that there is a reason to believe that the 
two groups have the same slope, PI, and we wish to test the hypothesis that the 
two groups also have the same intercept, that is, HO : Pol = pO2. In this case we 
compare 

Model 1 (Pooled) : 

Model 2 (White) : 

yij = Po + /31zij + ~ i j ,  j = 1,2 ;  i = 1,2 , .  . . , nj, 

Model 2 (Minority) : yil = Pol + /31xil + ~ 1 ,  

yi2 = Po2 + /3lzi2 + ~ 2 .  

(5 .5)  
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Notice that the two models have the same value of the slope but different values 
of the intercepts Pol and Po2. Using the indicator variable 2 defined earlier, we 
can write Model 2 as 

Model 3 : yij = PO + P~xi j  + yzij + ~ i j .  (5.6) 

Note the absence of the interaction variable (zij . xij) from Model 3 in (5.6). If it 
is present, as it is in (5.4), the two groups would have two models with different 
slopes and different intercepts. 

The equivalence of Models 2 and 3 can be seen by noting that for the minority 
group, where xij = xi1 and zij = 1, Model 3 becomes 

Yil = Po + PlXil + y + Eil 

= (Po + 7) + PlXil + Eil  

Po1 + P1.21 + €21, = 

which is the same as Model 2 for minority with pol = 
for the white group becomes 

+ y. Similarly, Model 3 

Thus, Model 2 (or equivalently, Model 3) represents two parallel lines4 (same slope) 
with intercepts PO + y and PO. Therefore, our null hypothesis implies a restriction 
on y in Model 3, namely, HO : y = 0. To test this hypothesis, we use the F-test 

[SSE(RM) - SSE(FM)]/ l  
SSE(FM)/17 

F =  > 

which has 1 and 17 degrees of freedom. Equivalently, we can use the t-test for 
testing y = 0 in Model 3, which is 

9 
s.e.(?) ’ 

t = -  

which has 17 degrees of freedom. Again, the validation of the assumptions of 
Model 3 should be done before any conclusions are drawn from these tests. For the 
current example, we leave the computations of the above tests and the conclusions 
based on them, as an exercise for the reader. 

5.4.3 Models with Same Intercept and Different Slopes 

Now we deal with the third case where the two groups have the same intercept, PO, 
and we wish to test the hypothesis that the two groups also have the same slope, 

41n the general case where the model contains X I ,  Xz, . . ., X ,  plus one indicator variable 2, Model 
3 represents two parallel (hyper-) planes that differ only in the intercept. 
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that is, Ho : P11 = P12. In this case we compare 

Model 1 (Pooled) : 

Model 2 (White) : y~ = PO + + ~22. 

yij = Po + ,& xij + ~ i j ,  j = 1,2; i = 1 ,2 , .  . . , nj, 

Model 2 (Minority) : yil = Po + Pllxil + ~ 2 1 ,  (5.7) 

Note that the two models have the same value of the intercept Po but different values 
of the slopes P11 and P12. Using the indicator variable 2 defined earlier, we can 
write Model 2 as 

(5 .8)  

Observe the presence of the interaction variable (zi j  . xij) but the absence of the 
individual contribution of the variable Z. The equivalence of Models 2 and 3 can 
be seen by observing that for the minority group, where xij = xi1 and zij = 1, 
Model 3 becomes 

Model 3 : yij = PO + P1zij + 6(zij  . xi?) + E . ' .  a3 

Y i l  = Po + PlZil + 6x21 + EZl 

= Po + (P1 + 6)Zil + E i l  

Po + PllW + E i l ,  = 

which is the same as Model 2 for minority with P11 = 01 + 6. Similarly, Model 3 
for the white group becomes 

Yi2 = Po + Pl2.22 + Ei2. 

Therefore, our null hypothesis implies a restriction on 6 in Model 3, namely, 
Ho : 6 = 0. To test this hypothesis, we use the F-test 

[SSE(RM) - SSE(FM)]/ l  
SSE( FM)/17  

F =  1 

which has 1 and 17 degrees of freedom. Equivalently, we can use the t-test for 
testing 6 = 0 in Model 3, which is 

which has 17 degrees of freedom. Validation of the assumptions of Model 3, the 
computations of the above tests, and the conclusions based on them are left as an 
exercise for the reader. 

5.5 OTHER APPLICATIONS OF INDICATOR VARIABLES 

Applications of indicator variables such as those described in Section 5.4 can be 
extended to cover a variety of problems (see, e.g., Fox (1984), and Kmenta (1986) 
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for a variety of applications). Suppose, for example, that we wish to compare the 
means of k 2 2 populations or groups. The techniques commonly used here is 
known as the analysis ofvariance (ANOVA). A random sample of size n j  is taken 
from the j th population, j = 1,. . . , k. We have a total of n = n1 + . . . + n k  

observations on the response variable. Let yij be the ith response in the j th  sample. 
Then yij can be modeled as 

Y i j  = po + p 1x21 + . . . + ppLp"ip + E i j .  (5.9) 

In this model there are p = k - 1 indicator predictor variables xil, . . . , xip .  Each 
variable xij is 1 if the corresponding response is from population j, and zero 
otherwise. The population that is left out is usually known as the control group. 
All indicator variables for the control group are equal to zero. Thus, for the control 
group, (5.9) becomes 

yij = po + E i j .  (5.10) 

In both (5.9) and (5.10), ~ i j  are random errors assumed to be independent normal 
variables with zero means and constant variance 02. The constant po represents 
the mean of the control group and the regression coefficient pj can be interpreted 
as the difference between the means of the control and j th groups. If pj = 0, 
then the means of the control and j th groups are equal. The null hypothesis 
Ho : p1 = . . . = p p  = 0 that all groups have the same mean can be represented 
by the model in (5.10). The alternate hypothesis that at least one of the pj's is 
different from zero can be represented by the model in (5.9). The models in (5.9) 
and (5.10) can be viewed as full and reduced models, respectively. Hence Ho can be 
tested using the F-test given in (3.33). Thus, the use of indicator variables allowed 
us to express ANOVA techniques as a special case of regression analysis. Both 
the number of quantitative predictor variables and the number of distinct groups 
represented in the data by indicator variables may be increased. 

Note that the examples discussed above are based on cross-sectional data. In- 
dicator variables can also be utilized with time series data. In addition, there are 
some models of growth processes where an indicator variable is used as the depen- 
dent variable. These models, known as logistic regression models, are discussed in 
Chapter 12. 

In Sections 5.6 and 5.7 we discuss the use of indicator variables with time series 
data. In particular, notions of seasonality and stability of parameters over time are 
discussed. These problems are formulated and the data are provided. The analyses 
are left to the reader. 

5.6 SEASONALITY 

The data set we use as an example here, referred to as the Ski Sales data, is shown 
in Table 5.1 I and can be obtained from the book's Web Site. The data consist of 
two variables: the sales, S ,  in millions for a firm that manufactures skis and related 
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equipment for the years 1964-1973, and personal disposable income, PDI.5 Each 
of these variables is measured quarterly. We use these data in Chapter 8 to illustrate 
the problem of correlated errors. The model is an equation that relates S to P D I ,  

st = Po + PI . PDIt + E t :  

where St is sales in millions in the tth period and PDIt is the corresponding 
personal disposable income. Our approach here is to assume the existence of a 
seasonal effect on sales that is determined on a quarterly basis. To measure this 
effect we may define indicator variables to characterize the seasonality. Since we 
have four quarters, we define three indicator variables, 21, 22, and 2 3 ,  where 

1, if the tth period is a first quarter, 
0, otherwise, 

1, if the tth period is a second quarter, 
0, otherwise, 

1, if the tth period is a third quarter, 
0, otherwise. 

Z t l  = 

{ Z t 2  = 

Z t 3  = 

The analysis and interpretation of this data set are left to the reader. The authors 
have analyzed these data and found that there are actually only two seasons. (See the 
discussion of these sales data in Chapter 8 for an analysis using only one indicator 
variable, two seasons.) See Kmenta (1 986) for further discussion on using indicator 
variables for analyzing seasonality. 

5.7 STABILITY OF REGRESSION PARAMETERS OVER TIME 

Indicator variables may also be used to analyze the stability of regression coef- 
ficients over time or to test for structural change. We consider an extension of 
the system of regressions problem when data are available on a cross-section of 
observations and over time. Our objective is to analyze the constancy of the rela- 
tionships over time. The methods described here are suitable for intertemporal and 
interspatial comparisons. To outline the method we use the Education Expenditure 
data shown in Tables 5.12-5.14. The measured variables for the 50 states are: 

Y 
X I  Per capita personal income 
Xp 
X3 

Per capita expenditure on public education 

Number of residents per thousand under 18 years of age 
Number of people per thousand residing in urban areas 

The variable Region is a categorical variable representing geographical regions (1 
= Northeast, 2 = North Central, 3 = South, 4 = West). This data set is used in 

'Aggregate measure of purchasing potential. 
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Table 5.11 Disposable Income and Ski Sales for Years 1964-1973 

Row Date Sales PDI 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Q 1/64 
Q2/64 
Q3/64 
44/64 
Q1/65 
Q2/65 
Q3/65 
Q4/65 
QU66 
Q2/66 
43/66 
Q4/66 
Q1/67 
Q2/67 
43/67 
Q4/67 
41/68 
Q2/68 
Q3/68 
Q4/68 

37.0 
33.5 
30.8 
37.9 
37.4 
31.6 
34.0 
38.1 
40.0 
35.0 
34.9 
40.2 
41.9 
34.7 
38.8 
43.7 
44.2 
40.4 
38.4 
45.4 

109 
115 
113 
116 
118 
1 20 
122 
124 
1 26 
128 
130 
132 
133 
135 
138 
140 
143 
147 
148 
151 

Row Date Sales PDI 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

Q 1/69 
Q2/69 
43/69 
Q4/69 
Q1/70 
42/70 
43/70 
Q4/70 
Q1/71 
Q2/7 1 
4317 1 
Q4/7 1 
Q 1/72 
Q2/72 
43/72 
Q4/72 
Q 1/73 
Q2173 
43/73 
Q4/73 

44.9 
41.6 
44.0 
48.1 
49.7 
43.9 
41.6 
51 .O 
52.0 
46.2 
47.1 
52.7 
52.2 
47.0 
47.8 
52.8 
54.1 
49.5 
49.5 
54.3 

153 
156 
160 
163 
166 
171 
74 
75 
80 
84 
87 
89 
91 

193 
1 94 
196 
199 
20 1 
202 
204 

Chapter 7 to demonstrate methods of dealing with heteroscedasticity in multiple 
regression and to analyze the effects of regional characteristics on the regression 
relationships. Here we focus on the stability of the expenditure relationship with 
respect to time. 

Data have been developed on the four variables described above for each state in 
1960, 1970, and 1975. Assuming that the relationship can be identically specified 
in each of the three years,6 the analysis of stability can be camed out by evaluating 
the variation in the estimated regression coefficients over time. Working with the 
pooled data set of 150 observations (50 states each in 3 years) we define two 
indicator variables, TI and Tz, where 

1, if the ith observation was from 1960, 
0, otherwise, 

1, if the ith observation was from 1970, 
0, otherwise. 

Ti1 = 

Ti2 = 

6Specijcation as used here means that the same variables appear in each equation. Any transforma- 
tions that are used apply to each equation. The assumption concerning identical specification should 
be empirically validated. 
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Using Y to represent per capita expenditure on schools, the model takes the form 

From the definitions of TI and T2, the above model is equivalent to 

As noted earlier, this method of analysis necessarily implies that the variability 
about the regression function is assumed to be equal for all three years. One formal 
hypothesis of interest is 

Ho : y1 = 7 2  = 61 = 6, = 63 = a1 = a2 = a3 = 0, 

which implies that the regression system has remained unchanged throughout the 
period of investigation (1960-1975). 

The data for this example, which we refer to as the Education Expenditures data, 
appear in Tables 5.12, 5.13, and 5.14 and can be obtained from the book's Web 
Site. The reader is invited to perform the analysis described above as an exercise. 

EXERCISES 

5.1 Using the model defined in (5.6): 
(a) Check to see if the usual least squares assumptions hold. 

(b) Test HO : y = 0 using the F-test. 
(c) Test HO : y = 0 using the t-test. 
(d) Verify the equivalence of the two tests above. 

5.2 Using the model defined in (5.8): 
(a) Check to see if the usual least squares assumptions hold. 
(b) Test HO : 6 = 0 using the F-test. 
(c) Test Ho : 6 = 0 using the t-test. 
(d) Verify the equivalence of the two tests above. 

5.3 Perform a thorough analysis of the Ski Sales data in Table 5.1 1 using the ideas 
presented in Section 5.6. 

5.4 Perform a thorough analysis of the Education Expenditures data in Tables 
5.12,5.13, and 5.14 using the ideas presented in Section 5.7. 
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Table 5.12 Education Expenditures Data (1960) 

Row STATE Y x1 x2 x3 Region 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

M E  
NH 
VT 
M A  
RI 
CT 
NY 
NJ 
PA 
OH 
IN 
IL 
MI 
WI 
M N  
1A 
M O  
ND 
SD 
NB 
KS 
DE 
M D  
VA 
wv 
NC 
sc 
GA 
FL 
KY 
TN 
AL 
MS 
AR 
LA 
OK 
TX 
M T  
ID 
WY 
co 
NM 
AZ 
UT 
NV 
WA 
OR 
CA 
AK 
HI 

61 
68 
72 
72 
62 
91 

104 
99 
70 
82 
84 
84 

104 
84 

103 
86 
69 
94 
79 
80 
98 

124 
92 
67 
66 
65 
57 
60 
74 
49 
60 
59 
68 
56 
72 
80 
79 
95 
79 

142 
108 
94 

107 
109 
1 I4 
112 
105 
129 
107 
77 

1704 
1885 
1745 
2394 
1966 
2817 
2685 
2521 
2127 
2184 
1990 
2435 
2099 
1936 
1916 
1863 
2037 
1697 
1644 
1894 
2001 
2760 
222 1 
1674 
1509 
1384 
1218 
1487 
1876 
1397 
1439 
1359 
1053 
1225 
1576 
1740 
1814 
1920 
1701 
2088 
2047 
1838 
1932 
1753 
2569 
2160 
2006 
2557 
1900 
1852 

388 
372 
397 
358 
357 
362 
34 1 
353 
352 
387 
392 
366 
403 
393 
402 
385 
364 
429 
41 1 
379 
380 
388 
393 
402 
405 
423 
453 
420 
334 
594 
346 
637 
448 
403 
433 
378 
409 
412 
418 
415 
399 
458 
425 
494 
372 
386 
382 
373 
434 
43 1 

399 
598 
370 
868 
899 
690 
728 
826 
656 
674 
568 
759 
650 
62 1 
610 
522 
613 
35 1 
390 
520 
564 
326 
562 
487 
358 
362 
343 
498 
628 
377 
457 
517 
362 
416 
562 
610 
727 
463 
414 
568 
62 1 
618 
699 
665 
663 
584 
534 
717 
379 
693 

1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
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Table 5.13 Education Expenditures Data (1970) 

Row STATE Y x1 x2 x3 Region 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

M E  
NH 
VT 
M A  
RI 
CT 
NY 
NJ 
PA 
OH 
IN 
IL 
MI 
WI 
M N  
IA 
MO 
ND 
SD 
NB 
KS 
DE 
M D  
VA 
wv 
NC 
sc 
GA 
FL 
KY 
TN 
AL 
MS 
AR 
LA 
OK 
TX 
M T  
ID 
W Y  
co 
N M  
AZ 
UT 
NV 
WA 
OR 
CA 
AK 
HI 

189 
169 
230 
168 
180 
193 
26 1 
214 
20 1 
172 
194 
189 
233 
209 
262 
234 
177 
177 
187 
148 
196 
248 
247 
180 
149 
155 
149 
156 
191 
140 
137 
112 
130 
134 
162 
135 
155 
238 
170 
238 
192 
227 
207 
20 1 
225 
215 
233 
273 
372 
212 

2828 
3259 
3072 
3835 
3549 
4256 
4151 
3954 
3419 
3509 
341 2 
398 1 
3675 
3363 
3341 
3265 
3257 
2730 
2876 
3239 
3303 
3795 
3742 
3068 
2470 
2664 
2380 
278 1 
3191 
2645 
2579 
2337 
208 1 
2322 
2634 
2880 
3029 
2942 
2668 
3190 
3340 
265 1 
3027 
2790 
3957 
3688 
3317 
3968 
4146 
3513 

35 I 
346 
348 
335 
327 
34 1 
326 
333 
326 
354 
359 
349 
369 
361 
365 
344 
336 
369 
369 
350 
340 
376 
364 
353 
329 
354 
377 
37 1 
336 
349 
343 
362 
385 
352 
390 
330 
369 
369 
368 
366 
358 
42 1 
387 
412 
385 
342 
333 
348 
440 
383 

508 
564 
322 
846 
87 1 
774 
856 
889 
715 
753 
649 
830 
738 
659 
664 
572 
70 1 
443 
446 
615 
66 1 
722 
766 
63 1 
390 
450 
476 
603 
805 
523 
588 
584 
445 
500 
66 1 
680 
797 
5 34 
54 1 
605 
785 
698 
796 
804 
809 
726 
67 1 
909 
484 
831 

1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
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Table 5.14 Education Expenditures Data (1975) 

Row STATE Y x1 XZ x3 Region 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

M E  
NH 
VT 
M A  
RI 
CT 
NY 
NJ 
PA 
OH 
IN 
IL 
MI 
WI 
M N  
IA 
MO 
ND 
SD 
NB 
KS 
DE 
MD 
VA 
wv 
NC 
sc 
GA 
FL 
KY 
TN 
AL 
MS 
AR 
LA 
OK 
TX 
M T  
ID 
W Y  
co 
NM 
AZ 
UT 
NV 
WA 
OR 
CA 
AK 
HI 

235 
23 1 
270 
26 1 
300 
317 
387 
285 
300 
22 1 
264 
308 
379 
342 
378 
232 
23 1 
246 
230 
268 
337 
344 
330 
26 1 
214 
245 
233 
250 
243 
216 
212 
208 
215 
22 1 
244 
234 
269 
302 
268 
323 
304 
317 
332 
315 
29 1 
312 
316 
332 
546 
31 1 

3944 
4578 
401 1 
5233 
4780 
5889 
5663 
5759 
4894 
5012 
4908 
5753 
5439 
4634 
492 1 
4869 
4672 
4782 
4296 
4827 
5057 
5540 
5331 
4715 
3828 
4120 
3817 
4243 
4647 
3967 
3946 
3124 
3448 
3680 
3825 
4189 
4336 
4418 
4323 
4813 
5046 
3764 
4504 
4005 
5560 
4989 
4697 
5438 
5613 
5309 

325 
323 
328 
305 
303 
307 
301 
310 
300 
324 
329 
320 
337 
328 
330 
318 
309 
333 
330 
318 
304 
328 
323 
317 
310 
32 1 
342 
339 
287 
325 
315 
332 
358 
320 
355 
306 
335 
335 
344 
33 1 
324 
366 
340 
378 
330 
313 
305 
307 
386 
333 

508 
564 
322 
846 
87 1 
774 
856 
889 
715 
753 
649 
830 
738 
659 
664 
572 
70 1 
443 
446 
615 
661 
722 
766 
631 
390 
450 
476 
603 
805 
523 
588 
5 84 
445 
500 
66 1 
680 
797 
534 
54 1 
605 
785 
698 
796 
804 
809 
726 
67 1 
909 
484 
83 1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
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Table 5.15 Corn Yields by Fertilizer Group 

Fertilizer 1 Fertilizer 2 Fertilizer 3 Control Group 

31 
34 
34 
34 
43 
35 
38 
36 
36 
45 

27 
21 
25 
34 
21 
36 
34 
30 
32 
33 

36 
31 
37 
34 
37 
28 
33 
29 
36 
42 

33 
27 
35 
25 
29 
20 
25 
40 
35 
29 

5.5 Three types of fertilizer are to be tested to see which one yields more corn 
crop. Forty similar plots of land were available for testing purposes. The 40 
plots are divided at random into four groups, ten plots in each group. Fertilizer 
1 was applied to each of the ten corn plots in Group 1. Similarly, Fertilizers 
2 and 3 were applied to the plots in Groups 2 and 3, respectively. The corn 
plants in Group 4 were not given any fertilizer; it will serve as the control 
group. Table 5.15 gives the corn yield yij for each of the forty plots. 

Create three indicator variables FI, F2, F3, one for each of the three 
fertilizer groups. 
Fit the model yij = po + p1 Fil + p2 Fi2 + p3 Fi3 + ~ i j .  

Test the hypothesis that, on the average, none of the three types of fertilizer 
has an effect on corn crops. Specify the hypothesis to be tested, the test 
used, and your conclusions at the 5% significance level. 

Test the hypothesis that, on the average, the three types of fertilizer have 
equal effects on corn crop but different from that of the control group. 
Specify the hypothesis to be tested, the test used, and your conclusions at 
the 5% significance level. 

Which of the three fertilizers has the greatest effects on corn yield? 

5.6 In a statistics course personal information was collected on all the students 
for class analysis. Data on age (in years), height (in inches), and weight (in 
pounds) of the students are given in Table 5.16 and can be obtained from the 
book’s Web Site. The sex of each student is also noted and coded as 1 for 
women and 0 for men. We want to study the relationship between the height 
and weight of students. Weight is taken as the response variable, and the 
height as the predictor variable. 
(a) Do you agree or do you think the roles of the variables should be reversed? 
(b) Is a single equation adequate to describe the relationship between height 

and weight for the two groups of students? Examine the standardized 
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Table 5.16 
and Sex (1 = Female, 0 = Male) 

Class Data on Age (in Years), Height (in Inches), Weight (in Pounds), 

Age Height Weight Sex 

19 
19 
19 
19 
19 
19 
21 
19 
19 
20 
19 
19 
19 
19 
19 
18 
18 
19 
19 
19 
20 
20 
20 
20 
19 
20 
20 
19 
20 
19 

61 
70 
70 
71 
64 
64 
69 
67 
62 
66 
65 
69 
66 
63 
69 
66 
68 
72 
70 
74 
66 
64 
65 
71 
69 
64 
67 
60 
66 
71 

180 
160 
135 
195 
130 
120 
135 
125 
120 
145 
155 
135 
140 
120 
140 
113 
180 
175 
169 
210 
104 
105 
125 
120 
119 
140 
185 
110 
120 
175 

0 
0 
0 
0 
1 
1 
1 
0 
1 
0 
0 
1 
0 
1 
0 
1 
0 
0 
0 
0 
1 
1 
1 
1 

1 
1 

1 
1 
1 
0 

Age Height Weight Sex 

19 
19 
21 
20 
19 
20 
19 
19 
27 
18 
20 
19 
21 
19 
19 
19 
20 
20 
20 
18 
19 
19 
19 
20 
19 
19 
19 
20 
28 
19 

65 
70 
69 
63 
63 
72 
73 
69 
69 
64 
61 
68 
70 
64 
62 
64 
67 
63 
68 
63 
68 
65 
63 
68 
69 
69 
69 
70 
65 
55 

135 
120 
142 
108 
118 
135 
169 
145 
130 
135 
1 I5 
140 
152 
118 
112 
100 
135 
110 
135 
115 
145 
115 
128 
140 
130 
165 
130 
180 
110 
155 

1 

0 
0 
1 
1 
0 
0 
0 
1 
0 
1 
0 
0 
1 
1 
1 
1 
1 
0 
1 
0 
1 

1 
1 

0 
0 
0 
0 
1 
0 

residual plot from the model fitted to the pooled data, distinguishing 
between the male and female students. 

(c) Find the best model that describes the relationship between the weight 
and the height of students. Use interaction variables and the methodology 
described in this chapter. 

(d) Do you think we should include age as a variable to predict weight? Give 
an intuitive justification for your answer. 

5.7 Presidential Election Data (1916-1996): The data in Table 5.17 were kindly 
provided by Professor Ray Fair of Yale University, who has found that the 
proportion of votes obtained by a presidential candidate in a United States 
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Table 5.17 Presidential Election Data (1916-1996) 

Year V I D W G P N 

1916 
1920 
1924 
1928 
1932 
1936 
1940 
1944 
1948 
1952 
1956 
1960 
1964 
1968 
1972 
1976 
I980 
1984 
1988 
1992 
1996 

0.5168 
0.3612 
0.4 176 
0.41 18 
0.5916 
0.6246 
0.5500 
0.5377 
0.5237 
0.4460 
0.4224 
0.5009 
0.6134 
0.4960 
0.3821 
0.5105 
0.4470 
0.4083 
0.4610 
0.5345 
0.5474 

1 
1 

-1 
-1 
-1 

1 
1 
1 
1 
1 

-1 
-1 

1 
1 

-1 
-1 

1 
-1 
- 1  
-1 

1 

1 0 
0 1 

-1 0 
0 0 

-1 0 
1 0 
1 0 
1 1 
1 1 
0 0 

-1 0 
0 0 
1 0 
0 0 

- 1  0 
0 0 
1 0 

-1 0 
0 0 

-1 0 
1 0 

2.229 
-1 1.463 
-3.872 

4.623 

11.921 
3.708 
4.1 19 
1.849 
0.627 

0.1 14 
5.054 
4.836 
6.278 
3.663 

5.387 
2.068 
2.293 
2.918 

-14.901 

- 1.527 

-3.789 

4.252 
16.535 
5.161 
0.183 
7.069 
2.362 
0.028 
5.678 
8.722 
2.288 
1.936 
1.932 
1.247 
3.215 
4.766 
7.657 
8.093 
5.403 
3.272 
3.692 
2.268 

3 
5 

10 
7 
4 
9 
8 

14 
5 
6 
5 
5 

10 
7 
4 
4 
5 
7 
6 
1 
3 

presidential election can be predicted accurately by three macroeconomic 
variables, incumbency, and a variable which indicates whether the election 
was held during or just after a war. The variables considered are given in 
Table 5.18. All growth rates are annual rates in percentage points. Consider 
fitting the initial model 

to the data. 
(a) Do we need to keep the variable I in the above model? 
(b) Do we need to keep the interaction variable (G . I )  in the above model? 
(c) Examine different models to produce the model or models that might 

be expected to perform best in predicting future presidential elections. 
Include interaction terms if needed. 
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Table 5.18 Variables for the Presidential Election Data (1916-1996) in Table 5.17 

Variable Definition 

YEAR Election year 
V 
I 

D 

Democratic share of the two-party presidential vote 
Indicator variable (1 if there is a Democratic incumbent at the 
time of the election and - 1 if there is a Republican incumbent) 
Indicator variable ( 1  if a Democratic incumbent is running for 
election, - 1 if a Republican incumbent is running for election, 
and 0 otherwise) 
Indicator variable (1 for the elections of 1920, 1944, and 1948, 
and 0 otherwise) 
Growth rate of real per capita GDP in the first three quarters 
of the election year 
Absolute value of the growth rate of the GDP deflator in the first 
15 quarters of the administration 
Number of quarters in the first 15 quarters of the administration 
in which the growth rate of real per capita GDP is greater than 3.2% 

W 

G 

P 

N 



CHAPTER 6 

TRANSFORMATION OF VARIABLES 

6.1 INTRODUCTION 

Data do not always come in a form that is immediately suitable for analysis. We 
often have to transform the variables before carrying out the analysis. Transfor- 
mations are applied to accomplish certain objectives such as to ensure linearity, to 
achieve normality, or to stabilize the variance. It often becomes necessary to fit a 
linear regression model to the transformed rather than the original variables. This 
is common practice. In this chapter, we discuss the situations where it is necessary 
to transform the data, the possible choices of transformation, and the analysis of 
transformed data. 

We illustrate transformation mainly using simple regression. In multiple re- 
gression where there are several predictors, some may require transformation and 
others may not. Although the same technique can be applied to multiple regression, 
transformation in multiple regression requires more effort and care. 

The necessity for transforming the data arises because the original variables, 
or the model in terms of the original variables, violates one or more of the stan- 
dard regression assumptions. The most commonly violated assumptions are those 
concerning the linearity of the model and the constancy of the error variance. As 
mentioned in Chapters 2 and 3, a regression model is linear when the parameters 
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present in the model occur linearly even if the predictor variables occur nonlinearly. 
For example, each of the four following models is linear: 

Y = po+plX+E, 

Y = po+plx+p2X2+E, 

Y = Po +p110gx + E ,  

Y = P O + P I J x + E ,  

Y = po + ePIX + E 

because the model parameters Po, PI, p2 enter linearly. On the other hand, 

is a nonlinear model because the parameter does not enter the model linearly. To 
satisfy the assumptions of the standard regression model, instead of working with the 
original variables, we sometimes work with transformed variables. Transformations 
may be necessary for several reasons. 

1. Theoretical considerations may specify that the relationship between two 
variables is nonlinear. An appropriate transformation of the variables can 
make the relationship between the transformed variables linear. Consider an 
example from learning theory (experimental psychology). A learning model 
that is widely used states that the time taken to perform a task on the ith 
occasion (T,) is 

The relationship between (Ti) and i as given in (6.1) is nonlinear, and we 
cannot directly apply techniques of linear regression. On the other hand, if 
we take logarithms of both sides, we get 

(6.2) 

Ti=~rpZ, 0 > 0 ,  O < p < l .  (6.1) 

log Ti = log Cr + i log p, 

showing that logTi and i are linearly related. The transformation enables 
us to use standard regression methods. Although the relationship between 
the original variables was nonlinear, the relationship between transformed 
variables is linear. A transformation is used to achieve the linearity of the 
fitted model. 

2. The response variable Y ,  which is analyzed, may have a probability dis- 
tribution whose variance is related to the mean. If the mean is related to 
the value of the predictor variable X, then the variance of Y will change 
with X, and will not be constant. The distribution of Y will usually also be 
non-normal under these conditions. Non-normality invalidates the standard 
tests of significance (although not in a major way with large samples) since 
they are based on the normality assumption. The unequal variance of the 
error terms will produce estimates that are unbiased, but are no longer best in 
the sense of having the smallest variance. In these situations we often trans- 
form the data so as to ensure normality and constancy of error variance. In 
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Table 6.1 
Transformations 

Linearizable Simple Regression Functions with Corresponding 

~~ ~ ~~ ~ 

Function Transformation Linear Form Graph 

Y = LYXP Figure 6.1 
Y = aePX Y’ = InY Y’ = In Q + PX Figure 6.2 
Y =LY+PlogX X’=logX Y=a+PX’  Figure 6.3 

Y’ = log Y, X’ = log X Y’ = log a + PX’ 

y’ = LJ’ = 1 

Y‘ = In - 

Y’ = Q - PX’ Figure 6.4(a) 

Y’=LY+PX Figure 6.4(b) 
Y X 

y = x  
ax-/3 

p + O X  Y 
y = l fea+aR 1-Y 

In Chapter 6 we describe an application using the transformation in the last line of the table. 

practice, the transformations are chosen to ensure the constancy of variance 
(variance-stabilizing transformations). It is a fortunate coincidence that the 
variance-stabilizing transformations are also good normalizing transforms. 

3. There are neither prior theoretical nor probabilistic reasons to suspect that a 
transformation is required. The evidence comes from examining the residuals 
from the fit of a linear regression model in which the original variables are 
used. 

Each of these cases where transformation is needed is illustrated in the following 
sections. 

6.2 TRANSFORMATIONS TO ACHIEVE LINEARITY 

One of the standard assumptions made in regression analysis is that the model which 
describes the data is linear. From theoretical considerations, or from an examination 
of scatter plot of Y against each predictor X j ,  the relationship between Y and X j  
may appear to be nonlinear. There are, however, several simple nonlinear regression 
models which by appropriate transformations can be made linear. We list some 
of these linearizable curves in Table 6.1. The corresponding graphs are given in 
Figures 6.1 to 6.4. 

When curvature is observed in the scatter plot of Y against X ,  a linearizable 
curve from one of those given in Figures 6.1 to 6.4 may be chosen to represent the 
data. There are, however, many simple nonlinear models that cannot be linearized. 
Consider for example, Y = LY + PSx, a modified exponential curve, or 

which is the sum of two exponential functions. The strictly nonlinear models (i.e., 
those not linearizable by variable transformation) require very different methods 
for fitting. We do not describe them in this book but refer the interested reader to 
Bates and Watts (1 988) and Seber and Wild (1 989), and Ratkowsky ( 1  990). 
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0 1  2 3 4  
X 

(a) 

0 1 2 3 4  
X 

(b) 

Figure 6.1 Graphs of the linearizable function Y = LY XP. 

50 

40 

Y 30 

20 

10 

0 

Figure 6.2 Graphs of the linearizable function Y = (Y e P X .  

5 

0 

-5 

-10 

-1 5 

-20 

-25 

Figure 6.3 Graphs of the linearizable function Y = a + p log X .  
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20 - 

Y 

t nt 

6 106 
7 1 04 
8 60 
9 56 

10 38 

Figure 6.4 
Y = (ea+@ x)/(l  + ea+O *). 

Graphs of the linearizable functions: (a) Y = X / ( a  X - p), and (b) 

t nt 

11 36 
12 32 
13 21 
14 19 
15 15 

Table 6.2 

t nt 
1 355 
2 21 1 
3 197 
4 166 
5 142 

In the following example, theoretical considerations lead to a model that is 
nonlinear. The model is, however, linearizable and we indicate the appropriate 
analysis. 

6.3 BACTERIA DEATHS DUE TO X-RAY RADIATION 

The data given in Table 6.2 represent the number of surviving bacteria (in hundreds) 
as estimated by plate counts in an experiment with marine bacterium following 
exposure to 200-kilovolt X-rays for periods ranging from t = 1 to 15 intervals of 
6 minutes. The data can also be found in the book's Web Site.' The response 
variable nt represents the number surviving after exposure time t. The experiment 
was camed out to test the single-hit hypothesis of X-ray action under constant 
field of radiation. According to this theory, there is a single vital center in each 
bacterium, and this must be hit by a ray before the bacteria is inactivated or killed. 
The particular bacterium studied does not form clumps or chains, so the number of 
bacterium can be estimated directly from plate counts. 

' http://www.ilr.corneIl.eduThadi/RABE4 
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If the theory is applicable, then nt and t should be related by 

where no and P1 are parameters. These parameters have simple physical interpre- 
tations; no is the number of bacteria at the start of the experiment, and P1 is the 
destruction (decay) rate. Taking logarithms of both sides of (6.3), we get 

lnnt = Inno + Plt = Po + Pl t ,  (6.4) 

where PO = In no and we have In nt as a linear function of t .  If we introduce E~ as 
the random error, our model becomes 

lnnt = PO + Plt  + ~t (6.5) 

and we can now apply standard least squares methods. 
To get the error Et in the transformed model (6.5) to be additive, the error 

must occur in the multiplicative form in the original model (6.3). The correct 
representation of the model should be 

nt = nOePltE;, (6.6) 

where E: is the multiplicative random error. By comparing (6.5) and (6.6), it 
is seen that E t  = In E:. For standard least squares analysis E t  should be normally 
distributed, which in turn implies that E:, has a log-normal distribution.* In practice, 
after fitting the transformed model we look at the residuals from the fitted model to 
see if the model assumptions hold. No attempt is usually made to investigate the 
random component, E:, of the original model. 

6.3.1 Inadequacy of a Linear Model 

The first step in the analysis is to plot the raw data nt versus t. The plot, shown 
in Figure 6.5, suggests a nonlinear relationship between nt and t. However, we 
proceed by fitting the simple linear model and investigate the consequences of 
misspecification. The model is 

nt = Po + Plt + E t ,  (6.7) 

where PO and P1 are constants; E ~ ’ S  are the random errors, with zero means and 
equal variances, and are uncorrelated with each other. Estimates of PO, PI, their 
standard errors, and the square of the correlation coefficient are given in Table 6.3. 
Despite the fact that the regression coefficient for the time variable is significant 
and we have a high value of R2, the linear model is not appropriate. The plot of nt 
against t shows departure from linearity for high values o f t  (Figure 6.5). We see 
this even more clearly if we look at a plot of the standardized residuals against time 

2The random variable Y is said to have a log-normal distribution if In Y has a normal distribution. 
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Table 6.3 Estimated Regression Coefficients From Model (6.7) 
~~ 

Variable Coefficient s.e. t-test p-  val ue 

Constant 259.58 22.73 1 1.42 < o.Ooo1 
TIME ( t )  - 19.46 2.50 -7.79 < 0.0001 

R2 = 0.823 6 = 41.83 d. f .  = 13 n =  15 

0 
10 m 

0 
10 N 

0 10 

2 4 6 8 10 12 14 

t 

Figure 6.5 Plot of nt against time t. 

m 

2 4 6 8 10 12 14 

t 

Figure 6.6 Plot of the standardized residuals from (6.7) against time t. 

(Figure 6.6). The distribution of residuals has a distinct pattern. The residuals for 
t = 2 through I 1  are all negative, for t = 12 through 15 are all positive, whereas 
the residual for t = 1 appears to be an outlier. This systematic pattern of deviation 
confirms that the linear model in (6.7) does not fit the data. 
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i 
2 4 6 8 10 12 14 

t 

Figure 6.7 Plot of In nt against time t .  

Table 6.4 Estimated Regression Coefficients When In nt Is Regressed on Time t 

Variable Coefficient s.e. t-test p-value 

Constant 5.973 0.0598 99.9 < 0.0001 
TIME (t) -0.218 0.0066 -33.2 < 0.0001 

n = 15 R2 = 0.988 6 = 0.11 d.f. = 13 

6.3.2 Logarithmic Transformation for Achieving Linearity 

The relation between nt and t appears distinctly nonlinear and we will work with 
the transformed variable In nt, which is suggested from theoretical considerations 
as well as by Figure 6.7. The plot of In nt against t appears linear, indicating that the 
logarithmic transformation is appropriate. The results of fitting (6.5) appear in Table 
6.4. The coefficients are highly significant, the standard errors are reasonable, and 
nearly 99% of the variation in the data is explained by the model. The standardized 
residuals are plotted against t in Figure 6.8. There are no systematic patterns to the 
distribution of the residuals and the plot is satisfactory. The single-hit hypothesis of 
X-ray action, which postulates that In nt should be linearly related to t, is confirmed 
by the data. 

While working with transformed variables, careful attention must be paid to the 
estimates of the parameters of the model. In our example the point estimate of 

is -0.21 8 and the 95% confidence interval for the same parameter is (-0.232, 
-0.204). The estimate of the constant term in the equation is the best linear unbiased 
estimate of lnno. If bo denotes the estimate, epo may be used as an estimate of 
no. With fro = 5.973, the estimate of no is eb0 = 392.68. This estimate is not an 
unbiased estimate of no; that is, the true size of the bacteria population at the start 
of the experiment was probably somewhat smaller than 392.68. A correction can 
be made to reduce the bias in the estimate of no. The estimate exp[bo - ;Var(bo)] 
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Figure 6.8 Plot of the standardized residuals against time t after transformation. 

is nearly unbiased of no. In our present example, the modified estimate of no is 
38 1.1 1. Note that the bias in estimating no has no effect on the test of the theory or 
the estimation of the decay rate. 

In general, if nonlinearity is present, it will show up in a plot of the data. If the 
plot corresponds approximately to one of the graphs given in Figures 6.1 to 6.4, 
one of those curves can be fitted after transforming the data. The adequacy of the 
transformed model can then be investigated by methods outlined in Chapter 4. 

6.4 TRANSFORMATIONS TO STABILIZE VARIANCE 

We have discussed in the preceding section the use of transformations to achieve 
linearity of the regression function. Transformations are also used to stabilize the 
error variance, that is, to make the error variance constant for all the observations. 
The constancy of error variance is one of the standard assumptions of least squares 
theory. It is often referred to as the assumption of hornoscedusdcity. When the 
error variance is not constant over all the observations, the error is said to be 
heteroscedustic. Heteroscedusticity is usually detected by suitable graphs of the 
residuals such as the scatter plot of the standardized residuals against the fitted 
values or against each of the predictor variables. A plot with the characteristics 
of Figure 6.9 typifies the situation. The residuals tend to have a funnel-shaped 
distribution, either fanning out or closing in with the values of X .  

If heteroscedasticity is present, and no corrective action is taken application of 
OLS to the raw data will result in estimated coefficients which lack precision in a 
theoretical sense. The estimated standard errors of the regression coefficients are 
often understated, giving a false sense of accuracy. 

Heteroscedasticity can be removed by means of a suitable transformation. We 
describe an approach for (a) detecting heteroscedasticity and its effects on the 
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Figure 6.9 An example of heteroscedastic residuals. 

analysis, and (b) removing heteroscedasticity from the data analyzed using trans- 
formations. 

The response variable Y ,  in a regression problem, may follow a probability dis- 
tribution whose variance is a function of the mean of that distribution. One property 
of the normal distribution, that many other probability distributions do not have, is 
that its mean and variance are independent in the sense that one is not a function of 
the other. The binomial and Poisson are but two examples of common probability 
distributions that have this characteristic. We know, for example, that a variable 
that is distributed binomially with parameters n and rr has mean nrr and variance 
nrr(1 - rr). It is also known that the mean and variance of a Poisson random vari- 
able are equal. When the relationship between the mean and variance of a random 
variable is known, it is possible to find a simple transformation of the variable, 
which makes the variance approximately constant (stabilizes the variance). We list 
in Table 6.5, for convenience and easy reference, transformations that stabilize the 
variance for some random variables with commonly occurring probability distri- 
butions whose variances are functions of their means. The transformations listed 
in Table 6.5 not only stabilize the variance, but also have the effect of making the 
distribution of the transformed variable closer to the normal distribution. Conse- 
quently, these transformations serve the dual purpose of normalizing the variable 
as well as making the variance functionally independent of the mean. 

As an illustration, consider the following situation: Let Y be the number of 
accidents and X the speed of operating a lathe in a machine shop. We want to 
study the relationship between the number of accidents Y and the speed of lathe 
operation X .  Suppose that a linear relationship is postulated between Y and X and 
is given by 

Y = po + p1x + E ,  

where E is the random error. The mean of Y is seen to increase with X .  It is 
known from empirical observation that rare events (events with small probabilities 
of occurrence) often have a Poisson distribution. Let us assume that Y has a Poisson 
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Table 6.5 Transformations to Stabilize Variance 

Probability V a r ( Y )  in Terms Resulting 
Distribution of Y of Its Mean p Transformation Variance 

Poissona P @or  (a+ d m )  0.25 

Binomialb P(1 - P Y n  sin-' (degrees) 821/n 

sin-'@ (radians) 0.25/n 

Negative Binomial' p + X2p2 X-'sinh-l(X@) or 
X-'sinh-'(Xfi + 0.5) 0.25 

a For small values of Y ,  d m  is sometimes recommended. 

sin-'J(r + 3 /S ) / (n  + 3/4). 

n is an index describing the sample size; for Y = r / n  a slightly better transformation is 

Note that the parameter X = l/fi. 

distribution. Since the mean and variance of Y are the same,3 it follows that the 
variance of Y is a function of X, and consequently the assumption of homoscedas- 
ticity will not hold. From Table 6.5 we see that the square root of a Poisson variable 
(fi) has a variance independent of the mean and is approximately equal to 0.25. 
To ensure homoscedasticity we, therefore, regress @ on X. Here the transfor- 
mation is chosen to stabilize the variance, the specific form being suggested by the 
assumed probability distribution of the response variable. An analysis of data em- 
ploying transformations suggested by probabilistic considerations is demonstrated 
in the following example. 

Injury Incidents in Airlines 

The number of injury incidents and the proportion of total flights from New York 
for nine (n  = 9) major United States, airlines for a single year is given in Table 6.6 
and plotted in Figure 6.10. Let fa  and yi denote the total flights and the number of 
injury incidents for the ith airline that year. Then the proportion of total flights na 
made by the ith airline is 

If all the airlines are equally safe, the injury incidents can be explained by the model 

Yi = Po + Pl% + & a ,  

where PO and are constants and ~i is the random error. 

jThe probability mass function of a Poisson random variable Y is PT(Y = y) = e-' Xu/y!; 
y = 0,1,. . ., where X is a parameter. The mean and variance of a Poisson random variable are equal 
to A. 
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1 11 0.0950 
2 7 0.1920 
3 7 0.0750 

Table 6.6 Number of Injury Incidents Y and Proportion of Total Flights N 

4 19 0.2078 7 3 0.1292 
5 9 0.1382 8 1 0.0503 
6 4 0.0540 9 3 0.0629 

Row Y N I Row Y N 1 Row Y N 

0.05 0.10 0.15 0.20 

N 

Figure 6.10 Plot of Y against N .  

Table 6.7 Estimated Regression Coefficients (When Y is Regressed on N )  

Variable Coefficient s.e. t-test p-value 

Constant -0.14 3.14 -0.045 0.9657 
N 64.98 25.20 2.580 0.0365 

n = 9  R2 = 0.487 6 = 4.201 d.f. = 7 

The results of fitting the model are given in Table 6.7. The plot of residuals 
against ni is given in Figure 6.1 1. The residuals are seen to increase with ni in 
Figure 6.1 1 and, consequently, the assumption of homoscedasticity seems to be 
violated. This is not surprising, since the injury incidents may behave as a Poisson 
variable which has a variance proportional to its mean. To ensure the assumption 
of homoscedasticity, we make the square root transformation. Instead of working 
with Y we work with fi, a variate which has an approximate variance of 0.25, 
and is more normally distributed than the original variable. 

Consequently, the model we fit is 

& = ,t& + ,@ni + Ei. (6.8) 

The result of fitting (6.8) is given in Table 6.8. The residuals from (6.8) when 
plotted against ni are shown in Figure 6.12. The residuals for the transformed 
model do not seem to increase with ni. This suggests that for the transformed 
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Figure 6.11 Plot of the standardized residuals versus N .  

Table 6.8 Estimated Regression Coefficients When 6 Is Regressed on n, 

Variable Coefficient s.e. t-test p-value 
~ ~~~ 

Constant 1.169 0.578 2.02 0.0829 
N 11 356 4.638 2.56 0.0378 

n = 9  R2 = 0.483 6 = 0.773 d. f. = 7 

0.05 0.10 0.15 0.20 

N 

Figure 6.12 Plot of the standardized residuals from the regression of & on 72%. 

model the homoscedastic assumption is not violated. The analysis of the model in 
terms of J7Jz and ni can now proceed using standard techniques. The regression is 
significant here (as judged by the t statistic) but is not very strong. Only 48% of the 
total variability of the injury incidents of the airlines is explained by the variation 
in their number of flights. It appears that for a better explanation of injury incidents 
other factors have to be considered. 
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Row X Y 

1 294 30 
2 247 32 
3 267 37 
4 358 44 
5 423 47 
6 311 49 
7 450 56 
8 534 62 
9 438 68 

Table 6.9 
Establishments 

Number of Supervised Workers and Supervisors in 27 Industrial 

Row X Y 

10 697 78 
11 688 80 
12 630 84 
13 709 88 
14 627 97 
15 615 100 
16 999 109 
17 1022 114 
18 1015 117 

Row X Y 

19 700 106 
20 850 128 
21 980 130 
22 1025 160 
23 1021 97 
24 1200 180 
25 1250 112 
26 1500 210 
27 1650 135 

In the preceding example the nature of the response variable (injury incidents) 
suggested that the error variance was not constant about the fitted line. The square 
root transformation was considered based on the well-established empirical fact 
that the occurrence of accidents tend to follow the Poisson probability distribution. 
For Poisson variables, the square root is the appropriate transformation (Table 6.5). 
There are situations, however, when the error variance is not constant and there is 
no a priori reason to suspect that this would be the case. Empirical analysis will 
reveal the problem, and by making an appropriate transformation this effect can 
be eliminated. If the unequal error variance is not detected and eliminated, the 
resulting estimates will have large standard errors, but will be unbiased. This will 
have the effect of producing wide confidence intervals for the parameters, and tests 
with low sensitivity. We illustrate the method of analysis for a model with this type 
of heteroscedasticity in the next example. 

6.5 DETECTION OF HETEROSCEDASTIC ERRORS 

In a study of 27 industrial establishments of varying size, the number of supervised 
workers ( X )  and the number of supervisors (Y )  were recorded (Table 6.9). The data 
can also be found in the book’s Web site. It was decided to study the relationship 
between the two variables, and as a start a linear model 

(6.9) Yi = Po + P1.i + Ei 
was postulated. A plot of Y versus X suggests a simple linear model as a starting 
point (Figure 6.13). The results of fitting the linear model are given in Table 6.10. 

The plot of the standardized residuals versus X (Figure 6.14) shows that the 
residual variance tends to increase with X .  The residuals tend to lie in a band that 
diverges as one moves along the X axis. In general, if the band within which the 
residuals lie diverges (i.e., becomes wider) as X increases, the error variance is 
also increasing with X .  On the other hand, if the band converges (i.e., becomes 
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Figure 6.13 Number of supervisors ( Y )  versus number supervised ( X ) .  

Table 6.10 
Regressed on the Number Supervised ( X )  

Estimated Regression Coefficients When Number of Supervisors ( Y )  Is 

Variable Coefficient s.e. t-test p-value 

Constant 14.448 9.562 1.51 0.1350 
X 0.105 0.01 1 9.30 < o.Ooo1 

~~ ~~~ 

n = 27 R2 = 0.776 6 = 21.73 d.f. = 25 

. *  N 

m 
I I I I I I I I  
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X 

Figure 6.14 
(Y) is regressed on the number supervised ( X ) .  

Plot of the standardized residuals against X when number of supervisors 

narrower), the error variance decreases with X .  If the band that contains the 
residual plots consists of two lines parallel to the X axis, there is no evidence 
of heteroscedasticity. A plot of the standardized residuals against the predictor 
variable points up the presence of heteroscedastic errors. As can be seen in Figure 
6.14, in our present example the residuals tend to increase with X .  
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6.6 REMOVAL OF HETEROSCEDASTICITY 

In many industrial, economic, and biological applications, when unequal error 
variances are encountered, it is often found that the standard deviation of residuals 
tends to increase as the predictor variable increases. Based on this empirical 
observation, we will hypothesize in the present example that the standard deviation 
of the residuals is proportional to X (some indication of this is available from the 
plot of the residuals in Figure 6.14): 

V W ( E ~ )  = k2x4, k > 0. (6.10) 

Dividing both sides of (6.9) by xi, we obtain 

Yi Po &i 
- = - + p1+ - . 
xi xi xi 

Now, define a new set of variables and coefficients, 

I &  

X X '  X 
1 

0 - P1, p: = Po, E = - . I Y  y =- '  X I = -  p ' -  

In terms of the new variables (6.1 1) reduces to 

y; = p; + pix; + .;. 

(6.1 1) 

(6.12) 

Note that for the transformed model, V a r ( ~ i )  is constant and equals k2 .  If our 
assumption about the error term as given in (6.10) holds, to fit the model properly 
we must work with the transformed variables: Y / X  and 1 /X  as response and 
predictor variables, respectively. If the fitted model for the transformed data is 
&, + & / X ,  the fitted model in terms of the original variables is 

Y = 6: + 6;x. (6.13) 

The constant in the transformed model is the regression coefficient of X in the 
original model, and vice versa. This can be seen from comparing (6.11) and (6.12). 

The residuals obtained after fitting the transformed model are plotted against 
the predictor variable in Figure 6.15. It is seen that the residuals are randomly 
distributed and lie roughly within a band parallel to the horizontal axis. There is 
no marked evidence of heteroscedasticity in the transformed model. The distribu- 
tion of residuals shows no distinct pattern and we conclude that the transformed 
model is adequate. Our assumption about the error term appears to be correct; the 
transformed model has homoscedastic errors and the standard assumptions of least 
squares theory hold. The result of fitting Y / X  and 1 / X  leads to estimates of pl, 
and Pi which can be used for the original model. 

The equation for the transformed variables is Y / X  = 0.121 + 3.803/X. In 
terms of the original variables, we have Y = 3.803 + 0.121X. The results are 
summarized in Table 6.1 1. By comparing Tables 6.10 and 6.1 1 we see the reduction 
in standard errors that is accomplished by working with transformed variables. The 
variance of the estimate of the slope is reduced by 33%. 
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Figure 6.15 Plot of the standardized residuals against 1/X when Y/X is regressed on 
1/x. 

Table 6.11 
Fitted by the Transformed Variables Y/X and l/X 

Estimated Regression Coeflicients of the Original Equation When 

Variable Coefficient s.e. t-test p-value 

Constant 0.121 0.009 13.44 < o.Ooo1 
1/x 3.803 4.570 0.832 0.4131 

n = 27 R2 = 0.758 8 = 22.577 d. f. = 25 

6.7 WEIGHTED LEAST SQUARES 

Linear regression models with heteroscedastic errors can also be fitted by a method 
called the weighted least squares (WLS), where parameter estimates are obtained by 
minimizing a weighted sum of squares of residuals where the weights are inversely 
proportional to the variance of the errors. This is in contrast to ordinary least 
squares (OLS), where the parameter estimates are obtained by minimizing equally 
weighted sum of squares of residuals. In the preceding example, the WLS estimates 
are obtained by minimizing 

as opposed to minimizing 

1 

xi 
c T ( Y 2  - P o  - P1.i)2 (6.14) 

C(Y2 - Po - (6.15) 

It can be shown that WLS is equivalent to performing OLS on the transformed 
variables Y / X  and 1/X. We leave this as an exercise for the reader. 

Weighted least squares as an estimation method is discussed in more detail in 
Chapter 7. 
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Figure 6.16 Scatter plot of In Y versus X .  

Table 6.12 Estimated Regression Coefficients When In Y Is Regressed on X 

Variable Coefficient s.e. t-test p-value 

Constant 3.5 150 0.1110 3 1.65 < 0.0001 
X 0.001 2 o.Ooo1 9.15 < 0.0001 

n = 27 R2 = 0.77 6 = 0.252 d . f .  = 25 

6.8 LOGARITHMIC TRANSFORMATION OF DATA 

The logarithmic transformation is one of the most widely used transformations in 
regression analysis. Instead of working directly with the data, the statistical analy- 
sis is carried out on the logarithms of the data. This transformation is particularly 
useful when the variable analyzed has a large standard deviation compared to its 
mean. Working with the data on a log scale often has the effect of dampening vari- 
ability and reducing asymmetry. This transformation is also effective in removing 
heteroscedasticity. We illustrate this point by using the industrial data given in 
Table 6.9, where heteroscedasticity has already been detected. Besides illustrating 
the use of log (logarithmic) transformation to remove heteroscedasticity, we also 
show in this example that for a given body of data there may exist several adequate 
descriptions (models). 

Instead of fitting the model given in (6.9), we now fit the model 

In?& = Po + P1.2 + E i ,  (6.16) 

(i.e., instead of regressing Y on X, we regress 1nY on X ) .  The corresponding 
scatter plot is given in Figure 6.16. The results of fitting (6.16) are given in Table 
6.12. The coefficients are significant, and the value of R2 (0.77) is comparable to 
that obtained from fitting the model given in (6.9). 
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Figure 6.17 Plot of the standardized residuals against X when In Y is regressed on X .  

The plot of the residuals against X is shown in Figure 6.17. The plot is quite 
revealing. Heteroscedasticity has been removed, but the plot shows distinct nonlin- 
earity. The residuals display a quadratic effect, suggesting that a more appropriate 
model for the data may be 

In yi = PO + ~1.i + 022: + ~ i .  (6.17) 

Equation (6.17) is a multiple regression model because it has two predictor 
variables, X and X 2 .  As discussed in Chapter 4, residual plots can also be used in 
the detection of model deficiencies in multiple regression. To show the effectiveness 
of residual plots in detecting model deficiencies and their ability to suggest possible 
corrections, we present the results of fitting model (6.17) in Table 6.13. Plots of 
the standardized residuals against the fitted values and against each of the predictor 
variables X and X 2  are presented in Figures 6.18-6.20, respectively! 

Residuals from the model containing a quadratic term appear satisfactory. There 
is no appearance of heteroscedasticity or nonlinearity in the residuals. We now have 
two equally acceptable models for the same data. The model given in Table 6.13 
may be slightly preferred because of the higher value of R2. The model given in 
Table 6.1 1 is, however, easier to interpret since it is based on the original variables. 

6.9 POWER TRANSFORMATION 

In the previous section we used several types of transformations (such as the recip- 
rocal transformation, 1/Y, the square root transformation, e, and the logarithmic 
transformation, ZnY). These transformation have been chosen based on theoretical 

4Recall from our discussion in Chapter 4 that in simple regression the plots of residuals against fitted 
values and against the predictor variable X I  are identical; hence one needs to examine only one of 
the two plots but not both. In multiple regression the plot of residuals against the fitted values is 
distinct from the plots of residuals against each of the predictors. 
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Table 6.13 Estimated Regression Coefficients When In Y is Regressed on X and 
X 2  

Variable Coefficient s.e. t-test p-value 

Constant 2.8516 0.1566 18.2 < 0.0001 
X 3.1 1267E-3 0.0004 7.80 < 0.0001 
X 2  - 1.10226E-6 0.220E- 6 -4.93 < o.Ooo1 

n = 27 R2 = 0.886 6 = 0.1817 d.f. = 24 

N 
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Figure 6.18 
on X and X 2 .  

Plot of standardized residuals against the fitted values when In Y is regressed 
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Figure 6.19 Plot of standardized residuals against X when In Y is regressed on X and X 2 .  
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Figure 6.20 
X and X 2 .  

Plot of standardized residuals against X 2  when 1nY is regressed on 

or empirical evidence to obtain linearity of the model, to achieve normality, and/or 
to stabilize the error variance. These transformation can be thought of as a general 
case of power transformation. In power transformation, we raise the response vari- 
able Y and/or some of the predictor variables to a power. For example, instead of 
using Y we use Y’, where X is an exponent to be chosen by the data analyst based 
on either theoretical or empirical evidence. When X = - 1 we obtain the reciprocal 
transformation, X = 0.5 gives the square root transformation, and when X = 0 we 
obtain the logarithmic tran~formation.~ Values of X = 1 implies no transformation 
is needed. 

If X cannot be determined by theoretical considerations, the data can be used to 
determine the appropriate value of A. This can be done using numerical methods. 
In practice, several values of X are tried and the best value is chosen. Values of 
X commonly tried are: 2, 1.5, 1.0, 0.5, 0, -0.5, -1, -1.5, -2. These values of 
lambda are chosen because they are easy to interpret. They are known as a ladder 
of transformation. This is illustrated in the following example. 

Example: The Brain Data 

The data set shown in Table 6.14 represent a sample taken from a larger data set. 
The data can also be found in the book’s Web site. The original sources of the data 
is Jerison (1 973). It has also been analyzed by Rousseeuw and Leroy (1  987). The 
average brain weight (in grams), Y ,  and the average body weight (in kilograms), 
X ,  are measured for 28 animals. One purpose of the data is to determine whether 
a larger brain is required to govern a heavier body. Another purpose is to see 

‘Note that when X = 0, Y x  = 1 for all values of Y .  To avoid this problem the transformation 
(Y’ - 1)/X is used. It  can be shown that as X approaches zero, (Yx  - 1)/X approaches ZnY. This 
transformation is known as the Box-Cox power transformation. For more details, see Carroll and 
Ruppert (1988). 



172 TRANSFORMATION OF VARIABLES 

Brain Body 

Name Weight Weight 

Mountain beaver 8.1 1.35 

cow 423.0 465.00 

Gray wolf 119.5 36.33 

Goat 115.0 27.66 

Guinea pig 5.5 1.04 

Diplodocus 50.0 11700.00 

Asian elephant 4603.0 2547.00 

Donkey 419.0 187.10 

Horse 655.0 521.00 

Potar monkey 115.0 10.00 

Cat 25.6 3.30 

Giraffe 680.0 529.00 

Gorilla 406.0 207.00 

Human 1320.0 62.00 

ji .. , , I I .  

0 20000 40000 60000 80000 

Body Weight 

Brain Body 

Name Weight Weight 

African elephant 5712.0 6654.00 

Triceratops 70.0 9400.00 

Rhesus monkey 179.0 6.80 

Kangaroo 56.0 35.00 

Hamster 1 .o 0.12 

Mouse 0.4 0.02 

Rabbit 12.1 2.50 

Sheep 175.0 55.50 

Chimpanzee 440.0 52.16 

Brachiosaurus 154.5 87000.00 

Rat 1.9.0 0.28 

Mole 3.0 0.12 

Pig 180.0 192.00 

Jaguar 157.0 100.00 

Figure 6.21 The Brain data: Scatter plots of Brain Weight versus Body Weight. 

whether the ratio of the brain weight to the body weight can be used as a measure 
of intelligence. The scatter plot of the data (Figure 6.21) does not show an obvious 
relationship. This is mainly due to the presence of very large animals (e.g., two 
elephants and three dinosaurs). Let us apply the power transformation to both Y 
and X .  The scatter plots of Y x  versus X x  for several values of X in the ladder of 
transformation are given in Figure 6.22. It can be seen that the values of X = 0 
(corresponding to the log transformation) is the most appropriate value. For X = 0, 
the graphs looks linear but the three dinosaurs do not conform to the linear pattern 
suggested by the other points. The graph suggests that either the brain weight of 
the dinosaurs are underestimated and/or their body weight is overestimated. 
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Figure 6.22 Scatter plots of Y x  versus X x  for various values of A. 

Note that in this example we transformed both the response and the predictor 
variables and that we used the same value of the power for both variables. In other 
applications, it may be more appropriate to raise each value to a different power 
andor to transform only one variable. For further details on data transformation 
the reader is referred to Carroll and Ruppert (1988) and Atkinson (1985). 

6.10 SUMMARY 

After fitting a linear model one should examine the residuals for any evidence of 
heteroscedasticity. Heteroscedasticity is revealed if the residuals tend to increase 
or decrease with the values of the predictor variable, and is conveniently examined 
from a plot of the residuals. If heteroscedasticity is present, account should be taken 
of this in fitting the model. If no account is taken of the unequal error variance, 
the resulting least squares estimates will not have the maximum precision (smallest 
variances). Heteroscedasticity can be removed by working with transformed vari- 
ables. Parameter estimates from the transformed model are then substituted for the 
appropriate parameters in the original model. The residuals from the appropriately 
transformed model should show no evidence of heteroscedasticity. 
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Table 6.15 
Millions of Dollars) for 41 Magazines in 1986 

Advertising Pages (P), in Hundreds, and Advertising Revenue (R), in 

Cosmopolitan 
Redbook 
Glamour 
Southern Living 
Vogue 
Sunset 
House and Garden 
New York Magazine 
House Beautiful 
Mademoiselle 
Psychology Today 
Life Magazine 
Smithsonian 
Rolling Stone 
Modem Bride 
Parents 
Architectural Digest 
Harper’s Bazaar 
Apartment Life 
Bon Appetit 
Gourmet 

Magazine P R 

25 50.0 
15 
20 
17 
23 
17 
14 
22 
12 
15 
8 
7 
9 

12 
1 
6 

12 
9 
7 
9 
7 

49.7 
34.0 
30.7 
27.0 
26.3 
24.6 
16.9 
16.7 
14.6 
13.8 
13.2 
13.1 
10.6 
8.8 
8.7 
8.5 
8.3 
8.2 
8.2 
1.3 

Magazine P R 

Town and Country 
True Story 
Brides 
Book Digest Magazine 
W 
Yankee 
Playgirl 
Saturday Review 
New Woman 
Ms. 
Cuisine 
Mother Earth News 
1001 Decorating Ideas 
Self 
Decorating & Craft Ideas 
Saturday Evening Post 
McCall’s Needlework and Craft 
Weight Watchers 
High Times 
Soap Opera Digest 

1 

71 
13 
5 
7 

13 
4 
6 
3 
6 
4 
3 
3 
5 
4 
4 
3 
3 
4 
2 

7.0 
6.6 
6.2 
5.8 
5.1 
4.1 
3.9 
3.9 
3.5 
3.3 
3.0 
2.5 
2.3 
2.3 
1.8 
1.5 
1.3 
1.3 
1 .o 
0.3 

EXERCISES 

6.1 Magazine Advertising: In a study of revenue from advertising, data were 
collected for 41 magazines in 1986 (Table 6.15). The variables observed are 
number of pages of advertising and advertising revenue. The names of the 
magazines are listed. 
(a) Fit a linear regression equation relating advertising revenue to advertising 

pages. Verify that the fit is poor. 
(b) Choose an appropriate transformation of the data and fit the model to the 

transformed data. Evaluate the fit. 
(c) You should not be surprised by the presence of a large number of outliers 

because the magazines are highly heterogeneous and it is unrealistic to 
expect a single relationship to connect all of them. Delete the outliers and 
obtain an acceptable regression equation that relates advertising revenue 
to advertising pages. 

6.2 Wind Chill Factor: Table 6.16 gives the effective temperatures (W), which 
are due to the wind chill effect, for various values of the actual temperatures 
(T)  in still air and windspeed (V). The zero-wind condition is taken as the 
rate of chilling when one is walking through still air (an apparent wind of four 
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Table 6.16 
MilesEIour, and Temperature (OF) 

Wind Chill Factor ( O F )  for Various Values of Windspeed, V ,  in 

Actual Air TemDerature (T )  

V 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 

- 

- 

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 

48 36 27 17 5 -5 -15 -25 -35 -46 -56 -66 

40 29 18 5 -8 -20 -30 -43 -5.5 -68 -80 -93 

35 23 10 -5 -18 -29 -42 -55 -70 -83 -97 -112 

32 18 4 -10 -23 -34 -50 -64 -79 -94 -108 -121 

30 15 -1 -15 -28 -38 -55 -72 -88 -105 -118 -130 
28 13 -5 -18 -33 -44 -60 -76 -92 -109 -124 -134 

27 11 -6 -20 -35 -48 -65 -80 -96 -113 -130 -137 
26 10 -7 -21 -37 -52 -68 -83 -100 -117 -135 -140 

25 9 -8 -22 -39 -54 -70 -86 -103 -120 -139 -143 
25 8 -9 -23 -40 -55 -72 -88 -105 -123 -142 -145 

miles per hour (mph)). The National Weather Service originally published 
the data; we have compiled it from a publication of the Museum of Science of 
Boston. The temperatures are measured in degrees Fahrenheit ( O F ) ,  and the 
wind-speed in mph. 
(a) The data in Table 6.16 are not given in a format suitable for direct appli- 

cation of regression programs. You may need to construct another table 
containing three columns, one column for each of the variables W ,  T, 
and V. This table can be found in the book's Web Site.6 

(b) Fit a linear relationship between W ,  T, and V. The pattern of residuals 
should indicate the inadequacy of the linear model. 

(c) After adjusting W for the effect of T (e.g., keeping T fixed), examine the 
relationship between W and V. Does the relationship between W and V 
appear linear? 

(d) After adjusting W for the effect of V, examine the relationship between 
W and T.  Does the relationship appear linear? 

(e) Fit the model 

W = p o + p i T + p z V + p 3  a+&. (6.18) 

Does the fit of this model appear adequate? The W numbers were pro- 
duced by the National Weather Service according to the formula (except 
for rounding errors) 

W = 0.0817(3.71&+ 5.81 - 0.25V)(T - 91.4) + 91.4. (6.19) 

Does the formula above give an accurate numerical description of W ?  

' http://www.ilr.corneIl.eduThadi/RABE4 



176 TRANSFORMATION OF VARIABLES 

Table 6.17 Annual World Crude Oil Production in Millions of Barrels (lSSCr1988) 

Year OIL I Year OIL I Year OIL 

1880 30 
1890 77 
1900 149 
1905 215 
1910 328 
1915 432 
1920 689 
1925 1,069 
1930 1,412 
1935 1,655 

1940 2,150 
1945 2,595 
1950 3,803 
1955 5,626 
1960 7,674 
1962 8,882 
1964 10.310 
1966 12,016 
1968 14,104 
1970 16,690 

1972 18,584 
1974 20,389 
1976 20,188 
1978 2 1,922 
1980 2 1,722 
1982 19.41 1 
1984 19,837 
1986 20,246 
1988 21,338 

(f) Can you suggest a model better than those in (6.18) and (6.19)? 

6.3 Refer to the Presidential Election Data in Table 5.17, where the response 
variable V is the proportion of votes obtained by a presidential candidate in 
United States. Since the response is a proportion, it has a value between 0 
and 1. The transformation Y = log(V/(l - V)) takes the variable V with 
values between 0 and 1 to a variable Y with values between -cc to +cc. It is 
therefore more reasonable to expect that Y satisfies the normality assumption 
than does V. 
(a) Consider fitting the model 

which is the same model as in (5.1 1) but replacing V by Y .  
(b) For each of the two models, examine the appropriate residual plots dis- 

cussed in Chapter 4 to determine which model satisfies the standard as- 
sumptions more than the other, the original variable V or the transformed 
variable Y .  

(c) What does the equation in (6.20) imply about the form of the model 
relating the original variables V in terms of the predictor variables? That 
is, find the form of the function 

[Hint: This is a nonlinear function referred to as the logisticfitdon, 
which is discussed in Chapter 12.1 

6.4 Oil Production Data: The data in Table 6.17 are the annual world crude oil 
production in millions of barrels for the period 1880-1988. The data are taken 
from Moore and McCabe (1993), p. 147. 
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Table 6.18 The Average Price Per Megabyte in Dollars From 1988-1998 

Year Price I Year Price 

1988 
1989 
1990 
1991 
1992 
1993 

11.54 
9.30 
6.86 
5.23 
3.00 
1.46 

1994 
1995 
1996 
I997 
1998 

0.705 
0.333 
0.179 
0.101 
0.068 

Source: Kindly provided by Jim Porter, Disk/Trends in Wired April 1998. 

(a) Construct a scatter plot of the oil production variable (OIL) versus Year 
and observe that the scatter of points on the graph is not linear. In order 
to fit a linear model to these data, OIL must be transformed. 

(b) Construct a scatter plot of log(0IL) versus Year. The scatter of points 
now follows a straight line from 1880 to 1973. Political turmoil in the oil- 
producing regions of the Middle East affected patterns of oil production 
after 1973. 

(c) Fit a linear regression of log(0IL) on Year. Assess the goodness of fit of 
the model. 

(d) Construct the index plot of the standardized residuals. This graph shows 
clearly that one of the standard assumptions is violated. Which one? 

6.5 One of the remarkable technological developments in computer industry has 
been the ability to store information densely on hard disk. The cost of storage 
has steadily declined. Table 6.18 shows the average price per megabyte in 
dollars from 1988-1998. 
(a) Does a linear time trend describe the data? Define a new variable t by 

coding 1988 as 1, 1989 as 2, etc. 
(b) Fit the model Pt = PoeDt, where Pt is the price in period t. Does this 

model describe the data? 
(c) Introduce an indicator variable which takes the value 0 for the years 1988- 

1991, and 1 for the remaining years. Fit a model to connecting log(Pt) 
with time t ,  the indicator variable, and the variable created by taking the 
product of time and the indicator variable. Interpret the coefficients of the 
fitted model. 



CHAPTER 7 

WEIGHTED LEAST SQUARES 

7.1 INTRODUCTION 

So far in our discussion of regression analysis it has been assumed that the under- 
lying regression model is of the form 

(7.1) 

where the Q’S are random errors that are independent and identically distributed 
(i.i.d.) with mean zero and variance 02. Various residual plots have been used to 
check these assumptions (Chapter 4). If the residuals are not consistent with the 
assumptions, the equation form may be inadequate, additional variables may be 
required, or some of the observations in the data may be outliers. 

There has been one exception to this line of analysis. In the example based on 
the Supervisor Data of Section 6.5, it is argued that the underlying model does 
not have residuals that are i.i.d. In particular, the residuals do not have constant 
variance. For these data, a transformation was applied to correct the situation so 
that better estimates of the original model parameters could be obtained (better than 
the ordinary least squares (OLS) method). 

In this chapter and in Chapter 8 we investigate situations where the underlying 
process implies that the errors are not i.i.d. The present chapter deals with the 
heteroscedusticity problem, where the residuals do not have the same variance, 
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yz = Po + P1.21 + . . . + + Ei, 
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and Chapter 8 treats the autocorrelation problem, where the residuals are not 
independent. 

In Chapter 6 heteroscedasticity was handled by transforming the variables to 
stabilize the variance. The weighted least squares (WLS) method is equivalent to 
performing OLS on the transformed variables. The WLS method is presented here 
both as a way of dealing with heteroscedastic errors and as an estimation method in 
its own right. For example, WLS perfoms better than OLS in fitting dose-response 
curves (Section 7.5) and logistic models (Section 7.5 and Chapter 12). 

In this chapter the assumption of equal variance is relaxed. Thus, the EI’S are 
assumed to be independently distributed with mean zero and V a r ( ~ i )  = us. In 
this case, we use the WLS method to estimate the regression coefficients in (7.1). 
The WLS estimates of Po, PI ,  . . . ) Pp are obtained by minimizing 

n 

C W i ( Y 2  - P o  -P1.21- . . . -  Ppxip)2, 
i= 1 

where wi are weights inversely proportional to the variances of the residuals (i.e., 
wi = l/as). Note that any observation with a small weight will be severely 
discounted by WLS in determining the values of PO, PI ,  . . . ) Pp. In the extreme 
case where wi = 0, the effect of WLS is to exclude the ith observation from the 
estimation process. 

Our approach to WLS uses a combination of prior knowledge about the process 
generating the data and evidence found in the residuals from an OLS fit to detect the 
heteroscedastic problem. If the weights are unknown, the usual solution prescribed 
is a two-stage procedure. In Stage 1, the OLS results are used to estimate the 
weights. In the second stage, WLS is applied using the weights estimated in Stage 
1. This is illustrated by examples in the rest of this chapter. 

7.2 HETEROSCEDASTIC MODELS 

Three different situations in which heteroscedasticity can arise will be distinguished. 
For the first two situations, estimation can be accomplished in one stage once the 
source of heteroscedasticity has been identified. The third type is more complex 
and requires the two-stage estimation procedure mentioned earlier. An example 
of the first situation is found in Chapter 6 and will be reviewed here. The second 
situation is described, but no data are analyzed. The third is illustrated with two 
examples. 

7.2.1 Supervisors Data 

In Section 6.5, data on the number of workers ( X )  in an industrial establishment 
and the number of supervisors ( Y )  were presented for 27 establishments. The 
regression model 

(7.2) yi = PO + P1.i + ~i 
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Figure 7.1 An example of heteroscedastic residuals. 

was proposed. It was argued that the variance of ~i depends on the size of the 
establishment as measured by xi; that is, of = k2x:, where k is a positive constant 
(see Section 6.5 for details). Empirical evidence for this type of heteroscedasticity 
is obtained by plotting the standardized residuals versus X .  A plot with the 
characteristics of Figure 7.1 typifies the situation. The residuals tend to have a 
funnel-shaped distribution, either fanning out or closing in with the values of X .  
If corrective action is not taken and OLS is applied to the raw data, the resulting 
estimated coefficients will lack precision in a theoretical sense. In addition, for the 
type of heteroscedasticity present in these data, the estimated standard errors of the 
regression coefficients are often understated, giving a false sense of precision. The 
problem is resolved by using a version of weighted least squares, as described in 
Chapter 6. 

This approach to heteroscedasticity may also be considered in multiple regression 
models. In (7.1) the variance of the residuals may be affected by only one of the 
predictor variables. (The case where the variance is a function of more than one 
predictor variable is discussed later.) Empirical evidence is available from the plots 
of the standardized residuals versus the suspected variables. For example, if the 
model is given as (7.1) and it is discovered that the plot of the standardized residuals 
versus X2 produces a pattern similar to that shown in Figure 7.1, then one could 
assume that V a r ( ~ i )  is proportional to xz2, that is, V a r ( ~ i )  = k2xt2, where k > 0. 
The estimates of the parameters are determined by minimizing 

1 c +Yi - Po - P l X i l  - . . . - P P X i P ) 2 .  
i=l  xi2 

If the software being used has a special weighted least squares procedure, we make 
the weighting variable equal to 1 /~ :~ .  On the other hand, if the software is only 
capable of performing OLS, we transform the data as described in Chapter 6. In 
other words, we divide both sides of (7.1) by xi2 to obtain 

1 X i  1 z i p  E i  
- =Po- +p1- +...+p,- + - Y i  
xi2 X i 2  xi2 Xi2 Xi2 
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Table 7.1 Variables in Cost of Education Survey 

Name Description 

Y 
X1 

x2 

x3 
x4 Size of student body 

x5 
x6 Distance from home 

Total annual expense (above tuition) 
Size of city or town where school is located 
Distance to nearest urban center 
Type of school (public or private) 

Proportion of entering freshman who graduate 

The OLS estimate of the coefficient of the variable 1/Xz is the WLS estimate of 
PO. The coefficient of the variable Xj/Xz is an estimate of ,Bj for all j # 2. The 
constant term in this fitting is an estimate of 0 2 .  Refer to Chapter 6 for a detailed 
discussion of this method applied to simple regression. 

7.2.2 College Expense Data 

A second type of heteroscedasticity occurs in large-scale surveys where the obser- 
vations are averages of individual sampling units taken over well-defined groups 
or clusters. Typically, the average and number of sampling units are reported for 
each cluster. In some cases, measures of variability such as a standard deviation or 
range are also reported. 

For example, consider a survey of undergraduate college students that is intended 
to estimate total annual college-related expenses and relate those expenses to char- 
acteristics of the institution attended. A list of variables chosen to explain expenses 
is shown in Table 7.1. Regression analysis with the model 

y == P O  + 01x1 + P 2 x 2  + * ”  + P6x6 + E (7.3) 

may be used to study the relationship. In this example, a cluster is equated with a 
school and an individual sampling unit is a student. Data are collected by selecting 
a set of schools at random and interviewing a prescribed number of randomly 
selected students at each school. The response variable, Y ,  in (7.3) is the average 
expenditure at the ith school. The predictor variables are characteristics of the 
school. The numerical values of these variables would be determined from the 
official statistics published for the school. 

The precision of average expenditure is directly proportional to the square root of 
the sample size on which the average is based. That is, the standard deviation of gi is 
a/&, where ni represents the number of students interviewed at the ith institution 
and a is the standard deviation for annual expense for the population of students. 
Then the standard deviation of ~i in the model (7.1) is ai = a/&. Estimation of 
the regression coefficients is camed out using WLS with weights wi = 1/$. Since 



TWO-STAGE ESTIMATION 183 

a; = a2/ni, the regression coefficients are obtained by minimizing the weighted 
sum of squared residuals, 

Note that the procedure implicitly recognizes that observations from institutions 
where a large number of students were interviewed as more reliable and should 
have more weight in determining the regression coefficients than observations 
from institutions where only a few students were interviewed. The differential 
precision associated with different observation may be taken as a justification for 
the weighting scheme. 

The estimated coefficients and summary statistics may be computed using a 
special WLS computer program or by transforming the data and using OLS on the 
transformed data. Multiplying both sides of (7.1) by J.2, we obtain the new model 

(7.5) 

The error terms in (7.3, ~iJ.2 now satisfy the necessary assumption of constant 
variance. Regression of yiJ722 against the seven new variables consisting of J.2, 
and the six transformed predictor variables, xji- using OLS will produce the 
desired estimates of the regression coefficients and their standard errors. Note that 
the regression model in (7.5) has seven predictor variables, a new variable fi, 
and the six original predictor variables multiplied by J.2. Note also that there is 
no constant term in (7.5) because the intercept of the original model, DO, is now 
the coefficient of 6. Thus the regression with the transformed variables must 
be camed out with the constant term constrained to be zero, that is, we fit a no- 
intercept model. More details on this point are given in the numerical example in 
Section 7.4. 

y i f i  = PO& + ,&xilf i  + ' ' *  + , & X & f i  + Ei&. 

7.3 TWO-STAGE ESTIMATION 

In the two preceding problems heteroscedasticity was expected at the outset. In 
the first problem the nature of the process under investigation suggests residual 
variances that increase with the size of the predictor variable. In the second 
case, the method of data collection indicates heteroscedasticity. In both cases, 
homogeneity of variance is accomplished by a transformation. The transformation 
is constructed directly from information in the raw data. In the problem described 
in this section, there is also some prior indication that the variances are not equal. 
But here the exact structure of heteroscedasticity is determined empirically. As a 
result, estimation of the regression parameters requires two stages. 

Detection of heteroscedasticity in multiple regression is not a simple matter. If 
present it is often discovered as a result of some good intuition on the part of the 
analyst on how observations may be grouped or clustered. For multiple regression 
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Figure 1.2 Nonconstant variance with replicated observations. 

models, the plots of the standardized residuals versus the fitted values and versus 
each predictor variable can serve as a first step. If the magnitude of the residuals 
appears to vary systematically with & or with xij, heteroscedasticity is suggested. 
The plot, however, does not necessarily indicate why the variances differ (see the 
following example). 

One direct method for investigating the presence of nonconstant variance is 
available when there are replicated measurements on the response variable corre- 
sponding to a set of fixed values of the predictor variables. For example, in the 
case of one predictor variable, we may have measurements y11, y21, . . . , ynl 1 at XI; 
y12, ~ 2 2 , .  . . yn22 at xz; and so on, up to Ylk, Y2k, . . ., ynkk at Xk.  Taking k = 5 
for illustrative purposes, a plot of the data appears as Figure 7.2. With this wealth 
of data, it is not necessary to make restrictive assumptions regarding the nature of 
heteroscedasticity. It is clear from the graph that the nonconstancy of variance does 
not follow a simple systematic pattern such as V a r ( ~ i )  = k2x:. The variability 
first decreases as x increases up to 2 3 ,  then jumps again at 2 4 .  The regression 
model could be stated as 

yij = /&I + p l ~ j  + ~ i j ,  i = 1 , 2 , .  . . , nj; j = 1,2,3,4,  (7.6) 

where V a r ( ~ i j )  = gj". 

e . .  = yij - y" 
the j th cluster, j j j ,  we obtain 

The observed residual for the ith observation in the j th cluster or group is 
Adding and subtracting the mean of the response variable in for 

e . .  23 = (y. .  a3 - g . )  3 + (g.  3 - C..) 23 , (7.7) 

a3 

which shows that the residual is made up of two parts, the difference between yij 

and jjj and the difference between j j j  and the point on the regression line, yij. The 
first part is referred to as pure error. The second part measures lack of fit. An 
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assessment of heteroscedasticity is based on the pure error.' The weights for WLS 
may be estimated as wij = l/$, where 

% 

s; = C(Yij - gjI2/(.j - 11, 
i=l 

is the variance of the response variable for the j th group. 
When the data are collected in a controlled laboratory setting, the researcher 

can choose to replicate the observations at any values of the predictor variables. 
But the presence of replications on the response variable for a given value of X 
is rather uncommon when data are collected in a nonexperimental setting. When 
there is only one predictor variable, it is possible that some replications will occur. 
If there are many predictor variables, it is virtually impossible to imagine coming 
upon two observations with identical values on all predictor values. However, 
it may be possible to form pseudoreplications by clustering responses where the 
predictor values are approximately identical. The reader is referred to Daniel 
and Wood ( 1  980), where these methods are discussed in considerable detail. A 
more plausible way to investigate heteroscedasticity in multiple regression is by 
clustering observations according to prior, natural, and meaningful associations. 
As an example, we analyze data on state education expenditures. These data were 
used in Chapter 5. 

7.4 EDUCATION EXPENDITURE DATA 

The Education Expenditure data were used in Section 5.7 and it was suggested 
there that these data be looked at across time (the data are available for 1965, 1970, 
and 1975) to check on the stability of the coefficients. Here we use these data to 
demonstrate methods of dealing with heteroscedasticity in multiple regression and 
to analyze the effects of regional characteristics on the regression relationships. For 
the present analysis we shall work only with the 1975 data. The objective is to get 
the best representation of the relationship between expenditure on education and the 
other variables using data for all 50 states. The data are grouped in a natural way, by 
geographic region. Our assumption is that, although the relationship is structurally 
the same in each region, the coefficients and residual variances may differ from 
region to region. The different variances constitute a case of heteroscedasticity that 
can be treated directly in the analysis. The variable names and definitions appear 
in Table 7.2 and the data are presented in Table 7.3 and can be found in the book's 
Web site.* The model is 

y = Po + PlXl + P2X2 + psx,  + E .  (7.8) 

'The notion of pure error can also be used to obtain a test for lack of fit (see, e.g., Draper and Smith 
( 1998)). 
http://www.ilr.corneIl.eduThadi/RABE4 
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Table 7.2 State Expenditures on Education, Variable List 
~~~~~ ~~ ~ 

Variable Description 

Y 
X1 
x2 

x3 

Per capita expenditure on education projected for 1975 
Per capita income in 1973 
Number of residents per thousand under 18 years of age in 1974 
Number of residents per thousand living in urban areas in 1970 

States may be grouped into geographic regions based on the presumption that 
there exists a sense of regional homogeneity. The four broad geographic regions: 
(1) Northeast, (2) North Central, (3) South, and (4) West, are used to define the 
groups. It should be noted that data could be analyzed using indicator variables 
to look for special effects associated with the regions or to formulate tests for the 
equality of regressions across regions. However, our objective here is to develop 
one relationship that can serve as the best representation for all regions and all states. 
This goal is accomplished by taking regional differences into account through an 
extension of the method of weighted least squares. 

It is assumed that there is a unique residual variance associated with each of 
the four regions. The variances are denoted as ( c ~ o ) ~ ,  ( c ~ o ) ~ ,  ( c ~ o ) ~ ,  and ( c ~ o ) ~ ,  
where 0 is the common part and the cj’s are unique to the regions. According 
to the principle of weighted least squares, the regression coefficients should be 
determined by minimizing 

where 

(7.9) 
n3 1 

sj = c $2 - Po - P1.21 - P 2 X i 2  - P3xi3)2; j = 1,2 ,3 ,4 .  
i=l 3 

Each of 5’1 through 5’4 corresponds to a region, and the sum is taken over only 
those states that are in the region. The factors 1/c; are the weights that determine 
how much influence each observation has in estimating the regression coefficients. 
The weighting scheme is intuitively justified by arguing that observations that are 
most erratic (large error variance) should have little influence in determining the 
coefficients. 

The WLS estimates can also be justified by a second argument. The object is to 
transform the data so that the parameters of the model are unaffected, but the residual 
variance in the transformed model is constant. The prescribed transformation is to 
divide each observation by the appropriate cj,  resulting in a regression of Y/c j  on 
l/cj ,  X l / c j ,  X2/c j ,  and X 3 / ~ j . ~  Then the error term, in concept, is also divided 

31f we denote a variable with a double subscript, i and j ,  with j representing region and i representing 
observation within region, then each variable for an observation in region j is divided by cj. Note 
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Table 7.3 Education Expenditure Data 

Row State Y x1 xz x3 Region 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

ME 
NH 
VT 
MA 
RI 
CT 
NY 
NJ 
PA 
OH 
IN 
IL 
MI 
WI 
MN 
IA 
MO 
ND 
SD 
NB 
KS 
DE 
MD 
VA 
wv 
NC 
sc 
GA 
FL 
KY 
TN 
AL 
MS 
AR 
LA 
OK 
TX 
MT 
ID 
WY 
co 
NM 
A2 
UT 
NV 
WA 
OR 
CA 
AK 
HI 

235 
231 
270 
26 1 
300 
317 
387 
285 
300 
22 1 
264 
308 
379 
342 
378 
232 
23 1 
246 
230 
268 
337 
344 
330 
261 
214 
245 
233 
250 
243 
216 
212 
208 
215 
221 
244 
234 
269 
302 
268 
323 
304 
317 
332 
315 
29 I 
312 
316 
332 
546 
31 1 

3944 
4578 
401 1 
5233 
4780 
5889 
5663 
5759 
4894 
5012 
4908 
5753 
5439 
4634 
492 1 
4869 
4672 
4782 
4296 
4827 
5057 
5540 
5331 
4715 
3828 
4120 
3817 
4243 
4647 
3967 
3946 
3724 
3448 
3680 
3825 
4189 
4336 
4418 
4323 
4813 
5046 
3764 
4504 
4005 
5560 
4989 
4697 
5438 
5613 
5309 

325 
323 
328 
305 
303 
307 
301 
310 
300 
324 
329 
320 
337 
328 
330 
318 
309 
333 
330 
318 
304 
328 
323 
317 
310 
32 1 
342 
339 
287 
325 
315 
332 
358 
320 
355 
306 
335 
335 
344 
33 1 
324 
366 
340 
378 
330 
313 
305 
307 
386 
333 

508 
564 
322 
846 
87 1 
774 
856 
889 
715 
753 
649 
830 
738 
659 
664 
572 
70 1 
443 
446 
615 
66 1 
722 
766 
63 1 
390 
450 
476 
603 
805 
523 
588 
584 
445 
500 
66 1 
680 
797 
534 
54 1 
605 
785 
69 8 
796 
804 
809 
726 
67 1 
909 
484 
831 

1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
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Table 7.4 Regression Results: State Expenditures on Education (n  = 50) 

Variable Coefficient s.e. t-test p - v a 1 u e 

Constant -556.568 123.200 -4.52 < 0.0001 
X1 0.072 0.012 6.24 < 0.0001 
x2 1.552 0.315 4.93 < 0.0001 
x3 -0.004 0.05 1 -0.08 0.9342 

n = 50 R2 = 0.591 R: = 0.565 I3 = 40.47 d.f. =46  

by c j ,  the resulting residuals have a common variance, cr2, and the estimated 
coefficients have all the standard least squares properties. 

The values of the cj’s are unknown and must be estimated in the same sense that 
cr2 and the p’s must be estimated. We propose a two-stage estimation procedure. 
In the first stage perform a regression using the raw data as prescribed in the model 
of Equation (7.8). Use the empirical residuals grouped by region to compute an 
estimate of regional residual variance. For example, in the Northeast, compute 

to the nine states in the Northeast. Compute 8.22, &:, and 6.42 in a similar fashion. In 
the second stage, an estimate of c j  in (7.9) is replaced by 

6 2  - - C ep/(9 - l), where the sum is taken over the nine residuals corresponding 

The regression results for Stage 1 (OLS) using data from all 50 states are given 
in Table 7.4. Two residual plots are prepared to check on specification. The 
standardized residuals are plotted versus the fitted values (Figure 7.3) and versus 
a categorical variable designating region (Figure 7.4). The purpose of Figure 7.3 
is to look for patterns in the size and variation of the residuals as a function of 
the fitted values. The observed scatter of points has a funnel shape, indicating 
heteroscedasticity. The spread of the residuals in Figure 7.4 is different for the 
different regions, which also indicates that the variances are not equal. The scatter 
plots of standardized residual versus each of the predictor variables (Figures 7.5 to 
7.7) indicate that the residual variance increases with the values of XI .  

Looking at the standardized residuals and the influence measures in this example 
is very revealing. The reader can verify that observation 49 (Alaska) is an outlier 
with a standardized residual value of 3.28. The standardized residual for this 
observation can actually be seen to be separated from the rest of the residuals 

that Po is the coefficient attached to the transformed variable l/cj. The transformed model is 

and the variance of E:, is cz. Notice that the same regression coefficients appear in the transformed 
model as in the original model. The transformed model is also a no-intercept model. 
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Figure 7.3 Plot of standardized residuals versus fitted values. 
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Figure 7.4 Plot of standardized residuals versus regions. 
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Figure 7.5 Plot of standardized residuals versus each of the predictor variable X I .  
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Figure 7.6 Plot of standardized residuals versus each of the predictor variable X,. 
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Figure 7.7 Plot of standardized residuals versus each of the predictor variable X3. 

in Figure 7.3. Observation 44 (Utah) and 49 (Alaska) are high leverage points 
with leverage values of 0.29 and 0.44, respectively. On examining the influence 
measures we find only one influential point 49, with a Cook's distance value of 
2.13 and a DFITS value of 3.30. Utah is a high leverage point without being 
influential. Alaska, on the other hand, has high leverage and is also influential. 
Compared to other states, Alaska represents a very special situation: a state with a 
very small population and a boom in revenue from oil. The year is 1975! Alaska's 
education budget is therefore not strictly comparable with those of the other states. 
Consequently, this observation (Alaska) is excluded from the remainder of the 
analysis. It represents a special situation that has considerable influence on the 
regression results, thereby distorting the overall picture. 

The data for Alaska may have an undue influence on determining the regression 
coefficients. To check this possibility, the regression was recomputed with Alaska 
excluded. The estimated values of the coefficients changed significantly. See Table 



EDUCATION EXPENDITURE DATA 191 

Table 7.5 
Omitted 

Regression Results: State Expenditures on Education (n  = 49), Alaska 

Variable Coefficient s.e. t-test p-value 

Constant -277.577 132.400 -2.10 0.04 17 

X1 0.048 0.012 3.98 0.0003 
x2 0.887 0.331 2.68 0.0103 

x3 0.067 0.049 1.35 0.1826 

n = 49 R2 = 0.497 RZ = 0.463 6 = 35.81 d. f .=45 

I I 
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Figure 7.8 Plot of the standardized residuals versus fitted values (excluding Alaska). 
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Figure 7.9 Plot of the standardized residuals versus region (excluding Alaska). 

7.5. This observation is excluded for the remainder of the analysis because it 
represents a special situation that has too much influence on the regression results. 
Plots similar to those of Figures 7.3 and 7.4 are presented as Figures 7.8 and 7.9. 
With Alaskaremoved, Figures 7.8 and 7.9 still show indication of heteroscedasticity. 
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OLS 

Table 7.6 Weights cj for Weighted Least Squares 

Region j nj 6; cj 

WLS 

Northeast 9 1632.50 1.177 
North Central 12 2658.52 1.503 
South 16 266.06 0.475 
West 12 1036.83 0.938 

Constant -277.577 132.40 -2.10 
X1 0.048 0.01 3.98 
x2 0.887 0.33 2.68 
x3 0.067 0.05 1.35 

-316.024 77.42 -4.08 
0.062 0.01 8.00 
0.874 0.20 4.41 
0.029 0.03 0.85 

Variable Coefficient s.e. t 1 Coefficient s.e. t 

R2 = 0.497 6 = 35.81 I R2 = 0.477 6 = 36.52 

To proceed with the analysis we must obtain the weights. They are computed 
from the OLS residuals by the method described above and appear in Table 7.6. 
The WLS regression results appear in Table 7.7 along with the OLS results for 
comparison. The standardized residuals from the transformed model are plotted in 
Figures 7.10 and 7.1 1 .  There is no pattern in the plot of the standardized residuals 
versus the fitted values (Figure 7.10). Also, from Figure 7.1 I, it appears that the 
spread of residuals by geographic region has evened out compared to Figures 7.4 
and 7.9. The WLS solution is preferred to the OLS solution. Referring to Table 
7.7, we see that the WLS solution does not fit the historical data as well as the 
OLS solution when considering 6 or R2 as indicators of goodness of fit.4 This 
result is expected since one of the important properties of OLS is that it provides a 
solution with minimum 6 or, equivalently, maximum R2. Our choice of the WLS 
solution is based on the pattern of the residuals. The difference in the scatter of 
the standardized residuals when plotted against Region (compare Figures 7.9 and 
7.11) shows that WLS has succeeded in taking account of heteroscedasticity. 

4Note that for comparative purposes, 6 for the WLS solution is computed as the square root of 

and Gt = -316.024 + 0.062 + 0.874 2 % ~  + 0.029 x23, are the fitted values computed in terms of 
the WLS estimated coefficients and the weights, c3; weights play no further role in the computation 
of 6. 



EDUCATION EXPENDITURE DATA 193 

. . .  
.- 

0. .. .. 

. .  
.# .. . 

* .  
* *  . .. . . 

+ . *. .' 
N -  
I 

I I I I I I I 

200 240 280 320 

Predicted 

Figure 7.10 Standardized residuals versus fitted values for WLS solution 
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Figure 7.11 Standardized residuals by geographic region for WLS solution. 
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It is not possible to make a precise test of significance because exact distribution 
theory for the two-stage procedure used to obtain the WLS solution has not been 
worked out. If the weights were known in advance rather than as estimates from 
data, then the statistical tests based on the WLS procedure would be exact. Of 
course, it is difficult to imagine a situation similar to the one being discussed where 
the weights would be known in advance. Nevertheless, based on the empirical 
analysis above, there is a clear suggestion that weighting is required. In addition, 
since less than 50% of the variation in Y has been explained (R2 = 0.477), the search 
for other factors must continue. It is suggested that the reader carry out an analysis 
of these data by introducing indicator variables for the four geographical regions. 
In any model with four categories, as has been pointed out in Chapter 5, only three 
indicator variables are needed. Heteroscedasticity can often be eliminated by the 
introduction of indicator variables corresponding to different subgroups in the data. 

7.5 FllTlNG A DOSE-RESPONSE RELATIONSHIP CURVE 

An important area for the application of weighted least squares analysis is the 
fitting of a linear regression line when the response variable Y is a proportion 
(values between zero and one). Consider the following situation: An experimenter 
can administer a stimulus at different levels. Subjects are assigned at random 
to different levels of the stimulus and for each subject a binary response is noted. 
From this set of observations, a relationship between the stimulus and the proportion 
responding to the stimulus is constructed. A very common example is in the field 
of pharmacology, in bioassay, where the levels of stimulus may represent different 
doses of a drug or poison, and the binary response is death or survival. Another 
example is the study of consumer behavior where the stimulus is the discount offered 
and the binary response is the purchase or nonpurchase of some merchandise. 

Suppose that a pesticide is tried at k different levels. At the j th level of dosage 
xj, let rJ be the number of insects dying out of a total nJ exposed ( j  = 1 ,2 ,  . . . , k). 
We want to estimate the relationship between dose and the proportion dying. The 
sample proportion p j  = r j / n j  is a binomial random variable, with mean value 7rJ 

and variance ~j (1 - 7rJ)/nJ, where 7rj  is the population probability of death for a 
subject receiving dose xj. The relationship between 7r and X is based on the notion 
that 

n- = f (XI, (7.10) 

where the function f(.) is increasing (or at least not decreasing) with X and is 
bounded between 0 and 1. The function should satisfy these properties because (1) 
7r being a probability is bounded between 0 and 1, and (2) if the pesticide is toxic, 
higher doses should decrease the chances of survival (or increase the chances for 
death) for a subject. These considerations effectively rule out the linear model 

7rj = a + p x j + & j ,  (7.11) 

because 7rj would be unbounded. 
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Figure 7.12 Logistic response function. 

Stimulus-response relationships are generally nonlinear. A nonlinear function 
which has been found to represent accurately the relationship between dose xJ and 
the proportion dying is 

,Po +P1 x, 
7rJ = (7.12) 1 + ePo+P1x:, * 

The relationship (7.12) is called the logistic response function and has the shape 
shown in Figure 7.12. It is seen that the logistic function is bounded between 0 and 
1, and is monotonic. Physical considerations based on concepts of threshold values 
provide a heuristic justification for the use of (7.12) to represent a stimulus-response 
relationship (Cox, 1989). 

The setup described above differs considerably from those of our other examples. 
In the present situation the experimenter has the control of dosages or stimuli and 
can use replication to estimate the variability of response at each dose level. This 
is a designed, experimental study, unlike the others, which were observational or 
nonexperimental. 

The objectives for this type of analysis are not only to determine the nature of 
dose-response relationship but also to estimate the dosages which induce specified 
levels of response. Of particular interest is the dosage that produces a response in 
50% of the population (median dose). 

The logistic model (sometimes called logit model) has been used extensively 
in biological and epidemiological work. For analyzing proportions from binary 
response data, it is a very appealing model and easy to fit. 

An alternative model in which the response function is represented by the cu- 
mulative distribution function of the normal probability distribution is also used. 
The cumulative curve of the normal distribution has a shape similar to that of the 
logistic function. This model is called theprobir model, and for details we refer the 
reader to Finney (1 964). 

Besides medicine and pharmacology, the logistic model has been used in risk 
analysis, learning theory, in the study of consumer behavior (choice models) and 
market promotion studies. 
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Since the response function in (7.12) is nonlinear, we can work with transformed 
variables. The transformation is chosen to make the response function linear. 
However, the transformed variables will have nonconstant variance. Then, we 
must use the weighted least squares methods for fitting the transformed data. 

A whole chapter (Chapter 12) is devoted to the discussion of logistic regression 
models, for we believe that they have important and varied practical applications. 
General questions regarding the suitability and fitting of logistic models are con- 
sidered there. 

EXERCISES 

7.1 

7.2 

7.3 

7.4 

7.5 

Repeat the analysis in Section 7.4 using the Education Expenditure Data in 
Table 5.12. 

Repeat the analysis in Section 7.4 using the Education Expenditure Data in 
Table 5.13. 

Compute the leverage values, the standardized residuals, Cook’s distance, 
and DFITS for the regression model relating Y to the three predictor variables 
X I ,  X,, and X s  in Table 7.3. Draw an appropriate graph for each of these 
measures. From the graph verify that Alaska and Utah are high leverage 
points, but only Alaska is an influential point. 

Using the Education Expenditure Data in Table 7.3, fit a linear regression 
model relating Y to the three predictor variables X I ,  Xa, and X3 plus indicator 
variables for the region. Compare the results of the fitted model with the WLS 
results obtained in Section 7.4. Test for the equality of regressions across 
regions. 

Repeat the previous exercise for the data in Table 5.12. 



CHAPTER 8 

THE PROBLEM OF CORRELATED 
ERRORS 

8.1 INTRODUCTION: AUTOCORRELATION 

One of the standard assumptions in the regression model is that the error terms ~i 
and ~ j ,  associated with the ith and j th observations, are uncorrelated. Correlation 
in the error terms suggests that there is additional information in the data that has 
not been exploited in the current model. When the observations have a natural 
sequential order, the correlation is referred to as autocorrelation. 

Autocorrelation may occur for several reasons. Adjacent residuals tend to be 
similar in both temporal and spatial dimensions. Successive residuals in economic 
time series tend to be positively correlated. Large positive errors are followed 
by other positive errors, and large negative errors are followed by other negative 
errors. Observations sampled from adjacent experimental plots or areas tend to have 
residuals that are correlated since they are affected by similar external conditions. 

The symptoms of autocorrelation may also appear as the result of a variable 
having been omitted from the right-hand side of the regression equation. If suc- 
cessive values of the omitted variable are correlated, the errors from the estimated 
model will appear to be correlated. When the variable is added to the equation, the 
apparent problem of autocorrelation disappears. The presence of autocorrelation 
has several effects on the analysis. These are summarized as follows: 

197 

Regression Analysis by Example, Fourth Edition. By Samprit Chatterjee and Ali S. Hadi 
Copyright @ 2006 John Wiley & Sons, Inc. 



198 THE PROBLEM OF CORRELATED ERRORS 

1. Least squares estimates of the regression coefficients are unbiased but are not 

2. The estimate of u2 and the standard errors of the regression coefficients may 
be seriously understated; that is, from the data the estimated standard errors 
would be much smaller than they actually are, giving a spurious impression 
of accuracy. 

efficient in the sense that they no longer have minimum variance. 

3. The confidence intervals and the various tests of significance commonly 
employed would no longer be strictly valid. 

The presence of autocorrelation can be a problem of serious concern for the pre- 
ceding reasons and should not be ignored. 

We distinguish between two types of autocorrelation and describe methods for 
dealing with each. The first type is only autocorrelation in appearance. It is due 
to the omission of a variable that should be in the model. Once this variable is 
uncovered, the autocorrelation problem is resolved. The second type of autocor- 
relation may be referred to as pure autocorrelation. The methods of correcting for 
pure autocorrelation involve a transformation of the data. Formal derivations of the 
methods can be found in Johnston (1984) and Kmenta (1986). 

8.2 CONSUMER EXPENDITURE AND MONEY STOCK 

Table 8.1 gives quarterly data from 1952 to 1956 on consumer expenditure (Y)  and 
the stock of money ( X ) ,  both measured in billions of current dollars for the United 
States. The data can be found in the book's Web site.' 

A simplified version of the quantity theory of money suggests a model given by 

(8.1) 

where PO and P1 are constants, E t  the error term. Economists are interested in 
estimating PI and its standard error; PI is called the multiplier and has crucial 
importance as an instrument in fiscal and monetary policy. Since the observations 
are ordered in time, it is reasonable to expect that autocorrelation may be present. 
A summary of the regression results is given in Table 8.2. 

The regression coefficients are significant; the standard error of the slope coeffi- 
cient is 0.1 15. For a unit change in the money supply the 95% confidence interval 
for the change in the aggregate consumer expenditure would be 2.30% 2.10 x 0.1 15 
= (2.06,2.54). The value of R2 indicates that roughly 96% of the variation in the 
consumer expenditure can be accounted for by the variation in money stock. The 
analysis would be complete if the basic regression assumptions were valid. To 
check on the model assumption, we examine the residuals. If there are indications 
that autocorrelation is present, the model should be reestimated after eliminating 
the autocorrelation. 

Yt = Po + P1.t + E t ,  
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Table 8.1 Consumer Expenditure and Money Stock 

Consumer Moneq 
Year Quarter Expenditure Stock 

1952 1 
2 
3 
4 

1953 1 
2 
3 
4 

1954 1 
2 

214.6 159.3 
217.7 161.2 
219.6 162.8 
227.2 164.6 
230.9 165.9 
233.3 167.9 
234.1 168.3 
232.3 169.7 
233.7 170.5 
236.5 171.6 

Consumer Money 
Year Quarter Expenditure Stock 

1954 3 
4 

1955 1 
2 
3 
4 

1956 1 
2 
3 
4 

238.7 
243.2 
249.4 
254.3 
260.9 
263.3 
265.6 
268.2 
270.4 
275.6 

173.9 
176.1 
178.0 
179.1 
180.2 
181.2 
181.6 
182.5 
183.3 
184.3 

Source: Friedman and Meiselman (1963), p. 266. 

Table 8.2 

Variable Coefficient s.e. t-test p-value 

Results When Consumer Expenditure Is Regressed on Money Stock, X 

Constant - 154.72 19.850 -7.79 < 0.0001 
X 2.30 0.115 20.10 < o.Ooo1 

n = 20 R2 = 0.957 R: = 0.955 8 = 3.983 d . f .  = 18 

For time series data a useful plot for analysis is the index plot (plot of the stan- 
dardized residuals versus time). The graph is given in Figure 8.1. The pattern of 
residuals is revealing and is characteristic of situations where the errors are corre- 
lated. Residuals of the same sign occur in clusters or bunches. The characteristic 
pattern would be that several successive residuals are positive, the next several are 
negative, and so on. From Figure 8.1 we see that the first seven residuals are posi- 
tive, the next seven negative, and the last six positive. This pattern suggests that the 
error terms in the model are correlated and some additional analysis is required. 

This visual impression can be formally confirmed by counting the number of 
runs in a plot of the signs of the residuals, the residuals taken in the order of the 
observations. These types of plots are called sequenceplots. In our present example 
the sequence plot of the signs of the residuals is 

+ + + + + + + - - - - - - - + + + + + +  
and it indicates three runs. With n1 residuals positive and r i z  residuals negative, 
under the hypothesis of randomness the expected number of runs p and its variance 
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Figure 8.1 Index plot of the standardized residuals. 

o2 would be 

2nlnz(2nln2 - n1- n2) 
g 2  = 

(n1 + n2>2(.1 + n2 - 1) . 

In our case n1 = 13,nz = 7, giving the expected number of runs to be 10.1 
and a standard deviation of 1.97. The observed number of runs is three. The 
deviation of 5.1 from the expected number of runs is more than twice the standard 
deviation, indicating a significant departure from randomness. This formal runs 
test procedure merely confirms the conclusion amved at visually that there is a 
pattern in the residuals. 

Many computer packages now have the runs test as an available option. This 
approximate runs test for confirmation can therefore be easily executed. The runs 
test as we have described it should not, however, be used for small values of n1 
and 722 (less than 10). For small values of n1 and 722 one needs exact tables 
of probability to judge significance. For more details on the runs test, the reader 
should refer to a book on nonparametric statistics such as Lehmann (1973, Gibbons 
(1993), and Hollander and Wollfe (1999). Besides the graphical analysis, which 
can be confirmed by the runs test, autocorrelated errors can also be detected by the 
Durbin-Watson statistic. 

8.3 DURBIN-WATSON STATISTIC 

The Durbin-Watson statistic is the basis of a popular test of autocorrelation in 
regression analysis. The test is based on the assumption that successive errors are 
correlated, namely, 

E t  = PEt-1 +w, I p I< 1, (8 .2)  
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where p is the correlation coefficient between ~t and E t - 1 ,  and wt is normally 
independently distributed with zero mean and constant variance. In this case, the 
errors are said to have first-order autoregressive structure or$rst-order autocorre- 
Zution. In most situations the error E t  may have a much more complex correlation 
structure. The first-order dependency structure, given in (8.2), is taken as a simple 
approximation to the actual error structure. 

The Durbin-Watson statistic is defined as 

where ei is the ith ordinary least squares (OLS) residual. The statistics d is used 
for testing the null hypothesis Ho : p = 0 against an alternative H I  : p > 0. Note 
that when p = 0 in Equation (8.2), the E'S are uncorrelated. 

Since p is unknown, we estimate the parameter p by b, where 

An approximate relationship between d and b is 

d A 2(1 - @), 

(A means approximately equal to) showing that d has a range of 0 to 4. Since b is 
an estimate of p, it is clear that d is close to 2 when p = 0 and near to zero when 
p = 1. The closer the sample value of d to 2, the firmer the evidence that there is 
no autocorrelation present in the error. Evidence of autocorrelation is indicated by 
the deviation of d from 2. The formal test for positive autocorrelation operates as 
follows: Calculate the sample statistic d. Then, if 

1. d < dL,  reject Ho. 

2. d > d u ,  do not reject Ho. 

3. dL < d < dU, the test is inconclusive. 

The values of ( d L , d u )  for different percentage poin ; have been abuk ed by 
Durbin and Watson (1951). A table is provided in the Appendix at the end of the 
book (Tables A.6 and A.7). 

Tests for negative autocorrelation are seldom performed. If, however, a test is 
desired, then instead of working with d ,  one works with (4 - d )  and follows the 
same procedure as for the testing of positive autocorrelation. 

In our Money Stock and Consumer Expenditure data, the value of d is 0.328. 
From Table A.6, with n = 20, p = 1 (the number of predictors), and a significance 
level of 0.05, we have dL = 1.20 and d u  = 1.41. Since d < dL,  we conclude 
that the value of d is significant at the 5% level and HO is rejected, showing that 
autocorrelation is present. This essentially reconfirms our earlier conclusion, which 
was amved at by looking at the index plot of the residuals. 
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If d had been larger than du = 1.41, autocorrelation would not be a problem 
and no further analysis is needed. When d L  < d < du, additional analysis of the 
equation is optional. We suggest that in cases where the Durbin-Watson statistic 
lies in the inconclusive region, reestimate the equation using the methods described 
below to see if any major changes occur. 

As pointed out earlier, the presence of correlated errors distorts estimates of 
standard errors, confidence intervals, and statistical tests, and therefore we should 
reestimate the equation. When autocorrelated errors are indicated, two approaches 
may be followed. These are (1) work with transformed variables, or (2) introduce 
additional variables that have time-ordered effects. We illustrate the first approach 
with the Money Stock data. The second approach is illustrated in Section 8.6. 

8.4 REMOVAL OF AUTOCORRELATION BY TRANSFORMATION 

When the residual plots and Durbin-Watson statistic indicate the presence of cor- 
related errors, the estimated regression equation should be refitted taking the au- 
tocorrelation into account. One method for adjusting the model is the use of a 
transformation that involves the unknown autocorrelation parameter, p. The in- 
troduction of p causes the model to be nonlinear. The direct application of least 
squares is not possible. However, there are a number of procedures that may be 
used to circumvent the nonlinearity (Johnston, 1984). We use the method due to 
Cochrane and Orcutt ( 1  949). 

From model (8.1), Et and Et-l can be expressed as 

Et ’ = Yt - Po - PlXt, 
&t-1 = Yt-1 - Po - P1.t-1. 

Substituting these in (8.2), we obtain 

yt - Po - PlXt = P(Yt-1 - Po - P1.t-1) + Wt. 
Rearranging terms in the above equation, we get 

(8.4) 
Yt -PYt-1 = PO(1 - p )  + Pl(.t -pxt-1) + W t ,  

Yt* = Po* + P; xt* + W t ,  

where 

Y; = Yt - PYt-1, 
x; = xt - pxt-1, 

P; = P O ( 1  - P I ,  

P; = P1. 

Since the w’s are uncorrelated, Equation (8.4) represents a linear model with uncor- 
related errors. This suggests that we run an ordinary least squares regression using 
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y: as a response variable and xz as a predictor. The estimates of the parameters in 
the original equations are 

Therefore, when the errors in model (8.1) have an autoregressive structure as 
given in (8.2), we can transform both sides of the equation and obtain transformed 
variables which satisfy the assumption of uncorrelated errors. 

The value of p is unknown and has to be estimated from the data. Cochrane 
and Orcutt (1949) have proposed an iterative procedure. The procedure operates as 
follows: 

1 .  Compute the OLS estimates of PO and PI by fitting model (8.1) to the data. 

2. Calculate the residuals and, from the residuals, estimate p using (8.3). 

3. Fit the equation given in (8.4) using the variables yt - byt-1 and xt - bxt-1 
as response and predictor variables, respectively, and obtain ,& and ,& using 
(8.5). 

4. Examine the residuals of the newly fitted equation. If the new residuals con- 
tinue to show autocorrelation, repeat the entire procedure using the estimates 
bo and $1 as estimates of PO and P1 instead of the original least squares 
estimates. On the other hand, if the new residuals show no autocorrelation, 
the procedure is terminated and the fitted equation for the original data is: 

i t  = bo + h t .  

As a practical rule we suggest that if the first application of Cochrane-Orcutt pro- 
cedure does not yield non-autocorrelated residuals, one should look for alternative 
methods of removing autocorrelation. We apply the Cochrane-Orcutt procedure to 
the data given in Table 8.1. 

The d value for the original data is 0.328, which is highly significant. The value 
of fi  is 0.751. On fitting the regression equation to the variables (yt - 0 . 7 5 1 ~ ~ - ~ )  
and (xt - 0.751xt-1), we have a d value of 1.43. The value of du for n = 19 and 
p = 1 is 1.40 at the 5% level. Consequently, Ho : p = 0 is not rejected.2 The fitted 
equation is 

5; = -53.70 + 2 . 6 4 ~ f ,  

which, using (8.5), the fitted equation in terms of the original variables is 

& = -215.31 + 2.64xt. 

'The significance level of the test is not exact because /j was used in the estimation process. The d 
value of 1.43 may be viewed as an index of autocorrelation that indicates an improvement from the 
previous value of 0.328. 
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method. 

Index plot of standardized residuals after one iteration of the Cochrane-Orcutt 

The estimated standard error for the slope is 0.307, as opposed to the least squares 
estimate of the original equation, which was yt = -154.7 + 2 . 3 ~ ~  with a standard 
error for the slope of 0.1 15. The newly estimated standard error is larger by a factor 
of almost 3. The residual plots for the fitted equation of the transformed variables 
are shown in Figure 8.2. The residual plots show less clustering of the adjacent 
residuals by sign, and the Cochrane-Orcutt procedure has worked to our advantage. 

8.5 ITERATIVE ESTIMATION WITH AUTOCORRELATED ERRORS 

One advantage of the Cochrane-Orcutt procedure is that estimates of the parameters 
are obtained using standard least squares computations. Although two stages are 
required, the procedure is relatively simple. A more direct approach is to try to 
estimate values of p, Po, and ,01 simultaneously. The model is formulated as before 
requiring the construction of transformed variables yt - pyt-l and zt - pzt-1. 
Parameter estimates are obtained by minimizing the sum of squared errors, which 
is given as 

n 
2 S(P0, P1, p) = C[Yt - PYt-1 - P O P  - P> - P l ( 5 t  - PZt-l)] . 

t=2 

If the value of p were known, PO and ,f31 would be easily obtained by regressing 
yt - pyt-1 on xt - pxt-1. Final estimates are obtained by searching through many 
values of p until a combination of p, PO and is found that minimizes S(p, PO, PI) .  
The search could be accomplished using a standard regression computer program, 
but the process can be much more efficient with an automated search procedure. 
This method is due to Hildreth and Lu (1  960). For a discussion of the estimation 
procedure and properties of the estimates obtained, see Kmenta (1 986). 

Once the minimizing values, say p ,  PO, and PI, have been obtained, the standard 
error for the estimate of PI can be approximated using a version of Equation (2.25) 
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Table 8.3 Comparison of Regression Estimates 

Method P Po bl s . 4 1 )  

OLS - - 154.700 2.300 0.1 15 
Cochrane-Orcutt 0.874 -324.440 2.758 0.444 
Iterative 0.824 -235.509 2.753 0.436 

of Chapter 2. The formula is used as though yt -pyt-1 were regressed on ~t -pzt-1 
with p known; that is, the estimated standard error of ,& is 

- 6 
s.e.(,&) = 

JC[.t - p.t-1 - z(1 - P)12  ’ 
where 6 is the square root of S(p, ,&, ,&)/(n-2). When adequate computing facil- 
ities are available such that the iterative computations are easy to accomplish, then 
the latter method is recommended. However, it is not expected that the estimates 
and standard errors for the iterative method and the two-stage Cochrane-Orcutt 
method would be appreciably different. The estimates from the three methods, 
OLS, Cochrane-Orcutt, and iterative for the data of Table 8.1, are given in Table 
8.3 for comparison. 

8.6 AUTOCORRELATION AND MISSING VARIABLES 

The characteristics of the regression residuals that suggest autocorrelation may also 
be indicative of other aspects of faulty model specification. In the preceding exam- 
ple, the index plot of residuals and the statistical test based on the Durbin-Watson 
statistic were used to conclude that the residuals are autocorrelated. Autocorre- 
lation is only one of a number of possible explanations for the clustered type of 
residual plot or low Durbin-Watson value. 

In general, a plot of residuals versus any one of the list of potential predictor 
variables may uncover additional information that can be used to further explain 
variation in the response variable. When an index plot of residuals shows a pattern 
of the type described in the preceding example, it is reasonable to suspect that it 
may be due to the omission of variables that change over time. Certainly, when 
the residuals appear in clusters alternating above and below the mean value line 
of zero, when the estimated autocorrelation coefficient is large and the Durbin- 
Watson statistic is significant, it would appear that the presence of autocorrelation 
is overwhelmingly supported. We shall see that this conclusion may be incorrect. 
The observed symptoms would be better interpreted initially as a general indication 
of some form of model misspecification. 

All possible correction procedures should be considered. In fact, it is always 
better to explore fully the possibility of some additional predictor variables before 
yielding to an autoregressive model for the error structure. It is more satisfying and 
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probably more useful to be able to understand the source of apparent autocorrelation 
in terms of an additional variable. The marginal effect of that variable can then 
be estimated and used in an informative way. The transformations that correct for 
pure autocorrelation may be viewed as an action of last resort. 

8.7 ANALYSIS OF HOUSING STARTS 

As an example of a situation where autocorrelation appears artificially because of the 
omission of another predictor variable, consider the following project undertaken 
by a midwestern construction industry association. The association wants to have 
a better understanding of the relationship between housing starts and population 
growth. They are interested in being able to forecast construction activity. Their 
approach is to develop annual data on regional housing starts and try to relate these 
data to potential home buyers in the region. Realizing that it is almost impossible 
to measure the number of potential house buyers accurately, the researchers settled 
for the size of the 22- to 44-year-old population group in the region as a variable 
that reflects the size of potential home buyers. With some diligent work they were 
able to bring together 25 years of historical data for the region (see Table 8.4). The 
data in Table 8.4 can be obtained from the book’s Web site. Their goal was to get 
a simple regression relationship between housing starts and population, 

Ht = Po + PlPt + E t .  

Then using methods that they developed for projecting population changes, they 
would be able to estimate corresponding changes in the requirements for new 
houses. The construction association was aware that the relationship between 
population and housing starts could be very complex. It is even reasonable to 
suggest that housing affects population growth (by migration) instead of the other 
way around. Although the proposed model is undoubtedly naive, it serves a useful 
purpose as a starting point for their analysis. 

Analysis 

The regression results from fitting model (8.6) to the 25 years of data are given in 
Table 8.5. The proportion of variation in H accounted for by the variability in P 
is R2 = 0.925. We also see that an increase in population of 1 million leads to 
an increase in housing starts of about 71 ,OOO. The Durbin-Watson statistic and the 
index plot of the residuals (Figure 8.3) suggest strong autocorrelation. However, 
it is fairly simple to conjecture about other variables that may further explain 
housing starts and could be responsible for the appearance of autocorrelation. 
These variables include the unemployment rate, social trends in marriage and family 
formation, government programs in housing, and the availabiIity of construction 
and mortgage funds. The first choice was an index that measures the availability 
of mortgage money for the region. Adding that variable to the equation the model 
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Table 8.4 
Availability for Mortgage Money Index (D) 

Row H P D 

Data for Housing Starts ( H ) ,  Population Size ( P )  in millions, and 

~~ ~ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

0.09090 
0.08942 
0.09755 
0.09550 
0.09678 
0.10327 
0.105 13 
0.10840 
0.10822 
0.10741 
0.10751 
0.1 I429 
0.1 1048 
0.1 1604 
0.1 1688 
0.12044 
0.12125 
0.12080 
0.12368 
0.12679 
0.12996 
0.13445 
0.13325 
0.13863 
0.13964 

2.200 
2.222 
2.244 
2.267 
2.280 
2.289 
2.289 
2.290 
2.299 
2.300 
2.300 
2.340 
2.386 
2.433 
2.482 
2.532 
2.580 
2.605 
2.63 1 
2.658 
2.684 
2.71 1 
2.738 
2.766 
2.793 

0.03635 
0.03345 
0.03870 
0.03745 
0.04063 
0.04237 
0.047 15 
0.04883 
0.04836 
0.05 160 
0.04879 
0.05523 
0.04770 
0.05282 
0.05473 
0.0553 1 
0.05898 
0.06267 
0.05462 
0.05672 
0.06674 
0.0645 1 
0.063 13 
0.06573 
0.07229 

becomes 

Ht = Po + PlPt + P2Dt + E t .  

The introduction of the additional variable has the effect of removing autocorre- 
lation. From Table 8.6 we see that the Durbin-Watson statistic has the new value 
1.852, well into the acceptable region. The index plot of the residuals (Figure 8.4) 
is also improved. The regression coefficients and their corresponding t-values show 
that there is a significant population effect but that it was overstated by a factor of 
more than 2 in the first equation. In a certain sense, the effect of changes in the 
availability of mortgage money for a fixed level of population is more important 
than a similar change in population. 

If each variable in the regression equation is replaced by the standardized version 
of the variable (the variables transformed so as to have mean 0, and unit variance), 
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Figure 8.4 
Dt for the Housing Starts data. 

Index plot of the standardized residuals from the regression of Ht on Pi and 



ANALYSIS OF HOUSING STARTS 209 

Table 8.5 Regression on Housing Starts ( H )  Versus Population ( P )  

Variable Coefficient s.e. t-test p-value 

Constant -0.0609 0.0104 -5.85 < 0.0001 
P 0.07 14 0.0042 16.90 < o.oO01 

n = 25 R2 = 0.925 d = 0.621 6 = 0.0041 d.f .=23 

Table 8.6 
Index (D) 

Results of the Regression of Housing Starts ( H )  on Population ( P )  and 

Variable Coefficient s.e. t-test p-value 

Constant -0.0104 0.01 03 -1.01 0.3220 
P 0.0347 0.0064 5.39 < o.Ooo1 
D 0.7605 0.1216 6.25 < 0.0001 

n = 25 R2 = 0.973 d = 1.85 8 = 0.0025 d.f .=22 

the resulting regression equation is 

H t  = 0.4668Pt + 0.5413Dt , 

where H denotes the standardized value of H ,  H = ( H  - H ) / s H .  A unit increase 
in the standardized value of Pt is worth an additional 0.4668 to the standardized 
value of Ht;  that is, if the population increases by standard deviation then Ht 
increases by 0.4668 standard deviation. Similarly, if Dt increases by 1 standard 
deviation Ht increases by 0.5413 standard deviation. Therefore, in terms of the 
standardized variables, the mortgage index is more important (has a larger effect) 
than population size. 

The example on housing starts illustrates two important points. First, a large 
value of R2 does not imply that the data have been fitted and explained well. Any 
pair of variables that show trends over time are usually highly correlated. A large 
value of R2 does not necessarily confirm that the relationship between the two 
variables has been adequately characterized. Second, the Durbin-Watson statistic 
as well as the residual plots may indicate the presence of autocorrelation among 
the errors when, in fact, the errors are independent but the omission of a variable or 
variables has given rise to the observed situation. Even though the Durbin-Watson 
statistic was designed to detect first-order autocorrelation it can have a significant 
value when some other model assumptions are violated such as misspecification 
of the variables to be included in the model. In general, a significant value of the 
Durbin-Watson statistic should be interpreted as an indication that a problem exists, 
and both the possibility of a missing variable or the presence of autocorrelation 
should be considered. 
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Table 8.7 Ski Sales Versus PDI 

Variable Coefficient s.e. t-test p-value 

Constant 12.3921 2.539 4.88 < 0.0001 
PDI 0.1979 0.016 12.40 < 0.0001 

n = 40 R2 = 0.801 d = 1.968 6 = 3.019 d . f .=38  

8.8 LIMITATIONS OF DURBIN-WATSON STATISTIC 

In the previous examples on Expenditure versus Money Stock and Housing Starts 
versus Population Size the residuals from the initial regression equations indicated 
model misspecifications associated with time dependence. In both cases the Durbin- 
Watson statistic was small enough to conclude that positive autocorrelation was 
present. The index plot of residuals further confirmed the presence of a time- 
dependent error term. In each of the two problems the presence of autocorrelation 
was dealt with differently. In one case (Housing Starts) an additional variable 
was uncovered that had been responsible for the appearance of autocorrelation, 
and in the other case (Money Stock) the Cochrane-Orcutt method was used to 
deal with what was perceived as pure autocorrelation. It should be noted that the 
time dependence observed in the residuals in both cases is a first-order type of 
dependence. Both the Durbin-Watson statistic and the pattern of residuals indicate 
dependence between residuals in adjacent time periods. If the pattern of time 
dependence is other than first order, the plot of residuals will still be informative. 
However, the Durbin-Watson statistic is not designed to measure higher-order time 
dependence and may not yield much valuable information. 

As an example we consider the efforts of a company that produces and markets 
ski equipment in the United States to obtain a simple aggregate relationship of 
quarterly sales to some leading economic indicator. The indicator chosen is personal 
disposable income, PDI, in billions of current dollars. The initial model is 

St = Po + PlPDIt + E t ,  

where St is ski sales in period t in millions of dollars and PDIt is the personal 
disposable income for the same period. Data for 10 years (40 quarters) are available 
(Table 5.1 1). The data can be obtained from the book’s Web site. The regression 
output is in Table 8.7 and the index plot of residuals is given in Figure 8.6. 

At first glance the results in Table 8.7 are encouraging. The proportion of 
variation in sales accounted for by PDI is 0.80. The marginal contribution of an 
additional dollar unit of PDI to sales is between $165,420 and $230,380 $1 = 
0.1979) with a confidence coefficient of 95%. In addition, the Durbin-Watson 
statistic is 1.968, indicating no first-order autocorrelation. 

It should be expected that PDI would explain a large proportion of the variation 
in sales since both variables are increasing over time. Therefore, although the R2 
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an open circle and Quarters 2 and 3 are indicated by a solid circle.) 

Index plot of the standardized residuals. (Quarters 1 and 4 are indicated by 

value of 0.80 is good, it should not be taken as a final evaluation of the model. Also, 
the Durbin-Watson value is in the acceptable range, but it is clear from Figure 8.5 
that there is some sort of time dependence of the residuals. We notice that residuals 
from the first and fourth quarters are positive, while residuals from the second and 
third quarters are negative for all the years. Since skiing activities are affected by 
weather conditions, we suspect that a seasonal effect has been overlooked. The 
pattern of residuals suggests that there are two seasons that have some bearing on 
ski sales: the second and third quarters, which correspond to the warm weather 
season, and the fourth and first quarters, which correspond to the winter season, 
when skiing is in full progress. This seasonal effect can be simply characterized 
by defining an indicator (dummy) variable that takes the value 1 for each winter 
quarter and is set equal to zero for each summer quarter (see Chapter 5). The 
expanded data set is listed in Table 8.8 and can be obtained from the book's Web 
site. 

8.9 INDICATOR VARIABLES TO REMOVE SEASONALITY 

Using the additional seasonal variable, the model is expanded to be 

st = Po + PlPDIt + P2Zt + E t ,  (8.7) 

where 2, is the zero-one variable described above and p2 is a parameter that 
measures the seasonal effect. Note that the model in (8.7) can be represented by 
the two models (one for the cold weather quarters where 2, = 1) and the other for 
the warm quarters where Zt = 0): 

Winter season: St = (Po +p2) + PDIt + ~ t ,  

Summer season: St = PO + PDIt + ~ t .  

Thus, the model represents the assumption that sales can be approximated by a 
linear function of PDI, in one line for the winter season and one for the summer 
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Table 8.8 
1964-1973 

Disposable Income and Ski Sales, and Seasonal Variables for Years 

Quarter Sales PDI Season 

41/64 
42/64 
43/64 
44/64 
41/65 
42/65 
43/65 
44/65 
Q 1/66 
42/66 
43/66 
44/66 
41/67 
42/67 
43/67 
44/67 
Q 1/68 
42/68 
43/68 
44/68 
41/69 
42/69 
43/69 
44/69 
41/70 
42/70 
43/70 
44/70 
41/71 
4217 1 
4317 1 
4417 1 
41/72 
42/72 
43/72 
44/72 
41/73 
42/73 
43/73 
44/73 

37.0 
33.5 
30.8 
37.9 
37.4 
31.6 
34.0 
38.1 
40.0 
35.0 
34.9 
40.2 
41.9 
34.7 
38.8 
43.7 
44.2 
40.4 
38.4 
45.4 
44.9 
41.6 
44.0 
48.1 
49.7 
43.9 
41.6 
51.0 
52.0 
46.2 
47.1 
52.7 
52.2 
47.0 
47.8 
52.8 
54.1 
49.5 
49.5 
54.3 

109 
115 
113 
116 
118 
1 20 
122 
124 
126 
128 
130 
132 
133 
135 
138 
140 
143 
147 
148 
151 
153 
156 
160 
163 
166 
171 
174 
175 
180 
184 
187 
189 
191 
193 
194 
196 
199 
20 1 
202 
204 

1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
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Figure 8.6 Model for Ski Sales and PDI adjusted for season. 

Table 8.9 Ski Sales Versus PDI and Seasonal Variables 

Variable Coefficient s.e. t-test p-value 

Constant 9.5402 0.9748 9.79 0.3220 
PDI 0.1987 0.0060 32.90 < o.Ooo1 
z 5.4643 0.3597 15.20 < o.Ooo1 

n = 40 R2 = 0.972 d = 1.772 b = 1.137 d. f. = 37 

season. The lines are parallel; that is, the marginal effect of changes in PDI is the 
same in both seasons. The level of sales, as reflected by the intercept, is different 
in each season (Figure 8.6). 

The regression results are summarized in Table 8.9 and the index plot of the 
standardized residuals is shown in Figure 8.7. We see that all indications of the 
seasonal pattern have been removed. Furthermore, the precision of the estimated 
marginal effect of PDI increased. The confidence interval is now $186,520 to 
$210,880. Also, the seasonal effect has been quantified and we can say that for 
a fixed level of PDI the winter season brings between $4,734,109 and $6,194,491 
over the summer season (with 95% confidence). 

The ski data illustrate two important points concerning autocorrelation. First, the 
Durbin-Watson statistic is only sensitive to correlated errors when the correlation 
occurs between adjacent observations (first-order autocomelation). In the ski data 
the first-order correlation is -0.001. The second-, fourth-, sixth-, and eighth-order 
correlations are -0.81, 0.76, -0.71, and 0.73, respectively. The Durbin-Watson 
test does not show significance in this case. There are other tests that may be used 
for the detection of higher-order autocorrelations (see Box and Pierce ( 1  970)). But 
in all cases, the graph of residuals will show the presence of time dependence in 
the error term when it exists. 
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Figure 8.7 Index plot of the standardized residuals with seasonal variables (quarters 
indicated). (Quarters 1 and 4 are indicated by an open circle and Quarters 2 and 3 are 
indicated by a solid circle.) 

Second, when autocorrelation is indicated the model should be refitted. Often 
the autocorrelation appears because a time-dependent variable is missing from 
the model. The inclusion of the omitted variable often removes the observed 
autocorrelation. Sometimes, however, no such variable is present. Then one has to 
make a differencing type of transformation on the original variables to remove the 
autocomelati on. 

If the observations are not ordered in time, the Durbin-Watson statistic is not 
strictly relevant. The statistic may still, however, be a useful diagnostic tool. If 
the data are ordered by an extraneous criterion, for example, an alphabetic listing, 
the value of the Durbin-Watson statistic should be near 2.0. Small values are 
suspicious, and the data should be scrutinized very carefully. 

Many data sets are ordered on a criterion that may be relevant to the study. A list 
of cities or companies may be ordered by size. A low value of the Durbin-Watson 
statistic would indicate the presence of a significant size effect. A measure of size 
should therefore be included as a predictor variable. Differencing or Cochrane- 
Orcutt type of differencing would not be appropriate under these conditions. 

8.10 REGRESSING TWO TIME SERIES 

The data sets analyzed in this chapter all have the common characteristic that they 
are time series data (i.e., the observations arise in successive periods of time). This 
is quite unlike the data sets studied in previous chapters (a notable exception being 
the bacteria data in Chapter 6) ,  where all the observations are generated at the same 
point in time. The observations in these examples were contemporaneous and gave 
rise to cross-sectional data. When the observations are generated simultaneously 
(and relate to a single time period), we have cross-sectional data. The contrast 
between time series and cross-sectional data can be seen by comparing the ski sales 
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data discussed in this chapter (data arising sequentially in time), and the supervisor 
performance data in Section 3.3, where all the data were collected in an attitude 
survey and relate to one historical point in time. 

Regression analysis of one time series on another is performed extensively in 
economics, business, public health, and other social sciences. There are some 
special features in time series data that are not present in cross-sectional data. We 
draw attention to these features and suggest possible techniques for handling them. 

The concept of autocorrelation is not relevant in cross-sectional data. The order- 
ing of the observations is often arbitrary. Consequently, the correlation of adjacent 
residuals is an artifact of the organization of the data. For time series data, however, 
autocorrelation is often a significant factor. The presence of autocorrelation shows 
that there are hidden structures in the data (often time related) which have not been 
detected. In addition, most time series data exhibit seasonality, and an investigator 
should look for seasonal patterns. A regular time pattern in the residuals (as in the 
ski data) will often indicate the presence of seasonality. For quarterly or monthly 
data, introduction of indicator variables, as has been pointed out, is a satisfactory 
solution. For quarterly data, four indicator variables would be needed but only 
three used in the analysis (see the discussion in Chapter 4). For monthly data, we 
will need 12 indicator variables but use only 1 1 ,  to avoid problems of collinearity 
(this is discussed in Chapter 5). Not all of the indicator variables will be significant 
and some of them may well be deleted in the final stages of the analysis. 

In attempting to find a relationship between yt and xlt, 2 2 t ,  . . . , xpt one may 
expand the set of predictor variables by including lagged values of the predictor 
variables. A model such as 

is meaningful in an analysis of time series data but not with cross-sectional data. 
The model given above implies that the value of Y in a given period is affected 
not only by the values of XI and X2 of that period but also by the value of 
X I  in the preceding period (i.e., there is a lingering effect of X I  on Y for one 
period). Variables lagged by more than one period are also possibilities and could 
be included in the set of predictor variables. 

Time series data are also likely to contain trends. Data in which time trends 
are likely to occur are often analyzed by including variables that are direct func- 
tions of time (t) .  Variables such as t and t2 are included in the list of predictor 
variables. They are used to account for possible linear or quadratic trend. Simple 
first differencing (yt - yt-I), or more complex lagging of the type (yt - aytPl)  
as in the Cochrane-Orcutt procedure, are also possibilities. For a fuller discussion, 
the reader should consult a book on time series analysis such as Shumway (1988), 
Hamilton (1 994). 

To summarize, when performing regression analysis with time series data the 
analyst should be watchful for autocorrelation and seasonal effects, which are often 
present in the data. The possibility of using lagged predictor variables should also 
be explored. 
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EXERCISES 

8.1 Fit model (8.6) to the data in Table 8.4. 

(a) Compute the Durbin-Watson statistic d. What conclusion regarding the 
presence of autocorrelation would you draw from d? 

(b) Compare the number of runs to their expected value and standard devia- 
tion when fitting model (8.6) to the data in Table 8.4. What conclusion 
regarding the presence of autocorrelation would you draw from this com- 
parison? 

8.2 Oil Production Data: Refer to the oil production data in Table 6.17. The index 
plot of the residuals obtained after fitting a linear regression of log(0IL) on 
Year show a clear cyclical pattern. 

(a) Compute the Durbin-Watson statistic d. What conclusion regarding the 
presence of autocorrelation would you draw from d? 

(b) Compare the number of runs to their expected value and standard devi- 
ation. What conclusion regarding the presence of autocorrelation would 
you draw from this comparison? 

8.3 Refer to the Presidential Election Data in Table 5.17. Since the data come 
over time (for 1916-1996 election years), one might suspect the presence of 
the autocorrelation problem when fitting the model in (5.1 1) to the data. 
(a) Do you agree? Explain. 

(b) Would adding a time trend (e.g., year) as an additional predictor variable 

8.4 Dow Jones Industrial Average (DJIA): Tables 8.10 and 8.1 1 contain the values 
of the daily DJIA for all the trading days in 1996. The data can be found in 
the book’s Web site.3 DJIA is a very popular financial index and is meant to 
reflect the level of stock prices in the New York Stock Exchange. The Index 
is composed of 30 stocks. The variable Day denotes the trading day of the 
year. There were 262 trading days in 1996, and as such the variable Day goes 
from 1 to 262. 
(a) Fit a linear regression model connecting DJIA with Day using all 262 

trading days in 1996. Is the linear trend model adequate? Examine the 
residuals for time dependencies. 

(b) Regress DJIA(,) against DJIA(t-l), that is, regress DJIA against its own 
value lagged by one period. Is this an adequate model? Are there any 
evidences of autocorrelation in the residuals? 

(c) The variability (volatility) of the daily DJIA is large, and to accommodate 
this phenomenon the analysis is carried out on the logarithm of DJIA. 

improve or exacerbate the autocorrelation? Explain. 

http://www.ilr.corneIl.eduThadi/RABE4 
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Table 8.10 DJIA Data for the First Six Months of 1996 

Day Date DJIA 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

1/1/96 5117.12 
1/2/96 5177.45 
1/3/96 5194.07 
1/4/96 5173.84 
1/5/96 5 18 1.43 
1/8/96 5197.68 
1/9/96 5130.13 
1/10/96 5032.94 
111 1/96 5065.10 
1/12/96 5061.12 
1/15/96 5043.78 
1/16/96 5088.22 
1/17/96 5066.90 
1/18/96 5124.35 
1/19/96 5184.68 
1/22/96 5219.36 
1/23/96 5192.27 
1/24/96 5242.84 
1/25/96 5216.83 
1/26/96 5271.75 
1/29/96 5304.98 
1/30/96 5381.21 
1/31/96 5395.30 
2/1/96 5405.06 
2/2/96 5373.99 
2/5/96 5407.59 
2/6/96 5459.61 
2/7/96 5492.12 
2/8/96 5539.45 
2/9/96 5541.62 
2/12/96 5600.15 
2/13/96 5601.23 
2/14/96 5579.55 
2/15/96 5551.37 
2/16/96 5503.32 
2/19/96 5503.32 
2120196 5458.53 
2/21/96 5515.97 
2/22/96 5608.46 
2/23/96 5630.49 
2/26/96 5565.10 
2/27/96 5549.21 
2/28/96 5506.21 
2/29/96 5485.62 

Day Date DJIA 

45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 

3/1/96 5536.56 
3/4/96 5600.15 
3/5/96 5642.42 
3/6/96 5629.77 
3/7/96 5641.69 
3/8/96 5470.45 

3/11/96 5581.00 
3/12/96 5583.89 
3/13/96 5568.72 
3/14/96 5586.06 
3/15/96 5584.97 
3/18/96 5683.60 
3/19/96 5669.51 
3120196 5655.42 
3/21/96 5626.88 
3/22/96 5636.64 
3/25/96 5643.86 
3/26/96 5670.60 
3/27/96 5626.88 
3/28/96 5630.85 
3/29/96 5587.14 
4/1/96 5637.72 
4/2/96 567 1.68 
4/3/96 5689.74 
4/4/96 5682.88 
4/5/96 5682.88 
4/8/96 5594.37 
4/9/96 5560.41 
4110196 5485.98 
411 1/96 5487.07 
4/12/96 5532.59 
4/15/96 5592.92 
4/16/96 5620.02 
4/17/96 5549.93 
4/18/96 5551.74 
4/19/96 5535.48 
4/22/96 5564.74 
4/23/96 5588.59 
4/24/96 5553.90 
4/25/96 5566.91 
4/26/96 5567.99 
4/29/96 5573.41 
4130196 5569.08 
5/1/96 5575.22 

Day Date DJIA 

89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
1 05 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 

5/2/96 5498.27 
5/3/96 5478.03 
5/6/96 5464.3 1 
5/7/96 5420.95 
5/8/96 5474.06 
5/9/96 5475.14 

5110196 5518.14 
5/13/96 5582.60 
5/14/96 5624.1 1 
5/15/96 5625.44 
5/16/96 5635.05 
5/17/96 5687.50 
5120196 5748.82 
5/21/96 5736.26 
5/22/96 5178.00 
5/23/96 5762.12 
5/24/96 5762.86 
5/27/96 5762.86 
5/28/96 5709.67 
5/29/96 5673.83 
5130196 5693.41 
5/31/96 5643.18 
6/3/96 5624.7 1 
6/4/96 5665.71 
6/5/96 5697.48 
6/6/96 5667.19 
6/7/96 5697.1 1 

6110196 5687.87 
611 1196 5668.66 
6/12/96 5668.29 
6/13/96 5657.95 
6/14/96 5649.45 
6/17/96 5652.78 
6/18/96 5628.03 
6/19/96 5648.35 
6120196 5659.43 
6/21/96 5705.23 
6/24/96 5717.79 
6/25/96 57 19.21 
6/26/96 5682.70 
6/27/96 5677.53 
6/28/96 5654.63 
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Table 8.11 DJIA Data for the Second Six Months of 1996 

Date 

131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 

71 1 196 
7/2/96 
7/3/96 
7/4/96 
7/5/96 
7/8/96 
7/9/96 
71 1 0196 
711 1/96 
71 12/96 
7/15/96 
71 16/96 
71 17/96 
71 18/96 
7/19/96 
7/22/96 
7/23/96 
7/24/96 
7/25/96 
7/26/96 
7/29/96 
7130196 
713 1 196 
81 1 196 
8/2/96 
8/5/96 
8/6/96 
8/7/96 
8/8/96 
8/9/96 
81 12/96 
81 13/96 
81 1 4/96 
81 15/96 
81 1 6/96 
81 19/96 
8120196 
8/21/96 
8/22/96 
8/23/96 
8/26/96 
8/27/96 
8/28/96 
8/29/96 

DJIA 

5729.98 
5720.38 
5703.02 
5 703.02 
5588.14 
5550.83 
558 1.86 
5603.65 
5520.50 
5510.56 
5349.51 
5358.76 
5376.88 
5464.18 
5426.82 
5390.94 
5346.55 
5354.69 
5422.01 
547 3.06 
5434.59 
548 1.93 
5528.91 
5594.75 
5679.83 
5674.28 
5696.1 1 
57 18.67 
57 13.49 
5681.31 
5704.98 
5647.28 
5 666.88 
5665.78 
5689.45 
5 699.44 
572 1.26 
5689.82 
5733.47 
5722.74 
5693.89 
571 1.27 
5712.38 
5647.65 

Day Date DJIA 

175 
176 
177 
178 
179 
I80 
181 
182 
183 
184 
185 
186 
187 
188 
189 
1 90 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
20 1 
202 
203 
204 
205 
206 
207 
208 
209 
210 
21 1 
212 
213 
214 
215 
216 
217 
218 

8130196 
9/2/96 
9/3/96 
9/4/96 
9/5/96 
9/6/96 
9/9/96 
91 10196 
91 1 1 I96 
91 1 2/96 
9/13/96 
91 1 6/96 
9/17/96 
91 1 8/96 
9/19/96 
9120196 
9/23/96 
9/24/96 
9/25/96 
9/26/96 
9/27/96 
9130196 
10/1/96 
1012196 
1013196 
10/4/96 
1017196 
1018196 
1019196 

1 01 1 0196 
1011 1/96 
1 01 14/96 
1 01 15/96 
101 16/96 
1 01 1 7/96 
101 18/96 
1 012 1 196 
10122196 
10123196 
10124196 
10/25/96 
10128196 
10129196 
10/30/96 

5616.21 
5616.21 
5648.39 
5 65 6.90 
5606.96 
5659.86 
5733.84 
5727.18 
5754.92 
577 1.94 
5838.52 
5889.20 
5888.83 
5877.36 
5867.74 
5888.46 
5 894.74 
5874.03 
5877.36 
5 868.85 
5872.92 
5882.17 
5904.90 
5933.97 
5932.85 
5992.86 
5979.81 
5966.77 
5930.62 
592 1.67 
5969.38 
6010.00 
6004.78 
6020.8 1 
6059.20 
6094.23 
6090.87 
6061.80 
6036.46 
5992.48 
6007.02 
5972.73 
6007.02 
5993.23 

219 
220 
22 1 
222 
223 
224 
225 
226 
227 
228 
229 
230 
23 1 
232 
233 
234 
235 
236 
237 
238 
239 
240 
24 1 
242 
243 
244 
245 
246 
247 
248 
249 
250 
25 1 
252 
253 
254 
255 
256 
257 
258 
259 
260 
26 1 
262 

Date 

1 013 1 196 
11/1/96 
1 1/4/96 
11/5/96 
1 116196 
1 1/7/96 
11/8/96 
1111 1/96 
11/12/96 
11/13/96 
11/14/96 
11/15/96 
11/18/96 
11/19/96 
1 1/20/96 
11/21/96 
11/22/96 
11/25/96 
1 1/26/96 
11/27/96 
11/28/96 
11/29/96 
12/2/96 
12/3/96 
12/4/96 
12/5/96 
12/6/96 
12/9/96 

1 21 1 0196 
1211 1/96 
1 21 1 2/96 
1211 3/96 
12/16/96 
1211 7/96 
1211 8/96 
121 19/96 
12120196 
12/23/96 
12/24/96 
12/25/96 
12/26/96 
12/27/96 
12/30/96 
1 213 I 196 

DJIA 

6029.38 
602 1.93 
6041.68 
608 1.18 
6177.71 
6206.04 
6219.82 
6255.60 
6266.04 
6274.24 
63 13.00 
6348.03 
6346.9 1 
6397.60 
6430.02 
641 8.47 
647 1.76 
6547.79 
6528.41 
6499.34 
6499.34 
6521.70 
652 1.70 
6442.69 
6422.94 
6437.10 
638 1.94 
6463.94 
6473.25 
6402.52 
6303.7 1 
6304.87 
6268.35 
6308.33 
6346.77 
6473.64 
6484.40 
6489.02 
6522.85 
6522.85 
6546.68 
6560.91 
6549.37 
6448.27 
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Repeat the above exercises using log(DJ1A) instead of DJIA. Are your 
conclusions similar? Do you notice any differences? 

8.5 Refer again to the DJIA data in Exercise 8.4. 
(a) Use the form of the model you found adequate in Exercise 8.4 and refit 

the model but using only the trading days in the first six months of 1996 
(the 130 days in Table 8.10). Compute the residual mean square. 

(b) Use the above model to predict the daily DJIA for the first fifteen trading 
days in July 1996 (Table 8.1 1). Compare your pedictions with the actual 
values of the DJIA in Table 8.1 1 by computing the prediction errors, 
which is the difference between the actual values of the DJIA for the first 
15 days of July, 1996 and their corresponding values predicted by the 
model. 

(c) Compute the average of the squared prediction errors and compare with 
the residual mean square. 

(d) Repeat the above exercise but using the model to predict the daily DJIA 
for the second half of the year (1 32 days). 

(e) Explain the results you obtained above in the light of the scatter plot the 
DJIA versus Day. 

8.6 Continuing with modeling the DJIA data in Exercises 8.4 and 8.5. A simplified 
version of the so-called random walk model of stock prices states that the best 
prediction of the stock index at Day t is the value of the index at Day t - 1. In 
regression model terms it would mean that for the models fitted in Exercises 
8.4 and 8.5 the constant term is 0, and the regression coefficient is 1. 

(a) Carry out the appropriate statistical tests of significance. (Test the values 
of the coefficients individually and then simultaneously.) Which test is 
the appropriate one: the individual or the simultaneous? 

(b) The random walk theory implies that the first differences of the index (the 
difference between successive values) should be independently normally 
distributed with zero mean and constant variance. Examine the first 
differences of DJIA and log(DJL4) to see if the this hypothesis holds. 

(c) DJIA is widely available. Collect the latest values available to see if the 
findings for 1996 hold for the latest period. 



CHAPTER 9 

ANALYSIS OF COLLINEAR DATA 

9.1 INTRODUCTION 

Interpretation of the multiple regression equation depends implicitly on the assump- 
tion that the predictor variables are not strongly interrelated. It is usual to interpret 
a regression coefficient as measuring the change in the response variable when the 
corresponding predictor variable is increased by one unit and all other predictor 
variables are held constant. This interpretation may not be valid if there are strong 
linear relationships among the predictor variables. It is always conceptually possi- 
ble to increase the value of one variable in an estimated regression equation while 
holding the others constant. However, there may be no information about the result 
of such a manipulation in the estimation data. Moreover, it may be impossible to 
change one variable while holding all others constant in the process being studied. 
When these conditions exist, simple interpretation of the regression coefficient as 
a marginal effect is lost. 

When there is a complete absence of linear relationship among the predictor 
variables, they are said to be orthogonal. In most regression applications the 
predictor variables are not orthogonal. Usually, the lack of orthogonality is not 
serious enough to affect the analysis. However, in some situations the predictor 
variables are so strongly interrelated that the regression results are ambiguous. 
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Typically, it is impossible to estimate the unique effects of individual variables in 
the regression equation. The estimated values of the coefficients are very sensitive 
to slight changes in the data and to the addition or deletion of variables in the 
equation. The regression coefficients have large sampling errors, which affect both 
inference and forecasting that is based on the regression model. 

The condition of severe nonorthogonality is also referred to as the problem of 
collinear data, or multicollinearity. The problem can be extremely difficult to detect. 
It is not a specification error that may be uncovered by exploring regression residual. 
In fact, multicollinearity is not a modeling error. It is a condition of deficient data. 
In any event, it is important to know when multicollinearity is present and to be 
aware of its possible consequences. It is recommended that one should be very 
cautious about any and all substantive conclusions based on a regression analysis 
in the presence of multicollinearity. 

This chapter focuses on three questions: 

1. How does multicollinearity affect statistical inference and forecasting? 

2. How can multicollinearity be detected? 

3. What can be done to resolve the difficulties associated with multicollinearity? 

When analyzing data, these questions cannot be answered separately. If multi- 
collinearity is a potential problem, the three issues must be treated simultaneously 
by necessity. 

The discussion begins with two examples. They have been chosen to demon- 
strate the effects of multicollinearity on inference and forecasting, respectively. A 
treatment of methods for detecting multicollinearity follows and the chapter con- 
cludes with a presentation of methods for resolving problems of multicollinearity. 
The obvious prescription to collect better data is considered, but the discussion is 
mostly directed at improving interpretation of the existing data. Alternatives to the 
ordinary least squares estimation method that perform efficiently in the presence of 
multicollinearity are considered in Chapter 10. 

9.2 EFFECTS ON INFERENCE 

This first example demonstrates the ambiguity that may result when attempting to 
identify important predictor variables from among a linearly dependent collection 
of predictor variables. The context of the example is borrowed from research 
on equal opportunity in public education as reported by Coleman et al. ( 1  966), 
Mosteller and Moynihan (1972), and others. 

In conjunction with the Civil Rights Act of 1964, the Congress of the United 
States ordered a survey “concerning the lack of availability of equal educational 
opportunities for individuals by reason of race, color, religion or national origin 
in public educational institutions ....” Data were collected from a cross-section of 
school districts throughout the country. In addition to reporting summary statistics 
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on variables such as level of student achievement and school facilities, regression 
analysis was used to try to establish factors that are the most important determinants 
of achievement. The data for this example consist of measurements taken in 1965 
for 70 schools selected at random. The data consist of variables that measure 
student achievement, school facilities, and faculty credentials. The objective is to 
evaluate the effect of school inputs on achievement. 

Assume that an acceptable index has been developed to measure those aspects 
of the school environment that would be expected to affect achievement. The index 
includes evaluations of the physical plant, teaching materials, special programs, 
training and motivation of the faculty, and so on. Achievement can be measured 
by using an index constructed from standardized test scores. There are also other 
variables that may affect the relationship between school inputs and achievement. 
Students’ performances may be affected by their home environments and the in- 
fluence of their peer group in the school. These variables must be accounted for 
in the analysis before the effect of school inputs can be evaluated. We assume 
that indexes have been constructed for these variables that are satisfactory for our 
purposes. The data are given in Tables 9.1 and 9.2, and can also be found in the 
book’s Web site.’ 

Adjustment for the two basic variables (achievement and school) can be accom- 
plished by using the regression model 

The contribution of the school variable can be tested using the t-value for p3. 
Recall that the t-value for p3 tests whether SCHOOL is necessary in the equation 
when FAM and PEER are already included. Effectively, the model above is being 
compared to 

ACHV - /!& . FAM - /32 . PEER = Po + p3 . SCHOOL + E ,  (9.2) 

that is, the contribution of the school variable is being evaluated after adjustment 
for FAM and PEER. Another view of the adjustment notion is obtained by noting 
that the left-hand side of (9.1) is an adjusted achievement index where adjustment 
is accomplished by subtracting the linear contributions of FAM and PEER. The 
equation is in the form of a regression of the adjusted achievement score on the 
SCHOOL variable. This representation is used only for the sake of interpretation. 
The estimated p’s are obtained from the original model given in Equation (9.1). The 
regression results are summarized in Table 9.3 and a plot of the residuals against 
the predicted values of ACHV appears as Figure 9.1. 

Checking first the residual plot we see that there are no glaring indications of 
misspecification. The point located in the lower left of the graph has a residual value 
that is about 2.5 standard deviations from the mean of zero and should possibly be 
looked at more closely. However, when it is deleted from the sample, the regression 

’ http://www.ilr.cornell.edu~hadi/RABE4 
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Table 9.1 
Standardized Indexes 

Row ACHV FAM PEER SCHOOL 

First 50 Observations of the Equal Educational Opportunity (EEO) Data; 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

-0.43148 
0.79969 

-0.92467 
-2.1908 1 
- 2.848 1 8 
-0.66233 

2.63674 
2.3 5 847 

0.59445 
1.21073 
1.87 I64 

-0.91305 

-0.101 78 
-2.87949 

3.92590 
4.35084 
1 .57922 
3.95689 
1.09275 

-0.62389 
-0.63654 
-2.02659 
- 1.46692 

3.15078 
-2.18938 

1.91715 
-2.7 1428 
-6.59852 

0.65101 
-0.13772 
-2.43959 
- 3.27802 
-2.48058 

1.88639 
5.06459 
1.96335 
0.26274 

-2.94593 
- 1.38628 
-0.20797 
- 1.07820 
- 1.66386 

0.581 17 
1.37447 

3.86363 

0.05387 
0.50763 
0.64347 

-2.82687 

-2.64141 

0.608 14 
0.79369 

-0.82630 
-1.25310 

0.17399 
0.20246 
0.241 84 
0.59421 

0.9939 1 
1.2 I721 
0.41436 
0.83782 

-0.75512 
-0.37407 

1.40353 
1.64194 

1.28525 

-0.61561 

-0.3 1304 

-1.51938 
-0.38224 
-0.19186 

1.27649 
0.523 10 

0.779 I4 
- 1.598 10 

- 1.04745 
-1.63217 

0.44328 
-0.24972 
-0.33480 
-0.20680 
- 1.99375 

0.66475 
-0.27977 
-0.43990 
-0.05334 
-2.06699 
- 1.02560 

0.45847 
0.93979 

-0.93238 
-0.35988 
-0.00518 
-0.18892 

0.87271 

0.32143 
-2.06993 

- 1.42382 
-0.07852 

0.03509 
0.47924 

-0.6 195 1 
- 1.21 675 
-0.185 I7 

0.12764 

0.2 1750 

0.62228 
1.00627 
0.71 103 
0.74281 

-0.09022 

-0.48971 

-0.6441 1 
-0.13787 

1.14085 
1.29229 

1.22441 
-0.07980 

- 1.27565 
-0.05353 
-0.42605 

0.8 1427 
0.30720 

- 1.01572 
0.87771 

-0.77536 
- 1.47709 

0.60956 
0.07876 

-0.39314 
-0.13936 
- 1.69587 

0.79670 
0.108 I7 

-0.66022 
-0.02396 
- 1.31832 
- 1.15858 

0.2 1555 
0.63454 

-0.95216 
- 0.30693 

0.35985 

0.47644 
-0.07959 

- 1.82915 
-0.25961 
-0.77620 
-0.21347 

0.16607 
0.53356 

-0.78635 
- 1.04076 

0.14229 
0.2731 1 
0.04967 
0.5 1876 

0.93368 
1.17381 
0.58978 
0.72154 

-0.63219 

-0.56986 
-0.21770 

1.37 147 
1.40269 

-0.21455 
1.20428 

- 1.36598 
-0.35560 
-0.53718 

0.9 1967 
0.4723 1 

0.76496 
- 1.4831 5 

-0.91397 
- 1.71347 

0.32833 
-0. I721 6 
-0.37198 

0.05626 

0.69865 
- 1.87838 

-0.26450 
-0.58490 
-0.16795 
- 1.72082 
-1. I9420 

0.3 1347 
0.69907 

- 1.02725 
-0.46232 

0.02485 
0.01704 
0.57036 

0.2 1632 
- 2.1 6738 

- 1.07473 
-0.1 1750 
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Table 9.2 
Standardized Indexes 

Last 20 Observations of Equal Educational Opportunity (EEO) Data; 

Row ACHV 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

2.49414 
0.61955 
0.6 1745 

- 1.00743 
-0.37469 
-2.52824 

0.02372 
2.51077 

-4.227 16 
1.96847 
1.25668 

-0.16848 
-0.34158 
-2.23973 

3.62654 
0.97034 
3.16093 

0.64598 
- 1.90801 

- 1.75915 

FAM PEER SCHOOL 

-0.14925 -0.03 192 -0.36598 
0.52666 0.79149 0.71369 

- 1.49102 - 1.02073 - 1.38103 
-0.94757 - 1.28991 - 1.24799 

0.24550 0.83794 0.59596 

1.38 143 1.54542 1.59429 
1.03806 0.9 1637 0.97602 

1.08655 0.65700 0.89401 

2.83384 2.47398 2.79222 
1.86753 1.55229 1.80057 

1.41958 1.11481 1.24558 
0.53940 0. I61 82 0.33477 
0.22491 0.74800 0.66182 
1.48244 1.47079 1.54283 
2.05425 1.80369 1.90066 
1.24058 0.64484 0.87372 

-0.41630 -0.60312 -0.3495 1 

-0.88639 -0.47652 -0.77693 

- 1.95 I42 - 1.94199 - 1.89645 

- 1.11 172 -0.69732 -0.801 97 

Table 9.3 EEO Data: Regression Results 

Variable Coefficient s.e. t-test p-value 

Constant -0.070 0.25 1 -0.28 0.7810 
FAM 1.101 1.41 1 0.78 0.4378 
PEER 2.322 1.48 1 1.57 0.1218 
SCHOOL -2.281 2.220 - 1.03 0.3080 

n = 70 R2 = 0.206 R: = 0.170 6 = 2.07 d. f .  = 66 



226 ANALYSIS OF COLLINEAR DATA 

I 
0 .  . :."' 
.. . .  .* .. 

*. . ' 0  

9. . '.. : 
. .  . .  

I 
I I I I 

-2 -1 0 1 2 

Predictcd 

Figure 9.1 Standardized residuals against fitted values of ACHY 

results show almost no change. Therefore, the observation has been retained in the 
analysis. 

From Table 9.3 we see that about 20% of the variation in achievement score is 
accounted for by the three predictors jointly (R2 = 0.206). The F-value is 5.72 
based on 3 and 66 degrees of freedom and is significant at better than the 0.01 
level. Therefore, even though the total explained variation is estimated at only 
20%, it is accepted that FAM, PEER, and SCHOOL are valid predictor variables. 
However, the individual t-values are all small. In total, the summary statistics 
say that the three predictors taken together are important but from the t-values, it 
follows that any one predictor may be deleted from the model provided the other 
two are retained. 

These results are typical of a situation where extreme multicollinearity is present. 
The predictor variables are so highly correlated that each one may serve as a proxy 
for the others in the regression equation without affecting the total explanatory 
power. The low t-values confirm that any one of the predictor variables may be 
dropped from the equation. Hence the regression analysis has failed to provide any 
information for evaluating the importance of school inputs on achievement. The 
culprit is clearly multicollinearity. The pairwise correlation coefficients of the three 
predictor variables and the corresponding scatter plots (Figure 9.2), all show strong 
linear relationships among all pairs of predictor variables. All pairwise correlation 
coefficients are high. In all scatter plots, all the observations lie close to the straight 
line through the average values of the corresponding variables. 

Multicollinearity in this instance could have been expected. It is the nature of 
these three variables that each is determined by and helps to determine the others. It 
is not unreasonable to conclude that there are not three variables but in fact only one. 
Unfortunately, that conclusion does not help to answer the original question about 
the effects of school facilities on achievement. There remain two possibilities. First, 
multicollinearity may be present because the sample data are deficient, but can be 
improved with additional observations. Second, multicollinearity may be present 
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Figure 9.2 
SCHOOL; and the corresponding pairwise correlation coefficients. 

Pairwise scatter plots of the three predictor variables FAM, PEER, and 

because the interrelationships among the variables are an inherent characteristic 
of the process under investigation. Both situations are discussed in the following 
paragraphs. 

In the first case the sample should have been selected to insure that the correla- 
tions between the predictor variables were not large. For example, in the scatter 
plot of FAM versus SCHOOL (the graph in the top right comer in Figure 9.2), there 
are no schools in the sample with values in the upper left or lower right regions of 
the graph. Hence there is no information in the sample on achievement when the 
value of FAM is high and SCHOOL is low, or FAM is low and SCHOOL is high. 
But it is only with data collected under these two conditions that the individual 
effects of FAM and SCHOOL on ACHV can be determined. For example, assume 
that there were some observations in the upper left quadrant of the graph. Then it 
would at least be possible to compare average ACHV for low and high values of 
SCHOOL when FAM is held constant. 

Since there are three predictor variables in the model, then there are eight distinct 
combinations of data that should be included in the sample. Using + to represent 
a value above the average and - to represent a value below the average, the eight 
possibilities are represented in Table 9.4. 

The large correlations that were found in the analysis suggest that only com- 
binations 1 and 8 are represented in the data. If the sample turned out this way 
by chance, the prescription for resolving the multicollinearity problem is to collect 
additional data on some of the other combinations. For example, data based on 
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Table 9.4 Data Combinations for Three Predictor Variables 

Variable 

Combination FAM PEER SCHOOL 

combinations 1 and 2 alone could be used to evaluate the effect of SCHOOL on 
ACHV holding FAM and PEER at a constant level, both above average. If these 
were the only combinations represented in the data, the analysis would consist of 
the simple regression of ACHV against SCHOOL. The results would give only a 
partial answer, namely, an evaluation of the school-achievement relationship when 
FAM and PEER are both above average. 

The prescription for additional data as a way to resolve multicollinearity is not 
a panacea. It is often not possible to collect more data because of constraints 
on budgets, time, and staff. It is always better to be aware of impending data 
deficiencies beforehand. Whenever possible, the data should be collected according 
to design. Unfortunately, prior design is not always feasible. In surveys, or 
observational studies such as the one being discussed, the values of the predictor 
variables are usually not known until the sampling unit is selected for the sample 
and some costly and time-consuming measurements are developed. Following this 
procedure, it is fairly difficult to ensure that a balanced sample will be obtained. 

The second reason that multicollinearity may appear is because the relationships 
among the variables are an inherent characteristic of the process being sampled. If 
FAM, PEER, and SCHOOL exist in the population only as data combinations 1 and 
8 of Table 9.4, it is not possible to estimate the individual effects of these variables 
on achievement. The only recourse for continued analysis of these effects would 
be to search for underlying causes that may explain the interrelationships of the 
predictor variables. Through this process, one may discover other variables that are 
more basic determinants affecting equal opportunity in education and achievement. 

9.3 EFFECTS ON FORECASTING 

We shall examine the effects of multicollinearity in forecasting when the forecasts 
are based on a multiple regression equation. A historical data set with observations 
indexed by time is used to estimate the regression coefficients. Forecasts of the 
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Table 9.5 Data on French Economy 

YEAR IMPORT DOPROD STOCK CONSUM 

49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 

15.9 
16.4 
19.0 
19.1 
18.8 
20.4 
22.7 
26.5 
28.1 
27.6 
26.3 
31.1 
33.3 
37.0 
43.3 
49.0 
50.3 
56.6 

149.3 
161.2 
171.5 
175.5 
180.8 
190.7 
202.1 
212.4 
226.1 
23 1.9 
239.0 
258.0 
269.8 
288.4 
304.5 
323.4 
336.8 
353.9 

4.2 
4.1 
3.1 
3.1 
1.1 
2.2 
2.1 
5.6 
5 .O 
5.1 
0.7 
5.6 
3.9 
3.1 
4.6 
7.0 
1.2 
4.5 

108.1 
114.8 
123.2 
126.9 
132.1 
137.7 
146.0 
154.1 
162.3 
164.3 
167.6 
176.8 
186.6 
199.7 
213.9 
223.8 
232.0 
242.9 

Source: Malinvaud (1968). 

response variable are produced by using future values of the predictor variables 
in the estimated regression equation. The future values of the predictor variables 
must be known or forecasted from other data and models. We shall not treat the 
uncertainty in the forecasted predictor variables. In our discussion it is assumed 
that the future values of the predictor variables are given. 

We have chosen an example based on aggregate data concerning import activity 
in the French economy. The data have been analyzed by Malinvaud (1968). Our 
discussion follows his presentation. The variables are imports (IMPORT), domestic 
production (DOPROD), stock formation (STOCK), and domestic consumption 
(CONSUM), all measured in billions of French francs for the years 1949 through 
1966. The data are given in Table 9.5 and can be obtained from the book’s Web 
site. The model being considered is 

IMPORT = ,Do + /31* DOPROD + / 3 2 .  STOCK + /33.  CONSUM + E .  (9.3) 

The regression results appear as Table 9.6. The index plot of residuals (Figure 9.3) 
shows a distinctive pattern, suggesting that the model is not well specified. Even 
though multicollinearity appears to be present (R2 = 0.973 and all t-values small), 
it should not be pursued further in this model. Multicollinearity should only be 
attacked after the model specification is satisfactory. The difficulty with the model 
is that the European Common Market began operations in 1960, causing changes 
in import-export relationships. Since our objective in this chapter is to study the 
effects of multicollinearity, we shall not complicate the model by attempting to 
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Table 9.6 Import data (1949-1966): Regression Results 

ANOVA Table 
~~~~~ 

Source Sum of Squares d. f. Mean Square F-test 

Regression 2576.92 3 858.974 168 
Residuals 71.39 14 5.099 

Coefficients Table 

Variable Coefficient s.e. t-test p-value 

Constant -19.725 4.125 -4.78 0.0003 
DOPROD 0.032 0.187 0.17 0.8656 
STOCK 0.414 0.322 1.29 0.2195 
CONSUM 0.243 0.285 0.85 0.4093 

n =  18 R2 = 0.973 Ri = 0.967 3 = 2.258 d. f .  = 14 

5 10 15 

Indcx 

Figure 9.3 Import data (1949-1966): Index plot of the standardized residuals. 

capture the behavior after 1959. We shall assume that it is now 1960 and look only 
at the 11 years 1949-1959. The regression results for those data are summarized 
in Table 9.7. The residual plot is now satisfactory (Figure 9.4). 

The value of R2 = 0.99 is high. However, the coefficient of DOPROD is 
negative and not statistically significant, which is contrary to prior expectation. We 
believe that if STOCK and CONSUM were held constant, an increase in DOPROD 
would cause an increase in IMPORT, probably for raw materials or manufacturing 
equipment. Multicollinearity is a possibility here and in fact is the case. The simple 
correlation between CONSUM and DOPROD is 0.997. Upon further investigation 
it turns out that CONSUM has been about two-thirds of DOPROD throughout the 
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Table 9.7 Import data (1949-1959): Regression Results 

ANOVA Table 

Source Sum of Squares d . f .  Mean Square F-test 

Regression 204.776 3 68.2587 286 
Residuals 1.673 7 0.2390 

Coefficients Table 

Variable Coefficient s.e. t-test p-value 
~~~ ~~ ~ 

Constant -10.128 1.212 -8.36 < 0.0001 
DOPROD -0.051 0.070 -0.73 0.4883 
STOCK 0.587 0.095 6.20 0.0004 
CONSUM 0.287 0.102 2.8 1 0.0263 

n = l l  R2 = 0.992 R: = 0.988 6 = 0.4889 d . f .  = 7 

0 

2 4 6 8 10 

Index 

Figure 9.4 Import data (1949-1959): Index plot of the standardized residuals. 
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1 I-year period. The estimated relationship between the two quantities is 

CONSUM = 6.259 + 0.686 . DOPROD. 

Even in the presence of such severe multicollinearity the regression equation may 
produce some good forecasts. From Table 9.7, the forecasting equation is 

IMPORT = -10.13 - 0.051 . DOPROD + 0.587. STOCK 
+ 0.287. CONSUM. 

Recall that the fit to the historical data is very good and the residual variation 
appears to be purely random. To forecast we must be confident that the character 
and strength of the overall relationship will hold into future periods. This matter of 
confidence is a problem in all forecasting models whether or not multicollinearity 
is present. For the purpose of this example we assume that the overall relationship 
does hold into future periods.* Implicit in this assumption is the relationship 
between DOPROD and CONSUM. The forecast will be accurate as long as the 
future values of DOPROD, STOCK, and CONSUM have the relationship that 
CONSUM is approximately equal to 0 . 7 ~  DOPROD. 

For example, let us forecast the change in IMPORT next year corresponding to 
an increase in DOPROD of 10 units while holding STOCK and CONSUM at their 
current levels. The resulting forecast is 

IMPORT1960 = IMPORT1g5g - 0.051(10), 

which means that IMPORT will decrease by -0.51 units. However, if the relation- 
ship between DOPROD and CONSUM is kept intact, CONSUM will increase by 
10(2/3) = 6.67 units and the forecasted result is 

IMPORT1960 = IMPORT1g5g - 0.51 + 0.287 x 6.67 = IMPORT1959 + 1.5. 

IMPORT actually increases by 1.5 units, a more satisfying result and probably a 
better forecast. The case where DOPROD increases alone corresponds to a change 
in the basic structure of the data that were used to estimate the model parameters 
and cannot be expected to produce meaningful forecasts. 

In summary, the two examples demonstrate that multicollinear data can seriously 
limit the use of regression analysis for inference and forecasting. Extreme care is 
required when attempting to interpret regression results when multicollinearity is 
suspected. In Section 9.4 we discuss methods for detecting extreme collinearity 
among predictor variables. 

'For the purpose of convenient exposition we ignore the difficulties that arise because of our previous 
finding that the formation of the European Common Market has altered the relationship since 1960. 
But we are impelled to advise the reader that changes in structure make forecasting a very delicate 
endeavor even when the historical fit is excellent. 
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9.4 DETECTION OF MULTICOLLINEARITY 

In the preceding examples some of the ideas for detecting multicollinearity were 
already introduced. In this section we review those ideas and introduce additional 
criteria that indicate collinearity. Multicollinearity is associated with unstable es- 
timated regression coefficients. This situation results from the presence of strong 
linear relationships among the predictor variables. It is not a problem of m i s -  
specification. Therefore, the empirical investigation of problems that result from a 
collinear data set should begin only after the model has been satisfactorily specified. 
However, there may be some indications of multicollinearity that are encountered 
during the process of adding, deleting, and transforming variables or data points in 
search of the good model. Indication of multicollinearity that appear as instability 
in the estimated coefficients are as follows: 

0 Large changes in the estimated coefficients when a variable is added or 
deleted. 

0 Large changes in the coefficients when a data point is altered or dropped. 

Once the residual plots indicate that the model has been satisfactorily specified, 
multicollinearity may be present if: 

0 The algebraic signs of the estimated coefficients do not conform to prior 
expectations; or 

0 Coefficients of variables that are expected to be important have large standard 
errors (small t-values). 

For the IMPORT data discussed previously, the coefficient of DOPROD was 
negative and not significant. Both results are contrary to prior expectations. The 
effects of dropping or adding a variable can be seen in Table 9.8. There we see 
that the presence or absence of certain variables has a large effect on the other 
coefficients. For the EEO data (Tables 9.1 and 9.2) the algebraic signs are all 
correct, but their standard errors are so large that none of the coefficients are 
statistically significant. It was expected that they would all be important. 

The presence of multicollinearity is also indicated by the size of the correlation 
coefficients that exist among the predictor variables. A large correlation between a 
pair of predictor variables indicates a strong linear relationship between those two 
variables. The correlations for the EEO data (Figure 9.2) are large for all pairs 
of predictor variables. For the IMPORT data, the correlation coefficient between 
DOPROD and CONSUM is 0.997. 

The source of multicollinearity may be more subtle than a simple relationship 
between two variables. A linear relation can involve many of the predictor variables. 
It may not be possible to detect such a relationship with a simple correlation 
coefficient. As an example, we shall look at an analysis of the effects of advertising 
expenditures (At ) ,  promotion expenditures (Pt), and sales expense (Et)  on the 
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Table 9.8 
Regressions 

Import Data (1949-1959): Regression Coefficients for All Possible 

Variable 

Regression Constant DOPROD STOCK CONSUM 

1 -6.558 0.146 - - 

2 19.61 1 - 0.691 - 

3 -8.013 - - 0.214 
4 -8.440 0.145 0.622 - 

5 -8.884 -0.109 - 0.372 
6 -9.743 - 0.596 0.212 
7 - 10.128 -0.05 1 0.587 0.287 

aggregate sales of a firm in period t. The data represent a period of 23 years during 
which the firm was operating under fairly stable conditions. The data are given in 
Table 9.9 and can be obtained from the book’s Web site. 

The proposed regression model is 

st = Po + PiAt + P2Pt + P3Et + P4At-1 + Pspt-i + E t ,  (9.4) 

where At-1 and Pt-1 are the lagged one-year variables. The regression results are 
given in Table 9.10. The plot of residuals versus fitted values and the index plot 
of residuals (Figures 9.5 and 9.6), as well as other plots of the residuals versus the 
predictor variables (not shown), do not suggest any problems of misspecification. 
Furthermore, the correlation coefficients between the predictor variables are small 
(Table 9.1 1). However, if we do a little experimentation to check the stability of 
the coefficients by dropping the contemporaneous advertising variable A from the 
model, many things change. The coefficient of Pt drops from 8.37 to 3.70; the 
coefficients of lagged advertising At-1 and lagged promotions Pt-1 change signs. 
But the coefficient of sales expense is stable and R2 does not change much. 

The evidence suggests that there is some type of relationship involving the 
contemporaneous and lagged values of the advertising and promotions variables. 
The regression of At on Pt, At-l, and Pt-l returns an R2 of 0.973. The equation 
takes the form 

At = 4.63 - 0.87Pt - 0.86At-l - 0.95Pt-l. 

Upon further investigation into the operations of the firm, it was discovered that 
close control was exercised over the expense budget during those 23 years of 
stability. In particular, there was an approximate rule imposed on the budget that 
the sum of At, At-1, Pt, and Pt-l was to be held to approximately five units over 
every two-year period. The relationship 

At + Pt + At-1 + Pt-1 5 
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Figure 9.5 Standardized residuals versus fitted values of Sales. 
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Figure 9.6 Index plot of the standardized residuals. 
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Table 9.9 
(Millions of Dollars) 

Annual Data on Advertising, Promotions, Sales Expenses, and Sales 

Row st At pt Et At-1 pt- 1 

1 20.1 1371 
2 15.10439 
3 18.68375 
4 16.05 173 
5 2 1.30101 
6 17.85004 
7 18.87558 
8 2 1.26599 
9 20.48473 

10 20.54032 
11 26.18441 
12 21.71 606 
13 28.69595 
14 25.83720 
15 29.3 1987 
16 24.19041 
17 26.58966 
18 22.24466 
19 24.79944 
20 2 1.19 105 
21 26.03441 
22 27.39304 

1.98786 
1.94418 
2.19954 
2.00107 
1.69292 
1.74334 
2.06907 
1.01709 
2.01906 
1.06139 
1.45999 
1.8751 1 
2.27109 
1.11191 
1.77407 
0.95878 
1.98930 
1.97111 
2.26603 
1.98346 
2.10054 
1.06815 

1 .o 
0.0 
0.8 
0.0 
1.3 
0.3 
1 .o 
I .o 
0.9 
1 .o 
1.5 
0.0 
0.8 
1 .o 
1.2 
1 .o 
1 .o 
0.0 
0.7 
0.1 
1 .o 
1 .o 

0.30 
0.30 
0.35 
0.35 
0.30 
0.32 
0.3 1 
0.41 
0.45 
0.45 
0.50 
0.60 
0.65 
0.65 
0.65 
0.65 
0.62 
0.60 
0.60 
0.6 1 
0.60 
0.58 

2.01 722 0.0 
1.98786 1 .o 
1.94418 0.0 
2.19954 0.8 
2.00107 0.0 
1.69292 1.3 
1.74334 0.3 
2.06907 1 .o 
1.01709 1 .o 
2.0 1906 0.9 
1.06139 1 .o 
1.45999 1.5 
1.87511 0.0 
2.27 109 0.8 
1.1 1191 1 .o 
1.77407 1.2 
0.95878 1 .o 
1.98930 1 .o 
1.97111 0.0 
2.26603 0.7 
1.98346 0.1 
2.10054 1 .o 

is the cause of the multicollinearity. 
A thorough investigation of multicollinearity will involve examining the value 

of R2 that results from regressing each of the predictor variables against all the 
others. The relationship between the predictor variables can be judged by examining 
a quantity called the variance inflution factor (VIF). Let R; be the square of 
the multiple correlation coefficient that results when the predictor variable X j  is 
regressed against all the other predictor variables. Then the variance inflation for 
X j  is 

where p is the number of predictor variables. It is clear that if X j  has a strong linear 
relationship with the other predictor variables, Rj” would be close to 1, and VIFj 
would be large. Values of variance inflation factors greater than 10 is often taken 
as a signal that the data have collinearity problems. 

In absence of any linear relationship between the predictor variables (i.e., if the 
predictor variables are orthogonal), R; would be zero and VIFj would be one. 
The deviation of VIFj value from 1 indicates departure from orthogonality and 
tendency toward collinearity. The value of VIFj also measures the amount by 
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Table 9.10 Regression Results for the Advertising Data 

ANOVA Table 

Source Sum of Squares d.f. Mean Square F-test 

Regression 307.572 5 61.5 14 35.3 
Residuals 27.879 16 1.742 

Coefficients Table 
_ _ _ _ _ _ _ ~ ~ ~  ~ ~ 

Variable Coefficient s.e. t-test p-value 

Constant -14.194 18.715 -0.76 0.4592 
A 5.361 4.028 1.33 0.2019 
P 8.372 3.586 2.33 0.0329 
E 22.521 2.142 10.51 < o.Ooo1 
At-1 3.855 3.578 1.08 0.2973 
pt- 1 4.125 3.895 1.06 0.3053 

n = 22 R2 = 0.917 R: = 0.891 6 = 1.320 d. f. = 16 

Table 9.11 Pairwise Correlation Coefficients for the Advertising Data 

At pt Et At-1 pt-1 

At 1 .om 
pt -0.357 1 .ooo 
Et -0.129 0.063 1 .ooo 
At-1 -0.140 -0.316 -0.166 1 .Ooo 
pt-1 -0.496 -0.296 0.208 -0.358 1 .ooo 
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which the variance of the j th  regression coefficient is increased due to the linear 
association of Xj with other predictor variables relative to the variance that would 
result if Xj were not related to them linearly. This explains the naming of this 
particular diagnostic. 

As Rj tends toward 1, indicating the presence of a linear relationship in the 

predictor variables, the VIF for ,hj tends to infinity. It is suggested that a VIF in 
excess of 10 is an indication that multicollinearity may be causing problems in 
estimation. 

The precision of an ordinary least squares (OLS) estimated regression coefficient 
is measured by its variance, which is proportional to u2, the variance of the error 
term in the regression model. The constant of proportionality is the VIE Thus, the 
VIFs may be used to obtain an expression for the expected squared distance of the 
OLS estimators from their true values. Denoting the square of the distance by D2,  
it can be shown that, on average, 

P 
D2 = u2 C V I F j .  

j=1 

This distance is another measure of precision of the least squares estimators. The 
smaller the distance, the more accurate are the estimates. If the predictor variables 
were orthogonal, the VIFs would all be 1 and D2 would be pa2.  It follows that the 
ratio 

g2 cf=l VIFi Cf=’=, VIFi - 
= VIF, - - 

PO2 P 

which shows that the average of the VIFs measures the squared error in the OLS 
estimators relative to the size of that error if the data were orthogonal. Hence,VIF 
may also be used as an index of multicollinearity. 

Most computer packages now furnish values of VIFj routinely. Some have built- 
in messages when high values of VIFj are observed. In any regression analysis 
the values of VIFj should always be examined to avoid the pitfalls resulting from 
fitting a regression model to collinear data by least squares. 

In each of the three examples (EEO, Import, and Advertising) we have seen 
evidence of collinearity. The VIFj’s and their average values for these data sets 
are given in Table 9.12. For the EEO data the values of VIFj range from 30.2 to 
83.2, showing that all three variables are strongly intercorrelated and that dropping 
one of the variables will not eliminate collinearity. The average value of VIF of 
50.3 indicates that the squared error in the OLS estimators is 50 times as large as it 
would be if the predictor variables were orthogonal. 

For the Import data, the squared error in the OLS estimators is 3 13 times as large 
as it would be if the predictor variables were orthogonal. However, the VIFj’s 
indicate that domestic production and consumption are strongly correlated but are 
not correlated with the STOCK variable. A regression equation containing either 
CONSUM or DOPROD along with STOCK will eliminate collinearity. 

- 
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FAM 37.6 
PEER 30.2 
SCHOOL 83.2 

Table 9.12 Variance Inflation Factors for Three Data Sets 

DOPROD 469.7 At 37.4 
STOCK 1.0 Pt 33.5 
CONSUM 469.4 Et 1.1 

At-1 26.6 
pt-1 44.1 

EEO I Import I Advertising 

Average 50.3 

Variable VIF I Variable VIF I Variable VIF 

Average 3 13.4 Average 28.5 

For the Advertising data, VIFE (for the variable E )  is 1.1, indicating that this 
variable is not correlated with the remaining predictor variables. The VIFj’s for the 
other four variables are large, ranging from 26.6 to 44.1. This indicates that there 
is a strong linear relationship among the four variables, a fact that we have already 
noted. Here the prescription might be to regress sales St against Et and three of the 
remaining four variables (At, Pt, At-1, St-1) and examine the resulting VIFj’s to 
see if collinearity has been eliminated. 

9.5 CENTERING AND SCALING 

The indicators of multicollinearity that have been described so far can all be obtained 
using standard regression computations. There is another, more unified way to 
analyze multicollinearity which requires some calculations that are not usually 
included in standard regression packages. The analysis follows from the fact that 
every linear regression model can be restated in terms of a set of orthogonal predictor 
Variables. These new variables are obtained as linear combinations of the original 
predictor variables. They are referred to as the principal components of the set of 
predictor variables (Seber, 1984; Johnson and Wichern, 1992). 

To develop the method of principal components, we may first need to center 
andor scale the variables. We have been mainly dealing with regression models of 
the form 

(9.6) 
which are models with a constant term PO. But we have also seen situations where 
fitting the no-intercepr model 

(9.7) 

is necessary (see, e.g., Chapters 3 and 7). When dealing with constant term models, 
it is convenient to center and scale the variables, but when dealing with ano-intercept 
model, we need only to scale the variables. 

Y = Po + PlX1 + . . . + PPXP + &, 

Y = PlXl + . . . + ppxp + E 
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9.5.1 Centering and Scaling in Intercept Models 

If we are fitting an intercept model as in (9.6), we need to center and scale the 
variables. A centered variable is obtained by subtracting from each observation the 
mean of all observations. For example, the centered response variable is (Y - i j )  
and the centered j th predictor variable is ( X j  - Zj). The mean of a centered 
variable is zero. The centered variables can also be scaled. Two types of scaling 
are usually needed: unit length scaling and standardizing. Unit length scaling of 
the response variable Y and the j th predictor variable X j  is obtained as follows: 

- Y - j j  
2, = -, L,, x. =- 5. 

Lj 
j + = u .  7 3 = L * . . , P >  

where j j  is the mean of Y ,  5j is the mean of X j ,  and 

The quantities L, is referred to as the length of the centered variable Y - i j  because 
it measures the size or the magnitudes of the observations in Y - 3. Similarly, Lj 
measure the length of the variable X j  - 3j. The variables 2, and Z j  in (9.8) have 
zero means and unit lengths, hence this type of scaling is called unit length scaling. 
In addition, unit length scaling has the following property: 

(9.10) 

That is, the correlation coefficient between the original variables, X j  and X k ,  can 
be computed easily as the sum of the products of the scaled versions Zj and Zk. 

The second type of scaling is called standardizing, which is defined by 

Y- i j  y = - ,  

(9.1 1) 

where 

SY = 1 

n I n. 

, -I*. 

n - 1  

are standard deviations of the response and j th  predictor variable, respectively. 
The standardized variables Y and X j  in (9.1 1) have means zero and unit standard 
deviations. 
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Since correlations are unaffected by shifting or scaling the data, it is both suffi- 
cient and convenient to deal with either the unit length scaled or the standardized 
versions of the variables. The variances and covariances of a set of p variables, 
X I ,  . . ., X,, can be neatly displayed as a squared array of numbers called a ma- 
trix. This matrix is known as the variance-covariance matrix. The elements on 
the diagonal that runs from the upper-left comer to the lower-right comer of the 
matrix are known as the diagonal elements. The elements on the diagonal of a 
variance-covariance matrix are the variances and the elements off the diagonal are 
the covariances.3 The variance-covariance matrix of the three predictor variables 
in the Import data for the years 1949-1959 is: 

DOPROD STOCK CONSUM 
899.971 1.279 617.326 

( 617.326 1.214 425.779 
1.214 . ) 1.279 2.720 

DOPROD 
STOCK 
CONSUM 

Thus, for example, Vw(D0PROD) = 899.971, which is in the first diagonal 
element, and Cov(DOPROD, CONSUM) = 617.326, which is the value is the 
intersection of the first row and third column (or the third row and first column). 

Similarly, the pairwise correlation coefficients can be displayed in matrix known 
as the correlation matrix. The correlation matrix of the three predictor variables in 
the Import data is: 

DOPROD STOCK CONSUM 
1 .ooo 0.026 0.997 
0.026 1 .ooo 0.036 
0.997 0.036 1 .ooo 

(9.13) 
DOPROD 
STOCK 
CONSUM 

This is the same as the variance-covariance matrix of the standardized predictor 
variables. Thus, for example, Cor(DOPROD, CONSUM) = 0.997, which indi- 
cates that the two variables are highly correlated. Note that all the diagonal elements 
of the correlation matrix are equal to one. 

Recall that a set of variables is said to be orthogonal if there exists no linear 
relationships among them. If the standardized predictor variables are orthogonal, 
their matrix of variances and covariances consists of one for the diagonal elements 
and zero for the off-diagonal elements. 

9.5.2 Scaling in No-Intercept Models 

If we are fitting a no-intercept model as in (9.7), we do not center the data because 
centering has the effect of including a constant term in the model. This can be seen 
from: 

Y - ji = Pl(X1 - 5,) + . . . + & ( X ,  - 3,) + E .  (9.14) 

3Readers not familiar with matrix algebra may benefit from reading the book, Marrix Algebra As a 
Tool, by Hadi ( 1996). 
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rearranging terms, we obtain 

y = 9 - ( P l Z l +  . . . + P,.,) + PlXl+ . . . + ppx, + E 

= Po + PlXl + . . . + PPXP + E )  (9.15) 

where PO = g - (P131 + . . . + &3,). Although a constant term does not appear 
in an explicit form in (9.14), it is clearly seen in (9.15). Thus, when we deal 
with no-intercept models, we need only to scale the data. The scaled variables are 
defined by: 

I Y 
2, = - ,  

LY (9.16) 

where 
In (n 
c y :  and Lj  = j = l , . . . l p .  (9.17) 
i=l  i=l 

The scaled variables in (9.16) have unit lengths but do not necessarily have means 
zero. Nor do they satisfy (9.10) unless the original variables have zero means. 

We should mention here that centering (when appropriate) and/or scaling can be 
done without loss of generality because the regression coefficients of the original 
variables can be recovered from the regression coefficients of the transformed 
variables. For example, if we fit a regression model to centered data, the obtained 
regression coefficients PI, . . ., & are the same as the estimates obtained from fitting 
the model to the original data. The estimate of the constant term when using the 
centered data will always be zero. The estimate of the constant term for an intercept 
model can be obtained from: 

Po = g - ($131 + . . . + fip3,). 

Scaling, however, will change the values of the estimated regression coefficients. 
For example, the relationship between the estimates, ,&, . . ., b,, obtained from 
using the original data and the those obtained using the standardized data is given 
by 

Po = 9 -  c P@jl 
j=1 

(9.18) 

where bj and 6, are the jth estimated regression coefficients obtained when using 
the original and standardized data, respectively. Similar formulas can be obtained 
when using unit length scaling instead of standardizing. 

We shall make extensive use of the centered and/or scaled variables in the rest 
of this chapter and in Chapter 10. 
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9.6 PRINCIPAL COMPONENTS APPROACH 

As we mentioned in the previous section, the principal components approach to the 
detection of multicollinearity is based on the fact that any set of p variables can be 
transformed to a set of p orthogonal variables. The new orthogonal variables are 
known as the principal components (PCs) and are denoted by C1, . . ., C,. Each 
variable Cj is a linear combination of the variables X I ,  . . ., X, in (9.1 1) .  That is, 

cj = V l j X l  + V 2 j X 2  + . . . + .,jX,, j = 1 , 2 , .  . . , p .  (9.19) 

The linear combinations are chosen so that the variables C1, . . ., C, are ~r thogonal .~ 
The variance-covariance matrix of the PCs is of the form: 

c1 c 2  . . .  c, 
:; (” ””. Ij: !) 
c, 0 0 . * .  A, 

All the off-diagonal elements are zero because the PCs are orthogonal. The value 
on the j th  diagonal element, A j  is the variance of Cj, the j th  PC. The PCs are 
arranged so that A1 2 A2 2 . . . 2 A,, that is, the first PC has the largest variance 
and the last PC has the smallest variance. The A’s are called eigenvalues of the 
correlation matrix of the predictor variables XI ,  . . ., X,. The coefficients involved 
in the creation of Cj in (9.19) can be neatly arranged in a column like 

which is known as the eigenvector associated with the j th  eigenvalue Aj .  If any one 
of the A’s is exactly equal to zero, there is a perfect linear relationship among the 
original variables, which is an extreme case of multicollinearity. If one of the A’s 
is much smaller than the others (and near zero), multicollinearity is present. The 
number of near zero A’s is equal to the number of different sets of multicollinearity 
that exist in the data. So, if there is only one near zero A, there is only one set 
of multicollinearity; if there are two near zero A’s, there are two sets of different 
multicollinearity; and so on. 

The eigenvalues of the correlation matrix in (9.13) are A1 = 1.999, A2 = 0.998, 
and A3 = 0.003. The corresponding eigenvectors are 

0.706 -0.036 -0.707 

4A description of this technique employing matrix algebra is given in the Appendix to this chapter. 
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Table 9.13 The PCs for the Import Data (1949-1959) 

Year c1 c2 c3 

49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

-2.1258 
-1.6189 
-1.1153 
-0.8944 
- 0.6449 
-0.1907 

0.3593 
0.9726 
1.5600 
1.7677 
1.9304 

0.6394 
0.5561 

-0.0726 
-0.0821 
- 1.3064 
-0.6591 
-0.7438 

1.3537 
0.9635 
1.0146 

- 1.6633 

-0.0204 
-0.0709 
-0.0216 

0.01 10 
0.0727 
0.0266 
0.0427 
0.0627 
0.0233 

-0.0453 
-0.0809 

Thus, the PCs for the Import data for the years 1949-1959 are: 

C1 = 0.706 Xi + 0.044 X 2  + 0.707 X 3 ,  
C2 = -0.036 Xi + 0.999 Xz - 0.026 X 3 ,  (9.20) 
C3 = -0.707 Xi - 0.007 X z  + 0.707X3. 

These PCs are given in Table 9.13. The variance-covariance matrix of the new 
variables is 

c1 c2 c 3  
c1 1.999 0 

c3 0 0 0.003 
c, ( 0 0.998 :: ) 

The PCs lack simple interpretation since each is, in a sense, a mixture of the original 
variables. However, these new variables provide a unified approach for obtaining 
information about multicollinearity and serve as the basis of one of the alternative 
estimation techniques described in Chapter 10. 

For the Import data, the small value of A3 = 0.003 points to multicollinearity. 
The other data sets considered in this chapter also have informative eigenvalues. 
For the EEO data, A1 = 2.952, A2 = 0.040, and A3 = 0.008. For the advertising data, 
A1 = 1.701, A2 = 1.288, A3 = 1.145, A4 = 0.859, and A5 = 0.007. In each case the 
presence of a small eigenvalue is indicative of multicollinearity. 

A measure of the overall multicollinearity of the variables can be obtained by 
computing the condition number of the correlation matrix. The condition number 
is defined by 

maximum eigenvalue of the correlation matrix 
minimum eigenvalue of the correlation matrix 

K . =  

The condition number will always be greater than 1. A large condition number 
indicates evidence of strong collinearity. The harmful effects of collinearity in the 
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data become strong when the values of the condition number exceeds 15 (which 
means that A1 is more than 225 times Ap). The condition numbers for the three data 
sets EEO, Import, and advertising data are 19.20, 25.81, and 15.59, respectively. 
The cutoff value of 15 is not based on any theoretical considerations, but arises 
from empirical observation. Corrective action should always be taken when the 
condition number of the correlation matrix exceeds 30. 

Another empirical criterion for the presence of multicollinearity is given by the 
sum of the reciprocals of the eigenvalues, that is, 

j=1 f+ (9.21) 

If this sum is greater than, say, five times the number of predictor variables, 
multicollinearity is present. 

One additional piece of information is available through this type of analysis. 
Since A, is the variance of the j th PC, if A j  is approximately zero, the corresponding 
PC, Cj, is approximately equal to a constant. It follows that the equation defining 
the PC gives some idea about the type of relationship among the predictor variables 
that is causing multicollinearity. For example, in the Import data, A3 = 0.003 = 0. 
Therefore, C3 is approximately constant. The constant is the mean value of C3 

which is zero. The PCs all have means of zero since they are linear functions of the 
standardized variables and each standardized variable has a zero mean. Therefore 

C3 = -0.707 Xi - 0.007 X 2  + 0.707 X 3  = 0. 

Rearranging the terms yields 
x, = X 3 ,  (9.22) 

where the coefficient of X 2  (-0.007) has been approximated as zero. Equation 
(9.22) represents the approximate relationship that exists between the standardized 
versions of CONSUM and DOPROD. This result is consistent with our previous 
finding based on the high simple correlation coefficient (T = 0.997) between the 
predictor variables CONSUM and DOPROD. (The reader can confirm this high 
value of T by examining the scatter plot of CONSUM versus DOPROD.) Since A3 

is the only small eigenvalue, the analysis of the PCs tells us that the dependence 
structure among the predictor variables as reflected in the data is no more complex 
than the simple relationship between CONSUM and DOPROD as given in Equation 
(9.22). 

For the advertising data, the smallest eigenvalue is As = 0.007. The corresponding 
PC is 

Cs = 0.514 Xi + 0.489 X 2  - 0.010 X 3  + 0.428 X 4  + 0.559 X s .  

Setting (2.5 to zero and solving for XI leads to the approximate relationship, 

(9.23) 

X i  -0.951 X 2  - 0.833 XQ - 1.087 X s ,  (9.24) 
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where we have taken the coefficient Of X 3  to be approximately zero. This equation 
reflects our earlier findings about the relationship between At, Pt, At-1, and Pt-1. 
Furthermore, since A4 = 0.859 and the other A’s are all large, we can be confident 
that the relationship involving At, Pt, At-l, and Pt-l in (9.24) is the only source 
of multicollinearity in the data. 

Throughout this section, investigations concerning the presence of multicollinear- 
ity have been based on judging the magnitudes of various indicators, either a corre- 
lation coefficient or an eigenvalue. Although we speak in terms of large and small, 
there is no way to determine these threshold values. The size is relative and is used 
to give an indication either that everything seems to be in order or that something 
is amiss. The only reasonable criterion for judging size is to decide whether the 
ambiguity resulting from the perceived multicollinearity is of material importance 
in the underlying problem. 

We should also caution here that the data analyzed may contain one or few ob- 
servations that can have an undue influence on the various measures of collinearity 
(e.g., correlation coefficients, eigenvalues, or the condition number). These obser- 
vations are called collinearity-inJluentiaZ observations. For more details the reader 
is referred to Hadi (1 988). 

9.7 IMPOSING CONSTRAINTS 

We have noted that multicollinearity is a condition associated with deficient data and 
not due to misspecification of the model. It is assumed that the form of the model 
has been carefully structured and that the residuals are acceptable before questions 
of multicollinearity are considered. Since it is usually not practical and often 
impossible to improve the data, we shall focus our attention on methods of better 
interpretation of the given data than would be available from a direct application 
of least squares. In this section, rather than trying to interpret individual regression 
coefficients, we shall attempt to identify and estimate informative linear functions 
of the regression coefficients. Alternative estimating methods for the individual 
coefficients are treated in Chapter 10. 

Before turning to the problem of searching the data for informative linear func- 
tions of the regression coefficients, one additional point concerning model spec- 
ification must be discussed. A subtle step in specifying a relationship that can 
have a bearing on multicollinearity is acknowledging the presence of theoretical 
relationships among the regression coefficients. For example in the model for the 
Import data, 

IMPORT = + DOPROD + pz * STOCK + ,&. CONSUM + E ,  (9.25) 

one may argue that the marginal effects of DOPROD and CONSUM are equal. 
That is, on the basis of economic reasoning, and before looking at the data, it is 
decided the PI = ,& or equivalently, - ,B3 = 0. As described in Section 3.9.3, 
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Table 9.14 Regression Results of Import Data (1949-1959) with the Constraint 
P1 = P 3  

Variable Coefficient s.e. t-test p-value 

Constant -9.007 1.245 
STOCK 0.6 12 0.109 
NEWVAR 0.086 0.004 

-7.23 < 0.0001 
5.60 0.0005 

24.30 < o.oO01 

n = l l  R2 = 0.987 R: = 0.984 8 = 0.5693 d . f . = 8  

Figure 9.7 
constraint PI = P3.  

Index plot of the standardized residuals. Import data (1949-1959) with the 

the model in (9.25) becomes 

IMPORT = Po + DOPROD + / 3 2 .  STOCK + P i .  CONSUM + E ,  

= Po + P 2 .  STOCK + (DOPROD + CONSUM) + E .  

Thus, the common value of PI and p3 is estimated by regressing IMPORT on 
STOCK and a new variable constructed as NEWVAR = DOPROD + CONSUM. 
The new variable has significance only as a technical manipulation to extract an 
estimate of the common value of and P3.  The results of the regression appear 
in Table 9.14. The correlation between the two predictor variables, STOCK and 
NEWVAR, is 0.0299 and the eigenvalues are A1 = 1.030 and A2 = 0.970. There 
is no longer any indication of multicollinearity. The residual plots against time and 
the fitted values indicate that there are no other problems of specification (Figures 
9.7 and 9.8, respectively). The estimated model is 

IMPORT = -9.007 + 0.086. DOPROD + 0.612. STOCK 
+ 0.086. CONSUM. 

Note that following the methods outlined in Section 3.9.3, it is also possible to test 
the constraint, PI = P 3 ,  as a hypothesis. Even though the argument for P1 = p3 
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Figure 9.8 
the constraint /31 = p3. 

Standardized residuals against fitted values of Import data (1949-1959) with 

may have been imposed on the basis of existing theory, it is still interesting to 
evaluate the effect of the constraint on the explanatory power of the full model. The 
values of R2 for the full and restricted models are 0.992 and 0.987, respectively. 
The F-ratio for testing &(PI = P 3 )  is 3.36 with 1 and 8 degrees of freedom. Both 
results suggest that the constraint is consistent with the data. 

The constraint that PI = P 3  is, of course, only one example of the many types 
of constraints that may be used when specifying a regression model. The general 
class of possibilities is found in the set of linear constraints described in Chapter 
3. Constraints are usually justified on the basis of underlying theory. They may 
often resolve what appears to be a problem of multicollinearity. In addition, any 
particular constraint may be viewed as a testable hypothesis and judged by the 
methods described in Chapter 3. 

9.8 SEARCHING FOR LINEAR FUNCTIONS OF THE P’S 

We assume that the model 

y = Po + PlXl + . . . + ppxp + & 

has been carefully specified so that the regression coefficients appearing are of 
primary interest for policy analysis and decision making. We have seen that the 
presence of multicollinearity may prevent individual P’S from being accurately 
estimated. However, as demonstrated below, it is always possible to estimate some 
linear functions of the P’s accurately (Silvey, 1969). The obvious questions are: 
Which linear functions can be estimated, and of those that can be estimated, which 
are of interest in the analysis? In this section we use the data to help identify those 
linear functions that can be accurately estimated and, at the same time, have some 
value in the analysis. 
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Table 9.15 Regression Results When Fitting Model (9.26) to the Import Data 
(1949-1959) 

Variable Coefficient s.e. t-test p-value 

Constant -8.440 1.435 -5.88 0.0004 
DOPROD 0.145 0.007 20.70 < o.Ooo1 
STOCK 0.622 0.128 4.87 0.001 2 

n =  11 R2 = 0.983 R; = 0.978 6 = 0.667 d. f .  = 8 

First we shall demonstrate in an indirect way that there are always linear functions 
of the p’s that can be accurately e~t imated.~ Consider once again the Import 
data. We have argued that there is a historical relationship between CONSUM 
and DOPROD that is approximated as CONSUM = (2/3) DOPROD. Replacing 
CONSUM in the original model, 

2 
IMPORT = pa + (pi + g h ) . D O P R O D  +p2 ’STOCK + E .  (9.26) 

Equivalently stated, by dropping CONSUM from the equation we are able to obtain 
accurate estimates of p1 + (2/3)p3 and p2. Multicollinearity is no longer present. 
The correlation between DOPROD and STOCK is 0.026. The results are given 
in Table 9.15. R2 is almost unchanged and the residual plots (not shown) are 
satisfactory. In this case we have used information in addition to the data to argue 
that the coefficient of DOPROD in the regression of IMPORT on DOPROD and 
STOCK is the linear combination p1 + (2/3)p3. Also, we have demonstrated that 
this linear function can be estimated accurately even though multicollinearity is 
present in the data. Whether or not it is useful to know the value of + (2/3)p3, 
of course, is another question. At least it is important to know that the estimate of 
the coefficient of DOPROD in this regression is not measuring the pure marginal 
effect of DOPROD, but includes part of the effect of CONSUM. 

The above example demonstrates in an indirect way that there are always linear 
functions of the p’s that can be accurately estimated. However, there is a con- 
structive approach for identifying the linear combinations of the p’s that can be 
accurately estimated. We shall use the advertising data introduced in Section 9.4 
to demonstrate the method. The concepts are less intuitive than those found in the 
other sections of the chapter. We have attempted to keep things simple. A formal 
development of this problem is given in the Appendix to this chapter. 

We begin with the linear transformation introduced in Section 9.6 that takes 
the standardized predictor variables into a new orthogonal set of variables. The 
standardized versions of the five predictor variables are denoted by XI, . . ., g5. 
The standardized response variable, sales, is denoted by ?. The transformation 

‘Refer to the Appendix to this chapter for further treatment of this problem. 
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that takes XI, . . . , X5 into the new set of orthogonal variables C1 , . . . , C5 is 

The coefficients in the equation defining C1 are the components of the eigenvector 
corresponding to the largest eigenvalue of the correlation matrix of the predictor 
variables. Similarly, the coefficients defining C2 through C5 are components of 
the eigenvectors corresponding to the remaining eigenvalues in order by size. The 
variables C1, . . ., C5 are the PCs associated with the standardized versions of the 
predictors variables, as described in the preceding Section 9.6. 

The regression model stated, as given in (9.4) in terms of the original variables 
is 

(9.28) st = P O  + PlAt + p2pt + P3Et + P4At-1 + p5pt-1 + Et.  

In terms of standardized variables, the equation is written as 

where At denotes the standardized version of the variable At. The regression 
coefficients in Equation (9.29) are often referred to as the beta coeficients. They 
represent marginal effects of the predictor variables in standard deviation units. For 
example, 81 measures the change in standardized units of sales ( S )  corresponding 
to an increase of one standard deviation unit in advertising (A). 

Let ,& be the least squares estimate of Pj when model (9.28) is fit to the data. 
Similarly, let Oj be the least squares estimate of 1’3, obtained from fitting model 
(9.29). Then bj and 8, are related by 

where y is the mean of Y and sy and sj are standard deviations of the response and 
j th predictor variable, respectively. 

Equation (9.29) has an equivalent form, given as 

I 

y = a1c1+ a2C2 + a3C3 + a 4 C 4  + a5C5 + &’. (9.31) 

The equivalence of Equations (9.29) and (9.3 1) results from the relationship between 
the X ’ s  and C’s in Equations (9.27) and the relationship between the a’s and 0’s 
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and their estimated values, 6’s and 8’s, given as 

61 = 0.53261 - 0.02462 - 0.66863 + 0.07464 - 0.51485, 

8 2  = 

83 = 

8, = 

85 = 

-0.232&1 + 0.82562 + 0.15863 - 0.03764 - 0.48985, 

-0.38961 - 0.02262 - 0.21763 + 0.89564 + 0.01065, 

0.39561 - 0.26062 + 0.69263 + 0.33864 - 0.42865, 

-0.59561 - 0.50162 - 0.05763 - 0.27984 - 0.55965. 

(9.32) 

Note that the transformation involves the same weights that are used to define 
Equation (9.27). The advantage of the transformed model is that the PCs are 
orthogonal. The precision of the estimated regression coefficients as measured by 
the variance of the 6’s is easily evaluated. The estimated variance of 6j is d 2 / X j .  
It is inversely proportional to the ith eigenvalue. All but 6 5  may be accurately 
estimated since only Xg is small. (Recall that A1  = 1.701,Xq = 1.288,Xg = 
1.145, A4 = 0.859, and A5 = 0.007.) 

Our interest in the 6’s is only as a vehicle for analyzing the 8’s. From the 
representation of Equation (9.32) it is a simple matter to compute and analyze the 
variances and, in turn, the standard errors of the 8’s. The variance of 8.j is 

P 

Var(8,) = Cv,2vaT(iyi), j = 1 , .  . . , p ,  (9.33) 

where uij is the coefficient of &i in the j Equation in (9.32). Since the estimated 
variance of &i = $/Xi, where if2 is the residual mean square, (9.33) becomes 

i=l 

p u?. 
Var(8.j) = e2 C “3 . 

i=l Xi 
(9.34) 

For example, the estimated variance of 81 is 

. (9.35) 

Recall that A1 2 X2 2 . . - 2 A5 and only A5 is small, (A5 = 0.007). Therefore, 
it is only the last term in the expression for the variance that is large and could 
destroy the precision of 81. Since expressions for the variances of the other 8j’s 
are similar to Equation (9.35), a requirement for small variance is equivalent to the 
requirement that the coefficient of l / X 5  be small. Scanning the equations that define 
the transformation from {hi} to {8j}, we see that 83 is the most precise estimate 
since the coefficient of 1/X,  in the variance expression for 83 is ( -0.01)2 = 0.0001. 

Expanding this type of analysis, it may be possible to identify meaningful linear 
functions of the 8’s that can be more accurately estimated than individual 8’s. For 
example, we may be more interested in estimating 81 - 6 2  than 61 and 6 2  separately. 
In the sales model, 61 - 6 2  measures the increment to sales that corresponds to 

I [ A2 A3 A4 A5 

(0.532)2 (-0.024)2 (-0.668)2 (0.074)2 (-0.514)’ + + +- + 6 2  ~ 
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increasing the current year's advertising budget, XI ,  by one unit and simultaneously 
reducing the current year's promotions budget, XZ. by one unit. In other words, 
81 - 82 represents the effect of a shift in the use of resources in the current year. The 
estimate of 81 - 82 is 61 - 82. The variance of this estimate is obtained simply by 
subtracting the equation for 0, and 81 in (9.32) and using the resulting coefficients 
of the 8's as before. That is, 

, . -  
81 - 82 = 0.76481 - 0.84982 - 0.826G3 + O . l l l & 4  - 0.02585, 

from which we obtain the estimated variance of (61 - 82) as 

(0.764)2 Var(b1) + (-0.849)' V ~ r ( 8 2 )  + (-0.826)2 Var(&3) 

+ (0.111)' Var(84) + (-0.025)' Var(&i) ,  (9.36) 

or, equivalently, as 

. (9.37) 

The small coefficient of l /A5  makes it possible to estimate 81 - 82 accurately. 
Generalizing this procedure we see that any linear function of the 0's that results 
in a small coefficient for l /A5  in the variance expression can be estimated with 
precision. 

1 [ A2 A3 A4 A5 

(0.764)' (-0.849)' (-0.826)' (0.111)' (-0.025)2 + + +- + 6 2  - 

9.9 COMPUTATIONS USING PRINCIPAL COMPONENTS 

The computations required for this analysis involve something in addition to a 
standard least squares computer program. The raw data must be processed through 
a principal components subroutine that operates on the correlation matrix of the 
predictor variables in order to compute the eigenvalues and the transformation 
weights found in Equations (9.32). Most regression packages produce the estimated 
beta coefficients as part of the standard output. 

For the advertising data, the estimates el, . . ., 85 can be computed in two 
equivalent ways. They can be obtained directly from a regression of the standardized 
variables as represented in Equation (9.29). The results of this regression are given 
in Table 9.16. Alternatively, we can fit the model in (9.31) by the least squares 
regression of the standardized response variable on the the five PCs and obtain the 
estimates 81, . . ., &,. The results of this regression are shown in Table 9.17. Then, 
we use (9.32) to obtain 61, . . ., 85. For example, 

81 = (0.532)(-0.346019) + (-0.024)(0.417889) + (-0.668)(-0.151328) 

+ (0.074)(0.659946) + (-0.514)(-1.22026) = 0.5830. 

Using the coefficients in (9.32), the standard error of 81, . . ., 05 can be computed. 
For example the estimated variance of 81 is 

(0.532 x s.e.(&l))' + (-0.024 x s.e.(&))' + (-0.668 x s . e . ( S ~ ) ) ~  
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Table 9.16 Regression Results Obtained From Fitting the Model in (9.29) 
~~~ 

Variable Coefficient s.e. 
~ ~~ 

t-test p-value 

X I  0.583 0.438 1.33 0.2019 
x 2  0.973 0.41 7 2.33 0.0329 

x* 0.395 0.367 1.08 0.2973 
x 5  0.503 0.476 1.06 0.3053 

n = 22 R‘ = 0.917 R: = 0.891 6 = 0.3303 d. f. = 16 

2 3  0.786 0.075 10.50 < o.Ooo1 

Table 9.17 Regression Results Obtained From Fitting the Model in (9.31) 

Variable Coefficient s.e. t-test p-value 

C1 -0.346 0.053 -6.55 < 0.0001 
c2 0.41 8 0.064 6.58 < o.Ooo1 

c4 0.660 0.078 8.46 < 0.0001 
c-3 -0.151 0.067 -2.25 0.0391 

c5 - 1.220 0.846 - 1.44 0.1683 

n = 22 R’ = 0.917 R: = 0.891 u = 0.3303 d. f .  = 16 

+ (0.074 x s.e.(iy4))2 + (-0.514 x s.e.(&s))’ = (0.532 x 0.0529)’ 

+ (-0.024 x 0.0635)’ + (-0.668 x 0.0674)2 + (0.074 x 0.0780)’ 

(-0.514 x 0.8456)’ = 0.1918, 

which means that the standard error of 81 is 

s.e.(&) = d m  = 0.438. 

It should be noted that the t-values for testing ,Oj and 0, equal to zero are identical. 
The beta coefficient, 0, is a scaled version of ,Oj. When constructing t-values as 
either &/s.e.(&), or ej/s.e.(ej), the scale factor is canceled. 

The estimate of 81 - 82 is 0.583 -0.973 = -0.390. The variance of I$ - 9, 
can be computed from Equation (9.36) as 0.008. A 95% confidence interval for 
01 - 19’ is -0.390 f 2 . 1 2 a  or -0.58 to -0.20. That is, the effect of shifting 
one unit of expenditure from promotions to advertising in the current year is a loss 
of between 0.20 and 0.58 standardized sales unit. 

There are other linear functions that may also be accurately estimated. Any 
function that produces a small coefficient for 1/Xs in the variance expression is a 
possibility. For example, Equations (9.3 1) suggest that all differences involving 
e l , & ,  64,  and 6s can be considered. However, some of the differences are mean- 
ingful in the problem, whereas others are not. For example, the difference (01 - &) 
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is meaningful, as described previously. It represents a shift in current expenditures 
from promotions to advertising. The difference 81 - 84 is not particularly meaning- 
ful. It represents a shift from current advertising expenditure to a previous year’s 
advertising expenditure. A shift of resources backward in time is impossible. Even 
though 81 - 84 could be accurately estimated, it is not of interest in the analysis of 
sales. 

In general, when the weights in Equation (9.32) are displayed and the corre- 
sponding values of the eigenvalues are known, it is always possible to scan the 
weights and identify those linear functions of the original regression coefficients 
that can be accurately estimated. Of those linear functions that can be accurately 
estimated, only some will be of interest for the problem being studied. 

To summarize, where multicollinearity is indicated and it is not possible to sup- 
plement the data, it may still be possible to estimate some regression coefficients 
and some linear functions accurately. To investigate which coefficients and linear 
functions can be estimated, we recommend the analysis (transformation to principal 
components) that has just been described. This method of analysis will not over- 
come multicollinearity if it is present. There will still be regression coefficients and 
functions of regression coefficients that cannot be estimated. But the recommended 
analysis will indicate those functions that are estimable and indicate the structural 
dependencies that exist among the predictor variables. 

9.10 BIBLIOGRAPHIC NOTES 

The principal components techniques used in this chapter are derived in most books 
on multivariate statistical analysis. It should be noted that principal components 
analysis involves only the predictor variables. The analysis is aimed at character- 
izing and identifying dependencies (if they exist) among the predictor variables. 
For a comprehensive discussion of principal components, the reader is referred to 
Johnson and Wichern (1992) or Seber (1984). Several statistical software packages 
are now commercially available to carry out the analysis described in this chapter. 

EXERCISES 

9.1 In the analysis of the Advertising data in Section 9.4 it is suggested that the 
regression of sales St against Et and three of the remaining four variables 
(At, Pt, At-1, St-1) may resolve the collinearity problem. Run the four 
suggested regressions and, for each of them, examine the resulting VIFj’s to 
see if collinearity has been eliminated. 

Gasoline Consumption: To study the factors that determine the gasoline 
consumption of cars, data were collected on 30 models of cars. Besides the 
gasoline consumption (Y),  measured in miles per gallon for each car, 1 1 other 
measurements representing physical and mechanical characteristics are given. 
The source of the data in Table 9.19 is Motor Trend magazine for the year 

9.2 
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1975. Definitions of variables are given in Table 9.18. We wish to determine 
whether the data set is collinear. 

(a) Compute the correlation matrix of the predictor variables X I ,  . . ., X11 

and the corresponding pairwise scatter plots. Identify any evidence of 
collinearit y. 

(b) Compute the eigenvalues, eigenvectors, and the condition number of the 
correlation matrix. Is multicollinearity present in the data? 

(c) Identify the variables involved in multicollinearity by examining the 
eigenvectors corresponding to small eigenvalues. 

(d) Regress Y on the 11 predictor variables and compute the VIF for each of 
the predictors. Which predictors are affected by the presence of collinear- 
ity? 

9.3 Refer to the Presidential Election Data in Table 5.17 and consider fitting a 
model relating V to all the variables (including a time trend representing year 
of election) plus as many interaction terms involving two or three variables as 
you possibly can. 
(a) What is the maximum number of terms (coefficients) in a linear regression 

model that you can fit to these data? [Hint: Consider the number of 
observations in the data.] 

(b) Examine the predictor variables in the above model for the presence of 
multicollinearity. (Compute the correlation matrix, the condition number, 
and the VIFs.) 

(c) Identify the subsets of variables involved in collinearity. Attempt to solve 
the multicollinearity problem by deleting some of the variables involved 
in multicollinearity. 

(d) Fit a model relating V to the set of predictors you found to be free from 
multicollinearity. 

Appendix: Principal Components 

In this appendix we present the principal components approach to the detection of 
multicollinearity using matrix notation. 

A. The Model 

The regression model can be expressed as 

where Y is an R x 1 vector of observations on the response variable, Z = (Zl ,  . . ., 
Z,) is an R x p matrix of n observations on p predictor variables, 8 is a p x 1 vector 
of regression coefficients and e is an n x 1 vector of random errors. It is assumed 
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Table 9.18 Variables for the Gasoline Consumption Data in Table 9.19 

Variable Definition 

Y Miles/gallon 
X1 Displacement (cubic inches) 
x2 Horsepower (feedpound) 
x3 Torque (feeupound) 
x4 Compression ratio 
x5 Rear axle ratio 
XG Carburetor (barrels) 
x7 Number of transmission speeds 
X8 Overall length (inches) 
X9 Width (inches) 
XlO Weight (pounds) 
x11 Type of transmission (1  = automatic; 0 = manual) 

Table 9.19 Gasoline Consumption and Automotive Variables. 

18.9 
17.0 
20.0 
18.3 
20.1 
11.2 
22.1 
21.5 
34.7 
30.4 
16.5 
36.5 
21.5 
19.7 
20.3 
17.8 
14.4 
14.9 
17.8 
16.4 
23.5 
21.5 
31.9 
13.3 
23.9 
19.7 
13.9 
13.3 
13.8 
16.5 

350.0 165 
350.0 170 
250.0 105 
351.0 143 
225.0 95 
440.0 215 
231.0 110 
262.0 110 
89.7 70 
96.9 75 

350.0 155 
85.3 80 

171.0 109 
258.0 110 
140.0 83 
302.0 129 
500.0 190 
440.0 215 
350.0 155 
318.0 145 
231.0 110 
360.0 180 
96.9 75 

460.0 223 
133.6 96 
318.0 140 
351.0 148 
351.0 148 
360.0 195 
350.0 165 

260 
275 
185 
255 
170 
330 
175 
200 
81 
83 

250 
83 

146 
195 
109 
220 
360 
330 
250 
255 
175 
290 
83 

366 
120 
255 
243 
243 
295 
255 

8.00 2.56 
8.50 2.56 
8.25 2.73 
8.00 3.00 
8.40 2.76 
8.20 2.88 
8.00 2.56 
8.50 2.56 
8.20 3.90 
9.00 4.30 
8.50 3.08 
8.50 3.89 
8.20 3.22 
8.00 3.08 
8.40 3.40 
8.00 3.00 
8.50 2.73 
8.20 2.71 
8.50 3.08 
8.50 2.45 
8.00 2.56 
8.40 2.45 
9.00 4.30 
8.00 3.00 
8.40 3.91 
8.50 2.71 
8.00 3.25 
8.00 3.26 
8.25 3.15 
8.50 2.73 

4 
4 
1 
2 
1 
4 
2 
2 
2 
2 
4 
2 
2 
1 
2 
2 
4 
4 
4 
2 
2 
2 
2 
4 
2 
2 
2 
2 
4 
4 

3 
3 
3 
3 
3 
3 
3 
3 
4 
5 
3 
4 
4 
3 
4 
3 
3 
3 
3 
3 
3 
3 
5 
3 
5 
3 
3 
3 
3 
3 

200.3 69.9 3910 
199.6 72.9 3860 
196.7 72.2 3510 
199.9 74.0 3890 
194.1 71.8 3365 
184.5 69.0 4215 
179.3 65.4 3020 
179.3 65.4 3180 
155.7 64.0 1905 
165.2 65.0 2320 
195.4 74.4 3885 
160.6 62.2 2009 
170.4 66.9 2655 
171.5 77.0 3375 
168.8 69.4 2700 
199.9 74.0 3890 
224.1 79.8 5290 
231.0 79.7 5185 
196.7 72.2 3910 
197.6 71.0 3660 
179.3 65.4 3050 
214.2 76.3 4250 
165.2 61.8 2275 
228.0 79.8 5430 
171.5 63.4 2535 
215.3 76.3 4370 
215.5 78.5 4540 
216.1 78.5 4715 
209.3 77.4 4215 
185.2 69.0 3660 

1 
1 
1 
1 
0 
1 
1 
1 
0 
0 
1 
0 
0 
1 
0 
1 
1 
1 
1 
1 
1 
1 
0 
1 
0 
1 
1 
1 
1 
I 
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that E ( E )  = 0, E ( E E ~ )  = a21, where I is the identity matrix of order n. It is also 
assumed, without loss of generality, that Y and Z have been centered and scaled 
so that ZTZ and ZTY are matrices of correlation coefficients. 

There exist square matrices, A and V satisfying6 

VT(ZTZ)V = A and VTV = VVT = I. (A.2) 

The matrix A is diagonal with the ordered eigenvalues of ZTZ on the diagonal. 
These eigenvalues are denoted by XI 2 Xa 2 . . . 2 A,. The columns of V are 
the normalized eigenvectors corresponding to X I ,  . . ., A,. Since VVT = I, the 
regression model in (A. 1) can be restated in terms of the PCs as 

Y = zvvTe + E = ca + E ,  (A.3) 

where 
C =  ZV; and a = V T 8 .  

The matrix C contains p columns C1, . . ., C,, each of which is a linear functions 
of the predictor variables Z1, . . ., Z,. The columns of C are orthogonal and are 
referred to as principal components (PCs) of the predictor variables Z1, . . ., Z,. 
The columns of C satisfy CTCj = X j  and CTCj = 0 for i # j. 

The PCs and the eigenvalues may be used to detect and analyze collinearity in 
the predictor variables. The restatement of the regression model given in Equation 
(A.3) is a reparameterization of Equation (A. 1) in terms of orthogonal predictor 
variables. The A’s may be viewed as sample variances of the PCs. If X i  = 0, all 
observations on the ith PC are also zero. Since the j th PC is a linear function of 
Z1, . . ., Z,, when A j  = 0 an exact linear dependence exists among the predictor 
variables. It follows that when A j  is small (approximately equal to zero) there is 
an approximate linear relationship among the predictor variables. That is, a small 
eigenvalue is an indicator of multicollinearity. In addition, from Equation (A.4) we 
have 

2) 

i= l  

which identifies the exact form of the linear relationship that is causing the multi- 
col linearity. 

B. Precision of Linear Functions of 6 

Denoting & and 6 as the least squares estimators for a and 8, respectively, it 
can be shown that & = VT6, and conversely, 6 = V&. With 6 = (CTC)-l 
C T Y ,  it follows that the variance-covariance matrix of 6 is V(&) = A-’a2, and 
the corresponding matrix for 6 is V(6) = VA-lVTa2. Let L be an arbitrary 
p x 1 vector of constants. The linear function b = LT8 has least squares estimator 

‘See, for example, Strang (1988) or Hadi (1996). 
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8 = LT6 and variance 

Let Vj be the j th  column of V. Then L can be represented as 

P 
L = crjvj 

j=1 

for appropriately chosen constants r1, . . . , rP. Then (AS) becomes Var(8) = 
or, equivalently, 

Var(8)  = (5 $) D2, 
j=1  

where A-1 is the inverse of A. 
To summarize, the variance of 8 is a linear combination of the reciprocals of 

the eigenvalues. It follows that 8 will have good precision either if none of the 
eigenvalues are near zero or if r$ is at most the same magnitude as X j  when X j  is 
small. Furthermore, it is always possible to select a vector, L, and thereby a linear 
function of 6,  so that the effect of one or few small eigenvalues is eliminated and 
LT6 has a small variance. Refer to Silvey (1969) for a more complete development 
of these concepts. 



CHAPTER 10 

BIASED ESTIMATION OF REGRESSION 
COEFFICIENTS 

10.1 INTRODUCTION 

It was demonstrated in Chapter 9 that when multicollinearity is present in a set of 
predictor variables, the ordinary least squares estimates of the individual regression 
coefficients tend to be unstable and can lead to erroneous inferences. In this chapter, 
two alternative estimation methods that provide a more informative analysis of the 
data than the OLS method when multicollinearity is present are considered. The 
estimators discussed here are biased but tend to have more precision (as measured 
by mean square error) than the OLS estimators (see Draper and Smith (1998), 
McCallum (1970), and Hoerl and Kennard (1970)). These alternative methods do 
not reproduce the estimation data as well as the OLS method; the sum of squared 
residuals is not as small and, equivalently, the multiple correlation coefficient is not 
as large. However, the two alternatives have the potential to produce more precision 
in the estimated coefficients and smaller prediction errors when the predictions are 
generated using data other than those used for estimation. 

Unfortunately, the criteria for deciding when these methods give better results 
than the OLS method depend on the true but unknown values of the model regres- 
sion coefficients. That is, there is no completely objective way to decide when OLS 
should be replaced in favor of one of the alternatives. Nevertheless, when mul- 
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ticollinearity is suspected, the alternative methods of analysis are recommended. 
The resulting estimated regression coefficients may suggest a new interpretation of 
the data that, in turn, can lead to a better understanding of the process under study. 

The two specific alternatives to OLS that are considered are (1) principal com- 
ponents regression and (2) ridge regression. Principal components analysis was 
introduced in Chapter 9. It is assumed that the reader is familiar with that ma- 
terial. It will be demonstrated that the principal components estimation method 
can be interpreted in two ways; one interpretation relates to the nonorthogonality 
of the predictor variables, the other has to do with constraints on the regression 
coefficients. Ridge regression also involves constraints on the coefficients. The 
ridge method is introduced in this chapter and it is applied again in Chapter 11 
to the problem of variable selection. Both methods, principal components and 
ridge regression, are examined using the French import data that were analyzed in 
Chapter 9. 

10.2 PRINCIPAL COMPONENTS REGRESSION 

The model under consideration is 

IMPORT = PO + . DOPROD + ,&. STOCK + P3 . CONSUM + E .  (10.1) 

The variables are defined in Section 9.3. Let jj and xj be the means of Y and X j ,  
respectively. Also, let sl/ and sj be the standarddeviations of Y and X j ,  respectively. 
The model of Equation (1 0.1) stated in terms of standardized variables (see Section 
9.5) is 

(10.2) 

where = (yi - $/sY is the standardized version of the response variable and 
X j  = (xij - Z j ) / s j  is the standardized version of the jth predictor variable. Many 
regression packages produce values for both the regular and standardized regression 
coefficients in (10.1) and (10.2), respectively. The estimated coefficients satisfy 

Y = elXl + e2x2  + e3X3 + E',  

(10.3) 

The principal components of the standardized predictor variables are (see Equa- 

Pj = ( s y / S J ) e j ,  j = 1,2 ,3 ,  
Po = 1J - P131 - P 2 3 2  - P333. 

tion (9.20)) 

c1 = 0.706X1 + 0.044X2 + 0.707 2 3 ,  

C2 = -0.036 Xi + 0.999 X2 - 0.026 X 3 ,  ( 10.4) 
C 3  = -0.707 Xi - 0.007 X2 + 0.707 X 3 .  

These principal components were given in Table 9.13. The model in (10.2) may be 
written in terms of the principal components as 

- 
Y = alcl + a2C2 + a 3 c 3  + E'. (10.5) 
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Table 10.1 Regression Results of Fitting Model (10.2) to the Import Data 
(1949-1959) 

Variable Coefficient s.e. t-test p-value 

2, -0.339 0.464 -0.73 0.4883 

2 3  1.303 0.464 2.81 0.0263 
2 2  0.2 13 0.034 6.20 0.0004 

n =  11 R2 = 0.992 R: = 0.988 6 = 0.034 d. f .  = 7 

Table 10.2 Regression Results of Fitting Model (10.5) to the Import Data 
(1949-1959) 

Variable Coefficient s.e. t-test p-value 

C1 0.690 0.024 
c2 0.191 0.034 
c 3  1.160 0.656 

28.70 < 0.0001 
5.62 0.0008 
1.77 0.1204 

n = 11 R2 = 0.992 Ri = 0.988 6 = 0.034 d . f . = 7  

The equivalence of (10.2) and (10.5) follows since there is a unique relationship 
between the a’s and 8’s. In particular, 

al = 0.7068~ + 0.0448~ + o.70703, 
CQ = -0.03681 + 0.99962 - 0.02683, (10.6) 
C X ~  = -0.70781 - 0.00782 + 0.70783. 

Conversely, 

81 = 0.706~1 - 0.036~~2 - 0.707~~3, 
$2 = 0.044c~l + 0.999~~2 - 0.007~~3, (10.7) 
83 = 0.707~1 - 0.026~2 + 0.707a3. 

These same relationships hold for the least squares estimates, the &’s and 6’s of 
the a’s and B’s, respectively. Therefore, the d’s and 8’s may be obtained by the 
regression of against the principal components C1, C2, and C3, or against the 
original standardized variables. The regression results of fitting models (10.2) and 
(10.5) to the import data are shown in Tables 10.1 and 10.2. From Table 10.1, the 
estimates of $1, $2, and O3 are -0.339, 0.213, and 1.303, respectively. Similarly, 
from Table 10.2, the estimates of ~ 1 ,  a 2 ,  and a3 are 0.690, 0.191, and 1.160, 
respectively. The results in one of these tables can be obtained from the other table 
using (10.6) and (10.7). 

Although Equations (10.2) and (10.5) are equivalent, the C’s in (10.5) are or- 
thogonal. Observe, however, that the regression relationship given in terms of the 
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principal components (Equation (10.5)) is not easily interpreted. The predictor 
variables of that model are linear combinations of the original predictor variables. 
The a’s, unlike the B’s, do not have simple interpretations as marginal effects of the 
original predictor variables. Therefore, we use principal components regression 
only as a means for analyzing the multicollinearity problem. The final estimation 
results are always restated in terms of the 8’s for interpretation. 

10.3 REMOVING DEPENDENCE AMONG THE PREDICTORS 

It has been mentioned that the principal components regression has two interpre- 
tations. We shall first use the principal components technique to reduce multi- 
collinearity in the estimation data. The reduction is accomplished by using less 
than the full set of principal components to explain the variation in the response 
variable. Note that when all three principal components are used, the OLS solution 
is reproduced exactly by applying Equations (10.7). 

The C’s have sample variances A1 = 1.999,A~ = 0.998, and A3 = 0.003, 
respectively. Recall that the A’s are the eigenvalues of the correlation matrix of 
DOPROD, STOCK, and CONSUM. Since C3 has variance equal to 0.003, the 
linear function defining C3 is approximately equal to zero and is the source of 
multicollinearity in the data. We exclude C3 and consider regressions of p against 
C1 alone as well as against C1 and C2. We consider the two possible regression 
models 

Y = alcl + E (10.8) 

and 
- 
y = QlC1 + a2C.2 + E .  (10.9) 

Both models lead to estimates for all three of the original coefficients, 81, 82, and 
83. The estimates are biased since some information (C3 in Equation (10.9), C2 

and C3 in Equation (1 0.8)) has been excluded in both cases. 
The estimated values of a1 or a1 and a2 may be obtained by regressing p in turn 

against C1 and then against C1 and C2. However, a simpler computational method 
is available that exploits the orthogonality of C1 C2 and C3.l For example, the 
same estimated value of will be obtained from regression using (10.3, (10.8), 
or (10.9). Similarly, the value of a 2  may be obtained from ( 1  0.5) or (10.9). It also 
follows that if we have the OLS estimates of the O’s, estimates of the Q’S may be 
obtained from Equations (1 0.6). Then principal components regression estimates 
of the 8’s corresponding to (10.8) and (10.9) can be computed by referring back to 
Equations (10.7) and setting the appropriate a’s to zero. The following example 
clarifies the process. 

‘In any regression equation where the full set of potential predictor variables under consideration 
are orthogonal, the estimated values of regression coefficients are not altered when subsets of these 
variables are either introduced or deleted. 
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Using a1 = 0.690 and a 2  = a3 = 0 in Equations (10.7) yields estimated 0’s 
corresponding to regression on only the first principal component, that is, 

81 

63 

= 0.706 x 0.690 = 0.487, 
8 2  = 0.044 x 0.690 = 0.030, ( 10.1 0) 

= 0.707 x 0.690 = 0.487, 

which yields 

= 0.48721 + 0.03022 + 0.48723. 

The estimates using the first two principal components, as in (10.9), are obtained 
in a similar fashion using a1 = 0.690, a 2  = 0.191, and a3 = 0 in (10.7). The 
estimated of the regression coefficients, Po, PI, p2, and P3, of the original variables 
in Equation (lO.l), can be obtained by substituting 01, 02, and 03 in (10.3). 

The estimates of the standardized and original regression coefficients using 
the three principal components models are shown in Table 10.3. It is evident 
that using different numbers of principal components gives substantially different 
results. It has already been argued that the OLS estimates are unsatisfactory. 
The negative coefficient of 21 (DOPROD) is unexpected and cannot be sensibly 
interpreted. Furthermore, there is extensive multicollinearity which enters through 
the principal component, C3. This variable has almost zero variance (A3 = 0.003) 
and is therefore approximately equal to zero. Of the two remaining principal 
components, it is fairly clear that the first one is associated with the combined 
effect of DOPROD and CONSUM. The second principal component is uniquely 
associated with STOCK. This conclusion is apparent in Table 10.3. The coefficients 
of DOPROD and CONSUM are completely determined from the regression of 
IMPORT on C1 alone. These coefficients do not change when C2 is used. The 
addition of C2 causes the coefficient of STOCK to increase from 0.083 to 0.609. 
Also, R2 increases from 0.952 to 0.988. Selecting the model based on the first two 
principal components, the resulting equation stated in original units is 

-2- 

IMPORT = -9.106 + 0.073. DOPROD 
+ 0.609. STOCK + 0.106. CONSUM. (10.1 1) 

It provides a different and more plausible representation of the IMPORT relationship 
than was obtained from the OLS results. In addition, the analysis has led to an 
explicit quantification (in standardized variables) of the linear dependency in the 
predictor variables. We have C3 = 0 or equivalently (from Equations (10.4)) 

The standardized values of DOPROD and CONSUM are essentially equal. This 
information can be useful qualitatively and quantitatively if Equation (1 0.1 1) is 
used for forecasting or for analyzing policy decisions. 
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First and Second 
PCs Equation (10.9) 

Stand. Original 

0 -9.106 
0.480 0.073 
0.221 0.609 
0.483 0.106 

Table 10.3 
Variables Using Different Numbers of Principal Components for IMPORT Data 

Estimated Regression Coefficients for the Standardized and Original 

All PCs 
Equation (10.5) 

Stand. Original 

0 -10.130 
-0.339 -0.051 

0.213 0.587 
1.303 0.287 

- 
(1949-1959) 

First PC 
Equation (10.8) 

Variable Stand. Original 

Constant 0 -7.735 
DOPROD 0.487 0.074 
STOCK 0.030 0.083 
CONSUM 0.487 0.107 

f? 0.232 
R2 0.952 

0.121 0.108 
0.988 1 0.992 

10.4 CONSTRAINTS ON THE REGRESSION COEFFICIENTS 

There is a second interpretation of the results of the principal components regression 
equation. The interpretation is linked to the notion of imposing constraints on the 
8’s which was introduced in Chapter 9. The estimates for Equation (10.9) were 
obtained by setting a 3  equal to zero in Equations (10.7). From (10.6), a 3  = 0 
implies that 

(1 0.12) -0.70781 - o.oo7e2 + 0.7078~ = o 
or 81 A 83. In original units, Equation (10.12) becomes 

-6.60p1 + 4.54p3 = 0 (10.13) 

or p1 = 0.69p3. Therefore, the estimates obtained by regression on C1 and C:, 
could have been obtained using OLS as in Chapter 9 with a linear constraint on the 
coefficients given by Equation (10.13). 

= p3 as a prior constraint on the 
coefficients. It was argued that the constraint was the result of a qualitative judgment 
based on knowledge of the process under study. It was imposed without looking at 
the data. Now, using the data, we have found that principal components regression 
on C1 and Cz gives a result that is equivalent to imposing the constraint of Equation 
( I  0.13). The result suggests that the marginal effect of domestic production on 
imports is about 69% of the marginal effect of domestic consumption on imports. 

To summarize, the method of principal components regression provides both 
alternative estimates of the regression coefficients as well as other useful infor- 
mation about the underlying process that is generating the data. The structure of 
linear dependence among the predictor variables is made explicit. Principal com- 
ponents with small variances (eigenvalues) exhibit the linear relationships among 
the original variables that are the source of multicollinearity. Also elimination 

Recall that in Chapter 9 we conjectured that 



PRINCIPAL COMPONENTS REGRESSION: A CAUTION 265 

of multicollinearity by dropping one or more principal components from the re- 
gression is equivalent to imposing constraints on the regression coefficients. It 
provides a constructive way of identifying those constraints that are consistent with 
the proposed model and the information contained in the data. 

10.5 PRINCIPAL COMPONENTS REGRESSION: A CAUTION 

We have seen in Chapter 9 that principal components analysis is an effective tool 
for the detection of multicollinearity. In this chapter we have used the principal 
components as an alternative to the least squares method to obtain estimates of the 
regression coefficients in the presence of multicollinearity. The method has worked 
to our advantage in the Import data, where the first two of the three principal 
components have succeeded in capturing most of the variability in the response 
variable (see Table 10.3). This analysis is not guaranteed to work for all data sets. 
In fact, the principal components regression can fail in accounting for the variability 
in the response variable. To illustrate this point Hadi and Ling (1998) use a data 
set known as the Hald’s data and a constructed response variable U. The original 
data set can be found in Draper and Smith ( 1  998), p. 348. It is given here in Table 
and can also be found in the book’s Web site.2 The data set has four predictor 
variables. The response variable U and the four PCs, C1, . . ., C4, corresponding 
to the four predictor variables are given in Table 10.5. The variable U is already 
in a standardized form. The sample variances of the four PCs are A1 = 2.2357, 
A2 = 1.5761, A3 = 0.1866, and A4 = 0.0016. The condition number, K = d m  
= J2.236/0.002 = 37, is large, indicating the presence of multicollinearity in the 
original data. 

The regression results obtained from fitting the model 

u = CvlCl+ a2c2 + a3c3 + a4C4 + (10.14) 

to the data are shown in Table 10.6. The coefficient of the last PC, C4, is highly 
significant and all other three coefficients are not significant. Now if we drop Cq, 

the PC with the smallest variance, we obtain the results in Table 10.7. As it is 
clear from a comparison of Tables 10.6 and 10.7, all four PCs capture almost all 
the variability in U ,  while the first three account for none of the variability in U .  
Therefore, one should be careful before dropping any of the PCs. 

Another problem with the principal component regression is that the results 
can be unduly influenced by the presence of high leverage point and outliers (see 
Chapter 4 for detailed discussion of outliers and influence). This is because the PCs 
are computed from the correlation matrix, which itself can be seriously affected by 
outliers in the data. A scatter plot of the response variable versus each of the PCs 
and the pairwise scatter plots of the PCs versus each other would point out outliers 
if they are present in the data. The scatter plot of U versus each of the PCs (Figure 

* http://www.ilr.corneIl.eduThadi/RABE4 



266 BIASED ESTIMATION OF REGRESSION COEFFICIENTS 

Table 10.4 Hald’s Data 

78.5 
74.3 

104.3 
87.6 
95.9 

109.2 
102.7 
72.5 
93.1 

115.9 
83.8 

113.3 
109.4 

7 
1 

11 
11 
7 

11 
3 
1 
2 

21 
1 

11 
10 

26 
29 
56 
31 
52 
55 
71 
31 
54 
47 
40 
66 
68 

6 
15 
8 
8 
6 
9 

17 
22 
18 
4 

23 
9 
8 

60 
52 
20 
47 
33 
22 
6 

44 
22 
26 
34 
12 
12 

Source: Draper and Smith (1998), p. 348 

Table 10.5 
Predictor Variables 

A Response Variable U and a Set of Principal Components of Four 

U c2 c3 c 4  

0.955 
-0.746 
-2.323 
-0.820 

0.47 1 
-0.299 

0.210 
0.558 

-1.119 
0.496 
0.781 
0.918 
0.918 

1.467 
2.136 

0.660 
-1.130 

-0.359 
-0.967 
-0.93 1 

2.232 
0.352 

1.641 
- 1.663 

- 1.693 
- 1.746 

1.903 
0.238 
0.184 
1.577 
0.484 
0.170 

-2.135 
-0.692 
- 1.432 

1.828 
-1.295 
-0.392 
-0.438 

-0.530 
-0.290 
-0.010 

0.179 
-0.740 

0.086 

0.460 

0.851 
0.494 

-0.020 
-0.275 

-0.173 

-0.032 

0.039 
-0.030 
-0.094 
-0.033 

0.019 
-0.012 

0.008 
0.023 

-0.045 
0.020 
0.03 1 
0.037 
0.037 

10.1) show that there are no outliers in the data and U is related only to Cq, which 
is consistent with the results in Tables 10.6 and 10.7. The pairwise scatter plots of 
the PCs versus each other (not shown) also show no outliers in the data. For other 
possible pitfalls of principal components regression see Hadi and Ling (1998). 
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Table 10.6 Regression Results Using All Four PCs of Hald's Data 

Variable Coefficient s.e. t-test p-value 

0.1842 
c2 -0.002 0.002 - 1.77 0.1 154 
c3 0.002 0.005 0.49 0.6409 

c1 -0.002 0 .oo 1 - 1.45 

C4 24.761 0.049 502.00 < 0.0001 

13 = 0.0069 d. f. = 8 n = 13 R2 = 1.00 R: = 1.00 

Table 10.7 Regression Results Using the First Three PCs of Hald's Data 

Variable Coefficient s.e. t-test p-value 

C1 -0.001 0.223 -0.01 0.9957 
c2 -0.000 0.266 -0.00 0.9996 
c3 0.002 0.772 0.00 0.9975 

n= 13 R2 = 0.00 Ri = -0.33 6 = 1.155 d.f. = 9  

- 1  0 1 2 

Cl 

8 

-2 -1 0 1 2 

c2 

-0.5 0.0 0.5 -0.08 -0.04 0.00 0.04 

c3 c4 

Figure 10.1 Scatter plots of U versus each of the PCs of the Hald's data. 
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10.6 RIDGE REGRESSION 

Ridge regression3 provides another alternative estimation method that may be used 
to advantage when the predictor variables are highly collinear. There are a number 
of alternative ways to define and compute ridge estimates (see the Appendix to this 
chapter). We have chosen to present the method associated with the ridge trace. 
It is a graphical approach and may be viewed as an exploratory technique. Ridge 
analysis using the ridge trace represents a unified approach to problems of detection 
and estimation when multicollinearity is suspected. The estimators produced are 
biased but tend to have a smaller mean squared error than OLS estimators (Hoerl 
and Kennard, 1970). 

Ridge estimates of the regression coefficients may be obtained by solving a 
slightly altered form of the normal equations (introduced in Chapter 3). Assume 
that the standardized form of the regression model is given as: 

Y = elxl + e 2 x 2  + . . . + spxp + E’. (1  0.15) 

The estimating equations for the ridge regression coefficients are 

rPl g1 + rp2 O2 + ... + (1 + k ) O ,  = TPY 1 

where rij is the correlation between the ith and j th predictor variables and T , ~  is 
the correlation between the ith predictor variable and the response variable p. The 
solution to (10.16), 6 1 ,  . . . , 6,, is the set of estimated ridge regression coefficients. 
The ridge estimates may be viewed as resulting from a set of data that has been 
slightly altered. See the Appendix to this chapter for a formal treatment. 

The essential parameter that distinguishes ridge regression from OLS is k .  Note 
that when k = 0, the 6’s are the OLS estimates. The parameter k may be referred 
to as the bias parameter. As k increases from zero, bias of the estimates increases. 
On the other hand, the total variance (the sum of the variances of the estimated 
regression coefficients), is 

4 (10.17) 
P P 

( X j  + k ) 2  ’ j=1 j=1 

Total Variance(k) = 1 Var(8 j (k) )  = a2 

which is a decreasing function of k. The formula in (10.17) shows the effect of 
the ridge parameter on the total variance of the ridge estimates of the regression 
coefficients. Substituting k = 0 in (10.17), we obtain 

p 1  
Total Variance(0) = o2 - , 

j = 1 %  

(10.18) 

3Hoerl (1959) named the method ridge regression because of its similarity to ridge analysis used in 
his earlier work to study second-order response surfaces in many variables. 
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Figure 10.2 Ridge trace: IMPORT data (1949-1959). 

which shows the effect of small eigenvalue on the total variance of the OLS estimates 
of the regression coefficients. 

As k continues to increase without bound, the regression estimates all tend 
toward zero.4 The idea of ridge regression is to pick a value of k for which the 
reduction in total variance is not exceeded by the increase in bias. 

It has been shown that there is a positive value of k for which the ridge estimates 
will be stable with respect to small changes in the estimation data (Hoed and 
Kennard, 1970). In practice, a value of k is chosen by computing 6 1 ,  . . . , &  for a 
range of k values between 0 and 1 and plotting the results against k .  The resulting 
graph is known as the ridge trace and is used to select an appropriate value for k .  
Guidelines for choosing k are given in the following example. 

10.7 ESTIMATION BY THE RIDGE METHOD 

A method for detecting multicollinearity that comes out of ridge analysis deals 
with the instability in the estimated coefficients resulting from slight changes in the 
estimation data. The instability may be observed in the ridge truce. The ridge trace 
is a simultaneous graph of the regression coefficients, 81, . . ., &, plotted against k 
for various values of k such as 0.001, 0.002, and so on. Figure 10.2 is the ridge 
trace for the IMPORT data. The graph is constructed from Table 10.8, which has 
the ridge estimated coefficients for 29 values of k ranging from 0 to 1. Typically, 
the values of k are chosen to be concentrated near the low end of the range. If the 
estimated coefficients show large fluctuations for small values of k ,  instability has 
been demonstrated and multicollinearity is probably at work. 

What is evident from the trace or equivalently from Table 10.8 is that the esti- 
mated values of the coefficients 131 and 83 are quite unstable for small values of k .  
The estimate of 81 changes rapidly from an implausible negative value of -0.339 to 
a stable value of about 0.43. The estimate of 83 goes from 1.303 to stabilize at about 

4Because the ridge method tends to shrink the estimates of the regression coefficients toward zero, 
ridge estimators are sometimes generically referred to as shrinkage esrirnafors. 
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Table 10.8 
IMPORT Data (1949-1959) 

Ridge Estimates 6 j ( k ) ,  as Functions of the Ridge Parameter k ,  for the 

O.OO0 
0.001 
0.003 
0.005 
0.007 
0.009 
0.010 
0.012 
0.014 
0.016 
0.01 8 
0.020 
0.022 
0.024 
0.026 
0.028 
0.030 
0.040 
0.050 
0.060 
0.070 
0.080 
0.090 
0.100 
0.200 
0.300 
0.400 
0.500 
0.600 
0.700 
0.800 
0.900 
1 .om 

-0.339 
-0.1 17 

0.092 
0.192 
0.25 1 
0.290 
0.304 
0.328 
0.345 
0.359 
0.370 
0.379 
0.386 
0.392 
0.398 
0.402 
0.406 
0.420 
0.427 
0.432 
0.434 
0.436 
0.436 
0.436 
0.426 
0.41 1 
0.396 
0.38 1 
0.367 
0.354 
0.342 
0.330 
0.3 19 

0.213 
0.215 
0.217 
0.217 
0.217 
0.217 
0.217 
0.217 
0.217 
0.217 
0.216 
0.216 
0.216 
0.215 
0.215 
0.215 
0.214 
0.213 
0.21 1 
0.209 
0.207 
0.206 
0.204 
0.202 
0.186 
0.173 
0.161 
0.151 
0.142 
0.135 
0.128 
0.121 
0.1 15 

1.303 
1.080 
0.870 
0.768 
0.709 
0.669 
0.654 
0.630 
0.61 1 
0.597 
0.585 
0.575 
0.567 
0.560 
0.553 
0.548 
0.543 
0.525 
0.513 
0.504 
0.497 
0.491 
0.486 
0.48 1 
0.450 
0.427 
0.408 
0.391 
0.376 
0.36 1 
0.348 
0.336 
0.325 
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0.50. The coefficient of X p  (STOCK), 6'2 is unaffected by the multicollinearity and 
remains stable throughout at about 0.21. 

The next step in the ridge analysis is to select a value of k and to obtain the 
corresponding estimates of the regression coefficients. If multicollinearity is a 
serious problem, the ridge estimators will vary dramatically as k is slowly increased 
from zero. As k increases, the coefficients will eventually stabilize. Since k is a bias 
parameter, it is desirable to select the smallest value of k for which stability occurs 
since the size of k is directly related to the amount of bias introduced. Several 
methods have been suggested for the choice of k .  These methods include: 

1. Fixed Point. Hoerl, Kennard, and Baldwin (1 975) suggest estimating k by 

(10.19) 

j=1 

where &(O) ,  . . ., ep(0)  are the least squares estimates of 81, . . ., 0, when 
the model in (1 0.15) is fitted to the data (i.e., when k = 0), and b2 (0) is the 
corresponding residual mean square. 

2. Iterative Method. Hoerl and Kennard (1 976) propose the following iterative 
procedure for selecting 
Denote this value by ko. 

Then use kl  to calculate 

k :  Start with the initial estimate of k in (10.19). 
Then, calculate 

kp as 

( 10.20) 

(10.21) 

Repeat this process until the difference between two successive estimates of 
k is negligible. 

3. Ridge Truce. The behavior of 8 j (k )  as a function of k is easily observed 
from the ridge trace. The value of k selected is the smallest value for which 
all the coefficients e j ( k )  are stable. In addition, at the selected value of k ,  
the residual sum of squares should remain close to its minimum value. The 
variance inflation  factor^,^ VIFj(k), should also get down to less than 10. 
(Recall that a value of 1 is a characteristic of an orthogonal system and a 
value less than 10 would indicate a non-collinear or stable system.) 

'The formula for VIF, ( k )  is given in the Appendix to this chapter. 
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4. Other Methods. Many other methods for estimating k have been suggested 
in the literature. See, for example, Marquardt (1970), Mallows (1973), 
Goldstein and Smith (1 974), McDonald and Galarneau (1975), Dempster 
et al. (1977), and Wahba, Golub, and Health (1979). The appeal of the 
ridge trace, however, lies in its graphical representation of the effects that 
multicollinearity has on the estimated coefficients. 

For the IMPORT data, the fixed point formula in (10.19) gives 

3 x 0.0101 
(-0.339)2 + (0.213)2 + (1.303)2 

k =  = 0.0164. (10.22) 

The iterative method gives the following sequence: ko = 0.0164, kl = 0.0161, 
and k2 = 0.0161. So, it converges after two iterations to k = 0.0161. The ridge 
trace in Figure 10.2 (see also Table 10.8) appears to stabilize for k around 0.04. We 
therefore have three estimates of k (0.01 64,0.0161, and 0.04). 

From Table 10.8, we see that at any of these values the improper negative sign 
on the estimate of 81 has disappeared and the coefficient has stabilized (at 0.359 
for k = 0.016 and at 0.42 for k = 0.04). From Table 10.9, we see that the sum 
of squared residuals (SSE(lc)) has only increased from 0.081 at k = 0 to 0.108 at 
k = 0.016, and to 0.1 17 at k = 0.04. Also, the variance inflation factors, VIFl(lc) 
and VIF3(k), decreased from about 185 to values between 1 and 4. It is clear that 
values of k in the interval (0.01 6 to 0.04) appear to be satisfactory. 

The estimated coefficients from the model stated in standardized and original 
variables units are summarized in Table 10.10. The original coefficient bj is 
obtained from the standardized coefficient using (10.3). For example, b1 is 
calculated by 

fiij = (sg/sl)& = (4.5437/29.9995)(0.4196) = 0.0635. 

Thus, the resulting model in terms for the original variables fitted by ridge method 
using k = 0.04 is 

IMPORT = -8.5537 + 0.0635 . DOPROD 
+ 0.5859. STOCK + 0.1156. CONSUM. 

The equation gives a plausible representation of the relationship. Note that the final 
equation for these data is not particularly different from the result obtained by using 
the first two principal components (see Table 10.3), although the two computational 
methods appear to be very different. 

10.8 RIDGE REGRESSION: SOME REMARKS 

Ridge regression provides a tool for judging the stability of a given body of data 
for analysis by least squares. In highly collinear situations, as has been pointed 
out, small changes (perturbations) in the data cause very large changes in the 
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Table 10.9 
VIFj(k), as Functions of the Ridge Parameter k, for the IMPORT Data (1949-1959) 

Residual Sum of Squares, SSE(k), and Variance Inflation Factors, 

0.000 
0.001 
0.003 
0.005 
0.007 
0.009 
0.010 
0.012 
0.014 
0.016 
0.01 8 
0.020 
0.022 
0.024 
0.026 
0.028 
0.030 
0.040 
0.050 
0.060 
0.070 
0.080 
0.090 
0.100 
0.200 
0.300 
0.400 
0.500 
0.600 
0.700 
0.800 
0.900 
1.000 

0.0810 
0.0837 
0.091 1 
0.0964 
0.1001 
0.1027 
0.1038 
0.1056 
0.1070 
0.1082 
0.1093 
0.1 102 
0.1111 
0.1 118 
0.1 126 
0.1 132 
0.1139 
0.1 170 
0.1201 
0.1234 
0.1271 
0.1310 
0.1353 
0.1400 
0.2052 
0.298 1 
0.41 12 
0.5385 
0.6756 
0.8191 
0.9667 
1.1163 
1.2666 

186.11 
99.04 
41.80 
23.00 
14.58 
10.09 
8.60 
6.48 
5.08 
4.10 
3.39 
2.86 
2.45 
2.13 
1.88 
1.67 
1 S O  
0.98 
0.72 
0.58 
0.49 
0.43 
0.39 
0.35 
0.24 
0.20 
0.18 
0.17 
0.15 
0.14 
0.13 
0.12 
0.1 1 

1.02 
1.01 
1 .OO 
0.99 
0.99 
0.98 
0.98 
0.98 
0.97 
0.97 
0.97 
0.96 
0.96 
0.95 
0.95 
0.95 
0.94 
0.93 
0.9 1 
0.89 
0.87 
0.86 
0.84 
0.83 
0.69 
0.59 
0.5 1 
0.44 
0.39 
0.35 
0.3 1 
0.28 
0.25 

186.00 
98.98 
41.78 
22.99 
14.57 
10.09 
8.60 
6.48 
5.08 
4.10 
3.39 
2.86 
2.45 
2.13 
1.88 
1.67 
1 s o  
0.98 
0.72 
0.58 
0.49 
0.43 
0.39 
0.35 
0.24 
0.20 
0.18 
0.17 
0.15 
0.14 
0.13 
0.12 
0.1 1 
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OLS ( k  = 0) 

Standardized Original 
Variable Coefficients Coefficients 

Ridge ( k  = 0.04) 

Standardized Original 
Coefficients Coefficients 

~~~~ 

Constant 0 - 10.1300 
DOPROD -0.3393 -0.0514 
STOCK 0.2130 0.5869 
CONSUM 1.3027 0.2868 

0 - 

0.4196 
0.2127 
0.5249 

-8.5537 
0.0635 
0.5859 
0.1156 

R2 = 0.992 I R2 = 0.988 

estimated regression coefficients. Ridge regression will reveal this condition. Least 
squares regression should be used with caution in these situations. Ridge regression 
provides estimates that are more robust than least squares estimates for small 
perturbations in the data. The method will indicate the sensitivity (or the stability) 
of the least squares coefficients to small changes in the data. 

The ridge estimators are stable in the sense that they are not affected by slight 
variations in the estimation data. Because of the smaller mean square error property, 
values of the ridge estimated coefficients are expected to be closer than the OLS 
estimates to the true values of the regression coefficients. Also, forecasts of the 
response variable corresponding to values of the predictor variables not included in 
the estimation set tend to be more accurate. 

The estimation of the bias parameter k is rather subjective. There are many 
methods for estimating k but there is no consensus as to which method is prefer- 
able. Regardless of the method of choice for estimating the ridge parameter k ,  the 
estimated parameter can be affected by the presence of outliers in the data. There- 
fore a careful checking for outliers should accompany any method for estimating k 
to ensure that the obtained estimate is not unduly influenced by outliers in the data. 

As with the principal components method, the criteria for deciding when the 
ridge estimators are superior to the OLS estimators depend on the values of the true 
regression coefficients in the model. Although these values cannot be known, we 
still suggest that ridge analysis is useful in cases where extreme multicollinearity 
is suspected. The ridge coefficients can suggest an alternative interpretation of the 
data that may lead to a better understanding of the process under study. 

Another practical problem with ridge regression is that it has not been imple- 
mented in some statistical packages. If a statistical package does not have a routine 
for ridge regression, ridge regression estimates can be obtained from the standard 
least squares package by using a slightly altered data set. Specifically, the ridge 
estimates of the regression coefficients can be obtained from the regression of Y* on 
X ; ,  . . ., X;. The new response variable Y* is obtained by augmenting Y by p new 
fictitious observations, each of which is equal to zero. Similarly, the new predictor 
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variable X;  is obtained by augmenting X j  by p new fictitious observations, each 

of which is equal to zero except the one in the j th  position which is equal to A, 
where k is the chosen value of the ridge parameter. It can be shown that the ridge 
estimates & ( k ) ,  . . ., d,(k)  are obtained by the least squares regression of Y* on 
X y ,  . . ., X ;  without having a constant term in the model. 

10.9 SUMMARY 

Both alternative estimation methods, ridge regression and principal components 
regression, provide additional information about the data being analyzed. We 
have seen that the eigenvalues of the correlation matrix of predictor variables play 
an important role in detecting multicollinearity and in analyzing its effects. The 
regression estimates produced by these methods are biased but may be more accurate 
than OLS estimates in terms of mean square error. It is impossible to evaluate the 
gain in accuracy for a specific problem since a comparison of the two methods 
to OLS requires knowledge of the true values of the coefficients. Nevertheless, 
when severe multicollinearity is suspected, we recommend that at least one set 
of estimates in addition to the OLS estimates be calculated. The estimates may 
suggest an interpretation of the data that were not previously considered. 

There is no strong theoretical justification for using principal components or 
ridge regression methods. We recommend that the methods be used in the presence 
of severe multicollinearity as a visual diagnostic tool for judging the suitability of 
the data for least squares analysis. When principal components or ridge regression 
analysis reveal the instability of a particular data set, the analyst should first con- 
sider using least squares regression on a reduced set of variables (as indicated in 
Chapter 9). If least squares regression is still unsatisfactory (high VIFs, coefficients 
with wrong signs, large condition number), only then should principal components 
or ridge regression be used. 

EXERCISES 

10.1 Longley’s (1967) data set is a classic example of multicollinear data. The 
data (Table 10.1 1) consist of a response variable S and six predictor variables 
XI, . . ., x6. The data can be found in the book’s Web site. The initial model 

(10.23) 

in terms of the original variables, can be written in terms of the standardized 
variables as 

(10.24) 

(a) Fit the model (10.24) to the data using least squares. What conclusion 

(b) From the results you obtained from the model in (10.24), obtain the least 

s = P O  + plxl + . . . + P6x6 + &, 

= 01x1 + . . . + 06x6 + &‘. 

can you draw from the data? 

squares estimated regression coefficients in model (10.23). 
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Table 10.11 Longley (1967) Data 

Y X1 x2 x3 x4 x5 x6 

60323 830 234289 2356 1590 
61 122 885 259426 2325 1456 
60171 882 258054 3682 1616 
61187 895 284599 335 1 1650 
63221 962 328975 2099 3099 
63639 
64989 
63761 
660 19 
67857 
68169 
665 13 
68655 
69564 
6933 1 
70551 

98 1 
990 

1000 
1012 
1046 
1084 
1 I08 
1126 
1142 
1157 
1169 

346999 
365385 
3631 12 
397469 
419180 
442769 
444546 
482704 
502601 
518173 
554894 

1932 3594 
1870 3547 
3578 3350 
2904 3048 
2822 2857 
2936 2798 
468 1 2637 
3813 2552 
393 1 2514 
4806 2572 
4007 2827 

07608 
08632 
09773 
10929 
12075 

1 13270 
1 15094 
116219 
117388 
1 18734 
120445 
121950 
123366 
125368 
127852 
13008 1 

1947 
1948 
1949 
1950 
1951 
1952 
1953 
1954 
1955 
1956 
1957 
1958 
1959 
1960 
1961 
1962 

(c) Now fit the model in (10.23) to the data using least squares and verify’ that 
the obtained results are consistent with those obtained above. 

(d) Compute the correlation matrix of the six predictor variables and the cor- 
responding scatter plot matrix. Do you see any evidence of collinearity? 

(e) Compute the corresponding PCs, their sample variances, and the condition 
number. How many different sets of multicollinearity exist in the data? 
What are the variables involved in each set? 

(f) Based on the number of PCs you choose to retain, obtain the PC estimates 
of the coefficients in (10.23) and (10.24). 

(g) Using the ridge method, construct the ridge trace. What value of lc do 
you recommend to be used in the estimation of the parameters in (10.23) 
and (10.24)? Use the chosen value of k and compute the ridge estimates 
of the regression coefficients in (10.23) and (10.24). 

(h) Compare the estimates you obtained by the three methods. Which one 
would you recommend? Explain. 

10.2 Repeat Exercise 10.1 using the Hald’s data discussed in Section 10.5 but using 
the original response variable Y and the four predictors X I ,  . . ., X4. The data 
appear in Table 10.4. 

10.3 From your analysis of the Longley and Hald data sets, do you observe the sort 
of problems pointed out in Section 10.5? 
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Appendix: Ridge Regression 

In this appendix we present ridge regression method in matrix notation. 

A. The Model 

The regression model can be expressed as 

Y = ze + E ,  

where Y is an n x 1 vector of observations on the response variable, Z = (Zl ,  . . ., 
Z,) is an n x p matrix of n observations on p predictor variables, 8 is a p x 1 vector 
of regression coefficients, and E is an n x 1 vector of random errors. It is assumed 
that E ( E )  = 0, E ( d )  = a21, where I is the identity matrix of order n. It is also 
assumed, without loss of generality, that Y and Z have been centered and scaled so 
that ZTZ and Z T Y  are matrices of correlation coefficients.6 

The least squares estimator for 8 is 8 = ( ZTZ)-l ZTY.  It can be shown that 

j=1  

where A1 2 A2 2 . . . 2 AP are the eigenvalues of ZTZ. The left-hand side of 
(A.2) is called the total mean square error. It serves as a composite measure of the 
squared distance of the estimated regression coefficients from their true values. 

B. Effect of Multicollinearity 

It was argued in Chapter 9 and in the Appendix to Chapter 9 that multi-collinearity 
is synonymous with small eigenvalues. It follows from Equation (A.2) that when 
one or more of the A's are small, the total mean square error of 8 is large, suggesting 
imprecision in the least squares estimation method. The ridge regression approach 
is an attempt to construct an alternative estimator that has a smaller total mean 
square error value. 

C. Ridge Regression Estimators 

Hoerl and Kennard (1970) suggest a class of estimators indexed by a parameter 
k > 0. The estimator is (for a given value of k) 

(A.3) 8 ( k )  = (ZTZ + kI)- lZTY = (ZTZ + kI)-lZTZe. 

The expected value of 6 ( k )  is 

~ [ e ( k ) ]  = (zTz + k I ) - I z T z e  

'Note that 2, is obtained by transforming the original predictor variable X ,  by zt3 = (zt, - 
Z3)/Jz(zt3 - Z,)2. Thus, Z, is centered and scaled to have unit length, that is, z2", = 1. 
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and the variance-covariance matrix is 

Var[8(k) ]  = (ZTZ + kI)-lZTZ(zTZ + kI)- la?  (A.3  

The variance inflation factor, VIFj ( k ) ,  as a function of k is the j th  diagonal element 
of the matrix (ZTZ + kI)-lZTZ(ZTZ + ,%I)-’. 

The residual sum of squares can be written as 

SSE(k) = (Y - Z & ( / C ) ) ~ ( Y  - Z6(k)) 
= (Y - Z6)T(Y - Z6) + ( 6 ( k )  - 6)TZTZ(6(k) - 6 ) .  (A.6) 

The total mean square error is 

T M S E ( ~ )  = ~ [ ( e ( k )  - e ) T ( e ( k )  - e)]  
= a2 trace[(ZTZ + ~ I ) - ~ z ~ z ( z ~ z  + ICI)-’I 

+ k2eT(zTz + k I ) - 2 e  

= a2 C xj(xj + q2 + k2eT(zTz + kI)-2e. 
P 

( ~ . 7 )  
j=  1 

Note that the first term on the right-hand side of Equation (A.7) is the sum of the 
variances of the components of b ( k )  (total variance) and the second term is the 
square of the bias. Hoerl and Kennard (1970) prove that there exists a value of 
k > 0 such that 

~ [ ( e ( k )  - e)T(6(lc) - e) ]  < E[@ - - e) ] ,  
that is, the mean square error of the ridge estimator, 6 ( k ) ,  is less than the mean 
square error of the OLS estimator, 6. Hoerl and Kennard (1970) suggest that an 
appropriate value of k may be selected by observing the ridge trace and some 
complementary summary statistics for 6 ( k )  such as SSE(k) and VIFj(k). The 
value of k selected is the smallest value for which 6 ( k )  is stable. In addition, at the 
selected value of k ,  the residual sum of squares should remain close to its minimum 
value, and the variance inflation factors are less than 10, as discussed in Chapter 9. 

Ridge estimators have been generalized in several ways. They are sometimes 
generically referred to as shrinkage estimators, because these procedures tend to 
shrink the estimates of the regression coefficients toward zero. To see one possible 
generalization, consider the regression model restated in terms of the principal 
components, C = ( C l ,  . . . , C p ) ,  discussed in the Appendix to Chapter 9. The 
general model takes the form 

Y = cff + E l  (A.8) 

where 
c = zv, = vTe, (A.9) 

VTZTZV = A, VTV = VVT = I, 
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and 

A =  

is a diagonal matrix consisting of the ordered eigenvalues of Z T Z .  The total mean 
square error in (A.7) becomes 

T M S E ( ~ )  = ~ [ ( e ( k )  - qT(e(rC) - e)] 
P k2a2 

(A. 10) 
X j  

O2 (Aj  + k ) 2  
,=1 

where a* = ( ( ~ 1 ,  a2,. . . , ap). Instead of taking a single value for k ,  we can 
consider several different values k ,  say k l ,  k2,  . . . , kp. We consider separate ridge 
parameters (i.e., shrinkage factors) for each of the regression coefficients. The 
quantity k, instead of being a scalar, is now a vector and denoted by k. The total 
mean square error given in (A. 10) now becomes 

TMSE(k) = E[(8(k) - 8)T(6(k) - 8)] 

The total mean square error given in (A.11) is minimized by taking kj = 
An iterative estimation procedure is suggested. At Step 1 ,  kj  is computed by using 
ordinary least squares estimates for g 2  and aj. Then a new value of &(k) is 
computed, 

&(k) = (CTC + K ) - l C T Y ,  

where K is a diagonal matrix with diagonal elements k l ,  . . . , kp from Step 1. 
The process is repeated until successive changes in the components of &(k)  are 
negligible. Then, using Equation (A.9), the estimate of 8 is 

8(k) = V&(k). (A. 12) 

The two ridge-type estimators (one value of k ,  several values of k )  defined previ- 
ously, as well as other related alternatives to ordinary least-squares estimation, are 
discussed by Dempster et al. (1 977). The different estimators are compared and 
evaluated by Monte Carlo techniques. In general, the choice of the best estimation 
method for a particular problem depends on the specific model and data. Dempster 
et al. (1 977) hint at an analysis that could be used to identify the best estimation 
method for a given set of data. At the present time, our preference is for the simplest 
version of the ridge method, a single ridge parameter k ,  chosen after an examination 
of the ridge trace. 



CHAPTER 11 

VARIABLE SELECTION PROCEDURES 

11.1 INTRODUCTION 

In our discussion of regression problems so far we have assumed that the variables 
that go into the equation were chosen in advance. Our analysis involved examining 
the equation to see whether the functional specification was correct, and whether 
the assumptions about the error term were valid. The analysis presupposed that the 
set of variables to be included in the equation had already been decided. In many 
applications of regression analysis, however, the set of variables to be included 
in the regression model is not predetermined, and it is often the first part of the 
analysis to select these variables. There are some occasions when theoretical or 
other considerations determine the variables to be included in the equation. In those 
situations the problem of variable selection does not arise. But in situations where 
there is no clear-cut theory, the problem of selecting variables for a regression 
equation becomes an important one. 

The problems of variable selection and the functional specification of the equa- 
tion are linked to each other. The questions to be answered while formulating a 
regression model are: Which variables should be included, and in what form should 
they be included; that is, should they enter the equation as an original variable X ,  
or as some transformed variable such as X 2 ,  logX, or a combination of both? 
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Although ideally the two problems should be solved simultaneously, we shall for 
simplicity propose that they be treated sequentially. We first determine the variables 
that will be included in the equation, and after that investigate the exact form in 
which the variables enter it. This approach is a simplification, but it makes the 
problem of variable selection more tractable. Once the variables that are to be 
included in the equation have been selected, we can apply the methods described 
in the earlier chapters to arrive at the actual form of the equation. 

11.2 FORMULATION OF THE PROBLEM 

We have a response variable Y and q predictor variables XI, X2, . . . , X,. A linear 
model that represents Y in terms of q variables is 

Q 

Ya = Po + c pjxaj + & a ,  
j=1 

(11.1) 

where pj are parameters and represents random disturbances. Instead of dealing 
with the full set of variables (particularly when q is large), we might delete a number 
of variables and construct an equation with a subset of variables. This chapter is 
concerned with determining which variables are to be retained in the equation. Let 
us denote the set of variables retained by X I ,  X2,  . . . X p  and those deleted by 
Xp+l,  Xp+2, . , . , X,. Let us examine the effect of variable deletion under two 
general conditions : 

1. The model that connects Y to the X’s has all p’s (PO, PI,  . . . , Pq) nonzero. 

2. The model has PO, PI,. . . , Pp nonzero, but &+I, Pp+2, .  . . , Pq zero. 

Suppose that instead of fitting (1 1 .l) we fit the subset model 
P 

yi = po + c pjxaj + & a .  (11.2) 
j=1 

We shall describe the effect of fitting the model to the full and partial set of X’s  
under the two alternative situations described previously. In short, what are the 
effects of including variables in an equation when they should be properly left out 
(because the population regression coefficients are zero) and the effect of leaving 
out variables when they should be included (because the population regression 
coefficients are not zero)? We will examine the effect of deletion of variables on 
the estimates of parameters and the predicted values of Y .  The solution to the 
problem of variable selection becomes a little clearer once the effects of retaining 
unessential variables or the deletion of essential variables in an equation are known. 

11.3 CONSEQUENCES OF VARIABLES DELETION 

Denote the estimates of the regression parameters by &, &, . . . , & when the 
model (1 1 . I )  is fitted to the full set of variables X I ,  X Z ,  . . . , X,. Denote the 
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* A  

estimates of the regression parameters by PO, PI,  . . . , bp when the model (1  1.2) 
is fitted. Let &* and gi be the predicted values from the full and partial set 
of variables corresponding to an observation (x i l ,  xi2, . . . , xi,). The results can 
now be summarized as follows (a summary using matrix notation is given in the 
Appendix to this chapter): j o ,  b1, . . . , bp are biased estimates of PO, PI, . . . , Pp 
unless the remaining p's in the model ( P p + l ,  p p + 2 ,  . . . , p,) are zero or the variables 
X I ,  X2 , .  . . , X ,  are orthogonal to the variable set (Xp+l ,  Xp+2, . . . , X,). The 
estimates &, ,&, . . ., ,b; have less precision than ,&, b1,. . . , b,; that is, 

Vur($)  2 Vur(&) ,  j = 0,1, .  . . , p .  

The variance of the estimates of regression coefficients for variables in the reduced 
equation are not greater than the variances of the corresponding estimates for the 
full model. Deletion of variables decreases or, more correctly, never increases, 
the variances of estimates of the retained regression coefficients. Since ,& are 
biased and & are not, a better comparison of the precision of estimates would be 

obtained by comparing the mean square errors of ,8j with the variances of @. The 

mean squared errors (MSE) of ,hj will be smaller than the variances of &, only 
if the deleted variables have regression coefficients smaller in magnitude than the 
standard deviations of the estimates of the corresponding coefficients. The estimate 
of a2, based on the subset model, is generally biased upward. 

Let us now look at the effect of deletion of variables on prediction. The prediction 
$i is biased unless the deleted variables have zero regression coefficients, or the set 
of retained variables are orthogonal to the set of deleted variables. The variance of 
a predicted value from the subset model is smaller than or equal to the variance of 
the predicted value from the full model; that is, 

V U T ( $ i )  5 V U T ( $ , ' ) .  

The conditions for MSE(i&) to be smaller than Var($b) are identical to the conditions 
for MSE(&) to be smaller than Var(&), which we have already stated. For further 
details, refer to Chatterjee and Hadi (1988). 

The rationale for variable selection can be outlined as follows: Even though the 
variables deleted have nonzero regression coefficients, the regression coefficients 
of the retained variables may be estimated with smaller variance from the subset 
model than from the full model. The same result also holds for the variance of 
a predicted response. The price paid for deleting variables is in the introduction 
of bias in the estimates. However, there are conditions (as we have described 
above), when the MSE of the biased estimates will be smaller than the variance of 
their unbiased estimates; that is, the gain in precision is not offset by the square 
of the bias. On the other hand, if some of the retained variables are extraneous 
or unessential, that is, have zero coefficients or coefficients whose magnitudes are 
smaller than the standard deviation of the estimates, the inclusion of these variables 
in the equation leads to a loss of precision in estimation and prediction. 
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The reader is referred to Sections 3.5, 4.12, and 4.13 for further elaboration on 
the interpretation of regression coefficients and the role of variables in regression 
modeling. 

11.4 USES OF REGRESSION EQUATIONS 

A regression equation has many uses. These are broadly summarized below. 

11.4.1 Description and Model Building 

A regression equation may be used to describe a given process or as a model 
for a complex interacting system. The purpose of the equation may be purely 
descriptive, to clarify the nature of this complex interaction. For this use there 
are two conflicting requirements: (1) to account for as much of the variation as 
possible, which points in the direction for inclusion of a large number of variables; 
and (2) to adhere to the principle of parsimony, which suggests that we try, for ease 
of understanding and interpretation, to describe the process with as few variables 
as possible. In situations where description is the prime goal, we try to choose the 
smallest number of predictor variables that accounts for the most substantial part 
of the variation in the response variable. 

11.4.2 Estimation and Prediction 

A regression equation is sometimes constructed for prediction. From the regression 
equation we want to predict the value of a future observation or estimate the mean 
response corresponding to a given observation. When a regression equation is used 
for this purpose, the variables are selected with an eye toward minimizing the MSE 
of prediction. 

1 1.4.3 Control 

A regression equation may be used as a tool for control. The purpose for con- 
structing the equation may be to determine the magnitude by which the value of a 
predictor variable must be altered to obtain a specified value of the response (target) 
variable. Here the regression equation is viewed as a response function, with Y as 
the response variable. For control purposes it is desired that the coefficients of the 
variables in the equation be measured accurately; that is, the standard errors of the 
regression coefficients are small. 

These are the broad uses of a regression equation. Occasionally, these functions 
overlap and an equation is constructed for some or all of these purposes. The main 
point to be noted is that the purpose for which the regression equation is constructed 
determines the criterion that is to be optimized in its formulation. It follows that a 
subset of variables that may be best for one purpose may not be best for another. 
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The concept of the “best“ subset of variables to be included in an equation always 
requires additional qualification. 

Before discussing actual selection procedures we make two preliminary remarks. 
First, it is not usually meaningful to speak of the “best set” of variables to be included 
in a multiple regression equation. There is no unique “best set“ of variables. A 
regression equation can be used for several purposes. The set of variables that may 
be best for one purpose may not be best for another. The purpose for which a 
regression equation is constructed should be kept in mind in the variable selection 
process. We shall show later that the purpose for which an equation is constructed 
determines the criteria for selecting and evaluating the contributions of different 
variables. 

Second, since there is no best set of variables, there may be several subsets that 
are adequate and could be used in forming an equation. A good variable selection 
procedure should point out these several sets rather than generate a so-called single 
“best” set. The various sets of adequate variables throw light on the structure of 
data and help us in understanding the underlying process. In fact, the process of 
variable selection should be viewed as an intensive analysis of the correlational 
structure of the predictor variables and how they individually and jointly affect the 
response variable under study. These two points influence the methodology that 
we present in connection with variable selection. 

11.5 CRITERIA FOR EVALUATING EQUATIONS 

To judge the adequacy of various fitted equations we need a criterion. Several have 
been proposed in the statistical literature. We describe the two that we consider 
most useful. An exhaustive list of criteria is found in Hocking (1 976). 

11 S.1 Residual Mean Square 

One measure that is used to judge the adequacy of a fitted equation is the residual 
mean square (RMS). With a p-term equation (includes a constant and ( p  - 1) 
variables), the RMS is defined as 

SSE, 
RMS, = - 

n - p  
( 1  1.3) 

where SSE, is the residual sum of squares for a p-term equation. Between two 
equations, the one with the smaller RMS is usually preferred, especially if the 
objective is forecasting. 

It is clear that RMS, is related to the square of the multiple correlation coefficient 
Ri and the square of the adjusted multiple correlation coefficient R:, which have 
already been described (Chapter 3) as measures for judging the adequacy of fit of an 
equation. Here we have added a subscript to R2 and R: to denote their dependence 
on the number of terms in an equation. The relationship between these quantities 
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are given by 

(11.4) 

and 
RMS, R2 = 1 - (n  - 1)- 

a, (SST) ’ (11.5) 

where 

Note that R& is more appropriate than Ri when comparing models with different 
number of predictors because R:, adjusts (penalizes) for the number of predictor 
variables in the model. 

SST = C ( y i  - j j)2.  

11.5.2 Mallows C, 

We pointed out earlier that predicted values obtained from a regression equation 
based on a subset of variables are generally biased. To judge the performance of 
an equation we should consider the mean square error of the predicted value rather 
than the variance. The standardized total mean squared error of prediction for the 
observed data is measured by 

(11.6) 

where MSE(&) is the mean squared error of the ith predicted value from a p-  
term equation, and o2 is the variance of the random errors. The MSE(yi) has 
two components, the variance of prediction arising from estimation, and a bias 
component arising from the deletion of variables. 

To estimate J,, Mallows (1973) uses the statistic 

SSE, c, = 7 + ( 2 p  - n),  (1 1.7) 

where 82 is an estimate of g2 and is usually obtained from the linear model with the 
full set of q variables. It can be shown that the expected value of C, is p when there 
is no bias in the fitted equation containing p terms. Consequently, the deviation of 
C, from p can be used as a measure of bias. The C, statistic therefore measures the 
performance of the variables in terms of the standardized total mean square error of 
prediction for the observed data points irrespective of the unknown true model. It 
takes into account both the bias and the variance. Subsets of variables that produce 
values of C, that are close to p are the desirable subsets. The selection of “good“ 
subsets is done graphically. For the various subsets a graph of C, is plotted against 
p .  The line C, = p is also drawn on the graph. Sets of variables corresponding 
to points close to the line C, = p are the good or desirable subsets of variables to 
form an equation. The use of C, plots is illustrated and discussed in more detail 
in the example that is given in Section 1 1.10. A very thorough treatment of the C, 
statistic is given in Daniel and Wood (1 980). 
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11 5 3  information Criteria: Akaike and Other Modified Forms 

Variable selection in the regression context can be viewed as a model selection 
problem. The Information criteria that we now describe arose first in the general 
problem of model selection. The Akaike (1973) Information Criteria (AIC) in 
selecting a model tries to balance the conflicting demands of accuracy (fit) and 
simplicity (small number of variables). This is the principle of parsimony already 
discussed in Section 3.9.2. AIC for a p-term equation (a constant, and ( p  - 1) 
variables) is given by 

(11.8) AJC, = n ln(SSE,/n) + 2p. 

The models with smaller AIC are preferred. 
We can see from (1 1.8) that for two models with similar SSE, AIC penalizes the 

model that has larger number of variables. The numerical value of AIC for a single 
model is not very meaningful or descriptive. AIC can be used, however, to rank 
the models on the basis of their twin criteria of fit and simplicity. Models with AIC 
not differing by 2 should be treated as equally adequate. Larger differences in AIC 
indicate significant difference between the quality of the models. The one with the 
lower AIC should be adopted. 

A great advantage of AIC is that it allows us to compare non-nested models. A 
group of models are nested if they can be obtained from a larger model as special 
cases (See Section 3.9). We cannot perform an F-test, for example, to compare 
the adequacy of a model based on ( X I ,  X2,  X,) with one based on (&, X,). The 
choice of these two sets of variables may be dictated by the nature of the problem at 
hand. The AIC will allow us to make such comparisons but not the F-test described 
earlier. 

To compare models by AIC we must have a complete data cases (no missing 
values). The AIC must be calculated on the same set of observations. If there 
are many missing values for some variables, application of AIC may be inefficient 
because observations in which some variables were missing will be dropped. 

Several modifications of AIC have been suggested. One popular variation called 
Bayes Information Criteria (BIC), originally proposed by Schwarz (1978), is de- 
fined as 

BIC, = nln(SSE,/n) +p( lnn) .  (11.9) 

The difference between AIC and BIC is in the severity of penalty for p .  The 
penalty is far more severe in BIC when n > 8. This tends to control the overfitting 
(resulting in a choice of larger p )  tendency of AIC. 

Another modification of AIC to avoid overfitting is the bias corrected version, 
AIC', proposed by Hurvich and Tsai (1 989), is given by 

AIC; = AIC, + 2 ( p  + 2 ) ( P  + 3) 
n - p - 3  ' 

(11.10) 

The correction to AIC in (1 1.10) is small for large n and moderate p.  The correction 
is large when n is small and p large. One should never fit a large and complex 
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model with a small number of observations. In general the correction to AIC will 
be minor, and we will not discuss AICC further. To guard against overfitting in our 
analysis we will examine BIC. 

11.6 MULTICOLLINEARITY AND VARIABLE SELECTION 

In discussing variable selection procedures, we distinguish between two broad 
situations: 

1. The predictor variables are not collinear; that is, there is no strong evidence 
of multicollinearity. 

2. The predictor variables are collinear; that is, the data are highly multicollinear. 

Depending on the correlation structure of the predictor variables, we propose dif- 
ferent approaches to the variable selection procedure. If the data analyzed are not 
collinear, we proceed in one manner, and if collinear, we proceed in another. 

As a first step in variable selection procedure we recommend calculating the 
variance inflation factors (VIFs) or the eigenvalues of the correlation matrix of the 
predictor variables. If none of the VLFs are greater than 10, collinearity is not a 
problem. Further, as we explained in Chapter 9, the presence of small eigenvalues 
indicates collinearity. If the condition number' is larger than 15, the variables are 
collinear. We may also look at the sum of the reciprocals of the eigenvalues. If 
any of the individual eigenvalues are less than 0.01, or the sum of the reciprocals 
of the eigenvalues is greater than, say, five times the number of predictor variables 
in the problem, we say that the variables are collinear. If the conditions above do 
not hold, the variables are regarded as noncollinear. 

11.7 EVALUATING ALL POSSIBLE EQUATIONS 

The first procedure described is very direct and applies equally well to both collinear 
and noncollinear data. The procedure involves fitting all possible subset equations 
to a given body of data. With q variables the total number of equations fitted is 
2 4  (including an equation that contains all the variables and another that contains 
no variables). The latter is simply yi = g, which is obtained from fitting the 
model Y = PO + E .  This method clearly gives an analyst the maximum amount 
of information available concerning the nature of relationships between Y and the 
set of X's .  However, the number of equations and supplementary information that 
must be looked at may be prohibitively large. Even with only six predictor variables, 
there are 64 ( 2 9  equations to consider; with seven variables the number grows to 
128 (27), neither feasible nor practical. An efficient way of using the results from 

'Recall from Chapter 9 that the condition number is defined by K = Js where A,,, and 
A,,, are the maximum and minimum eigenvalues of the matrix of correlation coefficients. 
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fitting all possible equations is to pick out the three "best" (on the basis of R2, C,, 
RMS, or the information criteria outlined earlier) equations containing a specified 
number of variables. This smaller subset of equations is then analyzed to arrive 
at the final model. These regressions are then carefully analyzed by examining 
the residuals for outliers, autocorrelation, or the need for transformations before 
deciding on the final model. The various subsets that are investigated may suggest 
interpretations of the data that might have been overlooked in a more restricted 
variable selection approach. 

When the number of variables is large, the evaluation of all possible equations 
may not be practically feasible. Certain shortcuts have been suggested (Furnival 
and Wilson, 1974; La Motte and Hocking, 1970) which do not involve computing 
the entire set of equations while searching for the desirable subsets. But with 
a large number of variables these methods still involve a considerable amount 
of computation. There are variable selection procedures that do not require the 
evaluation of all possible equations. Employing these procedures will not provide 
the analyst with as much information as the fitting of all possible equations, but it 
will entail considerably less computation and may be the only available practical 
solution. These are discussed in Section 1 1.8. These procedures are quite efficient 
with noncollinear data. We do not, however, recommend them for collinear data. 

11.8 VARIABLE SELECTION PROCEDURES 

For cases when there are a large number of potential predictor variables, a set 
of procedures that does not involve computing of all possible equations has been 
proposed. These procedures have the feature that the variables are introduced or 
deleted from the equation one at a time, and involve examining only a subset of 
all possible equations. With q variables these procedures will involve evaluation 
of at most ( q  + 1) equations, as contrasted with the evaluation of 2 4  equations 
necessary for examining all possible equations. The procedures can be classified 
into two broad categories: (1) the forward selection procedure (FS), and (2) the 
backward elimination procedure (BE). There is also a very popular modification of 
the FS procedure called the stepwise method. The three procedures are described 
and compared below. 

11.8.1 Forward Selection Procedure 

The forward selection procedure starts with an equation containing no predictor 
variables, only a constant term. The first variable included in the equation is the 
one which has the highest simple correlation with the response variable Y .  If the 
regression coefficient of this variable is significantly different from zero it is retained 
in the equation, and a search for a second variable is made. The variable that enters 
the equation as the second variable is one which has the highest correlation with 
Y ,  after Y has been adjusted for the effect of the first variable, that is, the variable 
with the highest simple correlation coefficient with the residuals from Step 1. The 
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significance of the regression coefficient of the second variable is then tested. If 
the regression coefficient is significant, a search for a third variable is made in 
the same way. The procedure is terminated when the last variable entering the 
equation has an insignificant regression coefficient or all the variables are included 
in the equation. The significance of the regression coefficient of the last variable 
introduced in the equation is judged by the standard t-test computed from the latest 
equation. Most forward selection algorithms use a low t cutoff value for testing 
the coefficient of the newly entered variable; consequently, the forward selection 
procedure goes through the full set of variables and provides us with q + 1 possible 
equations. 

11.8.2 Backward Elimination Procedure 

The backward elimination procedure starts with the full equation and successively 
drops one variable at a time. The variables are dropped on the basis of their 
contribution to the reduction of error sum of squares. The first variable deleted is 
the one with the smallest contribution to the reduction of error sum of squares. This 
is equivalent to deleting the variable which has the smallest t-test in the equation. 
If all the t-tests are significant, the full set of variables is retained in the equation. 
Assuming that there are one or more variables that have insignificant t-tests, the 
procedure operates by dropping the variable with the smallest insignificant t-test. 
The equation with the remaining ( q  - 1) variables is then fitted and the t-tests for 
the new regression coefficients are examined. The procedure is terminated when 
all the t-tests are significant or all variables have been deleted. In most backward 
elimination algorithms the cutoff value for the t-test is set high so that the procedure 
runs through the whole set of variables, that is, starting with the q-variable equation 
and ending up with an equation containing only the constant term. The backward 
elimination procedure involves fitting at most q + 1 regression equations 

11.8.3 Stepwise Method 

The stepwise method is essentially a forward selection procedure but with the added 
proviso that at each stage the possibility of deleting a variable, as in backward 
elimination, is considered. In this procedure a variable that entered in the earlier 
stages of selection may be eliminated at later stages. The calculations made for 
inclusion and deletion of variables are the same as FS and BE procedures. Often, 
different levels of significance are assumed for inclusion and exclusion of variables 
from the equation. 

AIC and BIC both can be used for setting up stepwise procedures (forward 
selection and backward elimination). For forward selection one starts with a 
constant as the fitting term, and adds variables to the model. The procedure is 
terminated, when addition of a variable causes no reduction of AIC (BIC). In the 
backward procedure, we start with the full model (containing all the variables) and 
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drop variables successively. The procedure is terminated when dropping a variable 
does not lead to any further reduction in the criteria. 

The stepwise procedure based on information criteria differs in a major way from 
the procedures based on the t-statistic that gauges the significance of a variable. 
The information based procedures are driven by all the variables in the model. The 
termination of the procedure is based solely on the decrease of the criterion, and 
not on the statistical significance of the entering or departing variable. 

Most of the currently available software do not automatically produce AIC or 
BIC. They all, however, provide SSE, from which it is easy to compute ( 1  1.8) and 
(1 1.9) the information criteria. 

11.9 GENERAL REMARKS ON VARIABLE SELECTION METHODS 

The variable selection procedures discussed above should be used with caution. 
These procedures should not be used mechanically to determine the “best” variables. 
The order in which the variables enter or leave the equation in variable selection 
procedures should not be interpreted as reflecting the relative importance of the 
variables. If these caveats are kept in mind, the variable selection procedures are 
useful tools for variable selection in noncollinear situations. All three procedures 
will give nearly the same selection of variables with noncollinear data. They entail 
much less computing than that in the analysis of all possible equations. 

Several stopping rules have been proposed for the variable selection procedures. 
A stopping rule that has been reported to be quite effective is as follows: 

0 In FS: Stop if minimum t-test is less than 1. 

0 In BE: Stop if minimum t-test is greater than 1. 

In the following example we illustrate the effect of different stopping rules in 
variable selection. 

We recommend the BE procedure over FS procedure for variable selection. One 
obvious reason is that in BE procedure the equation with the full variable set is 
calculated and available for inspection even though it may not be used as the final 
equation. Although we do not recommend the use of variable selection procedures 
in a collinear situation, the BE procedure is better able to handle multicollinearity 
than the FS procedure (Mantel, 1970). 

In an application of variable selection procedures several equations are generated, 
each equation containing a different number of variables. The various equations 
generated can then be evaluated using a statistic such as C,, RMS, AIC, or BIC. 
The residuals for the various equations should also be examined. Equations with 
unsatisfactory residual plots are rejected. Only a total and comprehensive analysis 
will provide an adequate selection of variables and a useful regression equation. 
This approach to variable selection is illustrated by the following example. 
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Table 11.1 Correlation Matrix for the Supervisor Performance Data in Table 3.3 

X1 x2 x3 x4 x5 x6 

X1 1 .ooo 
x2 0.558 1 .Ooo  
x3 0.597 0.493 1 .ooo 
x4 0.669 0.445 0.640 1 .ooO 
x5 0.188 0.147 0.1 16 0.377 1 .ooo 
x6 0.225 0.343 0.532 0.574 0.283 1 .ooo 

11.10 A STUDY OF SUPERVISOR PERFORMANCE 

To illustrate variable selection procedures in a noncollinear situation, consider the 
Supervisor Performance data discussed in Section 3.3. A regression equation was 
needed to study the qualities that led to the characterization of good supervisors 
by the people being supervised. The equation is to be constructed in an attempt 
to understand the supervising process and the relative importance of the different 
variables. In terms of the use for the regression equation, this would imply that we 
want accurate estimates of the regression coefficients, in contrast to an equation that 
is to be used only for prediction. The variables in the problem are given in Table 
3.2. The data are shown in Table 3.3 and can also be obtained from the book’s Web 
site.’ 

The VIFs resulting from regressing Y on XI, X2, . . . , x6 are 

VIFl = 2.7, VIF2 = 1.6, VIF3 = 2.3, 

VIF4 = 3.1, VIF5 = 1.2, VIF6 = 2.0. 

The range of the VIFs (1.2 to 3.1) shows that collinearity is not a problem for these 
data. The same picture emerges if we examine the eigenvalues of the correlation 
matrix of the data (Table 1 1.1). The eigenvalues of the correlation matrix are: 

A1 = 3.169, A2 = 1.006, A3 = 0.763, 

A4 = 0.553, A5 = 0.317, = 0.192. 

The sum of the reciprocals of the eigenvalues is 12.8. Since none of the eigenvalues 
are small (the condition number is 4.1) and the sum of the reciprocals of the 
eigenvalues is only about twice the number of variables, we conclude that the data 
in the present example are not seriously collinear and we can apply the variable 
selection procedures just described. 

The result of forward selection procedure is given in Table 1 1.2. For successive 
equations we show the variables present, the RMS, and the value of the C, statistic. 
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Table 11.2 Variables Selected by the Forward Selection Method 

Variables in Equation min(lt1) RMS C, p Rank AIC BIC 

X1 7.74 6.993 1.41 2 1 118.63 121.43 
x1 x3 1.57 6.817 1.11 3 1 118.00 122.21 

x1 x3x6 1.29 6.734 1.60 4 1 118.14 123.74 
xlx3X6x2 0.59 6.820 3.28 5 1 119.73 126.73 

xlx3x6X2x4 0.47 6.928 5.07 6 1 121.45 129.86 
xlx3x6x2X4xs 0.26 7.068 7.00 7 - 123.36 133.17 

The column labeled Rank shows the rank of the subset obtained by FS relative to 
best subset (on the basis of RMS) of same size. The value of p is the number of 
predictor variables in the equation, including a constant term. Two stopping rules 
are used: 

1. Stop if minimum absolute t-test is less than to.os(n - p ) .  

2. Stop if minimum absolute t-test is less than 1. 

The first rule is more stringent and terminates with variables X1 and X3. The 
second rule is less stringent and terminates with variables XI, X3, and X6. 

The results of applying the BE procedure are presented in Table 11.3. They are 
identical in  structure to Table 11.2. For the BE we will use the stopping rules: 

1. Stop if minimum absolute t-test is greater than to.os(n - p ) .  

2. Stop if minimum absolute t-test is greater than 1, 

With the first stopping rule the variables selected are X1 and X3. With the second 
stopping rule the variables selected are XlrX3, and x6. The FS and BE give 
identical equations for this problem, but this is not always the case (an example is 
given in Section 1 1.12). To describe the supervisor performance, the equation 

Y = 13.58 + 0.62X1 + 0.31X3 - 0.19X~ 

is chosen. The residual plots (not shown) for this equation are satisfactory. Since 
the present problem has only six variables, the total number of equations that can be 
fitted which contain at least one variable is 63. The C, values for all 63 equations 
are shown in Table 1 1.4. The C, values are plotted against p in Figure 1 1. I .  The 
best subsets of variables based on C, values are given in Table 11.5. 

It is seen that the subsets selected by C, are different from those amved at by 
the variable selection procedures as well as those selected on the basis of residual 
mean square. This anomaly suggests an important point concerning the C, statistic 
that the reader should bear in mind. For applications of the C, statistic, an estimate 
of c2 is required. Usually, the estimate of o2 is obtained from the residual sum 
of squares from the full model. If the full model has a large number of variables 
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Table 11.3 Variables Selected by Backward Elimination Method 
~~~ 

Variables in Equation min(It1) RMS C, p Rank AIC BIC 

x1x2x3x4x5x6 0.26 7.068 7.00 7 - 123.36 133.17 
xlx2x3X4x6 0.47 6.928 5.07 6 1 121.45 129.86 
xlx2X3x6 0.59 6.820 3.28 5 1 119.73 126.73 

xlX3x6 1.29 6.734 1.60 4 1 118.14 123.74 
xlx3 1.57 6.817 1.11 3 1 118.00 122.21 

X1 7.74 6.993 1.41 2 1 118.63 121.43 

Table 11.4 Values of C, Statistic (All Possible Equations) 

Variables C, 

1 1.41 
2 44.40 

1 2  3.26 
3 26.56 

1 3  1.11 
2 3 26.96 

1 2 3  2.51 
4 30.06 
1 4  3.19 
2 4  29.20 

1 2 4  4.99 
3 4 23.25 

1 3 4  3.09 
2 3 4 24.56 

1 2 3 4 4.49 
5 57.91 

Variables C, 

1 5  3.41 
2 5  45.62 

1 2 5  5.26 
3 5  27.94 

1 3 5  3.1 1 
2 3 5 28.53 

1 2 3 5  4.51 
4 5  3 1.62 
1 4 5  5.16 
2 4  5 30.82 

1 2 4 5  6.97 
3 4 5  25.23 

1 3  4 5  5.09 
2 3 4 5  26.53 

1 2 3 4 5  6.48 
6 57.95 

Variables C, 

1 6  3.33 
2 6  46.39 

1 2 6  5.22 
3 6 24.82 

1 3 6  1.60 
2 3 6 24.62 

1 2 3 6  3.28 
4 6  27.73 

1 4 6  4.70 
2 4 6  25.91 

1 2 4  6 6.63 
3 4 6  16.50 

1 3 4 6 3.35 
2 3 4 6  17.57 

1 2 3 4 6  5.07 
5 6 58.76 

Variables CP 

1 5 6  5.32 
2 5  6 47.91 

1 2 5 6  7.22 
3 5 6 25.02 

1 3 5 6  3.46 
2 3 5 6  25.11 

1 2 3 5 6  5.14 
4 5  29.50 

1 4 5 6  6.69 
2 4 5 6  27.74 

1 2 4 5 6  8.61 
3 4 5 6  18.42 

1 3 4 5 6  5.29 
2 3 4 5 6  19.51 

1 2 3 4 5 6  7 

Table 11.5 Variables Selected on the Basis of C, Statistic 

Variables in Equation min(lt1) RMS C, p Rank AIC BIC 

X1 7.74 6.993 1.41 2 1 118.63 121.43 
x1 x4 0.47 7.093 3.19 3 2 120.38 124.59 

Xlx4x6 0.69 7.163 4.70 4 5 121.84 127.45 
xlx3X4x5 0.07 7.080 5.09 5 6 121.97 127.97 

x1 x2x3x4 x5 0.11 7.139 6.48 6 4 123.24 131.65 
xlx2x3x4X5x6 0.26 7.068 7.00 7 - 133.17 133.17 
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1 2 3 4 5 6 7 8  

P 

Figure 11.1 Supervisor’s Performance Data: Scatter plot of C, versus p for subsets with 
c, < 10. 

with no explanatory power (i.e., population regression coefficients are zero), the 
estimate of o2 from the residual sum of squares for the full model would be large. 
The loss in degrees of freedom for the divisor would not be balanced by a reduction 
in the error sum of squares. If C2 is large, then the value of C, is small. For C, 
to work properly, a good estimate of c2 must be available. When a good estimate 
of o2 is not available, C, is of only limited usefulness. In our present example, 
the RMS for the full model with six variables is larger than the RMS for the model 
with three variables X I ,  X3, x6. Consequently, the C, values are distorted and not 
very useful in variable selection in the present case. The type of situation we have 
described can be spotted by looking at the RMS for different values of p .  RMS will 
at first tend to decrease with p ,  but increase at later stages. This behavior indicates 
that the latter variables are not contributing significantly to the reduction of error 
sum of squares. Useful application of C, requires a parallel monitoring of RMS to 
avoid distortions. 

Values of AIC and BIC for forward selection and backward elimination is given 
in Tables 11.2 and 11.3. The lowest value of AIC (1 18.00) is obtained for X1 
and X3. If we regard models with AIC within 2 to be equivalent, then X I ,  X l X 3 ,  
XlX3X6,  X I X ~ X ~ X ~ ,  should be considered. Among these four candidate models 
we can pick one of them. The lowest value of BIC (121.43) is attained by X I .  
There is only one other model ( X l X 3 )  whose BIC lies within 2 units. It should 
be noted that BIC selects models with smaller number of variables because of its 
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penalty function. Variable selection should not be done mechanically. In many 
situations there may not be a “best model” or a “best set of variables”. The aim of 
the analysis should be to identify all models of high equal adequacy. 

11.1 1 VARIABLE SELECTION WITH COLLINEAR DATA 

In Chapter 9 it was pointed out that serious distortions are introduced in standard 
analysis with collinear data. Consequently, we recommend a different set of pro- 
cedures for selecting variables in these situations. Collinearity is indicated when 
the correlation matrix has one or more small eigenvalues. With a small number of 
collinear variables we can evaluate all possible equations and select an equation by 
methods that have already been described. But with a larger number of variables 
this method is not feasible. 

Two different approaches to the problem have been proposed. The first approach 
tries to break down the collinearity of the data by deleting variables. The collinear 
structure present in the variables is revealed by the eigenvectors corresponding to 
the very small eigenvalues (see Chapters 9 and 10). Once the collinearities are 
identified, a set of variables can then be deleted to produce a reduced noncollinear 
data set. We can then apply the methods described earlier. The second approach 
uses ridge regression as the main tool. We assume that the reader is familiar with 
the basic terms and concepts of ridge regression (Chapter 10). The first approach 
(by judicious dropping of correlated variables) is the one that is almost always used 
in practice. 

11.12 THE HOMICIDE DATA 

In a study investigating the role of firearms in accounting for the rising homicide 
rate in Detroit, data were collected for the years 1961-1973. The data are reported 
in Gunst and Mason (1980), p. 360. The response variable (the homicide rate) and 
the predictor variables believed to influence or be related to the rise in the homicide 
rate are defined in Table 1 1.6 and given in Tables 1 1.7 and 1 1.8. The data can also 
be found in the book’s Web site. 

We use these data to illustrate the danger of mechanical variable selection pro- 
cedures, such as the FS and BE, in collinear situations. We are interested in fitting 
the model 

H = P o + P i  G + P ~ M + P ~ W + E .  

In terms of the centered and scaled version of the variables, the model becomes 

H = &  G + B 2 M + $ 3 W + E t .  (11.11) 

The OLS results are shown in Table 1 I .9. Can the number of predictor variables 
in this model be reduced? If the standard assumptions hold, the small t-test for 
the variable G (0.68) would indicate that the corresponding regression coefficient 
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Table 11.6 Homicide Data: Description of Variables 

Variable Symbol Description 
~ 

1 
2 
3 
4 

5 

6 
7 
8 
9 
10 
11 
12 

FTP 
UEMP 
M 
LIC 

GR 

CLEAR 
W 
NMAN 
G 
HE 
WE 
H 

Number of full-time police per 100,OOO population 
Percent of the population unemployed 
Number of manufacturing workers (in thousands) 
Number of handgun licenses issued per 100,000 
population 
No. of handgun registration issued per 100,000 
population 
Percent of homicides cleared by arrest 
Number of white males in the population 
Number of nonmanufacturing workers (in thousands) 
Number of government workers (in thousands) 
Average hourly earnings 
Average weekly earnings 
Number of homicides per 100,000 population 

Table 11.7 First Part of the Homicides Data 

Year FTP UNEMP M LIC GR CLEAR 

1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 

260.35 
269.80 
272.04 
272.96 
272.5 1 
26 1.34 
268.89 
295.99 
3 19.87 
341.43 
356.59 
376.69 
390.19 

11.0 
7.0 
5.2 
4.3 
3.5 
3.2 
4.1 
3.9 
3.6 
7.1 
8.4 
7.7 
6.3 

455.5 
480.2 
506.1 
535.8 
576.0 
601.7 
577.3 
596.9 
613.5 
569.3 
548.8 
563.4 
609.3 

178.15 
156.41 
198.02 
222.10 
301.92 
391.22 
665.56 

1131.21 
837.80 
794.90 
817.74 
583.17 
709.59 

215.98 
180.48 
209.57 
231.67 
297.65 
367.62 
616.54 

1029.75 
786.23 
713.77 
750.43 

1027.38 
666.50 

93.4 
88.5 
94.4 
92.0 
91.0 
87.4 
88.3 
86.1 
79.0 
73.9 
63.4 
62.5 
58.9 

Source: Gunst and Mason (1980). p. 360 



298 VARIABLE SELECTION PROCEDURES 

Table 11.8 Second Part of the Homicide Data 

Year W NMAN G HE WE H 

1961 558724 538.1 133.9 2.98 117.18 8.60 
1962 538584 547.6 137.6 3.09 134.02 8.90 
1963 519171 562.8 143.6 3.23 141.68 8.52 
1964 500457 59 1 .O 150.3 3.33 147.98 8.89 
1965 482418 626.1 164.3 3.46 159.85 13.07 
1966 465029 659.8 179.5 3.60 157.19 14.57 
1967 448267 686.2 187.5 3.73 155.29 21.36 
1968 432109 699.6 195.4 2.91 131.75 28.03 
1969 416533 729.9 210.3 4.25 178.74 3 1.49 
1970 401518 757.8 223.8 4.47 178.30 37.39 
1971 398046 755.3 227.7 5.04 209.54 46.26 
1972 373095 787.0 230.9 5.47 240.05 47.24 
1973 359647 819.8 230.2 5.76 258.05 52.33 

Source: Gunst and Mason (1980), p. 360 

Table 11.9 Homicide Data: The OLS Results From Fitting Model ( 1  1 . 1  1) 

Variable Coefficient s.e. t-test VIF 

G 
M 
W 

0.235 0.345 
-0.405 0.090 
- 1.025 0.378 

0.68 42 
-4.47 3 
-2.71 51 

n = 13 R2 = 0.975 Ri = 0.966 & = 0.0531 d . f .=9  

is insignificant and G can be omitted from the model. Let us now apply the 
forward selection and the backward elimination procedures to see which variables 
are selected. The regression output that we need to implement the two methods 
on the standardized versions of the variables are summarized in Table 11 .lo. In 
this table we give the estimated coefficients, their t-tests, and the adjusted squared 
multiple correlation coefficient, Ri for each model for comparison purposes. 

The first variable to be selected by the FS is G because it has the largest t- 
test among the three models that contain a single variable (Models (a) to (c) in 
Table 11.10). Between the two candidates for the two-variable models (Models 
(d) and (e)), Model (d) is better than Model (e). Therefore, the second variable 
to enter the equation is M .  The third variable to enter the equation is W (Model 
(0) because it has a significant t-test. Note, however, the dramatic change of the 
significance of G in Models (a), (d), and (0. It was highly significant coefficient in 
Models (a) and (d), but became insignificant in Model (0. Collinearity is a suspect! 
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Table 11.10 
Adjusted Squared Multiple Correlation Coefficient, R: 

Homicide Data: The Estimated Coefficients, Their t-tests, and the 

Model 

Variable (a) (b) (c) (dl (el (0 (g) 

G: Coeff. 0.96 1.15 0.87 0.24 
t-test 1 1.10 11.90 1.62 0.68 

M: Coeff. 0.55 -0.27 -0.40 -0.43 
t-test 2.16 -2.79 -4.47 -5.35 

W: Coeff. 
t-test 

-0.95 -0.09 -1.02 -1.28 
-9.77 -0.17 -2.71 -15.90 

~~~~ 

R: 0.91 0.24 0.89 0.95 0.90 0.97 0.97 

The BE methods starts with the three-variable Model (9. The first variable to 
leave is G (because it has the lowest t-test), which leads to Model (g). Both M and 
W in Model (g) have significant t-tests and the BE procedure terminates. 

Observe that the first variable eliminated by the BE (G) is the same as the first 
variable selected by the FS. That is, the variable G, which was selected by the FS 
as the most important of the three variables, was regarded by the BE as the least 
important! Among other things, the reason for this anomalous result is collinearity. 
The eigenvalues of the correlation matrix, A1 = 2.65, A2 = 0.343, and A3 = 0.011, 
give a large condition number ( K  = 15.6). Two of the three variables (G and 
W )  have large VIF (42 and 51). The sum of the reciprocals of the eigenvalues is 
also very large (96). In addition to collinearity, since the observations were taken 
over time (for the years 1961-1973), we are dealing with time series data here. 
Consequently, the error terms can be autocorrelated (see Chapter 8). Examining 
the pairwise scatter plots of the data will reveal other problems with the data. 

This example shows clearly that automatic applications of variable selection 
procedure in multicollinear data can lead to the selection of a wrong model. In 
Sections 1 1.13 and 1 1.14 we make use of ridge regression for the process of variable 
selection in multicollinear situations. 

11 . I3  VARIABLE SELECTION USING RIDGE REGRESSION 

One of the goals of ridge regression is to produce a regression equation with stable 
coefficients. The coefficients are stable in the sense that they are not affected by 
slight variations in the estimation data. The objectives of a good variable selection 
procedure are (1 )  to select a set of variables that provides a clear understanding of 
the process under study, and (2) to formulate an equation that provides accurate 
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forecasts of the response variable corresponding to values of the predictor variables 
not included in the study. It is seen that the objectives of a good variable selection 
procedure and ridge regression are very similar and, consequently, one (ridge 
regression) can be employed to accomplish the other (variable selection). 

The variable selection is done by examining the ridge trace, a plot of the ridge 
regression coefficients against the ridge parameter k. For a collinear system, the 
characteristic pattern of ridge trace has been described in Chapter 10. The ridge 
trace is used to eliminate variables from the equation. The guidelines for elimination 
are: 

1. Eliminate variables whose coefficients are stable but small. Since ridge 
regression is applied to standardized data, the magnitude of the various 
coefficients are directly comparable. 

2. Eliminate variables with unstable coefficients that do not hold their predicting 
power, that is, unstable coefficients that tend to zero. 

3. Eliminate one or more variables with unstable coefficients. The variables 
remaining from the original set, say p in number, are used to form the 
regression equation. 

At the end of each of the above steps, we refit the model that includes the remaining 
variables before we proceed to the next step. 

The subset of variables remaining after elimination should be examined to see 
if collinearity is no longer present in the subset. We illustrate this procedure by an 
example. 

11.14 SELECTION OF VARIABLES IN AN AIR POLLUTION STUDY 

McDonald and Schwing (1 973) present a study that relates total mortality to climate, 
socioeconomic, and pollution variables. Fifteen predictor variables selected for the 
study are listed in Table 11.1 1. The response variable is the total age-adjusted 
mortality from all causes. We will not comment on the epidemiological aspects of 
the study, but merely use the data as an illustrative example for variable selection. 
A very detailed discussion of the problem is presented by McDonald and Schwing 
in their paper and we refer the interested reader to it for more information. 

The original data are not available to us, but the correlation matrix of the response 
and the 15 predictor variables is given in Table 11.12. It is not a good practice 
to perform the analysis based only on the correlation matrix because without the 
original data we will not be able to perform diagnostics checking which is necessary 
in any thorough data analysis. To start the analysis we shall assume that the standard 
assumptions of the linearregression model hold. As can be expected from the nature 
of the variables, some of them are highly correlated with each other. The evidence 
of collinearity is clearly seen if we examine the eigenvalues of the correlation 
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Table 11.11 
(n  = 60) 

Variable Description Mean SD 

Description of Variables, Means, and Standard Deviations, SD 

X1 
x2 

x3 

x4 

x5 

x7 

X9 

XlO 
x11 

x12 

x6 

x8 

x13 

x14 

x15 

Y 

Mean annual precipitation (inches) 
Mean January temperature (degrees Fahrenheit) 
Mean July temperature (degrees Fahrenheit) 
Percent of population over 65 years of age 
Population per household 
Median school years completed 
Percent of housing units that are sound 
Population per square mile 
Percent of nonwhite population 
Percent employment in white-collar jobs 
Percent of families with income under $3000 
Relative pollution potential of hydrocarbons 
Relative pollution potential of oxides of nitrogen 
Relative pollution potential of sulfur dioxide 
Percent relative humidity 
Total age-adjusted mortality from all causes. 

37.37 9.98 
33.98 10.17 
74.58 4.76 

8.80 1.46 
3.26 0.14 

10.97 0.85 
80.92 5.15 

3876.05 1454.10 
11.87 8.92 
46.08 4.61 
14.37 4.16 
37.85 91.98 
22.65 46.33 
53.77 63.39 
57.67 5.37 

940.36 62.21 

matrix. The eigenvalues are 

A1 = 4.5272, A6 = 0.9605, A11 = 0.1665, 

X2 = 2.7547, A7 = 0.6124, A12 = 0.1275, 

X3 = 2.0545, As = 0.4729, A13 = 0.1142, 

A4 = 1.3487, Xg = 0.3708, A14 = 0.0460, 

Ag = 1.2227, A10 = 0.2163, A15 = 0.0049. 

There are two very small eigenvalues; the largest eigenvalue is nearly 1000 times 
larger than the smallest eigenvalue. The sum of the reciprocals of the eigenvalues 
is 263, which is nearly 17 times the number of variables. The data show strong 
evidence of collinearity. 

The initial OLS results from fitting a linear model to the centered and scaled data 
are given in Table 11.13. Although the model has a high R2, some of the estimated 
coefficients have small t-tests. In the presence of multicollinearity, a small t- 
test does not necessarily mean that the corresponding variable is not important. 
The small t-test might be due of variance inflation because of the presence of 
multicollinearity. As can be seen in Table 1 1.13, VIF12 and VIFI3 are very large. 
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Table 11.13 
Variables) 

OLS Regression Output for the Air Pollution Data (Fifteen Predictor 

Variable Coefficient s.e. t-test VIF 

X1 0.306 0.148 2.063 4.1 1 
x2 -0.3 18 0.181 - 1.755 6.13 
x3 -0.237 0.146 - 1.627 3.97 
x4 -0.213 0.200 - 1.064 7.46 
x5 -0.232 0.152 - 1.527 4.3 1 
x6 -0.233 0.161 - 1.448 4.85 
x7 -0.052 0.146 -0.356 3.97 
x8 0.084 0.094 0.890 1.66 
X9 0.640 0.190 3.359 6.78 
x10 -0.014 0.123 -0.112 2.84 
x11 -0.010 0.216 -0.042 8.72 
x 1 2  -0.979 0.724 - 1.353 97.92 
XI 3 0.983 0.747 1.316 104.22 
x14 0.090 0.150 0.599 4.21 
XI 5 0.009 0.101 0.093 1.91 

n = 60 R2 = 0.764 R: = 0.648 6 = 0.073 d.f.=44 

4.2 ! ty 
0.1 0.2 0.3 0.4 0.5 

4 . 4 1 '  " " " " " " " ' ' " ' I  " " ' 1  

Figure 11.2 Air Pollution Data: Ridge traceafor 81, . . . , Q5 (the 15-variable-model). 

The ridge trace for the 15 regression coefficients are shown in Figures 11.2 to 
1 1.4. Each Figure shows five curves. If we put all 15 curves, the graph would be 
quite cluttered and the curves would be difficult to trace. To make the three graphs 
comparable, the scale is kept the same for all graphs. From the ridge trace, we see 
that some of the coefficients are quite unstable and some are small regardless of the 
value of the ridge parameter k. 

We now follow the guidelines suggested for the selection of variables in mul- 
ticollinear data. Following the first criterion we eliminate variables 7, 8, 10, l l ,  
and 15. These variables all have fairly stable coefficients, as shown by the flatness 
of their ridge traces, but are very small. Although variable 14 has a small coefficient 
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Figure 11.3 Air Pollution Data: Ridge traces for 86, . . . , 81, (the 15-variable-model). 
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k 

Figure 11.4 Air Pollution Data: Ridge traces for 811, . . . , 81s (the 15-variable-model). 

at k = 0 (see Table 1 1.13), its value increases sharply as k increases from zero. So, 
it should not be eliminated at this point. 

We now repeat the analysis using the ten remaining variables: 1 ,2 ,3 ,4 ,  5,6,9, 
12, 13, and 14. The corresponding OLS results are given in Table 1 1.14. There is 
still an evidence of multicollinearity. The largest eigenvalue, XI = 3.377, is about 
600 times the smallest value X ~ O  = 0.005. The two VIFs for variable 12 and 13 
are still high. The corresponding ridge traces are shown in Figures 1 1.5 and 1 1.6. 
Variable 14 continues to have a small coefficient at k = 0 but it increases as k 
increases from zero. So, it should be kept in the model at this stage. None of the 
other nine variables satisfy the first criterion. 

The second criterion suggests eliminating variables with unstable coefficients 
that tend to zero. Examination of the ridge traces in Figures 11.5 and 11.6 shows 
that variables 12 and 13 fall in this category. 

The OLS results for the remaining 8 variables are shown in Table 11.15. 
Collinearity has disappeared. Now, the largest and smallest eigenvalues are 2.886 
and 0.094, which give a small condition number ( K  = 5.5). The sum of the recip- 
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Table 11.14 
Variables) 

OLS Regression Output for the Air Pollution Data (Ten Predictor 

Variable Coefficient s.e. t-test VIF 

XI 0.306 0.135 2.260 3.75 
x2 -0.345 0.119 -2.907 2.88 
x3 -0.244 0.108 -2.256 2.39 
x4 -0.222 0.175 -1.274 6.22 
x5 -0.268 0.137 - 1.959 3.81 
x6 -0.292 0.103 -2.842 2.15 
X9 0.664 0.140 4.748 3.99 
x12 -1.001 0.658 - 1.522 88.30 
x13 1.001 0.673 1.488 92.40 
x14 0.098 0. I27 0.775 3.29 

n = 60 R2 = 0.760 RZ = 0.711 B = 0.070 d. f. = 49 

5 

4 . 6  1 
0 0.1 0.2 0.3 04 0.5 

k 

Figure 11.5 Air Pollution Data: Ridge traces for $1, . . . , $5 (the ten-variable-model). 

rocals of the eigenvalues is 23.5, about twice the number of variables. All values 
of VIF are less than 10. Since the retained variables are not collinear, we can now 
apply the variables selection methods for non-collinear data discussed in Sections 
11.7 and 1 1.8. This is left as an exercise for the reader. 

An alternative way of analyzing these Air Pollution data is as follows: The 
collinearity in the original 15 variables is actually a simple case of multicollinear- 
ity; it involves only two variables (1 2 and 13). So, the analysis can proceed by 
eliminating any one of the two variables. The reader can verify that the remain- 
ing 14 variables are not collinear. The standard variables selection procedures for 
non-collinear data can now be utilized. We leave this as an exercise for the reader. 

In our analysis of the Air Pollution data, we did not use the third criterion, 
but there are situations where this criterion is needed. We should note that ridge 
regression was used successfully in this example as a tool for variable selection. 
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Figure 11.6 
variable-model). 

Air Pollution Data: Ridge traces for 66,  69, 612, 81, and 61, (the ten- 

Table 11.15 
Variables) 

OLS Regression Output for the Air Pollution Data (Eight Predictor 

Variable Coefficient s.e. t-test VIF 

0.331 0.120 
-0.351 0.106 
-0.217 0.104 
-0.155 0.163 
-0.221 0.134 
-0.270 0.102 

0.692 0.133 
0.230 0.083 

2.765 
-3.313 
-2.087 
-0.946 
- 1.656 
-2.654 

5.219 
2.767 

~~ 

2.91 1 
2.279 
2.191 
5.419 
3.621 
2.097 
3.567 
1.405 

n = 60 R2 = 0.749 Ri = 0.709 3 = 0.070 d . f .  =51 

Because the variables selected at an intermediate stage were found to be non- 
collinear, the standard OLS was utilized. 

An analysis of these data not using ridge regression has been given by Henderson 
and Velleman (1981). They present a thorough analysis of the data and the reader 
is referred to their paper for details. 

Some General Comments: We hope it is clear from our discussion that variable 
selection is a mixture of art and science, and should be performed with care and 
caution. We have outlined a set of approaches and guidelines rather than prescribing 
a formal procedure. In conclusion, we must emphasize the point made earlier that 
variable selection should not be performed mechanically as an end in itself but 
rather as an exploration into the structure of the data analyzed, and as in all true 
explorations, the explorer is guided by theory, intuition, and common sense. 
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11.15 A POSSIBLE STRATEGY FOR FllTlNG REGRESSION 
MODELS 

In the concluding section of the chapter we outline a possible sequence of steps 
that may be used to fit a regression model satisfactorily. Let us emphasize at 
the beginning that there is no single correct approach. The reader may be more 
comfortable with a different sequence of steps and should feel free to follow such 
a sequence. In almost all cases the analysis described here will lead to meaningful 
interpretable models useful in real-life applications. 

We assume that we have a response variable Y which we want to relate to 
some or all of a set of variables X I ,  X2 , .  . . , X,. The set, XI, X2, .  . . , X,, is 
often generated from external subject matter considerations. The set of variables is 
often large and we want to come to an acceptable reduced set. Our objective is to 
construct a valid and viable regression model. A possible sequence of steps are: 

1. Examine the variables (Y, X I ,  X,, . . . , X,) one at a time. This can be done 
by calculating the summary statistics, and also graphically by looking at 
histograms, dot plots, or box plots (see Chapter 4). The distributions of the 
values should not be too skewed, nor the range of the variables very large. 
Look for outliers (check for transcription errors). Make transformations to 
induce symmetry and reduce skewness. Logarithmic transformations are 
useful in this situation (see Chapter 6). 

2. Construct pairwise scatter plots for each variable. When p ,  the number of 
predictor variables, is large, this may not be feasible. Pairwise scatter plots 
are quite informative on the relationship between two variables. A look at 
the correlation matrix will point out obvious collinearity problems. Delete 
redundant variables. Calculate the condition number of the correlation matrix 
to get an idea of the severity of the collinearity (Chapters 9 and 10). 

3. Fit the full linear regression model. Delete variables with no significant 
explanatory power (insignificant t-tests). For the reduced model, examine 
the residuals: 

(a) Check linearity. If none, make a transformation on the variable (Chapter 

(b) Check for heteroscedasticity and autocorrelation (for time series data). 

(c) Look for outliers, high leverage points, and influential points. If present, 

6). 

If present, take appropriate action (Chapters 7 and 8). 

take appropriate action (Chapter 4). 

4. Examine if additional variables can be dropped without compromising the 
integrity of the model. Examine if new variables are to be brought into the 
model (added variable plots, residual plus component plots) (Chapters 4 and 
1 I). Repeat Step 3. Monitor the fitting process by examining the information 
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criteria (AIC or BIC). This is particularly relevant in examining non-nested 
models. 

5. For the final fitted model, check variance inflation factors. Ensure satisfactory 
residual plots and no negative diagnostic messages (Chapters 3 ,5 ,6 ,  and 9). 
If need be, repeat Step 4. 

6. Attempt should then be made to validate the fitted model. When the amount 
of data is large, the model may be fitted by part of the data and validated by 
the remainder of the data. Resampling methods such as bootstrap, jackknife, 
and cross-validation are also possibilities, particularly when the amount of 
data available is not large [see Efron (1982) and Diaconis and Efron (1983)l. 

The steps we have described are, in practice, often not done sequentially but 
implemented synchronously. The process described is an iterative process and 
it may be necessary to recycle through the outlined steps several times to arrive 
at a satisfactory model. They enumerate the factors that must be considered for 
constructing a satisfactory model. 

One important component that we have not included in our outlined steps is 
the subject matter knowledge of the analyst in the area in which the model is 
constructed. This knowledge should always be incorporated in the model-building 
process. Incorporation of this knowledge will often accelerate the process of 
arriving at a satisfactory model because it will help considerably in the appropriate 
choice of variables and corresponding transformations. After all is said and done, 
statistical model building is an art. The techniques that we have described are the 
tools by which this task can be attempted methodically. 

11.16 BIBLIOGRAPHIC NOTES 

There is a vast amount of literature on variable selection scattered in statistical jour- 
nals. A very comprehensive review with an extensive bibliography may be found in 
Hocking (1976). A detailed treatment on variable selection with special emphasis 
on C, statistic is given in the book by Daniel and Wood (1980). Refinements on 
the application of C, statistic are given by Mallows (1973). The variable selection 
procedures are discussed in the book by Draper and Smith (1998). Use of ridge 
regression in connection with variable selection is discussed by Hoerl and Kennard 
(1 970) and by McDonald and Schwing (1 973). 

EXERCISES 

11.1 As we have seen in Section 11.14, the three noncollinear subsets of predictor 
variables below have emerged. Apply one or more variable selection methods 
to each subset and compare the resulting final models: 
(a) The subset of eight variables: 1,2,  3 ,4 ,5 ,6 ,  9, and 14. 
(b) The subset of 14 variables obtained after omitting variable 12. 
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Table 11.16 List of Variables for Data in Table 11.17 

Variable Definition 

Sale price of the house in thousands of dollars 
Taxes (local, county, school) in thousands of dollars 
Number of bathrooms 
Lot size (in thousands of square feet) 
Living space (in thousands of square feet) 
Number of garage stalls 
Number of rooms 
Number of bedrooms 
Age of of the home (years) 
Number of fireplaces 

(c) The subset of 14 variables obtained after omitting variable 13. 

11.2 The estimated regression coefficients in Table 1 1.13 correspond to the stan- 
dardized versions of the variables because they are computed using the cor- 
relation matrix of the response and predictor variables. Using the means 
and standard deviations of the variables in Table 1 1  .I 1, write the estimated 
regresion equation in terms of the original variables (before centering and 
scaling). 

11.3 In the Homicide data discussed in Section 1 1.12, we observed that when fitting 
the model in (1 1.1 l), the FS and BE methods give contradictory results. In 
fact, there are several other subsets in the data (not necessarily with three 
predictor variables) for which the FS and BE methods give contradictory 
results. Find one or more of these subsets. 

11.4 Use the variable selection methods, as appropriate, to find one or more subsets 
of the predictor variables in Tables 1 1.7 and 1 1.8 that best account for the 
variability in the response variable H .  

11.5 Property Valuation: Scientific mass appraisal is a technique in which lin- 
ear regression methods applied to the problem of property valuation. The 
objective in scientific mass appraisal is to predict the sale price of a home 
from selected physical characteristics of the building and taxes (local, school, 
county) paid on the building. Twenty-four observations were obtained from 
Multiple Listing (Vol. 87) for Erie, PA, which is designated as Area 12 in the 
directory. These data (Table 1 1.17) were originally presented by Narula and 
Wellington (1977). The list of variables are given in Table 1 1.16. 

Answer the following questions, in each case justifying your answer by 
appropriate analyses. 



310 VARIABLE SELECTION PROCEDURES 

Table 11.17 Building Characteristics and Sales Price 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

4.918 
5.021 
4.543 
4.557 
5.060 
3.891 
5.898 
5.604 
5.828 
5.300 
6.271 
5.959 
5.050 
8.246 
6.697 
7.784 
9.038 
5.989 
7.542 
8.795 
6.083 
8.361 
8.140 
9.142 

1 .OW 
1 .000 
1 .000 
1 .000 
1 .000 
1 .000 
1 .ooo 
1 .000 
1 .000 
1 .ooo 
1 .000 
1 .ooo 
1 .000 
1 SO0 
1 SO0 
1 SO0 
1 .000 
1 .000 
1 S O 0  
1 S O 0  
1 S O 0  
1 SO0 
1 .000 
1 S O 0  

3.472 
3.531 
2.275 
4.050 
4.455 
4.455 
5.850 
9.520 
6.435 
4.988 
5.520 
6.666 
5.000 
5.150 
6.902 
7.102 
7.800 
5.520 
5 .000 
9.890 
6.727 
9.150 
8.000 
7.326 

0.998 
1 .500 
1.175 
1.232 
1.121 
0.988 
1.240 
1 S O 1  
1.225 
1.552 
0.975 
1.121 
1.020 
1.664 
1.488 
1.376 
1 SO0 
1.256 
1.690 
1.820 
1.652 
1.777 
1 so4 
1.831 

1.0 7 
2.0 7 
1.0 6 
1.0 6 
1.0 6 
1.0 6 
1.0 7 
0.0 6 
2.0 6 
1.0 6 
1.0 5 
2.0 6 
0.0 5 
2.0 8 
1.5 7 
1.0 6 
1.5 7 
2.0 6 
1.0 6 
2.0 8 
1.0 6 
2.0 8 
2.0 7 
1.5 8 

4 
4 
3 
3 
3 
3 
3 
3 
3 
3 
2 
3 
2 
4 
3 
3 
3 
3 
3 
4 
3 
4 
3 
4 

42 
62 
40 
54 
42 
56 
51 
32 
32 
30 
30 
32 
46 
50 
22 
17 
23 
40 
22 
50 
44 
48 
3 
31 

0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
1 
0 
0 
1 
0 
1 
0 
1 
0 
0 

25.90 
29.50 
27.90 
25.90 
29.90 
29.90 
30.90 
28.90 
35.90 
3 1 S O  
3 1 .OO 
30.90 
30.00 
36.90 
41.90 
40.50 
43.90 
37.90 
37.90 
44.50 
37.90 
38.90 
36.90 
45.80 



EXERCISES 31 1 

(a) In a fitted regression model that relates the sale price to taxes and building 
characteristics, would you include all the variables? 

(b) A veteran real estate agent has suggested that local taxes, number of 
rooms, and age of the house would adequately describe the sale price. Do 
you agree? 

(c) A real estate expert who was brought into the project reasoned as follows: 
The selling price of a home is determined by its desirability and this is 
certainly a function of the physical characteristic of the building. This 
overall assessment is reflected in the local taxes paid by the homeowner; 
consequently, the best predictor of sale price is the local taxes. The 
building characteristics are therefore redundant in a regression equation 
which includes local taxes. An equation that relates sale price solely 
to local taxes would be adequate. Examine this assertion by examining 
several models. Do you agree? Present what you consider to be the most 
adequate model or models for predicting sale price of homes in Erie, PA. 

11.6 Refer to the Gasoline Consumption data in Tables 9.18 and 9.19. 
(a) Would you include all the variables to predict the gasoline consumption 

(b) Six alternative models have been suggested: 
of the cars? Explain, giving reasons. 

(a) Regress Y on X I .  
(b) Regress Y on Xlo. 
(c) Regress Y on X I  and Xlo. 
(d) Regress Y on X2 and Xlo. 
(e) Regress Y on x8 and Xlo. 
(f) Regress Y on x8 and X5, and Xlo. 

Among these regression models, which would you choose to predict the 
gasoline consumption of automobiles? Can you suggest a better model? 

(c) Plot Y against X I ,  Xa,  x8, and Xlo  (one at a time). Do the plots suggest 
that the relationship between Y and the 11 predictor variables may not be 
linear? 

(d) The gasoline consumption was determined by driving each car with the 
same load over the same track (a road length of about 123 miles). Instead 
of using Y (miles per gallon), it was suggested that we consider a new 
variable, W = lOO/Y (gallons per hundred miles). Plot W against 
X I ,  X2, x8, and Xlo and examine if the relationship between W and 
the 1 1 predictor variables is more linear than that between Y and the 1 1  
predictor variables. 

(e) Repeat Part (b) using W in place of Y .  What are your conclusions? 
(f) Regress Y on X13, where X13 = &/XlO. 
(8) Write a brief report describing your findings. Make a recommendation 

on the model to be used for predicting gasoline consumption of cars. 
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11.7 Refer to the Presidential Election Data in Table 5.17 and, as in Exercise 9.3, 
consider fitting a model relating V to all the variables (including a time trend 
representing year of election) plus as many interaction terms involving two or 
three variables as you possibly can. 
(a) Starting with the model in Exercise 9.3(a). Apply two or more variable 

selection methods to choose the best model or models that might be 
expected to perform best in predicting future presidential elections. 

(b) Repeat the above exercise starting with the model in Exercise 9.3(d). 
(c) Which one of the models obtained above would you prefer? 
(d) Use your chosen model to predict the proportion of votes expected to be 

obtained by a presidential candidate in United States presidential elections 
in the years 2000, 2004, and 2008. 

(e) Which one of the above three predictions would you expect to be more 
accurate than the other two? Explain. 

(f) The result of the 2000 presidential election was not known at the time 
this edition went to press. If you happen to be reading this book after the 
election of the year 2000 and beyond, were your predictions in Exercise 
correct? 

11.8 Cigarette Consumption Data: Consider the Cigarette Consumption data de- 
scribed in Exercise 3.14 and given in Table 3.17. The organization wanted to 
construct a regression equation that relates statewide cigarette consumption 
(per capita basis) to various socioeconomic and demographic variables, and to 
determine whether these variables were useful in predicting the consumption 
of cigarettes. 

(a) Construct a linear regression model that explains the per capita sale of 
cigarettes in a given state. In your analysis, pay particular attention to 
outliers. See if the deletion of an outlier affects your findings. Look at 
residual plots before deciding on a final model. You need not include 
all the variables in the model if your analysis indicates otherwise. Your 
objective should be to find the smallest number of variables that describes 
the state sale of cigarettes meaningfully and adequately. 

(b) Write a report describing your findings. 
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Appendix: Effects of Incorrect Model Specifications 

In this Appendix we discuss the effects of an incorrect model specification on the 
estimates of the regression coefficients and predicted values using matrix notation. 
Define the following matrix and vectors: 

where zio = 1 for i = 1, . . . , n. The matrix X, which has n rows and (q  + 1) 
columns, is partitioned into two submatrices X ,  and X , ,  of dimensions (n  x (p+  1)) 
and (n x T ) ,  where T = q - p .  The vector p is similarly partitioned into ,B, and 
,BT, which have ( p  + 1) and T components, respectively. 

The full linear model containing all q variables is given by 

Y = Xp + E = XpP, + Xrpr + € 1  64.1) 

where E,'S are independently normally distributed errors with zero means and unit 
van ance . 

The linear model containing only p variables (i.e., an equation with ( p  + 1) 
terms) is 

(A.2) 

Let us denote the least squares estimate of 0 obtained from the full model (A. 1) by 

Y = xppp + e. 

,h*, where * *  
p* = ( 2 ) = ( X T X ) - l X T Y .  

The estimate ,h, of p, obtained from the subset model (A.2) is given by 

p p  = (x,'x,,-'x;Y. 
Let 5.92 and 5; denote the estimates of g2 obtained from (A.l) and (A.2), respectively. 
Then it follows that 

Y T Y  - p f T X T Y  
6 2  = 

9 n - q - 1  
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and 
YTY - $Xp'Y 

6 2  = 
P n - p - 1  

It is known from standard theory that b* and 6-9" are unbiased estimates of P and 
c2. It can be shown that 

~ ( b p )  = ~p + APr, 

where 
A = (X;X,)-'X,TX,. 

Further, 
Var( f l  ) = (Xp'X,)-' 0 2 ,  

V a r ( P  ) = (XTX)-12, 

and 
MSE(bP) = (X,TXP)-'a2 + AP,P, T T  A . 

We can summarize the properties of 8, and 6; as follows: 

1 .  a, is a biased estimate of Pp unless (1) P, = 0 or (2) Xp'X, = 0. 

2. The matrix Var(b*)  - Var(bp) is positive semidefinite; that is, variances 
of the least squares estimates of regression coefficients obtained from the full 
model are larger than the corresponding variances of the estimates obtained 
from the subset model. In other words, the deletion of variables always 
results in smaller variances for the estimates of the regression coefficients of 
the remaining variables. 

3. If the matrix Var(b ; )  - P,PT is positive semidefinite, then the matrix 
Var(p; )  - MSE(fl,) is positive semidefinite. This means that the least 
squares estimates of regression coefficients obtained from the subset model 
have smaller mean square error than estimates obtained from the full model 
when the variables deleted have regression coefficients that are smaller than 
the standard deviation of the estimates of the coefficients. 

4. 6; is generally biased upward as an estimate of 0'. 

To see the effect of model misspecification on prediction, let us examine the 
prediction corresponding to an observation, say xT = (x? : x?). Let $* denote 
the predicted value corresponding to xT when the full set of variables are used. 
Then $* = xTp* with mean xTP and prediction variance Vur(jj*): 

Var(jj*) = 0 2 ( 1  + xT(XTX)-lx). 

On the other hand, if the subset model (A.2) is used, the estimated predicted value 
y = xp'fl, with mean 

E ( f i )  = xp'Pp + x T A P T  
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and prediction variance 

V.r(y) = 2 ( 1 +  x,T(x,Tx,)-'x,). 

The prediction mean square error is given by 

MSE(6) = g2(1 + x ~ ( X ~ X p ) - ' x , )  + (xTAP, - x T ~ , ) ~ .  
The properties of y* and $ can be summarized as follows: 

1 .  jj is biased unless XFX,p, = 0. 

2.  Var($*)  2 Var($) .  

3. If the matrix Var(6:) - p,pT is positive semidefinite, then Vur($*) 2 
MSE(y). 

The significance and interpretation of these results in the context of variable selec- 
tion are given in the main body of the chapter. 



CHAPTER 12 

LOGISTIC REGRESSION 

12.1 INTRODUCTION 

In our discussion of regression analysis so far the response variable Y has been 
regarded as a continuous quantitative variable. The predictor variables, however, 
have been both quantitative, as well as qualitative. Indicator variables, which we 
have described earlier, fall into the second category. There are situations, however, 
where the response variable is qualitative. In this chapter we present methods for 
dealing with this situation. The methods presented in this chapter are very different 
from the method of least squares considered in earlier chapters. 

Consider a procedure in which individuals are selected on the basis of their 
scores in a battery of tests. After five years the candidates are classified as “good“ 
or “poor”. We are interested in examining the ability of the tests to predict the 
job performance of the candidates. Here the response variable, performance, is 
dichotomous. We can code “good“ as 1 and “poor” as 0, for example. The 
predictor variables are the scores in the tests. 

In a study to determine the risk factors for cancer, health records of several 
people were studied. Data were collected on several variables, such as age, sex, 
smoking, diet, and the family’s medical history. The response variable was, the 
person had cancer (Y = 1), or did not have cancer (Y = 0). 
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In the financial community the “health” of a business is of primary concern. 
The response variable is solvency of the firm (bankrupt = 0, solvent =1), and the 
predictor variables are the various financial characteristics associated with the firm. 
Situations where the response variable is a dichotomous variable are quite common 
and occur extensively in statistical applications. 

12.2 MODELING QUALITATIVE DATA 

The qualitative data with which are dealing, the binary response variable, can always 
be coded as having two values, 0 or 1. Rather than predicting these two values we 
try to model the probabilities that the response takes one of these two values. The 
limitation of the previously considered standard linear regression model is obvious. 

We illustrate this point by considering a simple regression problem, in which we 
have only one predictor. The same considerations hold for the multiple regression 
case. Let 7r denote the probability that Y = 1 when X = z. If we use the standard 
linear model to describe 7r ,  then our model for the probability would be 

7r = PT(Y = 1IX = z) = po + PI. + E .  (12.1) 

Since 7r is a probability it must lie between 0 and 1. The linear function given 
in (12.1) is unbounded, and hence cannot be used to model probability. There is 
another reason why ordinary least squares method is unsuitable. The response vari- 
able Y is a binomial random variable, consequently its variance will be a function 
of 7r ,  and depends on X .  The assumption of equal variance (homoscedasticity) 
does not hold. We could use the weighted least squares, but there are problems 
with that approach. The values of 7r are not known. In order to use weighted least 
squares approach, we will have to start with an initial guess for the value of 7 r ,  and 
then iterate. Instead of this complex method we will describe an alternative method 
for modeling probabilities. 

12.3 THE LOGIT MODEL 

The relationship between the probability 7r and X can often be represented by a 
logistic responsefunction. It resembles a S-shaped curve, a sketch of which is 
given in Figure 12.1. The probability 7r initially increases slowly with increase in 
X, then the increase accelerates, finally stabilizes, but does not increase beyond 
1. Intuitively this makes sense. Consider the probability of a questionnaire being 
returned as a function of cash reward, or the probability of passing a test as a 
function of the time put in studying for it. 

The shape of the S-curve given in Figure 12.1 can be reproduced if we model 
the probabilities as follows: 

ePo+Plx 
7r = Pr(Y = 1IX = z) = 1 + eL%+BlX ’ (1 2.2) 
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Figure 12.1 Logistic response function. 

where e is the base of the natural logarithm. The probabilities here are modeled by 
the distribution function (cumulative probability function) of the logistic distribu- 
tion. There are other ways of modeling the probabilities that would also produce 
the S-curve. The cumulative distribution of the normal curve has also been used. 
This gives rise to the probit model. We will not discuss the probit model here, as 
we consider the logistic model simpler and superior to the probit model. 

The logistic model can be generalized directly to the situation where we have 
several predictor variables. The probability n- is modeled as 

n- = Pr(Y = 11x1 = 21,. . . , X, = z,) 
e~o+Pl~l+Pz~z+. . .+Ppx,  

(12.3) 

The equation in (12.3) is called the logistic regression function. It is nonlinear 
in the parameters PO, 01, . . ., P,. However, it can be linearized by the logit 
transformation.' Instead of working directly with n- we work with a transformed 
value of 7r.  If n- is the probability of an event happening, the ratio 7 r / ( l  - T) is 
called the odds ratio for the event. Since 

- - 
1 + ePO+P1z1+...+Ppzp 

1 -  n- = Pr(Y = 01x1 = 2 1 , .  

then 

- ePo+Plxl+...+Ppxp~ ( I  2.4) 
n- 

- 
1 - 7 r  

Taking the natural logarithm of both sides of (12.4), we obtain 

= Po + P1.1 + . * . + &.,. (1 2.5) 

'See Chapter 6 for transformation of variables. 
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The logarithm of the odds ratio is called the logit. It can be seen from (12.5) that 
the logit transformation produces a linear function of the parameters PO, PI, . . . , Pp.  
Note also that while the range of values of T in (12.3) is between 0 and 1, the range 
of values of Zog(T/(l- T ) )  is between -cc and +m, which makes the logits (the 
logarithm of the odds ratio) more appropriate for linear regression fitting. 

Modeling the response probabilities by the logistic distribution and estimating 
the parameters of the model given in (12.3) constitutes fitting a logistic regression. 
In logistic regression the fitting is carried out by working with the logits. The 
logit transformation produces a model that is linear in the parameters. The method 
of estimation used is the maximum likelihood method. The maximum likelihood 
estimates are obtained numerically, using an iterative procedure. Unlike least 
squares fitting, no closed-form expression exists for the estimates of the parameters. 
We will not go into the computational aspects of the problem but refer the reader to 
McCullagh and Nelder (1983), Seber (1984), and Hosmer and Lemeshow (1989). 

To fit a logistic regression in practice a computer program is essential. Most 
regression packages have a logistic regression option. After the fitting one looks at 
the same set of questions that are usually considered in linear regression. Questions 
about the suitability of the model, the variables to be retained, and goodness of fit are 
all considered. Tools used are not the usual R2, t ,  and F tests, the ones employed in 
least squares regression, but others which provide answers to these same questions. 
Hypothesis testing is done by different methods, since the method of estimation 
is maximum likelihood as opposed to least squares. Information Criteria such as 
AIC and BIC can be used for model selection. Instead of SSE, the logarithm of the 
likelihood for the fitted model is used. An explicit formula is given in Section 12.6. 

12.4 EXAMPLE: ESTIMATING PROBABILITY OF BANKRUPTCIES 

Detecting ailing financial and business establishments is an important function 
of audit and control. Systematic failure to do audit and control can lead to grave 
consequences, such as the savings-and-loan fiasco of the 1980s in the United States. 
Table 12.1 gives some of the operating financial ratios of 33 firms that went bankrupt 
after 2 years and 33 that remained solvent during the same period. The data can 
also be found in the book’s Web site.2 A multiple logistic regression model is fitted 
using variables X I ,  X2, and X3. The output from fitting the model is given in Table 
12.2. 

Three financial ratios were available for each firm: 
Retained Earnings 

Earnings Before Interest and Taxes 
Total Assets 

x1 = 

x2 = 

x3 = 

Total Assets ’ 
1 

Sales 
Total Assets ‘ 

’ http://www.ilr.corneII.edurhadi/RABE4 
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The response variable is defined as 

0, 
1, 

if bankrupt after 2 years, 
if solvent after 2 years. 

Y = {  

Table 12.2 has a certain resemblance to the standard regression output. Some 
of the output serve similar functions. We now describe and interpret the output 
obtained from fitting a logistic regression. If T denotes the probability of a firm 
remaining solvent after 2 years, the fitted logit is given by: 

i j ( ~ 1 , .  . . , ~ p )  = -10.15 + 0.33 2 1  + 0.18 ~2 + 5.09 ~ 3 .  (12.6) 

This corresponds to the fitted regression equation in standard analysis. Here instead 
of predicting Y we obtain a model to predict the logits, log(r/(l - T ) ) .  From the 
logits, after transformation, we can get the predicted probabilities. The constant 
and the coefficients are read directly from the second column in the table. The 
standard errors (s.e.) of the coefficients are given in the third column. The fourth 
column headed by 2 is the ratio of the coefficient and the standard deviation. The 
2 is sometimes referred to as the Wald Statistic (Test). The 2 corresponding to 
the coefficient of X2 is obtained from dividing 0.181 by 0.107. In the standard 
regression this would be the t-test. This ratio for the logistic regression has a normal 
distribution as opposed to a &distribution that we get in linear regression. The fifth 
column gives the p-value corresponding to the observed 2 value, and should be 
interpreted like any p-value (see Chapters 2 and 3). These p-values are used to 
judge the significance of the coefficient. Values smaller than 0.05 would lead us to 
conclude that the coefficient is significantly different from 0 at the 5% significance 
level. From thep-values in Table 12.2, we see that none of the variables individually 
are significant for predicting the logits of the observations. 

In the standard regression output the regression coefficients have a simple inter- 
pretation. The regression coefficient of the j th predictor variable X j  is the expected 
change in Y for unit change in X ,  when other variables are held fixed. The coeffi- 
cient of X2 in (1 2.6) is the expected change in the logit for unit change in X 2  when 
the other variables are held fixed. The coefficients of a logistic regression fit have 
another interpretation that is of major practical importance. Keeping X1 and X3 
fixed, for unit increase in X2 the relative odds of 

Pr(Firm solvent after 2 years) 
Pr(Firm bankrupt) 

is multiplied by epz = e0.ls1 =1.198, that is there is an increase of 20%. These 
values for each of the variables is given in the sixth column headed by Odds Ratio. 
They represent the change in odds ratio for unit change of a particular variable 
while the others are held constant. The change in odds ratio for unit change in 
variable X j ,  while the other variables are held fixed, is eP3. If X j  was a binary 

variable, taking values 1 or 0, then eP3 would be the actual value of the odds ratio 
rather than the change in the value of the odds ratio. 



322 LOGISTIC REGRESSION 

Table 12.1 Financial Ratios of Solvent and Bankrupt Firms 

ROW Y Xi x2 x3 

1 0  
2 0  
3 0  
4 0  
5 0  
6 0  
7 0  
8 0  
9 0  

I0 0 
11 0 
12 0 
13 0 
14 0 
15 0 
16 0 
17 0 
18 0 
19 0 
20 0 
21 0 
22 0 
23 0 
24 0 
25 0 
26 0 
27 0 
28 0 
29 0 
30 0 
31 0 
32 0 
33 0 

-62.8 
3.3 

-120.8 
-18.1 
-3.8 

-61.2 
-20.3 

-194.5 
20.8 

-106.1 
-39.4 

-164.1 
-308.9 

7.2 
-118.3 
- 185.9 
-34.6 
-27.9 
-48.2 
-49.2 
- 19.2 
-18.1 
-98.0 
- 129.0 

-4.0 
-8.7 

-59.2 
-13.1 
-38.0 
-57.9 
-8.8 

-64.7 
-11.4 

-89.5 
-3.5 

-103.2 
-28.8 
-50.6 
-56.2 
-17.4 
-25.8 
-4.3 

-22.9 
-35.7 
-17.7 
-65.8 
-22.6 
-34.2 

-280.0 
-19.4 

6.3 
6.8 

-17.2 
-36.7 
-6.5 

-20.8 
-14.2 
-15.8 
-36.3 
-12.8 
-17.6 

1.6 
0.7 

-9.1 
-4.0 

4.8 

1.7 
1.1 
2.5 
1.1 
0.9 
1.7 
1 .o 
0.5 
1 .o 
1.5 
1.2 
1.3 
0.8 
2.0 
1.5 
6.7 
3.4 
1.3 
1.6 
0.3 
0.8 
0.9 
1.7 
1.3 
2.1 
2.8 
2.1 
0.9 
1.2 
0.8 
0.9 
0.1 
0.9 

ROW Y Xi x2 x3 

34 1 
35 1 
36 1 
37 1 
38 1 
39 1 
40 1 
41 1 
42 1 
43 1 
4 4 1  
45 1 
46 1 
47 1 
48 1 
49 1 
50 1 
51 1 
52 1 
53 1 
54 1 
55 1 
56 1 
57 1 
58 1 
59 1 
60 1 
61 1 
62 1 
63 1 
64 1 
65 1 
66 1 

43.0 
47.0 
-3.3 
35.0 
46.7 
20.8 
33.0 
26.1 
68.6 
37.3 
59.0 
49.6 
12.5 
37.3 
35.3 
49.5 
18.1 
31.4 
21.5 

8.5 
40.6 
34.6 
19.9 
17.4 
54.7 
53.5 
35.9 
39.4 
53.1 
39.8 
59.5 
16.3 
21.7 

16.4 1.3 
16.0 1.9 
4.0 2.7 

20.8 1.9 
12.6 0.9 
12.5 2.4 
23.6 1.5 
10.4 2.1 
13.8 1.6 
33.4 3.5 
23.1 5.5 
23.8 1.9 
7.0 1.8 

34.1 1.5 
4.2 0.9 

25.1 2.6 
13.5 4.0 
15.7 1.9 

-14.4 1.0 
5.8 1.5 
5.8 1.8 

26.4 1.8 
26.7 2.3 
12.6 1.3 
14.6 1.7 
20.6 1.1 
26.4 2.0 
30.5 1.9 
7.1 1.9 

13.8 1.2 
7.0 2.0 

20.4 1.0 
-7.8 1.6 
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Table 12.2 Output from the Logistic Regression Using X I ,  Xz ,  and X s  

Odds 95% C.I. 

Variable Coeff. s.e. 2-test p-value Ratio Lower Upper 

Constant -10.15 10.84 -0.94 0.349 
X1 0.33 0.30 1.10 0.27 1.39 0.77 2.51 
x2 0.18 0.11 1.69 0.09 1.20 0.97 1.48 
x3 5.09 5.08 1.00 0.32 161.98 0.01 3.43 x106 

Log-Likelihood = -2.906 G = 85.683 d. f. = 3 p-value < 0.000 

The 95% confidence intervals of the odds ratios are given in the last two columns 
of the table. If the confidence interval does not contain the value 1 the variable has 
a significant effect on the odds ratio. If the interval is below 1 the variable lowers 
significantly the relative odds. On the other hand, if the interval lies above 1 the 
relative odds is significantly increased by the variable. 

To see whether the variables collectively contribute in explaining the logits a test 
that examines whether the coefficients PI , .  . . , PP are all zero is performed. This 
corresponds to the case in multiple regression analysis where we test whether all the 
regression coefficients can be taken to be zero. The statistic G given at the bottom 
of Table 12.2 performs that task. The statistic G has a chi-square distribution. The 
p-value is considerably smaller than .05, and indicates that the variables collectively 
influence the logits. 

12.5 LOGISTIC REGRESSION DIAGNOSTICS 

After fitting a logistic regression model certain diagnostic measures can be exam- 
ined for the detection of outliers, high leverage points, influential observations, 
and other model deficiencies. The diagnostic measures developed in Chapter 4 
for the standard linear regression model can be adapted to the logistic regression 
model. Regression packages with a logistic regression option usually give various 
diagnostic measures. These include: 

1. The estimated probabilities ei, i = 1, . . . R. 

2. One or more types of residuals, for example, the standardized deviance 
residuals, DRi, and the standardized Personian residuals, PRi, i = 1, . . ., 
n. 

3. The weighted leverages, p t ,  which measure the potential effects of the obser- 
vations in the predictor variables on the obtained logistic regression results. 

4. The scaled difference in the regression coefficients when the ith observation 
is deleted: DBETAi, i = 1, . . . n. 
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5. The change in the chi-squared statistics G when the ith obserwtion is deleted: 
DFGi, i = 1,. . . , n. 

The formulas and derivations of these measures are beyond the scope of this book. 
The interested reader is referred to Pregibon (1981), Landwehr, Pregibon, and 
Shoemaker (1984), Hosmer and Lemeshow (1989) and the references therein. The 
above measures, however, can be used in the same way as the corresponding mea- 
sures obtained from a linear fit (Chapter 4). For example, the following graphical 
displays can be examined: 

1 .  The scatter plot of DRi versus f f i .  

2. The scatter plot of PRi versus i-i. 

3. The index plots of DRi, DBETAi, DGi, and pri. 

As an illustrative example using the Bankruptcy data, the index plots of DRi, 
DBETAi, and DGi obtained from the fitted logistic regression model in (12.6), are 
shown in Figures 12.2, 12.3, and 12.4, respectively. It can easily be seen from 
these graphs that observations 9, 14,52, and 53 are unusual and that they may have 
undue influence on the logistic regression results. We leave it as an exercise for 
the reader to determine if their deletion would make a significant difference in the 
results and the conclusion drawn from the analysis. 

12.6 DETERMINATION OF VARIABLES TO RETAIN 

In the analysis of the Bankruptcy data we have determined so far that the variables 
X I ,  X1, and X3,  collectively have explanatory power. Do we need all three 
variables? This is analogous to the problem of variable selection in multiple 
regression that was discussed in Chapter 1 1. Instead of looking at the reduction in 
the error sum of squares we look at the change in the likelihood (more precisely, 
the logarithm of the likelihood) for the two fitted models. The reason for this is 
that in logistic regression the fitting criterion is the likelihood, whereas in least 
squares it is the sum of squares. Let L ( p )  denote the logarithm of the likelihood 
when we have a model with p variables and a constant. Similarly, let L(p + q )  
be the logarithm of the likelihood for a model in which we have p + 4 variables 
and a constant. To see whether the q additional variables contribute significantly 
we look at 2 ( L ( p  + q )  - L ( p ) ) .  This quantity is twice the difference between the 
log-likelihood for the two models. This difference is distributed as a chi-square 
variable with q degrees of freedom (see Table A.3). 

The magnitude of this quantity determines the significance of the test. A small 
value of chi-square would lead to the conclusion that the q variables do not add 
significantly to the improvement in prediction of the logits, and is therefore not 
necessary in the model. A large value of chi-square would call for the retention of 
the q variables in the model. The critical value is determined by the significance 
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G when the ith observation is deleted. 

Bankruptcy data: Index plot of DGi, the change in the chi-squared statistics 

level of the test. This test procedure is valid when n, the number of observations 
available for fitting the model, is large. 

An idea of the predictive power of a variable for possible inclusion in the logistic 
model can be obtained from a simple graphical plot. Side-by-side boxplots are 
constructed for each of the explanatory variable. Side- by-side boxplot will indicate 
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Table 12.3 Output From the Logistic Regression Using X1 and X z  

Odds 95% C.I. 
Variable Coefficient s.e. 2-test p-value Ratio Lower Upper 

Constant -0.550 0.951 -0.58 0.563 
XI  0.157 0.075 2.10 0.036 1.17 1.01 1.36 
x2 0.195 0.122 1.59 0.112 1.21 0.96 1.54 

Log-Likelihood = -4.736 G = 82.024 d . f .  = 2 p-value < 0.000 

Table 12.4 Output from the Logistic Regression Using X1 

Odds 95%C.I. 
Variable Coefficient s.e. 2-test p-value Ratio Lower Upper 

Constant -1.167 0.816 -1.43 0.153 
XI  0.177 0.057 3.09 0.002 1.19 1.07 1.33 

Log-Likelihood = -7.902 G = 75.692 d . f .  = 1 p-value < 0.000 

the variables that may be useful for this purpose. Variables with boxplots different 
for the two groups are likely candidates. Note that this does not take into account 
the correlation between the variables. The formal procedure described above takes 
into account the correlations. With a large number of explanatory variables the 
boxplots provide a quick screening procedure. 

In the Bankruptcy data we are analyzing, let us see if the variable X3 can be 
deleted without degrading the model. We want to answer the question: Should the 
variable X3 be retained in the model? We fit a logistic regression using X I  and 
X2. The results are given in Table 12.3. The log-likelihood for the model with X I ,  
X2, and X3 is -2.906, whereas with only X I  and X2 it is -4.736. Here p = 2 
and q = 1, and 2(L(3 )  - L(2))  = 3.66. This is a chi-square variable with 1 degree 
of freedom. From Table A.3, we find that the 5% critical value of the chi-square 
distribution with 1 degree of freedom is 3.84. At the 5% level we can conclude that 
the variable X3 can be deleted without affecting the effectiveness of the model. 

Let us now see if we can delete X2. The result of regressing Y on X I  is given 
in Table 12.4. The resulting log-likelihood is -7.902. The test statistic, which 
we have described earlier, has a value of 6.332. This is distributed as a chi-square 
random variable with 1 degree of freedom. The 5% value, as we saw earlier, 
was 3.84. The analysis indicates that we should not delete Xp from our model. 
The p-value for this test, as can be verified, is 0.019. To predict probabilities of 
bankruptcies of firms in our data we should include both X I  and X2 in our model. 

The procedure that we have outlined above enables us to test any nested model. 
A set of models are said to be nested if they can be obtained from a larger model as 
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Table 12.5 The AIC and BIC Criteria for Various Logistic Regression models 

Variables AIC B IC 

13.81 
15.47 
18.12 
33.40 
19.80 
34.50 
92.46 
93.5 

22.57 
22.04 
24.69 
39.97 
24.18 
38.88 
96.84 
95.69 

special cases. The methodology is similar to that used in analyzing nested models 
in multiple regression. The only difference is that here our test statistic is based on 
log of the likelihood instead of sum of squares. 

The AIC and BIC criteria discussed in Section 1 I S.3 can be used to judge the 
suitability of various logistic models, and thereby the desirability of retaining a 
variable in the model. In the context of p-term logistic logistic regression, AIC and 
BIC are: 

AIC = -2(Log-Likelihood of the Fitted Model) + 2p, (1 2.7) 

BIC = -2(Log-Likelihood of the Fitted Model) + p log R, (12.8) 

where p denotes the number of variables in the model. Table 12.5 shows AIC 
and BIC for all possible models. The best AIC model is the one that includes all 
three variables (lowest AIC). While BIC picks XlX2 as the best model, but the one 
containing all three variables is equally adequate. The BIC for the two top models 
differ by less than 2. 

12.7 JUDGING THE FIT OF A LOGISTIC REGRESSION 

The overall fit of a multiple regression model is judged, for example, by the value 
of R2 from the fitted model. No such simple satisfactory measure exists for logistic 
regression. Some ad hoc measures have been proposed which are based on the 
ratio of likelihoods. Most of these are functions of the ratio of the likelihood for 
the model and the likelihood of the data under a binomial model. These measures 
are not particularly informative and we will consider a different approach. 

The logistic regression equation attempts to model probabilities for the two 
values of Y (0 or 1). To judge how well the model is doing we will determine the 
number of observations in the sample that the model is classifying correctly. Our 
approach will be to fit the logistic model to the data, and calculate the fitted logits. 
From the fitted logits we will calculate the fitted probabilities for each observation. 
If the fitted probability for an observation is greater than 0.5 we will assign it to 
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Group 1 (Y = l), and if less than 0.5 we will classify it in Group 0 (Y = 0). We will 
then determine what proportion of the data is classified correctly. A high proportion 
of correct classification will indicate to us that the logistic model is working well. 
A low proportion of correct classification will indicate poor performance. 

Different cutoff values, other than 0.5, have been suggested in the literature. In 
most practical situations, without any auxiliary information, such as the relative cost 
of misclassification or the relative frequency of the two categories in the population, 
0.5 is recommended as a cutoff value. 

A slightly more problematical question is how high the correct classification 
probability has to be before logistic regression is thought to be effective. Suppose 
that in sample of size n there are n1 observations from Group 1, and nz from Group 
2. If we classify all the observations into one group or the other, then we will get 
either nl/n or nz/n proportions of observations classified correctly. As a base 
level for correct classification we can take the rnaz(nl/n, n2/n). The proportion 
of observation classified correctly by the logistic regression should be much higher 
than the base level for the logistic model to be deemed useful. 

For the Bankruptcy data that we have been analyzing logistic regression per- 
forms very well. Using variables X1 and X2,  we find that the model misclassifies 
one observation from the solvent group (observation number 36), and one obser- 
vation from the bankruptcy group (observation number 9). The overall correct 
classification rate (64/66) = 0.97. This is considerably higher than the base level 
rate of 0.5. 

The concept of overall correct classification for the observed sample to judge the 
adequacy of the logistic model that we have discussed has been generalized. This 
generalization is used to produce a statistic to judge the fit of the logistic model. 
It is sometimes called the Concordance Index and is denoted by C. This statistic 
is calculated by considering all possible pairs formed by taking one observation 
from each group. Each of the pairs is then classified by using the fitted model. The 
Concordance Index is the percent of all possible pairs that is classified correctly. 
Thus, C lies between 0.5 and 1. Values of C close to 0.5 shows the logistic 
model performing poorly (no better than guessing). The value of C for the logistic 
model with X ~ X Z X ~  is 0.99. Several currently available software computes the 
value of C. 

In 
practice, if this logistic regression was applied to a new set of observations from this 
population, it would be very unlikely to do as well. The classification probability 
has an upward bias. The bias arises due to the fact that the same data that were 
used to fit the model, was used to judge the performance of the model. The model 
fitted to a given body of data is expected to perform well on the same body of 
data. The true measure of the performance of the logistic regression model for 
classification is the probability of classifying a future observation correctly and not 
a sample observation. This upward bias in the estimate of correct classification 
probability can be reduced by using resampling methods, such as jack-knife or 

The observed correct classification rate should be treated with caution. 
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bootstrap. These will not be discussed here. The reader is referred to Efron (1982) 
and Diaconis and Efron (1 983). 

12.8 THE MULTINOMIAL LOGIT MODEL 

In our discussion of logistic regression we have so far assumed that the qualitative 
response variable assumes only two values, generically, 1 for success and 0 for 
failure. The logistic regression model can be extended to situations where the 
response variable assumes more than two values. In a study of the choice of mode 
of transportation to work, the response variable may be private automobile, car 
pool, public transport, bicycle, or walking. The response falls into five categories. 
There is no natural ordering of the categories. We might want to analyze how the 
choice is related to factors such as age, sex, income, distance traveled, etc. The 
resulting model can be analyzed by using slightly modified methods that were used 
in analyzing the dichotomous outcomes. This method is called the multinomial 
(polytomous) logistic regression. 

The response categories are not ordered in the example described above. There 
are situations where the response categories are ordered. In an opinion survey, 
the response categories might be, strongly agree, agree, no opinion, disagree, and 
strongly disagree. The response categories are naturally ordered. In a clinical trial 
the responses to a treatment could be classified as improved, no change, worse. For 
these situations a different method called the Proportional Odds Model is used. We 
discuss it Section 12.8.3. 

12.8.1 Multinomial Logistic Regression 

We have n independent observation with p explanatory variables. The qualitative 
response variable has k categories. To construct the logits in the multinomial case 
one of the categories is considered the base level and all the logits are constructed 
relative to it. Any category can be taken as the base level. We will take category 
k as the base level in our description of the method. Since there is no ordering, 
it is apparent that any category may be labeled k .  Let 7rj denote the multinomial 
probability of an observation falling in the j th category. We want to find the rela- 
tionship between this probability and the p explanatory variables, X I ,  X z ,  . . . , x,. 
The multiple logistic regression model then is 

j = 1 , 2 , .  . . , ( k  - l), 
i = 1 , 2  ,..., n. log (-) =Poj+Pljzli+P2j22i+.. .+p,jzpi;  

Since all the 7r’s add to unity, this reduces to 



LOGISTIC REGRESSION 

Boxplot of RW vs. CC Boxplot of IR vs. CC Boxplot of SSPG vs. CC 

Q 

0 0 

2 -  

0 

0 
0 P 

0 z 
2 
rA rA 

0 :: 

0 
El 

1 2 3  1 2 3  1 2 3  

cc cc cc 

Figure 12.5 Side-by-Side Boxplots for the Diabetes Data. 

for j = 1,2,  . . . , (k - 1). The model parameters are estimated by the method 
of maximum likelihood. Statistical software is available to do this fitting. We 
illustrate the method by an example. 

12.8.2 Example: Determining Chemical Diabetes 

To determine the treatment and management of diabetes it is necessary to determine 
whether the patient has chemical diabetes or overt diabetes. The data presented in 
Tables 12.6 and 12.7 is from a study conducted to determine the nature of chemical 
diabetes. The measurements were taken on 145 nonobese volunteers who were 
subjected to the same regimen. Many variables were measured, but we consider 
only three of them. These are, insulin response (IR), the steady state plasma glucose 
(SSPG), which measures insulin resistance, and relative weight (RW). The diabetic 
status of each subject was recorded. The clinical classification (CC) categories 
were overt diabetes (l) ,  chemical diabetes (2), and normal (3). The dataset is found 
in Andrews and Herzberg (1985). More details of the study are found in Reaven 
and Miller (1979). 

A side-by-side boxplots of the explanatory variables indicate that the distribution 
of IR and SSPG differ for the three categories. The distribution of RW on the other 
hand does not differ substantially for the three categories. The boxplots are shown 
in Figure 12.5. The results of fitting a multinomial logistic model using the variables 
IR, SSPG, and RW is given in Table 12.8. Each of the logistic models are given 
relative to normal patients. 
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Table 12.6 
Clinical Classification (Patients 1 to 90) 

Diabetes Data: Blood Glucose, Insulin Levels, Relative Weight, 

Patient RW IR SSPG CC 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

0.81 
0.95 
0.94 
1.04 
1 .oo 
0.76 
0.9 1 
1.10 
0.99 
0.78 
0.90 
0.73 
0.96 
0.84 
0.74 
0.98 
1.10 
0.85 
0.83 
0.93 
0.95 
0.74 
0.95 
0.97 
0.72 
1.11 
1.20 
1.13 
1 .oo 
0.78 
1 .oo 
1 .oo 
0.7 1 
0.76 
0.89 
0.88 
1.17 
0.85 
0.97 
1 .oo 
1 .oo 
0.89 
0.98 
0.78 
0.74 

124 
117 
143 
199 
240 
157 
22 1 
186 
142 
131 
221 
178 
136 
200 
208 
202 
152 
185 
116 
123 
136 
134 
184 
192 
279 
228 
145 
172 
179 
222 
134 
143 
169 
263 
174 
134 
182 
24 1 
128 
222 
165 
282 
94 

121 
73 

55 
76 

105 
108 
143 
165 
119 
105 
98 
94 
53 
66 

142 
93 
68 

102 
76 
37 
60 
50 
47 
50 
91 

124 
74 

235 
158 
140 
145 
99 
90 

105 
32 

165 
78 
80 
54 

175 
80 

186 
117 
160 
71 
29 
42 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

Patient RW IR SSPG CC 

46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 

0.91 
0.95 
0.95 
1.03 
0.87 
0.87 
1.17 
0.83 
0.82 
0.86 
1.01 
0.88 
0.75 
0.99 
1.12 
1.09 
1.02 
1.19 
1.06 
1.20 
1.05 
1.18 
1.01 
0.9 1 
0.8 1 
1.10 
1.03 
0.97 
0.96 
1.10 
1.07 
1.08 
0.95 
0.74 
0.84 
0.89 
1.1 1 
1.19 
1.18 
1.06 
0.95 
1.06 
0.98 
1.16 
1.18 

106 
118 
112 
157 
292 
200 
220 
144 
1 09 
151 
158 
73 
81 

151 
122 
117 
208 
20 1 
131 
162 
148 
130 
137 
375 
146 
344 
192 
115 
195 
267 
28 1 
213 
156 
22 1 
199 
76 

490 
143 
73 

237 
748 
320 
188 
607 
297 

56 
122 
73 

122 
128 
233 
132 
138 
83 

109 
96 
52 
42 

122 
176 
118 
244 
194 
136 
257 
167 
153 
248 
273 
80 

270 
180 
85 

106 
254 
119 
177 
159 
103 
59 

108 
259 
204 
220 
111 
122 
25 3 
21 1 
27 1 
220 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
2 
3 
3 
2 
2 
3 
2 
2 
3 
3 
3 
3 
2 
3 
3 
3 
3 
3 
2 
3 
3 
3 
3 
3 
2 
3 
2 
2 
2 
2 
2 
2 
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Table 12.7 
Clinical Classification (Patients 91 to 145) 

Diabetes Data: Blood Glucose, Insulin Levels, Relative Weight, 

Patient RW IR SSPG cc I Patient RW IR SSPG cc 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 

1.20 
1.08 
0.91 
1.03 
1.09 
1.05 
1.20 
1.05 
1.10 
1.12 
0.96 
1.13 
1.07 
1.10 
0.94 
1.12 
0.88 
0.93 
1.16 
0.94 
0.9 1 
0.83 
0.92 
0.86 
0.85 
0.83 
0.85 
1.06 

232 
480 
622 
287 
266 
124 
297 
326 
564 
408 
325 
433 
180 
392 
109 
313 
132 
285 
139 
212 
155 
120 
28 
23 

232 
54 
81 
87 

276 
233 
264 
23 1 
268 
60 

272 
235 
206 
300 
286 
226 
239 
242 
157 
267 
155 
194 
198 
156 
100 
135 
455 
327 
279 
382 
378 
374 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
1 
1 
1 
1 
1 
1 

119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 

1.06 
0.92 
I .20 
1.04 
1.16 
1.08 
0.95 
0.86 
0.90 
0.97 
1.16 
1.12 
1.07 
0.93 
0.85 
0.81 
0.98 
1.01 
1.19 
1.04 
1.06 
1.03 
1.05 
0.91 
0.90 
1.11 
0.74 

76 
42 

102 
138 
160 
131 
145 
45 

118 
159 
73 

103 
460 
42 
13 

130 
44 

314 
219 
100 
10 
83 
41 
77 
29 

124 
15 

260 
346 
3 19 
35 1 
357 
248 
324 
300 
300 
310 
458 
339 
320 
297 
303 
152 
167 
220 
209 
35 1 
450 
413 
480 
I50 
209 
442 
253 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

We see that RW has insignificant values in each of the logit models. This is 
consistent with what we observed in the side-by-side boxplots. We now fit the 
multinomial logistic model with two variables, SSPG and IR. The results are given 
in Table 12.9. 

Looking at Logit (1/3), we see that higher values of SSPG increases the odds 
of overt diabetes, while a decrease in IR reduces the same odds when compared 
to normal subjects. Looking at Logit (2/3),  we see that the higher values SSPG 
increases the odds of chemical diabetes when compared to the normal subjects. 
The IR value does not significantly affect the odds. This indicates the difference 
between chemical and overt diabetes and has implications for the treatment of the 
two conditions. 
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Table 12.8 
Level =3) 

Multinomial Logistic Regression Output with RW, SSPG, and IR (Base 

Odds 95%C.I. 
Variable Coefficient s.e. 2-test p-value Ratio Lower Upper 

Logit 1: (2/3) 

RW 3.473 2.446 1.42 0.156 32.23 0.27 3894.21 
SSPG 0.016 0.005 3.29 0.001 1.02 1.01 1.03 
IR 0.004 0.002 1.53 0.127 1.00 1.00 1.01 

Constant -7.615 2.336 -3.26 0.001 

Logit 2: (1/3) 
Constant -1.845 3.463 -0.53 0.594 
RW -5.868 3.867 -1.52 0.129 0.00 0.00 5.53 
SSPG 0.046 0.009 4.92 0.000 1.05 1.03 1.07 
IR -0.0134 0.005 -2.66 0.008 0.99 0.98 1.00 

Log-Likelihood = -68.415 G = 159.369 d.f. = 6 p-value < O.OO0 

Table 12.9 
Level = 3) 

Multinomial Logistic Regression Output with SSPG and IR (Base 

Odds 95% C.I. 
Variable Coefficient s.e. 2-test p-value Ratio Lower Upper 

Logit 1: (2/3) 

SSPG 0.020 0.004 4.38 O.OO0 1.02 1.01 1.03 
IR 0.003 0.002 1.42 0.155 1.00 1.00 1.01 

Constant -4.549 0.771 -5.90 0.000 

Logit 2: (1/3) 

SSPG 0.0426 0.008 5.34 0.000 1.04 1.03 1.06 
Constant -7.111 1.688 4 .21  O.OO0 

IR -0.013 0.005 -2.89 0.004 0.99 0.98 1.00 

Log-Likelihood = -72.029 G = 152.141 d . f .  = 4 p-value < 0.000 
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Table 12.10 
Regression 

Classification Table of Diabetes Data Using Multinomial Logistic 

Predict 

cc 1 2 3 All 

1 27 3 3 
2 1 22 13 
3 2 5 69 

33 
36 
76 

All 30 30 85 145 

Although we have taken 3 as the base level, from our computation we can derive 
other comparisons. We can get Logit (1/2) from the relation 

Logit(l/2) = Logit(l/S) - Logit(2/3). (1 2.9) 

We can judge how well the multinomial logistic regression classifies the obser- 
vations into different categories. The methodology is similar to binary logistic 
regression. An observation is classified to that category for which it has the highest 
estimated probability. The classification table for the multinomial logistic regres- 
sion is given in Table 12.10. 

One can see that 1 18 out of 145 subjects studied are classified correctly by this 
procedure. 81 % of the observations are correctly classified which is considerably 
higher than the maximum correct rate 59% (85/145), which would have been 
obtained if all the observations were put in one category. Multinomial logistic 
regression has performed well on this data. It is a powerful technique that should 
be used more extensively. 

12.8.3 Ordered Response Category: Ordinal Logistic Regression 

The response variable in many studies, as has been pointed out earlier, can be 
qualitative and fall in more than two categories. The categories may sometimes be 
ordered. In a consumer satisfaction study, the responses might be, highly satisfied, 
satisfied, dissatisfied, and highly dissatisfied. An analyst may want to study the 
socioeconomic and demographic factors that influence the response. The logistic 
model, slightly modified can be used for this analysis. The logits here are based on 
the cumulative probabilities. Several logistic models can be based on the cumulative 
logits. We describe one of these, the proportional odds model. 

Again, we have n independent observations with p predictors. The response 
variable falls into k categories (1,2, . . . , k ) .  The k categories are ordered. Let Y 
denote the response variable. The cumulative distribution for Y is 

F’(zi) = Pr  (Y 5 j(Xi = zil,. . . , X p  = zip,)  ; j = 1,2, .  . . , ( k  - 1). 
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Table 12.11 
and IR 

Ordinal Logistic Regression Model (Proportional Odds) Using SSPG 

Odds 95%C.I. 

Variable Coefficient s.e. Z-test p-value Ratio Lower Upper 

Constant 1 -6.794 0.872 -7.79 O.OO0 
Constant 2 -4.189 0.665 -6.30 O.OO0 
IR -0.004 0.002 -2.30 0.021 1.00 0.99 1.00 
SSPG 0.028 0.004 7.73 O.OO0 1.03 1.02 1.04 

Log-Likelihood = -81.749 G = 132.700 d.f. = 2 p-value < 0.OOO 

The proportional odds model is given by, 

for j = 1,2 , .  . . , ( k  - 1). The comulative logit has a simple interpretation. It 
can be interpreted as the logit for a binary response in which the categories from 
1 to j is one category, and the remaining categories from (j + 1) to k is the 
second category. The model is fitted by the maximum likelihood method. Several 
statistical software packages will carry out this procedure. Increase in the value 
of a response variable with a positive p will increase the probability of being in a 
lower numbered category, all other variables remaining the same. The number of 
parameters estimated to describe the data is fewer in the ordinal than in the nominal 
model. For a more detailed discussion the reader is referred to Agresti (2002) and 
Simonoff ( 2003). 

12.8.4 Example: Determining Chemical Diabetes Revisited 

We will use the data on chemical diabetes considered in Section 12.8.2 to illustrate 
ordinal logistic regression. The clinical classifications in the previous categories are 
ordered but we did not take it into consideration in our analysis. The progression of 
diabetes goes from normal (3), chemical (2), to overt diabetes (1). The classification 
states have a natural order and we will use them in our analysis. We will fit the 
proportional odds logit model. The result of the fit is given in Table 12.1 1. 

The fit for the model is good. Both variables have significant relationship to the 
group membership. The coefficient of SSPG is positive. This indicates that higher 
values of SSPG increase the probability of being in a lower numbered category 
other factors being the same. The coefficient of IR is negative, indicating that 
higher values of this variable increase the probability of being in a higher numbered 
category, other factors remaining the same. The coefficient of concordance is high 
(0.90) showing the ability of the model to classify the group membership is high. 
In Table 12.12, we give the classification table for the ordinal logistic regression. 
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Table 12.12 
Regression 

Classification Table of Diabetes Data Using Multinomial Logistic 

Predict 

cc 1 2 3 All 
~ ~~~~~~~~~~ 

1 26 5 2 33 
2 3 20 13 36 
3 0 8 68 76 

All 29 33 83 145 

Of the 145 subjects ordinal logit regression classifies 114 subjects to their correct 
group. This gives the correct classification rate as 79%. This is comparable to the 
rate achieved by the multinomial logit model. It is generally expected that the 
ordinal model will do better than the multinomial model because of the additional 
information provided by the ordering of the categories. It should be also noted 
the ordinal logit model uses fewer parameters than the multinomial model. In 
our example the ordinal model uses 4 parameters, while the nominal version uses 
6. For a more detailed discussion the reader is referred to Agresti (2002) and 
Simonoff (2003). 

12.9 CLASSIFICATION PROBLEM: ANOTHER APPROACH 

The method of logistic regression has been used to model the probability that an 
observation belongs to one group given the measurements on several characteristics. 
We have described how the fitted logits could then be used for classifying an 
observation into one of two categories. A different statistical methodology is 
available if our primary interest is cZussiJcution. When the sole interest is to predict 
the group membership of each observation a statistical method called discriminant 
analysis is commonly used. Without discussing discriminant analysis here, we 
indicate a simple regression method that will accomplish the same task. The reader 
can find a discussion of discriminant analysis in McLachlan ( 1  992), Rencher (1 993 ,  
and Johnson (1 998). 

The essential idea in discriminant analysis is to find a linear combination of the 
predictor variables XI, . . ., X,, such that the scores given by this linear combination 
separates the observations from the two groups as far as possible. One way that this 
separation can be accomplished is by fitting a multiple regression model to the data. 
The response variable is Y ,  taking values 0 and 1, and the predictors are X I ,  . . ., X,. 
As has been pointed out earlier, some of the fitted values will be outside the range 
of 0 and 1. This does not matter here, as we are not trying to model probabilities, 
but only to predict group membership. We calculate the average of the predicted 
values of all the observations. If the predicted value for a given observation is 
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Table 12.13 Results from the OLS Regression of Y on X I ,  X,, X3  

Variable Coefficient s.e. t-test p-value 

Constant 0.322 0.087 3.68 0.0005 
X1 0.003 0.001 3.76 0.0004 
x2 0.004 0.001 2.96 0.0044 
5 3  0.149 0.045 3.28 0.0017 

n = 66 R2 = 0.57 R: = 0.55 6 = 0.3383 d. f. = 62 

greater than the average predicted value we assign that observation to the group 
which has Y = 1; if the predicted value is smaller than the average predicted value 
we assign it to the group with Y = 0. From this assignment we determine the 
number of observations classified correctly in the sample. The variables used in 
this classification procedure are determined exactly by the same methods as those 
used for variable selection in multiple regression. 

We illustrate this method by applying it to the Bankruptcy data that we have used 
earlier to illustrate least squares regression. Table 12.13 gives the OLS regression 
results using the three predictor variables X I ,  X2, and X3. All three variables have 
significant regression coefficients and should be retained for classification equation. 

Table 12.14 displays the observed Y, the predicted Y, and the assigned group for 
the Bankruptcy data. The average value of the predicted Y is 0.5. All observations 
with predicted value less than 0.5 is assigned to Y = 0, and those with predicted 
value greater than 0.5 is assigned to the group with Y = 1. The wrongly classified 
observations are marked by *. It is seen that 5 bankrupt firms are classified as 
solvent, and one solvent firm is classified as bankrupt. The logistic regression, it 
should be noted, classified only two observations wrongly. One solvent firm and one 
bankrupt firm were misclassified. For the Bankruptcy data presented in Table 12.2, 
the logistic regression performs better than the multiple regression in classifying the 
sample data. In general this is true. The logistic regression does not have to make 
the restrictive assumption of multivariate normality for the predictor variables. For 
classification problems we recommend the use of logistic regression. If a logistic 
regression package is not available, then the multiple regression approach may be 
tried. 

EXERCISES 

12.1 The diagnostic plots in Figures 12.2, 12.3, and 12.4 show three unusual 
observations in the Bankruptcy data. Fit a logistic regression model to the 63 
observations without these three observations and compare your results with 
the results obtained in Section 12.5. Does the deletion of the three points 
cause a substantial change in the logistic regression results? 
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Table 12.14 Classification of Observations by Fitted Values 

Row Y Fitted Assigned 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-0.00 
0.48 

-0.12 
0.3 1 
0.23 
0.14 
0.33 

-0.32 
0.52 
0.12 
0.23 

-0.07 
-0.80 

0.55 
0.03 

0.64 
0.45 
0.44 
0.14 
0.22 
0.37 
0.18 
0.05 
0.55 
0.56 
0.39 
0.34 
0.39 
0.26 
0.39 
0.12 
0.44 

-0.45 

0 
0 
0 
0 
0 
0 
0 
0 
1* 
0 
0 
0 
0 
1" 
0 
0 
1* 
0 
0 
0 
0 
0 
0 
0 
1* 
1* 
0 
0 
0 
0 
0 
0 
0 

Row Y Fitted Assigned 

34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0.72 
0.82 
0.73 
0.80 
0.65 
0.80 
0.75 
0.76 
0.83 
1.10 
1.42 
0.86 
0.66 
0.8 1 
0.58 
0.97 
1.03 
0.77 
0.48 
0.60 
0.74 
0.81 
0.84 
0.62 
0.81 
0.74 
0.84 
0.86 
0.80 
0.68 
0.83 
0.61 
0.59 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
O* 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

* Wrongly classified observations 

12.2 Examine the various logistic regression diagnostics obtained from fitting the 
logistic regression Y on XI and X2 (Table 12.3) and determine if the data 
contain unusual observations. 
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Table 12.15 
Fahrenheit) at the Time of Launch for 23 Flights of the Space Shuttle Challenger 

Flight Damaged Temperature I Flight Damaged Temperature 

Number of O-rings Damaged and the Temperature (Degrees 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

2 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 

53 
57 
58 
63 
66 
67 
67 
67 
68 
69 
70 
70 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

1 
1 
0 
0 
0 
2 
0 
0 
0 
0 
0 

70 
70 
72 
73 
75 
75 
76 
78 
79 
81 
76 

12.3 The O-rings in the booster rockets used in space launching play an important 
part in preventing rockets from exploding. Probabilities of O-ring failures are 
thought to be related to temperature. A detailed discussion of the background 
of the problem is found in The Flight of the Space Shuttle Challenger (pp. 
33-35) in Chatterjee, Handcock, and Simonoff (1995). Each flight has six 
O-rings that could be potentially damaged in a particular flight. The data from 
23 flights are given in Table 12.15 and can also be found in the the book’s 
Web site.3 For each flight we have the number of O-rings damaged and the 
temperature of the launch. 

Fit a logistic regression connecting the probability of an O-ring failure 
with temperature. Interpret the coefficients. 

The data for Flight 18 that was launched when the launch temperature 
was 75 was thought to be problematic, and was deleted. Fit a logistic 
regression to the reduced data set. Interpret the coefficients. 
From the fitted model, find the probability of an O-ring failure when the 
temperature at launch was 3 1 degrees. This was the temperature forecast 
for the day of the launching of the fatal Challenger flight on January 20, 
1986. 
Would you have advised the launching on that particular day? 

12.4 Field-goal-kicking data for the entire American Football League (AFL) and 
National Football League (NFL) for the 1969 season are given in Table 12.16 
and can also be found in the the book’s Web site. Let .(X) denote the 
probability of kicking a field goal from a distance of X yards. 

http://www.ilr.cornell.eduThadi/RABE4 
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Table 12.16 Field-Goal-Kicking Performances of the American Football League 
(AFL) and National Football League (NFL) for the 1969 Season. The Variable 2 Is 
an Indicator Variable Representing League 

League Distance Success Attempts z 
NFL 
NFL 
NFL 
NFL 
NFL 
AFL 
AFL 
AFL 
AFL 
AFL 

14.5 
24.5 
34.5 
44.5 
52.0 
14.5 
24.5 
34.5 
44.5 
52.0 

68 
74 
61 
38 
2 

62 
49 
43 
25 
7 

77 
95 

113 
138 
38 
67 
70 
79 
82 
24 

0 
0 
0 
0 
0 
1 
1 
1 
1 
1 

Source: Morris and Rolph (1981), p. 200. 

(a) For each of the leagues, fit the model 

,PO+PI X+Pz  x 2  
.(X) = 1 + ePo+P1 X+P2 X 2  ' 

(b) Let Z be an indicator variable representing the league, that is, 

1, for the AFL, 
Z = {  0, for the NFL. 

Fit a single model combining the data from both leagues by extending the 
model to include the indicator variable Z; that is, fit 

,PO+Pl X+Pz X 2 + P 3  z 
.(X,Z) = 1 + ePO+Dl x+42x2+P3 z ' 

(c) Does the quadratic term contribute significantly to the model? 
(d) Are the probabilities of scoring field goals from a given distance the same 

for each league? 

12.5 Using the data on diabetes analyzed in Tables 12.6 and 12.7, show that 
inclusion of the variable RW does not result in a substantial improvement 
in the classification rate from the multinomial logistic model using IR and 
SSPG. 

12.6 Using the diabetes data in Tables 12.6 and 12.7, fit an ordinal logistic model 
using RW, IR, and SSPG to explain CC. Show that there is no substantial 
improvement in fit, and the correct classification rate from a model using only 
IR and SSPG. 



CHAPTER 13 

FURTHER TOPICS 

13.1 INTRODUCTION 

In this chapter we discuss two topics that have come up several times earlier but we 
did not focus on them. We will be discussing generalized linear models (GLM), and 
robust regression. These are two vast topics, and would require full-length books. 
We will give brief descriptions of the topics and provide examples that illustrate 
the concepts. GLM unifies the concept of linear model building, a primary activity 
of statistical analysts. 

The importance of robust models in any statistical analysis cannot be overempha- 
sized. The earlier chapters have provided us with methods for constructing robust 
models. In Section 13.5 we discuss methods that exclusively aim at robustness. 
The discussion on these two topics will not be exhaustive but reflect our personal 
experience and preferences. 

13.2 GENERALIZED LINEAR MODEL 

As in Chapter 3, given a response variable Y and p predictor variables X I ,  X Z ,  . . ., 
X,, the linear regression model can be described as follows: an observation Y,  can 
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be written as 

Y ,  = Po + PlXil  + p2xa2 + . . . + &Xi, + &z 

= pa + & i ,  (13.1) 

where pi is called the linear predictor and ~i is a random error assumed to have a 
Gaussian (normal) distribution. 

The GLM extends the linear regression model in two ways. The ~i is assumed 
to have a distribution coming from the exponential family. The exponential family 
includes several standard distributions, in addition to the Gaussian. For example, 
it includes the binomial, Poisson, Gamma, and inverse Gaussian distributions. 

The second generalization is that the mean function pi is not necessarily the 
linear predictor, but some monotonic differentiable function of the linear predictor, 

h(p2) = Po + PlXil + P2Xi2 + . . . + p p x i p ,  (13.2) 

where h ( p )  denotes the function that links p to the linear predictor. The function 
relating the mean to the linear predictor is called the link function. 

These two generalizations considerably increase the flexibility of linear models. 
The GLM can be used in situations where a linear regression model would not be 
appropriate. These models are fitted by the method of maximum likelihood. Most 
statistical packages have programs that can be used to fit and analyze generalized 
linear models. 

The GLM were first proposed by Nelder and Wedderburn (1 972), and extensively 
developed by McCullagh and Nelder (1989). For computational details the reader 
should consult the references given above. A very accessible discussion is given in 
Simonoff (2003). 

The logistic regression, which we discussed in the previous chapter, is an example 
of GLM although we did not describe it in those terms. We now describe logistic 
regression as a GLM. The probability distribution of the random error was binomial, 
since there are only two outcomes. Instead of the mean, 7ri, being the linear 
predictor, we took a function of namely, ln(7ri/(l - 7ri)) as the linear predictor. 
The logistic regression model can now be described as a GLM from the binomial 
family with a logit link function. Another example of GLM is the Poisson regression 
model. This is discussed in the next section. 

13.3 POISSON REGRESSION MODEL 

Poisson regression models are appropriate when the response variable is count 
data. A researcher in public health area may be interested in studying the number 
of hospitalizations of a group of people, and the characteristics associated with 
these patients. Simonoff (2003) studies the number of tornado deaths in relation to 
the month, year, and the classification of the tornado’s severity. In Section 6.4, we 
have analyzed injury accidents in airlines. These data can be analyzed by Poisson 
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regression, because here we are dealing with count data. We analyzed these data 
earlier by using the square root transformation, which is an approximation to the 
exact method that we are now considering. Note that in these data sets the counts 
are small numbers, and small values are observed more frequently than large values. 

The Poisson regression model can be described as follows: the random compo- 
nent has a Poisson distribution (see Section 6.4 for the Poisson distribution), and 
the mean is linked to the linear predictor by a logarithmic function 

In(CLi) = Po + PlXil + p2x22 + . . . + ppxip. (13.3) 

The test and the inferences on the Poisson model are camed out in the same way 
as the logit model (logistic regression). In some analysis instead of analyzing the 
number of cases (y) we may be interested in analyzing the rates of occurrence. Let 
yi be the number observed out of ai that are exposed to the risk. To construct a 
model for the rate we have only to modify the link function. The link function for 
the rate is 

The quantity ln(ai) is called the off-set, and the ln(pi) now represents the logarithm 
of the mean rate of occurrence instead of the logarithm of the mean occurrence. 

We now illustrate Poisson regression by an example. 

13.4 INTRODUCTION OF NEW DRUGS 

Number of new drugs ( D )  for 16 diseases brought to the U.S. market between 
1992-2005 is given in Table 13.1. Also provided are the prevalence rates ( P )  
of these diseases for 100,000 people. The money allocated for research by the 
National Institute of Health ( M )  during the year 1994 for a specific disease in 
millions of dollars is also given. This dataset was kindly provided to us by Dr. 
Salomeh Keyhani of Mount Sinai Medical School. This is a part of a much larger 
database. We are using these three variables to illustrate the application of Poisson 
regression. 

We are interested in studying the relationship between D (the response variable), 
with P and M .  It should be noted that D is an integer variable with small values. 
A new drug coming to the market is a rare event. Poisson distribution is often used 
to model rare events. We now will fit a GLM with a Poisson random component 
and log link function. The result is given in Table 13.2 

The large values of the Wald's (2-test) shows that the two variables are strongly 
related to the response variable D. The value of AIC' is 82.14. The model fitted 
values (6) are given in the last column of Table 13.1. The agreement between 
observed and fitted values is satisfactory. 

We will fit the data by least squares and compare this AIC value with that 
obtained from the least squares fit. The least squares fit is given in Table 13.3. 

'See Section I 1.5.3. 
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Table 13.1 
Rate (P) ,  Expenditure on Research by the National Institute of Health ( M ) ,  and the 
Predicted Number of Drugs (b) 

New Drugs Data: Number of New Drugs Introduced (D), Prevalent 

D P  M D 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Ischemic Heart Disease 
Lung Cancer 
HIV/AIDS 
Alcohol Use 
Cerebrovascular Disease 
COPDa 
Depression 
Diabetes 
Osteoarthri tis 
Drug abuse 
Dementia 
Asthma 
Colon Cancer 
Prostate Cancer 
Breast Cancer 
Bipolar Disorder 

6 
3 

21 
2 
2 
1 
7 

13 
5 
1 
9 
3 
2 
4 
9 
2 

8976 
874 

1303 
18092 
9467 
427 1 

12785 
37850 
12345 
4000 
893 1 

15919 
1926 
2020 
2262 
2418 

198.4 4.55 
80.2 2.89 

1049.6 20.29 
222.6 6.12 
108.5 3.86 
48.9 2.98 

149.5 4.58 
278.4 11.66 
151.3 5.54 
442.1 6.48 
344.1 6.09 
41.8 4.02 
70.6 2.92 
40.1 2.75 

159.5 3.52 
35.0 2.75 

a Chronic Obstructive Pulmonary Disease 

Table 13.2 Output from the Poisson Regression Using P and M 

Variable Coefficient s.e. a-test p-value 

Constant 0.8778 0.2074 4.233 0.0000 
P 2.700~ lop5 9.508 x lop6 2.840 0.0045 
M 1.998 x 1 0 - ~  3.008~ 1 0 - ~  6.642 0.0000 

Log-Likelihood = -9.721 d . f .  = 2 AIC = 82.14 

Table 13.3 Output from the Linear Regression Using P and M 

Variable Coefficient s.e. t-test p-value 

Constant 0.8362 1.379 0.607 0.5546 
P 1.317 x 8.973 x lop5 1.467 0.1661 
M 0.01688 3.378~ 4.996 0.0002 

R2 = 0.671 RZ = 0.620 6 = 3.292 d . f .  = 13 AIC = 88.207 
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Only the M coefficient is significant in the least squares fit. As we have pointed 
out earlier, the linear regression model is not appropriate here as the response 
variable is count data. The value of AIC is 82.1 for the Poisson model compared 
to 88.2 for the linear regression model. The AIC indicates that the Poisson model 
fits the data better than does the linear regression model. The pattern of residuals 
is also more satisfactory for the Poisson model. The Poisson regression model is 
more appropriate for these data. 

13.5 ROBUST REGRESSION 

The regression model fitted to data should be robust, in the sense that deletion 
of one or two observations should not cause a drastic change in the model. In 
Chapter 4 (particularly Sections 4.8-4.9), we have described how to detect these 
points. Our prescription was to delete these points to get a more stable and realistic 
model. We will now consider a method in which instead of deleting these points 
(which may be considered subjective), we reduce the impact of these points. There 
are several ways of getting a regression model which is robust. We describe a 
method which is simple and effective. The problem with the least squares is that 
the procedure gives too much weight to outliers and high leverage points in the 
fitting. This has been illustrated extensively in Sections 4.8-4.9. The effect of 
these points can be reduced by down weighting these points in the fitting. We 
use weighted least squares (WLS), in which low weight is given to points with 
(i) high leverage and (ii) large residuals. Since the weights are determined by 
the residuals, and as these change from iteration to iteration, the procedure is an 
iterative one. The explicit form of the weights and the procedure are given in Algo- 
rithm 13.1 below, where we use QJ to denote the value of Q in the j th iteration step. 

Algorithm 13.1. 

Input: An n x 1 response vector Y and the corresponding n x p predictors matrix X .  

Output: A weighted least squares robust estimates of the regression coefficients 
and the corresponding residual vector. 

Step 0: Compute the weighted least squares estimate of the regression coefficients 
when using wg = l/max(pii, p / n )  as a weight for the ith observation, where pii 

is the ith diagonal element of the projection matrix P = X(XTX)-'XT. Let this 

estimate be denoted by 6'. 

Step j :  For j = 1,2 ,  . . ., until convergence, compute 

(13.5) 
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Table 13.4 Data Illustrating Robust Regression 

20.5 5.7 124.2 14.2 
7.5 142.4 15.2 

45.0 8.8 154.7 15.8 
72.4 11.1 118.4 17.9 

which is the residuals of the fit at Step j - 1. Compute the new weights 

( 1  3.6) 

where mi-’ is the median of (I 4-l I,. . . , I e;-’ I). Compute the weighted least 
squares estimate of the regression coefficients when using w! as a weight for the 

ith observation. Let this estimate be denoted by $. 
As can be seen from the weighting scheme, those points with high leverage (high 

pii), or with large residuals (ei)  get low weights. The details of this procedure can 
be found in Chatterjee and Machler (1 997). 

We provide two examples to illustrate the procedure. 

13.6 FllTlNG A QUADRATIC MODEL 

We illustrate the problem with least squares fit by a simple artificial data set given 
in Table 13.4. There are 10 observations on two variables Y and X .  The plot of 
the data in Figure 13.1 shows clearly a quadratic pattern. The least squares fit is 
given in Table 13.5. 

The least squares fit shows both the linear and quadratic term are statistically 
insignificant. We will now fit the model by the robust regression method that we 
have outlined. The results are given in Table 13.6. 

Figure 13.2 shows the least squares and the robust fits superposed on the scatter 
plot of Y and X. The robust fit tracks the data considerably better than the least 
squares fit. The least squares fit is pulled away from the main body of the data by the 
high leverage outlier points in the top right and the bottom left. The robust fit does 
not suffer from this because such points are down weighted. Here this is visually 
obvious. In higher dimensions this would not be apparent, but the robust procedure 
would automatically take this into account. This is a commonly occurring situation. 

We now illustrate robust regression by using real-life data. 
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Table 13.5 Least Squares Quadratic Fit for the Data Set in Table 13.4 

ANOVA Table 

Source Sum of Squares d. f .  Mean Square F-test p-value 
~ ~~ ~~ ~~ ~~~ 

Regression 2 1206 2 10603 25.14 0.001 
Residuals 2952 7 422 

Coefficients Table 

Variable Coefficient s.e. t-test p-value 

Constant -28.77 37.69 -0.76 0.470 
X 9.329 7.788 1.20 0.270 
X 2  0.041 0.359 0.12 0.91 1 

n = 10 R2 = 0.878 Ri = 0.843 6 = 20.5349 d . f .=7  

;:I 0 
0 W 

0 N y:., , 
5 10 15 

X 

Figure 13.1 A scatter plot of Y versus X for the Data Set in Table 13.4. 

Table 13.6 Robust Regression Quadratic Fit for the Data Set in Table13.4 

Variable Coefficient s.e. z-test p-value 
~~~~ 

Constant 15.2614 0.8003 19.07 0.000 
X -3.5447 0.1829 -19.38 O.OO0 
X 2  0.783099 0.0099 79.10 0.000 

n = 10 R2 = 0.837 R: = 0.780 u = 41.425 d.f .=7 
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Figure 13.2 
X for the Data Set in Table 13.4. 

Least Squares and Robust Fits Superposed on the Scatter Plot of Y versus 

13.7 DISTRIBUTION OF PCB IN US. BAYS 

Table 13.7 gives the Poly Chlorinated Biphenyl (PCB) concentrations in 1984 and 
1985 in 29 U.S. bays and estuaries. PCB is a health hazard found in water from 
industrial waste and city drainage. The concentration is measured in parts per 
billion. We do not include any bay or estuary in which no PCB was detected in the 
two years. We want to study the relationship of PCB level for the two years. The 
data is taken from Environmental Quality 1987-1988, published by the Council on 
Environmental Quality. An exhaustive description of the data along with a thorough 
analysis can be found in Chatterjee, Handcock, and Simonoff (1995). 

To overcome the skewness of the data we will transform the data. We will work 
with the logarithm of the PCB concentrations. The result of the least squares fit is 
given in Table 13.8. 

The fit is problematic. Two observations (Boston Harbor and Delaware Bay) 
require attention. Both are outliers with standardized residuals of -2.12 and 4.1 1, 
respectively. Boston Harbor is a high leverage point with a large value of Cook’s 
Distance. Delaware Bay is not a high leverage point, but has a high value of Cook’s 
Distance. These two points have a significant effect on the fit. We will examine 
the relationship between the PCB levels in two succeeding years when these two 
aberrant points are removed. The regression result with the two observations deleted 
is given in Table 13.9. 

This fit has no problems, and is an acceptable description of the relationship of 
the PCB levels between the years 1984 and 1985. It should be pointed out that 
this relationship does not hold for Boston Harbor and Delaware Bay. These two 
bays present special conditions and should be investigated. The deletion of the two 
points from the fit gives us a better picture of the overall relationship of PCB levels 
for U.S. bays and estuaries. 
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Table 13.7 Distribution of PCB in 1984 and 1985 in U.S. Bays 

Bay PCB84 PCB85 ln(PCB84) ln(PCB85) 

Casco Bay 
Merrimack River 
Salem Harbor 
Boston Harbor 
Buzzards ’ Bay 
Narragansett Bay 
E. Long Island Sound 
W. Long Island Sound 
Raritan Bay 
Delaware Bay 
Lower Chesapeake Bay 
Charleston Harbor 
St .  Johns River 
Apalachicola Bay 
Mississippi R. Delta 
San Diego Harbor 
San Diego Bay 
Dana Point 
Seal Beach 
San Pedro Canyon 
Santa Monica Bay 
Bodega Bay 
Coos Bay 
Columbia River Mouth 
Nisqually Beach 
Commencement Bay 
Elliott Bay 
Lutak Inlet 
Nahku Bay 

95.3 77.55 
53.0 29.23 

533.6 403.10 
17104.9 736.00 

308.5 192.15 
160.0 220.60 
10.0 8.62 

234.4 174.31 
443.9 529.28 

2.5 130.67 
51.0 39.74 
9.1 8.43 
140 120.04 
12.0 11.93 
34.0 30.14 

422.1 531.67 
6.7 9.30 
7.1 5.74 

46.7 46.47 
159.6 176.90 
14.0 13.69 
4.2 4.89 
3.2 6.60 
8.8 6.73 
4.2 4.28 

20.6 20.50 
20.6 20.50 
5.5 5.80 
6.6 5.08 

4.55682 
3.96973 
6.27961 
9.74712 
5.73 159 
5.07492 
2.30259 
5.45716 
6.09558 
0.91629 
3.93 183 
2.20827 
4.941 64 
2.48491 
3.52636 
6.04524 
1.90806 
1.95445 
3.84396 
5.07242 
2.63906 
1.4303 1 
1.16002 
2.1 7134 
1.44220 
3.02529 
3.02529 
1.70475 
1.88707 

4.35092 
3.37520 
5.9991 8 
6.60123 
5.25828 
5.39635 
2.15409 
5.16084 
6.27152 
4.87268 
3.68236 
2.13180 
4.78783 
2.47906 
3.40585 
6.27602 
2.23001 
1.74746 
3.83881 
5.17558 
2.61667 
1.58719 
1.88707 
1.90658 
1.45395 
3.02042 
3.02042 
1.75786 
1.62531 
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Table 13.8 
in Table 13.7 

Least Squares Regression of ln(PCB85) on ln(PCB84) for the Data Set 

ANOVA Table 

Source Sum of Squares d. f .  Mean Square F-test p-value 

Regression 
~ ~~ 

59.605 1 59.605 87.96 0.000 
Residual Error 18.296 27 0.678 

Coefficients Table 

Variable Coefficient s.e. t-test p-value 

Constant 1.001 0.315 3.17 0.004 
ln(PCB84) 0.718 0.077 9.38 0.000 

n = 29 R2 = 0.765 R: = 0.756 6 = 0.823 d . f .=27  

Table 13.9 
in Table 13.7, when Boston and Delaware Are Deleted 

Least Squares Regression of ln(PCB85) on ln(PCB84) for the Data Set 

ANOVA Table 

Source Sum of Squares d. f .  Mean Square F-test p-value 

Regression 64.7 12 1 64.712 908.24 O.OO0 
Residual Error 1.78 1 25 0.07 1 

Coefficients Table 
~~~ ~~ ~~ 

Variable Coefficient s.e. t-test p-value 

Constant 0.093 0.122 0.76 0.456 
ln(PCB 84) 0.960 0.032 30.14 0.000 

n = 27 R2 = 0.973 R: = 0.972 3 = 0.267 d.f.=25 
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Figure 13.3 
ln(PCB84) for the data set in Table 13.7. 

Least squares and robust fits superposed on scatter plot of ln(PCB85) versus 

Robust regression provides us an alternative approach. Using the robust regres- 
sion algorithm outlined earlier, we get the following fitted model: 

In (PCB85) = 0.175 + 0.9271n (PCB84). (13.7) 

The standard errors of the two coefficients in (1 3.7) are 0.25 and 0.0056, respec- 
tively. The robust regression applied to the complete data gives results similar 
to those obtained by the diagnostic prescription of deleting the two observations. 
The weights given to the deleted points are very small compared to the other data 
points. This is done mechanically by the rules built into the algorithm. The robust 
procedure does not require a detailed analysis of regression diagnostics. The final 
weights used in the iteration point out the problematic observations for further 
investigation. 

Figure 13.3 shows the least squares and robust fit superposed on the scatter plot. 
It is seen that the least squares line is influenced strongly by the outliers and high 
leverage points. The robust fit tracks the data more accurately without being unduly 
influenced by leverage points and outliers. 

As can be seen from (13.6), in the presence of masking, observations in a high- 
leverage group tend to have large weights because they tend to have small values 
of p i , .  For this reason the Chatterjee-Machler procedure is not very effective in 
the presence of masking. The algorithm we have given has been extended to cover 
problems of masking and swamping, but that is beyond the scope of this book. For 
details, the reader is referred to Billor, Chatterjee, and Hadi, (2006). 

Much work has been done on robust regression but it is not widely used in 
practice. We hope this brief exposition will bring it to public attention. 
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EXERCISES 

13.1 Use the data on injury incidents in airlines given in Table 6.6 to fit a Poisson 
Regression model. Compare the three fits (least squares, transformed least 
squares, and Poisson), and decide which procedure provides best description 
of the data. 

13.2 Using the data on the distribution of PCB in U.S. bays and estuaries given in 
Table 13.7, do a thorough analysis that relates the 1985 PCB levels to 1984 
levels. Compare the results of your analysis to the robust fit given in the text. 

13.3 Use the dataset given in Table 3.3 and regress Y on X I  and Xs by least squares 
and the robust procedure. Verify that both procedures give similar results. 

13.4 Use the data on Magazine Advertising given in Table 6.15 and regress In R 
on In P using least squares. Observations 15,22,23,41 are problematic. Do 
these points have any special feature? Show that the robust fit for the full data 
set gives results comparable to the least squares results after deleting the 4 
points. 

13.5 Use the data on Field-goal Kicking given in Table 12.16: 
(a) Fit a Poison regression model to relate Success with the Distance from 

(b) Fit a logistic model relating the probability of a successful kick to the 

(c) Show that the logistic model gives a better fit than the Poisson regression 

which the kick is taken. Use Attempts as offset (See Page 347). 

distance from which the kick is taken. 

model. 
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