Sunrhesm
Hnrhmehc Circuifs

FPGA, ASIC and Embedded Systems

fioe/

Jean-Pierre Deschamps
Géry Jean Antoine Bioul
Gustavo D. Sutter

SYNTHESIS OF
ARITHMETIC CIRCUITS

FPGA, ASIC, and Embedded Systems

JEAN-PIERRE DESCHAMPS

University Rovira i Virgili

GERY JEAN ANTOINE BIOUL

National University of the Center of the Province of Buenos Aires

GUSTAVO D. SUTTER

University Autonoma of Madrid

WILEY-
INTERSCIENCE

A JOHN WILEY & SONS, INC., PUBLICATION

SYNTHESIS OF
ARITHMETIC CIRCUITS

SYNTHESIS OF
ARITHMETIC CIRCUITS

FPGA, ASIC, and Embedded Systems

JEAN-PIERRE DESCHAMPS

University Rovira i Virgili

GERY JEAN ANTOINE BIOUL

National University of the Center of the Province of Buenos Aires

GUSTAVO D. SUTTER

University Autonoma of Madrid

WILEY-
INTERSCIENCE

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2006 by John Wiley & Sons, Inc. All rights reserved.
Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any

form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,

except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without

either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,

MA 01923, 978-750-8400, fax 978-646-8600, or on the web at www.copyright.com. Requests to

the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008

or online at http://www.wiley.com/go/permission.

Limit of Liability /Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the

accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Deschamps, Jean-Pierre, 1945-
Synthesis of arithmetic circuits: FPGA, ASIC and embedded systems/Jean-Pierre Deschamps, Gery
Jean Antoine Bioul, Gustavo D. Sutter.
p. cm.
ISBN-13 978-0471-68783-2 (cloth)
ISBN-10 0-471-68783-9 (cloth)
1. Computer arithmetic and logic units. 2. Digital electronics. 3. Embedded computer systems.
I. Bioul, Gery Jean Antoine. II. Sutter, Gustavo D. III. Title.

TK7895.A65D47 2006
621.39’5 - - dc22 2005003237

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission

To Marc

CONTENTS

Preface

About the Authors

1 Introduction
1.1 Number Representation, 1
1.2 Algorithms, 2
1.3 Hardware Platforms, 2
1.4 Hardware—Software Partitioning, 3
1.5 Software Generation, 3
1.6 Synthesis, 3

1.7 A First Example, 3
1.7.1 Specification, 3
1.7.2 Number Representation, 6
1.7.3 Algorithms, 6
1.7.4 Hardware Platform, 8
1.7.5 Hardware—Software Partitioning, 8
1.7.6 Program Generation, 9
1.7.7 Synthesis, 10
1.7.8 Prototype, 12

1.8 Bibliography, 14

xvii

Xix

vii

viii

2

Mathematical Background

2.1 Number Theory, 15
2.1.1 Basic Definitions, 15
2.1.2 Euclidean Algorithms, 17
2.1.3 Congruences, 19

2.2 Algebra, 25
2.2.1 Groups, 25
2.2.2 Rings, 27
2.2.3 Fields, 27
2.2.4 Polynomial Rings, 27
2.2.5 Congruences of Polynomial, 32

2.3 Function Approximation, 35
2.4 Bibliography, 36

Number Representation

3.1 Natural Numbers, 39
3.1.1 Weighted Systems, 39
3.1.2 Residue Number System, 42

3.2 Integers, 42
3.2.1 Sign-Magnitude Representation, 42
3.2.2 Excess-E Representation, 43
3.2.3 B’s Complement Representation, 44
3.24 Booth’s Encoding, 47

3.3 Real Numbers, 51
3.4 Bibliography, 54

Arithmetic Operations: Addition and Subtraction

4.1 Addition of Natural Numbers, 55
4.1.1 Basic Algorithm, 55
4.1.2 Faster Algorithms, 57
4.1.3 Long-Operand Addition, 66
4.1.4 Multioperand Addition, 67
4.1.5 Long-Multioperand Addition, 70

4.2 Subtraction of Natural Numbers, 71

4.3 Integers, 71
4.3.1 B’s Complement Addition, 71
4.3.2 B’s Complement Sign Change, 72
4.3.3 B’s Complement Subtraction, 74

CONTENTS

15

39

55

CONTENTS

434
435
43.6

B’s Complement Overflow Detection, 74
Excess-E Addition and Subtraction, 78
Sign—Magnitude Addition and Subtraction, 79

4.4 Bibliography, 80

5 Arithmetic Operations: Multiplication

6

5.1 Natural Numbers Multiplication, 82

5.1.1
5.1.2

5.1.3

Introduction, 82

Shift and Add Algorithms, 83

5.1.2.1 Shift and Add 1, 83

5.1.2.2 Shift and Add 2, 84

5.1.2.3 Extended Shift and Add Algorithm:
XY+ C+D, 86

5.1.2.4 Cellular Shift and Add, 86

Long-Operand Algorithm, 90

5.2 Integers, 91

5.2.1

522
523

5.2.4

B’s Complement Multiplication, 91

5.2.1.1 Mod B"t" B’s Complement Multiplication, 92
5.2.1.2 Signed Shift and Add, 93

5.2.1.3 Postcorrection B’s Complement Multiplication, 93
Postcorrection 2’s Complement Multiplication, 96

Booth Multiplication for Binary Numbers, 97

5.2.3.1 Booth-r Algorithms, 97

5.2.3.2 Per Gelosia Signed-Digit Algorithm, 98

Booth Multiplication for Base-B Numbers

(Booth-r Algorithm in Base B), 102

5.3 Squaring, 104

5.3.1

532

Base-B Squaring, 104
5.3.1.1 Cellular Carry—Save Squaring Algorithm, 104
Base-2 Squaring, 106

5.4 Bibliography, 107

Arithmetic Operations: Division

6.1 Natural Numbers, 110

6.2 Integers, 117

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6

General Algorithm, 117

Restoring Division Algorithm, 121

Base-2 Nonrestoring Division Algorithm, 121

SRT Radix-2 Division, 126

SRT Radix-2 Division with Stored-Carry Encoding, 131
P-D Diagram, 139

ix

81

109

CONTENTS

6.2.7 SRT-4 Division, 142
6.2.8 Base-B Nonrestoring Division Algorithm, 148

6.3 Convergence (Functional Iteration) Algorithms, 155
6.3.1 Introduction, 155
6.3.2 Newton—Raphson Iteration Technique, 155
6.3.3 MacLaurin Expansion—Goldschmidt’s Algorithm, 159
6.4 Bibliography, 161
Other Arithmetic Operations 165
7.1 Base Conversion, 165
7.2 Residue Number System Conversion, 173
7.2.1 Introduction, 173
7.2.2 Base-B to RNS Conversion, 173
7.2.3 RNS to Base-B Conversion, 177
7.3 Logarithmic, Exponential, and Trigonometric Functions, 180
7.3.1 Taylor—MacLaurin Series, 181
7.3.2 Polynomial Approximation, 183
7.3.3 Logarithm and Exponential Functions Approximation
by Convergence Methods, 184
7.3.3.1 Logarithm Function Approximation by
Multiplicative Normalization, 184
7.3.3.2 Exponential Function Approximation by
Additive Normalization, 188
7.3.4 Trigonometric Functions—CORDIC Algorithms, 194
7.4 Square Rooting, 198
7.4.1 Digit Recurrence Algorithm—Base-B Integers, 198
7.4.2 Restoring Binary Shift-and-Subtract Square Rooting
Algorithm, 202
7.4.3 Nonrestoring Binary Add-and-Subtract Square Rooting
Algorithm, 204
7.4.4 Convergence Method—Newton—Raphson, 208
7.5 Bibliography, 208
Finite Field Operations 211
8.1 Operations in Z,,, 211

8.1.1 Addition, 212
8.1.2 Subtraction, 213
8.1.3 Multiplication, 213
8.1.3.1 Multiply and Reduce, 214
8.1.3.2 Modified Shift-and-Add Algorithm, 214

CONTENTS xi

8.1.3.3 Montgomery Multiplication, 216
8.1.3.4 Specific Ring, 220
8.1.4 Exponentiation, 221

8.2 Operations in GF(p), 222

8.3 Operations in Z,[x]/f(x), 224
8.3.1 Addition and Subtraction, 224
8.3.2 Multiplication, 225

8.4 Operations in GF(p"), 228
8.5 Bibliography, 236
Appendix 8.1 Computation of f;;, 236

9 Hardware Platforms 239

9.1 Design Methods for Electronic Systems, 239
9.1.1 Basic Blocks of Integrated Systems, 240
9.1.2 Recurring Topics in Electronic Design, 241
9.1.2.1 Design Challenge: Optimizing
Design Metrics, 241
9.1.2.2 Cost in Integrated Circuits, 242
9.1.2.3 Moore’s Law, 243
9.1.2.4 Time-to-Market, 243
9.1.2.5 Performance Metric, 244
9.1.2.6 The Power Dimension, 245

9.2 Instruction Set Processors, 245
9.2.1 Microprocessors, 247
9.2.2 Microcontrollers, 248
9.2.3 Embedded Processors Everywhere, 248
9.2.4 Digital Signal Processors, 249
9.2.5 Application-Specific Instruction Set Processors, 250
9.2.6 Programming Instruction Set Processors, 251

9.3 ASIC Designs, 252
9.3.1 Full-Custom ASIC, 252
9.3.2 Semicustom ASIC, 253
9.3.2.1 Gate-Array ASIC, 253
9.3.2.2 Standard-Cell-Based ASIC, 254
9.3.3 Design Flow in ASIC, 255

9.4 Programmable Logic, 256
9.4.1 Programmable Logic Devices (PLDs), 256
9.4.2 Field Programmable Gate Array (FPGA), 258
9.4.2.1 Why FPGA? A Short Historical Survey, 258
9.4.2.2 Basic FPGA Concepts, 258

xii

10

11

9.5

9.6
9.7

CONTENTS

9.4.3 Xilinx™ Specifics, 260
9.43.1 Configurable Logic Blocks (CLBs), 262
9.4.3.2 Input/Output Blocks (IOBs), 262
9.4.3.3 RAM Blocks, 262
9.4.3.4 Programmable Routing, 264
9.4.3.5 Arithmetic Resources in Xilinx FPGAs, 264
9.44 FPGA Generic Design Flow, 264

Hardware Description Languages (HDLs), 267
9.5.1 Today’s and Tomorrow’s HDLs, 267

Further Readings, 268
Bibliography, 268

Circuit Synthesis: General Principles 271

10.1
10.2
10.3
10.4
10.5

Resources, 272

Precedence Relation and Scheduling, 277
Pipeline, 281

Self-Timed Circuits, 282

Bibliography, 288

Adders and Subtractors 289

11.1

Natural Numbers, 289
11.1.1 Basic Adder (Ripple-Carry Adder), 289
11.1.2 Carry-Chain Adder, 292
11.1.3 Carry-Skip Adder, 294
11.1.4 Optimization of Carry-Skip Adders, 298
11.1.5 Base-B® Adder, 301
11.1.6 Carry-Select Adder, 303
11.1.7 Optimization of Carry-Select Adders, 307
11.1.8 Carry-Lookahead Adders (CLAs), 310
11.1.9 Prefix Adders, 318
11.1.10 FPGA Implementation of Adders, 322
11.1.10.1 Carry-Chain Adders, 322
11.1.10.2 Carry-Skip Adders, 323
11.1.10.3 Experimental Results, 326
11.1.11 Long-Operand Adders, 327
11.1.12 Multioperand Adders, 328
11.1.12.1 Sequential Multioperand Adders, 328
11.1.12.2 Combinational Multioperand Adders, 330

CONTENTS xiii

11.1.12.3 Carry-Save Adders, 333
11.1.12.4 Parallel Counters, 337
11.1.13 Subtractors and Adder-Subtractors, 344
11.1.14 Termination Detection, 346
11.1.15 FPGA Implementation of the Termination Detection, 348

11.2 Integers, 350
11.2.1 B’s Complement Adders and Subtractors, 350
11.2.2 Excess-E Adders and Subtractors, 352
11.2.3 Sign-Magnitude Adders and Subtractors, 355

11.3 Bibliography, 357

12 Multipliers 359

12.1 Natural Numbers, 360
12.1.1 Basic Multiplier, 360
12.1.2 Sequential Multipliers, 363
12.1.3 Cellular Multiplier Arrays, 363
12.1.3.1 Ripple-Carry Multiplier, 365
12.1.3.2 Carry-Save Multiplier, 368
12.1.3.3 Figures of Merit, 370
12.1.4 Multipliers Based on Dissymmetric
B" x B’ Cells, 370
12.1.5 Multipliers Based on Multioperand Adders, 378
12.1.6 Per Gelosia Multiplication Arrays, 383
12.1.6.1 Introduction, 383
12.1.6.2 Adding Tree for Base-B Partial Products, 384
12.1.7 FPGA Implementation of Multipliers, 386

12.2 Integers, 388
12.2.1 B’s Complement Multipliers, 388
12.2.2 Booth Multipliers, 390
12.2.2.1 Booth-1 Multiplier, 390
12.2.2.2 Booth-2 Multiplier, 392
12.2.2.3 Signed-Digit Multiplier, 397
12.2.3 FPGA Implementation of the Booth-1 Multiplier, 404

12.3 Bibliography, 406

13 Dividers 407
13.1 Natural Numbers, 407

13.2 Integers, 415
13.2.1 Base-2 Nonrestoring Divider, 415
13.2.2 Base-B Nonrestoring Divider, 421

Xiv

CONTENTS

13.2.3 SRT Dividers, 424

13.2.3.1 SRT-2 Divider, 424

13.2.3.2 SRT-2 Divider with Carry-Save Computation
of the Remainder, 428

13.2.3.3 FPGA Implementation of the Carry-Save SRT-2
Divider, 434

13.2.4 SRT-4 Divider, 435
13.2.5 Convergence Dividers, 439

13.2.5.1 Newton—Raphson Divider, 439

13.2.5.2 Goldschmidt Divider, 441

13.2.5.3 Comparative Data Between Newton—Raphson
(NR) and Goldschmidt (G) Implementations, 444

13.3 Bibliography, 444
14 Other Arithmetic Operators 447
14.1 Base Conversion, 447
14.1.1 General Base Conversion, 447
14.1.2 BCD to Binary Converter, 449
14.1.2.1 Nonrestoring 27 Subtracting Implementation, 449
14.1.2.2 Shift-and-Add BCD to Binary Converter, 450
14.1.3 Binary to BCD Converter, 452
14.1.4 Base-B to RNS Converter, 455
14.1.5 CRT RNS to Base-B Converter, 456
14.1.6 RNS to Mixed-Radix System Converter, 458
14.2 Polynomial Computation Circuits, 463
14.3 Logarithm Operator, 467
14.4 Exponential Operator, 468
14.5 Sine and Cosine Operators, 470
14.6 Square Rooters, 472
14.6.1 Restoring Shift-and-Subtract Square Rooter (Naturals), 472
14.6.2 Nonrestoring Shift-and-Subtract Square Rooter
(Naturals), 475
14.6.3 Newton—Raphson Square Rooter (Naturals), 477
14.7 Bibliography, 479
15 Circuits for Finite Field Operations 481
15.1 Operations in Z,,, 481

15.1.1 Adders and Subtractors, 481
15.1.2 Multiplication, 484
15.1.2.1 Multiply and Reduce, 484

CONTENTS

15.2
15.3
15.4
15.5

15.1.2.2 Shift and Add, 485

15.1.2.3 Montgomery Multiplication, 487
15.1.2.4 Modulo (Bk—c) Reduction, 490
15.1.2.5 Exponentiation, 494

Inversion in GF(p), 497
Operations in Z,[x]/f(x), 500
Inversion in GF(p"), 504
Bibliography, 510

16 Floating-Point Unit

16.1
16.2

16.3
16.4
16.5

16.6
16.7
16.8
16.9
16.10

Index

Floating-Point System Definition, 513

Arithmetic Operations, 515

16.2.1 Addition of Positive Numbers, 515
16.2.2 Difference of Positive Numbers, 517
16.2.3 Addition and Subtraction, 518
16.2.4 Multiplication, 520

16.2.5 Division, 521

16.2.6 Square Root, 522

Rounding Schemes, 524
Guard Digits, 525

Adder-Subtractor, 527
16.5.1 Alignment, 527
16.5.2 Additions, 529
16.5.3 Normalization, 530
16.5.4 Rounding, 530

Multiplier, 537
Divider, 542
Square Root, 546
Comments, 548

Bibliography, 548

XV

513

549

PREFACE

From the beginnings of digital electronic science, the synthesis of circuits carrying
out arithmetic operations has been a central topic. As a matter of fact, it is an activity
directly related to computer development. From then on, a well-known technical dis-
cipline was born: computer arithmetic. Traditionally, the study of arithmetic circuits
has been oriented toward applications to general-purpose computers, which provide
the most important applications of digital circuits. However, the electronic market
share corresponding to specific systems (embedded systems) is significant. It is
important to point out that the huge business volume that corresponds to general-
purpose computers (personal computers, servers, main frames) is distributed
among a relatively reduced number of different models. Therefore the number of
designers involved in general-purpose computer development is not as big as it
might seem and is much less than the number of engineers dedicated to production
and sales. The case of embedded systems is different. Embedded systems are circuits
designed for specific applications (special-purpose devices), so a great diversity of
products exist in the market, and the design effort per fabricated unit can be a lot
bigger than in the case of general-purpose computers. In consequence, the design
of specific computers is an activity in which numerous engineers are involved, in
all type of companies—even small ones—within numerous countries.

In this book methods and examples for synthesis of arithmetic circuits are described
with an emphasis somewhat different from the classic texts on computer arithmetic.

« It is not limited to the description of the arithmetic units of computers.

. Descriptions of computation algorithms are presented in a section apart from
the one dedicated to their materialization or implementation by digital circuits.
The development of an embedded system is an operation of hardware—software
codesign for which it is not known beforehand what tasks will be executed by a
microprocessor and what other tasks by specific coprocessors. For this reason, it

xvii

xviii PREFACE

appeared useful to describe the algorithms in an independent manner, without
any assumption on subsequent executions by an existent processor (software) or
by a new customized circuit (hardware).

. A special, although not exclusive, importance has been given to user program-
mable devices (field programmable devices such as FPGAs), especially to the
families Spartan II and Virtex. Those devices are very commonly used for the
realization of specific systems, mainly in the case of small series and proto-
types. The particular architecture of those components leads the designer to
use synthesis techniques somewhat different from the ones applied for ASICs
(application-specific integrated circuits) for which standard cell libraries exist.

« In what concern circuits description, logic schemes are presented, sometimes
with some VHDL models, in such a way that the corresponding circuits can
easily be simulated and synthesized.

After an introductory chapter, the book is divided in two parts. The first one is
dedicated to mathematical aspects and algorithms: mathematical background
(Chapter 2), number representation (Chapter 3), addition and subtraction (Chapter
4), multiplication (Chapter 5), division (Chapter 6), other arithmetic operations
(Chapter 7), and operations in finite fields (Chapter 8). The second part is dedicated
to the central topic—the synthesis of arithmetic circuits: hardware platforms
(Chapter 9), general principles of synthesis (Chapter 10), adders and subtractors
(Chapter 11), multipliers (Chapter 12), dividers (Chapter 13), other arithmetic primi-
tives (Chapter 14), operators for finite fields (Chapter 15), and floating-point unit.

Numerous VHDL models, and other source files, can be downloaded from http://
www.ii.uam.es/~ gsutter/arithmetic/. This will be indicated in the text (e.g., com-
plete VHDL source code available). As regards the VHDL models, they are of two
types: some of them have been developed for simulation purposes only, so the work-
ing of the corresponding circuit can be observed; others are synthesizable models that
have been implemented within commercial programmable components (FPGA’s).

The authors thank the people who have helped them in developing this book,
especially Dr. Tim Bratten, for correcting the text, and Paula Mir6n, for the cover
design. They are grateful to the following universities for providing them the
means for carrying this work through to a successful conclusion: University
Rovira i Virgili (Tarragona, Spain), University Rey Juan Carlos (Madrid, Spain),
State University UNCPBA (Tandil, Argentina), University FASTA (Mar del
Plata, Argentina), and Autonomous University of Madrid (Spain).

JEAN-PIERRE DESCHAMPS
University Rovira i Virgili

GERY JEAN ANTOINE BiouL
National University of the Center of the Province of Buenos Aires

GusTAvO D. SUTTER
University Autonoma of Madrid

ABOUT THE AUTHORS

Jean-Pierre Deschamps received a MS degree in electrical engineering from the
University of Louvain, Belgium, in 1967, a PhD in computer science from the
Autonomous University of Barcelona, Spain, in 1982, and a PhD degree in electrical
engineering from the Polytechnic School of Lausanne, Switzerland, in 1983. He has
worked in several companies and universities. He is currently a professor at the
University Rovira i Virgili, Tarragona, Spain. His research interests include ASIC
and FPGA design, digital arithmetic, and cryptography. He is the author of six
books and about a hundred international papers.

Géry Jean Antoine Bioul received a MS degree in physical aerospace engineering
from the University of Liege, Belgium. He worked in digital systems design with
PHILIPS Belgium and in computer-aided industrial logistics with several For-
tune-100 U.S. companies in the United States, and Africa. He has been a professor
of computer architecture in several universities mainly in Africa and South America.
He is currently a professor at the State University UNCPBA of Tandil (Buenos
Aires), Argentina, and a professor consultant at the Saint Thomas University
FASTA of Mar del Plata (Buenos Aires), Argentina. His research interests include
logic design and computer arithmetic algorithms and implementations. He is the
author of about 50 international papers and patents on fast arithmetic units.

Gustavo D. Sutter received a MS degree in Computer Science from the State
University UNCPBA of Tandil (Buenos Aires), Argentina, and a PhD degree
from the Autonomous University of Madrid, Spain. He has been a professor at
the UNCPBA, Argentina and is currently a professor at the University Autonoma
of Madrid, Spain. His research interests include ASIC and FPGA design, digital
arithmetic, and development of embedded systems. He is the author of about 30
international papers and communications.

xix

INTRODUCTION

The design of embedded systems, that is, circuits designed for specific applications,
is based on a series of decisions as well as on the use of several types of development
techniques. For example:

- Selection of the data representation

- Generation or selection of algorithms

- Selection of hardware platforms

- Hardware—software partitioning

- Program generation

- New hardware synthesis

- Cosimulation, coemulation, and prototyping

Some of these activities have a close relationship with the study of arithmetic
algorithms and circuits, especially in the case of systems including a great
amount of data processing (e.g., ciphering and deciphering, image processing,
digital signature, biometry).

1.1 NUMBER REPRESENTATION

When using general-purpose equipment, the designer has few possible choices
concerning the internal representation of data. He must conform to some fixed

Synthesis of Arithmetic Circuits: FPGA, ASIC, and Embedded Systems
By Jean-Pierre Deschamps, Géry J. A. Bioul, and Gustavo D. Sutter
Copyright © 2006 John Wiley & Sons, Inc.

2 INTRODUCTION

and predefined data types such as integer, floating-point, double precision, and char-
acter. On the contrary, if a specific system is under development, the designer can
choose, for each data, the most convenient type of representation. It is no longer
necessary to choose some standard fixed-point or floating-point numeration
system. Nonstandard specific formats can be used. In Chapter 3 the main number
representation methods will be defined.

1.2 ALGORITHMS

Every complex data processing operation must be decomposed into simpler
operations — the computation primitives — executable either by the main pro-
cessor or by some specific coprocessor. The way the computation primitives are
used in order to perform the complex operation is what is meant by algorithm.
Obviously, knowledge of algorithms is of fundamental importance for developing
arithmetic procedures (software) and circuits (hardware). It is the topic of
Chapters 4-8.

1.3 HARDWARE PLATFORMS

The selection of a hardware platform is based on the answer to the following ques-
tion. How do we get the desired behavior at the lowest cost, while fulfilling some
additional constraints? As a matter of fact, the concept of cost must be carefully
defined in each particular case. It can cover several aspects: for example, the unit
production cost, the nonrecurring engineering costs, and the implicit cost for a
late introduction of the product to the market. Some examples of additional technical
constraints are the size of the system, its power consumption, and its reliability and
maintainability.

For systems requiring little data processing capability, microcontrollers and low-
range microprocessors can be the best choice. If the computation needs are greater,
more powerful microprocessors, or even digital signal processors (DSPs), should be
considered. This type of solution (microprocessors and DSPs) is very flexible as the
development work mainly consists in generating programs.

For getting higher performances, it may be necessary to develop specific circuits.
A first option is to use a programmable device, for example, a field-programmable
gate array (FPGA). It could be an interesting option for prototypes and small series.
For greater series, an application-specific integrated circuit (ASIC) should be
developed. ASIC vendors offer several types of products: for example, gate
arrays, with relatively small prototyping costs, or standard cell libraries, integrating
a complete system-on-chip (SOC) including processors, program memories, data
memories, logic, macrocells, and analog interfaces.

A brief presentation of the most common hardware platforms is given in
Chapter 9.

1.7 A FIRST EXAMPLE 3
1.4 HARDWARE-SOFTWARE PARTITIONING

The hardware —software partitioning consists of deciding which operations will be
executed by the central processing unit (the software) and which ones by specific
coprocessors (the hardware). As a matter of fact, the platform selection and the
hardware—software partitioning are tightly related operations. For systems requiring
little data processing capability, the whole system is implemented in software. If
higher performances are necessary, the noncritical operations, as well as control
of the operation sequence, are executed by the central processing unit, while the
critical ones are implemented within specific coprocessors.

1.5 SOFTWARE GENERATION

The operations belonging to the software block of the chosen partition must be pro-
grammed. In Chapters 4—8 the algorithms are presented in an Ada-like language that
can easily be translated to C or even to the assembly language of the chosen
microprocessor.

1.6 SYNTHESIS

Once the hardware—software partition has been defined, all the tasks assigned to the
specific hardware (FPGA, ASIC) must be translated into circuit descriptions. Some
important synthesis principles and methods are described in Chapter 10. The syn-
thesis of arithmetic circuits, based on the algorithms of Chapters 4-8, is the topic
of Chapters 11-15, and an additional chapter (16) is dedicated to the implemen-
tation of floating-point arithmetic.

1.7 A FIRST EXAMPLE

Common examples of application fields resorting to embedded solutions are crypto-
graphy, access control, smart cards, automotive, avionics, space, entertainment, and
electronic sales outlets. In order to illustrate the main steps of the design process, a
small digital signature system will now be developed (complete assembly language
and VHDL code available).

1.7.1 Specification

The system under development (Figure 1.1) has three inputs,

. character is an 8-bit vector.

- new_character is a signal used for synchronizing the input of successive
characters.

- sign is a control signal ordering the computation of a digital signature.

4 INTRODUCTION

character ——|)
signature —» signature

new_character ——» i
generator . done

sign ——»>

Figure 1.1 System under development.

and two outputs,

. done is a status variable indicating that the signature computation has been
completed,

- signature is a 32-bit vector, namely, the signature of the message.

The working of the system is shown in Figure 1.2: a sequence cy, ¢, ..., ¢, of
any number n of characters (the message), synchronized by the signal new_char-
acter, is inputted. When the sign control signal goes high, the done flag is low-
ered and the signature of the message is computed. The done flag will be raised as
soon as the signature s is available.

In order to sign the message two functions must be defined:

. a hash function associating a 32-bit vector (the summary) to every message,
whatever its length;
. an encode function computing the signature corresponding to the summary.

The following (naive) hash function is used:

Algorithm 1.1 Hash Function

summary:=0;

while not (end_of_message) loop
get (character) ;
a:=(summary (7 downto 0)+character) mod 256;
summary (23 downto 16) :=summary (31 downto 24);
summary (15 downto 8) :=summary (23 downto 16) ;

character e Y e X: :X cn X
sign _/_\ [\
new_character /__/__/_ [\
done \ / \ /

signature X X S

Figure 1.2 Input and output signals.

1.7 A FIRST EXAMPLE 5

summary (7 downto 0) :=summary (15 downto 8);
summary (31 downto 24) :=a;
end loop;

As an example, assume that the message is the following (every character can
be equivalently considered as an 8-bit vector or a natural number smaller than
256, i.e. a base-256 digit; see Chapter 3):

12, 45, 216, 1, 107, 55, 10, 9, 34, 72, 215, 114, 13, 13, 229, 18.
The summary is computed as follows:

summary = (0, 0, 0, 0),

summary = (12, 0, 0, 0),
summary = (45, 12, 0, 0),
summary = (216, 45, 12, 0),
summary = (1, 216, 45, 12),
summary = (119, 1, 216, 45),
summary = (100, 119, 1, 216),
summary = (226, 100, 119, 1),
summary = (10, 226, 100, 119),
summary = (153, 10, 226, 100),
summary = (172, 153, 10, 226),
summary = (185, 172, 153, 10),
summary = (124, 185, 172, 153),
summary = (166, 124, 185, 172),
summary = (185, 166, 124, 185),
summary = (158, 185, 166, 124),
summary = (142, 158, 185, 166).

The final result, translated from the base-256 to the decimal representation, is
summary = 142 x 256> + 158 x 256 + 185 x 256 + 166 = 2392766886.
The encode function computes
encode(y) = y* mod m
x being some private key, and m a 32-bit number. Assume that

x=1937757177 and m = 23 — 1 = 4294967295.

6 INTRODUCTION

Then the signature of the previous message is

s = (2392766886)' 373177 mod 4294967295 = 37998786.

1.7.2 Number Representation

In this example all the data are either 8-bit vectors (the characters) or 32-bit vectors
(the summary, the key, and the module m). So instead of representing them in the
decimal numeration system, they should be represented in the binary or, equiva-
lently, the hexadecimal system. The message is

0C, 2D, D8, 01, 6B, 37, 0A, 09, 22 48, D7, 72, 0D, 0D, ES, 12.
The summary, the key, the module, and the signature are

summary = SEOEBIAG,
private key = 737TFD3F9,
m = FFFFFFFF,

s = 0243D0C2.

1.7.3 Algorithms

The hash function amounts to a mod-256 addition, that is, a simple 8-bit addition
without output carry. The only complex operation is the mod m exponentiation.
Assume that x, y, and m are n-bit numbers. Then

x=x(0)+2x()+---+2""x(n—1),

and e can be written in the form
e=((--- ((12y"n=)2 yx=2y2)2 3x(Dy2 WO yod .

The corresponding algorithm is the following (Chapter 8, Algorithm 8.14).

Algorithm 1.2 Exponentiation

e:=1;
for i in 1..n loop

e:=(e*e) mod m;

if x(n-i)=1 then e:=(e*y) mod m; end if;
end loop;

The only computation primitive is the modulo m product, which, in turn, is
equivalent to a natural multiplication followed by a modulo m reduction, that is,
an integer division by m. The following algorithm (Chapter 8, Algorithm 8.5)

1.7 A FIRST EXAMPLE 7

computes r = x.y mod m. It uses two procedures: multiply, which computes the
product z of two natural numbers x and y, and divide, which generates g (the
quotient) and r (the remainder) such that z = g.m + r with r < m.

Algorithm 1.3 Modulo m Multiplication

multiply (X, vy, 2);
divide (z, m, g, r);

A classical method for computing the product z of two natural numbers x and y is the
shift and add algorithm (Chapter 5, Algorithm 5.3). In base 2:

Algorithm 1.4 Natural Multiplication

p(0):=0;
for i in 0..n-1 loop
p(i+l) :=(p(i)+x(i)*y)/2;
end loop;
z:=p(n)*(2**n);

For computing g and r such that z = g.m 4 r with r < m, the classical restoring
division algorithm can be used (Chapter 6, Algorithms 6.1 and 6.2). Given x and
y (the operands) such that x < y, and p (the desired precision), the restoring division
algorithm computes g and 7 such that

x2P =qy+r. (1.1)
Within the exponentiation algorithm 1.2, the operands e and y are n-bit numbers.
Furthermore, e is always smaller than m, so that both products z=e*e or
7z = e * y are 2.n-bit numbers satisfying the relation

z<m.2".

Thus by substituting x by z, p by n, and y by m.2" in (1.1), the restoring division
algorithm computes g and #’ such that

22" =q.m2" + ¢ with ¥ <m.2",
that is,
z=gm+r with r=r27"<m.
The restoring algorithm is similar to the pencil and paper method. At every step

the latest obtained remainder, say, 7(i — 1), is multiplied by 2 and compared with the
divider y. If 2.r(i — 1) is greater than or equal to y, then the new remainder is

8 INTRODUCTION

r(i) = 2.r(i — 1) — y and the corresponding quotient bit is equal to 1. In the contrary
case, the new remainder is (i) = 2.r(i — 1) and the corresponding quotient bit equal
to 0. The initial remainder #(0) is the dividend.

Algorithm 1.5 Restoring Division

r(0):=z; y:=m*(2**n);

for i in 1..n loop
if 2*r(i-1)-y<0 then g(i):=0; r(i):=2*r(i-1); else
g(i):=1; r(i):=2*r(i-1)-y; end if;

end loop;

r:=r(n)/(2**n);

By merging Algorithms 1.4 and 1.5, the following modular product algorithm is
obtained.

Algorithm 1.6 Modular Product

p(0):=0;
for i in 0..n-1 loop
p(i+l) :=(p(i)+x (1) *y)/2;
end loop;
r(0):=p(n)*(2**n); y:=m*(2**n);

for i in 1..n loop
if 2*r(i-1)-y<0 then g(i):=0; r(i):=2*r(i-1); else
g(i):=1; r(i):=2*r(i-1)-y; end if;

end loop;

r:=r(n)/(2**n);

Observe that the multiplication of p(n) and m by 2", as well as the division of r(n)
by 2" can be deleted. Then r(0) = p(n) is a 2.n-bit fixed-point number (Chapter 3)
smaller than 2" and the divider is equal to m. The quotient ¢ and the remainder
r(n) satisfy the relation p(n).2" = g.m + r(n) so that r = r(n).

1.7.4 Hardware Platform

For implementing this illustrative example, a prototyping board will be used,
namely, an XSA-100 board from XESS Corporation. It includes an XC2S100
FPGA (Spartan-II family of Xilinx) integrating the complete digital signature
system. The design environment includes virtual components (synthesizable
VHDL models, Chapter 9), among others PicoBlaze, an 8-bit microprocessor, and
its program memory ([XIL2002]).

1.7.5 Hardware—Software Partitioning

As mentioned above, the only complex operation is the computation of y* modulo m.
All the other operations can be carried out by the processor. The corresponding
system architecture is shown in Figure 1.3. It works as follows:

1.7 A FIRST EXAMPLE 9

ws and port_id =3

—p —P Y(3)
port_id(0) d
port_id ws and port_id = 2
character in_port PicoBlaze and out_port ko
— program
command memory Ws > > Y(2)
H(Write_strobe) T
ws and port_id = 1
L
ws and port_id = 4 > » Y(1)
start flﬁ out_port(0) 9|
signature «#— z & ws and port_id = 0
exponentiator y lag— Y(3)&Y(2)&Y(1)&Y(0) VS
X [— 737FD3F9 —p —P Y(0)
done <— done m |«¢— FFFFFFFF g

Figure 1.3 System architecture.

- PicoBlaze reads the character input at address 0 and the command input at
address 1, where

command=0 0 0 0 0 0 sign new_character.

« It computes the 32-bit summary and writes it, under the form of four separate
bytes,

summary =Y (3) Y(2) Y(1) Y(0),

into four registers whose addresses are 3, 2, 1 and 0, respectively.

- A specific coprocessor receives the start signal from PicoBlaze at address 4,
computes

) 737FD3F9

s = (summary mod FFFFFFFF,

and generates the done flag.

1.7.6 Program Generation

The program executed by PicoBlaze is made up of three parts (assembly language
code available):

. reading of the new_character and sign input signals,

. reading of the character input and updating of the summary,

. writing of the summary and of the start command within the interface
registers:

10

summary:=(0, 0, 0, 0);
start:=0;
loop

--wait for command=0

while command>0 loop null; end loop;
--wait for command=1 (new_character)
while command=0 loop null; end loop;

if command=1 then

a:=(summary (0)+character) mod 256;

summary (0) :=summary (1) ;
summary (1) :=summary (2) ;
summary (2) :=summary (3) ;
summary (3) :=a;

elsif command=2 then

Y (3) :=summary (3) ;

Y (2) :=summary (2) ;

Y (1) :=summary (1) ;

Y (0) :=summary (0) ;
start:=1;

summary:=(0, 0, 0, 0);
start:=0;
end if;

end loop;

1.7.7 Synthesis

or 2

(sign)

INTRODUCTION

The synthesis (complete VHDL code available) of the exponentiator block of
Figure 1.3 is based on the algorithms of Section 1.7.3. A summary of the main
principles for translating an algorithm to a circuit is given in Chapter 10. The

data path of Figure 1.4 allows executing Algorithm 1.2. It includes:

. two 32-bit registers: a parallel register storing e, and a loadable shift register,
initially storing x and allowing to successively read the value of x(n — 1),

x(n—2),...,x(0);

- a mod m multiplier with a start input signal and a done output flag;

- a32-bit 2-to-1 multiplexer selecting either e or y as the second multiplier operand.

The complete circuit is described by the following VHDL model (including the

control unit):

entity exponentiator is
port (

x, y, m: in std_logic_vector (n-1 downto 0);
z: inout std_logic_vector (n-1 downto 0);

clk, reset, start: in std_logic;
done: out std_logic
) ;

end exponentiator;

1.7 A FIRST EXAMPLE 11

<
3
<

sel_y o 1

y

X
start_mult start

Yy m

mod m multiplier
done_mult done

z

Y

enable
register
preset
(e)
load
shift shift register
reg_x(n—1) serial_out
|
reg_x
z

Figure 1.4 Exponentiator.

architecture circuit of exponentiator is
component sequential_mod _mult..end component;
signal start_mult, sel_y, done_mult: std_logic;
signal reg_x, input_vy, output_z: std_logic_vector(n-1 downto
0);
subtype step_number is natural range 0 to n;
signal count: step_number;
subtype internal_states is natural range 0 to 14;
signal state: internal_states;
begin
label_1: sequential_mod_mult port map(z, input_y, m,
output_z, clk, reset, start_mult, done_mult);
with sel_vy select input_y<=z when ‘0’, y when others;
process (clk, reset)
begin
if reset='1’ then
state<=0; done<='0’; start_mult<='0'; count<=0;
elsif clk’event and clk=‘'1’ then
case state is
when 0=>if start='0’ then state<=state+l; end if;

12

INTRODUCTION

when 1=>if start='1’ then state<=state+l; end if;
when 2=>z<=conv_std_logic_vector(l, n);

reg_x<=x; count<=0; done<='0’; state<=state+1;
when 3=>

sel_y<='0’; start_mult<='1’; state<=state+l;
when 4=>state<=state+1;
when 5=>start_mult<='0’; state<=state+l;

when 6=>

if done_mult=‘'1’ then state<=state+l; end if;
when 7=>z<=output_z;

if reg_x(n-1)='1’ then state<=state+l;

else state<=13; end if;

when 8=>

sel_y<='1’; start_mult<='1’; state<=state+l;
when 9=>state<=state+1;
when 10=>start_mult<=‘'0’; state<=state+l;

when 11=>
if done_mult='1’ then state<=state+l; end if;
when 12=>z<=output_z; state<=state+l;
when 13=>reg_x(0)<=reg_x(n-1);
for i in 1 to n-1 loop reg x(i)<=reg_x(i-1);
end loop;
count<=count+1l; state<=state+1l;
when 14=>
if count>=n then done<=‘'1’; state<=0;
else state<=3; end if;

end case;
end if;

end process;
end circuit;

1.7.8 Prototype

All the files (complete source files available) necessary for programming an XSA-
100 board are included in the file sectionl_7.zip:

exponentiator.vhd is the complete description of the exponentiation circuit
(including the modular multiplier model);

signatu.psm is the assembly language program;
kpcsm.vhd is the PicoBlaze model;

signatu.vhd is the program memory model generated from the assembly
language program with kcpsm.exe (the PicoBlaze assembler released by
Xilinx [XIL2002]).

In order to test the complete system, the circuit of Figure 1.5 has been
synthesized. It is made up of:

« the circuit of Figure 1.3 including PicoBlaze, its program memory, the interface

registers, and the exponentiator;

1.7 A FIRST EXAMPLE

13

- afinite state machine generating the commands and characters corresponding to
the example of Section 1.7.1;

. a circuit that interfaces the board with signals d(7..0) controllable from the
host computer ([XSA2002]):

d(3..0) are used for selecting one of the outputs (out_0 to out_15) or
inputs (in_0 to in_15),
d(6..4) are control signals,
a(6.4) Command
000 nop
001 write
010 read
011 reset
100 address
strobe
in_15 — character
in 14 message and————P» system —> done
n_ism— command |command | under test
generation fp- (figure 1.3) | signature
in_0 —
reset T T
out_15 g&— done&done&done&done
out_14 &
host out_8 &=
—pp d interface out_7 &— signature(31:28)
out_6 K— signature(27:24)
out_5 &— signature(32:20)
out_4 &— signature(19:16)
out_3 &— signature(15:12)
out_2 &— signature(11:8)
out_1 &— signature(7:4)
out_0 &— signature(3:0)
LED
result > decoder —>

d(7) cannot be used,

Figure 1.5 Prototype.

14 INTRODUCTION

in this application the write and address strobe commands are not used;
when the read command is active, the hexadecimal representation of the 4-bit
vector selected with d(3..0) is displayed on the LED of the board;

. the 7-segment LED decoder.

The VHDL model of the circuit of Figure 1.5 (firma.vhd) is also included in
sectionl_7.zip as well as the file describing the pin assignment (pines.ucf).
The whole system (Figure 1.5) can be synthesized with ISE, the synthesis program
of Xilinx, and downloaded to the XSA-100 board.

1.8 BIBLIOGRAPHY

[DEM2002] G. De Micheli, R. Ernst, and W. Wolf (eds.), Readings in Hardware /Software
Co-Design, Morgan Kaufmann Publishers, San Francisco, CA, 2002.

[GAJ1994] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and Design of
Embedded Systems, Prentice Hall, Englewood Cliffs, NJ, 1994.

[XIL2002] Xilinx Inc, PicoBlaze 8-bit Microcontroller for Virtex-E and Spartan-11/I1I1E
Devices, application note XAPP213 (v2.0), Dec. 2002; http://www.xilinx.com

[XSA2002] XSA Board V1.1, V1.2 User Manual, June 2002; http://www.Xess .com.

2

MATHEMATICAL BACKGROUND

This chapter presents some topics in mathematics; it is intended to make this
book self-contained. For further details the reader is referred to textbooks on
algebra ([COH1993], [GIL2003], [HER1975], [HUN1974]), mathematical analysis
([APO1974], [RUD1976]), number theory ([KOB1994], [ROS1992]), finite fields
([McC1987]), and cryptography ([MEN1996]).

2.1 NUMBER THEORY

2.1.1 Basic Definitions

Definitions 2.1
1. The set of natural numbers' N = {0,1,2,3,...}.
2. The set of integers Z={..., =3, -2, —1,0,1,2,3,...}.

Definition 2.2 Given two integers x and y, y divides x (y is a divisor of x) if there
exists an integer z such that x = z.y.

"For convenience, the element zero has been included in N.

Synthesis of Arithmetic Circuits: FPGA, ASIC, and Embedded Systems
By Jean-Pierre Deschamps, Géry J. A. Bioul, and Gustavo D. Sutter
Copyright © 2006 John Wiley & Sons, Inc.

15

16 MATHEMATICAL BACKGROUND

Definition 2.3 Given two integers x and y, with y > 0, there exist two integers g
(the quotient) and r (the remainder) such that

x=qy+r, where 0<r<y.
It can be proved that g and r are unique. Then (notation)
r=xmody, ¢q=xdivy.

An alternative definition is the following.

Definition 2.4 (Integer Division) Given two integers x and y, with y > 0, there
exist two integers g (the quotient) and r (the remainder) such that

x=qy+r, where 0<r<yifx>0 and —y<r<0ifx<0.
It can be proved that g and r are unique. Then (notation)
r=xremy, q=x/y.

Examples 2.1
. x=—-16,y=3:

—16mod3=2, —16div3 =-6, —16 = —-6.3 42,
—1l6rem3=-1, —16/3=-5, =16 =-53+(—-1)

2. x=—15,y=3:

—15mod3=0, —15div3=-5 —15=-5340,
—15rem3=0, —-15/3=-5, —15=-53+0.

Definitions 2.5

1. Given two integers x and y, z is the greatest common divisor of x and y if

z is a natural number (nonnegative integer),
z divides both x and y,
any other common divider of x and y is also a divider of z.

Notation: z = gcd(x, y).

2. Given two integers x and y, they are said to be relatively prime if gcd(x,
y=1

3. Aninteger p > 1 is said to be prime if its only positive divisors are 1 and p.

2.1 NUMBER THEORY 17

2.1.2 Euclidean Algorithms

Given two natural numbers x and y, the Euclidean algorithm for natural numbers
computes gcd(x, y). It is based on a series of integer divisions:

r(i — 1) =q().r() +r@i+ 1), where 0 <r(i+1)<r@).

Observe that any divider of r(i — 1) and r(i) is also a divider of r(i) and r(i 4+ 1)
so that

ged(r(i — 1), r(i)) = ged(r(i), r(i + 1)).
Initially,
r(0)=x and r(1)=y.
Then compute

r(0) = g(1).r(1) + r(2),
r(1) = q(2).r2) + r(3),
r(2) = q(3).r(3) + r(4),

rmn—3)=qgn—2).r(n—2)+r(n—1),
r(n—2)=qmn—1).r(n — 1) + r(n),

where r(1) > r(2)--- > r(n) = 0 and gcd(r(i — 1), r(i)) = ged(r(i), r(i + 1)), so that

ged(x, y) = ged(r(0), r(1)) = - - - = ged(r(n — 1), r(n)) = ged(r(n — 1), 0)
=r(n—1).
Example 2.2 Let 7(0) = x = 8580; r(1) = y = 4070;
8580 = 2.4070 + 440
4070 = 9.440 + 110

440 =4.110+0

Then gcd(8580,4070) = 110.

18 MATHEMATICAL BACKGROUND

In the extended Euclidean algorithm a series of coefficients b(i) and c(i) are

calculated in parallel with the computation of #(0), r(1), (2), ..., r(n):
b(0) =1, c(0) =0,
b(1) =0, cl)=1,
b(2) = b(0) — b(1).q(1), c(2) = ¢(0) — c(1).q(1),

b(n—1)=bn— 3)— bn—2).qn—2), cn—1)=cln— 3.)”— cn—2).qn—2)
It can be demonstrated by induction that

r(i) =b().x+c@).y, Vi=0,1,2,...,n—1.
In particular,

gedx,y)=r(n—1)=bn—1).x+c(n — 1).y.

In conclusion, the extended Euclidean algorithm expresses the greatest common
divisor z of two natural numbers x and y as a linear combination of x and y, that is,

z=b.x+cuy. 2.1

Algorithm 2.1 Extended Euclidean Algorithm

if x=0 then z:=y; b:=0; c:=1;
elsif y=0 then z:=x; b:=1; c:=0;
else
r i:=x; r_iplusl:=y; b_i:=1; c_i:=0; b_iplusl:=0;
c_iplusl:=1;
while r_iplusl>0 loop
g:=r_i/r_iplusl; r_iplus2:=r_i mod r_iplusl;
b_iplus2:=b_i-b_iplusl*qg; c_iplus2:=c_i-c_iplusl*qg;
r_i:=r_iplusl; r_iplusl:=r_iplus2;
b_i:=b_iplusl; b_iplusl:=b_iplus2;
c_i:=c_iplusl; c_iplusl:=c_iplus2;
end loop;
z:=r_1; b:=b_1i; c:=c_1i;
end if;

Example 2.3 Let r; = x = 230490; r;,, = y = 43290; b; = ¢; 11 = 1;
b,‘+1 =C; = 0.

2.1 NUMBER THEORY 19

Step 1:

Step 2:

Step 3:

q = 230490/43290 = 5; riyp = 230490 mod 43290 = 14040;
biip=1—0%x5=1;¢42=0—-1%x5=-5;

r; = 43290; ri = 14040;

bi=0; bis1=1;

=1, cp1=-5;

q = 43290/14040 = 3; r; o = 43290 mod 14040 = 1170;
biip=0—1%x3=-3;¢c40=14+5%3=16;

r; = 14040; rip = 1170;

bi=1; bit1=-3;

¢ ==5 cip1 = 16;

q = 14040/1170 = 12; riyp = 14040 mod 1170 = O;
biso=14+3%12=37, c¢ip=-5-16%x12=—-197,
r; =1170; riy =0;

bi=-=3; by =37

c; = 16; civ1 = —197,

b=b;=-3; c=c; =16; gcd(230490,432900) =z=r;, = 1170

= —3%230490 + 16 % 43290

2.1.3 Congruences

Definition 2.6 Given two integers x and y, and a positive integer n, x is congruent
to y modulo n if n divides the difference (x — y).

Notation:

x = y(mod n).

Property 2.1 (Basic Properties of Congruences)
1. x =y (mod n) if and only if (x mod n) = (y mod n) (Definition 2.3).

2. The relation x = y (mod n) is an equivalence relation (reflexive, symmetric,
and transitive).

20 MATHEMATICAL BACKGROUND
3. If x; = y; (mod n) and x, = y, (mod n), then

(x1 +x2) = (1 +y2)(mod n), (x1 —x2) = (y1 — y2)(mod n),
(x1.x2) = (y1.y2)(mod n). (2.2)

From Properties 2.1(1 and 2), it can be seen that the mod n congruence relation
partitions Z into n equivalence classes. Each equivalence class contains exactly
one element of the set {0, 1, 2, ..., n — 1}, namely, the common value (x mod n)
for all elements x of the class. Furthermore, according to Property 2.1(3), the
addition, subtraction, and multiplication of congruence classes can be defined. As
a matter of fact, the set of equivalence classes is isomorphic to

Z,=1{0,1,2,...,n—1}
where the addition, the subtraction, and the multiplication are defined by
(x+y) mod n, (x —y) mod n, (x.y) mod n, V xandy in Z,.

Definition 2.7 Given two elements x and y of Z,, such that x.y = 1, then y is said to
be the multiplicative inverse of x. If such an inverse exists, it is unique.

Notation:

y:xil.

Property 2.2 x has a multiplicative inverse if and only if ged(x, n) = 1.

Proof If x.y =1 mod n, then x.y = g.n+1 so that any divisor of x and # is also a
divisor of 1. Thus ged(x, n) = 1.

If gcd(x, n) = 1, then (relation (2.1)) there exist b and ¢ such that 1 = b.x + c.n, so
that x ' = b.

More generally, we have the following.

Properties 2.3
1. Let g = gcd(a, n). Then the equation a.x = d (mod ») has a solution x if and
only if g divides d.
2. The solutions of a.x=d (mod n) are the same as the solutions of
(a/g)x = (d/g) (mod n/g).
3. There are g solutions, all of them congruent modulo n/g.

Proof

1. If ax =d (mod n), then a.x —d = g.n. As g divides both a and n, it also
divides d. If g divides d, then d = ¢q.g. According to (2.1), g is a linear

2.1 NUMBER THEORY 21

combination of @ and n; thatis, g = b.a + c.n. Sod = q(b.a + c.n) and x = q.b
is a solution.

2. If g divides d and a.x = d (mod n), that is, a.x —d = ¢.n, then (a/g).x —

d/g)=q.(n/g) and (a/g).x = (d/g) (mod n/g). Inversely, if (a/g).x =
(d/g) (mod n/g) then a.x = d (mod n).

3. As a/g and n/g are relatively prime, then there is a unique solution within
Z, g namely, x = xo = (d/g).(a/ g)~ ' mod n/g. The complete set of solutions
within Z, is

X =xo0+k.(n/g), Yk=0,1,...,¢g—1.
Observe that if k < g and xo < (n/g), then x; < (n/g) — 1 +(g — 1).(n/g)
=n—1.
Properties 2.4 (Chinese Remainder Theorem) Consider s pairwise relatively

prime integers my, mo, ..., m; whose product is equal to M. Then the system

N = ri(mod m,),
N = ry(mod m,),

NE rg(mod my), 2.3)
has a unique solution N within Z, (|a|,, stands for a mod m):
N = |[Sicizgm|ri/m], |, (2.4)
where
M =1lci<gmi; mi =M/m;,. (2.5)

The r; are called residues modulo m;.

Proof In order to compute a solution of system (2.3) observe that every m; is
relatively prime with every m; (j # i) so that every m; is relatively prime with m; =
M /m;. Then m; has a multiplicative inverse and

N = (m}).(r;/m}) mod m; + (m3).(ro/m5) mod my + - - -
+ (m3).(rs/m) mod my, (2.6)
is obviously a solution. The uniqueness is deduced from the fact that different sys-

tems have different solutions, and that there are exactly as many different systems as
elements in Z,,.

22 MATHEMATICAL BACKGROUND

The computation of (m})~ 'mod m; can be performed with the extended Euclidean
algorithm: as m; s relatively prime with M/my;, the algorithm generates b and c such that

1 =b.m; +c.(M/m)),
and
(m;k)’1 = ¢ mod m;.

Garner’s algorithm 2.2 ([GAR1959], [MEN1996]) computes N using a technique
slightly different from the straight computation of (2.4). It computes first the
mixed-radix digits within a preliminary step of a procedure step computing the
base-B digits through a mixed-radix to base-B conversion (see mixed-radix system—
Chapter 3).

A procedure inversion_step using the Euclidean algorithm to compute (mj)ﬂ
mod m; is first defined as

procedure inversion_step (m(j), m(i): in natural; invm(j): out
natural) ;

Algorithm 2.2 Garner’s Algorithm

Assume N is given, according to (2.3), by its set of residues ; = N mod m;:

for 1 in 2..s loop

c(i):=1;
for j in 1..(i-1) loop
inversion_step (m(j), m(i), invm(3j));
c(i):=invm(j)*c (i) mod m(i);
end loop;
end loop;

u:=r(l); x:=u; b(l):=1;
for i in 2..s loop
b(i):=b(i-1)*m(i-1);

end loop;

for 1 in 2..s loop

u:=(r(i) —x)*c(i) mod m(i);
xX:=x+u*b (1) ;

end loop;

Examples 2.4

1. Let {r;} = {1, 2, 3, 4, 5} be the set of remainders (residual expression) of a
natural number N with respect to the respective set of moduli {m;} = {2, 3,
5, 7, 11}. To compute the base-10 expression of N using (2.4), one first
needs to compute {m;} and {1/m; mod m;}. A straightforward base-10

2.1

NUMBER THEORY

calculation leads to

M =TI, jeym; = 2.3.5.7.11 = 2310,

{m*} = (M/m;} = {1155, 770, 462, 330, 210},

while the Euclidean algorithm is used to compute

{1/mf mod m;} = {1,2,3, 1, 1}.

Formula (2.4) yields

23

N = [1155.]1.1], 4+ 770.]12.2]5 + 462.|3.3]5 + 330.|4.1]; + 210.]5.1],; l2310-
N = |6143|2310 = 1523

2. Garner’s algorithm is now used to solve the same problem. The Euclidean
algorithm is used in the first loop of Algorithm 2.2. It computes:

i
[:=3,j:=1— 1/mmodm3 =1/2mod 5 = 3; ¢(3) := 3;

l

i

i

1

=2, ji=1— 1/mmod my =1/2mod3 =2;¢(2) :=2;

=3,j:=2—> 1/mymodm3z =1/3mod 5 =2;¢Q3) :=1;
=4,j:=1— 1/mymod my =1/2mod 7 = 4; c(4) := 4,
=4,j:=2— 1/mymod my = 1/3mod 7 = 5; c(4) := 6;
=4,j:=3— 1/m3ymod my = 1/5mod 7 = 3; c(4) := 4;
=5,j:=1— 1/mymod ms = 1/2mod 11 = 6; ¢(5) := 6;
=5,j:=2— 1/mymodms = 1/3mod 11 = 4; ¢(5) :=2
=5,j:=3—> 1/mymodms =1/5mod 11 =9; c(5) :=7

The second loop computes the weights b(j) as II;<; <; — 1m;:

b(1):=1; bQ2):=b(1).m; =2; b(3):=b2).my=2.3=06;
b(4) :=b(3).m3 = 6.5 = 30; b(5) := b(4).ms = 30.7 = 210.

The third loop finally computes x as

u=r()=1Lx=u=1
i:=2u:=(r?2)—x).c(2)mod3 = (2 —1).2mod 3 = 2;

1

1

x:=x4+ub)=1+22=5,

x:=x—ubB)=5+3.6=23

X 1= x+ ub@d) =23+ 1.30 = 53;

=35 u:=(r(3) —x).c(3)mod5 = (3 — 5).1mod 5 = 3;

i =4 u = (r(4) —x).c(4)mod7 = (4 —23).4mod 7 = I;

i=5u:={0>5)—x).c(5)mod1l =(5—-53).1mod11 =7,

x = x +u.b(5) = 53 +7.210 = 1523.

’

’

[:=5,j:=4 — 1/mymod ms = 1/7mod 11 = 8; ¢(5) := 1.

24 MATHEMATICAL BACKGROUND
Observe that the first two loops are independent and therefore may be computed

in parallel. Moreover, if the modulus system is fixed, the c(i) and b(i) are computed
once then stored for further use.

Definitions 2.8

1. The set of elements x of Z, relatively prime with n is the multiplicative
group Zy:

Z = {x € Z,|gcd(x, n) = 1}.

2. The Euler phi function ¢(n) is the number of elements in Z,.

According to Property 2.2, Z,, is the set of invertible elements of Z,. In particular,
if p is a prime number then

Z;={12...,p—1} and ¢(p)=p—1.
Properties 2.5 (Fermat’s Little Theorem) Let p be a prime.. Any integer x

satisfies x” = x (mod p), and any integer x not divisible by p satisfies x” ' = 1
(mod p).

Proof If x is not divisible by p and if i.x = j.x (mod p), that is, (i — j).x = g.p, then
i =j (mod p). Thus
(1.x).2x)....(p — Hx) =1.2....(p — D(mod p),

as the p — 1 above multiples of x are distinct and nonzero, they must be congruent to
1,2,3,..., p— 1in some order.

So
(p—Dlx"~" = (p— 1! (mod p),
or
(p—DL.(x""' = 1) =0 (mod p).
As p does not divide (p — 1)!,

(x’~!' = 1) = 0 (mod p),

2.2 ALGEBRA 25
that is,
xP~1 = 1(mod p) and x” = x (mod p).

If x is divisible by p, then x” = x = 0 (mod p).

Corollary 2.1 Let p be a prime.. If x is not divisible by p and if r = s (mod p — 1),
then

x" = x*(mod p).

Proof Assume that r>s. Then r=¢g.(p— 1)+sand 1 =19= @) =x""*
(mod p), so that x" = x* (mod p).

Definitions 2.9

1. The order of an element x of Z;; is the least positive integer ¢ such that x = 1
(mod n).

2. If the order of x is equal to the number ¢(n) of elements in Z;;, then x is said to
be a generator or primitive element of Z,.

3. If Z; has a generator, then Z; is said to be cyclic.

Observe that if x is a generator then Z; ={x', 2 3, L, Py,

Example 2.5

=1{0,1,2,3,4,5,6)and Z5 = {1, 2,3, 4, 5, 6};
7 is prime and ¢(7) = 6;
'=1@mod7), 2°=1(mod7), 3°=1(@mod7), 4°=1(mod7),5°=
1 (mod 7), 6 = 1 (mod 7).
There are two generators: 3 and 5. For example,
3' =3 (mod 7), 3 = 2 (mod 7), 3° = 6 (mod 7), 3* = 4 (mod 7), 3° =
5 (mod 7), 3° = 1 (mod 7).

2.2 ALGEBRA

2.2.1 Groups
Definition 2.10 A group (G, *, 1) consists of a set G with a binary operation * and
an identity element 1 satisfying the following three axioms:

Lox*(y*xz)=(xx*y) xzVYx, y, z € G (associativity);
2. xx1=1xx=x,Vx € G (identity element);

26 MATHEMATICAL BACKGROUND

3. for each element x of G there exists an element x_l, called the inverse of x,
such that

Xx*kx =x kxx=1.

If, furthermore,

4. X'y = y*x,Vx, y € G (commutativity), the group is said to be commutative (or
Abelian).
Axioms 1 and 2 define a semigroup.

Examples 2.6
(Z’ +, 0)5 (Zrn +, 0)’ (Z:’) 1)

The following definitions generalize Definitions 2.9.

Definitions 2.11

1. The order of an element x of a finite group G is the least positive integer ¢ such that
X=xxxx--xx=1

2. If the order of x is equal to the number n of elements in G, then x is said to be a
generator of G.

3. If G has a generator, then G is said to be cyclic.

Property 2.6 The order of an element x of a finite group G divides the number of
elements in G..

Proof First observe that if H is a subgroup of G, then an equivalence relation on G
can be defined: g; = g, if there exists an element % in H such that g;.h = g,. The
number of elements in an equivalence class is equal to the number |H| of elements
in H. Thus the number |G| of elements in G is equal to |H|. |G/H|, with G/H the set
of classes and |G/H| the number of classes. In other words the number of elements
of a subgroup divides the number of elements of the group. It remains to observe that
the set {x, x2, ..., x" =1}, where tis the order of x, is a subgroup, so that the number
t of elements of the subgroup divides the number of elements in G.

Example 2.7
(Z*’ K 1)3

3 and 5 are generators;

the subgroup generated by 2 is {2, 4, 1}; the corresponding classes are then {2, 4,
1} and {6, 5, 3}; the number of elements (3) of the subgroup divides the number of
elements (6) of Z3.

2.2 ALGEBRA 27

2.2.2 Rings

Definition 2.12 A ring (R, 4+, *, 0, 1) consists of a set R with two binary
operations + and *, an additive identity element 0, and a multiplicative identity
element 1 satisfying the following axioms:

. (R, 4, 0) is a commutative group;

. xx (yxz) = (x*xy) xz,Vx, y, z € R (associativity);
x*x1=1%xx=x,Vx ER;

xx(y+)=@xy)+(xx)and (x+y)kz=@x*2)+(*2),Y5 y, zER
(distributivity).

If, furthermore,

5. xxy=7yxux,Vx,y € R (commutativity), the ring is said to be commutative.

Examples 2.8
Z +,-0,1),(Z,+,-.0,1)

2.2.3 Fields

Definition 2.13 A field (F, +, %, 0, 1) consists of a set F with two binary
operations + and %, an additive identity element 0, and a multiplicative identity
element 1 satisfying the following axioms:

1. (F, +, %, 0, 1) is a commutative ring;
2. all nonzero elements of F' have a multiplicative inverse.

Example 2.9
(Zy, +, -, 0, 1), where p is a prime.

2.2.4 Polynomial Rings
Definitions 2.14

1. If F is a field, then a polynomial in the indeterminate x over F is an expression
of the form

f) = an. X"+ a1 X"+ +ay.x +ao,

where q; E F,Vi€ {0, 1,..., n}.

2. The largest integer m (if any) such that a,, # 0 is the degree of f(x). It is
denoted deg(f) and a,, is called the leading coefficient. If all the coefficients
of f(x) are equal to 0, then f(x) is called the zero polynomial and its degree
defined to be equal to — 0. The 0-degree polynomials are also called constant
polynomials.

28 MATHEMATICAL BACKGROUND

3. A monic polynomial is a polynomial whose leading coefficient is equal to 1.

4. The polynomial ring F[x] is the ring formed by the set of all polynomials in
the indeterminate x with coefficients in F. The two operations are the standard
polynomial addition and multiplication, with coefficient arithmetic performed
in F. The additive identity element O is the zero polynomial. The multiplica-
tive identity element 1 is the monic constant polynomial.

Definition 2.15 Thanks to the fact that F is a field, so that all the nonzero
coefficients have an inverse, the standard polynomial division can also be per-
formed. Thus, if g(x) and h(x) # 0 are polynomials in F[x], then there exist two
polynomials g(x) (the quotient) and r(x) (the remainder) in F[x] such that

g(x) = g(x).h(x) + r(x), where deg(r) < deg(h). 2.7
Notation:

r(x) = g(x) mod h(x), ¢g(x) = g(x) div h(x).

Definitions 2.16

1. Given two polynomials g(x) and A(x), h(x) divides g(x) (or h(x) is a divisor of
g(x)) if there exists a polynomial g(x) such that g(x) = g(x).h(x).

2. Given two polynomials g(x) and %(x), not both equal to 0, the greatest common
divisor of g(x) and h(x) is the monic polynomial of greatest degree which
divides both g(x) and A(x).

3. gcd(0, 0) = 0.

4. A polynomial f(x) of degree at least 1 is said to be irreducible if it cannot be
written as the product of two polynomials, each of positive degree.

A variant of the Euclidean algorithm for polynomials (VZG2003) expresses the
greatest common divider of two polynomials g(x) and A(x) in the form

ged(g, h) = b(x).g(x) + c(x).h(x).

The algorithm is based on the fact that if u(x) and v(x) are two polynomials such
that

deg(u) =m, deg(v)=t and m >t,
that is,

U(X) =ty X" 4 U1 X" A uy X+ up,

-1
v(x) =v,. X + v X+ v x + v,

2.2 ALGEBRA 29
then

00t () T X" = (W X F v X T v x 00t (0) T X
= Uy X" + 7 (X)

where deg(r') < m, so that

u(x) = (V). (V) X" = (X)) F thpy X uy X g

= 0(X).ttp.(v) " X"+ (%) (2.8)
where
FX) = 1 X" w4 ug — (%)
so that
deg(r)y <m and max(deg(r), deg(v)) < deg(u).
Furthermore,

ged(u,v) = ged(v,r).

The sequence of operations is almost the same as for computing the greatest
common divider of two integers. A series of polynomials r(0), (1), #(2), ... are
generated. Initially, assume that deg(g) > deg(h) and define

r(0) =gx) and r(1) = h(x).

At each step the decomposition (2.8) is used:

ux)=r(@i—1), ovx)=r@), m=deg(r(i—1)), t=deg(r(i)),
deg(r(i — 1)) > deg(r(i))

so that
ri—1)=q@).r@)+r@+1)

where

q(D) = un.(v) " X" ri 4+ 1) = r(i — 1) — q(i).r(i),
deg(r(i+ 1)) < m =deg(r(i — 1)).

At the end of the step, r(i) and r(i+ 1) are interchanged if deg(r(i)) <
deg(r(i + 1)).

30 MATHEMATICAL BACKGROUND

Operations:
r(0) = g(x),
r(1) = h(x),

r(0) = r(1).q(1) + r(2), if deg(r(1)) < deg(r(2)) interchange r(1) and r(2),
r(1) =r(2).q(2) + r(3), if deg(r(2)) < deg(r(3)) interchange r(2) and r(3),
r(2) =r(3).q(3) + r(4), if deg(r(3)) < deg(r(4)) interchange r(3) and r(4),

rm—3)=rn—2).qn—2)+r(n—1), if deg(r(n —2)) < deg(r(n — 1))
interchange r(n — 2) and r(n — 1),
rin—2)=r(n—1).q(n — 1)+ r(n),

where
deg(r(0)) > deg(r(1)) > --- > deg(r(n)) = 0
and
ged(r(i), r(i + 1)) = ged(r(i + 1), r(i + 2)),
so that

ged(g, h) = ged(r(0), r(1)) = - - - = ged(r(n — 1), r(n)).
Let ro be the coefficient of x° in r(n). If ry = 0, then
ged(g, h) = ged(r(n —1),0) = r(n — 1).
If ry # 0, then
ged(g, h) = ged(r(n — 1), rp) = 1.

In parallel with the computation of #(0), (1), r(2), ..., r(n), two series of poly-
nomials b(i) and c(i) are generated:

b(0) =1,
b(1) =0,
b(2) = b(0) — b(1).q(1), if deg(r(1)) < deg(r(2)) interchange b(1) and b(2),

bn—1)=bn—3)—bn—2).qn—2), if deg(r(n —2)) < deg(r(n — 1))
interchange b(n — 2) and b(n — 1),
b(n) =b(n—2)—b(n—1).q(n—1).

2.2 ALGEBRA 31

c(0) =0,
c)y=1,
c(2) = c(0) — c(1).q(1), if deg(r(1)) < deg(r(2)) interchange c(1) and c(2),

cn—1)=cn—3)—cn—2).qgn—2), if deg(r(n —2)) < deg(r(n — 1))
interchange c(n — 2) and c(n — 1),
cn)=cn—2)—cn—1).qgn—1).

It can be demonstrated by induction that
r(i) = b(i).g(x) + c(@).h(x), Vi=0,1,2,...,n
So, if rg = 0, then
ged(g, h) =r(n—1) = b(n — 1).g(x) + c(n — 1).h(x),

and if ry # 0, then
ged(g, h) = 1 = ry " r(n) = ry L .b(n).g(x) + ry ' .c(n).h(x).

In the following algorithm u stands for (i — 1), v for (i), r for r(i + 1), b for
b(i — 1), d for b(i), bb for b(i + 1), ¢ for c(i — 1), e for c(i), and cc for c(i + 1):

Algorithm 2.3 Variant of the Extended Euclidean Algorithm for Polynomials

u:=g; v:=h; b:=1; c:=0; d:=0; e:=1;
m:=degree(u); t:=degree(v);
if t=0 then
if v(0)=0 then z=u; else z:=1; b:=0; c:=(V(O))_l; end if;
elsif m=0 then
if u(0)=0 then z=v; b:=0; c:=1; else z:=1; b::(u(O))f%
end if;
else
while t>0 loop
if m<t then swap(u, Vv); swap(b, d); swap(c, e); swap(m, t);
end if;
q::u(m)*(v(t)fﬂ*x ; r:=u-v*q; bb:=b-d*qg; cc:=c-e*q;
u:=v; v:=r; b:=d; c:=e; d:=bb; e:=cc;
m:=t; t:=degree(v);
end loop;
if v(0)=0 then z:=u; else z:=1; b:=d*(v(0))};
c:=e* (v(0))™%;
end if;
end if;

m-t

32 MATHEMATICAL BACKGROUND

2.2.5 Congruences of Polynomial

Definition 2.17 Given three polynomials g(x), h(x), and f(x) in F[x], g(x) is
congruent to 2(x) modulo f(x) if f{x) divides g(x) — h(x).

Notation:

g(x) = h(x)(mod f(x)).

Properties 2.7 (Properties of Congruences)
1. g(x) = h(x) (mod f{x)) if and only if (g(x) mod f(x)) = (h(x) mod f(x))
(Definition 2.15);

2. the relation g(x) = h(x) (mod f(x)) is an equivalence relation (reflexive,
symmetric, and transitive);

3. if g1(x) = hy(x) (mod f(x)) and g,(x) = hy(x) (mod f(x)), then

g1(x) + h1(x) = g2(x) + hy(x)(mod f(x)), g1(x) — hi(x) = ga(x) — ha(x)
(mod f(x)), g1(x).h1(x) = g2(x).hz(x)(mod f(x)). (2.9)

From Properties 2.7(1 and 2) it can be seen that the congruence relation partitions
F[x] into equivalence classes. If n is the degree of f(x), then each equivalence class
contains exactly one polynomial of degree d < n. So, if F is a finite field, then the
number of equivalence classes is equal to |F|", where |F| is the number of elements
in F. Furthermore, according to Property 2.7(3), the addition, subtraction, and
multiplication of congruence classes can be defined. As a matter of fact, the set of
equivalence classes is isomorphic to

{g(x) € Flx]|deg(g) < n}
where the addition, the subtraction, and the multiplication are defined by
(8(x) + h(x)) mod f(x), (g(x) — h(x)) mod f(x), (g(x).h(x)) mod f(x).
The set of equivalence classes is denoted F[x]/f(x).

Properties 2.8

1. F[x]/f(x) is a commutative ring.
2. If fix) is irreducible, then F[x]/f(x) is a field.

Proof
1. Consequence of Property 2.7(3).

2. If f(x) is irreducible, then the greatest common divisor of f{x) and g(x) # O is
1. Using the Euclidean algorithm (Algorithm 2.2), b(x) and c(x) can be

2.2 ALGEBRA 33

computed such that
1= b(x) f(x) + c(x).8(x)

and

c(x) = (g(x))~" mod f(x).

Definition 2.18 Let p be a prime, F = Z,, and f(x) be an irreducible polynomial of
degree n over Z,. The corresponding field F[x]/f(x) contains ¢ = p" elements and is
called either F, or GF(g) (Galois field).

As a matter of fact, it can be demonstrated that any finite field contains g = p”"
elements, for some prime p and some positive integer n, and is isomorphic to F,
(whatever the irreducible polynomial f{x) of degree n over Z,). In particular, if
n =1, then the corresponding field F, is isomorphic to Z,.

The set of 0-degree polynomials (the constants) is a subfield of F, isomorphic
to F,. If g(x) is a O-degree polynomial (an element of F),) then, according to the
Fermat’s little theorem, (g(x))” = g(x). Conversely, it can be demonstrated that if
a polynomial g(x) satisfies the condition (g(x))’ = g(x), then g(x) is a constant.

Another interesting property of F, is that the set F7; of nonzero polynomials is a
cyclic group. Let g(x) be a nonzero polynomial, that is, an element of F7,, and assume
that the order of g(x) is 7. According to the Property 2.6, ¢ divides ¢ — 1, so that
(g(x))q_1 = (g(x))"k =1%=1. Consider now a polynomial g(x) and define
h(x) = (g(x))", where r=(q — 1)/(p — 1). According to the previous property,
(h(x)’ ™" = (g(x))?" " =1 and (h(x)y” = h(x), so that h(x) is a constant polynomial.

A last property, useful for performing arithmetic operations, is that (g(x)+
h(x)Y = (gx))’ + (h(x))’. Tt is a straightforward consequence of the fact that
all the binomial coefficients (p!/(i!).(p — i)!) are multiples of p, except for i =0
or p.

To summarize:

Properties 2.9 (Some Useful Properties of Finite Fields)

. The set of 0-degree polynomials in F, is a subfield of F, isomorphic to F),.
. Given g(x) in F), then (g(x))” = g(x) (Fermat’s little theorem).

. Given g(x) in F, such that (g(x))’ = g(x); then g(x) € F,.

. The set of nonzero polynomials of F, is a cyclic group denoted F,.

. Given g(x) in F,, then (g(x))? = g(x).

. Given g(x) and h(x) in F,, then (g(x) + A(x))” = (g(x))" + (h(x))".

Lfr=@"—=1)/(p— 1), thatis, r=1+p+p>+---+p"!, and g(x) is an
element of F,, then (g(x))" is an element of F),.

N N R W -

34

MATHEMATICAL BACKGROUND

Example 2.10 p =2 n=4,f(x) = 1 +x+x*so that x* = 1 + x mod f{x); a« = x
is a generator of the cyclic group Fie:

a =x,
of =22,
o =20,

ot =xt = 1+x,
@ =x.(14+x) =x+

o =x.(x+x2) =x> 4+,

;
=@ =0+x>=1+x,

& =x(14+)=x+x,

d=x(x+) = +x=14x+2°

ad'=x(1+x+3)=x+x>+2,

a :x.(x2+x3) =4+ =14x+2

al? :x.(x+x2+x3) =+ +x=1 +x+x2+x3,

al =x.(1 —|—x+x2+x3):x+x2+x3+x4 =142+,

a't =x.(1 +x2—+—)c3):)c—i—x3 +xt =144

a =x.(1 —|—x3):x—i—x4 =1,

Given a polynomial g(x) = go + g1.X + g2.x> + g3.x°, then

(g0 = go + 1.8 + g2.x" + g3.0° = go + g1.8% + g2.(1 +) + g3.x°.(1 +x)

= (go + gz) + g.x+ (g1 +g3).x2 + g3.x3;

if (g(x))*> = g(x), then

thus

80+ 82 =280, 8 = 81,81 +83 = &3

g1=8=g=0,

and g(x) = g, that is, an element of F), (Property 2.9(3)).

2.3 FUNCTION APPROXIMATION 35
2.3 FUNCTION APPROXIMATION

Numerous techniques are used to evaluate functions. According to the type of the
function at hand, some evaluation methods may be more appropriate than others.
For instance, a method well suited for a polynomial may not be the best for an expo-
nential function. Polynomial approximation is most often recommended for function
evaluation as any continuous function can be approximated in this way, and the
implementation only consists of additions, multiplications, and powers.

Taylor and MacLaurin series are the most classic approaches to approximate
functions. The series lead to precise numerical techniques to compute a function
very near to one point, but precision can be lost for a bigger range of values.
Trigonometric, logarithmic, and exponential function computations are typical
applications.

Definition 2.19
1. Taylor series. If a function f(x) has continuous derivatives up to (n + 1)th
order, then this function can be expanded in the following fashion:

So<icn((x — @) /i).(d'f(x)/dx"),—y + Rus (2.10)

called a Taylor expansion at point a. R, is called the remainder after n+1
terms. When this expansion converges over a certain range of x, that is, when

limy,— R, =0, (2.11)

the expansion is called a Taylor series of f(x) at point a.

2. MacLaurin series. If (2.10) is expressed at point a = 0, the series is called a
MacLaurin series:

S0<i<n((0)'/IN).(d'f(x)/dX') g + R (2.12)

Examples 2.11 Taylor—MacLaurin series expansions of exponential functions:

S =14x+x/2+3/30 4+ 0 < x< oo
(2..13)

e =1 —x> 41420 —x8/30 42841 — ... —00 < x < 00
(2.14)
ad=e"""=14+x.Ina+x Ina)?/2'+@x naP/3+-.. —co<x<o

2.15)

36 MATHEMATICAL BACKGROUND

Taylor—MacLaurin series expansions of logarithmic functions:

Inx=Gx—-1D—x—-1*24+x-1)73/3---. 0<x<2 (2.16)
Inx=2.[(x— /(x4 1)+ ((x— 1)/x+1)7%/3

+((x—=D/x+ 1) /5+--1] x>0 (2.17)
Inx=(—D/x+x— D/ 24+(x =D/ /34 x=1/2 (218
In(l4+x)=x—x*24+x/3—x*/44+x/5—--. —1<x<1 (2.19

Taylor—MacLaurin series expansions of trigonometric functions:
sinx=x—x2/31+x7 /5! —x" /T + - - —co<x<o (2.20)
cosx =x—x2 /2l +x* /4l —x8/60 + - .. —o<x<o (2.21)
tanx =x+x>/3+2.x/15+17.x" /315

4o 22 22— 1).B, X Q) + - x| < /2 (2.22)
cotx=1/x—x/3 —x>/45-2.x°/945 — ... = 22" B, . *"'Q.n)! +---
0<|x|<m (2.23)

where B,, are the Bernoulli numbers ([ROS2000]).

2.4 BIBLIOGRAPHY

[APO1974] T. M. Apostol, Mathematical Analysism, 2nd ed., Addison Wesley, Reading, MA,
1974.

[COH1993] H. Cohen, A Course in Computational Algebraic Number Theory, Springer-
Verlag, Berlin, 1993.

[GAR1959] H. Garner, The residue number system. IRE Trans. Electron. Comput., EC-8:
140—-147 (1959).

[GIL2003] W. J. Gilbert and W. K. Nicholson, Modern Algebra with Applications, John
Wiley & Sons, Hoboken, NJ, 2003.

[HER1975] I. N. Herstein, Topics in Algebra, 2nd ed., Xerox College Pub., Lexington, MA,
1975.

[HUN1974] T. W. Hungerford, Algebra, Holt, Rinehart and Winston, New York, 1974.

[KOB1994] N. Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag,
New York, 1994.

[McC1987] R. J. McCeliece, Finite Fields for Computer Scientists and Engineeers, Kluwer
Academic Publishers, Boston, 1987.

2.4 BIBLIOGRAPHY 37

[MEN1996] A. J. Menezes, P.C. van Oorschot, and S. C. Vanstone, Handbook of Applied
Cryptography, CRC Press, Boca Raton, FL, 1996.

[ROS1992] K. H. Rosen, Elementary Number Theory and Its Applications, Addison-Wesley,
Reading, MA, 1992.

[ROS2000] K. H. Rosen (Editor-in-Chief), Handbook of Discrete and Combinatorial
Mathematics, CRC Press, Boca Raton, FL, 2000.

[RUD1976] W. Rudin, Principles of Mathematical Analysis (International Series in Pure &
Applied Mathematics), McGraw-Hill Science/Engineering/Math, New York, 1976.

[VZG2003] J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge Univer-
sity Press, Cambridge, UK, 2003.

NUMBER REPRESENTATION

Arithmetic deals with operations on numbers: addition, subtraction, and so on.
Thus number representation is a fundamental topic in arithmetic ([ERC2004],
[PAR1999]). The choice of a number representation system has repercussions on
the complexity of the algorithms executing the arithmetic operations, and thus on
the costs and performances of the circuits that implement those algorithms. Apart
from the cost and performance, another aspect to take into account, when choosing
a number representation system, is the interface with other circuits or, simply, the
human interface. Consider an example: the residue number system (RNS) allows
the implementation of very fast and cost-effective arithmetic circuits. Nevertheless,
the RNS needs some type of relatively expensive input and output interfaces since
human beings don’t use it, and the AD/DA converters don’t understand this type
of representation. Thus the use of a RNS is limited to cases in which the extra
cost of the RNS encoding and decoding is negligible with respect to the total
cost. In this chapter the most common number representation systems are described.
The chapter is divided into three sections corresponding to natural numbers,
integers, and real numbers.

3.1 NATURAL NUMBERS

3.1.1 Weighted Systems

Any natural number (nonnegative integer) can be represented, in a unique way, in
the form of a sum of powers B' of some natural number B greater than 1, each of

Synthesis of Arithmetic Circuits: FPGA, ASIC, and Embedded Systems
By Jean-Pierre Deschamps, Géry J. A. Bioul, and Gustavo D. Sutter
Copyright © 2006 John Wiley & Sons, Inc.

39

40 NUMBER REPRESENTATION

them multiplied by a natural number smaller than B. The following theorem defines
the base-B numeration system.

Theorem 3.1 Given a natural number B greater than 1, any natural number x
smaller than B" can be expressed in the form

X =xp 1B +x,2.B" 2+ +x0.B°

where every coefficient x; is a natural number smaller than B. Furthermore, there is
only one possible vector (x,—; x,—» - - - Xo) representing x.

The following algorithm computes the coefficients x;:

Algorithm 3.1

for i in 0..n—1 loop x(i):=x mod B; X:=x/B; end loop;

Definitions 3.1

1. The most commonly used values of B are 10 (decimal system), 2 (binary
system), 16 (hexadecimal system), and 8 (octal system). The coefficients x;
of the base-B representation of x are called the base-B digits of x. The
binary digits are called bits. The hexadecimal digits 10, 11, 12, 13, 14, and
15 are usually replaced by letters: A, B, C, D, E, and F.

2. This type of representation is called positional as the weight B associated with
the digit x; depends on i, that is, on the position of the digit within the vector
(Xn—1 Xp—2 *** Xo)-

3. The base-B digits could in turn be encoded in another base. As an example,
if B =10 and the decimal digits are represented in the form of 4-bit binary
vectors, the so-obtained system is called binary-coded decimal (BCD).

Example 3.1 Compute the hexadecimal representation of 287645:

287645 = 17977.16 + 13
17977 = 1123.16 +9
1123 =70.16 43
70 =4.16 +6
4=0.16+4

287645 = 4.16* + 6.16° +3.16* + 9.16" + 13.16" = [4639D]; ... 16-

It is possible to define mixed numeration systems or mixed-radix systems, that is
with several bases. For instance, the time is expressed in days of 24 hours, hours of

3.1 NATURAL NUMBERS 41

60 minutes, minutes of 60 seconds, seconds of 1000 milliseconds, and so on. The
generalization of Theorem 3.1 is the following.

Theorem 3.2 Given n natural numbers b,_;, b,_,... by, greater than 1, any
natural number x smaller than B,, = b,,_.b,_» . - - - . by, can be expressed in the form

X =Xp1.By_1 +X4-2.Bp2+ -+ +x0.Bo
where
By=1,B; =bo, By =by1.by,...,By_1 =by_2.by_3.--- by,

and every coefficient x; is a natural number smaller than b;. Furthermore, there is
only one possible vector (x,,—q X,,—» - - - Xo) representing x.

Base-B and mixed-radix numeration systems are weighted systems. In base B the
weights are B', that is the successive powers of B, while the weights in the mixed-
radix system are given by

B,’ = b,;].bl‘,z. s .b().
The following algorithm computes the coefficients x;.

Algorithm 3.2

for i in 0..n-1 loop x(i):=x mod b(i); x:=x/b(i); end loop;

Example 3.2 Compute the representation of 287645 in the mixed base (13, 12, 15,
11, 12):

287645 = 23970.12 + 5
23970 = 2179.11 + 1
2179 = 145.15 + 4
145 = 12.12 4+ 1
12=0.13+12
287645 = 12.(12.15.11.12) + 1.(15.11.12) + 4.(11.12) + 1.12 + 5.

Comment 3.1 Given a natural number s, the conversion from the base-B represen-
tation of x (Theorem 3.1) to its base-B* representation, and inversely, is straight-
forward. Suppose that n = s.q (if n were not divisible by s, then ([n/s].s — n)
initial 0’s should be added). Then

X=X, 1. (BY T 4 Xy 0BT 4 4 Xo.(BY)

42 NUMBER REPRESENTATION
where

Xi = Xigrs1.B 7V 4+ Xigrg 0 B 4 - +x;5.B°.
As an example, the binary representation of the decimal number 287645 is
01000110001110011101. The conversion to its hexadecimal representation is

straightforward:

[0100 0110 0011 1001 1101],,..» = [4639D],,c 16-

3.1.2 Residue Number System

A residue number system (RNS) is defined by a set of s moduli {m,}. If the m;s are
pairwise prime, the RNS is called nonredundant. The RNS-representation of a given
natural number N is the vector R(N), whose components r; are the respective
residues modulo m;, that is, the successive remainders of the integer division N/m;

r; = N mod m,;.

The least common multiple (Icm) of {m;} is the range of the RNS, generally denoted
M. The greatest natural number that can be represented in the RNS defined by {m;} is

M—1=m —1,my—1,...,mg;—1).
If the m;s are pairwise prime then
M =1li<i<s m

Garner’s algorithm 2.2, restricted to the computation of the successive values of u,
provides the mixed-radix components with respect to the weights

B(l)=1, BQ@) =IlLig<_1imj, s>i>2

(see Example 2.4).

3.2 INTEGERS

The most natural way of representing an integer is the sign-magnitude represen-
tation system. Nevertheless, it is not the most convenient for executing arithmetic
operations. Several representation methods are now described.

3.2.1 Sign-Magnitude Representation

Any integer can be represented in the form +x or —x, where x is a natural number.
The natural number x can be represented in base B (Theorem 3.1), and instead of

3.2 INTEGERS 43

using the ‘4> and ‘—’ symbols, an additional (sign) digit equal to O (nonnegative
number) or 1 (negative number) is added:

Definition 3.2 The integer represented in the form x,,_; x,,_, - - - X1 X9, Where x,,_;
is the sign bit, is

Xpo.B" 2+ x, 3.B" 3+ ... +x0.B° ifx,_; =0,
—(Xy2.B" 2+ x,3.B" 2+ +x0.B°) if x,_ = 1.
The range of represented numbers is —B" ' < x < B""'.

Comment 3.2 The number of vectors (x,—; X, - - - X Xg), where x,,_; is the sign
bit, is equal to 2.B" !, while the range - l<x<p! only includes 2B —1
integers. The difference is due to the fact that the vector (100 - - - 0) does not rep-
resent any number (zero is a natural number so that its sign bit should always be
equal to 0). Nevertheless, the integer zero could also be accepted with two represen-
tations, namely, 000 - - - O (plus zero) and 100 - - - O (minus zero).

3.2.2 Excess-E Representation

Another way of representing a negative number x consists in associating a natural
number R(x) to x, where R is a one-to-one function, and R(x) is represented in
base B.

Definition 3.3 In the excess-E numeration system, where E is a natural number,
R(x) =x+E,
so that the integer represented in the form x,,_; x,,—5 - - - X1 X is
Xyt B+ X, 2B+ +x0.B° — E
and the range of represented numbers is
—-E<x<B"-E.

Comments 3.3

1. If B is even, an E is chosen equal to B"/2; then the number represented in the
form x,,_1 x,,—» - - - X1 Xg 1S

Xp—1 B! + X,I_Q.B'FZ + -+ xO.BO —F

= (Xp_1 —B/2).B" ' +x,_».B"? 4+ - +x.B".

44 NUMBER REPRESENTATION

The sign definition rule is the following one: if x is negative then x,,_; < B/2;
if x is nonnegative then x,,_; > B/2.

2. In some practical cases the value of E is different from B"/2. As an example,
in the ANSI/IEEE simple-precision floating-point system (Section 3.3), the
exponent is an 8-bit number representing an integer x belonging to the
range —127 < x < 128, according to the excess-E method with E = 127
and not 128.

3.If B=2 and E=2""", then the number represented in the form x,_;
Xp—2 X1 Xo is

(et — D27 2,027 2 4 -+ + X
=¥ 2" X, 02" -

where x;,_; stands for the complement of x,,_;.

4. The representation function R is unate, so that the magnitude comparison is
easy.

Example 3.3 Represent x = —287645 with n = 6 digits in base B = 10 with
E=10°/2.

B® = 1000000,
B®/2 = 500000,

R(x) = x4+ E = 500000 — 287645 = 212355
Observe that

(2 —10/2).10° + 12355 = —300000 + 12355 = —287645

3.2.3 B’s Complement Representation

As in the preceding case, a one-to-one function R(x), associating a natural number to
x, is defined as follows.

Definition 3.4 In the B’s complement numeration system every integer x belonging
to the range —B"/2 < x < B"/2 is represented by

R(x) = xmod B",

3.2 INTEGERS 45
so that the integer represented in the form x,_;x,—, - - - x| X i

X1 BN+ X 0. B4+ x0

if x,_1.B" ' 4+ x,_0.B" 2+ - +xy < B"/2, (3.1)
Xp_1 B 4+ x, 0B+ 4+ x9— B"

if x,_1.B" ' 4+ x,_0.B" 2+ ---+x0 > B"/2. (3.2)

Conditions (3.1) and (3.2) can be written in the form

Xn—1 .anl + Xn_z.Ber + L] + X0
if (41 —B/2).B" ' 4+ x,0.B" 24+ x5 <0, (3.3)
xn_l.B"_' + .Xn_z.Bn_z —I— e —I— X0 — Bn
if ¢y —B/2).B" ' 4+ x, 2.B" 2+ 4 x >0, (3.4)
and if B is even the latter conditions are equivalent to
Xpo1 BN+ Xy 0 B4+ x0 if x,_1 < B/2, (3.5)

Xp1. BV 4+ x, 0. B2+ 4+xy—B" if x,_, > B/2 (3.6)

(take into account that x,,_».B" > + - - - + xo < B"). Thus, if B is even, the integer
represented by x,,—| x,—» - - - X| Xg 1S

X = x;lfl.B”_1 +Xxy,0.B" 2+ .-+ x5, where
X, =xp-1—B ifx,.y>B/2andx, | =x,_; if x,o1 <B/2, (3.7)

n

and the sign definition rule is the following one:

if x is negative then x,_; > B/2;

if x is nonnegative then x,_; < B/2.

In particular, if B = 2 the number represented in the form x,,_; x,—5 - - - x| Xg 1S

—Xp 12" 4 X027 - o, (3.8)

and the most significant bit x,,_ is also the sign bit:

if x <O then x,_y =1, andif x > 0 then x,_; = 0. 3.9

46 NUMBER REPRESENTATION

Comments 3.4

1. The B’s complement system is based on a congruence, namely, R(x) = x mod
B", so that the arithmetic operations are easy (Chapters 4 and 5).

2. In order to represent an n-digit number with n + 1 digits (digit extension), the
following rule must be used (B even):

if x,_1 > B/2, thenx, =B —1, andif x,_; <B/2, then x, = 0.
Actually, in the first case,
(B—1-B).B"+x,_1.B""' = —B" +x,_1.B"" = (x,_1 — B).B"",
and in the second case,
0.B" 4+ x,_1.B"" = x,_.B"".

3. If B =2 (2's complement system) the (n + 1)-bit vector x,—| X,—| X,—2 - - - X|
Xo represents the same number as the n-bit vector x,,_ x,,—» - - - X1 X (sign bit
extension).

The B’s complement method is almost exclusively used with B = 2, in which case
the most significant bit is also the sign bit (3.9). In the general case, the most signifi-
cant digit must be compared with B/2 in (3.7) in order to deduce the sign of x. A
reduced B’s complement numeration system could also be defined in which the
most significant digit x,, is either 0 or B — 1.

Definition 3.5 1In the reduced B’s complement numeration system (B even), every
integer x belonging to the range —B" ' < x < B"" ! is represented by

R(x) = x mod B".
If 0 <x < B"!, then
R(x)=x<B"!and x,_, =0,
and if —B" ! <x <0, then
Rx)=B"+x>B"—B"'=B-1).B"'and x,_;, =B — 1.
Thus the integer represented by x,—; X,—» -+ - x| Xg 1S
x=—-B"'4x, B>+ +xif x,., =B—1and
X=X, 2.B" %+ +xg if x,o =0, (3.10)
and the sign definition rule is the following one:

if x is negative then x,_; = B — 1; if x is nonnegative then x,_; = 0.

3.2 INTEGERS 47

In fact, the reduced B’s complement representation is deduced from the nonreduced
one by adding a digit (digit extension, Comment 3.4(2)) if the most significant digit
is different from O or B — 1.

As in the binary case the (n + 1)-digit vector x,,—1 X,—1 X,,—» - - - X] Xo represents
the same number as the n-digit vector x,,_; x,,_» - - - X1 Xo.

Example 3.4 Represent x = —287645 with n = 6 digits in B’s complement form
with B = 10:

B® = 1000000,
B®/2 = 500000,
R(x) = x + B® = 712355
Observe that
Xy =7-10=-3,
—3.10% 4 12355 = —287645.

In reduced B’s complement form, n=7 digits are necessary
(—287645 <— B"~ ! = —50000):

R(x) = x + B” = 9712355.

Observe that —10° 4 712355 = — 287645 and that 9712355 is deduced from 712355
by adding one digit according to the digit extension rule.

3.2.4 Booth’s Encoding

According to relation (3.8) the 2's complement representation x,,_ | X, - - - X; Xo of
an integer x could also be seen as a signed-digit representation

Xn—1 2! +Xn_2.2n_2 + -+ x0

where x,_; € {—1, 0} and all other digits x; € {0, 1}. The Booth’s encoding
([BOO1951]) generates another signed-digit representation:

Definition 3.6 Consider an integer y whose 2’s complement representation is x,,—;
X,—2 -+ Xo and define

Yo = —Xo,
Y1 = —X1 + Xo,

Y2 = —x2 + Xy,

Yn—1 = —Xp—1 + Xp—2. (3.11)

48 NUMBER REPRESENTATION

Then by multiplying the first equation by 2° the second by 2', the third one
by 2% and so on, and adding up the n equations, the following relation is
obtained:

ynfl-zn_] +yn72~2n_2 +--+)’0-20 = _xnfl~2n_l
+xp0.2" 2 4 x0.20.

The vector (y,—1 Y,—2 - Yo) Whose components y; belong to {—1, 0, 1} is the
Booth-1 representation of x and

X =Y 2 22" 020 (3.12)

Observe that the Booth’s representation of an integer is formally the same as the
binary representation of a natural number. The Booth’s encoding method can be
generalized.

Definition 3.7 Consider an integer whose 2’s complement representation is x,,_;
Xp—n *++ X, With n = 2.m bits, and define

Yo = —2.x1 + Xo,
yi = —2.x3 +x +x1,
Vo = —2.x5 + X4 + x3,

Ym—1 = —2.X0m—1 + Xom—2 + X2.n—3 (3.13)

Then by multiplying the first equation by 4°, the second by 4', the third by 4%, and
so on, and adding up the m equations, the following relation is obtained:

Yt A" Y2 4 3040 = 27
Fx,0.2" 2 4 x0.20

The vector (¥,,—1 Ym—2 - - - Yo) Whose components y; belong to {—2, —1, 0, 1, 2} is
the Booth-2 representation of x and

X =Yt A" Y2 4 4y 40 (3.14)

More generally, a Booth-r representation can be defined as follows:

3.2 INTEGERS 49

Definition 3.8 Let x be an integer whose 2’s complement representation is x,—;
X,—2 *** Xg, With n = r.m bits, and define

Yo = —Xr—1 i + xr,2.2r_2 + -+ x1.2 + xo,

Vi = =Xirgr 1.2 A X227 X 2+ Xy
+xi-1, Vi€E{1,2,...,m—1}. (3.15)

The vector (y,,—1 Ym—2 -+ - Yo) Whose components y; belong to
(-2, —@'=1,...,-2, —1,0,1,2,...,27" —1,277"} (3.16)
is the Booth-r representation of x and
X =Y 1-B" "+ yu 2B "2+ +.B°, where B=2". (3.17)

Comments 3.5

1. Given an integer x whose 2’s complement representation is X,,—| X,—2 - . . Xo,
with n = r.m bits, the following signed digits could be defined (one for
each r-bit slice):

yi= xi.r+r71'2r_l + Xi,r+r72.2r_2 4+ X2
+xi, ViEe{0,1,2,...,m—2}

Ym—1 = —Xm.r—1 .21‘71 +xm.r—2-2r72 +--- Xm.r+1 2 + Ximrs (318)
so that

VE(, 1,2, 20— WVi€(0,1,2,... . m—2), (3.19)
Ym—1 € { _27_1’ _(Zr_l -])""’ _23 _1’ 0}7

and
X =Yt -B" '+ yu2.B" 2+ +y9.By, where B=2". (3.20)
Nevertheless, for r > 1, the total range defined by (3.19), namely
{(=27Y, —@'=1,..., =2, —1,0,1,2,...,2" — 1},
is larger then the range defined by (3.16).

2. The range (3.16) contains B + 1 values, from —B/2 to B/2, where B =2". This
means that the total number of expressions (3.17) is equal to (B + 1)". The

50 NUMBER REPRESENTATION

numbers x defined by (3.17) are included between —(B/2).(B" — 1)/(B — 1)
and (B/2).(B™ — 1)/(B — 1), so that the range of x contains 1 + B.(B" — 1)/
(B — 1) integers. Except when m = 1, the following inequality is satisfied:

1+B.B"HY/B-1)< B+ D"

Thus the set of digits (3.16) is redundant as the number of different expressions
is greater than the range of the represented numbers.

Example 3.5 Compute the Booth’s encoding of —287645; the 2’s complement
representation of —287645 is;

10111001110001100011;

according to (3.11) its Booth-1 representation is

-1100-10100-10010-10010-1,

and according to (3.13) its Booth-2 representation is

-10-22-102-21-1.

By substituting two successive bits by a 4-valued digit (comments 3.5) the following
representation is obtained:

—2321301203.

Other expressions can be deduced from the previous one by applying simple rules
such as

(=2)4+31=(-=D4+(=D.1,14+3.1=244+(=1).1,04+3.1
=144 (=D.1
Thus, in the preceding expression —2 32 13 0 1 2 0 3, the underlined pairs can

be substituted by —1 — 1, 2 —1 and 1 — 1, respectively, yielding the following
equivalent expression:

-1-122-10121-1.

Observe that the latter is different from the Booth-2 representation, in spite of using
the same digits (Comment 3.5(2)).

3.3 REAL NUMBERS 51
3.3 REAL NUMBERS

As regards the real numbers, there are two types of approximations: fixed-point and
floating-point numeration systems. The fixed-point system is a simple extension of
the integer representation system; it allows the representation of a relatively reduced
range of numbers with some constant absolute precision. The floating point system
allows the representation of a very large range of numbers, with some constant
relative precision.

Definitions 3.9
1. In a fixed-point numeration system, the number represented in the form

Xp—p—1 Xp—p-2 - X1 X0 X1 X2 - X_p (321)

is x/B”, where x is the integer represented by the same sequence of digits with-
out point.

2. Let Xy, and x,c be the minimum and maximum integers that can be rep-
resented with n digits, that is, xmm=1—B" ' and X =B" '—1 in
sign-magnitude representation, and X, = —B"/2 and x,.x = B"/2 —1 in
B’s complement or excess-B"/2 representation. Then, any real number x
belonging to the interval

- -p
B7? Xmin <x < B7P Xpax

can be represented in the form (3.21) with some error equal to the absolute
value of the difference between x and its representation.

3. The distance d between exactly represented numbers is equal to the unit in
the least significant position (ulp), that is, B, so that the maximum error
is equal to

ulp/2 = B7?/2.
4. The maximum relative error is equal to ulp/(2.|x|) = 1/(2.|x|.B?). If x # 0

then |x| > B™”, so that the maximum relative error is less than or equal to %

Example 3.6 The range of numbers x that can be represented in B’s complement,
with B = 10, n = 9 digits, and ulp = 10> is

—10°/2 < x < 10%/2.
The following numbers can be exactly represented:

—500000.000, —499999.999, —499999.998, ..., —0.001, 0.000,
0.001, ..., 499999.999.

52 NUMBER REPRESENTATION

The distance between them is equal to ulp = 0.001.

Definitions 3.10

1. In a floating-point numeration system, the representation consists of two
numbers: a fixed-point number (the significand) +s or —s, where s is a non-
negative number, and an integer (the exponent) e. The corresponding number
is +s.b°, where b is the chosen base (not necessarily equal to B).

2. Let Smin» Smaxs €min> and €. be the minimum and maximum values of s and e,
respectively. The range of represented numbers is

—Smax D™ < X < Smax b (3.22)
and the minimum absolute value of a represented number is
x| > Smin.Dm". (3.23)
3. Let ulp be the unit in the least representative position of the significand. Then
the distance D between exactly represented numbers is D = d.b°, where
d = ulp is the distance between two successive values of the significand.
Thus the value of D depends on the exponent e. The maximum error is
equal to
Dinax/2 = ulp.b® /2.
4. The maximum relative error is equal to D/(2.|x|) = ulp.b®/(2.5.b°) = ulp/2.s.

As in the preceding case (Definition 3.9(4)) the maximum relative error is less
than or equal to 1.

Comment 3.6 In afloating-point system, with ¢ digits for representing the absolute
value s of the significand and ¢ digits for representing the exponent, the range of
positive numbers is
ulp b < x < ulp.B?.b>,
the maximum error is equal to
Max errovfipating = ulp.b™> /2,
and the maximum relative error is equal to %

In a fixed-point system with g + ¢ digits, the range of positive numbers is

ulp < x < ulp.BI",

3.3 REAL NUMBERS 53
the maximum error is equal to
max errorfixed = ulp/2,

and the maximum relative error is equal to %

In order to compare both systems, one can compute the quotient rr (relative
range) between the maximum and the minimum value of x (x positive). In the float-
ing-point system

I'Tfloating = B e min P (324)
and in the fixed point system
I'r'fixed = Bq+t. (325)
Taking into account that e, — emin 2 B', it is obvious that

FTloating == Ffixed-

Nevertheless, the maximum relative errors are equal. As regards the maximum
errors, their values depend on the ulp (not necessarily the same value in both cases).

Example 3.7 In the ANSI/IEEE ([ANS1985]) single-precision floating-point
system, the significand is a sign-magnitude integer

ts=£1ls 152503,

where s_; s_; - - - §_53 is called the mantissa, and the exponent is an excess — 127
integer e; eg - - - €g. The 32-bit word

Sign e7eg -+ -epS_1S_2 -+ S_23
represents the number
(_ I)Sign'(l + s—loz_l + S_2.2_2 —|— . e + S_23,2_23)’26’

where e = €7.27 4+ ¢6.2° + - - - +¢y.2° — 127.
Thus

Smin = 1, Smax = 111+ 122, ulp =272 epin = —127, emax = 128.

54 NUMBER REPRESENTATION

Nevertheless, e, and e, are not used for representing ordinary numbers; they are
used for representing

02 +1.0x27"%, —02—-1.0x27"", +0021.0x2", —o0—1.0x2'%,

and other nonordinary numbers. The actual minimum and maximum values are
emin = —126, emax = 127,

so that the range of represented numbers is —2.2'%" < x < 2.2'%’, that is

2128 < < 9128

and the minimum positive represented number is 1.2~ %,

3.4 BIBLIOGRAPHY

[ANS1985] ANSI and IEEE, IEEE Standard for Binary Floating-Point Arithmetic, ANSI/
IEEE Standard, Std 754-1985, New York, 1985.

[BOO1951] A. D. Booth, A signed binary multiplication technique. Q. J. Mechanics Appl.
Math., June: 236-240 (1951).

[ERC2004] M. Ercegovac and T. Lang. Digital Arithmetic, Morgan Kaufmann Publishers,
San Francisco, CA, 2004.

[PAR1999] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs, Oxford
University Press, New York, 1999.

ARITHMETIC OPERATIONS:
ADDITION AND SUBTRACTION

Addition is used as a primitive operation for computing most arithmetic functions,
so that it deserves particular attention. The classical pencil and paper algorithm
implies the sequential computation of a set of carries, each of them depending on
the preceding one. As a consequence, the execution time of any program, or circuit,
based on the classical algorithm is proportional to the number n of digits of the oper-
ands. In order to minimize the computation time, several general ideas have been
proposed. One of them consists of modifying the classical algorithm in such a
way that the computation time of each carry is minimal; the time complexity is
still proportional to n, but the proportionality constant is smaller. Another approach
rests on the use of a different numeration system; instead of adding two base-B n-
digit numbers, two base-B* (n/s)-digit numbers are considered. Several algorithms,
different from the classical one and generally based on some kind of tree structure,
have been proposed. If their implicit parallelism can be exploited, execution times
proportional to log n are reached.

4.1 ADDITION OF NATURAL NUMBERS

4.1.1 Basic Algorithm
Consider the base-B representations of two n-digit numbers:
x=x,_1.B" " +x, 2B+ -+ x.B°,

Y =Yu1. B +y, 2B + - +y0.B°.

Synthesis of Arithmetic Circuits: FPGA, ASIC, and Embedded Systems
By Jean-Pierre Deschamps, Géry J. A. Bioul, and Gustavo D. Sutter
Copyright © 2006 John Wiley & Sons, Inc.

55

56 ARITHMETIC OPERATIONS: ADDITION AND SUBTRACTION

The following (pencil and paper) algorithm computes the (n 4 1)-digit represen-
tation of z = x + y + cin where cj, is an initial carry equal to O or 1.

Algorithm 4.1 Classic Addition

a(0) :=c_in;

for i in 0..n-1 loop
if x(1)+y(i)+g(i)>B-1 then g(i+1l):=1; else g(i+1):=0;
end if;
zZ(1i):=(x(i)+y(i)+g(i)) mod B;

end loop;

z(n) :=q(n);

As g(i + 1) is a function of ¢(i) the execution time of Algorithm 4.1 is proportional
to n. In order to reduce the execution time of each iteration step, Algorithm 4.1 can
be modified. First, define two binary functions of two B-valued variables, namely,
the propagate (p) and generate (g) functions:

pab)y=1ifa+b=B—1, p(a, b) =0 otherwise; @1
gla,by=1if a+b>B—1, ga, b) =0 otherwise. '
The next carry ¢;, can be calculated as follows:

if p(x(i), y(i))=1 then g(i+l):=g(i); else g(i+l):=g(x(i),
y(i)); end if;

The corresponding modified algorithm is the following one.

Algorithm 4.2 Carry-Chain Addition

--computation of the generation and propagation conditions:

for i in 0..n-1 loop g(i):=g(x(i),y(i)); p(i):=p(x(i),y(i));
end loop;

--carry computation:

g(0) :=c_in;

for 1 in 0..n-1 loop

if p(i)=1 then g(i+l):=g(i); else g(i+l):=g(i); end if;
end loop;
-sum computation
for 1 in 0..n-1 loop z(i):=(x(i)+y(i)+g(i)) mod B; end loop;
z(n) :=g(n) ;

Comments 4.1
1. Observe that the first iteration includes 2.n B-ary operations (computation of
g(?) and p(i)) that could be executed in parallel. The second iteration is made
up of n iteration steps that must be executed sequentially (as g(i + 1) is a func-
tion of ¢(i)) and consists of binary operations only. The last iteration includes

4.1 ADDITION OF NATURAL NUMBERS 57

n B-ary operations (computation of z(i)) that could be executed in parallel.
Algorithm 4.2 thus splits the operations into concurrent B-ary ones (first
and third iterations) and sequential binary ones (second iteration). The sequen-
tial binary operations are the same whatever the base B. The expected compu-
tation time reduction is due to the substitution of the (relatively) complex
instruction

if x(i1)+y(i)+g(i)>B-1 then g(i+l):=1; else g(i+1) :=0;
end if;

by the simpler one

if p(i)=1 then g(i+l):=g(i); else g(i+l):=g(i); end if;
2. The preceding instruction sentence is equivalent to the following Boolean
equation:
q(i + 1) = p(i).q(0) V not(p(i)).g(0). (4.2)
Furthermore, if the preceding relation is used, then the definition of the

generate function can be modified:

gla,by=1ifa+b>B—-1, gab)=0ifa+b<B-—1,
g(a, b) =0 or 1 (don’t care) otherwise.

3. Another Boolean equation equivalent to (4.2) is
q(i+1) =g Vv pi).q(0). (4.3)

If the preceding relation is used, then the definition of the propagate function
can be modified:

pab)y=1ifa+b=B—-1, plab)=0ifa+b<B-1,

p(a, b) =0 or 1 (don’t care) otherwise.

4.1.2 Faster Algorithms
The values of g(1), g(2), ..., g(rn) could also be calculated in parallel:

Property 4.1

Vi=1,2,...,n
q() =gi = 1)V gi =2).pi =)V g(i = 3).p(i = 2).p(i — 1)
Vg(i—4)pi—3).pi—2)pi—1)V “4.4)

-V g(0).p(1).---.p(i — 1) V q(0).p(0).p(1). - - pi — 1),

where symbol V stands for the Boolean sum, g(i) = g(x(i), y(i)) and p(i) = p(x(?),
y(@).

58 ARITHMETIC OPERATIONS: ADDITION AND SUBTRACTION

Relation (4.4) is deduced from (4.3) by induction. The corresponding algorithm is
the following one.

Algorithm 4.3

--computation of the generation and propagation conditions:

for i in 0..n-1 loop g(i):=g(x(i),y(i)); p(i):=p(x(i),y(i));

end loop;

--carry computation:

a(0):=c_in;

for i in 1..n loop
g(i):=g(i-1) or g(i-2)*p(i-1) or...or g(0)*p(l)*...*

L)*...*p(i-1);

p(i-1) or g(0)*p(0)*p(
end loop;
--sum computation
for 1 in 0..n-1 loop z(i):=(x(i)+y(i)+g(i)) mod B; end loop;
z(n) :=q(n) ;

The preceding algorithm is made up of three iterations whose operations could be
executed in parallel as g(i) just depends on the operands x, y, and c_in but not on
the preceding carries. Nevertheless, the execution of

g(i):=g(i-1) or g(i-2)*p(i—1) or...or g(0)*p(l)*...*p(i-1)
or g(0)*p(0)*p(1)*...*p(i-1);

implies the computation of a (2.i + 1)-variable switching function—a (2.n + 1)-vari-
able function in the case of g(n). Except for small values of n, specific algorithms must
be defined for computing these functions. For that purpose two new concepts are intro-
duced: the dot operation and the generalized generate and propagate functions:

Definitions 4.1

1. Given two 2-component binary vectors a; = (a;o, a;1) and a; = (ayo, ay;) the
dot operation defines an application from B3 x B3 into B3:

a; ® ax = (ai V ar-ain, a1 -ar1)-
It can easily be demonstrated that it is a noncommutative associative oper-

ation; (0,1) is the neutral element and (0,0) the left O-element.

2. Given the generate and propagation functions g(i) and p(i), for
ie{0, 1,..., n— 1}, the generalized generate and propagate functions
g(i:i-k) andp(i:i-k),fori€ {0,1,...,n—1}andk € {0, 1,..., i} are
defined as follows:

(8(ii — k)., p(izi — k) = (g0, p(i)) » (g(i — 1), p(i — 1)
*(g(i—=2),pi—2)) o --- o (g(i — k), p(i — k)). (4.5)

The following property is deduced from (4.4) and from the preceding definitions.

4.1 ADDITION OF NATURAL NUMBERS 59

Property 4.2

qli+ 1) = gizi — k) V plizi — k)..q(i — k). (4.6)

Then Algorithm 4.3 can be modified as follows.

Algorithm 4.4

--computation of the generation and propagation conditions:
for i in 0..n-1 loop g(i):=g(x(i),y(1)); p(i):=p(x(i),y(i));
end loop;

--computation of the generalized generation and propagation
conditions:

for i in 1..n loop

(g(i-1:0), p(i-1:0)):=(g(i-1), p(i-1)) dot (g(i-2),
p(i-2)) dot ... dot (g(0), p(0));

end loop;

--carry computation:

g(0) :=c_in;

for i in 1..n loop g(i):=g(i-1:0) or p(i-1:0)*g(0); end loop;
--sum computation:

for i in 0..n-1 loop z(i):=(x(i)+y(i)+g(i)) mod B; end loop;
z(n) :=q(n) ;

The second iteration of Algorithm 4.4, that is, the computation of all pairs
(g(i — 1,0), p(i — 1, 0)), can be performed in several ways. It is a particular case
of a more general problem: Given a set of input data a(0), a(1),...,a(n — 1) and
an associative operator e (dot), compute

b(0) = a(0),
b(1) = a(1) e a(0),
b(2) = a(2) e a(l) e a(0), 4.7)

bn—1)=an—1) e--- a(l) e a(0).

The simplest (naive) algorithm is
b(0):=a(0); foriinl..n—1loopb(i):=a(i) dotb(i—1); end loop;

whose execution time is proportional to n. Nevertheless, better algorithms have been
proposed, among others ([BRE1982], [LADI1980], [KOG1973], [HAN1987],
[SUG1990]). Two of them are described below; they are based on the definition
of a procedure dot_procedure computing Equations (4.7); its input and output

60 ARITHMETIC OPERATIONS: ADDITION AND SUBTRACTION

parameters are a natural number # (the number of input data), and two n-component
vectors (the input data and the output result):

procedure dot_procedure (n:in natural;

a:in data_vector(0..n-1); b:out data_vector(0..n-1));

Assume that n is a power of 2 (0’s should be added if necessary). A first algorithm
consists of:

computing
c(0) = a(1) & a(0),
c(1) = a(3) ® a2),

c((n/2)y—1)=amn—1) e a(n —2);

calling dot_procedure with parameters n/2, ¢, and d, so that

d(0) = b(D),
d(1) = b(3),
d(2) = b(5),

d((n/2) = 1) = b(n — 1);
computing the missing components of b;
b(2) = a(2) & d(0), b(4) = a(4) e d(1),...,b(n —2) =a(n —2) & d((n/2) —2).

The computation scheme (or precedence graph, Chapter 10) is shown in
Figure 4.1 (with n = 16). The corresponding recursive algorithm is the following.

Algorithm 4.5 Dot Procedure (1)

procedure dot_procedure (n:in natural; a:in data_vector(0..

n-1); b:out data_vector(0..n-1)) is
c,d: data_vector(0..(n/2)-1);

begin
if n=2 then b(0):=a(0); b(l):=a(l) dot a(0);
else

for i in 0..(n/2)-1 loop c(i):=a((2*i)+1) dot a(2*i);
end loop;
dot_procedure (n/2, c, 4d);
b(0):=a(0);
for i in 1..(n/2)-1 loop b(2*i):=a(2*1i) dot d(i-1);
b((2*1)+1) :=d(i); end loop;
end if;
end dot_procedure;

4.1 ADDITION OF NATURAL NUMBERS 61

a(15) a(14) a(13) a(12) a(11) a(10) a(9) a(8) a(?) aB) a) a4 a@B) a2 a(1) a()

c(7) c(6) c(5) c(4) c(3) c(2) c(1) c(0)

8-input dot procedure

d(?) d(6) d(s) d(4) d(@) d(2) d(1) d(0)
a(14) a(12) a(10) a(8) a(6) a(4) a(2)

b(15) b(14) b(13) b(12)b(11) b(10) b(9) b(8) b(7) b(6) b(5) b(4) b(3) b(2) b(1) b(0)

Figure 4.1 A 16-input dot procedure (first algorithm).

Both for loops are made up of dot operations that can be executed in parallel.
The total execution time T(n) is equal to Tgo + T(n/2) + Tyor, With T(2) = Tyq,
so that

T algorithm 4.5(n) = (2.(logy n) — 1).Tyor. 4.8)
The second algorithm consists of:
calling dot_procedure with parameters n/2, a(0..(n/2) — 1), and b(0..

(n/2) = 1);

calling dot_procedure with parameters n/2, a((n/2) .. n — 1), and c, so that

c(0) = a(n/2),
c(l) =a((n/2) +1) o a(n/2),

c(m/2)y—1)=an—1) e a(n—2) e ---e a(n/2);

computing the missing components of b,

b(n/2) = c(0) ® b((n/2) — 1),
b((n/2) + 1) = c(1) & b((n/2) — 1),

b(n — 1) = c((n/2) — 1) & b((n/2) — 1).

62 ARITHMETIC OPERATIONS: ADDITION AND SUBTRACTION

15) a(14) a(13) a(12) a(11) a(10) a(9) a(8) a(6) a(5) a(4) a@3) a(2) a(1) a(0)

llllllll allllllll

8-input dot procedure 8-input dot procedure

“EECEEE [TI1]]]

b(6) b(5) b(4) b(3) b(2) b(1) b(0)

b(15) b(14) b(13) b(12) b(11) b(10) b(9) b(8) b(7)

Figure 4.2 A 16-input dot procedure (second algorithm).

The computation scheme is shown in Figure 4.2 (with n = 16), and the correspond-
ing recursive algorithm is the following.

Algorithm 4.6 Dot Procedure (2)

procedure dot_procedure (n:in natural; a:in data_vector (0..

n-1) ;b:out data_vector(0..n-1)) is

c: data_vector(0..(n/2)-1);
begin

if n=2 then b(0):=a(0); b(l):=a(l) dot a(0);

else

dot_procedure (n/2, a(0..(n/2)-1), b(0..(n/2)-1);

dot_procedure (n/2, a((n/2)-1..n-1), c);

for i in 0..n/2-1 loop b(i+(n/2)):=c(i) dot b((n/2)-1);
end loop;
end if;

end dot_procedure;
Both procedure calls can be executed in parallel, and the £or loop is made up of dot
operations that can also be executed in parallel. The total execution time 7(n) is
equal to T(n/2) + Tyor, With T(2) = Tye, so that

T atgorithm 4.6(n) = (logy 1).Tyo. 4.9

The following algorithm is deduced from Algorithm 4.4 and the definition of dot_
procedure.

4.1 ADDITION OF NATURAL NUMBERS 63

Algorithm 4.7 Parallel-Prefix Addition

a, b: data_vector(0..n-1, 0..1);

begin
--computation of the generation and propagation conditions:
for i1 in 0..n-1 loop a(i,0):=g(x(i),y(1)); a(i,1):=p(x(1),

y(i))); end loop;

--computation of the generalized generation and propagation
--conditions:

dot_procedure(n, a, b);

--carry computation:

a(0) :=c_in;

for i in 1..n loop g(i):=b(i,0) or b(i,1)*g(0); end loop;
--sum computation

for i in 0..n-1 loop z(i):=(x(i)+y(i)+g(i)) mod B; end loop;
z(n):=q(n);

The preceding algorithm is made up of three iterations, whose operations can be
executed in parallel, and a call to dot_procedure. The procedure execution time
depends on the number of digits n; according to (4.8) or (4.9) it is proportional to
log(n). The execution time of the iterations is independent of n. Thus for
great values of n, the execution time of Algorithm 4.7 is practically proportional
to log(n).

A logarithmic execution time can be obtained with a different algorithm using
two new procedures. The first one,

procedure carry_lookahead procedure (n:imn natural; a:in data_
vector(0..n-1, 0..1); c_in: in bit; g:out bit_vector(l..n));

computes the n carries g(1), g(2),..., g(n), in function of the n generation and
propagation conditions g(7) = a(z,0) and p(¢) = a(t,1), and of c_in, that is,

qt) = a(t—1,0) Va(t—2,0).at—1,1) V---Va,0).a(1,1).---.a(t — 1,1)V
c_in.a(0,1).a(1,1).---.a(t — 1,1),Vt € {1, 2,..., n}.
The second one,

procedure carry_procedure (n:in natural; b:in data_vector(0..
n-1, 0..1); c_in: in bit; g:out bit_vector(l..n));

computes the n carries ¢g(1), g(2),..., g(n), in function of the n generalized

generation and propagation conditions g(#:0) = b(¢,0) and p(#:0) = b(t,1), and of
c_in, that is,

q(H) = b(t — 1,0) V c_in.b(t — 1,1). (4.10)

64 ARITHMETIC OPERATIONS: ADDITION AND SUBTRACTION

Assume that n can be factorized under the form n = k.s. The algorithm
consists of:

calling k times the dot_procedure with parameters s, a(j.s . . j.s+s — 1) and
c(j,0..s — 1), where j € {0, 1,..., k — 1}, so that

c(j, 0) = a(j.s) = (g(j.5), p(j.5)),
c(j, D)=a(j.s+1) e a(j.s) = (g(j.s+ 1:j.5), p(j.s + 1:].5),

c(j,s—1)=a(js+s—1)ea(js+s—2) e-..0q(j.s)
=(g(js+s—1:j.s), p(j.s+s— 1:].5);

calling carry_lookahead_procedure with parameters k, c(0 .. k— 1,5 — 1),
c_in and d, so that

d(j) = g(j.s — 1:0) V c_inp(j.s — 1:0) = g(j.s);

calling k times the carry_procedure with parameters s — 1, ¢(j, 0..s — 2),
d(j), and e(j, 0..s —2), where j € {0, 1,..., k — 1}, so that

e(j,i)=(g(js+i:js)Vaq(js)p(js+ijs)=q(Gs+i+1).

The computation scheme is shown in Figure 4.3 (with k = s = 4), and the corre-
sponding recursive algorithm is the following:

Algorithm 4.8

procedure carry_lookahead_procedure
(n:in natural; a:in data_vector (0..n-1, 0..1); c_in: in bit;
g:out bit_vector(l..n)) is
c: data_vector(0..k-1, 0..s-1, 0..1); d: bit_vector(0..
k-1);

begin
for j in 0..k-1 loop dot_procedure(s, a(j*s..j*s+s-1), c(3,
0..s-1)); end loop;
carry_lookahead_procedure (k, c(0..k-1, s-1), c_in, 4);

for j in 0..k-1 loop
carry_procedure(s-1, c(j, 0..s-2), d(j), e(j, 0..s8-2));
end loop;
for j in 1..k-1 loop g(j*s):=d(j); end loop;
for j in 0..k-1 loop
for i in 0..s-2 loop g(j*s+i+l):=e(j, 1); end loop;
end loop;
end carry_lookahead_procedure;

4.1 ADDITION OF NATURAL NUMBERS 65
a(15)a(14)a(13)a(12) a(11)a(10) a(9) a(8) a(7) a(6) a(5) a(4) a(3) a(2) a(1) a(0)
4-input dot 4-input dot 4-input dot 4-input dot
procedure procedure procedure procedure
¢(3,2)c(3,1)c(3,0) c(2,2)c(2,1)c(2,0) c(1,2)c(1,1)c(1,0) ¢(0,2)c(0,1)c(0,0)
c(3,3) c(2,3), c(1,3) (0,3)
4-input carry_lookahead_procedure q(0)
d(4) d(3) d(2) d(1)
¢(3,2)c(3,1)c(3,0) c(2,2)c(2,1)c(2,0) c(1,2)c(1,1)c(1,0) ¢(0,2)c(0,1)c(0,0)
carry_ carry_ carry_ carry_
q(16)q(15) a(14)a(13) a(12) g(11)q(10) a(9) a@®) q(7) aG) a®) a4 a@) aq@ a)
Figure 4.3 A 16-input carry_lookahead_procedure.
The procedure carry_procedure computes (4.10):
procedure carry_procedure
(n:in natural; b:in data_vector(0..n—1, 0..1); c_in: in bit;
g:out bit_vector(l..n))
is begin
for t in 1..n loop g(t)=b(t—1,0) v c_in.b(t—1,1); end loop;

end carry_procedure;

Let T(n) be the execution time of carry lookahead_procedure, T(n)
the execution time of dot_procedure, and T, the execution time of any one
of the equations (4.10). The k calls to dot_procedure can be executed

in parallel,

and the same occurs with the k calls to carry procedure.

Furthermore, within carry_procedure the equations (4.10) can be calculated in

parallel. Thus

Assume now that n=s;.5,.-- -

T(k.s) =

T1(s) + T(k) + T>.

.Sn. The algorithm obtained by recursively

calling the carry_lookahead_procedure has a computation time that can be

66 ARITHMETIC OPERATIONS: ADDITION AND SUBTRACTION
calculated as follows:

T(Sl~52~ et -Sm) == T](S]) + T(SZ- et ~sm) + T27
T(s2. -+ .5p) =T1(s2) +T(s3. -+ .8) + T2,

T(sm—1.5m) = T1(Sm—1) + T(s) + T2,
T(sm) = Tl (sm) + T2a

so that
T(s1.82..8m) = T1(s1) + T1(s2) + - - - + Ti(sp,) + m.T>. 4.11)
In particular, if n = s™ then
T(n) = m.(Ty(s) + T2), where m = log n. 4.12)

The complete addition algorithm is the following.

Algorithm 4.9 Carry-Lookahead Addition

a: data_vector(0..n-1, 0..1);

begin
--computation of the generation and propagation conditions:
for i in 0..n-1 loop a(i,0):=g(x(i),y(1)); a(i,1):=p(x(1),

y(i))):; end loop;

--carry computation

carry_lookahead_procedure(n, a, c_in, q);

q(0) :=c_in;

--sum computation

for i in 0..n-1 loop z(i):=(x(i)+y(i)+g(i)) mod B; end loop;
z(n) :=g(n) ;

4.1.3 Long-Operand Addition

In the case of long-operand additions it may be necessary to break down the n-digit
operands into s-digit slices. A typical example is the implementation of n-bit arith-
metic operations within an m-bit microprocessor, with m < n. Taking into account
that an n-digit base-B number can also be considered as being an (n/s)-digit base-B*
number (Comment 3.1) a modified version of the basic algorithm 4.1 can be used.
The iteration body of Algorithm 4.1 must be substituted by a procedure
natural_addition, which computes the sum of two s-digit numbers:

procedure natural_addition (s: in natural; carry: in bit; x, y:
in digit_vector(0..s-1); next_carry: out bit; z: out digit_
vector (0..s-1);

4.1 ADDITION OF NATURAL NUMBERS 67
Any one of the previously proposed algorithms (4.1, 4.2, 4.7, or 4.9) can be used
for defining the natural_addition procedure. Then the following algorithm

computes x +y + Cjp.

Algorithm 4.10 Long-Operand Addition

g:=c_in;
for i in 0..n/s-1 loop
natural_addition(s, g, x(i*s..(i*s)+s-1), y(i*s..(i*s)+s-1),
a, z(i*s..(i*s)+s-1));
end loop;
z (n) :=q;

Depending on the selection of the natural_addition procedure, the correspond-
ing execution time is proportional to either (n/s).s = n or (n/s).log s.

Observe that modified versions of the other algorithms would not give shorter
execution times: all of them include # sentences

z(1i):=(x(1i)+y(i)+g(i)) mod B;
equivalent, in base B’, to n/s sentences

natural_addition(s, g(i), x(i*s..(i*s)+s-1), y(i*s..(i*s)+
s-1), not_used, z(i*s..(i*s)+s-1));

As the n/s preceding sentences must be executed sequentially (long-operand
constraint), the execution time would still be proportional to either (n/s).s = n or

(n/s).Jog(s).

4.1.4 Multioperand Addition

Another important operation is the multioperand addition, that is, the computation
of 7= xQ x4 ... +x("’71), where every x® is a natural number. Assume that
the overall sum z does not exceed n digits and that all operands are expressed
with n digits. The following algorithm computes z.

Algorithm 4.11 Basic Multioperand Addition

accumulator:=0;

for j in 0..m-1 loop
natural_addition(n, 0, accumulator, x(j), not_used,
accumulator) ;

end loop;

z:=accumulator;

Its execution time is proportional to m.n or m.log n depending on the selected
natural_addition procedure.

68 ARITHMETIC OPERATIONS: ADDITION AND SUBTRACTION

An interesting concept for executing multioperand additions is the stored-carry
form encoding of the result of a 3-operand addition. Assume that a procedure

procedure three-to-two(w, x, y: in natural; u, v: out natural) ;
has been defined; it computes u# and v such that
wH+x+y=u-+nv.

Then the following algorithm computes the sum z = x@ + x4 . . 4 X" Dof m
natural numbers.

Algorithm 4.12

three-to-two (x(0), x(1), x(2), u(0), v(0));
for j in 3..m-1 loop
three-to-two (x(j), u(j-3), v(j-3), u(ji-2), v(j-2));
end loop;
natural_addition(n, 0, u(m-3), v(m-3), not_used, z);

The three-to-two procedure consists in expressing the sum z of three natural
numbers (w, x, y) under the form of a pair (u, v) of two natural numbers in such a
way that z=u + v. Assume now that w, x, and y are n-digit numbers, and g_in
is a 1-digit number. The following algorithm computes two n-digit numbers u and
v, and a 1-digit number g_out, such that

W+ X+y+q-in=q-out.B" +u+uv (4.13)

Algorithm 4.13 Stored-Carry Encoding

procedure stored-carry_encoding(w, x, y: in digit_vector(0..

n-1); g_in: in digit; u, v: out digit_vector(0..n-1); g_out:
out digit) is
begin

q(0) :=g_in;
for i in 0..n-1 loop

g(i+l) :=(w(i)+x(i)+y(i))/B;
u(i):=(w(i)+x(i)+y(i)) mod B;
end loop;

v:=g(0..n-1); g_out:=g(n);
end stored-carry_encoding;

Algorithm 4.13 is similar to the basic addition algorithm 4.1: two digits are
computed at each step, and the first one, g(i + 1), can be considered as a B-ary
carry (instead of a binary one when B > 2). Nevertheless, g(i + 1) does
not depend on ¢(i) so that the n iteration steps can be executed in parallel. In
other words, at each step the carry g(i + 1) is stored instead of being transferred

4.1 ADDITION OF NATURAL NUMBERS 69

to the next iteration step. For that reason the pair (u, v) is said to