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PREFACE

Chemical engineering students and chemical engineers are being asked to solve problems

that are increasingly complex, whether the applications are in refineries, fuel cells, micro-

reactors, or pharmaceutical plants. Many years ago, students wrote their own programs,

first in the FORTRAN programming language, then in languages like MATLABw.

With the growth in personal computers, however, software has been written that solves

many problems for students, provided they use the programs correctly. Thus, the emphasis

has shifted from a small group of people who were interested in writing their own

programs to a large group of students who will use the programs, but do not write

them. In my 38 years of teaching at the University of Washington, I taught those small

groups of students how to use numerical analysis to solve complicated problems. Now,

I teach all my students how to use the computer wisely. Only a few of the students I

teach are interested in the numerical analysis (to my sorrow!), but all the students know

they must be able to solve difficult problems, and they need to use the computer to do that.

The goals of this book are to illustrate (a) the problems chemical engineers have to

solve, (b) the type of computer programs used to solve them, and (c) how engineers

check to be sure they have solved the problems correctly. This is done in the context of

how contemporary students learn – minimal reading, just-in-time learning, with lots of

computer usage. The programs demonstrated here are Excelw, MATLABw, Aspen

Plusw, and FEMLABw.

When writing this book, I assumed that readers are not absolute beginners. Junior and

senior chemical engineering students have had experience with spreadsheet programs like

Excel, and they can easily learn on the computer when provided a direction and key ideas

or phrases. In fact, many students are more computer-savvy than their instructors.

However, a beginning chemical engineering student may not know the application very

well and may not have gained a solid understanding of the physical phenomena behind

an engineering problem. Thus, it is important to give some explanation of why students

need to solve certain problems. I have drawn on my experience to give insights into the

problems in this book.
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My teaching philosophy is that the problems engineers are solving today are usually

intractable with analytical methods, but they can be solved with the sophisticated software

available today. Thus, every engineer will be solving a problem that no one knows the

answer to, and it is the engineer’s job to ensure that the problem is posed correctly on

paper and in the computer, and it is correctly solved. Engineering students must know

how to determine if the computer solved the problem correctly by validating the work

done by the computer. If they can do this, they can convince their instructor – or their

future boss – that they have a solution that is every bit as reliable as an analytical solution,

although without the analytical form and for a problem that cannot be solved analytically.

HOW TO USE THIS BOOK IN TEACHING

This book grew out of a course I developed at the University of Washington, first in the

winter quarter, 2003. Student evaluations of the department indicated that students

wanted more help when using the computer to solve chemical engineering assignments.

Although the students took a programming course in Computer Science, they did not

feel it was relevant to their engineering studies. I proposed an elective course for

juniors that would introduce them to computer programs they would use in their education.

It is called Chemical Engineering Computer Skills and is a lecture/laboratory course.

Enrollment has grown each year, and in 2005, 70 percent of the junior class enrolled in

this course.

As currently taught, I spend one lecture describing a problem and illustrating its

solution using the computer programs. Then the class adjourns to a computer classroom

where the students work in pairs, with student helpers, solving the same type of

problem as just demonstrated in class. Finally, the students work individually on a more

difficult problem, using the same techniques, for homework credit. All the homework pro-

blems have to be correct; if not, an opportunity is given to redo them. The course is taught

credit/no-credit, and credit is given provided 80 percent of the assignments are completed

correctly. There are only 10 lectures 50 min long and 10 laboratory sessions in the

10-week quarter. Since the applications cover much of the chemical engineering field,

I joke with the students, saying, ‘I’m teaching you the entire field in 20 hours.’

This book can also be used in a longer course. Once students have solved the elemen-

tary problems, it is easy to complicate the problems with lessons and variations that

instructors would like to emphasize. Examples of such problems are provided at the

end of each chapter; both introductory and advanced problems are provided. Another

way to use the book is to use each chapter within different courses. Once chemical reaction

equilibrium has been discussed in the Thermodynamics class, for example, instructors can

hold a laboratory session that teaches computer applications, using the chapter on chemi-

cal reaction equilibrium. Other chapters would be used in other courses. In this way, the

students would use the book during their entire education, in course after course. The hope

is, of course, that students would then be able to concentrate more on the chemical engin-

eering principles and use the computer as a tool.

There are four programs that are featured in this book. It is possible that your school

does not use all four. While the screen images may be different, the ideas and procedures

are the same. Certainly the problems can be solved using other programs. In a working

environment, engineers use what their company provides. Thus, engineers may use a

less powerful program because it is available. The more powerful program may cost
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more, too. Thus, in several chapters, the same problem is solved using different programs,

which lets students see first-hand that the more general purpose programs require signifi-

cantly more programming in order to solve complicated problems. In my experience,

when given a suite of programs, students will use the one that allows them to solve

their problem fastest.
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1
INTRODUCTION

Computers have revolutionized the way chemical engineers design and analyze processes,

whether designing large units to make polyethylene or small microreactors to detect

biological agents. In fact, the engineering problems that many of you will study as

undergraduates today are similar in complexity to the problems Ph.D. students solved

30 or 40 years ago. Computer programs can now solve difficult problems in a fraction

of the time it used to take. Nowadays, you no longer have to write your own software

programs to use computers effectively. Computer programs can do the numerical calcu-

lations for you, but you will still need to understand how to apply these programs to

specific engineering challenges.

The goal of this book is to help you practice better chemical engineering. Computers are

valuable tools that enable progressive, far-reaching chemical engineering. Unfortunately,

computers are not as basic as CD players, where you insert a CD, push a button, and get the

same result every time. Sometimes computer programs do not work properly for the para-

meters you have given them. Therefore, you must be careful to use them wisely.

This book will also:

(1) Illustrate the problems that you as chemical engineers may need to solve;

(2) Compare the types of computer programs you can use and illustrate which ones are

best for certain applications;

(3) Describe how to check your work to ensure you have solved the problems

correctly.

This book demonstrates four computer programs: Excelw, MATLABw, Aspen Plusw, and

FEMLABw. You may have access to other programs created by other companies. While

the exact details will not be the same, the steps you take will be similar.

Introduction to Chemical Engineering Computing, by Bruce A. Finlayson
Copyright # 2006 John Wiley & Sons, Inc.
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Computer skills are invaluable, but as an engineer, you also need to understand the

physical phenomena. Each chemical engineering application chapter starts with a descrip-

tion of the physical problem in general terms. Then those general terms are put into a

mathematical context so the computer can represent them. Next, the chapter gives

several examples in which such problems are solved, providing step-by-step instructions

so you can follow along on your own computer. Sometimes the same problem is solved

using different programs so you can see the advantages of each program. Finally, the chap-

ters give more complicated problems your instructor may use as homework.

Examples throughout this book demonstrate how to check your work and how to learn

from the answers the computer gives you. When using computers, it is always important to

know if the computer has obtained the correct answer. If you follow this strategy you will

have no trouble convincing your instructor, or your boss, that you have a solution every bit

as reliable as an analytical solution for a problem that cannot be solved analytically:

(1) Solve the problem

(2) Validate your work

(3) Understand how you reached that answer

ORGANIZATION

The book is organized into 11 chapters followed by six appendices, as listed in Table 1.1.

Each chapter treats a type of chemical engineering phenomenon, such as process simu-

lation or convective diffusion. The six appendices give additional details about each

computer program.

As a modern chemical engineering student, many of you are computer-savvy. This book

assumes that you are not a complete beginner, but have some experience with spreadsheet

programs such as Excel. The chapters provide examples and step-by-step instructions for

using the computer programs to solve chemical engineering problems. If necessary, you

can find more detailed information about the individual programs in the Appendices.

Algebraic Equations

Chapters 2–5 deal with chemical engineering problems that are expressed as algebraic

equations – usually sets of nonlinear equations, perhaps thousands of them to be solved

together. In Chapter 2 you can study equations of state that are more complicated than

the perfect gas law. This is especially important because the equation of state provides

the thermodynamic basis for not only volume, but also fugacity (phase equilibrium) and

enthalpy (departure from ideal gas enthalpy). Chapter 3 covers vapor–liquid equilibrium,

and Chapter 4 covers chemical reaction equilibrium. All these topics are combined in

simple process simulation in Chapter 5. This means that you must solve many equations

together. These four chapters make extensive use of programming languages in Excel and

MATLAB.

Process Simulation

Chapter 6 introduces mass transfer problems such as distillation and absorption. Chapter 7

gives a more detailed look at process simulation, where the power of process simulators
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like Aspen Plus really is evident. These chapters make use of commercial codes that are

run by inserting data into their custom-designed interface.

Differential Equations

Chapters 8–11 treat problems that are governed by differential equations. Chapter 8

provides methods to model chemical reactors. These are usually initial value problems,

which are illustrated in Eq. (1.1).

u
dc

dz
¼ �kc2, c(z ¼ 0) ¼ c0 (1:1)

Note that the dependent variable, c, is a function of only one independent variable, z, and

that the initial value is specified. For reactors, you start at the inlet and integrate down the

reactor using either MATLAB or FEMLAB.

Chapter 9 then solves transport problems in one space dimension (1D) using FEMLAB.

If you consider heat transfer through a slab, one side of the slab is kept at one temperature,

T0, and the other side of the slab is maintained at another temperature, TL. The governing

equation is

k
d2T

dx2
¼ 0 (1:2)

with boundary conditions

T(0) ¼ T0, T(L) ¼ TL (1:3)

TABLE 1.1. Computer Programs Used in Different Chapters

Chapters Excel MATLAB

Aspen

Plus FEMLAB

1: Introduction

2: Equations of State 3 3 3
3: Vapor–Liquid Equilibrium 3 3 3
4: Chemical Reaction Equilibrium 3 3 3
5: Mass Balances with Recycle Streams 3
6: Simulation of Mass Transfer Equipment 3
7: Process Simulation 3
8: Chemical Reactors 3 3
9: Transport Processes in One Dimension 3
10: Fluid Flow in Two and Three Dimensions 3
11: Convective Diffusion Equation in

Two and Three Dimensions

3
Appendix A: Hints when Using Excel 3
Appendix B: Hints when Using MATLABw 3
Appendix C: Hints when Using Aspen Plus 3
Appendix D: Hints when Using FEMLAB 3
Appendix E: Parameter Estimation 3 3
Appendix F: Mathematical Methods 3

ORGANIZATION 3



The differential equation, (1.2), is an ordinary differential equation because there is only

one independent variable, x. In this case, equations in one space dimension are boundary

value problems, because the conditions are provided at two different locations. While it is

also possible to solve this problem using Excel and MATLAB, it is much simpler to use

FEMLAB. Transient heat transfer in one space dimension is governed by

rCp

@T

@t
¼ k

@2T

@x2
(1:4)

and this problem is solved using FEMLAB, too.

Chapters 10 and 11 use FEMLAB to solve fluid flow, heat transfer, and mass transfer

problems in 2D and 3D. Here again the power of the software program shows through.

You get to solve real problems that go beyond the simple 1D cases in your textbook.

Those 1D problems are good for learning the subject, but in real-life situations, compli-

cations often arise that can only be handled numerically. These problems are partial differ-

ential equations, because there are two or more independent variables (say x and y). For

example, the Navier–Stokes equations in Cartesian geometry and two dimensions are

r
@u

@t
þ u

@u

@x
þ v

@u

@y

� �
¼ �

@p

@x
þ m

@2u

@x2
þ
@2u

@y2

� �

r
@v

@t
þ u

@v

@x
þ v

@v

@y

� �
¼ �

@p

@y
þ m

@2v

@x2
þ

@2v

@y2

� �

@u

@x
þ

@v

@y
¼ 0

(1:5)

Appendices

If you need more background information while solving the problems in the book, consult

the appendices. Appendices A–D discuss hints, examples, and step-by-step instructions

for the four computer programs demonstrated in this book. For example, Appendix A

provides useful options and terminology within Excel, while Appendix B does this for

MATLAB. Appendix C provides screen images from Aspen Plus, with explanations,

and Appendix D does the same for FEMLAB. Appendix E demonstrates how to use

Excel or MATLAB for parameter estimation, and Appendix F illustrates the mathematical

methods built into each computer program. While you will not need to program the

methods, you may be curious about the mathematical analysis behind the programs.

Whether you tackle one chemical engineering problem or work chapter by chapter

through the book, try to enjoy yourself. You and a classmate can sit down and work

together – possibly on adjacent computers – to share insights and answer each other’s

questions. Remember, too: go back and forth from the application chapters to the computer

program appendices; build up your knowledge bit by bit. Your reward is to be a better-

trained engineer, able to compete in a fast-paced global environment.
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2
EQUATIONS OF STATE

Solving equations of state allows us to find the specific volume of a gaseous mixture of

chemicals at a specified temperature and pressure. Without using equations of state, it

would be virtually impossible to design a chemical plant. By knowing this specific

volume, you can determine the size – and thus cost – of the plant, including the diameter

of pipes, the horsepower of compressors and pumps, and the diameter of distillation towers

and chemical reactors. Imagine how challenging it would be to design a plant without

knowing this important information!

Determining the specific volume is also the first step in calculating the enthalpy and

vapor–liquid properties of mixtures. Calculating this enthalpy is especially important

when making energy balances to reduce energy use and help the environment.

To solve equations of state, you must solve algebraic equations as described in this

chapter. Later chapters cover other topics governed by algebraic equations, such as

phase equilibrium, chemical reaction equilibrium, and processes with recycle streams.

This chapter introduces the ideal gas equation of state, then describes how computer pro-

grams such as Excelw, MATLABw, and Aspen Plusw use modified equations of state to

easily and accurately solve problems involving gaseous mixtures.

Step-by-step instructions will guide you in using each of these computer programs to

determine the specific volume of gaseous mixtures. At the end of the chapter, there are

problems to enable you to practice your own calculations. The lessons learned in this

chapter carry forward to other applications involving algebraic equations in Chapters

3–6 and 8. After completing this chapter, not only will you be able to solve algebraic

equations, but also size equipment in a chemical plant, certainly those pieces of equipment

containing gases.

Introduction to Chemical Engineering Computing, by Bruce A. Finlayson
Copyright # 2006 John Wiley & Sons, Inc.
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EQUATIONS OF STATE – MATHEMATICAL FORMULATION

The ideal gas equation of state, which relates the pressure, temperature, and specific

volume, is a familiar equation:

pV ¼ nRT or pv
_
¼ RT where v

_
¼

V

n
(2:1)

The term p is the absolute pressure, V is the volume, n is the number of moles, R is the gas

constant, and T is the absolute temperature. The units of R have to be appropriate for the

units chosen for the other variables. This equation is quite adequate when the pressure is

low (such as one atmosphere). However, many chemical processes take place at very high

pressure. For example, ammonia is made at pressures of 220 atmospheres or more. Under

these conditions, the ideal gas equation of state may not be a valid representation of reality.

Other equations of states have been developed, usually in conjunction with process

simulators, to address chemical processes at high pressure. There are two key features:

(1) the equation can represent the real p–V–T behavior; and (2) the parameters must be

easily found, including for mixtures. This last criterion is no small requirement. There

are more than 25 million chemicals, leading to an infinite number of different mixtures.

Obviously, you cannot look up the properties of all those mixtures on the Web.

The first generalization of the ideal gas law was the van der Waals equation of state:

p ¼
RT

v
_
� b

�
a

v
_ (2:2)

In this equation, the b accounts for the excluded volume (a second molecule cannot use the

same space already used by the first molecule), and the a accounts for the interaction force

between two molecules. This extension is just a first step, however, because it will not be a

good approximation at extremely high pressures.

The Redlich–Kwong equation of state is a modification of van der Waal’s equation of

state:

p ¼
RT

v
_
� b

�
a

v
_
( v
_
þ b)

(2:3)

where

a ¼ 0:42748
R2T2

c

pc

� �
a, b ¼ 0:08664

RTc
pc

� �
, and Tr ¼

T

Tc
, a ¼

1

T 0:5
r

(2:4)

In these equations, Tc is the critical temperature (in absolute terms), pc is the critical

pressure, and Tr is the ‘reduced’ temperature (the absolute temperature divided by the criti-

cal temperature). The a is particular to the Redlich–Kwong equation of state.

The Redlich–Kwong equation of state was modified further by Soave to give the

Redlich–Kwong–Soave equation of state (called RK–Soave in Aspen Plus), which is a

common one in process simulators:

p ¼
RT

v
_
� b

�
a

v
_
( v
_
þ b)

(2:5)
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Now the parameter a is given by a different formula,

a ¼ ½1þ m(1� T0:5
r )�2, m ¼ 0:480þ 1:574vþ 0:176v2 (2:6)

The v is the ‘acentric’ factor, which is a tabulated quantity for many substances. Thus, the

value of a can be computed for each chemical and reduced temperature.

The Peng–Robinson equation is another variation:

p ¼
RT

v
_
� b

�
a

v
_
( v
_
þ b)þ b( v

_
� b)

(2:7)

All these equations can be rearranged into a cubic function of specific volume. The

form of the Redlich–Kwong and Redlich–Kwong–Soave equation of state is

v
_3( p)� v

_2(RT)þ v
_
(a� pb2 � RTb)� ab ¼ 0 (2:8)

When given the temperature and pressure of a gaseous mixture, and the parameters a and

b, then to find the specific volume you would have to solve the cubic equation of state for

specific volume, v
_
. This represents one algebraic equation in one unknown, the specific

volume.

For a pure component, the parameters a and b are determined from the critical temp-

erature and critical pressure, and possibly the acentric factor. These are all tabulated quan-

tities, and there are even correlations for them in terms of vapor pressure and normal

boiling point, for example. For mixtures it is necessary to combine the values of a and

b for each component according to the composition of the gaseous mixture. Common

mixing rules are shown in Eqs. (2.9) and (2.10), in which the ys are the mole fraction

of each chemical in the vapor phase:

ai ¼ 0:42748
R2T2

ci

pci

� �
ai, a ¼

XNCOMP

i, j¼1

yiyj(aiaj)
0:5

or

a ¼
XNCOMP

i¼1

yia
0:5
i

 ! XNCOMP

j¼1

yja
0:5
j

 !
, a ¼

XNCOMP

i¼1

yia
0:5
i

 !2

(2:9)

bi ¼ 0:08664
RTci

pci

� �
, b ¼

XNCOMP

i¼1

yibi (2:10)

where

ai ¼
1

T0:5
ri

(for Redlich�Kwong)
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or

ai ¼ ½1þ mi(1� T0:5
ri )�2 (for Redlich�Kwong�Soave) (2:11)

Thus, the only difference between the problem for a pure component and that for a mixture

is in the evaluation of the parameters a and b.

Here is the mathematical problem you must solve: Given a set of chemicals, tempera-

ture and pressure, find the specific volume of the mixture. To do this, you must find the

critical temperature and pressure of each chemical. Once you have the parameters, you

must solve the cubic equation, Eq. (2.8), which is a nonlinear equation in one variable.

Because it is a cubic equation, it is possible to find the solution in a series of analytical

steps (Perry and Green, 1997, p. 3–114), but this is not usually done because it is

quicker to find the solution numerically, albeit iteratively.

Programs such as Excel and MATLAB allow us to easily solve for the specific volumes.

However, one advantage of process simulators like Aspen Plus is that the physical prop-

erties of many components are saved in a database that users can access. In fact, users do

not need to look up the numbers because Aspen Plus will do that when it needs them. The

next section illustrates how to use each of these programs to solve equations of state.

SOLVING EQUATIONS OF STATE USING EXCEL�

(SINGLE EQUATION IN ONE UNKNOWN)

There are at least two methods to solve algebraic equations using Excel. The first uses

‘Goal Seek’ while the other uses ‘Solver,’ and both are illustrated using a simple

example – find the x that makes f (x) zero:

f (x) ¼ x2 � 2x� 8 (2:12)

Solution Using ‘Goal Seek’

Step 1 Open a spreadsheet and put the following statement in cell B1:

=A1*A1-2*A1-8 (2:13)

Cell B1 is the equation that should be zero, and cell A1 contains the variable that is

adjusted to make this happen.

Step 2 Under Tools choose Goal Seek. When a small screen appears, fill in the spaces to

show the following:

Setcell $B$1
To value 0:
By changing cell A1

(2:14)

�Excel is a registered trademark of Microsoft Corporation, Inc.
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Step 3 Click OK. The answer appears in the spreadsheet:

-2.000007 4.1137E-06 (2:15)

Thus the solution found is –2, with a tiny error – a small fraction of a percent. The test of

whether the calculation is correct is shown in cell B1, which is 4.1 � 1026. This is not

zero, but it is small enough for most purposes.

Step 4 If you want to decrease the tolerance to make the solution more accurate, under

Tools and Options choose Calculation. Then, in Maximum Change add a few zeros in the

middle (changing it from 0.001 to 0.000001), add a zero to the maximum number of iter-

ations, choose OK, and repeat the Goal Seek. This time the answer is

-2 -1.376E-8 (2:16)

Step 5 To get the other root, put the value 3 in cell A1 and choose Goal Seek.

Solution Using Solver

You can solve the same problem using the Solver option in Excel.

Step 1 Under the Tools menu, click on Solver. Note: If the choice Solver does not

appear, choose Add-Ins and load Solver from the Analysis ToolPak or the original

Excel program disk (or see your system administrator for help).

Step 2 When the window opens, choose the option to make a cell equal to a value (or a

maximum or minimum) by changing another cell. If you insert the appropriate cell

locations, you will obtain the same answer as with Goal Seek. This time, however, it is

much more accurate:

-2 5.3291E-14 (2:17)

Example of a Chemical Engineering Problem Solved Using ‘Goal Seek’

Find the specific volume of n-butane at 500K and 18 atm using the Redlich–Kwong

equation of state.

Step 1 You must first find the critical temperature and pressure; Perry’s Chemical

Engineers’ Handbook gives Tc ¼ 425.2 K and pc ¼ 37.5 atm.

Step 2 Calculate values of a and b using Eq. (2.4). The value of gas constant in these

units is 0.08206 l atm/g mol K.

Step 3 Prepare the spreadsheet shown in Figure 2.1. The title, name, and data will be

useful when you come back to the problem at a future date.

SOLVING EQUATIONS OF STATE USING EXCEL 9



Step 4 You enter the parameters in the parameter box. The cells containing the critical

parameters and the temperature and pressure can be named Tc, pc, T, and p, respectively.

That way, the equation for f (v) will be easier to understand.

Step 5 The lower box gives the equations actually used as well as the results. Use the

Goal Seek command to make f (v) (cell F32) equal to zero by changing cell v (F31).

Step 6 For reference, the result for an ideal gas is also shown, and indeed n-butane is

close to behaving as an ideal gas under these conditions.

Step 7 How can you check this result? First, you have to be sure you have put the correct

formulas into the spreadsheet, and that the units are consistent. That can only be deter-

mined by reference to the original equations and critical properties. It is easy to tell that

f (v) ¼ 0, but the solution is correct only if the equation for f (v) is correct. In fact, the

most challenging part of checking this calculation is the paper and pencil work before

you develop the spreadsheet – to test the equations in the spreadsheet.

The techniques used to create this spreadsheet are shown in more detail in Appendix A,

including: (1) inserting an equation for calculation; (2) inserting a text version of the

equation for display; (3) creating a border around a group of cells; and (4) using Goal Seek.

SOLVING EQUATIONS OF STATE USING MATLAB�

(SINGLE EQUATION IN ONE UNKNOWN)

Nonlinear algebraic equations can be solved using MATLAB, too. First, you have to

define the problem to solve by writing a file called an ‘m-file’; then, you check it; finally,

you issue a command to solve it. These steps are analogous to the steps used in Excel.

You can use MATLAB most effectively if you learn to use the Command Window and

learn to create m-files and save them properly. See Appendix B for additional details.

Figure 2.1. Excel spreadsheet to find the volume of a nonideal gas.

�MATLB is a registered trademark of The Math Works, Inc.
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Step 1 Define the function. It is created using an m-file, called here f.m.,

function y=f(x)

y=x*x-2*x-8;
(2:18)

Change the current directory in MATLAB (at the top of the command window) to a

directory in which you wish to save your work and save it as f.m.

Step 2 Check the function. Issue the command

>>feval(‘f’,2) (2:19)

to get the result:

ans=-8. (2:20)

You can easily calculate Eq. (2.18) to see that, for x ¼ 2, the function value is –8. Now

you know the f.m. is correct.

Step 3 To find the value of x that makes f (x) ¼ 0 in MATLAB, use the ‘fzero’ function.

In the command window, issue the following command:

>>fzero(‘f’,0) (2:21)

ans=-2 (2:22)

This command solves the following problem for x:

f (x) ¼ 0 (2:23)

starting from an initial guess of x0. Sometimes the function will have more than one

solution, and that can be determined only by using the command with a different x0.

You can test the result by saying

>>feval(‘f’,ans) (2:24)

To summarize the steps, step 1 defined the problem you wished to solve, step 2 checked

your programming, and step 3 instructed MATLAB to solve the problem. It is tempting to

skip the second step – checking your programming – but remember: If the programming

is wrong, you will solve the wrong problem.

When examining the command ‘fzero(‘f ’, x0)’ in MATLAB, the f defines which

problem to solve, the x0 is your best guess of the solution, and fzero tells MATLAB to

vary x, starting from x0 until the f is zero. In Excel’s Goal Seek, the analogous steps

were to make a cell zero by varying the value of another cell. ‘Goal Seek’ becomes

fzero, a cell with an equation becomes f, and another cell becomes x0.

In all the commands and m-files above, the f can be replaced by other things, say

‘prob1’. Just be sure you change it in three places: the filename of the m-file, the first

SOLVING EQUATIONS OF STATE USING MATLAB 11



line of the m-file (not absolutely necessary), and in the command. Additional forms of the

command are:

>>fzero(‘function’,x0,options)

>>z=fzero(‘f’,x0)
(2:25)

In the last example the result is put into the variable z. The options vector allows you to set

certain quantities, like the tolerance. See how by typing

>>help foptions: (2:26)

For the example used above, you can find the other root by running the program with

x0 ¼ 3 in Eq. (2.21). Multiple roots can be found only if you search for them starting

with different guesses.

Example of a Chemical Engineering Problem Solved Using MATLAB

Find the specific volume of n-butane at 500 K and 18 atm using the Redlich–Kwong

equation of state.

Step 1 First, you need to prepare an m-file that will calculate the f(x), or here f(v), given

the temperature, pressure, and thermodynamic properties. The file is shown below.

% calculate Eq.(2.8),Chapter 2

function y=specvol(v)

% in K atm l/gmol

% parameters for n-butane

Tc=425.2

pc=37.5

T=500 (2:27)

p=18

R=0.08206

aRK=0.42748*(R*Tc)^2/pc

aRK=aRK*(Tc/T)^0:5

bRK=0.08664*(R*Tc=pc)

y=p*v^3-R*T*v^2+(aRK-p*bRK^2-R*T*bRK)*v-aRK*bRK;

This function, called ‘specvol’, defines the problem you wish to solve.

Step 2 To test the function ‘specvol’ you issue either of the following commands:

feval(‘specvol’,0.2)

ans=specvol(0.2)
(2:28)
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The feval function causes MATLAB to compute the value of y (the output defined in

specvol) using the m-file named specvol when v ¼ 0.2. The output you get is:

Tc=425.2000

pc=37.5000

T=500

p=18 (2:29)

R=0.08206

aRK=13.8782

aRK=12.7981

bRK=0.0806

y=-0.6542

You should check these results line by line, especially the calculation of aRK, bRK, and y.

Step 3 When you use fzero, the function specvol will be evaluated for a variety of v.

Thus, it is inconvenient to have the constants printed out on the screen every iteration.

To avoid this, you change the function specvol by adding a semi-colon at the end of

each line, ‘;’. This suppresses the output. Do this and save the m-file, specvol.

Step 4 Next you issue the command:

v=fzero(‘specvol’,0.2) (2:30)

v=2.0377

In feval, the 0.2 was the v to be used in the calculation, whereas with fzero, the v is an

initial guess of the answer. To check, you might evaluate the function to find how close

to zero f(v) is.

>>ans=specvol(v) (2:31)

ans=-2.2204e-15

Of course you expect this to be zero (or very close to zero) because you expect MATLAB

to work properly. If MATLAB cannot find a solution, it will tell you. You can also use the

command fsolve in the same way. To find out more about fzero and fsolve, enter the

command help fzero or help fsolve.

Another Example of a Chemical Engineering Problem Solved Using MATLAB

Next rearrange the MATLAB code to compute the compressibility factor for a number of

pressure values. The compressibility factor is defined in Eq. (2.32):

Z ¼
pv

RT
(2:32)
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For low pressures, where the gas is ideal, the compressibility factor will be close to 1.0. As

the pressure increases, it will change. There are two new features illustrated: the use of

global and plotting.

Step 1 The code called ‘run_volplot’ computes the specific volume for pressures from 1

to 31 atmospheres and then calculates the corresponding compressibility factor. The first

statement in ‘run_volplot’ is a global command. The variables are identified, T, p, Tc, and

so on, and then assigned values. In other programs, such as ‘specvol,’ the same global

command is used, and these variables can then be accessed. See Appendix B for more

information.

The next part of the program is a loop with 31 steps. The pressure is changed from 1, to

2, 3, 4, . . . , 31. For each pressure, the constants a and b are calculated, as aRK and bRK,

respectively. Then ‘specvol’ is called to find the specific volume for those conditions;

the answer is stored in the variable vol as an array, or vector. The compressibility factor

is calculated and stored in the vector Z. Finally, a plot is made with pres along the

x-axis and Z along the y-axis. The result is Figure 2.2.

% run volplot

global T p Tc pc R aRK bRK

% in K atm l/gmol

% parameters for n-butane

Tc=425.2

pc=37.5

T=500

R=0.08206

for i=1:31 (2:33)

pres(i)=i;

p=i;

aRK=0.42748*(R*Tc)^2/pc;

aRK=aRK*(Tc/T)^0.5;

bRK=0.08664*(R*Tc/pc);

vol(i)=fzero(‘specvol’,0.2);

Z(i)=pres(i)*(vol(i)/R*T;)

end

plot(pres,Z)

xlabel(‘pressure (atm) ’)

ylabel(‘Z’)

Step 2 The m-file specvol is changed to use the global command, as shown in Eq. (2.34).

Now the parameters are available to specvol because they are defined as global variables
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and have been set in the program ‘run_volplot.’

% calculate Eq: (2.8), Chapter 2

function y=specvol(v)

global T p Tc pc R aRK bRK

y=p*v^3-R*T*v^2+(aRK-p*bRK^2-R*T*bRK)*v-aRK*bRK;

(2:34)

Step 3 Because you have already checked the program specvol, you do not need to check

it again. You will want to put semi-colons (;) at the end of the lines in specvol because you

do not need intermediate results.You can check the values of aRK and bRK for one of the

pressures, to ensure they are correct in the program run_volplot, but here these statements

were copied from specvol directly, so they do not need to be checked again. The use of

vol(i), Z(i), pres(i) is easy to check from the graph, Figure 2.2.

Step 4 An alternative way to calculate the compressibility factor would be to use the

following command after the loop:

Z=pres.*vol=(R*T); (2:35)

This command computes the same thing as

Z(i)=pres(i)*vol(i)=(R*T); (2:36)

inside the loop, but it does it element-by-element outside the loop. Note the symbol ‘.�’;

the period causes the element-by-element calculation.

Figure 2.2. Compressibility factor for n-butane.
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EQUATIONS OF STATE WITH ASPEN PLUS�

You can also find the specific volume using Aspen Plus. One feature of Aspen Plus allows

users to find properties of a pure substance. Given here are commands that will enable you

to find the specific volume of n-butane at the stated conditions. You may need to review

Appendix C, too, which has more detail about Aspen Plus.

Example

Find the specific volume of n-butane at 500 K and 18 atm using the Redlich–Kwong

equation of state option in Aspen Plus.

Step 1

(1) Start Aspen Plus and choose Template.

(2) When the window appears, choose General with Metric Units.

(3) In the Run Type (lower right-hand corner), choose Property Analysis.

(4) Click OK when the Aspen Plus engine window appears. Note: This last step is

specific to your installation.

Step 2 In the list on the left, choose Component/Specifications and enter the names or

formulas of the chemicals, as shown in Figure 2.3. If there is no list on the left, click on

the eye glasses or choose the menu Data/Components. If Aspen Plus does not recognize

your chemical, a window appears that allows you to search again, and it will suggest a

number of possibilities. When the components are completely specified, it is important

that there is an entry for every chemical in the column labeled ‘Component name.’ The

first column is what you are naming the chemicals, but the third column is what Aspen

Plus is using when it gets physical properties. If that column is blank, the program will

not work.

Figure 2.3. Aspen Plus window for component names.

�Aspen Plus is a registered trademark of Aspen Technology, Inc.
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Step 3 In the list on the left, choose Property/Specifications. Set the property method as

illustrated in Figure 2.4. For this application, choose RK–Soave by scrolling down. Now

all the icons on the left should be blue, meaning the menus are completely filled out. If any

menus are still red, go back and complete them.

Step 4 In the menus at the top choose Tools/Analysis/Property/Pure (the pure will be
grayed out until you do steps 2 and 3). In the window that appears (see Figure 2.5), choose

the following:

Property type: thermodynamic

Property: V (need to move the cursor down to see it)

Figure 2.4. Aspen Plus window for property method.

Figure 2.5. Aspen Plus window for pure component property analysis.
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Check vapor, uncheck liquid

Units: choose ml/mol

Components: select n-butane

Temperature, choose Units: K and † List, put in 500 and 510

Pressure: choose 18 atm

Property: scroll down to find RK–Soave

Click ‘Go’.

Step 5 A graph appears with the result plotted (see Figure 2.6). You can read results from

the graph, or if you move the graph slightly, you will find a table behind it, giving the exact

answer. The result is 2058 ml/mol, or 2.058 cm3/g mol, which compares favorably with

the result of 2.038 when using Excel or MATLAB. The critical properties are slightly

different in the three cases.

Specific Volume of a Mixture

If you wish to obtain the specific volume of a mixture, it is necessary to use another

approach, since the procedure above works only for pure substances. This time, use one

of the units and specify the stream into the unit. The calculation will tell you the specific

volume.

Find the specific volume of a mixture consisting of 630 kmol/h of carbon monoxide,

1130 kmol/h of water, 189 kmol/h of carbon dioxide, and 63 kmol/h of hydrogen at 1

atm and 500 K. The specific volume is the solution to the Redlich–Kwong equation of

state, Eq. (2.8).

Step 1

(1) Start Aspen Plus and choose Template; OK.

(2) When a window appears, choose General with Metric Units.

(3) In the Run Type (lower right-hand corner), choose Flowsheet.

(4) Click OK when the Aspen Plus engine window appears. (This last step is specific to

your installation.)

Figure 2.6. Aspen Plus window showing pure component property analysis.
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Step 2 If the bottom of the screen does not show the units, use the View/Model Library

pull-down menu or press the F10 key.

(1) In the tabs at the bottom, choose Pressure Changes.

(2) Click on the Compressor.

(3) Click on the flow sheet, and a compressor appears.

Step 3 To add the input and output streams, click on Material Streams (lower left-hand

corner), click on the flowsheet and drag a stream to the red arrow that is input to the com-

pressor unit and click. Next, click the red arrow coming out and drag the stream away and

click, giving Figure 2.7. Note: To make changes in the location of the streams or units, you

can click on the arrow just above the Material Stream button. You can toggle back and

forth between the arrow and Material Stream in the lower left corner as you improve

the presentation of your flowsheet. When the flowsheet is showing, click on Material

Streams. If any red arrows show in the flowsheet, it means that the unit is not properly

connected; an input or output stream is necessary. Fix that before proceeding – you

may have placed your cursor incorrectly when you drew the streams.

Figure 2.7. Flowsheet for single compressor.
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Step 4 Click on the glasses. This will bring up a menu to the left of the screen. The red

boxes indicate that you still need to supply information. Start at the top and work down,

turning the red boxes into blue boxes by filling in the forms. In the list on the left, choose

Component/Specifications (see Figure 2.3). Type in the names or formulas of each chemi-

cal. If Aspen Plus does not recognize a chemical, a window appears that allows you to

search again, and the program will suggest a number of possibilities. When the com-

ponents are completely specified, it is important that you have an entry for every chemical

in the column labeled ‘Component name’. The first column is what you are naming the

chemicals, but the third column is what Aspen Plus uses when it gets physical properties.

If that column is blank, the program will not work.

Step 5 In the list on the left, choose Property/Specifications. In property method, scroll

down to get RK–Soave (see Figure 2.4). To eliminate the red ‘pair parameters,’ open the

window and click on the designated (recommended) data set.

Step 6 In the list on the left, choose Streams by double-clicking on it. Inside that

folder are two or more folders, one for each stream. Choose the input stream, click on

it, and insert the temperature, pressure, and flow rate in units you choose, as shown in

Figure 2.8. You can specify the units for input numbers, thus avoiding having to do

unit conversions yourself.

Step 7 In the list on the left, choose Blocks, then B1 (or whatever you have named your

compressor). Choose Specifications, and choose Type: isentropic; insert the discharge

pressure, as shown in Figure 2.9. (For this problem, you will use the inlet stream; thus

you can put in any discharge pressure you want, as long as it is above the inlet pressure.)

Step 8 Choose the at the top. Notice in Figure 2.9 that there are two of these

showing – choose either one. If the input is incomplete, a window will appear to notify

you and direct you to the missing data. If the input is complete, a window will appear

to notify you of that, too. Click on the button to make it perform the calculation. This

will cause the calculation of the process (here one unit) to proceed. Once the calculations

finish (read the error messages, if any), click the Results box (lower one) to return to the

Figure 2.8. Setting stream information.
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regular menu. Then look at Results/Streams. The stream data will appear in tabular form

as shown in Table 2.1.

Step 9 You can obtain the specific volume by dividing the volumetric flow rate by

the molar flow rate, 46449/2012 ¼ 40.98 m3/kmol. To obtain Table 2.1 in spreadsheet

format, place your cursor in the upper-left cell of the Stream table, copy down to the

lower-right cell, copy, and paste into Excel. You can also have the Stream Table copied

to the flowsheet, and it can be copied from there as a picture.

Your report of the results should explain what problem you have solved and how you

solved it (focus on the chemical engineering information rather than the detailed step-by-

step process on each screen), describe how you checked your results, and give the results.

In this case you took a stream of specified composition, pressure, and temperature, sent it

to a compressor, and obtained the data shown in the Table 2.1. The type of thermodynamic

Figure 2.9. Setting compressor information.

TABLE 2.1. Stream Information for Compressor Problem

Temperature, 8C 226.85 619.601

Pressure, bar 1.01325 7.09275

Vapor fraction 1 1

Mole flow, kmol/h 2012 2012

Mass flow, kg/h 46448.67 46448.67

Volume flow, m3/h 82443.57 21067.61

Enthalpy, MMkcal/h 296.44524 289.59337

Mole flow, kmol/h
CO 630 630

Water 1130 1130

CO2 189 189

H2 63 63
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option must be specified (here Redlich–Kwong) and justified (depending upon your

level of expertise in chemical engineering). You might assume that Aspen Plus did the

calculation correctly, but you can also review the results to see if they are reasonable.

CHAPTER SUMMARY

You have solved a very simple problem to find the specific volume of a pure component

or a mixture using three methods: Excel, MATLAB, and Aspen Plus. Excel is readily

available, and easy to use. MATLAB is a bit more difficult for beginners because it

uses files, which require data transfer. It is extremely powerful, though, and is needed

for other classes of problems. With both Excel and MATLAB, you must look up the

critical temperature, critical pressure, and perhaps the acentric factor of each chemical.

You then must carefully and laboriously check your equations, one by one.

When you use Aspen Plus, the parameters are stored in a database, and the calculations

are pre-programmed. Your main concern is to use the graphical user interface (GUI)

correctly. Aspen Plus is extremely powerful and is needed for other classes of problems.

For using all three programs, you want to compare at least some of the calculations

with experimental data, to verify that the type of thermodynamics you have chosen is

appropriate to the physical case you are solving.

PROBLEMS

2.1. Find the molar volume of ammonia gas at 56 atm and 450 K using the Redlich–

Kwong equation of state, Tc ¼ 405.5 K, pc ¼ 111.3 atm, a ¼ 4.2527, b ¼ 0.02590;

units of a and b correspond to v in l/g mol. (1) Use Excel; (2) use MATLAB;

(3) use Aspen Plus with the RK–Soave thermodynamic option.

2.2. Find the compressibility factor of ammonia gas at conditions from 50 to 250 atm and

400 K using the Redlich–Kwong equation of state in Excel. (Hint: Before beginning

your spreadsheet, think about how you can organize it so that you can copy formulas

from cell to cell easily.)

2.3. Consider the following mixture going into a water–gas shift reactor to make

hydrogen for the hydrogen economy. CO, 630 kmol/h; H2O, 1130 kmol/h;
CO2, 189 kmol/h; H2, 63 kmol/h. The gas is at 1 atm and 500 K. Use Excel

(or MATLAB) to compute the specific volume using: (1) ideal gas law; (2)

Redlich–Kwong equation of state; and (3) Redlich–Kwong–Soave equation of

state. The acentric factors for the RK–Soave method are:

CO, 0:049; H2O, 0:344; CO2, 0:225; H2, �0:22:

Where did you get the other data you needed? How do the three answers compare? Is

the gas ideal or not? Comment. Then redo the calculations for a pressure of 200 atm

and comment on the results.

2.4. Consider a mixture of 25 percent ammonia, and the rest nitrogen and hydrogen in a

1:3 ratio. The gas is at 270 atm and 550 K. Use Excel (or MATLAB) to compute the

specific volume using: (1) ideal gas law; (2) Redlich–Kwong equation of state; and
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(3) Redlich–Kwong–Soave equation of state. Where did you get the data you

needed? How do the three answers compare? Is the gas ideal or not? Comment.

2.5. Find the molar volume of methanol gas at 100 atm and 3008C using the Redlich–

Kwong equation of state, Tc ¼ 512.6 K, pc ¼ 79.9 atm, a ¼ 3.023, b ¼ 0.04561;

units of a and b correspond to v in l/g mol.

2.6. Consider the following mixture that is coming out of a methanol reactor: CO,

100 kmol/h; H2, 200 kmol/h; methanol, 100 kmol/h. The gas is at 100 atm and

3008C. Compute the specific volume using: (1) ideal gas law; (2) Redlich–Kwong

equation of state; and (3) Redlich–Kwong–Soave equation of state. The acentric

factors for the RK–Soave method are: CO, 0.049; H2, –0.22; methanol, 0.559.

Where did you get the other data you needed? How do the three answers

compare? Is the gas ideal or not? Comment.
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3
VAPOR–LIQUID EQUILIBRIUM

Have you ever driven past a refinery and wondered what happens in those tall towers?

Some of them are distillation towers that are used to separate a mixture of chemicals

into two or more streams, each a relatively pure stream of one of the chemicals. The phys-

ical process governing that separation is vapor–liquid equilibrium. It has been estimated

that 10 percent of the energy used commercially in the United States is used in distillation.

Thus, it is important to make this process as efficient as possible.

Take a mixture of two or more chemicals in a temperature regime where both have a

significant vapor pressure. The composition of the mixture in the vapor is different

from that in the liquid. By harnessing this difference, you can separate two chemicals,

which is the basis of distillation. To calculate this phenomenon, though, you need to

predict thermodynamic quantities such as fugacity, and then perform mass and energy bal-

ances over the system. This chapter explains how to predict the thermodynamic properties

and then how to solve equations for a phase separation. While phase separation is only one

part of the distillation process, it is the basis for the entire process. In this chapter you will

learn to solve vapor–liquid equilibrium problems, and these principles are employed

in calculations for distillation towers in Chapters 6 and 7. Vapor–liquid equilibria pro-

blems are expressed as algebraic equations, and the methods used are the same ones as

introduced in Chapter 2.

FLASH AND PHASE SEPARATION

Suppose you put some water in an open pan on the stove, initially at room temperature.

The partial pressure of water in the air (at equilibrium) will equal the vapor pressure

of water at that temperature. Now heat the pan. The vapor pressure increases, since it

Introduction to Chemical Engineering Computing, by Bruce A. Finlayson
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increases as the temperature rises, and thus the partial pressure of water also increases. If

the partial pressure of water at the pan temperature exceeds the partial pressure of water in

the room (usually set by the humidity), the water will evaporate.

Next, imagine doing the same thing with a mixture of two chemicals in a closed vessel.

The closed vessel is one with a piston that can move so the pressure inside remains con-

stant. The two chemicals have different boiling points, and different vapor pressures at a

given temperature. As you increase the temperature of the vessel, the relative amount of

each chemical in the vapor changes, because one is more volatile than the other. At temp-

eratures below the bubble point, Tbubble, the mixture is entirely a liquid. At temperatures

above the dew point, Tdew, the mixture is entirely a vapor. At temperatures in between,

both liquid and vapor co-exist. The composition of the liquid and vapor are not the

same, however. Thus, as you gradually increase the temperature from a low value,

some vapor forms, and this vapor is richer in the more volatile component. As the temp-

erature increases further, more and more vapor forms. Finally, as the last drop of liquid

evaporates, all the material is in the vapor phase, which has the same composition as

the original liquid. However, between the bubble point and dew point, the composition

of the liquid and vapor are changing as the temperature increases, and it is this change

that you need to calculate.

There is another scenario that, unfortunately, is purely imaginary. In that scenario, as

the temperature increases, chemical one evaporates completely when the temperature

reaches its boiling point. As the temperature increases further, the boiling point for the

second chemical is reached, and it all evaporates. You wish it did happen this way!

Despite the fact that in real life the separation of the two chemicals is never complete

in either liquid or vapor phase, it is still a useful phenomenon and forms the basis for

distillation.

This chapter looks first at equations governing an isothermal flash, and then shows how

you can predict the thermodynamic quantities you need to solve the isothermal flash

problem. The problems are all sets of algebraic equations, and you can solve these pro-

blems using Excelw and MATLABw. The chapter then addresses more complicated

vapor–liquid separations, but now using Aspen Plusw because of its large database.

ISOTHERMAL FLASH – DEVELOPMENT OF EQUATIONS

Consider the flow sheet shown in Figure 3.1. Suppose you know the temperature, pressure,

and overall composition of the inlet stream. The mole fractions of the chemicals in the

Figure 3.1. Flash phase separator.
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inlet are called {zi}. In the phase separator, however, the liquid and vapor are separated.

The mole fraction of the chemicals in the vapor phase are called {yi} and those in the liquid

phase are called {xi}. When the vapor and liquid are in equilibrium, you can relate the

mole fractions of each chemical in the vapor and liquid by the equation:

yi ¼ Kixi (3:1)

The members of the set {Ki} are called K-values, and they can be predicted from thermo-

dynamics, as shown below. For now, though, assume that you know their values.

To derive the equation governing the phenomenon, you first sum the mole fractions of

vapor and liquid over all components.

XNCOMP

i¼1

yi ¼ 1,
XNCOMP

i¼1

xi ¼ 1 (3:2)

Then, subtract those two equations:

XNCOMP

i¼1

yi �
XNCOMP

i¼1

xi ¼ 0 (3:3)

Next, substitute the equilibrium expression and rearrange to obtain:

XNCOMP

i¼1

Kixi �
XNCOMP

i¼1

xi ¼ 0 or
XNCOMP

i¼1

(Ki � 1)xi ¼ 0 (3:4)

Next, make a mass balance for each component over the phase separator. F is the total

molar flow rate, V is the molar flow rate of the vapor, and L is the molar flow rate of

the liquid. The mole balance is then

ziF ¼ yiV þ xiL and F ¼ V þ L (3:5)

Divide by F and define v0 as the fraction of the feed that is vapor:

zi ¼ yiv
0 þ xi(1� v0), v0 ¼

V

F
(3:6)

By using the equilibrium expression again, you can write this as

zi ¼ Kixiv
0 þ xi(1� v0) ¼ (Ki � 1)xiv

0 þ xi (3:7)

Solve for the mole fractions in the liquid:

xi ¼
zi

1þ (Ki � 1)v0
(3:8)
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Put that expression into Eq. (3.4) to obtain the final equation:

XNCOMP

i¼1

(Ki � 1)zi

1þ (Ki � 1)v0
¼ 0 (3:9)

This is called the Rachford–Rice equation. Notice that, if the K-values and inlet compo-

sitions {zi} are known, this is a nonlinear equation to solve for v
0. Thus, you can apply here

the same methods used with Excel and MATLAB in Chapter 2. Once the value of v0 is

known, you can calculate the value of the liquid compositions, {xi}, and vapor compo-

sitions, {yi}, using Eqs. (3.1) and (3.3). The mole balance is then complete.

Example Using Excel

Suppose you have a mixture of hydrocarbons in the inlet stream. You want to find the frac-

tion of the stream that is vapor and the mole fraction of each chemical in the vapor and

liquid streams. Table 3.1 shows the flow rates and K-values at 1808F and 70 psia, using

a basis of one mole per unit of time.

To solve this problem, prepare the spreadsheet as shown in Table 3.2.

Step 1 ‘Term1’ is the numerator in Eq. (3.9) and ‘term2’ is the denominator, and these

are calculated in columns D and E.

Step 2 The ratios of term1 over term2 are calculated and put into column F; this column

is summed in cell F9, which represents Eq. (3.9).

TABLE 3.2. Spreadsheet for Flash Example

A B C D E F G H

1 v ¼ 0.425837

2

3

4 zi

Phase

Equilibrium

K-value

term1 ¼

(Ki2 1)zi

term2 ¼

(Ki2 1)vþ 1

Ratio ¼

term1/term2 xi yi

5 Propane 0.1 6.8 0.58 3.4699 0.1672 0.0288 0.1960

6 n-Butane 0.3 2.2 0.36 1.5110 0.2383 0.1985 0.4368

7 n-Pentane 0.4 0.8 20.08 0.9148 20.0874 0.4372 0.3498

8 n-Octane 0.2 0.052 20.1896 0.5963 20.3180 0.3354 0.0174

1 f(v) ¼ 8.2719E-07 0.9999996 1.0000005

TABLE 3.1. Mole Fractions and K-values for Vapor–Liquid Example

Mole Fraction Phase Equilibrium K-value

Propane 0.1 6.8

n-Butane 0.3 2.2

n-Pentane 0.4 0.8

n-Octane 0.2 0.052

1
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Step 3 You can then use Goal Seek to make the Rachford–Rice equation (cell F9) zero

by changing the fraction of the feed that is vapor (cell D1), giving the result shown. Once

you find the fraction vapor, the mole fractions in the two phases are easy to calculate using

Eqs. (3.8) and (3.1), and these are included in columns G and H.

How might you check these results?

Step 1 Of course, the most important aspect is to have the correct K-values, which can

only be determined by comparing them with experimental data. The entire calculation

depends upon those K-values.

Step 2 You need the Rachford–Rice equation to sum to zero, which is evident in the

spreadsheet.

Step 3 You can check that the sum of vapor mole fractions equals one, and the sum of

liquid mole fractions equals one.

Step 4 You can also check one term in the Rachford–Rice equation using detailed cal-

culations, and then copy the equation down. This ensures that the formula is correct for all

components.

THERMODYNAMIC PARAMETERS

Where did the vapor–liquid equilibrium K-value come from? It is defined as

Ki ¼
gi f

0
i

fi p
(3:10)

where gi is the activity coefficient, f
0
i is the fugacity of the pure chemical, fi is the fugacity

coefficient in the vapor phase, and p is the total pressure. Most of these quantities can be

calculated using thermodynamics. For example, your thermodynamics textbook derives

the following equation for fugacity of a pure substance:

ln
f

p

� �
¼ �RT

ðp
0

RT

p
� v̂

� �
dp (3:11)

This means that, if you know the p–V–T behavior of a chemical, then you can find the

fugacity by calculating the integral. In this text you do not need to do that, because

Aspen Plus will do it for you. Instead you can either use K-values from the literature or

do the calculations with a process simulator.

The other important parameter in Eq. (3.10) is the activity coefficient. The activity coef-

ficient depends upon the chemicals involved, particularly whether they are polar or not

(have a dipole moment). There are many options:

Option 1 – if the solution is ideal, the activity coefficient is 1.0.

Option 2 – the regular solution theory by Scatchard–Hildebrand works best for

nonpolar compounds and compounds with similar molecular weights, and it may

work for weakly polar compounds.
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Option 3 – the Wilson equation is more robust, and it works for polar compounds and

can handle azeotropes, but not two liquid phases. It requires pair-interaction par-

ameters, which must be determined from data.

Option 4 – the nonrandom two-liquid (NRTL) equation is more robust, and it works for

polar compounds and can handle azeotropes as well as two liquid phases.

Option 5 – the UNIFAC group-contribution method constructs the activity coefficient

out of parameters that have been correlated to specific molecular fragments. It works

in the same cases as the NRTL equation, but UNIFAC can predict activity coeffi-

cients in the absence of specific data provided all the molecular fragments have

been correlated from other data.

Chapter 6 illustrates other options available in Aspen Plus. The trick is to know which

option to choose for your chemical system. Unfortunately, the only way to know for

sure that you have made a good choice is to compare your predictions with experimental

results.

For most of these options, the activity coefficient depends upon the liquid mole frac-

tions, and that means the K-values depend upon the liquid mole fractions, too. Thus,

there is not just one K-value that you can use in the calculations. Instead, one option

is to choose the liquid mole fractions, determine the activity coefficients, then the

K-values and see if the liquid mole fractions changed significantly. If so, you might use

the new values and repeat the process. If this procedure did not work, you would

have to use more sophisticated methods to solve the Rachford–Rice equation using

process simulators such as Aspen Plus.

There is one special case that is easy, however. If the solution is ideal, the activity coef-

ficients are 1.0. If the pressure is low enough (say less than 10 atm), the vapor phase is

essentially an ideal gas. In that case the fugacity coefficient of the vapor is 1.0, too. The

fugacity of the liquid in the standard state is the vapor pressure, too, at low pressures.

With those assumptions, the K-value becomes

Ki ¼
vpi

p
(3:12)

where vpi is the vapor pressure at a given temperature. In this special case, you can find the

K-values knowing the vapor pressure as a function of temperature and the total pressure of

the system. Clearly, light components (lower boiling points) have a larger K than heavy

components (higher boiling points), and thus their K-value will be larger. If two phases

co-exist at equilibrium, at least one of the components needs a K-value greater than 1

and at least one of the other components needs a K-value less than one. Even then two

phases are not guaranteed, and the result depends upon the composition as well as the

K-values.

Example Using MATLAB

You can solve the same problem using MATLAB. First, you define a function that rep-

resents the problem you wish to solve [Eq. (3.9)]. Then, you check the function to

make sure it is correct. Finally, you use the ‘fzero’ function to find the solution. The func-

tion defining the problem is:
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{%vapor-liquid equilibrium}
function y=vpequil(v)
z=[0.1 0.3 0.4 0.2]
K=[6.8 2.2 0.8 0.052] (3.13)

sum1=0.;
for i=1:4

num=(K(i)-1)*z(i)
denom=1+(K(i)-1)*v
sum1=sum1+num/denom

end
y=sum1}

Step 1 Program the function and save it in your working directory as vpequil.m.

Step 2 Issue the command ‘vpequil(0.2)’ in the command window; the output should be:

z=0.1000 0.3000 0.4000 0.2000
K=6.8000 2.2000 0.8000 0.0520
num=0.5800 (3.14)

denom=2.1600
sum1=0.2685
....
ans=0.2415

Calculation with a calculator gives the same answers, so you have verified that the

program is correct.

Step 3 Add semi-colons at the end of each line of the m-file and save it. Solve the

problem by issuing the fzero command in the command

>>fzero(@vpequil,0.2) (3.15)

ans=0.4258

As expected, the result is the same as that obtained using Excel.

Example Using Aspen Plus

Aspen Plus allows you easily to solve this same problem using the Flash2 unit operation.

Step 1 Start Aspen and choose Template; OK.When the window appears, choose General

with English Units. In the Run Type (lower right-hand corner), choose Flowsheet. Click OK

when the Aspen engine window appears. (This last step is specific to your installation.)

Step 2 If the bottom of the screen does not show the units, use the View/Model Library

pull-down menu or press the F10 key. In the units at the bottom, choose Separations, then

click on Flash2.
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Step 3 Click on the flow sheet, and a flash (phase separation) unit appears. To add the

input and output streams, click on Material Streams (lower left-hand corner), click on

the flowsheet and drag a stream to the red arrow that is input to the flash unit. Click on

the red arrows coming out and drag the stream away. Note: To make changes in the

location of the streams or units, you can click on the arrow just above the Material

Stream button. You can toggle back and forth between the arrow and Material Stream

in the lower left corner as you improve the presentation of your flowsheet. When the flow-

sheet is showing, click on Material Streams. If any red arrows show in the flowsheet, it

means that the unit is not properly connected; an input or output stream is necessary.

Fix that before proceeding – you may have placed your cursor incorrectly when you

drew the streams. The result should look something like Figure 3.2.

Step 4 Click on the glasses. This will bring a menu to the left of the screen. The boxes

that are red indicate that you still need to supply information. Start at the top and work

down, turning the red boxes into blue boxes by filling in the forms.

Step 5 In the list at the left, choose Component/Specifications and identify the com-

ponents as you did in Chapter 2 (see Figure 2.3). Type the name or formula of the chemi-

cals. If Aspen Plus does not recognize your chemical, a window appears that allows you to

search again, and it will suggest a number of possibilities. When the components are com-

pletely specified, you should have an entry for every chemical in the column labeled

‘Component name.’ The first column is what you are naming the chemicals, but the

third column is what Aspen Plus uses when it obtains physical properties. If that

column is blank, the program will not work.

Step 6 In the list at the left, choose Property/Specifications and choose the thermodyn-

amic model as you did in Chapter 2 (see Figure 2.4). In property method, scroll down to

get RK–Soave. You also need to tell the computer which database to use for the interaction

Figure 3.2. Flowsheet for Flash2 unit.
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parameters in RK-Soave. Choose one of the options for interaction parameters. The results

shown below use RKSKBV-1 from the SDF table.

Step 7 In the list on the left, choose Streams by double-clicking on it. Inside that folder

are two or more folders, one for each stream. Choose the input stream, click on it, and

insert the temperature, pressure, and flow rates of every chemical, as shown in

Figure 3.3. Note that you can specify the units you would like to use as you put in the

numbers. That way you can use the numbers as given to you, without doing unit conver-

sion yourself.

Step 8 In the list at the left, choose Blocks, then B1 (or whatever you have named your

Flash2 unit), then Input. Choose Specifications, and insert the temperature and pressure of

the unit as shown in Figure 3.4. (For this problem, you can use the same temperature and

pressure as the inlet stream, and regard the unit simply as a phase separator.)

Figure 3.3. Stream information for Flash2 unit.

Figure 3.4. Block information for Flash2 unit.
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Step 9 Choose the at the top. Notice in Figure 3.4 that there are two of these showing –

choose either one. If the input is incomplete, a window will appear to notify you and direct

you to the missing data. If the input is complete, a window will appear to notify you of that,

too. Click on the button tomake it perform the calculation. This will cause the calculation of

the process (here one unit) to proceed. Once the calculations finish (read the errormessages,

if any), click the Results box (lower one) to return to the regular menu. Then look at

Results/Streams. The stream data will appear in tabular form, as shown in Table 3.3. If

you click Stream Table, it will also be reproduced on your flowsheet.

Step 10 For your report, select the sketch of the process by putting your cursor on the

upper-left corner and dragging it to the lower-right corner. Choose Copy, switch to a

word processing program, and choose Paste. Do the same thing with the stream table

by clicking on it. Alternatively, place your cursor in the upper-left cell of the Stream

table, copy down to the lower-right cell, copy, and paste into Excel. Your written report

should include more than the process sketch and stream table. You still need to explain

what problem you have solved and how you solved it, focusing on the chemical engineer-

ing information, not the detailed steps on the computer screen. Describe how you checked

your results, and give the results. In this case, you took a stream of specified composition,

pressure and temperature that was in two phases, separated the gas from the liquid, and

calculated the composition of each phase. Depending on your level of expertise in chemi-

cal engineering, you also need to specify and justify the type of thermodynamic model you

chose. You might assume that Aspen Plus did the calculation correctly, but you also should

look at the results to see if they are reasonable.

From the Table 3.3, you can see that the vapor fraction is 0.419 (compared with 0.426 in

Table 3.2). Since Aspen Plus computed the K-values, it may have used different ones than

you did. You can find out what Aspen Plus used by dividing yi by xi for each component.

The results are: propane, 5.2; n-butane, 2.1; n-pentane, 0.84; n-octane, 0.067. While these

numbers differ slightly from the ones used in Table 3.2, the mole fraction of each chemical

TABLE 3.3. Flash2 Results

Temperature, 8F 180 180 180

Pressure, psi 70 70 70

Vapor fraction 0.418979 1 0

Mole flow, lb mol/h 100 41.89795 58.10205

Mass flow, lb mol/h 7355.297 2587.239 4768.058

Volume flow, cubic ft/h 3865.909 3735.26 130.6492

Enthalpy, MMBtu/h 26.767213 22.262202 24.505011

Mole flow, lb mol/h
Propane 10 7.880996 2.119004

n-Butane 30 18.01565 11.98435

n-Pentane 40 15.09625 24.90375

n-Octane 20 0.90505 19.09495

Mole fraction

Propane 0.1 0.1881 0.03647

n-Butane 0.3 0.429989 0.206264

n-Pentane 0.4 0.36031 0.428621

n-Octane 0.2 0.021601 0.328645
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in the vapor and liquid streams is close. The K-values are also listed in the report (see

Appendix C).

NONIDEAL LIQUIDS – TEST OF THERMODYNAMIC MODEL

In the examples given above, you were either given the K-values or you were told what

thermodynamic model to choose. Usually, that decision is yours to make, and your

results are only as good as your choice. Consequently, it is important to test your

choice, preferably against experimental data. One easy way to do that is to model the

T–xy or p–xy diagram for the vapor–liquid of binary pairs. You can do this easily using

the Property Analysis option in Aspen Plus. Given here are commands that will enable

you to create such diagrams. You may also need to review Appendix C, which has

more detail about Aspen Plus.

Step 1 Start Aspen and choose Template. A window appears; choose General withMetric

Units. In the Run Type (lower right-hand corner), choose Property Analysis. Click OK

when the Aspen engine window appears. (This last step is specific to your installation.)

Step 2 In the list at the left, choose Component/Specifications and enter the names

or formulas of the chemicals. If there is no list at the left, click on the eye glasses or

choose the menu Data/Components. If Aspen Plus does not recognize your chemical, a

window appears that allows you to search again, and it will suggest a number of possibi-

lities. When the components are completely specified, you should have an entry for every

chemical in the column labeled ‘Component name.’ The first column is what you are

naming the chemicals, but the third column is what Aspen Plus uses when it gets physical

properties. If that column is blank, the program will not work.

Step 3 In the list at the left, choose Property/Specifications. Set the property method as

illustrated in Chapter 2 (see Figure 2.4). For this application, scroll down and choose

WILS-2. This option uses an ideal gas, Henry’s law, and the Wilson binary parameters.

Step 4 You also need to tell the computer which database to use for the interaction par-

ameter. Choose one of the options for interaction parameters. The results shown below use

the Wilson-2 binary parameters. Now all the icons on the left should be blue, meaning the

menus are completely filled out. Go back and complete any red menus.

Step 5 In the menus at the top choose Tools/Analysis/Property/Binary. (The binary

option will be grayed out until you do steps two, three, and four.) In the window that

appears, as illustrated in Figure 3.5, choose the following:

Components: select two components

Pressure: set the pressure for a T–xy diagram

or

Temperature: set the temperature for a p–xy diagram

Click Go.

Step 6 A graph will appear showing the result. You can read from this graph, or if you

move the graph slightly, you will find a table behind it, giving tabular values. The
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yx-diagram for ideal thermodynamics is shown in Figure 3.6. This is not a good fit. You

know that ethanol and water form an azeotrope, and the predictions do not give an

azeotrope (where y ¼ x). You should conclude that an ideal solution is not a good thermo-

dynamic model for this system.

Figure 3.5. Data input for binary vapor–liquid diagram.
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Figure 3.6. Ethanol–water vapor–liquid diagram for ideal thermodynamics.
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The results for the Wilson thermodynamics are shown in Figure 3.7, and the

calculations agree with the data. The table (behind the graph in Aspen Plus) also lists

K-values and activity coefficients. When you have good comparison with data, whether

in the form of a T–xy diagram, K-values, or activity coefficients, you have validated a

thermodynamics model for this binary pair. In a process with many chemicals, you may

have to do this for all binary pairs before deciding on the best thermodynamic model.

CHAPTER SUMMARY

In this chapter, you have derived the equations governing phase equilibrium and seen how

the key parameters can be estimated using thermodynamics. You have solved the resulting

problems using Excel, MATLAB, and Aspen Plus. You also learned to prepare a T–xy

diagram as a way of testing the thermodynamic model chosen to represent the

phenomenon.

PROBLEMS

3.1. The following stream is at 100 psia and 1788F. Calculate the fraction that is vapor by
solving the Rachford–Rice equation: (1) using Excel; (2) using MATLAB.

Chemical lb mol/h K-value

Propane 20 3.7

n-Butane 30 1.4

n-Pentane 50 0.6
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Figure 3.7. Ethanol–water vapor–liquid diagram with Wilson binary interaction parameters.
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3.2. (Aspen Plus) A reservoir in Northern Louisiana contains a volatile oil. The reservoir

conditions at discovery were 2468F, 4800 psia. The composition was

Chemical Mole Fraction

Nitrogen 0.0167

Methane 0.6051

Carbon dioxide 0.0218

Ethane 0.0752

Propane 0.0474

Butanes 0.0412

Pentanes 0.0297

Hexanes 0.0138

Heptanes plus 0.1491

You will have to choose how to model the butanes and pentanes: normal? Iso-? You

will also have to choose which chemical to use to model the heptanes plus: heptane?

octane? Use the RK–Soave option in Aspen Plus.

(1) The gas–liquid separator at the surface is at 500 psia, 658F. Find the composition

of the gas and liquid streams and the vapor fraction.

(2) The liquid is taken to the stock tank, which is at 14.7 psia, 708F. Find the vapor

fraction at these conditions.

3.3. The following stream comes out of a distillation tower (described in detail in Chapter

6). It is at 138 psia and 197.58F. If the pressure is reduced (adiabatically) to 51 psia,

what will be the vapor fraction and temperature? (Hint: In Aspen Plus, put a valve

before the Flash2 unit, and reduce the pressure with the valve block.)

Chemical lb mol/h

Propane 1.00

Isobutane 297.00

n-Butane 499.79

i-Pentane 400.00

n-Pentane 500.00

3.4. The following stream comes out of a distillation tower (described in detail in Chapter

6). It is at 36 psia and 141.58F. If the pressure is reduced (adiabatically) to 20 psia,

what will be the vapor fraction and temperature? (Hint: In Aspen Plus, put a valve

before the Flash2 unit, and reduce the pressure with the valve block.)

Chemical lb mol/h

n-Butane 4.94

i-Pentane 396.00

n-Pentane 499.65
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3.5. A stream coming out of an ammonia reactor is at 7008F and 3000 psia. The flow

rates are given below.

Chemical lb mol/h

Nitrogen 143.3

Hydrogen 450.4

Ammonia 221.6

Carbon dioxide 1.8

If the temperature is reduced to 808F in a flash unit, keeping the pressure the same,

determine the flow rate of each species in the vapor and the liquid stream.

3.6. The flow rates out of a methanol reactor are: CO, 100 lb mol/h; hydrogen,

200 lb mol/h; methanol, 100 lb mol/h. This stream is at 100 atm and 3008C.
Cool it to 308C and determine the flow rates of each species in the vapor and

liquid stream.

(1) What are the K-values for the three species at these conditions? A flash separ-

ation (Flash2 in Aspen) is adequate to model the condenser. Using the mole

fractions yi and xi obtained by Aspen Plus for the vapor and liquid respectively,

calculate the K-values, Ki ¼ yi/xi.

(2) Do the simulation for an ideal solution and also for another choice of thermo-

dynamic model (your choice).

(3) Your report should have a flowsheet and give the mass balances. Discuss the

difference between the two cases and why you think one might be better.

How can you find out which is more realistic? Note: The dipole moments of

the three species are: CO, 0.1 debyes; hydrogen, 0 debyes; methanol, 1.7

debyes (Reid et al., 1977).

3.7. The flow rates out of an equilibrium reactor to make hydrogen were: CO, 5.25;

hydrogen, 1095; carbon dioxide, 699; and water, 364.2 (use these as lb mol/h).
Ideally, you could cool the stream and remove all the water. In actuality, you

might not be able to condense all the water, and the water may contain trace

amounts of the other components. This problem challenges you to find out how

much. The outlet from the reactor is at 450 K, 1 atm, and is cooled to 808F, still
at 1 atm.

(1) What are the K-values for the three species at these conditions? A flash separ-

ation (Flash2 in Aspen) is adequate to model the condenser. Using the mole

fractions yi and xi obtained by Aspen Plus for the vapor and liquid, respectively,

calculate the K-values, Ki ¼ yi/xi.

(2) Do the simulation for an ideal solution and also for another choice of thermo-

dynamic model (your choice).

(3) Your report should have a flowsheet and give the mass balances. Discuss the

difference between the two cases and why you think one might be better.

How can you find out which is more realistic?

3.8. Using the Rachford–Rice equation, Eq. (3.9), prove that for two phases to co-exist,

at least one component needs a K-value greater than one and another component

needs a K-value less than one.
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3.9. Model the following vapor–liquid equilbria data of ethyl acetate and water at

760 mmHg using the WilsonRK model in Aspen Plus (Ellis and Garbett, 1960):

x1 y1 T (8C)

0.0006 0.0405 98.85

0.0011 0.1256 96.20

0.0049 0.5910 86.50

0.0086 0.6680 76.20

0.0459 0.7140 70.55

0.1440 0.7025 70.55

0.2690 0.7060 70.50

0.3540 0.7090 70.45

0.4080 0.7090 70.55

0.5140 0.7100 70.50

0.6080 0.7025 70.50

0.6900 0.7070 70.45

0.7750 0.6990 70.50

0.8737 0.7650 71.45

0.9444 0.8650 73.35

3.10. Model the following vapor–liquid equilbria data of ethyl alcohol and ethyl acetate

using the WilsonRK model in Aspen Plus (Murti and Van Winkle, 1959):

x1 y1 T (8C)

0.1260 0.2146 73.82

0.1343 0.2146 73.78

0.2271 0.2960 73.04

0.3128 0.3634 72.50

0.3358 0.3643 72.28

0.5052 0.4803 72.18

0.5441 0.5074 72.35

0.6442 0.5618 72.70

0.6828 0.6092 72.90

0.7850 0.6819 74.14

0.8774 0.7908 75.50

0.9482 0.8924 76.70

3.11. Model the following vapor–liquid equilbria data of acetaldehyde and ethyl alcohol

using the WilsonRK model in Aspen Plus (De Leeuw, 1911):

x1 y1 T (8C)

0.0690 0.2410 30.10

0.2030 0.6530 23.30

0.3160 0.7950 15.90
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4
CHEMICAL REACTION EQUILIBRIUM

Hydrogen can be made for fuel cells by using the water–gas shift reaction. In fact,

hydrogen is made this way every day in oil refineries. The reaction is very fast, and the

effluent from the reactor is close to being in chemical equilibrium. Ammonia is made

by reacting hydrogen and nitrogen, and the effluent from an ammonia reactor is usually

in chemical equilibrium. The ammonia is then used to make fertilizer, which helps

increase food production for the world. Thus, chemical reaction equilibrium is important

for both energy and food production.

This chapter shows how to solve problems involving chemical reaction equilibrium.

The chemical reaction equilibrium gives the upper limit for the conversion, so knowing

the equilibrium conversion is the first step in analyzing a process. The second question,

what the rate of reaction is, can then be answered to decide the volume of the reactor.

This second question, using kinetics, is treated in Chapter 8. Chemical reaction

equilibrium leads to one or more nonlinear algebraic equations which must be solved

simultaneously, and such problems are described in this chapter.

When you take some chemicals that can react and mix them in a vessel, the reaction can

be represented as

A þ B ¼) C þ D (4:1)

If the reaction is reversible, the reverse reaction can also take place.

C þ D ¼) A þ B (4:2)

You can write this as

A þ B () C þ D (4:3)

Introduction to Chemical Engineering Computing, by Bruce A. Finlayson
Copyright # 2006 John Wiley & Sons, Inc.
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If the reaction rate is very fast, then the forward and reverse reactions proceed quickly, and

the ultimate mixture contains all four chemicals, in specific amounts. If you change the

temperature, these amounts may change. Sometimes, in a gaseous reaction changing the

pressure has the same effect. In this chapter, your goal is to predict the composition of

the final mixture, determined by chemical reaction equilibrium.

Of course, the reaction rate may not be infinitely high, and you may use a catalyst to

speed up the reaction. However, even if the reaction rate is increased, you can never go

beyond the composition determined by chemical reaction equilibrium. Here is how to

set up that problem mathematically.

CHEMICAL EQUILIBRIUM EXPRESSION

In thermodynamics courses, you have learned that chemical reaction equilibrium is deter-

mined by the equilibrium constant, which is defined in terms of the change of Gibbs free

energy.

DGo ¼ �RT lnK (4:4)

The Gibbs free energy is tabulated at 298 K for pure components, and it is possible to

extend the Gibbs free energy for a reaction to any temperature using the van’t Hoff

equation:

d lnK

dT
¼

DHo
R

RT2
(4:5)

Here DHR
o is the heat of reaction. When the reaction is

aA þ bB () cC þ dD (4:6)

the equilibrium constant is defined in terms of the activities of the species:

K ¼
acCa

d
D

aaAa
b
B

(4:7)

In the gas phase, the activity is the fugacity, since the activity is the fugacity divided by the

fugacity of the standard state, which is one atmosphere. In turn, you can write the fugacity

as the product of the fugacity coefficient (providing a correction from ideal gas behavior)

times the total pressure times the mole fraction in the vapor phase:

fi ¼ fi pi ¼ fi pyi, where fi ;
fi

pi
(4:8)

The fugacity coefficient can be calculated using the equation of state (Denbigh, 1971,

p. 126):

lnfi ¼

ðp
0

v̂i

RT
�

1

p

� �
dp (4:9)
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When the pressure is less than 10 atm, the gas is usually ideal. From the formula it is clear

that for an ideal gas the integral vanishes. Then lnf ¼ 0 or f ¼ 1. You can use that

assumption and combine all the terms in Eq. (4.7) into Eq. (4.10):

K ¼
y c

Cy
d
D

y a
Ay

b
B

pcþd�a�b (4:10)

Example of Hydrogen for Fuel Cells

As a specific example, consider the water–gas shift reaction that can be used in a chemical

process to make hydrogen for fuel cell applications:

CO þ H2O () CO 2 þ H2 (4:11)

At equilibrium,

K ¼
yCO2

y H2

yCOy H2O

(4:12)

Thermodynamic data give the value of ln K ¼ 5 (or K ¼ 148.4) at 500 K. If you start with

a stoichiometric mixture of carbon monoxide and water, what will the equilibrium com-

position be? In this case, the number of moles remains the same when the reaction

takes place, and you are left with

148:4 ¼
yCO2

y H2

y COy H2O

(4:13)

Step 1 To begin, make a mole balance table (see Table 4.1), with a basis of 1 mol each of

carbon monoxide and water, which then react to equilibrium. Use x to represent the

number of moles reacting, thus giving the values in the table.

Step 2 Put the mole fractions into Eq. (4.13) and simplify:

148:4 ¼
(x=2)(x=2)

½(1 � x)=2�½(1 � x)=2�
¼

x2

(1 � x)2
(4:14)

You can easily solve this equation by taking the square root, giving x ¼ 0.924. In more

complicated cases it would not be possible to solve it so easily. Instead, you would

TABLE 4.1. Solution for Equilibrium of Water–Gas Shift Reaction

Species Start End yi

CO 1 1 2 x (1 2 x)/2

H2O 1 1 2 x (1 2 x)/2

CO2 x x/2

H2 x x/2

Total 2 2 1
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have to solve a nonlinear equation numerically to find the value of x. When there are mul-

tiple reactions, which may also be in equilibrium, there will be several equations to solve

simultaneously. Thus, being able to solve multiple nonlinear equations is useful when

dealing with reactions at equilibrium.

Solution Using Excelw

To solve for the equilibrium in Eq. (4.14) using Excel, you put the equation in one cell, put

a guess of x in another cell, and use Goal Seek or Solver to make the first cell zero

by changing x. Since the total number of moles does not change, you can change

Eq. (4.13) to one involving moles:

148:4 ¼
y CO2

y H2

y COy H2O

¼
(nCO2

=nt)(nH2
=nt)

(nCO=nt)(nH2O=nt)
¼

nCO2
nH2

nCOnH2O

(4:15)

The calculations are conveniently done in a spreadsheet, and the final results are shown in

Table 4.2. Let us see how to construct this spreadsheet.

Step 1 Column B is the initial moles of each species.

Step 2 Column C is computed according to the equation displayed in Column D.

Step 3 Then the equilibrium equation, Eq. (4.15), is calculated in cell C9, according to

the formula displayed in cell D9.

Step 4 Finally, you use Goal Seek to make cell C9 zero by varying cell C8. (The

formulas listed in column D are displayed by entering them in a cell, preceded by the

apostrophe symbol. See Appendix A for more information.)

Once you have prepared the spreadsheet, it is easy to change the conditions, either the

equilibrium constant or the starting moles of various species. For another case, with some

carbon dioxide and hydrogen initially, you get the results shown in Table 4.3. Notice that

you can get more hydrogen by adding water to the initial composition. This is one way to

help the hydrogen economy.

TABLE 4.2. Spreadsheet for Equilibrium of Water–Gas Shift Reaction

1 A B C D E

2 Species Start End Mole Fraction

3 CO 1 0.075861 ¼B3 2 $C$8 0.037931

4 H2O 1 0.075861 ¼B4 2 $C$8 0.037931

5 CO2 0 0.924139 ¼B5 þ $C$8 0.462069

6 H2 0 0.924139 ¼B6 þ $C$9 0.462069

7 Total 2 2.000000 ¼SUM(C3:C6) 1.000000

8 Reacting 0.924139

9 Equilibrium

equation

1.02887E-11 ¼ 148.4 2 C5�C6/(C3�C4)
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Solution Using MATLABw

To solve for the equilibrium in Eq. (4.14) using MATLAB, you create an m-file that will

calculate

f (x) ¼ 148:4 �
x2

(1 � x)2
(4:16)

for any x. Then you use ‘fsolve,’ ‘fzero’ or ‘fminsearch’ to find the x that makes f (x) ¼ 0.

Step 1 Construct an m-file that evaluates the function, given x. The name is ‘equil_eq.m’

and it is listed below. For testing purposes, you leave off the ‘;’ of the commands that

involve computation. Save this function in your desired workspace. (Note that the

values for the ‘in’ parameters have been set arbitrarily for the test.)

% equil_eq
function y=equil_eq(x)
COin=1.1;
H2Oin=1.2;
CO2in=0.1;
H2in=0.2;
Kequil=148.4;
CO=COin-x
H2O=H2Oin-x
CO2=CO2in+x
H2=H2in+x
y=Kequil-CO2*H2/(CO*H2O)

This m-file acts like any function: Give it an x and it comes back with the value of y.

Step 2 To test this function, you evaluate it for a specific value of x. Issue the following

command in the command window:

equil_eq(0.9)

TABLE 4.3. Equilibrium of Water–Gas Shift Reaction with Nonstoichiometric Input

1 A B C D E

2 Species Start End Mole Fraction

3 CO 1 0.011642 ¼B3 2 $C$8 0.003638

4 H2O 1.8 0.811642 ¼B4 2 $C$8 0.253638

5 CO2 0.3 1.288358 ¼B5 þ $C$8 0.402612

6 H2 0.1 1.088358 ¼B6 þ $C$9 0.340112

7 Total 3.2 3.200000 ¼SUM(C3:C6) 1.000000

8 Reacting 0.988358

9 Equilibrium

equation

2.90498E-10 ¼ 148.4 2 C5�C6/(C3�C4)

CHEMICAL EQUILIBRIUM EXPRESSION 45



The result is

CO=0.2000
H2O=0.3000
CO2=1
H2=1.1000
y=130.0667
ans=130.0667

This is the correct answer as determined by manual calculation.

Step 3 Once the check is made, you can add ‘;’ to the end of every line. Note that to test

the function you had to do three things correctly: (1) tell MATLAB the name of the func-

tion (equil_eq); (2) be sure the function was in the working directory (or some place

MATLAB would look); and (3) provide a value of x.

Step 4 To run the problem shown in Table 4.1, you change the function to the following:

% equil_eq
function y=equil_eq(x)
COin=1.;
H2Oin=1.;
CO2in=0.;
H2in=0.;
Kequil=148.4;
CO=COin-x;
H2O=H2Oin-x;
CO2=CO2in+x;
H2=H2in+x;
y=Kequil-CO2*H2/(CO*H2O);

Step 5 You then issue the next two commands to find the answer:

format long
fzero(‘equil_eq’,0.5)
ans=0.92413871189774

As expected, this is the same answer as you found using Excel. The initial concentrations

can be changed, too. Because the check was for various values (not 0s and 1s), you have

checked the code for any set of parameters. In finding the solution, MATLAB will access

the function many times. The strategy for finding the solution is built into MATLAB, but

you need to provide the function name and an initial guess. MATLAB does the rest (the

hard part).

To solve the problem shown in Table 4.3, with different stoichiometry, you can use the

same program. Here the program is changed slightly to illustrate the use of the global

command.
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% equil_eq_global
function y=equil_eq_global(x)
global COin H2Oin CO2in H2in Kequil
CO=COin-x;
H2O=H2Oin-x;
CO2=CO2in+x;
H2=H2in+x;
y=Kequil-CO2*H2/(CO*H2O);

% run equil_eq_global
global COin H2Oin CO2in H2in Kequil
COin=1
H2Oin=1
CO2in=0
H2in=0
Kequil=148.4
x=fzero(‘equil_eq_global’,0.5)

Step 1 Here you use the global command in run_equil_eq_global, set the variables, and

repeat the global command in the function equil_eq_global. Then those variables are

accessible to the function (see Appendix B for additional information).

Step 2 Leave off the ‘;’ in the running program so the data is repeated in the output.

Step 3 When using the global command, you must be sure to use the global command in

the command window (or a run_program that runs in the command window), set the vari-

ables after the global statement, and then repeat the global statement in the function. If you

do not follow these rules, MATLAB will inform you that it was asked for an undefined

variable or function, and give you the m-file and line number where it appears.

Step 4 When you run this program the results are the same as before, which checks your

modification to use the global option. To solve the problem in Table 4.3, you change the

input value in run_equil_eq_global to 1, 1.8, 0.3, and 0.1, respectively. The answer is

x=0.98835845820682

In this case MATLAB could not find a solution when starting from a guess of 0.5. After

some experimentation, using a guess of 0.99 worked and gave the answer provided above.

CHEMICAL EQUILIBRIA WITH TWO OR MORE EQUATIONS

In most real cases, multiple reactions can take place, and several of them may be in equi-

librium at the same time. Then you will have two equations like Eq. (4.14) that depend

upon two variables; you must choose the variables to satisfy both equations. MATLAB

is ideally suited to solving such problems.
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MULTIPLE EQUATIONS, FEW UNKNOWNS USING MATLAB

Suppose you want to solve the following two equations:

10xþ 3y2 ¼ 3

x2 � exp(y) ¼ 2
(4:17)

There are two main ways to solve multiple equations in MATLAB. The first is to use the

‘fsolve’ command. The second way is to use the optimization routines and the ‘fmin-

search’ command. Both are illustrated here.

Method 1 Using the ‘fsolve’ Command

The steps are: create an m-file, check it, call the appropriate MATLAB function, and check

the results.

Step 1 Create an m-file and call it prob2.m.

%filename prob2.m
function y2=prob2(p)
% vector components of p are transferred to x and y for
% convenience in remembering the equation
x=p(1)
y=p(2)
% the components of the two equations are calculated
y2(1) =10*x+3*y*y-3
y2(2)=x*x-exp(y)-2

Step 2 Test the file prob2.m with p(1)¼ 1.5 and p(2) ¼ 2.5. If you tested with values of

1.0 and 1.0 there are several chances for error. For example, if a line is supposed to be x�x

but only x is written, then using a value of 1.0 for x gives the same value for x and x�x and

you will not detect the error. Using the same value for x and y [or p(1) and p(2)] has the

same pitfall: If you inadvertently typed x in place of y in the m-file, then you would not

detect the error with these values.

>>p=[1.5 2.5]
>>feval(‘prob2’,p)
y2=30.75 -11.9325

These values agree with the manual calculations, so the functions are computed correctly.

Now you put ‘;’ after every line in the code in order to suppress the displayed output.

Step 3 From the command mode, you call the ‘fsolve’ program with an initial guess, p0.
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>>p0=[0 0]
>>z=fsolve(‘prob2’,p0)
>>z=-1.4456 -2.4122

Step 4 Because you do not know how accurate the results are, you should check them by

evaluating the function:

>>ans=feval(‘prob2’,z)
ans=-1.0120e-04 5.1047e-06

Method 2 Using the ‘fminsearch’ Function

In MATLAB the ‘fminsearch’ function is used to find the minimum of a function of

several variables. You first create an m-file that calculates the function, and then invoke

the ‘fminsearch’ function to minimize it.

Step 1 To solve the same problem, create a slightly different m-file and call it ‘prob3.m.’

You can do this most easily by opening prob2.m, changing it, and saving it with the new

name ‘prob3.m.’

%filename prob3.m
function y2=prob3(p)
% vector components of p are transferred to x and y for
% convenience in remembering the equation
x=p(1)
y=p(2)
% the components of the two equations are calculated
f1 =10*x+3*y*y-3
f2=x*x-exp(y)-2
y2=sqrt(f1*f1+f2*f2)

Step 2 Check the function as you did before. In fact, because you already checked the

m-file ‘prob2.m’ you only have to check that y2 is calculated correctly from f1 and f2.

The command is invoked by first setting the initial guess (this also sets the length of

the vector of independent variables, i.e. it tells MATLAB how many parameters it has

to adjust):

>>p0=[1.5 2.5]
>>feval(‘prob3’,p0)
f1=30.75
f2=-11.9325
ans=32.984

These values agree with the manual calculations, so the functions are computed correctly.

Step 3 Next, replace the ‘;’ in the m-file and run the problem from an initial guess

of [1 1].
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>>p0=[1 1];
>>xvec=fminsearch(‘prob3’,p0)

The results are

xvec=-1.4456 -2.4121

Step 4 You still do not know how accurate these results are. Check by evaluating the

function after you have removed the ‘;’ from the lines calculating f1 and f2 so that they

will be displayed when the function is called:

>>ans=feval(‘prob3’,xvec)
f1=-1.0120e-04
f2=5.1047e-06

Variations in MATLAB

Step 5 If these values are not small enough, you should reduce the tolerance using the

options variable. The standard tolerance is 1024. To see the effect, though, you must

obtain more significant digits by using the ‘format long’ command:

>>format long
>>options=optimset(‘TolFun’,1e-12)
>>xvec=fminsearch(‘prob2’,p0,options)
xvec=-1.44555236880465 -2.41215834803936

Step 6 To see how well the equations are solved, you take out the ‘;’ from the file

prob3.m and save it.

>>feval(‘prob3’,xvec)
f1=1.4531e-12
f2=-9.0994e-13
ans=1.7145e-12

Thus, you have made the functions zero to at least 10 digits. (The numbers you obtain will

not be identical to these, because the numbers are so small they are corrupted by round-off

error.)

Step 7 To find information about other options, type

>>help fminsearch

which tells you to use the options Display, TolX, TolFun, MaxFunEvals, and MaxIter.

Then

>>help optimset

tells you how to set those parameters.
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CHEMICAL EQUILIBRIA USING ASPEN PLUSw

You can also use the process simulator Aspen Plus to solve chemical reaction equil-

brium problems. It has a huge advantage over Excel and MATLAB: Aspen Plus

contains the Gibbs free energies of many chemicals, and it can calculate them as a

function of temperature. Thus, the data-gathering aspect of the problem is handled

for you. Your job is to compare the results and the predicted K-values with experimen-

tal information.

The reactor module with Gibbs free energy is RGibbs. You can set up the problem in

the same fashion as shown in Chapter 3 (p. 31), except that you choose Reactors, and

then choose the RGibbs reactor. In the example shown in Table 4.4, the NRTL model

is chosen for property evaluation. By using the mole fractions, you can find the equili-

brium constant used, which is 137.5. This is slightly different from the one used in Eq.

(4.14), which makes a slight change in the answer. For the problem illustrated in

Table 4.1, Aspen Plus obtained a CO molar flow rate of 0.076 vs 0.079 using an equili-

brium constant of 148.4. For the problem in Table 4.3 Aspen Plus obtained a CO molar

flow rate of 0.013 vs 0.012 and a hydrogen flow rate of 1.087 vs 1.088. The chief differ-

ence between the calculations is due to the K-value. Aspen Plus predicts that value from

the Gibbs free energy, while the value used in Eq. (4.14) was obtained by reading it off a

graph.

CHAPTER SUMMARY

In this chapter, you have derived the equations governing chemical reaction equilibrium

and seen how the key parameters can be estimated using thermodynamics. You have

solved the resulting problems using Excel, MATLAB, and Aspen Plus. You also learned

to solve multiple equations using MATLAB when there are several reactions in

equilibrium.

PROBLEMS

4.1. Methanol is formed by reacting carbon monoxide with hydrogen. (This might

be an on-board generation of hydrogen for the hydrogen economy.) With the

reaction

CO þ 2H2 () CH3OH (4:18)

the condition at equilibrium is

Kp ¼
pCH3OH

pCOp
2
H2

¼
y CH3OH

y COy
2
H2

1

p2
(4:19)

When the carbon monoxide and hydrogen enter the reactor in a 1 : 2 ratio, find

the equilibrium conversion when the pressure is 50 atm and Kp ¼ 0.0016. First,

use Excel; then use MATLAB to solve the problem.
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4.2. Find the molar flow rates of all species out of an equilibrium reactor when the inlet

values of nitrogen, hydrogen, and ammonia are 1.1, 3, and 0.2. The equilibrium con-

stant is 0.05 at 589 K

Kp ¼
pNH3

p
1=2
N2

p
3=2
H2

¼
y NH3

y
1=2
N2

y
3=2
H2

1

p
(4:20)

for the reaction written as

1
2

N2 þ
3
2

H2 () NH3

Use 220 atm for the pressure. First, use Excel; then use MATLAB.

4.3. A process to make hydrogen uses gas from a reformer; the gas is fed to a reactor

where the water–gas shift reaction takes place [Eq. (4.11)]. Under usual operating

conditions, the stream leaving the reactor is in equilibrium at the outlet tempera-

ture (or close to it). The feed rate to this part of the process is (in lb mol/h), at

1778C and 1.36 atm: CO, 1260; H2, 932; CO2, 140; steam, 1972. The stream goes

to a reactor, and the output of the reactor is in chemical equilibrium at 3778C. The

equilibrium constant at 3778C is 15.6. Find the equilibrium composition leaving

the reactor using (1) Excel; (2) MATLAB; and (3) Aspen Plus with the RGibbs

block.

4.4. Ethyl chloride is made by reacting ethylene with hydrogen chloride:

C2H4 þ HCl () C2H5Cl (4:21)

Start with an equimolar amount of ethylene and hydrogen chloride and determine the

equilibrium composition at 3508F and 250 psig using Aspen Plus.

4.5. Find the equilibrium conversion for a mixture of sulfur dioxide, oxygen, and sulfur

trioxide at 700 K and 2 atm:

(1) Starting mixture of SO2 : O2, 1 : 3, using ideal thermodynamics;

(2) Change to NRTL thermodynamics;

(3) Increase the temperature to 900 K;

(4) Use a starting mixture of SO2 : O2, 1 : 1/2, using NRTL at 900 K;

(5) Discuss the similarities and differences of (1)–(4).

4.6. Ethylene is made by heating ethane at a high temperature. (1) Determine the

equilibrium composition of ethane, ethylene, and hydrogen at 1100 K and 1 atm

using Aspen Plus:

C2H6 () C2H4 þ H2 (4:22)

(2) Add in a second reaction, increase the temperature to 1367 K, and determine the

equilibrium composition:

C2H4 () C2H2 þ H2 (4:23)
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4.7. In a steam reformer, steam is added to methane and two (or more) reactions take

place:

CH4 þ H2O () CO þ 3H2 endothermic

CO þ H2O () CO2 þ H2 exothermic
(4:24)

The composition out of the reformer is based mainly on chemical equilibrium (Marsh

et al., 1994, p. 165). Determine the equilibrium composition under the following

conditions using Aspen Plus. (1) 7508C, 14 bar, steam/hydrogen ¼ 3; (2) 6508C,

14 bar, steam/hydrogen ¼ 2.
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5
MASS BALANCES WITH
RECYCLE STREAMS

Engineers who design and run chemical plants use mass balances to decide which

processes are cost-effective. Chemical engineering students are taught in their first

course to look at the entire system as well as the individual pieces of equipment. If you

know the mass flows of a chemical process, including the input flows and output flows,

you can estimate the economic viability of that process by adding up the selling price

of the products, and subtracting the cost of the raw materials and waste treatment. If

that number is not positive, the process is not cost-effective. You want to find that out

before you have spent too much time designing it. Then you can try to make it economi-

cally viable, perhaps by using another chemical reaction pathway, or a new separation

scheme for purifying the product. Often, the raw material cost is 70 percent of the cost

of the product, which makes the mass balance very useful. Also, mass balances allow

you to find the energy costs in the process, provided you can calculate the enthalpy of

each stream. Since thermodynamics allows you to calculate the enthalpy, you can estimate

the energy cost.

Most processes involve a recycle stream. The reason is that all the reactants do not

react, and businesses cannot afford to throw the rest away. Furthermore, any leftovers

have to be disposed of in an environmentally friendly manner, which costs money.

Thus, engineers take the unreacted reactants and put them back in the start of the

process and try again. This makes the mass balances a little more complicated, and it

leads to iterative methods of solution, which are described in this chapter. The first part

of this chapter uses Excelw to solve mass balances with recycle streams. Situations in

which the energy balances affect the mass balance are treated in Chapters 6 and 7,

because these are best done using a process simulator such as Aspen Plusw.

Introduction to Chemical Engineering Computing, by Bruce A. Finlayson
Copyright # 2006 John Wiley & Sons, Inc.
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MATHEMATICAL FORMULATION

The mathematical formulation of mass balances is really quite easy. This section develops

the equations for three simple units, which you then combine in myriad ways. Once you

can do the mass balance for a simple unit, with the help of Excel you can do the mass

balance for a process combining those simple units. Equations are given here for a

mixer, separator, and reactor, and then those equations are used in Excel to perform

mass balances on processes.

A mixer (called MIXR) adds all the flows in and transfers them to the output stream, as

illustrated in Figure 5.1. The mass (or mole) balance is that the mass out equals the sum of

the masses in. This is true for each chemical component, and hence for the total mass, too.

It is more common to make mole balances, since chemical reactors occur using moles, but

the conversion from mass to moles and back again is easy. The mass balance equations for

the MIXR unit are:

nouti ¼
XNSTRM
j¼1

n
j
i (5:1)

where n
j
i is the flow rate of component i in the jth stream, and ni

out is the flow rate of com-

ponent i in the outlet stream. If you know the flow rates in, you can easily calculate the

flow rates out.

The second unit is a separator, called SEPR. There is one input streams and two (or

more) output streams, as illustrated in Figure 5.2. The split fraction sfi is the fraction of

component i going to the overhead stream. The mass balance for each component i is:

n2i ¼ nini sfi, n1i ¼ nini (1� sfi) (5:2)

If you know the split fractions of each component, and the flow rate in, you can easily

calculate the flow rates out of stream 1 and 2 for each component.

The final unit is a reactor, called REAC, illustrated in Figure 5.3. This time there is only

one input stream and one output stream, but a reaction occurs. Naturally, you need to

MIXR

outni

2
ni

1
ni

3
ni

Figure 5.1. MIXR unit.
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specify the reaction and the conversion in some way. You can specify the reaction using

the stoichiometric equation for the reaction.

aAþ bB �! cCþ dD (5:3)

If N moles of A react, then (b/a)N moles of B also react and form (c/a)N moles of C

and (d/a)N moles of D. You specify the amount reacting by giving a conversion for A

(i.e., 50 percent of the A reacts). The conversion is called a. You do have to be careful

to specify the conversion based on the limiting reagent, which in the illustration is

A. If there were not enough B to react with A, then the conversion of A would be

limited. If it were too high, it would give a negative concentration of B. The equation

for each of the components is

noutA ¼ ninA � ninAa, noutB ¼ ninB �
b

a
ninAa

noutC ¼ ninC þ
c

a
ninAa, noutD ¼ ninD þ

d

a
ninAa

(5:4)

Note in particular that the equations for components B, C, andD depend upon the amount of

A entering, since that is how the conversion is specified.

All these equations can be programmed easily in Excel. It is the combination of them to

represent the mass balances in a process with recycle that becomes challenging. Here are

some examples in which the individual units are combined in an Excel spreadsheet to

make mass balances for an entire (but simple) process.

SEPR

1
ni

ni
in

ni
2

Figure 5.2. SEPR unit.

REAC

outnini
in

Figure 5.3. REAC unit.

MATHEMATICAL FORMULATION 57



EXAMPLE WITHOUT RECYCLE

A stream in a refinery is at 100 psia and 758F and contains the following:

lb mol/h

Propane 100

i-Butane 300

n-Butane 500

i-Pentane 400

n-Pentane 500

Total 1800

Your task is to separate this stream into five streams, each of which is a relatively pure

stream of one component.

Step 1 You need to decide what physical mechanism to use (distillation, absorption,

membranes, etc.) and the operating parameters of the equipment. For the first example,

you can use the SEPR unit above as a simplistic model of any of these units. The chemicals

are listed in order of their boiling points with the lowest boiling points first. Thus, choose

distillation as the preferred separation method and the distillation train (see Figure 5.4)

will distill them off one by one.

Step 2 You can simplify this by taking out all the energy exchange units, as shown in

Figure 5.5.

Water

80  F
o

138
psia

Steam

204  Fo

Water

80  F
o

 51
psia

Steam

138  Fo

Propane i-Butane

Water

80  F
o

 36
psia

Steam

144  Fo

Water

80  F
o

 20
psia

Steam

115  Fo

n-Butane

n-Pentane

i-Pentane

Figure 5.4. Distillation train.
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Step 3 Next, you prepare an even simpler flow sheet, using specified split fractions, as

shown in Figure 5.6. In Chapters 6 and 7 you will learn to estimate those split fractions

and to model the distillation towers more exactly.

Each unit, SEPR-x, involves a simple mass balance in which you specify the fraction of

the feed that you want to go out of the overhead and the bottom streams. You do this for

each species. The calculation proceeds from left to right, and the results are shown in

Table 5.1.

Step 4 No iteration is necessary in this example. The final step is to check the results. You

can add up the input and output streams for each component in each unit and determine that

the mass of each species is conserved. You can also check to see that you used the appro-

priate split fractions. Then, and only then, should you accept the results. This was a very

simple example, so easy that you could have done it on the back of an envelope.

However, if the simple distillation units were replaced by real distillation columns, in

which vapor–liquid data were used, the calculations would have been much more difficult

and time-consuming.

Figure 5.5. Simplistic distillation train.

SEPR-1 SEPR-2 SEPR-3 SEPR-4
1

2

3

4

5

6

7

8

9

Propane                  i-Butane                    n-Butane                      i-Pentane

n-Pentane

Figure 5.6. Distillation train modeled using simple SEPR units.
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EXAMPLE WITH RECYCLE; COMPARISON OF SEQUENTIAL AND

SIMULTANEOUS SOLUTION METHODS

Consider a simple process in which the reactor can only convert 40 percent of the feed to it

(perhaps due to equilibrium constraints), but the separation of reactant A and product B is

complete and the unreacted A is recycled. The process is illustrated in Figure 5.7.

Step 1 One way to solve this problem is to do a sequential solution. You start with the

feed, and solve the mass balance for the mixer, labeled MIXR. Since you do not yet know

the amount of A in stream S5, assume it is zero and go on. Then there is one mole of A fed

to the reactor, 40 percent of it reacts, and the unreacted part is recycled into stream S5.

Step 2 Now repeat the process. This time, when doing a mass balance on the mixer, you

have a value in stream S5, so you can use it. You continue this process, working through

the process over and over. After 20 iterations, the value of A in the recycle when you start

an iteration (1.4999086) is close to the value when you end the iteration (1.4999452). You

can then stop. The solution is shown in Table 5.2; note that some of the rows have been

hidden (see Appendix A).

TABLE 5.1. Recovery Fractions in Distillation Train

Stream No.

1 2 3 4 5 6 7 8 9

Split fraction SEPR-1 SEPR-2 SEPR-3 SEPR-4

C3 0.99 1 1 1

i-C4 0.005 0.995 1 1

n-C4 0 0.005 0.995 1

i-C5 0 0 0.005 0.995

n-C5 0 0 0 0.005

lb mol/h
C3 100 99 1 1 0 0 0 0 0

i-C4 300 1.5 298.5 297 1.5 1.5 0 0 0

n-C4 500 0 500 2.5 497.5 495 2.5 2.5 0

i-C5 400 0 400 0 400.0 2 398 396 2

n-C5 500 0 500 0 500.0 0 500 2.5 497.5

Figure 5.7. Process with recycle and 40 percent conversion per pass.
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Many process simulators use this procedure because it is quite easy to implement. You

only need to have a module or subroutine for a mixer, a reactor, and a separator, and the

equations for each of these are quite simple. One problem that arises, though, is that the

procedure takes many iterations to converge if the conversion is low. And, if there are

interlocking recycle streams, convergence may not occur at all. However, it is quite a

good scheme, and you can apply it using a spreadsheet.

The other solution technique finds an algebraic solution. Look at Table 5.3. Assign a

variable name, R, to the unknown amount of A in stream S5. Work through the same

process once; when you finish, the amount of A in the recycle (which you called R)

must be equal to the amount of A coming out of the last unit and going into the recycle

stream. The equation representing that is

R ¼ 0:6�(1þ R) (5:5)

Solving Eq. (5.5) gives R ¼ 1.5.

The solution is the same as that found with the sequential method, but you obtained it

in one iteration. The only problem is that you had to do it analytically, which is not usually

possible. However, you can write the mass balance equations in a general form and create

a large set of linear or nonlinear equations to be solved simultaneously on the computer.

The difficulty lies in the complexity of the units. The mixer, simple reactor, and simple

separator lead to simple equations, but heat exchangers, distillation units, and plug flow

reactors do not. In return for your work, though, you obtain enhanced convergence

properties, since the simultaneous method will converge when the sequential method

does not. In a later chapter you can examine some of the tricks chemical engineers use

to make the sequential method work more often. First, let us learn to solve problems

with recycle using Excel.

TABLE 5.2. Mass Balance with Recycle, Solved using Sequential Method

Iteration

Number Feed

Recycle

(guess) Into Reactor

Out of

Reactor

Recycle

(at end of

iteration)

1 1 0 1 0.6 0.6

2 1 0.6 1.6 0.96 0.96

3 1 0.96 1.96 1.176 1.176

4 1 1.176 2.176 1.3056 1.3056

5 1 1.3056 2.3056 1.38336 1.38336

10 1 1.4848835 2.4848835 1.4909301 1.4909301

15 1 1.4988245 2.4988245 1.4992947 1.4992947

20 1 1.4999086 2.4999086 1.4999452 1.4999452

TABLE 5.3. Mass Balance with Recycle, Solved using Simultaneous Method

Feed Recycle (guess) Into Reactor Out of Reactor Recycle (at end of iteration)

1 R 1þ R 0.6*(1þ R) 0.6*(1þ R)
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EXAMPLE OF PROCESS SIMULATION USING EXCEL FOR

SIMPLE MASS BALANCES

The next example illustrates the use of Excel to solve mass balances for a process consist-

ing of a feed stream, a mixer in which the feed stream is mixed with the recycle stream,

and a reactor, followed by a separator where the product is removed and the reactants are

recycled. In later examples and problems, there will be inerts, purge streams, and so on,

but this problem uses a stoichiometric feed. The reactor is limited by chemical equilibrium

considerations, which complicates the solution.

The process takes hydrogen and nitrogen (in a 3:1 ratio) to make ammonia. The reactor

is limited by equilibrium; you will prepare the spreadsheet in stages to aid troubleshooting.

Thus, first prepare a spreadsheet as shown in Figure 5.8, using 25 percent conversion per

pass in the reactor.

Step 1 The mixer takes streams 1 and 6, adds them, and puts them into stream 2.

Step 2 Stream 3 is not really a stream but is the moles reacting so the reaction stoichio-

metry is clearly displayed.

Step 3 Cell E14 is set to the negative (for reactants) of nitrogen in stream 2 times the

conversion (in cell E19).

Step 4 Cell E15 is set to three times cell E14 (hydrogen uses three times the nitrogen

reacting), and cell E16 is set to twice the nitrogen in cell E14. In this column, the signs

are negative for reactants and positive for products. The spreadsheet clearly shows that

the stoichiometry is correct.

Step 5 Stream 4 is the sum of streams 2 and 3.

Step 6 Stream 5 takes 98 percent of the ammonia and 0.5 percent of the nitrogen and

hydrogen.

1 B C D E F G H
2
3 6
4
5
6
7
8
9

10
11 3
12
13 1 2 3 4 5 6
14 Nitrogen 100.00 394.09 −98.52 295.57 1.48 294.09
15 Hydrogen 300.00 1182.27 −295.57 886.70 4.43 882.27
16 Ammonia 0.00 4.02 197.04 201.07 197.04 4.02
17 Total 400.00 1580.38 −197.04 1383.33 202.96 1180.38
18
19 Conversion 0.25

Mixer Reactor Separator
1 2 4 5

66

Figure 5.8. Ammonia process with 25 percent conversion per pass in the reactor.
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Step 7 The rest goes out in stream 6. You can easily check the mole balance around the

separator.

Step 8 Turn on the iteration feature for the circular reference and the problem is solved.

EXAMPLE OF PROCESS SIMULATION WITH EXCEL INCLUDING

CHEMICAL REACTION EQUILIBRIUM

Next the reactor conversion is changed to be the equilibrium conversion, which may not be

25 percent. The equilibrium equation is

1

2
N2 þ

3

2
H2 () NH3, Kp ¼

pNH3

p
1=2
N2

p
3=2
H2

¼
yNH3

y
1=2
N2

y
3=2
H2

1

p
(5:6)

The spreadsheet for this case is shown in Figure 5.9. The value of Kp and p are put into

cells F26 and F27, and the mole fractions of the stream coming out of the reactor are

obtained by taking the moles of a species in stream 4 and dividing by the total moles in

stream 4. Those mole fractions can be used directly in the chemical equilibrium equation,

as shown in cell G28. This is simpler than deriving a chemical equilibrium equation invol-

ving the molar flow rates. Notice that, as the conversion changes, the mole balance

changes. This in turn changes the mole fractions, which no longer satisfy the chemical

equilibria equation. Thus, you should use Solver to set F28 to zero by changing cell

E19, where the final result is shown. (Note: Goal Seek did not work for this problem.)�

The only remaining check is to take the final mole fractions and compute the chemical

equilibria equation yourself. If it is satisfied, then you have the correct solution.

EXAMPLE OF PROCESS SIMULATION WITH EXCEL INCLUDING

PHASE EQUILIBRIUM

The next modification you will try allows phase equilibrium in the separator where most

of the ammonia is condensed. For simplicity, though, you should set the conversion per

pass in the reactor to 25 percent Change the separator so that it is a phase separation.

The K-values are: nitrogen, 4.8; hydrogen, 70; ammonia, 0.051; carbon dioxide, 0.32.

(Remember that the symbol K value is used in both chemical reaction equilbria and

phase equilibria, but K represents different things in those two cases.) The flow rates of

nitrogen and hydrogen into the process are 1 and 3 mol per time unit, respectively, but

there is also 0.01 mol per time unit of carbon dioxide. Because of the carbon dioxide,

�When using Excel, sometimes it converges, and sometimes it does not. A simple method to avoid difficulties is to

save the spreadsheet as a backup before turning on iteration. If it does not converge, it might leave entries that are

indefinite or huge. You can then open the saved spreadsheet. Alternatively, when Solver or Goal Seek are being

used, it asks whether you wish to revert to the initial guess; you would choose yes since you cannot begin a

spreadsheet calculation with indefinite numbers in cells. If you are using the spreadsheet with iteration, you

do not have that choice. If you have to start again with indefinite entries, turn off the iteration feature, go to a

cell that has an indefinite entry, cut the equation in the menu bar at the top and paste it right back. The

number zero will appear in the cell. You have to do this for all cells with indefinite entries. Then turn on the

iteration and try again.
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you will add a purge stream as 1 percent of the recycle stream. Follow the structure of the

problem as shown in Figure 5.10.

Now the separator must satisfy the Rachford–Rice equation, Eq. (3.9):

XNCOMP

i¼1

(Ki � 1)zi

1þ (Ki � 1)v0
¼ 0 (5:7)

Once the value of v0 is found that satisfies this equation, the values of mole fraction and

molar flow rates are given by Eqs. (3.1)–(3.8):

xi ¼
zi

1þ (Ki � 1)v0
, yi ¼ Kixi (5:8)

nvi ¼ Vyi ¼ Fv0yi (5:9)

nLi ¼ Lyi ¼ F(1� v0)xi (5:10)

In Eqs. (5.8)–(5.10) zi is the mole fraction of the ith species into the flash unit, Ki is the

K-value for the ith species (often the vapor pressure divided by the total pressure), and

v0 is the fraction of the feed that goes out as vapor (between 0 and 1).

Purge

Product
Inlet Out of mixer Reacting Out of reactor

Mixer Reactor

Separator

Flash 
separator

Figure 5.10. Ammonia process with vapor–liquid equilibria and a purge stream.

1 B C D E F G H
2
3 6
4
5
6
7 6 6
8
9

10
11 1 2 3 4 5
12
13 1 2 3 4 5 6
14 Nitrogen 100.00 134.83 −99.82 35.00 0.18 34.83
15 Hydrogen 300.00 404.48 −299.47 105.01 0.53 104.48
16 Ammonia 0.00 4.07 199.65 203.72 199.65 4.07
17 Total 400.00 543.38 −199.65 343.73 200.35 143.38
18
19 conversion 0.74039096
20 mole fraction out of reactor
21 Nitrogen 0.1018 = F14/$F$17
22 Hydrogen 0.3055 = F15/$F$17
23 Ammonia 0.5927 = F16/$F$17
24 Total 1.0000
25
26 Kp 0.05
27 P 220
28 Equation 5.4056E-07= F26-F23/((F21*F22^3)^0.5*F27)

Mixer Reactor Separator

Figure 5.9. Ammonia Process with equilibrium conversion in the reactor.

64 MASS BALANCES WITH RECYCLE STREAMS



Let us use nitrogen to explain the spreadsheet (Fig. 5.11).

Step 1 The recycle stream (cell D14) is obtained by subtracting the purge from the

product out of the separator. Set cell D14 to: ¼ H142 J14.

Step 2 The stream out of the mixer (cell E14) is the sum of the inlet stream and recycle.

Set cell E14 to: ¼ C14þD14.

Step 3 The amount reacting is the conversion times E14. Set cell F14 to: ¼ E14 � E20.

Step 4 The stream out of the reactor is what came in minus what reacted. Set cell G14

to: ¼ E14þ F14.

Step 5 The stream as recycle out of the separator uses Eq. (5.9). Set cell H14

to: ¼ $H$20 � $G$18 � J23.

Step 6 The product stream is the difference. Set cell I14 to: ¼ G142H14.

Step 7 The purge stream is 1 percent of the stream. Set cell J14 to: ¼ 0.01�H14. These

formulae are copied down, except for column F, in which the amount of hydrogen reacting

and ammonia formed are determined as multiples of the amount of nitrogen reacting. The

total row (18) is the sum of the flow rates of the components.

Next, consider how the vapor–liquid equilibrium is solved.

Step 8 The mole fractions going into the flash unit are the ones coming out of the reactor.

For example, cell C23 uses ¼ G14/$G$18.

Step 9 Term1 and term2 are calculated as shown, and the ratio is calculated. The sum,

cell H27, should be zero.

1 B C D E F G H I J
2
3
4
5

Purge

6
7
8
9

10
Product

11 Inlet Out of mixer Reacting Out of reactor
12 Recycle out of Product out of
13 Inlet Recycle Out of mixer Reacting Out of reactor fl. separator fl. separator Purge
14 Nitrogen 100.00 270.60 370.60 −92.65 277.95 273.33 4.62 2.7333
15 Hydrogen 300.00 1956.19 2256.19 −277.95 1978.24 1975.95 2.29 19.7595
16 Ammonia 0.00 114.70 114.70 185.30 300.00 115.87 184.13 1.1587
17 CO2 1.00 3.76 4.76 0.00 4.76 3.80 0.96 0.0380
18 Total 400.00 2341.49 2741.49 −185.30 2560.95 2365.15 191.04 23.6515
19
20 Conversion 0.25 v= 0.925028796
21 term1= term2=
22 zi K-value (Ki-1)zi (Ki-1)v+1 Ratio xi yi
23 Nitrogen 0.1085 = G14/$G$18 4.8 0.412429 4.515109425 0.091344 0.024038 0.115382
24 Hydrogen 0.7725 = G15/$G$18 70 53.299971 64.82698692 0.822188 0.011916 0.834104
25 Ammonia 0.1171 = G16/$G$18 0.051 −0.111170 0.122147673 −0.910125 0.959036 0.048911
26 CO2 0.0019 = G17/$G$18 0.32 −0.001264 0.370980419 −0.003407 0.005010 0.001603
27 Total 1.0000 f(v)= 0.000000 1.000000 1.000000

Mixer Reactor

Separator

Flash
separator 

Figure 5.11. Mass balance for ammonia process with vapor–liquid equilibria.
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Step 10 The liquid mole fractions, cells I23–I26, and vapor mole fractions, cells

J23–J26, are calculated using Eq. (5.8). They are summed to check that they add up to

1.0. They will add up to 1.0 only when the proper vapor fraction is found, that is,

f (v0) ¼ 0, in cell H27.

Step 11 You can use Solver to set cell H27 to zero by varying cell H20, the vapor

fraction. As Excel changes v0, the values in rows 23–27 change, and these in turn

cause changes in rows 14–18 because they depend upon the vapor mole fractions.

Unfortunately, Solver cannot find a solution, but you can vary v0 yourself to find the

solution.

Did Iterations Converge?

In this example, you have two iterations – one because of the circular reference due to the

recycle streams and one because of the nonlinear Rachford–Rice equation. Some compu-

ter programs cannot handle both of these complications together. Neither Goal Seek nor

Solver worked for this example, and you iterated the vapor fraction by hand.

Step 1 In effect you used the spreadsheet to do the molar balances, and you set v0 your-

self. The spreadsheet shows the value of f (v0) for your choice of v0, but it does the molar

balance anyway.

Step 2 If f (v0) is not zero, you can change v0 and do it again.

Repeat You keep this up until f (v0) is small enough to satisfy you. Once you are close,

Solver should have no problem converging to a tight tolerance. What you are doing is

replacing a problem with two iteration loops with a problem in which you supply one

of the numbers, and the computer solves the other iteration loop. Then you change your

number until the other equation is satisfied.

Extensions

Ideally you would have calculated the equilibrium in the reactor, too. Then you would

have three interacting iterations, and it would be the rare problem that Excel could

solve. The difficulty is that, during the iterations, the values may be physically unrealis-

tic. Then, the equilibrium relation or the Rachford–Rice equation gives even more unrea-

listic values. Programs such as Aspen Plus can realize this and take precautionary steps to

avoid it. As the flow sheet gets more and more complicated, and involves more and more

thermodynamics, the power of Aspen Plus is welcome. See Chapters 6 and 7 for

examples.

CHAPTER SUMMARY

In this chapter you learned how to write the mass balance equations for simple units and

then combine them into a complicated process topology. You saw that there were two

methods to solve these equations, and Excel used essentially the sequential method
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because of the circular reference. You learned to handle several complications: recycle

streams, chemical reaction equilibrium, phase equilibrium, and purge streams.

CLASS EXERCISES

Divide into teams of two to four students. Work through a spreadsheet (Tables 5.1 and 5.2,

and Figs. 5.8, 5.9, and 5.11), with each person of a team taking a unit, showing where the

parameters are for that unit and checking the results. Are they correct? Work through the

whole process. Alternatively, your instructor can prepare a flowsheet and dataset showing

the results, but with some errors for your team to find.

CLASS DISCUSSION

What happened to the mass balances when you introduced a purge stream? (You can run it

without carbon dioxide, too.) What happened to the mass balances when vapor–liquid

equilibrium was required? Did the ratio of nitrogen to hydrogen in the recycle stream

change? Why or why not? What if you had to solve the Rachford–Rice equation in the

separator, the chemical equilibrium equation in the reactor, and set the purge fraction to

maintain a maximum mole fraction of carbon dioxide in the inlet to the reactor. Could

you do that all in Excel? Would it converge? Speculate.

PROBLEMS

5.1. The process for making benzene is described below and illustrated in Figure 5.12, and

you are to make mass balances of it using Excel. (Hydrocarbon Processing, 1975; 54,

p. 115; Otani et al., 1968.)

The process converts toluene to benzene and xylenes by disproportionation (also

called transalkylation). The xylenes also disassociate to form toluene and trimethyl-

benzene. These reactions occur with a catalyst in the presence of hydrogen, with a

typical ratio of 7:1 hydrogen to toluene feed to the reactor. The hydrogen also

reacts with toluene to form benzene and methane or with xylenes to form benzene

and methane. The molar consumption of hydrogen is about 10 percent of that of

toluene.

Mixer Reactor Splitter

Splitter

Splitter Splitter Splitter

Toluene
recycleMethane

Hydrogen recycle
Benzene

Makeup 
hydrogen

Toluene
Tri-methylbenzene

Xylenes

Figure 5.12. Benzene process.
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The reactions and their conversion per pass are:

2C7H8
toluene

() C6H6
benzene

þ C8H10
xylenes; 58% conversion=pass

(5:11)

2C8H10
xylenes

() C7H8
toluene

þ C9H12
trimethylbenzene; 1% conv=pass

(5:12)

C7H8
toluene

þ H2
hydrogen

() C6H6
benzene

þ CH4
methane; 0:14% conversion=pass

(5:13)

C8H10
xylenes

þ 2H2
hydrogen

() C6H6
benzene

þ 2CH4
methane; 28% conversion=pass

(5:14)

The output from the reactor contains all the components, and the hydrogen and

toluene are recycled, the methane is removed from the process, and the benzene

and xylenes are removed from the process. The vapor pressures of the components

at 208C are: benzene, 75 mmHg; toluene, 22 mmHg; xylenes, 4.8–6.6 mmHg;

trimethylbenzene, 1.1 mmHg. A separation system is used that removes the hydrogen

and methane first, then separates the benzene, then the toluene, and then the tri-

methylbenzene. The hydrogen and methane should be somewhat separated (to

recover the hydrogen, which is recycled) and the tolune is recycled. In the separators,

use splits of 99.9 percent of the light component out of the top and only 0.1 percent of

the next heavier component. Use splits of 100 percent for components lighter than the

light key and 0 percent for components heavier than the heavy key. Use Goal Seek or

Solver to adjust the hydrogen makeup feed to insure the proper amount of hydrogen

enters the reactor (necessary for the catalyst).

5.2. Revise the process modeled in Problem 5.1 using split fractions of 99 and 1 percent

instead of 99.9 and 0.1 percent in all the separators. How do the total flows change?

Would the equipment have to be larger? Would it cost more? Does the separation cost

less? Answer these questions qualitatively now; when you finish your chemical

engineering studies you will be able to answer them quantitatively.

5.3. Ethyl chloride is manufactured in an integrated process; see Figure 5.13 (Stirling,

1984, p. 72). Complete a mass balance for this process using Excel.

Ethane reacts with chlorine to make ethyl chloride and hydrogen chloride, and ethyl-

ene reacts with hydrogen chloride to form ethyl chloride.

C2H6 þ Cl2 () C2H5Clþ HCl (5:15)

C2H4 þ HCl () C2H5Cl (5:16)

Mixer Reactor Splitter

Splitter

Reactor Splitter Mixer

Chlorine

Ethylene 
and ethane

Ethyl chloride

Purge

Figure 5.13. Ethyl chloride process.
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The process is fed with three streams: ethane, ethylene, and chlorine. The ethane and

ethylene streams have the same molar flow rate, and the ratio of chlorine to ethane

plus ethylene is 1.5. The ethane/ethylene stream also contains 1.5 percent acetylene

and carbon dioxide. (For this problem, just use 1.5 percent carbon dioxide.) The

feed streams are mixed with an ethylene recycle stream and go to the first reactor

(chlorination reactor) where the ethane reacts with chlorine with a 95 percent conver-

sion per pass. The product stream is cooled and ethyl chloride is condensed and sep-

arated. Assume that all the ethane and ethyl chloride go out in the condensate stream.

The gases go to another reactor (hydrochlorination reactor) where the reaction with

ethylene takes place with a 50 percent conversion per pass. The product stream is

cooled to condense the ethyl chloride, and the gases (predominately ethylene and

chlorine) are recycled. A purge or bleed stream takes off a fraction of the recycle

stream (use 1 percent). Complete the mass balance for this process.

5.4. Vinyl chloride monomer is the raw material for making polyvinyl chloride (PVC),

which is produced in large quantities. When PVC was invented (as a highly elastic

polymer by a University of Washington graduate, Waldo L. Semon, patent

no. 1,929,435), the vinyl chloride was made by reacting acetylene with hydrogen

chloride. A process which uses cheaper raw materials is now used (Cowfer and

Gorensek, 1997), and a simplification of it is given in Figure 5.14. Prepare a mass

balance for this process using Excel.

Chlorine and ethylene are fed to a direct chlorination reactor where the reaction

C2H4 þ Cl2 () ClC2H4Cl (5:17)

takes place with essentially 100 percent conversion of the limiting reagent. The selec-

tivity to ethylenedichloride is 99 percent with the main byproduct (and the only one

considered here) being 1,1,2-trichloroethane. Ethylene and oxygen are mixed with a

hydrogen chloride recycle stream and sent to an oxychlorination reactor, where the

reaction

C2H4 þ 2HClþ 1
2
O2 () ClC2H4Clþ H2O (5:18)

takes place with a conversion of 96 percent for ethylene and ethylenedichloride selec-

tivities of 95 percent. Here you can assume the byproduct is all 1,1,2-trichloroethane.

The output from the direct chlorination reactor is sent to a distillation tower where the

Oxychlor.
reactor

Splitter Splitter

Direct chl.
reactor

Splitter Furnace Splitter Splitter

Vinyl chloride

HCl HCl
Ethylene
oxygen

Ethylene
chlorine

Light gases

water
EDC

EDC

Figure 5.14. Vinyl chloride process.

PROBLEMS 69



heavy components are distilled off. The light components are sent to a furnace where

a pyrolysis reaction takes place:

2C2H4Cl2 ¼) 2C2H3Clþ 2HCl (5:19)

The feed to the furnace must be very pure (99.5 percent ethylenedichloride) to

achieve good cracking. The output is quenched. The liquid is the vinyl chloride

product and the vapor is hydrogen chloride, which is recycled to the oxychlorination

reactor. The output from the oxychlorination reactor is cooled to remove the liquid

(mostly water). A vent is used to remove light gases. The remainder goes to a distilla-

tion column where ethylenedichloride is the heavy component (and is sent to the

furnace) and the light components are recycled to the oxychlorination reactor. The

feed to the oxychlorination reactor uses a slight excess of oxygen and ethylene to

ensure that all the hydrogen chloride reacts. The feed to the direct chlorination

reactor is stoichiometric.

5.5. Modify Problem 5.4 using air instead of oxygen as the feed to the oxychlorination

reactor. Make a mass balance of the revised process.

5.6. Synthetic ethanol is made by vapor-phase hydration of ethylene, as shown in

Figure 5.15. Make a mass balance of this process using Excel.

C2H4 þ H2O �! C2H5OH (5:20)

Water and ethylene are mixed with a recycle stream and sent to a reactor where the

reaction in Eq. (5.20) takes place (5 percent conversion per pass). The ethylene feed is

97 percent ethylene but also contains acetylene (2.9 percent) and inert gases (0.1

percent). The acetylene reacts with water, too, forming acetaldehyde (50 percent

conversion per pass).

C2H2 þ H2O �! CH3CHO (5:21)

The reactor effluent is cooled to remove the liquids (ethanol, acetaldehyde, water).

The gases (ethylene, acetylene, and inert gases) are recycled, but a purge stream is

needed to remove the inert gases.

Assume perfect splits. Adjust the fraction purged to keep the ratio of inert gas to

ethylene in the stream fed to the reactor at 0.04, and feed enough water to the

process to make the molar ratio of water to ethylene 0.6 in the stream into the

reactor. Separate the liquids into relatively pure component streams, first removing

Mixer Reactor Splitter

Splitter

Splitter Splitter Splitter

Water

Ethylene plus

Purge

Water Water

Acetaldehyde 93% ethanol

Figure 5.15. Ethanol process.
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60 percent of the water, then the acetaldehyde, then purifying the ethanol to 93

percent by removing water. (Hint: This problem has two constraints. In Excel you

can use Goal Seek or Solver to satisfy one of them and adjust the other variable

yourself, followed by another use of Goal Seek or Solver. Repeat this process until

both constraints are satisfied.)

5.7. Consider a process to make acetaldehyde by dehydrogenation of ethanol over a silver

catalyst (Aguiló and Penrod, 1976), as illustrated in Figure 5.16.

The following design constraints must be satisfied:

(1) Ethanol decomposes to form acetaldehyde and hydrogen,

C2H5OH �! C2H3OHþ H2 (5:22)

(2) The equilibrium limit is about 35 percent conversion per pass, so that a recycle

stream is necessary;

(3) Acetaldehyde reacts to form a number of side-products, including ethyl acetate,

acetic acid, and butanol; only ethyl acetate is considered here,

C2H3OH �! 1
2
C2H5�CO�OCH3 (5:23)

(4) The conversion per pass is about 2 percent for the reaction in Eq. (5.23);

(5) The reactor effluent must be separated to remove hydrogen;

(6) The acetaldehyde must be separated;

(7) The ethyl acetate and water must be removed;

(8) Ethanol must be recycled.

Make a mass balance using Excel with the following separations:

(1) 99 percent of the hydrogen and 0.1 percent of the other components go out of the

overhead of the first splitter;

(2) 99 percent of the acetaldehyde, 100 percent of the hydrogen, and 0.5 percent of

the other components go out of the overhead of the second splitter;

(3) 99 percent of the ethanol and 1 percent of the other components go out of the

overhead of the third splitter.

Mixer Reactor Splitter Splitter Splitter

Hydrogen

Water

Acetaldehyde

Ethanol recycle

Ethyl acetate

Ethanol

Figure 5.16. Acetaldehyde production by dehydrogenation of ethanol.
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6
SIMULATION OF MASS TRANSFER
EQUIPMENT

Mass transfer is one subject that is unique to chemical engineering. Typical mass transfer

problems include diffusion out of a polymer to provide controlled release of a medicine,

diffusion inside a porous catalyst where a desired reaction occurs, or a large absorption

column where one chemical is transferred from the liquid phase to the gas phase (or

vice versa). The models of these phenomena involve multicomponent mixtures and

create some tough numerical problems.

In Chapters 3 and 5 you have already seen separations achieved with flash units, where

the pressure is lowered and the vapor and liquid output have different compositions. Such

separation works when the chemicals have widely differing boiling points, or are other-

wise easy to separate. When that is not the case, engineers must use distillation. Other

phenomena used for separation include absorption, liquid–liquid extraction (moving a

chemical from one liquid phase to another, with immiscible liquids), and adsorption

(used for identification in chromatography and for separation in chemical plants). This

chapter provides simple examples of some of those processes. Your courses in mass

transfer, separations, thermodynamics, and design study these processes in greater

detail. In addition, mass transfer involving diffusion and flow (like in microfluidic

devices) is covered in Chapters 10 and 11.

When modeling mass transfer equipment, there are two key points to remember:

(1) thermodynamics is important; and (2) convergence is difficult. The corollary is

that you have to compare your thermodynamic predictions with experimental data.

Also, you may start with ideal thermodynamics and obtain a solution. This solution can

then be used as the initial guess when the thermodynamic model is more realistic.

Process simulators do not always work, so you need to be flexible about how you approach

a problem.

Introduction to Chemical Engineering Computing, by Bruce A. Finlayson
Copyright # 2006 John Wiley & Sons, Inc.
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THERMODYNAMICS

The subject of thermodynamics has already been addressed in Chapters 2 and 3. You saw

that for high pressures it was necessary to go beyond the perfect gas law, and the activity

coefficient of the liquid was a very important parameter. In Aspen Plusw there are many

options, and it is your job to pick the ones that are relevant to your problem. A few of the

choices are described here. The key decisions you must make are (1) what model to use for

the vapor phase activity coefficient and (2) what model to use for the liquid phase activity

coefficient. The Help/Physical Property Methods/Choosing a Property Method menu

gives advice about which thermodynamic model is recommended for different appli-

cations. The Guidelines for Choosing a Property Method and Guidelines for Choosing

an Activity Coefficient Method are sub-menus that outline decision trees to guide your

choice.

The options for the vapor phase are relatively easy. Some of them are used in Chapters

2 and 3, because once you choose an equation of state, the vapor phase activity coefficient

can be determined. The options for the activity coefficient of the gaseous phase are: ideal

gas, Redlich–Kwong or Redlich–Kwong–Soave, Peng–Robinson, plus a few specialized

ones (i.e., HF hexamerization and Hayden–O’Connell).

In the liquid phase, the simplest option is an ideal liquid, with an activity coefficient

equal to 1.0. That choice leads to Raoult’s law, which may suffice for similar chemicals.

Other models include regular solution theory using solubility parameters (although not in

Aspen Plus), NRTL, Electrolyte NRTL, UNIFAC, UNIQUAC, Van Laar, and Wilson.

Characteristics of the models are:

. The Electrolyte NRTL is especially suited for acid gas adsorption, which includes the

removal of carbon dioxide and hydrogen sulfide from a gas stream. Refineries routi-

nely use this process when making hydrogen. This is also one way of capturing

carbon dioxide from a power plant to capture and sequester it.

. The UNIFAC model is a group contribution method that allows the model parameters

to be estimated using the molecular structure of each chemical. When experimental

data is not available, this is the only method that can be used.

. The UNIQUAC model uses binary parameters, which must be determined from

experimental data. Once found, however, the same parameters can be used in multi-

component mixtures of three or more chemicals.

. Both UNIFAC and UNIQUAC can be used when two liquid phases or azeotropes are

present.

. The Van Laar options are less recommended in Aspen Plus; they are simpler to use

than the others, but less successful in general. In Aspen Plus the ease of use is imma-

terial since someone else has created the program.

. The Wilson equation is an option if there is only one liquid phase, and it does handle

azeotropes.

Chapter 6 of the Aspen Plus manual gives a flow chart to help you pick the model to use

for your system. The decisions you have to make are

Polar or nonpolar?

Electrolyte or nonelectrolyte?
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Real or pseudocomponents?

Pressure less than 10 bar or greater than 10 bar?

Interaction parameters available?

One or two liquid phases?

Vapor phase association?

Degree of polymerization?

This sounds pretty daunting, and it is. Fortunately, the Aspen Plus manual does give some

hints on useful choices for particular applications, some of which have been developed

especially for the application. A few of them are:

Oil and Gas Production (OIL GAS) – Peng–Robinson with Boston–Mathias a

function (PR-BM) or Redlich–Kwong–Soave with Boston–Mathias a function

(RKS-BM).

Refinery, medium pressure (Refinery) – Chao–Seader, Grayson, Peng–Robinson,

Redlich–Kwong–Soave.

Refinery, hydrogen-rich applications (Refinery) – Grayson, Peng–Robinson, Redlich–

Kwong–Soave.

Gas processing, hydrocarbon separations (GASPROC) – Peng–Robinson with

Boston–Mathias a function (PR-BM), Redlich–Kwong–Soave with Boston–

Mathias a function (RKS-BM), Peng–Robinson, Redlich–Kwong–Soave.

Gas Processing, acid gas absorption (Chemical and Electrol) – electrolyte NRTL.

Petrochemicals, aromatics and ether production (Petchem) – Wilson, NRTL,

UNIQUAC.

Chemicals, phenol plants (Chemical) – Wilson, NRTL, UNIQUAC.

Chemicals, ammonia plant (Chemical) – Peng–Robinson, Redlich–Kwong–Soave,

SR-Polar (Schwartzentruber–Renon).

Chemicals, inorganic chemicals (Chemical and Electrol) – electrolyte NRTL.

Coal processing, combustion (Coalproc) – Peng–Robinson with Boston–Mathias a

function (PR-BM), Redlich–Kwong–Soave with Boston–Mathias a function

(RKS-BM), or the combustion databank.

With all these choices, and limited knowledge of your system, you will likely want to

use the recommended options and make predictions of vapor–liquid equilibrium using

Aspen Plus in order to compare those predictions with experimental data. Chapter 3

presented an example of such a comparison for the ethanol–water system.

EXAMPLE: MULTICOMPONENT DISTILLATION WITH

SHORTCUT METHODS

Consider a single distillation column, as shown in Figure 6.1. Short-cut methods have been

developed that allow you to see the splits that can be achieved at different pressures, with

different reflux ratios, and with a different number of stages. It is often useful to do a short-

cut distillation calculation first, before doing the more rigorous plate-to-plate calculations,
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because the preliminary calculations give you an idea of what is reasonable. The methods

are based on the relative volatility of the chemicals, and require you to identify two

components that will be essentially separated (to the extent you specify). If you line up

all the components in the order of their boiling points, and draw a line between two of

them, the more volatile component is called the light key and the less volatile component

is called the heavy key.

For this example, you choose the first column in the process shown in Figure 5.4. In

Aspen Plus you use the module DSTWU for the shortcut method; you also use

RK–Soave as the physical property method, because it is a good one for hydrocarbons.

The feed is 100 lb mol/h propane, 300 lb mol/h i-butane, and the other chemicals as

listed in Table 6.1, at 138 psia and 758F. The column operates at 138 psia with a reflux

ratio of 10 (a wild guess initially, confirmed because the column worked). Remember,

the minimum number of stages goes together with infinite reflux, so if your column

does not work, increase the reflux ratio.

First, you specify the split you would like. To do this, you need the concept of a light

key and heavy key. First, line the chemicals up in order of their boiling points, from low to

high. (Note: This illustration assumes that the thermodynamics are ideal, so Raoult’s law

applies.) Because you are using distillation, if most of the propane is to go out in the top

stream, a little of the i-butane will, too; very small fractions of the other species will go out

in the top stream. You want most of the i-butane to go out of the bottom. Thus, you draw a

line between propane and i-butane in Table 6.1. The component above the line is the light

key and the component below the line is the heavy key. The distillation column is based on

those two components, and the other components are split according to thermodynamics,

Figure 6.1. Distillation column.

TABLE 6.1. Identification of Light and Heavy Key

Chemical Boiling Point (8C) at 1 atm

Propane 242.1

i-Butane 211.9

n-Butane 20.5

i-Pentane 227.9

n-Pentane 236.1
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as described below. In this case, propane is the light key, and you want 99 percent of it to

go out in the top stream; i-butane is the heavy key, and you want 1 percent of it to go out in

the top stream.

Mathematical Development

Although you have Aspen Plus to do the calculations, it is instructive to see what equations

are being used. First, you need the relative volatility of the light key to the heavy key,

which is determined by thermodynamics alone (using the K-values):

aLK ¼
KLK

KHK

, ai ¼
Ki

KHK

(6:1)

Then, use the Fenske equation (Fenske, 1932).

(aLK)
Sm ¼

rLK

1� rLK

� �
1� rHK

rHK

� �
(6:2)

where Sm ¼ minimum number of stages, ri ¼ recovery fraction of the ith component,

rLK ¼ recovery fraction of light key component, and rHK ¼ recovery fraction of heavy

key component.

Since you specify the fraction of the light and heavy keys, you can use the Fenske

equation to obtain the minimum number of stages. Once the minimum number of

stages is determined, you can find the splits of the other components from Eq. (6.3):

(ai)
Sm ¼

ri

1� ri

� �
1� rHK

rHK

� �
(6:3)

The next step is to solve the Underwood equation (Underwood, 1932) for the variable w:

q(1� F ) ¼
X
i

aini,F

ai � f
(6:4)

where q ¼ 0 represents a saturated vapor feed, q ¼ 1 represents a saturated liquid feed,

ni,F ¼ feed flow rate of the ith component, and F ¼ total feed flow rate, ¼
P

i ni,F .

This is a nonlinear equation with one unknown, which is a class of problems you know

how to solve from Chapter 2. Then, you calculate the minimum vapor flow rate using

Eq. (6.5):

Vmin ¼
X
i

aini,D

ai � f
, ni,D � ni,F

Vmin ¼ Rmin þ D

(6:5)

where Vmin ¼ minimum vapor flow rate, ni,D ¼ distillate flow rate of the ith component,

Rmin ¼ minimum reflux rate, D ¼ distillate flow rate, R ¼ reflux ratio ¼ reflux rate/D,
Rm ¼ minimum reflux ratio ¼ Rmin=D, and vapor rate ¼ reflux rateþD.
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Note in this description the words ‘reflux rate’ and ‘reflux ratio.’ They are different, and

you need to be careful to use the right one, since using too small a reflux rate could make

your column not work. Finally, you use the Eduljee version (Eduljee, 1975) of the

Gilliland correlation (Gilliland, 1940) [Eq. (6.6)] to find the actual number of stages.

This equation correlates data on roughly one-hundred distillation columns. You must

specify either the reflux ratio (R) or number of stages (S) in order to use this equation.

S� Sm

Sþ 1
¼ 0:75 1�

R� Rm

Rþ 1

� �0:5668
$ %

(6:6)

In this entire process, only one equation could not be solved analytically, Eq. (6.4). In

order to solve the problem, you needed the K-values of the chemicals (or vapor pressures),

the flow rates of the feed stream, the thermal condition of the feed stream, the desired split

for the light and heavy keys, and either the number of stages or the reflux ratio. The

equations then find the splits of all the other components, the minimum number of

stages, the minimum reflux rate, and the actual number of stages needed to achieve the

desired split. These last three items are very useful when using a more rigorous method

of calculation, as shown below.

If the relative volatility varies from the top to the bottom of the column, you can use the

geometric mean of the values at the top and bottom (Seader et al., 1997, pp. 13–35):

a ¼ (atopabottom)
1=2 (6:7)

Winn (1958) developed another way to handle this problem with a correlation for the rela-

tive volatility, which is used by Aspen Plus. Additional details about shortcut methods are

available in King (1980) and Perry’s Chemical Engineers’ Handbook (Perry and Green,

1997).

You can use Aspen Plus to solve this problem using the DSTWU block, which stands

for DiSTillation-Winn-Underwood.

Step 1 The flowsheet is Figure 6.1, and you enter the components and feed conditions in

the usual manner. (See other examples in Chapters 2–5 and Appendix C.) The thermodyn-

amics model chosen is the Refinery, Chao–Seader option. The parts specific to the distil-

lation column are the block parameters. Shown in Figure 6.2 is the screen where you select

the block parameters. You choose the light and heavy keys (propane and i-butane), the

splits desired (99 and 1 percent), the pressure of the column (138 psia), a total condenser,

and the desired number of stages (10).

Step 2 Figure 6.3 shows the solution with stream information. You can check parts of

this output. Look first at the mole balances. Indeed, 99 percent of the propane and 1

percent of the i-butane went out in the top stream. The other components are heavier,

and you would expect them to be split in such a way that only a small fraction goes out

through the overhead stream; this is indeed the case. You also get the bubble points of

the distillate and bottom product: 82.08F for the distillate and 200.98F for the bottom

product. These are close to the values shown in Chapter 5, which should give you confi-

dence in the thermodynamics used in the calculations.
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Step 3 You also want to know the parameters of the distillation column, which are

obtained by choosing the block for the column and then clicking on the Results tab,

giving Figure 6.4. Note that the minimum number of stages is 12.9, the minimum

reflux ratio is 2.93, the actual reflux ratio is 3.44, and the actual number of stages is

25.8. In this case, your guess of 10 stages was too small and the program modified it

for you. If you had entered 26 stages, the program would have used exactly 26 stages.

You could have specified the reflux ratio instead, and Aspen Plus would compute the

number of stages. For reflux ratios of 3.44, you had 26 stages. A reflux ratio of 5 requires

only 19.1 stages, and a reflux ratio of 10 requires only 15.5 stages. For this split the

minimum number of stages is 12.9 and the feed is on the thirteenth stage (from the top).

Note that the ratio of reflux ratio to minimum reflux ratio is 3.44/2.93 ¼ 1.17, which is

a common and economical one. However, during the energy crisis in the 1970s, engineers

found that a ratio of 1.1 was more economical, although the distillation tower was harder

to control. This is one of the choices (number of stages or reflux ratio) that you will make

as a chemical engineer that affect the economics of the process. The cost of the column and

the heating and cooling cost must be examined to find the minimum cost. In this case, the

Figure 6.2. Block input information for DSTWU block.

Figure 6.3. Multicomponent distillation with DSTWU.
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reboiler duty is 11.5 � 106 Btu/h and the condenser duty is 2.93 � 106 Btu/h. Since
heating is more expensive than cooling, the major operating cost is the cost of the

steam to heat the reboiler. If energy is selling for $6/million Btu, you will have an oper-

ating cost for this column of $69/h, or about $610,000/year.
Your choice of thermodynamic model does make a difference. Table 6.2 shows results

from three simulations, all with exactly 26 stages, using different models. The results

differ, which is why it is so important to verify your choice of thermodynamic model

by comparison with experimental data.

Difficulties can arise: If you misidentify the light and heavy key (say reversing them),

you may get a negative number of stages. If you identify a light and heavy key that has

another component that boils between them, that other component will be split in some

way, which may not meet your desired specifications. If the thermodynamics is nonideal

and the boiling points are not sufficient to guarantee the volatility (i.e., activity coefficients

are important), then you may specify the light and heavy key correctly according to their

boiling points, but the simulation may act as if they were not specified correctly.

MULTICOMPONENT DISTILLATION WITH RIGOROUS

PLATE-TO-PLATE METHODS

The short-cut distillation method gives reasonable answers to straightforward problems,

but distillations can have multiple feed streams or multiple product streams. There

Figure 6.4. Block results for DSTWU block.

TABLE 6.2. Comparison of Different Thermodynamic Models

Thermodynamic Model RK–Soave RKS-BM Refinery/Chao–Seader

Minimum no. stages 10.1 13.4 12.9

Minimum reflux ratio 1.40 3.03 2.93

Actual reflux ratio 1.56 3.62 3.42
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might even be azeotropes within the column. To handle complications like that, and to

obtain better accuracy, you will want to use a rigorous plate-to-plate method that takes

a vapor stream and liquid stream, equilibrates them, and sends off a vapor and liquid

stream with different compositions. This is what happens on each plate, or tray, on the

column. Such a method is a large computational problem, and it requires the number of

plates, trays, or stages to be specified in advance. A good starting point is the number

of stages suggested by the short-cut method.

The next simulation is for the same column, but using the RadFrac block in Aspen Plus.

The feed is the same, the pressure is 138 psia, and the Refinery/Chao–Seader property
method is used. This example uses 26 stages, and you run Aspen Plus to see what the

split is. (Notice that you cannot easily set the split and find the number of stages or

reflux ratio needed to achieve it.) Set the reflux ratio to 3.44 and enter the feed on the

thirteenth stage.

The output is shown in Table 6.3 and Figure 6.5, and only 86 percent of the propane goes

out in the top stream; along with 4 percent of the i-butane. The condenser is at 808F and has

a heat duty of –2.94 � 106 Btu/h, and the reboiler is at 199.58F and has a heat duty of

11.5 � 106 Btu/h. Above the feed, the flow rate varies between 283 and 344 lb mol/h,
and below it, the flow rate varies between 2998 and 3097 lb mol/h. While DSTWU

assumes the same number of moles on each plate or tray, RadFrac calculates what actually

occurs. To see the flow rates on each stage, choose the block, then Profiles.

Since the desired separation is not achieved, you must run the problem again with 26

stages and a higher reflux ratio; choose 5. This time 94.2 lb mol/h of propane goes out in

the top stream. Increasing the reflux ratio to 7.5 gives 98.2 lb mol/h of propane, and a

reflux ratio of 10 gives 99.2 lb mol/h of propane.

The results for a reflux ratio of 10 are given in Table 6.4. The separation is slightly

better than required. This, of course, changes the temperatures of the condenser and

TABLE 6.3. StreamTable forMulticomponent Distillation with RadFrac, Reflux Ratio 5 3.44

Mole flow lb mol/h
Propane 100 85.80379 14.19621

i-Butane 300 12.31199 287.688

n-Butane 500 1.883926 498.1161

i-Pentane 400 0.000257 399.9997

n-Pentane 500 4.61 � 1025 500

Mole fraction

Propane 0.055556 0.858038 0.008351

i-Butane 0.166667 0.12312 0.169228

n-Butane 0.277778 0.018839 0.293009

i-Pentane 0.222222 2.57 � 1026 0.235294

n-Pentane 0.277778 4.61 � 1027 0.294118

Total flow, lb mol/h 1800 100 1700

Total flow, lb/h 115843.6 4608.785 111234.8

Total flow, cubic ft/h 3126.01 147.3943 3489.477

Temperature, 8F 75 80 199.5242

Pressure, psi 138 138 138

Vapor fraction 0 0 0

Liquid fraction 1 1 1
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reboiler because they are at the bubble points of the mixtures, and these change with

composition. The condenser is at 808F with a heat duty of 27.0 � 106 Btu/h, and the

reboiler is at 2018F with a heat duty of 15.6 � 106 Btu/h. Above the feed stream, the

flow rate varies between 793 and 1000 lb mol/h, and below it the flow rate varies

between 3500 and 3600 lb mol/h. The error was reduced on successive iterations, from

61, 14, 9.2, to 0.83, when the program stopped.

EXAMPLE: PACKED BED ABSORPTION

If a gas contains a contaminant you would like to remove, one way of doing this is to bring

the gas into contact with a liquid that can absorb it; this is often done in an absorption

column, as illustrated in Figure 6.6. Here you take an air stream containing acetone at

a concentration of 2 percent; you want to lower its concentration to 0.4 percent

using water in a column. In Aspen Plus, you can use RadFrac. The only difference

Figure 6.5. Multicomponent distillation with RadFrac, reflux ratio ¼ 3.44. (a) Condenser; (b)

reboiler.
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from distillation towers is that you will not have a condenser or reboiler, and there are two

inputs, one at each end. Before making that model, you have to decide on an appropriate

thermodynamic model. Figure 6.7 shows experimental data, along with the predictions of

Aspen Plus using the Wilson-2 thermodynamic model, which is Wilson with an ideal gas.

The fit is not perfect, but it is acceptable for your purpose.

TABLE 6.4. Multicomponent Distillation with Radfrac, Reflux Ratio 5 10

Mole flow, lb mol/h
Propane 100 99.20709 0.792907

i-Butane 300 0.743919 299.2561

n-Butane 500 0.048985 499.951

i-Pentane 400 3.01 � 1026 400

n-Pentane 500 5.37 � 1027 500

Mole fraction

Propane 0.055556 0.992071 0.000466

i-Butane 0.166667 0.007439 0.176033

n-Butane 0.277778 0.00049 0.294089

i-Pentane 0.222222 3.01 � 1028 0.235294

n-Pentane 0.277778 5.37 � 1029 0.294118

Total flow, lb mol/h 1800 100 1700

Total flow, lb/h 115843.6 4420.774 111422.9

Total flow, cubic ft/h 3126.01 144.4282 3500.062

Temperature,8F 75 80 200.7896

Pressure, psi 138 138 138

Vapor fraction 0 0 0

Liquid fraction 1 1 1

Solid fraction 0 0 0

Enthalpy, Btu/lb mol 269471.48 252010.89 265438.33

Enthalpy, Btu/lb 21079.461 21176.511 2998.4053

Enthalpy, Btu/h 21.25E � 108 25201089 21.11 � 108

Figure 6.6. Absorption column.
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Use a 12-stage column and have the air stream enter on stage 12 and the water stream

enters on stage 1, as shown in Figure 6.8. (The stages are numbered from the top.) The feed

streams are both taken as 808F and 15 psia. Table 6.5 shows the feed rates of the air and

water stream.

Acetone has been transferred from the air stream to the water stream, and the mole

fraction of the air stream leaving is 0.33 percent. Notice also that the air, which was

dry on entering, is now wet, with water vapor forming about 3.4 percent of the gas

stream. A small amount of air is dissolved in the water, too. In a complete system, of

course, the water effluent is taken to another column where the acetone is removed, and

the water is recycled. Then the water stream is saturated with air and contains some

acetone as well.

Figure 6.8. Absorption column parameters in Aspen Plus.

Figure 6.7. Vapor–liquid diagram for acetone–water.
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EXAMPLE: GAS PLANT PRODUCT SEPARATION

Consider the gas plant product separation process described in Figure 5.4. The pressures in

the units have been chosen so the overhead streams can be cooled with cooling water at

808F. Thus, the designer looked at the vapor pressure of each component before fixing

the pressures. The temperatures of the reboilers are basically at the bubble point of the

bottom stream, and this will be an output of the computer program.

Use Aspen Plus and model each distillation column using the DSTWUmodel as shown

in Figure 6.9. First, specify the split of key components: for the light component you want

99 percent out of the top and for the heavy component you want 1 percent out of the top.

The other components will be split according to the Fenske equation [Eq. (6.3)].

Choose the thermodynamic property method as Refinery/Chao–Seader. Choose the

pressures of the columns to agree with with the gas plant in Figure 5.4. Each column

has 26 stages, and the temperatures shown in Table 6.6 are the result of thermodynamics

predicted with Aspen Plus. They are very close to those listed in Figure 5.4.

Aspen Plus also gives information such as the number of stages, minimum reflux

ratio, and heat duties in the reboiler and condenser. With the information shown, engin-

eers can calculate the capital cost of the equipment (sometimes using rules of thumb to

account for instrumentation, pumps, valves, etc.). At least some of the operating cost,

the raw material cost and product value, and the cooling and heating cost can also be

calculated. For distillation towers at normal temperatures, the heating cost per unit of

energy is about 10 times the cooling cost when using cooling water. If refrigeration is

used to cool the condensers, that energy cost is even more expensive than the cost of

TABLE 6.5. Acetone Removal Stream Table

Mole flow lb mol/h
Acetone 3.527396 0 0.610603 2.916793

Water 0 176.3698 6.07332 170.2965

Air 172.8424 0 172.5983 0.244157

Total flow, lbmol/h 176.3698 176.3698 179.2822 173.4574

Total flow, lb/h 5208.746 3177.352 5141.682 3244.415

Total flow, cubic ft/h 69485.12 51.3116 70568.4 52.53542

Temperature,8F 80 80 79.51011 58.69392

Pressure, psi 14.7 14.7 14.7 14.7

Vapor fraction 1 0 1 0

Liquid fraction 0 1 0 1

Figure 6.9. Gas plant separation in a distillation train.
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steam. Experienced designers know that, and that is why the pressures are chosen so that

cooling water can be used in the condensers. The conditions of the columns are given in

Table 6.7.

CHAPTER SUMMARY

This chapter introduced you to the many thermodynamic models available in Aspen Plus.

The equations for short-cut distillation were summarized, and the Aspen Plus was used to

solve a variety of distillation problems, with either short-cut methods (DSTWU) or plate-

to-plate methods (RadFrac). You also learned how to solve gas absorption problems using

Aspen Plus.

CLASS EXERCISE

Divide into groups of two to four students. Work through each of the examples, with each

person in the team taking a unit, showing where the parameters are for that block and

checking the results. (1) Tables 6.3 and 6.4 and Figure 6.5; (2) Figure 6.8 and

Table 6.5; (3) Tables 6.6 and 6.7. Alternatively, your instructor can prepare a flowsheet

and dataset showing the results, but put in some errors for your group to find.

PROBLEMS (USING ASPEN PLUS)

6.1. Model column B2 in Figure 6.8 using a short-cut, DSTWU block. The inlet stream

has a temperature of 138.78F, pressure of 51 psia, and molar flow rates as shown

in Table 6.6.

6.2. Model column B2 in Figure 6.8 using a detailed model, RadFrac. (Hint: Use the

results from Problem 6.1 to choose key operating parameters.) Prepare a report com-

paring the output when using DSTWU and RadFrac to model the distillation column.

What information was needed for each? How do the results compare?

6.3. (1) Model column B3 in Figure 6.8 using a short-cut, DSTWU block. (2) Then model

the same column using RadFrac. How do the results compare?

TABLE 6.7. Conditions in Distillation Columns in Gas Plant Separation

Column B1 B2 B3 B4

Minimum reflux ratio 2.93 9.5 1.9 7.9

Actual reflux ratio 3.43 10.8 2.2 8.9

Minimum number of stages 12.9 31.1 11.3 36.8

Number of actual stages 26 62.3 26 73.5

Feed stage 13.7 33.4 13.6 39.2

Reboiler heating required 11.5 � 106 23.8 � 106 13.4 � 106 40.0 � 106

Condenser cooling required 2.9 � 106 28.8 � 106 14.2 � 106 41.3 � 106
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6.4. (1) Model column B4 in Figure 6.8 using a short-cut, DSTWU block. (2) Then model

the same column using RadFrac. How do the results compare?

6.5. Model example 1 on pp. 13–36 in Perry’s Chemical Engineering Handbook (Seader

et al., 1997) using (1) DSTWU; (2) RadFrac.

6.6. Results for the gas plant are given in Tables 6.6 and 6.7. Which separations are the

most expensive? If you were the designer, where would you want to spend your time?

6.7. Carbon dioxide from a fermentation process contains 1 mol percent ethyl alcohol.

The alcohol needs to be removed by contact with water at 358C and 1 atm. The

gas flow rate is 400 lbmol/h and the water stream is 620 lbmol/h and contains

0.02 mol percent alcohol. Determine the compositions out of the absorption

column if you model it with 10 stages.

6.8. Natural gas contains mostly methane but also small amounts of other chemicals that

are valuable in themselves. In a refrigerated absorption process, the natural gas is

cooled to 2408F at 865 psia and sent to an absorber, which uses dodecane as the

absorbing media, with a flow rate of 10,000 lb mol/h. Determine the fraction of

each of the chemicals absorbed in a tower with 30 stages.

Component Flow Rate (lb mol/h)

Methane 700,000

Ethane 27,000

Propane 11,000

i-Butane 3200

n-Butane 2800

i-Pentane 1200

n-Pentane 770

Hexane 820

6.9. Figure 5.14 shows an ethanol process. The last unit is a distillation tower to remove

water from a mixture of water and ethanol. Note that the mixture forms an azeotrope.

The feed stream is 100 lbmol/h of a 50–50 molar mixture of water and ethanol at

808F and 1 atm.

(1) Simulate a distillation tower to create the azeotropic mixture (93 percent

ethanol). Use the Wilson-2 option for the thermodynamic model (see Figures

3.6 and 3.7 for the data). Model the column using the DSTWU short-cut

model and 10 stages.

(2) Use RadFrac with the reflux rate set by the output from the DSTWU model.

(3) Repeat (1) and (2) using the ideal option for the thermodynamic model. How do

the results differ from (1) and (2)?
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7
PROCESS SIMULATION

Process simulation is used to determine the size of equipment in a chemical plant, the

amount of energy needed, the overall yield, and the magnitude of the waste streams.

Because the results of process simulation depend upon thermodynamics and transport pro-

cesses, the mathematical models are complicated and would be time-consuming to solve

without a computer. This chapter illustrates the use of a process simulator, Aspen Plus, to

model a plant to make ammonia.

The problems solved in Chapters 5 and 6 are simple problems with many numerical

parameters specified. You may have wondered where those numbers came from. In a

real case, of course, you will have to make design choices and discover their impact. In

chemical engineering, as in real life, these choices have consequences. Thus, you must

make mass and energy balances that take into account the thermodynamics of chemical

reaction equilibria and vapor-liquid equilibria as well as heat transfer, mass transfer,

and fluid flow. To do this properly requires lots of data, and the process simulators

provide excellent databases. Chapters 2–4 discussed some of the ways in which thermo-

dynamic properties are calculated. This chapter uses Aspen Plus exclusively. You will

have to make choices of thermodynamic models and operating parameters, but this will

help you learn the field of chemical engineering. When you complete this chapter, you

may not be a certified expert in using Aspen Plusw, but you will be capable of actually

simulating a process that could make money.

First, the chapter lists the possible unit operations in the Aspen Plus Model Library,

because the process is a connected set of the units. Then an example process is illustrated

that makes ammonia from nitrogen and hydrogen. You will be able to get both the mass

balances and the energy balances for the process. With this information you can determine

the size of most of the equipment needed, and hence its cost. You can also determine the

operating cost for heating, cooling, compression, and other tasks. The process involves a

Introduction to Chemical Engineering Computing, by Bruce A. Finlayson
Copyright # 2006 John Wiley & Sons, Inc.
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recycle stream, too, which means you will need to iterate. The chapter ends with a descrip-

tion of factors that may control whether you get a solution at all, such as convergence

acceleration techniques and tear streams.

MODEL LIBRARY

When engineers design a process, they choose different modules to represent the different

units. You can view these by clicking on the icons at the bottom of the Aspen Plus screen. If

the icons are not displayed, choose the View/Model Library menu option. When you click

on a unit, the words shown at the bottom of the screen give a brief description of themodule.

Some of the module choices are described in Table 7.1.Your task is to combine these units

with connecting streams into a process, which can then be simulated on the computer.

TABLE 7.1. Selected Major Blocks Available in Aspen Plus

1. Mixers/splitters
a. Mixer – combine material

b. Fsplit – split specifications for output

c. Ssplit – splits using substreams

2. Separators

a. Flash2 – rigorous vapor–liquid split or vapor–liquid–liquid split

b. Flash3 – rigorous vapor–liquid–liquid split

c. Decanter – separate two liquid phases

d. Sep – use split fractions

e. Sep2 – separation based on flows and purities

3. Heat exchangers

a. Heater – heaters, coolers, condensers

b. HeatX – co- and counter-current heat exchangers

c. Hetran – shell and tube heat exchangers

d. Aerotran – air-cooled heat exchangers

4. Columns

a. DSTWU – shortcut distillation using Winn–Underwood–Gilliland equations and correlations

b. Distl – Edmister shortcut distillation

c. RadFrac – rigorous two phase and three phase, absorber, stripper, distillation columns using

stages

d. Extract – liquid–liquid extraction

5. Reactors

a. RStoic – stoichiometric fractional conversion or extent of reaction

b. RYield – nonstoichiometric – based on yield distribution

c. REquil – rigorous equilibrium

d. RGibbs – rigorous equilibrium and/or multiphase Gibbs free energy minimization

e. RCSTR – continuous stirred-tank reactor, specify volume

f. RPlug – plug flow reactor, specify length and diameter of tube

g. RBatch – batch reactor, specify cycle times

The RCSTR, Rplug, and RBatch reactors require the choice of a reaction set and the building up

of a reaction rate expression

6. Pressure changes

a. Pump

b. Compr – compressor

7. User models
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EXAMPLE: AMMONIA PROCESS

Consider the ammonia process, as illustrated in Figure 7.1. The feed to the process is

nitrogen, hydrogen, and a small amount of carbon dioxide (left over from the process to

make the hydrogen). The process feed is mixed with a recycle stream, heated to the

reactor temperature, and sent to the reactor. The feed to the reactor is roughly a 3:1

mixture of hydrogen and nitrogen, with some ammonia, too. The reaction is limited by

equilibrium considerations, so the conversion is not known. You must determine it by

solving the equilibrium equation (using RGibbs). In this example, the pressure is high

because that favors the reaction. The temperature is also high in order to get a fast reaction,

even though this limits the conversion in the reactor. The output from the reactor is cooled

and sent to a vapor–liquid separator (this example uses Flash2), where the temperature is

lowered. Thus, most of the ammonia condenses and is removed as a liquid. The vapor is

recycled and is sent through a compressor to get the pressure back to the desired pressure.

A small part of the recycle stream is bled off as a purge stream to prevent the buildup of

impurities.

In this example, you will take an input stream to the process (at 808F and 300 psia) of:

nitrogen, 100 lb mol/h; hydrogen, 300 lb mol/h; ammonia, 0; and carbon dioxide,

1 lb mol/h.
The inlet stream is compressed to 4000 psi with an isentropic compressor. The stream is

mixed with the recycle stream and heated to 9008F, the reactor temperature. In the reactor,

there is a pressure drop of 30 psi. The outlet is cooled to 808F and the liquid and vapor

phases are separated. The vapor phase goes to recycle, and 0.01 percent of it is used

as purge. A recycle compressor then compresses the rest from 3970 to 4000 psia. In a

real process, the heat transfer to preheat the feed to the reactor uses the effluent from

the reactor, usually inside the same vessel. In process simulators, though, it is useful to

begin as shown in Figure 7.1 to help convergence. NRTL thermodynamics was chosen

and is justified a posteriori.

The identification of components is shown in Figure 7.2. It is useful to check the con-

nections between the units using the Flowsheet option/Section//GLOBAL, as shown in

Figure 7.3. Any streams that were inadvertently not connected to a unit will show up here

because those stream numbers will not appear as input stream numbers.

The operating parameters for the compressors are shown in Figure 7.4. Both of them are

modeled as isentropic compressors with the appropriate discharge pressure.

Figure 7.1. Ammonia process.
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You can see the operating parameters for the two heat exchangers in Figure 7.5. You

can see the reactor specifications in Figure 7.6. The specifications for the mixer (B2),

vapor–liquid separator (B6) and simple splitter (B8) are shown in Figure 7.7. In Aspen

Plus, you can specify different conditions in temperature and pressure than the inlet con-

ditions. This may be useful in a first simulation when you are not as interested in the actual

heating and cooling required, but this example keeps the unit conditions the same as the

stream entering the unit so no heat transfer or compression/expansion occurs.

Now that the process is fully specified, you can solve it. Because there is a recycle

stream, begin the calculations with the first unit, the compressor. The output from that

unit is combined with the recycle stream, which initially is zero. Follow the stream

through the rest of the process until it computes the recycle stream. This recycle stream

is now different from its previous value. Thus, the program does another iteration, and

Figure 7.2. Components for ammonia process.

Figure 7.3. Flowsheet summary.
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it continues until there is no further change. Figure 7.8 shows some of the information

Aspen Plus provides about the convergence.

Figure 7.8a indicates that the sequential module is used for iteration. Unit B1 is

calculated only once, since the exact input to that unit is known. Then units B2–B9 are

calculated. Since B9 is the last unit, Aspen Plus compares the output from unit B9 on

this iteration to the output from unit B9 one iteration before. If they are the same, conver-

gence has been achieved. If not, more iterations are necessary. Figure 7.8a indicates that

the iterations have not fully converged after 30 iterations, and the mass balance error is in

block B9 (the recycle compressor). It gives the total discrepancy as 0.5805 vs 0.5801, for a

relative difference of 0.07 percent. This difference is so small that you could accept the

results. This simulation used the Wegstein method of accelerating convergence. If you

change to the Broyden method (Convergence/Conv Options, Figure 7.8b), it does not

converge much better. Finally, a direct method of iteration did converge. The direct

method is not fancy; you simply calculate around the loop over and over again. You

can see the final conditions by choosing Results/Summary and Convergence

(Figure 7.9). The discussion below gives additional details about convergence.

Figure 7.4. Specifications for compressors, units B1 and B9.
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The final mass and energy balance are shown in the stream table (Table 7.2). By check-

ing the mass balances around each unit, you can see that they balance except for a small

discrepancy between streams 9 and 10. The hydrogen flow rate is off by 0.05 lb mol/h,
compared with a total flow of 1490 lb mol/h. The overall conversion (100 mol nitrogen

to 197.5 mol ammonia) is reasonable. The rest of the raw materials are lost. Most of the

carbon dioxide goes out in the ammonia so perhaps the purge stream was not necessary.

You can learn several things by looking at ‘Results’ under each block. First, look at Figure

7.10, which is for units B1 and B9. The feed compressor is very large (900 HP). In fact, if the

compression ratio was this large, 4000/300 ¼ 13.3, the job would be split into two compres-

sors, each with a compression ratio of the square root of 13.3, or 3.65. For ideal conditions,

you can use thermodynamics to show that the optimal configuration has equal compression

ratios with interstage cooling back to the inlet temperature, because this results in less total

horsepower. Next, look at Figure 7.11. The heat duties of each exchanger are given, which

permits estimation of the capital cost. The heat duties can be combined with the enthalpies of

the process streams to verify an energy balance. Notice also that the ratio of hydrogen to

nitrogen in the recycle stream is not 3:1. This is because thermodynamics dictates that the

Figure 7.5. Specifications for heat exchangers, units B3 and B5.
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solubility of hydrogen and nitrogen in the ammonia is different, and hydrogen builds up.

In the reactor, nitrogen is the limiting reagent, and 73 percent of the nitrogen fed to the

reactor reacts. Thus, the conversion per pass is 73 percent, based on nitrogen. If you

look at the product, though, 197.5 lb mol ammonia are made from 100 lb mol nitrogen

and 300 lb mol hydrogen. Because the raw materials can be converted into a maximum of

200 lb mol, the overall yield of the process is 197.5/200 or 98.8 percent.

Even more information can be obtained using the View/Report menu. This gives

details about individual blocks. The View/History menu gives information about the con-

vergence and what calculations have been done. The View/Input Summary lists the par-

ameters you have set.

The thermodynamics can be tested using the results from Table 7.2. The reactor effluent

is in equilibrium. Take the mole fractions of stream 5 and compute the K-value:

K ¼
yNH3

( yN2
y3H2

)1=2
1

p
(7:1)

With values of yN2
¼ 0.0204, yH2

¼ 0.8346, yNH3
¼ 0.1434, the K-value is 0.00488.

Stephenson (1966) gives a measured value of 0.00473 at these conditions. Thus, the chemi-

cal reaction equilibrium is satisfactory when using the NRTL thermodynamic model.

Next you can check the vapor–liquid equilibria, as represented by streams 6 and

7. Data reported by Stephen and Stephen (1963, p. 557) give the solubility of nitrogen

in ammonia as 22.48 cm3 (measured at 08C and 760 mmHg) per gram of ammonia

Figure 7.6. Specifications for the reactor, unit B4.
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when the pressure is 200 atm and the temperature is 258C. The corresponding number is

37.02 cm3/g ammonia when the pressure is 400 atm. A linear interpolation gives

27.6 cm3/g ammonia when the pressure is 270 atm. This is a mole fraction of nitrogen

in the liquid of 0.021. Using the values for stream 6 gives a mole fraction of 0.0061,

which is much smaller; perhaps this is due to the hydrogen and carbon dioxide also in

the stream. Other thermodynamic models give similar results.

Data reported by Stephen and Stephen (1963, p. 537) give the solubility of hydrogen in

ammonia as 13.11 cm3 (measured at 08C and 760 mmHg) per gram of ammonia when the

pressure is 200 atm and the temperature is 258C. The corresponding number is 18.96 cm3/g
ammonia when the pressure is 300 atm. A linear interpolation gives 17.2 cm3/g ammonia

Figure 7.7. Specifications for the mixer and separator, and simple splitter, units B2, B6, and B7.
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when the pressure is 270 atm. This is a mole fraction of hydrogen in the liquid of 0.013.

Using the values for stream 6 gives a mole fraction of 0.018, which is reasonably close.

Utility Costs

The cost of raw materials is usually the major operating cost, but following that the cost

of utilities is very important. Aspen Plus provides a convenient way to obtain the cost of

Figure 7.8. Convergence of the mass balance: (a) control panel, (b) convergence methods.
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utilities in the entire process. You begin by opening the Utilities folder in the Data

Browser (or use the Data/Utilities menu). There are several possible forms of utilities;

choose New, select water and fill out the form shown in Figure 7.12. Then choose gas

and fill out the form shown in Figure 7.13. Choose electricity and assign a price of

5 cents/kW h.

The next step is to tell the computer which blocks are going to use utilities. Select block

B3 (the heater before the reactor) and click on the input button, then the Utility tab. Select

Gas, as shown in Figure 7.14. Do the same thing for block B5 (the cooler after the reactor),

and select Water, and then blocks B1 and B9 and select Electricity (at 5 cents/kW h). Now

the utilities have been specified to Aspen Plus.

After the mass and energy balances are computed, the program calculates how much

cooling water and natural gas are needed, and their cost. That information can be accessed

from the Data Browser/Utility folder, under Results, as shown in Figure 7.15. The cost

of the natural gas is almost half a million dollars per year. By combining the heater and

cooler before and after the reactor, this cost can be reduced. The cost of electricity for

the compressors is $300,000 per year.

This completes the example. The steps are:

Step 1 List process specifications for the ammonia process.

Step 2 Test the thermodynamics and compare the calculations with experimental data.

Step 3 Make design choices for different units: the reactors, compressors, heat exchan-

gers, and distillation towers.

Step 4 Solve the mass and energy balances.

Step 5 Obtain the utility costs.

Step 6 Do the calculations iteratively. Convergence acceleration techniques are some-

times necessary (not shown in the example).

Figure 7.9. Convergence of the mass balance.
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CONVERGENCE HINTS

To understand the convergence process used in most simulators, consider the process

shown in Figure 7.16. Chapter 5 discusses the sequential and simultaneous methods.

The sequential method is simple, but it might not converge. Thus, convergence accelera-

tion techniques are used to improve the chances of convergence; two of those are

described here (Wegstein, 1958; Broyden, 1965, 1970; Perry and Green, 1997). Simul-

taneous methods are called equation-oriented (EO) methods in Aspen Plus. Take a

single component for illustration; in Figure 7.16, you would know the flow rate in the

feed stream. The mass balance on the mixer takes the flow rate of streams 1 and 6 and

adds them to become stream 2. The reactor changes the amount, and then the separator

separates the stream into two streams. One of those is the recycle stream. Usually you

do not know stream 6 when you start the calculation; in the first iteration you often

Figure 7.10. Compressor variables, units B1 and B9.
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take it as zero, or some other assumed value. After reaching the separator, you have a new

possible value for stream 6. Write this process as an equation:

x ¼ f (x) (7:2)

In this form, x is the flow rate of the chemical in the recycle stream, and f (x) is the value of

the flow rate of the chemical in the output of the separator, obtained after doing the cal-

culation once around the loop. You have solved the problem when these two values

agree. To make this an iterative process, call xn the value of x after n iterations.

xnþ1 ¼ f (xn) (7:3)

This iterative process is simple to apply, since the function f (x) is really a series of

functions evaluated one after the other, and each step is a mass balance on one simple

unit. It may not converge, however. In order to speed up the convergence, the Wegstein

method is very effective. The method calculates a provisional value of x̂nþ1 and then

Figure 7.11. Heat exchanger variables, units B3 and B5.

CONVERGENCE HINTS 101



uses the last two iterates to calculate a ‘modified’ value, which is then used as the new value

in place of x̂nþ1.

x̂nþ1 ¼ f (xn), xnþ1 ¼ qxn þ (1� q)x̂nþ1 (7:4)

where

q ¼ �
b

1� b
, b ¼

xn � x̂nþ1

xn�1 � xn

Figure 7.12. Specification of cooling water utilities.

Figure 7.13. Specification of gas utilities.
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Wegstein (1958) found that the iterations converged differently depending on the value

of q:

q , 0, convergence is monotone

0 , q , 0:5, convergence is oscillatory

0:5 , q , 1, direct method diverges in oscillatory manner, Wegstein method

converges

1 , q, direct method diverges in oscillatory manner, Wegstein method converges

The derivation of the Wegstein method begins with Eq. (7.2), written as a new function,

F(x), as shown in Eq. (7.5):

F(x) ¼ x� f (x) (7:5)

Figure 7.14. Process with recycle stream.

Figure 7.15. Summary of utility cost.
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Apply the secant method to this function:�

0 ¼ F(xn)þ
F(xn�1)� F(xn)

xn�1 � xn
(x�)nþ1 � xn
� �

(7:6)

However, you also know that

F(xn) ¼ xn � f (xn) ¼ xn � xnþ1

F(xn�1) ¼ xn�1 � f (xn�1) ¼ xn�1 � xn
(7:7)

Combining these equations gives

(x�)nþ1 ¼
xn�1xnþ1 � (xn)2

xn�1 � 2xn þ xnþ1
(7:8)

which is the same as theWegstein method, Eq. (7.4). Sometimes, convergence is enhanced

by applying Wegstein only every so many iterations rather than each iteration. The

Wegstein iteration method is the default method in Aspen Plus, but there are others,

including the direct method and Broyden’s method. While Wegsetin’s method works on

one variable at a time, Broyden’s method works on all the variables at once using a

matrix that is adjusted iteration by iteration. In the direct method, Eq. (7.3) is used as it

stands.

Another term used when discussing iteration methods is the tear stream. This is the

stream that is guessed (or set to zero) when stepping through the process the first time.

In Figure 7.16, if you compute in the order mixer, reactor, separator, then stream 6 is

the stream you must assume and check – it is the tear stream. If you compute in the

order reactor, separator, mixer, then stream 2 is the tear stream. You apply the Wegstein

iteration method to the tear stream. Of course, if the calculations are simple, as would be

the case if all physical properties are specified and there are no energy balances, then you

can use a spreadsheet. It may be so fast that you do not care whether 10, 100, or 1000

iterations are needed.

Sometimes it is convenient to have the calculations made one unit at a time. This can be

done using the Run/Step menu or Ctrl-F5, or by clicking on the open circle: . It may

also be necessary to re-initialize, that is, set the variables to their values at the start of the

simulation. This is useful if the iterations do not converge and the answer is not reasonable.

Figure 7.16. Process with recycle stream.

�The secant method is the Newton–Raphson method with a numerical version of the derivative based on the last

two calculated values (see Appendix F).
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Just rerunning the problem will start from the unreasonable answer. To put the variables

back to their beginning value, use the re-initialize button: .

OPTIMIZATION

Aspen Plus has the capability of optimizing a function that you define. An example is

given here that is very simple, but it illustrates the process. Take a single unit, the

reactor in the ammonia process. The reactor RGibbs is used and the production of

ammonia is maximized with respect to the reactor pressure. In this example, the reactor

is unit B1, with input stream 1 and output stream 2.

Step 1 In the Data Browser, open the Optimization folder. Select New in the Object

manager; change the name, if desired, and click OK.

Step 2 Open the Optimization O-1, as shown in Figure 7.17. Initially this window has no

entries; select New and define a variable name that will be involved in the optimization

(any name is acceptable).

Step 3 In order to define the variable, here called CONV, click on Edit, and complete the

window as shown in Figure 7.18. Select in turn the type, Mole-Flow; Stream, 2 (the output

stream of this simple example); Component, Ammonia.

Step 4 Click on the Objectives and Constraints, and fill in the window as shown in Figure

7.19. You wish to maximize CONV.

Figure 7.17. Creating an identity for the optimization process.
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Figure 7.18. Definition of the variable.

Figure 7.19. Objectives and constraints.
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Step 5 Next click on the Vary tab in order to define which variable to change. Figure 7.20

shows the choice of Block-Var for block B1 (the reactor in this simple example), and indi-

cates that the pressure is to be varied, between the limits of 2000 and 6000 psia.

Step 6 Solve the problem by running the program. The final results are shown in

Figure 7.21.

Figure 7.20. Parameters to vary.

Figure 7.21. Optimization results.
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Note that you only obtain the final results, but do not know how sensitive the result is

to the reactor pressure. In this case, though, the pressure is at the maximum allowed in

Figure 7.19, as expected. You can use the Sensitivity option in the Model Analysis

Tools to find the conversion as a function of pressure. It operates in a similar way, but pro-

vides more information.

CHAPTER SUMMARY

This chapter listed many of the possible units in the Model Library of Aspen Plus. The

ammonia process illustrated the procedures (and computer windows) you used to set

the process conditions and examine the results. The thermodynamics choices can be ver-

ified by comparison with data reported in the literature. Sometimes the calculations do not

converge, and then the Wegstein method, or Broyden’s method, are useful for accelerating

convergence.

CLASS EXERCISE

Divide into teams of two to four students. Work through a spreadsheet (Table 7.2), with

each person in a team taking a unit, showing where the parameters are for that unit and

checking the results. Are they correct? Does the mass balance? Does the energy

balance? Work through the whole process. Alternatively, your instructor can prepare a

flowsheet and dataset showing the results, but with some errors for your team to find.

PROBLEMS

7.1. Simulate the benzene process (Problem 5.1) using Aspen Plus. Take the feed at room

temperature and 1 atm. Compress it to 35 atm. Preheat the feed to the reactor to

5508C and cool the effluent. Model the reactors as RStoic reactors, and keep the

hydrogen/methane separations as simple splitters; model the other separations

using distillation towers. You will have to decide on the number of stages and

reflux ratio, and using DSTWU first might be useful.

7.2. Simulate the ethyl chloride process (Problem 5.3) using Aspen Plus. The feed streams

are at room temperature and 20 psia and they are compressed to 95 psia. Preheat the

feed to the reactor to 8008F and cool the effluent. Model the reactors as RStoic reac-

tors. Take the effluent from the first reactor, cool it, and send the liquid to the product

stream. Compress the gases to 265 psia, and heat them to 3508F (if needed). Lower

the pressure and cool the effluent from the second reactor and separate the liquid and

vapor. Recycle the vapor and send the liquid to the product stream. You will have to

decide on the cooling temperature to use in the vapor–liquid separators.

7.3. Simulate the vinyl chloride process (Problem 5.4) using Aspen Plus. Take the feed at

room temperature and 20 psia. Operate the direct chlorination reactor at 658C and

560 kPa. A distillation column removes the trichloroethane and the rest of the

stream is sent to the furnace. Heat the stream to 15008F so pyrolysis takes place.

Cool the effluent from the furnace, and recycle the vapor (mostly HCl). Send the

liquid (vinyl chloride and ethylenedichloride) to a distillation column for separation.
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You will have to decide on the number of stages and reflux ratio; using DSTWU first

might be useful. The oxychlorination reactor operates at 2008C and 1400 kPa. Wash

the effluent from the oxychlorination reactor with water to remove contaminants and

then remove the water and light gases in a distillation column. The ethylenedichloride

must be dry (,10 ppm) before going to the furnace. The stream then goes to a dis-

tillation column where the ethylenedichloride is purified (.99.5%) before it is sent to

the furnace. Since the furnace operates at 560 kPa, the pressure is reduced before

reaching the furnace.

7.4. How does the process in Problem 7.3 change if the furnace is run at the high pressure

(1400 kPa)?

7.5. Simulate the ethanol process (Problem 5.6) using Aspen Plus. The feed streams are at

1 atm and room temperature, but the reactor operates at 960 psia and 5708F. Thus,
you must heat the reactor feed, and after the reaction occurs you must cool the

product. The first splitter is a vapor–liquid separator (you choose the temperature

that will separate ethanol from ethylene), and the remaining splitters are distillation

columns. You will have to decide on the number of stages and reflux ratio; using

DSTWU first might be useful.

7.6. Modify the process in Problem 7.5 to use a counter-current heat exchanger (and trim

heater) to heat the reactor feed and cool the reactor product.
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8
CHEMICAL REACTORS

Ethane flowing through a cylindrical tube can be heated to the point that it reacts into

hydrogen and ethylene, the precursor to polyethylene. Many reactors, though, require a

catalyst to speed up the reaction. The water gas shift reactor makes hydrogen using a

cylindrical tube that is filled with catalyst and past which the gas flows. One feature

that sets chemical engineers apart from other engineering disciplines is their ability to

handle chemical reactions, the process of converting one or more chemicals into other

chemicals that are more valuable. Thus, chemical engineers need to understand chemical

reactions and be able to model equipment in which the chemical reactions take place, that

is, chemical reactors. Sometimes reactors are as simple as a cylindrical tube, with reactants

fed in one end and products (and unreacted reactants) coming out of the other end.

Reactants may be placed in a vessel and stirred to create new chemicals.

Real-life complexities challenge engineers as they design chemical reactors. In some

reactors, the reaction rate is slow. When this happens, a bigger reactor is needed to

achieve a specified production rate, and it may be too big to be economical. Then you

look for a catalyst, which speeds up the reaction but remains unchanged after the reaction.

The tube is packed with catalyst and reactants flow around the catalyst. Often the reaction is

exothermic and the reactor becomes hot. The energy must be removed somehow, and heat

transfer must be included in the calculations. Sometimes the reaction occurs inside a porous

catalyst, perhaps an alumina pellet (Al2O3) with catalyst coating the internal surface. Then

it may be necessary to include heat and mass transfer effects inside the pellet.

When it is necessary to include these effects – slow reaction rates, catalysts, heat

transfer, and mass transfer – it can make an engineering problem extremely difficult to

solve. Numerical methods are a must, but even numerical methods may stumble at

times. This chapter considers only relatively simple chemical reactors, but to work with

these you must learn to solve ordinary differential equations as initial value problems.

Introduction to Chemical Engineering Computing, by Bruce A. Finlayson
Copyright # 2006 John Wiley & Sons, Inc.
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The chapter begins with reactor models described in mathematical terms. You will

learn how to solve ordinary differential equations using MATLABw. Then, after you

have mastered that new skill, you will solve several chemical reactor problems using

MATLAB. Sometimes these problems can be solved using FEMLABw, too, as the

chapter illustrates next. Note that this chapter does not use Excelw to solve ordinary differ-

ential equations. The reason is that all the other programs have guaranteed error control.

While it is possible to solve simple ordinary differential equations with Excel, it becomes

cumbersome if the problem is difficult, and you will not know the accuracy of your sol-

ution without extra effort. Some reactors, though, are expressed as algebraic equations,

and both Excel and MATLAB are used to solve those equations.

MATHEMATICAL FORMULATION OF REACTOR PROBLEMS

A differential equation for a function that depends on only one variable is called an ordin-

ary differential equation. The independent variable is frequently time, t, but for reactors it

can also be length down a plug flow reactor. An example of an ordinary differential

equation is

dy(t)

dt
¼ f (y), y(0) ¼ y0 (8:1)

The general solution to the differential equation includes many possibilities; the engineer

needs to provide initial conditions to specify which solution is desired. If all conditions are

available at one point [as in Eq. (8.1)], then the problem is an initial value problem and can

be integrated from that point on. If some of the conditions are available at one point and

others at another point, then the ordinary differential equation becomes a two-point bound-

ary value problem (see Chapter 9). Initial value problems as ordinary differential equations

arise in the control of lumped parameter models, transient models of stirred tank reactors,

and generally in models where there is no diffusion of the unknowns.

Example: Plug Flow Reactor and Batch Reactor

Consider a plug flow reactor – a cylindrical tube with reactants flowing in one end

and reacting as they flow to the outlet. A mole balance is made here for the case when

the operation is steady. Let F be the molar flow rate of a chemical, which changes dF

in a small part of the tube; take the volume of that small part to be dV. The rate of reaction

is expressed as the moles produced per unit of time per unit of volume. If a chemical specie

reacts, then the r for that specie is negative. Thus, the overall equation for a small section

of the tube is

dF ¼ r dV (8:2)

The molar flow rate can be related to the velocity in the tube.

F ¼ uAc (8:3)
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In many cases the velocity and cross-sectional area of the tube are constant. Then you can

write

dF ¼ uA dc, dV ¼ A dz (8:4)

If you put these into Eq. (8.2) and divide by dz you get

u
dc

dz
¼ r, plug flow reactor (8:5)

Normally r is a function of c, and this is an ordinary differential equation for c(z). In

addition, you need to know the initial value of the concentration, that is,

c(0) ¼ c0 (8:6)

If the reactor contains a catalyst, then the reaction rate is expressed as the molar rate of

change per mass of catalyst, r 0. One must then multiply by the mass of catalyst per unit

volume, but otherwise the situation is the same.

dF ¼ rBr
0 dV and u

dc

dz
¼ rBr

0, catalytic plug flow reactor (8:7)

In a batch reactor, let N be the moles of a chemical; the molar change of a chemical

is the reaction rate (molar change per unit time per unit volume) times the volume and

the time.

dN ¼ rV dt (8:8)

This can be put into a differential equation, too:

dN

dt
¼ rV (8:9)

If the volume of the batch reactor is constant, then

c ¼
N

V
(8:10)

and the equation becomes

dc

dt
¼ r, batch reactor (8:11)

This equation is similar to the equation for a plug flow reactor, with the time t taking the

place of the variable z/u. You can also introduce catalyst into the batch reactor, in which

case the reaction rate r is replaced by rBr
0. In addition, you need an initial condition to go

with Eq. (8.11), c(t ¼ 0) ¼ c0. The structure of the problem is the same as that for a plug
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flow reactor, and if you can solve one, you can solve the other. So, there is some economy

of effort.

Many chemicals are involved, and you need a reaction rate for each reaction occurring.

Thus, use fcjg for all the chemical concentrations and frig for all the reactions. If the

reaction is

aAþ bB �! cC þ dD (8:12)

then the rate of reaction of B is b/a times the rate of reaction of A, and the rates of reaction

of C and D are –c/a and –d/a times the rate of reaction of A. The important point is that

the rate of reaction is an algebraic function of the concentrations, temperature, and

pressure. Each reaction rate needs to be known specifically for the reaction in question.

Example: Continuous Stirred Tank Reactor

Another type of reactor is known as a continuous, stirred-tank reactor (CSTR). This

reactor is a vessel with an inlet stream and an outlet stream, and the contents are constantly

being stirred. Engineers often assume that this reactor is so well mixed that the concen-

tration is the same everywhere. The mole balance on this reactor is

Fout � Fin ¼ rV (8:13)

where V is the volume of the reactor. The molar flow rates are related to the volumetric

flow rates, Q, as follows:

F ¼ Qc (8:14)

When the volumetric flow rates are constant, Eq. (8.13) becomes

Q(cout � cin) ¼ rV , continuous stirred tank reactor (8:15)

In a well-mixed reactor (CSTR), the concentration going out of the reactor is the same as

the concentration in the reactor. Since the rate expression is a function of c, it is a function

of cout. Then Eq. (8.15) becomes an algebraic equation in one variable (here) for cout. You

can solve this using either Excel or MATLAB.

USING MATLAB TO SOLVE ORDINARY DIFFERENTIAL EQUATIONS

Simple Example

In MATLAB, you define the problem by means of a function, called an m-file. You then

tell MATLAB to solve the differential equation. Thus, you need to prepare an m-file that

defines the equation and then call the subroutine ‘ode45’ to do the integration. This method

may seem mysterious at first because you call a subroutine, which in turn calls your m-file.

You do not directly call your m-file when solving the differential equation. This process is
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illustrated using a single, simple differential equation:

dy

dt
¼ �10y, y(0) ¼ 1 (8:16)

Integrate this equation from t ¼ 0 to t ¼ 1. The exact solution can be found by quadrature

and is

y(t) ¼ e�10t (8:17)

Step 1 To use MATLAB, you first construct an m-file that defines the equation:

% filename rhs.m
function ydot=rhs(t,y) %compute the rhs of eqns.for any

%input values t, y
ydot=-10*y; %compute rhs

Step 2 Then to test the function, issue the command

q=rhs(0.2,3)
ydot=-30
q=-30

When y ¼ 3, the value of the right-hand side should be 230, so the m-file is correct. In

more complicated cases, you might remove all the ‘;’ from the rhs.m so intermediate

results will be printed. This simplifies your task when checking the program.

Step 3 Next create an m-file that provides the script to run the problem. These commands

can also be typed in the command window, but when you have several commands that you

will use over and over, it is more convenient to create a script that can run all the com-

mands with one message from you.

% filename simple.m
y0=1; %set the initial condition to 1
tspan=[0 1]; %set the initial time to zero and the final

%time to 1
%call the routine ode45; use the m-file called
%rhs,
%start with y=y0 at tspan(1)
%and integrate until tspan(2)

[t,y]=ode45(@rhs,tspan,y0)
plot(t,y) %plot the solution

The results give a table of values for t and y and Figure 8.1.

t= 0 0.0078 0.0268 0.0460 0.0659 0.0865 0.1080 ...
y= 1.0000 0.9248 0.7647 0.6314 0.5175 0.4209 0.3395 ...
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Step 4 The validity of your solution depends upon several things. First, you checked the

m-file ‘rhs’ and determined that it gave the correct result when you inserted values for t

and y. You always have to do this check to show that your work is correct. You depend

upon MATLAB to do its job correctly. You can easily check that it used the initial and

ending times correctly from the output and can see that the initial condition for y was

correct, too. Other than that we accept the MATLAB result on faith. However, you can

always solve a problem for which you know the solution, and you try to make that

problem as much like your problem as possible. In this case, you did not need to use

numerical methods, because you have an exact solution. Thus, you can compare the

numerical result to the analytical result (they are the same) and determine that

MATLAB did its job correctly. In cases without an analytical solution, you check your

m-file ‘rhs’ and then depend upon MATLAB. You can also set a parameter (error toler-

ance) to improve the result (see Appendix B).

Use of the ‘Global’ Command

In the example above, you solved the problem when the right-hand side was 210y, and

you simply used the value 10 in the program. There are two other ways to set this

value, using the command ‘global’ or by passing k as a parameter. You might want to

write this as 2ky and solve the problem for several values of k. Because the function

only knows what is set inside the function, or what gets transferred to it, you need

to learn how to transfer information from the workspace into the function. You will

need to make those changes to the code used above. If you use the ‘global’ command,

put the variable name in both the workspace and the m-file and assign its value in one

place or the other. Then that value is accessible from either the m-file or the workspace.

Step 1 Here, you will set the value of k in the workspace, or calling program, and then it

will be available in the m-file.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2
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0.9

1

Figure 8.1. Solution to Eq. (8.16) using MATLAB.
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% filename simple2.m %compute the rhs of Eq.(8.16)
global k
k=10; % set k to 10; it is now available to any

% m-file that has the
% global k statement in it.

y0=1; % set the initial condition to 1
tspan=[0 1]; % set the initial time to zero and the

% final time to 1
% call the routine ode45; use the m-file
% called rhs2,
% start with y=y0 at tspan(1) and
% integrate until tspan(2)

[t,y]=ode45(@rhs2,tspan,y0)
plot(t,y) % plot the solution

Step 2 Next, add the global command to the m-file, called rhs2. (Note you added a

numerical identifier to both the calling program and m-file to help keep them straight.)

% filename rhs2.m
function ydot=rhs(t,y)

% compute the rhs of Eq.(8.16)
% for any input values t, y

global k % The m-file can access the numerical
% value of k, if
% it has been set to global and given a
% value elsewhere

disp(k) % display the numerical value of k
% use this only when testing the function
% rhs2

ydot=-k*y; % compute rhs

Naturally, you expect the same results, which you can verify by running the new code.

Step 3 Check the code as before, with one addition. It is helpful the first time you run the

code to print out the variables inside the function to make sure they are accessible. If not,

MATLAB will tell you that the variable is not defined. Alternatively, use the debugging

techniques described in Appendix B.

Passing Parameters

Still another way to introduce k into the function is to use it as a parameter in the calling

argument.

% filename simple3.m
k=10; % set k to 10
y0=1; % set the initial condition to 1
tspan=[0 1]; % set the initial time to zero and the

% final time to 1
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options=[] % the OPTIONS=[] is a place holder
% The symbol [] is made as [] without a
% space.
% call the routine ode45; use the m-file
% called rhs3,
% start with y=y0 at tspan(1) and
% integrate until tspan(2)

[t,y]=ode45(@rhs3,tspan,y0,options,k)
plot(t,y) % plot the solution

Now the function is:

% filename rhs3.m
function ydot=rhs(t,y,k)

% compute the rhs of eqns. for any input
% values t, y

disp(k) % display the numerical value of k; use only
% for testing of rhs3

ydot=-k*y; % compute rhs

This program gives the same results as given by simple1.m and simple2.m.

Example: Isothermal Plug Flow Reactor

In this section, you will solve the equations for an isothermal plug flow reactor. The first

problem is very simple, and is patterned after a problem on the California Professional

Engineers License Examination, according to Fogler (2005). Here it is modified. You

take a reactor in which components A and C are fed in equimolar amounts, and the follow-

ing reaction takes place:

2A �! B (8:18)

You assume that the reaction takes place in the liquid phase and that the volumetric flow

rate remains constant even when reaction occurs. The equations are Eq. (8.5) for each

species.

u
dCj

dz
¼ rj, j ¼ 1, . . . , 3 (8:19)

where Cj is the molar concentration of the jth species, u is the velocity, z is the distance

down the tube from the inlet, and rj is the rate of reaction of the jth species, in mol/vol
time. Here the rate of reaction is taken as second order:

rate of formation of B ¼ kC2
A (8:20)
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where the units of k are vol/mol time. The equations for all three species are then

u
dCA

dz
¼ �2kC2

A, u
dCB

dz
¼ þkC2

A, u
dCC

dz
¼ 0 (8:21)

At the inlet you take

CA(0) ¼ 2 kmol=m3, CB(0) ¼ 0, CC(0) ¼ 2 kmol=m3 (8:22)

and we take u ¼ 0.5 m/s, k ¼ 0.3 m3/kmol s, and the total reactor length as z ¼ 2.4 m.

Step 1 The MATLAB program requires you to write a function that defines the right-

hand side. The input parameters to the function are the concentrations of all species.

(1) Thus, to solve the problem you use the variables

y1 ¼ CA, y2 ¼ CB, y3 ¼ CC (8:23)

(2) The function also needs the velocity, u, and the rate constant, k. The distance from

the inlet, z, takes the place of time and is the independent variable. (3) The rates of reaction

are then evaluated, and the function returns the numerical value of the right-hand side. The

code for the function is

% rate1.m
% This function gives the right-hand side for a simple
% reactor problem which is isothermal.
function ydot=rate1(VR,y)
% y(1) is CA, y(2) is CB, y(3) is CC
% k=0.3 and u=0.5
CA=y(1);
rate=0.3*CA*CA;
ydot(1)=-2.*rate/0.5;
ydot(2) =+rate/0.5;
ydot(3)=0.;
ydot=ydot’;

Step 2 You test this m-file by calling it with specific values for yj, j ¼ 1, 2, 3 to ensure

that it is correct. Using y( j) for yj, issue the following commands:

y(1) ¼ 0:2; y(2) ¼ 0:3; y(3) ¼ 0:4; rate1(0:1, y)

You get

ans=-0.048, 0.024, 0

which agrees with the manual calculations. This is a very important step, because this is

where you add value. MATLAB will integrate whatever equations you give it, right or

wrong, and only you can ensure that the program has solved the right equations.
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Step 3 Next, write a code that serves as the driver. This code must (1) set any constants

(here they are just put into the function rate1 for simplicity), (2) set the initial conditions

and total reactor length, and (3) call the ode solver.

% run_rate1.m
% This is the driver program to solve the simple flow
% reactor example.
% set the initial conditions
y0=[2 0 2]
% set the total volume of the reactor
zspan=[0 2.4]
% call the ode solver
[z y]=ode45(@rate1,zspan,y0)
% plot the result
plot(z,y)
xlabel(‘length (m)’)
ylabel(‘concentrations (kgmol/m^3)’)
legend(‘A’, ‘B’, ‘C’)

Step 4 The result is shown in Figure 8.2. Now that you have a validated code, you can

vary the parameters to see their effect. Figure 8.2 shows the concentrations, but it is diffi-

cult to distinguish between the curves when the figure is in black and white. You can plot

each concentration with a different symbol by replacing the plot command with the

following command.

plot(z,y(:,1),‘*-’,z,y(:,2),‘+-’,z,y(:,3),‘x-’)

Now each curve is labeled with a different symbol, and the curves are easy to distinguish

(see Figure 8.3).

Figure 8.2. Solution to problem posed by Eqs. (8.21)–(8.22).
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Example: Nonisothermal Plug Flow Reactor

Most reactions have heat effects, and this means that reactor models must be able to model

the heat transfer as well as the mass balances. The following example models a simple

reactor oxidizing SO2 to form SO3 (Young and Finlayson, 1973). After some manipu-

lation, the equations are

dX

dz
¼ �50R0,

dT

dz
¼ �4:1(T � Tsurr)þ 1:02 104R0 (8:24)

where the reaction rate is

R0 ¼
X½1� 0:167(1� X)�1=2 � 2:2(1� X)=Keq

½k1 þ k2(1� X)�2
(8:25)

ln k1 ¼ �14:96þ 11070=T , ln k2 ¼ �1:331þ 2331=T ,

Keq ¼ �11:02þ 11570=T (8:26)

with the parameters: Tsurr ¼ 673.2, T(0) ¼ 673.2, X(0) ¼ 1. The variable X is the concen-

tration of SO2 divided by the inlet concentration, 12 X is the fractional conversion, and T

is the temperature in K. The first equation is the mole balance on SO2, and the second is the

energy balance. The first term on the right-hand side of Eq. (8.24) represents cooling at the

wall; the second term there is the heat of reaction.

These equations are appropriate when radial and axial dispersion are not important.

Axial and radial dispersion are actually important in this case, as discussed by Young

and Finlayson (1973), but the simpler case is a good vehicle for seeing how to include

temperature effects in the problem. The reaction rate equation shows that equilibrium

can be reached (then R0 ¼ 0), and the equilibrium constant depends on the temperature.

Thus, the conversion depends intimately on the temperature.

Figure 8.3. Different plot of solution to problem posed by Eqs. (8.21)–(8.22).
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Step 1 The MATLAB program requires you to write a function (m-file) that calculates

the right-hand side of Eq. (8.24), given the input, z, X, and T, which are the axial location in

the reactor and the conversion and temperature at that axial location, respectively. Thus,

(1) to solve the problem you use the variables

y(1) ¼ X, y(2) ¼ T (8:27)

The function will have available to it the axial location, z, and the variables y(1) and

y(2). (2) You first move y(1) into X and y(2) into T (for clarity in the program) and then

(3) evaluate the rate of reaction. (4) Finally, we calculate the right-hand sides of the differ-

ential equations and put them in the vector ydot, which is the output from the function.

% rateSO2.m for SO2 reaction
function ydot=rateSO2(z,y)
% X is concentration SO2 divided by the inlet concentration
X=y(1);
% T is temperature in degrees K
T=y(2);
k1=exp(-14.96+11070/T);
k2=exp(-1.331+2331/T);
Keq=exp(-11.02+11570/T);
term1=X*sqrt(1-0.167*(1-X));
term2=2.2*(1-X)/Keq;
denom=(k1+k2*(1-X))^2;
rate=(term1-term2)/denom;
ydot(1)=-50*rate;
ydot(2)=-4.1*(T-673.2)+1.02e4*rate;
ydot=ydot’;

Step 2 You test this m-file by setting the input variables and calling the m-file:

y(1)=0.2; y(2)=573.2;
rateSO2(0.1,y)
ans=-0.001148 410.235

This agrees with the manual calculations, so the m-file is correct. (To make the comparison

easier to do, you can remove the semi-colons from rateSO2. After checking, the semi-

colons are added again.) This is a most important step, because this is where you add

value. MATLAB will integrate whatever equations you give it, right or wrong, and

only you can insure that the right equations have been solved.

Step 3 Next you write the code as the driver. This code must set the constants, set the

initial conditions for conversion and temperature, decide how far down the reactor to

integrate, and then call the ode solver.

% run_SO2.m
% set the dimensionless initial conditions
y0=[1 673.2]
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% set the integration range
zspan=[0 1]
% call the solver
[z y]=ode45(@rateSO2,zspan,y0)
% plot the result
plot(z,y(:,1),‘r-’)
xlabel(‘dimensionless axial position’)
legend(‘fraction converted’)
pause
plot(z,y(:,2),‘g-’)
xlabel(‘dimensionless axial position’)
legend(‘temperature (K)’)

The results are shown in Figure 8.4. The concentration and temperature are plotted

in separate graphs because they have such different magnitudes. Now you can change

the parameters to see their effect. Change the inlet temperature to 800 and see what

happens.

USING FEMLAB TO SOLVE ORDINARY DIFFERENTIAL EQUATIONS

FEMLAB is treated in detail in Chapters 9–11 and Appendix D, but it can also be used to

solve reactor problems. The advantage of FEMLAB is that you program with a GUI, so

computer errors are less likely. It is still necessary to check your work, though. While

the applications in this chapter are all one-dimensional (to compare with MATLAB sol-

utions), it is easy to solve two-dimensional problems, as described in more detail in

later chapters. We show here how to solve the same three problems already solved

using MATLAB: the simple exponential, Eq. (8.16); the isothermal flow reactor,

Eqs. (8.21)–(8.22); and the nonisothermal reactor, Eqs. (8.24)–(8.26).

Figure 8.4. Solution to problem posed by Eqs. (8.24)–(8.26).
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Simple Example

To solve Eq. (8.16), you first have to draw an analogy between time [in Eq. (8.16)] and

space (x) in FEMLAB. The problem can be restated as:

dy

dt
¼ �10y, y(0) ¼ 1, u

dy

dx
¼ �10y, y(0) ¼ 1 (8:28)

where x/u takes the place of t. By setting u ¼ 1 you can relate t $ x. The equation you

have to work with in FEMLAB is the steady convective diffusion equation:

u
dy

dx
¼ D

d2y

dx2
þ f (8:29)

Thus, we must choose D ¼ 0 and f ¼ 210�y. (For more details about FEMLAB, see

Appendix D.)

Step 1 Open FEMLAB and choose 1D (in the top menu), Chemical Engineering Module,

then Mass Transfer and convective diffusion (the PDE/Classical/convective diffusion

also works). Click OK.

Step 2 Click on the line icon on the left, put the cursor at x ¼ 0 and drag to x ¼ 1 and

click again.

Step 3 Go to Options and then Axes/Grid Settings. Make xmin ¼ 20.1 and xmax ¼ 1.1.

This will make the domain cover most of the screen. Close the window.

Step 4 Click on the triangle to set up the mesh. You will get 15 elements and 16 points.

There will be 31 degrees of freedom, because each element has a node at the middle, too;

thus there are 15 middle nodes and 16 nodes at the ends of the elements.

Step 5 Choose Physics/Subdomain Settings, and click on subdomain 1. Set the par-

ameters as follows.

dts ¼ 0, D ¼ 0, f ¼ �10�c, u ¼ 1 (8:30)

The c is a stand-in for y, and the x is a stand-in for t.

Step 6 Choose Physics/Boundary Settings, and click on 1. Change the boundary con-

dition to ‘concentration’, and set the value to 1.0; click Apply. This is the value at the

left-hand side, that is, t ¼ 0. Click on the numeral 2. Change that boundary condition to

convective flux, and click OK.

Step 7 Click the ‘¼’ to have the computer solve the equations.

Step 8 Choose Post Processing/Domain Plot Parameters. Choose the Line/Extrusion,
Expression as c, and click Apply. You will get Figure 8.5.
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Step 9 Choose the diskette image to export the figure. Usually you would export it as a

jpeg figure, which is portable to many different programs. Close the plotting window.

Step 10 Create a new mesh (called remesh) by choosing the icon with a triangle inside a

triangle; either click on ‘¼’, or the ‘¼’ with a circle (to restart from the last solution). If the

plots of the solution are substantially the same as the 15-element case, the mesh is good

enough.

You see that the solution shown in Figure 8.5 looks the same as that obtained using

MATLAB, Figure 8.1. You need to be careful, though, because the solution using

FEMLAB is only as good as the mesh, and you have to try at least two meshes to see if

it matters. MATLAB, by contrast, adjusts the number of points from one end to the

other to maintain the accuracy (which you can reset if desired). Thus, the MATLAB sol-

ution comes with a guaranteed accuracy, whereas FEMLAB does not. FEMLAB has other

advantages, however, which are demonstrated in other chapters.

Example: Isothermal Plug Flow Reactor

Next solve the reactor problem posed by Eqs. (8.21)–(8.22). Now you must solve three

equations together. Repeat steps 1–4 as listed in the simple exponential example,

except make the length 2.4.

Step 5 Choose the Multiphysics/Model Navigator option to insert more equations.

Remove all equations to clear the problem. Select the Chemical Engineering/Mass

balance/Convective diffusion/Steady state and change the dependent variable from

c to ca. Click Add. Repeat this operation twice more, using dependent variables cb

and cc. Now you have three equations, with dependent variables ca, cb, and cc.

Figure 8.5. Solution to Eq. (8.16) using FEMLAB.
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Click OK. The correspondence between the computer variables and the reactor vari-

ables is:

Computer

Starts With

You

Changed to Reactor

u ca CA

u2 cb CB

u3 cc CC

x x z

Thus, you are solving the following equations (where you call the velocity vel):

vel
dca

dz
¼ �2k � ca2, vel

dcb

dz
¼ þk � ca2, vel

dcc

dz
¼ 0 (8:31)

Step 6 Choose Options/Constants and insert k and 0.3, and u and 0.5. These values are

useable by any expression in the computer program. Click OK.

Step 7 Choose Options/Expressions/Subdomain Expressions. Select domain 1 (the only

one) and create a variable named rate and set it equal to k�ca�ca. The variable rate can be

used elsewhere in the computer program. Click OK.

Step 8 Choose Multiphysics and select the first equation. Next, set the terms in the

equation and boundary conditions.

Step 9 Choose Physics/Subdomain Settings. Set the parameters to

dts ¼ 0, D ¼ 0, f ¼ �2�rate, u ¼ vel (8:32)

Step 10 Choose Physics/Boundary Settings, and select boundary 1 (the left-hand side).

Set the concentration to 2. Select boundary 2 (the right-hand side) and set the boundary

condition to ‘convective flux’. This has the effect of setting the value of ca¼2 at the

left-hand side, which is the reactor inlet. Click OK.

Step 11 Repeat steps 8–10 for the other two equations. For the equation for cb, use

f ¼ rate (8:33)

while for the cc equation use f ¼ 0.

Step 12 To solve, click on the equal sign, or choose Solve ¼ under the Solve Menu.

Step 13 Under Postprocessing, choose Domain Plot Parameters. In the general tab, click

on the ‘keep current plot’. This will allow you to plot all the curves on the same graph.

Click the ‘Line Extrusion’ tab, set the variable to be plotted to ca and click Apply.

Without destroying or touching the figure, set the variable to be plotted to cb and click

Apply. Repeat with cc. Then all three plots are on the same figure. In the General tab,
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insert into the boxes Title/Axis: CA, CB, CC; second line: axial position (m); third line:

concentration (kmol/m^3). Click Apply and export the figure as a jpeg figure with a name

you choose. The basic figure is shown in Figure 8.6. If you want, you can put the figure into

a drawing program and add other features.

Example: Nonisothermal Plug Flow Reactor

Consider next the problem posed by Eqs. (8.24)–(8.26). Because there are two variables,

you need two equations. Repeat steps 1–4 from the simple exponential example. The first

equation is the convective diffusion equation, cd, and the variable name is c.

Step 5 Choose Multiphysics/Model Navigator and add Chemical Engineering/Energy/
Convection and conduction. The equation is called cc, and the variable is T. After adding

the equation, be sure you have selected the cd equation for c.

Step 6 Choose Physics/Subdomain Settings and select 1. Insert the following values and

click OK:

dts ¼ 0, D ¼ 0, R ¼ �50�rate, u ¼ 1 (8:34)

Step 7 Choose Physics/Boundary Settings and select boundary 1 (the point on the left-

hand side).Set the concentration to 1.0. Select boundary 2 (the right-hand side) and change

the boundary condition to ‘convective flux’. Click OK.

Step 8 Choose the Multiphysics menu and select the convection and conduction

equation.

Figure 8.6. Solution to problem posed by Eqs. (8.21)–(8.22) using FEMLAB.
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Step 9 Choose Physics/Subdomain Settings and select subdomain 1. Insert the following

values.

dts ¼ 0, k ¼ 0, r ¼ 1, Cp ¼ 1

Q ¼ 1:02e4�rate� 4:1�(T � 673:2)

u ¼ 1, hiND,i inactive

(8:35)

Step 10 This step is very important! While the Physics/Subdomain window is open,

select the Init tab. Choose an initial value of T ¼ 673.2. The reaction rate constants and

equilibrium expressions are not defined for T ¼ 0, which is the default starting point. If

you skip this step, the program will not work.

Step 11 Choose Physics/Boundary Settings and select boundary 1. Set the boundary

condition to ‘temperature’ and the value to 673.2. Select boundary 2; set the boundary con-

dition to ‘convective flux’ and click OK.

Step 12 Choose Options/Expressions/Subdomains/. Set the following expressions:

k1 ¼ exp(�14:96þ 11070=T)

k2 ¼ exp(�1:331þ 2331=T)

Keq ¼ exp(�11:02þ 11570=T)

term1 ¼ c�sqrt½1� 0:167�(1� c)�

term2 ¼ 2:2�(1� c)=Keq

denom ¼ ½k1 þ k2
�(1� c)�^2

rate ¼ (term1� term2)=denom

Step 13 Solve the problem by clicking on the ‘¼’ sign.

Step 14 Choose Postprocessing, Domain Plot Parameters, and click on Line/Extrusion.
The variable already selected is the concentration c. Click subdomain 1 and Apply. Save

Figure 8.7. Concentration (a) and temperature (b) for SO2 reactor, Eqs. (8.24)–(8.26)
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the figure (see Figure 8.7a). Then go back and plot the temperature in the same way, and

save it (see Figure 8.7b).

It is useful to see what part of the reactor is doing the most work. You can plot the rate of

reaction by typing in the word rate in the same box where c and T appeared. The rate of

reaction is shown in Figure 8.8a, and the equilibrium constant is shown in Figure 8.8b.

(Remember that Keq depends upon temperature, which changes with axial position.)

When using FEMLAB to run nonisothermal reactor problems, sometimes you run into

difficulties. If you click on the ‘¼’ sign, the program might indicate error messages such as

‘stepsize too small’ or ‘singular matrix’ or ‘internal error in numerical routines.’ The first

thing to do is make the problem easier to solve; if the program solves the easier problem,

then your setup is probably correct. In this example, you can set the rate to c. You could

also remove the heat of reaction and make the temperature constant. This tests the program

without the complications of the exponential terms. Since the kinetic constants change

rapidly with temperature, if the temperature approximation is bad, the rates could be

very large or very small, and essentially unrealistic.

Suppose you do all this, and the program still does not work. You might first suspect a

problem with the temperature. Then, you can use the following strategy. Go to Physics/
Subdomain Settings for the temperature equation and change the number 1.02�e4 to beta.

Go to Solver Manager and choose ‘parameter nonlinear.’ Call the parameter beta and set

its values to [0 1000 3000 1.02e4]. Then the program will solve first for b ¼ 0. It will also

solve for the derivative of the solution with respect to b. Next it solves for the case of

b ¼ 1000, using a linear extrapolation from the case for b ¼ 0. This continues in sequence

until the last solution is solved for 1.02e4. This is always a good strategy when difficulties

arise, and the more you know about the problem the more easily will you find the solution.

Appendix D gives more details about this procedure.

[Note to experienced users: Sometimes FEMLAB has difficulty with plug flow reactor

problems, when MATLAB did not, because FEMLAB is solving them as boundary value

problems, whereas MATLAB solves them as initial value problems. They are actually

initial value problems; you fool FEMLAB by setting the diffusion coefficient to zero,

and the thermal conductivity to zero. The other difficulty is that the kinetic expression

makes huge changes when the temperature changes. Anytime you have to iterate to find

Figure 8.8. Rate of reaction (a) and Keq (b) for SO2 reactor, Eqs. (8.24)–(8.26).
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a solution (which is commonly required for boundary value problems), the values of temp-

erature during the iterations may become too large or too small and the iteration process

may never recover. This is why you might change b slowly in order to reach a solution.

See Chapter 9 for more information about boundary value problems. The next version

of FEMLAB is expected to have equations appropriate for plug flow reactors.]

REACTOR PROBLEMS WITH MOLE CHANGES AND

VARIABLE DENSITY

The examples shown above are for liquid streams or dilute gaseous streams where the

density does not change drastically. Sometimes the density does change, though, and

such problems are not much harder to solve numerically than their constant-density counter-

parts. The governing equation is Eq. (8.2), here expressed as a differential equation:

dFj

dVR

¼ rj, j ¼ 1; . . . ; 3 (8:36)

where Fj is the molar flow rate of the jth species, VR is the volume of reactor (from the inlet),

and rj is the rate of reaction of the jth species. Let us take the same reaction, Eq. (8.18), and

reaction rate, Eq. (8.20). Putting these together gives the differential equations to be solved:

dFA

dVR

¼ �2kC2
A,

dFB

dVR

¼ þkC2
A,

dFC

dVR

¼ 0 (8:37)

The equations are differential equations for the molar flow rates, FA, FB, and FC, but the

rates of reaction are expressed as concentration, CA. It is possible to derive the concentration

of each chemical from the molar flow rates, and this section illustrates how to do that in

MATLAB and FEMLAB. In a gas phase, the total concentration is governed by the

perfect gas law, although more complicated equations of state are possible:

CT ¼
p

RT
(8:38)

Thus, at any point in the reactor, if you know the pressure and temperature, you can find CT.

The pressure is determined by fluid mechanics and the pressure drop, and the temperature is

determined by the energy equation. Then the concentration of a chemical is the mole fraction

times the total concentration; for example

Cj ¼ xjCT, and the mole fraction is

xj ¼
Fj

FA þ FB þ FC

, j ¼ A, B, or C
(8:39)

If the temperature and pressure are constant, the total concentration is the total concentration

at the inlet, which is taken here to be 5 kmol/m3. Thus, the flow rate is

FA þ FB þ FC ¼ _V CT (8:40)
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The problem is summarized here as

dFA

dVR

¼ �2kC2
A,

dFB

dVR

¼ þkC2
A,

dFC

dVR

¼ 0

FA(0) ¼ 2 kmol=s, FB(0) ¼ 0, FC(0) ¼ 2 kmol=s

CA ¼
FA

FA þ FB þ FC

CT

(8:41)

The MATLAB program requires you to write a function (m-file) that calculates the right-

hand side, given the input, which are the flow rates of all species. Thus, to solve the problem

you would use the variables

y(1) ¼ FA, y(2) ¼ FB, y(3) ¼ FC (8:42)

The function will have available to it the accumulated reactor volume VR, and the local value

of y( j), j ¼ 1, . . . , 3 at the same reactor volume. You then calculate the concentrations at that

reactor volume using Eq. (8.43):

CA ¼
y(1)

y(1)þ y(2)þ y(3)
CT (8:43)

The rates of reaction are then evaluated, and the function returns the numerical value of

the right-hand side. You can complete this example by doing Problem 8.7 at the end of

the chapter.

The same considerations apply when using FEMLAB. The variables being solved

for are now FA, FB, and FC. In Options/Expressions/Subdomain Expressions you

define equations for new variables ca, cb, and cc representing Eq. (8.42), and then use

the same reaction rate expression (in terms of ca). The rest of the solution proceeds as

before:

ca ¼ CT�FA=(FA þ FB þ FC), cb ¼ CT�FB=(FA þ FB þ FC)

cc ¼ CT�FC=(FA þ FB þ FC)
(8:44)

CHEMICAL REACTORS WITH MASS TRANSFER LIMITATIONS

When a reaction occurs on a catalyst particle, it is necessary for the reactants to get to the

catalyst. Sometimes this transfer is hindered by mass transfer, and then the concentration

near the catalyst is not the same as it is in the bulk stream. This phenomena is demonstrated

with the problem posed in Eqs. (8.21)–(8.22), except that now the rate of reaction is

evaluated at a concentration that is near the catalyst. The concentration Cs is the concen-

tration on the surface, expressed as the kmol of a species per volume of the catalyst. In

your Chemical Reactor Design courses, you will learn various ways to represent this

concentration. The net effect, however, is that Eq. (8.21) is changed to Eq. (8.45):

u
dCA

dz
¼ �2ksC

2
A,s, u

dCB

dz
¼ þksC

2
A,s, u

dCC

dz
¼ 0 (8:45)

CHEMICAL REACTORS WITH MASS TRANSFER LIMITATIONS 131



You will be solving for CA(z), but you cannot evaluate the rate of reaction in Eq. (8.45)

because you do not know CA,s. You need a mass balance relating the rate of mass transfer

to the catalyst to the rate of reaction. One form of that is Eq. (8.46), where km is a mass

transfer coefficient in units of m/s, determined from correlations derived in fluid mech-

anics and mass transfer courses, a is the surface area exposed per volume of the reactor

(m2/m3), and ks is a rate of reaction rate constant (here m3/kmol s). Other formulations

are possible, too:

kma(CA � CA,s) ¼ ksC
2
A,s (8:46)

Looking closely at Eqs. (8.45)–(8.46), you can see that, in order to solve the differ-

ential equations in Eq. (8.45), you must solve Eq. (8.46) at every position z. Thus,

this is a problem that combines ordinary differential equations with nonlinear algebraic

equations.

MATLAB easily handles these kinds of problems. Basically you call a routine to inte-

grate the ordinary differential equations (e.g., ode45). You construct a right-hand side

function (m-file) to evaluate the right-hand side. The input variables are z and the three

concentrations, and the output variables are the three derivatives. Take CA and solve

Eq. (8.46) using either ‘fzero’ or ‘fsolve.’ Then you have CA,s at this location, z. You

can evaluate the rates of reaction in Eq. (8.45) and put them in the output from the m-file.

Step 1 You first construct an m-file to evaluate Eq. (8.46):

function y=mass_rxn(CAs,CA)
global k km
% mass_rxn.m
% this m-file evaluates the mass transfer equations
% km in the program includes the a
% the first entry is the guess of CAs and
% the second entry is the fluid concentration
y=km*(CA-CAs)-k*CAs*CAs;

Step 2 Test this function using the feval function:

global k km
k=0.3; km=0.35
feval(0.5,0.6)
ans=-0.143

This is correct.

Step 3 Next, test the use of the ‘fzero’ command:

CAguess=0.5; CA=0.5;
OPTIONS=[]
CAs=fzero(@mass_rxn,CAguess,OPTIONS,CA);

The result is 0.37771, which is correct.
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Step 4 Next, construct an m-file, rate1_mass.m, to evaluate the right-hand sides of

Eq. (8.45). This m-file is almost the same as that shown following Eq. (8.23), except

that a global command is used so the parameters can be changed easily. The only signifi-

cant change to this m-file from that used earlier is the use of fzero to find CAs, and then

using CAs rather than CA to evaluate the rate of reaction.

% rate1_mass.m
% This function gives the right-hand side for a
% reactor problem which is isothermal but has
% mass transfer effects
function ydot=rate1_mass(VR,y)
global k vel km
% y(1) is CA, y(2) is CB, y(3) is CC
CA=y(1);
% solve the mass transfer problem
% the first entry is the guess of CAs and
% the second entry is the fluid concentration
OPTIONS=[]
CAguess=CA;
CAs=fzero(@mass_rxn,CAguess,OPTIONS,CA);
rate=k*CAs*CAs;
ydot(1)=-2.*rate/vel;
ydot(2)=+rate/vel;
ydot(3)=0.;
ydot=ydot’;

Step 5 The last m-file is the one to run the problem, which you do using the value

kma ¼ 0.2. The only changes to the program run_rate1 following Eq. (8.23) are (1) the

use of ‘global’ to set the parameters and (2) changing the name of the right-hand side

function from rate1 to rate1_mass.

% run_rate1_mass.m
% This is the driver program to solve the simple flow reactor
% example.
global k vel km
k=0.3; vel=0.5; km=0.2;
% set the initial conditions
y0=[2 0 2]
% set the total volume of the reactor
zspan=[0 2.4]
% call the ode solver
[z y]=ode45(@rate1_mass,zspan,y0)
% plot the result
plot(z,y(:,1),‘*-’,z,y(:,2),‘+-’,z,y(:,3),‘x-’)
% or plot(z,y)
xlabel(‘length (m)’)
ylabel(‘concentrations (kgmol/m^3)’)
legend(‘A’, ‘B’, ‘C’)
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Step 6 As a check, you run this program while changing the rate1_mass.m program

to use

%CAs=fzero(@mass_rxn,CAguess,OPTIONS,CA);
rate=k*CA*CA;

instead of

CAs=fzero(@mass_rxn,CAguess,OPTIONS,CA);
rate=k*CAs*CAs;

This has the effect of removing the mass transfer limitation, and the result should be the

same as shown in Figure 8.3, and it is the same. The code is returned to its proper form, and

the program run_rate1_mass calculates the output (see Figure 8.9). With mass transfer

resistance included, the outlet concentration of B is 0.61. When there was no mass transfer

limitation, the outlet concentration of B was 0.85. Thus, the reactor is not able to produce

as much product, and a bigger reactor is required.

This same type of problem can arise with multiple concentrations or with one concen-

tration and temperature. Then you would need to replace the fzero command with the

fsolve command (from the Optimization Toolbox). You might need to experiment to

provide good initial guesses for the concentrations and temperatures, because Eq. (8.46)

would be turned into a set of nonlinear algebraic equations, and the solution is very

sensitive to the temperature variable.

CONTINUOUS STIRRED TANK REACTORS

Equation (8.15) gave the mass balance for a CSTR. A similar equation can be written as

an energy balance. This example considers a CSTR in which a first-order reaction occurs,

Figure 8.9. Solution to Eqs. (8.45)–(8.46) when mass transfer is important.
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but the temperature also changes owing to the heat of reaction. The equations to be

solved are:

Q

VR

(1� c) ¼ c exp½g(1� 1=T)�

Q

VR

(1� T) ¼ �bc exp½g(1� 1=T)�

(8:47)

The left-hand sides are the flow rate times a concentration or temperature difference

between the input and output, divided by the volume. The equations have been normalized

by the inlet concentration and temperature. The right-hand sides are the rate of reaction

and the rate of energy generation due to reaction, respectively.

The case described by Eq. (8.47) is for an adiabatic reactor. When the reactor is adia-

batic, the equations can be combined by multiplying the first equation by b and adding it to

the second equation; then the right-hand side vanishes:

b(1� c)þ (1� T) ¼ 0 (8:48)

This equation can be solved for T:

T ¼ 1þ b(1� c) (8:49)

Now the mass balance can be considered a single equation in one unknown (c):

Q

VR

(1� c) ¼ c exp½g(1� 1={1þ b� bc})� (8:50)

Solution Using Excel

The first set of parameters used is Q/VR ¼ 8.7, b ¼ 0.15, g ¼ 30. The simple spreadsheet

is shown in Figure 8.10; cells are set for T, which is calculated from the c. You can use

either Goal Seek or Solver to find the value of c that makes the function zero.

Solution Using MATLAB

MATLAB allows you to extend the method to more complicated situations when Excel

does not work.

A B C
1 beta 0.15
2 gamma 30
3 flowvel 8.7
4 c 0.731075498
5 T 1.040338675 = 1+B1*(1-B4)
6 rate 2.339642834 = B4*EXP(B2*(1-1/B5))
7 function 3.34879E-07 = B3*(1-B4)-B6

Figure 8.10. Spreadsheet solving Eq. (8.50).
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Step 1 First, construct an m-file that represents Eq. (8.50):

% rate_T
function fn=rate_T(c)
global beta gamma flowvol
T=1+beta*(1-c)
rate=c*exp(gamma*(1-1/T))
fn=flowvol*(1-c)-rate

Step 2 Test it using the command

>> rate_T(0.5)
T=1.0750
rate=4.0547
fn=0.2953
ans=0.2953

The answer is correct.

Step 3 To solve the problem, type the following commands into the command window:

>> fzero(@rate_T,0.5)
ans=0.73107565193641

This is the same solution as that obtained using Excel, as expected.

CSTR With Multiple Solutions

For a different set of parameters, the CSTR can have more than one solution. For this

problem, the solutions all lie between 0 and 1, because the concentration has been normal-

ized by the inlet value, where the normalized concentration is 1.0, and the reaction uses up

the material. Which solution you get depends upon the initial guess of c. Use Excel to

solve the problem when Q/VR ¼ 25, b ¼ 0.25, keeping g ¼ 30. Successive trials led to

the results shown in Table 8.1.

Solutions to Multiple Equations Using MATLAB

When two or more variables must be found, as in Eq. (8.47), a solution can be found to

make both the equations zero without rearrangement, like that to produce Eq. (8.50).

TABLE 8.1. Multiple Solutions to Eq. (8.50) when

Q/VR 5 25, b 5 0.25, g 5 30

Initial Guess of c Final Result

0 0.0863

0.5 0.5577

1.0 0.9422
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Step 1 You can use the following MATLAB m-file along with the fsolve command

(available in the Optimization Toolbox):

% rate_T2
function fn=rate_T2(y)
global beta gamma flowvol
c=y(1);
T=y(2);
rate=c*exp(gamma*(1-1/T));
fn(1)=flowvol*(1-c)-rate;
fn(2)=flowvol*(1-T)+beta*rate;

Step 2 Test the m-file with the following commands:

>> feval(@rate_T2,[0.5 1.1])
ans=-3.29556351331856 0.27683452699778

This answer is correct.

Step 3 Then in the command window, issue the following commands:

global beta gamma flowvol
beta=0.25; gamma=30; flowvol=25;
fsolve(@rate_T2,[0.0 1.25])

With this initial guess, the program returns the first answer in Table 8.1. With an initial

guess of [0.5 1.125], it returns the second answer. With an initial guess of [1 1], it

returns the third answer. Such problems will not always converge, and convergence is

harder for larger b and g. As the convergence becomes harder, it is more and more

crucial to provide a reasonable starting guess.

TRANSIENT CONTINUOUS STIRRED TANK REACTORS

Reactors do not always run at steady state. In fact, many pharmaceuticals are made in a

batch mode. Such problems are easily solved using the same techniques presented

above because the plug flow reactor equations are identical to the batch reactor equations.

Even CSTRs can be run in a transient mode, and it may be necessary to model a time-

dependent CSTR to study the stability of steady solutions. When there is more than one

solution, one or more of them will be unstable. Thus, this section considers a time-

dependent CSTR as described by Eq. (8.51):

V
dc0

dt0
¼ Q(c0 � c0in)� Vk0c

0 exp(� E=RT)

½f(rCp)f þ (1� f)(rCp)s�
dT 0

dt0
¼ �(rCp)fQ(T � T 0

in)þ (� DHrxn)Vk0c
0 exp(� E=RT)

(8:51)
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The variables are

V ¼ reactor volume, Q ¼ volumetric flow rate

c ¼ concentation, t ¼ time

k0 ¼ reaction rate constant, E ¼ activation energy

f ¼ void fraction, r ¼ density, Cp ¼ heat capacity per mass

subscript f for fluid, s for solid

�DHrxn ¼ heat of reaction

(8:52)

The nondimensional form of these equations is

dc

dt
¼ (1� c)� c � Da � exp½g(1� 1=T)�

Le
dT

dt
¼ (1� T)þ b � c � Da � exp½g(1� 1=T)�

(8:53)

The parameter Le is a Lewis number, and it includes the heat capacity of the system. The

Da is a Damköhler number and includes the rate of reaction. The parameters are taken as

b ¼ 0:15, g ¼ 30, Da ¼ 0:115, Le ¼ 1080, c(0) ¼ 0:7, T(0) ¼ 1 (8:54)

Step 1 To integrate these equations using MATLAB, you need an m-file to compute the

right-hand side, and then an m-file to call ‘ode45’. The right-hand side function is

% rate_limit.m
% solve for particle with limit cycle
function ydot=rate_limit(t,y)
global beta gamma Damk Lewis Tin
c=y(1);
T=y(2);
rate=c*Damk*exp(gamma*(1-1/T));
ydot(1)=1-c-rate;
ydot(2)=Tin-T+beta*rate;
ydot(2)=ydot(2)/Lewis;
ydot=ydot’;

Step 2 After checking this code you can run it using the following m-file.

% run_rate_limit
global beta gamma Damk Lewis Tin
beta=0.15
gamma=30
Lewis=1080
Damk=0.115
Tin=1
tic
[t y]=ode45(‘rate_limit’,[0 2],[0.7 1.0])
toc
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plot(t,y(:,1),‘*-k’,t,y(:,2),‘o-k’)
xlabel(‘time’)
legend(‘concentration’,‘temperature’)

The result is shown in Figure 8.11. It looks like steady state is achieved by the time that

t¼ 2.This is not true, however. Integrate to t ¼ 1000 and look at the results in Figure 8.12.

It still has not reached steady-state. The reason is that the temperature responds much more

slowly than does the concentration. Thus, the concentration comes to a steady-state value

appropriate to the current temperature, but then the temperature keeps changing and

the concentration must change to keep up. Notice the very rapid change of c from the

initial value of 0.7 to about 0.9 in Figure 8.12. This is because the value of c ¼ 0.7 was

not appropriate for a temperature of 1.0. In mathematical terms, the time response of

the two variables is very different (the eigenvalues of the equation are widely separated),

and the system is called stiff. See Appendix F for more discussion about stiff equations.

Figure 8.12. Transient CSTR, up to t ¼ 1000, elapsed time ¼ 1.22 s.

Figure 8.11. Transient CSTR, up to t ¼ 2, elapsed time ¼ 0.024 s.
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MATLAB has some solvers especially suited to stiff problems. You merely change

from ode45 to ode15s. When integrating to t ¼ 1000, you obtain Figure 8.12, but it

only takes 0.040s. Thus, the solution is 30 times faster. Since steady state still has not

been reached, integrate to t ¼ 40,000. Figure 8.13 shows that steady state has been

reached. Now the computation times are 62.2 s for ode45 and 0.062 s for ode15s,

giving ode15s a speed-up factor of over 1000. The difference is made more dramatic if

you remove the [t y] ¼ in front of the call to ode45 and ode15s. Then the solution is

plotted as it is calculated, and the difference in speed is apparent.

Next you change the parameter Le from 1080 to 0.1 and integrate to t ¼ 100 using ode15s.

Step 1 The code is shown below:

% run_rate_limit
global beta gamma Damk Lewis Tin
beta=0.15
gamma=30
Lewis=0.1
Damk=0.115
Tin=1
tic
[t y]=ode15s(‘rate_limit’,[0 100],[0.7 1.0])
toc
plot(t,y(:,1),‘-k’,t,y(:,2),‘-k’)
xlabel(‘time’)
pause
plot(y(:,1),y(:,2),‘-k’)
xlabel(‘concentration’)
ylabel(‘temperature’)

The solution is shown in Figure 8.14. The pattern seems to be repeated over and over.

Figure 8.13. Transient CSTR, up to t ¼ 40,000, elapsed time ¼ 0.062 s.
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If the temperature is plotted vs the concentration at the same time, the repeated pattern

is apparent (see Figure 8.15). This problem exhibits what is called a limit cycle. This is

also a good problem to run without the [t y] ¼ in front of the ode15s; then you see the

solution develop before your eyes.

CHAPTER SUMMARY

In this chapter you developed the equations for different reactors: plug flow, batch, and

CSTR. You learned how to integrate ordinary differential equations using MATLAB,

and then applied those skills to reactor problems in plug flow reactors (both isothermal

and non-isothermal).You also learned to do the same thing using FEMLAB.

Figure 8.14. Transient CSTR, Le ¼ 0.1, integration to t ¼ 100, elapsed time ¼ 5.67 s.

Figure 8.15. Limit cycle display of Figure 8.14.
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Complications arose when the moles or total concentration changed, or when mass

transfer effects were important, and you learned how to incorporate those complications.

Finally, CSTRs were studied using both MATLAB and Excel in cases where the solution

is steady, where multiple steady solutions exist, and you learned to use MATLAB when

the solution is time-dependent and the problem is stiff, leading to limit cycles.

PROBLEMS

8.1. Solve for the concentration distribution in a plug flow reactor governed by the fol-

lowing equations. (1) Use MATLAB; (2) use FEMLAB:

Q
dc

dVR

¼ �R(c), c(0) ¼ cin (8:55)

R(c) ;
kc

cþ y
, Q ¼ 50, cin ¼ 2, V ¼ 2000 ¼ total volume,

k ¼ 0:198, y ¼ 3:8 (8:56)

8.2. Solve for the concentration distribution in a plug flow reactor with the following

reaction rate expression and parameters. (1) Use MATLAB; (2) use FEMLAB:

R(c) ;
kc

(1þ K1c)
2

and Q ¼ 2:2, cin ¼ 1, V ¼ 50 ¼ total volume,

k ¼ 2, K1 ¼ 4

(8:57)

8.3. A CSTR is governed by the following equation:

Q(c� cin) ¼ �VR(c) (8:58)

(1) Solve for c when

R(c) ;
kc

cþ y
, Q ¼ 50, cin ¼ 2, V ¼ 2000, k ¼ 0:198, y ¼ 3:8

(2) Solve when

R(c) ;
kc

(1þ K1c)
2

and Q ¼ 2:2, cin ¼ 1, V ¼ 50, k ¼ 2, K1 ¼ 4

8.4. The problem posed by Eqs. (8.21)–(8.22) can be solved for a CSTR, too. In that

case the equation is multiplied by the cross-sectional area of the pipe to obtain

u
dCA

dz
¼ �2kC2

A �! uA
dCA

dAz
¼ �2kC2

A �! Q
dCA

dVR

¼ �2kC2
A �!

Q(CA � CA,in) ¼ �2VkC2
A (8:59)

Take the cross-sectional area as 0.001 m2 and solve for the same conditions as in

Eq. (8.22).
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8.5. The growth rate for cells in a bioreactor can follow a variety of growth equations.

Monod kinetics is represented by part (1) of Problem 8.3. A substrate-inhibition

growth rate is given by (see Shuler, 1988):

growth rate ¼
mmS

Ks þ Sþ S2=KI

(8:60)

where mm is the maximum specific growth reaction rate, Ks is the monod constant,

KI is the inhibition constant, and S represents the substrate concentration (the

material being reacted). The equation growing cells in a CSTR is

Q(S� Sin) ¼ �V
mmS

Ks þ Sþ S2=KI

(8:61)

In nondimensional form this is

(s� 1) ¼ �Da
s

vþ sþ 1s2

where

Da ¼
Vmm

QSin
, v ¼

Ks

Sin
, 1 ¼

Sin

KI

(8:62)

Solve this problem for Da ¼ 1.19, v ¼ 3.56 � 1023, 1 ¼ 2.53. (Hint: Look for

multiple solutions.) See Schmidt (2004) and Fogler (2005) for additional infor-

mation about biological reactors.

8.6. Solve the same Problem 8.5 with the CSTR replaced by a plug flow reactor. The

equations are then

ds

dz
¼ Da

s

vþ sþ 1s2
, z ¼ 0 ! 1, s(0) ¼ 1 (8:63)

8.7. Solve Eq. (8.41) for a total volume of 1.2 m3, k ¼ 0.3 m3/kmol s, a total concen-

tration of 5 kmol/m3. (1) Use MATLAB; (2) use FEMLAB.

8.8. Ammonia undergoes a reaction with oxygen in the presence of a platinum catalyst

to form nitric oxide and water. The reaction is carried out in a microreactor

(see Chapter 11), which results in a constant temperature. The reaction is

NH3 þ
5
2
O2 �! NOþ 3

2
H2O (8:64)

The reaction occurs on the surface of a tube in the microreactor, as governed by the

following rate of reaction (in g mol/cm2; Pignet and Schmidt, 1975):

rNH3
¼

A

B � C
, A ; 3:4� 10�8 exp(21,700=RT)pNH3

p
1=2
O2

B ; 1þ 8� 10�2 exp(4400=RT)p1=2O2

C ; 1þ 1:6� 10�3 exp(25,500=RT)pNH3

(8:65)
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The inlet stream contains ammonia and oxygen with partial pressures of 0.046 and

0.068 torr, respectively, and the flow rate is 100 l/h. Solve the problem for a temp-

erature of (1) 473 K and (2) 673 K and compare the results. The microreactor

channel is 40 � 300 mm, and its length is 1 cm. The governing equations are

dFi

dz
¼ PvirNH3

, Fi(0) ¼ Fi0 (8:66)

where: vi ¼ stoichiometric coefficient of the ith species; P ¼ perimeter, cm;

Fi ¼ flow rate of the ith species, and gmol/s; and Fi0 ¼ flow rate of the ith

species at the inlet, gmol/s. In addition,

FT ¼
XN
i¼1

Fi, yi ¼
Fi

FT

, pi ¼ yipT (8:67)

8.9. When an enzyme is immobilized on a surface, there may be a mass transfer resist-

ance that limits the concetration of the reacting species on the surface. The follow-

ing problem (from Shuler, 1988) finds the concentration of substrate on the surface

when there is a reaction accompanied by mass transfer resistance. The Michaelis–

Menten reaction on a surface is governed by

rate of reaction ¼
k0S

Sþ Km

(8:68)

The equation for reaction at a surface with mass transfer limitations approaching the

surface is

kL(Sf � S) ¼
1k0S

Sþ Km

(8:69)

where: kL ¼ mass transfer coefficient ¼ 1023 cm/s; Km ¼ kinetic constant ¼ 1024

mol/l; k0 ¼ kinetic constant ¼ 5 � 1026 mol/s mg enzyme; 1 ¼ enzyme loading ¼

1.6 � 1024 mg enzyme/cm2; Sf ¼ external concentration ¼ 1024–1022 mol/l; and
S ¼ concentration at surface, mol/l. Solve for S when the external concentration is (1)

1024 mol/l and (2) 1022 mol/l.

8.10. The steady state model for a nonisothermal CSTR representing a catalytic

converter is:

QCtot(yin � y) ¼ a r(y, T)

QCtotM̂Cpg(T � Tin) ¼ aV(�DHrxn)r(y,T) (8:70)

r ¼
0:05k1y

T(1þ K1y)
2
, k1 ¼ 6:70� 1010 exp(�12556=T), K1 ¼ 65:5 exp(961=T)
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The reaction rate expression is given for oxidizing carbon monoxide on a catalytic

surface. When the inlet mole fraction CO is yin ¼ 0.02, and the inlet temperature is

Tin ¼ 600 K, find the solution to these equations. The parameters are

Q ¼ 0:06555m3=s, Ctot ¼ 0:0203 kg mol=m3

a ¼ 26900m2=m3, V ¼ 6 10�4m3

M̂ ¼ 30 kg=kg mol

Cpg ¼ 1070 J=kg K, �DHrxn ¼ 2:84� 108 J=kg mol

8.11. Solve the problem in Eq. (8.47) but for a plug flow reactor instead of the CSTR.

Q
dc

dVR

¼ c exp½g(1� 1=T)�, c(0) ¼ 1

Q
dT

dVR

¼ �bc exp½g(1� 1=T)�, T(0) ¼ 1

(8:71)

Integrate from VR/Q ¼ 0 to 8.7 with b ¼ 0.15, g ¼ 30. Compare the conversion

with that achieved with a CSTR.

8.12. Repeat Problem 8.11 but with VR/Q ¼ 0–25 with b ¼ 0.25, g ¼ 30.

8.13. The growth of cells in a transient CSTR is governed by:

ds

dt
¼ 1� s� Da

s

vþ sþ 1s2
, c(0) ¼ c0 (8:72)

For the parameters v ¼ 3.5625 � 1023, 1 ¼ 2.5216, Da ¼ 1.1905, integrate to

t ¼ 24 for the following initial conditions for c0: (1) 1; (2) 0; (3) 0.146019;

(4) 0.142; (5) 0.150. Discuss.

8.14. During the cure of an epoxy in a pre-preg operation to make polymeric composites,

the extent of reaction, a, is sometimes modeled with the equation

da

dt
¼ (1þ aam)(1� a)n, a(0) ¼ 0 (8:73)

where a ¼ 3, m ¼ 0.5, n ¼ 0.7. Solve this equation as a function of time.

8.15. Problem 8.10 is considered as a transient CSTR. The equations governing it are

1VCtot

dy

dt
¼ QCtot(yin � y)� a r( y, T)

V½1rgCpg þ (1� 1)rsCps�
dT

dt
¼ QCtotM̂Cpg(T � Tin)� aV(� DHrxn)r( y, T)

(8:74)
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The additional parameters are

Cpg ¼ 1070 J=kgK, Cps ¼ 1000 J=kg, 1 ¼ 0:68

rg ¼ CtotM̂ ¼ 0:609 kg=m3, rs ¼ 2500 kg=m3

The inlet mole fraction (of carbon monoxide) is 0.01 and the inlet temperature is

600 K.

Integrate these equations under the following conditions:

t , 1 s: yin ¼ 0:01, Tin ¼ 600K

1 , t , 2 s: inlet conditions increase linearly to

yin ¼ 0:03, Tin ¼ 700K

2 , t s : yin ¼ 0:03, Tin ¼ 700K

This model can be used to study the entire Federal Test Cycle covering many hours

of operation of the catalytic converter.
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9
TRANSPORT PROCESSES IN
ONE DIMENSION

Chemical engineering processes involve the transport and transfer of momentum, energy,

and mass. Momentum transfer is another word for fluid flow, and most chemical processes

involve pumps and compressors, and perhaps centrifuges and cyclone separators. Energy

transfer is used to heat reacting streams, cool products, and run distillation columns. Mass

transfer involves the separation of a mixture of chemicals into separate streams, possibly

nearly pure streams of one component. These subjects were unified in 1960 in the first

edition of the classic book, Transport Phenomena (Bird et al., 2002). This chapter

shows how to solve transport problems that are one-dimensional; that is, the solution is

a function of one spatial dimension. Chapters 10 and 11 treat two- and three-dimensional

problems. The one-dimensional problems lead to differential equations, which are solved

using the computer.

Diffusion problems in one dimension lead to boundary value problems. The boundary

conditions are applied at two different spatial locations: At one side the concentration may

be fixed and at the other side the flux may be fixed. Because the conditions are specified at

two different locations, the problems are not initial value in character. It is not possible to

begin at one position and integrate directly because at least one of the conditions is speci-

fied somewhere else and there are not enough conditions to begin the calculation. Thus

methods have been developed especially for boundary value problems. There is a baseball

analogy that illustrates the difference. If you are at bat and there is no one on base, you can

hit and run as fast as you can. This is like an initial value problem. If you are at bat and

someone is on first base, you can hit, but the way you run is influenced by what the

runner ahead of you does. This is like a boundary value problem.

This chapter illustrates heat transfer, diffusion, diffusion with reaction, and flow in

pipes, considering steady and unsteady processes. These problems are all solved using

FEMLABw, which is easy to use for these applications. Details of the finite element

Introduction to Chemical Engineering Computing, by Bruce A. Finlayson
Copyright # 2006 John Wiley & Sons, Inc.
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method are not given here, but you will find a brief description in Appendix F, along with

references. In essence, you represent the solution at a set of grid points (finite difference)

or nodal points (finite element). This is an approximation, so the answer is only as good as

the mesh allows it to be, and the accuracy is not guaranteed. Thus, you have to solve the

problem on more than one mesh to ensure that the results do not depend appreciably on the

mesh. The solution is exact only if you use an infinite number of points, which no one has

ever done. However, you can usually make it as accurate as needed, and the FEMLAB

software makes it very easy to re-solve the problem on a better mesh so you can test

the accuracy.

APPLICATIONS IN CHEMICAL ENGINEERING – MATHEMATICAL

FORMULATIONS

Heat Transfer

Consider steady heat transfer across a slab of material that extends infinitely in two direc-

tions and has thickness L. In the thin direction, x, the equation for steady heat conduction is

d

dx
k(T)

dT

dx

� �
¼ Q

T(0) ¼ T0, T(L) ¼ TL

(9:1)

The temperature, T, is a function of position, x. Notice that one condition is at x ¼ 0

and the other at x ¼ L. This makes it a two-point boundary value problem. The thermal

conductivity k can depend upon temperature, and when it does the problem is nonlinear.

The rate of energy generation is Q.

Diffusion and Reaction

Diffusion across a flat slab is very similar to Eq. (9.1):

d

dx
D
dc

dx

� �
¼ 0

c(0) ¼ c0, c(L) ¼ cL

(9:2)

where the concentration, c, is a function of position, x. The diffusivity, D, can depend upon

concentration. This is also a two-point boundary value problem because the concentration

is specified at both x ¼ 0 and x ¼ L.

Many chemical reactions take place inside a catalyst pellet, which is a porous material

(such as Al2O3 impregnated with the catalyst, usually metals of various kinds). The

equation for a spherical catalyst pellet with radius Rp is

1

r2
d

dr
Der

2 dc

dr

� �
¼ R(c)

dc

dr
(0) ¼ 0, c(Rp) ¼ cR

(9:3)
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where De is an effective diffusivity for the diffusion of mass inside the porous catalyst. The

concentration, c, is a function of radial position, r. The reaction rate can have a variety of

forms, all depending on concentration:

R ¼ c, R ¼ c2, R ¼
ac

1þ Kc
(9:4)

In most cases, this problem is nonlinear. Again, this problem is a two-point boundary value

problem because the boundary conditions are at two different spatial positions. At r ¼ 0

there is no flux (center of the pellet), and at r ¼ Rp the concentration takes a specified

value equal to the external concentration.

When there is a heat of reaction, the temperature increases due to the reaction. In that

case you have to also solve an energy balance on the catalyst pellet. A typical energy

balance is

1

r2
d

dr
ker

2 dT

dr

� �
¼ �DHrxnð ÞR(c,T )

dT

dr
(0) ¼ 0, T(Rp) ¼ TR

(9:5)

The temperature, T, is a function of radial position, r, ke is an effective thermal conduc-

tivity, and –DHrxn is the heat of reaction. Again, there is no flux at the center, and the

temperature at the outer boundary is set at TR. Now the reaction rate depends upon both

concentration and temperature [and Eq. (9.3) has to be written with R(c, T)]. Such

problems can be very difficult owing to the rapid change in the kinetic constants with

temperature, and they provide a severe test of any numerical method.

Fluid Flow

Consider the flow of a Newtonian fluid in a pipe, as illustrated in Figure 9.1. The governing

differential equation is (Bird et al., 2002):

1

r

d

dr
rm

dv

dr

� �
¼ �

Dp

L

dv

dr
(0) ¼ 0, v(R) ¼ 0

(9:6)

v(r)
r

2R

L

Figure 9.1. Fully developed pipe flow.
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where r is the radial position from the center of the pipe of radius R, v is velocity in the axial

direction, m is the viscosity, Dp is the pressure drop along the pipe, and L is the length over

which the pressure drop occurs. The boundary conditions are at different locations, making

it a two-point boundary value problem. The solution to this problem is Eq. (9.7):

v ¼
1

m

Dp

L

R2

4
1�

r2

R2

� �
(9:7)

When solving the problem analytically, it is also possible to use a boundary condition

at r ¼ 0 that says the velocity is finite. Both conditions give the same result, and in fact

one can be derived from the other. Note that Dp is a positive number.

In pipe flow the average velocity is defined by Eq. (9.8):

kvl ¼

ðRp

0

v(r)r dr

ðRp

0

r dr

¼
2

R2
p

ðRp

0

v(r)r dr ¼ 2

ð1
0

v(r0)r0 dr0, where r0 ¼
r

Rp

(9:8)

Note the r dr in the integrand, which is necessary because cylindrical polar coordinates

are used. The relationship between the average velocity and the pressure gradient can

be obtained by integrating Eq. (9.7) using Eq. (9.8); this is the Hagen–Poiseuille law.

The peak velocity is twice the average velocity in pipe flow:

kvl ¼
1

m

Dp

L

R2

8
¼

Dp

L

� �
D2

32m
(9:9)

When the flow is between two wide, flat plates instead of inside a cylinder, Eq. (9.6)

becomes

d

dx
m
dv

dx

� �
¼ �

Dp

L

dv

dx
(0) ¼ 0, v(H) ¼ 0

(9:10)

The plates are taken at a distance 2H apart. The solution is

v ¼
1

m

Dp

L

H2

2
1�

x2

H2

� �
(9:11)

Now the average velocity is

kvl ¼

ðH
0

v(x) dx

ðH
0

dx

¼
1

H

ðH
0

v(x) dx ¼

ð1
0

v(x0) dx0, where x0 ¼
x

H
(9:12)
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and the relationship between average velocity and pressure drop is

kvl ¼
1

m

Dp

L

H2

3
(9:13)

The peak velocity is 1.5 times the average velocity for flow between parallel plates. These

formulas are provided here because they provide a good benchmark against which to

check any numerical solution by integrating over boundaries.

When the fluid is non-Newtonian, it may not be possible to solve the problem analy-

tically. For example, for the Bird–Carreau fluid (Bird et al., 1987, p. 171) the viscosity is

h ¼
h0

1þ l
dv

dr

� �2
" #(1�n)=2

(9:14)

The viscosity depends upon the shear rate, dv/dr. New parameters are introduced that

must be determined from experiments: h0, l, and n. Now the boundary value problem is

1

r

d

dr
rh

dv

dr

� �
¼ �

Dp

L

dv

dr
(0) ¼ 0, v(R) ¼ 0

(9:15)

It is not possible to solve this equation analytically for v, except for special values of h. For

problems like this, numerical methods must be used. If you set h ¼ m you get the same

problem defined above for a Newtonian fluid.

Unsteady Heat Transfer

Consider the following heat transfer problem corresponding to heat transfer in a slab,

@T

@t
¼ a

@2T

@x2
(9:16)

The temperature depends on both time, t, and position, x. The coefficient of thermal

diffusion is

a ¼
k

rCp

(9:17)

The slab is insulated at the left (x ¼ 0) and has a temperature value of zero on the other

side (x ¼ L)

@T

@x
(x ¼ 0) ¼ 0, T ¼ 0 at x ¼ L (9:18)

while the initial temperature distribution is

T(x, 0) ¼ f (x) (9:19)
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You thus start with T (x, 0) and find T (x, t) as a function of x from 0 to L and t from 0 to

infinity.

EXAMPLE: HEAT TRANSFER IN A SLAB

Consider the problem of heat transfer in a slab with no internal heat generation but with a

thermal conductivity that varies linearly with temperature – Eq. (9.1) with the following

parameters:

k(T) ¼ 1þ T , Q ¼ 0 (9:20)

The boundary conditions are taken as T ¼ 0 at x ¼ 0 and T ¼ 1 at x ¼ 1.

Follow the instructions in Table 9.1 (p. 160) for running FEMLAB.

Step 1 Choose 1D, then Chemical Engineering, then Energy Balance, then Conduction.

Step 2 Create the line by clicking on the line icon. Then move the cursor to the beginning

of the line and draw to the end.

Step 3 Define the mesh by clicking on the triangle symbol. First 15 elements are created,

with 31 nodes. Successive clicks to refine the mesh give 61 and 121 nodes.

Step 4 Specify the parameters for the differential equation. Choose Physics/Subdomain

Settings to see the equation:

�r � (krT) ¼ Qþ htrans(Text � T)þ Ctrans(T
4
ambtrans � T4) (9:21)

You want to solve

d

dx
(1þ T)

dT

dx

� �
¼ 0

T(0) ¼ 0, T(1) ¼ 1 (9:22)

Thus, in FEMLAB you need to choose the following parameters

k ¼ 1þ T , Q ¼ 0, htrans ¼ Ctrans ¼ 0 (9:23)

Step 5 Choose Physics/Boundary Settings to set the boundary conditions. Choose 1

(the left-hand side) and set the temperature to 0. Choose 2 (the right-hand side) and set

the temperature to 1.

Step 6 Press ‘¼’ to solve the problem. The solution is shown in Figure 9.2.

Step 7 It is useful to examine the heat flux. Choose Postprocessing/Domain Plot

Parameters, choose the domain (the 1), change the variable to heat flux, and click OK.
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The result is shown in Figure 9.3. The heat flux is oscillating about 1.5 (which happens to

be the exact solution), between 1.497 and 1.501.

Step 8 You can calculate the average temperature. Choose Postprocessing/Subdomain

integration, then select the domain (the 1), click Apply or OK. At the bottom of the

screen, the value of the integral is given as 0.555556. This is the value of Eq. (9.24):

ð1
0

T(x) dx ¼ 0:555556 (9:24)

Step 9 Finally, the thermal conductivity is 1þ T. You can plot this by choosing Postpro-

cessing/Domain Plot Parameter, and typing 1þ T in the window. The result is shown in

Figure 9.4.

Figure 9.2. Solution to Eq. (9.22).

Figure 9.3. Heat flux in problem, Eq. (9.22).
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EXAMPLE: REACTION AND DIFFUSION

The next example is a reaction–diffusion problem in a spherical domain. The reaction

rate expression is a nonlinear function of concentration, of a type that is appropriate for

the Michaelis–Menten reaction in biological systems. The nondimensional form of the

problem is in Eq. (9.25), and it is solved for a ¼ 5, K ¼ 2.

1

r2
d

dr
r2
dc

dr

� �
¼

ac

1þ Kc
,

dc

dr
(0) ¼ 0, c(1) ¼ 1 (9:25)

Follow these steps to solve this problem in FEMLAB.

Step 1 Open FEMLAB, and choose Chemical Engineering, then Mass Transfer, then

Diffusion, then Steady State.

Step 2 Create the line by clicking on the line icon. Then move the cursor to the beginning

of the line and draw to the end.

Step 3 Define the mesh by clicking on the triangle symbol. First 15 elements are created,

with 31 nodes. Successive clicks give 61 and 121 nodes.

Step 4 To set the equation and parameters in it, choose Physics/Subdomain Selection;

Eq. (9.26) is the equation shown in the program.

r(�Drc) ¼ R, which is r(Drc) ¼ �R

in one dimension this is

�
d

dx
D
dc

dx

� �
¼ R (9:26)

Figure 9.4. Thermal conductivity in problem, Eq. (9.22).
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Since you have variable coefficients, expand Eq. (9.25) into

1

r2
d

dr
r2
dc

dr

� �
¼

d2c

dr2
þ

2

r2
dc

dr
¼

ac

1þ Kc

or

�
d2c

dr2
¼

2

r2
dc

dr
�

ac

1þ Kc
(9:27)

This equation becomes Eq. (9.26) by choosing

r ¼ x, D ¼ 1, R ¼ 2�cx=x� rate, rate ¼
alpha�c

1þ K�c
(9:28)

In theSubdomainSelectionwindow, setD¼1, andR ¼ 2�cx/x – rate.Thevariablecx is dc/dx.

Step 5 Set the value of ‘alpha’ and K in Options/Constants, and rate in Options/
Expressions/Subdomain expressions.

Step 6 Set the boundary conditions: zero flux at the left (boundary 1) and concentration

equal to 1 at the right (boundary 2).

Step 7 Press ‘¼’ to solve the problem. The solution is shown in Figure 9.5.

Parametric Solution

It is instructive to solve this problem for multiple parameters, a, and you can do that using

the parametric solver. If you had not already used a variable name, alpha, in Physics/
Subdomain Selection, you would have to use a variable name now.

Figure 9.5. Concentration in spherical domain with Michaelis–Menten reaction.
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Step 1 Go to Solver Parameters and choose Parametric nonlinear. Fill in the window as

shown in Figure 9.6 to have a go from 0 to 20 in steps of (2).

Step 2 Click the ‘¼’ to solve the problem. This time the program solves the problem for

a variety of a. In fact, it finds the solution and its derivative with respect to a each time.

Then the program uses a linear Taylor expansion, Eq. (9.29), to provide a good starting

guess for the iterative solution at the new a:

c(r,akþ1) ¼ c(r,ak)þ
dc

da

����
ak

(akþ1 � ak) (9:29)

Step 3 Next choose Postprocessing/Domain Plot Parameters/General, and fill in the

window. Click on the Line Extrusion tab, and choose concentration to plot (it is the

default choice). Click on Line Settings, choose Legend, and set the Line Marker to

Cycle. Click Apply or OK. Figure. 9.7 is the result.

Figure 9.7 indicates that the concentration decreases from the outer part of the sphere to

the inner part of the sphere and that this decrease is more dramatic with larger values of a.

This is because the rate of reaction is faster and diffusion cannot keep up, thus decreasing

the concentration. Figure 9.8 shows the rate of reaction as a function of position and a. For

small values of a, the rate is the same at all positions, but as a increases the rate of reaction

varies by a factor of 2 or more from the center to the outer boundary.

EXAMPLE: FLOW OF A NEWTONIAN FLUID IN A PIPE

This example considers flow in a pipe for a Newtonian fluid, Eq. (9.6) You will solve

this problem using FEMLAB with Dp ¼ 2.8 � 105 Pa, m ¼ 0.492 Pa s, L ¼ 4.88,

Figure 9.6. Use of parametric solver.
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R ¼ 0.0025 m. You must expand the differential equation because the one-dimensional

option does not contain cylindrical geometry. (This limitation is removed in two- and

three-dimensional problems, but here a one-dimensional solution suffices.) So, rewrite

Eq. (9.6) as

d2v

dr2
¼ �

1

m

Dp

L
�
1

r

dv

dr

dv

dr
(0) ¼ 0, v(R) ¼ 0 (9:30)

Figure 9.7. Solutions for several values of a.

Figure 9.8. Rate of reaction as a function of x(r) and a.
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Step 1 Open FEMLAB and choose Chemical Engineering, 1D, Mass Transfer, Diffu-

sion. The variable c is a stand-in for velocity, v. (You can change the variable name if

desired.)

Step 2 Use the Axis/Grid Settings to set the screen dimensions from –0.0001 to 0.003.

Choose Draw/Specify Objects/Line and enter [0 to 0.0025]; click OK.

Step 3 Create a mesh.

Step 4 In the menu Physics/Subdomain Settings set the following values, as shown in

Figure 9.9.

dts ¼ 0, D ¼ 1, R ¼ 1:166e5þ cx=x (9:31)

Step 5 In the Boundary Settings, for boundary 1 (the left-hand side) choose Insulated,

which sets the derivative to zero. For boundary 2 (the right-hand side) choose concen-

tration and set (or leave) its value to zero.

Step 6 Click on ‘¼’ to solve the problem.

Step 7 After solving, in the Postprocessing menu, choose Domain Plot Parameters. Plot

the concentration, which is really the velocity, as shown in Figure 9.10.

Step 8 To compute the average velocity, you need to be careful to get the integrals in Eq.

(9.8). Thus, type c�x in the expression and choose Apply. The value of the integral is

2.84668 � 1027, which appears in the screen at the bottom. Change the expression to x,

and choose Apply. The value of this integral is 3.125 � 1026. The ratio of these is the

average velocity, which is thus 0.09109. Note that this is exactly half of the peak velocity,

which is expected since that is true of the exact solution. It is also possible to look at the

Figure 9.9. Subdomain Settings for cylindrical geometry in one dimension.
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velocity gradient (a straight line from zero at the center to a maximum at the wall). The

shear stress is the viscosity multiplied by the velocity gradient, and that is linear with

distance, too, for a Newtonian fluid.

EXAMPLE: FLOW OF A NON-NEWTONIAN FLUID IN A PIPE

Next, you will consider flow in a pipe where the fluid is a non-Newtonian fluid, in particu-

lar a polymer melt. Take the viscosity as a Carreau function, Eq. (9.14). The parameters

used here are h0 ¼ 0.492, l ¼ 0.1 and n ¼ 0.8. The problem is defined by

1

r

d

dr
rh

dv

dr

� �
¼ �

Dp

L
or

d

dr
h
dv

dr

� �
þ
h

r

du

dr
¼ �

Dp

L

dv

dr
(0) ¼ 0, v(R) ¼ 0 (9:32)

Steps 1–3 Follow the instructions in Table 9.1 to choose the equation, using the diffu-

sion equation as a stand-in for velocity. Then define the line, and create a mesh.

Step 4 In the Physics/Subdomain Settings type

D ¼ eta, R ¼ (eta=x)�uxþ dpL (9:33)

The variable x is a stand-in for the radial position, r.

Step 5 Go to the Options/Expressions/Subdomain Expressions and define eta and

shearrate. Use

shearrate ¼ abs(ux) and eta ¼ eta0=(1þ (lambda�cx)^2)^((1� n)=2) (9:34)

Figure 9.10. Velocity profile for fully developed Newtonian flow in a pipe.
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The constants are defined in Options/Constants; here you use the pressure drop per length
(5.74 104), whereas for the Newtonian fluid you used the pressure drop per length divided

by the viscosity.

Step 6 For the first calculation, you replace eta by eta0 in Eq. (9.33) and click ‘¼’.

The solution should be the same as shown in Figure 9.10. This step solves the problem

for a Newtonian fluid, and the solution is used as the first guess for the solution for a

non-Newtonian fluid.

Step 7 Finally, you replace eta0 by eta in Eq. (9.33) in order to solve the problem for a

non-Newtonian fluid. Click ‘¼’ with a circular arrow, or choose Solve/Restart. Plot the
function c(x), as shown in Figure 9.11. If the pressure drop is changed, the shear rate

changes and this causes the viscosity to change. Thus, the velocity changes its shape.

Step 8 The average velocity is given by Eq. (9.8); calculate it the same way as for a

Newtonian fluid. The average velocity increases from 0.091 (Newtonian) to 0.17

TABLE 9.1. Tutorial for Using FEMLAB to Solve Two-Point Boundary Value Problems

Open
. Open FEMLAB;
. Scroll from 2D to 1D and choose the equation and click OK; (double click on the folder or click

once on the arrow to see the subheadings) or
. Select OK in the Model Navigator and open a previous solution.

Draw
. Click on the line icon, move to the screen and click on the beginning and ending point of the line;
. To set exact dimensions, choose Draw/Specify Options/Line or Apple-L and enter [0 1].

Mesh
. Click once on the triangle icon;
. Click on divided triangle icon to refine the mesh.

Physics/subdomain settings
. Check the differential equation and set the parameters.

Physics/boundary settings
. Click on the number 1 in the window;
. Set the type of boundary condition and set the parameters;
. Click on the number 2 in the window and set the other boundary condition.

Solve/solve problem
¼ to solve the problem.

Postprocessing/Plot Parameters – set parameters to choose the type of plot;
. For detailed information about the solution, you can use subdomain integration to integrate a

variable or expression over the line; you can integrate anything for which you can write an

equation.
. You can go back and refine the mesh (click the more refined mesh symbol) and re-solve the

problem. This gives you an indication of the accuracy of the solution.

Save your work
. Save in xxx.fl file format for re-start from FEMLAB stand-alone or in xxx.m file format for

restart from either FEMLAB running under MATLABw or FEMLAB stand-alone. (Note: m-

Files save all your commands, including mistakes.)
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(Carreau). The reason for this is shear thinning. The shear rate is zero at the centerline and

is a maximum (in absolute value) at the solid boundary. Because the viscosity decreases as

the shear rate increases [see (Eq. 9.14)], the viscosity decreases as the radial position

increases, as seen in Figure 9.12.

One handy way to get all the solutions for several pressure drops (and avoid conver-

gence problems) is to use the Parametric Nonlinear option in the Solver Parameters.

Call the variable ‘presdropx’ and set its value to 0:1:7. Then in the Physics/Subdomain

Settings, where you put the Dp, replace it with 10^presdropx. The program FEMLAB

Figure 9.11. Velocity profile for fully developed non-Newtonian flow in a pipe.

Figure 9.12. Viscosity, Eq. (9.14) for fully developed non-Newtonian flow in a pipe.
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will then obtain solutions for pressure drops of 1, 10, 102, 103, . . . , 107 Pa. A plot of vel-

ocity will show the velocity for all the different pressure drops.

The velocities vary over several orders of magnitude for the different pressure

drops. You could plot the velocity divided by the pressure drop to improve your graph.

An even better option would be to compute the average velocity of each solution, and

plot the velocity divided by the average velocity, all on the same graph.

EXAMPLE: TRANSIENT HEAT TRANSFER

The next example is a transient heat transfer problem.

@T

@t
¼ a

@2T

@x2
, a ¼ 2

@T

@x

����
x¼0

¼ 0, T(1, t) ¼ 0, T(x, 0) ¼ 1

(9:35)

Steps 1–3 You make the same FEMLAB choices as for heat conduction.

Step 4 In the Physics/Subdomain Settings mode the equation listed at the top is

dtsrCp

@T

@t
� r � (krT) ¼ Qþ htrans(Text � T)þ Ctrans(T

4
ambtrans � T4) (9:36)

Set the following parameters.

dts ¼ 1, r ¼ 1, Cp ¼ 1, k ¼ 2, Q ¼ 0, htrans ¼ Ctrans ¼ 0 (9:37)

Step 5 In this same mode, you choose the Init tab, and set the initial conditions to 1.0.

Step 6 In the Physics/Boundary Settings mode, you set boundary 1 (the left-hand side)

to Insulated and boundary 2 (the right-hand side) to Temperature, and set the value to 0.

Step 7 Then choose the Solve/Solver Parameters menu. Change the solution method to

Time Dependent. The default times listed are 0 : 0.1 : 1. This means a solution will be

available for plotting at t ¼ 0, 0.1, 0.2, 0.3, . . . , 1.0. Press OK, then click the ‘¼’ to

solve the problem.

Step 8 Choose Postprocessing, then Domain Plot Parameters; insure that all the items are

selected in the General window and click Line/Extrusion. Click on the 1 (choice of

domain) and then OK to obtain Figure 9.13.

You can also plot a three-dimensional plot showing T(x, t). Choose the menu Domain

Plot Parameters and select all the times listed. Then choose Line/Extrusion, select domain

one, and click OK; Figure 9.14 appears.

The spike in the temperature plot at x ¼ 1 and t ¼ 0 is caused by a discontinuity. It is

not possible to have the temperature be both 0 (the boundary condition) and 1 (the initial

condition). The net effect of this is to have an artifact in T(x ¼ 1, t ¼ 0). This spike quickly
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Figure 9.13. Solution of heat transfer problem, Eq. (9.34).

Figure 9.14. Solution of heat transfer problem, Eq. (9.34) plotted in three dimensions.
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dampens out in time, though. The spike is really a manifestation of an improperly posed

mathematical problem rather than an incorrect method, because such a discontinuity is

impossible to create physically.

EXAMPLE: LINEAR ADSORPTION

Adsorption is one way to remove a chemical species from a flowing stream. A cylindrical

tube is packed with adsorbent material, often in the form of small spheres. The adsorbent

has the property that some materials adsorb while others do not. The flowing stream goes

in and out of the interstices between the spheres, and contacts the adsorbent. The chemical

that is strongly adsorbed is removed from the flowing stream and appears on the solid

adsorbent. The next example illustrates that process.

The differential equations governing linear adsorption are given by two equations, the

first a mass balance on the fluid phase and the second a mass balance on the stationary

phase.

f
@c

@t0
þ fV

@c

@x0
þ (1� f)

@n

@t0
¼ 0,

@n

@t0
¼ k(gc� n) (9:38)

where c is the fluid concentration (moles per fluid volume), n is the concentration on the

solid adsorbent (moles per solid volume), f is the void fraction in the bed, V is the fluid

velocity, t0 is time, x0 is distance down the bed, k is a mass transfer coefficient, and g is

the slope of the equilibrium line, n vs c. The initial conditions give the concentration in

fluid phases and adsorbed phases at time zero, which in this example are no concentration

at all.

c(x0, 0) ¼ 0, n(x0, 0) ¼ 0 (9:39)

The only boundary condition is the inlet concentration, here taken as 1.0.

c(0, t0) ¼ 1 (9:40)

The equations are made nondimensional using the following variables:

x ¼
x0k

V
, t ¼ kt0 (9:41)

Then Eq. (9.38) is

@c

@t
þ
@c

@x
þ
1� f

f
(gc� n) ¼ 0,

@n

@t
¼ gc� n (9:42)

This problem is linear, and an analytical solution exists, but it is very complicated to

evaluate because it depends upon integrals of Bessel functions (Rhee et al., 1986).

Numerical solutions are also available for comparison (Finlayson, 1992). When you

use FEMLAB it is necessary to add some diffusion to the problem, and you solve an
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augmented equation for concentration. The added term involves a Peclet number, defined

in terms of an effective diffusion coefficient.

@c

@t
þ
@c

@x
þ
1� f

f
(gc� n) ¼

1

Pe

@2c

@x2
, Pe ¼

fV2

Dk
(9:43)

This linear adsorption problem is solved in FEMLAB.

Step 1 Open FEMLAB and choose Chemical Engineering Module, Mass Balances,

Convection and Diffusion, and Transient Analysis.

Step 2 For the concentration of material on the solid adsorbent, use the Multiphysics

menu, and choose the same equation. This time, however, change the name of the variable

to ns. Add this equation to the problem.

Step 3 Draw a line from x ¼ 0 to x ¼ 1 and set the mesh to have 60 elements, or 121

nodes. For the two problems, then, there are 242 degrees of freedom.

Step 4 Be sure the concentration equation is selected (under the Multiphysics menu).

Under the Physics/Subdomain Settings, the following equation is displayed:

dts
@c

@t
þ r � (�Drc) ¼ R� u � rc (9:44)

Make this equation correspond to Eq. (9.43) by setting the following parameters:

dts ¼ 1, D ¼ 1=1000, R ¼ �(1� phi)�rate=phi, u ¼ u (9:45)

Also choose the Artificial Diffusion option and choose the Petrov–Galerkin method. This

adds additional diffusion to the problem. Choose the Init tab and set the initial concen-

tration to zero.

Step 5 Under Options/Expressions/Subdomain Expressions, define the following term

for the equilibrium equation.

rate ¼ gamma�c� ns (9:46)

Also, set constants f ¼ 0:4, g ¼ 2 under Options/Constants. These numbers define the

case that is solved.

Step 6 Under the Multiphysics menu, select the second equation, for ns. The equation is

the same as Eq. (9.44), but this time you will set the following parameters:

dts ¼ 1, D ¼ 0, R ¼ rate, u ¼ 0 (9:47)
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Step 7 Set the boundary conditions for the first equation to have concentration equal to

1.0 at the left-hand side and convective flux at the right-hand side. Since the material

adsorbed cannot flow in or out when it is on the adsorbent, the boundary conditions for

the second equation are Insulation/Symmetry (i.e. no flux) at both ends.

Step 8 Press ‘¼’ to solve the problem.

Step 9 The concentration in the fluid is shown in Figure 9.15a and the concentration

adsorbed is shown in Figure 9.15b. To obtain these figures, choose Plot Parameters. In

the General tab, select ‘solution at time’ as 0.4. In the Line tab, select either c or ns as

required.

The solution is a good representation of the solution, but the front, where the concen-

tration drops quickly, is not as steep as it should be (Finlayson, 1992). The front is

smoothed somewhat owing to the added diffusion term and the use of the Petrov–Galerkin

method. If you solve the problem without either of these artifacts [e.g., D ¼ 0 in Eq. (9.45)

and using no Artificial Diffusion], the solution oscillates wildly, as seen in Figure 9.16.

Figure 9.15. Solution of linear adsorption problem, Eqs. (9.43), (9.39), and (9.40).

Figure 9.16. Solution of linear adsorption problem without artifical diffusion.
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The reason is that the finite element method is not well suited to problems like this, with

convection but no diffusion. Your job is to use enough artificial diffusion to eliminate the

oscillations in the solution but without obscuring the essential details. A variety of special-

ized methods are available to do that, as described by Finlayson (1992). The specialized

methods include Random Choice, Euler–Lagrange, MacCormack, and Taylor–Galerkin.

This example used a linear isotherm. It is easy to change to a nonlinear isotherm,

since the only change is in step 5; choose a different formula that represents another

isotherm.

EXAMPLE: CHROMATOGRAPHY

In some columns, mass transfer is so fast that the concentration in the gas phase is in equi-

librium with the concentration on the solid adsorbent. In that case the problem is slightly

different. This case is a prototype of a chromatography column, which can be used to

separate chemicals.

The equation is the first one of Eq. (9.38). Now, however, the solid concentration is an

algebraic function of the fluid concentration, since they are in equilibrium. In this example,

you will use a Langmuir isotherm with the algebraic expression:

n ¼
gc

1þ Kc
(9:48)

When this equation is substituted into Eq. (9.38) you obtain

f
@c

@t0
þ fV

@c

@x0
þ (1� f)

dn

dc

@c

@t0
¼ 0 (9:49)

For the Langmuir isotherm, the equation is

fþ (1� f)
dn

dc

� �
@c

@t0
þ fV

@c

@x0
¼ 0,

dn

dc
¼

g

(1þ Kc)2
(9:50)

The nondimensional form of the problem is obtained using t0 ¼ t and x ¼ x0/V:

1þ
(1� f)

f

dn

dc

� �
@c

@t
þ
@c

@x
¼ 0,

dn

dc
¼

g

(1þ Kc)2
(9:51)

In this example, you will solve the problem with an initial concentration of one between

x ¼ 0.25 and 0.75. The inlet concentration is always zero:

0, x , 0:25

c(x, 0) ¼ 1, 0:25 � x � 0:75

0, 0:75 , x

(9:52)

Step 1 Open FEMLAB and choose Chemical Engineering Module, Mass Balances,

Convection and Diffusion, and Transient Analysis.
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Step 2 Draw a line from x ¼ 0 to x ¼ 2 and set the mesh to have 60 elements, or 121

nodes.

Step 3 Under the Physics/Subdomain Settings, the following equation is displayed.

dts
@c

@t
þ r � (�Drc) ¼ R� u � rc (9:53)

Make this equation correspond to Eq. (9.51) by setting the following parameters:

dts ¼ 1þ (1� phi)�dndc=phi, D ¼ 1=1000, R ¼ 0, u ¼ 1 (9:54)

Also, choose the Artificial Diffusion option and choose the Petrov–Galerkin method. This

adds additional diffusion to the problem.

Step 4 Under Options/Expressions/Subdomain Expressions, define the following term

for the equilibrium equation.

dndc ¼ gamma=(1þ K�c)^2 (9:55)

Also, set constants f ¼ 0:4, g ¼ 2 under Options/Constants. These numbers define the

case that is solved.

Step 5 The initial conditions are obtained by defining the following two functions. The

function fn1 takes the value 1.0 for x . 0.25 and the function fn2 takes the value 1.0 for

x . 0.75. Thus, the initial condition is satisfied by the expression fn12 fn2. In FEMLAB,

this is achieved using the Boolean operator

fn1 ¼ 1�(x . 0:25)

fn2 ¼ 1�(x . 0:75)

c(x, 0) ¼ fn1� fn2

(9:56)

The operator (x . 0.25) takes the value 1 when x . 0.25 is true and 0 otherwise.

Step 6 Set the boundary conditions for the first equation to have concentration equal to

zero at the left-hand side and convective flux at the right-hand side.

Step 7 Press ‘¼’ to solve the problem.

Step 8 The concentration in the fluid is shown in Figure 9.17. To obtain this figure,

choose Domain Plot Parameters. Use the stored output time of zero and choose Apply.

Click the Save Current Plot, use the stored output time of 1.0 and choose Apply.

The solution obtained in FEMLAB can be compared with Figure 9.9d of Finlayson

(1992), which is for a specialized method called MacCormack method with Flux-

correction. The FEMLAB solution is a good solution.
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CHAPTER SUMMARY

You saw how the equations governing energy transfer, mass transfer, and fluid flow

were similar, and examples were given for one-dimensional problems. Examples included

heat conduction, both steady and transient, reaction and diffusion in a catalyst pellet, flow

in pipes and between flat plates of Newtonian or non-Newtonian fluids. The last two

examples illustrated an adsorption column, in one case with a linear isotherm and slow

mass transfer and in the other case with a nonlinear isotherm and fast mass transfer.

Specific techniques you demonstrated included parametric solutions when the solution

was desired for several values of one parameter, and the use of artificial diffusion to

smooth time-dependent solutions which had steep fronts and large gradients.

PROBLEMS

Chemical Reaction

9.1. A chemical reactor with axial dispersion is governed by the following equations:

1

Pe

d2c

dx2
�
dc

dx
� Da

c

cþ n
, �

1

Pe

dc

dx
(0) ¼ 1� c(0),

dc

dx
(1) ¼ 0 (9:57)

Solve for Da ¼ 8, n ¼ 3, and Pe ¼ 15, 150, and 1500. (Hint: Include streamwise

diffusion as needed.)

9.2. The following equation governs diffusion and reaction of carbon monoxide in an

isothermal catalyst. Find the average reaction rate and compare the average with

the reaction rate if the concentration were everywhere the same as the external

Figure 9.17. Solution of chromatography problem, Eq. (9.51).

PROBLEMS 169



concentration (here c ¼ 1). The parameters are f ¼ 32, Bim ¼ 10, a ¼ 209:

1

r2
d

dr
r2
dc

dr

� �
¼ f2R(c),

dc

dr
(0) ¼ 0, �

dc

dr
(1) ¼ Bim[c(1)� 1],

R(c) ¼
c

(1þ ac)2
(9:58)

9.3. The transient reaction and diffusion in a packed bed with axial dispersion is gov-

erned by the following equations. Begin with an initial concentration in the bed

of zero. At time zero start flowing with the inlet concentration ¼ 1.0. Integrate to

steady state. Use the parameters Pe ¼ 100, 0 � x � 1, Da ¼ 2, n ¼ 2.

@c

@t
þ
@c

@x
¼

1

Pe

@2c

@x2
� Da

c

cþ n
, �

1

Pe

@c

@x
(0, t) ¼ 1� c(0, t),

@c

@x
(1, t) ¼ 0, c(x, 0) ¼ 0

(9:59)

Chemical Reaction and Heat Transfer

9.4. A chemical reactor with axial dispersion of both mass and energy is governed by the

following equations:

1

Pe

d2c

dx2
�
dc

dx
� R(c, T), �

1

Pe

dc

dx
(0) ¼ 1� c(0),

dc

dx
(1) ¼ 0 (9:60)

1

PeH

d2T

dx2
�
dT

dx
� bR(c,T), �

1

PeH

dT

dx
(0) ¼ 1� T(0),

dT

dx
(1) ¼ 0 (9:61)

The reaction rate expression is

R(c, T) ¼ 3:817c2 exp(g� g=T) (9:62)

and the parameters are Pe ¼ PeH ¼ 96, g ¼ 17.6, b ¼ –0.056.

9.5. The following equations govern diffusion and reaction in a catalyst with signi-

ficant heat effects. Solve for f ¼ 1:1, g ¼ 30 and b = 0, 0.01, 0.03, 0.07, 0.10,

0.12, 0.15.

1

r2
d

dr
r2
dc

dr

� �
¼ f2R(c, T),

dc

dr
(0) ¼ 0, c(1) ¼ 1 (9:63)

1

r2
d

dr
r2
dT

dr

� �
¼ �bf2R(c, T),

dT

dr
(0) ¼ 0, T(1) ¼ 1,

R(c,T) ¼ c exp½g(1� 1=T)� (9:64)

9.6. Solve the following problem for reaction and heat transfer in a porous catalyst pellet

for the parameters: f ¼ 1:1, g ¼ 30, b ¼ 0:15, Le ¼ 1050: See Hellinckx et al.
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(1972), for a simplified form of the problem.

@c

@t
¼

1

r2
@

@r
r2
@c

@r

� �
� f2R(c, T),

@c

@r
(0, t) ¼ 0, c(1, t) ¼ 1 (9:65)

Le
@T

@t
¼

1

r2
@

@r
r2
@T

@r

� �
þ bf2R(c, T),

@T

@r
(0, t) ¼ 0, T(1, t) ¼ 1,

R(c,T) ¼ c exp½g(1� 1=T)� (9:66)

9.7. Solve problem 9.6 with Le ¼ 0.1.

Mass Transfer

9.8. Solve the following diffusion problem with a variable diffusivity (appropriate for

some polymers):

@c

@t
¼

@

@x
D
@c

@x

� �
, c(0, t) ¼ 1, c(1, t) ¼ 0, c(x, 0) ¼ 0, D ¼ e0:5 c (9:67)

Heat Transfer

9.9. Solve the following heat transfer problem with radiation. The parameters are G ¼ 2,

Nu ¼ 10.

d2T

dr2
þ
1

r

dT

dr
þ G,

dT

dr
(0) ¼ 0, �

dT

dr
(1) ¼ Nu½T4(1)� 1� (9:68)

9.10. Solve the following transient problem and integrate to steady state. Do you get the

same solution at steady state as found in Problem 9.9?

@T

@t
¼

@2T

@ r2
þ
1

r

@T

@r
þ G,

@T

@r
(0, t) ¼ 0, �

@T

@r
(1, t) ¼ Nu½T4(1, t)� 1�, T(r, 0) ¼ 1

(9:69)

9.11. Solve the following heat transfer problem. The parameters are r ¼ 491 lbm=ft
3,

Cp ¼ 0:11Btu=lbm, R ¼ 0:4 ft, h ¼ 30Btu=h ft2 8F, k ¼ 3Btu=h ft 8F,

T0 ¼ 1208F, Tsurr ¼ 688F

rCp

@T

@t
¼

k

r

@

@r
r
@T

@r

� �
,
@T

@r
(0, t) ¼ 0, � k

@T

@r
(R, t) ¼ h½T(R, t)� Tsurr�,

T(r, 0) ¼ T0 (9:70)

9.12. Solve the following heat transfer problem. The parameters are r ¼ 491 lbm=ft
3,

Cp ¼ 0:11Btu=lbm, R ¼ 0:4 ft, U ¼ 12:9 Btu=h ft2 8F, T0 ¼ 1208F, Tsurr ¼ 688F
Compare the average temperature vs time with the solution found in Problem 9.11.

rCppR
2L

dT

dt
¼ �U2pRL(T � Tsurr), T(0) ¼ T0 (9:71)
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Electrical Fields

9.13. The following (nondimensional) problem governs the electric potential outside a

cylinder that is kept at potential C0 while the potential at a distance L away from

the center of the cylinder is kept at zero. The parameter k is 0.8, the applied potential

is 2, and the radius of the cylinder is 1. Find the potential distribution around a cylin-

der with radius 1.0:

d2C

dr2
þ
1

r

dC

dr
¼ k2eC, C(R) ¼ C0, C(L) ¼ 0 (9:72)

9.14. The transient charge distribution in a semiconductor is governed by the following

partial differential equation. Integrate the equation to steady state with b ¼ 1.5:

@c

@t
¼

@2c

@x2
� b ec, c(x, 0) ¼ 0:5, c(0, t) ¼ 1, c(1, t) ¼ 1 (9:73)

Fluid Flow

9.15. Solve for the flow of a Newtonian fluid in a pipe, following the example. Plot the

shear rate as a function of radial position. Calculate the average velocity. Plot the

shear stress as a function of radial position.

9.16. Solve the flow of a non-Newtonian fluid in a pipe, following the example, for

pressure drops of 10, 103, 105, and 107 Pa. The parameters are h0 ¼ 0.492 Pa s,

l ¼ 0.1 s21, and n ¼ 0.8. Plot the shear rate as a function of radial position. Calcu-

late the average velocity. Plot the shear stress as a function of radial position. How

do these curves change as the pressure drop is increased?

9.17. A fiber spinning problem is governed by the following equations from Middleman

(1977):

d2u

dx2
¼

r

3m
u
du

dx
þ
1

u

du

dx

� �2

, u(0) ¼ u0, u(L) ¼ uL (9:74)

The ratio of the two velocities is the drawdown ratio,

DR ¼
uL

u0
(9:75)

When r ¼ 0 is the solution for velocity and radius of the fiber is (Middleman, 1977,

p. 237)

u ¼ u0 exp
x ln DR

L

� �
, R(x) ¼ R0 exp �

1

2

x ln DR

L

� �
(9:76)

Solve the problem without inertia (r ¼ 0) using u0 ¼ 16.7 cm/s, uL ¼ 1666.7 cm/s,
and L ¼ 300 cm.
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9.18. Solve the fiber spinning problem (Problem 9.17) with r ¼ 0.96 g/cm3 and

m ¼ 5000 poise. Is inertia important? How does the fiber radius compare with the

solution to Problem 9.17?

9.19. Solve the fiber spinning problem for a non-Newtonian fluid with viscosity that

depends upon shear rate. The problem without inertia is

d

dx
h
du

dx

� �
¼

h

u

du

dx

� �2

, u(0) ¼ u0, u(L) ¼ uL, h ¼
h0

1þ l2(du=dx)2
(9:77)

Solve it for u0 ¼ 16.7 cm/s, uL ¼ 1666.7 cm/s, h0 ¼ 5000 poise, l ¼ 1 s, and

L ¼ 300 cm.
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10
FLUID FLOW IN TWO AND
THREE DIMENSIONS

Most chemical processes involve fluids flowing in turbulent flow. However, polymer melts

(the precursors to plastics) are so viscous that they flow in laminar flow. In modern chemi-

cal engineering, there are more and more applications in small devices in which laminar

flow prevails. In microfluidics, these devices may be used for detection of biological or

chemical weapons (after the payload is dispersed into the air), for medical diagnostics

for cheap and rapid measurements, and for analytical tools used in process control.

There are even applications where whole chemical processes are done on a microscale.

This may be advantageous because the temperature can be carefully controlled (making

a certain reaction possible), or the conversion can be increased due to precise mixing

(minimizing waste products and recycle streams), or it may be advantageous to have dis-

tributed manufacture for safety reasons or in many countries. In microfluidics the dimen-

sions of the channels are 1 mm or less (so small they are no longer called pipes), and the

flow is laminar even in complex geometries. Thus, it is worthwhile to learn how to solve

laminar flow problems in complex geometries.

Two methods are used in commercial computational fluid dynamics (CFD) codes: the

finite volume method and the finite element method. To a beginner, it probably makes little

difference which method is used. The author has used finite element methods for fluid flow

for over 30 years, and that is the method used in FEMLABw, which is the CFD program

illustrated here.

What does matter, though, is the difference between laminar and turbulent flow.

A common misconception is that if you see vortices (swirling motion), the flow is turbu-

lent. That is not necessarily true. In turbulent flow, there are fine-scale oscillations on time

scales of 0.1 ms, and spatial fluctuations on the scale of 30 mm (30 � 1026 m, or 3% of

1 mm). To model turbulent flow, one option is direct numerical simulation (DNS). In

DNS, the Navier–Stokes equations are integrated in time on a very small spatial scale,

Introduction to Chemical Engineering Computing, by Bruce A. Finlayson
Copyright # 2006 John Wiley & Sons, Inc.
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with millions of nodes; this is fundamental (no assumptions are made), but it is also very

time-consuming. A DNS simulation for even simple problems (such as turbulent flow in a

pipe) may take hours on a network of 16 or 32 computers to simulate what happens in

seconds in reality. The computer needs to solve for three fluctuating velocities on a

very small spatial scale and as a function of time. To overcome this problem, commercial

CFD codes use k–1 models, which introduce new variables representing the turbulent

kinetic energy (k) and rate of dissipation (1), and add equations to predict them. The com-

mercial codes then solve for the time-averaged velocities and use k and 1 to represent the

effect of the fluctuating velocities without solving for the fluctuating velocities. The

equations have several empirical parameters that have been determined by comparison

with experimental data, but these parameters change depending on the type of flow, and

some uncertainty exists in realistic situations. The k–1 model also involves steep bound-

ary layers near solid surfaces, and the CFD codes try to take that into account analytically.

To summarize the k–1model, it contains empiricism but is relatively fast to compute with.

There is an intermediate method – large eddy simulation (LES) – which is more reliable

than the k–1 models and uses parameters from DNS studies, but it too involves lengthy

calculations, somewhere between DNS and k–1.

This chapter focuses on fluid flow, leaving the combination of fluid flow, heat transfer,

and diffusion to Chapter 11. Examples of fluid flow include entry flow into a pipe, flow in a

microfluidic T-sensor, turbulent flow in a pipe, time-dependent start-up of pipe flow, flow

in an orifice, and flow in a serpentine mixer. The examples demonstrate many of the

techniques that are useful in the program FEMLAB.

MATHEMATICAL FOUNDATION OF FLUID FLOW

Navier–Stokes Equation

The flow equations are taken here as the Navier–Stokes equations, with some extensions

to purely viscous non-Newtonian fluids. In vector form, the Navier–Stokes equation is

r
@u

@t
þ ru � ru ¼ �rpþ mr2u (10:1)

This vector equation applies to the case when the gravitational term is absorbed into the

pressure. It also takes the density as constant, leading to an incompressible fluid:

r � u ¼ 0 (10:2)

For steady flows, the equation reduces to

ru � ru ¼ �rpþ mr2u (10:3)

In component notation in Cartesian geometry and two dimensions, these equations are

r
@u

@t
þ u

@u

@x
þ v

@u

@y

� �
¼ �

@p

@x
þ m

@2u

@x2
þ
@2u

@y2

� �
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r
@v

@t
þ u

@v

@x
þ v

@v

@y

� �
¼ �

@p

@y
þ m

@2v

@x2
þ

@2v

@y2

� �

@u

@x
þ
@v

@y
¼ 0

(10:4)

Because the program FEMLAB includes all these terms, you merely need to define the

problem you want to solve.

When evaluating pressure, one complication in the finite element method is a math-

ematical condition saying that the approximating functions for pressure have more

restricted choices than those for velocity. This is called the LBB condition [named after

Ladyshenskaya, Brezzi, and Babuska (Gresho et al., 1998, p. 593)], and the designers

of the computer program have taken it into account for you. Another feature of the

finite element method is that the computer problem can get very large. Often you will

have to make compromises between the accuracy you would like and how long you are

willing to wait for a solution. With modern computers, this is not as big a problem as it

once was, but in complicated three-dimensional cases it is still a concern. Thus, one

aspect of your solution method will be mesh refinement to estimate the accuracy.

The finite element method in two and three dimensions is similar to the finite element

method in one dimension, except the bookkeeping is harder. However, again, FEMLAB

does that book-keeping for us. Basically, the domain of the problem is covered by

small triangles (in 2D) or small tetrahedrons (in 3D), and on each triangle (or tetrahedron)

the dependent variable (u or v velocity or w) is approximated by a polynomial, even a

straight line along the boundary. In two dimensions, the approximation is a triangular

patch looking like a geodesic dome. Engineers and scientists have determined how to

make the approximation satisfy the equations as well as possible, but that is beyond the

scope of this book. See Appendix F for a brief description of the finite element method.

When the solution is represented this way, you need to recognize that you have introduced

an approximation, and the solution is no better than the mesh (or set of triangles or tetra-

hedrons) allows. Thus, you will usually solve the problem on more than one mesh, each

one more refined than the last, to ensure that the results do not depend upon the mesh.

Table 10.1 gives a brief tutorial for applying the finite element method using FEMLAB.

One decision you must make is whether to solve the equation in dimensional form or

nondimensional form. The dimensional form is easier, but you miss characterizing the

flow and you may not even calculate a Reynolds number. Furthermore, convergence

can be enhanced using a nondimensional form. In the early days of the finite element

method computers used only 8 or 16 bits to represent a number, and it was essential to

make the equations dimensionless. While that is less important now, this chapter provides

a brief description showing how to make the equations dimensionless. A primer on bound-

ary conditions in fluid mechanics and FEMLAB is also given at the end of the chapter.

Non-Newtonian Fluid

For purely viscous non-Newtonian fluids, the viscosity is a function of shear rate, as

illustrated in Chapter 9, and the steady-state equation must be written as

ru � ru ¼ �rpþ r � ½h (ru þ ruT)�
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h ¼ f
1

2
D :D

� �
, D ¼ ru þ ruT (10:5)

1

2
D :Dð Þ ¼ 2

@u

@x

� �2

þ
@v

@y

� �2
" #

þ
@u

@y
þ

@v

@x

� �2
(10:6)

The expression for the shear rate in 2D flow, Eq. (10.6) is obtained from Bird et al. (2002,

p. 849). The expression for cylindrical geometry is Eq. (10.7):

1

2
(D :D) ¼ 2

@vr
@r

� �
þ
v2r
r2

þ
@vz
@z

� �2
" #

þ
@vr
@z

þ
@vz
@r

� �2
(10:7)

TABLE 10.1. Using FEMLAB to Solve Transport Problems (this example is for a 2D

flow problem)

Open FEMLAB (Note: FEMLAB makes and reads .m and .fl files. The .m files can be used with

MATLABw.)

† Choose Axial Symmetry 2D;

† Choose Chemical Engineering/Momentum/Incompressible Navier–Stokes and click OK.

Draw

† Click on the square icon and draw a rectangle;

† Double click on the object to set exact dimensions;

† Use Option/Axis/Grid settings to set the plotting range on the screen.

Physics/subdomain settings

† Select domain 1; set r ¼ 0, h ¼ 1180 (Newtonian), Fx ¼ Fy ¼ 0.

Physics/boundary settings

† Click on a boundary number (1–4); (Note: The corresponding boundary is highlighted in red.)

† Set the boundary condition for each boundary segment. 1, slip/symmetry; 2, inflow/outflow,
v ¼ 0.02; 3, outflow/pressure; 4, no slip.

Mesh

† Click once on triangle icon or select mesh/initialize mesh;

† Note how many elements are used (you should report this);

† Click on divided triangle icon to refine the mesh if desired;

† To refine locally, click on the ‘refine selection’ icon, select some elements.

Solve

† Click on ‘¼’ to solve the problem (click on to re-start from the last solution).

Postprocessing

† Choose Domain Plot Parameters;

† Select the desired quantities for contour plots and surface plots;

† Or, click on the arrow plot icon, or streamline plot icon (flow plot);

† Choose Cross Section Plot Parameters to make line plots;

† Plot the v velocity along a line by selecting v velocity, put in the (r, z) coordinates of the

beginning and ending points.

You can refine the mesh (click the more refined mesh symbol) and re-solve the problem. This gives

you an indication of the accuracy of the solution. When you have a figure showing, you can export it

in a figure format you choose, such as jpeg. You always want a figure showing the mesh, as well as

parts of the solution.

To document your work, show the domain and mesh, give the dimensions, identify the boundary

conditions, give values of parameters you used in the subdomain options, list how many elements

and degrees of freedom were used, and indicate how solutions with different number of elements

compare. Then give the results and indicate why they are reasonable.
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Note that the notation is different from that used in FEMLAB. With the transformation

vr ! u, vz ! v,
@vr
@r

! ur,
@vr
@z

! uz,
@vz
@r

! vr,
@vz
@z

! vz (10:8)

this is

1
2
(D :D) ¼ 2 ur2 þ (u=r)2 þ (vz)2

� �
þ uzþ vr½ �

2 (10:9)

EXAMPLE: ENTRY FLOW IN A PIPE

Next consider entry flow into a pipe, as illustrated in Figure 10.1. The flow is taken as

uniform in radius at the entrance (taking the value 1.0 at each radial position), and the

velocity has to develop into its fully developed profile. The pipe radius is taken as 0.5.

How far downstream do you have to go to get a fully developed solution? (Another

way to pose this question is: How much error do you make if you assume fully developed

flow when it is not?)

Step 1 To solve this, enter FEMLAB and choose Chemical Engineering, Axisymmetric

2D/Momentum/Navier–Stokes/Stationary. In axisymmetric geometries, FEMLAB uses

the horizontal axis as radius (called r) and the vertical axis as the length axis (called z). The

corresponding velocity components are u in the radial direction and v in the axial direction.

The sketch shows how the geometry is displayed.

Step 2 Click on the rectangle or use the Draw menu, then ‘rectangle.’ Put the cursor on a

point and drag it to make a rectangle. If you double click on the rectangle, you can set the

exact dimensions. Make the rectangle 0.5 � 2.

Figure 10.1. Entry flow into a pipe.
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Step 3 Choose Options/Axis/Grid Settings to set the screen dimensions so you can see

the rectangle easily. In Options/Axis/Grid Setting is a box to force the axes to be equal if
you like.

Step 4 Click on the triangle twice to obtain the mesh shown in Figure 10.2a. There are

992 elements.

Step 5 Choose Physics/Subdomain Settings and a window appears showing Eq. (10.10):

r(u � r)u ¼ r � ½�pI þ h(ru þ (ru)T)� þ F (10:10)

Set r ¼ 10 and leave h ¼ 1 (h is the same as viscosity, m). Close that window.

Figure 10.2. Mesh, arrow plot, and streamlines for entry flow into a pipe: (a) mesh; (b) arrow plot;

(c) streamlines.
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Step 6 Choose Physics/Boundary Settings. Set the boundary conditions as follows:

boundary 1: n � (u, v) ¼ 0 Slip=Symmetry

boundary 2: set u ¼ 0, v ¼ 1 (v is the vertical velocity),

Inflow=Outflow velocity

boundary 3: t � (u, v) ¼ 0, p ¼ 0 Normal Flow=Pressure
boundary 4: u, v ¼ 0 No slip

(10:11)

Step 7 Solve the problem (press ‘¼’). The degrees of freedom are displayed in the

bottom window, 4657. To get a general idea of the flow, choose an arrow plot (see

Figure 10.2b), which show the velocity vectors. Then choose a flow plot, which shows

the streamlines (Fig. 10.2c).

Step 8 It is useful to plot the solution along a boundary surface. In the Postprocessing/
Domain Plot Parameters, click on the Line/Extrusion tab and select the number 2 for

boundary2, the inlet. Click Apply or OK to obtain Figure 10.3.

Step 9 To plot a variable along a line, choose Postprocessing/Cross-Section Plot

Parameters. Click on the Line/Extrusion tab and choose the two points (r, z) ¼ (0, 0)

and (0.5, 0). Change the function plotted to be the z-velocity and click OK. The same

picture arises, Figure 10.3. This method can be used to integrate over any line, not necess-

arily a boundary line.

Figure 10.3 shows that the velocity is not exactly 1 for all radii at the inlet, because

there is a discontinuity in the boundary conditions. The boundary conditions use v ¼ 1

on one boundary and v ¼ 0 on an adjoining boundary, and the program has to choose

which one to use at the corner. In this case, it chose v ¼ 0, which created a sharp

change in the v function at r ¼ 0.5. This creates the ‘bump.’ By refining the mesh, you

Figure 10.3. Velocity at inlet to pipe.
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can make the bump smaller, but it cannot be eliminated by mesh refinement, because it is

an error in posing the problem. (It is not possible to achieve those boundary conditions

physically.)

Step 10 Return to the Line/Extrusion plot and plot along the points (r, z) ¼ (0, 0) and

(0,2) to obtain Figure 10.4. This figure shows how quickly the center velocity approaches

its asymptotic value as z increases. This gives you an indication of the ‘entry length.’

Step 11 Go back and plot along the points (r, z) ¼ (0, 2) and (0.5, 2) or on boundary 3 to

obtain Figure 10.5. This figure shows the outlet velocity. The exact solution is a quadratic

function of position, which is satisfied in Figure 10.5. However, you also expected a peak

value of 2.0. The peak value is not 2.0 because of the slight error in the entry conditions.

What is true is that the flow rate out equals the flow rate in, which is slightly less than

you desired due to the ‘bump’ in the inlet profile. This discrepancy decreases as you

refine the mesh.

Step 12 To find the flow rates, use the Postprocessing/Boundary Integration option.

Boundary 2 is the inlet. If you ask to integrate the v-velocity, the answer is 0.4948. Put

1 in the box and click Apply; the answer is 0.5. Since the velocity is 1.0 and the radius

is 0.5, the v-velocity should integrate to 0.5, too. The error (1%) is due to the phenomena

illustrated in Figure 10.3.

Step 13 Of course, the average velocity is given by Eq. (9.10). There are two ways you

can compute it. The first way integrates once with v�r in the expression window (giving

0.1224), and then with r in the expression window (giving 0.125). The average velocity

is then 0.1224/0.125 ¼ 0.979. The second way is to click on the box ‘Compute surface

integral (axisymmetric modes)’ (see Figure 10.6). Then the program includes the factor

2pr in the integral. With v in the expression window the answer is 0.7690, and with

Figure 10.4. Centerline velocity in pipe flow.
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1 in the expression window the answer is 0.7854. The average velocity is then 0.7690/
0.7854 ¼ 0.979. Both answers are the same, of course. Checking the average velocity

at the other end, boundary 3, gives the same value. Thus, continuity is observed even if

the velocity has a ‘bump’ in Figure 10.3.

Next, change the problem slightly and take the inlet velocity as the fully developed

velocity profile.

v(r, 0) ¼ 2 1�
r2

0:5

� �� �
(10:12)

Figure 10.5. Velocity profile at exit.

Figure 10.6. Boundary integration in cylindrical geometry.
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Step 14 This is inserted in Physics/Boundary Settings for boundary 2 as the v velocity:

2�(1� (r=0:5)^2) (10:13)

The streamlines obtained are shown in Figure 10.7a. Clearly they are straight, indicating

that the fully developed flow just continues downstream. Compare Figure 10.7 with

Figure 10.2c. The average velocity is now 1.0 exactly, 0.785398/0.785398. The velocity
profile at the inlet is shown in Figure 10.7b. The profile at the outlet is the same.

When running this last problem, the program might have said it did not converge. In

fact it did, but since the exact solution was found in one iteration it was comparing the

estimated error to zero. This is not an important problem (although it can be confusing

the first time it happens to you) because you seldom have a two-dimensional problem

in which you provide exact conditions. There is a way to change the iteration scheme if

necessary. Use Solve/Solver Parameters and click on the Advanced tab. Change the

scaling from Automatic to Manual and insert a nonzero value.

EXAMPLE: ENTRY FLOW OF A NON-NEWTONIAN FLUID

Next consider the entry flow of a non-Newtonian fluid, essentially the same problem as

before, except with a different fluid. The only thing you need to change is the expression

for viscosity, which is no longer constant. The shear viscosity is modeled as a Carreau

Figure 10.7. Streamlines (a) and inlet velocity profile (b) for flow in pipe with parabolic inlet

velocity profile.
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function, which is a slight extension of Eq. (9.14):

h� h1

h0 � h1

¼ 1þ l _gð Þ
2

� �(n�1)=2
(10:14)

The h1, h0, l, and n are all parameters that are used to fit data, taken here as

h1 ¼ 0:05, h0 ¼ 0:492, l ¼ 0:1, and n ¼ 0:4. A plot of the viscosity vs shear rate is

given in Figure 10.8. For small shear rates, the viscosity is essentially constant, as it is

for a Newtonian fluid. For extremely large shear rates, the same is true. For moderate

shear rates, though, the viscosity changes with shear rate. In pipe flow, or channel flow,

the shear rate is zero at the centerline and reaches a maximum at the wall. Thus, the vis-

cosity varies greatly from the centerline to the wall. This complication is easily handled in

FEMLAB.

Once you know how to solve the problem for a Newtonian fluid (as in Fig. 10.2), there

are two major changes you must make for a non-Newtonian fluid. One of those is to rep-

resent the viscosity, Eq. (10.14), in FEMLAB. The other is to be smart about how you

obtain a converged solution.

Step 1 Insert the parameters for the viscosity under the Options/Constants and the

equation for viscosity, using those parameters, in Options/Expressions/Subdomain

Expressions. Then the shear rate is defined in terms of the parameters of the problem.

Here the variables are u in the radial direction and v in the axial direction. Making the

appropriate conversions to Eq. (10.7) gives Eq. (10.9), which you type as a subdomain

expression.

Step 2 If the variable used for viscosity is ‘eta,’ then under the Physics/Subdomain

Settings, you insert the word ‘eta’ is inserted in the box for h. That is all that is required

to set up the non-Newtonian problem. As the problem is being solved, when the viscosity

Figure 10.8. Viscosity of a shear-thinning fluid.
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is needed, the computer looks at the expression for eta – which involves another

expression for shearrate and constants – and the computer program then evaluates the

viscosity.

Step 3 The second change is more subtle. If you set up this problem, and press ‘¼,’

probably the program will return a message saying it cannot converge. The reason is

that the power-law form of the viscosity function is a very nonlinear function of the

shear rate. The FEMLAB program uses derivatives of this with respect to the parameters,

evaluated at the current solution iterate. Since initially you do not know the solution, that

current solution is velocity zero everywhere except on boundaries where it has been set.

Starting with a zero value may be the cause of the errors. Thus, you should always

obtain a solution for a Newtonian fluid first, before invoking the non-Newtonian viscosity:

simply replace the word ‘eta’ with 1.0 or some number appropriate to your case, solve the

problem, put back the ‘eta,’ and use the re-solve option. This time the computer has a solu-

tion to work from, and the derivatives in the viscosity function do not give as much diffi-

culty. You can practice this technique in Problems 10.2 and 10.3. FEMLAB also has a

non-Newtonian module that you can try.

EXAMPLE: FLOW IN MICROFLUIDIC DEVICES

Next consider flow in what is called a T-sensor. Two flows come together, join, and tra-

verse down one channel, as illustrated in Figure 10.9. This device is used in microfluidic

medical devices, which are discussed further in Chapter 11. Here you will consider only

the flow (which has no special utility until the convective diffusion equation is added in

Chapter 11).

Step 1 Open FEMLAB and choose Chemical Engineering/Momentum Balance/
Incompressible Navier–Stokes, Steady-state analysis. Draw a composite object and the

mesh, as shown in Figure 10.10.

Step 2 In the first version of this problem, set the density and viscosity to 1.0 (corres-

ponding to a nondimensional problem with Reynolds number ¼ 1).

Figure 10.9. Flow in a T-sensor.
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Step 3 Set the vertical velocity equal to 1 on the bottom, left boundary segment; –1

on the top, left boundary segment; use Normal flow/Pressure (0) on the right-hand side,

and use no slip (zero velocity) everywhere else. The streamlines are shown in

Figure 10.11.

Step 4 Use the Postprocessing option to check the solution. Choose Boundary Inte-

gration and select boundary 2, 3, or 8 (the two inflow boundaries and one outflow bound-

ary). The values of various quantities are given in Table 10.2.

Step 5 To integrate 1.0 along the boundary, type 1.0 in the window and choose Apply.

The number appears in the small screen at the bottom. Since the domain goes from 0 to 0.5

Figure 10.10. Mesh for flow in a T-sensor.

Figure 10.11. Streamlines for flow in a T-sensor.
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(half the diameter), the integral is 0.5:

ð0:5
0

1:0 dx ¼ 0:5 (10:15)

Likewise, the velocity averages should be 0.5 on the inlets, because v(x) ¼ 1:

ð0:5
0

v(x) dx ¼ 0:5 (10:16)

In this example, however, the velocity, is not exactly 0.5. This is because the boundary

condition has a ‘bump’ at each corner, due to the discontinuity at the corner. The

flow rate is twice as high at the outlet, which is correct because there are two inlets.

The sum of the velocity integrals should equal the same integral for the outlet streams.

Here

inlet v�L ¼ 0:48611þ 0:48611 ¼ 0:97222, (10:17)

which agrees with the outlet values. Thus, the mass flow rates balances.

Step 6 The streamlines in Figure 10.11 indicate the extent to which fully developed flow

between two flat plates occurs as one moves from left to right. There is also some velocity

rearrangement at each inlet because the velocity has been assumed to be +1 at the inlet,

which is inconsistent with the no-slip boundary condition on each wall. This problem can

easily be fixed. Instead of using v ¼ 1 on the boundary, use Eq. (10.18), which has the

TABLE 10.2. Integral of Velocity Over Boundary

(multiply by depth to get flow rate)

Segment 2 Segment 3 Segment 8

u or v velocity 0.48611 20.48611 0.97222

1.0 0.5 0.5 0.5

Figure 10.12. Streamlines in a T-sensor when the inlet velocity is parabolic.
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same integral of velocity over the inlet. Now the entering streamlines are straight, as

shown in Figure 10.12.

v ¼ �24(xþ 1)ðxþ 1
2
Þ (10:18)

EXAMPLE: TURBULENT FLOW IN A PIPE

Next consider flow in a pipe at a flow rate high enough for turbulence to occur. Generally,

this occurs whenever the Reynolds number is greater than 2200, where the Reynolds

number is defined in terms of the average velocity and the pipe diameter:

Re ¼
r kvlD
m

¼
kvlD
v

(10:19)

You can solve the problem with an inlet velocity that is flat; thus you find the entry length

it takes to achieve fully developed turbulent flow, and the velocity profile downstream is

the fully developed one. When you solve for a kinematic viscosity of 1026 m2/s (water),
diameter of 0.05 m (about 2 inches) and a velocity of 2 m/s (a common optimal velocity),

you will obtain a Reynolds number of 105.

The turbulence model in FEMLAB is in dimensional (SI) units. Turbulence is modeled

using the k–1 model. In this model, the turbulent kinetic energy is represented by k, and

the rate of dissipation of turbulent kinetic energy is represented by 1. Furthermore, the

viscosity is augmented by a turbulent eddy viscosity, which is a function of k and 1.

Special equations have been developed for both variables, and these must be solved

along with the momentum equation which has the turbulent eddy viscosity in it as well.

All these equations are included in FEMLAB.

The main caution is that these equations are only an approximation of reality, and the

formulas and equations have been chosen to model experimental data. This means that

they are only as good as the data they were derived from, and the data is usually found

in relatively simple flows. The experiments are definitely not easy to carry out, but they

are for idealized situations, such as fully developed flow in a pipe or past a flat plate or

in a jet. Thus, the equations should be used with caution. Other methods in turbulence

are much more time-consuming and may require banks of computers running for hours.

That works for research, but is not suitable for day-to-day engineering work.

Step 1 The turbulent problem of flow in a pipe is set up in the same way as for laminar

flow, except that the original choice of method is 2D Axial/Chemical Engineering/
Momentum balance/K–1 Turbulence model. The model solves for the velocity com-

ponents (averaged over a time interval) and the logarithms of k and 1. The reason is

that the equations are better conditioned and the range of values of k and 1 is very

wide, but their logarithms are better behaved. Explicit, analytic expressions for k and 1

are used at solid boundaries. Generally, you need elements near solid walls that are

about the size of the wall-layer approximated by those explicit expressions. Those

details are beyond the scope of this book, but you will need to study and understand

them before using the results or doing many calculations.
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Step 2 Set up the entry problem as was done for laminar flow, except put in a kinematic

viscosity of 1026, a radius of 0.025, an inlet velocity of 2 m/s, and a length of 3 m. Note

that the momentum equations has been divided by density:

(u � r)u ¼ �rp=rþ r � ½(vþ vT)ru�

(u � r)k ¼ tij@ui=@xj � 1þ r � ½(vþ vT=sk)rk�

(u � r)1 ¼ C11

1

k
tij@ui=@xj � C12

12

k
þ r � ½(vþ vT=s1)r1�

(10:20)

While C11 and C12 are dimensionless, the turbulent viscosity, vT, is calculated in the SI

system. Thus, all dimensions must be in m, m/s, etc.

Step 3 Start with a coarse mesh, and then refine it twice, giving 1424 elements and

13,729 degrees of freedom.

Step 4 Set the boundary conditions as follows. The centerline, inlet velocity, and exit

velocity/pressure are set as in the laminar case: slip/symmetry, v ¼ 2, Normal flow/
Pressure, p ¼ 0. The wall boundary condition, though, is set to the Logarithmic wall

function. This is an analytic formula for the velocity, turbulent kinetic energy, and rate

of dissipation, as determined by experiment (Deen, 1998, pp. 527–528).

Step 5 Solve the problem by pressing ‘¼.’ The pressure drop per length is low by

about 25%.

Step 6 Refine the mesh once more, with 5696 elements and 51,661 degrees of

freedom. The exit velocity profile and centerline velocity are shown in Figure 10.13.

Fully developed flow is achieved at a distance of about 2 m from the inlet. The

profiles of k and 1 are shown in Figure 10.14. The pressure drop per length in the

fully developed region is 632 Pa/m, and the wall stress is tw ¼ 7.9 Pa. The friction

Figure 10.13. (a) Velocity profile at exit and (b) centerline velocity for turbulent entry flow in a pipe.
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factor is then

tw ¼
DpR

2 L
, f ¼

2tw

r kvl2
¼

Dp R

Lr kvl2
¼ 4:0� 10�3 (10:21)

This is slightly lower than the value for a smooth pipe at a Reynolds number of 105, where

f ¼ 4.4 � 1023 (Perry’s Chemical Engineers’ Handbook, 1997, pp. 6–10). The pressure

vs length down the pipe is shown in Figure 10.15.

EXAMPLE: START-UP FLOW IN A PIPE

A classic problem in fluid mechanics is the transient development of flow in a pipe. In this

idealized problem, the fluid is initially at rest with no applied pressure gradient. At time

Figure 10.14. Turbulent kinetic energy (a) and rate of dissipation (b) for turbulent flow in a pipe

(fully developed at the exit).

Figure 10.15. Pressure drop in turbulent flow.
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zero, a pressure gradient is applied, and flow begins. The velocity is slow enough that the

flow is laminar. After a certain amount of time, the flow becomes steady.

Step 1 To solve this problem in FEMLAB, choose Chemical Engineering Module/
Momentum balance/Incompressible Navier–Stokes/Transient analysis in the Axial

Symmetry (2D) option.

Step 2 Construct a domain with a radius of 0.0025 m and a length of 0.025 m. At this

point, you do not know what the length should be, but it turns out that it does not matter.

Step 3 You solve for properties appropriate to water (r ¼ 1000 kg/m3, m ¼ 0.001 Pa s)

in a small pipe with a diameter of 0.005 m. The applied pressure drop is taken as 100 Pa/
m. At steady state, the average velocity should then be 0.078 m/s, using Eq. (9.9). Under

Subdomain Settings, put in the parameters. Then click the ‘Init’ tab and be sure that the

velocity is initially zero.

Step 4 Set the boundary conditions as you did for entry flow: slip/symmetry at the cen-

terline and no-slip on the solid wall. However, at the inlet choose the Normal flow/
pressure option and put in the value 2.5 Pa. At the exit choose the Normal flow/pressure
option and put in zero.

Step 5 How long do you need to compute? You can set that in Solve/Solver Parameters

by clicking the Time-dependent Solver. The time is in seconds, and you think the flow will

come to steady state within 10 s. Therefore, put Times as [0:0.1:1 2 3 4 5 6 7].

Figure 10.16. Transient laminar flow in a pipe, velocity profile.
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Step 6 Click OK, and then ‘¼.’

Step 7 After solution, choose Postprocessing/Domain Plot Parameters. Under the

General tab, be sure all the time values are selected, choose Line extension, and change

Line Settings to make the symbols cycle. If you choose the boundary 2 (the inlet),

Figure 10.16 shows the inlet velocity as a function of radial position and time. The

same plot is obtained at boundary 3 (the exit).

Step 8 To see the time behavior at a point, choose Postprocessing/Cross Sectional Plot
Parameters and then click on the point tab. Plot the v-velocity at r ¼ 0 and z ¼ 0 as a func-

tion of time. (Note: All the time values need to be selected in the General window.)

Figure 10.17 shows that the velocity at the corner increases and reaches steady state at

about t ¼ 7 s.

Step 9 Next, check the Reynolds number, which is 390, ensuring that the flow is laminar.

The peak average velocity is 0.078 m/s, and in laminar flow the peak velocity should be

twice that, or 0.156 m/s – which it is. If you would like to see a movie of the transient

behavior, choose Postprocessing/Plot Parameters/Animate and select the variable you

would like plotted. Animate is the last entry in the menu, and you may have to scroll

across to see it.

EXAMPLE: FLOW THROUGH AN ORIFICE

The next problem is flow through an orifice. If the pipe or channel is very small, the flow

may be laminar. This is usually the case in microfluidic devices. If the channel is small, the

Figure 10.17. Transient laminar flow in a pipe, velocity at r ¼ 0, z ¼ 0.

FLOW THROUGH AN ORIFICE 193



orifice will not be infinitesimally small, and the width of the orifice may have an effect.

You will solve for the flow here, while in Chapter 11 you will extend the problem to

solve for the temperature rise due to viscous dissipation. In this chapter, you assume

the viscosity is constant. This problem was solved by a senior chemical engineering

student, Febe Kusmanto, while studying the effect of orifices with finite thicknesses

(Kusmanto et al., 2004).

Step 1 It is convenient to solve this problem in nondimensional form, because you want

solutions for Reynolds numbers from 1 to 1000. For the lower Reynolds numbers, you use

the equations in the form

Re(u0 � r0)u0 ¼ r0 � f�p0I þ ½r0u0 þ (r0u0)T�g þ F0 (10:22)

Because the equation in FEMLAB is

r(u � r)u ¼ r � f�pI þ h½ru þ (ru)T�g þ F (10:23)

you will take

r ¼ Re, h ¼ 1, u0 ¼ u=us, p
0 ¼ pxs=mus, x0 ¼ x=xs, r

0 ¼ xsr (10:24)

where the variables with a subscript ‘s’ are the standards chosen for velocity and distance.

Here you use the average velocity as the velocity standard and the diameter of the orifice as

the distance standard. Then, in the computer the average inlet velocity is 1.0.

Step 2 The orifice goes from r ¼ 0 to 0.5, in a tube going from r ¼ 0 to 3 with a length of

16 diameters. The orifice has a width of 0.15, for L/D ¼ 0.15. The orifice goes from

z ¼ 3.925 to 4.075.

Step 3 For the higher Reynolds numbers, use the equations in the form

(u0 � r0)u0 ¼ r0 � �p00I þ
1

Re

�
r0u0 þ (r0u0)T

�� �
þ F0 (10:25)

and take

r ¼ 1, h ¼ 1=Re, u0 ¼ u=us, p
00 ¼ p=ru2s , x0 ¼ x=xs, r

0 ¼ xsr (10:26)

The reason you need to do this is that the first method converges well for low

Reynolds numbers, but not for high Reynolds numbers, and the reverse holds for the

second method.

Step 4 The inlet velocity is taken as a parabola with an average velocity of 1.0:

u0 ¼ ezv
0(r0), v0(r0) ¼ 2½1� (r0=0:5)2� (10:27)

The other boundary conditions are Slip/Symmetry or Axial Symmetry on the centerline,

No slip on the solid walls, and Normal flow/Pressure at the outlet velocity.
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Step 5 You will construct and refine the mesh once. Since you expect significant

flow disturbance near the orifice, the mesh is refined especially well there, as shown

in Figure 10.18. This mesh has 5300 elements and gives rise to 24,543 degrees of

freedom.

Step 6 In this calculation, you want to solve the problem for several Reynolds numbers.

Doing this illustrates one of the important advantages of FEMLAB. In particular, suppose

you wish to solve for Reynolds numbers from 1 to 1000. The eventual plot will be a log–

log plot, and it is convenient to have equal increments in log Re. Define the Reynolds

number as

Re ¼ 10 x (10:28)

and choose x as [0 : 0.1 : 3]. Then the Reynolds number will go from 1 to 1000 in equal

increments on the log–log plot. To do this in FEMLAB, in Subdomain Settings,

replace Re with 10xRe. Then choose Solve/Solver Parameters/Parametric nonlinear.

In the ‘Name of parameter’ put xRe. In the ‘List of parameter values’ put 0:0.1:3 (see

Figure 10.19). Then the Reynolds number takes values of

Re ¼ 1, 1:259, 1:585; . . . ; 10, 12:59, 15:85, . . . , 125:9, 158:5, . . . , 794:3, 1000 (10:29)

Sometimes it may be necessary to use x from 0 to 1.5 using Eq. (10.22) and then x from 1.5

to 3 using Eq. (10.25).

Step 7 When you click ‘¼,’ FEMLAB solves the problem for every Reynolds

number. A convenient feature of the finite element method is that, once you have

the solution, it is a trivial task to obtain the derivative of the solution with respect

Figure 10.18. Mesh for flow through an orifice.
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to a parameter, here xRe. Then you can obtain a good guess for the next solution by

using linear extrapolation:

u(r, z, xRe2) ¼ u(r, z, xRe1)þ
@u(r, z, xRe)

@xRe

				
x Re1

(xRe2 � xRe1) (10:30)

Notice during the solution process that only a few iterations are needed for each Rey-

nolds number, because Eq. (10.30) gives a very good initial guess. You can, of course,

start with zero velocity everywhere, but the technique described is faster and more

likely to converge.

Figure 10.20 shows the streamlines at two Reynolds numbers. This figure illustrates the

fact that recirculation occurs, and the region of recirculation increases as the Reynolds

number increases, even though the flow is still laminar. Figure 10.21 shows the corres-

ponding pressure profiles. The pressure changes occur very near the orifice, and the

pressure drop is almost entirely caused by the orifice with only a small contribution

from fully developed flow in the tube. As the Reynolds number increases, the pressure

reduces after the orifice. Then, it gradually returns to a higher value in the region

known as the vena contracta.

Figures 10.22 and 10.23 show the pressure drop as a function of Reynolds number.

These results are plotted two ways, corresponding to the two different ways to nondimen-

sionalize the equations. That in Figure 10.22 is most suitable for slow speed laminar flow,

because the pressure term plotted is constant with Reynolds number over quite a wide

range. That in Figure 10.23 is most suitable for high Reynolds numbers because that

form of the pressure term is constant once the Reynolds number gets high enough.

Figure 10.19. Solver parameters screen for Re ¼ 100 to 101.5.
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Figure 10.23 also looks like a typical friction factor plot. Both curves, however, give the

same value of pressure drop in pascals, and the plotted coefficients are related by

Eq. (10.31):

Dp
1
2
r kvl2

Re

2
¼

Dp

r kvl2
r kvlD
m

¼
DpD

m kvl
(10:31)

The experimental data is from Hasegawa et al. (1997) and the dotted line is the analytical

solution to Stokes flow by Dagan et al. (1982).

Figure 10.20. Streamlines for Re ¼ 1 (a) and Re ¼ 101.5 ¼ 31.6 (b).

Figure 10.21. Pressure profiles for Re ¼ 1 (a) and Re ¼ 101.5 ¼ 31.6 (b).
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As the Reynolds number increases, you must decide if the length of the domain is

sufficiently long that the velocity profiles and pressure profiles have returned to their

fully developed values. Another way to determine this is to solve the problem on a

longer domain and compare the answers from the problems with different lengths.

Because the pressure drop should be the same, as long as the pressure drop from the

fully developed flow is negligible or taken into account, this is a valid test.

100 101 102 103
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∆p
D
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Dagan theory for low Re

This work              

Figure 10.22. Dimensionless pressure drop in orifice for low Reynolds number.
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Figure 10.23. Dimensionless pressure drop in orifice for high Reynolds number.
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EXAMPLE: FLOW IN A SERPENTINE MIXER

Slow flow in the serpentinemixer pictured in Figure 10.24 is used tomix two chemicals that

come in at different sides of the port to the left. This is a complicated geometry and pushes

the simulation capabilities, but it is easily solved in FEMLAB. It was solved by Zachery

Tyree when he was a senior chemical engineering student at the University of Washington

(Neils et al., 2004). A few flow lines are plotted in Figure 10.24, showing how themixing of

the fluid streams occurs as the fluid moves along the channels, turns, and goes up or down a

chimney. The mesh is shown in Figure 10.25; it used 36,320 elements and 203,005 degrees

of freedom to solve for the three velocity components and pressure.

BOUNDARY CONDITIONS

FEMLAB has many options for boundary conditions. The finite element method is based

on integrating the equations by parts and applying the divergence theorem. Thus, the

allowable boundary conditions are really determined by the equations. The basic con-

ditions of fluid mechanics are that either the velocity or forces must be specified. In a

three-dimensional problem, you would need to specify three velocities, for example, at

each boundary point, or some combination of velocities and forces. The finite element

method provides the following boundary conditions (Finlayson, 1992):

either n � u ¼
1a

un or n � t � n ¼ �pþ mn
1b

�½ru þ (ru)T� � n ¼ fn (10:32)

either t � u ¼
2a

ut or n � t � t ¼ mn
2b

� ½ru þ (ru)T� � t ¼ ft (10:33)

Figure 10.24. Flow lines in serpentine mixer.
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Equation (10.32) is for the normal velocity or normal force, and Eq. (10.33) is for the tan-

gential velocity or tangential force. The normal and tangent to the surface are determined

by the geometry. The quantities un, fn, ut and ft must be specified, but can be zero. These

quantities represent the interaction between the system and its surroundings. The boundary

conditions available in FEMLAB are listed in Table 10.3. At any given boundary, one

Figure 10.25. Mesh used to model the serpentine mixer.

TABLE 10.3. Boundary Conditions for the Navier–Stokes Equation

Inflow/outflow velocity, 1a and 2a – set un, ut

n � u ¼ un and t � u ¼ ut (10:34)

Outflow/pressure, 1b and 2b – can set p0

�pþ mn � ½ru þ (ru)T� � n ¼ �p0

mn � ½ru þ (ru)T� � t ¼ 0
(10:35)

Slip/symmetry, 1a and 2b – can set nothing

n � u ¼ 0

mn � ½ru þ (ru)T� � t ¼ 0
(10:36)

No slip, 1a and 2a – can set nothing

n � u ¼ 0 and t � u ¼ 0 (10:37)

Normal flow/pressure, 1b and 2a – can set p0

�pþ mn � ½ru þ (ru)T� � n ¼ �p0

t � u ¼ 0
(10:38)

Neutral, 1b and 2b – can set nothing

�pþ mn � ½ru þ (ru)T� � n ¼ 0

mn � ½ru þ (ru)T� � t ¼ 0
(10:39)

Axial symmetry – same as Slip/symmetry
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must choose one boundary condition from Eq. (10.32) and one from Eq. (10.33). The

various combinations, and their FEMLAB equivalents, are shown in Table 10.4.

NONDIMENSIONALIZATION

It is possible to solve a flow problem in either dimensional or dimensionless form. The vari-

ables can be assignedvalues using a consistent set of dimensions,whichmust be the SI system

for turbulent flow. The dimensional formula is convenient since the problem is usually speci-

fied in that way, but in some cases the iterations may not converge. Alternatively, the

equations can be made dimensionless. The dimensionless formulations are good when you

are having trouble getting the iterations to converge, since you have a better sense of the

problem when you specify the Reynolds number. This section takes the dimensional

Navier–Stokes equation, Eq. (10.40), and derives two different dimensionless versions:

r
@u

@t
þ ru � ru ¼ �rpþ mr2u (10:40)

The velocity, pressure, and distance are made dimensionless by dividing them by a constant

standard for velocity, pressure, and distance. The nondimensional variable is denoted by a

prime:

u0 ¼
u

us
, p0 ¼

p

ps
, x0 ¼

x

xs
, r0 ¼ xsr (10:41)

Eq. (10.41) can be rearranged to give

u ¼ usu
0, p ¼ psp

0, x ¼ xsx
0, r

1

xs
r0 (10:42)

The variables are substituted into the Navier–Stokes equation, Eq. (10.40); note that the

dimensional standards are constants and can be taken through the differentials:

rus

ts

@u0

@t0
þ
ru2s
xs

u0 � r0u0 ¼ �
ps

xs
r0p0 þ

mus

x2s
r0 2u0 (10:43)

Option 1 This option ismost applicable to slowflows.MultiplyEq. (10.43) by x2s=mus to give

rx2s
mts

@u0

@t0
þ
rusxs

m
u0 � r0u0 ¼ �

psxs

mus
r0p0 þ r0 2u0 (10:44)

Choose the pressure standard so that the coefficient of the pressure gradient term is 1.0; make a

similar choice for the time standard to get

psxs

mus
¼ 1, or ps ¼

mus

xs
,
rx2s
mts

¼ 1 or ts ¼
rx2s
m

(10:45)

TABLE 10.4. Boundary Condition Combinations

in FEMLAB

2a 2b

1a Inflow/outflow No slip Slip/symmetry

1b Normal flow/pressure Outflow/pressure neutral
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Then the nondimensional Navier–Stokes equation is

@u0

@t0
þ Reu0 � r0u0 ¼ �r0p0 þ r02u0, Re ¼

rusxs

m
(10:46)

An alternative is to use a different standard for time,

ts ¼
xs

us
, giving

rx2s
mts

¼
rusxs

m
¼ Re (10:47)

in which case the nondimensional Navier–Stokes equation is

Re
@u0

@t0
þ Reu0 � r0u0 ¼ �r0p0 þ r02u0 (10:48)

If you want the pressure in Pascals, take the nondimensional pressure (from the computer) and

multiply it by the pressure standard:

p ¼ psp
0 ¼

mus

xs
p0 (10:49)

Option 2 This option is most applicable for a high Reynolds number. Multiply

Eq. (10.43) by xs=ru
2
s to give

xs

tsus

@u0

@t0
þ u0 � r0u0 ¼ �

ps

ru2s
r0p00 þ

m

rusxs
r02u0 (10:50)

The symbol p00 is used now for option 2. Choose the pressure standard so that the coeffi-

cient of the pressure gradient term is 1.0 and make a similar choice for the time standard:

xs

tsus
¼ 1, ts ¼

xs

us
or

ps

ru2s
¼ 1, or ps ¼ ru2s (10:51)

Then the nondimensional Navier–Stokes equation is

@u0

@t0
þ u0 � r0u0 ¼ �r0p00 þ

1

Re
r02u0 (10:52)

If you want the pressure in Pascals, take the nondimensional pressure (from the computer)

and multiply it by the pressure standard:

p ¼ psp
00 ¼ ru2sp

00 (10:53)

By comparing Eq. (10.48) with Eq. (10.52), you see that the two different dimensionless

pressures are related by

p0 ¼ Re p00 (10:54)

It is easy to show that the pressure in Pascals is the same in both options. The only

reason for having both of them is to improve the rate of convergence, or make convergence
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possible in some cases. The dimensional pressure drop in option 1 is given by Eq. (10.49).

This is also

Dp ¼ psDp
0 ¼

mus

xs
Dp0 ¼

ru2s
Re

Dp0, since
ru2s
Re

¼
mus

xs
(10:55)

The dimensional pressure drop in option 2 is given by Eq. (10.53). Using Eq. (10.54)

you get

Dp ¼ ru2sDp
00 ¼

ru2s
Re

Dp0 (10:56)

which is the same as Eq. (10.55).

CHAPTER SUMMARY

This chapter illustrated how to use FEMLAB to solve the Navier–Stokes equations in a

variety of situations. Some of these problems are classic, such as entry flow into a pipe

and transient start-up of pipe flow. Most examples were for laminar flow in two dimen-

sions, but one model was turbulent flow into a pipe, and another model was for a compli-

cated three-dimensional geometry. To review, the chapter covered the following specific

features:

. Axisymmetric geometry;

. Using a velocity profile at a boundary;

. Variable viscosity, depending upon shear rate (non-Newtonian fluid);

. Calculating averages;

. Plotting the solution;

. Checking continuity;

. Time-dependent models;

. Parametric solvers;

. Choosing of boundary conditions; and

. Using nondimensional forms of the equations.

With the skills you learned in this chapter, you will be ready to tackle complicate two- and

three-dimensional flow problems.

PROBLEMS

10.1. Solve for the entry flow of a Newtonian fluid into a pipe using the parameters in the

example. Reproduce Figure 10.2 through Figure 10.5 plus Figure 10.7.

10.2. Solve for the entry flow of a power-law fluid into a region between two flat plates.

The viscosity is given by

h ¼ 0:2 _g�0:6 (10:57)
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The plates are a distance of 0.005 m apart, and the applied pressure gradient is 60

Pa in a length of 0.3 m. The density of the fluid is that of water. (Hint: Follow the

steps in the example of entry flow in a pipe, except use a power-law formula for

viscosity and use two flat plates rather than a pipe.)

10.3. Solve Problem 10.2, but use the Carreau function, Eq. (10.14), with h1 ¼

0:492, h0 ¼ 0:05, l ¼ 0:1, and n ¼ 0.4. (Hint: Follow the steps in the example

of entry flow in a pipe, but use the Carreau function for viscosity and use two

flat plates rather than a pipe.)

10.4. Compare the Carreau viscosity as a function of shear rate (Fig. 10.8 and Problem

10.3) with that of the power-law fluid in Problem 10.2.

10.5. Solve for the start-up flow of the power-law fluid and problem described in

Problem 10.2. How long does it take to reach steady state?

10.6. Solve for the start-up flow of the Carreau fluid and problem described in Problem

10.3. How long does it take to reach steady state?

10.7. Solve for the flow through an orifice. Reproduce Figures 10.20 and 10.21 for

Reynolds numbers from 1 to 31.6 using the parametric solver. Plot the pressure

coefficient vs Reynolds number, as in Figure 10.22.

10.8. Solve the example of a microfluidic T-sensor, except have the average

velocity coming in the bottom twice as high as in the example. Compare the

flow rates in both streams and out to ensure that the total flow in equals the total

flow out.

10.9. Consider laminar flow past a flat plate. Create a geometry as a long rectangle. Set

the velocity to zero on the plate, and set it to a constant on the left. Use a neutral

boundary at the top and convective flux at the right-hand side. Compare your sol-

ution with the Blasius solution in your textbook.

10.10. Solve for the drag on a sphere in a flowing stream with a uniform velocity profile

upstream. Solve for zero Reynolds number (Stokes flow). Compare the solution

with an analytical solution in your textbook. (Hint: Set the density to zero to simu-

late Stokes flow. The drag is obtained by integrating certain stresses over the

boundary of the sphere.)

10.11. Solve for the drag on a sphere in a flowing stream with a uniform velocity profile

upstream. Solve for Reynolds number from 1 to 100. Put the sphere in a cylindrical

tube, but use neutral boundary conditions on the tube (this will mimic an infinite

domain). How does the qualitative behavior of the solution change with Reynolds

number?

10.12. Solve for the drag on a sphere in a flowing stream with a uniform velocity profile

upstream. Solve for Reynolds number from 1 to 100. Put the sphere in a cylindrical

tube with a diameter of 5. For this problem, use zero velocity on the cylindrical

tube, which mimics the effect of the wall.

10.13. Use the problem set up in Problem 10.12 and deduce the wall effect when measur-

ing the terminal velocity by dropping a sphere into a fluid. Compare with Perry and

Green (1997, p. 6–54).
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10.14. Solve for the drag on a cylinder in a flowing stream with a uniform velocity profile

upstream. Solve for Reynolds number from 1 to 100. Far from the cylinder use

neutral boundary conditions (this will mimic an infinite domain). How does the

qualitative behavior of the solution change with Reynolds number?

10.15. Solve for turbulent flow in a pipe using the parameters in the example. Use velo-

cities of (1) 0.2 m/s; (2) 0.6 m/s; and (3) 1.4 m/s. Compare the results with

Figures 10.13 and 10.14.
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11
CONVECTIVE DIFFUSION
EQUATION IN TWO AND
THREE DIMENSIONS

Chemical reaction and mass transfer are two unique phenomena that help define chemical

engineering. Chapter 8 described problems involving chemical reaction and mass transfer

in a porous catalyst, and how to model chemical reactors when the flow was well defined,

as in a plug-flow reactor. Those models, however, did not account for the complicated

flow situations sometimes seen in practice, where flow equations must be solved along

with the transport equation. Microfluidics is the chemical analog to microelectro-

mechanical systems (MEMS), which are small devices with tiny gears, valves, and

pumps. The generally accepted definition of microfluidics is flow in channels of size

1 mm or less, and it is essential to include both distributed flow and mass transfer in

such devices.

Microfluidic devices often are smaller than a penny, so a new name has been invented

for them, ‘lab-on-a-chip.’ The pharmaceutical industry uses these devices for drug design,

delivery, and detection, and the biomedical industry uses them for sensors and drug

delivery. Industrial applications include the study of new reaction mechanisms and path-

ways that lead to improved selectivity with fewer pollutants. Because of the small size of

microfluidic devices, a precise control of temperature is possible, which improves kinetic

information, especially with catalysts. Some elements of a fuel cell are small enough to be

microfluidic devices, too. If large-scale production is required, engineers use ‘number up’

rather than ‘scale up’ to achieve high throughput. The techniques of the electronic industry

can be used to produce many small devices cheaply, and engineers simply add ‘clones’ to

increase the production rate of chemicals. The following articles give details of these

applications: Jensen (1999); Stone and Kim (2001); Chow (2002); Freemantle (2005);

Henry (2005), Gokhale et al. (2005), and a useful website is www.Lab-on-a-Chip.com.

This chapter uses FEMLABw to solve problems involving two- or three-dimensional

flow (2D or 3D) and diffusion of mass and/or heat. Convection and diffusion of mass

Introduction to Chemical Engineering Computing, by Bruce A. Finlayson
Copyright # 2006 John Wiley & Sons, Inc.
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and heat are often governed by the convective diffusion equation. The flow problems were

treated in Chapter 10, but sometimes parameters such as viscosity and density depend upon

the concentration and temperature. In that case, all the partial differential equations have to

be solved together. This chapter illustrates how to use FEMLAB to solve problems in the

geometries discussed in Chapter 10: the T-sensor, an orifice, and the serpentine mixer. You

will learn how to create a composite geometry, solve the equations either sequentially, one

after the other, or simultaneously, make the transport properties such as viscosity functions

of temperature or concentration, and learn to assess the relative importance of convection

and diffusion, which is essential for interpreting numerical results.

The chapter begins by listing the equations and the boundary conditions available in

FEMLAB. The first example is simple heat conduction in a two-dimensional region,

followed by applications to microfluidic devices, viscous dissipation in orifice flow, and

diffusion in the serpentine mixer.

CONVECTIVE DIFFUSION EQUATION

The equation governing mass transfer with flow is

@c

@t
þ u � rc ¼ r � (Drc) (11:1)

When the diffusivity is constant it is:

@c

@t
þ u � rc ¼ Dr2c: (11:2)

In 2D rectangular coordinates, Eqs. (11.1) and (11.2) become

@c

@t
þ u

@c

@x
þ v

@c

@y
¼

@

@x
D
@c

@x

� �
þ

@

@y
D
@c

@y

� �

¼ D
@2c

@x2
þ
@2c

@y2

� �
when D is constant.

(11:3)

Heat transfer is similar, but with different parameters. The vector representation is

rCp

@T

@t
þ u � rT

� �
¼ r � (krT)

¼ kr2T when k is constant

(11:4)

In 2D rectangular coordinates, the equation is

rCp

@T

@t
þ u

@T

@x
þ v

@T

@y

� �
¼

@

@x
k
@T

@x

� �
þ

@

@y
k
@T

@y

� �

¼ k
@2T

@x2
þ
@2T

@y2

� �
when k is constant

(11:5)

208 CONVECTIVE DIFFUSION EQUATION IN TWO AND THREE DIMENSIONS



The velocity in the equation comes from the solution to the Navier–Stokes equation

described in Chapter 10 (or another flow equation).

NONDIMENSIONAL EQUATIONS

Diffusion in liquids can be slow, and this makes the problems hard to solve, as shown

below. The best way to learn how important diffusion is for any problem is to calculate

the Peclet number. Equation (11.3) is made nondimensional using the techniques illus-

trated in Eq. (10.42). Let c0(x0, y0, t0) be the nondimensional concentration, and

c ¼ csc
0(x0, y0, t0). Equation (11.3) for a constant diffusivity becomes:

cs

ts

@c0

@t0
þ
uscs

xs
u0
@c0

@x0
þ v0

@c0

@y0

� �
¼

Dcs

x2s

@2c0

@x02
þ
@2c0

@y02

� �
(11:6)

Multiplying by xs
2/Dcs gives

x2s
tsD

@c0

@t0
þ
usxs

xs
u0
@c0

@x0
þ v0

@c0

@y0

� �
¼

@2c0

@x02
þ
@2c0

@y02

� �
(11:7)

You may already have picked the time standard in the flow problem. If you chose

ts ¼ xs=us, the coefficients of the first and second terms are the same, and the coefficient

is called the Peclet number:

Pe ¼
usxs

D
(11:8)

The equation is then

Pe
@c0

@t0
þ Pe u0

@c0

@x0
þ v0

@c0

@y0

� �
¼

@2c0

@x02
þ
@2c0

@y02

� �
or

@c0

@t0
þ u0

@c0

@x0
þ v0

@c0

@y0
¼

1

Pe

@2c0

@x02
þ
@2c0

@y02

� � (11:9)

BOUNDARY CONDITIONS

When there is diffusion or heat conduction but no convection, typical boundary conditions

are:

(1) Concentration/temperature specified (called a Dirichelet condition or boundary

condition of the first kind):

c ¼ c0, or T ¼ T0 (11:10)
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(2) Flux specified (called a Neumann condition or boundary condition of the second

kind), with specified N0 or q0:

�Dn � rc ¼ N0, or � kn � rT ¼ q0 (11:11)

(3) Flux defined in terms of a mass transfer coefficient, km, with an external, known

concentration, c0, or a heat transfer coefficient, h, with an external, known tempera-

ture, T0 (called a Robin condition or boundary condition of the third kind):

�Dn � rc ¼ km(c� c0), or � kn � rT ¼ h(T � T0) (11:12)

The boundary conditions permitted in FEMLAB are slightly more general than this; see

Table 11.1 for diffusion and conduction and Table 11.2 for diffusion and conduction

with convection.

EXAMPLE: HEAT TRANSFER IN TWO DIMENSIONS

The first problem considered is heat conduction in a square, which is a classical problem:

@2T

@x2
þ
@2T

@y2
¼ 0 in 0 � x � 1, 0 � y � 1 (11:27)

T ¼ 1 on x ¼ 0

T ¼ 1 on y ¼ 0

T ¼ 0 on y ¼ 1

n � rT ;
@T

@n
¼ 0 on x ¼ 1 (11:28)

TABLE 11.1. Boundary Conditions for Diffusion and Conduction Only

Concentration – can set c0
c ¼ c0 (11.13)

Flux – can set N0, kc, cb

�n � N ¼ N0 þ kc(cb � c) (11.14)

Insulation/symmetry– can set nothing

n � N ¼ 0 (11.15)

Temperature – can set T0
T ¼ T0 (11.16)

Heat flux – can set q0, h, Tinf , Const., Tamb

n � krT ¼ q0 þ h(Tinf � T)þ Const: (T4
amb � T4) (11.17)

Thermal insulation – can set nothing

n � (krT) ¼ 0 (11.18)

Zero temperature – same as Eq. (11.16) with T0 ¼ 0

Axial symmetry – same as Insulation/symmetry or Thermal insulation
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Step 1 Open FEMLAB for 2D/Chemical Engineering Module/Energy Balance/
Conduction/Steady-state analysis.

Step 2 To create the geometry, click on a rectangular icon and draw a rectangle.

Double click on it and set the width and height to 1.0, with the corner at x ¼ 0, y ¼ 0.

Choose Options/Axis/Grid Settings and set the x-values to 20.4 and 1.6. Close that

window.

Step 3 Click on the triangle, to create the mesh. The mesh is shown in Figure 11.1

and has 988 elements and 2037 degrees of freedom. To save this figure, select File/
Export/Image and save the file in an appropriate folder using one of the specified

image formats.

Step 4 Next set the parameters in the differential equation. Choose Physics/Subdomain

Settings, and select domain 1. A window appears with Eq. (11.29) at the top. For this

problem, you change to k ¼ 1 but leave the other variables set to zero. Click OK.

�r � (krT) ¼ Qþ htrans(Text � T)þ Ctrans(T
4
ambtrans � T4) (11:29)

Step 5 Next set the boundary conditions. Choose Physics/Boundary Settings. A window

opens with the boundary segments numbered (you can also assign names to them). You set

a boundary condition either by selecting one of those numbers (the boundary in the figure

will turn red, so you can see which one it is), or by double clicking on the boundary

TABLE 11.2. Boundary Conditions for Diffusion/Conduction and Convection

Concentration – can set c0
c ¼ c0 (11.19)

Flux – can set N0

�n � N ¼ N0, N ¼ �Drcþ cu (11.20)

Insulation/symmetry – can set nothing

�n � N ¼ 0, N ¼ �Drcþ cu (11.21)

Convective flux – can set nothing, but use for outflow boundaries

� n � N ¼ 0, N ¼ �Drc (11.22)

Temperature – can set T0
T ¼ T0 (11.23)

Heat flux – can set q0
�n � q ¼ q0, q ¼ �krT þ rCpTu (11.24)

Thermal insulation – can set nothing

�n � q ¼ 0, q ¼ �krT þ rCpTu (11.25)

Convective flux – can set nothing, but use for outflow boundaries

n � q ¼ 0, q ¼ �krT (11.26)

Axial symmetry – same as Insulation/symmetry or Thermal insulation with u � n ¼ 0
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segment in the figure itself. The boundary conditions here are

boundary1, x ¼ 0: T ¼ 1

boundary2, y ¼ 0: T ¼ 1

boundary3, y ¼ 1: T ¼ 0

boundary4, x ¼ 1: Thermal insulation

(11:30)

Step 6 Click on the ‘¼’ sign to solve the problem. A plot appears after it is solved.

Step 7 You can change the plot to other formats. Choose Postprocessing/Plot Par-
ameters. Click on the Surface and Contour boxes. Then click the Surface tab. The new

window shows that the surface plot (the colors) will plot the temperature. Click on the

Contour tab. The new window shows that the contours will be for temperature. Click

OK to obtain Figure 11.2.

Step 8 Notice that the solution goes from 20.056 to 1.056. There is clearly a numerical

error, since the exact solution is bounded between 0 and 1. Try to solve this discrepancy by

refining the mesh. Do that by going to mesh mode and choosing Refine Mesh, or click on

the four-triangle icon. Solve the problem again using Solve/Restart or the restart icon.

Then the algorithm, which is iterative and needs an initial guess, starts from the last sol-

ution. This speeds the convergence. The resulting solution still has a minimum of

20.0556. The reason is that the problem as posed has a discontinuity in it: at x ¼ 0 and

y ¼ 1, the solution is defined as both T ¼ 0 and T ¼ 1. It cannot be both, and the inter-

polation does the best it can. Since this is a mathematical anomaly, and is physically

unrealistic, you do not need consider it further.

Figure 11.1. Finite element mesh for heat transfer problem.
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EXAMPLE: HEAT CONDUCTION WITH A HOLE

Next introduce a hole in the middle of the same diagram. The boundary conditions on the

sides of the hole are thermal insulation.

Step 1 Select the menu Draw/Specify Objects and select a square. Set the width to 0.4,

and the corner to x ¼ 0.3 and y ¼ 0.3. Then choose Draw/Create Composite Object; set

the formula: R12 R2. This causes the domain to be the large one (R1) minus the small

one (R2). You can make very complicated domains by adding and subtracting various

objects.

Step 2 Create the mesh, with 824 elements and 1732 degrees of freedom.

Step 3 Set the boundary conditions by selecting the menu Physics/Boundary Settings.

The inner boundary is formed from boundary segments 4–7; select them and set

Thermal Insulation. The right-hand boundary is now boundary segment 8, and you set

it to Thermal Insulation as before.

Step 4 Solve the problem; the plot is shown in Figure 11.3. The settings for the plot are

still the same as for Figure 11.2 since you started with that solution. Notice that the con-

tours of constant temperature are perpendicular to the thermally insulated boundaries,

which is appropriate because there is no gradient normal to the boundary.

Step 5 If desired, you can choose the Postprocessing/Boundary Integration option and

integrate the heat flux over a boundary segment. Select boundary segment 6, type ty for

Figure 11.2. Solution to heat transfer problem.
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the expression and click Apply. The integral along the surface y ¼ 0.7 from x ¼ 0.3 to 0.7

is 0. If you want the area of the domain, choose Postprocessing/Subdomain Integration,

insert 1 in the window, select domain 1, and click Apply. The area is 0.84.

EXAMPLE: DISPERSION IN MICROFLUIDIC DEVICES

The T-sensor was described in Chapter 10, but its key use is to transfer a chemical from

one flowing stream to the other. Thus, the convective diffusion equation must be solved,

too. A fluid (such as water) comes in the top and bottom, but the top stream contains a

dissolved chemical that needs to be transferred. The bottom stream may contain a different

chemical that will react and fluoresce, thus permitting a visual detection. Your goal is to

predict how fast the transfer will take place. See Hatch et al. (2001) and Wiegl et al.

(1999).

Step 1 It is easy to add the convective diffusion equation by starting with the fluid flow

model of the T-sensor. Choose Multiphysics/Model Navigator. A window appears with a

list of possible equations. Scroll down and select: Chemical Engineering Module/Mass

Balance/Convection and Diffusion/Steady-state Analysis. Click Add. Now FEMLAB

will solve both equations.

Step 2 Note that when you are setting domain parameters or boundary conditions, you do

this only one equation at a time, and you have to select the equation you want under the

Multiphysics tab. Select the convection and diffusion equation. Then, select Physics/Sub-
domain Settings, leave Disotropic ¼ 1, and R ¼ 0 (this can be a reaction rate depending

upon c). In the u and v boxes, put u and v, respectively; otherwise convection will be

absent from the problem.

Figure 11.3. Solution to heat transfer problem with a hole in the center.
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Step 3 Choose Physics/Boundary Settings and set the concentration to 1.0 on the top

inlet (boundary segment 3) and 0.0 on the bottom inlet (boundary segment 2). Choose

‘Convective flux’ for the outlet boundary segment (8). All other boundary conditions

are set to Insulation/Symmetry.

Step 4 Solve the problem. The concentration solution is shown in Figure 11.4.

Step 5 You can use the Postprocessing option to check the solution. Choose Boundary

Integration and select boundary 2, 3, or 8. To calculate the total flow of chemical in/out
of the boundary, integrate v�c over boundary segment 2, 2 v�c for boundary segment 3

(the flow in is in the negative y-direction), and u�c for boundary segment 8. Then

choose Apply and read the value of the integral in the lower, left part of the screen; the

results are given in Table 11.3.

Effect of Peclet Number

The previous case had so much diffusion that the concentration was well mixed

very quickly. The diffusion coefficient in FEMLAB is actually the Peclet number in

Eq. (11.9). Using a value of D ¼ 1/50 is really for Pe ¼ 50 and gives the results shown

in Figure 11.5. To speed the calculation, though, you notice that the flow field should

remain the same, since it is unaffected by concentration in this example. To do this,

choose Solve/Solver Manager. Choose the Solve For tab and select only the concen-

tration. Then use the re-start icon to solve the problem. This figure shows that the

concentration has not mixed as well, because of the lower diffusion coefficient.

Next reduce the diffusion coefficient even more: D ¼ 1/500. Now you get the solution

shown in Figure 11.6. Notice that there are some ‘wiggles’ (oscillations) in the

Figure 11.4. Solution to T-sensor diffusion/convection problem with D ¼ 1.
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concentration contours; the maximum concentration is 1.067 and minimum concentration

is –0.0429. This indicates that the solution contains errors.

There are two ways to improve the situation. One is to refine the mesh, because the key

parameter is the Peclet number times the mesh size. The other is to add Streamwise diffu-

sion in Eq. (11.9). Before doing that, though, examine the solution at the exit. To display

the solution at the exit for a Peclet number 50 and 500, choose Postprocessing/Domain

Plot Parameters. Then select Line/Extrusion, select boundary 8, plot the concentration

and click Apply. Do not close the figure. Solve for another Peclet number, do the same

thing, but in the Domain Plot Parameters, General tab, click the ‘Keep current plot’

box. Then the new plot goes on the same figure just prepared. The result is Figure 11.7.

Clearly there is better mixing when the Pelect number is 50 than when it is 500, and

the unusual oscillations did not appear in the exit concentration. These oscillations are

more prominent when there is a steep concentration gradient, which has been smoothed

out by the time the flow reaches the exit.

Refine the mesh once and resolve the problem for Pe ¼ 500. The mesh now has 3664

elements and 24,478 degrees of freedom. The solution is shown in Figure 11.8, and it is

considerably better than Figure 11.6. The peak concentration is 1.002 and the minimum

concentration is –0.0024. These discrepancies are small enough to be acceptable. Thus,

you have solved this problem, for Peclet numbers as high as 500.

TABLE 11.3. Flow Rate of Chemical In/Out of T-Sensor

Segment 2 3 8

Integrate v�c 2v�c u�c

Value 0 0.5 0.499994

Figure 11.5. Solution to T-sensor diffusion/convection problem with D ¼ 1/50.
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EXAMPLE: CONCENTRATION-DEPENDENT VISCOSITY

The viscosity of a mixture depends upon its concentration, although often that depen-

dence is small. To resolve the previous problem and allow the viscosity to depend upon

concentration you use the formula

m ¼ 1þ c (11:31)

Figure 11.6. Solution to T-sensor diffusion/convection problem with D ¼ 1/500.

Figure 11.7. Exit concentrations for Pe ¼ 50 and 500 (D ¼ 1/50 and 1/500).
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Then the viscosity of the material coming into the top of the T-sensor is 2 whereas the vis-

cosity coming into the bottom is 1. This model was solved by Marlina Lukman when she

was a senior chemical engineering student at the University of Washington. To modify the

model, perform the following steps.

Step 1 Choose the Navier–Stokes equation under the Multiphysics/Model Navigator

option. Then choose Physics/Subdomain Settings. Select the domain and type in the

formula for viscosity: 1þ c. If you have several concentration variables, be sure to use

the variable names assigned by FEMLAB (or changed by you) in this formula.

Step 2 For this problem, the flow and convection-diffusion problem must be solved

together. Choose Solve/Solver manager. Choose the Solve For tab and select both the

Navier–Stokes equation and the convective diffusion equation. Use the re-start button

to solve. Do this and you will find that the flow field does not change very much, and

neither does the concentration profile, as shown in Figure 11.9. While the concentration

profile does not change much, now you have quantified the effect.

EXAMPLE: VISCOUS DISSIPATION

So far the examples have assumed that viscous dissipation does not cause an appreciable

temperature rise. Viscous dissipation, of course, always increases the temperature, but

often the increase is negligible. However, it is important to know the magnitude or

provide an upper bound. To see the effect of viscous dissipation, a heat generation

Figure 11.8. Solution to T-sensor diffusion/convection problem with D ¼ 1/500 and fine mesh.
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term is added to the energy equation. In two-dimensional problems this heat generation

term is

Fv ¼ m

(
2

 
@u

@x

" !2

þ

 
@v

@y

!2#
þ

"
@v

@x
þ
@u

@y

#2 )
, Cartesian geometry (11:32)

and

Fv ¼ 2m

" 
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!2

þ
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þ

 
v

r
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þ m

"
@u

@r
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@v

@z

#2

, cylindrical geometry (11:33)

The effect of viscous dissipation is illustrated here for the orifice problem solved in

Chapter 10. There are two options for the temperature boundary conditions. In the first

option, the system can be adiabatic, where all walls use the boundary condition of no

flux. In the second option, the walls can be made from metal, with plenty of coolant

outside, and then the boundary condition would use a constant temperature. Here,

adiabatic boundary conditions are used. Thus, the temperature out of the device (minus

the inlet temperature) gives the temperature rise due to viscous dissipation.

Step 1 Start with the orifice model. To include this term as a generation term in

the energy equation, choose Chemical Engineering Module/Energy balance/Convec-
tion and Conduction/Steady-state analysis under the Multiphysics/Model Navigator

option.

Figure 11.9. T-sensor diffusion/convection problem with D ¼ 1/500 and m ¼ 1 (W) m ¼ 1þ c

(r).
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Step 2 Under Physics/Subdomain Settings, insert the following equation for Q, the heat

generation term. The notation is changed to use u as the radial velocity and v as the axial

velocity.

Q ¼ 2�Br�(vz^2þ ur^2þ (u=r)^2)þ Br�(vr þ uz)^2 (11:34)

The Brinkman number is

Br ¼ Pr
u2s

CpTs
, Pr ¼

Cpm

k
(11:35)

The parameters used in this example are

r ¼ 1, h ¼ 1=Re, Pr ¼ 7, Re ¼ 31:62, Cp ¼ Pr�Re ¼ 221:3, Br ¼ 0:141 (11:36)

Step 3 Under Physics/Boundary Settings, set all boundaries to no flux except for the

inlet and outlet boundaries. At the inlet the temperature is specified, and at the exit

the option for Convective flux is used.

Step 4 Since the flow field is known, you can solve for temperature by itself. Choose

Solve/Solver Manager and choose the Solver For tab; select only the temperature.

Solve the problem using the re-start button.

The effect of viscous dissipation is shown in Figure 11.10 when the flow field is that

shown in Figures 10.20b and 10.21b. The average temperature exiting the device is

only 0.00748C higher than the input temperature, and the peak temperature rise is 0.0198C.
It is also possible to make the viscosity depend upon temperature. Before doing

that, you can solve the problem with a constant viscosity to determine the maximum

Figure 11.10. Temperature rise (K) in orifice flow, Re ¼ 101.5 ¼ 31.6, 20 contour levels from 0 to

0.0182.
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temperature rise. If the temperature rise is small, you have verified the assumption that the

viscosity is constant. If the temperature rise is large, then the problem can be solved,

allowing the viscosity to depend upon temperature. Let the viscosity depend upon temp-

erature, as in Eq. (11.37).

m ¼ m0 exp(E=RT) (11:37)

Equation (11.38) is inserted for the viscosity for the Physics/Subdomain Settings for the

Navier–Stokes equation:

m ¼ mu0 � exp½E=(R�T)� (11:38)

Naturally, you must use the correct units.

EXAMPLE: CHEMICAL REACTOR

It is easy to model the microfluidic device as a chemical reactor. You prepare the flow

problem as illustrated in Chapter 10, add the convective diffusion equation, and enter

the reaction rate. Suppose the rate of reaction is

rate ¼ kc2 where rate is in mol=vol time (11:39)

Step 1 Under Multiphysics, select the Convection and Diffusion option.

Step 2 Under Physics/Subdomain Settings, select the domain and enter the reaction rate

in the window for R, the reaction rate. The equation listed at the top is

r(�Drc) ¼ R� u � rc (11:40)

so R is the rate of generation. The material is reacting, so the rate of generation is negative.

Thus, enter

R ¼ �k�c�c (11:41)

Insert the value for k in Options/Constants.

EXAMPLE: WALL REACTIONS

A wall reaction can be included as well. Suppose rate of reaction on the wall is

rate ¼ �kbc
2 where rate is in mol=area time (11:42)

Step 1 Under Multiphysics, select the Convection and Diffusion option.

Step 2 Under Physics/Boundary Settings, select the boundary and choose the Flux

boundary condition. The equation is

�n � N ¼ N0, N ¼ �Drcþ uc (11:43)
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Next you need to augment the flux equation on the wall. The normal velocity on the wall is

set to zero for the flow problem. Thus, the diffusive flux equals the rate of reaction. Enter

into the window for N0 the following expression:

N0 ¼ �kb�c�c (11:44)

Insert the value for kb in Options/Constants.

EXAMPLE: MIXING IN A SERPENTINE MIXER

To illustrate what is possible in 3D, consider the serpentine mixer that was modeled in

Chapter 10. The idea is that at the inlet there are two streams entering, and one of them

contains a different chemical. The objective is to mix the chemicals in as short a distance

as possible. Because mixing by diffusion is slow, chimneys and turns are inserted to

enhance the mixing and make it occur in a shorter distance. This was solved by

Zachery Tyree when he was a senior chemical engineering student at the University of

Washington (Neils et al., 2004).

The concentration on the boundaries is shown in Figure 11.11. This solution is for a

Peclet number of 1000, and used 36,320 elements and 267,293 unknowns. This model

uses D ¼ 1 and 1000�u, 1000�v, and 1000�w for the three convection terms. The

concentration profile at a particular location is shown in Figure 11.12. Notice that there

are some small errors, since the maximum concentration is 1.019 and the minimum

value is 20.0217, but these are small enough to be ignored. The region where they

occur can be found by plotting only values of concentration greater than 1.0; next plot

Figure 11.11. Concentration distribution on the wall of a serpentine mixer.
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only values of concentration less than 0.0. A plot of the concentration profile inside the

domain (Fig. 11.12) is obtained under Postprocessing/Cross-Section Plot Parameters by

choosing the Slice tab. Then choose three points that define a plane (here the plot is for

y ¼ –1, all x and z) and Local coordinate system to plot in.

CHAPTER SUMMARY

This chapter illustrated the use of FEMLAB for problems of heat conduction, heat

conduction and convection, and mass diffusion and convection. Problems included

heat conduction in a 2D plane, several microfluidic devices (T-sensor and serpentine

mixer), and heat effects in orifice flow. Specific methods demonstrated in FEMLAB

include:

. Choices of boundary conditions;

. Composite objects;

. Sequential solution of flow, then concentration for efficiency;

. Restart from simpler model to improve convergence and efficiency;

. Plotting in 3D geometries;

. Effect of Peclet number and the necessity for mesh refinement;

. Viscosity depending upon concentration or temperature;

. Viscous dissipation; and

. Chemical rections in the fluid and on the wall.

These problems are complicated, but they do follow conditions in real-life that engineers

must tackle. Knowing how to do this will allow you to work in a variety of modern

industries.

Figure 11.12. Concentration profile at y ¼ 21 (after first chimney).
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PROBLEMS

Steady, Two-Dimensional Problems

11.1. Heat transfer takes place in the geometry shown in Figure 11.13. Boundaries A are

insulated; along boundary B the temperature is 1.0; the boundary condition at C is

�k
@T

@n
¼ hT (11:44)

(1) Use k ¼ 1, h ¼ 3 and solve for the temperature profile. (2) Use k ¼ 0.01, h ¼ 3

and solve for the temperature profile; compare the results.

11.2. A slotted-electrode electrochemical cell is shown in Figure 11.14 (see Orazem and

Newman, 1984). The governing equation for potential is

r2f ¼ 0, or
@2f

@x2
þ
@2f

@y2
¼ 0 (11:45)

Determine the current distribution (@f=@n) along the faces AB and EF in Figure

11.15.

11.3. Solve Laplace’s equation [Eq. (11.45)] in the region shown in Figure 11.16 with

the following boundary conditions:

u ¼ 0 along u ¼ 0,
@u

@n
¼

@u

@u
¼ 0 along u ¼ a,

u ¼ sin
pu

2a

� �
along r ¼ 1

(11:46)

(1) a ¼ p/4; (2) a ¼ 3p/4; (3) a ¼ p; (4) a ¼ 3p/2. Comment on the singularity

that occurs at the corner, despite the smooth boundary conditions for u. The exact

solution is

u ¼ rp=2a�1 sin
pu

2a

� �
(11:47)

1

1

3

0.2

A

C

B

A

AA B

Figure 11.13. Heat transfer in a microchemical reactor.
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11.4. Solve Problem 9.2 in a cylindrical pellet whose length equals its diameter.

Compare the average reaction rate in the cylindrical pellet with that in a spherical

pellet.

11.5. Solve Problem 9.5 in a cylindrical pellet whose length equals its diameter.

Compare the average reaction rate in the cylindrical pellet with that in a spherical

pellet.

Heat Transfer with Flow

11.6. Solve for the heat transfer from a sphere maintained at temperature 1 when a

Newtonian fluid is flowing past it with a temperature of zero. Use constant vis-

cosity and integrate the flux over the surface to find the rate of heat transfer. (1)

Re ¼ 0 (Stokes solution) and Pe ¼ 1, 10, and 100. (2) Repeat part (1) with

Re ¼ 10.

11.7. Solve the following Graetz problem using the convection and conduction module

in FEMLAB. When there is no axial conduction, you can absorb the Peclet number

into the distance, z, and solve the problem once for all Pe. Solve with a radius of 1.0

Figure 11.15. Solution domain.

Figure 11.14. Slotted-electrode electrochemical cell.
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and a length of z/Pe ¼ 1; use ‘Convective flux’ as the outlet boundary condition:

2(1� r2)Pe
@T

@z
¼ 2(1� r2)

@T

@(z=Pe)
¼

1

r

@

@r
r
@T

@r

� �
,
@T

@r

����
r¼0

¼ 0;

T(1, z) ¼ 1, T(r, 0) ¼ 0

(11:48)

Compute the Nusselt number, which is given by

Nu ¼

�
@T

@r

����
r¼1

kTl� 1
, kTl ¼ average temperature, Pe ¼

uavgR

D
(11:49)

11.8. Solve the same Graetz problem as in Problem 11.7, but add in axial conduction.

Solve the equations in the form of Eq. (11.50) with a radius of 1.0, and a length

of 6:

2(1� r2)
@T

@z
¼

1

Pe

1

r

@

@r
r
@T

@r

� �
þ
@2T

@z2

� �
,
@T

@r

����
r¼0

¼ 0,

@T

@z

����
z¼L

¼ 0, T(1, z) ¼ 1, T(r, z ¼ 0) ¼ 0

(11:50)

11.9. The boundary conditions in Problem 11.8 are not really appropriate since there can

be conduction upstream into the unheated region. Solve the problem from z ¼ –2

to 6, including the upstream region. Use Pe ¼ 20. The equations are

2(1� r2)
@T

@z
¼

1

Pe

1

r

@

@r
r
@T

@r

� �
þ
@2T

@z2

� �
,
@T

@r

����
r¼0

¼ 0:

@T

@z

����
z¼L

¼ 0, T(r, z ¼ �2) ¼ 0

(11:51)

T(1, z) ¼ 0, z � 0, T(1, z) ¼ 1, z , 0 (11:52)

Compare the answer with the answer in Problem 11.8.

11.10. Solve the Graetz problem (Problem 11.7) but use a boundary condition of T ¼ 0

at the outlet. Solve with Pe ¼ 30 on a short domain, L ¼ 6; solve on a long

Figure 11.16. Solution domain.
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domain, L ¼18. This problem illustrates the importance of having the correct

boundary conditions (see Chang and Finlayson, 1980).

Reaction with Flow

11.11. Convection, diffusion, and reaction in a packed bed reactor are governed by the

following equations in a cylindrical domain with length L and radius R:

@c

@t
þ u

@c

@z
¼

D

r

@

@t
r
@c

@r

� �
� kc

c(r, z, 0) ¼ c0, c(r, 0, t) ¼ c1,
@c

@r

����
r¼0

¼ 0, �D
@c

@r

����
r¼R

¼ km(cjr¼R�c2)

(11:53)

Solve with the following parameters:

c0 ¼ 0, c1 ¼ 1, c2 ¼ 0, u ¼ 10, D ¼ 0:1, L ¼ 10,

k ¼ 10, km ¼ 1, R ¼ 0:1
(11:54)

11.12. Solve the flow and diffusion problem for the T-sensor, as illustrated in the example.

Then consider a similar flow problem with water coming in both inlets. However,

one inlet contains one chemical, identified as A, and the other inlet contains

another chemical, identified as B. The two react with the reaction rate

Aþ B �! C, rate ¼ �kcAcB (11:55)

To solve this problem, you need to use the Navier–Stokes equation and two con-

vection and diffusion equations. Use the same parameters as in the example, plus

k ¼ 3, cAin ¼ 1, cBin ¼ 1. Compare solutions with Pe ¼ 1, 10, and 100.

Reaction with No Flow or Known Flow

11.13. Equation (11.56) shows the dimensionless equations for a nonisothermal packed

bed reactor in a cylindrical domain:

@c

@z
¼ a

1

r

@

@r
r
@c

@r

� �
þ bR(c,T),

@T

@z
¼ a0 1

r

@

@r
r
@T

@r

� �
þ b0R(c, T)

@c

@r

����
r¼0

¼
@T

@r

����
r¼0

¼ 0,
@c

@r

����
r¼1

¼ 0, �
@T

@r

����
r¼1

¼ Biw½T(1, z)� Tw�

c(r, 0) ¼ 1, T(r, 0) ¼ 1

(11:56)

Solve them for the parameters

R(c, T) ¼ (1� c)eg�g=T , a ¼ a0 ¼ 1, b ¼ 0:3,

b0 ¼ 0:2, g ¼ 20, Tw ¼ 0:92
(11:57)
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and (1) Biw ¼ 1; (2) Biw ¼ 20. The dimensionless variables are defined as

a ¼
Ldp

R2Pem
, a0 ¼

Ldp

R2Peh
, Pem ¼

Gdp

rDe

, Peh ¼
Cp

Gdpke

b ¼
k0Lr

G
, b0 ¼

(�DHrxn)k0c0L

CpGT0
, Biw ¼

hwR

ke

(11:58)

where dp is the particle diameter, G is the mass flux, De is the effective diffusivity,

ke is the effective thermal conductivity, and hw is the heat transfer coefficient at the

cylindrical wall. Comment on the radial distribution of temperature and concen-

tration in the two cases. Based on this limited experience, give your recommen-

dations about when the temperature and concentration will vary significantly in

the radial direction.

11.14. Equation (11.59) governs the transient reaction and diffusion with a Michaelis–

Menten reaction in a porous media. Integrate the equations to steady state using

the parameters f2 ¼ 10, v ¼ 2, Bim ¼ 20:

@c

@t
¼

1

r2
@

@r
r2
@c

@r

� �
� f2R(c), R(c) ¼

c

vþ c

@c

@r

����
r¼0

¼ 0,
@c

@r

����
r¼1

¼ Bim½c(1, t)� 1�, c(r, 0) ¼ 0

(11:59)

11.15. Equation (11.60) governs the reaction of carbon monoxide in a thin porous

material with platinum as the catalyst:

@c

@t
¼

1

r2
@

@r
r2
@c

@r

� �
� f2R(c, T),

@T

@t
¼

1

r2
@

@r
r2
@T

@r

� �
þ bf2R(c, T)

@c

@r

����
r¼0

¼
@T

@r

����
r¼0

¼ 0,
@c

@r

����
r¼1

¼ Bim½c(1, t)� cw�, �
@T

@r

����
r¼1

¼ Bih½T(1, t)� Tw�

c(r, 0) ¼ 0, T(r, 0) ¼ 1, R(c, T) ¼
c

(1þ Kc)2
exp g 1�

1

T

� �� �
(11:60)

The parameters are

f2 ¼ 625, b ¼ 0:02, K ¼ 20, g ¼ 30, Bim ¼ 200,

Bih ¼ 5, cw ¼ 1, Tw ¼ 1
(11:61)

What is the maximum temperature rise in the catalyst? (Note: If the standard temp-

erature is 600 K, used in the definition of the dimensionless activation energy, then

the actual temperature is 600 times the dimensionless temperature.) Where does

the maximum reaction rate occur?
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Appendix A
HINTS WHEN USING EXCELw

This appendix provides hints when using Microsoft Excel.� Appendix A includes general

features that are useful in all the applications solved with Excel in this book. Other features

are illustrated in the context of specific examples, and a list of them is provided at the end

of Appendix A for handy reference. You may want to skim this appendix first, then start

working some of the problems that use Excel before you come back and review this appen-

dix in more detail. That way you will not be burdened with details that do not make sense

to you until you see where and how you need them. For a more detailed description of

Excel, consult other books devoted to Excel, such as Larsen (2002).

CELL ORGANIZATION

The rectangular array of cells is labeled A, B, C, D. . . across the top, and 1, 2, 3, 4, . . .
down the left-hand side (Fig. A.1). Cell B3 is in the second column (B column) and the

third row from the top. (As in linear algebra with matrices, columns go down and rows

go across.)

CELL CONTENTS

You can enter a number, word, or formula into the cell. To enter a number, click on the cell

and type the number. Pressing return will move down one cell, pressing tab will move

across one cell, to be ready for the next entry. To enter a word, select the cell and

type the word. The word can also be preceded by a single quote, which is useful if the

�Excel is a registered trademark of Microsoft Corporation, Inc.

Introduction to Chemical Engineering Computing, by Bruce A. Finlayson
Copyright # 2006 John Wiley & Sons, Inc.
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‘word’ is actually a number. To enter a formula, select the cell, enter ‘¼’ followed by the

formula. The cell can be referenced by its location, for example B1, but it can also be

named. To name it, select the cell and enter the name of the variable in the upper left-

hand corner of the spreadsheet and then press return or enter. Then to use the value in

B1, you can use the variable name ‘temperature’ rather than B1, as in Figure A.1. The

entries in this figure are:

B1 is named temperature (A:1)

B3 is: ‘1� 0:01�temperature (A:2)

B5 is: ¼ 1� 0:01�temperature (A:3)

FORMAT

Under the Format menu bar are several options that make your spreadsheet more readable.

With the Format/Cells . . . you can change the way numbers are displayed, the alignment

of them within the cell, and the font properties. You can also set a border around some

cells, and change the pattern or color (the Color option is inside the Pattern option).

You can even protect the spreadsheet or parts of it so others cannot change it.

With the Format/Row option, you can change the height of one or more rows, and you

can hide a row. To make it visible again, choose the rows on both sides of the line, and

choose ‘unhide.’ The same options work for columns, and the width of the columns can

be changed. You can do this for all rows/columns, for only rows/columns you select,

or you can use the scroll bar to change a single row or column by dragging the boundary.

The Format/Conditional Formatting option allows you to cause the cell to change color,

for example, if a parameter meets certain conditions. This can be used as a red flag (lit-

erally!) to highlight mistaken results or mistaken input and provides a form of data

validation.

COMMENTS

You can insert comment boxes on your spreadsheet by selecting Insert/Comment. Type

the desired comment and click Return. You can also insert a text box of any desired

size. Open the drawing menu
� �

, select the textbox symbol
� �

in the drawing tools,

and use the mouse to draw a rectangle. You can then type inside the rectangle.

Figure A.1. Cell contents: naming cell, formulas, text.
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PICTURES, EQUATIONS, WEB LINKS

You can insert pictures, equations, and hyperlinks (to web sites), too. Choose Insert/
Picture and choose the picture you want. To enter an equation, Choose Insert/Object
and choose Microsoft Equation. You may have to add that feature to your spreadsheet

if it was not included during installation. (You need the original CD or ask your System

Administrator to install it.) For hyperlinks, simply choose Insert/Hyperlinks and insert

the web address. Be sure to try it while connected to the internet to ensure that it works.

SELECT COLUMNS FOR CHARTS, REGRESSION, AND PRINTING

Put the cursor in the upper-left cell that you would like to select and drag down until the

shaded box covers all the columns and rows you want. Note that the columns and rows

have to be contiguous, or next to each other. You can do this to two or more contiguous

columns or rows. Use this same procedure for selecting the print area.

COPY FORMULAS ACROSS AND DOWN THE SPREADSHEET

To copy a formula across the spreadsheet, select the cell and put the cursor on the lower

right-hand corner of the cell. Drag the cursor to the right. The column entries of formulae

are incremented one by one. Suppose the original formula used B2. If the formula is

dragged to the right, B2 is changed to C2. If the formula is dragged down, the B2 is

changed to B3. If you do not want that to happen, that is you want the formula in all

columns to use B2, then use absolute addresses. In the formula, change B2 to $B$2.

Options like $B2 and B$2 are also possible. If you select a cell tag in the equation and

press F4, it turns into an absolute address. On the Apple Macintosh,� selecting the cell

tag and pressing command-T does the same thing; if you continue to press it, the tag

cycles between B2, $B$2, B$2, $B2, B2, . . .

INSERT ROWS AND COLUMNS

Select a row on the left-hand side and choose Insert/Row. A new row is placed above the

one you selected. The cells are renumbered, and all the formulas are changed, too, to

reflect the new numbering system. Use this same method to insert a column; the new

column will appear to the left of the one you have selected.

SPLIT/FREEZING

You can split the screen into four portions in a 2 � 2 array. To do this, select the cell that

will be in the center, that is, the upper left corner of the lower right rectangle. Then choose

Windows/Split. You can later choose Windows/Remove Split if you want. In Figure A.2,

the cursor was placed in cell F3 before choosing Windows/Split. Sometimes the

�Registered trademark of Apple Computer, Inc.
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spreadsheet is very large, but the parts you want to see are at the beginning and end.

Figure A.3 shows a numerical integration of a differential equation, starting from t ¼ 0

(see Appendix F). You are interested in the results at t ¼ 1, but want the heading, too.

Place the cursor on the 3 designating row3 and choose Window/Freeze Panes. Then

rows 1 and 2 remain visible while you scroll down to row 102, as shown in Figure A.4.

ITERATION ON, TOLERANCE

You can use Goal Seek or Solver to find the roots of a function. Youmay find that the answer

is not as accurate as you would like. (The default parameters are set for business appli-

cations, where tenths of a cent do not matter.) To get a more accurate answer, you need

to make the tolerance smaller. Choose Tools/Options and click Calculation. On the Macin-

tosh, choose Preferences and click on Calculation. Figure A.5 shows the default values.

Change the maximum iterations to 1000 and the maximum change to 0.000001 and

close, then run Goal Seek. You can make the same choices in Solver by choosing

Options. This is also the place to turn off the Iteration function by unchecking the iteration

box. This is sometimes useful when solving a problem in which the formulas are intertwined

and the formula in one cell depends on the answer in another cell, which depends on the

value in the first cell. In these cases it is convenient to turn off iteration while preparing

the formulas in the spreadsheet, and then turn it on once the entire spreadsheet is complete.

PASTE

Sometimes you want to reproduce part of your spreadsheet in another spreadsheet or in

another area of your existing one. You can select the area of the spreadsheet, choose

Figure A.2. Split window.

Figure A.3. Window/Freeze Panes, start.
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Copy, move to the upper, left-most cell of the new area and choose Paste. Be careful

because this will copy all formulas, too. If you want only the values from a spreadsheet,

copy the part you want and choose Paste Special; then choose the desired option (such as

Value). You can also paste into Word. If you simply use Paste, you can manipulate the

spreadsheet inside Word (resize it, change the font, etc.). If you use Paste Special, one

option is to paste the spreadsheet as a picture. In that case the whole image is frozen

before it is put into Word.

PLOT – xy SCATTER, EDIT, MULTIPLE CURVES, SURFACE PLOTS

Plotting in Excel is easy. Choose the cells you wish to plot, such as columns A and B in

Figure A.6. If you want, choose the headings, too, and they will appear in the graph

Figure A.4. Window/Freeze Panes, after scrolling down.

Figure A.5. Iteration and calculation window.
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(although they can later be changed). Then choose Insert/Chart, choose xy Scatter, and

click on the graph style you want. The program takes you through a series of steps in

which you can enter a title, label the x and y axes, and so on. Finally, tell the program

to place the chart on the graph. To remove the meaningless label ‘Series 1,’ select it

and press Delete. To edit any part of the graph put the cursor on the part and right-click

(on the Macintosh use Apple-click). A screen will appear that allows you to make other

choices for the graph. To put multiple lines on the graph, select more columns. For

example, if you select columns A, B, and C, you can produce Figure A.7.

To make a contour plot or 3D view, create the data to be plotted in a rectangular part

of the spreadsheet. In Figure A.8, the A column and seventh row are the y and x values,

respectively, and the other values are the ones to be plotted. Select B2–F6, choose

Figure A.6. Plot of a single line.

Figure A.7. Plot of two lines.
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Insert/Chart, and choose Surface. In this case, choose the contour plot picture (you could

also choose the 3D view). Follow the Plot Wizard. In step 2, choose the Series tab, and

arrange it as shown in the left-hand side of Figure A.9. This allows you to put x and y

values along the axes. The rectangular domain will be plotted as a function of the cell

numbers or entry numbers, not any values you assigned to each row or column (see

Figure A.9). Also, the plot is flipped (note the location in the spreadsheet where the

maximum occurs and the location in the plot where it occurs, too.) If you wish to have

more contours, after the plot is made, right-click on the legend and set new contour

levels. There is no point in having a different increment between the x points or the y

points, because the graph is going to be made using constant increments. This is a

serious limitation of Excel for scientific plotting. You can make the final result look like

Figure A.9.

ARRANGE SPREADSHEET

To make a professional-looking spreadsheet, it is important to provide documentation for

the reader. You can establish different sections, surrounded by boxes (see Figure A.10):

Title, your name and date

Data Input – these are values that the user may change

Figure A.8. Data for contour plot.

Figure A.9. Contour plot.
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Parameter Values – these are values that the user will not change, but are needed (not

shown)

Formulas used – this defines the problem

Results

To make the boxes, select the cells to be enclosed, choose Format/Cells/Border, choose
Outline, and click OK. In the example above, the equation in cell B12 is

¼12 0.01�temperature, which gives the same result as ¼12 0.01�B6.

IMPORT AND EXPORT TEXT FILES, ONE COLUMN AT A TIME

There are several ways to do this. The first method works when you have a single column

to transfer. To export from Excel, select the column of cells, choose Copy, open an appli-

cation that accepts text files, and choose Paste. To get a single column of numbers into

Excel, copy the column in another application, in Excel select one cell, and choose Paste.

IMPORT AND EXPORT TEXT FILES, MULTIPLE COLUMNS

To export from Excel, select the columns you wish to export, Copy, change to another

application file and Paste. To do the reverse operation, copy the text data, open Excel,

put the cursor in one cell, and choose Paste. If the original text file had tabs in it (is tab

delimited), each entry will go into a different cell. If you do not prepare the text file appro-

priately, you may get a mess (the whole file put into one cell or one column. If you create

several columns in Word using tabs, you can copy the columns and paste them into the

spreadsheet and the entries will go into successive cells.

EXPORT A TEXT FILE

You can export the contents of the spreadsheet to a text file that can be used as the input

to another program. This is a nice way to have a user interface for a program that requires

Figure A.10. Spreadsheet arranged for easy understanding.
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significant computing capability (beyond what Excel offers). You could put the physical par-

ameters for the case you are studying into the Excel spreadsheet, allowing them to be

changed easily. You then export the information and have the other computer program

read the text file to get the data. To export the information (the contents of the cells, not

the figures from the spreadsheet), choose SaveAs, change the format to a text formats,

such as Text(Windows), and save it. It will have .txt appended to the name. If you open

that file, ‘name.txt,’ in a word processor or text editor, you will see the information displayed

in exactly the same format as in the spreadsheet. It is not simple to get these numbers into

other programs, which have to read the spaces appropriately, and some knowledge of the C

computer language may be necessary, but it does make a nice interface for a program that

you will use many times. MATLABw can read such files, for example.

TOOLS

The power of the Excel program lies in its tools. Goal Seek and Solver were discussed

Chapters 2–4, and Data Analysis is discussed in Appendix E. Other useful tools

include ‘Tools/Protection’ (to prevent part or all of the spreadsheet from being

changed) and ‘Tools/Flag for Follow Up’ (to notify you on some future date when you

may need to update the spreadsheet).

FUNCTIONS

Excel comes equipped with many engineering functions. Choose Insert/Functions. Then
choose Math & Trig or Engineering to see the functions. A window appears that explains

how to use the functions.

MATRICES

Twoof the functions underMath&Trig areMINVERSEandMMULT.These functions have

the obvious use. The inverse function, of course, must act on a square matrix, and creates a

square matrix. To use it, first create the matrix, as illustrated in cells A1:C3 of Figure A.11.

Figure A.11. Matrix inversion and multiplication.
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Then in cell A6 type¼MINVERSE(A1:C3). You can also insert the A1:C3 by selecting the

cells. Click on cell A6, press the shift key, and select the other corner of the matrix, C8. Press

F2, theCtrl-Shift-Enter. The inverse appears inA6:C8.Thematrixmultiplication is illustrated

in Figure A.11 by multiplying these two matrices together; the result should be the identity

matrix. Click on cell A11, type ¼MMULT(A1:C3,A6:C8). Click on cell A11, press the

shift key, and select the other corner of the matrix, C13. Press F2, the Ctrl-Shift-Enter. The

matrix multiplication appears in A11:C13. Indeed it is the identity matrix.

EXCEL HELP

When you are truly stuck, try the Help/Search Excel Help. You can type in a question and
it will alert you to several possible answers related to your question. This usually leads you

to the answer you want.

APPLICATIONS OF EXCEL

Listed here are applications of Excel using specific tools so you can find them easily.

. Equations of state, Chapter 2, p. 8.

. Vapor–liquid equilibrium, Chapter 3, p. 28.

. Chemical reaction equilibrium, Chapter 4, p. 44.

. Process simulation using Excel, simple mass balance, Chapter 5, p. 58, 60, 62.

. Process simulation using Excel, including chemical reaction equilibrium, Chapter 5,

p. 63.

. Process simulation using Excel, including phase equilibrium, Chapter 5, p. 63.

. Continuous stirred-tank reactor, Chapter 8, p. 135.

. Straight line curve fit using Excel, Appendix E, p. 294.

. Polynomial regression using Excel, Appendix E, p. 297.

. Multiple regression using Excel, Appendix E, p. 298.

. Nonlinear regression using Excel, Appendix E, p. 304.

. Finite difference method for boundary value problems, Appendix F, p. 317.

. Finite difference method for elliptic problems, Appendix F, p. 321.
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Appendix B
HINTS WHEN USING MATLABw

This appendix provides hints and tips when using MATLAB.� It assumes that you are a

beginner in using MATLAB, but not an absolute beginner in computer programming.

Most likely, you remember concepts from a computer programming class taken earlier.

Included in Appendix B are general features that are useful in all the applications

solved with MATLAB. Other features are illustrated in the context of specific examples;

a list of examples is provided at the end of the appendix for handy reference. You will

probably want to skim this appendix first, then start working some of the problems that

use MATLAB to gather experience, and finally come back and review this appendix in

more detail. That way you will not be burdened with details that do not make sense to

you before you see where and how you need them An excellent book with more details

is by Higham and Higham (2005).

GENERAL FEATURES

Start the Program

To start, open MATLAB.

Option 1 Use the set path command to point to an area where you store your programs

and data. Add this path to your path directory. When MATLAB looks for a m-file (a

program you write), it will look in all these directories, from top to bottom until it finds

one with the same name. Then, it will use that m-file.

�MATLAB is a registered trademark of The Math Works, Inc.

Introduction to Chemical Engineering Computing, by Bruce A. Finlayson
Copyright # 2006 John Wiley & Sons, Inc.
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Option 2 Another alternative is to set the current directory to the folder where your m-

files are stored. Figure B.1 shows the default window.

Screen Format

The Current Directory is identified at the top (see Figure B.1); the right-hand window is

the Command Window, and the left-hand windows display the contents of the Current

Directory and the Command History. By choosing the Workspace tab in the left-hand

window, you will find a list of the variables, descriptions of their format such as

whether they are global or not. In the Command History will be commands you have

issued before, for ready reference. The Command Window is where you issue commands

and where output appears. By choosing various options under Desktop you can hide or

display these windows. You can recover commands you have used earlier by using the

up-arrow; they appear one by one. This feature makes it easy during the debugging

phase to repeat commands without retyping them. The down-arrow works in reverse.

Stop/Closing the Program

When you stop work, save your m-files in a folder, so you can use them next time. You can

also save the workspace, which will save all the numerical values that have been calcu-

lated. This is convenient if you have to interrupt your work for a short time and do not

want to start over. Of course, most of your work is contained in your m-files, which

you always want to save.

If a simulation continues for a long time and you want to halt it, press ControlþBreak

or ControlþC on the PC or ControlþC on the Macintosh. This will stop the program as a

forced quit.

Figure B.1. MATLAB screen.
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m-Files

In MATLAB you write computer programs that are called m-files and are saved on your

computer. The files can be used at any time by simply typing their name in the command

line, and one m-file can use another m-file. You will want to include comments in your

m-file that explain what the file does. This is done by inserting a ‘%’; everything after

‘%’ on a line is considered a comment. These comments remind you of details when

you come back to the program at a later time.

Workspaces and Transfer of Information

When you use MATLAB, your results will only be as good as the programs you write.

Thus, it is important to understand the structure of workspaces and m-files, as well as

how to display intermediate results, transfer parameters from one m-file to another, and

debug your code. Most of the problems encountered by beginning users involve errors

in these areas, and only careful checking will help you find them.

The command workspace is an area of computer memory that is reserved for parameters

you define from the command line in MATLAB. Each m-file has its own unique work-

space, and this workspace does not communicate with the command workspace unless

you make it happen. It is sort of like two of your friends having a disagreement: they

choose not to talk until a third party (you) defines a way to do so. There are two ways to

set up the communication: using the global command or calling arguments of the m-files.

‘Global’ Command

Figure B.2 shows a command window and two m-files. The global commands in each one

determine which variables are available in the m-files. Assume you have typed the command

global a b c

in the command line. Then give a value to a, b, and c:

a=2
b=3
c=4

Global workspace: a   b   c

Command workspace m-File one m-File two

Global  a  b  c Global  a  b Global  a  c

a b c a ab c

Figure B.2. Global and local variables.
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The question is then: How can you get these values of a, b, and c into an m-file? You do

this by putting a global command in the m-file; the command lists the variables that you

want available. In Figure B.2, the parameters a ¼ 2 and b ¼ 3 are available in ‘m-file one’

and a ¼ 2 and c ¼ 4 are available in ‘m-file two’. If a is changed in ‘m-file one,’ it is

changed for all the programs. In other words, the change is made in the central, global

location and thus the exchange goes two ways. If the variable c is used in ‘m-file one’,

it must be defined there since it is a local variable in ‘m-file one.’ Whatever its value, it

does not change the global value of c because c is not listed in the global command of

‘m-file one.’ Changing c in the second m-file would change it in the command

workspace, too.

The second way to pass parameters is to use list the parameters in the function

statement of the m-file. For example, the m-file

function y=name(x,parameters)

expects values of x and parameters to be supplied when the m-file is called. The variable

parameters can be a vector, that is, containing several elements.

Display Tools

When you are checking your programming, you will want to examine the value of various

parameters. The ‘;’ represses the display of the result of the calculation. Remove the ‘;’,

and you will see the result of each line of your code in the Command Window as it is exe-

cuted. It is essential that you look at this to verify your code.

You can also cause a variable to be displayed using one of the following three

commands:

disp(x) gives: x=2.34
or just say x, which gives: x=2.34
disp(‘now is the time’) gives: now is the time

You can issue these commands from the command window to see the value of any

variable in the command workspace. If you want to know the value of a local variable

in an m-file you must put it in the m-file and execute the m-file. If you need more signifi-

cant digits, try

format long: 1.234567890e+00
format long e: 1.234567890e+00
format short: 123.4568
format short e: 1.2346e+02

To eliminate all variables

clear all

This is helpful when debugging because it eliminates variables that may have been

set incorrectly in previous calculations. MATLAB then starts from scratch. MATLAB

may be saving a number without you knowing, which makes it hard to find your mistake.

242 APPENDIX B



Finding MATLAB Errors

An important lesson you can learn about using MATLAB is how to find errors. One

common error message from MATLAB is:

???Undefined function or variable ‘q’.

This means that q is either an undefined function or an undefined variable. If q is a function

or m-file, then MATLAB cannot find it. Check the working directory or use set path and

make sure that the path is set to the folder where you stored the m-file and that you have

added that path to the list. Do not forget to save your pathlist so that it is there the next time

you use MATLAB. If q is a variable, it has not been set or was not transferred correctly.

One source of confusion is when you think you have defined a variable, but have not

really. Use disp(x) to see the current value of x in the command workspace. If the variable

is supposed to be in an m-file, run the m-file with a command added to display the variable,

and that will give you the value of x in the m-file workspace. That should give you a hint

about possible sources of the error. The most common cause of this mistake (and one that

is hard to find unless you check the code systematically) is forgetting to pass a parameter

to the m-file using either ‘global’ or as a parameter. The reason it is hard to find these

mistakes is that in your mind you have set the value of the parameter in the program some-

where but failed to transfer it to the appropriate m-file.

Another typical error message is:

??? Index exceeds matrix dimensions

This message means that a matrix like A(i, j) was called with either i or j too big (i.e.,

beyond the definition of A), or a function uses a matrix that has not been defined yet.

Debug the Program; That is, Find Your Errors

The programs illustrated in this book are fairly simple, and they are easy to debug. All pro-

grammers make mistakes; good programmers learn to find them! Finding them is easy if

you take the time. First consider a line in a code in the command window. Set all the par-

ameters used in the line and execute the line. Compare the answer with a calculation done

with a calculator or one you did by hand. Be sure that all the parameters you use are differ-

ent, and do not use zero or one, because some mistakes will not be picked up if the variable

is zero or one. The parameters you use for testing can be single digit numbers that are easy

to calculate in your head, and they can be completely unrelated to the problem you are

solving. You can also copy a line from an m-file and paste it into the command

window to check it, too.

If the code you wish to check is in an m-file, the first check is to see that all the par-

ameters are passed correctly and have been set in the workspace available to the m-file.

The easiest way to do this is to request that the m-file print all the variables you expect

to be transferred to the m-file, at the start of the m-file, and check that they are correct.

If a variable has not been set, MATLAB will give you an error message without

running the code. It tells you the line and column where the undefined variable is. The

problem is probably improper passing of parameters or incorrect use of the global

command or, sometimes, a typing error.
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MATLAB provides several commands to help you debug the program. Hold the cursor

over a variable name in a program and MATLAB will show the value of that variable. This

works for m-files, too, but only for variables that enter through the global command. That

is a good way to check that the variables were entered correctly, though. The command

‘whos’ will list the variables and their type, as well as whether they are local or global

variables. This is also a command that is useful inside an m-file (when checking), since

it lists all the variables that the m-file can access, and if the one needed is not there you

can then search for the reason.

You can make the program stop at a certain point and return to the keyboard mode. Then

you can access values of the parameters. To stop the program, issue the command ‘dbstop at

linenumber in filename.’ ‘Filename’ is the name of the m-file, and ‘linenumber’ is the line

number in the m-file where you wish to stop. Alternatively, put the command ‘keyboard’

into the m-file where you wish to stop. The command cursor changes to K � and you can

issue commands. For example, typing the name of a variable will cause its value to be

printed. This is a convenient way to access the value of variables in an m-file. If you then

want to access variables in the program that called the m-file, say ‘dbup.’ To continue com-

puting, type ‘return’ and press the return key. To stop the calculation altogether, type ‘dbquit.’

Input/Output

You can ask the user for input with the following command.

viscosity=input(‘What is the viscosity (Pa s)?’)

You can display in a specified format

fprintf(‘%5.3f %10.5f\n’,x,y)
2.345 234.56789

These are C-commands, and the notation means:

f=floating point
\n is a carriage return
e=exponential format
5.3 means five characters, three after the decimal point.

To write a text file, you must open it, write it, and close it. The following command writes

a text file that has two columns, x and y, with as many entries as defined by the vectors x

and y (which have the same length).

fid=fopen(‘ChEData’,‘w’) % w for write
fprintf(fid,‘%5.3f %10.5f/n’,[x,y])
fclose(fid)

To read a text file, you must open it, read it, and close it.

fid=fopen(‘ChEData’, ‘r’) % r for read
[x y]=fscanf (fid,‘%5.3f %10.5f’)
fclose(fid)
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Loops

It is sometimes useful to execute a command over and over, putting each result in one

element of a vector. The format is:

for i=1:10
y(i)=...

end

If you want to stop before the end

for i=1:10
y(i)=...
if y(i)>25 break,end

end

Conditional Statements

Sometimes the program needs to execute different instructions depending upon a calcu-

lated result. Here are some examples.

if (condition1) % examples of condition1: i==3,
i<3 (note double equal sign)

...
else

...
end

Another option:

if (condition1)
...

elseif (condition2)
...

else
...

end

Still another option:

switch lower(num)
case {1} % execute when num=1

y=...
case {2, 3} % execute when num=2 or 3

y=...
otherwise % execute when num is neither 1, 2 or 3

y=...
display (‘there is an error’) % this is optional if num

should be 1, 2, or 3
end
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Timing Information

Turn on clock at one place in the program – tic. Turn off clock at another place in the

program – toc. The elapsed time is displayed.

elapsed_time=2.34.

Matrices

Vectors are row (1�3)

x=[2 3 4]

or column (3 � 1)

x=[2
3
4]

The transpose of x is x0.

Set matrix values

A=[1 2 3 4 carriage return
5 6 7 8]

Size(A) gives the dimensions of A:

size(A)=2 4

Operate on all elements at once. If T(:) is a vector of T (K) you might want it in 8C:

t=T–273

MATLAB will do this for all elements in T(:).

Operate on one element of a matrix

t(i)=T(i)–273

Note: MATLAB is case sensitive so that t(i) and T(i) are different. Obtain rows from

matrix:

a=A(1,:) gives a=[1 2 3 4]

You can use a or A(1,:) in calculations or plotting.

Matrix Multiplication

Take the matrix

A ¼

2 4 6

8 10 12

14 16 18

6664
7775
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and the vector

x0 ¼

2

3

4

2
4

3
5

The 3�3 matrix A is formed by:

A=[2 4 6
8 10 12
14 16 18]

Matrix multiplication is achieved with the asterisk:

2 4 6

8 10 12

14 16 18

6664
7775 2

3

4

6664
7775 ¼

40

94

148

6664
7775 (B:1)

A * x’
ans=[40

94
148]

is [3 � 3][3 � 1]¼ [3 � 1] matrix. Note the prime on x; x0 is a column vector, which is

needed for matrix multiplication. If you had used A*x, MATLAB would have told you

that the inner matrix elements have to agree. Multiply terms element by element:

u(i) ¼ x2(i); i ¼ 1; 3 (B:2)

u=x.* x=[4 9 16]

Note the period before the asterisk. The multiplication
P3

i¼1 x
2(i) is made by:

x * x’=29

This is a single number because the matrix multiplication is [1 � 3][3 � 1]¼ [1 � 1]

x’ * x=[4 6 8
6 9 12
8 12 16]

is [3 � 1][1 � 3]¼ [3 � 3]

x * x is meaningless.

[1 � 3][1 � 3]=?
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Element-by-Element Calculations

If you want to calculate something for every element in the vector, you need to preceed the

þ, �, *, =, ^ command with a period. For example, if you have a series of x and y values,

x=0:0.1:1; y= 1:0.1:2

the command

z=x./y

computes z(i)¼ x(i)=y(i) for each i.

EIGENVALUES OF A MATRIX

Eigenvalues are the polynomial roots to Eq. (B.3):

jAij � ldijj ¼ 0 (B:3)

They are easy to calculate in MATLAB using the eig command.

>> lambda=eig(A)
lambda=32.2337

-2.2337
-0.0000

EVALUATE AN INTEGRAL

To evaluate the integral, Eq. (B.4), define a set of points in the interval to be integrated, as

the vector x (need not be uniformly spaced). Then evaluate the function at each of these

points. Calculate the integral using the trapezoid rule.

area ¼

ð2
0

x2 dx (B:4)

x=[0:0.1:2]
y=x.*x
area=trapz(x,y)

SOLVE ALGEBRAIC EQUATIONS USING ‘fsolve’

Solve fi({yj}) ¼ 0; i ¼ 1; . . . ; n for the vector {yj}. There are three steps.

Step 1 Set the initial guess of the solution.
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Step 2 Name and construct the m-file ‘prob2.m,’ which evaluates the function fi.

Step 3 Call fsolve. Fsolve is in the optimization toolbox in MATLAB, which all versions

do not have.

y0=[0 0]
z=fsolve(‘prob2’,y0)
z=-1.4456-2.4122

You need to make several checks. The number of unknowns is set by the number of

elements in the initial guess, y0. The m-file ‘prob2’ calculates fi; i ¼ 1; . . . ; n; given

{yj}, and there have to be as many elements in f as there are in y. The m-file needs to

be checked, of course. The only way you can make MATLAB find the solution to your

problem is to make sure the m-file gives the correct set of fs when given a set of ys. If

this fsolve does not work well, try making up an initial value problem and solving it

using implicit methods, integrating to a long time.

dyi

dt
¼ fi({yj}); yi(0) ¼ initial guess (B:5)

SOLVE ALGEBRAIC EQUATIONS USING ‘fzero’ OR ‘fminsearch’

(BOTH IN STANDARD MATLAB)

If you have a single function of one variable, you can use the fzero function in place of

fsolve, and it is called in a similar way. If you have several fs that you want to make

zero, you can make the norm of the vector f zero. The norm can be the square root of

the sum of the squares of the elements, or the maximum of the absolute value of all

elements. Then fminsearch uses optimization methods to find the vector y which makes

the norm a minimum. This may work for simple problems, especially ones with con-

straints, but it is less successful on large problems.

INTEGRATING ORDINARY DIFFERENTIAL EQUATIONS THAT ARE

INITIAL VALUE PROBLEMS

To solve a single ordinary differential equation

dy

dt
¼ f (t; y); y(0) ¼ y0 (B:6)

We use the ‘ode’ set of functions in MATLAB. There are four steps.

Step 1 Set the initial condition, y0.

Step 2 Set the time span for the integration.

Step 3 Name and construct the m-file rhs.m, which evaluates the function f (t, y).
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Step 4 Call ode45.

y0=3
tspan=[0 10]
[t, y]=ode45(@rhs, tspan, y0) or

[t, y]=ode45(@rhs, [0 10], 3)

The m-file is.

function ydot=rhs(t,y)
ydot=...

Since MATLAB will integrate whatever equation you give it, and the m-file ‘rhs’ is going

to be used many times, you must insure that it is correct: Given a t and y it computes the

correct f (t, y) and puts the value into the variable ydot, which is then used by MATLAB to

construct the solution. Once you have checked the program and run it, it is easy to plot the

solution.

plot(t,y)

If you want data output at specific times, use

tspan=[0:1:10] for data at t=0, 1, 2,...,10.

If the integration is taking an interminable amount of time, it is possible that you have

defined a stiff system of equations (see Appendix F). In that case, change to an implicit

method (for stiff equations, hence the s-designation):

[t, y]=ode15s(@rhs, tspan, y0) or ode23s(@rhs, tspan, y0)

If you want the solution to be plotted as it is computed, leave off the [t, y]:

ode45(@rhs, tspan, y0)

To solve a set of ordinary differential equations,

dyi

dt
¼ fi({yj}), yi(0) ¼ yi0 (B:7)

We do the same steps except that the initial condition is now a vector with N elements, the

m-file ‘rhs’ must compute N functions using the vector y with N elements, and we have to

return the result as a column vector.

y0=[0 1 3]
tspan=[0 10]
[t, y]=ode45(@rhs, tspan, y0)
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The m-file is

function ydot=rhs(t,y)
% now there are y(1), y(2) and y(3) and t, which can be used
% to evaluate fi.
ydot(1)=...
ydot(2)=...
ydot(3)=...
ydot=ydot0

Now the output from ‘ode45’ is a vector, t, and a matrix, y. The vector y has as many

columns as there are unknowns (here called N), and it has as many rows as there are

elements in the vector t. Once the solution is found, all components of it can be plotted.

See other commands under the plotting commands for other options.

plot(t,y)

If you wish to solve the problem more accurately than is done with the default par-

ameters, you can change them. The following commands show how to change the relative

tolerance and absolute tolerance from the default values of 10�3 to 10�9. You can place

different accuracy limits on different variables, too. To see all the options, see help odeset.

OPTIONS=odeset(‘RelTol’,1e-9,‘AbsTol’,1e-9)
[t, y]=ode45(@rhs, tspan, y0,OPTIONS)

Checklist for Using ‘ode45’ and Other Integration Packages

When using ‘ode45,’ your m-file for the right-hand side must meet these conditions:

. The name in the calling command must be the same as the filename, and the name in

the function is immaterial. If ‘ode45’ identifies @rhs, then the filename of the m-file

has to be ‘rhs.m’. The m-file can be: function ydot¼ nothing(t, y).

. The variable tspan (or whatever it is called) must have at least two values.

. The number of entries in the vector for the initial conditions must be the same as the

number of right-hand sides calculated in the m-file.

. Whether you call the output from the m-file ‘ydot’ or something else is your choice,

but if the output is called ‘ydot’, the m-file must compute all elements of the vector

ydot.

. The output of the m-file must be a column vector.

. Variables can be used in the m-file provided they are (a) global variables, (b) passed

as parameters in the calling argument, or (c) set in the m-file. Check their value inside

the m-file by running the m-file.

. The m-file will be called many times by the ‘ode45’ function. However, you only

have to check the calculation once. Check the m-file by giving it t and all the y(i);

compute what you expect the right-hand sides to be and see that the computer

gives those values. This is the only way to ensure that MATLAB is solving the

problem you want solved.
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SPLINE INTERPOLATION

Make a cubic B-spline pass through all the data points: [x(i), y(i), i ¼ 1; . . . ;m]. A cubic

spline is a cubic function of position, defined on small regions between data points. It is

constructed so the function and its first and second derivatives are continuous from one

region to another. It usually makes a nice smooth curve through the points. The following

commands create Figure B.3.

x=0:1:10; y=cos(x); % evaluate cos at a set of x values
xx=0:.25:10; % set up a finer mesh for plotting
yy=spline(x,y,xx); % evaluate the spline function at

the points xx
plot(x,y,‘*’,xx,yy) % plot the original points with *

and the spline curve

INTERPOLATE DATA, EVALUATE THE POLYNOMIAL, AND

PLOT THE RESULT

For data points x(i); z(i); i ¼ 1; . . . ;m fit a polynomial of degree n in the least squares

sense:

y ¼ p1x
n þ p2x

n�1 þ � � � þ pnxþ pnþ1 (B:8)

p=polyfit(x,z,n)

The command ‘v = polyval(p, w)’ evaluates the polynomial p at the w points (w can be a

vector). Plot the data points (y) and the polynomial (v)

Figure B.3. Spline fit of a set of data points.
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w=[0:.1:10]
v=polyval(p,w)
plot(x,y,‘ro’,w,v,‘b-’)

PLOTTING

Plotting Results from Integration of Partial Differential Equations

Using the Method of Lines

The result is the value of the solution at several fixed positions and all times:

tspan=[0 10], y0=[...]
[t, y]=ode45(‘rhs’,tspan,y0)
plot(t,y)

This gives a plot of each variable y(t, i) vs time. Here, y(t, i) is the solution at point x(i) and

time t. To plot the solution vs x(i), at various times, specify that you want the solution at a

select number of times:

tspan=[0:1:10] % 11 different times
y0=[...]
[t, y]=ode45(‘rhs’,tspan,y0) % compute the solution

% y(j,i) is a matrix: the column number is i,
% and the row number j
% identifies the time, t(j)

x=[...] % specify the x-positions of the i-th
% variable
% there are the same number of entries
% for x as for y0

hold on
for i=1:11

plot(x(:),y(i,:))
end
hold off

Simple Plots

For a vector x with n entries, and a vector y with n entries, plot them in one of four ways:

1. plot(x,y) 2. loglog(x,y) 3. semilogx(x,y) 4. semilogy(x,y)

To plot more than one variable:

plot(x, y1, x, y2) % if the y1 and y2 are known at the
same values of x

plot(x1,y1,x2,y2) % if y1 is known at x1 and y2 is
known at x2
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Add titles:

title(‘This is the title’)
xlabel(‘x’)
ylabel(‘y’)

Add a legend:

legend(‘first curve’, ‘second curve’)

Plot only one column of a matrix, here the second column.

plot(t,y(:,2))

Add Data to an Existing Plot

Issue the command:

hold on

and continue plotting. Further lines, symbols, and so on will be added to the existing

figure. When done, type:

hold off

Dress Up Your Plot

Plot in different colors using:

plot(x, y, ‘r’, x, y2, ‘b’)

Use different markers:

plot(x, y, ‘or’, x, y2, ‘*b’)

Use different line options:

plot(x, y, ‘–r’, x, y2, ‘:b’)

To get both the symbols and the lines, use both line styles and markers.

plot(x, y, ‘–or’, x, y2, ‘:*b’)

Limit the plot to xmin � x � xmax, ymin � y � ymax, regardless of the data:

axis([xmin xmax ymin ymax])

Limit the plot to xmin � x � xmax, regardless of the data:

xlim([xmin xmax])
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Limit the plot to ymin � y � ymax, regardless of the data:

ylim([ymin ymax])

Get for more information:

help axis

Multiple Plots

To get multiple plots on the same screen, use subplot. You may wish to have several plots

on one screen. Figure B.4 shows six plots on one screen.

subplot(2,3,1)

makes a 2 � 3 array of plots on one page and the plotting commands following this apply

to the first plot (upper left-hand corner). Follow this with.

subplot(2,3,2)

and the next plot will be in the middle of the top row of three figures. The final number is

the plot sequence, numbered from left to right and then top to bottom.

Sometimes you want to prepare several plots, examine them in turn, and decide whether

to save them or print them. One way to do this is to insert the following command after the

plot command:

pause

This causes the program to stop at that point in the code, and you can export the figure or

print it. Then press any key to continue.

Three-Dimensional Plots

To plot a function z(x, y), create an x–y grid (rectangular), evaluate the function at each

grid point, and plot. Create the x grid:

x=0:0.05:1

Create the y grid:

y= 1:0.2:3

Figure B.4. Multiple plots.
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Create the combined mesh:

[X,Y]= meshgrid(x,y)

Evaulate the function: Z ¼ fn(x; y) where fn is an expression or function; for z ¼ x2 þ y2,

Z=X.*X+Y.*Y

Plot the 3D plot:

mesh(X,Y,Z)

or color in the surface:

surf(X,Y,Z)

or do contours in 2D:

contour(X,Y,Z,20)

or do contours in 3D:

contour3(X,Y,Z,20)

More Complicated Plots

Possible symbols are:

. point v triangle (down)

o circle ^ triangle (up)

x x-mark , triangle (left)

þ plus . triangle (right)

* star p pentagram

s square h hexagram

d diamond

The colors are in the default order for multiple plots, but white is not used.

b blue Line types

g green – solid

r red : dotted

c cyan _� dashdot

m magenta — dashed

y yellow

k black

w white
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Use Greek Letters and Symbols in the Text

These are TEX commands

a \alpha 1 \ infty \ rm normal.

b \ beta � \ geq \ bf bold

g \ gamma � \ leq \ it italic

. . @ \ partial

v \ omega + \ pm

G \ Gamma nRe
D \ Delta

nIm.Q \ Theta

. .

. .

V \ Omega

MATLAB HELP

When you are really stuck, type the command.

help commandname

This may lead you to the solution you are looking for. Issuing the command

help

gives you a table of contents; look at ‘help funfun,’ for example, to see all the methods and

options for integrating differential equations.

APPLICATIONS OF MATLAB

Listed here are applications of MATLAB so you can easily find examples in this book:

. Equations of state, Chapter 2, p. 12.

. Equations of state and plotting, Chapter 2, p. 13.

. Vapor–liquid equilibria, Chapter 3, p. 30.

. Chemical reaction equilibria, Chapter 4, p. 45.

. Multiple equations, few unknowns, Chapter 4, p. 48.

. Integrate ordinary differential equation, Chapter 8, p. 114.

. Use of ‘global’ command, Chapter 8, p. 116.

. Isothermal plug flow reactor, Chapter 8, p. 118

. Nonisothermal plug flow reactor, Chapter 8, p. 121.
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. Reactor with mole changes and variable density, Chapter 8, p. 130.

. Chemical reactors with mass transfer limitations, Chapter 8, p. 131.

. Continuous stirred-tank reactors, Chapter 8, pp. 135, 136.

. Transient continuous stirred tank reactors Chapter 8, p. 137.

. Fit straight line to data, Appendix E, p. 295.

. Polynomial regression, Appendix E, p. 298.

. Nonlinear regression, Appendix E, p. 305.
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Appendix C
HINTS WHEN USING ASPEN PLUSw

This appendix gives a few hints and tips on using Aspen Plus.� It assumes you are a begin-

ner, so it shows the main steps you go through to use Aspen Plus, with screen shots to illus-

trate what you should see on the screen. You should work through this appendix using

Aspen Plus to reproduce the examples shown here and review the examples again when

you use Aspen Plus in other chapters. Keep in mind that this is a complex program

with many options developed over decades by engineers working for Aspen Technology

as well as the companies using the program. Some engineers’ whole job is doing simu-

lations to model chemical process, and it is unrealistic to expect a beginner to do that.

However, you can use Aspen Plus to do many powerful things, and it is important to

know the full capabilities available to you.

QUICK TOUR

Start

Begin by opening Aspen Plus. A registration screen (connect to engine) comes up; click

OK. Click ‘maximize’ to fill the screen. This step may differ depending upon your instal-

lation. For a new problem, it is useful to choose a template that is similar to your problem;

you can also open previous problems. The screen that appears is shown in Figure C.1.

The File menu has the usual items: New, Open, Save, and so on. One menu item is

Export, which allows you to export a report, a summary, the input, and any messages pro-

vided during the run. The report, in particular, is handy to have when done as a printed

summary.

�Aspen Plus is a registered trademark of Aspen Technology, Inc. This book uses version 12.1.

Introduction to Chemical Engineering Computing, by Bruce A. Finlayson
Copyright # 2006 John Wiley & Sons, Inc.
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Several icons in Figure C.1 are used over and over, so it is worthwhile to identify them.

Find the pair of eye glasses in the top row. This icon opens the Data Browser, which

provides a list of windows to be completed. The icon can be used to proceed to the

next step. By pressing this icon, filling out the window that appears, and pressing it

again, you can proceed through the data entry phase of a problem easily. The �

(shown in Fig. C.2) can be used to step from window to window, but it includes all the

windows, even if they are complete. Along the lower part of the screen are three items

described in detail below: The Model Library (Mixer, Separators, Heat Exchanger, etc.)

is where you find the models or units for your process, The Material Streams is used to

insert streams into your process, and the left-arrow is used to select units or streams,

perhaps to delete them. Locate each of these icons in Figure C.1 because they are

especially useful.

Setup

You can specify a title for your problem, choose the units you want (these can be overrid-

den in each stream and block), and create report options. To do this, click on the glasses

(Data Browser) and double-click the folder Setup. In the Setup/Report Options window

you put checks in the boxes for the properties you wish to include in your report, as illus-

trated in Figure C.2.

Model Library

The possible models are shown in the menu bar at the bottom (see Figure C.3.) If this does

not appear, choose the View/Model Library menu. The models are organized by function,

Figure C.1. Opening screen.
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such as Mixers/Splitters, Separators, Heat Exchangers, Columns, or Reactors, and so on.

Click on the tab to see the different possibilities: A new menu lists the different types

within that class. Click on Columns, for example, and you see choices such as:

DSTWU, Distl, RadFrac, and so on. A brief description about the unit is displayed

beneath the model library, but that may not show up unless you have maximized the

screen.

Place Units on Flowsheet

To place a model or unit operation on your flowsheet (now called a block), click on the

desired model and then click in the screen where you want the block to appear.

Figure C.4 shows a DSTWU block. Continue in this fashion until you have the blocks

you want. To delete a block, click on it and either choose Edit/Delete or right click and

scroll down to delete.

Figure C.3. Model library.

Figure C.2. Setup/Report options for streams.

QUICK TOUR 261



Connect the Units with Streams

Click on the ‘Material Streams’ icon in the lower, left corner of the screen (see Fig. C.1,

where it appears in the lower left-hand corner, or Fig. C.3 where it appears on the left).

Then click in the flowsheet where you want the stream to originate and drag the cursor

to where you want it to end. Continue in this way until you have placed all the streams

in your flowsheet. When you are done, click the arrow to the upper left of the ‘Material

Streams’ box (Figs C.1 and C.3) to disconnect the drawing option. If you added

streams you do not want, select them and choose Edit/Delete or right click and scroll

down to delete. You can also rename units and streams by using right click and scrolling

down to rename.

Data Entry

Aspen Plus has a menu that walks you through the procedure to specify a process. If you

click on , a window appears that tells you the next thing you should do. Alternatively,

click on the glasses at the top (Data Browser), which places a menu on the left of the

screen. The menu items that are in red are not complete, and must be completed.

Double click them in turn, starting from the top. Then click on the red sub-menus. A

new window will appear, asking you to fill in the needed information. To close up the

menu, click on a folder, and the subfolders beneath it will be hidden again. A third alterna-

tive is to change the ‘All’ shown in Figure C.5a to ‘Input’ and click on the �. This takes

you through each window one by one.

Specify Components

Type the name of the component in the left-hand column of the window. If you type in a

name and the third column is not automatically filled in (as in Fig. C.5a for C5H12),

double-click on the blank box in the third column. Type the name into the window that

appears (Fig. C.5b), choose Find Now, and search for your chemical in the list provided.

Close the window after specifying all the chemicals appearing in your process.

Specify Properties

You use Property Method to tell Aspen Plus what thermodynamic model you want to use.

Initially all models are available. You can limit the choices by selecting an industry or

application, and then only the pertinent choices are available. Chapter 6 discusses this

Figure C.4. Flowsheet of a distillation column.
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choice in more detail, but this is one decision that must be validated by comparison with

experimental data. In a design situation this is essential.

Specify the Input Streams

When you open up the stream folder (on the left), the streams that are input streams to the

process will be shown in red. Click them in turn, filling in the properties of that stream.

You must specify the flow rate of each species (even those not in that stream, as zero),

the temperature, and the pressure, as shown in Figure C.6. You can specify mole fractions

Figure C.6. Stream information.

Figure C.5. Component identification.
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and the total flow rate if you prefer. You do not need to specify conditions in internal or

output steams; the computer will calculate those. Sometimes it is helpful to specify an

internal stream to speed convergence, but you need to know which one to use (see

Chapter 7).

Specify Block Parameters

Click each block in turn and fill in block parameters (see Fig. C.7). Sometimes the window

has multiple options, which you need to complete if they are red.

Run the Problem

To run the problem, choose the blue in the new window and click OK or click on the

closed triangle: . (If some data is not yet specified, the program will tell you.) By

choosing the button, you get the most information back from the computer, including

information about convergence, as shown in Figure C.8.

If you run the problem, make a change in a parameter, and run the problem again,

Aspen Plus will use the first solution as the starting guess for the second problem. If

you do not want this to happen, choose Run/Reinitialize or the reinitialize button: ,

and the starting values are put back to the default values (flow rates are usually zero).

You can also do the iterative calculations one unit at a time by choosing the Run/Step

menu or Ctrl þ F5 or the open triangle.

Scrutinize the Stream Table

In the left-hand window, click Results/Summary and Stream to get the mass and energy

balances, the values of flow rate and enthalpy of each stream, as illustrated in Figure C.9.

When the stream information is displayed on the screen, click Stream Table to get the

information on the flowsheet.

Figure C.7. Block parameters.
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Checking Your Results

Take the streams and follow them through the process: Are the calculations correct? Did

the computer do what you intended? Are the results reasonable?

You expect Aspen Plus to be correct, but there are two possible problems: lack of con-

vergence and poor choices of thermodynamic correlations. By using the button to run

your problem you will get printed information about the convergence or lack of it. Read

the output! You get this information from the View/Control Panel menu, too. The proper

choice of thermodynamic correlation can only be determined by comparison with exper-

imental data or with experience. (This is one reason why chemical engineers are paid a lot

– for their experience.) Naturally, at this point in your career, few of you have that experi-

ence. However, you can still look at your mass and energy balances and see if they make

sense. Every number needs to be examined.

There are three important sources of summary information, all listed under the View

menu: Input Summary, History, and Report. You should look at these – you may

detect an error by viewing the summaries provided there.

Transfer the Flowsheet and Mass and Energy Balance to a Word

Processing Program

Select the flowsheet by dragging the mouse from the upper-left corner to the lower-right

corner. Copy the flowsheet and paste it into the application. You can also use the Print

Screen key and then go to your word processing program and paste it. Use the Picture/
Crop function to select the portion of the diagram that you want displayed. The best

way to capture the Stream Table is to select the entire table and paste it into Excel.

This is done from the Results/Summary/Stream option.

Figure C.8. Convergence information.
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If you would like the temperature and pressure to appear on the flowsheet, ensure that

Global Data is checked in the View menu, choose Tools/Options/Results View and click

the boxes for temperature and pressure, as shown in Figure C.10a. Figure C.10b shows the

resulting change in the flowsheet.

Change Conditions

To run the problem with different conditions, look for the word ‘All’ in a white box (see it

in Fig. C.2). The options are All, Input, Results; scroll down to Input and make your

changes using the menu on the left. Click the button to re-run the problem.

Prepare Your Report

Detailed information can be obtained using the View/Report menu. This gives details

about individual blocks. The View/History menu gives information about the conver-

gence and what calculations have been done. The View/Input Summary lists the par-

ameters you have set. Every report should have a flow sheet with blocks and streams

labeled, mass and energy balances referenced to the flow sheet, and a text description

of the process. You should outline the problem, describe the choices you have made,

and list all the ways you examined your results for validity. When you are really done,

you can choose File and Export. In the ‘Save as type’ window, scroll down to report

Files (�.rep; see Fig. C.11). Save that. It creates a text version of the whole simulation,

giving all the detail you supplied and all the results. It is very useful to document your

work (perhaps as an Appendix in a report), and the report gives the detail needed to

Figure C.9. Stream table.
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write a descriptive report. It does use paper, though, if you print it. For example, the report

for the four-column gas plant problem in Chapter 7 was 10 pages long.

Save Your Results

Save your program and results in the computer memory. A good strategy is to create a

folder for each new problem and save your program and results in the folder. The

reason is that, when you choose File/Save, six files are created, and all six are necessary

to restart the problem at a later time.

Figure C.11. Report option.

Figure C.10. Adding temperature and pressure to the flowsheet.
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Getting Help

Click and then the box on the left (in the Data Browser option). The part of the process

represented by that box is then described. You can also click on the box and then the F1

key to obtain the same information. The Help menu provides detailed help in all areas. For

example, the Help/Physical Property Methods/Choosing a Property Method gives advice

about which thermodynamic model is recommended for different applications. The Guide-

lines for Choosing a Property Method and Guidelines for Choosing an Activity Coefficient

Method are sub-menus that outline decision trees to guide your choice.

APPLICATIONS OF ASPEN PLUS

. Equations of state, Chapter 2, pp. 16, 18.

. Vapor–liquid equilibrium, Chapter 3, pp. 31, 35.

. Chemical reaction equilibrium, Chapter 4, p. 52.

. Multicomponent distillation with shortcut methods, Chapter 6, p. 75.

. Multicomponent distillation with rigorous plate-to-plate methods, Chapter 6, p. 80.

. Packed bed adsorption, Chapter 6, p. 82.

. Multicomponent distillation train, Chapter 6, p. 85.

. Process simulation with recycle and phase equilibrium, Chapter 7, p. 91.

. Utility costs, Chapter 7, p. 97.

. Optimization, Chapter 7, p. 105.
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Appendix D
HINTS WHEN USING FEMLABw

This appendix gives an introduction to the use of FEMLAB. The program FEMLAB,� uses

the finite element method to solve fluid flow, heat transfer, and mass transfer problems, as

well as many other equations. In the past decade, computer software has become very

powerful, and this allows chemical engineers to solve very complicated problems. This

poses a problem though: You may be tempted to pose a problem that is way more com-

plicated than you need. Instead, heed Einstein: ‘Make it as simple as possible, and no

simpler.’ Another problem is that many details of the computer program are hidden

from you, or at least not readily accessible. By clicking buttons, or forgetting to make a

particular choice, you may inadvertently solve the wrong problem.

On the other hand, engineers used to reduce all problems to ones that could be solved

analytically, because then they could solve them. The assumptions used in the simplifica-

tion might or might not be justified, but the analytical form of the answer aided their under-

standing of the problem. Modern computer programs can solve those simple problems, and

the solution provides a test of the computer program and your use of it: Does the computer

solution agree with the analytical solution when it should? However, the programs can also

solve realistic problems that are impossible to solve analytically.What you have to do is: (a)

Pose a realistic form of the problem; and (b) verify you have solved it accurately enough.

The finite element method replaces a differential equation with a large set of algebraic

equations. The details to make this switch are complicated, but fortunately, FEMLAB has

done that for you. You still need to know how to use the program, because, after all, it is up

to you to decide if you have solved the right problem, determined the accuracy, and

derived useful properties from the solution.

�FEMLAB is a registered trademark of Comsol, Inc. The program name has recently been changed to Comsol

Multiphysics.

Introduction to Chemical Engineering Computing, by Bruce A. Finlayson
Copyright # 2006 John Wiley & Sons, Inc.
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The examples are made with the Chemical Engineering addition to FEMLAB, version

3.1. Appendix F describes the finite element method in one dimension and two dimensions

so you have some concept of the approximation: going from a single differential equation

to a set of algebraic equations. This appendix presents an overview of many of the choices

provided by FEMLAB. Illustrations of how FEMLAB is used to solve problems are given

in Chapters 9–11. Thus, you may wish to skim this appendix on a first reading, and then

come back to it as you use the program to solve the examples. A more comprehensive

account of FEMLAB is available in Zimmerman (2004).

BASIC FEMLAB TECHNIQUES

Opening Screens

Figure D.1 shows the opening screen of FEMLAB. Look at the options across the top. The

New tab is what is shown. If you click the Model Library tab, you get a menu of solved

examples. These are ideal to investigate the program. The User Models tab provides a

place you can put your examples, if you wish. Settings lets you choose a white or black

background.

The space dimension can be 2D (shown), 1D, 3D, Axial symmetry (1D), or Axial sym-

metry (2D). Consider first the 2D option. If you double click on the Chemical Engineering

Module, the screen changes to Figure D.2.

Equations

The Chemical Engineering Module has four folders, each of which contains a number of

equations. The four folders are Energy balance, Mass balance, Momentum balance, and

Pseudo 3D. Choose the Energy Balance option to get the next screen, as shown in Figure D.3.

Figure D.1. FEMLAB opening screen.
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There are two equations in this folder: ‘Convection and Conduction’ and ‘Conduction,’

and each of them has a steady-state analysis (highlighted) and a transient analysis. When

you click OK, you will enter into the main screen, having picked the conduction equation

in two spatial dimensions to solve. The dependent variable will be called ‘T’ and the

Figure D.2. FEMLAB opening screen for chemical engineering module.

Figure D.3. FEMLAB opening screen for chemical engineering module, energy balance.
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application mode name (i.e., the internal designation for the equation) is called ‘ht.’ You

can change the dependent variable name here if you wish. The element chosen is

Lagrange-Quadratic, which means that a quadratic polynomial is used to interpolate on

each element and that the function, but not its normal derivative, will be continuous

from one element to the other (Lagrange). The Multiphysics tab would enable you to

add other equations, that is, solve combinations of the equations, simultaneously.

Indeed, this is one of the valuable features of FEMLAB – to add equations, you simply

choose them. The equations for the 2D option are shown in Table D.1. The other

folders contain the applications listed in Table D.2.

The total numbers of equations available in each coordinate system are given in

Table D.3. Clearly there are many, many options from which to choose! Next click OK

to get the conduction equation, energy balance, chemical engineering module. This

gives the screen shown in Figure D.4, which is the standard one for all 2D applications.

Draw

Consider first the icons along the top. From left to right they are: New, Open, Save, Print,

Cut, Copy, Paste. After the arrow, you get to the finite element options. To explain them,

though, you have to define a geometry. Choose the top-most icon on the left-hand side (the

rectangle), and draw a rectangle in the blank screen. If you want to make it the same size as

in the example below, double click on the rectangle and set the width to 1.2, the height to

0.8, and place the corner at x ¼ 20.8, y ¼ 20.2.

Mesh

Next click the first triangle to create the mesh. The mesh is a number of small triangles,

nonoverlapping, that completely cover the rectangle. If you click the next triangle (the

one with a small, inverted triangle inside the other one), the mesh is refined. If you

click the next triangle, with a red color filling the inner triangle, you can select a

TABLE D.1. FEMLAB Equations in 2D Chemical Engineering Option

Energy balance Convection and conduction�

Conduction

Mass balance Convection and diffusion�

Diffusion

Electrokinetic flow�

Maxwell–Stefan diffusion and convection�

Nernst–Planck�

Momentum balance Brinkman equation

Compressible Euler

Darcy’s law

k–1 turbulence model

Incompressible Navier–Stokes

Nonisothermal flow

Non-Newtonian flow

Pseudo 3D Any applications with an asterisk above. In this option, the

diffusion or conduction in the flow direction is eliminated
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portion of the domain and refine only that portion. The first mesh is shown in Figure D.5. If

you have refined the mesh but want the original, less dense mesh, simply click the first

triangle again. Notice that once you create the mesh, the drawing tools on the left-hand

side disappear. You can return to them by choosing the Draw mode in the heading, and

if you change the drawing you would have to re-mesh.

Subdomain Settings

Next you would define the parameters in the differential equation. Choose the Physics

menu at the top, and go down to Subdomain Settings. The screen appears as shown in

Figure D.6. At the top is the equation that will be solved, Once a subdomain is selected

(here the 1), you can change the parameters in the boxes. If you have more than one sub-

domain (perhaps two regions with different physical properties), there would be at least two

numbers here and you could set the parameters for each region separately (or together).

Boundary Settings

Next choose the Boundary Settings in the Physics menu. The screen appears as shown

in Figure D.7. There are four numbers, which correspond to the four sides of the

rectangle (i.e., segments of the boundary). Click on one segment. You can then set the

boundary conditions, using four options: Heat Flux, Thermal Insulation, Temperature,

TABLE D.2. FEMLAB Equations in 2D Option

Acoustic

Conductive media DC

Electrostatics

Magnetostatics

AC power electromagnetics

Plane stress

Plane strain

Helmholtz equation

Laplace’s equation

Poisson’s equation

Schrödinger equation

Wave equation

PDE, coefficient form

PDE, general form

TABLE D.3. Number of Different Equations in Each

Coordinate System

1D – 27

2D – 43

3D – 35

Axial symmetry (1D) – 16

Axial symmetry (2D) – 26
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and Zero Temperature. If you choose Heat Flux, for example, you give a specified value

for your problem. That value can be zero, in which case the option is the same as choosing

Thermal Insulation. Alternatively, you can choose Temperature, and set the temperature

(here set to 3.0). If you set it to zero, it is the same as the Zero Temperature option.

The boundary numbers are identified in Figure D.8. This example sets the temperature

to 1.5 along boundary 2 and uses thermal insulation on boundaries 3 and 4 (shown in

Figure D.4. FEMLAB opening screen for two-dimensional applications.

Figure D.5. Finite element mesh.
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Fig. D.9). Notice that, as you select a boundary, the boundary in question turns red in the

drawing. The heat flux option has a variety of parameters in it, because radiation is allowed

in this equation, as shown in Figure D.10.

Solve

After you have set the boundary conditions, you can solve the problem by clicking on the

‘¼’ icon. The solution is found, and plotted for you. A color plot of the solution is

Figure D.6. Physics/Subdomain settings.

Figure D.7. Physics/Boundary settings for temperature.
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generated (see Fig. D.11 for the grayscale version). Notice that the color scale goes from

1.417 to 3.083. Because you know that the solution must be between 1.5 and 3, the values

below 1.5 and above 3 indicate errors. Often these can be reduced by refining the mesh and

re-solving. (To re-solve, choose the mesh refinement triangle, then choose the equal sign

with the circle.) In this case, though, the problem was ill-posed, because the temperature at

the corner is either 3 or 1.5; it cannot be both. Thus, the problem contains a singularity that

should not be there.

POSTPROCESSING

Surface Plots

You really need more information than the color scale gives you, though, so choose the

Postprocessing menu, then Plot Parameters. Make sure that there are checks in both the

Surface box and Contour box, as shown in Figure D.12. Click the Surface tab to obtain

Figure D.13. Click on the Contour tab to obtain Figure D.14. Contours are added to the

plot. Click OK to obtain a new plot, Figure D.15. The scale on the right-hand side of

your screen indicates the contour values.

Figure D.8. Physics/Boundary settings for thermal insulation.

Figure D.9. Physics/Boundary settings for thermal insulation.
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You can change what is plotted, too. Figure D.13 shows that the temperature is to be

plotted. To view the properties that can be plotted, select the ‘predefined’ tab. They

include: temperature, heat flux, x-component and y-component, heat flux (the magnitude),

temperature gradient (magnitude), density, heat capacity, and heat source. This is where

you get to explore your solution by plotting many features of it. It is also possible to

plot one variable with the surface plot and another with the contour plot.

Figure D.10. Physics/Boundary settings for heat flux.

Figure D.11. Surface (color) plot of temperature.
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Contour Plots

Similar options are available for the Contour plots, as shown in Figure D.14. You can set

the number of contours to be plotted, and you can choose ‘Vector with isolevels’ and type

in the numerical values of the contours you want: [1.5 1.6 2.0 3.0]. If you want your plot

to have only contours, then unclick the box under the Surface tab, or go to the General tab

and unclick the box next to Surface.

Cross-Sectional Plots

If you want a line plot through the domain, you can choose Postprocessing/Cross-
sectional Plot Parameters, which gives the window shown in Figure D.16. Click on

the Line/Extrusion tab to obtain Figure D.17. To plot the temperature along the line

y ¼ 0, from x ¼ 20.8 to 0.4, enter the values as shown in Figure D.17. A line plot then

appears, Figure D.18. A line also appears on the original diagram (Fig. D.15) showing

the location of the line.

Boundary Plots

Next plot the solution along a boundary. Choose Postprocessing/Domain Plot Parameters

and click the Line/Extrusion plot, which gives the window shown in Figure D.19. Choose

Figure D.12. Plot parameters.
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boundary segment one and click OK. The temperature is plotted along boundary segment

one, as shown in Figure D.20. Now you see why you had a temperature above 3.0. Because

of the discontinuity in temperature at the corner, the temperature boundary condition in the

first element (which touches the corner) goes above 3.0. This is because the boundary con-

dition requires the temperature to be 2.25 at the left point (the average of 3.0 and 1.5), then

then 3.0 at the next two points. A quadratic polynomial is then made to go through these

points, and it is guaranteed to go above 3.0 between the points. The actual finite element

approximation is a quadratic, but it is plotted as straight lines, so you have to use your

imagination.

Integrals

You can also calculate integrals. Choose Postprocessing/Subdomain Integration to obtain

Figure D.21. The temperature will be integrated over the subdomains chosen (here there is

only one). Click Apply, and look at the window at the bottom of the screen. The value is

1.952224. This is the value of

ð
A

T dx dy (D:1)

If you want to know the area of the rectangle, type 1.0 in the box and choose Apply. The

value is 0.96.

Figure D.13. Plot parameters, surface tab.
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You can also choose Postprocessing/Boundary Integration and integrate the tempera-

ture along boundary 2. The value is 1.81, as shown in Figure D.22. If you type 1.0 in the

Expression box and choose Apply, you find the length of boundary 2 is 1.2:

ð
s

T ds ¼ 1:81,

ð
s

1 ds ¼ 1:2 (D:2)

ADVANCED FEATURES

Model Navigator

Suppose you want to solve the heat conduction equation along with a diffusion equation.

Choose the Multiphysics menu, and then Model Navigator. The same window opens that

you used to select the equation in the first place, as shown in Figure D.23. Navigate to

Mass Transfer/Diffusion/Steady State Analysis and choose Add. The diffusion equation

is added to your problem and the dependent variable is called c, as shown in Figure D.24.

Click OK. Now you can set the parameters for the diffusion equation and boundary

conditions. When you are using the Physics menu, the equation that will be displayed is

the one chosen in the Multiphysics menu. You can switch back and forth; the operative

equation has a check beside its name.

Figure D.14. Plot parameters, contour tab.
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Internal Boundaries

You can create many complicated geometries using the drawing tools. Draw a rectangle

and circle in FEMLAB, as shown in Figure D.25. Choose Draw/Create Composite

Object to obtain Figure D.26. The two objects, the rectangle and circle, are identified

by R1 and E1, respectively. You can create the geometry shown in Figure D.27 by

typing R12 E1 in the ‘Set formula’ box, shown in Figure D.26. You can create the

geometry shown in Figure D.28 by typing R1þ E1 in the ‘Set formula’ box.

Once you create the composite object, you can set parameters for the domain with one

command, which applies to the entire object. To do this, unclick the ‘Keep interior bound-

aries’ box. The entire domain is then joined as one. However, if you want to specify differ-

ent properties in different parts of the domain, click the ‘Keep interior boundaries.’ This

allows you to specify different properties in the three regions shown in Figure D.25: the

rectangle without the circle, the place where the circle overlaps the rectangle, and the

part of the circle outside the rectangle.

Expressions

Suppose you wish to define a function that takes one value in part of the domain (called

expression1) and another value in another part of the domain (called expression2). The

Boolean operator allows you to do this. The function (x , 0.25) takes the value 1.0 if x

is less than 0.25 (true) and 0 if x is greater than or equal to 0.25. The following function

provides an overall function that takes the appropriate value.

Figure D.15. Surface plot and contour plot of temperature.
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Fn ¼ (x , 0:25)�expression1þ (x .¼ 0:25)�expression2 (D:3)

Coupling Variables and Additional Geometries

Suppose that you have two problems to solve, and the solution to one of them provides

conditions used in the other one. Here you will use coupling variables on the boundary

to transfer the information; while the example is trivial, the method is useful in many

cases and can be extended to subdomain transfers and point transfers. The two domains

are shown in Figure D.29. The goal is to take the solution from the problem in

Figure D.29a along the right-hand boundary and use it as the boundary condition along

the left-hand boundary of the problem in Figure D.29b.

Step 1 The domain and mesh shown in Figure D.29a is created in the usual fashion, and

the dependent variable is T.

Step 2 Click on Geom1 and set the parameters and boundary conditions under Physics/
Subdomain Settings and Physics/Boundary Settings.

Figure D.16. Cross-section plot parameters.
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Figure D.17. Line/extrusion parameters.

Figure D.18. Temperature plotted along the line y ¼ 0, x ¼ –0.8–0.4.
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Figure D.19. Domain plot parameters to plot along a boundary.

Figure D.20. Temperature plotted along boundary 1.
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Step 3 Then use the Multiphysics/Model navigator menu, add a geometry, and choose

an equation for the second geometry, as shown in Figure D.30. The dependent variable is

T2. Click OK. Now there is a tab at the top of the screen listing Geom1 and Geom2, and

Geom2 is selected.

Step 4 Add a domain and mesh in the usual fashion.

Figure D.21. Subdomain integration of temperature.

Figure D.22. Boundary integration of temperature.
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Step 5 Make sure Geom2 is selected and set the parameters and boundary conditions

under Physics/Subdomain Settings and Physics/Boundary Settings. For Boundary 1,

choose the boundary condition ‘Temperature’ and type in tout.

Step 6 Click Geom1. Use the Options/Extrusion Coupling Variables/Boundary Vari-

ables menu, and the window shown in Figure D.31 appears. Choose boundary 4, and

Figure D.23. Model navigator showing choices of equations.

Figure D.24. Model navigator showing the addition of diffusion equation.
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name the coupling variable tout. Define the expression as T, which is the name of the

dependent variable in Geom1. Click the General button, and set x: y. This is because

the independent variable along boundary 4 is y. Then click on the Destination tab.

Make sure Geom2 is selected, and the variable tout appears, as shown in Figure D.32.

Select Boundary, click on ‘1’, the boundary in Geom2 and click OK.

Step 7 Make sure Geom1 is still selected. In Solve/Solver Manager choose to solve only

the equation in Geom1. Click on the ‘¼’ to solve this problem. Then click on Geom2,

return to Solve/Solver Manager and choose to solve only the equation in Geom2.

Choose the Initial tab and make sure the lower box is checked for ‘use current solution’

for variables not solved for. This insures that tout will be used. Click on the ‘¼’ to

solve this problem.

Figure D.25. Rectangle and circle.

Figure D.26. Create composite object.

ADVANCED FEATURES 287



Step 8 The solutions along boundary 4 in Geom1 and boundary 1 in Geom2 are shown in

Figure D.33. (Since they are the same, only one figure is shown.)

APPLICATIONS OF FEMLAB

This FEMLAB options described in this Appendix merely touch the surface of possibili-

ties. Additional examples and applications are provided throughout the book, as listed

here:

. Using FEMLAB to solve ordinary differential equations, Chapter 8, p. 123.

. Isothermal plug flow reactor, Chapter 8, p. 125.

Figure D.27. Composite object, R1 – E1.

Figure D.28. Composite object, R1þ E1.

Figure D.29. Geometry 1 (a) and geometry 2 (b).
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. Nonisothermal plug flow reactor, Chapter 8, p. 127.

. Reactors with mole changes and variable density, Chapter 8, p. 130.

. Heat transfer in a slab, Chapter 9, p. 152.

. Reaction and diffusion, Chapter 9, p. 154.

. Parametric solution, Chapter 9, p. 155.

. Flow of a Newtonian fluid in a pipe, Chapter 9, p. 156.

. Flow of a non-Newtonian fluid in a pipe, Chapter 9, p. 159.

Figure D.30. Selecting second geometry and equation.

Figure D.31. Source coupling variable.
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. Tutorial for using FEMLAB to solve two-point boundary value problems, Chapter 9,

p. 160.

. Transient heat conduction, Chapter 9, p. 162.

. Linear adsorption, Chapter 9, p. 164.

. Chromatography, Chapter 9, p. 167.

. Tutorial for using FEMLAB to solve transport problems, Chapter 10, p. 178.

. Entry flow in a pipe, Chapter 10, p. 179.

. Entry flow of a non-Newtonian fluid, Chapter 10, p. 184.

Figure D.32. Destination coupling variable.

Figure D.33. Solution along boundary 4 in geometry 1 and boundary 1 in geometry 2.
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. Flow in a microfluidic device, Chapter 10, p. 186.

. Turbulent flow in a pipe, Chapter 10, p. 189.

. Start-up flow in a pipe, Chapter 10, p. 191.

. Flow through an orifice, Chapter 10, p. 193.

. Flow in a serpentine mixer, Chapter 10, p. 199.

. Heat conduction in two dimensions, Chapter 11, p. 210.

. Heat conduction with a hole, Chapter 11, p. 213.

. Dispersion in microfluidic devices, Chapter 11, p. 214.

. Concentration-dependent viscosity, Chapter 11, p. 217.

. Viscous dissipation, Chapter 11, p. 218.

. Chemical reactions, Chapter 11, p. 221.

. Mixing in a serpentine mixer, Chapter 11, p. 222.
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Appendix E
PARAMETER ESTIMATION

Engineers often need to express experimental data in terms of an equation. They must

decide on the equation and then determine the parameters that provide the best fit to the

data. The problem is simplest if the equation is linear. This appendix describes simple

methods using Excel and MATLABw for fitting a straight line to data, then for fitting a

polynomial to data (polynomial regression), and finally for fitting any set of functions

in which the unknown parameters appear linearly (multiple regression), as well as non-

linearly. The data used in the examples is only illustrative, but it has scatter included,

as you would find in data taken in the laboratory. After mastering the examples in this

chapter, you will be ready to fit an equation of your choice to data you measure.

MATHEMATICAL FORMULATION

Consider a set of data

{y(xi)}, for i ¼ 1–n (E:1)

and find an equation that models the data. Write the equation in a general form:

y(x; a1, a2; . . . ; aM) (E:2)

showing that it depends on x, but also on some unknown parameters, fa1, a2, . . . , aMg. The
goal is to find the set of parameters that gives the ‘best fit.’ The best fit is usually defined by

minimizing the sum of the square residuals, where the residual is the difference between

the predicted value and the data. Because the data may have errors in it, an exact fit will not

Introduction to Chemical Engineering Computing, by Bruce A. Finlayson
Copyright # 2006 John Wiley & Sons, Inc.
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be possible in most cases. Thus, you minimize the variance of the residuals (Press et al.,

1986, pp. 502–503):

s2 ¼
XN
i¼1

½yi � y(xi)�
2

N
, y ; y(xi, a1, a2, . . . , aM) (E:3)

If the parameters enter the equation linearly, then the minimization problem reduces to a

set of linear equations which are solved easily by Excel and MATLAB. The effectiveness

of the curve fit is often reported as values of the linear correlation coefficient squared, r2.

The linear correlation coefficient is defined as (Press et al., 1986, p. 484):

r ¼

XN

i¼1
(xi � �x)(yi � �y)XN

i¼1
(xi � �x)2

XN

i¼1
(yi � �y)2

(E:4)

Values of r near 1 indicate a positive correlation; r near 21 means a negative correlation

and r near zero means no correlation.

STRAIGHT LINE

This section describes how to fit a straight line to tabular data using Excel and MATLAB.

The data in Table E.1 represent seven measurements, in columns A and B. The goal is to

find an equation, y ¼ aþ bx, that best represents this data.

Straight Line Curve Fit Using Excel

Step 1 First insert the data into Excel as shown.

Step 2 After inserting the data, select the slope cell, E3, and insert the command:

=SLOPE(B2:B8,A2:A8) (E.5)

The result is 1.082. Notice that the y-locations are entered first, followed by the

x-locations.

TABLE E.1. Simulated Data for Two Measurements of

the Same Thing (x and y)

A B C D E

1 x y

2 110 97

3 210 206 Slope 1.0820

4 299 310

5 390 386 Intercept 222.303

6 480 521

7 598 551 r2 0.9687

8 657 742
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Step 3 To get the intercept, you do the same thing for the intercept cell, E5:

=INTERCEPT(B2:B8,A2:A8) (E.6)

Step 4 Finally, the r2 value is found using the following command in cell E7:

=RSQ(B2:B8,A2:A8) (E.7)

The curve fit is then

y ¼ �22:303þ 1:082x (E:8)

Because the r2 value is 0.9687, close to 1.0, the curve fit is good. You should plot the data,

and this is easily done using the ‘trendline’ option, as described below.

Plotting the Trendline

Step 1 Select the data in columns A2:B8. Then choose ‘Insert/Chart’ and choose the

scatter plot with no lines. Follow the instructions, adding titles, and so on, and place the

chart on the spreadsheet.

Step 2 Put the cursor on any data point and right click (on the Macintosh, use Ctrl-click).

A menu appears; choose ‘Add trendline.’ The trendline is added as shown. Put the cursor

on the trendline and right click. Choose ‘Format trendline,’ then ‘Options’ and click

‘Display equation on chart’; also choose ‘Display R-squared on chart.’ The result is

Figure E.1; notice that the equation in the figure agrees with Eq. (E.8).

Straight Line Curve Fit Using MATLAB

The same problem can be solved using MATLAB, too.

y = 1.082x −  22.303
R2 = 0.9687
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Figure E.1. Linear curve fit to data in Table E.1 using Excel.
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Step 1 Put the x values into a vector, x, and the y values into a vector, y. Then issue the

command

p=polyfit(x,y,1) (E.9)

Step 2 Next evaluate the polynomial at a set of points from x ¼ 100 to 700 for plotting

purposes. Because the polynomial is a straight line, only two points are needed:

w=[100 700]
v=polyval(p,w) (E.10)

Finally, plot the data and the straight line; use red symbols for the data and a blue line for

the straight line:

plot(x,y,‘ro’,w,v,‘b-’) (E.11)

The result is shown in Figure E.2. (The figure here appears in black, obtained by changing

‘ro’ to ‘ko’ and ‘b-’ to ‘k-.’)

POLYNOMIAL REGRESSION

You need not be limited to a straight line when trying to fit data. The first extension is to

use a polynomial and determine the coefficients that give the best fit. In that case, the

formula is

y ¼ aþ bxþ cx2 þ dx3 þ � � � (E:12)

or, more generally,

y(x) ¼
XN
i¼1

aix
i�1 (E:13)
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Figure E.2. Linear curve fit to data in Table E.1 using MATLAB.
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You can easily carry out this process using either Excel or MATLAB.

As an example, consider the set of data in Table E.2 giving the measured partial

pressure of a chemical at different times in a batch chemical reactor. You wish to fit

this data to a linear or quadratic equation.

Polynomial Regression Using Excel

Steps 1 and 2 Follow the instructions given above to plot a trendline.

Step 3 Put the cursor on a data point and choose ‘Add trendline.’ This time,

however, choose the option at the top right labeled ‘Polynomial,’ and pick an order

of polynomial. By choosing ‘Polynomial,’ then 2, you can fit a quadratic function to

the data, while choosing ‘Polynomial,’ then 3, gives a cubic function. The results are

shown in Figure E.3a and 3b. The equation is displayed, along with the square of the

linear correlation coefficient. The graphs show that the curve fit becomes better as

the degree of polynomial is increased, and this is also reflected in the value of r2. In math-

ematical notation (Abramowitz and Stegan, 1964, p. 773), the order of a polynomial is the

number of terms (or coefficients), whereas the degree is the highest power. Thus, a second-

order polynomial includes two terms – the constant and linear term – and is a first degree

polynomial. A third-order polynomial includes three terms, the constant and the coeffi-

cients of x and x2 and is a second-degree polynomial. This nomenclature is not followed

in Excel.

TABLE E.2. Partial Pressure versus Time
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Polynomial Regression Using MATLAB

Next consider MATLAB with a polynomial of higher order than a straight line. Put the

data into the vectors t and p. The only change is in the ‘polyfit’ command – just type

what order, n, you want:

pn=polyfit(t,p,n) (E.14)

This time, though, the curve fit is a curve. Thus, more points are needed to evaluate the

curve. You also need to eliminate the previous solution (or at least the size of the

vectors and matrices), because they may not be the same in this example. The complete

set of commands to generate Figure E.4a is:

clear w v % this eliminates the previous curve fit
p1=polyfit(t,p,1) % for a 1-st order polynomial
w=[0:1:22]
v=polyval(p1,w)
plot(t,p,‘ro’,w,v,‘b-’)

To obtain Figure E.4b, use the same commands except with

P2=polyfit(t,p,2)% for a 2nd order polynomial (E.15)

MULTIPLE REGRESSION USING EXCEL

The last example shows how to fit a polynomial to data. The same thing can be done when

the functions are not simple powers, but are more complicated functions. However, to

keep the problem linear, the unknown coefficients must be coefficients of those functions;

that is, the functions are completely specified. Multiple regression simply determines how

much of each one is needed. Thus, the form of the equation is

y(x) ¼
XM
i¼1

ai fi(x) (E:16)

y = 0.5321x + 8.83
R2 = 0.9601
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Figure E.3. Linear (a) and quadratic (b) curve fit to the data in Table E.2 using Excel.
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The goal is to find the bestM values of faig, given theM functions fi (x) and data yi ¼ y(xi),

i ¼ 1, . . . , N.
In Excel, you put the x values in a column and create additional columns, with each

column being a function, evaluated for the x value in that row. The example used here

is to find the constants in a reaction rate formula. The expected expression is

rate ¼ k pnA pmB (E:17)

and the goal is to find the values of k, n, and m that give the best fit of the rate for various

partial pressures of substances A and B. This form is not linear, which is a requirement of

multiple regression, but a transformation can make it linear. Take the logarithm of both

sides of the equation.

ln (rate) ¼ ln k þ n ln pA þ m ln pB (E:18)

This equation has the following form:

y ¼ aþ bx1 þ cx2 (E:19)

where the dependence upon two or more variables is clear. The data is entered into the

spreadsheet, and the various terms are transformed as shown in Table E.3. Columns A

and B are the partial pressures of the two chemicals for which the rate is measured, as indi-

cated in column C.

Step 1 Obtain columns D, E, and F by taking the logarithm of columns A, B, and C,

respectively. Do this in the first cell (D2), copy it across the E and F rows, and copy

down the three rows (D2, E2, and F2).

Step 2 Proceed with parameter estimation by choosing ‘Tools/Data Analysis,’ and then

choosing ‘Regression.’ If ‘Data Analysis’ does not appear in your menu under ‘Tools,’ you

may have to install it from the original Excel CD. Enter F2:F13 for the y values and

Figure E.4. Linear (a) and quadratic (b) curve fit to the data in Table E.2 using MATLAB.
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D2:E13 for the x values. This tells the computer that you want the best line representing

ln(rate) depending linearly upon ln pa and ln pb.

Step 3 There are several other options; choose residuals, residual plots, and line fit plots.

These are all useful for evaluating the results. You can place the results on another sheet in

the same Workbook or on the same sheet by specifying a location. Table E.4 shows part of

the output. The best fit is for

a ¼ 1:9608, b ¼ 0:9804, c ¼ 0:1896, k ¼ ea ¼ 7:105 (E:20)

The curve fit is then

rate ¼ 7:105 p0:9804A p0:1896B (E:21)

The standard error gives an idea of how accurately the parameter is determined. If this value

is a significant fraction of the parameter itself, the data is probably too scattered to be cor-

related in the way you have chosen. Also note the residuals, which are the errors in predict-

ing the data. ‘Residuals’ should be both positive and negative with no trends. If the first five

residuals were negative and the last six residuals were positive, it would indicate some sys-

tematic trend that is not accounted for by the formula used, such as Eq. (E.19). Figure E.5

shows one residual plot, indicating that the errors are scattered and both positive and nega-

tive with no trends. The r2 value is 0.9956, which indicates a good correlation.

The rate can be calculated for each data point and compared with the data to obtain a

residual. Those residuals are summed to obtain a least squares value for the correlation, as

shown in Table E.5.

s2 ¼
XN
i¼1

½ratei � rate (pai; pbi)�
2

N
(E:22)

TABLE E.3. Reaction Rate Data as a Function of Partial Pressures

A B C D E F

1 pa pb rate ln(pa) ln(pb) ln(rate)

2 0.1044 0.1036 0.5051 22.2595 22.2672 20.6830

3 0.1049 0.2871 0.6302 22.2547 21.2479 20.4617

4 0.1030 0.5051 0.6342 22.2730 20.6830 20.4554

5 0.2582 0.1507 1.3155 21.3540 21.8925 0.2742

6 0.2608 0.3100 1.5663 21.3440 21.1712 0.4487

7 0.2407 0.4669 1.5981 21.4242 20.7616 0.4688

8 0.3501 0.0922 1.6217 21.0495 22.3838 0.4835

9 0.3437 0.1944 1.8976 21.0680 21.6378 0.6406

10 0.3494 0.5389 2.1780 21.0515 20.6182 0.7784

11 0.4778 0.1017 2.1313 20.7386 22.2857 0.7567

12 0.4880 0.2580 2.7227 20.7174 21.3548 1.0016

13 0.5014 0.5037 3.1632 20.6904 20.6858 1.1516
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You might think at this point the correlation is complete. It is not, though, because the

data were transformed to make the parameter estimation problem linear. Thus, the stat-

istics are in terms of the transformed problem. It is always a good idea to calculate the

curve fit using the original variables. You can do this most conveniently by duplicating

some columns so they are adjacent for plotting purposes, as shown in Table E.6.

Column L is the rate data, duplicated. Column M is the prediction using Eq. (E.21).

Columns N and O are duplicated to permit a straight line, as shown in Figure E.6. This

figure plots the predicted value, column M, vs the experimental one, column L.

Step 1 You can make the figure by choosing ‘Insert/Chart’ as before, plotting columns L

and M using only data points (no line).
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Figure E.5. Residual plot for reaction rate correlation.
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Step 2 If the correlation is perfect, all of the predicted values will lie on a straight line

going through the origin with a slope of 1.0. To get that line, right-click (Ctrl-click on the

Mac) on the diagram, choose ‘Source Data/Series, ‘add a series,’ and add the second curve
(columns N and O).

Step 3 Then right-click on one of those data points, choose ‘Format data series,’ and

choose ‘line’ and unselect ‘data points.’ The correlation is reasonably good, and the

example is finished.

TABLE E.5. Least Squares Calculation for Reaction Rate Correlation Using

Logarithmic Form

F G H I J

ln(rate) Predicted ln(rate)

Predicted Rate

using ln Form

Residual Using ln

Form

Squares of

Residuals

20.6830 20.6841 0.5045 20.0006 3.1571 � 1027

20.4617 20.4862 0.6150 20.0152 2.3238 � 1024

20.4554 20.3970 0.6723 0.0381 1.4525 � 1023

0.2742 0.2746 1.3161 0.0006 3.2152 � 1027

0.4487 0.4212 1.5238 20.0425 1.8071 � 1023

0.4688 0.4202 1.5223 20.0758 5.7487 � 1023

0.4835 0.4800 1.6161 20.0056 3.1433 � 1025

0.6406 0.6033 1.8282 20.0694 4.8161 � 1023

0.7784 0.8127 2.2541 0.0761 5.7881 � 1023

0.7567 0.8035 2.2333 0.1020 1.0398 � 1022

1.0016 1.0006 2.7200 20.0027 7.0438 � 1026

1.1516 1.1540 3.1709 0.0077 5.9964 � 1025

(Sum of squares)/N 2.5285 � 1023

TABLE E.6. Collection of Data for Plotting

L M N O

Rate Data Predicted Rate Rate Data Rate Data

0.5051 0.5045 0.5051 0.5051

0.6302 0.6150 0.6302 0.6302

0.6342 0.6723 0.6342 0.6342

1.3155 1.3161 1.3155 1.3155

1.5663 1.5238 1.5663 1.5663

1.5981 1.5223 1.5981 1.5981

1.6217 1.6161 1.6217 1.6217

1.8976 1.8282 1.8976 1.8976

2.1780 2.2541 2.1780 2.1780

2.1313 2.2333 2.1313 2.1313

2.7227 2.7200 2.7227 2.7227

3.1632 3.1709 3.1632 3.1632
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NONLINEAR REGRESSION

Nonlinear regression is a curve fit in which the unknown parameters enter into the problem

in a nonlinear way. Nonlinear regression is much more difficult (for the computer), so it is

best to always try to manipulate your model into a form that is linear. Sometimes that is not

possible, and then nonlinear regression must be used. You need to be aware, though, that

the methods described here do not always work. Nonlinear regression uses techniques bor-

rowed from the field of optimization, and it is difficult to construct a method that works

every single time for every problem.

To use nonlinear regression, you minimize Eq. (E.3) with respect to the unknown para-

meters. Polynomial and multiple regression do this too (behind the scenes), but for non-

linear curve fits it is necessary to use functions such as Solver in Excel and fminsearch

in MATLAB. This is demonstrated using the same example given above for multiple

regression.

Nonlinear Regression Using Excel

Step 1 Place the data on a new sheet in the Workbook, columns A, B, and C from

Table E.3, as reproduced in Table E.7.

Step 2 Select some cells for the parameters k, n, and m. Arbitrary values are inserted –

use your best guess, because that will possibly mean the difference between success and

failure.

Step 3 In column D, calculate the value of rate using the parameters in C16:C18, the data

in columns A and B, and the formula, Eq. (E.17).

Step 4 Make column E the difference between columns C and D, and then square the

result and put it in column F.

Prediction of reaction rate
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Figure E.6. Comparison of predicted reaction rate vs experimental value.
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Step 5 Sum Column F, divide by the number entries [COUNT(F2:F13)] to obtain the

(sum of squares)/N, Eq. (E.3).

Step 6 The goal is to minimize F17 by choosing values C16:C18. To do that, choose

‘Tools/Solver.’ You might have to add it to the Excel program if that was not done

when the program was installed. A screen appears in which you insert F17 as the quantity

to be affected, and choose ‘Min’ as the option. Then insert C16:C18 as the cells to be

changed, and click ‘Solve.’ The results are shown in Table E.8.

The best correlation is

rate ¼ 6:978 p0:9561A p0:1957B (E:23)

These numbers are slightly different from those obtained using multiple regression. Mul-

tiple regression and nonlinear regression obtained the solution by minimizing two differ-

ent objective functions. Notice that the (sum of squares/N) is smaller when using

nonlinear regression, because nonlinear regression minimizes that exact quantity. If non-

linear regression does not work, though, multiple linear regression is your only option.

Nonlinear Regression Using MATLAB

Step 1 Construct a function which calculates the (sum of the squares)/N, using these

commands.

function value=para(parameters)
k=parameters(1);
n=parameters(2);

TABLE E.7. Correlation of Rate Expression using ‘Solver’ in Excel; Initial Guess

1

A

pa

B

pb

C

Measured

Rate

D

Calculated

Rate

E

Residual

F

Residual

Squared

2 0.1044 0.1036 0.5051 0.0108 0.4943 2.4432 � 1021

3 0.1049 0.2871 0.6302 0.0301 0.6001 3.6010 � 1021

4 0.1030 0.5051 0.6342 0.0520 0.5822 3.3893 � 1021

5 0.2582 0.1507 1.3155 0.0389 1.2766 1.6297 � 100

6 0.2608 0.3100 1.5663 0.0808 1.4855 2.2066 � 100

7 0.2407 0.4669 1.5981 0.1124 1.4857 2.2074 � 100

8 0.3501 0.0922 1.6217 0.0323 1.5894 2.5263 � 100

9 0.3437 0.1944 1.8976 0.0668 1.8308 3.3518 � 100

10 0.3494 0.5389 2.1780 0.1883 1.9897 3.9589 � 100

11 0.4778 0.1017 2.1313 0.0486 2.0827 4.3377 � 100

12 0.4880 0.2580 2.7227 0.1259 2.5968 6.7433 � 100

13 0.5014 0.5037 3.1632 0.2526 2.9106 8.4719 � 100

14

15

16 k 1 (Sum of

17 n 1 squares/N) 3.03139933

18 m 1
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m=parameters(3);
pa=[0.1044 0.1049 0.1030 ... ];
pb=[0.1036 0.2871 0.5051 ... ];
rate1=[0.5051 0.6302 0.6342 ... ];
value=0.;
for i=1:12

rate2(i)=k*(pa(i)^n)*(pb(i)^m);
value=value+(rate1(i)-rate2(i))^2;

end
value=value/12;

Step 2 Test this function by removing the semi-colons. Then issue the following

command

feval(@para,[2 3 4])

and calculate a few terms to check. In this case, Table E.7 can be used to provide values for

checking.

Step 3 The minimum of value is found using the fminsearch function:

fminsearch(@para,[1 1 1])
ans=6.9776 0.9561 0.1957

These numbers are the same as obtained using Solver in Excel, as expected. The best cor-

relation is Eq. (E.23).

TABLE E.8. Correlation of Rate Expression Using Solver in Excel

A B C D E F

1 pa pb Measured Rate Calculated Rate Residual Residual Squared

2 0.1044 0.1036 0.5051 0.5162 20.0111 1.2379 � 1024

3 0.1049 0.2871 0.6302 0.6331 20.0029 8.2401 � 1026

4 0.1030 0.5051 0.6342 0.6948 20.0606 3.6753 � 1023

5 0.2582 0.1507 1.3155 1.3203 20.0048 2.2770 � 1025

6 0.2608 0.3100 1.5663 1.5351 0.0312 9.7617 � 1024

7 0.2407 0.4669 1.5981 1.5404 0.0577 3.3307 � 1023

8 0.3501 0.0922 1.6217 1.6045 0.0172 2.9704 � 1024

9 0.3437 0.1944 1.8976 1.8242 0.0734 5.3903 � 1023

10 0.3494 0.5389 2.1780 2.2623 20.0843 7.1090 � 1023

11 0.4778 0.1017 2.1313 2.2018 20.0705 4.9745 � 1023

12 0.4880 0.2580 2.7227 2.6957 0.0270 7.2844 � 1024

13 0.5014 0.5037 3.1632 3.1534 0.0098 9.5898 � 1025

14

15

16 k 6.97755309 (Sum of

17 n 0.95605386 squares/N) 0.00222768

18 m 0.195694
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Appendix F
MATHEMATICAL METHODS

The software packages Excel, MATLABw, Aspen Plus, and FEMLAB use mathematical

methods that are pre-programmed. Engineers can solve chemical engineering problems

without knowing the details of those mathematical methods, but some of you may be inter-

ested in the methods themselves. A brief overview is given here. There are numerous

books that describe the methods in greater detail, including Finlayson (1980, 1992),

Riggs (1994), Hanna and Sandall (1995), Constantinides and Mostoufi (1999), and

Cutlip and Shacham (1999), as well as the Mathematics Section of Perry’s Chemical

Engineers’ Handbook (Finlayson et al., 1997) and Ullmann’s Encyclopedia of Industrial

Chemistry (Finlayson, 1990). The subjects include:

. Nonlinear algebraic equations;

. Ordinary differential equations as initial value problems;

. Ordinary differential equations as boundary value problems;

. Partial differential equations in time and one space dimension;

. Partial differential equations in two or more spatial dimensions (and possibly time, too).

ALGEBRAIC EQUATIONS

A single nonlinear algebraic equation can be written as

f (x) ¼ 0 (F:1)

Iterative methods are used to solve such equations, and the successive substitution and

Newton–Raphson methods are described here. Let xk be the value of x at the kth iteration.

The goal is to make xk satisfy Eq. (F.1) as k increases.

Introduction to Chemical Engineering Computing, by Bruce A. Finlayson
Copyright # 2006 John Wiley & Sons, Inc.
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Successive Substitution

In this method, the equation is multiplied by a constant, b, and an iterative equation is used.

xkþ1 ¼ xk þ bf (xk) (F:2)

Under certain conditions, it can be proved that this method converges (Finlayson, 1980). The

conditions require a bounded derivative df/dx and also a particular sign of b. The smaller the

value of b the slower the convergence to the solution is, but also then it is more likely that a

solution can be found. It is sometimes hard to predict a good value of b.

Newton–Raphson

In this method, a Taylor series is written for Eq. (F.1), evaluated at the xk value:

f (xkþ1) ¼ f (xk)þ
df

dx

����
xk
(xkþ1 � xk)þ

d2f

dx2

����
xk

(xkþ1 � xk)2

2!
þ � � � (F:3)

The terms higher than linear in xkþ12 xk are discarded, and the left-hand side is set to

zero. You want the left-hand side to be zero, of course, and when you are close to the

solution the higher-order terms are small. The iterations then proceed as follows:

xkþ1 ¼ xk �
f (xk)

df =dxjxk
(F:4)

Convergence proofs are available under certain conditions (Finlayson, 1980), and once the

iterate value gets close to the solution, the convergence is very rapid. This method is gen-

erally better than the successive substitution method, except for special cases, but some-

times a good initial guess is required.

The Newton–Raphson method can be extended to sets of nonlinear equations. When

the equations are

fi({xj}) ¼ 0, i, j ¼ 1; . . . ; n (F:5)

the expansion is

fi({x
kþ1}) ¼ fi({x

k})þ
Xn
j¼1

@fi
@xj

����
xk

�
xkþ1
j � xkj

�
þ � � � (F:6)

You set the left-hand side to zero, neglect the second-order and higher terms, and

rearrange the equations as

Xn
j¼1

@fi
@xj

����
xk
(xkþ1

j � xkj ) ¼ �fi({x
k}) (F:7)

This is a linear problem, which can be written in the form

Xn
j¼1

Ak
ij(x

kþ1
j � xkj ) ¼ �fi({x

k}), Ak
ij ¼

@fi
@xj

����
xk

(F:8)
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This problem is now a set of linear equations, which is easily solved. The matrix A is

called the Jacobian. Linear algebra is used to solve this set of equations (Finlayson, 1980).

Ak(xkþ1 � xk) ¼ �fk, xkþ1 ¼ xk � (Ak)�1fk (F:9)

After each step, the Jacobian and function f are reevaluated and the procedure is repeated.

The Newton–Raphson method for sets of equations also converges quickly once one is

close to the solution, but iterations can easily diverge unless special precautions are

taken. The programs used in this book take those precautions, which makes them more

reliable than programs you might write yourself.

The Newton–Raphson method requires that you differentiate the function with respect

to all the variables. The secant method avoids that mathematical step and uses a numerical

difference to calculate the derivative:

@fi
@xj

����
xk
¼

fi(x
k
j )� fi(x

k�1
j )

xkj � xk�1
j

(F:10)

The value of the functions is kept after each iteration in order to make this calculation. The

Wegstein method is essentially a secant method, with some constraints on the parameters

as described in Chapter 7. It is also possible to use a numerical derivative.

@fi
@xj

����
xk
¼

fi(x
k
j þ 1)� fi(x

k
j )

1
(F:11)

One of the advantages of FEMLAB is that it differentiates the equations symbolically,

including any terms that you add to the problem, and this enhances convergence. The para-

metric solver in FEMLAB is possible because the Newton–Raphson method is being

used. Consider Eq. (F.1) when it depends upon a parameter:

f ½x(a),a� ¼ 0 (F:12)

Differentiate Eq. (F.12) with respect to a:

@f

@x

����
a

dx

da
þ

@f

@a

����
x

¼ 0 (F:13)

Once the solution to Eq. (F.12) is known, it is easy to find the derivative of the solution

with respect to the parameter. Because the matrix inverse is already known, this calcu-

lation is fast. (Actually, a lower-upper (LU) decomposition would be done rather than

an inverse, as it is twice as fast; see Finlayson, 1980.) When changing the parameter, a

linear extrapolation about the current solution is then possible:

x(aþ Da) ¼ x(a)þ
dx

da
Da (F:14)
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This often gives an excellent guess of the solution for the next value of a. Sometimes even

these methods do not solve the very hardest problems. In that case, a homotopy method

may be necessary (Finlayson, 1990).

ORDINARY DIFFERENTIAL EQUATIONS AS INITIAL

VALUE PROBLEMS

There are excellent methods for solving sets of first-order ordinary differential equations

that are initial value problems (ODE-IVP). An example of a ODE-IVP is

dy

dt
¼ f (t, y), y(0) ¼ y0 (F:15)

Note that all the conditions are known at one time, t ¼ 0. Thus it is possible to calculate the

function on the right-hand side at t ¼ 0 to obtain the derivative there. This makes the set of

equations initial value problems. The equations are ordinary differential equations because

there is only one independent variable. Any higher-order ordinary differential equation can

be turned into a set of first-order ordinary differential equations; they are initial value

problems if all the conditions are known at the same value of the independent variable

[Finlayson, 1980, 1997 (p. 3-54), 1990 (Vol. B1, p. 1-55)]. The methods for initial

value problems are explained here for a single equation; extension to multiple equations

is straightforward. These methods are used when solving plug-flow reactors (Chapter 8) as

well as time-dependent transport problems (Chapters 9–11).

Euler’s Method

In numerical solutions of ODE-IVP, the solution y at the point tn is represented by yn. The

simplest method is Euler’s method, which is obtained by writing a difference expression

for the derivative:

ynþ1 � yn

Dt
¼ f (tn, yn) (F:16)

The first-order approximation of the derivative is not very accurate, so this method is not

very accurate either. It is easy to program, though. Rearrange Eq. (F.16) as

y nþ1 ¼ y n þ Dt f (t n, y n) (F:17)

This equation can be applied repeatedly to go from t ¼ 0 to any time, t. Indeed, Figure A.3

shows a Euler method applied to the problem:

dy

dt
¼ �y, y(0) ¼ 1 (F:18)

The time step is taken as 0.01. The cells representing dy/dt are calculated using –y in the

same row. Thus, column C is taken as the negative of column D. Then the value of y in the
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next row is taken as

B3: ¼ B2þ $E$2�C1: (F:19)

which is the equivalent of Eq. (F.17). These equations are copied down to obtain the whole

solution shown in Figure A.4.

There are three major problems for the Euler method. First, the accuracy is poor, since

the method is based upon Eq. (F.16), in which only a first-order difference expression is

used. The errors in the method are proportional to Dt. Second, stability is difficult to

achieve for many problems. The only way to have a stable Euler method is to use a

small enough time step-size, but you may not know what value is sufficient. Furthermore,

a value that is sufficient at the beginning may not be sufficient later on, and it may take an

excessively long time to finish the computation. Third, to validate the results it is necessary

to solve the problem at least twice, with different time-steps. The method can, however, be

programmed in Excel, as Figures A.3 and A.4 demonstrate.

Runge–Kutta Methods

The Euler method can be improved by doing the calculation in two steps:

�y ¼ yn þ
Dt

2
f (tn, yn)

ynþ1 ¼ yn þ Dt f tn þ
Dt

2
,�y

� � (F:20)

This is a second-order Runge–Kutta method (Finlayson, 1980), sometimes called the mid-

point rule. The first step is an approximation of the solution halfway between the beginning

and ending time, and the second step evaluates the right-hand side at that mid-point. The

error goes as (Dt)2, which is much smaller than that achieved with the Euler method. The

second-order Runge–Kutta methods (there are several) also have a stability limitation.

The method used in MATLAB is a fourth-order Runge–Kutta method with a variable

step-size. The Dt is changed to guarantee the accuracy of the calculation. The accuracy

is estimated at each step, and the step-size is reduced to meet the specified accuracy.

The method still has a stability limitation. The variable step size overcomes two of the

problems – knowing what step size to use and using a small enough step-size to guarantee

a specified accuracy. This makes the method very robust, which is why it is the workhorse

in MATLAB. The method is called ode45 because the fourth-order method is chosen in

such a way that it achieves fifth-order accuracy. It is based on an older program called

RKF45 (Runge-Kutta-Feldberg) that was written many decades ago. More details can

be found in Perry’s Chemical Engineers’ Handbook (Finlayson, 1997, p. 3-55) and Ull-

mann’s Encylopedia of Industrial Chemistry (Finlayson, 1990, Vol. B1, pp. 1-56–57).

In some problems, certain parameters vary quickly and others vary more slowly. For

example, in packed-bed chemical reactors, the concentration can change quickly in

time, but the temperature will not change rapidly because of the large heat capacity of

the solid. Such problems are called ‘stiff’ [Finlayson, 1997 (p. 3-56), 1990 (Vol. B1,

p. 1-60–61)]. The mathematical definition is that the eigenvalues of the Jacobian are

widely separated, certainly by factors of thousands, perhaps by factors of millions. It
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turns out that the stable step size of a Runge–Kutta method is limited by the largest eigen-

value (fastest responding variable), but the time for something to happen is controlled by

the smallest eigenvalue (slowest responding variable). Thus, for stiff problems, many

time steps would need to be taken with a small time step, and the calculations would be

very slow.

Implicit methods have been developed to overcome this problem. The backward Euler

method is

ynþ1 � yn

Dt
¼ f (tnþ1; ynþ1), or ynþ1 � Dt f (tnþ1; ynþ1) ¼ yn (F:21)

This method is still first-order, but it is stable for any step size. The only problem is that Eq.

(F.21) is a nonlinear algebraic equation for ynþ1, and if there are several differential

equations, there will be a set of nonlinear algebraic equations to be solved. This is not an

easy task. Some higher-order methods are stable, too; the best are Gear’s backward differ-

ence formulas (Gear, 1971; Finlayson, 1997, p. 3-56). Methods like this are also included in

MATLAB, as ode15s and ode23s. These programs adjust the step size to maintain a speci-

fied accuracy. They also use sophisticated methods to solve the set of nonlinear equations.

If a solution cannot be found, the step-size is reduced; then a solution is easier to find.

It is also possible to have differential-algebraic equations. There will be both differential

and algebraic equations, with all the variables possibly occurring in all the equations. This

essentially means that the variables determined from the algebraic equations are acting infi-

nitely fast; this is merely a system of stiff equations taken to an extreme. Special methods

exist for these problems, too. Because some of the variables are supposed to change

immediately, they cannot be included in the error tests used to select the time step.

ORDINARY DIFFERENTIAL EQUATIONS AS BOUNDARY

VALUE PROBLEMS

Transport problems involve second-order differential equations. While a single second-

order differential equation can be reduced to two first-order differential equations, the

problem is not an initial value problem because there are boundary conditions at two

different values of the independent variable. This section describes methods for solving

such problems, and illustrates them with the finite difference method as well as the

finite element method.

The prototype problem is heat conduction in a slab or reaction and diffusion in a flat

layer, as described in Chapter 9. Here the methods are demonstrated on a problem with

reaction and diffusion in a flat layer with a first-order chemical reaction.

D
d2c

dx2
¼ kc, with boundary conditions

dc

dx
(0) ¼ 0, c(R) ¼ c0 (F:22)

Finite Difference Method

This method is explained first because it is the oldest and simplest to explain, even though

it is not the method embedded in FEMLAB. The first step is to divide the spatial region
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into smaller regions by placing grid points on the line (see Figure F.1). Here the grid points

are evenly spaced; although this is not necessary, it does make the presentation easier to

grasp. The unknown function y(x) is expanded in a Taylor series about the (unknown)

value at a grid point:

y(x) ¼ y(xi)þ
dy

dx

����
i

(x� xi)þ
d2y

dx2

����
i

(x� xi)
2

2!
þ � � � (F:23)

This equation is evaluated for points on either side:

y(xiþ1) ¼ y(xi)þ
dy

dx

����
i

(xiþ1 � xi)þ
d2y

dx2

����
i

(xiþ1 � xi)
2

2!
þ � � �

y(xi�1) ¼ y(xi)þ
dy

dx

����
i

(xi�1 � xi)þ
d2y

dx2

����
i

(xi�1 � xi)
2

2!
þ � � �

(F:24)

If the last two equations are subtracted, and rearranged, you can obtain the following

approximation for the first derivative when the grid spacing is uniform:

dy

dx

����
i

¼
y(xiþ1)� y(xi�1)

2Dx
when Dx ¼ (xiþ1 � xi) ¼ (xi � xi�1) (F:25)

This equation is second order, meaning that the errors decrease proportional to Dx2 once

Dx is small enough. The two equations can also be rearranged by neglecting the second-

order terms, to obtain two other approximations for the first derivative:

dy

dx

����
i

¼
y(xiþ1)� y(xi)

Dx

dy

dx

����
i

¼
y(xi)� y(xi�1)

Dx

(F:26)

These approximations are only first order, and errors are proportional to Dx when it is

small enough. Another rearrangement gives an approximation for the second derivative.

Take the sum of Eq. (F.24) and rearrange it to give:

d2y

dx2

����
i

¼
y(xiþ1)� 2y(xi)þ y(xi�1)

Dx2
(F:27)

This approximation can be shown to be second order in Dx.

The idea in the finite difference method is that the differential equation, valid for all

positions x, is replaced by a set of equations representing the equation only at the grid

points, using the equations derived above. Thus, for problem Eq. (F.22), the equation at

grid point i is:

D
ciþ1 � 2ci þ ci�1

Dx2
¼ kci, where ci ¼ c(xi) (F:28)
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Such an equation is written for each interior grid point shown in Figure F.1. At the bound-

aries, the finite difference method uses the boundary conditions, again with the finite

difference representation of derivatives.

dc

dx

����
1

¼
c(x2)� c(x1)

Dx
, cnþ1 ¼ 1 (F:29)

It is possible to use a more accurate (second-order) derivative, at the cost of extra program-

ming. Equations (F.28) and (F.29) represent a set of nþ 1 algebraic equations in nþ 1

unknowns. They are solved using linear algebra techniques. For this simple, one-dimen-

sional problem, a special method is used for a tri-diagonal matrix. See Finlayson (1980)

for complete details.

After the linear algebra problem is solved, the result is an approximation for y(xi) at

each ith grid point. This can be plotted, and the points can be joined by straight lines,

giving an approximation to the solution of the differential equation. More elaborate

methods of interpolation are also possible. The solution to the finite difference equations,

though, is an approximation to the solution to the differential equation. To assess its accu-

racy, you must refine the grid and solve another problem. By doubling the number of

points once, and then twice, it is possible to see if the solution changes appreciably. If

not, you have found an adequate approximation.

Finite Element Method

The finite element method proceeds in a slightly different way. The unknown solution y(x)

is expanded in a series of functions, called trial functions:

c(x) ¼
Xnþ1

i¼1

ciNi(x) (F:30)

The functions in the finite element method are constant, linear, or quadratic functions of

position in a small region (called a finite element). The idea is explained for interpolation

of a known function, Eq. (F.31):

z ¼
11x4 þ x

12
(F:31)

which is plotted in Figure F.2. The region 0 � x � 1 is divided into finite elements using

the same grid points shown in Figure F.1. If the approximations are taken as constant in

each element, two interpolations are shown in Figure F.3. Even though only eight or 16

elements are used, the general shape of the function is clear.

i = 1          2          3           4 n         n+1

y1 y2 y3 y4 yn yn + 1

Figure F.1. Finite difference grid.
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Next, the same mesh is used, but with linear trial functions. Interpolation with 4, 8, and

16 elements is shown in Figure F.4. This representation is much better than that in Figure

F.3. Indeed, with 16 elements, the curve – while composed of straight-line segments –

looks like a smooth curve. Whatever the trial function, the approximation is better

when more elements are used, and mesh refinement is the easiest way to ensure that the

approximation is accurate enough.

It is beyond the scope of this book to describe the method used to obtain the coefficients

in Eq. (F.30), and how the boundary conditions are included, but complete details are

available (Finlayson, 1972, 1980). There is a variety of books available about the finite

element method. A book focusing on flow and convection/diffusion is by Gresho and

Sani (1998). The representation of the second derivative is the same as given by the

finite difference method, but the representation of the function is different. The finite
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Figure F.2. Function z ¼ (11x4þ x)/12.
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Figure F.3. Interpolation with eight (a) and 16 (b) constant finite elements.
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element method applied to Eq. (F.22) with linear trial functions is:

D
ciþ1 � 2ci þ ci�1

Dx2
¼

k

6
(ciþ1 þ 4ci þ ci�1), where ci ¼ c(xi) (F:32)

If quadratic functions are used, there are more differences; in fact, the only time the rep-

resentations are the same is for first and second derivatives that are second-order and when

using linear trial functions in the finite element method.

The boundary conditions are applied in the finite element method in a different way

than in the finite difference method, and then the linear algebra problem is solved to

give the approximation of the solution. The solution is known at the grid points, which

are the points between elements, and a form of the solution is known in between, either

linear or quadratic in position as described here. (FEMLAB has available even higher

order approximations.) The result is still an approximation to the solution of the differen-

tial equation, and the mesh must be refined and the procedure repeated until no further

changes are noted in the approximation.
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Figure F.4. Interpolation of z ¼ (11x4þ x)/12 with four (a), eight (b), and 16 (c) linear finite

elements.
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Initial Value Methods

Another option for solving boundary value problems is to treat them like initial value

problems. Since a second-order equation can be reduced to two first-order equations,

two initial conditions are necessary. One condition will be known at a boundary.

Simply assume a value for the other dependent variable at that same boundary, integrate

to the other side and check if the required boundary condition is satisfied. If not, change the

initial value and repeat the integration. The success of this method depends upon the skill

with which you program the iterations from one trial to the next.

Finite Difference Method in Excel

It is possible to program the finite difference method in Excel and use the ‘Calculation’

feature to handle the circular reference. Turn off the iteration, prepare the spreadsheet,

and then turn the calculation back on. Whether this converges depends upon the initial

guess.

To see how this is done, rearrange Eq. (F.28) to the following form:

ci ¼
ciþ1 þ ci�1

2þ kDx2=D
(F:33)

Identify the cells in the spreadsheet with the value of concentration at a node, i, as shown

in Figure F.5. Put the value of kDx2=D in cell A2. The equation for cell E1 is the analog of

Eq. (F.33):

=(D1+F1)/(2+$A$2) (F.34)

Next copy this equation over a series of cells that correspond to the number of grid points.

For the first and last cell (grid point) use a different equation, appropriate to the boundary

condition. Then turn on the iteration feature to get the solution.

The next step is to re-solve the problem using more grid points, and a smaller Dx. This

means you have to program the spreadsheet again, but it does give you an indication of

whether the answer changes much as the mesh is refined, which is what insures you

that you have solved the problem accurately enough.

The same thing can be done using the finite element method, but the details are more

complicated and beyond the scope of this book.

PARTIAL DIFFERENTIAL EQUATIONS IN TIME AND

ONE SPACE DIMENSION

Time-dependent transport problems lead to partial differential equations, but these are

easily solved by combining the methods for initial value problems and boundary value

D1 E1 F1

ci-1 ci ci+1

Figure F.5. Finite difference method in Excel for boundary value problems.
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problems. Take the heat conduction problem in Eq. (9.35).

@T

@t
¼ a

@2T

@x2
(F:35)

Write the temperature as a function of position, x, and time, t, but consider only the

positions where there is a grid point, xi. The function T(xi, t) is a function of only one

independent variable, t, and it can be written as Ti(t). It can be differentiated in time as

follows:

@

@t
½T(xi, t)� ¼

dTi(t)

dt
(F:36)

Thus, the differential equation (F.35) defined at the xi grid point using the finite difference

method is:

dTi

dt
¼ a

Tiþ1 � 2Ti þ Ti�1

Dx2
(F:37)

This equation is written for every grid point, and you have a set of initial value problems

for the set of {Ti(t)}.

dT2

dt
¼ a

T3 � 2T2 þ T1

Dx2
,

dT3

dt
¼ a

T4 � 2T3 þ T2

Dx2

dTi

dt
¼ a

Tiþ1 � 2Ti þ Ti�1

Dx2
,

dTn

dt
¼ a

Tnþ1 � 2Tn þ Tn�1

Dx2

(F:38)

or

dTi

dt
¼
Xnþ1

j¼1

AijTj; j ¼ 2; . . . ; n

The boundary conditions also need to be included, leading to a set of differential-

algebraic equations as an initial value problem. Standard methods for ordinary differential

equations as initial value problems can be applied if the boundary conditions are

incorporated into the differential equations, which is possible when the boundary

conditions are linear.

While the standard methods can be applied, the set of equations (F.38) is stiff, and

becomes stiffer as the grid resolution becomes smaller. One eigenvalue of the matrix on

the right-hand side of Eq. (F.38) approximates the slowest time response of the differential

equation, but the largest eigenvalue is some constant divided by the grid spacing squared.

Thus, as you refine the mesh, the points become closer together, and the eigenvalues get

further apart, making the problem stiffer. Thus, when solving partial differential equations,

stiff methods are used. In MATLAB, for example, ode45 is replaced by ode15s or ode23s.

Another complication can be important: In a problem with convection, the rate of con-

vection may be much faster than the rate of diffusion. The solution may be like a wave

moving along in space. Such problems lead to difficulties when solved on a fixed mesh,

and these difficulties apply to both finite element and finite difference methods. For

example, the convective diffusion equation representing convection with velocity v
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down a packed bed is:

@c

@t
þ u

@c

@x
¼ D

@2c

@x2
(F:39)

The boundary and initial conditions are:

�D
@c

@x
þ uc

����
x¼0

¼ uc0,
@c

@x

����
x¼L

¼ 0, c(x, 0) ¼ cin(x) (F:40)

If the inlet condition changes in time, then a wave moves downstream. This equation can

be made nondimensional, and this is instructive here.

@c0

@t0
þ Pe

@c0

@x0
¼

@2c0

@x02
(F:41)

The Peclet number is the rate of convection divided by the rate of diffusion.

Pe ¼
u

L
�
L2

D
¼

uL

D
(F:42)

The finite element method applied to this equation gives the following equation at each

grid point:

1

6

dciþ1

dt
þ 4

dci

dt
þ
dci�1

dt

� �
þ Pe

ciþ1 � ci�1

2Dx
¼

ciþ1 � 2ci þ ci�1

Dx2
(F:43)

It is possible to show that the finite element solution will oscillate wildly above and below

the exact solution whenever there is a sharp change in the concentration and the mesh

Peclet number is too large (Finlayson, 1992, p. 29). Thus you need

PeDx � 2 (F:44)

One way to fix this problem is to refine the mesh until Eq. (F.44) is satisfied, but for large

problems that approach may require too many points (especially in 2D and 3D). Another

way is to add some ‘fake’ diffusion to the problem. In this case, the Petrov–Galerkin

method is

1

6

dciþ1

dt
þ 4

dci

dt
þ
dci�1

dt

� �
þ Pe

ciþ1 � ci�1

2Dx
¼ 1þ

PeDx

2

� �
ciþ1 � 2ci þ ci�1

Dx2
(F:45)

and this makes the oscillations smaller or eliminates them. The trick is to add enough

‘fake’ diffusion to dampen the oscillations but not so much as to change the solution.

There are a number of other techniques for treating this difficulty, as reviewed by Finlay-

son (1992). In FEMLAB this is called streamline diffusion.

PARTIAL DIFFERENTIAL EQUATIONS IN TIME AND ONE SPACE DIMENSION 319



PARTIAL DIFFERENTIAL EQUATIONS IN TWO SPACE DIMENSIONS

You can solve problems in two space dimensions using the same methods as applied in one

dimension, except that the details become more complicated. The problems are stiffer, and

implicit methods are usually required. The problem of unwanted oscillations is more

severe because added diffusion may smooth the solution in the flow direction, as

desired, but it may also diffuse it in the direction perpendicular to flow, which is not

desired. Careful treatment, though, allows for streamline diffusion; that is, the extra diffu-

sion is only added in the flow direction. These details have been handled by FEMLAB,

which frees you to concentrate on the physics and the problem you want to solve.

The trial functions are usually defined on an element. A square element in two dimen-

sions with bilinear trial functions has four trial functions per element. The element covers

0 � u � 1, 0 � v � 1, and the trial functions are:

N1 ¼ (1� u)(1� v), N2 ¼ u(1� v)

N3 ¼ uv, N4 ¼ (1� u)v
(F:46)

The domain is covered with elements to represent a function on the entire domain.

Consider the function

z ¼ x2 exp( y� 0:5) (F:47)

which is plotted in Figure F.6. Plots of the finite element interpolation on 4 � 4 ¼ 16

bilinear elements or 8 � 8 ¼ 64 bilinear elements are shown in Figure F.7. Sixty-four

elements does a very good job of representing the function. Either variational principles

or the Galerkin method are used to determine these trial functions to represent the solution

to differential equations. The method is beyond the scope of this book and is covered by

Finlayson (1972, 1980).

Figure F.6. Function z ¼ x2 exp(y2 0.5).
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Finite Difference Method for Elliptic Equations

The finite difference method is easy to program in Excel, provided the equation is not too

complicated. Solving the problem in Excel does require solving it more than once, though,

to assess the accuracy. As an example, take the heat conduction equation with a heat

generation term, Eq. (F.48):

k
@2T

@x2
þ
@2T

@y2

� �
¼ Q (F:48)

The finite difference form of this equation is

Tiþ1, j � 2Ti, j þ Ti�1, j

Dx2
þ
Ti, jþ1 � 2Ti, j þ Ti, j�1

Dy2
¼

Q

k
(F:49)

where Ti, j is the temperature at the ith location in the x-direction and the jth location in the

y-direction. Take the case when Dx ¼ Dy and rearrange as shown in Eq. (F.50):

Ti, j ¼
Tiþ1, j þ Ti�1, j þ Ti, jþ1 þ Ti, j�1

4
� Dx2

Q

k
(F:50)

The spreadsheet is arranged as shown in Figure F.8. When the value of Dx2Q=k is placed
in cell A2 the equation for cell E5 is

=(D5+F5+E4+E6)/4-$A$2 (F.51)

Figure F.7. Interpolation of z ¼ x2 exp(y2 0.5) with 16 (a) and 64 (b) bilinear finite elements.

E4-Ti, j-1

D5-Ti-1, j E5-Ti, j F5-Ti+1, j
E6-Ti, j+1

Figure F.8. Finite difference method in Excel for elliptic boundary value problem.
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You copy this equation for every internal grid point, set the boundary equations, and turn

on the iteration feature to obtaing the solution. Then you have to do it again with a finer

mesh to assess the accuracy. If the heat generation term depends upon temperature, it is

easy to include that complication just by inserting the formula in place of $A$2.

SUMMARY

This appendix gives a brief overview of the methods that are preprogrammed in the soft-

ware packages Excel, MATLAB, Aspen Plus, and FEMLAB. The interested reader may

pursue the references for more specific details.
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CHEMICAL INDEX

Acetaldehyde, 40, 70, 71
Acetic acid, 71
Acetone, 82, 84, 85
Acetylene, 69, 70
Air, 70, 82, 84, 85
Ammonia, 22, 39, 41, 53, 62–65, 91, 95, 96,

99, 105, 143, 144

Benzene, 67, 68, 108
i-Butane, 38, 58, 60, 76–78, 81, 83, 86, 88
n-Butane, 9, 12, 16, 28, 34, 37, 38, 58, 60, 76,

81, 83, 86, 88
Butanol, 71

Carbon dioxide, 18, 22, 38, 39, 43–45, 51, 53,
63, 69, 88, 91, 94, 96, 99

Carbon monoxide, 18, 22, 23, 39, 43–45,
51–54, 145, 146, 169, 228

Chlorine, 68, 69

Ethane, 38, 53, 68, 69, 88, 111
Ethanol, see ethyl alcohol
Ethyl acetate, 40, 71
Ethyl alcohol, 36, 37, 40, 70, 71, 88, 109
Ethyl chloride, 53, 68, 69, 108
Ethylene, 53, 68–70, 111
Ethylenedichoride, 69, 70, 108, 109

Hexane, 38, 88
Hydrogen, 18, 22, 23, 39, 41, 43–45, 51–54,

62–65, 67, 68, 71, 91, 94–97, 99, 108,
111

Hydrogen chloride, 53, 68–70, 108

Methane, 38, 54, 67, 68, 88, 108
Methanol, 23, 39, 52

Nitric oxide, 143
Nitrogen, 22, 38, 39, 41, 53, 62–65, 91, 94,

95, 99

n-Octane, 28, 34
Oxygen, 53, 69, 70, 144

i-Pentane, 38, 58, 60, 76, 81, 83, 86, 88
n-Pentane, 28, 34, 37, 38, 58, 60, 76, 81, 83,

86, 88
Polyethylene, 111
Polyvinylchloride, (PVC), 69
Propane, 28, 34, 37, 38, 58, 60, 76–78, 81, 83,

86, 88

Sulfur dioxide, 53, 121
Sulfur trioxide, 53, 121
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Toluene, 67, 68
1,1,2-Trichloroethane, 69, 108
Tri-methyl benzene, 67, 68

Vinyl chloride, 69, 70, 108

Water, 18, 22, 36, 37, 39, 40, 43–45, 51, 53,
54, 70, 82, 84, 85, 88, 143, 204, 214

Xylene, 67, 68
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COMPUTER COMMAND INDEX

Aspen Plus blocks
compressor, 19, 91, 93, 100
DSTWU, 76, 85, 87, 88, 108, 109
equation-oriented (EO) method, 100
Flash2, 31, 39, 91
heat exchanger, 94, 101
mixer, 96
RadFrac, 81–85, 87, 88

as absorption column, 82
RGibbs, 52, 91, 95, 105
Rstoic, 108
separator, 96
splitter, 96
table of, 90

Aspen Plus commands
block, 20, 33

parameters for, 264
place and delete, 261

change conditions, 266
choosing a property method, 268
choosing an activity coefficient method, 268
component specification, 16, 20, 32, 35, 92,

262
connect units, 262

edit/delete, 262
control panel, 97, 265
convergence, 97, 98, 265
data browser, 260
data entry, 262
export report, summary, input, messages,

259, 265, 266

eye glasses, 260
flowsheet, 264, 266, 267
global, 91
help, 268
material streams, 19, 32, 260
maximize screen, 259
model library, 90, 260
profiles, 81
property analysis, 16, 35
property specification, 17, 20, 32, 35, 74
reinitialize, 264
report, 259, 266–267
results, 20, 21
run, 264
save, 267
setup, 260
streams, 20, 33, 263
stream table, 264, 266
thermodynamic model, 262

see also choosing . . .
transfer to word processing program, 265
units, 260

see also optimization

Excel commands
address, absolute, 231
alignment, 230
border, 230
calculation, 9, 232, 233, 322
see circular reference
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cell content
conditional alarm, 230
equation, 230
names, 230
number, 229
word, 229

chart, 231, 234
delete label, 234
display equation, 295
display r2, 295
multiple lines, 234

circular reference, 63, 66, 67
color, 230
column, 229, 230

insert, 231
comment, 230
contour plot, 234–235
copy, 231
documentation, 235
equation, 231
export text, 236
follow up, 237
function, 237
goal seek, 8, 10, 29, 44, 63, 66, 135, 232
help, 238
hide, 230
hyperlinks, 231
import text, 236
INTERCEPT, 295
iteration, see calculation
linear correlation coefficient, 297, 300
MINVERSE, 237
MMULT, 237
parameter estimation

multiple regression, 299–303
nonlinear regression, 304–305
polynomial, 297–298
straight line, 294–295

paste, 232
special, 233

pattern, 230
picture, 231
printing, 231
protection, 237
remove split, 231
residual, 300, 302
row, 229, 230

insert, 231
RSQ, 295
SLOPE, 294
solver, 9, 63, 66, 135, 232, 305
split screen, 231
spreadsheet, large, 232
standard error, 300
text box, 230
trendline, 295, 297
unhide, 230

variables, named, 230
xy-scatter plot, 234

FEMLAB commands
application mode name, 272
artificial diffusion, 165, 166, 168
axes, see grid settings
axial symmetry, 194, 200, 210, 270
axisymmetric geometry, 179
Boolean operator, 168, 281
boundary condition, 199–201, 209–211
boundary plot, 278, 284
boundary setting, 124, 127, 128, 152, 158,

160, 162, 178, 181, 184, 211, 273,
275–277

chemical engineering module, 270
composite object, 213, 281, 287–288
concentration/temperature specified,

209–211
constant, 155, 160
contour plot, 212, 276, 278, 280, 281
convective flux, 211, 215, 226
coupling variable, 282, 285–290
cross-section plot, 181, 278, 282
degrees of freedom, 213
dependent variable, 271
‘did not converge’, 184, 185, 186
domain plot, 124, 128, 152, 156, 158, 160,

162, 168, 178, 181
draw, 160, 178, 179, 213, 272
see also composite object

element, 272
energy balance, 270
error criteria, 184
expression, 128, 155, 159, 165, 168,

185, 281
flux specified, 210–211, 221

with mass transfer coefficient, 210
grid setting, 124, 158, 180, 211
heat flux, 210, 273, 274
inflow/outflow boundary condition, 181,

200
init tab, 128, 162, 165, 192
insulation/symmetry boundary condition,

210–211, 215
integration

boundary, 182, 187, 213, 215, 285
domain, 153, 158, 279, 285

internal boundary, 281
‘internal error in numerical routine’, 129
Lagrange-quadratic element, 272
see also finite elements

legend, 156
line, 152, 154, 165
line/extrusion, 124. 128, 156, 162, 181,

193, 278, 283
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line marker, 156
line plot, 283
line setting, 156
logarithmic wall function, turbulent flow,

190
mass balance, 270
mesh, 124, 152, 154, 158, 160, 178, 211,

272, 274
refine, 212, 272, 276

model library, 270
model navigator, 280
momentum balance, 270
multiphysics, 127, 165, 214, 272, 280, 285

switch between equations, 280
neutral boundary condition, 200, 205
normal flow/pressure boundary condition,

181, 187, 190, 192, 194, 200
no slip boundary condition, 181, 187, 192,

194, 200
open, 160
options/expressions, 128
outflow/pressure, 200
parametric solution, 155–157, 161,

195–196, 309
plot parameters, 160, 278
pseudo 3D, 270
restart, 212
save plot, 168
save work, 160
‘singular matrix’, 129
slice, 223
slip boundary condition, 181, 190, 192, 194,

200
solve, 160, 162, 178, 215, 218, 220, 275

time-dependent, 192
see also restart

‘stepsize too small’, 129
subdomain setting, 124, 127, 128, 152, 154,

158–160, 162, 165, 168, 178, 180, 185,
211, 220, 273, 275

surface plot, 212, 276, 277, 279, 281
symmetry condition, 181, 190, 192, 194,

200
temperature boundary condition, 210–211,

273, 274
thermal insulation, 210–211, 273, 274
tutorial, 160, 178
user modules, 270

MATLAB commands
break, 240
clear, 242
command history, 240
command window, 240
conditional statements, 245
see also switch, if-else

dbquit, 244
dbstop, 244
dbup, 244
debug program, 243–244
directory, 239, 240
display, 50, 242
eigenvalue, 248
fclose, 244
feval, 12, 132, 306
fid, 244
fminsearch, 45, 48–49, 249, 306
format long, 50, 242
fprintf, 244
fscanf, 244
fsolve, 48, 132, 137, 248
fzero, 11, 13, 30, 45, 46, 47, 132,

134, 249
global, 14, 47, 116, 241, 251
help, 257
hold on, 254
if-else-end, 245
if-elseif-end, 245
‘index exceeds matrix dimensions’, 243
initial conditions, 249, 251
integral, 248
legend, 120, 133, 140, 254
loop, 245
matrix, 246

element, 246
element by element calculation, 248
multiplication, 246
transpose, 246

MaxFunEvals, 50
MaxIter, 50
mesh, 256
meshgrid, 256
m-file, 10, 114, 239, 241, 250, 251
name of function, 251
odeset, 251
ode15s, 140, 250, 312, 318
ode23s, 312, 318
ode45, 114, 120, 132, 138, 250, 311, 318
parameter, passing, 117–118, 242, 251
parameter estimation

nonlinear regression, 305–306
polynomial, 298–299
straight line, 295–296

pause, 255
plot, 14, 120, 133, 250, 253–257, 296

axis, 255
colors, 254, 256
contour plots, 256
Greek letters, 257
limit plot, 254–255
line options, 254
log, 253
markers, 254
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method of lines, 251
multiple, 255
subplots, 255
symbols, 256
three-dimensional, 255–256

polynomial curve fit, polyfit, 252, 296–298
polynomial evaluation, polyval, 252,

296–298
set path, 239
spline interpolation, 252
stop, 244
see also dbstop

suppress printing, 242

switch, 245
tic-toc, 246
title, 254
tolerance, 50
TolFun, 50
TolX, 50
Tspan, 250, 251
‘undefined function or variable’, 243
vector, column, 250, 251
‘whos’, 244
workspace, 241
xlabel, 14, 120, 133, 140, 254
ylabel, 14, 120, 133, 140, 254
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Absorption, 73, 82–87
column, 88
refrigerated column, 88

Acentric factor, 7, 22
Activation energy, 228
Activity, 42
Activity coefficient, 29, 37, 74, 80
Adiabatic boundary condition, 219
Adsorbent, 164
Adsorption, 73

linear, 164–167
Algebraic equation, 2, 307–310
Azeotrope, 30, 81, 88

Backward Euler method, 312
Bessel function, 164
Boiling point, normal, 7
Boston-Mathias function, 75
Boundary value problem, 4, 112, 147,

312–317
Brinkman number, 220
Broyden method, 93, 100, 104
Bubble point, 26, 78, 82

Cartesian geometry, 176, 178
Catalyst, 113

Al2O2, 148
platinum, 143, 228
silver, 71

Catalytic converter, 144, 146
Chao-Seader thermodynamics, 75, 78, 81, 85
Charge distribution, 172
Chemical reaction equilibrium, 3, 41–54
Chromatography, 167–169
Compressibility factor, 13
Compression ratio, 94
Compressor, 91, 93, 94, 100
Computational fluid dynamics (CFD), 175
Comsol multiphysics, 269
Condenser duty, 80–82, 85, 87
Convection, strong, see Peclet number, high
Convective diffusion equation, 3, 208–209
Convergence acceleration, 100
see also iterative method

Conversion, 57
per pass, 95

Cost
capital, 85, 94
cooling cost, 79, 85
distillation column, 79
electricity, 98
gas, 98
heating cost, 79, 85
operating, 80, 85
raw material, 55, 85
refrigeration, 85
separation, 68
steam, 80
utility, 97, 103
water, 98, 102

Introduction to Chemical Engineering Computing, by Bruce A. Finlayson
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Curve fit
multiple regression, 298–304
nonlinear regression, 304–306
polynomial, 296–299
straight line, 294–296

Cylindrical geometry, 178

Damköhler number, 138
Derivative, numerical, 309
Design choices, 89
Dew point, 26
Differential equation, 3
Differential-algebraic equation, 312, 318
Diffusion, 148, 312

artificial, 165, 166, 168, 319
polymer, 73
porous catalyst, 73
streamline, 319
see also Petrov-Galerkin method, reaction-

diffusion
Diffusivity, 129, 148, 208

effective, 149, 165
polymer, 171
isotropic, 214

Direct numerical simulation (DNS), 175, 176
Dispersion

axial, 121
radial, 121

Disproportionation, 67
Distillate flow rate, 77
Distillation, 58, 70, 73, 79

control, 79
multicomponent, 75–82
plate-to-plate calculation, 75, 80–82
short-cut method, 75–80
see also Aspen Plus blocks DSTWU,

RadFrac
Drag

on sphere, 204
on cylinder, 205

Drawdown ratio, 172

Eduljee equation, 78
Eigenvalues, 139, 311
Electric potential, 172
Electrochemical cell, 224
Electrolyte, 74
Enzyme, 144

loading, 144
Epoxy, 145
Equation of state, 3, 5–23

cubic equation, 7
Hayden-O’Connell, 74
HF hexamerization, 74
ideal gas, 6, 22, 42, 74, 130

Peng-Robinson, 7, 75
Redlich-Kwong, 6, 22, 74
Redlich-Kwong-Soave, 6, 22, 32, 74, 75
van der Waals, 6

Equilibrium composition, 53
Equilibrium constant, 42, 52, 129
Equilibrium conversion, 41, 52, 63
Euler-Lagrange method, 167
Euler’s method, 310

Federal test cycle, 146
Fenske equation, 77, 85
Fiber spinning, 172, 173
Finite difference method, 148, 312–314

elliptic equation, 321
first derivative, 313
in Excel, 317
partial differential equation, 318
second derivative, 313

Finite element method, 147, 175, 177,
314–316

partial differential equation, 319
second derivative, 315
see also Petrov-Galerkin method

Finite elements
bilinear, 320
constant interpolation, 314–315
linear interpolation, 315–316

Finite volume method, 175
Flash, isothermal, 26–29
Flow, 3

between flat plates, 203
entry

Newtonian fluid, 179–184, 203
Non-Newtonian fluid, 184–186
power-law fluid, 203

in a pipe, 149, 150, 156–162, 172,
179–186, 189–191, 191–193, 203,
205

past flat plate, 204
through orifice, 193–198

finite thickness, 194
viscous dissipation, 218

Fluoresce, 214
Flux, 149
Flux-corrected method, 168
Force

normal, 200
tangential, 200

Friction factor, 190, 197
Fuel cell

hydrogen for, 41, 43
Fugacity, 29, 42
Fugacity coefficient, 29, 42
Fully developed flow, 183, 188
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Galerkin method, 320
Gear’s backward difference formula, 312
Gibbs free energy, 42, 52
Gilliland correlation, 78
Graetz problem, 225, 226

with axial conduction, 225, 226
Grayson thermodynamics, 75
Grid point, 148
Grid refinement, 314–316, 319, 322

Hagen-Poiseulle law, 150
Heat exchanger, 91–92, 101

duty, 94
counter-current, 109

Heat generation, 219
Heat of reaction, 42, 135, 149
Heat transfer, 148, 152–153

from sphere, 225
in square, 210–213
in square with a hole, 213–214
lumped parameter model, 171
radiation, 171
unsteady or transient, 4, 151, 162–164,

317–318
Heavy key, 76–78, 80
Homotopy method, 309

Implicit method, 312
Incompressible fluid, 176
Inert gas, 70
Inhibition constant, 143
Initial value methods for boundary value

problem, 317
Initial value problem, 3, 112, 249–251,

310–312
Interpolation, 314
Iterative method

direct, 93
equation-oriented (EO) in Aspen Plus, 100
see also Wegstein and Broyden methods,

tear stream, sequential solution
method, simultaneous solution
method

Jacobian, 309, 311

K-value
phase equilibrium, 27, 29–30, 37, 39, 52,

64, 78
see also equilibrium constant

k-1 model, 176, 189

Lab-on-a-chip, 207
Laminar flow, 175
Langmuir isotherm, 167
Laplace’s equation, 224
Large eddy simulation (LES), 176
LBB condition, 177
Least squares residual, 293, 300, 305
Lewis number, 138
Light key, 76–78, 80
Liquid-liquid extraction, 73
Limit cycle, 141
Linear correlation coefficient, 293, 300
Lower-upper (LU) decomposition, 309
Lumped parameter model, 112, 171

MacCormack method, 167, 168
Mass transfer coefficient, 132, 144, 164
Mass transfer equipment, 3
Mass transfer resistance, 144
Matrix, tridiagonal, 314
m-file, 10, 114, 239, 241, 250, 251
Michaelis-Menten reaction, 144, 154, 228
Microelectromechanical system (MEMS), 207
Microfluidic device, 73

dispersion in, 214
see also flow through orifice, serpentine

mixer, T-sensor
Microfluidics, 175
Mixer, MIXR, 56, 62, 65, 96
Monod constant, 143
Monod kinetics, 143

Natural gas, 88, 98
Navier-Stokes equation, 4, 175, 176–177,

201–202, 209
Newtonian fluid, 149, 150, 156–160, 172,

179–184, 225
Newton-Raphson iterative method, 308
Nodal point, 148
Nondimensionalization

convective diffusion equation, 209
Navier-Stokes equation, 201–203

Non-Newtonian fluid, 151, 159–162, 172,
173, 177–179

Bird-Carreau fluid, 151, 159, 160, 184–186,
204

power-law, 203, 204
Non-polar compound, 74
Nonrandom two-liquid (NRTL) equation, 30,

52, 74, 75, 95
electrolyte NRTL, 74, 75

NRTL, see Nonrandom two-liquid equation
Number up, 207
Nusselt number, 226
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Oil reservoir, 38
Optimization, 105–107, 137
Ordinary differential equation, 3, 112, 114,

123, 249–251, 310–317
high order, 310

Packed bed, 170
absorption, 82–87
reactor, 227

Pair-interaction parameter, 30, 32
Partial differential equation, 4, 317–322
Partial pressure, 25
Peclet number, 165, 209, 215

high, 216, 222, 318
Perfect gas, see Equation of state, ideal gas
Perimeter, 144
Petrov-Galerkin method, 165, 166, 168, 319
Phase equilibia, see Vapor-liquid equilibria
Polar compound, 30, 74
Polymer melt, 175
Polymeric composite, 145
Pressure

critical, 67
discharge, 91
drop, 150, 198
partial, 25, 297, 299
vapor, 7, 25

Process simulation, 2, 3, 89–109
Purge stream, 65, 70, 91, 94
p-xy diagram, see Vapor-liquid equilbria

Rachford-Rice equation, 28–29, 37, 39, 64, 66
Random choice method, 167
Raoult’s law, 74, 76
Reaction rate, 299

maximum specific growth, 143
Reaction-diffusion problem, 154–157, 169,

170, 312
cylindrical pellet, 225

Reactor, 3
adiabatic, 135
axial dispersion, 169, 170
batch, 113
bioreactor, 143
continuous stirred tank (CSTR), 114, 134,

142, 143
multiple solutions, 136
non-isothermal, 145
transient, 137–141, 145

mass transfer, 131–134
microfluidic, 221
mole change, 130–131
plug flow, 112–113

isothermal, 118–121, 125–126, 142, 143
non-isothermal, 121–123, 127–129, 145

radial dispersion, 227
REAC, 56, 57, 62
variable density, 130
wall reaction, 221

Reboiler duty, 80–82, 85, 87
Recovery fraction, 77
Recycle, 3, 55–71, 91, 92, 94
Reflux rate, 75, 77, 78

minimum, 77
Reflux ratio, 75–81, 87

infinite, 76, 85
minimum, 77, 79, 80, 85, 87

Relative volatility, 76, 77
Residual, variance, 293
Reynolds number, 177, 186, 189, 193–205
Runge-Kutta method, 311

Scale up, 207
Secant iterative method, 104, 309
Semiconductor, 172

inertia, 173
non-Newtonian fluid, 173

Sensitivity, 108
Separator, SEPR, 56, 57, 62
Sequential solution method, 60, 93, 100
Serpentine mixer

flow, 199–200
mixing, 222

Shear rate, 159, 172, 178, 185
Shear thinning, 161
Shwartzentruber-Renon solution, 75
Simultaneous solution method, 61, 93, 100
Singularity, 224
Solutions

ideal, 29–30, 39
regular solution theory, 29
two liquid phases, 30
see also Wilson equation, Non-random two

liquid equation, UNIFAC group
contribution method, UNIQUAC
equation, Shwartzentruber-Renon,
azeotrope

Split fraction, 56, 59
Stability limits, 311, 312
Stages of distillation column, 75, 78, 79, 85, 87

minimum, 77, 79, 80, 87
Start-up flow

Newtonian, 191–193
power-law, 204

Steam reformer, 54
Step-size adjustment, 311, 312
Stiff equations, 139, 311, 318
Stoichiometry, 46
Stoichiometric coefficient, 57, 144
Stoichiometric equation, 57
Stoichiometric feed, 62, 70
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Stokes flow, 204
Streamlines, 184, 187, 188, 196
Substrate, 143
Successive substitution iterative method, 308

Taylor series, 308
Taylor-Galerkin method, 167
Tear stream, 104
Temperature

average, 153
critical, 6, 7
reduced, 6

Thermal conductivity, 129, 148, 152, 153
effective, 149

Thermal diffusion, coefficient of, 151
Thermodynamic choice for

coal processing, 75
gas processing, 75
oil and gas production, 75
petrochemicals, 75
refinery, 75

Transalkylation, see disproportionation
Transport process, 3
Trial functions, 314
see also finite elements

Trim heater, 109
see also heat exchanger

T-sensor
flow, 186–189, 204
dispersion, 214, 227

Turbulent flow, 175, 176, 189–191, 205
eddy viscosity, 189
kinetic energy, 189, 191
rate of dissipation, 189, 191
see also wall layer

T-xy diagram, see Vapor-liquid equilbria

Underwood equation, 77
UNIFAC group contribution method, 30, 74

UNIQUAC equation, 74, 75
Unstable solution, 137
Utilities, 97
see also cost, utility

Van Laar equation, 74
van’t Hoff equation, 42
Vapor-liquid equilibria, 3, 35–40, 65

T-xy diagram, 35
p-xy diagram, 35

Variational principle, 320
Velocity

average, 150, 158, 160, 183, 184, 188
normal, 200
gradient, 159
see also shear rate

tangential, 200
terminal, 209

Vena contracta, 196
Viscosity, 150

kinematic, 189, 190
concentration dependent, 217–218

Viscous dissipation, 194, 218–221
Void fraction, 164
Volume of mixture, 18
see also Equation of state

Vortices, 175

Wall effect, 204
Wall layer, turbulent flow, 189

logarithmic wall function, 190
Wall stress, 190
Water-gas shift reaction, 41, 43, 53
Wegstein iterative method, 93, 100–104, 309
Wilson equation, 30, 35, 37, 74, 75, 83, 88

Yield, 95
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