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Disclaimer

In this book, I have tried to give an introductory overview of Monte Carlo methods
in finance known to expert practitioners and, in places, I may not always have given
due credit to all the pioneers who contributed to this borderline area of mathematics
and finance. Wherever 1 fail to give explicit reference to the original inventor of any
given method, this is not to mean I wish to pretend that it is my own development, it
is merely my own laxness about the whole issue of referencing and citations. In fact, I
may use phrases like ‘I present below’, etc. repeatedly, but they just stand for their literal
meaning, namely that I present, not that I claim to have invented the particular method.
I did consider it much more important to focus on an as-good-as-possible explanation of
the techniques and mathematics, rather than spending time on exhaustive research through
a whole string of references to establish who actually was the originator of the subject
at hand. I include a rather-too-long bibliography at the end of the book, and I did try to
reference and cite wherever 1 could see a direct link, but I may have failed many great
researchers in the field of Monte Carlo methods by not referencing them in the right
places, or not referencing them at all. Mea culpa, mea maxima culpa.
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Preface

This book is about Monte Carlo methods and close relatives thereof. It is about the
application of traditional and state-of-the-art sampling techniques to problems encountered
in the world of modern finance. The approach I take is to explain methods alongside actual
examples that I encountered in my professional working day. This is why there may be
a bias towards applications to investment banking and derivatives pricing in particular.
However, many of the methods presented here apply equally to similar mathematical
problems that arise in market risk management, credit risk assessment, the insurance
businesses, strategic management consultancy, and other areas where the effect of many
unknown variables (in the sense that we can only make assumptions about their probability
distributions) is to be evaluated.

The purpose of this book is to be an introduction to the basic Monte Carlo techniques
used nowadays by expert practitioners in the field, There are so many areas of Monte
Carlo methods in finance that any attempt to try and provide a book on the subject
that is both introductory and comprehensive would have meant many years of (part-
time) writing. Instead, in order to fill the need for an introductory text in a more timely
manner, I decided rather to focus on the issues most pressing to any novice in financial
Monte Carlo simulations and to omit many of the more advanced topics. The subjects
not covered include the whole family of Markov chain techniques, and almost all of the
recent advances in Monte Carlo methods tailored specifically to the pricing of American,
Bermudan, or any other derivative contract whose ideal value is given by the maximal
(discounted) expected payoff over all possible exercise strategies, i.e. by finding the truly
optimal exercise strategy. An exception to this is perhaps the identification of a suit-
able exercise boundary optimisation for the purpose of Bermudan swaption pricing in
the Brace—Gatarek—Musiela/Jamshidian framework presented in Chapter 12. At the same
time, though, I have tried to include most of the presently used techniques that enable the
practitioner to create rather powerful Monte Carlo simulation applications indeed.

Whilst I always endeavour to explain the basic principles of the particular problem to
which a technique is applied, this book is not meant to be an introduction to financial
mathematics. 1 assume that the reader either has background knowledge in the relevant
areas, or could follow up the given references for a deeper understanding of the financial
and/or economic reasoning behind specific mathematical assumptions. After all, this is
not a book about the reasoning behind option pricing. This is a book about mathematical
and numerical techniques that may be used for the solution of the mathematical equations
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that were derived by experts in financial theory and economics. 1 do not attempt to
give a justification for the assumption of complete markets, market efficiency, specific
stochastic differential equations, etc.; I leave this up to the authors of the excellent books
on those subjects in the literature [Hul97, Mer90, Reb98, Wil98]. Instead I have focused
on the implementational aspects of Monte Carlo methods. Any Monte Carlo method
will invariably have to run on a computing device, and this means numerical issues can
be of paramount importance. In order for this book to be of some practical value to
the practitioner having to implement Monte Carlo methods, I made the attempt to link
the fundamental concepts of any one technique directly to the algorithm that has to be
programmed, and often explicitly in terms of the C++ language, often taking into account
aspects of numerical analysis such as roundoff error propagation, etc.

The nature of the subject of this book is strongly entwined with the concept of conver-
gence. In general, Monte Carlo methods give us at best a statistical error estimate, This
is in contrast to various other numerical methods. A Monte Carlo calculation is typi-
cally of the following structure: carry out the same procedure many times, take into
account all the individual results, and summarise them into an overall approximation to
the problem in question. For most Monte Carlo methods (in particular those providing
serial decorrelation of the individual results), we can choose any subset of the individual
results and summarise them to obtain an estimate. The numerically exact solution will be
approached by the method only as we iterate the procedure more and more times, even-
tually converging at infinity. Clearly, we are not just interested in a method to converge
to the correct answer after an infinite amount of calculation time, but rather we wish
to have a good approximation quickly. Therefore, once we are satisfied that a particular
Monte Carlo method works in the limit, we are naturally interested in its convergence
behaviour or, more specifically, its convergence speed. A good part of this book is dedi-
cated to various techniques and tricks to improve the convergence speed of Monte Carlo
methods and their relatives. In order not just to present the reader with a description
of the algorithms, but also to foster an intuitive grasp of the potential benefits from the
implementation of a specific technique, we have attempted to include many diagrams
of typical convergence behaviour: frequently these are used to highlight the differences
between the performances of different methods. In particular, where such comparisons
are made, we often display the convergence behaviour as a function of CPU time used
by the different methods, since the human user’s utility is much more closely related to
the time elapsed until a calculation of sufficient accuracy has been completed than to the
number of actual iterations carried out.

You may wonder why there is no explicit chapter on option pricing, considering that’s
one of the most immediate applications of Monte Carlo methods in finance. As it bappens,
there isn’t one chapter on option pricing, but every chapter is written with option pricing
in mind, My foremost use of Monte Carlo methods has been in the area of derivatives
pricing. Since a lot of the examples I give are directly with respect to option valuation,
I considered it unnecessary to have a chapter on the subject itself, only to repeat what is
written in other chapters already. I hope the reader will agree with me.
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Introduction

We are on the verge of a new era of financial computing. With the arrival of ever faster
desktop computers, clustering technology, and the tools to utilise spare cpu cycles from
a variety of sources, computer processing power has expanded dramatically. This expan-
sion, coupled with the development of new numerical methods, is making techniques
which were previously considered to be prohibitively computationally expensive not only
feasible, but the method of choice. There are countless examples of mathematical prob-
lems faced by the quantitative analyst which used to require employing either analytical
approximations or numerical truncations. This usually meant that the mathematical model
that was ideally desired could not be used given the constraints of having to integrate
its implementation into existing systems which would not tolerate long calculation times
for individual models. Even where integration into a corporate IT infrastructure was not
required, the user of a model might have limited patience or business needs that neces-
sitated a comparatively speedy response. Whilst a front-office trader in a securities and
derivatives house would usually not be concemed if a model built for him by his quan-
titative support team were to take anything between a few seconds and possibly several
minutes in order to price a complex structure with calibration to market data, having to
wait several hours would make the model unviable.

This is the reason that to date, when the choice between a conceptually superior but
numerically less tractable model and one that lends itself to easy analytical evaluation
has to be made, very often the easier model is chosen even though everyone agrees that
it oversimplifies the matter at hand. With the aid of ever faster computers and improved
Monte Carlo techniques, however, we are nowadays more often than not in the position
to use the conceptually superior and more realistic modelling approach.

Even where we appear to have analytical solutions it is often desirable to have an
alternative implementation that is supposed to give the same answer. The reason for
this is that very oflen the final formulae of the analytical solution, although mathematic-
ally of very elegant appeal, prove to be numerically difficult to evaluate since they still
involve one or two one-dimensional integrations, contour integrals in the complex plane,
back transformations from Laplace or Fourier space, or simply the evaluation of special
functions that are numerically very difficult to produce, such as the confluent hypergeo-
metric functions or the modified Bessel function of the second kind for large parameters.
Examples of the above include option pricing for generic distributions [CM99], stochastic
volatility models [Hes93], analytical approximations for Asian options [FMW98), Vari-
ance Gamma processes [MS90, MM91, MCC98], or the Constant Elasticity of Variance
process.

Finally, there are myriads of situations when we are very satisfied with a certain approxi-
mation but would like to have a Monte Carlo simulation tool for comparison, just in case.
A good example for this is the difference between continuously monitored and discretely
monitored payoff functions such as barrier or American-style digital options. There is an
excellent approximation by Broadie, Glassermann, and Kou [BGK99] that relates the price
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V of all simple continuous barrier contracts in a Black—Scholes framework of constant
volatility o to their discretely monitored equivalent where the period of time between
monitoring points is T as follows. Say the barrier level as it is specified on a term sheet
of a discretely monitored contract is Hy and we have an analytical formula! V, = F(H,)
for the continuously monitored equivalent contract in a Black-Scholes framework setting.
Then, the value of the discretely monitored contract is approximately

163
Vg~ F ei%gﬁ-lid . (1.1)
with
¢ (3)
= = 0.5825071579390106702051771641876311547290938701987 ... . (12)
w

In other words, the discretely monitored contract is approximated as a continuously moni-
tored contract with a shifted barrier level given by

),
H.o~et v oV, (1.3)

The sign in the exponent in equations (1.1) and (1.3) is selected according to whether
the initial spot level is above or below the threshold barrier. Barriers that are above the
initial spot level need to be amended upwards when we go from discrete to continuous
monitoring, and so the positive sign is used. For barriers that need to be crossed from
above for an event to be triggered, the negative sign applies. This approximation works
extremely well as long as t is significantly smaller than the remaining time to maturity
of the contract and as long as the current spot level is not too close to the barrier, and
most exotic derivatives traders are happy to use it under those circumstances. When
a given contract comes close to its expiry, though, or the spot level gets dangerously
close to a barrier, traders frequently wish to know to what extent a different, not-so-
approximate, valuation would differ. In a situation like this, a fast-convergence Monte
Carlo simulation that also provides the hedge parameters can make all the difference for
the exotic derivatives trader.

The concept of random sampling as a computational means has long been established.
A well-known example is the idea to calculate the circle number 7 by randomly placing
points in a unit square with an enclosed circle around the centre of that square. In the
limit of many samples, the ratio of points that happen to be inside the circle to the total
number of samples approaches 5. A way to compute 7 is thus to carry out this experiment
for an ever increasing number of samples, take the hit ratio, and multiply it by 4. An
alternative method attributed to the French Naturalist Comte de Buffon [Hol59, CKS85,
Sch74, Ree01] is to draw parallel lines on a board at a distance [ between each adjacent
pair of them, and to throw pins of length / randomly onto this board. The ratio of all the

I There are many good sources for exotic option formulae. One of my favourites is [HauS971.
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pins crossing a line to all those that were thrown should converge to

7
f cos a da 2
T

7
fdce
0

for large numbers of pins. Before the invention of fast computing machines, however,
these approaches were rather time-consuming and cumbersome.

The history of Monte Carlo methods as a computational method for the calculation
of expectations on potentially high-dimensional domains starts in the mid-1940s with
the arrival of the first programmable computers. The main originators are considered
to be the American mathematicians John von Neumann, Stanislav Ulam and Nicholas
Metropolis [UvN47, MU49, Sob94]. The first published mentioning of the name ‘Monte
Carlo Method’ is an article by Metropolis and Ulam in 1949 [MU49]. In this article, the
authors explain how they view the calculation of multi-dimensional integrals resulting
from the analysis of the transport problem of radiation and energetic particles governed
by the Fokker—Planck equation as a statistical problem. Instead of attempting to carry
out directly high-dimensional integrations involving the transition probabilities of many
possible intermediate events and states by the use of lattice methods, they sampled single
chains of events, The name of the method is only mentioned casually:

‘The idea of using a statistical approach at which we hinted in the preceding examples
is sometimes referred to as the Monte Carlo method,’

In fact, the term had been used before amongst those scientists in allusion to the princi-
pality of Monaco that is so famous for its casinos and to the fact that the roulette wheel
represented the archetypical random number generator. Another reason why this allusion
is rather appropriate is that some of the early mathematicians who contributed greatly
to the development of statistics and probability theory did so in the pursuit of gaining
riches at the gambling tables. In the same paper, the authors also establish the result
that the Monte Carlo method enables us to evaluate the expectations of functionals of
certain variables without a knowledge of the distribution of the variables themselves: all
that is needed is a description of the process that generates those variables, and off we
go! What’s more, in 1949, Metropolis and Ulam already point out that the Monte Carlo
method is easily amenable to parallelised computing. The only problem was, as one of
my colleagues once put it, that few people had moye than one machine the size of a tennis
court? called ‘a computer’ readily at their disposal at the time.

In 1947, a Monte Carlo simulation involved many problems, not only the sheer size
of the machine. Apart from the fact that the mathematical relations between the partial
differential equations describing the problems the scientists were investigating, the asso-
ciated multi-dimensional integrals, and their formulation as a stochastic process that can
readily be simulated were only just being established, the actual simulation was a rather
formidable enterprise itself. In those days, a computer was a rather large machine indeed,
and to operate it involved several machine operators. The most advanced input/output

IThis is a joke, I don't actually know what size the computer(s) used by von Neumann, Metropolis and
Ulam were. It is probably safe 1o assume, though, that they were subsiantially larger than today's desktop PCs,
and they certainly were a lot harder to come by.
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device available was a punch card reader and a card puncher. The generation of random
numbers was a huge problem and many different ways were explored. It may seem some-
what unreal when we think about it now, but one of the approaches taken at the time
was as follows. A special project codenamed RAND was set up [Bro48, Bro51] whose
aim, amongst others, was to accumulate a set of numbers that were considered to be
sufficiently random for Monte Carlo simulations. RAND devised an electronic roulette
wheel by combining a random frequency pulse source with a constant frequency pulse
(=1 Hz) which provided about 100,000 pulses per second. The regularised pulses were
passed to a five-place binary counter which effectively resulted in the equivalent of a
roulette wheel with 32 positions. After a binary to decimal conversion, these numbers
were then fed to an IBM punch, thus generating cards of random digits. Exhaustive tests
on the so-generated set of numbers revealed some slight bias and they were later modi-
fied by shuffiing and other further processing until they finally met the applied statistical
tests [Bro51]. However, let me just give you a feeling for how serious the whole business
was with the following quote taken from George Brown’s report [Bro31] on the RAND
project published in the National Bureau of Standard’s booklet [Mon31] on the Monte
Carlo Method in 1951.

‘Production of random numbers really began on April 29, 1947, and by May 21 there
were half a million digits generated. [...] By July 7 there were a million digits
available [,..] At this point we had our original million digits, 20,000 IBM cards
with 30 digits to a card [...]."

Fortunately, computers, Monte Carlo methods, and algorithms for number generation have
come a long way since, and their application to the mathematical problems encountered
in modern finance is what this book is about.



2
The Mathematics Behind

Monte Carlo Methods

The theoretical understanding of Monte Carlo methods draws on various branches of
mathematics. In this chapter, a few useful facts and results from the areas of probability,
statistics, calculus and linear algebra are summarised. Some of them are going to come in
handy in the following chapters, and the remainder are presented here for reference. Most
readers will already be familiar with the contents of this chapter, and may as well skip it.

2.1 A FEW BASIC TERMS IN PROBABILITY AND STATISTICS

A random experiment is a process or action subject to non-deterministic uncertainty.
We call the outcome of a random experiment a draw or a variate from a distribution.
An example for this would be the flipping of a coin, or to be precise the face shown
once the coin has come to rest. A distribution density is a generalised function that
assigns likelihood or probability density to all possible results of a random experiment.
A syoonym for distribution density is probability density function. For our purposes, a
generalised function can be an ordinary function, or a linear combination of an ordinary
function and any finite number of Dirac densities 8(x — xp). The Dirac density is the
equivaleat of assigning a finite probability to a single number on a continuous interval.
This means, the Dirac density 8 (x —xg) is zero everywhere where it is defined, and strictly
speaking undefined at xo. However, its integral is given by the Heaviside function, i.e.
h(x —xp) = fj_f:_m 8(x" — xop)dx’, which is zero for x < x¢ and one for x > xg.

The relationship between the probability that the outcome X of a random experiment is
an element of some set S and the distribution density y+(x) of the random experiment is

Prix e 8]= [ Yx)dx. (2.1)
8

We call the set of all attainable outcomes X of a random experiment the domain D(X)
of the random experiment. Whenever D(X) is an ordered set, i.e. when we can decide
whether any one element is less than any other element of D(X), we define the cumulative
probability function or just cumulative for short as

W(x) = fx Y(x)dx' =PriX < x]. (2.2)
x'=1nf(D)

All distribution densities are normalised, i.e.
f Yr(x)dx = 1. (2.3)
D

Note that in the probability sciences the cumulative is also referred to plainly as the
distribution function or simply the distribution. Since this can lead to situations of
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ambiguity, T always explicitly state whether I am talking about the distribution density or
the cumulative.

The expected value of a quantity subject to uncertainty is the probability weighted
average. Our notation for the expected value of a quantity f with respect to a probability
density ¥ is

Ey[f] : expected value of f with respect to . (2.4)

Very often, there is no ambiguity about the relevant distribution. In this case we may just
write E [ f ] Alternatively, there may be a parametric description of the distribution of f.
This means that f is actually a function of some other uncertain variable x. Given the
distribution density of x, say ¥ (x), we would denote the expectation of f as Ew(x)[ f (x)].
This is just to say

o0
Eyw[f®]=[ fvx) dx. (2.5)
~00

Analogously, we will need to make statements about the variance of a given uncertain
quantity f— intuitively this is the variability of a quantity from its expected value. The
variance of f is denoted by V[ f]. It is defined by

VIf]=E[(s - E[£)*] = E[£*] - (EL1])". 2.6
The standard deviation of a random variate or distribution is defined as the square root

of its variance.
The covariance of two quantities f and g is defined as

Cov|f gl =E[f &) -E[f]-E[g] 2.7)
and based on covariance is the concept of linear correlation

Cov|[f, g]

Corr[f, g] = ——=. (2.8)
YY1Vl
The correlation coefficient is by construction always in the interval [—1, 1].
The nth moment of a distribution is defined as
Eyoy[x"] = | x"y(x)dx. (2.9)

Jensen’s Inequality

For any convex function g(x) and any distribution density ¢ (x) the following
inequality holds:

Ey[g(X)] = g (Ey[X)). (2.10)
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Holder’s Inequality

For any two random variates X and Y
EIXY] <A Xllp - WY1z, (2.11)

for any p > 1.

Minkowski’s Inequality

For any two random variates X and Y
IX + Y, < IXlp +¥ilp (2.12)

forany p 2 1.

2.2 MONTE CARLO SIMULATIONS

The most common use of Monte Carlo simulations in finance is when we need to calculate
an expected value of a function f(x) given a specified distribution density ¥ (x) over
x € R™:

v=Eymlf@®] = f F)P(x)dx". (2.13)

In a strictly mathematical sense, Monte Carlo maximisation (i.e. the search for the
maximum value of f(x) for x in a given domain D) can also be formulated as in

equation (2.13). This can be seen as follows. Provided that f is non-negative everywhere
in D, define

s=73 ¢ dx”. 2.14
m \/ fD [f@)] ¥@&)dx 2.14)

The maximum of f in D is then given by lim,_, o ms. Whilst in practice one would not
use this limit procedure! to determine the actual maximum of a function f in a domain
D, it is a very useful formal trick when the objective is to derive a partial differential
equation for the value of a derivative contract that depends on the maximum value of an
underlying asset over a given time interval [Wil98].

The easiest form of Monte Carlo integration of integrals like equation (2.13) can be
summarised as follows.

e Establish a procedure of drawing variates x from the target distribution density ¥ (x).
e Set up a running sum variable double RunningSum=0;, arunning average variable
double RunningAverage; and a counter variable unsigned icng i=0;.
¢ Draw a variate vector x; and evaluate f; := f(x,).
¢ Add the computed function value to RunningSumn.

e Increment i, i.e. ++1;.

10ne would, of course, simply keep track of the maximum value of f seen thus far as we iterate through
more and more samples.
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e Set the running average to RunningAverage = RunningSum/i;. This gives us
the Monte Carlo estimator

R | &
by = Y f. (2.15)
i=1

e Keep iterating until either the required number of iterations has been carried out, or a
specific ervor estimate (see section 2.7) has decreased below a predetermined threshold.

For more sophisticated methods, when a procedure to draw variates exactly from the target
distribution ¥ (x) is either not available or computationally too expensive, see Chapter 9.

2.2.1 Monte Carlo Supremacy

The concept of Monte Carlo integration becomes ever more appealing as the dimen-
sionality of the domain increases. This becomes clear as we look at the convergence
behaviour of lattice methods in comparison to Monte Carlo methods. For a given d-
dimensional hypercube of volume A¢ the error &jyice Of approximating the integral of a
given function over the hypercube’s interior by linear approximation decreases as (O(r2).
In a regular grid over a d-dimensional domain D, the number of points N relates to the

subdivision length A as
1\¢
N (I) 2.16)

Ao N7, 2.17)

which implies

Thus, for a fixed number N of evaluations of the function which is to be integrated
on a d-dimensional domain, the relative error of a lattice method relates to N and d
according to

Eratice(N, d) X N7, (2.18)

Picking the sample points at random, however, the relative error relates to N and d
according to

eme(N, d) o N~ 2 (2.19)

and is thus independent of the dimensionality. Note that equations (2.18) and (2.19) imply
that in the limit of many sampling points, the Monte Carlo method breaks even with
lattice techniques as of d = 4, and outperforms regular grid methods for d > 4. For much
higher dimensionalities, lattice methods become utterly unusable, whence the term curse
of dimensionality.

2.2.2 Multi-dimensional Integration

This brings us to the question: what is the total mathematical dimensionality of a Monte
Carlo simulation? Well, for simple problems such as the expected return from a portfolio
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given a multi-dimensional joint distribution for the returns of all underlying assets out to
a specific time horizon, it would just be the number of those underlying assets. However,
if we are carrying out a Monte Carlo evaluation of an expectation of a function(al)
of discretised paths of a set of financial assets over some monitoring dates, then the
state vector x represents the realisations of all involved assets at all future times of
relevance, and the density v (x) is the joint distribution density of all those realisations.
The dimensionality of the integration domain is then

d=k-I (2.20)

with k being the number of assets and ! being the number of time horizons in the time
discretisation of the evolution paths.

2.3 SOME COMMON DISTRIBUTIONS

In general, most of the problems that we deal with when we resort to Monte Carlo methods
are based on a quantity whose distribution is more or less well known analytically from
the mathematical formulation of the chosen model. In this section, some of the more
frequently used distributions are listed.

Uniform

A random experiment that can have a continuum of outcomes X which are all equally
likely or equiprobable is said to have a uniform distribution. Most uniform distributions
that we encounter in finance are either on a single closed interval [a, b] or a single open
interval {a, b). In the former case, we say

X ~U[a,b] which means D(X) = [a, b]

and in the latter
X ~U(a,b) which means D(X) = [a, b].

In either case, the probability density is given by

1
Y(x) = (E) YxeD)-

Normal

Very often, the quantity of interest depends on underlying variates that are normally
distributed with mean p and standard deviation o. In this case, we say that a variate X
has the distribution M (i, o), i.e. X ~ N (u, o). The distribution density function is

L fx-u)?
Yl p,0) = i o o (2.21)

a~/2r

Of particular common usage are standard normal variates. A variate Z is said to be a
standard normal variate if

Z ~ N0, 1). (2.22)
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I usually denote the standard normal distribution density function by
i 1.2
(x) = e 2%, (2.23)
v V2T

The standard normal distribution is symmetric around the origin and thus all odd moments
vanish. For even moments, we have

2% ] k (2k — 1)!
%] _ LAY =
E[X ]_ =T (k+ 2) =Jlem-1»= g k>0 @24

The standard cumulative normal probability function is

m=1

X
Nx) = f e(x"ydx’. (2.25)

—o0

The function N(x) relates to the error function via

N(z) = % [1 + erf(-j—i)] (2.26)

and
erf(x) = 2N(v/2x) — 1. (2.27)

At the time of writing, most compiler systems provide a highly accurate and fast
implementation of the error function. These implementations are usually based on rational
Chebyshev interpolation schemes for the error function which have been around for a
long time, are well understood, highly reliable and very accurate [Cod69]. One such
implementation is included on the accompanying CD, just in case your compiler system
and libraries lack it. Since the cumulative normal distribution function is very frequently
used in financial calculations, it is advisable to implement it in terms of a highly accurate
and efficient error function by virtue of equation (2.26).

Equally, for the inverse cumulative normal function z = N~!(p), there are several
numerical implementations providing different degrees of accuracy and efficiency
[MZM94]. A very fast and accurate approximation is the one given by Boris Moro in
{Mor95]. The most accurate whilst still highly efficient implementation currently freely
available, however, is probably the algorithm by Peter Acklam [Ack00]. When allowing
for an additional evaluation of a machine-accurate cumulative normal distribution func-
tion, Acklam’s procedure is able to produce the inverse cumulative normal function to
full machine accuracy by applying a second stage refinement using Halley’s method
[ST95, Pic88]. A C++ implementation of Acklam’s method is also included on the CD.

Bernoulli or Dichotomic

A variate X is said to be dichotomic or Bernoulli distributed if it can take on only two
discrete values, say A and B. Since the associated probabilities must add up to 1, we have

pi=Pr{Al =1~ Pr[B].
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Binomial

The binomial distribution is generated by repeating a Bernoulli experiment, say, n times.
The Binomial variate is then the number of times that one of the two states was attained.
The probability that A occurs k times in n repetitions of a Bernoulli experiment is

PriX =k]= (Z) Pk — py k. (2.28)
Thus, the distribution density of the Binomial variate X 18
"~ (n
OEDY ( )p"(l —p)' o — ). (2.29)
=0 \K

The cumulative probability function results by integration to the same sum as in (2.29),
only with the Dirac densities replaced by Heaviside functions.

Geometric

The geometric distribution describes the number of times one has to repeat a Bemoulli
experiment until state B occurs for the first time. Since

PriX =k] = p*~(1 - p) (2.30)
we have
Yx) =Y P - p)sx ~ k) (2.31)
k=1

for the geometric distribution, and similarly with Heaviside functions instead of Dirac
densities for the cumulative.

Poisson

This distribution is closely related to the concept of point processes, Assume there is a
probability intensity A that in any one time interval d¢ a certain event happens. In other
words, the probability of the said event occurring in any time interval d¢ is dp = Adt.
The probability that this event has occurred X times over a time span [0, T'] is given by

gy (AT

PriX =kl =e i

(2.32)

The density and cumulative result again by summing up probability-weighted Dirac densi-
ties and Heaviside functions, respectively.

Exponential

Assume again that there is a probability dp = Adz of an event occurring over any one
time interval. The probability density of the time one has to wait until the next event
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happens is given by the exponential distribution density

U(t) = re M. (2.33)
The cumulative probability is
W) =1-—-e™ (2.34)
and the moments of the exponential distribution are
k!
S - (2.35)
Beta
Beta variates are distributed according to
Fa+8) o R A
x) = ————x* 1 —0)f 1 = 2.36
YO = Terg B(@, ) (230

for x € [0,1] and some «, B > 0. It can be seen as a generalisation of the uniform
distribution in the sense that it is a smooth curve on the interval [0, 1], identically G at
either end, and by a suitable choice of the parameters « and g it can be made very similar
to the uniform distribution. Expectation, variance and moments of the beta distribution are

o op 1 Te+kbl+p)
E[X]= , VIX]= and E|X"} = .
W= "M e )= rarsrore
(2.37)
The cumulative probability function of the beta distribution is
By(a, B)
W(x) = ——22, (2.38)
=B p
Gamma
The density function of the gamma distribution reads
a1 N
= B 2.39
Y0 = fse (2.39)

forx >0andsomew, 8 > 0. Fore =nand 8 = %, the waiting time until n events have
occurred in a Poisson process is gamma distributed according to (2.39). Expectation and
variance of the gamma distribution are

E[X]= aB, (2.40)
VIX] = op (2.41)

Its cumulative is
Wx)=1- Fex/p) (2.42)

)
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Chi-square

Define X as the sum of the squares of v independently drawn standard normal variates, i.c.

X:=y 22 withz ~ N, 1). (2.43)

The variate X follows the law of the x? distribution density with v degrees of freedom

51
Yvx) = —ﬁ.’l_? e ? (2.44)

k]

and has the cumulative probability function

r(L x
W(x)=1- 5. 2). (2.45)
r(3)
In general, v doesn’t need to be an integer. The expectation and variance are
E(X]=v, (2.46)
VIX]=2v. (2.47)

The x? distribution is a special case of the gamma distribution with « = 3 and 8 =2.

Student’s ¢

Take two independent variates ¥ and Z. The first is a standard normal variate ¥ ~ A0, 1)
and the second is drawn from a x? distribution with v degrees of freedom, i.e. Z ~ x2.
Then, the quotient

Y

X = NG (2.48)
satisfies Student’s ¢ distribution
I y:";_l 215 1 2,05t
ST (3) 7B (3.1)

All the moments up to order v exist. Since the distribution is symmetric around 0, its
expectation is 0. For v > 2, the variance and higher order even moments for k < v are

V[X]=

(2.50)

—2
E[X"] (Tn)rr(; : (2.51)
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For x £ 0, the cumulative probability function is

B, (53)
(D)

and for x > 0 it is given by virtue of its symmetry as W(x) = 1 — W(—x).

Y (x) = (252)

Cauchy
The Cauchy (also known as Lorentz) distribution is defined by the density function
1 1
X) = — 2.53
V(x 21T 22 (2.53)
and its cumulative probability function is
1 1
W(x) = — arctan(x) + —. (2.54)
T 2

The Cauchy distribution is symmetric around zero and thus all of its odd moments are
zero?. None of the even moiments exist.

Lognormal
Define

X =¢%" (2.55)

with z being a standard normal variate z ~ AN(0, 1). The variate X follows the lognormal
distribution

eh% h_f?i
¥(x) = , (2.56)

Tgx~/2m
W(x) = N(I—"—x) d (2.57)

a
The expectation, variance and moments are

E[X] = e?"", (2.58)
VIX]=e" (e - 1) , (2.59)
E[X"] = e3F0?, (2.60)

The lognormal distribution is probably the most important function in computational
finance since it is the solution to the stochastic differential equation describing geometric

2This is assuming that the moments are defined by Riemann integration. This is important since the half-

sided integrals fj;ﬁ xZ 4y (x)dx for some k € Ny diverge for the Cauchy distribution and thus Lebesgue
integration would not result in finite moments of odd order.
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Brownian motion. which in turn is almost alwavg the first easv choice when the evalution _
of non-negative quantities is to be modelled.

Generalised Beta 2

The generalised beta distribution of the second kind [BM87, CDM90], or GB2 for short,
is given by a four-parameter density function

Yix) = laix®” (2.61)
pPB(p, ) [1 + (x/b)° ] ™1 '

for a, b, p, q, x > 0. The cumulative of the GB2 distribution can be written as

B_(%)a(p, 1—p—¢q)
(=DPB(p.q)

W(x) = (2.62)

Note that

y ¥
(—1)"CB_~y(C.d)= (_l)—c‘—lf t(:—-l(l_r-)li-l dt:f Sc_l(.["‘S)d—_l dS
0 0
(2.63)
for ¢ > 0 and d < (1 —¢) is a real positive number and can be evaluated very efficiently,

e.g. by the aid of an adaptive Gauss—Lobatto method [GGO0b, GG0Oa, Gan92].
The moments of the GB2 distribution are

E[Xk] _ ka(p +kja,q — k/a)_ (2.64)

B(p,q)
One of the very useful features of the GB2 distribution is that it allows for a large variety

of shapes that are nearly lognormal, which is desirable when density functions are used
for the extrapolation of volatility smiles of traded options.

Pareto

The Pareto distribution is skewed and heavy-tailed and frequently used to model rare
events. Its density function 1s

a
V= (2.65)

for x 2 1 and a > 0 and its cumulative probability function is

Vo) =1 - (2.66)
X

All moments of order v with v < a exist and are given by

E{X"] =- £ - (2.67)
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Generalised Pareto

As a generalisation of (2.65) we have

abt
V) = (2.68)
for x 2> b and a > 0 and its cumulative probability function is
b a
Vx)=1- (;) . (2.69)
The moments are
bk
E[X"] S (2.70)
a—k
for k < a.
Weibull
This distribution density is given by
xy__l . x}"
Yix) =y Te T (2.71)
for x 2 0 and y, 8 > 0 and its cumulative probability function is
¥
Yx)=1—e F. (2.72)
The moments are
k k
E[X’f] =gy T (1 + ;) . (2.73)

The Weibull distribution is sometimes also referred to as the Frecher distribution.

Gumbel
The Gumbel probability density is

U (x) = abe (be7" +ax) (2.74)
for a, b > 0 and x € R, Its cumulative is

—dXx

W(x) =eb° (2.75)

The first three moments of the Gumbel distribution are

ElX]= ;l; (Inb+Ce), (2.76)
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E[x2] = X (125 4+ 2C. nb + 2 n? (2.77)

(] = = (*b+2Cenb + C 47 ), '
3 1( 3 2 , w2 3 n?

E[x?| = <{1n®h+3C.In2b + 3C2 + = ) Inb+ C2 + Ce— +2¢(3) ). (2.78)

[ ] a3 2 e 2

The number &(3) ~ 1.2020569 is also known as Apéry’s constant.
Generalised Lambda

The generalised lambda distribution is also known as the asymmetric lambda distri-
bution. It exists in two forms of parametrisation: the original form by Ramberg and
Schmeiser [RS74, RDTM79] and a later rewritten formulation [FMKLEE, KDM96].

Unlike most other distributions, it is directly defined in terms of the inverse of the
cumulative. In the original parametrisation [RS74], this reads

W) = A+ f—z— (1?3 — (1 — ™) (2.79)

for u € [0, 1]. Its density is parametrically given by x = W (4) and

N _I_EA—I Aq M-—l_l
w(x)_[dump (u)] _sz +k2(1—u) ] . (2.80)

The generalised lambda distribution is very popular for the fitting of data due to its
tremendous flexibility. With the right choice of parameters it can be used to approximate
almost all of the previously mentioned distributions.

The moments of the generalised lambda distribution can be calculated directly as

1 k
E| x| = f (v7'w) au. (2.81)
0
The first three moments are
1 1 1
E — A —
o A2 (M TRl Mt 1) ‘ (2.82)
1 1 1 202 2A4A
e 5 (8 g+ gy 222 2
PR Teey Bl TV B vens Bl ver Bl R &
(2.83)
E[X3] — i(};’k?’ 31‘%)“% + 3A1A2 n 1 N 1 B 3,1%,% 3A Ao
l% 12 I+i: 2x3+1  3x3+1 3 +1 Ag+1 2x4+41

~3BQA3+ 1, Ag+1) — 60A2B(A3 + 1, Aa + 1) +3B(hs + 1, 2h4 + 1)).

(2.84)
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24 KOLMOGOROV’S STRONG LAW

This fundamental result by Andrey Nikolaevich Kolmogorov was established in the 1920s
and is the main mathematical justification for the use of Monte Carlo simulations.

Convergence Almost Surely

Let Xy, X, X3, ... be a sequence of random variates, such as, for instance, the running
average of a Monte Carlo simulation. If, given some &, for all &, n > 0 there exists an
no such that

PrilX, —&|>¢, Yn>nol <n (2.85)
then we say that the sequence {X,} converges almost surely to &, which is denoted as

X, =5 &. (2.86)

Kolmogorov’s Strong Law of Large Numbers

Given a sequence of iid, i.e. independent identically distributed, variates & with expec-
tation

Elgil=n (2.87)

define their running sum and average as

n
Sui= Y &, (2.88)
=1
1
X, 1= —5,. (2.89)
n
Then
X, 25 . (2.90)

2.5 THE CENTRAL LIMIT THEOREM

The central limit thecrem is one of the cornerstones of statistics and probability theory.
It was first formulated by Laplace. Since then, many great mathematicians such as
Chebyshev, Markov, Lyapunov, Khinchin, Lindeberg, and Lévy have given extensions
and variations of it. For the sake of brevity, only a rather simplified form is outlined
below.

Given a sequence of iid variates & with expectation and variance

El&l=pu, (2.91)
Vitil=o (2.92)
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define the running sum S, as in equation (2.88). Then, for increasing n, the composite
variate

Sp —nu
Xp = —— 2.93
" (2.93)
converges in distribution to the standard normal distribution. We denote this as
X, ~%& A, 1). (2.94)

A practical example for this is the approximation of a Gaussian variate by summing up
12 uniform (0, 1) variates. Since the variance of uniform variates amounts to ﬁ, the
denominator in equation (2.93) equals unity and the approximation is simply the sum of
12 uniforms minus 6. Note that this is not a highly accurate approximation and should only

be used to establish ballpark estimates. A diagram is given in Figure 2.1 for comparison®.

0.4 , , , ; 0.006
-—— standard Gaussian
——— {sum of 12 uniforms {0,1)] - 6 — 0.005
0.35 |- -ennnen difference
— 0.004
0.3
- 0.003
0.25
— 0.002 8
Q =
€ 02 0001 3
[ £ Y- =
Q o
0.15 -_-—------"“-‘:-------'r-- '-'*-'---:*-'------ e R L
1 -0.001
0.1} |
E — -0.002
0.05 |- :
: — -0.003
0 | | ! -0.
5 004

2 4

Figure 2.1 Approximating a standard normal variate by taking 12 /{0, 1) variates and
subtracting 6. The uniform number generator used for this diagram is the Mersenne twister (see
section 7.5).

2.6 THE CONTINUOUS MAPPING THEOREM

Given a sequence (X, ;) that converges in distribution to (X, Y), i.e.

Xn, Ya) 5 (X, ¥) (2.95)

My thanks to Dr. Carl Seymour for carrying out the calculations for this diagram.
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and given a continuous map ¢ (x, y), then

O(Xn, Vo) -5 (X, V). (2.96)

2.7 ERROR ESTIMATION FOR MONTE CARILI.O METHODS

Given a Monte Carlo estimator © as the average of many individual draws of the random
variate V, i.e.

1 N
N 2.97)

we know that each individual evaluation of the estimator itself, for large N, behaves
approximately like a normal variate by virtue of the central limit theorem. Assuming that
the variance of V is o2, this means

o - A (,u,, -\%{) . (2.98)

Since Uy approaches a normal distribution, a statistical measure for the uncertainty in
any one simulation result of o is given by the standard deviation of ¥, namely

JV[on] = j—_ﬁ (2.99)

In general, we don’t actually know the variance o2 of the random variate V whose
expectation we are trying to estimate. However, by virtue of the combination of the central
limit and the continuous mapping theorems, we can use the variance of the simulation
instead as an estimate for o%:

) -
Gy = (%EUE) — (-;7 Zv;) . (2.100)

This leads us to the definition of the standard error:

ey = - (2.101)

VN

Whenever the standard error is used as an error measure, it iS important to remember
that it is only of statistical nature. Any single simulation can yield a result well outside the
standard error. As a matter of fact, since the total probability mass within one standard
deviation either side of the centre of the standard normal distribution is only around
68.3%, approximately every third simulation based on random numbers will have a
result outside the standard error margin around the correct solution! In addition, the
standard error itself is subject to a statistical error margin. It can be shown, however,
that the standard deviation of the standard error scales as &1%, /N and is thus much less
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significant than the statistical nature of the standard error as a measure for expected
accuracy.

2.8 THE FEYNMAN-KAC THEOREM

This theorem by R. Feynman and M. Kac [Fey48, Kac51] connects the solutions of a
specific class of partial differential equations to an expectation which establishes the
mathematical link between the PDE formulation of the diffusion problems we encounter
in finance, and Monte Carlo simulations.

Given the set of stochastic processes

dX, = bjdt + ) a;dW; fori=1,...,n (2.102)
J=1

with formal solution

T T n
Xi(T) = X;(t) +f b; dt +f Za,"j dw; (2.103)
! t j=I

any function V (¢, X) with boundary conditions
V(T,X) = f(X) (2.104)

that satisfies the partial differential equation

A% I < *v 2%
— = i bj— =kV 2.105
T +g+2ljz=:lcfax,axj+§ "X, (2.105)
with
n
Ciy = Za,-kajk (2.106)
k=1
can be represented as the expectation
T r 5
Vi, X) = E[f(Xr)e‘fr k. f ge Jr ke ds] ‘ (2.107)
!

Hereby, all of the coefficients «;;, b;, k and g can be functions both of time ¢ and the state
vector X (f). As with most mathematical theorems, there is a whole host of additional
conditions for good behaviour of all the coefficients and functions involved and the reader
is referred to, for example, Karatzas and Shreve [KS91] (p. 366).

2.9 THE MOORE-PENROSE PSEUDO-INVERSE

The Moore—Penrose pseudo-inverse [GK65, Alb72, PTVF92] of a matrix A € R™" is a
very robust way of attempting to solve linear systems that for a variety of reasons may
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be singular or near-singular. It is based on the method of singular value decomposition
of A given by

\ \
r r N \

\ Y

(2.108)

The entries A, of the diagonal matrix A in the centre of the right-hand side are called
the singular values, and are guaranteed to be positive. The matrices U and V are each
columnwise orthonormal. Now, define the diagonal matrix © of the same dimensions as
A by setting its diagonal entries to

for A, >¢€
for X, <€

1
6; = I; (2.109)
0

for some suitable roundoff threshold € (which can reasonably safely also be set to exactly
zero). We thus obtain the Moore-Penrose pseudo-inverse:

A =V.-©.UT. 2.110)

Using the Moore-Penrose pseudo-inverse to solve a linear system Ax = b will result in a
least-square fit whenever the system is overdetermined and thus strictly speaking has no
solution. For underdetermined systems, it will find the one solution that has no projection
onto the nullspace of A. In other words, it will find the solution of least norm and thus
avoid the accidental amplification or contribution of noise.

The Moore—Penrose pseudo-inverse is the method of choice whenever our objective is
to find a vector (or matrix) x that best fits

Ax =b (2.111)

for some vector (or matrix) & with the least possible L;-norm for x. In most situations
when we encounter a singular or ill-conditioned system of this nature, this is precisely
what suits us best.

An excellent reference for further details and the numerical method to compute the
singular value decomposition of any matrix is [PTVF92].
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Stochastic Dynamics

In all aspects of life, we face having to take into account the unknown future. In the world
of finance we very often want to quantify the uncertainty of the future, or at least the
financial impact of the universe’s possible evolutions we may incur. The mathematical
way to describe that a quantity could evolve in various ways with associated probabilities
as time passes by is to say that it is subject to stochastic dynamics. Great mathematicians
have worked in this area and today we owe a tremendous debt to Gauss, Wiener, Brown,
Levy, Ito, and many others for path-breaking discoveries on stochastic processes and
stochastic calculus. In this chapter, I briefly summarise some of the more important ones
the quantitative analyst commonly encounters. This list is not comprehensive by far,
it is merely a little reminder of the whole zoology of stochastic processes studied by
mathematicians.

3.1 BROWNIAN MOTION

Brownian motion is ubiquitous in quantitative finance. Wherever we model the evolution
of something into the future, the simplest assumption is to say that over any one time step
the outcome only depends on the present value of the quantity (Markov property) and
that all time steps are equal, i.e. that the structure of the evolution process is the same at
all times into the future (stationarity). If in addition to that we demand that the quantity
must evolve continuously (without jumps), we necessarily will have to use a Brownian
process as the underlying stochastic driver of the quantity we wish to model. The reason
for this is that the above set of properties already defines Brownian motion, which makes
it a beautifully simple concept. This is best summarised in the following theorem taken
from [Har90].

Theorem 3.1

If Y is a continuous process with stationary independent increments, then Y is a Brownian
motion.

Harrison continues:

“This beautiful theorem shows that Brownian motion can actually be defined by
stationary independent increments and path continuity alone, with normality following
as a consequence of these assumptions. This may do more than any other character-
ization to explain the significance of Brownian motion for probabilistic modeling.’

A standard Brownian motion is often also referred to as a standard Wiener process
owing to the fact that it was N. Wiener in the 1920s who started the mathematical analy-
sis of Brownian motion. A Wiener process is formally often represented by the differ-
ential increment dW or dW, (indicating that this is the increment of the Wiener process
happening at time ¢), and this notation is adopted throughout this chapter. A standard
Wiener process has the following properties.
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I.  The expectation of the differential increment dW, at any one point in time ? is zero:
E[dW;] =0. (3.1)

2. The variance of the differential increment dW, at any one point in time ¢ is equal to
the associated differential increment in time:

V{dW,] = E[dwf] ~ (ELaW,])? = E[aw?] = ar. 3.2)

This means that the sum of increments, i.e. the value of the process variable W, is
normally distributed with zero mean and a standard deviation of 4/7:

!
W, = f dwW, ~ N0, J1). (3.3)

y=0

In the design of Monte Carlo algorithms we make frequent use of a more general formu-
lation of the second property of a Wiener process:

T T
fHdw, ~ N | 0. f f(n2de |. (3.4)
1=0 =0

This results immediately from the fact that the variance of a Wiener process is linearly
additive. Equation (3.4) is of fundamental importance in many applications since it enables
us to bypass the numerical solution of the stochastic integral on the left-hand side and
directly draw variates that represent the distribution of the entire expression.

32 ITO’S LEMMA

One of the most important mathematical tricks from stochastic calculus that we use
for the purpose of transforming stochastic differential equations is /t4°s lemma. In crude
terms, it is the direct consequence of the variance of a Wiener process increment over any
infinitesimal time step given by equation (3.2). [td’s lemma states that the total differential
of any given function f(X) depending on a stochastic variable X € R" subject to the
system of stochastic differential equations

n
dXi = bi(r, X)dr + Y ap(t. X) dWy, (3.5)
=1
is given by
n 1 1 (]
df = (E(ax,f)b.- +5 0% x, f)aikpkzﬂjz) di + ) (@x, NaixdWe  (3.6)
=1 1,0,k =1 k=1
where
E[dW, dw;]
prt =~ 37

is the instantaneous correlation of dWy, and dWj,.



Stochastic Dynamics 25

3.3 NORMAL PROCESSES

Normal processes are of paramount importance in financial applications. This is not only
due to the fact that they are generally very amenable to analytical evaluations, but also that
they are very often considered to be a very good starting point for a realistic modelling
of the problem at hand. An example is the celebrated Vasicek model of a mean-reverting
evolution of the short interest rate towards a long-term equilibrium distribution [Vas77].
This model can be formulated by the stochastic differential equation

dr =a(@ —r)dt + o dW (3.8)

with @, 6 and o being constants. Given an initial value for r, i.e. rg = r(0), the distribution
of »(r) can be calculated explicitly. In order to do so, we utilise the so-called method of
variation of constants. The first step is to solve the homogeneous differential equation

dry = a(®@ —rp)ds (3.9
to obtain
() =0 +c-e % (3.10)

for some constant ¢. We now assume that the solution of cquation (3.8) is of thc same
form as (3.10), only that ¢ is not a constant. In other words, we use the Ansatz

r=0+c-e ¥ (3.11)
and then compare
dr=d(@+c-e)=a@—r)dr +e™“dc (3.12)
with the original equation (3.8), which gives us
de =e¥odW (3.13)

and thus

!
F(t) = 0 + (rg — 0)e  + e g f e dW,. (3.14)
s=0

By virtue of equation (3.4), we can immediately write down the distributional behaviour
of r(t) as

1—e2a

r0) =0+ (o~ 0)e " o/ ———z (3.15)

with z being a standard normal variate or, equivalently

r() ~N |0+ @g—0)e ™, o (3.16)

For very small values of the mean-reversion speed a, the Taylor expansion of the standard
deviation is o+/z. Thus, initially, the short rate r appears to diffuse like a standard Wiener
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process, albeit with a drift. For large values of f, however, the distribution converges to
a stationary form of A (9.0/«/20). This highlights that mean-reverting processes of
the type of equation (3.8) (also known as Ornstein—-Uhlenbeck processes) converge to an
equilibrium state for the distribution over long time scales.

Equation (3.8) can be extended to allow for a, & and o to be a function of ¢. The

distribution resulting from a so-generalised Ornstein-Uhlenbeck process is still Gaussian
and can be derived analytically as outlined above, i.e.

df =a@) [0@) ~ f] di +o(1) dW, 3.17)
leads to
(1) =e 4@ ( fo+ f a(s)Q(s)eA(’)ds) +e A0 f o (5)e? dw, (3.18)
0 0

with A(s) := f(‘: a(u) du and the distribution reads

f) ~ N [e_ﬁ(f) (f0+ fia(s)g(s)e.&(s) ds):l ‘ e‘A(’]Jfraz(s)ezﬂ(S)ds
0 0

(3.19)

3.4 LOGNORMAL PROCESSES

The immediately natural extensions of normal processes are all those that can be mapped
back to a normal process. For instance, if we were interested in modelling a quantity S that
is subject to a mean-reversion effect, but cannot become negative, we could set f :=1In S
and describe the behaviour of S indirectly by saying that f satisfies equation (3.17). If
we are then still interested in the explicit form of the stochastic differential equation
governing the dynamics of S, we can apply It6’s lemma to the inverse transformation
S = e/ to derive dS. This is exactly how we obtain the following stochastic differential
equation for a mean-reverting lognormal process:

% = (a(r) [0(:) — In S] + %02(1)) dr +o(t)dW,. (3.20)

The distribution of In S is obviously given by (3.19).

3.5 THE MARKOVIAN WIENER PROCESS
EMBEDDING DIMENSION

Most systems of stochastic differential equations that we use for modelling financially
relevant quantities are of the form

df =b@, fHdt + A, f)-dW, (3.21)

with f, b € R", W, € R™, A € R"™" and m < n. The function b(¢, f) is frequently
called the drift of the stochastic process, and the matrix A(#, f) may be called the driving
matrix or, following the nomenclature of Karatzas and Shreve [KS91], the dispersion
mairix.
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Clearly, when viewed as embedded in the full state space dimensionality n, stochastic
systems of the kind (3.21) are by definition Markovian, since none of the terms depend
on the past or the future. Still, the reader may have come across the phrase that certain
models are not Markovian, even though they can be described by an equation like (3.21).
This slightly misleading notion usually arises when it is intended to express the fact that
it is not possible to construct a recombining tree for f in the Wiener process dimen-
sionality m. Of course, for all processes of the form (3.21) it is theoretically possible to
construct a recombining tree when the embedding dimensionality of the tree is chosen to
be n. However, one cannot in general reduce the embedding dimension of the tree to m.
Whenever it is possible, though, the full system (3.21) may be called Markovian Wiener
process embedding dimension reducible, or simply reducible. A process of the type of
equation (3.21) is reducible if there is a bijection

ft)y &= W,. (3.22)

In other words, given knowledge of the exact state of the m-dimensional driving Wiener
process at any one time, it must be possible to identify exactly the values of all state
variables in the vector f. This means that the process for f must not depend on the
path that W took to get to its state at time ¢. Only then can we assign unique transition
densities to each branch of the m-dimensional recombining tree!.

The above considerations arise naturally in the context of Heath-Jarrow-Morton
models [HIM92a] of the yield curve. It can be shown that HIM models for the instan-
taneous forward rates f(r,7T) at time ¢ for time T are reducible only for a very
specific choice of the instantaneous volatility function o (¢, T), and the specific choice
leads to what is sometimes referred to as the genmeralised Hull-White model. Other-
wise, the Markovian embedding dimension of any HIM forward rate model is infin-
ite, even though only a few driving Wiener processes may be involved! Another
yield curve modelling family that is not reducible is given by the Brace-Gatarek—
Musiela/Jamshidian market models which always require as many dimensions as there
are market rates in the model due to the specific state dependence of the BGM/J drift
terms. For those problems, Monte Carlo methods are the numerical technique of choice
since the difficulties involved with high-dimensionality are negligible for Monte Carlo
methods, whilst for trees and lattice methods only a few dimensions are realistically
tractable.

3.6 BESSEL PROCESSES

A Bessel process R, of dimension v is given by the Ly-norm of a v-dimensional Wiener
process and probably owes its name to the spherical symmetry imposed by the Ly-norm:

R, = ||W,| = (3.23)

The discussion can equally be adapted to cater for a PDE formulation of the solution technique, It is only
for the sake of clarity and convenience that we restrict the explanation to trees.
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It can be shown” that a Bessel process of dimension v satisfies the stochastic differential
equation

v -‘E +dw, (3.24)

f

dR; =
generated by a one-dimensional standard Wiener process dW;.

3.7 CONSTANT ELASTICITY OF VARIANCE PROCESSES

The constant elasticity of variance process [Bec80, Sch89] is given by
df =ofYdW, fory 20 (3.25)

whereby | have omitted any drift terms. It has been used extensively throughout all
areas of financial modelling, including equity, interest rates, commodities and many other
financial values. The reason that the CEV process is very popular is that it can reproduce
a slightly curved implied volatility skew for plain vanilla options priced on the basis of
it. For y < 1, the skew is negative with options at low strikes having a higher implied
volatility than those at high strikes. For ¥ > 1, the skew resulting from the CEV process is
positive and describes the option prices observed in some commodity markets reasonably
well, The formal solutions for the SDE (3.25) can be found in [BS96]. Alternatively, in
the context of the BGM modelling framework for interest rates, a good summary of the
properties of the CEV process and simple Call and Put option pricing formulae resulting
from it can also be found in [AA0O0]. As for Monte Carlo simulations of the process
(3.25), we will come back to the CEV process in section 4.3.
The CEV process has a direct relation to the Bessel process. The transformation

]
Ri= —— fl=¥ 3.26
=/ (3.26)

turns the SDE of the CEV process into that of a Bessel process of dimension

_1-28
e (3.27)

This means that, for 0 €< 8 < é the CEV process is equivalent to a Bessel process of

a fractional dimension between O and 1, and can thus be absorbed at zero. For 8 > %
however, the CEV process corresponds to a Bessel process of negative dimension and
capnot attain zero.

An interesting question in the context of section 3.5 is if a system of n equations of type
(3.25) is reducible to the dimensionality m of the driving Wiener process W, ¢ R™. Clearly
for y =0 or y = 1, the process is reducible since we then have the standard normal or
lognormal process, respectively. In general, however, as we discussed in section 3.5, for
this to be the case, we must be able to write

f@O)=F(W,t) for feR" and WeR" withm<n (3.28)

2See [KS91] p. 159, eq (3.16).
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for some function F(W,, t). The application of 1td’s lemma to F then yields
dF =y F dW + (a,F + J0hwF) di=df = f7 dW = F” dw. (3.29)

This means
owF =F7 (3.30)

whose solution is
1
F=((1-pw+ F&"”’)"“” + () (3.31)

for some function g(¢) with y # 1, which we had already excluded anyway. The second
condition to be satisfied by F that resulted from (3.28) is

WF + SowwF =0 (3.32)
which, together with (3.31), implies
gty = —5y F77L (3.33)

This last equation can only hold if g is a constant and y = 0 because otherwise we
would have a pure function of ¢ on the left-hand side, and a function of ¢t and W on
the right-hand side, which is clearly a contradiction. In other words, the CEV process is
path-dependent, and a multi-dimensional CEV process driven by fewer Wiener processes
than there are CEV state variables cannot be reduced.

3.8 DISPLACED DIFFUSION

Another process formulation that also gives rise to an implied volatility skew, in fact very
similar to that of the CEV process, is the displaced diffusion process [Rub83]

dS = pSdf + oyisplaced diffusion(S + ) dW. (3.34)
If we use the map
0 = —logy(¥) - So (3.35)

the displaced diffusion process can be used as a very good numerical proxy for the
skew one would obtain from the CEV process, only with a somewhat more pronounced
curvature (which is probably desirable). Unlike the CEV process, though, the displaced
diffusion process is extremely easy to solve and numerically fast. Clearly we need to
rescale the volatility similarly to how we translate from relative to absolute volatilities:

S0 - o) lognormal = (So +6) - Odisplaced diffusion - (3.36)

As can be seen from (3.35), for y = 1, the displaced diffusion process becomes ordinary
geometric Brownian motion, i.e. a lognormal process. For y = 15 the skew of the displaced
diffusion process is approximately that of the square root process, and in the limit y — 0
we arrive at the normal evolution, similar to the CEV equation (3.25).
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The evolution of S subject to (3.34) out to a time horizon T is given by

St =(So+6)- e[(""i"fd)”"““ﬁ ] 6  with z~ N(O, 1. (3.37)

In the context of statistics, the distribution of St is also known as a Johnson I distribu-
tion [JKB94, Joh49, Whe8&0].
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Process-driven Sampling

In financial engineering and option pricing, we frequently wish to calculate the expectation
of functionals of the time evolution of one or more underlying assets. In order to do this,
one typically has to simulate a stochastic process and evaluate a pricing functional for
each simulated path. In this chapter, some of the key concepts involved in this task are
explained. Also, I will demonstrate how different methods work and recommend which
technique is best for which class of problem.

4.1 STRONG VERSUS WEAK CONVERGENCE

The numerical approximation of the solution of a stochastic differential equation amounts
to a computing scheme that creates a sequence of numbers representing the time-discretis-
ation of a specific sample path of a mathematically defined stochastic process. For ordinary
differential equations, there is a natural meaning tc the concept of convergence of a numer-
ical method to the solution. For SDEs, the situation is different. The concept of strong
convergence can be seen as the equivalent to convergence for ODEs since it requires
that the numerical approximation to a given path of the stochastic process matches the
truly exact solution at any point along the path. However, the solution to a stochastic
difterential equation at any time horizon, unlike ODEs, is not a single number but a
(possibly multi-dimensional) distribution. As for this distribution, we are often not inter-
ested in obtaining its exact functional shape but rather in the expectation of some function
(typically a payoff profile) over that distribution.

A time-discretised approximation Y3 of steps not larger than § is said to be of general
strong convergence order y if for any time horizon T the approximation Y5(7') is guar-
anteed to converge to the exact solution X (T') in expectation by absolute difference as

E[| X(T)—Ys(T)|] < c8” @.1)

for all § smaller than some positive §p and some constant c.

In contrast to the strong convergence criterion by absolute difference, weak convergence
of order 8 only requires that the numerically calculated expectation of any function g(-)
which is 2(8 + 1) times continuously differentiable and of polynomial growth converges

to the exact equivalent. In other words, for any g € C?,(ﬁ +h

|E[¢ (X(T)] — E[g (¥s(T))] | < 8P (4.2)

must hold for all § smaller than some positive §p and some constant c.

A consequence of the above definitions of strong and weak convergence is that many
schemes of a given strong convergence order are of a higher weak convergence order.
An example of this is the standard Euler scheme which, whilst being an order 1 strong
scheme, is also an order ! weak scheme, given suitable smoothness and growth conditions

on the drift and ditfusion coefficients. It is therefore not surprising that in general any
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method of higher convergence order for the strong criterion also turns out to be of superior
performance for the purpose of option pricing. Another point of interest is that, for many
schemes, the convergence order, weak or strong, which they are guaranteed to have for
any general SDE may actually be exceeded for specific stochastic differential equations.
In particular, for the kind of SDEs that we encounter in finance this is often the case.

4.2 NUMERICAL SOLUTIONS

Whilst there are a great many different kinds of numerical schemes for the solution of
stochastic differential equations, and the best reference is almost certainly the book by
Kloeden and Platen [KP99], I now briefly introduce and discuss the Euler and the Milstein
schemes. The starting point in both cases is the following general form of a stochastic
differential equation:

dX =adt +bdW. (4.3)

Note that both @ and b can be functions of the process variable X and time. In the multi-
dimensional case of m state variables X; driven by 4 independent Wiener processes,
we have

d
dX; = a;(t, X)dr + ) byj(1, X)dW,. (4.4)
j=1

4.2.1 The Euler Scheme

Denote the numerical approximation to the solution of (4.3) for a scheme over equal steps
of size At at time n - At as Y (¢,). The Euler scheme is then given by

Y(tn)) = Y(n) +a(ty, Y(12)) At + b(1,, Y (22)) AW. (4.5)

The Euler scheme is of strong convergence order % which means we can always fall back
on this workhorse of a numerical procedure to test any other method.

In financial applications, we are often interested to represent the evolution of an asset
by a stochastic process. The most common assumption is probably that of geometric
Brownian motion:

% =(r—d)dr +odW. (4.6)

In this case, the Euler scheme becomes
S(tys1) = S(tp) - (1 + (r — d)At + 0 AW} C4.7)
= S(,) - [1 VoD 4 (r —d)Ar] with z ~ N(0, 1).

In the multi-dimensional case, the Euler scheme is

d
Vitn 1) = Yetn) +aiin, Y1) AL+ Y bij(ta, Y (02)) AW, 4.8)

i=1
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4.2.2 The Milstein Scheme

The Milstein scheme involves the addition of the next order terms of the lt6—Taylor
expansion of equation (4.3). This gives

V(tast) = ¥ (1) +alta, ¥ (5)) Ar + b, Y(6)) AW + 100 [AW2 = Ar] - 49)
with

, 9, X)

b = %

For the case of geometric Brownian, this results in

(4.10)

S(tny1) = S(t,) - [1 + (r —d- %02) At + 0 AW + %az(AW)ZI 4.11)

=5 [1+oe/Ar + (r—d + 4o? [2 - 1]) ar).

Although the Milstein scheme is definitely manageable in the one-dimmensional case,
its general multi-dimensional extension is not as straightforward as one may expect. 1t
requires not only the drawing of standard normal variates for the simulation of the stan-
dard Wiener process increments AW for each dimension, but additional ones to account

for the Itd integrals involving the mixing terms Zf=  bije, X)dW,.

4.2.3 'Transformations

Let us have a closer look-at the difference between the Milstein scheme and the Euler
scheme for geometric Brownian motion. The additional terms of the Milstein scheme
amount to adding

%0,2 [sz — Ar]

to the terms in the braces on the right-hand side of (4.7). If we compare the two schemes
for geometric Brownian motion with the exact analytical solution
g 1.2
Sltas1) = S(ty) - L0 HON)ArFoAW
we find that the Milstein scheme essentially just adds all the terms that make the scheme
exact up to order O(At) in expectation and variance. We could have achieved almost the

same effect by simply transforming the original equation for geometric Brownian motion
(4.6) to logarithmic coordinates by application of Itd’s Jemma to obtain

(4.12)

dIn$ = (r—d - Jo?) di + 0 dW. (4.13)

This similarity is not coincidental. In fact, in particular for the equations we deal with in
finance, it is almost always preferable to transform the original SDE to a more amenable
form and then simply use the original Euler scheme.

Let us now demonstrate the similarity between the Milstein scheme and a suitably
chosen transformation using the example of a mean-reverting square-root process

dv = a(@ — v)dt + AJvdW. (4.14)
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This is essentially the Cox—Ingersoll-Ross interest rate model [CIR85] if we interpret v as
the short rate. This kind of process is also popular to describe the behaviour of stochastic
volatility, see e.g. [Hes93]. The Milstein discretisation scheme of (4.14) is

Av=[a® -v) = 12| A1+ avoVAIz+ §a2n 2 (4.15)

where we have substituted /At z with z ~ N(0, 1) for the Wiener process increment
AW. Now, let us consider a generic function u of v, i.e. # = u(v). Itd’s lemma gives us
the stochastic differential equation for u:
3 1 8%u du
du=|=a@-v)+ = —A2p| dr + = AU dW. (4.16)
v 2 o2 ov
We should now make a fortuitous choice of u(v) so that the new equation is better
behaved. This is done by ensuring that the term in front of the driving process becomes
independent on the state variable. In other words, we choose

0 -
53 x o1 orspecifically u = /. 4.17)
This gives us
i = - [a(e u?) — 1;@] d:+1,xdw (4.18)
2w 4 2 '
and finally we have the following Euler scheme for the transformed SDE:
1 1
Au = -1— a(@ - u®) ~ - A* | At + —a/Ar z. (4.19)
2u 4 2

In order to compare the convergence order in v using the Euler scheme in the transformed
equation and the Milstein scheme in the original equation, we now calculate

(V(u + Augyler) — v(#)) — AVMilstein = ((H + &“Enler)z - “2) — AUMilstein (4.20)
= 2u Auguler + Au? ~ AUMistein

=0+ O(VAL).

The above relationship between a transformation to an SDE whose stochastic term no
longer contains the state variable and the Milstein scheme holds in general. Given the
gencral SDE

dv = a(¢, v)dr + b(t, v)dW (4.21)
the Milstein scheme is

Av=|a—Jbab| At + bv/Biz+ Jbosb ArZ (4.22)

with z ~ N(0, 1). For a general transformation ¥ = F(v) to a new state variable u and
the inverse transformation v = G (u), the SDE (4.21) becomes

du = [F’a + %F”bz] dt + F'bdW (4.23)
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by virtue of 1td’s lemma. Given the choice

1 1
— which leads to  F"(v) = —— 3,b (4.24)

FO =305 b2

the Euler scheme in the transformed variable reads

Au = [% - %aub] At + VAl z. (4.25)

In order to compare, we calculate the Taylor expansion of the inverse transformation

v(u + Au) = v() + G' W) Au + G (W) Au® + O(AL?). (4.26)
Since
j—: = (g—z)_l, ie. G'w)= F;——((;@ = b(t, G(u)) (4.27)
and thus
G"(u) = G'a,b =bd,b (4.28)
we have

v+ Au) = v(w) = [a — Sba,b| At + bVAiz+ Jbab Az + OAE).  (429)

As we can see, the Euler scheme in the transformed equation leads to a procedure that
is equal in convergence up to order O(At) (inclusive) to the Milstein scheme in the
original variable. An additional benefit of transformations that removes all dependence
of the muitiplicative factor in front of the driving Wiener process increments on the state
variables is that the resulting equations become readily amenable to a particularly simple
predictor—corrector scheme. Since this predictor—corrector scheme is of weak convergence
order 1 for the transformed variable, we typically obtain an integration scheme of weak
convergence order higher than 1 for the original state variable without the need for a
complicated integration algorithm that requires the drawing of more normal variates than
we have driving Wiener processes over any one time step.

4.2.4 Predictor-Corrector

One way to describe the idea behind predictor—corrector methods for stochastic differential
equations is as follows. Given a time-discretised approximation to a general SDE such
as equation (4.4), we know that taking an Euler step as in (4.8) ignores the fact that the
coefficients a; and b;; actually change along the path over the time step At. Now, if that
is so, wouldn’t it be better to use an approximate average value for those coefficients
along the path over the finite time step Ar? Since the values of the coefficients depend
on the state variables themselves, which we don’t know, we need to approximate those
first. The simplest predictor—corrector scheme, which incidentally is of weak convergence
order 1, is thus as follows. First take an Euler step as in equation (4.8) to arrive at the
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predictor

d

Vilts1) = Yilta) + @i (ta, ¥ (1)) AL+ Y byj(tn, Y (1)) AW, (4.30)
Jj=l1

Next, select two weighting coefficients o and » in the interval [0, 1], usually near % and
calculate the corrector

Yi(tar1) = Yi(t) + {@ @i(tas1, ¥ (tar)sn) + (I — @)a@i (4, Y (12);m) ) A1 (431)

+3 nbijltnsr, ¥tas)) + (1 = )by (i, Y(0) )} VAL 25
j=1
with
m d
G, Yin) =ai(t,Y) =0y Y bii(t, V)dyby (1, Y). (4.32)
j=lk=1

Clearly, this scheme is very easy to implement, in particular for the special case that the
coefficients b;; don’t depend on the state variables.

4.3 SPURIOUS PATHS

Anyone who implements the straightforward Euler scheme (4.7) for geometric Brownian
motion will notice a strange thing occurring every now and then: some paths cross zero!
Clearly, geometric Brownian motion should never even reach the point zero, let alone cross
it. The reason why this happens is simple. The scheme (4.7) is only an approximation and
only guaranteed to converge to the mathematically consistent description of the geometric
Wiener process in the limit of ever smaller time steps Ar. In any simulation with a finite
step size, it is only a matter of time until you draw a normal variate z that satisfies

B L+ (r —d)Ar
o/ At

and thus makes S$(z,41) negative. For geometric Brownian motion, this phenomenon
disappears when we use an Euler discretisation of the transformed stochastic differential
equation (4.13). However, for other processes such as the CEV process

ds = uSdr + S dw (4.34)

(4.33)

<

the transformation to a constant coefficient in front of the Wiener process does not solve
the problem. Setting

PRI AT (4.35)
l—y

results in the transformed SDE

]’%r Loy My aw, (4.36)

d”={‘“’[(1“”“ T20-pu
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For y € (0, 1), this gives an Euler scheme that for certain paths, specifically for u
approaching zero, can result in « crossing the zero line, which is clearly inconsistent with
the continuous description of the CEV process (4.34). After all, for a generic real value
of y, there is no real value of § that satisfies the inverse transformation

1

§ = [(1 - y)u] =7 (4.37)

for u < 0. The solution to this puzzle is both unexpected and surprisingly simple: the
CEV process (4.34) with ¥ < % has a positive probability of absorption at zero!! Thus,
the easiest way to fix the Euler scheme for (4.36) is to assume that any path that reaches
or crosses zero actually represents a path that is absorbed at zero, and treat it exactly in
that way. In fact, numerical tests of this way of handling the zero crossing show that they
give the correct probability for absorption at zero for the CEV process, which is known
analytically.

44 STRONG CONVERGENCE FOR EULER AND MILSTEIN

In order to demonstrate the difference in strong convergence behaviour between the Euler
and the Milstein schemes, we begin by thinking about a single path of a standard Wiener
process. In any numerical scheme, we can only ever handle a time-discretised version
of a stochastic process. A practical criterion of the strong convergence behaviour of a
numerical method is how finely we have to discretise to achieve a satisfactory accuracy.
A sequence of subsequently refined discretisations of one and the same standard Wiener
path starting at W(0) = O from ¢t = 0 to ¢ = 1 is shown in Figure 4.1. The straight line in
the front of the figure is effectively a single step discretisation. The second line consists

Figure 4.1 Increasing refinement in the discretised representation of one specific standard Wiener
path

"o be precise, it can be reflecting or absorbing at zero depending both on the parameter v and the chosen
boundary conditions [BS96].
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of two straight segments, the first one from 1 = Q to ¢ = %, and the second one from

t = % to ¢+ = 1, starting and ending in precisely the same points at ¢ = 0 and r = 1 as
the previous line. The third line then shares the exact same locations at t = 0, f = %
and ¢ = | with the second line, but consists of four straight segments, introducing new
abscissas at ¢ = % and ¢ = % This sequence of iterated refinement to construct in the
limit a path that is continuous but non-differentiable everywhere is also known as the
Brownian bridge and was, incidentally, used historically for the first ever constructive
proof of the existence of the mathematical concept of Brownian motion by N. Wiener in
the 1920s. More details of the constructive mathematics are given in section 10.8.3.

Each of the discretisations depicted in Figure 4.1 can be seen as a sequence of Wiener
path increments AW for a given time step size At. The application of all of the discreti-
sations in Figure 4.1 in the Euler scheme (4.7) then gives another sequence of increas-
ingly refined approximations for the idealised geometric Brownian motion corresponding
to the driving Wiener path. This is shown in Figure 4.2. Note that the paths of ever
increasingly refined numerical approximations of the geometric Brownian motion are no
longer guaranteed to end in the same point at # = [, or indeed at any point. It is the
convergence to the exact solution at + = 1 which we will later use as a criterion for
convergence.

Equally to using the Wiener path increments in the Euler scheme, we can instead apply
them to the Milstein scheme (4.11). The result is shown in Figure 4.3. Again, none of
the individual discretised paths need to be in exactly the same place at any point along
the paths. However, in the limit of ever refining discretisations, the numerical scheme
is guaranteed to converge to the exact solution. A real test for the strong convergence
behaviour would have to demonstrate the power law (4.1). However, at this point we only
show what the improvement of the Milstein scheme over the Euler method means for the
convergence to the value of the geometric Brownian process at the time horizon 77 = 1
for the increasingly refined discretisations in Figure 4.4, Clearly, the Milstein scheme

log,(# of steps)

Figure 4.2 Increasing refinement of a geometric Brownian path integrated from the Wiener path
shown in Figure 4.1 using the Euler scheme given by equation (4.7) with (r — d) = 1.1% and
o =81.6%
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Figure 43 Increasing refinement of a geometric Brownian path integrated from the Wiener path
shown in Figure 4.1 using the Milstein scheme given by equation (4.11) with (r —d) = 1.1% and
o =81.6%
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Figure 4.4 Comparison of pathwise convergence behaviour in the terminal vatue of the spot (Sr)
for a geometric Brownian path integrated from the Wiener path shown in Figure 4.1 using the Euler
and Milstein schemes given by equations (4.7) and (4.11)

appears to be the superior method. Since we know the analytical solution of the SDE for
geometric Brownian motion (4.6), we can gain additional insight into why this is so. The
exact solution is

(r —d— %02) THoNT

ST = SD - e (4°38)

From this, we can immediately see that the Milstein scheme is, in expectation and vari-
ance, unlike the Euler method, consistent with an ((Ar) Taylor expansion of the exact
solution. Of course we would in practice almost always use an exact solution when it is
available. Exceptions may be cases where the generation of sample paths from a numer-
ical approximation is more etficient whilst sufficiently accurate, or when we simply wish
to test an analytical solution by different means.
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Correlation and Co-movement

Correlation, or more generally co-movement, is one of the single greatest challenges
facing quantitative analysts and risk managers today. Its effects are present in many
calculations that are widely taken for granted. The pricing of many derivative contracts
such as quantos, rainbows, options on baskets and many others depends on some kind of
co-dependence assumptions. Also, any (investment) bank’s self-assessment of exposure,
frequently calculated as the Value at Risk (VaR) quantile, depends strongly on the assump-
tions about co-dependence between all of the involved market risk factors. To model the
co-movement of all the market observables constituting an entire organisation’s risk in
an adequate way is still deemed untractable, and most companies resort to the use of
historical data in order to estimate their firm-wide capital needs. Since historical data
can only ever show you risk with respect to (co-)movements that already occurred in
the past, but is oblivious to hitherto unseen co-dependent market moves, and also doesn’t
know about new developments in the markets, scenario analysis 1s usually added to assess
the riskiness of a company’s standing. The scenarios used for these analyses in turn are
almost never constructed anywhere nearly along the lines of approach taken for deriva-
tives pricing. Whilst the constructed scenarios virtually always represent the breakdown
of linearly correlated (log)normal evolution, correlated {geometric) Brownian motion is
still the default method for modelling the interdependence between the various underly-
ings affecting the value of a derivatives contract. This inconsistency becomes even more
startling if we take into account that only moves of a few standard deviations, rarely more
than two to three, are considered for scenario analyses whose purpose is to complement
a VaR calculation. On the other hand, the quoted volatility smile and skew surfaces indi-
cate that derivatives traders are sometimes concerned with moves in excess of four or
sometimes even five standard deviations. The desire of exotic derivatives traders for their
pricing tools to realistically model the co-dependence of the financial observables that
are the underlyings of a given exotic deal is motivated by the fact that whilst hedging
is possible with respect to moves in the underlyings, correlation or co-dependence is
still largely impossible to protect against!. A simple way to summarise the problem of
unhedgeable quantities is ‘If you can’t hedge it, vou better guess it right’. The most promi-
nent reason for the proliferation of the assumption of linear correlation for the pricing of
exotic derivatives is its ease of use and (approximate) tractability. In fact, there are few
analytical approximations for exotic derivatives of several underlyings that do not use
the assumption of linear correlation, if any. And when it comes to numerical solutions,
the only methoeds that realistically and in a feasible way allow the modelling of several
underlyings that co-depend in any fashion other than linear correlation are probably Monte
Carlo methods, and this is what this chapter is about.

!Some types of correlation are starting to become almost tradable, such as Nikkei/USD.
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5.1 MEASURES FOR CO-DEPENDENCE
Marginal Distributions

Given the joint distribution density ¥ (x, y) of the two variables x and y, the marginal
distribution density function of x is defined as

U () = f Vi ) dy .1)

and analogously

vy(y) = f V(x, y)dx. (5.2)

The marginal distribution density of any one of the two variables is nothing other than
the probability density disregarding the value of the second variable.

Independence

Two variates x and y are considered independent if their joint distribution density function
separates into the product of their individual distribution density functions, i.e.

Vx, y) = ¥x ()% (). (5.3)

Linear Correlation

We recall from equation (2.8) that the linear correlation pxy 1= Corr[x, y] of two variates
x and y is defined as

) Cov|x, y]
ry = T
J Vix] V[y]

[orvenaxa - [snmar [ 00

‘/szllfx(x)dx - [f xP(x) dx]z‘/] Yy () dy — U y¥y(y) dy]z'

54

Linear correlation is a good measure for the co-dependence of normal variates. For distri-
butions that are nearly normal, it still serves well to measure to what extent two marginal
distributions depend on each other. However, the further we go away from the normal
distribution, the more misleading the concept of linear correlation becomes. An extreme
example is the case when the variate pair (x, y) can take on the possible combinations
{(0, D), (0, —1), (1,0}, (—1, 0)} with equal probability %, as illustrated in Figare 5.1. The
linear correlation of the co-dependent variates x and y for this discrete distribution is
identically zero, which is clearly misleading. In fact, they are strongly dependent in this
case. Given the variate x to be zero, we have two possible combinations for y: plus or
minus one. However, for x to be non-zero, y is fully determined: it has to be zero. In
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Figure 5.1 An example of a discrete distribution of two variates with zero cosrelation but strong
dependence

strongly non-normal distributions like this example, linear correlation can actually conceal
the strong co-dependence information contained in the full joint distribution.

Another problem with linear correlation is that it misleads one to believe that given the
marginal distributions and the correlation of two variates, we have all there is to know
about the joint distribution. A special case when knowledge of the marginal distribution
densities Yy (x) and yr,(y) of two random variates x and y, and their correlation pyy,
is sufficient to reconstruct the joint distribution density ¥ (x, y) in a natural (but not
unique) way is when both x and y are normal variates: an obvious candidate for the joint
distribution is then the bivariate normal distribution?. In general, though, the inference

VUx(x), ¥y(¥), pxy => ¥(x,¥)

cannot be made. What’s more, for a given pair v, (x) and yr,(y), there may not even be
a joint distribution density v (x, y) for every possible oy, € [-1, 1]. Finally, it should be
mentioned that the correlation coefficient of two variates x and y is not invariant under
non-linear transformations. An explicit example of this will be given in section 5.2.1. The
linear correlation coefficient as defined in equation (5.4) above is sometimes also referred
to as Pearson’s r.

Spearman’s Rho

Spearman’s rho is closely linked to the concept of linear correlation, It is, in fact, defined
as the linear correlation coefficient of the probability-transformed variates, i.e. of the
variates transformed by their own cumulative marginal distribution functions. In other
words, given two variables x € R and y € R, their marginal distribution densities vy (x)
and ¥, (y), their respective cumulative marginal distributions

Uy (x) = f Ve (x') A, (5.5)

¥y
Wy (y) = _/: vy (¥ydy (5.6)

ZAs explained later in section 5.2, this would correspond to the co-dependence structure being formed by
the Gaussian copula. However, we could equally use any other copula to govern the co-dependence of the two
marginally normally distributed variates x and y as long as the given correlation number is attainable by the
co-dependence structure of two Gaussian densities under the chosen copula,
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and their joint distribution density function ¥(x, y), we have

f f W, (1), ()% (x. y) dx dy — f Wy (0 (x) dx f Wy ()Y () dy

pg = .
2 2
‘/ f W, (0 () dx — [ f W () () ctx] ‘/ f Wy ()29, () dy ~ [ f U, ()% () dy]
(5.7)
Since
! 1
flpx Ny (x)dx = f udu = 2 (5.8)
0
and
2 Ly 1
f\le(x) Wy (x)dx =f u“du = 3 (5.9
0
Spearman’s rho can be expressed as
os =12 [ [ wetor, (v ) dxay — 3. (5.10)

Since Spearman’s rho is defined on the cumulative probability functions of the individual
variates, it is independent with respect to variable transformations, whether linear or not.

Kendall’s Tau

Kendall’s tau is a co-dependence measure that focuses on the idea of concordance and
discordance. Two separately drawn pairs (x, v) and (x’, ') from the same joint distribu-
tion density are considered to be concordant if both members of one pair are larger than
the respective members of the other pair. They are said to be discordant if x > x"Ay <y’
orx < x' Ay > y. Kendall’s tau is defined as the difference between the probabilities
of two such pairs being concordant and discordant, i.c.

% = Pr{(x —xy - ¥) > 0] —Pr{(x —=x)(y =) < 0]. (5.11)

Naturally, this means that tx € {—1,1]. If we define the distributional densities and
cumulative probabilities of x and y as in the previous section, and in addition

XY

Uix, y) = f f V(e y) dx’ dy! (5.12)

Xl yl=—00

it can be shown that an alternative formula for Kendall’s tau for continuous distribution
densities is

K = 4[ W(x, y¥(x, y)dxdy — 1. (5.13)

2provided they are not pathologically malicious.



Correlation and Co-movement 45

Since Kendall’s tau is defined on the joint comulative probability, it is also invariant with
respect to transformations?,

Kendall’s tau and Spearman’s rho belong to the category of rank correlations. Rank
correlations have the nice property that for any two marginal distribution densities r, (x)
and v, (y), there always exists a joint distribution density ¥ (x, y) for every possible value

in [—1, 1] of the rank correlation.
5.2 COPULA

copula /'kopjola/ n (ol copulas) Logic & Gram. a connecting word, esp. | A copula of two variables x
a part of the verb be connecting a subject and predicate. 0 copular | and y is a cumulative proba-
cﬁ&“‘;k::: ::;em T — bility function defined directly

[REPSTPYY P thmm laroaeaeal—) 25 @ function of the marginal
cumulative probabilities of x and y. A copula is thus a way to specify the co-dependence
between two variates entirely independently on their individual marginal distribution. By
this definition, a copula of n variables i1s a function C : [0, 1}* — [0, 1]. Reusing the

definitions (5.5), (5.6) and (5.12) we can thus identify
W(x, y) = C(We(x), Wy(y)) - (5.14)

For strictly increasing cumulative marginals W, (x) and W, (y). we can also write

Clu,v) = q:(q:;‘(u), w;*(u)) . (5.15)
The copula of independent variables, not surprisingly, is given by
Cindependent(u, v) = u - v. (5.16)

By virtue of the definition on the cumulative marginal distribution functions, the copula

of a set of variables (x, y) is invariant with respect to a set of strictly increasing transfor-

mations (f(x), g(v)). The differential of a copula is sometimes written by the notation

dC (#, v), which 1s to mean

B(u, V)
a(x.y)

with u = Wy (x) and v = W (y). In this notation, Kendall's tau appears as

dC(u, v) = ¥ ('-I-';}(u), Wy (v )) dudy (5.17)

rK=:4ff C(u,v)ydC(u.v) — L. (5.18)
[0.112

Naturally, all of the above definitions extend to more than just two variables. Note that a
sensible copula must be a function of all the cumulative marginal probabilities, and some
kind of control parameters that determine the strength of co-dependence of the individual
variables.

3 Again: as long as they are reasonably benign.

Here 15 a puzzle for you: What does the following piece of code do and how 1s 1t connected to the excerpt trom a dictionary at
the beginning of section 5.27
/@ | rand 2147483647, div } det /r { d d d add add } def /normal { r r ¥ r add add add &
sub } def /T 415 def /dt 1 def /sigma .5 def /a -.25 def 0 0 dt T { pop dup a mul dt mul
sigma dt sgrt mul normal mul add dup dt exch rlineto add |} for
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5.2.1 The Gaussian Copula

The short explanation of the Gaussian copula mechanism is: generate a vector of correlated
normal variates, transform them back to uniform variates by the aid of the cumulative
normal probability function, and then map the variates into their individual marginal
distributions using their respective inverse cumulative marginal probability functions. In
other words, if we wish to construct the variate vector x subject to a vector of individual
marginal distribution densities ¥ . (x) = (:,b’xl(xl), Uy (X2)s -+, Vi, (xn))T coupled by
the Gaussian copula controlled by the correlation matrix R, we need to proceed as follows.

e Find a suitable pseudo-square root A of R such that R = A - AT. More on this in
Chapter 6.

e Draw a vector z € R" of uncorrelated standard normal variates.

e Compute Z := A - z.

e Map Z back to a vector of uniform variates v € [0, 11" by setting v; = N(Z;).

o Construct the variate vector ¥ by use of the inverse cumulative probability functions
xi =Wl (y),

It is important to remember that the correlation coefficient governing the Gaussian copula
can be very different from the linear correlation of the elements of the variate vector x.
1 give below two specific examples for this effect. First, however, there is one further
point to mention. It can be shown [LMS01, Kau(Q1] that Kendall's tan of two variables
connected by a Gaussian copula with correlation coefficient p is given by

2
K = - arcsin p. (5.19)

Examples for the density of the Gaussian copula as defined in (5.17) are shown* in
Figure 5.2.

Two Uniform Variates under the Gaussian Copula

Let us assume that for some purpose we would like to have two uniform variates that
are correlated. Our first thought of constructing correlated uniforms is to transform two
uncorrelated uniform variates i) and u, to the standard normal distribution by setting
zi = N~ 1(u;), applying the conventional correlation transformation

71 = 21, (5.20)
Zr = pz1+ 41— p222 (5.21)

for some correlation coefficient p € [—1, 1] and transforming back to the unit square by
the aid of &; = N(z;). Naively, we now expect the co-dependent uniform variates to have
a linear correlation coefficient in the range [—1, 1]. But little do we know. .. .

*The colour code 1n this and subsequent density diagrams, although only visible in the electronic version of
this book on the accompanying CD, is as follows: red signifies the lowest density, i.e. 0, and purple the highest
density, which is usvally only a tiny little speck in the diagram. In all figures, the colours are non-linearly
scaled with the density such that the centre point at (0.5, (.5) always has the same turquoise colour throughout
all of the density figures,
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The linear correlation n between the two dependent uniform variates can be calcu-
lated as

n(p) = 12]_[ N(z N (,Ozl +4/1 - 9232) @(z1)e(z2) dz1dza — 3. (5.22)

Straightforward calculus shows that
nel-1,1]1 forpe[—1,1].
Near the origin, we have
n(p) ~ ;—p for |p] < 1. (5.23)

A diagram of n(p) is shown in Figure 5.3.

]
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Figure 5.3 The linear correlation n(p) of two uniform variates connected by a Gaussian copula
of correlation coefficient p

Don’t be misled by the apparently straight line: there is a little bit of curvature there,
although a straight line would certainly be a good approximation for it.

Two Exponential Variates under the Gaussian Copula

In certain areas in finance, we are interested in the modelling of the time elapsed until a
certain event happens for the first time. When we model a given event A using a Poisson
process of intensity A4 as explained in section 2.3, we have the following distribution
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density for the time T4 until arrival:
Ta ~ rge *aTa, (5.24)

Random draws for T4 can be generated from a uniform variate u 4 by setting

_ln(I —Up)

Th =
A o

(5.25)

When we model the co-dependent arrival of two events A and B using a Gaussian copula
with correlation coefficient p, we can calculate the linear correlation {(p) for 74 and
Ty as

s(p) = ff In(1 — N(z1)) In (1 —N (pm +4/1— ;02?:2)) @(z)p(z2)dzidzz — 1.
(5.26)

Again, we can evaluate analytically what interval ¢ (o) is confined to:

2
{e[l-»fﬁ—,l} for p € [—1,1]

2 - .
where 1 — -”6— ~ —0.6449341. However, as we can see in Figure 5.4, the correlation
transformation is not quite as nearly linear as it was for two uniform variates.

5.2.2 The ¢-Copula

The t-copula is conceptually very similar to the Gaussian copula. It is given by the
cumulative distribution function of the marginals of correlated t-variates. The simplest
way to explain the t-copula is probably by the aid of an algorithm that would create
uniform variates under a ¢-copula [ELMO11.

e Select a standard correlation matrix R that is to govern the co-dependence of the copula.
e Find a suitable pseudo-square root A of R such that R=A - AT.
e Draw a vector z € R" of uncorrelated standard normal variates.
e Compute 7 := A - z.
e Draw an independent x2-variate s. For v an integer, this can be done by drawing v
independent Gaussians, and summing their squares.
v
e Setx = [—-Z.
§
e Map x back to a vector of uniform variates v € [0, 1]" using the cumulative probability
function of Student’s ¢ distribution given in equation (2.52),

The so-generated uniform variates can then be transformed to any set of marginal distri-
butions by use of their respective inverse cumulative probability functions, just as for
the Gaussian copula. The ¢-copula shares with the Gaussian copula the feature that two
variates, which are connected using either of the two copulae with a given correlation
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Figure 54 The linear correlation £ (o) of two exponential variates connected by a Gaussian copula
of correlation coefficient p.
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Figure 5.5 Both figures show data that are marginally normally distributed. The figure on the left
depicts ordinary correlated normal variates with p = 0.9, and the figure on the right was created
from data under a #-copula, also with p = 0.9.

coefficient p, have a Kendall’s tau coefficient given by equation (5.19). An example for
the difference from both copulae is shown in Figure 5.5. Note how the z-copula generates
apparently higher correlation for large co-movements of equal sign, at the expense of
giving rise to a higher density near the origin, and a noticeable set of what looks like
significant outliers.
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5.2.3 Archimedean Copulae

All members of this class of copulae have in common that they are generated by a strictly
decreasing convex function ¢(u) which maps the interval (0, 1] onto [0, co) such that
limep¢(e) = oo and ¢(1) = 0. An Archimedean copula is generated from a given
function ¢ (u) by

Clu,v) = ¢~ Hp@w) + (). (5.27)

Two uniform variates # and v under any Archimedean copula can be produced by the
following algorithm.

e Draw two independent uniform variates s and g.

e Solve
o)
=1t — 5.28
¢'(1) (>-28)
for ¢.
o Set
wi= ¢ (sp (1)), (5.29)
vi=¢ ' ((1- )¢ ). (5.30)

For further details and a proof see [ELMO1]. An example of a copula generator for which
the above algorithm can be applied directly is

¢ = (u" - 1)9 (5.31)

for 6 = 1 since then the solution o equation (5.28) ts immediately given by

2
r=ﬂ_‘/(l_+fi) 5

2 2

It is possible to extend Archimedean copulae to higher dimensions. However, these exten-
sions are rather restrictive with respect to the co-dependence structure since they do
not allow for one parameter per pair of variates, unlike the Gaussian copula and the
t-copula, This is probably the major disadvantage of Archimedean copulae. For algo-
rithms on the generation of variates under a higher dimensional Archimedean copula, see
(ELMO1, FV97].

The Gumbel Copula

The Gumbel copula (sometimes also referred to as the Gumbel-Hougaard copula) is
controlled by a single parameter 6 € [1, 00). It is generated by

PGumbel () = (— Inu)? (5.33)
and thus defined as

CGumhel (u, v) — e_[(_ In H)ﬂ‘{“(_ In 0)9]5 . (5.34)
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The Gumbel copula gives rise to a stronger dependence in the upper tail of the joint
distribution density, as can be seen in Figure 5.6. Kendall’s tau of the Gumbel copula
can be shown [GROO] to be

1
TGumbel = | — 5 (5-35)

The Clayton Copula

This copula is also known under the names Pareto, Cook—Johnson or Oakes copula, and
is generated by the definition

—& o 1
‘ibClayton () = E"""g‘—’l

for 8 € |[—1, c0) \ {0} and reads

(5.36)

1
Cclayton (#, v) = max ([u_9 +v? — 1] ?, 0) . (5.37)

The Clayton copula gives rise to a stronger dependence in the lower tail of the joint
distribution density, as can be seen in Figure 5.7. Kendall’s tau of the Clayton copula is

6
TClayton = 512 Y (5.38)
The Frank Copula
The Frank copula is given by
€™ -1
(@) = —Inj ———— 5.
@Frank (4) In [ 0 ] (5.39)
and
1 (e—ﬁ‘u _ 1) (e—»ﬁ'v __ 1)
C yv)=—-=In|[1 5.40
Frank (4, v) = = ( ) (5.40)

for 8 € R \ {0}. The Frank copula enhances the upper and lower tail dependence equally, as
can be seen in Figure 5.8. For negative values of 8, this copula is able to produce negative
co-dependence similar to the Gaussian copula for negative p. Not only that, it also displays
the invariances with respect to (4, v) — (1 —u, 1 —v) and (u, v;0) — (1 —u, v;-0),
as does the Gaussian copula, which is demonstrated in Figure 5.8. For the Frank copula,
Kendall’s tau is

TFrank = 1 — 4‘(—1'““"?‘1"‘;@ (541)
with Di(x) for some positive integer k being the Debye function [AS84, Mac96]
defined as
x Sk

k
D = —
k(x) ) A

ds. (5.42)
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The Ali-Mikhail-Haq Copula
This copula is generated by [AMH78]

1 —-6(1 —u)
@ Ali-Mikhail-Haq () = In ( —"—u—) (5.43)
and has the form
uv
CAli-Mikhail-Haq(#, V) = (5.44)

I =61 —u)(l —v)

for 8 € [—1, 1]. The Ali-Mikhail-Haq copula enhances the lower tail dependence for
positive ¢, and displays some strong negative co-dependence for ¢ < 0, as shown in
Figure 5.9. Kendall’s tau is [FV97)

39 -2\ 2 1\?
TAli-Mikhail-Haq = (T) 3 (1 - 5) ~In(l — ). (5.45)

A generalisation of the Ali-Mikhail-Haq copula to two parameters, known as the Fang—
Fang-Rosen copula [GR00, FFvR00], is given by

Y (1 - WL) : (5.46)

U

@Fang Fang-Rosen(#) = In

==
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Salvaging a Linear

Correlation Matrix

The problem of how to specify a correlation matrix occurs in several important areas
of finance. A few of the important applications are the specification of a {possibly time-
dependent) instantaneous correlation matrix in the context of the BGM interest-rate option
models, stress testing and scenario analysis for market risk management purposes, or
the specification of a correlation matrix amongst a large number of obligors for credit
derivative pricing or credit risk management.

Ad hoc correlation matrices, those calculated from incomplete data and those taken
from news services, sometimes don’t comply with the requirement of symmetry and
positive semi-definiteness. Whilst it is easy to amend the symmetry requirement by manual
intervention, it is not always straightforward to see how to adjust the given cormrelation
matrix to become usable for factor analysis or simulation purposes. What’s more, there
are many situations when it is desirable to carry out a calculation not only for a single
input matrix, but for a whole set of modified versions of the original matrix. Examples of
this include comparative pricing in order to ascertain the extent of correlation exposure
for multi-asset derivatives, but also the assessment of portfolio risk. In many of these
cases, we end up with a matrix that is no longer positive semi-definite, and often there is
no clear way to remedy this,

In practice, the problem of an invalid correlation matrix, i.e. one that has negative
eigenvalues, can also very easily arise in the context of risk analysis for equity portfolios.
This is because there are frequently asynchronous gaps in the historical stock exchange
time series. The chance that slight inconsistencies in the data from which historical correl-
ation coefficients are calculated can lead to negative eigenvalues grows rapidly as the
size of the correlation matrix increases. This has recently been pointed out by Ju and
Pearson [JP99]. Intuitively, it can be understood to be an effect of the characteristic
polynomial that determines the eigenvalues becoming of higher order as the dimension of
the correlation matrix grows, and thus displaying a stronger non-linear response to slight
changes in the polynomial’s coefficients. Since equity index or portfolio analysis typically
involves many underlying assets, the risk of negative eigenvalues of the correlation matrix
calculated from historical data is particularly large.

In this chapter, I describe two methods based solely on mathematical grounds which
can be used to best match an invalid correlation matrix given the constraint of positive
semi-definiteness. Not only are these guaranteed to give a solution, but in addition we
also have a measure of to what extent we are matching the target matrix. Both methods
are centred around the idea of decomposing a covariance matrix C into its pseudo-square
root, which is to mean any matrix A such that C = A - AT, For scalars, A would be
an actual square root of C, but for matrices the concept of a square root is ill-defined,
whence I use the term pseudo-square root.
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6.1 HYPERSPHERE DECOMPOSITION

The starting point is the well-known result from linear algebra that every n x n matrix
M given by

M=ww' (6.1)

for any W € R is positive semi-definite and conversely, every positive semi-definite
matrix M € R"™" can be decomposed as in equation (6.1).

The hypersphere decomposition method for the construction of a valid correlation
matrix

¢ =BB" (6.2)

that best matches a given, not positive semi-definite, target matrix C is to view the
elements of the row vectors of matrix B in equation (6.2) as coordinates lying on a unit
hypersphere [RJO0]. If we denote by b;, the elements of the matrix B, the key is to obtain
the n x n coordinates b;; from n x (n — 1) angular coordinates 6;, according to

j-1
b;‘j=COSij']—ISiﬂ9;'k forj=1,...,n—1,
k=1
(6.3)
Jj—1
by = [ ] sin6u for j = n.
k=1

For an arbitrary set of angles {8;,}, a matrix C formed from B as in equation (6.2) satisfies
all the given constraints required of a correlation matrix by construction. In particular,
thanks to the trigonometric relationship (6.3) and to the fact that the radius of a unit
hypersphere is always equal to one, the main diagonal elements are guaranteed to be
unity, which is shown in section 6.5.

In general, matrix C will bear no resemblance to the target matrix C. However, after
vsing the above transformation and defining a suitable error measure £ in the resulting
approximate correlation matrix €

g=|C-C] (6.4)

one can use an optimisation procedure over the angles 6;; to find the best possible fit
given the chosen error measure. Sensible choices for the error measure are as follows.

e The sum of squares of the elements of the difference matrix (C — C ):

Xg‘lcments == Z:(CE_; - 6:’;)2- (6.5)
ij

Since both € and €' have unit diagonal elements, this error norm is equal to twice the
sum of squares of errors in the free correlation coefficients.
o The elementwise sum of squares of errors in the sorted sets of eigenvalues of C and C:

Xr?igen\ralues = Z(A! - il)z‘ (6.6)
;
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Naturally, the above suggestions are only examples and various other choices are conceiv-
able. If, in particular, a risk manager feit that certain portions of the target correlation
matrix C should be recovered with particularly high accuracy, then correspondingly large

weights could be assigned to the relative elements (c;, — ¢; _")2.

The fundamental benefits of this method are twofold. Firstly, when the underlying
space over which the optimisation is carried out is expressed in terms of angle vectors
describing coordinates on a unit hypersphere, no constraints have to be satisfied. Secondly,
the approach presented in the next section requires no iterations and provides a solution
very similar to the one obtained using error metric (6.5). It can therefore be used to
provide the starting point for the search procedure.

6.2 SPECTRAL DECOMPOSITION

This method is based on the idea that the spectrum, i.e. the set of eigenvalues, is the
most significant criterion to be preserved in a matrix when we amend it to meet certain
constraints'. It is a particularly useful approach for the given problem since the violated
constraint itself is that an eigenvalue is negative,

Given the right-hand-side eigensystem S of the real and symmetric matrix € and its
associated set of eigenvalues® {A;} such that

C.-S=S-A with A =diag(};) (6.7)
define the non-zero elements of the diagonal matrix A’ as
[ o )"I' . A‘I 2 0!
A 'A'"[O:}\.,<0. ©.8)

If the target matrix € is not positive semi-definite, it has at least one negative eigenvalue,
whence at least one of the A] will be zero.

Also, define the non-zero elements of the diagonal scaling matrix T' with respect to the
eigensystem S by

—1
T : 5= Zsfmk:n:‘ ) (6.9)

Now, let?
B = SvVA’ (6.10)
and
B:=TB =JTSJ/A' (6.11)

'This method is also known as principal component analysis.

2The combination of Householder reduction to tridiagonal form and the QL algorithm with implicit shifts
for tridiagonal matrices provides a very efficient way of computing the eigenvalues and eigenvectors of real
symmetric matrices. The Numerical Recipes [PTVF92) routines tred2, tgli and eigsrt can be used in
that order to carry out the decomposition.

Ipjease note that the notation /D for a diagonal matrix P with non-negative elements is a symbolic
description of the diagonal matnx whose non-zero elements are the positive roots of the diagonal elements
of D,
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For normalised row vectors of §, the truncation of the negative eigenvalues results in row
vectors of B’ that are not of unit length. This is rectified in equation (6.11) by the aid of
matrix T which contains the required normalisation factors. By construction

C:=BB' (6.12)

is now both positive semi-definite and has unit diagonal elements, since its elements are

Gy = Z (ﬁ)ik e (\/P)Im ‘ (ﬁ)mn e (ﬁ) j

kimnp pi
= }:\/E‘Su'l}'w-\/g
l
!
Z.S‘,';Sﬂl.‘
{

= (6.13)

\/ > Stk E-‘f&’ti.
B

i

A procedural description of the above method may clarify what actually has to be done.

L

Calculate the eigenvalues A, and the right-hand-side eigenvectors s, of C.

Set all negative A; to zero.

Multiply the column vectors s; by the square roots of their associated corrected eigen-
values A; and arrange them as the columns of B’.

Finally, B results from B’ by normalising the row vectors of B’ to unit length.

L

By following this procedure we obtain an acceptable correlation matrix which is intuitively
similar to the target one (the more so, the fewer the eigenvalues which have to be set to
zero). The crucial point, however, is not so much the plausibility of the metric but the
fact that empirically 1 have always observed the results obtained using equations (6.7) to
(6.12) to be very similar to those from the angular method discussed in section 6.1. How
close the results are in practice is shown in section 6.4. This is significant because one
can use the result of the method described here either as an accurate approximation to the
best (in a x2,., Sense) solution, or as the starting point for the optimisation discussed
in section 6.1, thereby substantially reducing the computational burden of the hypersphere
decomposition approach.

6.3 ANGULAR DECOMPOSITION OF LOWER
TRIANGULAR FORM

The form given in equation (6.3) is the most general decomposition B of any valid
cortelation matrix €' such that € = BBT. However, any so-derived matrix B can be
transformed by a generic orthogonal matrix @ without any change of the effective corre-
lation matrix given by the product BB'. The group of all possible orthogonal matrices
0 e R"*" represents all possible rotations and reflections. Ignoring the latter and just
taking into account all possible rotation matrices, we end up with [n x (n — 1)]/2 degrees
of freedom in the rotation matrices given by the same number of rotation angles. By
virtue of these degrees of freedom, we can rotate every decomposition matrix B such that
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the transformed decomposition matrix B’ := BO is of lower triangular form. We can
thus, without loss of generality, formulate the following reduced form for the hypersphere

decomposition B’ of C:

by =1,
j—1

b;j = “Sine,'k ccosty; for j=1,...,i—1,
k=1
i1

b, = H sin & for j=i, (6.14)
=1

;J,:O for j=i+1,...,n

The above reduced form is identical to (6.3) if we choose #;; = 0 for all j > i. In matrix
form, the lower triangular decomposition (6.14) thus looks as follows:

( 1 0 0 0 0 oo
cos By sin 6y, 0 0 0 .
p'=| cos 31 siné3) cosbin sinfly) sinfap 0 0 (6.15)
Cco8Bs1 sinfycosbiy Sinb4y SinbyocosByy  sinbyy sinbyrsinby; 0
\ : : : N

One of the advantages of the completely general decomposition (6.3) was that the result of
the spectral decomposition and truncation (6.11) could be used directly in a bootstrapping
procedure to calculate good initial values for the angles 6;; for the subsequent optimisation
procedure. In order to start off the optimisation in the case of the reduced form, the
result of the spectral decomposition and truncation can still be used as follows. First,
we reconstitute the effective correlation matrix € as given in equation (6.12) from the
spectrally truncated approximation (6.11). Then, we calculate the Cholesky decomposition
of C (which can be done very efficiently [PTVF92]). Since the Cholesky decomposition
is of lower triangular form, it can then be used directly to back out good initial guesses
for the reduced number [r x (n — 1)]/2 of angles that specify the matrix B’ as given in
equations (6.14) and (6.15), respectively. The advantage of the reduction by 50% of the
number of free parameters in the optimisation procedure is obvious: halving the dimension
of the optimisation domain decreases the number of entries in any involved Jacobian or
Hessian matrix by a factor of four, which should give rise to a speed-up factor of the
same order of magnitude.

6.4 EXAMPLES

A risk manager retricves from the middle office’s reporting system the following correl-
ation matrix of three world equity indices:

) 1 09 07
c=[09 1 04
0.7 04 1
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The eigenvalues of C are {2.35364, 0.616017, 0.0303474} and the correlation matrix
can be split up as

C=&BT

with

0.88465  0.45536  0.10021

~ 0.98742  0.08718 —0.13192
B = .
0.77203 -0.63329  0.05389

The risk manager is aware of the VaR calculated under the assumption of this correlation
between the three indices. In order to assess the change in VaR resulting from a decrease
in correlation between two of the three underlying variables, the risk manager wishes to

adjust the matrix to
1 09 07
cC=] 091 03 ].
07 03 1

Unfortunately, the eigenvalues of €' are now {2.29673, 0.710625, —0.00735244}, and
despite its plausible appearance, matrix €’ is no longer an acceptable correlation matrix.
This highlights how a minor change can lead to the violation of the requirement of
positive semi-definiteness of a correlation matrix. The system will now fail when trying
to construct a split-up matrix B for the purpose of Monte Carlo simulations* in order to
calculate the VaR under the new assumptions.

Using the method outlined in section 6.1 with the error measure chosen to be XA et
as given by equation (6.5), we can calculate

. [ 099804  0.06265 0
B-| 086482  0.50209 0
0.74020 —0.67239 0

with

Y A 0.89458 0.69662
C=BB = 089458 1 0.30254
0.69662 030254 1

and a total error of xezlcme"m =0.946 x 1074,
In comparison, the method outlined in section 6.2 above yields

B = 086434 050292 O

. 0.99805  0.06238 0
0.73974 —0.67290 0

4Recall that the construction of correlated normal variates from a vector of uncorrelated normal variates z
is done by the transformation x = B -z with C = BB,
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to give us

N I 0.89402 0.69632
C=BB =1 089402 1 0.30100
0.69632 0.30100 1

One can notice that not only the total error of xg'l ements = 1-0X 10~4 but also the individual
elements. are remarkably close to the values obtained by optimisation. Despite the fact
that there is in general no guarantee that the results of the two methods are as close
together as in this example, I have always found very good agreement between the two
approaches.

6.5 ANGULAR COORDINATES ON A HYPERSPHERE
OF UNIT RADIUS

The ith row vector of B as specified by equation (6.3) is given by

(bfh bfZa “ves bfn—b bfﬂ)

n=2 n-2
= (cose,-l, sin0;1cos 2, ..., Hsiné‘gk cosO;p_1, ]_'[sim'.‘i‘,-gc sinB;,l_l) (6.16)
k=1 k=1

The sum of squares 3~/ b7; will definitely be unity if the recursive relation

k=n . 2
sin” @;
2 b=y o 6.17)
T cos? 0y,
holds, since then
k=n 2 1.2
sin” 6;y sin® @y .
b2 = b - 22— cos?8; - = sin2 §; 6.18
'é =T 052 04 " Cos? 0 i (6.18)
and thus
k=ﬂ' k=n
D obh =b} + Y bY =cos’ 01 +sin” 6 = 1. (6.19)
k=1 k=2

To start the induction, we see that equation (6.17) is satisfied for j = n — 1 since then
we have

n—2 n_2 Siﬂ2 9,',3_1
sin” Oy sin® 0 p—1 = 1_[ sin? 0y cos®0ip_ 1+ —— . (6.20)
k=1 k=1 cos= i n—1
It remains to be shown that
2 k=n
cos” 6
bh=——L Y b (6.21)

2
sin“ 6, 555
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for j < n — 1. Using the recursive relation (6.17) itself, we obtain

1.€.

2
by,

2 k=n
'(b:'j+l + > bR
k

-2
sin” 6;; )

2 s 2
Cos Oy (p2 4 SOt o
sin29,~ fitl C03295j+l rr+

cos? 6;;

bt .
sin’ 0;j cos? 6; ;41 Lt

sin 6;;
Y COS@UH

bi jvi = byj -
SO

(6.22)

which is identical to the construction description (6.3) for j < n—1. Hence, all row vectors
of B are of unit length. The elements of C=BB are the pairwise scalar products of the
row vectors of B. Since the scalar product of two vectors of unit length is by definition

contained in [—1, 1], C satisfies the requirements of unit diagonal elements, symmetry
and all elements being contained in [—1, 1].
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Pseudo-random Numbers

For all Monte Carlo methods, we need an underlying number generator. This driving
engine has to supply us with variate vectors which in the limit of infinitely many draws
satisfy a given joint multivariate distribution density function. This is typically done by
transformation of draws from the uniform distribution of equal probability for all numbers
in the interval (0, 1). Note that, unlike most textbook definitions of aumerically generated
uniform numbers, both (0 and 1 are explicitly excluded since for most of the desired target
distributions at least one of the two endpoints maps to either +00 or —oo, which clearly
poses a numerical problem.

Traditionally, Monte Carlo techniques used to depend on a number generation method
that mimics randomness as well as possible, and a great deal of effort has gone into
number theoretical research for this purpose. Generations of number theoreticians have
focused on ever more refined and intricate ways of constructing random numbers, whilst
others devised ever more sophisticated tests for randomness [Knu81}. The reason for all of
this hard work is that a machine that is designed to follow instructions in a deterministic
way, such as a computer, cannot produce anything that actually is random. This was
beautifully expressed by John von Neumann in his statement which has become known
as ‘the original sin of random number generation’:

*Anyone who considers arithmetical methods of producing random digits is, of course,
in a state of sin.’
John von Neumann, 1951 [vINS1]

A more mathematical way to express this fundamental failure of randomness of computer-
generated digits is that due to the algebraic nature of their generation, there always exists
a high-dimensional embedding space B¢ such that vector draws v whose elements are
sequential draws from a one-dimensional number generation engine can appear as system-
atically aligned in a lower dimensional manifold. One example of such a high-dimensional
embedding is clearly given by the periodicity of the number generator, which is why
modern methods pay great attention to this feature and achieve very long periodicities.
However, this continuous chase for ever more random numbers is somehow doomed
because for any new method that satisfies all known tests, one can always construe a new
test criterion for randomness which will prove it to be non-random:

‘Every random number generator will fail in at least one application.”
Donald E. Knuth, 1969

It is for this reason that computer-generated random numbers are referred to as pseudo-
random numbers [Sob94 ). They simply cannot be random.

Recently, there have been several attempts to overcome the very last bit of non-
randomness left in modern pseudo-random number generators. Devices have been
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constructed that link the output signal of radioactive decay processes or light intensi-
ties of so-called ‘lava lamps’ through encryption algorithms to digit scramblers. To some
extent, these approaches ought to be taken with the proverbial pinch of salt since the
benefits that can be gained from the additional level of randomisation can hardly be in
any proportion to the extreme effort and thus cost involved. This is certainly true for
applications of Monte Carlo methods in finance, but may be different when it comes to
security critical encryption uses of random numbers.

This chapter is not meant to be an exhaustive overview of available pseudo-random
number generation methods. There are many excellent books on this subject alone [Knu81,
PTVF92, Tez95, Nie92], and the reader is referred to them for details of individual number
generators. Section 7.1 is mainly for the entertainment of those who always wondered
about the difference between chaos and randomness, but never dared to ask. In section 7.2,
a little historical detour to the beginnings of computer-generated pseudo-random numbers
is taken. Then, in section 7.3, 1 briefly outline the most basic principle of pseudo-random
number generation. Following that, 1 acknowledge the probably most frequently used
number generators around, namely Ran0 to Ran3 as denoted in [PTVF92].

7.1 CHAOS

The general principle of pseudo-random number generation is as follows. Given the
current value of one or more (usually internally stored) state variables, apply a math-
ematical iteration algorithm to obtain a new set of values for the state variables, and use
a specific formula to obtain a new uniform (0, 1) variate from the current values of all
the state variables. This kind of process is mathematically also known as a discrete-time
dynamical system.

A simple example of a one-dimensional discrete dynamical system is the logistic map.
It was originally used by P. F. Verhulst in 1845 to model the development of a population
in a limited environment [May76], and is known as a consequence of its non-linearity to
produce chaotic dynamics for certain choices of parameters. The logistic map gives rise
to discrete dynamics by the following algorithm. Given a number x,< (0, 1), we have

X1 = Wxp (1 — x,) (7.1)

for some p e (0,4}, which is shown in Figure 7.1. For any value of u and xq, the
system (7.1) will converge to a so-called attractive invariant set. This means, skipping
some Initial transient behaviour, the system (7.1) will only produce iterates that take
on values from this invariant set. As long as the invariant set is (finitely) piecewise
continuous, we can remap it relatively easily to the interval (0, 1), and thus obtain the
desired uniform (0, 1) variates (whereby we have not yet ascertained to what extent these
meet the requirement of serial decorrelation, etc.). The first question that arises is what
value of g should we use. For this purpose, I plot in Figure 7.2 the invariant set of
values of p from 0 to 4. As we can see in the figure, the most promising value for
4 1s 4 since then the entire interval (0, 1) appears to be filled homogeneously. In fact,
the value i = 4 can be shown to give rise to a strange attractor for the dynamical
system (7.1), and to fill the uniform interval (0, 1) with Lebesgue measure 1 [GH83].
Does this mean we can use the logistic map as a pseudo-random number generator?
Sadly, no. There are two substantial problems with it, and I shall now briefly look at
them individually.
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Figure 7.2 The attractive invariant set of the logistic map for values of x4 from 0 to 4. Note that
the abscissa has been scaled according to u — — In (4.25 — p).
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Figure 7.3 Iterates from the logistic map at p = 4.

First, have a look at Figure 7.3. What you see are iterates from the logistic map for
p = 4. Admittedly, they look rather random indeed, and it is this similarity between chaos
and randomness which gives rise to the common misunderstanding that chaotic systems
behave randomly. Now, have a closer look at the ordinate level of 0.75. There is clearly
some kind of structure. What happens is that any iterate that comes very close to 0.75 is
succeeded by more iterates nearby. We see from equation (7.1) that x* = % is actually
a fixed point under the logistic map for 4 = 4. However, this fixed point is not stable
under the dynamics of (7.1). This means that any point in an arbitrarily small vicinity of
x* is gradually repelled from the fixed point, until it eventually starts orbiting all over
the unit interval again. As a consequence, a number generator based on the logistic map
would never return the value .75, but instead, whenever it happens to come close to this
value, there will be a number of variates following with values very nearby, displaying a
temporary near-periodicity. What’s more, there are actually uncountably infinitely many
other values that are also excluded by the map. Firstly, there are all of the predecessors

of 0.75, i.e. all the values that would actually end up right on 0.75 under the iteration
rule (7.1). Going back from x* = % one iteration we have [ﬁ %} One more backwards
iteration gives us {% - %, %, %+ 3451 In each tteration that we look backwards out
from x*, we have from then on two new predecessors of the unstable fixed point for each
one that we already had. Therefore, there are lim;_, o, 2 many points excluded from the

attractive invariant set of the logistic map for 1 = 4. What we are left with after taking all
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of those points out of the unit interval is what is known as a Cantor set. It is impossible
to map a Cantor set back to a continuous interval with any sensible function that could
be used on a computer. Also, the predecessors of x* are not the only points that are
being avoided by the logistic map. In addition, there are also all the points that represent
short periodic orbits (i.e. fixed points of the iterated map), and they also have domains of
temporary near-periodicity in their vicinity. Take for instance the value xg = %(S —5).
Its iterate is x; = %(5 +4/5), which in turn leads back to xp = %(5 —/5) = xp, and thus
we have a period-2 orbit. This period-2 orbit is unstable and therefore we have another
set of repelling points embedded in the chaotic attractive invariant set for u = 4. Equally,
there are points forming short periodic orbits for many other cycle lengths, and all of
them are unstable at x4 = 4, This is one of the most defining points of chaotic motion:
embedded inside the attractive invariant set of chaotic dynamics, known as a strange
artractor, there is always an infinity of unstable periodic orbits.

The second problem with a non-linear dynamical system such as the logistic map is
that of the non-uniformity of the invariant measure. For a random number generator, the
invariant measure i (x) is simply the probability density that the next draw will be in
the interval [x, x + dx], and for a discretely iterated system it is the long-term average
of points arriving in that interval. The attentive reader may have noticed that the points
in Figure 7.3 are a lot denser at the top and bottom of the diagram. This is a symptom
of the fact that for ;. = 4 the invariant measure of the logistic map is given by

1
wa/x(l —x)

[vN51, GH&3], which is singular at x = 0 and x = 1. Nonetheless, if we transform from
x to the new variable o by setting

Vuma (6) = (7.2)

2
x = sin® (-{a) &= o = — arcsin/x (7.3)
2 m

we can calculate the density n(a) of the new variable o on (0, 1) according to

¥ (x)dx = n(a) de, (7.4)

d
n(@) = w(x(a))a—g

7 sin (§a) cos (§a)
m/x(1 —x)
=1, (7.5)

In other words, the transformed variable « is uniformly distributed on (0, 1), and thus we
might be able to use it as a generator for uniform (0, 1) pseudo-random numbers. Alter-
natively, we could use the untransformed variates x and correct the probability density
associated with each draw as explained in section 9.2, and thus avoid the evaluation of an
inverse trigonometric function'. However, the issue of embedded unstable periodic orbits
and all their pre-iterates, i.e. all the points that would map onto them, cannot be removed

! Albeit that it may not be worth the trouble, see section 14.6.
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in any way that we can implement on computers®. In the early days of Monte Carlo
simulations on electronic computers, these islands of regularity in the stream of generated
numbers were not considered a major issue, since they can be shown to be of Lebesgue
measure zero, and the very iteration formula (7.1) for u = 4 was used [UvN47, vN51}
as an alternative to the mid-square method mentioned in section 7.2. However, since the
mid-1940s, a lot of progress has been made in the area of non-linear dynamics, and the
phenomenon of temporary near-periodic behaviour in the vicinity of unstable periodic
orbits (also known as intermittency) is much better understood. For financial simulations,
we definitely don’t want to employ a sequence that displays features of such obvious
involuntary regularity as shown in Figure 7.3.

7.2 THE MID-SQUARE METHOD

The first ever algorithm for the computer generation of pseudo-random numbers was
proposed by John von Neumann, and is known as the mid-square method [Ham51}, The
procedure is as follows, Take a uniform (0, 1) number xp in a four-digit representation.
The next variate x,4 is calculated from x, by taking the square of x, and extracting the
middle four digits. In other words, from xg = 0.9876 we obtain

xg =0.975353 76

X = 0.5353
x? = 0.28 6546 09

x2 = 0.6546

and so on. Unfortunately, this procedure is very likely to end up in a short periodic orbit
or at 0, depending on the initial value xg, which was recognised early on [For51]. In fact,
for the above starting value it is absorbed at O after 50 iterations. Even when a starting
value is used that does not enter a short periodic orbit soon, and does not map into 0, this
method tends to produce a disproportionate frequency of small numbers [Sob94].

7.3 CONGRUENTIAL GENERATION

The most commonly used pseudo-random number generation methods are essentially
piecewise linear, or piecewise affine, to be precise. The basic idea is to produce integer
values m, on a given interval [0, M — 1], and to retum a uniform (0, 1) variate u, by
rescaling®. The next integer variate is calculated by

Muy+1 = (@my, +¢) mod M. (7.6)

Note that equation (7.6) is piecewise affine with the same multiplier over all pieces.
Thus, it preserves the volume of any given subinterval of [0, M — 1], which is why it
is called a congruential generator. Unlike the non-linear methods that were presented

2Mathematically, this may be possible by defimng a function that is discontinuous everywhere, but such a
function cannot easily be implemented on a computer.

*The common methed for rescaling is to set u, = m,/M. Since m, can. however, take on the value 0,
which we usually want to avoid, I recommend rescaling according to up, = (m, + 1)/(M + 1),
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above, there is no absorption into a fixed point or short periodic orbit for congruential
generators. In fact, since all calculations are carried out using integer arithmetics, and
since @ and M must be chosen to be co-prime, the system (7.6) cannot give rise to fixed
points at all. The constant a is typically chosen to be sufficiently large in order to have
any two close initial values very quickly wrap around the unit interval repeatedly and
thus appear to be decorrelated. This in turn means that the iteration map (7.6) consists
of many nearly vertical lines. For all the specific examples of the multiplier a discussed
below, the iteration map would actually appear to be a completely filled unit square,
unless the diagram is enlarged greatly, which is why I omit to show it. Incidentally, the
transformation (7.3) of the logistic map (7.1) for u = 4 results in the iteration scheme

2o for o, < L
st = ’ L (1.7)

which has the same structural features as

The small multiplier 2 in this form makes it somewhat clearer that the logistic map
displays the feature of comparatively slow separation of two initial values near unstable
periodic orbits or near the fixed point at x* = % in Figure 7.3,

Frequently. the constant ¢ in equation (7.6) is chosen to be zero, whence we commonly
encounter the name linear congruential generator. There is a lot of literature on good
choices for @ and M, and not all of it is trustworthy. In IBM’s early computing days,
it used to deliver its mainframe systems equipped with its infamous RANDU generator
which uses ¢ = 65,539, M = 2*' and mg = 1. This generator has meanwhile repeat-
edly been reported to be highly inadequate [PTVF92, Sob94, FMM77, Tez95)*. Sadly,
it has been copied to a variety of other computer systems, including even the Russian
ES system [Sob94]. Since it is well conceivable that other computer manufacturers have
slipped up similarly?, and since there is according to Murphy’s law a tendency for mistakes
to proliferate, I advise the reader never to rely on black box number generators that come
with any one system and allegedly have been tested. Note that this kind of mistake is
extremely easy to make. Again, please don’t trust any number generator that you can’t
find a proper reference to, even if it looks sophisticated and similar to the trustworthy
ones given in, for example, [PTVF92].

Not all is doom and gloom, however. A simple choice for the constructing multiplier
and modulus that does work is @ = 5'7, M = 2% and my = 1, which has been used
successfully in Russian 40-bit computers [Sob94]. Its period is 2°%.

4[50b94] reports that IBM’'s RANDU uses M = 229 whilst [PTVF92] and [Tez95] report 1t to use M = 231,
1 don’t know which is accurate or whether it makes a difference, I simply advise the reader to avoid any number
generator that uses the multiplier @ = 65, 539.

S[PTVF92] reports that one popular 32-bit PC-compatible compiler comes with a severely flawed pseudo-
random number generator. Apparently, a reasonable number gencrator has been used as the basis for the
compiler vendor’s own design which was to add a byte swapping mechanism. This kind of action is always a
dangerous thing to do and in this case ruined the number generator.
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7.4 Ran0 TO Ran3

The seminal masterpiece by Press, Teukolsky, Vetterling and Flannery [PTVF92] is a very
good source of reliable number generators that have been well tested and are well under-
stood, The simplest of their suggested number generators, Ran0, is given by equation (7.6)
with @ =7° = 16807, ¢ = 0 and M = 2*! — 1. This choice of parameters was proposed
by Park and Miller [PM88] as a minimal standard generator and goes back to IBM’s
GGL generator [Tez95, LGM69] from 1969. There are some technicalities involved with
the issue of overcoming the roundoff problem in the multiplication in (7.6) for the given
parameters on 32-bit computers. This is typically done with the aid of Schrage’s method,
and the reader is referred to [PTVF92] for details.

Ranl is an enhancement of Ran0 using a careful shuffiing algorithm. Note that any kind
of enhancement of a pseudo-random number generator has to be done with utmost care,
and should be left to number theoreticians. The reason is that any non-linear alteration or
modification of the numbers given by one number generator is more than likely to result
in disaster®. The message here is: kids, don't do this at home!

Ran?2 is based on the idea of coupling two linear congruential generators, to construct
one of a much longer period [L.’E88]. Finally, there is Ran3 which is based on a subtractive
method suggested by Knuth [Knu81]. I won’t go into details for either of them because
I don’t think I could explain them any better than is already done in [PTVF92].

7.5 THE MERSENNE TWISTER

Another random number generator technique that has become increasingly popular
recently is the Mersenne twister. The name is to indicate that the period of the sequence
is a Mersenne number, i.e. a prime number that can be written as 2" — 1 for some
n € N, and that it belongs to the class of ‘“Twisted Generalized Feedback Shift Register’
sequence generators. The period of the Mersenne twister as published [MN98] and avail-
able [MN97] is 2'%?37 — 1. In order to give you a feeling for this number, imagine that
we started at the time of the creation of the universe a computer producing 1 billion
numbers per second’ from the Mersenne twister sequence. The fraction of the full period
that this computer would have produced by now is a decimal number with 5975 digits
of zeros behind the decimal point, prior to any non-zero digits. In other words, this
computer could continue to draw numbers for many thousand lifecycles of your average
solar system between its formation and collapse into a black hole before beginning to
repeat the sequence. Clearly, for all practical purposes, this number generator can be
assumed to have infinite periodicity.

The Mersenne twister sequence is guaranteed to have equidistribution properties in at
least 623 dimensions. As George Marsaglia put it in 1968, ‘Random numbers fall mainly
in the planes’, for all random number sequences there exists an embedding dimensionality
in which, in the right projection, all sample points appear to lie in hyperplanes. This can
have fatal consequences for a Monte Carlo calculation if the problem that is evaluated just

SYou may, if you want, compare it to the problem of interaction of two individually chaotic systems
(although randomness 1 not chaos, as was demonstrated in the previous sections), which in most cases gives
rise to stable periodic behaviour.

"Even though at the tme of writing computers running at 1 GHz CPU clock frequency are readily available,
software running on such fast hardware couid only produce Mersenne twister numbers at a ratc of less than
100 million draws per second.
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so happens to be susceptible to the used sequence’s regularity. The higher the embedding
dimension is which produces those patterns, the safer will be the underlying number
generator for general purpose use. I do not intend to go into details about the internal
mechanics of this particular generator; suffice it to say that it tries to utilise as much of
the existing number theory as possible to produce a reliable number generator. To quote
the authors themselves:

‘MT uses many existing ideas. In particular, we are thankful to the following persons.
N. Yoneda, P. L’Ecuyer, R. Couture, H. Niederreiter, P. Hellekalek, M. Fushimi,
S. Tezuka, Y. Kurita, D. Knuth, H. Leeb, S. Wegenkittl, T. Cooper, M. Rieffel,
H. Enomoto, and many persons who gave us valuable comments, including the users
of TT800, a previous twisted generator.’

In all of my tests and experiences this sequence engine performed well. Since code is
freely available for it [MN97], and since it is no slower than any of the other pseudo-
random number generators®, it is recommended to integrate it into your general purpose
library. It is certainly worth having it, even if only as a backup should you ever wish
to cross-test results against a number generator whose code base was not taken from the
seminal reference ‘Numerical Recipes in C* [PTVF92].

7.6 WHICH ONE TO USE?

All of them, or at least more than one of them. Sadly, many people who use Monte Carlo
methods underestimate the importance of the underlying number generator greatly, or
have some kind of deep trust in whoever built the number generator they are using from
within a black box. This is not to say that the sequence generator is the most difficult part
of the design of a Monte Carlo procedure, on the contrary. It is, however, one link in a
chain of techniques that together comprise a Monte Carlo simulation, and the nature of
chains is that they are only as strong as their weakest link. Unlike some add-on parts of
the chain such as control variates, etc. which are supposed to just add strength with their
weak performance not breaking the fundamentals of the calculation, the reliability of the
number generator is crucial. I hope that by the end of this chapter the reader is sufficiently
aware of the basic principles ensuring that, as a matter of fact, all pseudo-random number
generators are flawed. How suitable they still are for any one application depends on the
very problem that is being tackled, and it is virtually impossible to foresee where a number
generator may break down. Therefore, I advise any user of Monte Carlo methods to have
a small library of number generators available, and rather than rerunning a calculation
with a new seed for any one generator, flick a switch that makes the simulation use a
different number construction method altogether. That’s the way to do it.

"1t is in fact faster than most other reliable pseudo-random number generators.
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Low-discrepancy Numbers

In the light of the fundamental difficulties involved in the generation of truly random
numbers mentioned in Chapter 7, we may ask ourselves why do we need randomness?
The answer lies with the need to represent multi-dimensional joint distributions. As an
easy example, let us consider the incremental path construction of standard Brownian
motion

W(tizh) = W) + /AL 24 8.1y

with z; ~ N(0, 1) over the time interval [0, #,] fori = 0, ..., n~— 1. Evidently, any serial
correlation between the drawn normal variates z, will give rise to a bias or undesirable
regularity in the constructed path. If many paths constructed in this way are used as the
basis for the valuation of a path-dependent financial derivative, for instance, any serial
correlation is likely to give rise to a mispricing. We can, however, view this kind of
problem from a different perspective. What we are really sampling here is a function of a
vector argument z whose elements are to be taken from an n-dimensional standard normal
distribution. In this formulation, there is absolutely no reason why subsequent draws of n-
dimensional vector variates z would have to be serially uncorrelated. The need for perfect
decorrelation and thus randomness is merely an artefact of the custom to construct multi-
dimensional vector variates from one and the same underlying one-dimensional number
generator. For number generation methods that allow for a given dimensionality of the
problem at hand, taking previous vector draws into account, and thus making subsequent
vector draws serially correlated in order to avoid the inevitable clusters and gaps of
(pseudo-)random numbers, can actually aid the equidistribution property of the number
sequence generator. This is the essential idea behind the concept of low-discrepancy
numbers,

Unlike pseudo-random numbers, low-discrepancy numbers aim not to be serially uncor-
related, but instead to take into account which points in the domain to be sampled have
already been probed. The mathematical foundations of low-discrepancy sequences go back
to H. Weyl in 1917 [Sob%94] and many number theoreticians have worked in this field,
althongh I name but a few of the better known sequences: Halton, Faure, Haselgrove,
Niederreiter and Sobol’ [Sob67, Sob76, BF88, BFN94, Nie88, Nie96, Nie92, Tez95].
Low-discrepancy numbers have become a popular tool for financial Monte Carlo calcu-
lations since the early 1990s [BMW92].

It has been shown that number sequences can be generated that enable us to do quasi-
Monte Carlo calculations which, given certain smoothness conditions of the function to
be integrated, converge not as one over the square root of the number of samples taken,
ie. « 1/+/N, but instead much more closely to one over N, namely o ¢(d)[(In N)¢/N].
This. even for a large dimensionality d, is asymptotically much faster than o 1/4/N.
The only problem is that the coefficient ¢(d) can depend on the dimensionality and
thus for any one high-dimensional calculation we cannot know in advance if the use of
low-discrepancy numbers will be beneficial with respect to the accuracy required for the
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specific computation, At this point, number-theoretical results alone no longer tell us if
any particular low-discrepancy sequence will give a speed-up in convergence and we have
to rely on empirical results.

In this chapter, I first explain the number-theoretical concept of discrepancy. Then, I
introduce the Halton sequence which is probably the easiest low-discrepancy number
generation method to describe. Next, 1 discuss the Sobol’ sequence. Following that,
I briefly discuss the Niederreiter (1988) method. For further details and other low-
discrepancy number generation methods the reader is advised to refer to the books by
Tezuka [Tez95] and Niederreiter [Nie92]. Then, some empirical evidence will be given
that Sobol” numbers, if adequately initialised, can be used in high dimensions, conversely
to common belief. I will also try to explain the origin of what 1 think is a misunderstanding
in the literature that they begin to fail as and when you start using dimensionalities above
a few dozen.

8.1 DISCREPANCY

A measure for how inhomogeneously a set of d-dimensional vectors {r,} is distributed
in the unit hypercube is the so-called discrepancy. A simple geometrical interpretation of
the number-theoretical definition is as follows. Generate a set of N multivariate draws
{r;} from a selected uniform number generation method of dimensionality d. All of these
N vectors describe the coordinates of points in the d-dimensional unit hypercube [0, 1]9.
Now, select a sub-hypercube S(y) by choosing a point y delimiting the upper right corner
of the hyper-rectangular domain from 0 to y. In other words, the sub-hypercube S can be
written as S(y) = [0, y;) x --- x [0, yg). Next, let ng(,) denote the number of all those
draws that are in S(y), i.e.

N
nsy = »_ Yresi)
i=1

N d
= Z Yyezri) - (8.2)
i= :l
In the limit N — o0, we clearly require perfect homogeneity from the sequence generator,

which means

n
im =2 = Hy, (83)

N—»oo N
i=1

for all y € [0, 1{%. The above equation simply results from the fact that for a perfectly
homogeneous and uniform distribution on a unit hypercube the probability of being in a
subdomain is equal to the volume of that subdomain, and the volume V of S(y) is given
by the right-hand side of equation (8.3). With these definitions, we can now compare
ns(yy/N with V(S(y)) for any one given y. In order to obtain a measure for the global
discrepancy of the number generator, we still need to choose an error norm over all
possible y in the unit hypercube. With respect to the Ly-norm, this gives us

1
2

() _ f ns(y)
T = Vi . (8.4)
N (0,11 ( l_[ )
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Another frequently used discrepancy neasure is the one resulting from the above proced-
ure involving the L.o-norm:

nS(y) -
w1

k=1

DM) = sup
ye[0,1)¢

(8.5)

Clearly, by the nature of the underlying norms used for the respective definitions of T;,d)
and DY, we have

DY » 1\, (8.6)

For numerical tests, the L, discrepancy is rather cumbersome to evaluate. However, as
demonstrated in appendix section 8.8.1, the discrepancy with respect to the Z,-norm can
be evaluated with the explicit formula

(T(d)) _ﬁ_ i n 1 — max(rg, er) - gj&j i: ﬁ ( ) +374 (87

k=1 i=1 k=1

where r;; 1s the kth element of r;. In appendix section 8.8.2, I show that the expected
squared discrepancy for truly random numbers 1s

E[T“"’ ] ! (2- _3- "), (8.8)

We now arrive at the number-theoretical definition of low-discrepancy sequences. A
sequence in [0, 119 is called a low-discrepancy sequence if for all N > 1 the first N
points in the sequence satisfy

d
2V (ln N)

DY < ( (8.9)

for some constant ¢(d) that is only a function of d.

8.2 HALTON NUMBERS

The idea behind Halton numbers is to use the representation of a given generating integer
y in a different number base for each dimension. Of course, the mentioned integer has
to be a different one for each new vector draw. An easy and natural choice for this
constructing integer is simply the number n for the nth draw, y(n) := #n, but any other
choice using a new integer with each draw, such as the Gray code G(n) discussed in
section 8.3.3, would work, too. In order to prevent any asymptotic pairwise periodicity,
the number bases are chosen to be the prime numbers, of which one has to be precalculated
for each dimension. The algorithm to construct a new vector draw of Halton numbers is
as follows.

1. For each of the required dimensions i = 1, ... , d, find the representation of y (n) in
the associated prime number base p;, i.e. find the coefficients a; in

My

y(n) = Zak, pi (8.10)
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with all of the ax; < p; and m,, chosen large enough to make sure that all non-zero
digits of y(n) in the number base p; are accounted for.

2. To construct the coordinate u,, for dimension i of the nth uniform vector draw, the
sequence of calculated coefficients is now inverted and used as multipliers of fractions
in the number base p;, i.e.

ing

tm =) a7, (8.11)
k=1

For instance, if we choose the prime numbers 2,3,5,7 as the basis in the four dimensions of
a four-dimensional Halton sequence, the 37th draw is constructed as follows for y (n) = n:

Base n =37 Hp

in base
2 100101 0.101001; = 1-271 +0-272 41273 +0.27%40.275 + 1.27% = 0640625
3 11013 01011y = 1371 4037241373 4134 = 0382716
5 1225 02215 = 2.57142.5241.573 = 0.488000
7 527 0.25 = 2 771 45.772 = 0.387755

An actual implementation of the algorithm to create the next draw of the Halton sequence
is given in Code Example 8.1. The variable sequenceCounter is the index of the next

congt vectorsdoubles& Halton::nextUniformVector( veoid ) {
unsigned long b, i, k;
double £, h;

for (++sequenceCounter, i = 0; (i < dimensionality); ++i) {
for ( k = seguenceCounter, b = primeNumbers(i], £ = 1., h = 0.; (k); Xk/=b ) |
f /= b;

h o+= (k%b)*f;
}

sequenceVector [i] = h;

}

return sequenceVector;

Code Example 8.1 Code sample for the generation of the next vector draw of the Halton sequence

vector draw, i.e. it represents n in the discussion above. The precalculated prime numbers
are stored in the array primeNumbers.

8.3 SOBOL’ NUMBERS

The construction of Sobol’ numbers [Sob67] is somewhat more involved. Again, a set
of incommensurate basis numbers is used. This time, however, a different kind of multi-
plication determines the meaning of incommensurate. Whereas for Halton numbers the
basis numbers simply had to be incommensurate with respect to ordinary multiplication,
for Sobol’ numbers the basis numbers are compared with respect to binary multiplication
modulo two.
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8.3.1 Primitive Polynomials Modulo Two

The theory of Sobol’ numbers starts with modular integer arithmetic. Two integers i and
j are called congruent with respect to the modulus m, 1.e.

i2j modm (8.12)

if and only if the difference i — j is divisible by m. Clearly, the numbers 0, ... ,m — 1

are sufficient to represent the result of any multiplication or addition in the modulus

m, due to the congruence relation (8.12). For m prime, the combination of addition and

multiplication modulo m, plus a neutral element with respect to both, is also called a

finite commutative ring which is isomorphic to a Galois field with m elements, GF[m].
A polynomial P(z) of degree g

8
PR) =) et (8.13)

j=0

is considered to be an element of the ring GF[m, z] of polynomials over the finite field
GF[m] if we assume all of the coefficients a; € GF[m]. In other words, all algebra on
the coefficients ay is to be carried out modulo m. This means, for instance, that

CHDE+ D e+ D242 4241 mod2. (8.14)

A polynomial P(z) of positive degree is considered to be irreducible modulo m if there
are no other two polynomials Q{z) and R(z) which are not constant or equal to P(z}
itself such that

P(z) £ Q(z)R(z)  mod m. (8.15)

An irreducible polynomial modulo m in GF[m, z} is the equivalent to a prime number in
the set of integers.

The order of a polynomial P(z) modulo m is given by the smallest positive integer g
for which P(z) divides z9 - 1, i.e.

p =iqf[q’ ’34'—1 2 PR  mod m] (8.16)
q

for some non-constant polynomial R(z).

An irreducible polynomial P(z) of degree g is also considered to be primitive modulo
m if its order is m#® — 1. Note that not all irreducible polynomials are also primitive,
although (especially for m = 2) most of them are.

The importance of primitive polynomials modulo two is given by two separate facts.
Firstly, algebraic manipulations modulo two, i.e. binary algebra, are particularly well
suited to implementation on today’s digital computers. Secondly, for any primitive poly-
nomial of degree g there are recurrence relations to obtain a new random bit from g
preceding ones [PTVF92]. In other words, the use of a distinct primitive polynomial
modulo two for each of the required dimensions of the vector of uniform numbers makes
it possible to generate a sequence of vectors in which the sampling happens uniformly
over all of the dimensions, but in each dimension we also have uniform use of all
the binary digits. For further information on the distinction between irreducibility and



]2 Monte Carle Methods in Finance

primitivity, see for example [Tez95, Chi00]. The calculation of primitive polynomials
can be rather involved, Whilst there are limited tables of primitive polynomials avail-
able [Wat62, PTVF92, Jic97], I provide a list of all primitive polynomials modulo two
up to degree 27 on the accompanying CD. This amounts to a total number of 8 129334
primitive polynomials which should be more than enough for all practical applications.

8.3.2 The Constructicn of Sobol’ Numbers

The generation of Sobol’ numbers is initially carried out on a set of integers in the interval
from 1 to a power of two minus one, say [1,2? — 1]. As you may imagine, b simply
represents the number of bits in an unsigned integer on the given computer and should
typically be 32, which amounts to the set of attainable integers being given by all those
in the range [1,4294967295). We will denote the nth draw of one such Sobol’ integer
in dimension k as x,;. The final conversion to a uniform variate y,; € (0, 1) is done by
dividing x,x by 2° as a floating point operation, i.e.

X
Yk = 53 Yuk € (0, 1), xu € Z[1,22 — 1], 8.17)

By construction, the only Sobol’ variate that could ever be exactly zero! is the zeroth
draw (more on the meaning of this later), and this holds for all dimensions. Therefore,
we can explicilly exclude the possibility that any one of the drawn integers is actually
zero by simply skipping the zeroth draw.

For each of the d dimensions, the basis of the number generation is given by a set of so-
called direction integers, of which there is one for each of the b bits in the binary integer
representation. It is conducive for the following to view all of the direction integers as
b-wide bit fields. Let us denote the /th direction integer for dimension & as vy;. Additional
constraints on the bit field representing vy, are that only the / leftmost? bits can be non-
zero, and that the /th leftmost bit of vz; must be set. The actual number draws will later on
be calculated by binary addition modulo two of some of these direction integers, which
makes it clear that each vy can only affect the / leftmost bits in the drawn integer x,
and that it definitely influences the /th leftmost bit of xy;.

Binary addition of integers modulo two, which amounts to bitwise addition without
carry, is a particularly fast operation on contemporary computers, known as Exclusive
OR, and is usually abbreviated as XOR. The key to the generation of Sobol’ numbers
is the calculation of the direction integers. This involves the binary coefficients of a
selected primitive polynomial modulo two for each dimension. Let the primitive polyno-
mial modulo two for dimension £ be py. Denote the degree of this polynomial as gx. Let
the coefficient of the highest monomial in p; be axg, and so forth down to az g, 1.€.

8k .
pr@) =) axj 2577 (8.18)
J=0

Note the fact that arp = 1 is a simple consequence of pi(z) being of degree gi.

"This means for both the original Sobol® algorithm as well as the Antonov—Saleey modification using the
conventional Gray code, but also for all other methods that choose the generating integer y(n) such that
]/(0) =0.

2The leftmost bits in a bit field representing an integer are the most significant ones. On standard contem-
porary computers, the number of bits in an integer is 32. Thus, an unsigned integer with only the leftmost bit
set would correspond to the number 23! = 2 147 483 648, and all bits being 1 corresponds to 4 294 967 295.
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Now we come to the setting up of the direction integers. In each dimension with its
associated primitive polynomial pg. the first gg direction integers vy for/ =1,..., g
can be chosen freely, within the above-mentioned two constraints. All subsequent ones
are constructed from the following recurrence relation:

D2

Sk

Vk(i—gp)

Wl = _EE;L & E l Al j Vil — ) for [ > Bk- (8.19)
j'"_"

war

Hereby, the operator @, stands for the XOR operation®, and the notation Y indicates

a whole sequence of XOR operations, or binary additions without carry, in analogy to the
conventional sum operator 3 . In other words, the direction integer vy (—g,) is right-shifted
by gi bits, and then XORed with a selection of the (unshifted) direction integers vy (- j)
for j = 1,..., gk (controlled by which of the coefficients a;; are set), to obtain vy;.
Note that the highest order coefficient arg is not actually used in the recurrence relation
(8.19), and that since the lowest order coefficient ay 4, is always set, the direction integer
Uk (1—g) Will always enter vg;. This is the reason why the highest and lowest coefficients
of the polynomial py are not usually included in its encoding, provided that its degree is
known [PTVF92].

If you made it this far, and managed to follow the above explanations, you'll be relieved
to see how simple the actual construction of the Sobol’ integers x,; turns out. given the
above preliminaries. Just like for the construction of Halton numbers, we need a new
unique generating integer y (n) for each new draw. An easy choice of such an integer for
the nth draw is #n itself, i.e. ¥ (n) := n, which amounts to the original algorithm published
by Sobol’ [Sob67]. However, any other method of ensuring a new integer for each new
draw, such as the Gray code y(n) := G(n), is equally possible. Given the generating
integer of the nth draw, the Sobol’ integers for all of the d dimensions are given by

d D3
Xnk = Z Ukjl{jth bit (counting from the right) of y (1) 1s set}- (8.20)
j=1
In other words, depending on which bits in the binary representation of y(n) are set,
the direction integers are simply XORed, to produce the Sobol” integer x,i. The final
transformation to a uniform floating point number in the interval was already given by

the simple division in equation (8.17). It may be clear from formula (8.20) that we need
to ensure

y(n) #0 (8.21)

in order to prevent any of the y,; being exactly zero. By the nature of the construction
algorithm of the direction integers, no other value for y(n) can result in any x,; and thus
Yax being zero, whence condition (8.21) is sufficient to ensure y; # 0.

8.3.3 The Gray Code

Antonov and Saleev contributed to Sobol” numbers as we know them today by realising
that instead of using the binary representation of the sequence counter n directly, any other

3Just m case you don’t know this already, but still care: the ‘@2" operation’s equivalent in C is ‘",
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Table 8.1 Possible transitions from 3 to 4 in standard binary

representation

310 = 0117 210 =010, 010 = 000, 410 = 100,
310 =011, 2190 = 0102 H10 = 110, 410 = 100,
310 = 0117 lio =001, 010 = 000, 410 = 1002
310 =011, 11p = 001, 510 = 1012 410 = 100,
310 =0112 Tipo= 1112 619 = 110, 419 = 1002
319 = 0112 Tio= 1112 510 = 101> 410 = 1002

unique representation of the sequence counter n can be used too [AS79]. In particular,
a bitwise representation of n which switches only one single bit for every increment in
n means that only one single XOR operation is to be carried out for the generation of
every integer representing the uniform coordinate of the next vector draw. This kind of
encoding of integers is known as a Gray code G(n), named after the engineer Frank Gray
who patented this method for use with shaft encoders in the 1950s. Gray codes are still
used with shaft encoders today, and in many communication applications. They are useful
wherever a set of parallel electrical wires is used to indicate a number by the individual
voltage state of each line. Frequently, such lines are used to transmit the current state
of a counter variable, which would only ever increase by one. In such an application,
using any encoding whereby more than one bit can change from one number to the next,
the tiniest mistiming in the transition of the high-low states from one number to the
next will cause the recipient of the signal not to receive a clean increase, but a rapid
and spurious sequence of intermediate numbers. As an example, think of the transition
from 319 = 0112 to 459 = 100;. Due to the inevitably limited accuracy of mechanical
or electronic components, the receiver is likely to perceive one of the possible sequences
from 3 to 4 given in Table &.1. Clearly, none of them are desirable. Using a Gray code in
the representation of the integers surmounts this problem because exactly one bit changes
in any one increase. It turns out that there is no single unique Gray code. The most
commonly used choice for the Gray code is

G(n) = n & [n/2]. (8.22)

In Table 8.2, the Gray code of the integers 1 to 7 is given as an example. An interesting
feature of the Gray code is that the single bit that changes from G(n) to G(n + 1) is
always the rightmost zero bit of the binary represeniation of n itself. This can readily be
verified analytically and is also easy to see in Table 8.2.

As for the generation of Sobol’ numbers, they are clearly aided by the use of G(n)
instead of n as the constructing integer of the nth vector draw. Imagine we have already
generated all of the vector draws out to number n — 1, and we have kept in memory
the uniform integers x(,-1y for all of the required dimensions. Since the Gray code G(n)
differs from that of the preceding one G(n — 1) by just a single, say the jth, bit (which
is the rightmost zero bit of n — 1), all that needs to be done is a single XOR operation
for each dimension in order to propagate all of the x(;-.1) t0 xp, 1.€.

Xnk = X(n—1)k D2 Vjk. (8.23)
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Table 8.2 Gray codes

n n in binary [7/2] in binary G (n) in binary G(n) in decimal

0 000 000 000 0
1 001 000 001 l
2 010 001 011 3
3 011 001 010 2
4 100 010 110 6
5 101 010 111 7
6 110 011 101 3
7 111 011 100 4

8.3.4 The Initialisation of Sebol’ Numbers

The attentive reader may have noticed that there is yet some freedom left in the construc-
tion of Sobol’ numbers, namely the specific choice of the free direction numbers. As
we recall from section 8.3.2, given the primitive polynomial p; of degree gi associ-
ated with the kth dimension, the first g; direction integers can be chosen freely within
certain constraints. All remaining direction integers are then determined by the recurrence
equation (8.19). Since the first g; direction integers thus initialise the entire construction
of the sequence, I also call them initialisation numbers. The constraints on the /th initial-
isation number vy of dimension k are that only the [ leftmost bits can be non-zero,
and that the /th bit from the left-hand side of the h-wide bit field representing vg; must
be 1. Arguably the easiest choice for the initialisation numbers is thus to just have the
I/th leftmost bit set, and all other bits to be zero, which amounts to what I call unit
initialisation, i.e.

uy =207 (8.24)

The impact of the initialisation numbers on the homogeneity properties of the entire
sequence is not to be underestimated. In 1976, Sobol” published algebraic conditions that
link specific choices of initialisation numbers to certain uniformity properties [Soh76].
A low-discrepancy sequence is said to satisfy properfy A if for any binary segment
(not an arbitrary subset) of the d-dimensional sequence of length 2¢ there is exactly
one draw in each of the 27 hypercubes that result from subdividing the unit hypercube
along each of its unit length extensions into half. In other words, assume that in each
dimension we divide the interval |0, 1) into the two subintervals [0, %) and [%, 1). This
will result in a subdivision of the d-dimensional unit hypercube [0, 1)? into 2¢ sub-
hypercubes, Given any sequential section S of length 2¢ of the low-discrepancy sequence
of d-dimensional uniform variates that starts at some index m = [2¢ for some integer [,
ie. S; = (Upd, Upd g, ..., Bgypynd_p), there must be exactly one u € §; that lies in
each and every one of the sub-hypercubes of volume 277 for the sequence generator to
satisfy property A. Property A’ is similar in its definition in that it refers to sections of
length 47 being required to provide that a single element is contained in each and every
sub-hypercube resulting from the subdivision of the unit hypercube into four equal inter-
vals in each dimension. Of course, if we explicitly exclude the point at the origin ¥ =0
(as we would in order to prevent a mapping to infinity when transforming to Gaussian
variates), the segment of the sequence starting with the first element will have no point
in the sub-hypercube [0, %)d and will be most uniform for a length of 24 — 1,
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The algebraic equations that guarantee properties A and A’ can be solved numerically,
and there are precalculated tables of initialisation numbers that provide properties A and A’
up to certain dimensionalities in the literature. The original article |Sob76], for instance,
provides initialisation numbers up to dimension 16 for property A and up to dimension 6
for property A’, and some authors have gone through some considerable effort for higher
dimensions, namely Paskov and Traub calculated them up to dimension 360 [PT95]. In
finance, however, we often face problems that are of very high dimensionality 4. In order
to benefit from property A, we would need to carry out a Monte Carlo simulation over a
number of iterations of order of magnitude 2¢. The pricing of an Asian option with daily
momnitoring and one year to maturity, for instance, represents a Monte Carlo integration
in 250 dimensions, one for each trading day in the year. Since 223¢ ~ 107%, we would
have to iterate as many times as is currently estimated to be the total number of particles
in the universe, which is clearly excessive, before we would benefit from property A, not
to mention property A’.

However, as we will see in sections 8.5 and 8.6 this is not to say that for high-
dimensional problems every set of initialisation numbers will work as well as any other.
There is a clear benefit from the choice of initialisation numbers that enables the low-
discrepancy sequence to start exploring the volume of the unit hypercube early on, rather
than initially just focusing on certain areas. I therefore recommend using initialisation
numbers that provide properties A and A’ for the lowest dimensions, and for the higher
dimensions, at least to ensure that any regularity in the initialisation set is broken up. One
choice of initialisation numbers that does the complete opposite is the aforementioned
unit initialisation. Although strictly speaking a valid choice of initialisation numbers, unit
initialisation leads to surprisingly bad results for Sobol” numbers, and should be avoided.
A very simple way to generate initialisation numbers that break the regularity is to use
a separate pseudo-random number generator to draw uniform variates from (0, 1), and to
initialise as follows. Draw u}, from a separate uniform random number generator such
that

wyy = int [uz[ - 2‘—‘] (8.25)
is odd (simply keep drawing until the condition is met), and set
v = w287 forl=1, ..., (8.26)

To finish this section I give in Table 8.3 a list of initialisation numbers that have been
tested to give property A up to dimension 32 and are guaranteed to provide property A’ up
to dimension 6 [Sob76]. The columns are as follows: k is the dimension index, g is the
degree of the associated polynomial, a, . - . , akg, are the coefficients of the polynomial as
in equation (8.18), and vy are the direction numbers. The freely chosen direction numbers,
i.e. the initialisation set, are unshaded and those derived from the recurrence relation
(8.19) are shaded. Note that the polynomial associated with dimension 1 is not strictly a
primitive polynomial, similar to the number 1 not strictly being a prime number. This is
also the reason why the direction numbers for dimension 1 are not given by the recurrence
relation (8.19), but are simply vy; = 2P~'. Further details can be found in the original
literature [Sob67]. As for readily available code to construct Sobol’, there is of course the
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algorithm in [PTVF92]. Using that source code, and the table of primitive polynomials
modulo two on the accompanying CD, and the initialisation method described above
for the free direction numbers, it shouldn’t be too difficult to create your own high-
dimensional Sobol’ number generator. Also, there is a commercial library module avail-
able from an organisation called BRODA [KS]| that can generate Sobol’ sequences in
up to 370 dimensions. In a way, this module can claim to be a genuine Sobol’ number
generator since Professor Sobol’ himself is behind the initialisation numbers that drive
the sequence, and he is also linked to the company distributing the library. Just before
you get any wrong ideas: I am not affiliated with BRODA in any way whatsoever.

8.4 NIEDERREITER (1988) NUMBERS

H. Niederreiter devised a general framework for number-theoretically constructed seq-
uences of low discrepancy [Nie92]. This contributed greatly to the analysis of the
internal mechanisms and helped us to understand the similarities and differences of
the various number sequences. He also devised several sequence generation algo-
rithms [Nie88, Nie96], of which only one has been implemented [BFN94]. We refer to
these numbers as the Niederreiter (1988) sequence. They are, from a constructional point
of view, not too different from Sobol’ numbers. They, too, are based on polynomial
arithmetic modulo some base m, and the most frequently ased base happens to be 2, not
least due to the enormous speed and ease in carrying out binary calculations on a modern
computer. However, Niederreiter (1988) numbers employ irreducible rather than primi-
tive polynomials*. Despite the fact that they are theoretically supposed to be superior to
Sobol” numbers in the limit, from an empirical point of view, where the start-up rather
than the asymptotic performance’ is more relevant, Niederreiter (1988) numbers, in my
experience, do not provide quite the same reliability in terms of rapid convergence for
high dimensionalities as Sobol’ numbers do.

8.5 PAIRWISE PROJECTIONS

The aim of low-discrepancy number generation methods is to provide a source of vector
coordinates that covers a given domain as homogeneously and uniformly as possible.
The more homogeneous the underlying number generator, the more accurate and rapidly
converging will be a Monte Carlo calculation based on it®.

It has been documented in the literature that low-discrepancy number generators tend to
lose their quality of homogeneous coverage as the dimensionality increases. A particularly
striking way to demonstrate this is to plot the projection of a given number of vector
coordinates drawn from a number generator onto a two-dimensional projection of adjacent
dimensions. In Figure 8.1, we show the projection of the first 2047 vector draws of various
number generators on several two-dimensional uniform intervals. In the first row, we have

4Clearly, since all primitive polynomials are also irreducible, one can just use primitive polynomials for the
construction of Niederreiter (1988) numbers too. This does not, however, remedy the not-so-good performance
ol Niederreiter (1988) numbers in high-dimensional applications.

>For practical applications, we arc more interested in the realised convergence over the first 10,000 or even
500 million draws, and the question as to which number generator will provide a higher rate of convergence
in the asymptotic limit of actuaily infinitely many draws is not really of great importance.

SA more mathematical form of this statement is known as the Koksma-Hlawka theorem, but since thus
relationship is sufficiently plausible by sheer common sense, I won’t go into the details here.
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vector draws from the Mersenne twister as an example of a random pattern for reference.
Rows 2 to 5 give the projections of the Sobol’ generator (regularity breaking initialisation),
Sobol” (unit initialisation), Niederreiter and Halton. In column 1, the projection onto the
first two dimensions is shown, followed by dimension 8 versus 9, 29 versus 30, 62
versus 63, 93 versus 94. The particular dimensions shown were selected randomly. These
projections are a first indicator that not all low-discrepancy number generators are reliable
when fairly high dimensions are required. For the last three low-discrepancy number
generators there is clearly a trend towards clusters and gaps as the dimension increases.
Sobol’ numbers with regularity breaking initialisation, however, do not seem to suffer
from this problem.

There have been reports in various publications that Sobol’ numbers also suffer the
problem of rapid breakdown of homogeneity in higher dimensions. I believe this is due
to an unfortunate choice of the initialisation numbers used for their construction. In fact,
Sobol” himself has been aware of the importance of careful initialisation at least since
the early 1970s [Sob76]. Alas, when the financial sector started using low-discrepancy
numbers, this wasn’t picked up, whence there is the notion that no low-discrepancy
number generator is suitable for high dimensions.

8.6 EMPIRICAL DISCREPANCIES

A more thorough measure for the homogeneity properties of a low-discrepancy
number generator than visual inspection of projections is the discrepancy as defined in
equations (8.4) or (8.5). In order to provide even harder evidence that suitably initialised
Sobol’ numbers are indeed reliable, even in significantly high-dimensional applications,
I show in Figures 8.2 to 8.9 the discrepancy with respect to the Lj-norm Tﬁf‘i) as defined
in equation (8.4) for d = 2, 3, 5, 10, 15, 30, 50, 100 for various number generators. Note

2
that the line denoied ‘expectation for truly random numbers’ is actually (£ [(Téd)) },

as calculated in appendix section 8.8.2.

It can clearly be seen in Figures 8.2 to 8.9 that for low dimensionalities all of the tested
low-discrepancy number generators are considerably superior to pseudo-random numbers.
However, as the dimensionality increases, this advantage decreases, until around d = 15
the Halton method, the Niederreiter sequence and Sobol” with unit initialisation all appear
to be significantly inferior to pseudo-random number methods. This underperformance
becomes so dramatic for d = 100 that there are more than 10 decimal orders of magnitude
between the aforementioned three number methods and plain pseudo-random methods.
However, for suitably initialised Sobol’ numbers, there is no deterioration to the extent
that they appear inferior to pseudo-random number generators. It is true that the total
discrepancy over all of the equally weighted 100 dimensions as shown in Figure 8.9
makes well-initialised Sobol” numbers appear hardly worth bothering with. At this point,
however, we should bear in mind that in most applications in finance we are dealing with
problems that have a natural ordering in importance of all the involved dimensions. A
very good example of a simulation problem that decomposes into dimensions of strongly
varying importance is that of patbs describing Brownian motion. Clearly, if the terminal
value of the Brownian motion determines the payoff of a derivative contract, it is of
particular importance in the valuation problem. How the specific features of Brownian
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motion can be exploited for optimally importance-ranked path construction is discussed
in section 10.8, and examples for the good convergence of Sobol’ numbers’ are given in
section 10.8.4.

The lesson to learn with respect to well-initialised Sobol’ numbers is that they will
provide a substantial performance boost in the lower dimensions, and will still work at
least as well as pseudo-random number generators in higher dimensions. Thus, we should
always try to design the Monte Carlo solution approach such that we can exploit the
better convergence in the lower dimensions by assigning them to the problem dimensions
of most importance.

8.7 THE NUMBER OF ITERATIONS

As we know, for pseudo-random generators, the number of iterations only affects the
expected variance of the result by the central limit theorem, i.e. the more the better. For
low-discrepancy numbers, the situation is different. Sobol’ numbers, and other number
generators based on integer arithmetic modulo two, by construction provide additional
equidistribution properties whenever the number of iterations is N = 2" — 1 for some
positive integer n. This is easy to see on the unit interval in one dimension, where such
a choice of draws always results in a perfectly regular distribution of points, and can
also be confirmed in the empirical discrepancy diagrams of section 8.6 up to dimen-
sion 5.

8.8 APPENDIX

8.8.1 Explicit Formula for the L;-norm Discrepancy on the Unit Hypercube

Substituting the formula (8.2) for nys(y into the squared right-hand side of equation (8.4),
we obtain

@? _
TN N2 Z [ l—[ 1[)’.&)":&}1{);){,1.} dy

=1 yelo, 1
] N d d
-2 E [ tsnyedy + n Yidy (8.27)
f=1yel0’l]d k=1 yerop F=!
| Nod ! | N o4 g | i
Y Z l_[ dyx — ZN ZH[)’kd}’k + I—l f)’kd)’k (8.28)
i=1 kzlmax(r,-;c,rjk) =1 k=lf¢'k k=1
i

|

N d N d
1 1
-y [l = max(rig, 7)) = 2% > :]'[5(1 2y + 377 (8.29)
i, j=1k=1 ]

which is identical to equation (8.7). a

=

TWell-initialised ones, of course.
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8.8.2 Expected Lz-norm Discrepancy of Truly Random Numbers

In order to derive equation (8.8), the expectation of (8.7) for truly random numbers is
calculated below:

d
E[T,f;d) 2] Nz Z E[l:[] (1 — max(rig, rﬂc))j|

i, j=I

2]—-d N o

-—VYE —ri) | +37% (8.30)
w2l [10-14)]

The expectations over products of terms involving random numbers can be replaced by
products over expectations when the random numbers are independent. For this to hold,
the first sum has to be split into the terms when i = j and when i # j. This gives

d
d)? 1
E[TJ'E’ ] ~ N2 {Nkl:[lElxkE[U-]]}[] — X}

d
+N(N —1) l_[E[xk,yke{O,l]}[l — max (x, yk)]]

k=1
21 —d
——N—Nl_[EkaE[U]]}[l_xk] 374 (8.31)
| 1l d
=5 274 L (N - 1) 2] f (l—x)dxdy:]
y=0Jx=y
| d
—pl-d [f (l—x)dx:\ + 37 (8.32)
x=0
1 i x2 ! ¢
=—{279 4+ (N -1 1-[ 2[—] d
N[ )[ y=0 2 x= y
2 d
L (E) +37¢ (8.33)

f

1 ! ¢
=N*2_d+(N_l)[l_l+[ yzdyj] }-3‘“ (8.34)
y=0

274 4 (N — 1)3-"] _3~d (8.35)

= (7-37). 836
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Non-uniform Variates

Number generators tend to produce uniform variates on the unit interval. Whenever we
wish to carry out a Monte Carlo simulation that requires anything other than a uniform
distribution, we have to convert the raw uniform variates to our target distribution, or
otherwise ensure that we are meeting our distributional requirements. In this chapter, 1
discuss some of the known methods available for this purpose.

9.1 INVERSION OF THE CUMULATIVE PROBABILITY
FUNCTION

The cumulative probability function of any distribution has the following useful feature:
for any variate x € R from a given target distribution density v (x), the cumulative proba-
bility function for x, i.e. W(x) = jjm Y (x")dx’, is a uniform variate on the unit interval.
This 18 because the cumulative probability function is by value just a probability measure,
which is uniform by definition. So, if we can invert the cumulative probabifity function,
and take values of the inverse cumulative probability from given uniform variates, we
obtain variates of our target distribution!

Example: The Cauchy distribution density and probability were given in eguations (2.53)
and (2.54) as

11
=T

1 1
W(x) = — arctan(x) + —.
7w 2

The inverse cumulative density can easily be given as

U~ () = tan (J'r (u - %)) . 9.1)

As for all distributions that are noa-zero for all x € R, the inverse cumulative probability
function of the Cauchy distribution diverges both at # — 0 and at u — 1. It is therefore
of paramount importance for numerical applications to ensure that the underlying uniform
number generator never returns either of those two limiting values. Unfortunately, almost
all uniform number generators that I have come across so far include at least O in their
range, which must be intercepted in 2 Monte Carlo implementation (Figure 9.1).

The wethod of direct inversion of the cumulative probability function is definitely
the preferred method for non-uniform variate construction, wherever W' (u) is readily
available and can be computed efficiently. Despite the alternative methods discussed
below, for distributions whose inverse cumulative probability function is not so easily
computable, such as Student’s ¢ whose cumulative is given in equation (2.52) or the
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GB2 distribution whose cumulative is (2.62), it may still be advisable to use the inverse
cumulative mapping method. However, in those cases, rather than root-search for the
inverse cumulative for each new draw, one should set up a (possibly multi-dimensional)
interpolation table using cubic splines, monotonicity preserving splines, or your favourite
shape-preserving spline method [PTVF92, Hym83, Kva00]. Fortunately, for most known
distributions, we have at least the cumulative probability function and can thus readily
set up the required interpolation table.

9.2 USING A SAMPLER DENSITY

There may be situations when the inverse cumulative probability function is either not
available at all, or would be computationally extremely expensive to evaluate. In this case,
we can employ the sampler density technique [Mac97]. Instead of drawing directly from
the desired target density ¥ (x), we choose another, hopefully similar, density ¥ from
which we can readily draw variates. The simulation is then carried out using variates
from the sampler density, and each function evaluation is probability density corrected
according to the likelihood ratio of the target density v (x) and the sampler density ¥ (x).
Mathematically, this corresponds to the density transformation

]}Lﬂ¢ﬁﬂdx=i[fu)(?0j)¢cndx ©.2)
¥(x)

(Figure 9.2). In other words, the Monte Carlo estimator that was given in equation (2.15)
is replaced by the sampler density Monte Carlo estimator

——Zﬂa(”ﬂ (9.3)

i= V¥ (x:)

Equation (9.3) gives us an immediate condition on any choice of sampler density: the
sampler density yﬂ(x) must not be zero wherever f(x)y¥ (x) is non-zero!

The attentive reader may have noticed that for any finite number N of simulations, the
sampler density Monte Carlo estimator for a constant function f(x) := ¢ will, generic-
ally, not result in the exact value ¢, unlike equation (2.15). This can be remedied by
renormalisation, which gives us the normalised sampler density Monte Carlo estimator

: ¥ (x;)
fx) (_~ L
. i=1 ¥ (xi)
Uy = 7 . 9.4)
Z (W(x: )
=1 w(xi
However, by virtue of the continuous mapping theorem, both estimators are valid. In
general, the variance of any sampler density estimator will be different from a straight
target density estimator, and by virtue of Murphy’s law, if we selected the sampler density
more or less randomly, we would end up with an increased variance for our Monte Carlo

estimator, i.e. a larger Monte Carlo error. What’s more, this problem is geometrically
compounded as the number of dimensions increases, and this is the reason why drawing

] 2
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w(x) , oo

Figure 9.2 The sampler density method uses variates from a different, but preferably similar
density, and corrects the average for the misrepresentation of the individual draws by multiplying
each function evaluation by the likelihood ratio of the target and the sampler density
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Figure 9.3 Pricing an out-of-the-money call option using a Cauchy sampling density

from the target distribution is to be preferred if it is readily available. For a more math-
ematical analysis of the problem of increased variance of the sampler density estimator,
see [Mac97].

To finish this section, [ show in Figure 9.3 the convergence diagram for a standard plain
vanilla European call option in the Black—Scholes framework with So = 123, K = 134,
r=12%,d = 4%, T = 3.33 and 0 = 67% using the Cauchy density as the sampling
distribution in comparison to the direct use of standard normal variates. The first thing to
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notice is that there is not much between the normalised and the non-normalised versions
of the sampling density method in equations (9.4) and (9.3), respectively. There is one
surprising feature though: the Cauchy sampler density method appears to converge faster
for this particular simulation! The explanation is rather simple. In the Black-Scholes
framework, the terminal value construction method for St given Sy and a standard normal

variate x 18

S = Soe(r—d—éoz)’r-l-uﬁx.

Solving St = K for x, we have

In(K /So) — (r —d - %02) T
o T '

For the parameters given above, the cumulative normal probability for xg is N(xg) =
67.85%. The cumulative Cauchy probability for xx is, however, only Weauchy(xx) =
63.82%. This means that approximately 4% fewer constructed St values end up out-of-
the-money when we use the Cauchy sampling density, which gives rise to an improved
convergence. What’s more, since the Cauchy density has much fatter tails than the normal
distribution, the simulations that end up in-the-money tend to have higher values and thus
compensate the convexity adjustment, i.e. the Itd term —%O'ZT, more rapidly. Both effects
together amount to the improved convergence behaviour seen in Figure 9.3.

XKk =

9.2.1 Importance Sampling

Since we have a lot of liberty with respect to the choice of the sampler density, can
we take advantage of this freedom in order to reduce the variance of the Monte Carlo
estimator? Consider the special choice

SOy (x)
ff ()¢ (x) dx

ignoring for now the fact that we don’t actually know the value of the denominator. This
particular choice for the sampler density would enable us to calculate (9.2) with any single
draw for x since we obtain from equation (9.3)

. W(xl))
vy ﬂxl)(«f/(n)

ff(x)¢(x)dx
FxDwr(xy)
= ff(x)'lf(x)dx.

Since we don’t know the solution of the problem that shows up in the denominator
of the right-hand side of equation (9.5), we clearly can’t actually do this. However, we
can choose a sampler density that takes structural features of the product f(x)¥(x) into
account. A very simple choice that will already provide a significant improvement is to

¥ (x) =

9.5)

= fxDyY(x)
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choose a sampler density that is zero wherever f(x) is zero too. An example for an
integrand f(x) that has regions of zero value is given by the piecewise affine function in
Figure 9.2, and in finance, functions with this feature are everywhere. Specific choices of
sampler densities that thus take advantage of the regions of importance of the integrand
S (x) are known as importance sampling methods. The use of a heavy-tailed distribution
for the pricing of an out-of-the-money option as in the example in the previous section
is one such application of importance sampling. We will revisit the importance sampling
method in sections 10.5 and 11.4.

Incidentally, the example of the ideal sampler density in equation (9.5) highlights that
for strongly non-constant functions f, it may be advantageous to carry out the importance
sampling technique vsing the non-normalised estimator given in equation (9.3).

9.2.2 Rejection Sampling

Rejection sampling is the stepsister of importance sampling. For this method, we need to
select a sampling density V(x) and a scaling constant ¢ such that C‘CZI(X) = Y¥(x) for all
x in the domain of . In order to compute a Monte Carlo estimator over many values
for x with x ~ v, we proceed as follows.

o Draw a variate x from the sampling density v (x).

Compute the value of the sampling density v (x) at x, and also the value of the target
density ¥ (x) at x.

Draw a uniform variate u ~ (0, 1).

If u-cy(x) > ¥(x), reject this attempt to find a suitable variate and start again,
otherwise accept x as a variate with x ~ ¢ and evaluate the integrand f(x) in the
usual manner (Figure 9.4).

X

Figure 9.4 For rejection sampling choose a sanipling density ¥ and establish a scaling constant ¢
such that ¢y (x) > v (x) ¥ x. Then, take a draw x from the sampling density ¥ and evaluate ¢ (x)
and ¥ (x) at x. Next, draw a uniform (0. 1) variate u. Use the drawn variate x if « - e¥(x) € ¥(x),
else reject it
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There are two main problems with the rejection method. The first one is, again, the
geometric implosion of the sampling yield as the number of dimensions increases!. The
second problem is that they are rather difficult to amend to the efficient application of
low-discrepancy numbers. Personally, I don’t like rejection methods.

9.3 NORMAL VARIATES

My favourite method for constructing standard normal variates is the highly sophisti-
cated interpolation formula by Peter Acklam [Ack(00] for the inverse cumulative normal
distribution as discussed in section 2.3. A very crude way to quickly construct (approx-
imately) normally distributed variates is to add up 12 uniform variates and subtract 6,
and I have given a diagram that shows the difference from the exact normal distribution
in Figure 2.1. For any reasonable application, I would always use either Peter Acklam’s
method, or Boris Moro's interpolation formula [Mor95].

9.3.1 The Box--Muller Method

There is, however, yet another method for the construction of standard normal variates
that is still very popular. It is based on the transformation (u, v) to (x, y) given by

x =+/—2Inu sinRrv),
y =+/—2Inu cos(2nv).

For u and v being independent standard uniform in (0, 1), the joint distribution for x
and y is given by

(9.6)

a(x, y) e 3%’ e 1Y
pie, y) = | Q)| , 9.7
(. ¥ d(u, v) («/2:: ) ( 2 ) O

i.e. that of two independent standard normal variates! Techniques for the generation of
standard normal variates based on the transformation (9.6) are known as Box-Muller
methods [BMS58, Knu81]. The classical application of the Box—Muller method is to draw
two independent uniform variates, and transform them according to equation (9.6), in
order to obtain two independent standard normal variates.

Note that the trigonometric terms on the right-hand side of equation (9.6) are the
abscissa and ordinate of a point on the perimeter of a unit circle. Another variant of
the Box—-Muller method is to draw a random point from within a unit circle, and use its
cartesian coordinates (s, ¢) as follows. First, set u := 52 + 12, Then set

Cim _2]|1u’
u (9.8)
Inu

y =t 22—

The advantage of this procedure is that no evaluation of trigonometric functions is
required, and it used to be that those trigonometric functions were rather CPU-intensive in

I'This repeated occurrence of high numbers of dimensions causing problems with the evaluation of integrals
gave rise to the term curse of dimensionality.
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their evaluation (in comparison to simpler functions such as the logarithm and the square
root)®, The only question that remains is: how do we draw a cartesian coordinate pair
that describes a point inside a unit circle? The commonly used method for this purpose is
a two-dimensional rejection procedure. We simply keep drawing uniform (—1, 1) variate
pairs (by drawing standard uniform numbers, multiplying them by two, and subtracting
one) until we find one that lies inside the unit circle. Since the area of a unit circle is ,
and the area of a 2 x 2 square is 4, the yield of this rejection method is %.

There are two main problems with the Box-Muller method. The first problem is
discussed in the next section. The second problem is that rejection methods are highly
dangerous (and should not be used, really) in conjunction with low-discrepancy numbers.
An example for this is shown in Figure 9.5. In the top-left diagram of the figure,
two-dimensional Gaussian variates constructed from Mersenne twister numbers using
equation (9.6) are shown. Next to it, the same transformation method was used with two-
dimensional Sobol” numbers. Then, the distribution of two-dimensional Sobol’ numbers
transformed by the Box—Muller rejection method (9.8) are shown. At the bottom-left, we
have the inverse cumulative normal function applied to Mersenne numbers, followed
by the same method with two-dimensional Sobol’ pumbers. The last diagram high-
lights the danger of combining rejection methods with low-discrepancy numbers: using
a one-dimensional sequential generator with the Box—Muller rejection method, as in this
example, which is fine for pseudo-random numbers, goes horribly wrong when the number
generator is a low-discrepancy algorithm.

9.3.2 The Neave Effect

A problem with highly sophisticated deterministic methods, such as pseudo-random
number generators and the Box—Muller algorithm, is that it is often difficult to foresee
when their interaction may have undesirable side-effects. In 1973, H. R. Neave discov-
ered one of these hard-to-imagine quirks of undesirable interaction between non-linear
systems [Nea73]. When we use simple multiplicative congruential pseudo-random number
generators such as Ran0 (also known as GGL?) as given in equation (7.6) and discussed
in section 7.4 in conjunction with the transformation version of the Box—Muller method
given in equation (9.6), there is a nasty surprise in store for us: over the whole period of
the number generator of 23! — 1 = 2147483 647 iterations, the smallest pseudo-normal
variate that can be drawn for x in equation (9.6) is —4.476239, and the largest we will
get is 4717016 [Tez95]. Strictly speaking, there are two possible ranges for x depending
on whether the pairwise transformation starts on the cycle containing the local seed 1, or
on the cycle containing the local seed 16,807 in the iteration

m; =a -m;—| mod M
with ¢ = 16807. M = 23! — 1 and m;_, being the local seed for the ith single variate

u; = m;/M.However, the variation in the lower bound and the upper bound between those
two possible cycles is beyond the first six decimal digits. According to the cumulative

2More recently available computing hardware provides substantial improvements for a variety of previously
CPU-time expensive functions, see section 14.6.

3The only difference between the two is that Ran0 uses a bitwise XOR mask on the seed before and after
each iteration mainly to prevent the accidental use of 0 as a seed, which would result in the fixed point 0.
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normal probability function, we would expect to have approximately
2°1 — 1. N(—4.476239) ~ 8157

draws lower than —4.476239, and equally several thousand above 4.717016. So, the range
for x isn’t too good. The lower bound for y from equation (9.6) i1s —4.566210, again
only showing variation between the two possible cycles beyond the first six decimal
digits. The upper bound for y, though, is 6.385757568918 for the cycle beginning with
m; = 1, and 6.555541555803 for the cycle beginning with 16,807. In other words,
the upper bound is somewhat better for the y variate, but the lower bound is still no
good. What’s more, on either side of the distribution resulting from the combination of
this number generator with the trigonometric version of the Box—Muller method, there
appear fo be some kind of wing formations in the tails of the distribution, as shown in
Figure 9.6. As you can see, addition of a bitwise XOR mask as is done for the proper
Ran0 pseudo-random number method doesn’t fix the problem. The Neave effect does
fade away, though, when we use the rejection version of the Box—Muller algorithm (9.8).
However, there are reports that the rejection method also suffers from problems due to
the fact that two (or more) uniform variates are used together for the generation of two
normal variates [AW88, Rip87].

Of course, some may say that this is a small cffect in the tails of the distribution,
which is fair enough. However, in finance we are frequently particularly concerned with
the tails since they tend to contain the most feared scenarios. But then, of course, you
are probably not using the simple Ran0O aka GGL generator, but one of the much more
sophisticated ones that are readily available these days. Unfortunately, number theoreti-
cians have begun to suspect that effects similar to the Neave phenomenon may occur for
other number generation classes*. The fundamental principle of the problem underlying
the Neave effect remains, thus: whenever you use a variate-mixing transformation in order
to generate variates from a specific target distribution, you run the risk of some kind of
non-linear interaction with the number generation mechanism that may be very hard to
foresee, or even very difficult to notice, until something has gone wrong in a very big
and unexpected way.

In summary, since there are nowadays highly accurate and efficient interpolation algo-
rithms available for the inverse cumulative normal probability function, it is generally
safer to use those rather than to employ the Box—Muller method. It was an invention of
great ingenuity and insight at the time, but now it has had its day.

9.4 SIMULATING MULTIVARIATE COPULA DRAWS

The problem of non-uniform variate generation is, of course, not limited to one dimension,
or scveral dimensions of independent variates. The copula approach of creating multi-
dimensional variate draws with co-dependence was explained in section 5.2. To conclude
this chapter. I give in Figure 9.7 an example for the kind of co-dependence that can be
constricted by the use of copulae. The Archimedean copula generating function ¢ (u) =
(u™! = 1)? as given in equation (5.31) was used with 6 = % The Weibull variates were

4Tezuka slales on p. 152 in [Tez95] that the Neave effect *.. . possibly occurs not only with linear congru-
ential sequences but also with LS(2) sequences’.
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Figure 9.7 131,071 Weibull variates for § = 1 and y = 4 under the Archimedean copula gener-
ated by ¢ given in equation (5.31) with § = 3

generated from the inverse cumulative Weibull probability function

Wl = [—BIn(l — w)]? 9.9)

which can be calculated from (2.72), using 8 = 1 and y = 4. A rather interesting shape,
don’t you think?
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____ Vanance Reduction Techniques

As we have seen in Chapter 2, the error estimate for the result of a Monte Carlo simulation
is given by the standard deviation of the result (i.e. the average of all samples for a
standard Monte Carlo integration), which is known as the standard error and usually
estimated as the realised standard deviation of the simulation divided by the square root
of the number of iterations. The smaller the variance (and thus the standard deviation)
of the calculation, the more accurate will be the result. When 1 talk about variance
here, I don’t mean the variance associated with any one individual sample of our Monte
Carlo simulation, but the variance associated with repeating the whole simulation many
times. A number of techniques have been developed [BBG97] that help to reduce the
variance of the result, and thus to reduce the number of simulations required for a given
accuracy. Some of these methods can be combined to achieve even higher accuracy, as
we will see.

19.1 ANTITHETIC SAMPLING

Whenever we use Gaussian variates to drive a Monte Carlo calculation, or wish to simulate
Brownian motion by constructing sample paths of standard Wiener processes, we can
make use of the fact that for any one drawn path its mirror image has equal probability.
In other words, if a single evaluation driven by a Gaussian variate vector draw z; is given
by v; = v(z;), we also use v; = v(—2;) .

The standard error for antithetic sampling requires some consideration. This is because
the central limit theorem underpinning the idea that the standard error can be estimated as
the square root of the realised variance divided by the square root of the number of samples
requires independent draws. However, if instead of viewing both v; = v(z;) and v; =
v(—z;) as individual samples, we only count the pairwise average 7; = al(v(z,)+v(—z,-))
as an individual sample, all is well again, because the pairwise averages 7; are independent,
and a standard error can be calculated from them in the ordinary fashion.

Taking into account that each evaluation of v; requires two calculations (albeit only one
Gaussian vector draw generation), the antithetic sampling procedure provides a variance
reduction if

V[ + )] < $vin) (10.1)
which is equivalent to
Cov[v;, %] < 0. (10.2)

This is always the case if v(z) is monotonic in z. Whenever the first realised moment of the
underlying variate draws {z;} has a strong impact on the result of the overall simulation,
antithetic sampling is an easy way to improve the accuracy of the calculation, since it
corrects the first moment. Of course, if we use Monte Carlo simulation to calculate the
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value of derivatives contracts that mainly (or only) depend on higher moments, antithetic
sampling will not help.

Low-discrepancy numbers, or more specifically, Sobol” numbers, unlike pseudo-random
numbers, have the antithetic feature built into them, but only approximately. This is to
say, whenever we use a recommended number of draws such as 2" — 1 for some n
as advocated in section 8.7, the first moment of {z} is correct to within the numerical
accuracy of the conversion from uniform (0, 1) to Gaussian variates. Also, it is worth
remembering that low-discrepancy numbers are very carefully designed, and tinkering
with them can result in unexpected and rather undesirable effects. Therefore, even when
we are not using 2" — 1 draws with low-discrepancy numbers, adding the antithetic method
to the use of low-discrepancy numbers is unlikely to improve the accuracy, and instead
can lead to erroneous results.

10.2 VARIATE RECYCLING

This method applies when the quantity to be calculated is essentially a re-evaluation of
a functional of a (possibly multi-dimensional) discretised stochastic process, or any other
re-evaluation using many draws. An example for this is the calculation of the Greeks
of options by finite differencing. Let W, be the discretised representation of our Monte
Carlo approximation of a particular standard Wiener process path. Also, let v(p) =
Fip,{W,}i=i,. n] be the approximation of the value of an option by averaging the
evaluation functional over the N sampling paths {W,},=; .. n, depending on the parameter
p. The simplest approach to estimate the sensitivity of v with respect to the parameter p
is to run a separate Monte Carlo calculation using a slightly larger value for p, namely
p + Ap to obtain v(p + Ap) and set

dv _vlp+Ap) —v(p)
ap 3p '

(10.3)

In fact, for specific Greeks such as Vega, the dependence with respect to implied volatility,
market practitioners may insist that it is mandatory to use forward differencing as in
equation (10.3), and use a particular increment Ap (usually one absolute percentage point)
for the calculation. Other Greeks where an absolute shift is commonly used are Rho, the
sensitivity of FX and equity options with respect to domestic interest rates, and also the
sensitivity with respect to forecast dividend yields.

Naturally, we are interested in an accurate estimate of the Greeks when using the
approach defined by equation (10.3). The standard measure for the accuracy of a Monte
Carlo method is the variance of the resulting numerical approximation. The variance of
the sensitivity as given by equation (10.3) is thus

dv 1
v[@] S ap [E[p+ ap) = v(p)?] = (E[@(p + ap) - vp)])?] (10.4)

1 2
= &5 [E[vp +ap] = 2600 + 4pv0)] + E[w(r)]
~ E[ + 2p))* +2E[v(p + AP]E[(p)] - (E[+(n)])]
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AV[v(p + Ap)] + V[v(p)] — 2Cov[uv(p + Ap), v(p)]}

gl- 2=

. lV[v(p +Ap)] + V[v(p)]

—2\/ V{v(p + ap)] V[v(p)|Corr[v(p + Ap), v( p)]}

~ 32; V[u(p)]{1 = Corr[v(p + Ap), v(p)]} (10.5)

where I used V[v(p + Ap)] = V[v(p)] in the last step. As equation (10.5) indicates, it
is desirable to maximise the correlation of the two separate calculations v(p + Ap) and
v(p). For monotonic functions v(p), one can show [BBG97] that positive correlation is
given if we use the same sample path set {W,},=;... .~ for both calculations, whence one
may call this method variate or path recycling.

The above analysis easily transfers to other calculations of similar nature. Another
example is the repeated Monte Carlo evaluation of the same problem with slightly varying
parameters in the process of optimisation or within a non-linear solver routine. Naturally,
it is advisable to reuse (and wherever possible precalculate all quantities derived from
them!) the sample paths, or simply the drawn variates if the problem doesn’t involve the
concept of discretised stochastic processes.

10.3 CONTROL VARIATES

Many Monte Carlo calculations are carried out for problems that we can almost solve
analytically, or that are very similar to other problems for which we have closed form
solutions. In this case, the use of control variates can be very beneficial indeed. The idea
is as follows. Let’s assume that we wish to calculate the expectation E[v] of a function
v(x) for some underlying vector draw u, and that there is a related function g(u) whose
expectation g* = E[g] we know exactly. Then, we have

1 I3 ] n 1 n
E[;va,)] = E[; > v + B (g* - Eg(“’))] (10.6)

i=] =1

for any given 8 € R and thus we can replace the ordinary Monte Carlo estimator

= % ; v(u,-) (]0-7)

. 1 H
fov == [v(w) + B (s* — gwn)]. (10.8)
1=1 )
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The optimal choice of B is
a Cov|v, 2]
Vie]

which minimises the variance of tcy. Note that the function g(&;) does not have to be the
payoff of an analytically known option. It could also be the profit from a self-financing
dynamic hedging strategy, i.e. a strategy that starts with zero investment capital. For
risk-neutral measures, the expected profit from any such strategy is zero, which means
that the control variate is simply the payoff from the dynamic hedging strategy along any
one path. An intuitive understanding of the control variate method is to consider the case
when v and g are positively correlated. For any draw v(u;) that overestimates the result,
g(u;) is likely to overestimate g*. As a result, the term multiplied by B in equation (10.8)
is likely to correct the result by subtracting the aberration,

The precise value of B* is, of course, not known but can be estimated from the same
simulation that is used to calculate Ucy. As in all the situations when the parameters
determining the result are calculated from the same simulation, this can introduce a
bias that is difficult to estimate. In the limit of very large numbers of iterations, this
bias vanishes, but the whole point of variance reduction techniques is to require fewer
simulations and thus a shorter run time, A remedy for the problem of bias due to a
correlated estimate of the control parameter 8 is to use an initial simulation, possibly
with fewer iterates than the main run, to estimate 8* in isolation. Fortunately, the control
variate technique usually provides such a substantial speed-up in convergence that this
initial parameter estimation simulation is affordable. However, for many applications,
the magnitude of the bias is negligible. The easiest way to ascertain that there is no bias
present that would be relevant for derivatives pricing purposes is to look at a convergence
diagram of the simulation method, rather than a single result.

The control variate method can be generalised to take advantage of more than one
related closed form solution. However, this necessitates the estimation of more control
parameters, and makes the method more susceptible to errors in their €stimate. It is
generally considered wiser to have one reasonable control variate than several mediocre
ones. For instance, an option on a geometric average, which can be priced analytically for
geometric Brownian motion, works exceedingly well as a control variate for arithmetic
average options, whilst the use of both a standard European option and the underlying
asset as joint control variates is only about as effective as the European option used as a
control variate by itself [BG97b].

*

(10.9)

10.4 STRATIFIED SAMPLING

The idea here is to subdivide the sampling domain into smaller areas, for each of which
a representative value of the function is selected (Figure 10.1). This can be particularly
useful if a good approximation for the average over small subdomains is available. Strat-
ified sampling is conceptually akin to fixed lattice methods. It can also be of advantage
when an asscssment of the total probability of a small subdomain is difficult, and each
evaluation in this domain is rather CPU-time expensive, but it is known that the function
which is being sampled varies very little in any one given subdomain. Whenever the
probability associated with each segment of the stratification can be well approximated,
stratified sampling can be used to evaluate the Monte Carlo integral by simply calculating
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Figure 10.1 An example of stratification with representative values for each segment

the weighted sum over the representative values, which makes it essentially sonie kind of
(possibly itregular) lattice method. The segments into which the subdomain is partitioned
don’t have to be of equal size. A better choice of stratification is to make the subdomains
have approximately equal probability associated with them. However, the biggest problem
with stratified sampling is that it is very difficult to obtain any kind of error estimate.
Clearly, a statistical error estimate like the conventional standard error for psendo-random
sampling can be very misleading, since the individual function values resulting from each
draw are not independent variates in the usual meaning of the word. Also, the accuracy
of any one calculation is limited by the stratification, whence taking more and more
samples will not make the result eventually converge to the exact answer as it would for
a conventional Monte Carlo method following Kolmogorov’s strong law. In other words,
the very technique that is supposed to increase convergence, i.e. the stratification itself,
can introduce a finite bias of unknown sign.

10.5 IMPORTANCE SAMPLING

The concept of importance sampling is to focus on those regions which contribute most
to the average of a Monte Carlo integration procedure. The most common use of this
method in finance is to ensure that all drawn samples are in regions where the function
to be evaluated is non-zero. This is the particular difficulty of out-of-the-money option
pricing. The standard procedure of generating paths would result in most evaluations
resulting in zero payoff, and are thus effectively a waste of CPU time. The main draw-
back of importance sampling is that it requires additional knowledge of the underlying
problem. However, for very specific calculations, it can make a tremendous difference
in the convergence speed. Take for instance the function f(X,Y) of two independent
standard normal variates X and Y in Figure 10.2. A Monte Carlo integration of such a
function will converge substantially faster if we restrict the normal variate draws to be
in the subdomain where f is non-zero, in this case (X, Y) € [0, 1]2. For the specific
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Figure 10.2 The integration of localised functions can be accelerated by the use of importance
sampling

example here, this is easily done using our knowledge of the probability p associated
with the domain (X, ¥) € [0, 112, namely

p = (N(1) — N(0))?

by which the result of the conditioned Monte Carlo integration simply has to be multiplied.
The construction of variates conditioned on the domain of importance is achieved, for the
given example, by first drawing a vector of two uniform (0, 1) variates ux and uy, and
constructing the importance sampling variates X, and Yjs according to

Xis = NTUINGO) + (N(1) — N(0)) - ux]

and respectively for Y,;. Another, more detailed, example for the potential of the impor-
tance sampling method is discussed in section 11.4,

10.6 MOMENT MATCHING

Moment matching used to be a very popular method before efficient and reliable low-
discrepancy numbers became available. This method usually gives more accurate results
for calculations that use pseudo-random numbers, although it is not guaranteed to do so.

Assume a Monte Carlo simulation is to be carried out using a total of N variate vectors »
of dimensionality d of a known joint distribution density y(v). Then, we can calculate the
moments actually realised by the drawn variate vector set V := {v;;} withi=1,... | N
and j = 1,...,d. The first moment for dimension j is given by

1 N
(), =+ Zv,»,- j=1,....4d. (10.10)

=1
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Using equation (10.10), we can construct a set of first-moment-corrected variates V by
subtraction of the average in each dimension, i.e.

vy = vy — (v). (10.1hH)
The realised covariance of the mean-corrected variate set can be represented concisely as
C=VvTv (10.12)

if we view V as a matrix whose rows comprise the individual d-dimensional mean-
corrected vector draws. Using the same pseudo-square root decomposition approach as
discussed in Chapter 6, we can construct a new matrix V whose entries will meet the
desired covariance C of the target distribution density ¥ exactly. Define the elements of
the desired covariance matrix C as

Cik = [vjvki,b(v) dvjdvk. (10.13)

Also, define the pseudo-square roots of both € and C by
C=A-A" and C=A.4". (10.14)

The correction matrix K that transforms V to V can be computed by solving the linear
system

AT . K =AT, (10.15)
1.e.
K=A"'.aAT (10.16)

It is easily possible for a covariance matrix not to be of full rank. This is the case
whenever there are fewer driving factors than financial assets, for instance, This means
that, whilst the original vector draws v are d-dimensional, the target covariance matrix
may be C € R**? with d’ > d, albeit that the rank of C is d. As a consequence,
the matrix A will then have ¢’ rows, but only d columns, i.e. A € RY*4. However, A
will be of dimensions d x d, and K ¢ RY*4" 1t is advisable to use a failsafe method
for the solution of the linear system (10.15) such as the Moore-Penrose pseudo-inverse
explained in section 2.9 in order to avoid problems due to the fact that there may be
fewer dimensions in the vector v than there are vartates in the target distribution. Another
situation that may give rise to problems is when the number N of drawn vector variates is
comparatively small, and the resulting realised covariance C of the mean-corrected variate
set is nearly singular. Then, the linear system (10.15) is ill-conditioned which can lead to
rather unexpected results. In other words, | recommend always to use the Moore-Penrose
pseudo-inverse for AT in equation (10.16).

Putting all of the above linear algebra together. we can convince ourselves that the
covariance-corrected variate matrix

V=V.K (10.17)
does indeed satisfy

vi.v=cC. (10.18)
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Note that when using this method to correct the first and second moments of a set of
drawn variates it should be applied to the variates ¢fter having transformed them from the
uniform (0, 1) distribution to whatever distribution is actually used, e.g. a joint normal
distribution. This is because the non-linearity in the transformation will have the etfect that
whilst you may have a set of uniform (0, 1) variates that have exactly the same mean and
covariance matrix as in the continuous limit, the normal variates resulting from them after
transformation will not meet the desired mean and covariance matrix of the joint normal
distribution. As a simple example, take the very small set of only two one-dimensional

uniform (0, 1) variates {1, u2} = {% — ,KTIE, % + 4/ Tli} The first and second moments

of this set meet the moments of the continuous uniform (@, 1) distribution % and % exactly.
Transforming (i1, #2) to normal variates with the aid of the inverse cumulative normal
distribution gives {z1,z2} = (N~!'(uy),N"'(u2)} = {—0.801832717, 0.801832717},
which has the desired first moment of exactly zero. However, the second moment of
the transformed set is 0.64293571, which is very different from 1 as it should be for a
standard normal variate.

The above example of an extremely small set of variates may appear somewhat
construed. It does, however, highlight the dangers associated with moment matching.
Correcting the first and second moments, or even higher moments for that matter, of a
set of drawn variates that are to undergo further transformation does not mean that the
final distribution meets those moments equally. This cautioning note applies particularly
to the common use of standard normal variates in the construction of geometric Brownian
motion. The sheer fact that a discrete set of variates {z} has the same first and second
moments as the continuous Gaussian distribution does not mean that lognormal variates

constructed according to Sy = Sge’*’“/"":a have first and second moments in perfect agree-
ment with the continuous lognormal distribution. What’s more, even if we manage to
correct the first few moments of the variate set representing the ultimate target distri-
bution, the effects we inflict upon the higher moments are quite unpredictable, Most
calculations are affected by more than just the first few moments: even comparatively
simple problems such as the pricing of an option with a fairly vanilla payoff depend quite
strongly on the third moment, for instance. These considerations bear particular relevance
when we actually need to represent a distribution by a very small sample set such as in
a stratification method, or in a tree. A discussion of the differences caused by first and
second moment matching in the underlying normal variate space or the target lognormal
variate space is given in sections 13.7 and 13.6 in the context of non-recombining trees
for the pricing of interest rate derivatives in the BGM/J framework.

As for the standard error estimate when we use pseudo-random numbers in conjunction
with moment matching, this is somewhat problematic since the variates can no longer be
considercd independent. This directly affects another nice feature of Monte Carlo simula-
tions: with ordinary Monte Carlo simulations, it is possible to continue drawing variates
and monitor the running error estimate until the latter has dropped below a specified
level of required accuracy. Not only is it no longer justified to use the running standard
eITor as a statistical error measure, since any new draw is no longer strictly indepen-
dent (as we would have to rematch the moments), but since this would also involve
recomputing the correction matrix K from equation (10.16) in each step, it would clearly
become computationally prohibitively expensive. As a matter of fact, the one-off calcu-
lation of the realised covariance matrix (10.12) can easily be extremely CPU-intensive
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since it grows like the square of the total dimensionality of the problem, and linearly
in the number of vector draws (i.e. paths for option pricing) that are used. Should you
ever use the moment matching method, you would be well advised to monitor the CPU
time that is actually being spent in total in the correction step, in comparison to the
time spent in the main Monte Carlo simulation. For example, for multi-asset options of
Asian style, the total dimensionality (which is the product of the number of time steps
and the number of underlyings) can easily be moderately large. Since the computing
effort grows as the square of d, it is not uncommon for such calculations to spend 90%
or more of the total calculation time just in the moment matching part of the simula-
tion, in particular since those multi-asset calculations frequently involve the evaluation
of a very simple payoff function. In comparison to the use of low-discrepancy numbers,
the moment matching method with pseudo-random numbers rarely provides a substantial
speed-up in convergence as a function of the number of simulations, which means that the
same accuracy could be achieved by slightly increasing the number of iterations using,
for example, Sobol’ numbers. It is important to remember that any user’s perception of
Monte Carlo simulation convergence is mainly a function of the time spent waiting for
the result. Therefore, the moment matching method can easily make the Monte Carlo
method appear slower for multi-asset, multi-time-stepped simulations.

Finally, I ought to mention that moment matching should not be combined with the
use of low-discrepancy methods. This is because their careful construction from number-
theoretical principles already tries to match all the moments in a well-balanced way, and
interfering with them can have unexpected effects. A simple way to ensure that the first
moment i1s exactly met when using Sobol’ numbers, for instance, is to use N = 2" — 1
vector draws for some positive integer n, as explained in section 8.7. You will also find
that the second moment is almost exactly met, especially when compared to pseudo-
random numbers. Since Sobol’ numbers are particularly fast to construct, I never found
a situation when just using a few more draws with straightforward Sobol’ numbers did
not outperform the use of moment matching with pseudo-random numbers, even for very
low-dimensional problems, For high-dimensional, i.e. multi-asset simulation problems,
importance-aware path construction as outlined in section 10.8 in order to achieve an
effective dimensionality reduction ensures that Sobol” numbers still give a convergence
improvement over pseudo-random numbers when measured just in terms of the number
of iterations required until a certain accuracy is met. As discussed above, though, when
measured in terms of CPU time (which is a much better measure), moment matching
becomes prohibitively CPU-time expensive for high-dimensional problems, Just in case
the message is still not clear: use the moment matching method at your peril.

10.7 LATIN HYPERCUBE SAMPLING

Latin hypercube sampling isn’t actually a Monte Carlo method. Latin hypercube sampling
is a way to crash cars. Seriously. This technique used when probing the sampling space
is (quite literally) extremely expensive. Basically, a Latin hypercube sampling scheme
1s an attempt to place sampling points in a multi-dimensional stratification with as little
overlap in all one-dimensional projections as possible. Imagine that you wish to evaluate
the effect of four control parameters on the safety of the driver of a car measured by
the impact forces experienced in a frontal collision. The control parameters could be, for
instance, the angle of the steering wheel column, the elasticity of the back rest of the
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driver’s seat, the rigidity of the front of the vehicle’s chassis, and the amount of leg space
in front of the driver’s seat. For each of those parameters, you have chosen seven possible
settings, which represents a four-dimensional stratification. Clearly, it is desirable not to
have to crash 7% = 2401 cars to get an idea what the optimal combination of settings
would be. The Latin hypercube scheme is a systematic method to sample the stratified
layer in each control parameter (at least) once. An example for such an arrangement
is shown in Figure 10.3, in all of the possible two-dimensional projections of the four-
dimensional domain. Incidentally, the points shown in Figure 10.3 were taken as the first
seven points of a four-dimensional Sobol” sequence, which highlights another advantage
of that particular number generation method: Sobol’ numbers have the Latin hypercube
property built-in.

10.8 PATH CONSTRUCTION

In many applications, we need to construct a simulated discretised path of a standard
Wiener process over a set {f;},i = 1,...,n, points in time. We can view the values
w; = W(t;) of the Wiener process at those points in time as a vector of random variates.
Since we are talking about a standard Wiener process starting at W({0) = 0, the global
expectation of all the w; as averaged over many simulated paths must be zero. The
elements of their covariance matrix C, however, are given by

ciy = Cov[W (1), W(t;)] = min(s, 1,). (10.19)

Given a vector z of independent Gaussian variates, we can transform them into a vector
w representing a single simulated Wiener process path according to

w=A z (10.20)
provided that the matrix A satisfies
A-Al =C (10.21)

with the elements ¢;; of C given by (10.19). The decomposition of C as in equation (10.21)
is not unique, and for Monte Carlo simulations driven by pseudo-random numbers it is
also completely irrelevant which method is used. The specific path construction technique
employed does not have a direct impact on the variance of the result of any Monte Carlo
simulation. However, as [ will elaborate below, a fortunate choice of the path construction
method can aid in the reduction of what is called the effective dimensionality, which is
the key to unleashing the full potential of Sobol’ numbers, and can lead to a significantly
improved convergence behaviour when compared with ordinary pseudo-random numbers.
It is because of the effect that the choice of the path construction method has on the conver-
gence behaviour of simulations using Sobol’ numbers that I discuss them in this chapter.

10,8.1 Incremental

Probably the simplest way to construct a Wiener process path is the incremental path
construction. It can be seen as a direct application of the Markov property of a Wiener
process. The construction is carried out by simply adding a new increment that is scaled
according to the time step

wipr = w; +/Atiyr -z with z, ~ N0, 1), (10.22)
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The construction matrix of the incremental method is given by the Cholesky
decomposition of the covariance matrix

(\/ At 0 0 0 0 \
VAL AR 0 0 0
VAL AL A 0 0
Aincremental = : : : . (10.23)
\WVAL VAR JA - - Al

As you can see from equation (10.22), the incremental construction is an extremely fast
way to conver( a vector of n Gaussian variates into a standard Wiener path over n steps in
time. Since all of the square roots can be precalculated, all that is involved for each path
is a total of n multiplications, and n — | additions. It is because of this speed advantage

that incremental path construction is the method of choice when pseudo-random numbers
are used.

10.8.2 Spectral

In section 6.2, I explained how any symmetric positive definite matrix can be split into
its spectral pseudo-square root. The same method can be used here to compute a spectral
path construction matrix Agpectral that satisfies (10.21).

It is also possible to use an approximation for the spectral discrete path construc-
tion matrix. This approximation is given by the spectral decomposition of a continuous
Wiener path over the time interval [0, 7] into an orthogonal Hilbert basis. In order to
construct a fully continnous Wiener path over any time interval, we would need an infinite
number of driving Gaussian variates. The Gaussian variates are the coefficients {z;} of
the decomposition of W(t) in

2 & i % -1 |
W(t) = \/;Z a2k Gith o = (—2—~) % (10.24)
k=l

wk

The approximation of the element ag; of the spectral construction matrix Aspeciral is to be
calculated as follows. First, populate an initial stage approximation that is simply given
by the continuous counterpart for the path from #tp =0 to 1, =T

' 2 sin wit;
i = T .

(10.25)

Now, the most important part of the path construction is that the variance of w; = W(f;)
must be equal to 4, i.e.

V[w,-] = [;. (10.26)

The initial stage approximation A" does not satisfy this. This deficit can be rectified by
defining 1; as the sum of the squares of all the entries of the ith row of A”:

=3 (a)’. (10.27)
k=t
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The elements &;; of the approximation for the discrete spectral path construction matrix
A are then given by

. 5 sinwyti [2k — 1

Gy = !éafk =1 : i/ . (10.28)
Z (sinawyt; /21 — 1)?
=1

The approximate spectral split calculated in this way for a 12-step discretisation of a
Wiener process path from ¢t = 0 to f = 3 is shown below:

;/ 02142 02094 0.1998 0.1860 0.1685 0.1479 0.1252 0.101L 00766 (.0526 0.0299 0.0093
04141 03771 03091 02208 01257 0.0376 —0.0319 —0.0754 —~0.0909 —0.0813 —0.0539 -0.0180
0.6070 04885 (.293] 0.0867 —0.0674 —0.1332 -0.1127 -0.0405 0.0357 0.0771 0.0698 0.0264
0.7897 0.5265 0.1579 -0.1128 =0.1755 —-0.0718 00607 0.1053 0.0465 —0.0416 —0.0752 —0.0343
- 09501 0.4852 —0.0411 —0.2231 —0.0670 0.1136 0.096] —0.0402 -0.0919 —0.0108 0.0693 0.0417
A — | 1n2r 03707 -02224 —0.1589 0.1236  0.101 —0.0855 —0.0741 0.0654 0.0585 —0.0530 —0.0484
spectral = 1.2462 02004 —03115 0.0293  0.1612 -0.0869 —0.0736 0.0967 0.0121 —-0.0820 00286 {.0542

13591 00000 02718 0.1942 00000 —0.1236  0.1045 00000 —0.0799 00715  0.0000 —0.05%
1.4489 —0.2001 —0.1200 0.2070 —0.1610 0.0546 0.0462 —-0.0966 0.0852 —0.0316 —0.0286 0.0630
1.5140 —0.3694 00811 0.0580 —0,1231 0.1376 ~0.1165 0.0739 -0.0239 —0.0214 0.0528 —0.0658
1.5535 —0.4825 0.2486 —0.1363 0.0666 —0.0186 —0.0157 0.0400 =0.0561 0.0654 —0.0689 0.0675 J
1.5727 —0.5242  0.3145 —0.2247 0.1747 —0.1430 0.1210 —0.1048  0.0925 —0.0828 0.0749 —0.0684

(10.29)

This is to be compared with an exact spectral split:

0.1006 0.1965 0.1902 0.1810 0.1689 0.1541 0.1369 01176 0.0964 0.0736 0.0497 0.0251

0.3961 10,3653 0.3078 0.2307 0.1438  0.0578 —0.0172 ~0.0727 —0.1033 —0.1073 —0.0872 —0.0486

0.5863 04820 03078 0.1131 ~0.0464 —0,1325 —0.1348 -0.0727 00143 0.0829 0.1030 0.0690

07672 0.5326 0.1902 ~0.0865 ~0.1833 —0.1074 0.0341 0.1176 0.0879 —0.0135 —0.0934 --0.0851

0.9361 05076 0.0000 —0.2234 —0.1097 0.0922 0.1305 00000 —-0.1085 —0.0632 0.0607 0.0959

A —_ 1.0902  0.4112 —0.1902 —0.1983  0.0B99 (.1420 —0.0505 —0.1176 0.0284¢ 0.1056 —0.0129 —0.1006
speciral = 12271 02571 —-0.3078 —0.0204  0.1863 —0.03%0 —0.1241 00727 00781 —0.0908 —003¢0 0.0990
13447  0.0669 —0.3078 0.1608 0.0687 —0,1566 0.0661 0.0727 ~0.1121 0.0267 0.0796 —0.0912

14410 —0.1327 ~0.1902 0.2344 —0.1278 —0.0197 O.1158 —0.1176 0.0420 0.0518 —0.1014 0.0777

1.5146 —0.3137  0.0000 0.1380 —0.1775 0.1492 —0.0806 00000 0(.0671 —0.1023 0.0982 ~0.0592

1.5644 —0.4506 0.1902 —0.0584 —0.0234 0.0756 —0.1057 0.1176 —0.1139  0.0973 —0.0707 0.0371

1.5895 ~0.5242 0.3078 —0.2125 0.1576 —0.1209 0.0939 —0.0727 00550 =0.0396 0.0257 --0.0126

(10.30)

The effective covariance of the approximate spectral construction matrix (10.29) is

0.2500 0.2726 0.2669 0.2668 0.2656 0.2655 0.2650 0.2648 0.2646 0.2645 0.2644 0.2654

02726 0,5000 0.5247 0.5187 0.5187 0.5172 0,5169 0.5162 0.5160 0.5156 0.5155 0.5173 \
0.2669 (0,5247 0,7500 0.7757 0.7698 0.7699 0.7682 07680 0.7672 07670 0.7665 0.7695
0.2668 0.5187 0.7757 1.0000 1.0263 1.0205 1.0208 1.0191 1.0188 1.0180 1.0179 1.0214
- - 02656 0.5187 0.7698 1.0263 12500 1.2766 1.2710 1.2714 1.2697 1.2696 1,2688 1.2738
A ; AT — | 02655 0.5172 0.7699 1.0205 1.2766 1.5000 1.5269 1.5214 1.5220 1.5203 1.5204 1.5255
spectral spectral ™ | 0.2650 0.5169 0.7682 10208 1.2710 1.5269 1.7500 1.7771 1.7718 1.7725 1.7709 1,7782
0.2648 0,5162 0.7680 10191 12714 1.5214 17771 2.0000 2.0273 2.0220 2,0232 2.02%4
0.2646 0.5160 0.7672 L0188 12697 1.5220 17718 2.0273 2.2500 2.2777 2,2724 2.2832
02645 0.5156 0.7670 1.0180 1.2696 1.5203 1,7725 2.0220 2.2777 2.5000 2,5285 2.5323
02644 0.5155 0.7665 1.0179 |.2688 1.5204 |.7709 2.0232 2.2724 2.5285 2.7500 2.7928

\ 02654 0.5173 0.7695 1.0214 1.2738 1.5255 1.7782 2,0294 2.2832 2.5323 2.7928 3.0000 /

(10.31)

As you can see. the diagonal elements meet the requirements exactly. The off-diagonal
elements, however, indicate that a simulation based on this approximate spectral split
would effectively simulate the realisations of the standard Wiener process to have a
somewhat exaggerated correlation. Considering that we spend significant effort elsewhere
to ensure that the realised variances and covariances of all our random variates meet
the specifications given by any financial model as closely as possible, the approximate
spectral path construction may seem a little bit too inaccurate.

There is, however, another important lesson we can tearn from the approximate spectral
decomposition. The eigenvalues of the spectral decomposition are given by

Ap = (10.32)

a-eml o
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and thus decay as O (k‘z). Since the eigenvalues of a discrete path covariance matrix are
well approximated by those of the continuous counterpart, we can conclude that these, too,
decay very quickly. As a matter of fact, for a completely uniform spacing of monitoring
times such as the one used above with At = %, both eigenvalues and eigenvectors can
be derived analytically, as shown in appendix section 10.9.1.

The importance of the eigenvalues is given by the fact that they directly represent
the amount of variance that can be reproduced by using only a smaller subset of the
orthogonal eigenvectors and thus attempt to mimic an effectively n-dimensional variate
draw (namely the standard Wiener process path over n points) by using only m Gaussian
variates, with m < n. In statistics, there is the notion of the variability explained by
using just the first m column vectors in a complete path construction matrix. It is given
by the sum of all the squares of the eclements of the vectors used. For the spectral
decomposition, this is just the sum of the eigenvalues as given in (10.32). In this sense,
the spectral decomposition (given that the eigenvectors are sorted by decreasing size
of their associated eigenvalues) is the optimal way to assign most importance to the
first Gaussian variates in any given vector draw z. As it happens, this kind of effective
dimensionality reduction is precisely what makes low-discrepancy numbers converge the
fastest, so this might be the best path construction method of choice in conjunction with
Sobol’ numbers. If only there wasn’t always some catch. In this case the problem is
as follows. The spectral path construction method may provide the fastest convergence
in conjunction with Sobol’ numbers as a function of the number of iterations that are
carried out. However, more important is the amount of time spent in the simulation.
Apart from the fact that the calculation of the (accurate) spectral path construction matrix
is effectively a task involving © (n*) mathematical operations, the actual use of the

matrix Agpecral during the simulation involves n® multiplications and n(n — 1) additions
for the construction of each and every path. When » is in the hundreds, this means that
for a simulation involving possibly several tens of thousands of iterations we end up
spending most of our time just in the transformation from standard normal variates to
Wiener path coordinates. In the next section, I discuss my favourite path construction
method which gives almost the same effective dimensionality reduction as the spectral
method, but at the expense of only about 3n multiplications and 2n additions for each
constructed path!

10.8.3 The Brownian Bridge

Similar to the spectral path construction method, the Brownian bridge is a way to construct
a discretised Wiener process path by using the first Gaussian variates in a vector draw
z to shape the overall features of the path, and then adding more and more of the fine
structure. The very first variate z; is used to determine the realisation of the Wiener path
at the final time t, of our n-point discretisation of the path by setting W, = /f,z;. The
next variate is then used to determine the value of the Wiener process as it was realised
at an intermediate time step f; conditional on the realisation at #, (and at fp = 0 which is,
of course, zero). The procedure is then repeated to gradually fill in all of the realisations
of the Wiener process at all intermediate points, in an ever refining algorithm. In each
step of the refinement procedure to determine Wy, given that we have already established
W, and W, with t; < 1, < 1, we make use of the fact that the conditional distribution

i
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of Wy, 1s Gaussian with mean

~ (%4 b b 10.33
E[W‘f]“(:k—:,-)w“_'_(:;,-—:,-)w"‘ (10.33)
and variance
(4 —4) (e~ 1)
1= , 34
Viw, ] D) (10.34)

A proof of equations (10.33) and (10.34) is sketched in appendix section 10.9.2.

Since all of the weighting coelficients can be precalculated, we only need to carry out
three multiplications and two additions for each point in the Brownian bridge. Excep-
tions are, of course, the terminal point for which only a multiplication is required,
and all those whose left-hand side conditioning point is the beginning of the path at
zero.

The Brownian bridge is particularly easy to construct if the number of steps is a
power of two, because then each interval divides into two intervals containing the same
number of steps. In general, we can construct the Brownian bridge by always subdiv-
iding the interval from the last point that was set to the next one that is already set,
and halve this interval into two parts containing approximately the same number of
poiits. An example for this procedure is illustrated in Figure 10.4. The algorithm for
the construction of a Brownian bridge over an arbitrary number of steps can be separated
into two parts. The first part is the calculation of the indices determining the order of
the point construction, the weighting coefficients, and the conditional variances, or their
square roots, respectively. The second part is the mapping of a vector of standard Gaus-
stan variates to a single Wiener path at run time of the Monte Carlo simulation. 1 give
in Code Example 10.1 a concrete implementation of a C++ class providing these two
stages. The constructor of the class carries out all the initial calculations. The build-
Path method is then to be called in the main loop of the Monte Carlo simulation.
Each time the procedure buildPath is executed, it transforms a vector of uncorrelated
standard normal variates given by the input vector normalVariates into a standard
Wiener path with equal time steps of size At = 1 and stores it in the output vector
path.

Figure 10.4 The construction of a Brownian bridge over 14 steps
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When we wish to construct paths that represent Brownian motions over points in time
t; for i = 1..m, and the realisation of the Brownian path at each time horizon 7; is to
be consistent with an implied volatility coefficient 6;, we need to take into account the
resulting term structure of instantaneous volatility and variance. Given that we have a
Brownian process B that is generated from a standard Wiener process W by the multi-
plication with a deterministic volatility function o (#) according to

dB = o (1)dW, (10.35)

the conditional mean and variance for the realisation of B(z;) given that we have knowl-
edge of B(t;) and B(r) with 1; < t; < is

E[B,) = (”" —Y ) B, + (‘i_ ”") B, (10.36)
Vg — v Vg — U;
and
(vj — vi) (v — vj)

v[B,) = R (10.37)

with
lq
g = f o (s)*ds. (10.38)

5=0

Of course, the relationship between the variances v; and the implied volatilities o;
is v; = 6}:;. In other words, it is easy to write another constructor for the class
BrownianBridge in code example 10.1 that takes into account a given implied volati-
lity vector and a vector whose elements are the associated time horizons, and precom-
putes the necessary weighting and scaling coefficients leftWeight rightWeight,
and stddev. In fact, once we have added a temporary vector v in the body of the
constructor and populated it such that v[j] = 6‘12%, all that needs to be done is to replace
the corresponding statements with;

stddev [0]

sqrt (v[numberOfSteps-11);

leftweight [1]
rightweight [i]
stddev [i]

il

(vik}-vI1])/(vIk]-v[j-11);
(vI1l-v([j-11)/(v(k]l-v[j-11);
sqrt ((vI[1]1-v[j-11) * (v[k]-vI[1])/vIk]-v[i-1])};

l

"

Another application of the normalised path vector as constructed directly by build-
Path in code example 10.1 may actually require individual increments, for instance in
order to carry out an Euler or Milstein integration of a stochastic differential equation
driven by an underlying Wiener process. In this case, one would take the constructed
normalised path stored in the vector path, and back out the path increments by taking
the differences AW; = path[i] — path[i — 1] (apart from the first entry stored in
path[0], of course, which is directly equal to AWj). Each of the so constructed
AW, is then a standard normal variate (with unit variance). In order to transform the
so resulting standard Wiener increments of variance 1 to a desired time step Atr, we
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#include <vectors
#include zaseert . hs=
class BrownianBridge { /7 Builds Wiener process paths of equal time steps of delta t© = 1.
public:

BrownianBridge( unsigned long numberofSteps |,

void buildpath({ vector «double> &theWienerProcessPath, const vector <double> &gaussianVariates ),
private:

unsigned long numberOfSteps;

vector <unsigned long- leftIndex, rightIndex, bridgeIndex;

vector cdoubles leftWeight, rightWeight, stddev;

I

BrownianBridge: :BrownianBridge( unsigned long numberofSteps_ } - numberOfSteps(numberOfSteps ),
leftIndex (numberOfsteps), rightindex (numberOfSteps), bridgeIndex(numberOfSteps),
leftiWeight (numberOfSteps), rightWeight (number0fSteps), stddev inumberOfSteps)

{
agsert (numberOfSteps) ; // There must be at least one sgtep.
vector <ungigned long> map {numberCfSceps),
// map is used to indicate which points are already conatructed. If map(i] is zero, path point i
// 18 yet unconstructed. map(il-1 1s the index of the variate that constiructs the path point # 1.
unsigned long 1,7,%,1;

map [number0fStepe-1]1 = 1; // The first point in the construction is the global step.
bridgelndex (0] = numberCfStepa-1; // The global step is constructed from the first variate.
atddev (0] = sgrt(numberOfStepa); /! The variance of the global gtep ig numberOfStepaxl 0
leftWeight [0] = rightWeight (0] = 0., // The glcbal atep to the last point in time is special.
for (j=0,1i=1;icnumberofSteps;++i}{

while (map[j]}) ++3, // Find the next unpopulated entry in the map.

k=J;

while [{!maplk])] ++k, // Find the next populated entry in the map from there.

1=j+{(k-1-3)»>1); /f 1 13 now the index of the pouint to be constructed next.

map (1] =1,

bridgelndex([i] = 1; // The 1-th Gaussian variate will be used to set point 1.

leftIndex (1) = 7], // Point j-1 1s the left strut of the bridge for point 1.

rightIndex[i] = k, // pPoint k 1s the right strut of the bridge for point 1.

leftweight (i] = (k-~1)/(k+1.-9),

rightWeight (1] = (1+1,-3)/(k+1.-3};

atddev([i] = sgqre(({1+1.-2) *{k-1) 3/ (k+1.-7)),

j=k+1;
1f (is=number0fSteps} j=0; // Wrap around.

}

}

void BrownianBridge::buildPath( vector <double> &path, const vector <doubles &normalVariates ){
aggert( normalvariates.size() == numberOfSteps && path.size() == numberOfSteps |,
unsigned long 1,73.k,1;
path[nunberOfsteps-1] = stddev [0] *normalvariates(o]; // The global step.

for {1-1,i<numberOfSteps;i++)
] = leftIndex(il,
k = rightIndex[i],
1 = bradgerndex[i],

if (§) path[l] = leftWeight[il*path(j-1] + rightWeight (i) *path(k] + stddev([i]*normalVariates[i],
elge patii{l] = rightWeight [i]*path(k] + stddev[i]*normalVariates([i];

Code Example 10.1 The Brownian bridge algorithm in a C++ class

simply multiply them with +/Az. The reader might wonder why one would want to
jump through all these hoops only to arrive at another set of standard normal variates.
Empirically, T found that the use of Wiener increments backed out of a path constructed
with the Brownian bridge method driven by Sobol’ sequences shows better convergence
properties for the numerical integration of stochastic differential equations. In partic-
ular, so constructed increments typically perform better than standard normal variates
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computed directly from pseudo-random numbers, or Sobol’ numbers for that matter,
for most financial applications where the overall path skeleton structure has the biggest
impact on the convergence of the calculation. Also, this apparently somewhat convo-
luted method of constructing standard increments from a given Sobol” vector draw is still
faster than the calculation of standard normal variates by the aid of most pseudo-random
number generators of high grade since the construction of a single Sobol’ vector is so
exceptionally fast.

10.8.4 A Comparison of Path Construction Methods

As was already mentioned, the Brownian bridge requires approximately three multiplica-
tions and two additions per dimension for each constructed path. For most Monte Carlo
simulations based on the construction of Wiener paths, the CPU time required for the
evaluation of the function(al) dependent on the constructed sample path grows at least
linearly with the dimensionality of the problem. Thus, the relative run time requirement of
the path construction at worst levels out to a constant ratio with increasing dimensionality
when the Brownian bridge is used, and usually actually decreases for higher dimensions.
This is in stark contrast to the CPU time used by the spectral path construction which
increases as the square of the dimensionality. On the other hand, when compared with the
incremental path construction, the Brownian bridge manages to explain a much higher
percentage of the total variability when only the first few variates are taken into account.
In fact, as shown in Table 10.1, the first four dimensions, if ordered using the Brow-
nian bridge path construction method, suffice to explain over 93% of the total variability
for the previous example of a 12-step construction from ¢ = 0 to + = 3. This is to be
compared with 95.6% from the spectral method, but only 53.9% when we construct paths
incrementally. Of course, if we actually carry out a factor truncation at, say, the level of
four driving Gaussian draws for any one path, the spectral method will still be superior
to the Brownian bridge. However, if there is an advantage in ordering the dimensions
according to their importance, as there is for low-discrepancy numbers, the Brownian
bridge method offers the benefit of almost optimal ordering (in the sense of maximal
variability explained) whilst only requiring three multiplications per dimension. In order
to give a more visual argument to the similarity of the spectral path construction and the
Brownian bridge, I give the first four column vectors of the constructing matrix A for
the three methods discussed in figure 10.5 for a path constructed over 64 equal steps in
time. As we can see, the coefficients of the Brownian bridge path construction matrix
appear almost like a piecewise affine mimic of the sinusoidal waves of the spectral path
construction vectors. In the continuous description of the decomposition of Brownian

Table 10.1 The cumulative variability explained by an increasing number of dimensions for three
path construction methods

Ordered 1 2 3 4 5 6 7 8 9 10 11 12
dimension #

Incremental 15.4% 29.5% 42.3% 339% 04.1% 73.1% 80.8% 87.2% 92.3% 96.2% 98.7% 100%
Spectral  81.3% 90.4% 93.8% 95.6% 96.7% 97.5% 98.1% 98.5% 99.0% 993% 99.7% 100%
Brownian
bridge 69.4% 85.0% 89.1% 932% 94.2% 95.3% 96.4% 974% 98.1% 98.7% 99.4% 100%
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motion into basis functions, there are many more possibilities to choose a set of basis
functions than the spectral analysis given by equation (10.24). The basis functions that
produce the continuous time equivalent of the Brownian bridge are known as Schauder
functions, which in turn are the primitives of Haar functions [ABG97]. Looking at the
diagrams in Figure 10.5, we can intuitively understand the similar performance of the
spectral method and the Brownian bridge. In contrast, the incremental method has no
similarity with the other two methods at all.

The right path construction method can make a substantial difference to the perform-
ance of Monte Carlo implementation for many applications. In Figure 10.6, I show the
convergence of the Monte Carlo simulation for the pricing of a standard at-the-money
Asian call option. The maturity of the option was one year with 252 monitoring days
over that period. The weights were all equal. Both spot and strike were set at 100, and
neither interest rates nor yields on the underlying asset were taken into account. The
number of iterations taken is shown along the abscissa in Figure 10.6. Compare this to
the convergence behaviour as a function of the CPU time taken' by the simulation, which
is shown in Figure 10.7.

When we compare the spectral method with the Brownian bridge as a function of the
number of iterations, there doesn’t appear to be much between them. However, when
viewed as a function of the CPU time needed for the simulation, we will probably prefer
the Brownian bridge since it appears to converge within a few seconds for this problem.

10.8.5 Multivariate path construction

When we need to construct paths of correlated Wiener processes, we can combine different
techniques in order to tailor the right method for the particular problem at hand. For
instance, if we wish to carry out Monte Carlo simulations for a pricing problem that
is most significantly influenced by the joint distribution of a set of strongly correlated
underlying Wiener processes at the first time horizon along a discretised path, we might
want to use incremental path construction, but at each time horizon use the spectral
decomposition in order to incorporate the correlation, Given the dimnension 4 of the
Wiener process, and the number of time horizons m over which the correlated path ought
to be constructed, we need to draw standard normal variate vectors of dimension d - m.
Each of those vector draws is then used to construct all of the realisations of all of the d
Wiener processes over all of the relevant m time horizons for one iteration in the Monte
Carlo simulation. Let us define the covariance matrix C(¢#) whose elements are given by

.
cu(t) = [0 0% ()07 (5 ) pra (5)ds. (10.39)

For incremental path construction with spectral decompositior: of the correlation informa-
tion, one would take the first 4 elements of a given standard normal variate vector draw
z € RY™_ These first 4 elements would then be multiplied with the spectral split, i.e. the
spectral pseudo-square root of C(f1) in order to construct the vector x; of realisations
of correlated Wiener processes at time f;. The realisations at time horizon f are then
obtained by taking x; and adding to it the product of the second set of 4 variates (out of
the vector draw z) with a pseudo-square root of the stepwise covariance matrix from time

IThe CPU time shown was measured on an AMD K6-1IT processor running at 400 MHz
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t) to £, which I denote by ,/C(t2) — C(fyy. This gives us x3, and all of the realisations
at the subsequent time horizons are computed accordingly. Of course, if you have reason
to believe that the decomposition of any of the stepwise covariances is better exploited
by the use of the Cholesky algorithm, you can just use that instead (albeit that 1 couldn’t
think of an example when the Cholesky method for the stepwise covariance split would
be more appropriate).

For most Monte Carlo simulations in f{inance that involve multidimensional corre-
lated Wiener processes, I use the Brownian bridge in conjunction with stepwise spectral
decomposition, though. The reason is that we rarely have hundreds and thousands of
correlated Wiener processes, the most I have encountered is a few dozen, not more than
five dozen or so. In contrast, however, it is well possible to have hundreds or even thou-
sands of monitoring times of relevance, and the spectral path construction becomes very
expensive indeed when we are dealing with thousands of time steps. The construction of
multivariate correlated Wiener processes by the aid of the Brownian bridge and spectral
decomposition at each time horizon in order to incoporate the correlation information can
thus be done as follows. First, we construct d uncorrelated normalised Wiener process
paths W(#) € R? from the given vector draw z € RY"™ using the Brownian bridge. For
this, we take the first d entries in z in order to construct the realisations of all of the
uncorrelated Wiener processes at the final time horizon #,,. Next, we take the second
set of d variates from z in order to construct the realisations of all of the uncorrelated
Wiener processes at an intermediate time step 1y With k >~ m/2, and so forth, following
the Brownian bridge algorithm outlined in section 10.8.3 (see code example 10.1). From
this set of 4 uncorrelated Wiener process path realisations over the m time horizons of
interest, one then obtains Wiener process increments in the obvious fashion. Next, each
set of uncorrelated increments is transformed to a set of correlated and volatility-scaled
Wiener increments by setting

AB; = Ay - AW,. (10.40)

with A being the spectral pseudo-square root of the covariance matrix increment C (¢ ) —
C(t;—1) whose clements are defined in equation (10.39). Note that A; contains both the
scaling for the actual size of the time step (all of the uncorrelated increments Wy were
constructed assuming that all time steps are of size At = 1) and the volatility scaling.
And finalty, the correlated Wiener process path increments are added up again, as if we
had constructed the correlated paths in an incremental fashion right from the start.
Whenever the correlation between the Wiener processes is constant for all time steps
and each of the processes has constant volatility, it is possible to simplify this procedure
somewhat. In this case, one can avoid the construction from stepwise covariance incre-
ments. Let us denote the volatility of the j-th process as o}, and let R be the time-constant
correlation matrix. Now, set Q to be the spectral pseudo-square root of R such that

R=00". (10.41)
In other words, we have the following relationship amongst the elements of R and Q:
Tkl = Z%% (10.42)
J

The procedure to construct correlated Wiener processes using a Brownian bridge when
volatilities and correlations are constant is thus as follows. First, construct uncorrelated
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standard Wiener processes for the correct monitoring times as outlined in section 10.8.3
by setting v; = ¢, for all j = 1...m and assuming unit volatility (i.e. 100%). Thus,
we will have constructed paths such that the variance of Wj, i.e. the variance of the
realisation of the j-th Wiener process at time k, is #, and the covariance of any pair of
wji and w;p is

COV[wJ‘k, w,-h] = & min(, 1;,). (1043)
Then, set
bji = o, Z qjiWik. (10.44)
!

Due to the property (10.43), it is straightforward to show that
COV[bjk, bgh] = Oj0;rij min(fg, &) (10.45)

as it should be for correlated Wiener processes with constant volatility and correlation.

10.9 APPENDIX
10.9.1 Eigenvalues and Eigenvectors of a Discrete-time Covariance Matrix

The covaniance matrix of the realisations W; at a set of discrete times chosen to be

homogeneously stepped such that ; =i fori = 1,... ,n is given by
11 !
1 2 2 2
Co=| 1 23 - 3L (10.46)
P2 3 . n

The eigenvalues are given by

D,(A) =0 (10.47)
with
1—A i 1 1
1 2—A 2 2
D, =] | 2 3=-2 - 3 (10.48)
i 2 3 n—Ax
Subtracting the first row of the matrix inside the determinant operator | - { from all
subsequent ones gives
1—4A 1 I e 1
A 1 —-A 1 S 1

Da(l)=| * I 2= - 2 (10.49)
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and then subtracting the second row from the first, we obtain

1 —20 A 0 ... 0
A l=A 1 1

D,y = A I 2—-a - 2 . (10.50)
A ] 2 o n—1-—2

An expansion by the first row yields

o
—

0
A 2—x 2 .. 2
. 3

Du() = (1 —=20)Dp (M) —A| » 2 3—4 (10.51)

A 2 3 o —1—=2A

Factorising A out of the column of the explicit determinant on the right-hand side, and
repeating the procedure of subtracting the first row from all subsequent ones, followed
by a subtraction of the second row from the first, we get

Y 0 .. 0
0 1—-2 1 .- 1

Dy(A) = (1 —20) Dy (}) —=22| 0 1 2=% - 2 . (10.52)
0 1 2 . on—2—a

An expansion of the explicit determinant on the right-hand side now gives us the recursion
formula

D,(0) = (1 = 2) Dy | () = X2Dy_2(A) (10.53)
with the initial conditions
g‘l’g:; _ i’_ N (10.54)
Using the Ansatz
D,(A) o< fee(M)]" (10.55)
we obtain
@~ (1 =20a+1*=0 (10.56)
and thus
e =3 (1-2 VT2, (10.57)

Since the determinants D,, D,_; and D,_, all appear linearly in equation (10.53), we
substitute the linear combitnation

Dp(X) = xqpall + x_o” (10.58)
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into (10.54), solve for x4 and x_ and obtain

Dp(A) = (]_'___i_:ix_:) 0‘1 __ (1_—1:—_&’4,.)0:”. (10.59)

@y — Oy — G-

Making use of the fact that e o = A2, which can be seen from equation (10.56), we
now get

_ Al o\ _ o\
Da) = 5 [(1 + /1 —4x) (T) . (1 Vi —41) (T) ] . (10.60)
Let us now define
W= a*f“) (10.61)
which means
H
= (10.62)

The eigenvalues of C,, are given by D, (A) = 0 which, together with the above definitions,
reduces to

Wt =y (10.63)
whence
. 2m
u=e" w1 form=1,...,n. (10.64)

This, in conjunction with (10.62), finally simplifies to

YL — (10.65)

Hir

40082 (m)
A simple analysis of equation (10.65) shows that as n increases, the smallest eigenvalue

of D, converges to % from above, whilst the largest eigenvalue grows as n?. Thus, the

importance of the smaller eigenvalues decreases like 1 /nz‘
Given the definition

2j -1\ =«
—{ L ). 10.66
wn_; (271 n l) > ( )
we can re-express (10.65) as
|
N 10.67

The ordering is now such that A, is the largest eigenvalue of C,, and A, is the smallest
eigenvalue. As for the eigenvectors, which are the column vectors of the matrix § in the
decomposition

Co=35n-NAp-Sy (10.68)
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with A, being diagonal, we have for the elements sup Of Sp:

0 o
gy = s Zken) (10.69)

sin? (2 jwnr)
=1

7

Since
sin x = 1 — 1ccos (2x) (10.70)
2 2

and

" 25— 1 1
= — = 10.71
;COS [2rr (2!1 - 1)] 3 ( )

equation (10.69) simplifies to

2
Snki = “—ﬁ sin (kaﬂ!) . (10.72)
2n
This means that the elements a,y of the spectral pseudo-square root A, of C,, satisfying
Co=An-AJ
are given by
: 2-1
] Sin (k” Intl )
Qnyt = . . (10.73)
N o 20-1
2+ 1 sin (Zn-H%)

For a homogencous time-discretisation over time steps of an arbitrary At instead of I,
the elements of the covariance matrix C, simply need to be multiplied by At¢, and the
elements of the spectral pseudo-square root are given as in (10.73), only that they require
multiplication with +/Atz. Sadly, for inhomogeneous time steps, the best approximation
available is the one from the continuous case as in equation (10.28).

10.9.2 The Conditional Distribution of the Brownian Bridge

Let us start off by assuming that the Wiener path from ¢ to ¢, and then to #, has been
constructed incrementally from two independent standard Gaussian variates x and y:

W, =W, + /1, —tix, (16.74)
W, = W;j +V—5y =W+ /4 —Lx+ /i —1;y. (10.75)

The joint probability density of a vector draw (x, y) is the product of the densities of
the variates x and y, i.e. ¢(x) - ¢(y). As we know, the density of a weighted sum of
Gaussians is also a Gaussian, and thus we can rewrite (10.75) as

Wy =W, + Vi — i 2 (10.76)
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The variate

—Tix+ Sl —t l
_ 0 thT «.z:k )Y \/ﬁ__r(w,k—w,j) (10.77)

is, of course, not independent of x and y, but its probability density is again that of a
standard normal variate.

The conditional density of a vector draw (x, y) that satisfies (10.77) is given by its
unconditional density divided by the probability density of (10.77) holding, which is ¢(z).
In other words, if we view

e —tz— Jtj—tix
Jie—h

as a dependent variate in the path construction conditional on x and z, we obtain the
conditional Brownian bridge density

y(x,z) = (10.78)

px)plylx, 7))
®(z)
1

L ey’
21

1 ( Iklril-:t )
= e 5 : (10.79)

V2r

VYBrowman bridge{X2) =

In other words, x is a normal variate with mean

E[x] = / " A z" Wy, — W) (10.80)
Iy — & Iy — &

and variance
Iy —t
Vx) = =1 (10.81)
h — 1
Substituting this into equation (10.74), we obtain
t— 4 (G — )t — 1))
W, =W, +1—~ (W, — W, L d 10.82
g f +l‘k""fi (W rf)“l_\/ (tx — 1) ! ( )
ty —t ti —t t, — )t — 1
=(" J)w,i,+(f ’)w,k+ OG- Wu -4 (10.83)
t —t =t (& — 1)

with v ~ N{0, 1), which completes the proof for equations (10.33) and (10.34).
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Greeks

11.1 IMPORTANCE OF GREEKS

The fundamental key to option pricing is to calculate the cost of replication of the sold
derivative contract. For some options, we can construct a static replication strategy. The
price that we need to charge is then simply given by the cost of setting up the initial hedge.
Having done that, we may forget about this position', since we are hedged, whence some
people call this strategy hedge-and-forget. For most options, though, there is no static
replication, and we need to use the strategy of dynamic hedging in order to protect us
from the market risk posed by our short position in the option. The choice of a model
process for the underlying securities, establishing the risk-neutral measure, and solving
the mathematics and numerics of the numéraire-denominated? expectation then gives us
the value of the deal. In some sense, for the quantitative analyst, the job finishes there,
whilst for the trader who has to manage the position, the fun only just starts. The position
now has to be rehedged dynamically, which requires knowledge of the various hedge
parameters known as the Greeks, owing to the market practice of using the names of
Greek letters (real and invented) to represent these risk parameters. This means we not
only need to be able to value the option, but also to calculate how its value depends on
changes in model parameters and the traded price of the underlying asset. In the following
sections, I will outline some Monte Carlo methods that are available for this purpose and
discuss their respective benefits and disadvantages. In doing so, we will focus on the
calculation of Delza, i.e. the first derivative with respect to the wnderlying security, and
Gamma, 1.e. the second derivative with respect to the underlying asset. Mutatis mutandis,
the methods presented here transfer readily to other Greeks such as Vega, the volatility
sensitivity, cross-Gammas for multi-asset options, etc.

11.2 AN UP-OUT-CALL OPTION

Before starting the discussion of different techniques to calculate Greeks with Monte
Carlo, let me briefly define the test scenario that T have chosen as an illustrative example
for the performance of the individual methods. We are looking at an option of the type that
is actually quite common in the equity derivatives world, although in its accurate analysis
highly untractable: a discretely monitored Up-Out-Call option, The option is of European
type and has the same payoff as a plain vanilla call option, provided that the underlying

'Strictly speaking, only about the market risk presented by this option, There may still be settlement risk
and credit risk since the source of our hedging contracts will be a diffcrent counterparty than the client to
whom we sold the option.

2We know, by virtue of the path-breaking theorem by Harrison and Pliska [HP81], that we may use any
traded asset as a numéraire. For the calculation of the value of many equity and FX options we use a zero-
coupon bond as numéraire, which means that we have (o calculatc an expectation and then discount it by the
chosen discount factor. In general, though, the numéraire can be a very different asset such as a cash annuity

when we calculate swaptions. or even another equity asset as in the case of max-options, as shown by Margrabe
[Mac78)].
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asset is never on or above the predefined knock-out level on any of the monitoring
dates (which usually includes maturity), else the payoff is zero. This product can be
priced approximately using the continuous barrier formula with an adjusted knock-out
level according to the approximation by Broadie ef al. [BGK99] given in equation (1.3).
However, when the monitoring frequency is comparatively low, or when the spot value
is near the actual barrier level, the error of the approximation can be considerable. I
won't even start the discussion on how to handle the smile properly, but instead assume a
standard Black—Scholes process of geometric Brownian motion with a constant volatility
of o = 30%. Since neither a deterministic interest rate nor a continuous dividend yield
alter the fundamentals of the discussion®, we simply set them to zero which corresponds to
the assumption that the contract is actually written with the forward value as the underlying
quantity, The value of the underlying asset is modelled to evolve lognormally as in

S(t) = S(0)e~ 2@ r+aW () (11.1)

with W, being a standard Wiener process. Since we only need to monitor the spot at the
n monitoring times, we can view one path of the evolution of the underlying asset from
inception to maturity as a vector of n values S| to S, 1.e.

S=(S1rS23"' :SR)'

Any one path can thus be constructed from a set of n standard normal variates
21,22, ... , Zn With z; ~ N (0, 1). The reader is most certainly aware that the equation
coupling them is

1.2 ) . _l 2 i - )
S{' — Sj_|e—§0’ Ao ALz — S()e 04 +o Zk:l N Al i . (1 ] .2)
Naturally, in order to price this option, we generate a set of, say, m paths s'.§2 ... 8"

and each of those paths in S is actually constructed by an n-dimensional vector of standard
normal variates z/, i.e. we can express it as an n-valued function of the drawn vector z
and the given parameters

S/ =8(z/; S0, H K, 0, T, n). (11.3)

For each of those path vectors S, we then evaluate the simulated payoff 7 (§/) conditional
on no knock-out occurring for the path, and average to obtain an m-sample Monte Carlo
approximation. In a general sense, we can express the Monte Carlo price ¥ as

1 H
(So,H, K,0,T,n) = — S’_ 7(S7). (11.4)
m =

11.3 FINITE DIFFERENCING WITH PATH RECYCLING

Like with other option valuation methods, there is one fallback technique for the calcula-
tion of the Greeks. We can always redo the entire valuation with varied inputs reflecting the
potential change in the underlying asset, and use an explicit finite differencing approach

*The examples in the Excel workbook GreeksWithMonteCarlo.x1s on the accompanymg CD do not
make this assumption and allow for the specification of a non-zero risk-free interest and dividend rate.
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to compute the Greek we are after. For Delta, we can just recalculate once with an upshift
in the underlying asset, So — So + ASp, resulting in a new value v»(Sp + ASp), and take
B u(So+ ASp) = v(So)

Delta = —— =
RN AS,

(11.5)

Alternatively to the forward differencing approach above, we can recalculate twice, once
for an upshift and once for a downshift, and approximate the desired Delta to

v v(So+ ASp) — v(So — ASo)
350 2A8) '

Delta = (11.6)

Using the centre differencing approach in equation (11.6) has the added advantage that
we can then approximate Gamma directly as

9% v(So+ ASo) — 2v(So) 4 v(So — ASp)
352 AS? '

Gamma = (11.7)

Whilst this is in itself all self-explanatory and straightforward, one important question is
often not addressed in textbooks outlining the above procedure. The question is: how do
we choose ASy? In order to answer it, let us consider the consequences of using a A Sy
that is either far too large or far too small. The centre differcncing approach is accurate up
to (and including) second-order terms in the Taylor expansion, i.e. Gamma has no effect
on the estimate (11.6) for Delta. However, when we choose a A Sy that is far too large, we
may start to see the effect of the third order in the Taylor expansion, and our approximation
for Delta will be inaccurate. Also, since we should reuse the same variates for the path
construction in each of the calculations for v(Sp), v(Sp + ASp) and v(Sy — ASp), as
explained in section 10.2, the variance of our estimate will increase because the correlation
of the individual calculations decreases the larger A S is, see equation (10.5). On the other
hand, if we choose ASp too small, the fact that most derivative contracts have a final
payoff function that is at best continuous but rarely differentiable everywhere comes into
play. If we choose a very small A Sy, say the smallest that can be handled on our computer,
even for a contract as benign as a plain vanilla call option, we are essentially averaging
over a sequence of zeros and ones?. For a far-out-of-the-money option, the convergence
diagram of the Monte Carlo Delta then looks like a hyperbolic decay over the number
of paths used with an occasional up jump whenever a single path pair terminates in-
the-money and thus confributes to the sensitivity calculation. For Gamma, the situation
is even worse. In this case, we are essentially averaging over a sequence of zeros and
terms of magnitude O(AS; L, only this time they do not result from the path pair or
trio terminating in-the-money or out-of-the-money (i.e. as if we sampled a Heaviside
function), but instead a non-zero value is only returned if the terminating spot levels of
the path trio straddle the strike of the option. In other words, the calculation of Gamma by
explicit finite differencing for options with payoff functions that exhibit a kink anywhere
is equivalent to carrying out a Monte Carlo sampling computation over a Dirac spike, i.e.
a non-zero value is only ever obtained if the spot value at maturity is right at the strike.
The situation becomes even worse if the payoff function is not even continuous, as one
can imagine. What's more, and this is the starting point for the following analysis, for very
small A Sy, the inevitable numerical roundoff error will taint the result. In order to obtain

AThe precise value is actually the Delta of the forward contract, which is e ™47
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a reasonable rule of thumb for the numerical magnitude of ASp one should use, let us
recall that for finite differencing approximations of the derivative of a numerically defined
function one should optimally use a number determined by an equation balancing the error
due to numerical roundoff in the calculation of the function itself, and the error due to
the higher order Taylor expansion. For the approximate Gamma to be by expectation as
close to the exact value as possible, one should ideally use a finite differencing width of

4,‘ v

with ¢ being a suitable representation of the machine precision®. To see this, we start from
a Taylor ¢xpansion of the value v, taking into account that any numerical representation
suffers a roundoff error

1 1 1,
v(So + ASp) ~ v+ v ASo + Eu”Asg + gv’”ASg + ﬁv”’asg + O(AS}) + #v.
(11.9)

The last term represents the numerically inevitable inaccuracy which is of the same
order of magnitude as the left-hand side. Using equation (11.7) to obtain an estimate
['(So; ASo, &) for Gamma, which will clearly depend on both the chosen finite differencing
width and the machine precision, we again have to take into account that all numerical
operations are subject to roundoff errors

~ 1 &v
['(Sp; ASo, &) = v + Eu””asg - as? + eav”. (11.10)
Herein, the last term represents the newly introduced roundoff error incurred when
carrying out the operations given by equation (11.7). It is now evident in equation (11.10)
that for very large ASp, the term -]‘—zv”"" AS(?; will give rise to an error in our estimate of
Gamma, and for very small A Sy, the numerical roundoff error due to sv/ AS& will domi-
nate. Thus, ideally, these two terms should be balanced, which leads to equation (11.8).

Clearly, in practice, we don’t have enough information to evaluate expression (11.8).
Without prejudice, we can only make assumptions. An arguably sensible assumption is
that all terms in the Taylor expansion are of equal magnitude, i.e. O(v) = O(v””Sg),
which leads to

ASo~ YE- 5. (11.11)

Using the above value for AS,, we can now calculate the Monte Carlo finite differencing
approximations for Delta and Gamma:
— (S + ASy) — 3(Sgp — ASp)
Delta =
¢ 2A S

_ leso 'Z [n-(S(zJ; Sy + ASO)) _x (S(zi; Sp — ASO))] (11.12)

j=1

SOne commonly nsed proxy for the abstract concept of machine precision is the smallest positive number
€ such that 1 and I + & are still distinct numbers in the machine’s representation. In C/C++, the preprocessor
directive #include <float.h> provides the macro DBL_EPSTLON which is defined in this way for floating
point numbers of type double.
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and analogously

G v(So + ASp) — 29( ?)+1( 0 0)
AS@

_ ! }E [n (573 S0 + As0) =27 (523 50)) + 7 (S(273 50 - ASo))] .

- 2
mASO =

(11.13)

Of course, the assumptions made above are utterly unjustifiable when we know that
we are trying to calculaie the Gamma of derivatives such as Up-Out-Call options that
have a particularly nasty double Gamma singularity at the barrier level. In practice, the
explicit finite differencing method, even when we recycle the used variates as in the above
equations (11.12) and (11.13) for reasons explained in section 10.2, for any options of
sufficient complexity that we might want to use a Monte Carlo technique, performs so
badly that it is virtually unusable. I will demonstrate this in some of the figures towards
the end of this chapter. First, though, we will explain alternatives to the straightforward
explicit finite differencing approach.

11.4 FINITE DIFFERENCING WITH IMPORTANCE SAMPLING

It was explained in section 11.3 how the calculation of Delta and other Greeks is hindered
by the discontinuity of the payoff profile or its slope. In mathematical terms, the calculation
of Gamma using Monte Carlo methods is so difficult because the payoff function is not
an element of the class C* of all functions that are twice differentiable in all of their
variables. In fact, for an Up-Out-Call option, the payoff profile is not even continuous in
all of its variables, i.e. (S) ¢ C°.

Sometimes, though, life is good to us. For the chosen test case, we can restrict our
Monte Carlo sampling domain to just the region where the payoff function is in C°°. The
way to do this is to construct only paths that do not knock-out and end up in-the-money.
In more gencral terms, we only sample the domain where the function to be evaluated is
non-zero. This method belongs to the general class of importance sampling techniques.
How we do this is explained below,

First, let us recall that we generate the required standard normal variates by drawing
uniform (0, 1) variates and map them into Gaussians with the aid of an inverse cumulative
normal function, i.e.

zi=N"'w,) and # =N(). (11.14)

Now, let us assume that we have constructed a single path up to §;—; and wish to
construct the next monitoring variable S; from equation (11.2), but ensure that the path

is not knocked-out. Using
In —H—- + Lo2Ag
h :=N( Sio 2 ') (11.15)
o/ AL

we can do this by constructing z, to be applied in equation (11.2) not as usual, simply
from the underlying uniform variate u, as in equation (11.14), but instead as

zi =NV - hy). (11.16)
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Furthermore, we have to ensure that the path ends up in-the-money at maturity. This
means that the last normal variate z, for this path has to be constructed as in

zn =NV, - (h, — k) + k) (11.17)

where

In & -i—lcrzAt,
k:=N( Sat ; ) (11.18)
o n

In addition to the careful path construction outlined above, we also need to take into
account that we are sampling only from a subdomain of the space of all possible path
evolutions. Fortunately, we did calculate the corrective factor needed on the fly as we
built the importance sampled path S;;. We simply need to multiply the payoff associated
with the constructed path by the product of all the limiting factors p := (h, —k) -I‘[;‘;ﬂ hy:

R S j
Uis:;;p(sis)‘ff(s‘is). (11.19)

The importance sampling Monte Carlo technique is very useful in its own right to calculate
expectations for the purpose of option pricing, in particular for far-out-of-the-money
options. Furthermore, it can be a very powerful enhancement technique to the finite
differencing method for the calculation of Greeks. Of course, it can also be used in
conjunction with variate recycling and/or pathwise differentiation. How well this works
will be demonstrated in various figures further on, but first I want to explain the two
remaining methods to be presented in this chapter.

11.5 PATHWISE DIFFERENTIATION

Let’s have a closer look at what we are really trying to calculate for the example of Delta
in equation (11.6). All occurrences of the true price v in that equation are numerically
evaluaied as a Monte Carlo approximation. Thus

3D 3 |1 &
Delta= — = — | — S(z7: S . 11.20
elta 35 = 7% |:m§n'( (z 0))] ( )

In the true sense of the partial derivative in the above equation, an infinitesimal change
of the initial spot level Sy can only give rise to infinitesimal changes of the spot level
at any of the monitoring dates. It can be shown that for Lipschitz-continuous payotf
functions, i.e. those that are continuous® in all of the elements of the vector S and have
a finite partial derivative |07 /38;| < oo, the order of differentiation and expectation can
be interchanged. For such payoff functions, it is perfectly consistent to assign a Delta of
zero to all paths that terminate out-of-the-money, and a Dclta equal to 957 /38y with S
as constructed by equation (11.2).

This method is called pathwise differentiation or infinitesimal perturbation analysis
and can easily be transferred to other Greeks such as Vega [BG96, Cur98]. However, for

OThis is a handwaving definition of Lipschitz-continuous, but suffictent for the discussion here.
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the calculation of Gamma, we still have to implement a finite differencing scheme for
two individually calculated Deltas for an upshift and a downshift, and both of these can
individually be computed using pathwise differentiation.

Alas, for the chosen example of a discretely monitored Up-Out-Call option, this method
cannot be readily applied since the payoff function is not even continuous, let alone
Lipschitz-continuous, due to the knock-out feature. However, it is possible to apply the
pathwise differentiation technique to paths constructed using the importance sampling
method presented in the previous section. This is because the construction of paths using
equations (11.15) to (11.18) represents a transformation of variables into an integral over
the unit hypercube (0, 1)" such that the integrand is actually Lipschitz-continuous every-
where. In other words, equation (11.19) is to be seen as

v = [ p(Sis(u)) - 7 (Sis()) dt”. (11.21)
(0. 1)

When we calculate dvjs/dSp from this equation, we can readily change the order of
differentiation and integration. However, we then have to observe carefully the precise
dependencies of the individual terms with respect to the parameter that corresponds to
the Greek we wish to calculate. As a consequence, we end up with a sum of terms
representing the possibility of knock-out on each of the monitoring dates, which makes
this approach somewhat cumbersome. In the next section, I present another method that
also utilises the idea of transformation. Conversely to pathwise differentiation, though,
it does not require any kind of continuity of the payoff function, and even results in
surprisingly simple equations.

11.6 THE LIKELIHOOD RATIO METHOD

The option pricing problem by Monte Carlo is a numerical approximation to an integration
v = f:r(S) w(S)ds. (11.22)

Numerically, we construct evolutions of the underlying assets represented by S given a
risk-neutral distribution density ¥ (S). As in equation (11.2), we hereby typically construct
the paths with the aid of a set of standard normal variates, which corresponds to

v = f:rr(S(z;a))ga(z)dz (11.23)

and all dependence on further pricing parameters (herein represented by «) such as the spot
level at inception, volatility, time to maturity, etc. is absorbed into the path construction
S(z; ). Any derivative with respect to any of the parameters will thus suffer from any
discontinuities of  in S:

av
da
The key insight behind the likelihood ratio method [BG96] is to shift the dependence on

any of the parameters over into the density function. In other words, a transformation of
the density is required to look at the pricing problem in the form of equation (11.22). In

= [ iyr(S(z:; a)) ¢(z) dz. (11.24)
oo
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this way, the Greek evaluation problem becomes

dv

B
% =[H(S) @W(S;a)dt? =[3r(S)

(S, a)/oa
V(S;a)

The calculation of the desired Greek now looks exactly like the original pricing problem,
only with a new payoff function

¥ (S;a)ds. (11.25)

x(S:a) = n(S) - w(S;w) (11.26)
with
oY (S;a)/du
S;a) = — .
w(S;a) ) (11.27)

The term w(S;«) may be interpreted as a likelihood ratio since it is the guotient of
two density functions, whence the name of the method. Using this definition, the Greek
calculation becomes

o _ fX(S;cz) Y(S;a)dS. (11.28)

do

The beauty of this idea is that for the probability density functions that we typically use,
such as the one corresponding to geometric Brownian motion, the function x(S;«) is
an element of C* in the parameter ¢ and thus doesn’t cause the trouble that we have
when approaching the Greek calculation problem in the form of equation (11.23). The
application is now straightforward. Alongside the calculation of the option price, for each
constructed path, apart from calculating the payoff n(S$), also calculate the likelihood
ratio @ (S; «). The approximation for Delta, for instance, thus becomes

Delta — i—é [n (Sf;so) . (S-’:So)]. (11.29)

The likelihood ratio method can actually be viewed as a special case of a more general
class of applications of Malliavin calculus to the problem of the calculation of Greeks
using Monte Carlo methods [FLL"99, FLLLO1]. In the framework of Malliavin calculus,
the transformation of integrals containing derivatives such as equation (11.24) to the form
given in equation (11.25) is seen as a partial integration of an integral involving stochastic
processes. It can be shown that there is usually more than one way to choose a weighting
function w for the payoff in order to calculate any one given parametric derivative, i.e.
Greek. However, and this is in general the biggest problem of Malliavin calculus, not all
of them provide a faster convergence than, say, plain finite differencing. For geometric
Brownian motion, the choice of @ that provides the least variance of the result is the one
that can be derived directly as a likelihood ratio calculation, as is done here. For other
processes, this may be different, and the full-blown Malliavin calculus may then lead to
superior weighting functions . However, the stochastic calculus involved can be quite
daunting and the highly complicated analytical computations required make this method
somewhat error prone when applied to more sophisticated process assumptions and more
complex derivatives contracts. For our test case of a discretely monitored Up-Out-Call
option, though, the calculation is straightforward and, leaving it up to the reader to go
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through the involved calculus and algebra in his own time, I just present the results here.
Starting from the path construction description (11.2), we arrive at

2]
e — 11.30
“Delt Spo /Al ( )
2 zio /AL — 1
o = A9V AN (11.31)

Gamma 5(2)0‘2 Aty

which may look surprisingly simple considering all of the above discussion. It is worth
noting that only the variate z; responsible for the very first step enters. Also, if a piece-
wise constant term structure of instantaneous volatility is used, it is the volatility coeffi-
cient for the first time step that applies. A similar formula can be derived for Vega, i.e.
the price sensitivity with respect to the volatility coefficient, which is done in appendix
section 11.9.1, and also for the sensitivities with respect to interest rates and dividend
yields (see appendix section 11.9.2). As for the limitations of the method, I should mention

that since the likelihood ratios Wagn and wg—— in equations (11.30) and (11.31) are

inversely proportional to o./Ar; and oA respectively, the variance incurred by this
calculation of Delta and Gamma may increase dramatically for low volatilities or very
short time intervals in between monitoring dates.

As a side note, I would like to point out that the method presented in this section did
not specifically depend on the payoff being an Up-Out-Call option. In fact, the resulting
decomposition into payoff & times likelihood ratio w remains the same for any payoff, be
it a discretely monitored lookback, hindsight, Asian, or whichever option. It can also be
extended to more challenging model processes, such as the BGM/J framework for interest
rates, which involve stochastic drift coefficients [GZ99).

11.7 COMPARATIVE FIGURES

In order to demonstrate the usefulness of the methods discussed in the previous sections,
I selected two test scenarios. Both are on the same Up-Out-Call option. Scenario A repre-
sents the case that there is exactly 7 = 1 year to maturity, the current spot level is 100,
the strike is at 100 and the barrier at 150. The underlying asset evolves lognormally
with constant volatility of 0 = 30% and monitoring happens at the end of each month.
In scenario B, there is only 7 = 0.52 left until expiry, the spot has risen to a level
of 160, and we are 5 trading days (out of 250 per year) away from an end-of-month
monitoring date. Since the different methods involve varying amounts of computational
effort, all convergence diagrams are with respect to CPU time required on an AMD K6-TI
processor running at 400 MHz. It should be mentioned, though, that all of the presented
calculations were carried out using the Sobol” low-discrepancy sequence in conjunction
with a Brownian bridge which provides a major convergence enhancement,

The purpose of Figure 11.1 is thus to demonstrate that the calculation of both Delta
and Gamma, along with the actual price, does not impose a prohibitive burden for any
of the methods. The reader may notice that the line for the analytical approximation is
missing from the graph for scenario B in this and the following figures. This is because
the analytical approximation, by virtue of using an adjusted barrier level in a continuous
barrier option formula, results in a value that is identically zero since the spot level
of 160 is outside the adjusted barrier level of 157.8. Also, it is worth noticing that in
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scenario B, similarly to a far-out-of-the-money option, the importance sampling method
very significantly enhances the convergence behaviour for the value itself.

Next, in Figure 11.2, the convergence behaviour for Delta is shown. Since the differ-
ences in performance are difficult to show on one scale, I also show an enlargement
in Figure 11.3. Finally, the convergence diagrams for Gamma are given in Figures 11.4
and 11.5.

Overall, it is probably fair 1o say that, whilst straightforward finite differencing is
virtually useless for the calculation of Gamma (we estimate that several CPU months
would be required before satisfactory convergence could be achieved), both the importance
sampling and the likelihood ratio enhancement work remarkably well, and can also be
combined.

11.8 SUMMARY

Combine et impera! There are various methods out there, and you can pick and choose.
Also, the methods outlined in this chapter can readily be adapted to some of the process
descriptions that generate a skew and/or smile introduced in Chapter 3. In many cases, we
can combine two or more of the presented techniques for even greater convergence speed.
As I have demonstrated, nothing stops you from using finite differencing in conjunc-
tion with importance sampling. Also, one can combine the likelihood ratio method with
importance sampling. The world is your oyster.

11.9 APPENDIX
11.9.1 The Likelihood Ratio Formula for Vega

In a Black-Scholes setting with constant volatility, etc., and a single time horizon of
interest, i.e. the maturity 7' itself, the likelihood ratio for the calculation of Vega is’

22 -1
g

—z/T. (11.32)

Wega —
The variate z is hereby the standard normal variate used for the construction of the
terminal spot value draw

St =50 -e(rhd_ %02)T+aﬁz.

(11.33)

Of more interest is the case when we have a payoff function that depends not only
on the value of an underlying asset at the final maturity, but also on the realisations
at intermediate times f; for i = 1,...,n with ¢, := T and 7y := 0. In the standard
Black—Scholes framework fashion I assume that paths can be seen as being constructed
incrementally® by

5 = 5(p) = Sp - ek (e bod) St VB (11.34)

TThe formula for the Vega likelihood ratio given in [FLLLO1], unfortunately, is slightly in error. However,
the same formula is correct in the preceding article by the same authors (third equation on p. 405) in [FLLT99].
8This means that if you actually use a difterent method for the path construction such as the Brownian bridge
(see section 10.8.3), you need to back out the set of z variables such that you can identify with equation (11.34).
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with A#; =t —1; 1. The cost-of-carry coefficients w; are given by 1; =r; —d; with r;
representing a continuously compounded risk-free (funding/lending) forward interest rate
for the time interval from ;- to t;, and similarly d; denoting a continuously compounded
dividend yield. In (11.34), T have also allowed for a piecewise constant term structure
of instantaneous (or forward implied) volatility. In a trading environment, we are usually
most interested in hedge parameters with respect to market quoted implied volatilities,
i.e. implied volatility coefficients that apply to a time interval from today to a certain
time horizon. I will now first derive the likelihood ratio that enables us to compute the
sensitivity of a given payoff function with respect to all of the individual forward volatility
coefficients in equation (11.34), and then transform them to the conventional format of
implied volatilities 'out of today'.

Forward Volatility Exposure for Multiple Time Steps

The joint distribution density ¢ of a vector of n independent standard normal variates is
given by

o) = [ J o). (11.35)
k=l

This density can be transformed to the density of the vector § of realisations of the under-
lying asset along the path with the aid of the Jacobian determinant of the transformation
z— S, ie.

9(z)
V(8 =¢(2)- '_—H(S) (11.36)
Solving (1 1.34) for the dependence of z on §, we obtain
1 | 2
Zj = ()‘_,-\/Aitj (lIlSJ' —1In Sj_[ - (;Lj - EUJ ) &Ij) (1 137)
and consequently
0Zj 1 i 1 )
= — | Sk — — 8- 1k 11.38
Sk o, /AL (J" s TS (11.38)

This means that the Jacobian matrix (3(z)/9(S)) is triangular9 and we obtain the following
expression for the density:

f

‘P(ZJ)
w(s) =% (11.39)
jl—__'e:]i SJO’ja\#A[J

wherein z; is to be seen as an explicit function of §;, S,_1, and the parameters according
to (1 1.37). The likelihood ratio for the sensitivity with respect to any of the o; is given by

w Y (S)/d0y
w®

'Actually, it is just the diagonal and the upper off-diagonal,

(11.40)
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Combining this with (11.39), we can calculate

B & a(p(Zj)/aZj) BZJ] _ _L
Woe = [( @(z)) do] on (1141

j=1

Recall that ¢(z) is the standard normal distribution density given in (2.23) and thus

dp(z)
dz;

= —2j9(z)). (11.42)

From (11.37), we can compute

%zaﬂc (—(-ii-f-‘/h_r}). (11.43)
k

Aoy

Putting all of this together, we arrive at

wey = 2 — 7/ Aty (11.44)

The likelihood ratio Monte Carlo estimator for the sensitivity of a derivative contract
with value v with respect to the forward volatility coefficient ox from a simulation with
m paths is thus

m

with wy, as given above.

Implied Volatility Exposure for Multiple Time Steps

Given a vector of volatility coefficients o representing a piecewise constant term struc-
ture of instantaneous volatility, we can calculate the equivalent Black—Scholes implied
volatility &y from & = O to f; according to

g k
&2t = f; oty dt =Y ol A (11.46)

=0 J=1

Thus

dop  oj AL
= L7 e 11.47
doj Oy ly k) ( )
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Now,
av _ av ac}k
do, - — A0y, 00;
= — j <k
= a0y Oty J<k]
=~ 0v 0, Al
= —— (11.48)
= 90K Oty
which gives us
1 ov 1 v 1 dv
— — 1{"{”} e —_— - - (_I_ ]..49)
oj At; doj Oj41At 41 00,41 Oyt 00
and thus
v oit; 0v 0t v _
= 1] 1 —22 (11.50)

35} o, At 3Jj O'J_|_1AIJ+1 8‘7]+l

The likelihood ratio Monte Carlo estimator for the sensitivity with respect to the implied
volatility 0% from a simulation with m paths is therefore

dv 1 & -
o~ Je . A
5 = m;[n (87 50.0) - s (11.51)
with
&kfk a’ktk
5 = - lggeny | —m—m . 11.52
Wy (UkAIk ) Woy {k<n} (G'k+1ﬁfk+l ) Doy (11.52)

11.9.2 The Likelihood Ratio Formula for Rho

Given the same setting as in the previous section

§ = S(I) = S 825:1[((!‘:;—(!;(}———%65)Ar;;—b—o'.,/AIk Zk]
[ = il = -

(11.53)
with r; denoting the continuously compounded forward interest that is assumed to be
constant from #;_1 to t;, we can calculate the likelihood ratio for the calculation of the
sensitivity with respect to the forward interest rates. We have to be careful though: the
interest rate appears not only in the path construction but also in the discount factor
that has to be applied to each payoff. In the following, I assume that the only cashflow
constituting the payoff of the (path-dependent) derivative contract whose value is v is
paid at the final maturity 7' == f,,. Taking this into account, we arrive at

ik
= — 1) Ag. 11.54
on = (rvmr 1) o0 00
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Just as for Vega, for real hedging purposes the exposure with respect to zero-coupon rates
out of today is more relevant. Denoting the spot rate associated with today's discount
factor for a cashflow that is payable at time # as 7 we can equate

okl — o= Lzt 1Al (11.55)

Then, following a transformation analysis similar to the one for Vega, we obtain

Zk Tk+1
. - 1) -1 L 1) 11.56
“ (Uk«/ﬁfk ) £ e (O’k+1«/mk+1 ) , ( )

At this point, I am sure you believe me without further ado that the equivalent sensitivities
with respect to the respective dividend yield coefficients can be calculated by virtue of
the following likelihood ratios:

LAY
wy, = —= - 4 (11.57)
ZkTk Zk+11k (11.58)

W; = Yyt
i O/ Al { <n}0k+1«./Atk+1



12
Monte Carlo in the

BGM/J Framework

12.1 THE BRACE-GATAREK-MUSIELA/JAMSHIDIAN
MARKET MODEL

The pricing of options in the interest rate market has been the subject of many publications
in the financial literature. Whilst most of the earlier models allowed short rates to evolve
according to a normal distribution [Vas77, HL86, HW90], later developments avoided
the possibility of (in principle unlimited) negative interest rates by modelling the short
rate lognormally [BDT90, BK91]. With the arrival of the general no-arbitrage conditions
linking the drift of short or forward rates to the term structure of their instantaneous
volatility function [HIM92b], practitioners now had a general framework for the calibra-
tion of interest rate models to the implied volatilities of options that are liquid enough in
the market to serve as hedging instruments. When options on a discrete forward rate or
a swap rate are used to hedge the volatility exposure of exotic interest rate derivatives,
it is intuitively appealing to view the same discrete rates as the fundamental stochastic
quantity underlying the contract. Rather than modelling the behaviour of an instantaneous
short rate, Brace-Gatarek-Musiela and Jamshidian (BGM/J) and several other authors
[MSS97,. BGM97, Jam97, MR97] described the evolution of the forward rates themselves
to be given by a lognormal stochastic differential equation. This formulation, however,
leads to fully state-dependent drift terms for the individual forward rates and thus makes
it impossible to build recombining tree lattices [Hul97, Reb98, Reb99]. As long as the
exotic interest rate derivative contract that is to be priced is of European style, i.e. involves
no exercise decision by the holder of the option, Monte Carlo methods can readily be
applied since they are not affected by the high dimensionality of the problem!.
Unfortunately, though, one of the most important derivatives in the interest rate market
is the contract known as a Bermudan swaption which gives the holder the right to enter
into a swap of a fixed terminal maturity date on a set of prespecified exercise opportunity
dates. Even though several articles on the issue of early exercise opportunities in the
context of Monte Carlo simulations for the pricing of derivatives have been published
in the past (see, e.g., [BG97a] for an excellent overview), all of them are only approxi-
mate and one has little certainty about the error actually incurred when applying any of
the general-purpose American Monte Carlo methods to a specific problem. The nature
of the Bermudan swaption contract makes it possible though to devise bespoke Monte
Carlo techniques that exploit the specifics of this derivative contract particularly well, as
demonstrated recently by Longstaft and Schwarz [LS98] and Andersen [And00]. Whilst
the new method presented here is structurally somewhat similar to the latter, which is in
turn superior to the former, it does not require approximative evaluations of option values

'This is to say that Monte Carlo methods do not suffer from ‘the curse of dimensionality’ whereby the
number of evaluations explodes exponentially with the number of time steps or exercise opportunities. At
worst, the computational effort grows linearly with the dimensionality and number of time steps for Monte
Carlo techniques,
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during the simulation itself. Instead, an exercise decision strategy is based on a parametric
exercise decision function chosen to match observed heuristics in two carefully selected
coordinates. The free parameters are then optimised for each individual pricing calculation.

In theory, one can always use a non-recombining tree method such as the one explained
in Chapter 13 to price Bermudan swaptions. In practice, however, this technique can only
be applied to contracts of rather limited duration, or more precisely, of rather limited
number of cashflows and exercise opportunities. In this chapter, I present a Monte Carlo
method that overcomes this limitation and yet manages to produce prices remarkably
close to those given by a non-recombining tree wherever the latter can be applied. The
new technique is based on the functional parametrisation of the exercise boundary in a
suitable coordinate system carefully selected by the aid of a non-recombining tree.

It is well known by interest rate derivatives practitioners that the main benefits of
using the BGM/] framework are not so important when it comes to products such as
European or even Bermudan swaptions, since these types of contracts are most sensitive
to changes in the yield curve that are well represented by the lowest principal vectors of
the decomposition of the yield curve’s covariance matrix. Derivatives that are accurately
priced by adequately modelling the changes in level, and possibly slope, of the yield curve
can usually be safely priced using a one- or two-factor short rate model. However, for other
interest rate derivatives such as trigger swaps, ratchets, and flexicaps, the story is very
different. For trigger swaps, for instance, it is inherently difficult to model appropriately the
correlation behaviour of any one forward rate (being the index rate determining whether
the swap is triggered in) to the forward swap rate starting with the very same forward
rate simultaneously for all forward rate/forward swap rate pairs unless a full factorisation
is allowed, i.e. there is one model factor for each forward rate comprising the yield curve
of interest. For those products whose price depends strongly on the effective correlation
between adjacent forward rates and forward swap rates, the BGM/J framework not only
provides a way of more adequately allowing for all possible evolutions of the yield curve
that could affect the value of the derivative, but in doing so also enables the practitioner
to obtain a better understanding of the financial mechanisms behind the value of the
optionality with greater ease. In this light, we can say that the BGM/] framework is
particularly useful and beneficial where path dependence plays an important role, or
where the value depends strongly on the high-frequency components of the changes in
yield curve, i.e. the eigenvectors of the yield curve’s covariance matrix associated with
the higher modes and thus lower eigenvalues. Despite this, I have chosen to explain the
intricacies of the BGM/J Monte Carlo simulation approach with the example of Bermudan
swaptions for the following two reasons. Firstly, it is one of the (if not the) most important
interest rate derivatives around and any new approach must provide ways of pricing this
contract. Secondly, pricing Bermudan swaptions in the BGM/J setup immediately forces
the practitioner to tackle the most difficult problem in the market model world, namely
the existence of early exercise opportunities. The generic description of the Monte Carlo
BGM/J model in this chapter is easily applied to all path-dependent products, and thus
any product serves equally well as an example. The approach I take here for the design
of a Monte Carlo method in order to price an early exercise strategy-dependent contract
such as the Bermudan swaption is, however, general enough to be transferred readily to
other derivatives such as flexicaps and others involving early exercise opportunities.

In this chapter, I outline how Monte Carlo simulations can be used for the pricing of
interest rate derivatives in the Libor market model. The nature of the so-called market
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model is that any set of rates that completely determines the present value of a single
certain cashflow at all of the points of interest on the yield curve can be used as the basic
set of modelled quantities. The driving stochastic process for those state variables of the
yield curve can then be chosen at will, and the drifts follow by virtue of the martingale
conditions resulting from the choice of numéraire. The most common ways of building the
yield curve are to use a complete set of co-terminal or co-initial swap rates, or a complete
set of spanning FRAs. In this chapter, I use the latter approach whereby the modelled
state variables are forward Libor rates. The reason that I don’t even touch on the swap
rate-based approach is that in my practical experience the available approximations for
discrete time step drift terms and approximate prices of options on composites of the state
variables® are all unsatisfactory. In contrast, therc are highly accurate approximations for
European swaptions in the FRA-based BGM/J framework, and very reliable drift stepping
techniques.

This chapter is structured as follows. [n section 12.2, I give a brief introduction to the
BGM/J Libor market model framework and explain how the number of driving factors
can be reduced should one wish to do so in order to compare with short rate models of a
lower factorisation. In section 12.3, I briefly state the Bermudan swaption pricing problem
in my notation and in section 12.4, a formula is given that provides a remarkably accurate
price for European swaptions for most major interest rate markets at the time of writing,
without the need for simulations. The handling of the state-dependent drift term arising
in the BGM/J framework is then addressed in section 12.5. Then, | demonstrate the real
exercise boundary of the Bermudan swaption for a specific example in section 12.6. A
suitable parametrisation for this boundary is suggested in section 12.7. In the following
two sections, I explain the actual Monte Carlo algorithm and present numerical results
for various examples. At the end of the chapter, a summary is given.

12.2 FACTORISATION

In the BGM/J Libor market model, it is assumed that each of n spanning forward rates
/i evolves lognormally according to the stochastic differential equation
df; ~
% = i (f, Ddt + o (0 ;. (12.1)
)
Correlation is incorporated by the fact that the » standard Wiener processes in
equation (12.1) satisfy

E[dW;dW,] = g;;dt. (12.2)
The elements of the instantaneous covariance matrix C(¢) of the n forward rates are thus
cij(t) = oi(oj(t)oi - (12.3)

Using a decomposition of C(z) into a pseudo-square root® A such that
C=A-AT (12.4)

ZRecall that if the yield curve 1s fully described by a set of either co-terminal or co-initial swap rates, all
bar one caplet actually become options on a payoff function that involves more than one of the basic state
vanables, 1.e. the swap rates.

3Convenient procedures are the Cholesky method or spectral decomposition. A description of the latter is
given 1n section 6.2.
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we can transform equation (12.1) to

fi

i ,m+§:@ﬂw (12.5)
with dW; being n independent standard Wiener processes, where dependence on time has
been omitted for clarity.

It is also possible to drive the evolution of the n forward rates with fewer underlying
independent standard Wiener processes than there are forward rates, say only m of them.
In this case, the coefficient matrix A € R™*” is to be replaced by A € R™™ which must
satisfy

Zaf} = Cj; (126)
j=1

in order to retain the calibration of the options on the FRAs, i.e. the caplets. In praciice,
this can be done very easily by calculating the decomposition as in equation (12.4) as
before and rescaling according to

(12.7)

The effect of this procedure is that the individual variances of each of the rates are still
correct, even if we have reduced the number of driving tactors to one, but the effec-
tive covariances will differ. For instance, for a single factor model, all of the correlation
coefficients will be unity and the covariances just the products of the pairs of associated
volatilities. The procedure described above is to ensure consistent calibration to caplet
prices. There are many other choices one can make, such as to calibrate against European
swaptions, etc. The subject of calibration is a very delicate one indeed, and I will explain
how one can calibrate to European swaptions without the need for Monte Carlo simula-
tions in the next section. Here, I only meant to indicate one of the simplest calibration
approaches preserving the desired calibration independent on the number of factors used
in the evolution of the yield curve.

If the forward yield curve is given by n spanning forward rates f;, whereby the payoff
of forward rate agreement i is f;z; paid at time #;|, and a zero-coupon bond that pays
one currency unit at ¢y is used as numéraire, as illustrated schematically in Figure 12.1,
then the drifts p; in equations (12.1) and (12.5) can be calculated with the aid of Itd’s
lenma to be:

Jie(B)k _ : B
;ll+f(r) oroix for i< N—1,

wi(f(e), 1) = 0 for i=N—-1, (12.8)

i
Je(t)Ty .
. — L0 > .
o EN l fk(r)rkcr;\g,k for i 2N
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Zero-coupon bond as numéraire

Figure 12.1 The yield curve is specified by a set of spanning forward rates

12.3 BERMUDAN SWAPTIONS

A Bermudan swaption contract denoted by ‘X-non-call-Y’ gives the holder the right to
enter into a swap at a prespecified strike rate K on a number of exercise opportunities.
The first exercise opportunity in this case would be Y years after inception. The swap that
can be entered into always has the same terminal maturity date, namely X, independent
of when exercise takes place. A Bermudan swaption that entitles the holder to enter into
a swap in which he pays the fixed rate is known as payer’s, otherwise as receiver’s.

For the owner of a payer’s Bermudan swaption, the present value of exercising at time
tj is given by the intrinsic value /() of the swap to be entered into at that time:

n—l1

n—1 k
1))=Y [Peni(t) - (filt) — K)u]=) [(]‘[ [1+ fz(t;)tz]_') (filty) = K) rk} .
k=)

k=] = l=}

(12.9)

Hereby and in the following, 1 assume a constant notional of 1 and that the contract is
a payer’s Bermudan swaption to simplify the notation. Py, 1(¢;) indicates the ¢;-present
value of a zero-coupon bond paying 1 at # | or, in other words, the t;-realised discount
factor from ¢; to fg41.

In order to decide optimally about early exercise at time ¢;, the holder compares the
present intrinsic value with the expected profit to be made by not exercising at that time.
Thus, the tj-value of the Bermudan swaption V(#;) is given by

max {7 (), E¢)[V@0]}  for j=1,....n-2,

(12.10
max {/(1)), 0} for j=n-—1. )

V() = {
It should be mentioned that the above specifications describe fairly plain vanilla
Bermudan swaptions. In the marketplace, many variations are common such as differing
payment frequencies between fixed and floating leg, margins on top of the floating
payment, varying notionals (rollercoaster or amortising swaptions are not uncommon),
time-varying strike of the swap to enter into, cross-currency payoff (quanto), and many
more. The method presented below, however, is general enough to be amenable to almost
all of these special cases.

12.4 CALIBRATION TO EUROPEAN SWAPTIONS

Alternatively to the definition of the yield curve by a set of spanning forward rates,
it is also possible to choose a set of co-terminal forward swap rates as depicted in



164 Monte Carlo Methods in Finance

Figure 12.2 The yield curve can also be defined by a set of co-terminal forward swap rates

Figure 12.2. Jamshidian used this set of yield curve coordinates for a swap-based market
model [Jam97]. Using the annuity associated with a specific forward swap as the numéraire
asset for the evolution out to the reset time of the same swap, we can model the swap
rates as perfectly lognormal and thus obtain the calibration to European swaptions by
construction. However, there are a number of drawbacks to this approach. Firstly, it is
not particularly easy to come up with a parametrisation of the swap rates’ instantaneous
volatilities that allows for some degree of time homogeneity. Essentially, one needs a
functional form that amongst all other parameters also caters for the intrinsic differ-
ences between the different forward swap rates. This 1s because whilst forward rates are
all equally associated with a single cash payment of the same order of magnitude, the
annuities associated with all the forward swap rates vary considerably with the residual
maturity or duration of the individual forward swap rate. Secondly, it is not easy to
conjure up a parametrisation of the swap rates’ correlation that is equally satisfactory and
simple, which is also due to the intrinsic differences between the natural assets associated
with the forward swap rates, i.e. the annuities. Thirdly, the drift terms resulting from the
no-arbitrage martingale conditions are much more cumbersome than for an FRA-based
market model.

Today’s exotic interest rate derivatives are rarely based purely on only forward rates or
forward swap rates just by themselves. A classic example of this are trigger swaps where
the fixing value of a specific forward rate determines whether a swap starting there and
then comes to life. Even for Bermudan swaptions, the exercise decision depends not only
on the next resetting swap rate, but also on the shape (and primarily the slope) of the yield
curve, as best seen by looking at the variations between all forward rates. Thus, when
we value Bermudan swaptions, we may wish to represent the overall stochastic dynamics
of the forward rates reasonably well, and in particular account for their correlation in an
econometrically sound fashion, but also to calibrate such that we reproduce the market-
given prices of European swaptions.

I will now outline one possible approach to calibrate an FRA-based BGM/J model
to European swaptions. First, we have to decide on a suitable instantaneous volatility
function for the forward rate, and I use the one suggested by Rebonato [Reb99]:

0i (1) = kil(a + bt — e U™ +d] - 1y, (12.11)

The common parameters a, b, ¢ and d determine the overall shape of the term structure
of instantaneous volatility. The FRA-specific parameter &; allows us to scale the volatility
curve for each forward rate to match the market given implied volatility for the associated
caplet. This functional form appears to give good fits to the main volatility structure for
most major markets, for which there is an example in Figure 12.3. The next function to
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Figure 12.3 Market given implied volatilities for caplets and the best fit using equation (12.11)
with all k; = 1

choose is the FRA/FRA correlation. One suitable choice is
0ij(1) = e Pl =G0 Y cming 1) (12.12)

with # = 0.35 and y = 0.5. However, choosing y = 1 and 8 = 0.1 (which results in
very similar initial values for the correlation elements and makes no noticeable difference
to the price of Bermudan swaptions), we can evaluate the pairwise covariance integrals
¢, T) = [ o;(w)a;(w)oij (w) du with 1 < T < min(t;, ;) analytically, since we can
take the correlation term out of the integral. The primitive, i.e. the indefinite integral, of
oi(t)o;(t)ei, then becomes

1

fQ,‘jO‘,-(I)O‘j(I)dI = IE_‘,ilB]'r‘u"f1 -k,'kj . E—-j
C

, (4a02d [e(_-(r—tj) + e(.‘l:f—-l‘,‘)] + 4C3d2f
—4bede ! [e(t — 1) — 1] — 4bede T [e(t — 1)) — 1]

e e=ti=t)) (202(:2 + 2abc(l 4 c(t; + 1, - 21)]

+ 014220 — ) — ) et 1 - ). 1213

Clearly, we can always use formula (12.13) to calculate the implied volatility &;(t;) =
o 02(t)dt/1; of any one caplet consistent with the parametrisation (12.11). In practice,
one can use this formula to calculate the &, such that g;(#;) equals a market given Black
volatility.

In order to establish a link between forward rate and forward swap rate volatilities for
the purpose of calibration to European swaptions, we remind ourselves that a forward
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swap rate SR; (starting with the reset time of the forward rate f;) can be written as the
ratio

A,
SR; = — 12.14
=5 ( )
of the floating leg value
n—1
Ai =) P fiyN; fori=0,...,n~1 (12.15)
J=i
and the annuity
n-—_
B,‘:ZPj.,.[thj fori=0,...,n—1. (12.16)

N, is the notional associated with accrual period 7,. Since the market convention of price
quotation for European swaptions uses the concept of implied Black volatilities for the
forward swap rate, it seems appropriate to think of the swap rates’ covariance matrix in
relative terms just as much as for the forward rates themselves. The elements of the swap
rate covariance matrix C¥ can therefore be written as

g SR; SR,
_ Z dSR; /dfi - SR, /3f; i dfe dfz
SR; - SR; KON
n—1
SELINIE dSR; |
- — afk SR . CﬁU . SRJ aﬁ (1217)
=0

Defining the elements of the matrix ZFRA=SR by

. aSR, fi
k i

the mapping from the FRA covariance matrix CF*4 to the swap rate covariance matrix
CSR can be seen as a matrix multiplication

Using

0 Py T
=—Pg—— 1> 12.20
a fx 1 + frtk k=i ( )
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where 1y is one if k > i and zero otherwise, and equations (12.15), (12.16) and
(12.14), we have

aSR; | PNy Ag T AiBy

Xy
3fk B; 1+ fite Bi 1+ fize B?

] Lkzi)- (12.21)

This enables us to calculate the elements of the forward rate to swap rate covartance
transformation matrix ZF&A—5 to obtain the expression

P\ Nk fretk N (AiBr — ArBi) fietk

FRA—SR :
Zik = A, AiBi(l + frtk) ' I{k;z}- (12.22)
S S —— . - y
constant weights approximation shape correction

The second term inside the square brackets of equation (12.22) is called the shape correc-
tion. Rewriting it as

(Aj By — ArB;) frtx FrTk k—1n—1
AB(+ fe)  ABi(1+ fime) Z Z Pt Pus A NINg Tt (fi — fin)

=i m=k

(12.23)

highlights that it is a weighted average over inhomogeneities of the yield curve. In fact,
for a flat yield curve, all of the terms (f; — f,) are identically zero and the mapping
matrix ZFRA=SR 5 equivalent to the constant weights approximation (11.7) in [Reb99].
As things stand at this point, we have a map between the instantaneous FRA/FRA covari-
ance matrix and the instantaneous swap/swap covartance matrix. Unfortunately, though,
the map involves the state of the yield curve at any one given point in time via the matrix
Z. The price of a European swaption, however, does not just depend on one single realised
state or even path of instantaneous volatility. It is much more appropriate to think about
some kind of path integral average volatility. Using arguments of factor decomposition
and equal probability of up and down moves (in log space), Rebonato shows in [JR0O0]
that the specific structure of the map allows us to approximate the effective implied swap-
tion volatilities by simply using today’s state of the yield curve for the calculation of the
mapping matrix Z:

n—1 T ' ’ '
b5, (1, T) = | Y ZERArSR(q). I ont )';f(t Judl perissrgy (1224
k=1,l=i
This approximate equivalent implied volatility can now be substituted into the Black swap-
tion formula to produce a price without the need for a single simulation! In practice, the
formula (12.24) works remarkably well. This is demonstrated for a whole sequence of co-
terminal European swaptions in figure 12.4. An explanation for the remarkable accuracy
of approximation (12.24) is beyond the scope of this section, but can be found in [JROO].
Using the above preliminaries, I now outline the calibration procedure in detail. For a
given time step from ¢ to 7, populate a time-unscaled FRA/FRA covariance matrix

crra _ di oo theut)dr
Moo= T =5

(12.25)
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Figure 124 The pricing error from equation (12.24) using only the constant weights approxi-
mation in the formuia (12.22) or when including the shape correction for a GBP yield curve for
August 10th, 2000

Next, map this matrix into a time-unscaled swap/swap covariancc matrix using the Z
matrix calculated from the initial state of the yield curve
CSR=7.cMA. 27 (12.26)

and calculate from it the swap/swap correlation matrix RS® given by

P — (12.27)

Now, we compute the spectral pseudo-square root B of RR which satisfies
RSR — gSR . gSR " (12.28)

At this point, we take into account the market given swaption prices. Denote the market
. N - . . » . “-.Eu-ket .
1mplfed V(;]atlllty of the swaption expiring at time #, by oSk and define the diagonal
matrix = by

~ market OS8Ry (#, T)

Hop = Og¢ K “Boh (12.29)
§ SR Ggr, (0,15) ¢

with 8gn being the Kronecker symbol (which is zero unless g = & when it is one)
and both &g, (¢, T) and ogg, (0, #;) calculated from the FRA instantaneous volatility
parametrisation through equation (12.24). The final step is now to construct the FRA
driver* matrix A4 by scaling up the swap/swap correlation driver matrix BR and
mapping back to FRA coordinates:

AFRA = z=1 . 5. BSR, (12.30)

*Karatzas and Shreve call this matrix the dispersion matrix [KS91] (p. 284).
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The effective (time-unscaled) FRA/FRA covariance matrix is finally

FRA FRA 4 FRA'
thfcctlvc = A M A . (12.31)

In order to use the matrices CIRA =~ and A™®4 for the evolution over the time step
t — T from a set of standard normal variates, we still need to multiply them by (7' — 1)
and /(T — 1), respectively. Within the limits of the approximation (12.24), using these
matrices wherever we have expressions involving a;; and ¢;; in the following sections will
provide calibration to European swaption prices whilst retaining as much calibration to the
caplets as possible without violating the overall FRA/FRA correlation structure too much,
which is typically exactly what a practitioner wants for the pricing of Bermudan swaptions.
As a side note, it should be mentioned that various other combinations of carrying out the
split into CFFA. and AP are possible, whilst still preserving calibration to European
swaptions, In my experience, however, the above approach represents the best method
to preserve as much of the overall FRA/FRA correlation structure in the calibration as

possible.

12.5 THE PREDICTOR-CORRECTOR SCHEME

In order to price a Bermudan swaption in a Monte Carlo framework, we need to evolve
the set of forward rates f from its present values into the future according to the stochastic
differential equation

dfi() = fiO) - i (f O, Dde + ;0 Y aidW, (12.32)

J=)

driven by an m-dimensional standard Wiener process W. The drift terms given by
equation (12.8) are clearly state-dependent and thus indirectly stochastic, which forces
us to use a numerical scheme to solve equation (12.32) along any one path. Ideally, we
would want to evolve the forward yield curve f only over the points in time which we
actually need to monitor, i.e. the possible exercise dates. The simplest numerical scheme
for the integration of stochastic differential equations® is the Euler method

SO+ A = [+ [0 - i (@, DA+ i@ - ) ay(Dz;VAr (12.33)
j=1

with z; being m independent normal variates. This would imply that we approximate the
drift as constant over the time step ¢ — ¢ + Ar. Moreover, this scheme effectively means
that we are using a normal distribution for the evolution of the forward rates over this
time step. Whilst we may agree to the approximation of a piecewise constant (in time)
drift coefficient w,, the normal distribution may be undesirable, especially if we envisage
using large time steps Ar for reasons of computational efficiency. However, when we
assume piecewise constant drift, we might as well carry out the integration over the time
step At analytically and use the scheme

f:_conslam drifl(f(t), tEAD = fi(1) - e;.:,—(f(r),r)&:—%c;g+z;"=, aijz, (12.34)

3See [KP99] for a whole variety of methods for the mtegration of stochastic differential equations.



170 Monte Carlo Methods in Finance

whereby the time step scaling by +/Az for A and by Az for C has been absorbed into
the respective matrices. In other words, I have set A’ == A - v/Ar and €’ 1= C - A¢
and dropped the primes. Equation (12.34) can also be viewed as the Euler scheme in
logarithmic coordinates.

The above procedure works very well as long as the time steps At are not too long, and
is widely used and also referred to in publications [And00, GZ99]. Since the drift term
appearing in the exponential function in equation (12.34) is in some sense a stochastic
quantity itself, we begin to notice that we are ignoring Jensen’s inequality when the
term w;Ar becomes large enough. This happens when we choose a big step Atf, or
the forward rates themselves or their volatility are large. Therefore, we should use a
predictor-corrector method which models the drift as indirectly stochastic [HIJ01]. In
the notation of Kloeden and Platen [KP99], depending on the time dependence of the
instantaneous volatility function, this is an explicit order 2.0 weak scheme or order 1.0
weak predictor—corrector method®, This combination of the Euler scheme in logarithmic
space with the predictor-corrector method for the drift results in a remarkable accuracy
and is used throughout all of the calculations reported in this chapter. The method is as
follows. First, given a current evolution of the yield curve denoted by f (), we calculate
the predicted solution feomstantdrifte £4y 4 4. A1) using one m-dimensional normal variate
draw z following equation (12.34). Next, we recalculate the drift using this evolved yield
curve. The predictor-corrector approximation g; for the drift is then given by the average
of these two calculated drifts, i.e.

~ 1 .
(POt = 14 80 = 2 [ (0,0 + p(F" N f 0,0+ Af. (1235)
Finally, the predictor—corrector evolution is given by
ﬁPJAMiCIOI—Wmtol‘(f(t), -t AI) — ﬁ (t) ) eﬁf(f(f),f%f‘i‘&l)ﬂf—:‘l;c“ +Ejn=l ajjzj (1236)

wherein we reuse the same normal variate draw z, i.e. we only correct the drift of the
predicted solution.

A handwaving reasoning for the above approximation goes as follows. If we had to
choose, for the calculation of a constant drift approximation, for any one time step, whether
we use the initial forward rates f(¢), or those at the end of the time step f(i + At),
neither of them appears to be superior over the other for the job. This is equivalent to
the considerations about explicit and implicit methods for the numerical solution of both
ordinary and partial differential equations. We don’t actually know the drift at the end of
a desired time step, and solving for it as we would in an implicit method would require
solving a high-dimensional non-linear system euch and every time. However, we can
approximate the drift term at the end of the time step, and then take the average of the
two individual drift approximations, in analogy to the predictor—corrector method used in
other areas of numerical analysis.

5To be precise, a hybrid method is used here. In the approach presented, I integrate in equation (12.25)
the volatility functions independently over the time step to obtain an equivalent discrete time step covariance
matrix, and then treat these covariance matrices as if they had been given by a process of volatility functions that
are constant in time. Therefore, neither is the explicit order 2.0 weak scheme given by eqn (15.1.4) in [KP99]
used, nor the order 1.0 weak predictor—corrector method as in egn ¢15.5.4) [KP99]. In the case of constant,
i.e. time-independent volatility, however, these two schemes are identical. Thus, following the general notion
that it is always beneficial to use as many explicit analytical solutions as possible in any numerical scheme,
one can say thal we are using a predictor—corrector scheme only for the drift term, not for the entire stochastic
differential equation driving the evolution.
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Figure 12.5 The stability of the predictor—orrector drift method as a function of volatility level

A number of numerical experiments confirm that this method is very robust and works
very well (the error is never more than a fraction of the bid—offer spread which is typically
around one vega of the option) for the prevailing interest rates and volatility levels for all
of the major markets, even for very long dated (tens of years) options when only a single
step to maturity is used. In order to demonstrate this, it is shown in Figures 12.5 and 12.6
how the predictor—corrector drift approach performs for a Libor-in-arrears scenario in
comparison to the piecewise constant drift approach where the drift term over any one
time step is given by the state of the yield curve at the beginning of the step. In both
figures, the error in the expectation of the Libor-in-arrears contract for both stepping
methods for a single step to maturity is compared with a measure for the bid-offer spread,
namely the price difference resulting from a 1% move in implied volatility. As you can
see, the method is remarkably accurate, even for very long time steps. When we price
Bermudan swaptions, however, we never have such long individual steps since we need
to model the evolution at each exercise date. This means that the predictor—corrector drift
approximation is highly accurate in the context of Bermudan swaption modelling.

12.6 HEURISTICS OF THE EXERCISE BOUNDARY

At any reset time #; as sketched in Figure 12.1, the residual yield curve of interest is fully
described by the vector f(t;) whose elements are the n — i remaining forward rates in
the yield curve out to the last payment time of the Bermudan swaption. Amongst many



172 Monte Carlo Methods in Finance

-— Constant drift
. Libor-in-arrears numéraire
Predictor—corrector o =24%, = 8%, r =3 months

—~ ATM caplet vega

0.50%
0.40%
T
i
c
=)
o
8 0.30%
R
IS]
£
2 0
5 0.20%
c
2
@
@ 0.10%
=
[=}
@
2
0,000,6 | . . S /
25 30 35 40 45 50
~0.10%

Expiry {(years)

Figure 12,6 The stability of the predictor—corrector drift method as a function of time to expiry

other possible ways to describe the yield curve at time ¢; out to f, are the vector P(f),
whose elements are the #;-present values of zero-coupon bonds maturing on f; 41, ... , &,
and the vector s(1;) consisting of the swap rates of all co-terminal swaps out to t,. All
of these determine the yield curve unambiguously. Since it is in general a good idea to
exploit the specific structure of the particular problem one wishes to solve using simula-
tion techniques, it is conducive to first of all look at the geometry of the exercise domain
of the Bermudan swaption problem. Strictly speaking, the exercise boundary at time ¢
is an (n — i — 1)-dimensional hypersurface in an (n — i)-dimensional space. Using the
non-recombining tree procedure explained in Chapter 13, we can produce diagrams of
two-dimensional projections of exercise decisions. If we find a coordinate pair in whose
projection the domain of exercise decision events appears to be reasonably separated
from the domain where exercise was not optimal, we may be able to reduce the early
exercise decision to the evaluation of a parametric function in those two coordinates.
To demonstrate that this is possible, the exercise decisions were evaluated using a four-
factor non-recombining tree for a 6-non-call-2 annual Bermudan swaption. The tree was
constructed with five branches out of each node representing five different possible evolu-
tions of the yield curve, and both the alrernating simplex direction and optimal simplex
alignment technique presented in section 13.3 were applied to improve homogeneity of
the distribution of the evolved yield curve and enhance convergence. All discrete forward
rates were set to 10% annually compounded, volatilities were assumed to be 30%, and
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the correlation g;; between forward rates f; and f; was modelled as before by

with # = 0.1. The strike was set to be at-the-money, i.e. at 10%. The tree was constructed
with 10 steps to the first exercise decision at + = 1, and then one in between each
subsequent exercise opportunity’.

In Figure 12.7, the ¢;-evolved yield curve is represented by the first two forward rates
fi and f,4+,. Next, in Figure 12.8, the evolved yield curve is projected onto the first two
of the set of residual co-terminal swap rates s; and s;+1. The diagram in Figure 12.7
illustrates that using the first two forward rates to project onto will make the domain of
exercise appear to overlap with the domain where not exercising is optimal. Using the
projection onto the first two residual co-terminal swap rates results in a projection where
all points are very near the diagonal, which will make it numerically difficult to determine
the exercise boundary. Also, the very nature of the swap rate is that both an upward and
a downward sloping yield curve can result in the very same value for the swap rate, but
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Figure 12,7 The exercise domain in the fi—f;,| projection of the evolved yield curve at f; = 2

"Many other calculations with different distributions of the steps between the relevant monitoring times
were conducted and all lead to the same shape of the exercise boundary. This particular one was chosen for
the generation of the diagrams since it best highlights the location of the boundary and the overlapping versus
non-overlapping feature m the different projections. The total number of 5'Y = 9765625 points resulting from

this calculation was reduced by sorting along the abscissa and retaining only every seventh point in order to
make the volume of data somewhat manageable.
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it is much more likely to be optimal to exercise a payer’s Bermudan early in a downward
sloping than in an upward sloping yield curve environment.

Another choice of coordinates could include the annuity of the residual swaps B;
and B;y| respectively, making the new variables the values (s; B;) and (s;j41Bjyy) of
the respective floating legs. This does not appear to improve on the above selection of
projections though, as can be seen in Figure 12.9. However, nsing the projection onto
the first forward rate f, and the forward swap rate s;; | starting from the reset time of
fi+1 going out to the terminal maturity results in a reasonable separation of exercise
and non-exercise decisions with very little overlap, as can be seen in Figure 12.10.
Ideally, we could use a principal component decomposition of the dynamics of the
yield curve and project onto the first two modes. In order to retain a direct finan-
cial intuition as to the meaning of the coordinate system, the method was developed
using the f,~s;4+) projection, in particular since the short rate and the long swap rate
are In practice very good proxies for the first two fundamental meodes of the yield
curve.

12.7 EXERCISE BOUNDARY PARAMETRISATION

Taking into account all the heuristic observations about the shape of the exercise boundary
in various projections for many different shapes of the yield curve and volatiliiy structures,
the following function was chosen as the basis for the subsequent exercise decision
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strategy in the Monte Carlo simulation:

$i+1(0) + oo |). | F1 for payer’s swaptions
sic) () + pia i3 —1 for receiver’s swaptions
(12.38)

Ei(f(t) = (ff(ﬁ'} - [Pn -

This function is hyperbolic in s;+) and depends on three coefficients, the initial (i.c. at
the calendar time of evaluation or inception of the derivative contract) value of f;(0) and
5i+1(0), and their respective evolved values as given by the simulation procedure. Since
we have to make an exercise decision at each exercise opportunity time #;, we allow for
a new sct of exercise function coefficients for each such time slice. For non-standard
Bermudan swaptions that have payments in between exercise dates, we use the shortest
swap rate from #; to the next exercise time instead of f;. The parametric exercise decision
given an evolved yield curve is then simply to exercise if E; > 0.

At the very last exercise opportunity at time 1, we have exact knowledge if exercise
is optimal, namely when the residual swap is in-the-money. This easily integrates into the
parametric description given by equation (12.38) by setting p(,-1) and pg,—1)2 to zero
and p(,—)3 to the strike:

Piu-nt =0,
Pin-12 =0, (12.39)
Pin-1)3 = K.

12.8 THE ALGORITHM

The Monte Carlo method for the pricing of Bermudan swaptions can now be described.
First, a training set P"™™" of Ninge evolutions of the yield curve into the future out
to the last exercise time ;) 1s precalculated and stored:

plraining _ {fjkl i=1,... ,N:raimngr k=0,...,n—1. (12.40)

Also, for each evolution of the yield curve, the residual intrinsic value /j in the chosen
numéraire as seen at time # is precalculated and stored.

Then, a set of n—1 optimisations is carried out, one for each exercise opportunity #; apart
from the last one® in order to determine the best values to use for the coefficients p;;. Natu-
rally, the optimisations are done in reverse order, starting with the penultimate exercise
time f,_7. Prior to each optimisation, we assign a path value v;, j = 1,..., Nyainng 10
each evolution path in the training set P"¥M% which represents the value of the Bermudan
swaption on this path if no exercise occurs up until and including ;. This path value vector
v is initialised to be zero in all its elements before we enter the following loop, which
counts down in the time index variable / from n — 2 to 0.

1. For each path f;, in prraining - j¢ (Eiv1(fj) > 0) and (Jjg41y > 0), reassign
vj i= I; (;41), else leave v; unchanged.

80n the very last exercise opporiunity, the optimal exercise parameters are given by equation (12.39) whence
no optimisation is required.
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b

Optimise the average of the cxercise decision-dependent value

1
Ul(p.i) = T

Nicaming .
Ntraining j=1

v; else

over the three parameters p;j, pi» and p;3. Specifically, one can use the Broyden-
Fletcher-Goldfarb—Shanno multi-dimensional variable metric method for this optimi-
sation {PTVF92].

3. TItis worth noting at this point that, since absolutely all values are precalculuted and
stored, the function to be optimised given by equation (12.41) requires merely Nirying
evaluations of the exercise decision function E;(f;;; p;) and the same number of
additions and is thus linear in the number of training paths and independent of the
dimensionality or maturity of the problem.

4. Decrement i by 1 and if (; = 0) continue with step 1.

The final value Up(p,) then gives an estimate of the value of the Bermudan swaption with
a slight upward bias. Therefore, we finally rerun the simulation with a new set of Ngympling
yield curve evolutions using the established exercise strategy parametrisation given by the
set of n exercise decision functions E,. Typically, I find Ngmpling = 2Niraining to be well
sufficient, especially when the driving number generator method was a low-discrepancy
sequence.

12.9 NUMERICAL RESULTS

In order to highlight the outcome of the training procedure described in the previous
section, the parametrised exercise boundary as resulting” from Niraining = 32768,
Nyaning = 131072 and Nyapning = 1,048,576 is superimposed on the exercise decisions
given by the non-recombining tree (already shown in Figure 12.10) in Figure 12.11. The
resulting prices were 5.062% for Niaining = 32.768 (total run time 5.1 s'Y), 5.066% for
Nigainmg = 131072 (26.5 s) and 5.069% for Nyraining = 1048576 (211 s). The most accu-
rate price estimate I could obtain from the non-recombining tree is 5.084% £ 0.015%,
which demonstrates the remarkable accuracy of this new Monte Carlo method. This
example also highlights that the Monte Carlo approximation for the true price (defined
by the absolutely optimal exercise strategy), in the vicinity of the optimal exercise strategy,
depends only weakly on slight changes in the boundary. After all, if we view the price
approximation as a function of the location of a given exercise boundary, then the real
Bermudan option price is the one resulting from an optimisation over all possible exercise
boundary locations. As it happens, with the value of a function at its maximum, the first
derivative with respect to its argument must be zero at the extremum, and thus the price
approximation depends only weakly (i.e. as of second order) on minor changes in the
exercise boundary location near the optimal point.

9 All reported results are from calculations with a high-dimensional Sobol’ sequence. Using this sequence
generator, European option ptices are typically highly slable and aceurate with 1024 paths, in most cases even
512 paths would have sufficed for the same accuracy. The Bermudan swaption prices are typically sufficiently
accurate and robustly stable with around 16,384 training paths (and twice that for the final evaluation), but in
order to make the diagrams appear even smoother somewhat larger numbers of paths were used.

Run times are given for a Pentium 1L at 300 MHz with the number of sampling points always being double
the number of training points.
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Figure 12,11 The exercise domain in the fij—s;+ projection of the evolved yield curve at ¢; = 2,
together with the parametrised exercise boundary resulting from training with different sizes of the
training set

Now, the results for a 6-non-call-2 semi-annual payer's Bermudan swaption for a
typical Sterling yield curve and volatility environment are presented. This means the yield
cuarve was slightly downward sloping, and the implied swaption volatilities increased from
19.53% for the first one up to 22.46% for the last one (which is a caplet). The forward rates
were again assumed to have piecewise constant instantaneous volatility, but calibration
in this casc was done such that the entailed Europcan swaptions’ prices are indepen-
dent of the number of factors used. The option was again at-the-money'' with a strike
of 6.63%. In Figure 12.12, a diagram of the Bermudan swaption price calculated using
the presented Monte Carlo method in comparison to the values obtained from a non-
recombining tree model is shown. For reference, the prices obtained from both models
for the most expensive European are also included. Since the non-recombining tree model
must by construction converge to the same value as the Monte Carlo model tor European
contracts, including both European prices gives a good indication for the residual error of

U1n all my tests, at the money Bermudan swaptions are always the most difficult ones to price using a Monte
Carle method since they contain the most relative optionality.
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Figure 12.12 Bermudan swaption prices from the Monte Carlo model in comparison to those
obtained from a non-recombining tree model for a 6-non-call-2 semi-annual payer’s swaption

the non-recombining tree model. As can be seen, the Monte Carlo model returns prices
that are within the error margin of the non-recombining tree model. The upwards trend of
the prices with increasing numbers of factors is very typical for calibration to European
swaptions when no attempt is made to keep the prices of caps constant at the same time.
The non-recombining tree calculation time required to obtain sufficient accuracy for the
curves in Figure 12.12 to look reasonably smooth was approximately 8 h on a Pentium II
at 300 MHz parallelised over two CPUs using multi-threading, whilst the total caiculation
time for the Monte Carlo results was 92 s (without multi-threading).

Next, in Figures 12.13 and 12.14, examples are shown for longer dated contracts,
namely a 15-non-call-5 annual Bermudan payer’s and receiver’s swaption with a flat
yield corve at 10% and calibration to European swaption implied volatilities taken from
the GBP market. Forward rate volatilities were again modelled as piecewise constant in
time. In this case, prices from the non-recombining tree were only calculated up to two
factors. The points shown for the non-recombining trees indicate by how much the price
varies if the number of steps is increased slightly, thus giving an indication for the error
margin from the tree. Again, the Monte Carlo model is very accurately in agreement with
the non-recombining tree.

In Figure 12.15 the results are shown for the same 15-non-call-5 annual payer’s swap-
tion, only this fime the yield curve was assumed to be steeply upwards sloping from
initially 2.5% up to 9% for the last FRA. Finally, in Figure 12.16, the results for a 20-
non-call-10 semi-annual payer’s swaption are shown. Here, 1 used a slightly upwards
sloping yield curve taken from the USD market, and market-typical European swaption
implied volatilities beginning at 14.56% for the longest swaption and ending at 22.50%
for the last one. In this case, the forward rates were modelled to follow a slightly humped
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Figure 12.14 15-non-cail-5 annual receiver’s swaption
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Figure 12.15 15-non-call-5 annval payer’s swaption for steeply upwards sloping yield curve
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instantaneous volatility curve, as is believed by practitioners to be the most realistic
representation of econometric observations [Reb99]. Also, the results as obtained from
the model (method I) published by Andersen [And00] were added for comparison. For
this contract, due to the sheer number of payment and exercise times, only single factor
calculations were completed with the non-recombining tree model.

1210  SUMMARY

In this chapter, a number of separate issues relating to the pricing of Bermudan swaptions
in the BGM/J framework have been addressed. The state dependence of the drift coef-
ficients poses a problem for Monte Carlo simulations whenever we wish to avoid using
a small-step Euler scheme. The proposed predictor-corrector log-Euler BGM/J Monte
Carlo scheme is very stable and allows us to use single steps over any time horizon that
may be encountered in the pricing of Bermudan swaptions. Then, a new Monte Carlo
method tailormade specifically for the pricing of Bermudan swaptions was presented. The
main idea behind the new approach is to exploit the heuristics obtained from a different
but numerically not widely applicable method, namely a non-recombining multi-factor
tree. This knowledge is then used to devise a suitable parametric exercise decision func-
tion in fewer dimensions than the state space is embedded in. Also, the importance
of a careful selection of the coordinate system used for the projection of the exercise
boundary was demonstrated. This approach was compared to the method suggested by
Andersen [And00], which relied solely on a financial intuition of what variables should
be most indicative. The new method was tested with a large number of yield curve and
volatility scenarios, and in a/l of them proved to be remarkably accurate. A small selection
of the test results are presented in this document. I have also given examples of the calcu-
lation time involved on a computer which, at the time of writing, can be considered to be
at least a factor of five slower than what is readily available to practitioners on a trading
floor. The remarkable speed, stability and accuracy of the developed model are partly
due to the use of high-dimensional Sobol’ numbers, but also due to the careful design of
the optimisation algorithm and the detailed attention to precalculation and storage of all
involved quantities wherever possible.

In general, it cannot be expected that the technique of projecting the exercise domain
onto just two dimensions will result in a single simple curve delineating the exercise
boundary. Examples of this are American max options where the higher of two asset
values minus a strike level determines the intrinsic value [BG97a]. Still, out of all the
mathematical problems one may conceivably subject to a Monte Carlo simulation evalu-
ation, the very nature of financial derivatives makes them appear comparatively benign.
In other words, I believe that for most exercise strategy-dependent derivatives contracts
invented thus far, a suitable projection of the exercise domain can be found to make the
boundary amenable to a description by only one or a few reasonably simple functions in
two variables. Whenever this is possible, a multi-dimensional optimisation over a small
set of free parameters using a training set of paths can be carried out, resulting in a
highly accurate price estimate. 1 therefore believe that the presented approach of using a
non-recombining tree (which is very flexible with respect to payoff specifications but very
limited with respect to deal maturity and the number of involved time slices) to devise
a bespoke Monte Carlo exercise strategy parametrisation for a specific product can be
applied to a wide class of American or Bermudan-style derivatives.
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Non-recombining Trees

13.1 INTRODUCTION

Traditionally, implementations of option pricing models tended to use some form of lattice
method. In most cases, this meant an explicit finite differencing approach was chosen. In
fact, many of the early quantitative analysts would describe this as ‘having been brought
up on frees’. This tendency towards the use of tree methods is also reflected in the
option pricing literature. Cox, Ross and Rubinstein [CRR79] described the option pricing
procedure on a binomial tree in 1979. Some of the breakthrough publications in derivatives
modelling were first formulated as an algorithm for a tree node construction matching a
market given set of security prices and Black implied volatilities. These include the Ho-
Lee model whose continuous counterpart is that of an Ornstein—Uhlenbeck process [HL86,
Jam96], the lognormal interest rate model by Black, Derman and Toy [BDT90] and the
deterministic but spot-dependent instantaneous volatility model by Derman, Kani and
Zou [DKZ96]. The great advantages of recombining tree methods are their comparative
ease of implementation, equally easy applicability to the calculation of Greeks, and fast
performance.

Alas, we cannot always use recombining tree methods. This is typically so when the
stochastic process chosen to model the evolution of the underlying quantities is strongly
state-dependent. The state dependence of the drift term of forward rates in the Brace—
Gatarek—Musiela/Jamshidian framework is one such case. This makes it a prime appli-
cation of Monte Carlo methods. However, when we wish to price options of American
style, we really need to compare the expected payoff as seen from any one node with
the intrinsic value. This means, the only method that can in principle give an unbiased
result is a non-recombining tree. Whilst there are many publications on recombining
tree methods and how to construct them for optimal performance, very little is in the
literature on the construction of non-recombining trees. What’s more, the few descrip-
tions of the construction of non-recombining tree methods and analysis of their perfor-
mance [JW00, MW99, Rad98a, Rad98b} focus on no more than three factors. In this
chapter, I present a generic method to construct a non-recombining tree for any given
number of factors and provide the algebraic equations needed to calculate the coefficients
that determine the branches.

Before we start the explanation of a generic method to construct a non-recombining tree
with the minimal number of branches out of each node required, let us briefly compare
non-recombining tree methods with Monte Carlo techniques. The two approaches share
several features. For both of them, an evaluation is always done along a specific evolu-
tion path such that they could both allow for a non-Markovian stochastic process (within
the limits of the time-discretisation). The two most crucial quantities that determine the
evolution over one time step are in both cases the expectation conditions (i.e. drift terms
or martingale conditions) and the covariance matrix of all the state variables, and it is
those that tell us how we have to construct the paths. Both techniques are traditionally
perceived to be very slow, and rightly the non-recombining trees are considered so slow



184 Monte Cario Methods in Finance

as not to be a viable method in front office systems although, as we will see, to some
extent they can be useful for benchmarking purposes. For both methods, paying particular
attention to implementation details can make tremendous differences to the performance,
i.e. calculation time required. Both approaches are designed to generate a representa-
tive sample set of all possible evolutions. It is for those similarities that I include a
chapter on non-recombining tree methods in this book. The main differences between
non-recombining tree methods and Monte Carlo techniques entail the following points.
Non-recombining tree methods, by their very nature, are a recursive representation of the
option pricing problem and thus suggest and easily support a recursive implementation.
The very same feature allows for easy integration of free boundary conditions, i.e. early
exercise decisions as we have them for Bermudan or American options. Non-recombining
trees are susceptible to pathological problems where they may fail systematically because
of the very selective path construction method. Finally, the convergence behaviour of
non-recombining trees depends very strongly on the dimensionality of the problem, i.e.
the number of driving factors. Despite their differences, from a constructional point of
view, the similarities are remarkable. In common with Monte Carlo methods. using simple
techniques, it 1s possible to implement them such that they perform orders of magnitude
better than is frequently thought.

The remainder of this chapter is organised as follows. First, I briefly summarise the
setting of the BGM/J model and discuss its factorisation in section 13.2, and also explain
how the evolution of forward rates can be modelled in a non-recombining tree method.
Next, we discuss in more detail some of the aspects of the high-dimensional geometry
of the branching scheme in section 13.3. Following this, I elaborate a few points on
the efficient implementation of the algorithm. The main results on the performance and
applicability of the method are then presented in section 13.5. Next, we explain possible
improvements that can be done to match the variance as it would result from a continuous
description in section 13.6. Furthermore, 1 discuss a different technigue to account for
the state-dependent drift of the underlying forward rates in section 13.7, such that ail
martingale conditions are met exactly. Following that, we demonstrate how the clustering
effect that can be observed for flat volatility structures is broken up by the use of a time-
varying term structure of instantaneous volatility in section 13.8. For those of us who
like a visual demonstration of how things work, I give a simple example in section 13.9.
Finally, a summary of this chapter is given.

13.2 EVOLVING THE FORWARD RATES

Let us reiterate some of the basic setup of the BGM/J Libor market model which was
already explained in section 12.2, The state of the yield curve is represented by a set
of n spanning forward rates f, which evolve lognormally according to the stochastic
differential equation

i (£ 0 dt + o) AW, (13.1)

fi

As in section 12.2, we construct from this starting point a (possibly m-factor truncated)
covariance matrix C(f,t + At) for the time step ¢+ — f -+ At and its pseudo-square
root A, taking into account our correlation function of choice as in equations (12.1)
to (12.7). Clearly, equation (12.8) means that the drifts are state-dependent and thus
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indirectly stochastic. For the purpose of derivatives pricing, we need to sample the space
of all possible evolutions of the yield curve into the future. If we approximate the drift
coefficients x; as constant over a small time step Az, we can represent the evolved forward
rates by

ﬁ'(f T AL = f' _eﬁ;(f,!+ﬁ£)ﬁr—%c,‘f+z;"=|a;jz_; (13.2)

with z; being independent normal vanates. The coefficients ¢;, are the elements of the
(possibly m-factor truncated) pseudo-square root A of the covariance matrix C’ which
contains the integrals over the small time step At:

+AL
C:-j = f G;(If)Uj(t;)Q,'j dr’. (13.3)
t'=t
To summarise, the steps that have to be carried out for the construction of At-evolved
forward rates as in equation (13.2) are as follows.

1. Populate the marginal covariance matrix C’(z, t + At) using equation {13.3).
Decompose (¢.g. using the Cholesky method or by spectral decomposition) such that

A AT =C (13.4)
3. Form the m-factor truncated coefficient matrix A in analogy to equation (12.7), i.e.
using
(13.5)
4. Build the m-factor approximation covariance matrix C:
C=A-AT (13.6)

which will in general, for m < n., not be identical to C’ but by construction we
preserve the diagonal elements ¢;; = c:. i

Given the above definitions, we can now specify i, in equation (13.2):

Sre(t)w , .
—Z;IHM” cie(tit + A1) fori < N —1,

wi(t, t + ADAL = 0 fori =N —1, (13.7)

Z lf;)(; cir(t, t + Aty fori = N,

In a Monte Carlo framework, we would now construct Az-forward yield curves by
drawing many independent m-dimensional normal variate vectors z and applying them
to equation (13.2). In order to build a tree for the pricing of derivatives that require the
comparison between expectation and intrinsic value such as Bermudan swaptions, we
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now wish to use the minimal number of such vectors necessary. In order to see how
to construct variate vector sets {z} for any given m, it is conducive to state clearly the

! -
requirements on the elements of the matrix S € R” *™ whose rows comprise the vectors
z to be used for each realisation of the evolved yield curve as given by equation (13.2).
Assuming that we wish to assign equal probability to each of the m’ realisations, we thus
have':

m!
Y sij =0 (mean) (13.8)
r=I
1 n
;;zs;j.!f;k = jk (covariance) (13.9)
i=1
Y _ | m fori=k | probabili 13.10
;SUS;‘(J' =1 =1 forik {equal probability). (13.10)

The smallest m’ for which it is possible to construct § satisfying the above equation
is m + 1. In other words, for an m-factor tree model. we need a minimum of m + 1
branches out of each node. For any discrete set {z} satisfying the above conditions (13.8)
to (13.10). it can be shown that the Az-step evolution equation (13.2) produces a set of

evolved forward rates that is accurate up to order O((a«/ﬁstﬁ) (inclusive) both in the

expected value and in variance.
In the case of a one-factor model, we can simply use the set {z} = {+1. —1} and thus
construct a non-recombining binomial tree. In this case, we can change equation (13.2) to

Filt + Aty = f; - efalbrFON A=t =56 pigm Y i (13.11)

which corrects the expected value up to order O((ow’ A:)Q) (inclusive) and reduce the

coefficient in front of the order O((U«/ At)“) for the variance from —5/5 to —2/3. For a
trinomial setup with {z} = {+\/§ , 0, —\/g ] , the terms that correct the expectation up to

C’)((a«} &r)g) (inclusive) are given by

Filt + A1) = f, - g1 CIHANA= it 356~ o€+ gl + L) a0 (13.12)
Note that the coefficients of the corrective terms are smaller in the trinomial case, which is
as one would expect from the fact that no corrections are required in the limit of infinitely
many branches out of each node (provided that, at least asymptotically, we match more
moments as we add more branches). In practice, though, there is very little difference
in the convergence behaviour when replacing equation (13.2) with equation (13.11) for a
binomial scheme or (13.12) in the trinomial case. This indicates that other factors such
as the coarse sampling of the payoff horizon dominate the convergence behaviour.
The elements of the matrix § defined by equations (13.8) to (13.10) describe the Carte-
sian coordinates of a perfect simplex in m dimensions. Equation (13.10) can best be

I'This set of equations is not strictly independent. Staung all of them, however, aids the clarification of the
simplex concept,
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understood by the geometrical interpretation that in order to define equally probable
tree branches, all the angles in the simplex must be equal (which makes it a perfect
simplex). Note that we have made no statements about the alignment of this simplex in
our coordinate system yet.

13.3 OPTIMAL SIMPLEX ALIGNMENT

Given a Cartesian coordinate system, we can write the coordinates of the corner points
defining a perfect simplex in m dimensions as

+1 e
“ygany for Jz4
(n) _ f S
'ij = w}-l-;-ll” for j=i- 1, (13.13)
0 for j <i—1.

Examples:

sW = (‘11) (13.14)
i -/

@ — ‘/3 1 (13.15)
2 2

0 V2

(—vi - J2 -/}
~J2 _ /L
R V2 \[3 3 (13.16)
0 2 -\@
\ 0 0 V3
EVCAENCIENEREN
\ﬁ e 5 _ 1
2 6 12 4
@ - . 17
S 0 wo_/js _Jt (13.17)
o o A

\ 0 0 0 4
Using the definition of S, we can now specify a branch coefficient matrix 5 as
B=A-S'. (13.18)

The tree construction aigorithm is thus as follows. At each node with its associated yield
curve given by the set of n forward rates {f;(r)}, construct a set of n(m + 1) forward
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rates to represent all possible evolutions over a time interval At according to

fir(t + A1) = fi(1) - eﬁi(f)&tﬂzlfn(r)erm(f) i=1.....n, k=1,...,m=+1.
(13.19}

There may be situations when we would like to have more than m + 1 branches. An
example is the pricing of a path-dependent derivative on a single FRA. In this case, we
only need one factor, i.e. m = 1, and thus only two branches out of each node, but
we might want to construct a non-recombining trinomial tree because of the inherently
higher convergence rate and stability in comparison to the binomial tree. Examples are not
only standard payoff derivatives like a caplet but also barrier options, trigger derivatives,
etc. This can be achieved very easily in the above framework by using only the first m
columns of the matrix describing a perfect simplex in (Npganches — 1) dimensions instead
of § in equation (13.18), i.e.

S(’"»Nbramrns) = S(Nbranchzs“]) , ( b ) (13.20)
O(Nbrambcs“l_m)xm
with
1, ¢ R Xm

being the m-dimensional identity matrix, and

O(meh [—m)xm = R(thﬂnches—l—m)xm
ches— 17

being a matrix whose elements are all zero.

In general, there are no limitations to how many branches one may use out of each
node. In fact, many recombining tree-like methods or PDE solvers use effectively? more
than three nodes for improved convergence. Examples include fast convolution methods
such as the ones using Fourier [CM99] or Laplace transformations [FMW98], but also
the willow tree method [Cur96]. However, using the simplex coordinates as given by
equation (13.13) will quickly result in redundant. i.e. identical branch coefficients. For
instance, if we were to choose a four-branch construction for a single factor model, we
would probably want the four branches to end in four different realisations of the evolved
forward rate. As we can see in equation (13.16), however, iwo of the branch coefficients
in the first column are identical, namely 0. In fact, if we look at the branch coefficients
of the first modes in the higher dimensional simplices, i.e. the entries in the first columns
of the $* matrices, we realise that there are never more than three different values. In
geometrical terms, this is a consequence of our particular choice of alignment of the
simplex as specified by equation (13.13). In order to obtain the maximum benefit out of
the additional effort in using more branches, we may want them to spread as much and as
evenly as possible. In each column, we may wish to have the entries to be symmetrically
distributed around zero, to whatever extent this can be achieved. It turns out, for any
m-dimensional perfect simplex, that it is possible to find a rotation R"™ of the simplex

Rm)
S —— §' such that
()

.qu") = —s'ig_; form evenand j=1,...,m/2, o
,.;:gr:) — _Sf,(:ﬁz—b' form oddand j=1,...,(m + 1)/2.

2In a general sense, even implicit finite differencing methods can be seen as a technique to use many nodes
at a future time slice to infer the values at an earlier time slice.
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An appropriate rotation for the m-dimensional simplex can be found by specifying a
rotation matrix

{=m
k=m—1

R™ = TT R 6 (13.22)
k=1

with R{,’,’ﬂ (Bx) € R™*™ being the rotation matrix in the (k, /) plane by an angle gy, i.c.

R,E}") (Ok1) 1s equal to the m-dimensional identity matrix apart from the elements rf,:” =

rffm) = ¢0s U and ";?z") . _r&") = sinfy. The rotated simplex is then given by

S =9 R (13.23)

Allowing all of the m(m — 1)/2 angles to vary, a simple iterative fitting procedure then
very quickly finds a suitable rotation to minimise the y2-error in the conditions given by
equation (13.21). To give a specific example, one alignment of the simplex for m = 4
that satisfies equation (13.21) is given by

—1.1588 --0.91287 - 0.6455 0.5 Z11306  —1,1053 0 1.22474
1.1588  —0.91287 —0.6455 —05F Rim) L1053 —L.1306 0.91287 —0.8165
@) _ 4y _
SV = 0 18257 -06455 —-05f —s § = 0 0 ~1.8257  --0.8165
0 0 1.9365 —0.5 —1I053 L1306 091287 --0.8165
0 0 0 2 L1306 1.1053 0 1.22474
(13.24)

Once we have identified a suitable alignment of the simplex, there is yet another easy
method to itnprove the convergence behaviowr of the non-recombining multinomial tree
method. This technique is called alternating simplex direction and entails simply switching
the signs of all the simplex coordinates in every step. How this improves convergence by
increasing the overall symmetry of the procedure can be seen if we visualise the points
generated by subsequent branching in the (z;.z2) plane for a two-factor, three-branch
model. This is shown in Figure 13.1. Since we are merely adding up the coordinates
of subsequent steps, the branching evolution appears to recombine. The moment we
actually use the state-dependent drift terms in a forward rate-based yield curve model as
in equation (13.19), this will no longer be the case. However, as we will find justified
later, it is not unreasonable to expect that the added near-symmetry, in general, improves
convergence.

13.4 IMPLEMENTATION

It is worth noting that neither the variance coefficients ¢;; nor the branch evolution coef-
ficients b in equation (13.19) depend on the current yield curve given by the fi(z).
Therefore, they can be precalculated for all time steps. The ounly thing that nceds to be
calculated immediately prior to looping through all of the branches is the current set of
drift terms {/t;}. These, in turn, are the same for all branches out of each node. Taking all
of the above considerations into account, we see that the non-recombining tree calcula-
tion can be implemented extremely efficiently using a recursive method, since none of the
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double BushyNFactorFrabGMIree::Recurse(unsigned long h){
1f (h==NSteps)
return Intrinsic(h), // Termination cf the cecursion.
unsigned long i,k;
for {1=0;1<NRates;i++){ // Caleculate the drift for all rates and store them.
mi_dT[i] = 0 ,
for (k=NumeraireIndex;ke=1;k++)
mu_dT(i] 4+= C[h]l 1i] [k] * BvolwedFra(h] [k] * Tau(k] / ( 1. + Evelvadfra(h] [k] * Taul(k] ),
for (k=i+l;ke<Nuncrairelndex;i++)
mu_dT[i] -= Cfh] [1] (k! * BEvolvedFralhl (k1 * Taulkl / ( 1. + EvolvedFralh] [k] * Taulk] };
}

double tmp=0;
for (k=D;k<NEranehes;k++){ // Loop over all branches.
for (i=0;i<NRates;i++){
EvolvedFral[h+1] [1] = BvolvedFra(hl [i) * exp( mu_dT[1] + LogShiftofBranch(h] (k] [i] ),

}

tmp += Recurse (h+1}, // 8um up the results from all of the branches.

)
// Bverage, unlesa the intrinsic value s higher,
return CheckForEarlyExexcise (h, tmp/NBranches) ;

Code Example 13.1 The recursive implementation of the non-recombining tree

evolved yield curves need to be reused after all branches out of any one node have been
evaluated. The only storage we need to allocate is a full set of {f;} for each time step, a
full yield curve specifying FRA set { f;] for each time step, and of course the ¢;; and bj;
for each time step. In the code snippet shown in Code Example 132.1, the array clement
LogshiftOfBranch[h] (k] [4i] contains —%c,-,- -+ bjx for the time step from ¢, to
Ip+1. the array element C[h] [i] [k] holds the associated covariance matrix entry cix
for the time step, and all the other variable names should be self-explanatory. After the
initial setting up, a call to the function BushyNFactorFraBGMTree: :Recurse (0)
returns with the expected value as given by the payoff specified in the function Bushy -
NFactorFraBGMTree: : Intrinsic (), taking into account possible early exercises.
The return value of the BushyNFactorFraBGMTree: : Recurse (0) call still has to
be discounted by multiplying with the present value of the zero-coupon bond chosen as
numéraire.

13.5 CONVERGENCE PERFORMANCE

In order to give the reader a feeling for the effectiveness of the methods suggested in
the previous sections, I carried out a set of numerical calculations for a four-year payer’s
option on a two-year semi-annual European swaption. I used the yield curve and caplet
implied volatilities for GBP interest rates as tabulated in Table 13.1, and assumed an
instantaneous volatility of the individual forward rates as in’

oi(t) = [a+b(t; —t)]e D 4 d (13.25)

with @ = =2%, b = 0.5, ¢ = | and d = 10%. which is consistent with the given caplet
implied volatilities. The correlation between forward rates f; and f; as given by g;; in

3Ct. [Reb99], eqn (11.4).
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Table 13.1 The yield curve for GBP interest rates and the caplet implied
volatilitics used in the examples

i t Discount factor fi o; = ‘/ S o @2 de /g
0 4 0.762757096 6.652% 21.43%

1 4.5 0.739640975 6.251% 20.67%

2 5 0.717225412 6.044% 19.98%

3 55 0.696187117 6.044% 19.35%

4 0 0.675765937

equations (12.2) and (13.3) was assumed to be
Qij = e“‘ﬁlﬁ“"_i‘ (13.26)

with 8 = 0.1. The strike for the swaption was set at 7.50%. Since the forward swap rate
results in 6.15% for this particular yield curve, the option under consideration is out-of-
the-money. I also calculated the results for the equivalent Bermudan contract, i.e. a 6-non-
call-4 semi-annual Bermudan swaption. In Figure 13.2. I show how the non-recombining
tree model converges as a function of the number of steps to maturity for the pricing of
European swaptions and, more interestingly, in Figure 13.3 the convergence behaviour for
Bermudan swaptions is shown, Note how the ASD method improves convergence most
for two or three factors, and how the optimal alignment technique ensures convergence
consistently for as little as five steps for three or more factors, especially when used in
conjunction with the ASD method.

13.6 VARIANCE MATCHING

Given an enumeration 7, ... , Iy, ©of the discrete points in time over which the wee
algorithm is constructed, and defining y; to represent all drift and 1t0 terms over the time

. L. . _
SWEp fh = that, e i = el @ hn—m) =3¢t e can rewrite equation (13.19) as

S ik = frr ya €5 (13.27)

Let us now recall that the coefficients by;; were constructed such that their discrete average
over all emerging branches is zero and their discrete covariances equal the elements of
the given covariance matrix of the logarithms of the forward rates over the specified time
step. Alas, matching the discrete covariances of logarithms means that the covariances
of the forward rates themselves are not exactly matched due to the convexity of the
exponential function, as is known {rom Jensen’s inequality. However, the variance of any
random variate x with a continuous lognormal distribution such as

x =£e” with z ~ N (0, 1) (13.28)
can be calculated as
VIx] = £2¢%° (e = 1). (13.29)

In other words, if we wish to construct the tree such that the variances of the Forward
rates themselves have the correct value, as would result from the continuous description,
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we can introduce a volatility scale parameter py, to be used in the branch construction
as in

Fohtvyik = fhi yni €™ bt (13.30)

such that
l Nl:-r;ulches 1 Nhra_ nches
e2Phibhie _ = B

2
B ePribhik — @bhii (cf-'i;il — 1) =0.
Nbranches Py Npranches

k=1
(13.31)

In order to meet this non-linear condition for py;, define ¢p; (pp,) as the left-hand side of
equation (13.31). Given the initial guess of p},?) = 1 and the partial derivative

. . Neranches Nranches Myl
ni(pn) _ 1 i“ Dby e Phituit 2 E oPhibhik mmbhikembm
3P, Nbranches =1 Norunches =1 k=1
(13.32)

a Newton iteration converges to the solutions of ¢, (pn;) = O very fast indeed. The non-
linear root solving has to be done for each forward rate and for each time step separately.
This can be done during the start-up period of the tree algorithm, though, and in my tests
took no measurable computing time whatsoever?,

The above procedure does indeed result in an exact match of the variances as given
by the continuous description. I would like to remark at this point that this may not be
generally desirable, though. To see this, let us consider a call option of a quantity with
a standard normal distribution, and let us ignore discounting effects. For a strike of zero,
the value of the option is

2

o0 c_ ES l
§ ds = ——. 13.33)
fu N2 A 21T (

A single step binomnial tree discretisation of this distribution that matches both the expec-
tation and the variance of the continuous counterpart exactly is the set {+1, —1} of
equiprobable values for s. Clearly, the latter results in an option of 0.5 while the contin-
uous description gives us a value around (.3989. We therefore expect that products with
some kind of convexity in the payoff profile will be slightly overvalued by the discre-
tised tree when continuous variances are matched. Therefore, comparing the values as
they result from the variance matched tree construction (13.30) and the original scheme
(13.19) could provide some comfort about the possible mispricing due to the approximate
volatility representation in the discretised scheme. In general, we would only expect the
variance matched construction to provide faster convergence for directly volatility-related
products such as variance or volatility swaps.

13.7 EXACT MARTINGALE CONDITIONING

In the recursion procedure of calculating all yield curve branches emanating out of one
yield curve node, we always need to calculate the discrete time step drift approxima-
tion for each forward rate. As we know from section 13.2, the stepwise constant drift

4The pranulanty of the computation time measuring function was approximately ﬁ 8.
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approximation (13.7) guarantees the martingale conditions that the expected value of any
asset divided by the chosen numéraire asset equals its initial value only in the limit of
small time steps. Choosing the numéraire to be the longest involved zero-coupon bond,
i.e. N := n such that the payment time of the chosen zero-coupon bond numéraire asset
is the payment time of the last forward rate that 18 to be modelled, it is possible to meet
the martingale conditions in each step exactly without any computational overhead. This
can be seen as follows. For N = n, the martingale conditions are that for any time step
ty — tpy we have

N—-1 N—1
E[f(h+l)1 n (L+ 7 fnryj) | = fhi n (1+ 71 fa)) . (13.34)
J=r+1 =1+l

Following equations (13.19) and (13.30), I denote the realisation of forward rate f; on the
k-th branch at time #;41, i.e. the k-th possible evolution of £, in the time step t; — #5441
as fj and factorise it according to

Fens ik = yriePribus g (13.35)

Hereby, fp, is the realisation of f; at time f,, ie. at the current node. By virtue of
equation (13.34), we can calculate the expectation correcting factors yy; recursively
starting with the last forward rate ati =n — 1:

N-1
Noranches | | (1+ 7 fnj)
J=t+1
Yhi = g Y . (13.36)
ePiibhik n (1 + T, faj i eijbﬁjk)
k=1 J=i+l1

Note that whilst we have yy; on the left hand side, the right hand side only involves y; for
J > i. Clearly, it makes sense to precalculate the branching coefficients npji := ePhibjk
and store them’, The above described algorithm now exactly meets all martingale condi-
tions. A side-effect of this procedure is that it obviates the evaluation of any exp ( )
function calls in the recursion procedure. For simple products, it can easily be about half
the actual computing time that is spent in the evaluation of this particular function®. As
the above expectation correction (13.36) calculation does not require significantly many
more floating point operations than the drift approximation (13.7), it is thus not surprising
that the procedure presented in this section not only makes all calculations, even those
with very few steps, meet the martingale conditions exactly, but also provides a speed-up
by factors ranging from 1.7 to 2.8 for the tests that I conducted, depending on product
type, maturity, length of the modelled yield curve, etc.

13.8 CLUSTERING

For most major interest rate markets, as a consequence of the prevailing rates and volatil-
ities, the drift terms in equation (12.8) are comparatively small. This means that any one

SFor calculations without varjance matching, the scaling coefficients py; are, of course, all identically 1.

6My benchmark tests on an 1686 architecture indicate that the time taken for a single evaluation of exp{ )
is in the range of 100 to 200 floating point multiplications. Even though, as discussed in section 14.6, for newer
processer models this speed ratio is less, substantial speed-ups can still be achieved if a single multiplication
can be carried out instead of an evaluation of exp({ ).



Non-recombining Trees 197

interest rate undergoing first an upwards and then a downwards move in two subsequent
steps through the tree appears to almost recombine at its initial level. Choosing any two
forward rates on the yield curve for a two-dimensional projection on a given time slice,
this produces the effect of clustering. This phenomenon is widely known and various
methods to avoid it have been discussed in publications. McCarthy and Webber [MW99]
and Radhakrishnan [Rad98a] discuss the question of the clustering of nodes and suggest
methods to overcome it, such as varying the step size, for instance in a linearly increasing
or decreasing fashion, or changing both the length of some of the branches and their
associated probabilities. For realistic applications, however, one tends to use a notice-
ably time-varying term structure of volatility which effectively changes the width of the
branches over different time steps sufficiently to remove most of the harmful effect of
clustering, and therefore I don’t consider this issue of major importance. Still, since an
actual demonstration is often more convincing than an off-hand reasoning, I display in
this section how much the clustering effect is automatically suppressed simply by the
choice of an appropriate term structure of volatility.

An example of the clustering effect is given in Figure 13.4. Each point in the figure
represents an evolved yield curve two years into the future. The 12-month Libor rate
resetting at year 2 is along the abscissa, whilst the 12-month Libor rate resetting at year 3
is given by the ordinate. In total, four annual forward rates were included in the modelling
of the yield curve for a 6-non-call-2 annual Bermudan swaption. Using four factors and
six steps until £ = 2, there were five branches out of each node in the tree and a total
of 5% = 15625 evolved yield curves in that time slice. The initial yield curve was set at

25% T K ¥ v A l'
L ‘
s . ‘ o - - -
15% T .
fy
10% - 7
5% |- - -
00/0 1 1 1 1 ] ]
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Figure 13.4 The clustering effect for flat volatilities
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fi = 10% for all i, and the instantaneous volatility was assumed to be 30% flat for all
forward rates. As can be seen, there are only a comparatively small number of significantly
different (fo, f1) pairs that are realised in the non-recombining tree. For the sake of
brevity, I don’t show any of the other projections, but the reader may rest assured that the
effect is just as pronounced for the remaining forward rates on the modelled yield curve.

However, if we use a more market-realistic shape for the term structure of volatility,
such as

o (1) = k, ([a bt — 1)jec®0 4+ d) (13.37)

witha =—10%, b=1,c=1.5d = 10% and:

i ki

0 1.179013859
1 1.319725423
2 1.458673516
3 1.57970272

(the k; ensure that all caplets still have the same implied volatility of 30% as before),
we obtain a very different diagram for the fp—f projection at r = 2 as can be seen
in Figure 13.5. Therefore, for realistic applications, I don’t envisage the clustering
phenomenon to be an issue of foremost importance.
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Figure 13.5 The clustering effect disappears for non-flat volatilities
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13.9 A SIMPLE EXAMPLE

Starting from a flat yield curve of annual forward rates that are all equal to 6.18365%
(which corresponds to a constant continuously compounded interest rate of 6%), and
given that we assume the covariance matrix of the forward rates to be determined by
equations (13.3), (13.25) and (13.26), [ will now evolve the yield curve according to
a=—-2%,b=0.125¢=1,d =20% and B =0.1. In Figure 13.6, the evolution of the
interest rates between year 2 from now and year 10 from now is shown, as they evolve by
two one-year steps into the future, whereby a five-branch non-recombining evolution was
carried out in cach step using the simplex described by equation (13.24). In Figure 13.7,
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Figure 13.6 The evolution of a flat yield curve over two one-year steps in a four-factor model.
In this case, out of each forward yield curve, there are five evolved yield curves indicated by the
connecting branches. The branches are labelled by the order of the associated {forward) swap rate
over the full yield curve to which the evolution out of the respective yield curve leads.
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Figure 13.7 The swap rates associated with the yield curves in Figure 13.6.
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I then show the associated swap rates resulting from each of the yield curves consisting
of eight annual forward rates.

13.10 SUMMARY

I have demonstrated how comparatively simple geometrical considerations can aid the
construction of the branches of a non-recombining multi-factor tree model. The results
show that particularly when several factors are desirable, the use of the ASD method in
conjunction with optimal simplex alignment provides substantial benefits. In this case, the
model easily converges with five fewer steps than are needed in a plain branch construc-
tion approach. Since the computing time grows exponentially at least proportionally to
{Ntactors + 1)Y¥sers, this means a speed-up of, for instance, a factor of 3125 when four
factors are required, five branches are used, and five fewer steps are needed due to the
use of optimal alignment + ASD.

In addition to the detailed explanations of a constructive algorithm for multi-factor
non-recombining trees, we also showed how the effective variance implied by the tree
model can be adjusted to meet that of the analytical continuous description. Furthermore,
I presented a method that guarantees the martingale conditions to be met exactly by
construction. A side-effect, or an added bonus, as it were, of the latter technique is an
additional computation time-saving of around 30%.

It should be mentioned that the methods described in this chapter do not resolve
the problem of the geometric explosion of the computational effort required for the
pricing of contracts involving many exercise decisions and cashflows. However, using
the techniques outlined above, one can calculate the values of moderately short exercise
strategy-dependent contracts such as 6-non-call-2 semi-annual Bermudan swaptions using
many factors and achieve a comfortable level of accuracy. In fact, using multi-threading
programming techniques to which the non-recombining tree algorithm is particularly
amenable, I have been able to carry out overnight runs of up to 10 steps for 10 factors on
average computing hardware (dual PII at 300 MHz). This means one can now produce
benchmark results against which other numerical approximations, such as exercise strategy
parametrised Monte Carlo methods (see Chapter 12), can be compared. It is mainly for
this purpose that the methods presented here have been developed, and for this purpose
only I envisage them to be useful.
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Miscellanea

Finally. there are a few additional thoughts that don’t fit into any of the other chapters,
and thus I present them here.

14.1 INTERPOLATION OF THE TERM STRUCTURE
OF IMPLIED VOLATILITY

When we value an exotic derivative contract, we will hardly ever have market information
about implied volatility for all of the relevant time horizons. As a consequence, we
have to use an interpolation rule to construct paths for a Monte Carlo simulation. When
practitioners require a Black-Scholes implied volatility at a point in time that is in between
two maturities for which there are traded options, they frequently use linear interpolation
in implied volatility over maturity. As long as all of the ordinate entries in the interpolation
table are positive, this will lead to positive implied volatilities at the intermediate time
horizons and thus plain vanilla option prices can be calculated. However, this alone is not
sufficient to ensure that Monte Carlo paths can be constructed. In figure 14.1, I show two
given term structures of volatility, together with linear interpolation in between the given
points, and the monthly forward variance implied by the respective term structures and
interpolation rule. Just to remind ourselves: the forward variance given by the implied
volatilities & associated with maturity 77, and 6, associated with maturity 73, is

v(T), T) = 63T, — 631y. (14.1)

The implied volatilities used to construct the linear interpolations are tabulated in table 14.1.
As you can readily verify, the forward variance inbetween each of the original data points
is positive and thus there should, in principle, be no problem with the construction of
Monte Carlo paths. However, if you look closely at the monthly forward variance of curve
#2 over the last three months of year 3 in figure 14.1, you may notice that the forward
variance dips below zero and thus we’d need imaginary forward volatility! Of course, you
may atiribute this problem to the particularly steep (albeit not unrealistic) term structure
of implied volatility. In practice, though, we sometimes need to deal with such steep term
structures of implied volatility, and therefore we have to be able to handle them.

The cause of the problem lies writh the choice of the interpolation method. Whilst being
conceptually simple and easy to use, linear interpolation in implied volatility can, sadly,
give rise to periods of negative forward variance even though the original data points are
perfectly self-consistent. The problem will not occur if instead of interpolating directly
in implied volatility, we tabulate the cumulative variance v(0, T') as a function of T
and choose a monotonicity preserving interpolation method. The simplest such interpo-
lation method is, of course, linear interpolation, but other methods such as monotonicity
preserving cubic interpolation [Kva00] can also be implemented easily. Figures 14.2 and
14.3 are examples for this. As you can see, both of these interpolation methods avoid
the problem of negative forward variance. Linear interpolation in cumulative variance,
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Figure 14.1 Two term structures of implied volatility and their monthly forward variance deter-
mined by the use of linear interpolation in implied volatility.

Table 14.1 The implied volatilities used for
the interpolation in figure 14.1.

T curve #1 curve #2
0.25 35% 45%
0.5 32% 38%
1 29% 31%
1.5 27% 28%
2 25% 25%
3 22% 21%
4 20% 20%

as one would expect, results in piecewise constant interpolation in instantaneous forward
variance, and thus in piecewise constant interpolation in instantaneous volatility. It mnay
be arguable if this is the ideal choice of interpolation since the sudden very abrupt changes
in instantaneous volatility, whilst being as risk-neutral as any other choice, may appear
rather arbitrary indeed. Monotone cubic interpolation in cumulative variance, in contrast,
leads to a continuous instantaneous volatility curve, albeit at the price of some (possibly
equally questionable) undulations. However, on balance, as can be seen in figure 14.4,
monotone cubic interpolation in variance might deliver the best compromise between
smooth forward volatility and the requirement of non-negative forward variance.

142 WATCH YOUR CPU USAGE

A Monte Carlo method comes to life the moment we run it on a computer. At that point,
once we have devised our techniques to the best of our knowledge of the underlying
maths and numerical analysis, we feel that our job is done and now the machine has to
do all the work. However, it can be useful to keep an eye on the box, to see how it is
doing. In other words, it may be a good idea to have some kind of information about
the resources required by any one Monte Carlo simulation. Whilst keeping an eye on the
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Figure 14.2 The samc two term structures of implied volatility as in figure 14.1 and their monthly
forward variance as resulting from linear interpolation in variance.

¥ Implied volatility curve #1

45%  -£=,) —0.018
—= — Interpolated implied volatility curve #1
l N ] B -+ 0.016
40% - ll @ O Implied volatility curve #2
i . ~-= Interpolated implied volatility curve #2 -+ 0.014
L= V- %]
35% " =+ Forward variance from interpolated implied volatility curve #1 L. 0 12
2 30% ...~ Forward vanance from interpolated implied volatility curve #2 | 0010
% \ - .
2 i\ |
S 25%4 \l T 0.008
— - 0.006
20% - 000000N T~ RITTEeeeSEEE
~
~ TN -+ 0.004
S - e r_——-
150/0 h N \~"th s -—'—--_" T 0 002
i S '
P T
10% 1 T T T T T T 7 0.000
0 0.5 1 15 2 25 3 3.5 4 4.5

Figure 14.3 The same two term structures of implied volatility as in figure 14.1 and their monthly
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Figure 144 Forward volatilities for curve #2 for different interpolation types. Note that the
forward volatility between 2.75 and 3 is not defined for linear interpolation in implied volatility.

memory usage in order to avoid bottlenecks caused by unnccessary swapping of memory
pages at run time is only due diligence, more importantly, make sure that along with the
result(s) of every Monte Carlo simulation you run you also get an estimate of the CPU
time required for the calculation. Not only will this be a very good early warning system
to indicate something went wrong after you made some changes you thought should not
affect the performance, it can sometimes also show that there is a fundamental flaw with
the executable code, which may not even be your fault. At some point in the past, for
instance, it was necessary to explicitly provide a particular compile time flag to tell the
Sun compiler to change the way it handled the numerical evaluation of expressions like
g 1000, Clearly, for the purpose of our financial Monte Carlo simulation, this number
can just be rounded down to zero. By default, however, the Sun compiler produced code
such that the floating point unit would at this point cause a hardware interrupt which in
turn invoked an operating system handling mechanism. As a consequence, for parameter
settings such that certain conditions would have an extremely low probability, the code
would appear to run several times slower, even though it was carrying out the same
number of arithmetical operations. Once we had identified the problem, it was easy to fix:
the Sun compiler manual gave us information on how to avoid this problem. This kind
of situation can give rise to tremendous amounts of frustration if you jumped through
several hoops to make your Monte Carlo method converge several times faster, only to
find that an equal amount of speed-up can result from a more fortuitous choice of compile
time flags.

The above example is not specific to Sun compilers. Similar situations can arise on
almost all hardware with various different compilers. With the newer processor models
and newer, adapted, compiler versions, it is well worth experimenting a little with the
compile time flags to find out what makes your code run fastest. Also, if you manage
to run some kind of profiling apalysis on your Monte Carlo engine and identify where
most of the time is spent, remember the good old C register keyword. Identify the
iterator or addition variables that are being used most inside the innermost loop and stick
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register in front of them, and compare the run time. It is not unheard of that in lucky
circumstances this may lead to an up to 20% performance improvement, or at least a few
percent, and just for as much work as experimenting with the register keyword for an
hour. At this level of finetuning, there is no reason why the compiler’s optimisation stage
should be able to guess correctly which variables to provide with the most optimisation
boost, simply because the compiler cannot know how many times you will be going
around that innermost loop.

143 NUMERICAL OVERFLOW AND UNDERFLOW

For most financial modelling problems, there are combinations of parameters that can lead
to numerical over- or underflow. Your best case scenario (which is bad enough) is that
at this point the final result of the whole calculation is completely invalidated and you
just get NaN, i.e. the [EEE floating point value indicating ‘not a number’. Worse, though,
is the situation when instead the computation does return with an apparently meaningful
answer, only that it is very wrong, and usually very wrong indeed. It is because of these
nasty little accidents that I recommend always ensuring that over- and underflow are
handled correctly in your numerical routines, and mathematical functions handle extreme
cases graciously. An example of this is our insisting in Chapters 7 and 9 that pseudo- and
low-discrepancy number generators based on the unit interval from 0 to 1 should always
ensure that they do not actually return the number 0 or 1, just to make sure that any
routine using those numbers, such as the inverse cumulative normal distribution, never
incurs those extreme events which would have to be mapped to +o0c or —oo.

This kind of numerical over- and underflow can happen in many situations, though.
Most implementations for the second modified Bessel function 7, (x), for instance, don’t
handie the case of large v very well. They either end up iterating far too long, return
NaN or even a seriously wrong number. This situation can be avoided by choosing
a suitable threshold at which to switch over to one of the highly accurate asymptotic
expansions {AS84].

144 A SINGLE NUMBER OR A CONVERGENCE DIAGRAM?

For many applications where the practitioner has to resort to a Monte Carlo technique,
one ideally wishes to obtain a single number as the answer. There are many situations
where, due to the embedding of the calculation engine, one can only afford to return a
single number from a calculating subroutine due to application programring interface
restrictions, automation of daily reports, etc. However, in most applications, and here
I speak from experience, it is possible to have a slight paradigm shift with respect to
the concept of ‘the numerical sotution to a mathematical problem’. Reality is that every
single calculation comes with an inevitable inaccuracy, and in most cases we have at
best some idea about the order of magnitude of the error. This is particularly true for
Monte Carlo methods, ironically especially for those that utilise high performance vari-
ance reduction techniques such as low-discrepancy numbers. In my professional life it
has therefore proved to be invaluable to never just return a single number from a Monte
Carlo calculation, even if accompanied by un estimate of the standard error. When we
use Excel as our user interface, it requires very little additional effort to return an entire
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convergence diagram in an array back into the spreadsheet, rather than just a single
number. The human eye, or in other words the experience and intuition of the practi-
tioner, can judge surprisingly well from the convergence diagram whether a Monte Carlo
simulation has converged, especially for methods that appear to converge mainly from one
side as low-discrepancy numbers very often do. It is, alas, wishful thinking to hope for
a certain number of samples to always be sufficient for a specific type of problem given
certain convergence enhancement techniques and, unfortunately, many practitioners still
think this way. Very often this is realised and the Monte Carlo number is accompanied by
a standard error estimate. That’s fair enough for methods whose convergence enhancement
is reflected in the standard error measure. The most powerful ones that are independent
of problem-specific enhancements, though, are low-discrepancy numbers, and for those
the standard error is typically hugely overestimating the residual error in the calculation.
Since no better reliable error estimates are available for those methods, and also because
the standard error only gives a probability measure of the error, it has always proved
invaluable to see the convergence behaviour.

Implementation of a convergence diagram is straightforward for most Monte Carlo
techniques. Instead of iterating over all of the samples to be drawn and averaging,
then eventually only returning a single quotient, we calculate a running estimate at
certain sampling intervals and return an array of the running estimates next to the
number of samples to the calling application. In Excel or other spreadsheet programs
such as Applix, the user then has the choice of either displaying and graphing the
convergence diagram, or just using a single element of the return array. For standalone
main( ) programs, the situation is even better. One can easily design the program
such that it prints running estimates at certain intervals, and direct this output to a
file. Using standard Unix and GNU utilities' and the gnuplot plotiing program, one
can even monitor live on-screen how the simulation progresses with the aid of a little
shell program such as the Plot script in Code Example 14.1. To use it is quite simple:
once you have started your calculation as inmain --myargumentlist > output-
file &, you simply monitor it with Plot outputfile. If the data you wish to have
graphed is not in column 1 and 2 but, say, in 5 and 3, you start it up like Plot -5:3
outputfile. It is, of course, possible to extend this for the display of surfaces from
a live updated file and you can find a corresponding Splot script on the accompa-
nying CD.

145 EMBEDDED PATH CREATION

Assuming you have a number generator class which at the time of instantiation of an
object of this class accepts a covariance matrix such that the vector varnates subsequently
produced by the new object satisfy the given covariances, you can have the construction
of paths done for you with great ease. The path construction is then done by whatever
covariance matrix splitting method is used inside your vector generator class. Typically,

"The GNU family of utilities is available for many operating systems. All major Linux distributions come
with it, they arc available for all Unix-like systems, and for NT there is the CygWin [Cyg] set of utilities which
is readily installed on an internetworked computer. although the Excel mterface is certainly preferable on the
Windows platform.
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#1/bin/bash
X=1
y=2
cage ‘‘51°’ in
~*} a=S5{1#-), x=%{a%%-*}; a=${ab*:}; v=5{a¥%:+}; shifc;
esac

{

echo ‘'set parametric ; set xlabel ’'$x’ ; set ylabel 'Sy’*”
eche -en '‘'plot 7'
{
for i; do
echo -m **fS1i' u $x:8v,’’
done
echo
bl osed fs/,5//0
acho
while . ; do
echo "replot’
sleep 1
donse

} | gnuplet -geometry S00x600

Code Example 14.1 The Plot script for the live monitoring of a file which is the output desti-
nation of a running Monte Carlo calculation

this will be the spectral pseudo-square root method outlined in section 6.2, and conse-
quently the path construction will iumplicitly be carried out using the spectral method
which is optimal for low-discrepancy numbers as explained in section 10.8.2.

14.6 HOW SLOWIS exp()?

The most frequently used non-trivial mathematical operation in most financial Monte Carlo
simulations is almost certainly the evaluation of the exponential function. Of course, it
is always advisable to precalculate as many formulae or parts of them as we can in
order to avoid their re-evaluation inside the heavily iterated inner loops of our simulation
code. However, there are almost always some evaluations of the exp () function required
inside the fast loops where performance matters most. The first timing experiments that
I ever carried out on Pentium processors with very tightly wound Monte Carlo loops did
indeed reveal that about 90% of the total run time of any Monte Carlo simulation for
derivatives pricing was spent in the evaluation of exp () . Gladly, though, the calculation
of the exponential function can nowadays be carried out not only faster by virtue of the
increase in raw CPU clock speed, but also due to the way in which it can be computed.
When the most sophisticated commodity processor? available was the Pentium chip, it
still scemed well worth while to implement a purpose-built replacement for the system
given call to exp (). The replacement could be made much faster by the use of large
lookup tables and linear interpolation, whilst sacrificing no noticeable accuracy. However,
as of the Pentium Pro processor, the optimised version of exp () makes use of the set
of raw floating point unit (formerly known as the maths co-processor) instructions given

2In this discussion, I focus on Intel and similar x86 processors,
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Table 14.2 The instructions used on a Pentium Pro and higher for the evaluation of exp ()

fldl2e load the base-2 logarithm of e into the main calculation register

fmul gword ptr [x] multiply the calculation register by the variable x

f2xm1 calculate 2 — 1 where r is the current content of the calculation
register and store the result in the calculation register; r must be
in the range —1,..., 1

frndin round a double to an int; needed because £2xml requires an
argument in the range —1,...,1

fid1 push the value 1.0 onto the calculation register stack

faddp add the value previously pushed onto the stack to the value
beneath on the stack

fscale multiply the result by a power of two which was scaled out earlier
because £2xml requires an argument in the range —1,..., 1

in Table 14.2. It makes use of the following basic equality:
o — [2(1"1082 &) _ 1] L (14.2)

The instructions used in this optimised decomposition cannot be expected to be executed
by the CPU in a single clock cycle. In fact most take more than a single tycle. The most
CPU-intensive instruction among them is probably £2xm1, which can take several tens
of CPUJ cycles, even on Pentium IT processors. However, along with the ever increasing
sophistication of the newer CPU models, not only does their raw clock rate increase,
but they also require fewer cycles for the more complex floating point unit instructions
such as £2xm1. Since the introduction of the Pentium II model, even the fastest imple-
mentation of a lookup table-based exp () replacement no longer provides any speed-up
when compared with the optimised system given code for this function®. The total CPU
time spent in the evaluation of the exponential function does indeed only comprise a few
percent of an average option pricing simulation. What’s more, at the time of writing,
the Pentium IV model is being introduced to the marketplace. Whilst I have no timing
information for this new type available yet, I am confident that in the futurc thc exp ()
function will no longer be the cause of any execution bottlenecks and the Monte Carlo
method will become ever more acceptable in the world of financial modelling.

Despite all the improvements in the newer processor models, it remains a matter of
cxpedience to avoid unnecessary calculations inside the innermost loops of any Monte
Carlo simulation. Even if one day the ratio of the average execution times of a ticating
point multiplication and an evaluation of exp () drops to a small number, maybe even
three or two, by replacing the computation of the exponential function by a single multi-
plication, if precalculation is somehow possible, your Monte Carlo simulation could run
two to three times faster if this evaluation is the main bottleneck. Never let the continuous
progress of CPU speeds and processing power be an excuse for ill-thought-out algorithm
design.

*My thanks go to Carl Seymour for providing the disassembly of the optimsed exp () function on Pentium
Pro (and higher) processors, and for baving carried out the comparative tests with respect to the run time
required.
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14.7 PARALLEL COMPUTING AND MULTI-THREADING

Most financial institutions’ large-scale middle- and back-office computing servers have
been equipped with multi-processor technology for quite some time now, and more and
more desktop computers nowadays also feature multiple central processor units, especially
in the trading environment of investment banks. Sadly, in particular the desktop’s multiple
CPU power remains largely unused for most applications. With respect to financial calcu-
lations, this is to some extent due to the fact that many numerical methods are very
difficult to adapt to parallel computing techniques. Monte Carlo (and non-recombining
tree) methods, however, are particularly well amenable to parallelisation. Conceptually
it clearly makes sense to start a set of subprocesses or threads to evaluate indepen-
dently a subset of all individual function evaluations that constitute the Monte Carlo
estimator

) 1oy
By = ; Fxi). (14.3)

Of course, we must ensure that there are no duplicates among the vector draws x; taken by
the various subprocesses if we wish to avoid the possibility of a biased result. For pseudo-
random numbers, one might think that this can be done by initialising a new number
generation engine with a diffcrent seed for each subprocess. This simplistic approach is
a fallacy, though. If we initialise each pseudo-random generator with a different seed, we
have absolutely no knowledge about which part of the overall cycle of the number gener-
ator we end up using. A worst case scenario could be that one of the subprocesses uses
almost the same sequence as another one, only with a little offset just to cause a severe
bias of the Monte Carlo estimator. We therefore need to shift each of the subprocess
number generators to an offset such that we are certain not to suffer any risk of overlap
in the number sequence.

In contrast to pseudo-random number generators, the Sobol’” sequence (and other low-
discrepancy methods) is wonderfully easy to shift to an offset n of iterations by calculating
the Gray code of the shift n (which is G(r) = n @7 [n/2]) as given in equation (8.22) and
using it as the generating integer y (n) := G(n) in the (re-)initialisation equation (8.20)
of the internal integer variables of the Sobol’ sequence. This means that the shift of
the Sobol” sequence generator can be done in practically no time at all, very much
unlike pseudo-random number generators for which we have to loop through a total
of n - d one-dimensional draws (with 4 representing the dimensionality of the vector
sequence) in order to achieve an offset of n vector draws from the beginning of the
sequence.

The first decision that has to be made when we multi-thread a Monte Carlo simulation
is what parallelisation paradigm we are going to use. Personally, I recommend keeping
it as simple as possible (KISS, right?), and going for the straightforward master—slave
method. This means, our Monte Carlo evaluation engine is given a parameter m of the
number of threads to use. If this number is zero, it will ignore any parallelisation issues
and just carry out the simulation of N evaluations itself. For m > 0, it will set up an
array of the number of iterations that each of the slaves has to do, and an array of shifts
in the sequence of the selected number generation method. Denote the shift for the jth
thread as s;, and the number of iterations to be evaluated by this thread as n;, with

Z‘j":l n; = s;j and Z}’;l nj = N. An example of how to set up these numbers is given in
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vector <unsigned longs> lterationsTeoBeSkipped (NumberOfThreads),
NumberOfIterations (NumberOfThreads) ;
unsigned long j, n = 0,
for (=90; j<NumberCiThreads; ++j) |
NumberOfIterations[j] = TotalNumberOflterations / ( NumberCfThreads - J };
IterationsToBeSkipped[j]l = n:
n += NumberOflterations[jl,
TotalNumberOfIterations -= NumberCflterarions(j];

}

Code Example 14.2  Setting up the shift and number of iterations for each subprocess

Code Example 14.2. Given are unsigned long NumberCfThreads (which is the
number of threads m) and TotalNumberOfIterations (the total number of itera-
tions N). The code sample will then set up nj = NumberOfIterations{ j 1 and
sj = IterationsToBeSkipped[ j 1].

The Monte Carlo estimator is then effectively decomposed into

Nj

by = Y Fleg. (14.4)

J=11=I

An open question is still how many subprocesses we wish to employ. For systems that have
many processors and are being shared by many applications, this is a rather difficult deci-
sion and requires a judgement call. For computers that are dedicated to this Monte Carlo
simulation, we would ideally wish to use as many subprocesses as there are CPUs on the
machine. For most operating systems, it is possible to enquire about this at run time. For
instance, the Linux operating system provides a globally readable file /proc/cpuinfo
whose output can be parsed for the lines beginning with ‘processor ", The
CPUs are enumerated from 0, so we can simply take the last of those lines and add 1 to the
integer following the colon. For Windows NT, we can enquire about the number of proces-
sors on the machine using the function NumberOfCPUs given in Code Example 14.3.

finclude <windows.h>
unsigned long NumberOfCPUs (void) {
SYSTEM_INFC sys Info;
GetSystemInfo (ksysInto) ;
return static cast<unsigned long> (sysInfo.dwNumberOfProcessors);

}

Code Example 14.3 Enquiry about the number of CPUs under Windows NT

Finally, I would like to comment on the resource multiplication requirements for multi-
threaded Monte Carlo simulations. Clearly, each slave needs to have a clone of the
master’s number generation object since all number generation methods use internal state
variables that must not be shared by the slaves. It is paramount for all multi-threaded
applications that no functions possibly involved in a multi-threaded task contain any
static variables for obvious recasons. The simultaneous attempt of more than one thread
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to write to the same memory space will invariably lead to a hardware exception which
may be intercepted by the application but will certainly invalidate the simulation’s result.
Unlike simultaneous writing, the attempt to simultaneously read from the same memory
is perfectly tolerable by conventional symmetric multi-processing (SMP) hardware. This
means that, at least in theory, all of the slave processes may be allowed to read-access
variables and parameters stored in the master process’s memory space. Doing so, alas. can
lead to rather unexpected bottlenecks that are not easy to explain. I personally suffered
from this misconception when I once implemented a multi-threaded Monte Carlo engine
such that each of the slaves would carry out the copy construction of all the global objects
they needed for their private write-access themselves. Since a lot of complex data had
to be copied, creating a single copy of all the required objects took a noticeable fraction
of a second. Asking the master process to copy all of the objects for each of the slaves
prior to invoking them thus took the number of threads times that fraction of a second.
Thinking that read-access leads to no problems, I designed the multi-threaded algorithm
such that each thread took its own copies in parallel, in order to reduce the overhead in
the copying stage. Little did I know. Suddenly, taking two complete copies of all required
objects in parallel on two CPUs not only took the time it takes to copy one, but almost
10 times as long, thus producing an additional overhead of several seconds where 1 had
thought I would end up with a faster start-up period. The best explanation [ could come
up with is that, whilst being a perfectly valid thing to do, the simultaneous read-access
to the same memory area by both CPUs leads to a hardware contention that causes the
SMP architecture to serialise those access requests, and execute them in turn, involving
hardware interrupt handling, hardware wait locks on individual CPUs, and probably a
whole load of other unpleasant hardware actions. The moral of this story is: the master
process ought to create a whole set of copies of all variables and objects required for the
simulation both for write- and read-access for each individual slave process, before starting
the slave processes. Note this does not mean that two threads cannot simultaneously
exccute the same function at the same time: this is handled by the operating system since
each CPU has a local copy of the program code loaded into its level-1 cache before
executing it. Automatic variables in a function are also not subject to these considerations
since they are created on the individual CPU’s local stack. In other words, if you only
invoke static member functions of a class, there is no need to create and copy an object
of this class. However, even the call of a virtual function that does not use an object’s
member variables can lead to a hardware contention. After all, a virtual function call is
resolved by looking up a pointer-to-a-function variable in the object’s vtable which
is effectively the same as accessing a member variable at assembler level. So, have the
master copy everything before invoking the slaves to do all the hard work: it’s only fair.
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Dirac density, 5
discordance, 44
discrepancy, 78
expected Ly-norm discrepancy of truly
random numbers, 97
explicit formula for the Ly-norm
discrepancy, 96
discrete-time dynamical system, 68
discretely monitored, 1
dispersion matrix, 26, 169
displaced diffusion, 29
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distribution
Bernoulli, 10
beta, 12
binomial, 11
Cauchy, 14
)(2, 13
conversion of, 99
density of, 5
dichotomic, 10
exponential, 11
gamma, 12
generalised beta 2, 15
generalised lambda, 17
generalised Pareto, 16
geometric, 11
Gumbel, 16
lognormal, 14
normal, 9
Pareto, 15
Poisson, 11
Student’s 7, 13
uniform, 9
Weibull, 16

domain D(X) of the random experiment, 5

draw, 5

drift, 26

driving matrix, 20

effective dimensionality, 120
reduction of, 124
embedded path generation, see path
generation, 206
equiprobable, 9
equivalent swaption volatility, 167
error estimation, 20
error function, 10
Euler scheme, 32
exact expectation matching of non-recombining
tree. see exact martingale conditioning
of non-recombining tree, 196
exact martingale conditioning of
non-recombining tree, 196
exercise boundary
heuristics of, 171
Monte Carlo algorithm based on
parametrisation of, 176
parametrisation of, 160, 174
exp( ), 207
expected value, 6
exponential, 12

factorisation of the BGM/J model, 161
Feynman-Kac theorem, 21
finite differencing for Greeks calculation, 140
forward rates
evolution of under the BGM/J model, 161,
184

Frank copula, 52
Frechet, 16

Gamma, 139
Gaussian copula, 46
two exponential variates under, 48
two uniform variates under, 46
generalised
beta 2 distribution, !5
function, 5
lambda distribution, 17
Pareto distribution, 16
GGL generator, 74
Gray code, 33, 84
Greeks, 139
Gumbel, 16
copula, 51

Holder's inequality, 7

Haar functions, 131

Halton numbers, 79
hedge-and-forget, 139
hypersphere decomposition, 60

iid see independent identically distributed, 18
importance sampling, 115
for Greeks calculations. 143
methods, 104
independent, 42
independent identically distributed, 18
infinitesimal perturbation analysis, 144
intermittency, 72
invariant measure, 71
inverse cumulative probability, 99
It6’s lemma, 24

Jensen’s inequality, 6
Johnson I distribution, 30

Kendall’s tau, 44
for Gaussian copula, 46

Latin hypercube sampling, 119
likelihood, 5
likelihood ratio
for Rho, 156
for sensitivity with respect to dividend
yield, 157
for Vega, 149
for Greeks calculation, 145
linear congruential generator, 73
linear correlation, 42
logistic map, 68
lognormal, 14
Lorentz distribution, 14
fow-discrepancy numbers, 77
empirical discrepancies, 91
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Halton, 79
Niederreiter, 88
pairwise projections, 88
Sobol’, 80
lower triangular form decomposition, 62

Malliavin calculus, 146
marginal distribution, 42
Markovian, 27

Wiener process embedding dimension, 26

measures for co-dependence, 42
Mersenne twister, 74
mid-square method, 72

Milstein scheme, 33
Minkowski’s inequality, 7

mirrored paths, see antithetic sampling, 111

moment matching (variance reduction
techniques), 116
moment of a distribution, 6
Monte Carlo
estimator, 8
integration, 7
maximisation, 7
simulation, 7
superior to lattice methods for higher
dimensionalities, 8
Moore—Penrose pseudo-inverse, 21
multi-threading, 209
multi-dimensional integration, 8

pear-periodicity, 70

nearly lognormal, 15

Neave effect, 106

Niederreiter numbers, 88

non-linearity, 68

non-recombining tree, 183
clustering of, 196
convergence of, 191
exact expectation matching of, 196
practical example, 199
recursive implementation of, 188
variance matching of, 192

non-uniform variates, 99

normal variates, 9

normalised sampler density Monte Carlo

estimator, 101

number generators
ideal choice of, 75
low-discrepancy, 77
pseudo-random, 67

numerical over- and underflow, 205

optimal simplex alignment, 172, 187
Ornstein—Uhlenbeck process, 26

parallelisation, 209
Pareto distribution, 15

path construction, 120
Brownian bridge, 124
incremental, 120
spectral, 122
path generation
embedded, 206
path recycling, 113
pathwise differentiation for Greeks
calculation, 144
Pearson’s r, 43
Plot script, 206
Poisson distribution, 11
predictor—corrector, 35, 169
primitive polynomials modulo two, 81
probability density function, 5
pseudo-inverse, 21
pseudo-random, 67
pseudo-square root, 59, 61
truncated, 61

Ran0, 68

Ranl-3, 74

random experiment, 5

random number generator
ideal choice of, 75

randomness, 67

RANDU, 73

rank correlations, 45

recursive implementation of non-recombining

tree, 190
reducible, 27
rejection sampling, 104
Rho, 112, 147, 156
running estimate, 205

sampler density

Monte Carlo estimator, 101
technique, 101
Schauder functions, 131
shape correction, 167
singular values, 22

decomposition, 22
Sobol’ numbers, 80

construction of, 82

initialisation, 85, 86
Sobol’ sequence

commercial software, 88
Spearman’s rho, 43
spectral decomposition, 61
Splot script, 206
standard deviation, 6, 9
standard error, 20

error estimate of, 21
standard normal variate, 9
strange attractor, 68, 71
stratified sampling, 114
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strong convergence, 31
strong law, 18

Student’s ¢ distribution, 13
subprocesses, 209
swaption volatility, 167

t-copula, 49

threads, 209

training set, 177
transformations of SDEs, 33
truly random numbers, 67

uniform distribution, 9

variability explained, 124

variance explained, see variability
explained, 124

variance matching for a non-recombining
tree, 192

variance reduction, 111

variate, 5

recycling, 112, 113
Vega, 112, 147, 149

weak convergence, 31
Weibull, 16
Wiener process, 23



